
ECOLE DE TECHNOLOGIE SUPERIEURE 
UNIVERSITE DU QUEBEC 

MEMOIRE PRESENTE A 
L'ECOLE DE TECHNOLOGIE SUPERIEURE 

COMME EXIGENCE PARTIELLE 
A L'OBTENTION DE LA 

MAITRISE EN GENIE 
M.lng 

PAR 
TRUONG, Le Hoang 

DEVELOPPEMENT D'UN SYSTEME D'IDENTIFICATION 
DES DIALOGUES PROBLEMATIQUES 

DANS LE SYSTEME DE DIALOGUE PERSONNE-MACHINE 

MONTREAL, LE 28 AVRIL 2008 

©TRUONG LE HOANG, 2008 



CE MEMOIRE A ETE EVALUE 

PAR UN JURY COMPOSE DE 

M. Pierre Dumouchel, directeur de memoire 
Departement de genie logiciel et des TI a I'Ecole de technologic superieure 

M. Robert Sabourin, president du jury 
Departement de genie de la production automatisee a I'Ecole de technologic superieure 

Mme Sylvie Ratte, membre du jury 
Departement de genie logiciel et des TI a I'Ecole de technologic superieure 



REMERCIEMENTS 

Le travail de ma maitrise, dans le cadre du programme de maitrise en genie concentration 

avec memoire de I'Ecole de technologic superieure (ETS), a ete effectue au sein du Centre de 

recherche informatique de Montreal (CRIM). 

J'aimerais, en premier lieu, exprimer mes sinceres remerciements a mon directeur de 

recherche Monsieur Pierre Dumouchel, Professeur a I'ETS et vice-president scientifique du 

CRIM, pour son encadrement, sa disponibilite et son soutien pendant tout le long de ce 

projet. Je n'aurais vraiment pas pu terminer mes etudes et mes travaux de recherche sans ses 

aides. 

Je voudrais egalement remercier Madame Narjes Boufaden, post-doctorante a I'ETS et 

chercheur au CRIM, pour ses conseils et ses recommandations productifs. 

J'aimerais aussi remercier tons les membres du Jury pour leur evaluation du projet. 

Finalement, j'aimerais remercier ma famille, mes amis au Vietnam et a Montreal qui m'ont 

grandement encourage durant ces deux demieres annees. 



DEVELOPPEMENT D'U N SYSTEME D'IDENTIFICATIO N 
DES DIALOGUES PROLEMATIQUE S 

DANS LE SYSTEME DE DIALOGUE PERSONNE-MACHIN E 

Tmong, Le Hoang 

RESUME 

Dans ce memoire, nous proposons un outil de classification automatique de dialogues 
problematiques dans un contexte d'un systeme de dialogue personne-machine. Le domaine 
d'application de cet outil est celui du forage de dormees (data mining), un sous domaine du 
domaine de I'apprentissage machine (machine learning). L'architecture de cet outil est 
modulaire et extensible afin de faciliter 1'experimentation de differents paradigmes de 
classification. L'outil utilise plusieurs schemes d'apprentissage machine tels que I'arbre de 
decision C4.5 et I'arbre de modelisation logistique pour la classification de dialogue et les 
parametres utilises provierment de la plateforme PARADISE. De plus, nous etudions I'ajout 
de deux nouveaux parametres : mots negatives de reconnaissance et repetitions de mots. 
L'outil est teste selon la technique de validation croisee avec 10 validations croisees sur deux 
corpus publiquement distribues par le Linguistic Data Consortium (DARPA Communicator 
2000 et DARPA Communicator 2001). Les resultats obtenus compares a ceux-la de I'etat de 
Part montrent que notre PDl est plus performant et que les deux nouveaux parametres 
ameliorent la performance globale de l'outil. 

Mots-cles: dialogue problematique, identificateur de dialogues problematiques, systeme de 
dialogue personne-machine, forage de dormees, machine d'apprentissage, classification de 
dialogue. 



DEVELOPMENT O F A DIALOG CLASSIFICATIO N SYSTE M IDENTIFYIN G 
PROBLEMATIC DIALOG S I N HUMAN-COMPUTER DIALO G SYSTE M 

Tmong, Le Hoang 

ABSTRACT 

In this thesis, we develop a dialog classification tool containing a Problematic Dialog 
Identifier (PDI) that helps automate the task of identifying problematic dialogs in a context of 
a Human-Computer Dialog System (HCDS). This automatic tool is a practical Data Mining 
application in Machine Learning domain. It is modular and easily extensible. It uses several 
popular, widely used learning schemes such as C4.5 Tree, Logistic Model Tree for dialog 
classification. We also study the effect of two new potentially good features, namely negative 
acknowledgement words and system repetitions, on the performance of PDI. The PDI is 
tested with 10-fold stratified cross-validation on two publicly distributed corpora DARPA 
Commvmicator 2000 and 2001. The obtained results when compared with those of state-of-
the-art show that our PDI outperforms and those two features are really good. 

Keywords: problematic dialog, problematic dialog identifier, human-computer dialog 
system, data mining, machine learning, dialog classification. 
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INTRODUCTION 

In the context of a call center, spoken dialogue system is offered for different kinds of 

services to users via telephony. It provides efficient and natural access to information 

services from any phones or Intemet and allows a cost reduction of service operations. 

Nowadays, its widely used applications such as email, travel planning information, and 

customer care have moved from research labs into commercial use. 

Spoken dialog system is a general term referring to two kinds of dialog systems: Human-

Human Dialog System and Human-Computer Dialog System (HCDS). This thesis only 

focuses on the evaluation of HCDS. 

A human-computer dialog is a conversation between a user and an agent (sometimes we may 

also call a system). A problematic dialog is a dialog in which user is unsatisfied. For 

example, a user might be unsatisfied because he/she has to repeat the same utterance many 

times in a row. 

To determine a problematic dialog, user satisfaction rating (shortly, user rating) is used. After 

the dialog is completed, user is asked some questions to assess the agent performance. 

Different agents may have different set of questions. In this thesis, we use a set of questions 

defined in DARPA Communicator corpora [18][19]. Those questions are the followings: 

• Task Success: Is user's task completed successfully? (Yes / No) 

• Task Ease - (A): In this conversation, it was easy to get the information that user wanted? 

• TTSPerf (Text To Speech Performance) - (B): In this conversation, user found it easy to 

understand what the system said? 

• User Expertise - (C): In this conversation, user knew what to say or to do at each point in 

the dialogue? 



• Expected Behavior - (D): In this conversation, the system worked the way user expected 

it to? 

• Future Use - (E): In this conversation, based on user's experience using this system to get 

travel information, user would like to use this system regularly? 

For the last five questions, user gives points for each question. The answers to the questions 

A/ B/ C/ D/ E have value varying from 1 to 5 based on Likert-scale that is a multi-item scale 

[20]. Likert-scale format is presented in the subsequent section. 

By summing up the values of five answers to those questions above, we have the actual user 

satisfaction score, named UserRating, used to define problematic dialogs: 

UserRating < Threshold ^ Bad dialog 

Dialog examples and user's assessments are presented in Chapter 3. 

Dialog Classification System (DCS) is a software tool that identifies problematic dialogs (or 

bad dialogs) from a set of dialogs collected in HCDS to propose new dialog strategies for 

agent and to provide bad dialogs for the Emotion Detection System as well. In fact, DCS is 

the first part of "Managing Emotions in Human-Computer Dialogs" project developed by 

ETS (Ecole de technologic superieure) & CRIM (Centre de recherche informatique de 

Montreal) in collaboration with Bell Canada Corp. Developing DCS is really essential 

because it helps automate the task of identifying problematic dialogs that is sometimes 

overwhelmed for human to accomplish. 

An experimentation framework, named Basili's framework [1][2][3], is employed to 

stmcture the thesis organization. According to this framework. Chapter 1 gives some 

definitions about the project; Chapter 2 describes the project plarming. Then, Chapter 3 

demonstrates the implementation, and Chapter 4 gives the interpretation of the obtained 

results. Finally, the last section presents the conclusion of the work. 



CHAPITRE 1 

DEFINITION 

1.1 Motivatio n & Purpos e 

The "Managing emotions in Human-Computer Dialogs" project is a practical data mining 

application of ETS & CRIM in collaboration with Bell Canada Corp. It originates from the 

desire to evaluate user satisfaction in human-computer dialogs in the settings of a call center 

of Bell Canada Corp. with the purpose of proposing new dialog strategies for HCDS. This 

results from the finding that the performance of the system based on speech recognition is 

not perfect. Sometimes clients are upset about the facts that they are not understood and they 

are ready to withdraw their association with Bell Canada if nobody helps them to solve their 

problem. Therefore, identifying problematic dialogs is a relatively essential need. However, 

Bell Canada Corp. records a great number of dialogs everyday. This number will be 

increased enormously day after day, so the task of identifying problematic dialogs may 

become overwhelmed for human to costly accomplish. Thus, DCS is a really essential 

automatic tool to help automate such task. 
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Figure 1- 1 Human-Computer Dialog System. 



The project diagram is illustrated in Figure 1.1. We develop DCS in the first stage of the 

project. The main goal of DCS is to identify problematic dialogs where user is unsatisfied. 

These bad dialogs are dispatched to the Emotion Detection System - developed by other 

team and out-of-scope of this research work - to detect user's emotions. 

DCS belongs to data mining and machine leaming domain (more particularly, pattem 

classification), so we will take a look at this domain in the literature review section. 

1.2 Literatur e Revie w 

1.2.1 Dat a Mining & Machine Learnin g 

Data mining is the extraction of implicit, previously unknown, and potentially usefial 

information from data. Data mining is defined as the process of discovering patterns in data. 

The process is preferably fully automatic, but it is often semi-automatic due to performance. 

The patterns discovered must be meaningful in that they lead to some advantage, usually an 

economic advantage [4]. 

Machine leaming provides the technical basis of data mining. Machine leaming is concerned 

with the design and development of algorithms and techniques that allow computers to 

"leam". Machine leaming has a large number of applications including natural language 

processing, speech and speaker recognition, pattern classification, to name a few [4]. 

Now, we consider a simple pattem classification example to know what pattem classification 

is and how it is applied in practice. 



1.2.2 A  simple pattern classificatio n exampl e [6 ] 

Pattem classification is the act of taking in raw data and making an action based on the 

category of the pattern. Pattem classification takes decisions based on appropriate 

probabilistic or non-probabilistic models of the patterns. 

It is essential to know several terminologies used in pattem classification. Those are the 

followings: 

• Pattem: a pattem can be an object, a process or an event consisting of both deterministic 

and stochastic components; a record of dynamic occurrences influenced by both 

deterministic and stochastic factors. Textures, crystals, weather pattem, speech 

waveform, dialog pattem are some examples. 

• Feature: a feature (also called attribute) is a relevant, intrinsic trait or characteristic that 

makes a pattem apart from another; data extractable through measurement and/or 

processing, such as color, age, weight, and aspect ratio. 

There are two main kinds of features: nominal feature (e.g. Sunny, Rainy...) and numeric 

feature (e.g. 45s, 78°C). 

• Pattem class: a pattem class is a set of pattems sharing a set of common features and 

usually originating from the same source (associated with the generalization or 

abstraction of pattems). 

• Classification: classification is the act of assigning pattems into pattem classes based on 

their features. 

• Noise: noise is a distortion associated with pattem processing (errors in feature 

extraction) and/or training samples that impact the classification abilities of the system. 



Let us consider a simple example of pattem classification as shown in [6]: classify two types 

of fish (salmon and sea bass). There are some physical differences between salmon and sea 

bass such as length, width, lightness. 

Given that there are differences between the population of salmon and sea bass, we view 

them as having different models used for feature extraction. For example, somebody tells us 

that a sea bass is generally longer than a salmon. This gives us a model for the fish: sea bass 

length is greater than that of salmon -> length becomes an obvious feature. 

To make classification more accurate, we have to use many features. Suppose we have two 

features for classifying fish: the length and the lightness. From training samples, we measure 

their two features and plot a graph as shown in Figure 1.2. 

Length 
• Salmon 

Decision 

boundar}' 

Sea bass 

.Lightness 

Figure 1- 2 Sample space  offish. 

The plot suggests classifying the fish as sea bass if its feature vector falls at the right of the 

decision boundary and as salmon otherwise. In this example, the decision boundary is a 

straight line. However, depending on the distribution of the samples, decision boundary 

could be a curve or something else. It is therefore necessary to choose features carefully to 

achieve good representation tha t enables successful pattem classification. This selection 

could be complicated by noise and errors. Robust features are the ones relatively insensitive 

to noise and other errors. 



Pattem classification is only one of four machine leaming styles in data mining. How many 

machine learning styles are there in data mining? We will describe these styles in the next 

section. 

1.2.3 Machin e learnin g styles [4 ] 

Generally, machine leaming styles in data mining include: 

• Numeric prediction: predicts a target value based on a vector of features. 

• Pattern classification: leams a way of classifying unseen pattems into discrete classes 

from a set of labeled examples. 

• Association leaming: any association among features is sought, not just ones that predict 

a particular class value. 

• Clustering: seeks groups of samples that belong together. 

In these four styles, numeric prediction and pattern classification styles are used more widely 

than the other two in data mining applications. Moreover, DCS uses pattem classification 

style, so we only focus on that style along with numeric prediction style because the former 

is often derived from the latter. 

The general problem of numeric prediction and pattem classification can be described in tum 

in the two sub-sections below. 

1.2.3.1 Numeri c predictio n 

Given a column feature vector X = (Xi, X2,..., Xd)\ 

where Xi, X2,..., Xd are d features of pattem X and d is the number of dimensions of the 

feature vector X. 

The problem is to predict the numeric value Y = f(X), where f(X) is a function with respect 

to X. For example: f(X) = X, + 2X2 or f(X) = 3Xi - X2. 



The numeric prediction system is trained by an n-element dataset, each element has the form 

(x, y) with X is a d-dimensional vector and y is a numeric value: 

xi =(xii,xi2,...,xid) , yi 

X2 =  (X21 ,X22 , . . . ,X2d ) , y 2 

Xfi ~  (Xnl,Xn2) - •  • , Xpd) , y n 

where: 

xi: 1*' observation of feature vector X; yi: corresponding numeric value 

X2: 2" observation of feature vector X; y2: corresponding numeric value 

Xp: n' observation of feature vector X; yn: corresponding numeric value 

1.2.3.2 Patter n classificatio n 

Given a column feature vector X = (Xi, X2,..., Xd)̂ , 

where Xi, X2,..., Xd are d features of pattem X and d is the number of dimensions of the 

feature vector X. 

The problem is to classify X into one of the k classes {Ci, C2,..., Ck} . 

The pattem classification system is trained by an n-element dataset, each element has the 

form (x, c) with x is a d-dimensional vector and c is a class: 

X] = ( X i , , X i 2 , . . . , X i d ) , Ci 

X2 = (X2l ,X22, . . . ,X2d), C2 

Xn ~  (Xnl5Xn2,.. . ) Xnd) , C p 



where: 
I S t 

xi: 1 observation of feature vector X; ci: corresponding class 

X2: 2" observation of feature vector X; C2: corresponding class 

Xn. n"̂  observation of feature vector X; Cp: corresponding class 

To solve numeric prediction and pattem classification problems simply, we can use one of 

the three basic leaming models which are the ones applied directly on the training dataset. 

• Zero-Rule Model 

• Linear Regression Model 

• Logistic Regression Model 

In the next section, we will show how each basic leaming model works. 

1.2.4 Basi c learning model s 

1.2.4.1 Zero-Rul e Model [4 ] 

Given a training dataset: 

xi =(xii,xi2,...,xid), yi/ci 

X2 =  (X21 ,X22 , . . . ,X2d ) , y2/C 2 

Xp ~  (Xn|,Xn2, . • ., Xpd) , yn/C p 

In numeric prediction, Zero-Rule model predicts the average class value in the training data 

using the following rule: y = average(yj). 

While in pattem classification, Zero-Rule model predicts the majority class in the training 

data using mle: c = argmax(Pr(C,)) , where Pr(Ci) is probability of class Cj in the set of 

classes {Ci, C2,..Ck}. 
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1.2.4.2 Linea r Regression Model [SJIll ] 

Given a training dataset: 

xi =(xii,xi2,...,xid), yi/ci 

X2 = (X21,X22,. . . ,X2d), y2/C2 

Xn ~ (Xni,Xp2,..., Xpd), yp/Cp 

In numeric prediction. Linear Regression Model uses a linear function f(x), x=(xi,...,Xd)^ to 

model the target value y: 

y = f{x) =  b,+b'x^f^b,x, (1-1) 
/=0 

\T where bo is an intercept; b=(bi,b2,.. .,bd) is a coefficient column vector; and XQ = 1 

The problem is to estimate the intercept bo and vector b using LSE (Least Square Estimation) 

from the training dataset. LSE tries to minimize the Residual Sum of Squares: 

RSS = ±[y,-f{x,)f (1.2) 

By minimizing the RSS in the equation (1.2), we obtain the values of the intercept bo and 

vector b. For new pattem X=(Xi,X2,...,Xd)^, the target value Y is predicted using linear 

model: 

Y = b,+b,X,+... +  b,X, (13) 

Linear Regression Model can also be applied to pattem classification by using the following 

Multi-response Linear Regression procedure: 
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• Perform k separate linear regression on each class, set the target value yi to 1 if the 

instance Xj is in the class that we are doing linear regression and 0 otherwise. 

• The regression equation then approximates the membership function for the class (1 for 

members, 0 for non-members). 

• To classify a new instance X, compute the regression value for each membership function 

Yj, i = 1.. .k, and assign the new instance the class with the highest value Y = max (Y,). 

1.2.4.3 Logisti c Regression Model [5] 

The Logistic Regression Model is a better altemative solution of Linear Regression Model 

for classification. It arises from the desire to model the posterior probabilities of the k classes 

via linear function with respect to x. It is mandatory that those posterior probabilities sum to 

one and remain in the interval [0, 1]. 

The model has the form: 

1 PT(  C  ^  C,\X)  , ^  r^T  ^  ^ 
log —^ ^—  -=  b,.  +  b,  *  X 

Pr{ C  =  C,  \  X )  '° ' 

log ^'(C  -  ^2  1^)  ^  ^ +b/  *  X  (1-4) 
PY( C  =  C,  \  X  )  '° ' 

Pr( C  =  C  ,  ,  M r )  ^  ,  r  ,  ^ 
log —̂^ —^  -=  b,^  no + ^ t J  *  X 

where: 

X-(Xi,X2,...,Xd)'^: input pattem 
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Pr(C-Ci I X): posterior probability of class C| given X 

Pr(C=C21 X): posterior probability of class C2 given X 

Pr(C=Ck I X): posterior probability of class Ck given X 

bjo: intercept 

bj = (b|, b2,.. .,bd) : coefficient column vector 

Solving the equation system (1.4), we obtain the posterior probabilities of the k classes: 

Pr( C  =  C  ,  I  X  )  =  Z^} ^ ' ° ^  ^'' *  ^ > ,i =l...k -I 
1 + 2 exp( b  ,,  +  b/  *  X  ) 

Pr{ C  =  C  ,  \  X  ) 

,/ = ' 

1 (1.5) 

k -  1 

1 + X exp( b^,  +  b/  *  X  ) 

The result (1.5) shows that those posterior probabilities sum to one and remain in [0, 1]. 

Now, the problem is to estimate the intercepts and coefficient column vectors. These 

parameters are usually estimated by using Maximum Likelihood method. This method is 

mathematically complicated, so we do not present it here. 

When k = 2, the model is especially simple because there is only a single linear fimction: 

?r{ C  ^  C  ,  \  X  ) 
?T{ C  =  C  ,  \  X  ) 

log M  C  -  C,\X)  ^ , ^ ^ r , ^ (i_6) 

This model is widely used in cases where binary responses (two classes) occur quite 

frequently, especially in biostatistics' applications. DCS is also a two-class dialog 

classification system, so it is possibly appropriate to apply Logistic Regression Model with 

k=2 in DCS. 
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1.2.5 Tree-base d learnin g schemes 

In this section, we describe a popular and widely used leaming scheme. That is tree-based 

leaming scheme or also known as decision tree which employs three basic leaming models 

presented above. 

Tree-based leaming scheme or decision tree is a predictive model mapping observations 

about a pattem to conclusions about its target value. In decision tree, each interior node 

corresponds to a variable; an arc to a child represents a possible value of that variable. A leaf 

represents the predicted value of target variable given the values of the variables represented 

by the path from the root [12]. Figure 1.4 shows an example of decision tree. 

Decision tree has three names: 

• Classificatio n tree : is a term used when the predicted outcome is a categorical class (for 

example: Play, Don't Play, Good, Bad...) 

• Regressio n tree : is a term used when the predicted outcome is a numeric value (for 

example: CPU time, a patient's length of stay in a hospital...). 

• CAR T (Classificatio n An d Regressio n Tree) : is a term used to refer to both of the 

above trees. It was first introduced by Breiman et al. [10] 

To know more details about decision tree, let us consider a practical example about a golf 

club [12]: 

A manager  of  a  golf  club  wants  to  predict customer  attendance  in  his  club  in  order  to 

know if  he  should hire  extra  staffs  on  days  when  customers  play  golf  or  dismiss  most  of 

them on  days when  customers  do  not play golf. 
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The manager observed and measured four features in two weeks: 

1) Outlook: a nominal feature that has value belonging to a set of possible values 

(sunny, forecast, rain); 

2) Temperature: a numeric feature. The unit of measurement is °C; 

3) Humidity: a numeric feature. The unit of measurement is %; 

4) Wind: a nominal feature that has value belonging to a set of possible values (tme, 

false). 

He wants to know if the customers will play or not in a given day, so the target value is a 

category class belonging to a set of classes: (Play, Don't play}. Then, he made a dataset as 

shown in Figure 1.3. The decision tree built from this dataset is displayed in Figure 1.4. 

According to this decision tree, he can conclude that: 

• Users play golf on sunny and non-humid days / on overcast days / or on rainy and non-

windy days, then he will hire extra staffs on these days. 

• Users don't play golf on surmy and humid days, or on rainy and windy days, then he will 

dismiss most of the staff on these days. 

In this example, the manager has constmcted a decision tree using Zero-Rule model at leaf 

nodes. By using different models at leaf nodes, we have different tree-based leaming 

schemes. There are three popular tree-based leaming schemes: CART, Model Tree and 

Logistic Model Tree. We will describe briefly in tum these leaming schemes in the next 

section. 
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Play gol f datase t 

OUTLOOK 
sunny 
sumy 
overcast 
rain 
rain 
rain 
overcast 
s i m y 
su iny 
rain 
sunny 
overcast 
overcast 
rain 

TEMPERATURE HUMIDIT Y 
85 .  8 5 
80 1 9 0 
83 i  7 8 
70 9 6 
68 8 0 
65 7 0 
64 6 5 
72 9 5 
69 7 0 
75 8 0 
75 7 0 
72 9 0 
81 7 5 
71 8 0 

WINDY 
FALSE 
TRUE 
FALSE 
FALSE 
FALSE 
TRUE 
TRUE 
FALSE 
FALSE 
FALSE 
TRUE 
TRUE 
FALSE 
TRUE 

Dep. va r 
PLAY 
Don't Pla y 
Don't Pla y 
Play 
Ray 
Play 
Don't Pla y 
Play 
Dont Pla y 
Ray 
Ray 
Ray 
Play 
Ray 
Don't Pla y 

Figure 1-3 Play golf dataset. 

Dependent variable: PLAY 

Figure 1-4 Decision tree for play  golf dataset. 
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1.2.5.1 CART-C4. 5 

The main purpose of using decision tree is to reduce standard deviation (for numeric 

prediction problem) and entropy (for pattem classification problem) in training dataset before 

applying a basic learning model at leaf nodes. In other words, decision tree partitions the 

training dataset into disjoint sub-datasets based on feature values, then executes a basic 

leaming algorithm on each subset. 

If we use Zero-Rule Model for numeric prediction at leaf nodes of a decision tree, we have a 

Regression Tree. If we use Zero-Rule Model for pattem classification at leaf nodes of a 

decision tree, we have a Classification Tree. However, we can call both of these trees CART. 

CART is usually used because of its simplicity since its Zero-Rule Model at leaf nodes 

predicts the result by chance. The widely used decision tree - C4.5 - is an implementation of 

CART. 

1.2.5.2 Mode l Tre e 

Similarly to CART, if we use Linear Regression Model for numeric prediction at leaf nodes 

of a decision tree, we have Model Tree for numeric prediction. If we use Linear Regression 

Model for pattem classification at leaf nodes of a decision tree, we have Model Tree for 

pattem classification. Linear Regression Model works on numeric features, so Model Tree is 

appropriate for numeric prediction/pattern classification system using numeric features. 

1.2.5.3 Logisti c Model Tre e 

Logistic Model Tree is only appropriate for pattern classification problem. In Logistic Model 

Tree, the basic leaming model used at leaf nodes is Logistic Regression Model. 

Now, we need to define a procedure for building a tree-based learning scheme. For 

visualization convenience, the procedure is described by a flow chart as shown in Figure 1.5. 

We detail each step of the procedure next section. 
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1.2.6 Procedur e fo r building a tree-based learnin g scheme I6](7][8|[9 ) 

The procedure for constructing a tree-based learning scheme consists of the following steps: 

1.Choose question set 

2.Select splitting criterion 

3.Determine stopping mle 

4.Perform basic model at 

leaf nodes 

5 Apply pmning algorithm 

Figure 1- 5 Flow chart for tree building procedure. 

1. Choose a question set used for non-terminal node splitting: 

Given a training dataset: 

xi =(xii, xi2,...,xid), yi/ci 

X2 = (X21,X22,. . . ,X2d), y2/C2 

Xn = (Xpi,Xp2,.. . ,Xnd), yn/Cn, 

Denote a pattem vector X = (Xi, X2, ..., Xd)^, where: Xj is the i"" feature of X 

• If feature Xj is a nominal feature, the question has the following form: 

Is Xj G S? 
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where: 

S is a subset of a set of possible discrete values of Xj. Given S is a subset of a k-

element set {ai,..., ak}, the number of questions will be {2^ - 2). 

• If feature Xj is a numeric feature, the question is: 

Is Xj <= C? 

where: 

C: a threshold value. The number of questions will be (n) with: 

C, -  ^'''\^^\j  -  1 ...n,V{0) ^  0,V{j)  ^  X,  (1.7) 

2. Select a splitting criterion that determines which question will be used for splitting: 

Assume that we are solving pattem classification problem, the most widely used splitting 

criterion for a non-terminal node is the Information Gain also called Impurity Reduction or 

Entropy Reduction. We focus on pattem classification problem because DCS turns out to be 

a pattem classification system. In numeric prediction case, the splitting criterion is Standard 

Deviation Reduction. 

Suppose we have a binary split that separates a node t into two nodes: left node tt and right 

node IR. 

The information gain IG is calculated by the following formula: 

IG^I{t)-[pJ{t,) +  p,I{t,)] (1.8) 

where: 

t, tt, tR: current node, left node, and right node 

PL: proportion between samples falling into left node and samples in node t 

PR: proportion between samples falling into right node and samples in node t 
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I(t), I(tL), I(tR) are the Entropy Impurities of nodes t, tt, IR and are computed as follow 

/(0 = -XPr(C,)log(Pr(C,)) (1.9 ) 

where Cj is the i class; and Pr(Cj) is probability of class Cj. 

We deduce a mle for selecting the best question as follow: 

The best question  chosen  for splitting  non-terminal  node  is  the one that  maximizes  IG  in 

the equation (1.8). 

To demonstrate how to calculate Information Gain, we consider a 3-class problem, given a 

node t with 10 training vectors: 

o 4 vectors belong to class Ci; 

o 4 vectors belong to class C2; 

o 2 vectors belong to class C3. 

Suppose node t(4, 4, 2) is split into two nodes: tL(3,l,0) & tR(l,3,2). The goal is to compute 

IG of node t using entropy impurity. 

According to the equation (1.9), we have the entropy impurity of each node: 

I(t) = -(4/10)*log(4/10) - (4/10)*log(4/10) - (2/10)*log(2/10) =1.521 

I(tL) = -(3/4)*log(3/4) - (l/4)*log(l/4) = 0.815 

I(tR)= -(l/6)*log(l/6) - (3/6)*log(3/6) - (2/6)*log(2/6) - 1.472 

Then, applying the equation (1.8), we have the information gain for node t: 

IG = 1.521 - (4/10)*0.815 -(6/10)*1.472 = 0.315 
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3. Determine a split-stopping rule for leaf nodes: 

We can combine the following conditions to determine the split-stopping mle: 

• Zero impuritv: all the data samples at leaf node belong to the same class. 

• Feature: there's no feature left to split. 

• Threshold: 

+ The greatest information gain of best question falls below a pre-set threshold P 

+ The number of training samples is small enough. 

+ The tree is pretty big. 

4. Perform an appropriate basic leaming model at leaf nodes: 

Zero-Rule Model is used for CART, Linear Regression Model for Model Tree and Logistic 

Regression Model for Logistic Model Tree. 

Once the question set, splitting criterion, split-stopping mle and basic learning model were 

determined, a greedy algorithm used to build the decision tree is as follow: 

• All training samples are placed at the root of the initial tree. 

• Create a question set from these training samples. 

• The best question is then chosen from the question set to split the root into two nodes. 

• The algorithm recursively splits the most promising node with the best question until the 

stopping mle is satisfied. 

• Basic leaming model is executed at leaf nodes. 

Table 1.1 shows the pseudo-code to build a tree-based leaming scheme. After we have built 

the tree, the algorithm for classifying new data is given in Table 1.2. 
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Table 1 -1 Pseudo-code for building a tree-based leaming scheme 

Given a training set, each pattem X = (Xi,.. .,Xd) is a d-dimensional feature vector 

1. Begin with the root node with all training samples. 

2. For each new node t 

For every nominal feature: generate all its subset and obtain questions in the form 

Is X, G S? 

For every numeric feature: calculate Cj and generate all questions of the form 

Is Xi <= Cj? 

_For each question Q from the question set above: 

+ create Xtt (number of samples falling into left node oft) and XtR (number of 

samples falling into right node oft) according to the answer of the question Q. 

+ compute Information Gain of node t 

Choose the question Qo that maximizes Information Gain 

If stopping mle is met, execute appropriate basic leaming model; 

else create left node tt and right node tR oft based on the answer of question QO. 

Table 1 -2 Algorithm for classifying new pattem 

Given a decision tree and 

1. Begin at root node. 

2. At node t 

node t: 

J f t 

J f t 

is a leaf node. 

an input feature vector of a dialog pattem X 

get the target outcome. 

is an interior node, use feature of X to find the answer of the best question of 

+ If the answer is YES, traverse to left node oft 

+ If the answer is NO, traverse to right node oft 
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5. Applv a pruning algorithm to obtain an optimal tree: 

After building the decision tree, we can apply a pmning algorithm to get an optimal tree. 

Pmning algorithm is slightly complex. We describe it in a separate part. 

1.2.7 Prunin g algorithm [7] 

Given a decision tree, the problem is to pmne this tree to obtain a compact and optimal tree. 

The pruning criterion used to pmne the original tree is the cost-complexity measure: 

R„{T) = R{T) + a\T\ (1.10) 

where: 

R(T): misclassification rate of tree T (cost) is computed by the following formula: 

/?(r) = X^(0(l-max(Pr(C,|0) ( i . n ) 
leT 

where: 

P(t): proportion between data falling in node t and data in root. 

Pr(Cj 11): probability of class Cj at node t. 

a: complexity parameter 

|T|: number of leaf nodes of tree T (complexity) 

Suppose we have a tree like the one in Figure 1.6. 

For convenience, we denote Ttas sub-tree starting at node t and {t} as sub-tree containing 

only node t. 
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Root 

Figure 1-6 Tree example for pruning algorithm. 

Consider node Tt in Figure 1.6, applying the equation (1.10), we have: 

R,{T,) = R{T,) + a\T, 

RA{t}) =  R{t) + a 

(1.12) 

(1.13) 

To perform pmning algorithm, we have to find weakest sub-tree that is a tree when we 

collapse it into a single node, the misclassification rate increases least or is unchanged. 

Therefore, Tt is considered as a weakest sub-tree if 

RAT,)^R,{{t}) (1.14) 

Then, substituting the equations (1.12) and (1.13) to the left-hand side and right-hand side of 

the equation (1.4) respectively, we obtain the formula of the complexity parameter a: 

a = 
R{t)j- R{T,) 

\T \  -I (1.15) 
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Let a = g(t), where t is a non-terminal node and g(t) is a function with respect to t. The cost-

complexity pruning procedure is described as follow: 

• Start at tree TO with root r 

• Find the sub-tree Tt that minimizes g(t) 

• Collapse the sub-tree Tt to node t to obtain a pmned tree TI = TO - Tt 

• Find a pruned tree T2 from TI using the same way 

• Continue the procedure until we obtain the tree containing only root node: {r} 

The result of the pmning procedure is a sequence of trees; 

T0>T1 > T 2 > . . . > { r } 

From the sequence of trees above, we will choose an optimal tree by using one of two 

methods: Independent Test Set or N-fold Cross Validation. 

1.2.7.1 Independen t tes t set method 

For this method, the training dataset is divided to two parts as shown in Figure 1.7. We use 

the first part (about 80% of the training dataset) to create a sequence of trees: 

T0>T1 > T 2 > . . . > { r } 

Then, we use the other part to estimate the misclassification rate of each tree using the 

equation (1.11): 

TO ^ R(TO) 

TI ^ R(T1) 

T2 ^ R(T2) 

{r} ^ R{r} 

The optimal tree Tk is the one that has the minimum misclassification rate: 

k = argmin (R(Tk)) 
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Training Set 

(S) 

Independent 
Test Set 

Testing Set 

Figure 1- 7 Independent test set method. 

1.2.7.2 N-fol d cros s validation metho d 

With the N-fold cross validation method, we use all training samples to create a sequence of 

trees: 

T 0 > T 1 > T 2 > . . . > {r} 

Next, we divide the training dataset into N folds. Each fold contains two parts: training part 

and independent test part. We use the training part to create a sequence of trees and use the 

independent test part to estimate misclassification rate for each tree. Figure 1.8 illustrates 

how we divide the dataset. In summary, we have: 

Fold 1 : T ' 0 > T ' 1 > T ' 2 > . . .>{r '} 

R(T 'O) , R ( T ' 1 ) , R ( T ' 2 ) , . . . ,R{r '} 

Fold 2 : T^0>T^l>T22>. . .>{r^} 

R(T^O), R(T^l), R(T^2) , ... , R{r^} 

FoldN: T ' ^ 0 > T ^ l > T ^ 2 > . . . > { r ^ } 

R(T^O), R(T^l), R ( T ^ 2 ) , ... , R{r^} 
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S-S2 

S2 

S-S2 

Testing Se t 

Figure 1-8 N-fold cross validation method. 

We can not directly estimate the misclassification rates for the main sequence of trees, we 

could approximate them via the misclassification rate R(T'j), since each data sample in the 

main training dataset occurs in one and only one fold . The N-fold cross-validation estimate 

can be computed as: 

R^ATk )  =  — X RiT'k) (1.16) 

So, we have: 

TO ^ Rcv(TO) 

TI ^ Rcv(Tl) 

T2 -> Rcv(T2) 

{r} -^ Rcv{r} 

The optimal tree Tk is the one that has minimum misclassification rate: 

k = argmin (Rcv(Tk)) 

N-fold cross-validation method is computationally expensive in comparison with the 

independent test set method. However, it makes more effective use of all training data, so this 

method is only useful when we have a small dataset. Otherwise, independent test set method 

is more appropriate. 
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1.2.8 Othe r learning schemes for pattern classificatio n 

In this section, we introduce two more leaming schemes for pattem classification that we will 

use for our experiments. These are one-mle algorithm and boosted decision trees described in 

the next two subsections. 

1.2.8.1 One-rul e algorithm [4 ] 

One-mle algorithm for pattem classification generates a one-level decision tree expressed in 

the form a set of mles that all test one particular attribute, so it's a simple and computer cost-

effective method. However, it frequently gives high accuracy in many real-world datasets 

because the stmcture underlying those datasets might be quite mdimentary, and just one 

attribute is sufficient to accurately determine the class of an instance. 

The idea of one-mle algorithm comes from the fact that it's always a good plan to try the 

simplest things first. The pseudo-code for one-mle algorithm is given in Table 1.3. 

Table 1-3 Pseudo-code for one-mle algorithm 

For each attribute  { 

For each  value  of that attribute { 

count how often each class appears; 

find the  most frequent class; 

make the  rule assign that  class to this attribute-value; 

} 
Calculate the  error rate  of the rules; 

} 
Choose the  attribute that  produce rules  with  the smallest error  rate; 



28 

Let's reconsider the play golf problem in section 1.2.5. Applying the one-rule algorithm on 

that dataset, we obtain the rules illustrated in Figure 1.9. 

Attribute Rules Errors Total errors 

1 

2 

3 

4 

outlook 

temperature 

humidity 

windy 

sunny —> no 
overcast -> yes 
rainy -> yes 
hot-^ no * 
mild -> yes 
cool -^ yes 
high —^ no 
normal —^ yes 
false -^ ye s 
true -^  no * 

2/5 
0/4 
2/5 
2/4 
2/6 
1/4 
3/7 
1/7 
2/8 
3/6 

4/14 

5/14 

4/14 

5/14 

Figure 1- 9 One-rule algorithm result on play golf dataset 

From the ml e set, we can see that the two attributes "outlook" and "humidity" give the 

smallest total error rate. Therefore, we may choose one of them. For example, if we choose 

the attribute "outlook", we have the following classification mles: 

Outlook.' sunny -^  Don't  play 

overcast -^  Play 

rainy -^  Don't play 

(One-level decision tree) 

1.2.8.2 Booste d decisio n tree s (4) 

An approach to making pattem classification more reliable is to combine the outputs of 

different leaming schemes of the same type such as decision trees. Several machine leaming 

techniques do this by leaming an ensemble of models and using them in combination. The 

most prominent technique among these is boosting, 
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The boosting technique is an iterative machine leaming method performing pattern 

classification by mixing various outputs of different learning schemes into a single classifier 

using weighted vote. Weighting is used to give more influence to the more successful 

leaming scheme. 

Now we describe a widely used boosting method called AdaBoost.Ml included in the 

WEKA [17] machine leaming library. The iterative procedure of AdaBoost.Ml method for 

model generation and pattem classification is as follow: 

Model Generation: 

- The algorithm begins by assigning equal weight to all instances in the training data. 

- It then calls the leaming algorithm to form a classifier for this data and reweighs each 

instance according to the classifier's output. The weight of correctly classified instances is 

decreased and that of misclassified ones is increased. This produces a set of "easy" instances 

with low weight and a set of "hard" ones with high weight. 

- In the next iteration, and all subsequent ones, a classifier is built for the reweighed data, 

which consequently focuses on classifying the hard instances correctly. Then the instances' 

weights are increased or decreased according to the output of this new classifier. As a result, 

some hard instances might become even harder and easier ones might become even easier; on 

the other hand, other hard instances might become easier, and easier ones might become 

harder—all possibilities can occur in practice. 

- After each iteration, the weights reflect how often the instances have been misclassified by 

the classifiers produced so far. By maintaining a measure of "hardness" with each instance, 

this procedure provides an elegant way of generating a series of learning schemes that 

complement one another. 

- Whenever the error on the weighted training data is 0 or exceeds or equals 0.5, the boosting 

procedure deletes the current classifier and does not perform any more iteration. 
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Pattem Classification: 

- The outputs of all previously generated classifiers are combined using a weighted vote. A 

classifier that performs well on the weighted training data from which it was built {e  close to 

0) should receive a high weight, and a classifier that performs badly {e  close to 0.5) should 

receive a low one. 

- To make a classification, the weights of all classifiers that vote for a particular class are 

summed up, and the class with the greatest total weight is chosen. 

The pseudo-code for the procedure above is displayed in Table 1.4. 

Table 1 -4 Pseudo-code for boosted decision trees 

Model Generation.-

Assign equal  weight  to  each training instance. 

For each oft  iterations  { 

Apply learning  algorithm  to  weighted dataset  and  store resulting  model; 

Compute error  e  of model on  weighted dataset  and  store error; 

Ife equal  to  zero, or  e greater or  equal to 0.5 { 

Delete current  classifier; 

Terminate model  generation; 

} 
For each  instance  in  dataset { 

If instance is  classified correctly  by  model { 

Multiply weight  of  instance by  e / (1  - e); 

} 

} 
Normalize weight  of  all instances. 

} 
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Classification: 

Assign weight  of  zero to  all classes. 

For each  of  the t  (or less) models  { 

Add -log(e  /  (1  - e))  to weight of  class predicted by  model. 

} 
Return class  with highest weight. 

The boosted decision trees use the boosting technique in which several decision trees, C4.5 

trees for example, provide outputs for the final single classifier. We will use boosted C.45 

trees for our experiments. 
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1.2.9 Relate d works on identification o f problematic dialo g 

Concerning the problem of identification of problematic dialog (belonging to dialog 

classification problem), there are several previous works. The summary of these works is 

given in Table 1.3. 

In 1999, Litman et al [27] developed a PDI. In their work, they defined problematic dialogs 

as the ones that have poor speech recognition performance and used 'percentage of 

misrecognition' to label those dialogs. They used different kinds of features including 

Acoustic, Dialog Efficiency, Dialog Quality, Experimental Parameter, and Lexical features. 

They tested their system called RIPPER (a mie-based algorithm) on 544 dialogs of AT&T 

spoken dialog system using 25-fold cross validation. The accuracy of their PDI is 77.40%. 

After that, Langkilde et al [26] have developed another PDI based on [27] to use for How 

May I Help You (HMIHY) system. They built their system on 4774 dialogs using different 

sources of features: Automatic Speech Recognition (ASR) module. Natural Language 

Understanding (NLU) module, Dialog Manager (DM) component, and Hand-labeled. They 

defined problematic dialogs in a different way compared with Litman et al [27], i.e. they used 

'task success' instead of'percentage of misrecognition'. They tested their PDI with RIPPER 

using 5-fold cross validation and obtained 88.50% accuracy with all features (including 

hand-labeled features), 87.00% with automatic features, and 86.70% with automatic/task-

independent features. 

In 2000, Walker et al [25] improved the performance of the system in [26] up to 4% on the 

test with all features adding one more hand-labeled feature, namely "rsuccess". 
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Table 1-5 Related works on identification of problematic dialog 

Corpus 

Features 

Labelling 

Classifier 

Test 

1 (1999) 

AT&T 

(544) 

• Acoustic 

• Dialog 

Efficiency 

• Dialog 

Quality 

• Experimental 

Parameter 

• Lexical 

Percentage of 

misrecognition 

RIPPER 

25-fold CV 

2(1999) 

HMIHY 

(4774) 

• ASR 

• NLU 

• DM 

• Hand-

labeled 

Task 

Success 

RIPPER 

5-fold CV 

3 (2000) 

HMIHY 

(4774) 

• ASR 

• NLU 

• DM 

• Hand-

labeled 

• rsuccess 

Task 

Success 

RIPPER 

5-fold CV 

4(2001) 

HMIHY 

(4692) 

• ASR 

• NLU 

• DM 

• Hand-

labeled 

• rsuccess 

• auto-

SLU-

success 

Task 

Success 

RIPPER 

10-fold CV 

5 (2002) 

DARPA2001 

(1242) 

• Task 

Success 

• Efficiency 

• Qualitative 

User Rating 

DT 

10-fold CV 

Result (Accuracy) 

All 

features 

Automatic 

features 

Auto, 

Task-Ind 

features 

77.40% 

None 

None 

88.50% 

87.00% 

86.70% 

92.30%, 

87.00% 

86.70% 

91.70% 

84.90% 

(+autoSLU-

success) 

85.40% 

(+autoSLU-

success) 

67% - 89% 

(Not exactly 

mentioned) 

None 

None 
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On the basis of [25], Walker et al [24] built an "rsuccess predictor" to get a new automatic 

feature, named auto-SLU-success, by approximating the information provided by hand-

labeled feature 'rsuccess'. This work is motivated by the fact that future work should focus 

on developing automatic features. 

In 2002, Walker et al [23] developed a new PDI on DARPA (Defense Advanced Research 

Projects Agency) Communicator Corpus 2001 [19]. They labeled problematic dialogs using 

UserRating instead of TaskSuccess because the main goal is to maximize user satisfaction 

and it is not always the case that user is satisfied when his/her task is successfully completed. 

For example, users might be unsatisfied although they completed their task due to the fact 

that they had to repeat themselves many times before the system understood what they said. 

On the contrary, users might be satisfied although they did not complete their task probably 

because of database access problems [23]. Walker et al used the features defined in 

PARADISE framework [15] including Task Success, Efficiency and Qualitative measures. 

We published a paper [22] in 2007, on the basis of [23], studying the effect of named entities 

and acknowledgement words such as YES, NO, OK on the performance of PDI. That work 

showed that acknowledgement words are good indicators for identification of problematic 

dialogs. Therefore, this thesis uses acknowledgement words in combination with Task 

Success measure. Efficiency measure defined in PARADISE framework and one more 

feature, namely NumRepetitions i.e. number of times the agent repeats the same utterance, 

for problem of identification of problematic dialog. All of these features are automatically 

obtainable. 

1.3 Scop e i& Outcome 

DCS is a single project, i.e. it is developed independently without using outputs of other 

projects. In contrast, other projects use the results of DCS as their inputs. The outcome of 

DCS project is a stand-alone system that can identify problematic dialogs of some corpora in 

a HCDS using several pattem classification algorithms. 
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Chapter Summary 
Motivation 

Purpose 

Domain 

Scope 

Outcome 

Evaluation of user satisfaction in HCDS 

Identification of problematic dialogs 

Data mining & Machine Leaming 

Pattern Classification 

Single Project 

A stand-alone system that can identify problematic dialogs 



CHAPITRE 2 

PLANNING 

2.1 Methodolog y 

2.1.1 Theor y framewor k [15 ] 116] 

PARADISE (PARAdigm for Dialog System Evaluation) is a general framework for 

evaluating spoken dialogue agents. It is based on the structure of objectives. It posits that 

system performance can be correlated with a meaningful extemal criterion such as usability 

which can be directly measured by user satisfaction. 

User satisfaction has been frequently used as an extemal indicator of the goodness of a 

dialog. Figure 2.1 illustrates PARADISE diagram. To maximize user satisfaction, one must 

maximize task success measure and minimize dialog costs including efficiency measures and 

qualitative measures. 

PARADISE uses a decision-theoretic framework to specify the relative contribution of 

various factors to an agent's overall performance. It capitalizes on maximizing user 

satisfaction through 3 general factors: 

• Tas k success measure : task completion. 

• Efficienc y measures : total time on task, number of turns on task, number of times user 

and agent speak at the same time, average duration of system tums, average duration of 

user tums... 

• Qualitativ e measures : number of repair utterances, DATE (Dialogue Act Tagging 

Scheme for Evaluation of HCDS). 
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User Satisfaction 

Task Succes s 

Measure 

Dialog Costs 

Efficiency 

Measures 

Qualitative 

Measures 

Maximize User Satisfaction -^  Maximiz e Task Success & Minimize Dialog Costs 

Figure 2-1 PARADISE diagram. 

2.1.2 Dialo g features fo r classification tas k 

DCS is a complete and automated system. Therefore, dialog features used for classification 

must be automatically extractable. Based on PARADISE framework, we define a list of 

automatically extractable dialog like the following: 

1. Task Completion Measure: 

• TaskSuccess  : Task completion of dialog 

2. Efficiency Measures: 

• TimeOn Task : Total duration of dialog 

TurnsOnTask : Number of tums of dialog including system and user tums. 

• NumOverlaps.  Number of times system & user speak at the same time. 

• MeanUserTurnDuration: Average user's tum duration. 

• MeanSystemTurnDuration. Average system's tum duration. 
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• Mean WordsPerUserTurn: Average number of words of user tum. 

• Mean  WordsPerSystemTurn: Average number of words of system tum. 

• Phonetype: The type of telephone handset that user uses. 

Moreover, the problem is to identify problematic dialogs, so the automatically extractable 

feature "Number of negative acknowledgement words" could be a good one. Negative 

acknowledgement words include: NO, NOP, FALSE, INCORRECT, WRONG, ERASE. We 

call that feature NumNegativeACKwords.  Plus, we also find that number of times the system 

repeat the same utterance is a potentially useful feature. We denote this feature as 

NumRepetitions. 

Dialog classification is a 2-class pattem classification problem with set of classes: C = 

{Cl="Good", C2="Bad"}. Hence, a dialog feature vector can be represented in the form: 

{TaskSuccess, TimeOnTask, TurnsOnTask, NumOverlaps, 

Mean UserTurnDuration, MeanSystem TurnDuration, 

Mean WordsPerUserTurn, Mean WordsPerSystem Turn, 

Phonetype, NumNegativeACKwords, 

NumRepetitions, Label) 

2.1.3 Selectio n o f learning schemes [4 ] [5] 

It is seldom known in advance which procedure will perform best or even well for any given 

problem, so the "trial-and-error" approach is always employed in practical data mining 

application. Particularly, it is tempting to try out different leaming schemes with different 

combinations of their options on a given dataset to select the one that works best. 
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Among numerous of leaming schemes, decision tree has been the most widely used 

algorithm in practice because it has the following advantages and disadvantage: 

• Decision Tree is interpreted so easily because it uses subset of attributes. Practical data 

mining applications generally require interpretable models. 

• Decision Tree efficiently classifies new samples by simply traversing the tree stmcture 

without requiring much computation. 

• Decision Tree can be applied to any kind of data stmcture: mixed data type (nominal and 

numeric data) and data with high dimensionality. 

• Decision Tree helps to determine which attribute is the most important for numeric 

prediction and pattem classification. 

• Decision Tree is appropriate for limited dataset. 

• It is difficult to design an optimal tree, probably leading to a large tree with poor error 

rates. 

Therefore, decision tree is chosen to be the based leaming scheme in our DCS. The leaming 

schemes that we use for DCS are similar to those of state-of-the-art [21] so that we can 

compare the results. 

Those schemes are the followings: 

• Zero-Rule Model: This algorithm is useful for determining a baseline performance as a 

benchmark for other leaming schemes. 

• Logistic Regression Model: This model is appropriate for 2-class pattern classification 

problem and usually works well on many datasets. 

• One-Rule algorithm: This simple model encourages a "simplicity-first". Sometimes other 

leaming schemes actually perform worse than this model due to "serious over-fitting". 

• C4.5 Tree. 

• Boosted C4.5 Trees. 

• Logistic Model Tree. 
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2.1.4 Selectio n of corpora 

We use two publicly distributed corpora from Linguistic Data Consortium. The first corpus is 

DARPA Communicator 2000 and the second is DARPA Communicator 2001. We choose 

these corpora because they are available to download and we can compare our results with 

the state-of-the-art results [23]. The description of DARPA 2000 & 20001 is given below. 

2.1.4.1 DARP A 2000 Communicator Corpus [18] 

DARPA 2000 Communicator Evaluation was produced by Linguistic Data Consortium 

(LDC) catalog number LDC2002S56 and ISBN 1-58563-258-9 in the frame of 

Communicator program. The original goals of the Communicator program were to support 

the creation of speech-enabled interfaces that scale gracefully across modalities, from 

speech-only to interfaces that include graphics, maps, pointing and gesture. 

The actual research that led to the data collections in 2000 and 2001 explored ways to 

constmct better spoken-dialogue systems, with which users interact via speech-alone to 

perform relatively complex tasks such as travel plarming. During 2000 and 2001 two large 

data sets were collected, in which users used the Communicator systems built by the research 

groups to do travel plarming. 

Nine sites participated in this project: ATT, BBN, Carnegie Mellon University, IBM, MIT, 

MITRE, NIST, SRI and University of Colorado at Boulder. In 2000, each user called the nine 

different automated travel-planning systems to make simulated flight reservations. The order 

in which the users encountered the systems was counterbalanced, for statistical analysis 

purposes. 
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2.1.4.2 DARP A 200 1 Communicator Corpus 119 ] 

DARPA 2001 Communicator Evaluation was produced by Linguistic Data Consortium 

(LDC) catalog number LDC2003S01 and ISBN 1-58563-259-7 in the frame of 

Communicator program. The original goals of the Communicator program were to support 

the creation of speech-enabled interfaces that scale gracefully across modalities, from 

speech-only to interfaces that include graphics, maps, pointing and gesture. 

The actual research that led to the data collections in 2000 and 2001 explored ways to 

constmct better spoken-dialogue systems, with which users interact via speech-alone to 

perform relatively complex tasks such as travel planning. During 2000 and 2001 two large 

data sets were collected, in which users used the Communicator systems built by the research 

groups to do travel plarming. 

The following sites participated in this project: ATT, BBN, Carnegie Mellon University, 

IBM, Lucent Bell Labs, MIT, SRI and University of Colorado at Boulder. 

2.2 Evaluatio n measure s [4](14 ] 

Different metrics could be used to evaluate the performance of a leaming scheme. For a 2-

class pattem classification problem such as ours, where we have a positive class (C+) for 

good dialog and a negative class (C-) for bad dialog, we can use the following metrics: 

• Accuracy: reflects the overall correctness of the learning scheme. 

• Precision of C+ (P+): reflects the correctness of the leaming scheme on C+. 

• Precision of C- (P-): reflects the correctness of the leaming scheme on C-. 

• Recall of C+ (R+): is the accuracy among positive instances. 

• Recall of C- (R_): is the accuracy among negative instances. 
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• F-measure: is a combination of Precision and Recall. F-measure is computed by the 

following formula: 

2PR 
F = 

P + R 
(2.1) 

These metrics are calculated from a confusion matrix as shown in Table 2.1. Accuracy varies 

from 0% to 100%) whereas Precision, Recall, and F-measure vary from 0 to 1. 

The higher the metric is, the better the system performance is. 

Table 2-1 Confusion matrix for 2-class problem 

Predicted C + 

Predicted C -

Actual C + 

True Positive (TP) 

False Negative (FN) 

Actual C-

False Positive (FP) 

True Negative (TN) 

Accuracy = TP + TN 
TP + FP + FN +  TN 

*100% (2.2) 

P. = 
TP 

TP +  FP 
(2.3) 

TN 

TN +  FN (2.4) 

R. = 
TP 

TP +  FN 
(2.5) 

R = 
TN 

TN +  FP (2.6) 
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f ^  ^^^^^  (2.7) 
P. +  R 

+ + 

f - ^^-^-  (2.8) 
P+R 

For dialog classification problem, the best two measures to evaluate DCS are Accuracy and 

F_ measures due to several reasons: 

• Accuracy reflects the overall correctness of the leaming scheme but it ignores the 

difference between error types, so one more measure is needed. 

• F_ reflects the precision and recall of class C- and the problem here is to identify 

problematic dialogs, so F_ is a reasonable choice. 

So far we have presented methodology and DCS evaluation measures. In the next section, we 

describe how to implement and test DCS. 
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Chapter Summary 

Methodology 

Evaluation 

measures 

Theory Framework: PARADISE 

Dialog features for classification task: 

+ TaskSuccess, 

+ TimeOnTask, 

+ TumsOnTask, 

+ NumOverlaps, 

+ MeanUserTurnDuration, 

+ MeanSystemTumDuration, 

+ MeanWordsPerUserTum, 

+ MeanWordsPerSystemTum, 

+ Phonetype 

+ NumNegativeACKwords 

+ NumRepetitions 

Leaming schemes: 

+ Zero-Rule Model 

+ Logistic Regression Model 

+ One-Rule algorithm 

+ C4.5 Tree 

+ Boosted C4.5 Trees 

+ Logistic Model Tree 

Datasets: 

+ DARPA Communicator 2000 Corpus 

+ DARPA Communicator 2001 Corpus 

_Accuracy 

F-measure of bad dialogs 



CHAPITRE 3 

IMPLEMENTATION 

3.1 Syste m Implementatio n 

After having described the definition and planning of DCS, in this chapter, we will discuss 

about system implementation. This chapter is divided in several sections where we will cover 

system design; detail each component of system, and describe experiments performed on 

system. 

3.1.1 Syste m Desig n 

A common pattem classification system usually has three main components as shown in 

Figure 3.1. Those components include: 

• Preprocessing: this component preprocesses the input pattem. There are three kinds of 

input pattems, each of which can be preprocessed with a different way: 

o Structura l pattern : this kind of pattem is represented by an image (2D or 3D). 

For examples: character, face, finger-print. We need to remove noise in pattems 

by using filling and thinning process, normalize pattems to the same size, correct 

slant. Then, we can extract Contour or Skeleton for feature extraction. 

o Time-varyin g pattern : is represented by a waveform. For example: speech. We 

can preprocess the pattem by doing some filtering, normalizing duration, etc. 

o Abstrac t pattern : this kind of pattem can not be represented explicitly. For 

example: dialog pattern. For this kind of pattern, we can use a parser to parse log 

files to generate dialog information. Abstract pattem is what we will be facing. 

• Feature Extraction: this component extracts features from processed pattern. 

• Pattem Classification: this component classifies pattem into a set of categorical classes 

based on extracted features. 
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Processed 
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Features Pattem 
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Figure 3-1 Pattern Classification System Diagram. 

On the basis of the common pattern classification system, DCS is designed as shown in 

Figure 3.2. The input pattem in DCS is represented by log files recording what the agent and 

the user communicated and time when the dialog took place. These log files are parsed by a 

parser to produce dialog information. This is the preprocessing phase. 

Then, an extractor will extract dialog features from dialog. Finally, classifier component 

classifies dialog into one of two categorical classes (Good, Bad} using dialog features. 

Log files Parser Dialog^ Extractor Features Classifier Output 

Figure 3-2 Dialog Classification System Diagram. 

3.1.2 Parse r Componen t 

As mentioned above, parser is the first component in DCS that serves to remove unuseful 

information or noise from files in order to extract useful dialog information. Normally, a 

dialog consists of tens of system tums and user tums, each of which has three main 

properties that the parser needs to extract. Those properties include star t time , finish  time , 

and utterance . 

In general, the input of the parser is a dialog stored in a form of log files and the output of the 

parser is a list of system tums and user tums with their three previously mentioned 

properties. 
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The log file format of different corpora varies. The parser has to adapt to this reality. 

Therefore, different method is used for different corpus. In the next section, we will describe 

how the parser parses log files of two DARPA corpora. 

3.1.2.1 DARP A 2000 Communicator Corpus 

The format of log file, named "summary file", of this corpus is displayed in Table 3.1. The 

parser parses this file to extract star t time, finish time , and utterance of system/user tums 

by seeking their keywords: "System started speaking.", "System finished speaking.", and 

"System said:"/"User said:" respectively. 

Table 3-1 Summary file in DARPA 2000 corpus 

Fri Jul 7 2000 at 12:20:53.02: New system tum began. 

Fri Jul 7 2000 at 12:20:53.02: System started speaking. 

Fri Jul 7 2000 at 12:21:09.36: System finished speaking. 

-> start time of system tum 

-^ finish time of system tum 

System said: Welcome. You are logged in as a guest user of AT&T ... -> system utterance 

Fri Jul 7 2000 at 12:21:15.05: New user tum began. 

Fri Jul 7 2000 at 12:21:15.05: User started speaking. 

Fri Jul 7 2000 at 12:21:16.38: User finished speaking. 

User said: HONOLULU HAWAII 

Fri Jul 7 2000 at 12:21:17.13: New system tum began. 

Fri Jul 7 2000 at 12:21:17.13: System started speaking. 

Fri Jul 7 2000 at 12:21:22.32: System finished speaking. 

System said: Leaving from Honolulu, And, what city are 

-> start time of user tum 

-> finish time of user tum 

-> user utterance 

-> start time of system tum 

-> finish time of system tum 

you flying to? ->  system utterance 
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Next, the parser also parses a "survey file" as shown in Table 3.2 to extract other useful 

dialog information such as system status, task success, and points of five answers to the 

previously mentioned questions. 

Table 3-2 Survey file in DARPA 2000 corpus 

AT&T 18 11:32EDT 2000/07/07 Alive Yes 3 4 2 3 4 

I was given the wrong option for the flight but it was my fault because I asked for an 

option by number and was given the first option that was read to me. 1 should have started 

over again to obtain the preferred departure time. Also, 1 thought the names of the cities 

were a little hard to understand. 

In the example in Table 3.2, we have: 

System status=Alive 

Task success=Yes 

Task Ease=3 

TTSPerf=4 

User Expertise=2 

Expected Behavior=3 

Future Use=4 

3.1.2.2 DARP A 2001 Communicator Corpus 

In DARPA 2001 corpus, the parser parses a log file named "Transcript file" as shown in 

Table 3.3 to get start time, finish time, and utterance of system/user tums and other log file 

named "Communicator file" given in Table 3.4 to get TaskSucess (PTC), Task Ease, 

TTSPerf, User Expertise, Expected Behavior, Future Use... 
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Table 3-3 Transcript file in DARPA 2001 corpus 

Task Start Time 988306633.730 

Sys: 988306635.820 988306637.850 what is your ftill name? 

-^ start time finish time utterance 

User: 988306639.280 988306640.930 Asr: adam simons / Transcr: adam simons 

-> start time finish time utterance 

Task End Time 988306878.120 

Table 3-4 Communicator file in DARPA 2001 corpus 
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3.1.3 Extracto r Componen t 

Recall that the dialog feature vector which we want to extract is: 

( TaskSuccess, TimeOnTask, TurnsOnTask, 

NumOverlaps, MeanUserTurnDuration, MeanSystemTurnDuration, 

MeanWordsPerUserTum, MeanWordsPerSystemTum, Phonetype, 

NumNegativeACKwords, NumRepetitions, Label) 

From dialog information (start time, finish time ...) provided by the parser, the extractor 

component computes dialog features as follow: 

• TimeOnTask : Total duration of dialog 

if (lastSystemTum.finishTime > lastUserTum.finishTime) { 

lastTime = lastSystemTum.finishTime; 

} 

else { 

lastTime = lastUserTum.finishTime; 

} 

if (firstSystemTum. start Time < firstUserTum.startTime) { 

firstTime = firstSystemTum. startTime; 

} 

else { 

firstTime = firstUserTum.startTime; 

} 

TimeOnTask = lastTime - firstTime; 

• TurnsOnTask : Number of tums of dialog including system and user tums. 

TumsOnTask -  systemTums + userTums 
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• NumOverlaps : Number of times system and user speak at the same time. 

if (  ((usrStartTime <  sys Finis hTime) &&  (sysFinishTime <  usrFinishTime)) 

II ((usrStartTime <  sysStartTime) &&  (sysStartTime <  usrFinishTime)) )  { 

numOverlaps ++; 

• MeanSystemTurnDur : Average system's tum duration. 

MeanSystemTumDur = sum (durations of sysTums) / No. of sysTurns 

• MeanUserTurnDur : Average user's tum duration. 

MeanUserTumDur = sum (durations of usrTums) / No. of usrTums 

• MeanWordsPerSystemTum : Average number of words of system tum. 

MeanWordsPerSystemTum = sum (numOfWords of sysTums) / No. of sysTums 

• MeanWordsPerUserTum: Average number of words of user tum. 

Mean WordsPerUserTurn = sum(numOfWords of usrTums) / No. of usrTums 

• UserRatin g = Task Ease + TTSPerf + User Expertise + Expected Behavior + Future Use 

For DARPA 2000 corpus: If (UserRating > 12) Then Label="Bad"; 

Else Label="Good"; 

For DARPA 2001 corpus: If (UserRating < 17) Then Label-"Bad"; 

Else Label="Good"; 

Different thresholds are used for different corpora. Section 3.2.1 presents how these values 

are selected. 
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3.1.4 Classifie r Componen t 

We will use different classifier components which consist of several leaming algorithms in 

order to determine which one is the most appropriate for our tasks. These classifiers are: 

Basic C4.5 Tree (our own implementation) 

Zero-Rule Model 

Logistic Regression Model 

One-Rule Algorithm 

C4.5 Tree 

Boosted C4.5 Trees 

Logistic Model Tree 

One of them, the basic C4.5 Tree, is our own implementation. We choose C4.5 tree because 

it is simple and the most widely used decision tree nowadays. We want to implement it in a 

basic maimer by ourselves so that we can compare our own results with those of other 

machine leaming algorithms that belongs to the library WEKA (Waikato Environment for 

Knowledge Analysis) developed by many machine leaming experts of the University of 

Waikato [17]. 

3.1.5 Syste m Developmen t 

DCS is developed in Java language with Eclipse Java Editor using three-tier software 

architecture to make the system modular and flexible. The three-tier model is considered to 

be a software architecture including user interface, functional process logic (business mles) 

and data storage developed and maintained as independent modules [13]. 

The three-tier architecture, as its words imply, has the following 3 tiers: Presentation Tier 

(Layer), Business Logic Layer, and Database Layer. Those layers are cormected together and 

illustrated in Figure 3.3. 
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Presentation Layer 

(GUI) 
Business Logic Layer 

(Parser, Extractor, 

Classifier) 

Database Layer 
(Access, 

SQL Server) 

Figure 3-3 Three-tier software architecture. 

3.1.5.1 Presentatio n Layer 

Presentation layer contains graphic user interface that helps user interacts visually with DCS. 

There are three main frames in DCS: Feature Extraction Frame, Leaming Scheme Frame, 

and Dialog Classification Frame. Figures 3.4, 3.5, 3.6 display these frames respectively. 

Feature Extraction Frame helps users to parse log files of the corpora and extract dialog 

features. Users can add or remove a specific feature that they want to extract by checking or 

unchecking its corresponding check box. 

:. \  ciiture Lxtr vction f r sme 

M 

F©«hjro E>tr action 

s/ DWoQl d \'  TaskSucces s 

y MeanWordsPerSystemTu m 

CrICarle; 

No CMagl d Ta s 
1) jH»7_01. . . . |Y« s 

3j 'l087_6ii_.. , Ji o 
4) 1CB7_0<_.. . iYe s 
5) 1106 7 0 5 . . »« ) 
6) 108 7 0 6 ,, . iVe s 
7)' 'l087_07 _ . , ^Y K 
8) 108 ? C B ve s 
9) 118 8 0 1 .  Ve s 
10) |1289_01_ . .  Ye s 
l i ) 128 9 02. . .  :(* ) 
12) 1128 9 0 3 .. . :ve s 
13) jl289_04 _ .  N o 
ii) 1128 9 0 6 ,  :N o 
15) !i;»9_07 _ .  :V05 
\f.\ ii^s o n o IW n 

einOrectofy; D;\Un(versfty_Mo5t « 

e 

v' TrmoOnTast " /  TurnsOnTas k 

•J MeanWordsfertJserTum > ' f t 

i5uc... TimeOn., , TwnsO,, , 
1326.997 K 7 

^39,99 !2 5 
|56 i ,9U l6 2 
K57.CI69 il 6 
330,005 wi 
632.03S IS B 
197.046 7 0 
235.0+* H3 " 
1S6,03S 3 5 
201,971 • ^ 
616,921 [7 2 
i95,989 11 7 
&tl.9S3 is 9 

^ i h  ! T 

j ' - " n  r  X  " I 

\PnJiecrt 

5ARPA20O0C 

/ NumOvf f 

[ Pars e List of Diab^s ]  Vie w Log of P«sng ]  [  Pars e 1  Dialo g \ 

jrpus C'AftPA200 1 corpus Bel l corpus 

rlaps /  MeanSystomTurrOiiratio n V  MeenUssrTumOuratlo n 

MxieType v ' NunNeqatrveAOCwords 

Nu 
to 

j NumRepetition s UserRahn g , ' Labe l [  SelectA I j 

\.^ £xi3r4c t features to teble .  { [  Extrac t features to file |  1  Delet e al (ftalogs in database | 

mOv,.. 

d 
0 
2 
9 
0 
D 
D 
a 
D 
2 
0 

In 

MeanSy.,, 
A,«7I 

3,722 
7,172 
i.nz 
S,1B7 
5,909 
6.S96 • " 
7,01 i 
i.ZK 
».6S4 
ftipj 
5.027 

n'wi 

MoanUs.., 
1,72« 

4,588 
3,323 
5,59' 
4.782 
1.73 
2,375 
1,4 

MeanW,,, MeanW,. . PhoneT.. . Nuirt*.. . NumRop . 
21,08 i2,31 8 jOthe r i l l i l 

. DesaJectA I ] 

\JM 

58,478 16,72 7 Othe r 7  B  JBa d 
37,923 ̂ 4,41 6 iome r ' z p  Ba d 
10,281 5,36 « Othe r 8  p  Ba d 
29,625 1,63 6 iOthe r b  j l l Ba d 
ii.iK ^X3  {oSie r i  Ji  _^^_ 
11,361 13.86 3 Othe r 1 2 H  ba d 
13,972 '14,67 6 OUv r i 6 e  Ba d 
17,954 3.76 1 Othe r ' s »  jBa d 
i"7.944 i.7d s Othe r S  »  jcioo d 

2.S61 12.93 3 2.92 3 [Othe r 2  { 2 |B« d 
6.704 16,2 1 5.73 5 iOthe r i l i 2 Ba d 
2.135 J6.22 2 ^.12 5 iothe t 1  Jo ^ | ia d 
1.844 |<S,62 2 13,97 7 Othe r 1 2 b  {Ba d 

*. w* \>f,n  H 3 n  'r«rm,  r i I h 

L choos e the best leammo scheme 1 

ku^l 

-

Figure 3-4 Feature Extraction Frame. 
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Next, Leamin g Schem e Fram e help s user s t o tes t performanc e o f differen t leamin g scheme s 

on a  given datase t to choose th e best one fo r this dataset . 

Lcwning Scheme Frime 

Learrmg5cheiDe> 

Dataset; PT0ject\0utput\DARPA2kflDat«et,arf f NumOfKerations ; 1 0 I toOf l tMs ; 1 0 Tes t stratified N-foH cross validation, 

i/Zero-Rule Model v  Logisti c Recession Model /One-RuteAlgorth m /C4,5I re e /  Booste d C4.5 Trees vLofsti c Mode l Treei 

Result 

Dataset ha s 48 3 instances : 24 2 ba d dialog s i 24 1 goo d dialogs , 
10 iteration s o f stratifie d 10-fol d cross-validatio n test : 

<Ji> Zero-Rul e Mode l 
Classifier mode l (Ful l trainin g set ) ; <n o options > 
ZeroR predict s clas s value : Ba d 

» Options : <n o option3 > 
Iteration 1 : Accuracy«44,lS i 
Iteration 2 : Accuracy*44,67' < 
Iteration 3 : Accuracy=43.7 U 
Iteration 4 ; Accurac7='43.44 V 
Iteration 5 : Accuracy"43,S9% 
Iteration 6 : Accurac7=43.6S ^ 
Iteration 7 : Accuracy"'43,7S ^ 
I terat ions: Accuracy"43,83 V 
Iteration 9 : Accuracy43.75 4 
Iteration 10 : Accuracr43,7 U 
-> Average : Accuracy'=43.82 % j 

I Fmeasur e BadDialog'0,5 3 
I Fitiea3ure_BadI)ialog«0. 5 
I FBea3ure_BadDialog=0,4 7 
I Fmeasur e BadDialog«0,4 8 
I Fmeasur e BadDiaIog=0.4 9 
I Fneasur e Badlnalog=0. 5 
I Fmeasur e BadDialog"0.4 8 
I Fmeasur e BadDialog=0,4 7 
I FnKasur e BadDialog«0,4 7 
I Fmeasur e BadDialog-0.4 6 
Fmeasure BadDialog'0.4 8 

-> Summary : Ba x Accuracy=43.82M< M options> ) |  Ha x Fmea3ure_BadDialog=0,48(<n o options> ) 

Outpu t * : DilUniversty.MasterlProiedlOutpiillO-fol d cross vdidationresdt.DARPASkD.txt ^  Writ e res<l to file M  Identif y Problematic Dialogs 

I 
I 

Figure 3-5 Learning Scheme Frame. 
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Finally, Dialog Classification Frame helps user to identify problematic dialogs with the 

previously chosen leaming scheme. 

M l o g ClmiTicilio n Prim e 

Learning StheTCS 

Dataset: 7.Ma5terlProiectlOutput\DARPA2)!DDataset,arf f |  Brows e ,  Ira n |  Ne w Patterns: :y.Master\Proiect|(X*i)(MD«PA2l<i)Dataset,arf f '  Brows e | Test 

ZeroRule i*oc?t!Oi;> 

Logistic 

OneRule 

C4,STree i 

6C4,5Trees 

elMTree •11-M15-W0,0 

Data table 

Test resul wlh Logistic Model Tree: 190 bad dialogs identified 

Vo 

10 
11 
12 
11 

taskSuccess 
Yes 
fta 
iVes 
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iVes 
iVes 
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te 
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330,005 
632,035 
497,046 
235,044 
186,0$ 
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541,983 
111 riAi 
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25,0 1 , 0 111,46 9 
tt,0 y  '3,72 2 
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58,0 *, 0 b,18 7 
70,0 fl,0  :5,90 9 
43.0 0. 0 6,5 % 
35,0 0. 0 7,01 1 
28.0 0, 0 5,28 5 
'72,0 P 6.654 
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meanUser,,, 
1,728 
1,35 
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13,972 
17,954 
17,944 
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15,622 
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3,863 
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> ^ 
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> ^ 

•> Sa d 
S / ' M M I 

Output fte; D:\University.HastertProjed\Output\PO I result.DARPA2M),txt Write result to file |  Writ e oriy bad dialogs to fie 

Figure 3-6 Dialog Classification Frame. 
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3.L5.2 Busines s Logi c Laye r 

Business Logic Layer contains business mles, functional algorithms to perform several main 

functionalities of DCS including parsing, feature extraction, leaming scheme testing and 

dialog classification. 

3.L5.3 Databas e Laye r 

This layer contains a database to store data, information of DCS. The database used in DCS 

is especially simple because we just need to store dialog and tum information. The simple 

ERD (Entity Relationship Diagram) of DCS is shown in Figure 3.7. There are only two 

tables: 

• Dialog: this table stores dialog information such as TaskSuccess, TimeOnTask. The PK 

(Primary Key) of this table is Dialogld. 

• Turn: this table stores tum information such as StartTime, FinishTime. The PK of this 

table is Tumld,DialoRld, and the FK (Foreign Key) is Dialogld. 

3.2 Testin g 

3.2.1 Dat a Collection &  Validation 

This section presents the data collection and validation of two corpora: DARPA 2000 

Communicator Corpus, and DARPA 2001 Communicator Corpus. 

3.2.L1 DARP A 2000 Communicator Corpu s 

The DARPA 2000 Corpus has 691 dialogs in total. After preprocessing these dialogs, we 

removed unusable dialogs - dialogs lacking information that we can not extract features, for 

example, no-system-tum dialog, no-end-time dialog... - so the number of remaining dialogs 

is 550. In this corpus, they use inversed Likert-scale as illustrated in Table 3.5. 
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Dialog 

Dialoeld ( ) 

TaskSuccess 

TimeOnTask 

TumsOnTask 

NumOverlaps 

MeanUserTurnDuration 

MeanSystemTurnDuration 

MeanWordsPerUserTum 

MeanWordsPerSystemTum 

Phonetype 

NumPositiveACKwords 

Label 

State 

TaskEase 

TtsPerf 

UserExpertise 

ExpectedBehavior 

Turn 

Tumid, Dialoeld ( v) 

IsSystemTum 

StartTime 

FinishTime 

Utterance 

Duration 

NumWords 

Figure 3-7 ERD of DCS. 

Table 3-5 Likert-scale and Inversed Likert-scale 

Likert-scale 

Normal 

Inversed 

Strongly 

Disagree 

1 

5 

Somewhat 

Disagree 

2 

4 

Neutral 

3 

3 

Somewhat 

Agree 

4 

2 

Strongly 

Agree 

5 

1 
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Recall that there are 5 questions asked, the total value can be varied from 5 to 25. Therefore, 

we choose 12 as the threshold for labeling dialogs with the meaning that there are at least two 

questions in which user has "Somewhat Agree". 

Hence, Bad dialog in DARPA 2000 is determined by the following condition: 

UserRating > 12 -> Bad dialog 

Applying this condition to the remaining dialogs, we obtain 274 Bad dialogs and 276 Good 

dialogs. The statistics of data collection and validation of DAPRA 2000 corpus is given in 

Table 3.6. 

Table 3-6 Statistics of DARPA 2000 corpus 

Total dialog s 

1. FUe-lacking  dialogs 

2. No-system/user-turn  dialogs 

3. No-end-time  dialogs 

4. Dead  dialogs 

5. Damaged  dialogs 

Remaining dialog s 

691 

30 

12 

61 

15 

23 

550 (27 4 Bad & 276 Good) 

Inversed Likert-scale 

-> sum (points of 5 questions) > 1 2 : Bad Dialog 

3.2.1.2 DARP A 2001 Communicator Corpus 

The process of collecting and validating data in DARPA 2001 corpus is more complex than 

that of DARPA 2000 corpus. Table 3.7 summarizes this process. The number of remaining 

dialogs in DARPA 2001 corpus is 1022. 

The Likert-scale shown in Table 3.5 is used in this corpus, so we choose 17 as the threshold 

for labeling dialogs with the meaning that there are at least two questions in which user has 

"Somewhat Agree". 
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Hence, Bad dialog in DARPA 2000 is determined by the following condition: 

UserRating < 17 ^ Bad dialog 

Applying this condition to the remaining dialogs, we obtain 472 Bad and 550 Good dialogs. 

Table 3-7 Statistics of DARPA 2001 corpus 

Total dialogs (Transcript  file) 

No-time 

Remaining dialogs 

1684 

113 

1571 

Total dialogs (Commfile) 

Comm file merged with Excel file 

Dead dialogs 

Remaining dialogs 

1351 

1106 

4 

1102 

Merge (key=id): 
Remaining dialogs (in Transcript file) 

vs 
Remaining dialogs (in Comm file) 

1571 
vs 

1102 
1022 (472 Bad & 550 Good) 

Likert-scale 

-^ su m (points o f 5  questions) < 1 7 :  Bad Dialo g 
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3.2.2 Experiment s 

There are two main methods to evaluate a leaming scheme: [4] 

Holdout method : This method is used when we have a large dataset. Large independent 

samples of different data are used for training and large samples are used for testing. 

• 

• N-fold stratified cross-validation method : We use this method when we have a limited 

dataset. This method works as follow: the dataset is divided into N parts, each part is 

held out in turn for testing and the remaining is used for training learning scheme. 

Previous tests on numerous different datasets have shown that N=10 is the most 

appropriate number. In this method, we should employ stratification technique that makes 

each class properly represented in both training and test sets of each fold. 

Our dialog datasets are limited, so 10-fold stratified cross-validation method is used to 

evaluate DCS performance. However, a single 10-fold stratified cross-validation test might 

not be enough to get a reliable result, so the standard procedure is to repeat 10-fold stratified 

cross-validation process 10 times (or 10 iterations). For each iteration, stratified dataset is 

randomized with seed=l for 1̂ ' iteration, seed=2 for 2"'' iteration ..., seed=10 for lO"̂  

iteration. Finally, we average the results on these iterations. 

The pseudo-code is given in Table 3.8. The whole experiment diagram is displayed in Figure 

3.8. 

We did several experiments using different set of features. The results and discussion are 

described in the following chapter. 
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Table 3-8 Pseudo-code for the experiment 

stratify dataset  (numOfFolds); 

For each  classifier  { 

For each combination  of  classifier options  { 

For seed=l to  numOflterations { 

randomize stratified  dataset  (seed); 

do N-fold cross-validation  this  dataset; 

} 
average the  results on  these iterations; 

} 
print out  the max result of  this classifier; 

} 
select the  classifier with  the corresponding option  that  has max result for problematic  dialog 

identification task; 
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1*' iteration 

Original 

dataset 

stratify 

Stratified 

dataset 

^ 

random 
r 

Randomized 

dataset 

seed=l 

ize 

1 
Train (1) 

Test 

Train (2) 

Test 

10-fold cross-validation 

»th • 10'" iteration 

Randomized 

dataset 

seed=10 

Train (1) 

Test 

Train (2) 

Test 

average the result 

Figure 3-8 Experiment diagram. 
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Chapter Summary 

System Implementatio n 

Testing 

_System Design 

+ Parser Component 

+ Extractor Component 

+ Classifier Component 

System Development 

+ Presentation Layer 

+ Business Logic Layer 

+ Database Layer 

Data Collection and Validation 

+ DARPA 2000 Communicator Corpus 

+ DARPA 2001 Communicator Corpus 

_Experiment: 10 times of 10-fold stratified cross-validation test 



CHAPITRE 4 

INTERPRETATION 

4.1 Stat e of the art 

In this chapter, we will take a look at the state-of-the-art systems solving the problem of 

identification of problematic dialog. Since the problem of identification of problematic dialog 

using user's satisfaction to label bad dialog is a relatively new research topic, we found only 

one paper specifically related to this problem. Nonetheless, we will review in this section two 

papers. The first paper is a scientific review article [21] while the other one is a conference 

paper [23]. 

At first, we will review the scientific review article [21]. This article is about the comparison 

of different leaming schemes on different tasks. Unfortunately, no task is related to 

identification of problematic dialog. Nevertheless, we will use their comparisons in order to 

select a subset of the best leaming schemes and apply them on the task of identification of 

problematic dialog. The conference paper is related to the identification of problematic 

dialogs. We will use their performance results as a benchmark to achieve. Finally, we will 

compare our system performance on identification of problematic dialog with the one 

proposed in [23]. 

4.1.1 Selectio n of the best learning scheme 

In 2003, Niels Landwehr et al [21] tested six leaming schemes, namely C4.5 Decision Tree 

(C4.5), Boosted C4.5 Decision Trees (BC4.5), Logistic Regression Model (LRM), and 

Logistic Model Tree (LMT), on 32 benchmark datasets from the UCI repository. The results 

given in Figure 4.1 and Figure 4.2 show that LMT outperforms the other leaming schemes on 

most of the datasets. In particular, LMT outperforms C4.5 on 13 datasets, LRM on 6 datasets, 

and BC4.5 on 7 datasets. Only BC4.5 outperforms LMT on 6 datasets. 
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Figure 4-1 Classification result on UCI repository. 
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Figure 4-2 Comparison among leaming schemes. 

4.1.2 Identificatio n o f problematic dialo g 

As previously mentioned. Walker et al [23] developed a PDI on DARPA Communicator 

Corpus 2001. In this work, they use three kinds of features including TaskSuccess Measure, 

Efficiency Measures and DATE. All of these features are defined in PARADISE framework. 

The first two kinds of features are automatically obtainable whereas the last one is not. They 

tested their system with CART leaming scheme (AT&T version) implemented in Wagon 

software using 10-fold cross validation method. The result is given in Table 4.1. 

Table 4-1 State-of-the-art result on Identification of Problematic Dialog 

10-fold cross validation test 

Accuracy 

Precision_BD 

Recall_BD 

FmeasureBD 

67% - 89% 

0.66 

0.54 

0.59 

In the next section, we show our results and make a comparison between our system 

performance and that of the state-of-the-art proposed by [21] and [23]. 
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4.2 Resul t and Interpretatio n 

We perform several experiments on DARPA2000 and DARPA2001 corpora with different set 

of features. We denote: 

Our own C4.5 Tree 

Zero-Rule Model 

Logistic Regression Model 

One-Rule Algorithm 

C4.5 Tree 

Boosted C4.5 Trees 

Logistic Model Tree 

Task Success 

Efficiency measures 

NumNegativeACKwords 

NumRepetitions 

OC45 

ZRM 

LRM 

ORA 

C45 

BC45 

LMT 

TS 

Eff 

ACK 

Rep 

Table 4-2 Experiment Result on DARPA 2000 

DARPA 2000 (Accuracy / Fmeasure_BD) 

OC45 

ZRM 

LRM 

ORA 

C45 

BC45 

LMT 

TS+Eff 

75.00%/0.72 

45.20%/0.38 

78.28% / 0.74 

77.06%/0.71 

76.35%/0.71 

73.99%/0.71 

78.22% / 0.74 

TS+Eff+ACK 

73.00%/0.71 

45.20%/0.38 

78.32%/0.74 

77.06%/0.71 

76.20%/0.71 

72.52%/0.71 

78.32% / 0. 74 

TS+Eff+Rep 

72.00% / 0.70 

45.20% / 0.38 

78.96%/0.75 

77.06%/0.71 

77.69% / 0.75 

73.19%/0.71 

78.80% / 0.75 

TS+Eff+ACK+Rep 

72.00% / 0.70 

45.20%/0.38 

78.60% / 0.75 

77.06%/0.71 

76.87%/0.74 

73.19%/0.71 

78.60% / 0.75 
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Table 4-3 Experiment Resuh on DARPA 2001 

DARPA 2001 (Accuracy / Fmeasure_BD) 

OC45 

ZRM 

LRM 

ORA 

C45 

BC45 

LMT 

TS+Eff 

66.00% / 0.60 

53.86%/0.00 

69.96%/0.61 

58.23% / 0.52 

68.48% / 0.62 

67.81%/0.62 

69.91%/0.61 

TS+Eff+ACK 

66.00% / 0.60 

53.86%/0.00 

69.96%/0.61 

59.15%/0.53 

68.17%/0.62 

66.47%/0.61 

69.96%/0.61 

TS+Eff+Rep 

64.00% / 0.60 

53.86%/0.00 

69.65%/0.61 

58.23%/0.52 

68.92% / 0.62 

67.10%/0.61 

69.45%/0.61 

TS+Eff+ACK+Rep 

64.00% / 0.60 

53.86%/0.00 

69.52%/0.61 

58.23% / 0.52 

68.11%/0.60 

65.63%/0.60 

69.52%/0.61 

The results given in Table 4.2 and Table 4.3 show that LMT and LRM perform best on 

DARPA 2000 (~79%/0.75) and 2001 (~70%/0.61). This is the same as the result in previous 

work [23]. 

The second article [23] did not mention exactly about the accuracy. They just mentioned that 

the accuracy varies from 67% to 89%. Our accuracy result is about 70%. Comparing the 

FmeasureBD, we see that our system performs better (0.61 versus 0.59). 

However, there are many factors that may cause different results: 

1) Kinds of data & data pre-processing. 

2) Number and kinds of features used for classification. 

3) The way features are used for splitting node (use each feature only once or reuse it) 

4) The stop-splitting condition. 

5) Heuristics. 
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In addition, we also look at the deviation in the accuracy results of each method. We consider 

an experiment with DARPA2000 and set of features are TS+Eff+ACK+Rep. The results of 

this experiment are displayed in Table 4.4 and deviation graph plotted from this table is shown 

in Figure 4.3. We see that the deviation of results generated by OC45 is a little bit greater than 

those of other methods because OC45 is a very basic C4.5 tree we implement to leam how 

decision tree works. Generally, the deviations of all methods are very small and close together. 

Table 4-4 Results of 10-fold CV with DARPA2000 - TS+Eff+ACK+Rep 

Fold 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

Average 

OC45 
76.36% 

67.27% 

78.18% 

69.09% 
63.63% 

78.18% 
72.72% 

76.36% 

70.90% 
67.27% 

72.00% 

ZRM 
44.69% 

44.87% 

45.57% 

45.15% 
44.83% 
45.20% 

45.54% 

45.60% 

45.39% 
45.22% 

45.20% 

LRM 
79.28% 
78.69% 

78.61% 

78.65% 
78.41% 
78.50% 

78.55% 
78.38% 

78.56% 

78.43% 

78.60% 

ORA 
76.62% 

77.03% 
77.26% 

77.14% 
77.05% 
77.07% 

77.14% 

77.04% 

77.16% 

77.12% 

77.06% 

C45 
76.87% 

76.86% 
76.86% 

76.87% 
76.87% 
76.88% 

76.88% 

76.88% 

76.90% 

76.90% 

76.87% 

BC45 
72.56% 
72.24% 

73.01% 

73.56% 
73.52% 

73.50% 
73.34% 

73.28% 

73.46% 

73.51% 

73.19% 

LMT 
79.28% 

78.69% 
78.61% 

78.65% 
78.41% 

78.50% 

78.55% 
78.38% 

78.56% 

78.43% 

78.60% 
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Figure 4-3 Deviation Graph (DARPA2000 - TS+Eff+ACK+Rep) 
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From the obtained resuhs, we can conclude that NumNegativeACKwords and 

NumRepetitions are two good features because they help improve performance of most of the 

leaming schemes. Particularly, we consider the performance of LMT. In DARPA 2000, 

NumNegativeACKwords helps improve performance of LMT 0.1%, NumRepetitions 0.58%, 

and NumNegativeACKwords and NumRepetitions 0.38%. In DARPA 2001, only 

NumNegativeACKwords helps improve performance of LMT 0.05%. 

DCS can be extended easily for new corpora and new leaming schemes, i.e. we can add more 

corpora and leaming schemes without changing much the source code. Generally speaking, 

DCS performance (79% of accuracy / 0.75 of FmeasureBD on DARPA 2000 and 70% / 0.62 

on DARPA2001) is relatively good for a pattern classification system. 

Looking at the Table 4.1, we see that the performance of pattem classification system also 

depends on dataset itself For example, for "primary-tumor" dataset, the accuracy of all 

systems is just about 46.7%, whereas 99.5% accuracy for "anneal" dataset. However, if we 

have good features, i.e. discriminant features, we can improve system performance. 

Therefore, for future work, we could try to find other good features that can improve system 

performance. Moreover, we could test DCS with other leaming schemes than the tree-based 

ones, such as SVM, kNN. This is one more possibility that we can do. They might give better 

results or even worse results. As we said before, we do not know in advance which algorithm 

is appropriate for a given problem. Therefore, we can only have a conclusion after doing some 

experiments on it. 

Chapter Summar y 

State of the art 

Result and Interpretation 

Selection of the best leaming scheme 

Identification of problematic dialog 

Discussion 

Future work 



CONCLUSION 

Identification of problematic dialog using user's satisfaction to label bad dialog is a relatively 

new research topic. In this research project, first we have studied this topic based on previous 

work. After that, we have proposed two new potentially good features and performed some 

experiments on them to study their effect on the system performance. Our work was 

motivated by the need of having an automatic system for identifying problematic dialogs in 

the frame of a practical data mining project, namely "Managing emotions in Human-

Computer Dialogs", of ETS and CRIM in collaboration with Bell Canada Corp. 

The final outcome of our work is the Dialog Classification System (DCS). DCS is a very 

usefiil automatic tool for identifying problematic dialogs in Human-Computer Dialog System 

(HCDS). It is modular and easily extensible in terms of adding new machine leaming 

schemes or new dialog datasets. We can integrate new machine leaming schemes or add new 

corpora into DCS quickly and easily without modifying much the source code. In addition, 

DCS was developed in a general manner so that any telephone companies using HCDS could 

employ DCS to evaluate their user's satisfaction in order to propose new strategies for their 

HCDS. 

For the selection of leaming scheme, we saw that our results were the same as previous work 

in that LMT performed best on most of the datasets. This means that when we need to choose 

a leaming scheme for a new dataset in the future, LMT appears to be always the first 

potentially good choice. 

For the identification of problematic dialog, our DCS has outperformed the state-of-the-art 

system on the DARPA Communicator 2001 corpus. 
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The performance of a pattem classification system depends not only on dataset but also on 

the features used for classification. Robust and discriminant features always give good 

results. Therefore, finding new good features is always the main task in data mining and 

machine learning field. 

We have found two new good features for problem of identification of problematic dialogs, 

namely negative acknowledgement words (such as NO, NOP) and system repetitions (i.e. 

number of times that the system said the same utterance) because they helped improve the 

performance of DCS. 

The performance of DCS could be improved if we could find more new good features for it. 

Moreover, testing DCS with other machine leaming schemes such as SVM, kNN could be a 

possibility because it is very hard to know in advance which machine leaming scheme is 

appropriate for a particular system. That's why the trial-and-error method is always 

employed in data mining application. 
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