
ECOLE DE TECHNOLOGIE SUPERIEURE
UNIVERSITE DU QUEBEC

MEMOIRE PRESENTE A
L'ECOLE DE TECHNOLOGIE SUPERIEURE

COMME EXIGENCE PARTIELLE
A L'OBTENTION DE LA

MAITRISE EN GENIE
M.lng

PAR
TRUONG, Le Hoang

DEVELOPPEMENT D'UN SYSTEME D'IDENTIFICATION
DES DIALOGUES PROBLEMATIQUES

DANS LE SYSTEME DE DIALOGUE PERSONNE-MACHINE

MONTREAL, LE 28 AVRIL 2008

©TRUONG LE HOANG, 2008

CE MEMOIRE A ETE EVALUE

PAR UN JURY COMPOSE DE

M. Pierre Dumouchel, directeur de memoire
Departement de genie logiciel et des TI a I'Ecole de technologic superieure

M. Robert Sabourin, president du jury
Departement de genie de la production automatisee a I'Ecole de technologic superieure

Mme Sylvie Ratte, membre du jury
Departement de genie logiciel et des TI a I'Ecole de technologic superieure

REMERCIEMENTS

Le travail de ma maitrise, dans le cadre du programme de maitrise en genie concentration

avec memoire de I'Ecole de technologic superieure (ETS), a ete effectue au sein du Centre de

recherche informatique de Montreal (CRIM).

J'aimerais, en premier lieu, exprimer mes sinceres remerciements a mon directeur de

recherche Monsieur Pierre Dumouchel, Professeur a I'ETS et vice-president scientifique du

CRIM, pour son encadrement, sa disponibilite et son soutien pendant tout le long de ce

projet. Je n'aurais vraiment pas pu terminer mes etudes et mes travaux de recherche sans ses

aides.

Je voudrais egalement remercier Madame Narjes Boufaden, post-doctorante a I'ETS et

chercheur au CRIM, pour ses conseils et ses recommandations productifs.

J'aimerais aussi remercier tons les membres du Jury pour leur evaluation du projet.

Finalement, j'aimerais remercier ma famille, mes amis au Vietnam et a Montreal qui m'ont

grandement encourage durant ces deux demieres annees.

DEVELOPPEMENT D'U N SYSTEME D'IDENTIFICATIO N
DES DIALOGUES PROLEMATIQUE S

DANS LE SYSTEME DE DIALOGUE PERSONNE-MACHIN E

Tmong, Le Hoang

RESUME

Dans ce memoire, nous proposons un outil de classification automatique de dialogues
problematiques dans un contexte d'un systeme de dialogue personne-machine. Le domaine
d'application de cet outil est celui du forage de dormees (data mining), un sous domaine du
domaine de I'apprentissage machine (machine learning). L'architecture de cet outil est
modulaire et extensible afin de faciliter 1'experimentation de differents paradigmes de
classification. L'outil utilise plusieurs schemes d'apprentissage machine tels que I'arbre de
decision C4.5 et I'arbre de modelisation logistique pour la classification de dialogue et les
parametres utilises provierment de la plateforme PARADISE. De plus, nous etudions I'ajout
de deux nouveaux parametres : mots negatives de reconnaissance et repetitions de mots.
L'outil est teste selon la technique de validation croisee avec 10 validations croisees sur deux
corpus publiquement distribues par le Linguistic Data Consortium (DARPA Communicator
2000 et DARPA Communicator 2001). Les resultats obtenus compares a ceux-la de I'etat de
Part montrent que notre PDl est plus performant et que les deux nouveaux parametres
ameliorent la performance globale de l'outil.

Mots-cles: dialogue problematique, identificateur de dialogues problematiques, systeme de
dialogue personne-machine, forage de dormees, machine d'apprentissage, classification de
dialogue.

DEVELOPMENT O F A DIALOG CLASSIFICATIO N SYSTE M IDENTIFYIN G
PROBLEMATIC DIALOG S I N HUMAN-COMPUTER DIALO G SYSTE M

Tmong, Le Hoang

ABSTRACT

In this thesis, we develop a dialog classification tool containing a Problematic Dialog
Identifier (PDI) that helps automate the task of identifying problematic dialogs in a context of
a Human-Computer Dialog System (HCDS). This automatic tool is a practical Data Mining
application in Machine Learning domain. It is modular and easily extensible. It uses several
popular, widely used learning schemes such as C4.5 Tree, Logistic Model Tree for dialog
classification. We also study the effect of two new potentially good features, namely negative
acknowledgement words and system repetitions, on the performance of PDI. The PDI is
tested with 10-fold stratified cross-validation on two publicly distributed corpora DARPA
Commvmicator 2000 and 2001. The obtained results when compared with those of state-of-
the-art show that our PDI outperforms and those two features are really good.

Keywords: problematic dialog, problematic dialog identifier, human-computer dialog
system, data mining, machine learning, dialog classification.

TABLE DES MATIERE S

Page

REMERCIEMENTS Ill

RESUME I V

ABSTRACT V

LISTE DES TABLEAUX VIII

LISTE DES FIGURES I X

LISTE DES ABREVIATIONS, SIGLE S ET ACRONYMES X

INTRODUCTION 1

CHAPITRE 1 DEFINITION 3
1.1 Motivation & Purpose 3
1.2 Literature Review 4

1.2.1 Data Mining & Machine Learning 4
1.2.2 A simple pattern classification example [6] 5
1.2.3 Machine leaming styles [4] 7

1.2.3.1 Numeric prediction 7
1.2.3.2 Pattem classification 8

1.2.4 Basic leaming models 9
1.2.4.1 Zero-Rule Model [4] 9
1.2.4.2 Linear Regression Model [5] [11] 10
1.2.4.3 Logistic Regression Model [5] 11

1.2.5 Tree-based leaming schemes 13
1.2.5.1 CART-C4.5 16
1.2.5.2 Model Tree 16
1.2.5.3 Logistic Model Tree 16

1.2.6 Procedure for building a tree-based leaming scheme [6][7][8][9] 17
1.2.7 Pmning algorithm [7] 22

1.2.7.1 Independent test set method 24
1.2.7.2 N-fold cross validation method 25

1.2.8 Other leaming schemes for pattem classification 27
1.2.8.1 One-rule algorithm [4] 27
1.2.8.2 Boosted decision trees [4] 28

1.2.9 Related works on identification of problematic dialog 32
1.3 Scope & Outcome 34

VII

CHAPITRE 2 PLANNING 36
2.1 Methodology 36

2.1.1 Theory framework [15][16] 36
2.1.2 Dialog features for classification task 37
2.1.3 Selection of leaming schemes [4][5] 38
2.1.4 Selection of corpora 40

2.1.4.1 DARPA 2000 Communicator Corpus [18] 40
2.1.4.2 DARPA 2001 Communicator Corpus [19] 41

2.2 Evaluation measures [4][14] 41

CHAPITRE 3 IMPLEMENTATION 45
3.1 System Implementation 45

3.1.1 System Design 45
3.1.2 Parser Component 46

3.1.2.1 DARPA 2000 Communicator Corpus 47
3.1.2.2 DARPA 2001 Communicator Corpus 48

3.1.3 Extractor Component 50
3.1.4 Classifier Component 52
3.1.5 System Development 52

3.1.5.1 Presentation Layer 53
3.1.5.2 Business Logic Layer 56
3.1.5.3 Database Layer 56

3.2 Testing 56
3.2.1 Data Collection & Validation 56

3.2.1.1 DARPA 2000 Communicator Corpus 56
3.2.1.2 DARPA 2001 Communicator Corpus 58

3.2.2 Experiments 60

CHAPITRE 4 INTERPRETATION 64
4.1 State of the art 64

4.1.1 Selection of the best leaming scheme 64
4.1.2 Identification of problematic dialog 66

4.2 ResuU and Interpretation 67

CONCLUSION 71

BIBLIOGRAPHIE 73

LISTE DES TABLEAUX

Page

Table 1-1 Pseudo-code for building a tree-based learning scheme 21

Table 1-2 Algorithm for classifying new pattem 21

Table 1-3 Pseudo-code for one-mle algorithm 27

Table 1-4 Pseudo-code for boosted decision trees 30

Table 1-5 Related works on identification of problematic dialog 33

Table 2-1 Confusion matrix for 2-class problem 42

Table 3-1 Summary file in DARPA 2000 corpus 47

Table 3-2 Survey file in DARPA 2000 corpus 48

Table 3-3 Transcript file in DARPA 2001 corpus 49

Table 3-4 Communicator file in DARPA 2001 corpus 49

Table 3-5 Likert-scale and Inversed Likert-scale 57

Table 3-6 Statistics of DARPA 2000 corpus 58

Table 3-7 Statistics of DARPA 2001 corpus 59

Table 3-8 Pseudo-code for the experiment 61

Table 4-1 State-of-the-art result on Identification of Problematic Dialog 66

Table 4-2 Experiment Resuh on DARPA 2000 67

Table 4-3 Experiment Resuh on DARPA 2001 68

Table 4-4 Results of 10-fold CV with DARPA2000 - TS+Eff+ACK+Rep 69

LISTE DES FIGURE S

Page

Figure 1-1 Human-Computer Dialog System 3

Figure 1-2 Sample space offish 6

Figure 1-3 Play golf dataset 15

Figure 1-4 Decision tree for play golf dataset 15

Figure 1-5 Flow chart for tree building procedure 17

Figure 1-6 Tree example for pruning algorithm 23

Figure 1-7 Independent test set method. 25

Figure 1-8 N-fold cross validation method. 26

Figure 1-9 One-rule algorithm result on play golf dataset 28

Figure 2-1 PARADISE diagram 37

Figure 3-1 Pattern Classification System Diagram 46

Figure 3-2 Dialog Classification System Diagram 46

Figure 3-3 Three-tier software architecture 53

Figure 3-4 Feature Extraction Frame 53

Figure 3-5 Learning Scheme Frame 54

Figure 3-6 Dialog Classification Frame 55

Figure 3-7 ERDofDCS 57

Figure 3-8 Experiment diagram 62

Figure 4-1 Classification result on UCI repository 65

Figure 4-2 Comparison among learning schemes 66

Figure 4-3 Deviation Graph (DARPA2000 - TS+Eff+ACK+Rep) 69

LISTE DES ABREVIATIONS, SIGLES ET ACRONYME S

HCDS Human-Computer Dialog System
DCS Dialog Classification System
ETS Ecole de technologic superieure
CRIM Centre de recherche informatique de Montreal
PDI Problematic Dialog Identifier
HMIHY How May 1 Help You
ASR Automatic Speech Recognition
NLU Natural Language Understanding
DM Dialog Manager
DARPA Defense Advanced Research Projects Agency
LSE Least Square Estimation
RSS Residual Sum of Squares
CART Classification And Regression Tree
PARADISE PARAdigm for Dialog System Evaluation
DATE Dialogue Act Tagging Scheme for Evaluation of HCDS
WEKA Waikato Environment for Knowledge Analysis
ERD Entity Relationship Diagram
PK Primary Key
FK Foreign Key

INTRODUCTION

In the context of a call center, spoken dialogue system is offered for different kinds of

services to users via telephony. It provides efficient and natural access to information

services from any phones or Intemet and allows a cost reduction of service operations.

Nowadays, its widely used applications such as email, travel planning information, and

customer care have moved from research labs into commercial use.

Spoken dialog system is a general term referring to two kinds of dialog systems: Human-

Human Dialog System and Human-Computer Dialog System (HCDS). This thesis only

focuses on the evaluation of HCDS.

A human-computer dialog is a conversation between a user and an agent (sometimes we may

also call a system). A problematic dialog is a dialog in which user is unsatisfied. For

example, a user might be unsatisfied because he/she has to repeat the same utterance many

times in a row.

To determine a problematic dialog, user satisfaction rating (shortly, user rating) is used. After

the dialog is completed, user is asked some questions to assess the agent performance.

Different agents may have different set of questions. In this thesis, we use a set of questions

defined in DARPA Communicator corpora [18][19]. Those questions are the followings:

• Task Success: Is user's task completed successfully? (Yes / No)

• Task Ease - (A): In this conversation, it was easy to get the information that user wanted?

• TTSPerf (Text To Speech Performance) - (B): In this conversation, user found it easy to

understand what the system said?

• User Expertise - (C): In this conversation, user knew what to say or to do at each point in

the dialogue?

• Expected Behavior - (D): In this conversation, the system worked the way user expected

it to?

• Future Use - (E): In this conversation, based on user's experience using this system to get

travel information, user would like to use this system regularly?

For the last five questions, user gives points for each question. The answers to the questions

A/ B/ C/ D/ E have value varying from 1 to 5 based on Likert-scale that is a multi-item scale

[20]. Likert-scale format is presented in the subsequent section.

By summing up the values of five answers to those questions above, we have the actual user

satisfaction score, named UserRating, used to define problematic dialogs:

UserRating < Threshold ^ Bad dialog

Dialog examples and user's assessments are presented in Chapter 3.

Dialog Classification System (DCS) is a software tool that identifies problematic dialogs (or

bad dialogs) from a set of dialogs collected in HCDS to propose new dialog strategies for

agent and to provide bad dialogs for the Emotion Detection System as well. In fact, DCS is

the first part of "Managing Emotions in Human-Computer Dialogs" project developed by

ETS (Ecole de technologic superieure) & CRIM (Centre de recherche informatique de

Montreal) in collaboration with Bell Canada Corp. Developing DCS is really essential

because it helps automate the task of identifying problematic dialogs that is sometimes

overwhelmed for human to accomplish.

An experimentation framework, named Basili's framework [1][2][3], is employed to

stmcture the thesis organization. According to this framework. Chapter 1 gives some

definitions about the project; Chapter 2 describes the project plarming. Then, Chapter 3

demonstrates the implementation, and Chapter 4 gives the interpretation of the obtained

results. Finally, the last section presents the conclusion of the work.

CHAPITRE 1

DEFINITION

1.1 Motivatio n & Purpos e

The "Managing emotions in Human-Computer Dialogs" project is a practical data mining

application of ETS & CRIM in collaboration with Bell Canada Corp. It originates from the

desire to evaluate user satisfaction in human-computer dialogs in the settings of a call center

of Bell Canada Corp. with the purpose of proposing new dialog strategies for HCDS. This

results from the finding that the performance of the system based on speech recognition is

not perfect. Sometimes clients are upset about the facts that they are not understood and they

are ready to withdraw their association with Bell Canada if nobody helps them to solve their

problem. Therefore, identifying problematic dialogs is a relatively essential need. However,

Bell Canada Corp. records a great number of dialogs everyday. This number will be

increased enormously day after day, so the task of identifying problematic dialogs may

become overwhelmed for human to costly accomplish. Thus, DCS is a really essential

automatic tool to help automate such task.

User
Dialogs

1 '

Dialog
Classification

1

Bad dialo

Emotion uetection

Agem
A

gs

New

dialog

strategies

Figure 1- 1 Human-Computer Dialog System.

The project diagram is illustrated in Figure 1.1. We develop DCS in the first stage of the

project. The main goal of DCS is to identify problematic dialogs where user is unsatisfied.

These bad dialogs are dispatched to the Emotion Detection System - developed by other

team and out-of-scope of this research work - to detect user's emotions.

DCS belongs to data mining and machine leaming domain (more particularly, pattem

classification), so we will take a look at this domain in the literature review section.

1.2 Literatur e Revie w

1.2.1 Dat a Mining & Machine Learnin g

Data mining is the extraction of implicit, previously unknown, and potentially usefial

information from data. Data mining is defined as the process of discovering patterns in data.

The process is preferably fully automatic, but it is often semi-automatic due to performance.

The patterns discovered must be meaningful in that they lead to some advantage, usually an

economic advantage [4].

Machine leaming provides the technical basis of data mining. Machine leaming is concerned

with the design and development of algorithms and techniques that allow computers to

"leam". Machine leaming has a large number of applications including natural language

processing, speech and speaker recognition, pattern classification, to name a few [4].

Now, we consider a simple pattem classification example to know what pattem classification

is and how it is applied in practice.

1.2.2 A simple pattern classificatio n exampl e [6]

Pattem classification is the act of taking in raw data and making an action based on the

category of the pattern. Pattem classification takes decisions based on appropriate

probabilistic or non-probabilistic models of the patterns.

It is essential to know several terminologies used in pattem classification. Those are the

followings:

• Pattem: a pattem can be an object, a process or an event consisting of both deterministic

and stochastic components; a record of dynamic occurrences influenced by both

deterministic and stochastic factors. Textures, crystals, weather pattem, speech

waveform, dialog pattem are some examples.

• Feature: a feature (also called attribute) is a relevant, intrinsic trait or characteristic that

makes a pattem apart from another; data extractable through measurement and/or

processing, such as color, age, weight, and aspect ratio.

There are two main kinds of features: nominal feature (e.g. Sunny, Rainy...) and numeric

feature (e.g. 45s, 78°C).

• Pattem class: a pattem class is a set of pattems sharing a set of common features and

usually originating from the same source (associated with the generalization or

abstraction of pattems).

• Classification: classification is the act of assigning pattems into pattem classes based on

their features.

• Noise: noise is a distortion associated with pattem processing (errors in feature

extraction) and/or training samples that impact the classification abilities of the system.

Let us consider a simple example of pattem classification as shown in [6]: classify two types

of fish (salmon and sea bass). There are some physical differences between salmon and sea

bass such as length, width, lightness.

Given that there are differences between the population of salmon and sea bass, we view

them as having different models used for feature extraction. For example, somebody tells us

that a sea bass is generally longer than a salmon. This gives us a model for the fish: sea bass

length is greater than that of salmon -> length becomes an obvious feature.

To make classification more accurate, we have to use many features. Suppose we have two

features for classifying fish: the length and the lightness. From training samples, we measure

their two features and plot a graph as shown in Figure 1.2.

Length
• Salmon

Decision

boundar}'

Sea bass

.Lightness

Figure 1- 2 Sample space offish.

The plot suggests classifying the fish as sea bass if its feature vector falls at the right of the

decision boundary and as salmon otherwise. In this example, the decision boundary is a

straight line. However, depending on the distribution of the samples, decision boundary

could be a curve or something else. It is therefore necessary to choose features carefully to

achieve good representation tha t enables successful pattem classification. This selection

could be complicated by noise and errors. Robust features are the ones relatively insensitive

to noise and other errors.

Pattem classification is only one of four machine leaming styles in data mining. How many

machine learning styles are there in data mining? We will describe these styles in the next

section.

1.2.3 Machin e learnin g styles [4]

Generally, machine leaming styles in data mining include:

• Numeric prediction: predicts a target value based on a vector of features.

• Pattern classification: leams a way of classifying unseen pattems into discrete classes

from a set of labeled examples.

• Association leaming: any association among features is sought, not just ones that predict

a particular class value.

• Clustering: seeks groups of samples that belong together.

In these four styles, numeric prediction and pattern classification styles are used more widely

than the other two in data mining applications. Moreover, DCS uses pattem classification

style, so we only focus on that style along with numeric prediction style because the former

is often derived from the latter.

The general problem of numeric prediction and pattem classification can be described in tum

in the two sub-sections below.

1.2.3.1 Numeri c predictio n

Given a column feature vector X = (Xi, X2,..., Xd)\

where Xi, X2,..., Xd are d features of pattem X and d is the number of dimensions of the

feature vector X.

The problem is to predict the numeric value Y = f(X), where f(X) is a function with respect

to X. For example: f(X) = X, + 2X2 or f(X) = 3Xi - X2.

The numeric prediction system is trained by an n-element dataset, each element has the form

(x, y) with X is a d-dimensional vector and y is a numeric value:

xi =(xii,xi2,...,xid) , yi

X2 = (X21 ,X22 , . . . ,X2d) , y 2

Xfi ~ (Xnl,Xn2) - • • , Xpd) , y n

where:

xi: 1*' observation of feature vector X; yi: corresponding numeric value

X2: 2" observation of feature vector X; y2: corresponding numeric value

Xp: n' observation of feature vector X; yn: corresponding numeric value

1.2.3.2 Patter n classificatio n

Given a column feature vector X = (Xi, X2,..., Xd)̂ ,

where Xi, X2,..., Xd are d features of pattem X and d is the number of dimensions of the

feature vector X.

The problem is to classify X into one of the k classes {Ci, C2,..., Ck} .

The pattem classification system is trained by an n-element dataset, each element has the

form (x, c) with x is a d-dimensional vector and c is a class:

X] = (X i , , X i 2 , . . . , X i d) , Ci

X2 = (X2l ,X22, . . . ,X2d), C2

Xn ~ (Xnl5Xn2,.. .) Xnd) , C p

where:
I S t

xi: 1 observation of feature vector X; ci: corresponding class

X2: 2" observation of feature vector X; C2: corresponding class

Xn. n"̂ observation of feature vector X; Cp: corresponding class

To solve numeric prediction and pattem classification problems simply, we can use one of

the three basic leaming models which are the ones applied directly on the training dataset.

• Zero-Rule Model

• Linear Regression Model

• Logistic Regression Model

In the next section, we will show how each basic leaming model works.

1.2.4 Basi c learning model s

1.2.4.1 Zero-Rul e Model [4]

Given a training dataset:

xi =(xii,xi2,...,xid), yi/ci

X2 = (X21 ,X22 , . . . ,X2d) , y2/C 2

Xp ~ (Xn|,Xn2, . • ., Xpd) , yn/C p

In numeric prediction, Zero-Rule model predicts the average class value in the training data

using the following rule: y = average(yj).

While in pattem classification, Zero-Rule model predicts the majority class in the training

data using mle: c = argmax(Pr(C,)) , where Pr(Ci) is probability of class Cj in the set of

classes {Ci, C2,..Ck}.

10

1.2.4.2 Linea r Regression Model [SJIll]

Given a training dataset:

xi =(xii,xi2,...,xid), yi/ci

X2 = (X21,X22,. . . ,X2d), y2/C2

Xn ~ (Xni,Xp2,..., Xpd), yp/Cp

In numeric prediction. Linear Regression Model uses a linear function f(x), x=(xi,...,Xd)^ to

model the target value y:

y = f{x) = b,+b'x^f^b,x, (1-1)
/=0

\T where bo is an intercept; b=(bi,b2,.. .,bd) is a coefficient column vector; and XQ = 1

The problem is to estimate the intercept bo and vector b using LSE (Least Square Estimation)

from the training dataset. LSE tries to minimize the Residual Sum of Squares:

RSS = ±[y,-f{x,)f (1.2)

By minimizing the RSS in the equation (1.2), we obtain the values of the intercept bo and

vector b. For new pattem X=(Xi,X2,...,Xd)^, the target value Y is predicted using linear

model:

Y = b,+b,X,+... + b,X, (13)

Linear Regression Model can also be applied to pattem classification by using the following

Multi-response Linear Regression procedure:

11

• Perform k separate linear regression on each class, set the target value yi to 1 if the

instance Xj is in the class that we are doing linear regression and 0 otherwise.

• The regression equation then approximates the membership function for the class (1 for

members, 0 for non-members).

• To classify a new instance X, compute the regression value for each membership function

Yj, i = 1.. .k, and assign the new instance the class with the highest value Y = max (Y,).

1.2.4.3 Logisti c Regression Model [5]

The Logistic Regression Model is a better altemative solution of Linear Regression Model

for classification. It arises from the desire to model the posterior probabilities of the k classes

via linear function with respect to x. It is mandatory that those posterior probabilities sum to

one and remain in the interval [0, 1].

The model has the form:

1 PT(C ^ C,\X) , ^ r^T ^ ^
log —^ ^— -= b,. + b, * X

Pr{ C = C, \ X) '° '

log ^'(C - ^2 1^) ^ ^ +b/ * X (1-4)
PY(C = C, \ X) '° '

Pr(C = C , , M r) ^ , r , ^
log —̂^ —^ -= b,^ no + ^ t J * X

where:

X-(Xi,X2,...,Xd)'^: input pattem

12

Pr(C-Ci I X): posterior probability of class C| given X

Pr(C=C21 X): posterior probability of class C2 given X

Pr(C=Ck I X): posterior probability of class Ck given X

bjo: intercept

bj = (b|, b2,.. .,bd) : coefficient column vector

Solving the equation system (1.4), we obtain the posterior probabilities of the k classes:

Pr(C = C , I X) = Z^} ^ ' ° ^ ^'' * ^ > ,i =l...k -I
1 + 2 exp(b ,, + b/ * X)

Pr{ C = C , \ X)

,/ = '

1 (1.5)

k - 1

1 + X exp(b^, + b/ * X)

The result (1.5) shows that those posterior probabilities sum to one and remain in [0, 1].

Now, the problem is to estimate the intercepts and coefficient column vectors. These

parameters are usually estimated by using Maximum Likelihood method. This method is

mathematically complicated, so we do not present it here.

When k = 2, the model is especially simple because there is only a single linear fimction:

?r{ C ^ C , \ X)
?T{ C = C , \ X)

log M C - C,\X) ^ , ^ ^ r , ^ (i_6)

This model is widely used in cases where binary responses (two classes) occur quite

frequently, especially in biostatistics' applications. DCS is also a two-class dialog

classification system, so it is possibly appropriate to apply Logistic Regression Model with

k=2 in DCS.

13

1.2.5 Tree-base d learnin g schemes

In this section, we describe a popular and widely used leaming scheme. That is tree-based

leaming scheme or also known as decision tree which employs three basic leaming models

presented above.

Tree-based leaming scheme or decision tree is a predictive model mapping observations

about a pattem to conclusions about its target value. In decision tree, each interior node

corresponds to a variable; an arc to a child represents a possible value of that variable. A leaf

represents the predicted value of target variable given the values of the variables represented

by the path from the root [12]. Figure 1.4 shows an example of decision tree.

Decision tree has three names:

• Classificatio n tree : is a term used when the predicted outcome is a categorical class (for

example: Play, Don't Play, Good, Bad...)

• Regressio n tree : is a term used when the predicted outcome is a numeric value (for

example: CPU time, a patient's length of stay in a hospital...).

• CAR T (Classificatio n An d Regressio n Tree) : is a term used to refer to both of the

above trees. It was first introduced by Breiman et al. [10]

To know more details about decision tree, let us consider a practical example about a golf

club [12]:

A manager of a golf club wants to predict customer attendance in his club in order to

know if he should hire extra staffs on days when customers play golf or dismiss most of

them on days when customers do not play golf.

14

The manager observed and measured four features in two weeks:

1) Outlook: a nominal feature that has value belonging to a set of possible values

(sunny, forecast, rain);

2) Temperature: a numeric feature. The unit of measurement is °C;

3) Humidity: a numeric feature. The unit of measurement is %;

4) Wind: a nominal feature that has value belonging to a set of possible values (tme,

false).

He wants to know if the customers will play or not in a given day, so the target value is a

category class belonging to a set of classes: (Play, Don't play}. Then, he made a dataset as

shown in Figure 1.3. The decision tree built from this dataset is displayed in Figure 1.4.

According to this decision tree, he can conclude that:

• Users play golf on sunny and non-humid days / on overcast days / or on rainy and non-

windy days, then he will hire extra staffs on these days.

• Users don't play golf on surmy and humid days, or on rainy and windy days, then he will

dismiss most of the staff on these days.

In this example, the manager has constmcted a decision tree using Zero-Rule model at leaf

nodes. By using different models at leaf nodes, we have different tree-based leaming

schemes. There are three popular tree-based leaming schemes: CART, Model Tree and

Logistic Model Tree. We will describe briefly in tum these leaming schemes in the next

section.

15

Play gol f datase t

OUTLOOK
sunny
sumy
overcast
rain
rain
rain
overcast
s i m y
su iny
rain
sunny
overcast
overcast
rain

TEMPERATURE HUMIDIT Y
85 . 8 5
80 1 9 0
83 i 7 8
70 9 6
68 8 0
65 7 0
64 6 5
72 9 5
69 7 0
75 8 0
75 7 0
72 9 0
81 7 5
71 8 0

WINDY
FALSE
TRUE
FALSE
FALSE
FALSE
TRUE
TRUE
FALSE
FALSE
FALSE
TRUE
TRUE
FALSE
TRUE

Dep. va r
PLAY
Don't Pla y
Don't Pla y
Play
Ray
Play
Don't Pla y
Play
Dont Pla y
Ray
Ray
Ray
Play
Ray
Don't Pla y

Figure 1-3 Play golf dataset.

Dependent variable: PLAY

Figure 1-4 Decision tree for play golf dataset.

16

1.2.5.1 CART-C4. 5

The main purpose of using decision tree is to reduce standard deviation (for numeric

prediction problem) and entropy (for pattem classification problem) in training dataset before

applying a basic learning model at leaf nodes. In other words, decision tree partitions the

training dataset into disjoint sub-datasets based on feature values, then executes a basic

leaming algorithm on each subset.

If we use Zero-Rule Model for numeric prediction at leaf nodes of a decision tree, we have a

Regression Tree. If we use Zero-Rule Model for pattem classification at leaf nodes of a

decision tree, we have a Classification Tree. However, we can call both of these trees CART.

CART is usually used because of its simplicity since its Zero-Rule Model at leaf nodes

predicts the result by chance. The widely used decision tree - C4.5 - is an implementation of

CART.

1.2.5.2 Mode l Tre e

Similarly to CART, if we use Linear Regression Model for numeric prediction at leaf nodes

of a decision tree, we have Model Tree for numeric prediction. If we use Linear Regression

Model for pattem classification at leaf nodes of a decision tree, we have Model Tree for

pattem classification. Linear Regression Model works on numeric features, so Model Tree is

appropriate for numeric prediction/pattern classification system using numeric features.

1.2.5.3 Logisti c Model Tre e

Logistic Model Tree is only appropriate for pattern classification problem. In Logistic Model

Tree, the basic leaming model used at leaf nodes is Logistic Regression Model.

Now, we need to define a procedure for building a tree-based learning scheme. For

visualization convenience, the procedure is described by a flow chart as shown in Figure 1.5.

We detail each step of the procedure next section.

17

1.2.6 Procedur e fo r building a tree-based learnin g scheme I6](7][8|[9)

The procedure for constructing a tree-based learning scheme consists of the following steps:

1.Choose question set

2.Select splitting criterion

3.Determine stopping mle

4.Perform basic model at

leaf nodes

5 Apply pmning algorithm

Figure 1- 5 Flow chart for tree building procedure.

1. Choose a question set used for non-terminal node splitting:

Given a training dataset:

xi =(xii, xi2,...,xid), yi/ci

X2 = (X21,X22,. . . ,X2d), y2/C2

Xn = (Xpi,Xp2,.. . ,Xnd), yn/Cn,

Denote a pattem vector X = (Xi, X2, ..., Xd)^, where: Xj is the i"" feature of X

• If feature Xj is a nominal feature, the question has the following form:

Is Xj G S?

18

where:

S is a subset of a set of possible discrete values of Xj. Given S is a subset of a k-

element set {ai,..., ak}, the number of questions will be {2^ - 2).

• If feature Xj is a numeric feature, the question is:

Is Xj <= C?

where:

C: a threshold value. The number of questions will be (n) with:

C, - ^'''\^^\j - 1 ...n,V{0) ^ 0,V{j) ^ X, (1.7)

2. Select a splitting criterion that determines which question will be used for splitting:

Assume that we are solving pattem classification problem, the most widely used splitting

criterion for a non-terminal node is the Information Gain also called Impurity Reduction or

Entropy Reduction. We focus on pattem classification problem because DCS turns out to be

a pattem classification system. In numeric prediction case, the splitting criterion is Standard

Deviation Reduction.

Suppose we have a binary split that separates a node t into two nodes: left node tt and right

node IR.

The information gain IG is calculated by the following formula:

IG^I{t)-[pJ{t,) + p,I{t,)] (1.8)

where:

t, tt, tR: current node, left node, and right node

PL: proportion between samples falling into left node and samples in node t

PR: proportion between samples falling into right node and samples in node t

19

I(t), I(tL), I(tR) are the Entropy Impurities of nodes t, tt, IR and are computed as follow

/(0 = -XPr(C,)log(Pr(C,)) (1.9)

where Cj is the i class; and Pr(Cj) is probability of class Cj.

We deduce a mle for selecting the best question as follow:

The best question chosen for splitting non-terminal node is the one that maximizes IG in

the equation (1.8).

To demonstrate how to calculate Information Gain, we consider a 3-class problem, given a

node t with 10 training vectors:

o 4 vectors belong to class Ci;

o 4 vectors belong to class C2;

o 2 vectors belong to class C3.

Suppose node t(4, 4, 2) is split into two nodes: tL(3,l,0) & tR(l,3,2). The goal is to compute

IG of node t using entropy impurity.

According to the equation (1.9), we have the entropy impurity of each node:

I(t) = -(4/10)*log(4/10) - (4/10)*log(4/10) - (2/10)*log(2/10) =1.521

I(tL) = -(3/4)*log(3/4) - (l/4)*log(l/4) = 0.815

I(tR)= -(l/6)*log(l/6) - (3/6)*log(3/6) - (2/6)*log(2/6) - 1.472

Then, applying the equation (1.8), we have the information gain for node t:

IG = 1.521 - (4/10)*0.815 -(6/10)*1.472 = 0.315

20

3. Determine a split-stopping rule for leaf nodes:

We can combine the following conditions to determine the split-stopping mle:

• Zero impuritv: all the data samples at leaf node belong to the same class.

• Feature: there's no feature left to split.

• Threshold:

+ The greatest information gain of best question falls below a pre-set threshold P

+ The number of training samples is small enough.

+ The tree is pretty big.

4. Perform an appropriate basic leaming model at leaf nodes:

Zero-Rule Model is used for CART, Linear Regression Model for Model Tree and Logistic

Regression Model for Logistic Model Tree.

Once the question set, splitting criterion, split-stopping mle and basic learning model were

determined, a greedy algorithm used to build the decision tree is as follow:

• All training samples are placed at the root of the initial tree.

• Create a question set from these training samples.

• The best question is then chosen from the question set to split the root into two nodes.

• The algorithm recursively splits the most promising node with the best question until the

stopping mle is satisfied.

• Basic leaming model is executed at leaf nodes.

Table 1.1 shows the pseudo-code to build a tree-based leaming scheme. After we have built

the tree, the algorithm for classifying new data is given in Table 1.2.

21

Table 1 -1 Pseudo-code for building a tree-based leaming scheme

Given a training set, each pattem X = (Xi,.. .,Xd) is a d-dimensional feature vector

1. Begin with the root node with all training samples.

2. For each new node t

For every nominal feature: generate all its subset and obtain questions in the form

Is X, G S?

For every numeric feature: calculate Cj and generate all questions of the form

Is Xi <= Cj?

_For each question Q from the question set above:

+ create Xtt (number of samples falling into left node oft) and XtR (number of

samples falling into right node oft) according to the answer of the question Q.

+ compute Information Gain of node t

Choose the question Qo that maximizes Information Gain

If stopping mle is met, execute appropriate basic leaming model;

else create left node tt and right node tR oft based on the answer of question QO.

Table 1 -2 Algorithm for classifying new pattem

Given a decision tree and

1. Begin at root node.

2. At node t

node t:

J f t

J f t

is a leaf node.

an input feature vector of a dialog pattem X

get the target outcome.

is an interior node, use feature of X to find the answer of the best question of

+ If the answer is YES, traverse to left node oft

+ If the answer is NO, traverse to right node oft

22

5. Applv a pruning algorithm to obtain an optimal tree:

After building the decision tree, we can apply a pmning algorithm to get an optimal tree.

Pmning algorithm is slightly complex. We describe it in a separate part.

1.2.7 Prunin g algorithm [7]

Given a decision tree, the problem is to pmne this tree to obtain a compact and optimal tree.

The pruning criterion used to pmne the original tree is the cost-complexity measure:

R„{T) = R{T) + a\T\ (1.10)

where:

R(T): misclassification rate of tree T (cost) is computed by the following formula:

/?(r) = X^(0(l-max(Pr(C,|0) (i . n)
leT

where:

P(t): proportion between data falling in node t and data in root.

Pr(Cj 11): probability of class Cj at node t.

a: complexity parameter

|T|: number of leaf nodes of tree T (complexity)

Suppose we have a tree like the one in Figure 1.6.

For convenience, we denote Ttas sub-tree starting at node t and {t} as sub-tree containing

only node t.

23

Root

Figure 1-6 Tree example for pruning algorithm.

Consider node Tt in Figure 1.6, applying the equation (1.10), we have:

R,{T,) = R{T,) + a\T,

RA{t}) = R{t) + a

(1.12)

(1.13)

To perform pmning algorithm, we have to find weakest sub-tree that is a tree when we

collapse it into a single node, the misclassification rate increases least or is unchanged.

Therefore, Tt is considered as a weakest sub-tree if

RAT,)^R,{{t}) (1.14)

Then, substituting the equations (1.12) and (1.13) to the left-hand side and right-hand side of

the equation (1.4) respectively, we obtain the formula of the complexity parameter a:

a =
R{t)j- R{T,)

\T \ -I (1.15)

24

Let a = g(t), where t is a non-terminal node and g(t) is a function with respect to t. The cost-

complexity pruning procedure is described as follow:

• Start at tree TO with root r

• Find the sub-tree Tt that minimizes g(t)

• Collapse the sub-tree Tt to node t to obtain a pmned tree TI = TO - Tt

• Find a pruned tree T2 from TI using the same way

• Continue the procedure until we obtain the tree containing only root node: {r}

The result of the pmning procedure is a sequence of trees;

T0>T1 > T 2 > . . . > { r }

From the sequence of trees above, we will choose an optimal tree by using one of two

methods: Independent Test Set or N-fold Cross Validation.

1.2.7.1 Independen t tes t set method

For this method, the training dataset is divided to two parts as shown in Figure 1.7. We use

the first part (about 80% of the training dataset) to create a sequence of trees:

T0>T1 > T 2 > . . . > { r }

Then, we use the other part to estimate the misclassification rate of each tree using the

equation (1.11):

TO ^ R(TO)

TI ^ R(T1)

T2 ^ R(T2)

{r} ^ R{r}

The optimal tree Tk is the one that has the minimum misclassification rate:

k = argmin (R(Tk))

25

Training Set

(S)

Independent
Test Set

Testing Set

Figure 1- 7 Independent test set method.

1.2.7.2 N-fol d cros s validation metho d

With the N-fold cross validation method, we use all training samples to create a sequence of

trees:

T 0 > T 1 > T 2 > . . . > {r}

Next, we divide the training dataset into N folds. Each fold contains two parts: training part

and independent test part. We use the training part to create a sequence of trees and use the

independent test part to estimate misclassification rate for each tree. Figure 1.8 illustrates

how we divide the dataset. In summary, we have:

Fold 1 : T ' 0 > T ' 1 > T ' 2 > . . .>{r '}

R(T 'O) , R (T ' 1) , R (T ' 2) , . . . ,R{r '}

Fold 2 : T^0>T^l>T22>. . .>{r^}

R(T^O), R(T^l), R(T^2) , ... , R{r^}

FoldN: T ' ^ 0 > T ^ l > T ^ 2 > . . . > { r ^ }

R(T^O), R(T^l), R (T ^ 2) , ... , R{r^}

26

S-S2

S2

S-S2

Testing Se t

Figure 1-8 N-fold cross validation method.

We can not directly estimate the misclassification rates for the main sequence of trees, we

could approximate them via the misclassification rate R(T'j), since each data sample in the

main training dataset occurs in one and only one fold . The N-fold cross-validation estimate

can be computed as:

R^ATk) = — X RiT'k) (1.16)

So, we have:

TO ^ Rcv(TO)

TI ^ Rcv(Tl)

T2 -> Rcv(T2)

{r} -^ Rcv{r}

The optimal tree Tk is the one that has minimum misclassification rate:

k = argmin (Rcv(Tk))

N-fold cross-validation method is computationally expensive in comparison with the

independent test set method. However, it makes more effective use of all training data, so this

method is only useful when we have a small dataset. Otherwise, independent test set method

is more appropriate.

27

1.2.8 Othe r learning schemes for pattern classificatio n

In this section, we introduce two more leaming schemes for pattem classification that we will

use for our experiments. These are one-mle algorithm and boosted decision trees described in

the next two subsections.

1.2.8.1 One-rul e algorithm [4]

One-mle algorithm for pattem classification generates a one-level decision tree expressed in

the form a set of mles that all test one particular attribute, so it's a simple and computer cost-

effective method. However, it frequently gives high accuracy in many real-world datasets

because the stmcture underlying those datasets might be quite mdimentary, and just one

attribute is sufficient to accurately determine the class of an instance.

The idea of one-mle algorithm comes from the fact that it's always a good plan to try the

simplest things first. The pseudo-code for one-mle algorithm is given in Table 1.3.

Table 1-3 Pseudo-code for one-mle algorithm

For each attribute {

For each value of that attribute {

count how often each class appears;

find the most frequent class;

make the rule assign that class to this attribute-value;

}
Calculate the error rate of the rules;

}
Choose the attribute that produce rules with the smallest error rate;

28

Let's reconsider the play golf problem in section 1.2.5. Applying the one-rule algorithm on

that dataset, we obtain the rules illustrated in Figure 1.9.

Attribute Rules Errors Total errors

1

2

3

4

outlook

temperature

humidity

windy

sunny —> no
overcast -> yes
rainy -> yes
hot-^ no *
mild -> yes
cool -^ yes
high —^ no
normal —^ yes
false -^ ye s
true -^ no *

2/5
0/4
2/5
2/4
2/6
1/4
3/7
1/7
2/8
3/6

4/14

5/14

4/14

5/14

Figure 1- 9 One-rule algorithm result on play golf dataset

From the ml e set, we can see that the two attributes "outlook" and "humidity" give the

smallest total error rate. Therefore, we may choose one of them. For example, if we choose

the attribute "outlook", we have the following classification mles:

Outlook.' sunny -^ Don't play

overcast -^ Play

rainy -^ Don't play

(One-level decision tree)

1.2.8.2 Booste d decisio n tree s (4)

An approach to making pattem classification more reliable is to combine the outputs of

different leaming schemes of the same type such as decision trees. Several machine leaming

techniques do this by leaming an ensemble of models and using them in combination. The

most prominent technique among these is boosting,

29

The boosting technique is an iterative machine leaming method performing pattern

classification by mixing various outputs of different learning schemes into a single classifier

using weighted vote. Weighting is used to give more influence to the more successful

leaming scheme.

Now we describe a widely used boosting method called AdaBoost.Ml included in the

WEKA [17] machine leaming library. The iterative procedure of AdaBoost.Ml method for

model generation and pattem classification is as follow:

Model Generation:

- The algorithm begins by assigning equal weight to all instances in the training data.

- It then calls the leaming algorithm to form a classifier for this data and reweighs each

instance according to the classifier's output. The weight of correctly classified instances is

decreased and that of misclassified ones is increased. This produces a set of "easy" instances

with low weight and a set of "hard" ones with high weight.

- In the next iteration, and all subsequent ones, a classifier is built for the reweighed data,

which consequently focuses on classifying the hard instances correctly. Then the instances'

weights are increased or decreased according to the output of this new classifier. As a result,

some hard instances might become even harder and easier ones might become even easier; on

the other hand, other hard instances might become easier, and easier ones might become

harder—all possibilities can occur in practice.

- After each iteration, the weights reflect how often the instances have been misclassified by

the classifiers produced so far. By maintaining a measure of "hardness" with each instance,

this procedure provides an elegant way of generating a series of learning schemes that

complement one another.

- Whenever the error on the weighted training data is 0 or exceeds or equals 0.5, the boosting

procedure deletes the current classifier and does not perform any more iteration.

30

Pattem Classification:

- The outputs of all previously generated classifiers are combined using a weighted vote. A

classifier that performs well on the weighted training data from which it was built {e close to

0) should receive a high weight, and a classifier that performs badly {e close to 0.5) should

receive a low one.

- To make a classification, the weights of all classifiers that vote for a particular class are

summed up, and the class with the greatest total weight is chosen.

The pseudo-code for the procedure above is displayed in Table 1.4.

Table 1 -4 Pseudo-code for boosted decision trees

Model Generation.-

Assign equal weight to each training instance.

For each oft iterations {

Apply learning algorithm to weighted dataset and store resulting model;

Compute error e of model on weighted dataset and store error;

Ife equal to zero, or e greater or equal to 0.5 {

Delete current classifier;

Terminate model generation;

}
For each instance in dataset {

If instance is classified correctly by model {

Multiply weight of instance by e / (1 - e);

}

}
Normalize weight of all instances.

}

31

Classification:

Assign weight of zero to all classes.

For each of the t (or less) models {

Add -log(e / (1 - e)) to weight of class predicted by model.

}
Return class with highest weight.

The boosted decision trees use the boosting technique in which several decision trees, C4.5

trees for example, provide outputs for the final single classifier. We will use boosted C.45

trees for our experiments.

32

1.2.9 Relate d works on identification o f problematic dialo g

Concerning the problem of identification of problematic dialog (belonging to dialog

classification problem), there are several previous works. The summary of these works is

given in Table 1.3.

In 1999, Litman et al [27] developed a PDI. In their work, they defined problematic dialogs

as the ones that have poor speech recognition performance and used 'percentage of

misrecognition' to label those dialogs. They used different kinds of features including

Acoustic, Dialog Efficiency, Dialog Quality, Experimental Parameter, and Lexical features.

They tested their system called RIPPER (a mie-based algorithm) on 544 dialogs of AT&T

spoken dialog system using 25-fold cross validation. The accuracy of their PDI is 77.40%.

After that, Langkilde et al [26] have developed another PDI based on [27] to use for How

May I Help You (HMIHY) system. They built their system on 4774 dialogs using different

sources of features: Automatic Speech Recognition (ASR) module. Natural Language

Understanding (NLU) module, Dialog Manager (DM) component, and Hand-labeled. They

defined problematic dialogs in a different way compared with Litman et al [27], i.e. they used

'task success' instead of'percentage of misrecognition'. They tested their PDI with RIPPER

using 5-fold cross validation and obtained 88.50% accuracy with all features (including

hand-labeled features), 87.00% with automatic features, and 86.70% with automatic/task-

independent features.

In 2000, Walker et al [25] improved the performance of the system in [26] up to 4% on the

test with all features adding one more hand-labeled feature, namely "rsuccess".

33

Table 1-5 Related works on identification of problematic dialog

Corpus

Features

Labelling

Classifier

Test

1 (1999)

AT&T

(544)

• Acoustic

• Dialog

Efficiency

• Dialog

Quality

• Experimental

Parameter

• Lexical

Percentage of

misrecognition

RIPPER

25-fold CV

2(1999)

HMIHY

(4774)

• ASR

• NLU

• DM

• Hand-

labeled

Task

Success

RIPPER

5-fold CV

3 (2000)

HMIHY

(4774)

• ASR

• NLU

• DM

• Hand-

labeled

• rsuccess

Task

Success

RIPPER

5-fold CV

4(2001)

HMIHY

(4692)

• ASR

• NLU

• DM

• Hand-

labeled

• rsuccess

• auto-

SLU-

success

Task

Success

RIPPER

10-fold CV

5 (2002)

DARPA2001

(1242)

• Task

Success

• Efficiency

• Qualitative

User Rating

DT

10-fold CV

Result (Accuracy)

All

features

Automatic

features

Auto,

Task-Ind

features

77.40%

None

None

88.50%

87.00%

86.70%

92.30%,

87.00%

86.70%

91.70%

84.90%

(+autoSLU-

success)

85.40%

(+autoSLU-

success)

67% - 89%

(Not exactly

mentioned)

None

None

34

On the basis of [25], Walker et al [24] built an "rsuccess predictor" to get a new automatic

feature, named auto-SLU-success, by approximating the information provided by hand-

labeled feature 'rsuccess'. This work is motivated by the fact that future work should focus

on developing automatic features.

In 2002, Walker et al [23] developed a new PDI on DARPA (Defense Advanced Research

Projects Agency) Communicator Corpus 2001 [19]. They labeled problematic dialogs using

UserRating instead of TaskSuccess because the main goal is to maximize user satisfaction

and it is not always the case that user is satisfied when his/her task is successfully completed.

For example, users might be unsatisfied although they completed their task due to the fact

that they had to repeat themselves many times before the system understood what they said.

On the contrary, users might be satisfied although they did not complete their task probably

because of database access problems [23]. Walker et al used the features defined in

PARADISE framework [15] including Task Success, Efficiency and Qualitative measures.

We published a paper [22] in 2007, on the basis of [23], studying the effect of named entities

and acknowledgement words such as YES, NO, OK on the performance of PDI. That work

showed that acknowledgement words are good indicators for identification of problematic

dialogs. Therefore, this thesis uses acknowledgement words in combination with Task

Success measure. Efficiency measure defined in PARADISE framework and one more

feature, namely NumRepetitions i.e. number of times the agent repeats the same utterance,

for problem of identification of problematic dialog. All of these features are automatically

obtainable.

1.3 Scop e i& Outcome

DCS is a single project, i.e. it is developed independently without using outputs of other

projects. In contrast, other projects use the results of DCS as their inputs. The outcome of

DCS project is a stand-alone system that can identify problematic dialogs of some corpora in

a HCDS using several pattem classification algorithms.

35

Chapter Summary
Motivation

Purpose

Domain

Scope

Outcome

Evaluation of user satisfaction in HCDS

Identification of problematic dialogs

Data mining & Machine Leaming

Pattern Classification

Single Project

A stand-alone system that can identify problematic dialogs

CHAPITRE 2

PLANNING

2.1 Methodolog y

2.1.1 Theor y framewor k [15] 116]

PARADISE (PARAdigm for Dialog System Evaluation) is a general framework for

evaluating spoken dialogue agents. It is based on the structure of objectives. It posits that

system performance can be correlated with a meaningful extemal criterion such as usability

which can be directly measured by user satisfaction.

User satisfaction has been frequently used as an extemal indicator of the goodness of a

dialog. Figure 2.1 illustrates PARADISE diagram. To maximize user satisfaction, one must

maximize task success measure and minimize dialog costs including efficiency measures and

qualitative measures.

PARADISE uses a decision-theoretic framework to specify the relative contribution of

various factors to an agent's overall performance. It capitalizes on maximizing user

satisfaction through 3 general factors:

• Tas k success measure : task completion.

• Efficienc y measures : total time on task, number of turns on task, number of times user

and agent speak at the same time, average duration of system tums, average duration of

user tums...

• Qualitativ e measures : number of repair utterances, DATE (Dialogue Act Tagging

Scheme for Evaluation of HCDS).

37

User Satisfaction

Task Succes s

Measure

Dialog Costs

Efficiency

Measures

Qualitative

Measures

Maximize User Satisfaction -^ Maximiz e Task Success & Minimize Dialog Costs

Figure 2-1 PARADISE diagram.

2.1.2 Dialo g features fo r classification tas k

DCS is a complete and automated system. Therefore, dialog features used for classification

must be automatically extractable. Based on PARADISE framework, we define a list of

automatically extractable dialog like the following:

1. Task Completion Measure:

• TaskSuccess : Task completion of dialog

2. Efficiency Measures:

• TimeOn Task : Total duration of dialog

TurnsOnTask : Number of tums of dialog including system and user tums.

• NumOverlaps. Number of times system & user speak at the same time.

• MeanUserTurnDuration: Average user's tum duration.

• MeanSystemTurnDuration. Average system's tum duration.

38

• Mean WordsPerUserTurn: Average number of words of user tum.

• Mean WordsPerSystemTurn: Average number of words of system tum.

• Phonetype: The type of telephone handset that user uses.

Moreover, the problem is to identify problematic dialogs, so the automatically extractable

feature "Number of negative acknowledgement words" could be a good one. Negative

acknowledgement words include: NO, NOP, FALSE, INCORRECT, WRONG, ERASE. We

call that feature NumNegativeACKwords. Plus, we also find that number of times the system

repeat the same utterance is a potentially useful feature. We denote this feature as

NumRepetitions.

Dialog classification is a 2-class pattem classification problem with set of classes: C =

{Cl="Good", C2="Bad"}. Hence, a dialog feature vector can be represented in the form:

{TaskSuccess, TimeOnTask, TurnsOnTask, NumOverlaps,

Mean UserTurnDuration, MeanSystem TurnDuration,

Mean WordsPerUserTurn, Mean WordsPerSystem Turn,

Phonetype, NumNegativeACKwords,

NumRepetitions, Label)

2.1.3 Selectio n o f learning schemes [4] [5]

It is seldom known in advance which procedure will perform best or even well for any given

problem, so the "trial-and-error" approach is always employed in practical data mining

application. Particularly, it is tempting to try out different leaming schemes with different

combinations of their options on a given dataset to select the one that works best.

39

Among numerous of leaming schemes, decision tree has been the most widely used

algorithm in practice because it has the following advantages and disadvantage:

• Decision Tree is interpreted so easily because it uses subset of attributes. Practical data

mining applications generally require interpretable models.

• Decision Tree efficiently classifies new samples by simply traversing the tree stmcture

without requiring much computation.

• Decision Tree can be applied to any kind of data stmcture: mixed data type (nominal and

numeric data) and data with high dimensionality.

• Decision Tree helps to determine which attribute is the most important for numeric

prediction and pattem classification.

• Decision Tree is appropriate for limited dataset.

• It is difficult to design an optimal tree, probably leading to a large tree with poor error

rates.

Therefore, decision tree is chosen to be the based leaming scheme in our DCS. The leaming

schemes that we use for DCS are similar to those of state-of-the-art [21] so that we can

compare the results.

Those schemes are the followings:

• Zero-Rule Model: This algorithm is useful for determining a baseline performance as a

benchmark for other leaming schemes.

• Logistic Regression Model: This model is appropriate for 2-class pattern classification

problem and usually works well on many datasets.

• One-Rule algorithm: This simple model encourages a "simplicity-first". Sometimes other

leaming schemes actually perform worse than this model due to "serious over-fitting".

• C4.5 Tree.

• Boosted C4.5 Trees.

• Logistic Model Tree.

40

2.1.4 Selectio n of corpora

We use two publicly distributed corpora from Linguistic Data Consortium. The first corpus is

DARPA Communicator 2000 and the second is DARPA Communicator 2001. We choose

these corpora because they are available to download and we can compare our results with

the state-of-the-art results [23]. The description of DARPA 2000 & 20001 is given below.

2.1.4.1 DARP A 2000 Communicator Corpus [18]

DARPA 2000 Communicator Evaluation was produced by Linguistic Data Consortium

(LDC) catalog number LDC2002S56 and ISBN 1-58563-258-9 in the frame of

Communicator program. The original goals of the Communicator program were to support

the creation of speech-enabled interfaces that scale gracefully across modalities, from

speech-only to interfaces that include graphics, maps, pointing and gesture.

The actual research that led to the data collections in 2000 and 2001 explored ways to

constmct better spoken-dialogue systems, with which users interact via speech-alone to

perform relatively complex tasks such as travel plarming. During 2000 and 2001 two large

data sets were collected, in which users used the Communicator systems built by the research

groups to do travel plarming.

Nine sites participated in this project: ATT, BBN, Carnegie Mellon University, IBM, MIT,

MITRE, NIST, SRI and University of Colorado at Boulder. In 2000, each user called the nine

different automated travel-planning systems to make simulated flight reservations. The order

in which the users encountered the systems was counterbalanced, for statistical analysis

purposes.

41

2.1.4.2 DARP A 200 1 Communicator Corpus 119]

DARPA 2001 Communicator Evaluation was produced by Linguistic Data Consortium

(LDC) catalog number LDC2003S01 and ISBN 1-58563-259-7 in the frame of

Communicator program. The original goals of the Communicator program were to support

the creation of speech-enabled interfaces that scale gracefully across modalities, from

speech-only to interfaces that include graphics, maps, pointing and gesture.

The actual research that led to the data collections in 2000 and 2001 explored ways to

constmct better spoken-dialogue systems, with which users interact via speech-alone to

perform relatively complex tasks such as travel planning. During 2000 and 2001 two large

data sets were collected, in which users used the Communicator systems built by the research

groups to do travel plarming.

The following sites participated in this project: ATT, BBN, Carnegie Mellon University,

IBM, Lucent Bell Labs, MIT, SRI and University of Colorado at Boulder.

2.2 Evaluatio n measure s [4](14]

Different metrics could be used to evaluate the performance of a leaming scheme. For a 2-

class pattem classification problem such as ours, where we have a positive class (C+) for

good dialog and a negative class (C-) for bad dialog, we can use the following metrics:

• Accuracy: reflects the overall correctness of the learning scheme.

• Precision of C+ (P+): reflects the correctness of the leaming scheme on C+.

• Precision of C- (P-): reflects the correctness of the leaming scheme on C-.

• Recall of C+ (R+): is the accuracy among positive instances.

• Recall of C- (R_): is the accuracy among negative instances.

42

• F-measure: is a combination of Precision and Recall. F-measure is computed by the

following formula:

2PR
F =

P + R
(2.1)

These metrics are calculated from a confusion matrix as shown in Table 2.1. Accuracy varies

from 0% to 100%) whereas Precision, Recall, and F-measure vary from 0 to 1.

The higher the metric is, the better the system performance is.

Table 2-1 Confusion matrix for 2-class problem

Predicted C +

Predicted C -

Actual C +

True Positive (TP)

False Negative (FN)

Actual C-

False Positive (FP)

True Negative (TN)

Accuracy = TP + TN
TP + FP + FN + TN

*100% (2.2)

P. =
TP

TP + FP
(2.3)

TN

TN + FN (2.4)

R. =
TP

TP + FN
(2.5)

R =
TN

TN + FP (2.6)

43

f ^ ^^^^^ (2.7)
P. + R

+ +

f - ^^-^- (2.8)
P+R

For dialog classification problem, the best two measures to evaluate DCS are Accuracy and

F_ measures due to several reasons:

• Accuracy reflects the overall correctness of the leaming scheme but it ignores the

difference between error types, so one more measure is needed.

• F_ reflects the precision and recall of class C- and the problem here is to identify

problematic dialogs, so F_ is a reasonable choice.

So far we have presented methodology and DCS evaluation measures. In the next section, we

describe how to implement and test DCS.

44

Chapter Summary

Methodology

Evaluation

measures

Theory Framework: PARADISE

Dialog features for classification task:

+ TaskSuccess,

+ TimeOnTask,

+ TumsOnTask,

+ NumOverlaps,

+ MeanUserTurnDuration,

+ MeanSystemTumDuration,

+ MeanWordsPerUserTum,

+ MeanWordsPerSystemTum,

+ Phonetype

+ NumNegativeACKwords

+ NumRepetitions

Leaming schemes:

+ Zero-Rule Model

+ Logistic Regression Model

+ One-Rule algorithm

+ C4.5 Tree

+ Boosted C4.5 Trees

+ Logistic Model Tree

Datasets:

+ DARPA Communicator 2000 Corpus

+ DARPA Communicator 2001 Corpus

_Accuracy

F-measure of bad dialogs

CHAPITRE 3

IMPLEMENTATION

3.1 Syste m Implementatio n

After having described the definition and planning of DCS, in this chapter, we will discuss

about system implementation. This chapter is divided in several sections where we will cover

system design; detail each component of system, and describe experiments performed on

system.

3.1.1 Syste m Desig n

A common pattem classification system usually has three main components as shown in

Figure 3.1. Those components include:

• Preprocessing: this component preprocesses the input pattem. There are three kinds of

input pattems, each of which can be preprocessed with a different way:

o Structura l pattern : this kind of pattem is represented by an image (2D or 3D).

For examples: character, face, finger-print. We need to remove noise in pattems

by using filling and thinning process, normalize pattems to the same size, correct

slant. Then, we can extract Contour or Skeleton for feature extraction.

o Time-varyin g pattern : is represented by a waveform. For example: speech. We

can preprocess the pattem by doing some filtering, normalizing duration, etc.

o Abstrac t pattern : this kind of pattem can not be represented explicitly. For

example: dialog pattern. For this kind of pattern, we can use a parser to parse log

files to generate dialog information. Abstract pattem is what we will be facing.

• Feature Extraction: this component extracts features from processed pattern.

• Pattem Classification: this component classifies pattem into a set of categorical classes

based on extracted features.

46

Input

Pattem

Pre

processing

Processed

Pattem

Feature

Extraction

Features Pattem

Classification

Output

Figure 3-1 Pattern Classification System Diagram.

On the basis of the common pattern classification system, DCS is designed as shown in

Figure 3.2. The input pattem in DCS is represented by log files recording what the agent and

the user communicated and time when the dialog took place. These log files are parsed by a

parser to produce dialog information. This is the preprocessing phase.

Then, an extractor will extract dialog features from dialog. Finally, classifier component

classifies dialog into one of two categorical classes (Good, Bad} using dialog features.

Log files Parser Dialog^ Extractor Features Classifier Output

Figure 3-2 Dialog Classification System Diagram.

3.1.2 Parse r Componen t

As mentioned above, parser is the first component in DCS that serves to remove unuseful

information or noise from files in order to extract useful dialog information. Normally, a

dialog consists of tens of system tums and user tums, each of which has three main

properties that the parser needs to extract. Those properties include star t time , finish time ,

and utterance .

In general, the input of the parser is a dialog stored in a form of log files and the output of the

parser is a list of system tums and user tums with their three previously mentioned

properties.

47

The log file format of different corpora varies. The parser has to adapt to this reality.

Therefore, different method is used for different corpus. In the next section, we will describe

how the parser parses log files of two DARPA corpora.

3.1.2.1 DARP A 2000 Communicator Corpus

The format of log file, named "summary file", of this corpus is displayed in Table 3.1. The

parser parses this file to extract star t time, finish time , and utterance of system/user tums

by seeking their keywords: "System started speaking.", "System finished speaking.", and

"System said:"/"User said:" respectively.

Table 3-1 Summary file in DARPA 2000 corpus

Fri Jul 7 2000 at 12:20:53.02: New system tum began.

Fri Jul 7 2000 at 12:20:53.02: System started speaking.

Fri Jul 7 2000 at 12:21:09.36: System finished speaking.

-> start time of system tum

-^ finish time of system tum

System said: Welcome. You are logged in as a guest user of AT&T ... -> system utterance

Fri Jul 7 2000 at 12:21:15.05: New user tum began.

Fri Jul 7 2000 at 12:21:15.05: User started speaking.

Fri Jul 7 2000 at 12:21:16.38: User finished speaking.

User said: HONOLULU HAWAII

Fri Jul 7 2000 at 12:21:17.13: New system tum began.

Fri Jul 7 2000 at 12:21:17.13: System started speaking.

Fri Jul 7 2000 at 12:21:22.32: System finished speaking.

System said: Leaving from Honolulu, And, what city are

-> start time of user tum

-> finish time of user tum

-> user utterance

-> start time of system tum

-> finish time of system tum

you flying to? -> system utterance

48

Next, the parser also parses a "survey file" as shown in Table 3.2 to extract other useful

dialog information such as system status, task success, and points of five answers to the

previously mentioned questions.

Table 3-2 Survey file in DARPA 2000 corpus

AT&T 18 11:32EDT 2000/07/07 Alive Yes 3 4 2 3 4

I was given the wrong option for the flight but it was my fault because I asked for an

option by number and was given the first option that was read to me. 1 should have started

over again to obtain the preferred departure time. Also, 1 thought the names of the cities

were a little hard to understand.

In the example in Table 3.2, we have:

System status=Alive

Task success=Yes

Task Ease=3

TTSPerf=4

User Expertise=2

Expected Behavior=3

Future Use=4

3.1.2.2 DARP A 2001 Communicator Corpus

In DARPA 2001 corpus, the parser parses a log file named "Transcript file" as shown in

Table 3.3 to get start time, finish time, and utterance of system/user tums and other log file

named "Communicator file" given in Table 3.4 to get TaskSucess (PTC), Task Ease,

TTSPerf, User Expertise, Expected Behavior, Future Use...

49

Table 3-3 Transcript file in DARPA 2001 corpus

Task Start Time 988306633.730

Sys: 988306635.820 988306637.850 what is your ftill name?

-^ start time finish time utterance

User: 988306639.280 988306640.930 Asr: adam simons / Transcr: adam simons

-> start time finish time utterance

Task End Time 988306878.120

Table 3-4 Communicator file in DARPA 2001 corpus

l l 3M ic i osonE»e l comm01_ililii„vrj<H t ~ '^

iSJ gi e Ec u Me w t^eeH Fgrn* Tool J B«e « vyndo w (je * yie<ltev02. 1

J » i ? y . a j t - i ' v * - i 2 , d ! . H j i A - y t,^
Md • ^0 . B I n m m m -M i y- ' *

Al » A PI N
CM C N C O C P

'51 i\ B< > '"^ ' # 5
£i^ i^iW jj' > • A • 5

CO C R C S C T
t SuiveyKs y OeadAlnr e RequireCafHote l HandleCarHole l PT C TaskEas e TTSPer f UsiExpsttis e
2 1002 2 200)042 6 12464 2 1 - 1

1 3 10022*2001043 0 17203 6 1 - 1
4 10022'2001050 : 13591 1 1 - 1

: 5 1002 2 2001050 3 13174 4 1 - 1
: 6 10022"200ia53 0 16094 0 1 - 1

7 1002 2 2001053 1 14361 6 1 - 1
; 8 1DO22''2OO1061 4 15493 6 1 - 1

9 10Q2 2 2001062 9 15044 3 1 1
\ 10 10022'200I070 6 15540 7 1 1

11 1002 2 200107D6J5282 4 1 1
i 1 2 10030"2001042 4 10244 5 1 - 1
i 1 3 10030'20010509.23310 1 1 - 1
^ 1 4 1003 0 2001052 1 17033 0 1 - 1
! 15 10030'200I070 3 22061 2 1 1
\ 16 1003 0 200l0913_214e3 2 1 1
1 17 lOO X 2001091 3 21541 9 1 1
' 1 8 1003 0 2001091 6 00330 0 1 0
; 1 9 10030"200109i e 00504 4 1 0
i 20 1003 0 200I0919_22362 6 1 1
l21 10Q30"20010928,20230 9 0 - 2
'22 1004 9 2001041 6 11124 8 1 - 1
23 10049"2001041 6 17275 6 1 - 1
24 1004 9 2001041 7 15013 3 1 - 1
25 1004 9 2001041 6 17214 4 1 - 1
26 1004 9 2001041 9 16380 1 1 - 1

;27 1004 9 2001042 0 12130 7 1 - 1
: 28 1004 9 2001043 0 19070 0 1 - 1
29 1004 9 2001043 0 19163 2 I - 1
X 1004 9 20010522.16272 2 1 - 1
31 1004 9 2001052 2 16340 4 1 - 1
32 10049*2001062 0 21442 8 1 - 1
33 10049*2001062 2 094CO 7 1 - 1
i< < • H \ s h e e t l / s h e e t s / S h e e t s /

Pe«d/

1 1 4 5 4
1 1 4 4 4
1 1 3 4 4
1 1 4 4 4
1 1 3 3 3
1 1 3 4 4
1 1 4 4 4
1 2 3 4 3
1 2 4 3 3
1 2 3 4 4
1 1 4 4 3
1 0 3 5 4
1 0 2 4 3
1 1 3 2 4
0 1 4 5 4
1 2 4 5 4
0 1 4 5 4
1 1 3 6 4
1 1 2 3 3
2 - 2 - 2 - 2 - 2
1 1 5 4 4
1 1 5 5 4
1 1 3 5 4
1 1 4 6 4
1 0 1 4 2
1 1 2 3 2
1 1 4 4 4
1 1 3 4 3
1 1 1 4 2
1 1 3 4 3
1 1 4 4 5
1 1 4 5 4

l<

CU C V
ExpecledBehavior Fulure L

4
4
3
3
3
3
4
4
3
3
4
3
2
2
4
4
4
2
3

•2
5
4
3
4
2
2
4
3
1
3
4
4

CW

, ™ , _

. S X

cx -
se PhoneTyp e TnpRepeale c

4
4
3
3
3
3
3
3
3
3
4
3
1
1
3
3
3
1
2

•2
4
4
3
3
1
1
2
2
1
2
3
3

5
5
5
5
5
5
5
6
6
5
5
5
5
5
4
4
4
4
4

. T

5
5
5
5
5
5
5
5
5
5
5
5 -. • 1

50

3.1.3 Extracto r Componen t

Recall that the dialog feature vector which we want to extract is:

(TaskSuccess, TimeOnTask, TurnsOnTask,

NumOverlaps, MeanUserTurnDuration, MeanSystemTurnDuration,

MeanWordsPerUserTum, MeanWordsPerSystemTum, Phonetype,

NumNegativeACKwords, NumRepetitions, Label)

From dialog information (start time, finish time ...) provided by the parser, the extractor

component computes dialog features as follow:

• TimeOnTask : Total duration of dialog

if (lastSystemTum.finishTime > lastUserTum.finishTime) {

lastTime = lastSystemTum.finishTime;

}

else {

lastTime = lastUserTum.finishTime;

}

if (firstSystemTum. start Time < firstUserTum.startTime) {

firstTime = firstSystemTum. startTime;

}

else {

firstTime = firstUserTum.startTime;

}

TimeOnTask = lastTime - firstTime;

• TurnsOnTask : Number of tums of dialog including system and user tums.

TumsOnTask - systemTums + userTums

51

• NumOverlaps : Number of times system and user speak at the same time.

if (((usrStartTime < sys Finis hTime) && (sysFinishTime < usrFinishTime))

II ((usrStartTime < sysStartTime) && (sysStartTime < usrFinishTime))) {

numOverlaps ++;

• MeanSystemTurnDur : Average system's tum duration.

MeanSystemTumDur = sum (durations of sysTums) / No. of sysTurns

• MeanUserTurnDur : Average user's tum duration.

MeanUserTumDur = sum (durations of usrTums) / No. of usrTums

• MeanWordsPerSystemTum : Average number of words of system tum.

MeanWordsPerSystemTum = sum (numOfWords of sysTums) / No. of sysTums

• MeanWordsPerUserTum: Average number of words of user tum.

Mean WordsPerUserTurn = sum(numOfWords of usrTums) / No. of usrTums

• UserRatin g = Task Ease + TTSPerf + User Expertise + Expected Behavior + Future Use

For DARPA 2000 corpus: If (UserRating > 12) Then Label="Bad";

Else Label="Good";

For DARPA 2001 corpus: If (UserRating < 17) Then Label-"Bad";

Else Label="Good";

Different thresholds are used for different corpora. Section 3.2.1 presents how these values

are selected.

52

3.1.4 Classifie r Componen t

We will use different classifier components which consist of several leaming algorithms in

order to determine which one is the most appropriate for our tasks. These classifiers are:

Basic C4.5 Tree (our own implementation)

Zero-Rule Model

Logistic Regression Model

One-Rule Algorithm

C4.5 Tree

Boosted C4.5 Trees

Logistic Model Tree

One of them, the basic C4.5 Tree, is our own implementation. We choose C4.5 tree because

it is simple and the most widely used decision tree nowadays. We want to implement it in a

basic maimer by ourselves so that we can compare our own results with those of other

machine leaming algorithms that belongs to the library WEKA (Waikato Environment for

Knowledge Analysis) developed by many machine leaming experts of the University of

Waikato [17].

3.1.5 Syste m Developmen t

DCS is developed in Java language with Eclipse Java Editor using three-tier software

architecture to make the system modular and flexible. The three-tier model is considered to

be a software architecture including user interface, functional process logic (business mles)

and data storage developed and maintained as independent modules [13].

The three-tier architecture, as its words imply, has the following 3 tiers: Presentation Tier

(Layer), Business Logic Layer, and Database Layer. Those layers are cormected together and

illustrated in Figure 3.3.

53

Presentation Layer

(GUI)
Business Logic Layer

(Parser, Extractor,

Classifier)

Database Layer
(Access,

SQL Server)

Figure 3-3 Three-tier software architecture.

3.1.5.1 Presentatio n Layer

Presentation layer contains graphic user interface that helps user interacts visually with DCS.

There are three main frames in DCS: Feature Extraction Frame, Leaming Scheme Frame,

and Dialog Classification Frame. Figures 3.4, 3.5, 3.6 display these frames respectively.

Feature Extraction Frame helps users to parse log files of the corpora and extract dialog

features. Users can add or remove a specific feature that they want to extract by checking or

unchecking its corresponding check box.

:. \ ciiture Lxtr vction f r sme

M

F©«hjro E>tr action

s/ DWoQl d \' TaskSucces s

y MeanWordsPerSystemTu m

CrICarle;

No CMagl d Ta s
1) jH»7_01. . . . |Y« s

3j 'l087_6ii_.. , Ji o
4) 1CB7_0<_.. . iYe s
5) 1106 7 0 5 . . »«)
6) 108 7 0 6 ,, . iVe s
7)' 'l087_07 _ . , ^Y K
8) 108 ? C B ve s
9) 118 8 0 1 . Ve s
10) |1289_01_ . . Ye s
l i) 128 9 02. . . :(*)
12) 1128 9 0 3 .. . :ve s
13) jl289_04 _ . N o
ii) 1128 9 0 6 , :N o
15) !i;»9_07 _ . :V05
\f.\ ii^s o n o IW n

einOrectofy; D;\Un(versfty_Mo5t «

e

v' TrmoOnTast " / TurnsOnTas k

•J MeanWordsfertJserTum > ' f t

i5uc... TimeOn., , TwnsO,, ,
1326.997 K 7

^39,99 !2 5
|56 i ,9U l6 2
K57.CI69 il 6
330,005 wi
632.03S IS B
197.046 7 0
235.0+* H3 "
1S6,03S 3 5
201,971 • ^
616,921 [7 2
i95,989 11 7
&tl.9S3 is 9

^ i h ! T

j ' - " n r X " I

\PnJiecrt

5ARPA20O0C

/ NumOvf f

[Pars e List of Diab^s] Vie w Log of P«sng] [Pars e 1 Dialo g \

jrpus C'AftPA200 1 corpus Bel l corpus

rlaps / MeanSystomTurrOiiratio n V MeenUssrTumOuratlo n

MxieType v ' NunNeqatrveAOCwords

Nu
to

j NumRepetition s UserRahn g , ' Labe l [SelectA I j

\.^ £xi3r4c t features to teble . { [Extrac t features to file | 1 Delet e al (ftalogs in database |

mOv,..

d
0
2
9
0
D
D
a
D
2
0

In

MeanSy.,,
A,«7I

3,722
7,172
i.nz
S,1B7
5,909
6.S96 • "
7,01 i
i.ZK
».6S4
ftipj
5.027

n'wi

MoanUs..,
1,72«

4,588
3,323
5,59'
4.782
1.73
2,375
1,4

MeanW,,, MeanW,. . PhoneT.. . Nuirt*.. . NumRop .
21,08 i2,31 8 jOthe r i l l i l

. DesaJectA I]

\JM

58,478 16,72 7 Othe r 7 B JBa d
37,923 ̂ 4,41 6 iome r ' z p Ba d
10,281 5,36 « Othe r 8 p Ba d
29,625 1,63 6 iOthe r b j l l Ba d
ii.iK ^X3 {oSie r i Ji _^^_
11,361 13.86 3 Othe r 1 2 H ba d
13,972 '14,67 6 OUv r i 6 e Ba d
17,954 3.76 1 Othe r ' s » jBa d
i"7.944 i.7d s Othe r S » jcioo d

2.S61 12.93 3 2.92 3 [Othe r 2 { 2 |B« d
6.704 16,2 1 5.73 5 iOthe r i l i 2 Ba d
2.135 J6.22 2 ^.12 5 iothe t 1 Jo ^ | ia d
1.844 |<S,62 2 13,97 7 Othe r 1 2 b {Ba d

. w \>f,n H 3 n 'r«rm, r i I h

L choos e the best leammo scheme 1

ku^l

-

Figure 3-4 Feature Extraction Frame.

file:///PnJiecrt

54

Next, Leamin g Schem e Fram e help s user s t o tes t performanc e o f differen t leamin g scheme s

on a given datase t to choose th e best one fo r this dataset .

Lcwning Scheme Frime

Learrmg5cheiDe>

Dataset; PT0ject\0utput\DARPA2kflDat«et,arf f NumOfKerations ; 1 0 I toOf l tMs ; 1 0 Tes t stratified N-foH cross validation,

i/Zero-Rule Model v Logisti c Recession Model /One-RuteAlgorth m /C4,5I re e / Booste d C4.5 Trees vLofsti c Mode l Treei

Result

Dataset ha s 48 3 instances : 24 2 ba d dialog s i 24 1 goo d dialogs ,
10 iteration s o f stratifie d 10-fol d cross-validatio n test :

<Ji> Zero-Rul e Mode l
Classifier mode l (Ful l trainin g set) ; <n o options >
ZeroR predict s clas s value : Ba d

» Options : <n o option3 >
Iteration 1 : Accuracy«44,lS i
Iteration 2 : Accuracy*44,67' <
Iteration 3 : Accuracy=43.7 U
Iteration 4 ; Accurac7='43.44 V
Iteration 5 : Accuracy"43,S9%
Iteration 6 : Accurac7=43.6S ^
Iteration 7 : Accuracy"'43,7S ^
I terat ions: Accuracy"43,83 V
Iteration 9 : Accuracy43.75 4
Iteration 10 : Accuracr43,7 U
-> Average : Accuracy'=43.82 % j

I Fmeasur e BadDialog'0,5 3
I Fitiea3ure_BadI)ialog«0. 5
I FBea3ure_BadDialog=0,4 7
I Fmeasur e BadDialog«0,4 8
I Fmeasur e BadDiaIog=0.4 9
I Fneasur e Badlnalog=0. 5
I Fmeasur e BadDialog"0.4 8
I Fmeasur e BadDialog=0,4 7
I FnKasur e BadDialog«0,4 7
I Fmeasur e BadDialog-0.4 6
Fmeasure BadDialog'0.4 8

-> Summary : Ba x Accuracy=43.82M< M options>) | Ha x Fmea3ure_BadDialog=0,48(<n o options>)

Outpu t * : DilUniversty.MasterlProiedlOutpiillO-fol d cross vdidationresdt.DARPASkD.txt ^ Writ e res<l to file M Identif y Problematic Dialogs

I
I

Figure 3-5 Learning Scheme Frame.

55

Finally, Dialog Classification Frame helps user to identify problematic dialogs with the

previously chosen leaming scheme.

M l o g ClmiTicilio n Prim e

Learning StheTCS

Dataset: 7.Ma5terlProiectlOutput\DARPA2)!DDataset,arf f | Brows e , Ira n | Ne w Patterns: :y.Master\Proiect|(X*i)(MD«PA2l<i)Dataset,arf f ' Brows e | Test

ZeroRule i*oc?t!Oi;>

Logistic

OneRule

C4,STree i

6C4,5Trees

elMTree •11-M15-W0,0

Data table

Test resul wlh Logistic Model Tree: 190 bad dialogs identified

Vo

10
11
12
11

taskSuccess
Yes
fta
iVes
No
iVes
iVes
y«i
Yes
Yes
No
te
No
!v~:

SrneOnTask
326,997
239,99
561,982
457,069
330,005
632,035
497,046
235,044
186,0$
201,971
616,921
541,983
111 riAi

turnsOnTa* numO'rtriap s
47,0 0, 0

meanSyst,,,
8,871

25,0 1 , 0 111,46 9
tt,0 y '3,72 2
46,0 fl,0 7.47 2
63,0 2, 0 :4,89 2
58,0 *, 0 b,18 7
70,0 fl,0 :5,90 9
43.0 0. 0 6,5 %
35,0 0. 0 7,01 1
28.0 0, 0 5,28 5
'72,0 P 6.654
89,0 0. 0 |5,02 7
AM-i i l n t rn

meanUser,,,
1,728
1,35
4,888
3,323
5,59
4,782
4,73
2,375
1,4
2,561
6,704
1J44
Icnnc

meanWor,,,
21,08
37,923
10,281
29,625
12,152
14,361
13,972
17,954
17,944
12.933
16,21
15,622
inntn

meanWor,,
2.318
4,416
5,366
4,636
3,823
3,863
4,676
3,761
1,705
2.923
5,735
3,977
"SO

numNegat,,,
11,0
2.0
8,0
0,0
6,0
2,0
6,0
5,0
5,0
2,0
il,0
12.0
1 n

•> Classifie d as
> Ba d
> Ba d
> Sa d
> Sa d
> <Mi
> ^
> <Mi
> Goo d
> ^
> Sa d
> ^

•> Sa d
S / ' M M I

Output fte; D:\University.HastertProjed\Output\PO I result.DARPA2M),txt Write result to file | Writ e oriy bad dialogs to fie

Figure 3-6 Dialog Classification Frame.

file://D:/University.HastertProjed/Output/POI

56

3.L5.2 Busines s Logi c Laye r

Business Logic Layer contains business mles, functional algorithms to perform several main

functionalities of DCS including parsing, feature extraction, leaming scheme testing and

dialog classification.

3.L5.3 Databas e Laye r

This layer contains a database to store data, information of DCS. The database used in DCS

is especially simple because we just need to store dialog and tum information. The simple

ERD (Entity Relationship Diagram) of DCS is shown in Figure 3.7. There are only two

tables:

• Dialog: this table stores dialog information such as TaskSuccess, TimeOnTask. The PK

(Primary Key) of this table is Dialogld.

• Turn: this table stores tum information such as StartTime, FinishTime. The PK of this

table is Tumld,DialoRld, and the FK (Foreign Key) is Dialogld.

3.2 Testin g

3.2.1 Dat a Collection & Validation

This section presents the data collection and validation of two corpora: DARPA 2000

Communicator Corpus, and DARPA 2001 Communicator Corpus.

3.2.L1 DARP A 2000 Communicator Corpu s

The DARPA 2000 Corpus has 691 dialogs in total. After preprocessing these dialogs, we

removed unusable dialogs - dialogs lacking information that we can not extract features, for

example, no-system-tum dialog, no-end-time dialog... - so the number of remaining dialogs

is 550. In this corpus, they use inversed Likert-scale as illustrated in Table 3.5.

57

Dialog

Dialoeld ()

TaskSuccess

TimeOnTask

TumsOnTask

NumOverlaps

MeanUserTurnDuration

MeanSystemTurnDuration

MeanWordsPerUserTum

MeanWordsPerSystemTum

Phonetype

NumPositiveACKwords

Label

State

TaskEase

TtsPerf

UserExpertise

ExpectedBehavior

Turn

Tumid, Dialoeld (v)

IsSystemTum

StartTime

FinishTime

Utterance

Duration

NumWords

Figure 3-7 ERD of DCS.

Table 3-5 Likert-scale and Inversed Likert-scale

Likert-scale

Normal

Inversed

Strongly

Disagree

1

5

Somewhat

Disagree

2

4

Neutral

3

3

Somewhat

Agree

4

2

Strongly

Agree

5

1

58

Recall that there are 5 questions asked, the total value can be varied from 5 to 25. Therefore,

we choose 12 as the threshold for labeling dialogs with the meaning that there are at least two

questions in which user has "Somewhat Agree".

Hence, Bad dialog in DARPA 2000 is determined by the following condition:

UserRating > 12 -> Bad dialog

Applying this condition to the remaining dialogs, we obtain 274 Bad dialogs and 276 Good

dialogs. The statistics of data collection and validation of DAPRA 2000 corpus is given in

Table 3.6.

Table 3-6 Statistics of DARPA 2000 corpus

Total dialog s

1. FUe-lacking dialogs

2. No-system/user-turn dialogs

3. No-end-time dialogs

4. Dead dialogs

5. Damaged dialogs

Remaining dialog s

691

30

12

61

15

23

550 (27 4 Bad & 276 Good)

Inversed Likert-scale

-> sum (points of 5 questions) > 1 2 : Bad Dialog

3.2.1.2 DARP A 2001 Communicator Corpus

The process of collecting and validating data in DARPA 2001 corpus is more complex than

that of DARPA 2000 corpus. Table 3.7 summarizes this process. The number of remaining

dialogs in DARPA 2001 corpus is 1022.

The Likert-scale shown in Table 3.5 is used in this corpus, so we choose 17 as the threshold

for labeling dialogs with the meaning that there are at least two questions in which user has

"Somewhat Agree".

59

Hence, Bad dialog in DARPA 2000 is determined by the following condition:

UserRating < 17 ^ Bad dialog

Applying this condition to the remaining dialogs, we obtain 472 Bad and 550 Good dialogs.

Table 3-7 Statistics of DARPA 2001 corpus

Total dialogs (Transcript file)

No-time

Remaining dialogs

1684

113

1571

Total dialogs (Commfile)

Comm file merged with Excel file

Dead dialogs

Remaining dialogs

1351

1106

4

1102

Merge (key=id):
Remaining dialogs (in Transcript file)

vs
Remaining dialogs (in Comm file)

1571
vs

1102
1022 (472 Bad & 550 Good)

Likert-scale

-^ su m (points o f 5 questions) < 1 7 : Bad Dialo g

60

3.2.2 Experiment s

There are two main methods to evaluate a leaming scheme: [4]

Holdout method : This method is used when we have a large dataset. Large independent

samples of different data are used for training and large samples are used for testing.

•

• N-fold stratified cross-validation method : We use this method when we have a limited

dataset. This method works as follow: the dataset is divided into N parts, each part is

held out in turn for testing and the remaining is used for training learning scheme.

Previous tests on numerous different datasets have shown that N=10 is the most

appropriate number. In this method, we should employ stratification technique that makes

each class properly represented in both training and test sets of each fold.

Our dialog datasets are limited, so 10-fold stratified cross-validation method is used to

evaluate DCS performance. However, a single 10-fold stratified cross-validation test might

not be enough to get a reliable result, so the standard procedure is to repeat 10-fold stratified

cross-validation process 10 times (or 10 iterations). For each iteration, stratified dataset is

randomized with seed=l for 1̂ ' iteration, seed=2 for 2"'' iteration ..., seed=10 for lO"̂

iteration. Finally, we average the results on these iterations.

The pseudo-code is given in Table 3.8. The whole experiment diagram is displayed in Figure

3.8.

We did several experiments using different set of features. The results and discussion are

described in the following chapter.

61

Table 3-8 Pseudo-code for the experiment

stratify dataset (numOfFolds);

For each classifier {

For each combination of classifier options {

For seed=l to numOflterations {

randomize stratified dataset (seed);

do N-fold cross-validation this dataset;

}
average the results on these iterations;

}
print out the max result of this classifier;

}
select the classifier with the corresponding option that has max result for problematic dialog

identification task;

62

1*' iteration

Original

dataset

stratify

Stratified

dataset

^

random
r

Randomized

dataset

seed=l

ize

1
Train (1)

Test

Train (2)

Test

10-fold cross-validation

»th • 10'" iteration

Randomized

dataset

seed=10

Train (1)

Test

Train (2)

Test

average the result

Figure 3-8 Experiment diagram.

63

Chapter Summary

System Implementatio n

Testing

_System Design

+ Parser Component

+ Extractor Component

+ Classifier Component

System Development

+ Presentation Layer

+ Business Logic Layer

+ Database Layer

Data Collection and Validation

+ DARPA 2000 Communicator Corpus

+ DARPA 2001 Communicator Corpus

_Experiment: 10 times of 10-fold stratified cross-validation test

CHAPITRE 4

INTERPRETATION

4.1 Stat e of the art

In this chapter, we will take a look at the state-of-the-art systems solving the problem of

identification of problematic dialog. Since the problem of identification of problematic dialog

using user's satisfaction to label bad dialog is a relatively new research topic, we found only

one paper specifically related to this problem. Nonetheless, we will review in this section two

papers. The first paper is a scientific review article [21] while the other one is a conference

paper [23].

At first, we will review the scientific review article [21]. This article is about the comparison

of different leaming schemes on different tasks. Unfortunately, no task is related to

identification of problematic dialog. Nevertheless, we will use their comparisons in order to

select a subset of the best leaming schemes and apply them on the task of identification of

problematic dialog. The conference paper is related to the identification of problematic

dialogs. We will use their performance results as a benchmark to achieve. Finally, we will

compare our system performance on identification of problematic dialog with the one

proposed in [23].

4.1.1 Selectio n of the best learning scheme

In 2003, Niels Landwehr et al [21] tested six leaming schemes, namely C4.5 Decision Tree

(C4.5), Boosted C4.5 Decision Trees (BC4.5), Logistic Regression Model (LRM), and

Logistic Model Tree (LMT), on 32 benchmark datasets from the UCI repository. The results

given in Figure 4.1 and Figure 4.2 show that LMT outperforms the other leaming schemes on

most of the datasets. In particular, LMT outperforms C4.5 on 13 datasets, LRM on 6 datasets,

and BC4.5 on 7 datasets. Only BC4.5 outperforms LMT on 6 datasets.

65

Table 1 . .Average cla-ssificatioii acniracy and standard deviation.

l)i\U\)^H
aiiiiciil
aii(liolo|4)'
au^lralian
aiilos
Ualaiico-scaio
brca'it cancor
breast-w
gprinan
glaM
gla&ii {(J2)
heart-c
!iear(-li
heart-Mat log
hepatitis
horse-colic
liypothyroid
ionosphere
iris
kr-vs-kp
labor
lyinphograph.v
piina iiulians
priniary-tunior
seginenl
sick
sonar
soybean
vehicle
vole
vowel
wavcforin-iioisc
roo

niT"""
9(1.5x0.8
84.0x7.8
85.0x4.1
75.8xf).7
00,Ox2.,5
75.6x5.4
96,3x2.1
75.3x3.7
60,7x0.5
76,5x8.9
82.7x7.4
84,2x6.3
83,6x66
83,7x8.1
83,7x6.3
90,6x0,4
92.7x4.3
96.2x5.0
90.7x0.3

V\.h
!l8.6xl,0
77.3x7,5
85.6x4,0
81.8x8,8
77.8x3.4
74.3x6,1
95.0x2,7
71.3x3,2
67.6x9,3
78,218.0
76.9x6,6
80.2x8,0
78.1x7,4
79.2x9,6
85.2x5.9
99.5x0,4
89,7x4,4
94 7x5,3
99,4x0.4

91.5x10 9 78.6x16 6
84.7x9.6
77,1x4.4
467x6,2
97.1x1.2
98 9x0.6
76.4x9.4
93.6x2.5
82.4x3.3
95.7x2.8
94.1x2.5

! 87.0x1.6
950x6.6

75.8x11.0
74.5x5,3
41.4x6,9
96.8x1.3
98.7x0.6
73.6x9.3
91.8x3.2
723x4.3
96.6x2.6
80.2x4.4
75.3x1.9

Siiiiplcl.<jgi!>li(
• 99.5x0 8
• 83.7x7.8

85.2^4.1
75.!x8.9

• 88,6x3 0
75,6x5,5
06,2x23

• 75.2x3,7
65,4x8.7
76.9x8.8

• 83.1x7.4
84.2x6.3

• 83.7x6.5
84.1x8.1
822x6.0
968x0.7 •

• 88 1^5.3 •
96.3x4.9
97.4x0.8 •

• 91.9x10.4
• 84 5x9,3

77.1x4,5
• 46.7x6.2

95.4x1 5 •
96.7x0.7 •
75.1x8.9
93.5x2.7

• 80 4x3 4
95.7x2,7

• 84.2x3,7 •
• 86,9x1.6

92 .6 i j ^ , ^ .8x6 ,T

0, «siaiis

^ MS'
08 6x1.1
76.8x8,6 •
85.4x3.9
76 0x10 0
87.8x2.2 •
70.4x6 8 •
95.9x22
75.0x3.3
71.3x9.1
81.1x8.7
82.1x6.7
82.4x64
82.1x6.8
82.4x8.8
832x5,4
90.4x04
80,Ox 42
94,0x56
00.2x0 5 •
85 1x163
80.4x9.3
76.6x4.7
45.3x6.2
07.4x1.0
08.4x0.6 «
78.4x8.8
02.9x2.6
78.7x4.4 t
95,6x2.8
80.9x4.7 «
82.5x1.6 *
04 5x6 4

Tically stgiiificanl win or lo'n

TT:r«
90 4x0 8
80.6x83
852x39
76.6x87
80.7128
71.515 7
06 412 2
73.313.5 1
60.310 7
832111.1
78.217 4
70.817.8
83.716.4
83.317.8
84 015.8
00 1x0 4
80.515.2
04315.4
005X04
80,0x11,5
78.4x10,2
77.214.3
40.7161
96.811 1
98,6x0 6
71.6180
93,612 7
70.8x4 0
05.3x28
83,0x37
86,711.5
04.5x68

el
c!
ni)
ci
nil
cj
rl
ml
ci
ci
0
ci
ni)
mj
c)
ci
c!
c}
ci
ci
c}
ml
c)
0
c)
c)
c)
ml

.c)
c)
'm)
0

.Adaboost.Ml
096x0.7
84.717.6
86.4x4.0
86 8x6.8 0
76 1x4.1 •

• 66 2x8.1 •
96 712.2
74.513,3
78.8x7.8 c
88 7x6.4 0
80.0x6.5
78.317.1 •
80.417.1
84.9x7,8
81.715,8

• 99.7x0,3
94.0x3,8
94.5x5,0
99.6x0,3
88,9x14 1
84,7x8.4
73,9x4.8 •

• 41,7x6.0 •
98.6x0.7 c
99,0x0,0
85.1x7,8 0
93.3x2.8
77.9x3,6 •
95.2x3,3

• 96.8x1.9 0
85,011.6 •
96.3x6.1

Figure 4-1 Classification result on UCI repository.

66

Table 2 . Number of dara.sors where algorirhm in column signifirantly ourporfonns
algorithm in row

i.\1i'r
C4.5
SinipleI/Oi;islic
M.'i'
P U S
,\<l.\Boo«.l M l

I.MT

1.5
6
X
A
7

c:«
1)
-
.1
0
1
1

S S i itiplot.on
0
6
-
1
I
;i

S(IC TIv
(1
h
4
.
2
1

TTTT
0
.5
4
1

0

.\d. iBousl \ ! 1
6
13
10
13
0
-

Figure 4-2 Comparison among leaming schemes.

4.1.2 Identificatio n o f problematic dialo g

As previously mentioned. Walker et al [23] developed a PDI on DARPA Communicator

Corpus 2001. In this work, they use three kinds of features including TaskSuccess Measure,

Efficiency Measures and DATE. All of these features are defined in PARADISE framework.

The first two kinds of features are automatically obtainable whereas the last one is not. They

tested their system with CART leaming scheme (AT&T version) implemented in Wagon

software using 10-fold cross validation method. The result is given in Table 4.1.

Table 4-1 State-of-the-art result on Identification of Problematic Dialog

10-fold cross validation test

Accuracy

Precision_BD

Recall_BD

FmeasureBD

67% - 89%

0.66

0.54

0.59

In the next section, we show our results and make a comparison between our system

performance and that of the state-of-the-art proposed by [21] and [23].

67

4.2 Resul t and Interpretatio n

We perform several experiments on DARPA2000 and DARPA2001 corpora with different set

of features. We denote:

Our own C4.5 Tree

Zero-Rule Model

Logistic Regression Model

One-Rule Algorithm

C4.5 Tree

Boosted C4.5 Trees

Logistic Model Tree

Task Success

Efficiency measures

NumNegativeACKwords

NumRepetitions

OC45

ZRM

LRM

ORA

C45

BC45

LMT

TS

Eff

ACK

Rep

Table 4-2 Experiment Result on DARPA 2000

DARPA 2000 (Accuracy / Fmeasure_BD)

OC45

ZRM

LRM

ORA

C45

BC45

LMT

TS+Eff

75.00%/0.72

45.20%/0.38

78.28% / 0.74

77.06%/0.71

76.35%/0.71

73.99%/0.71

78.22% / 0.74

TS+Eff+ACK

73.00%/0.71

45.20%/0.38

78.32%/0.74

77.06%/0.71

76.20%/0.71

72.52%/0.71

78.32% / 0. 74

TS+Eff+Rep

72.00% / 0.70

45.20% / 0.38

78.96%/0.75

77.06%/0.71

77.69% / 0.75

73.19%/0.71

78.80% / 0.75

TS+Eff+ACK+Rep

72.00% / 0.70

45.20%/0.38

78.60% / 0.75

77.06%/0.71

76.87%/0.74

73.19%/0.71

78.60% / 0.75

68

Table 4-3 Experiment Resuh on DARPA 2001

DARPA 2001 (Accuracy / Fmeasure_BD)

OC45

ZRM

LRM

ORA

C45

BC45

LMT

TS+Eff

66.00% / 0.60

53.86%/0.00

69.96%/0.61

58.23% / 0.52

68.48% / 0.62

67.81%/0.62

69.91%/0.61

TS+Eff+ACK

66.00% / 0.60

53.86%/0.00

69.96%/0.61

59.15%/0.53

68.17%/0.62

66.47%/0.61

69.96%/0.61

TS+Eff+Rep

64.00% / 0.60

53.86%/0.00

69.65%/0.61

58.23%/0.52

68.92% / 0.62

67.10%/0.61

69.45%/0.61

TS+Eff+ACK+Rep

64.00% / 0.60

53.86%/0.00

69.52%/0.61

58.23% / 0.52

68.11%/0.60

65.63%/0.60

69.52%/0.61

The results given in Table 4.2 and Table 4.3 show that LMT and LRM perform best on

DARPA 2000 (~79%/0.75) and 2001 (~70%/0.61). This is the same as the result in previous

work [23].

The second article [23] did not mention exactly about the accuracy. They just mentioned that

the accuracy varies from 67% to 89%. Our accuracy result is about 70%. Comparing the

FmeasureBD, we see that our system performs better (0.61 versus 0.59).

However, there are many factors that may cause different results:

1) Kinds of data & data pre-processing.

2) Number and kinds of features used for classification.

3) The way features are used for splitting node (use each feature only once or reuse it)

4) The stop-splitting condition.

5) Heuristics.

69

In addition, we also look at the deviation in the accuracy results of each method. We consider

an experiment with DARPA2000 and set of features are TS+Eff+ACK+Rep. The results of

this experiment are displayed in Table 4.4 and deviation graph plotted from this table is shown

in Figure 4.3. We see that the deviation of results generated by OC45 is a little bit greater than

those of other methods because OC45 is a very basic C4.5 tree we implement to leam how

decision tree works. Generally, the deviations of all methods are very small and close together.

Table 4-4 Results of 10-fold CV with DARPA2000 - TS+Eff+ACK+Rep

Fold
1
2
3
4
5
6
7
8
9
10

Average

OC45
76.36%

67.27%

78.18%

69.09%
63.63%

78.18%
72.72%

76.36%

70.90%
67.27%

72.00%

ZRM
44.69%

44.87%

45.57%

45.15%
44.83%
45.20%

45.54%

45.60%

45.39%
45.22%

45.20%

LRM
79.28%
78.69%

78.61%

78.65%
78.41%
78.50%

78.55%
78.38%

78.56%

78.43%

78.60%

ORA
76.62%

77.03%
77.26%

77.14%
77.05%
77.07%

77.14%

77.04%

77.16%

77.12%

77.06%

C45
76.87%

76.86%
76.86%

76.87%
76.87%
76.88%

76.88%

76.88%

76.90%

76.90%

76.87%

BC45
72.56%
72.24%

73.01%

73.56%
73.52%

73.50%
73.34%

73.28%

73.46%

73.51%

73.19%

LMT
79.28%

78.69%
78.61%

78.65%
78.41%

78.50%

78.55%
78.38%

78.56%

78.43%

78.60%

100
90
80

^ 70
>[60
2 50

40
30
20
10
0_t

u o

Deviation Graph (DARPA2000 -TS+Eff+ACK+Rep)

Learning scheme

TSSSS.

• OC4 5
• ZR M

LRM
xORA
xC45
• BC4 5
+ LMT

Figure 4-3 Deviation Graph (DARPA2000 - TS+Eff+ACK+Rep)

70

From the obtained resuhs, we can conclude that NumNegativeACKwords and

NumRepetitions are two good features because they help improve performance of most of the

leaming schemes. Particularly, we consider the performance of LMT. In DARPA 2000,

NumNegativeACKwords helps improve performance of LMT 0.1%, NumRepetitions 0.58%,

and NumNegativeACKwords and NumRepetitions 0.38%. In DARPA 2001, only

NumNegativeACKwords helps improve performance of LMT 0.05%.

DCS can be extended easily for new corpora and new leaming schemes, i.e. we can add more

corpora and leaming schemes without changing much the source code. Generally speaking,

DCS performance (79% of accuracy / 0.75 of FmeasureBD on DARPA 2000 and 70% / 0.62

on DARPA2001) is relatively good for a pattern classification system.

Looking at the Table 4.1, we see that the performance of pattem classification system also

depends on dataset itself For example, for "primary-tumor" dataset, the accuracy of all

systems is just about 46.7%, whereas 99.5% accuracy for "anneal" dataset. However, if we

have good features, i.e. discriminant features, we can improve system performance.

Therefore, for future work, we could try to find other good features that can improve system

performance. Moreover, we could test DCS with other leaming schemes than the tree-based

ones, such as SVM, kNN. This is one more possibility that we can do. They might give better

results or even worse results. As we said before, we do not know in advance which algorithm

is appropriate for a given problem. Therefore, we can only have a conclusion after doing some

experiments on it.

Chapter Summar y

State of the art

Result and Interpretation

Selection of the best leaming scheme

Identification of problematic dialog

Discussion

Future work

CONCLUSION

Identification of problematic dialog using user's satisfaction to label bad dialog is a relatively

new research topic. In this research project, first we have studied this topic based on previous

work. After that, we have proposed two new potentially good features and performed some

experiments on them to study their effect on the system performance. Our work was

motivated by the need of having an automatic system for identifying problematic dialogs in

the frame of a practical data mining project, namely "Managing emotions in Human-

Computer Dialogs", of ETS and CRIM in collaboration with Bell Canada Corp.

The final outcome of our work is the Dialog Classification System (DCS). DCS is a very

usefiil automatic tool for identifying problematic dialogs in Human-Computer Dialog System

(HCDS). It is modular and easily extensible in terms of adding new machine leaming

schemes or new dialog datasets. We can integrate new machine leaming schemes or add new

corpora into DCS quickly and easily without modifying much the source code. In addition,

DCS was developed in a general manner so that any telephone companies using HCDS could

employ DCS to evaluate their user's satisfaction in order to propose new strategies for their

HCDS.

For the selection of leaming scheme, we saw that our results were the same as previous work

in that LMT performed best on most of the datasets. This means that when we need to choose

a leaming scheme for a new dataset in the future, LMT appears to be always the first

potentially good choice.

For the identification of problematic dialog, our DCS has outperformed the state-of-the-art

system on the DARPA Communicator 2001 corpus.

72

The performance of a pattem classification system depends not only on dataset but also on

the features used for classification. Robust and discriminant features always give good

results. Therefore, finding new good features is always the main task in data mining and

machine learning field.

We have found two new good features for problem of identification of problematic dialogs,

namely negative acknowledgement words (such as NO, NOP) and system repetitions (i.e.

number of times that the system said the same utterance) because they helped improve the

performance of DCS.

The performance of DCS could be improved if we could find more new good features for it.

Moreover, testing DCS with other machine leaming schemes such as SVM, kNN could be a

possibility because it is very hard to know in advance which machine leaming scheme is

appropriate for a particular system. That's why the trial-and-error method is always

employed in data mining application.

BIBLIOGRAPHIE

1. Ecole de technologic superieure. Note de cours. 2007. « Cadre de Basili ». In le site du

cours "Planification d'un Projet de Recherche en Ingenierie (MTR801)", Professeur

Pierre Bourque. En ligne. 4 p.

<https://cours.ele.etsmtl.ca/academique/mtr801/Documents-a-acces-restreint/Cadre-

de Basili H07.pdf^. Consulte 2007.

2. Universite du Quebec a Montreal. Publications. 1996. « An example of Basili Framework

». In le site de I'ETS. En ligne. 50 p.

<http://www.RcloR.etsmtl.ca/publications/pdf/84.pdP>. Consulte 2007.

3. Ecole de technologic superieure. Note de cours. 2007. « An example of Basili Framework

». In le site du cours "Planification d'un Projet de Recherche en Ingenierie (MTR801)",

Professeur Pierre Bourque. En ligne. 11 p.

<https://cours.ele.etsmtl.ca/academique/mtr801/Documents-a-

accesrestreint/Experimentationinsoft ware engineering. pdf>. Consulte 2007.

4. Ian H.Witten & Elbe Frank. 2005. Data Mining: Practical Machine Learning Tools and

Techniques, 2"'' edition. The Morgan Kaufmann Series in Data Management Systems

Elsevier Inc. 558 p.

5. Trevor Hastie, Robert Tibshirani, and Jerome Friedman. 2001. The elements of Statistical

Learning: Data Mining, Inference, and Prediction, 1̂ ' edition. Springer series in

statistics. Springer. 532 p.

6. Richard O.Duda, Peter E.Hart, and David G.Stork. 2001. Pattern Classification, 2"''

edition. Wiley. 738 p.

http://cours.ele.etsmtl.ca/academique/mtr801/Documents-a-acces-restreint/Cadrede
http://cours.ele.etsmtl.ca/academique/mtr801/Documents-a-acces-restreint/Cadrede
http://www.RcloR.etsmtl.ca/publications/pdf/84.pdP
http://cours.ele.etsmtl.ca/academique/mtr801/Documents-aaccesrestreint/Experimentationinsoft%20ware%20engineering.%20pdf
http://cours.ele.etsmtl.ca/academique/mtr801/Documents-aaccesrestreint/Experimentationinsoft%20ware%20engineering.%20pdf

74

7. Xuedong Huang, Alex Acero, and Hsiao-Wuen Hon. 2001. Spoken Language

Processing: A guide to theory, algorithm and system development, I ̂ ' edition. Prentice

Hall. 965p.

8. Andrew R. Webb. 2002. Statistical Pattern Recognition, 2"** edition. QinetiQ Ltd.,

Malvern, UK. 515 p.

9. Sergios Theodoridis & Konstantinos Koutroumbas. 2003. Pattern Recognition, 2"

edition. Elsevier, US. 710 p.

10. Breiman, L., Friedman, J.H., Olshen, R.O. & Stone, CJ. 1984. Classification and

regression trees, 1̂* edition. Wadsworth Intemational Group, Belmont, Califomia. 358 p.

11. Universifat des Saarlandes. Course note. 2003. « Linear Models ». In le site du cours

"Connectionist and Statistical Language Processing", Professeur Frank Keller. En ligne. 7

p. <http://homepages.infed.ac.uk/keller/teachinR/connectionism/lecturel2 4up.pdf>.

Consulte 2007.

12. Wikipedia. 2007. « Decision Tree Learning ». In le site du Wikipedia. En ligne.

<http://en.wikipedia.org/wiki/Decision_tree_leaming>. Consulte 2007.

13. Wikipedia. 2007. « Three-tier architecture». In le site du Wikipedia. En ligne.

<http://en.wikipedia.orR/wiki/3-tier#Three-tier architecture> . Consulte 2007.

14. Data Mining Server. 2001. « Evaluation of models (discovered knowledge) ». In le site du

DMS. En ligne. <http://dms.irb.hr/tutorial/tut mod eval l.php>. Consulte 2007.

15. Marilyn Walker, Diane Litman, Candace Kamm and Alicia Abella. 1997. « PARADISE:

A framework for evaluating spoken dialog agents ». In Proceedings of the 35th Annual

Meeting of the Association of Computational Linguistics, ACL 97.

http://homepages.infed.ac.uk/keller/teachinR/connectionism/lecturel2%204up.pdf
http://en.wikipedia.org/wiki/Decision_tree_leaming
http://en.wikipedia.orR/wiki/3-tier%23Three-tier%20architecture
http://dms.irb.hr/tutorial/tut%20mod%20eval%20l.php

75

16. Marilyn A. Walker, Diane J. Litman, Candace A. Kamm and Alicia Abella. 1998.

((Evaluating Spoken Dialog Agents with PARADISE ». In Computer Speech and

Language, 12-3.

17. WEKA Homepage, <http://www.cs.waikato.ac,nz/~ml/weka>

18. The Linguistic Data Consortium. 2000. « 2000 Communicator Evaluation ». In le site du

LDC. En ligne.

<http://www.ldc.upenn.edu/Catalog/CatalogEntrv.isp?catalogld=LDC2002S56>.

Consulte 2007.

19. The Linguistic Data Consortium. 2001. « 2001 Communicator Evaluation ». In le site du

LDC. En ligne.

<http://www.ldc.upenn.edu/Catalog/CatalogEntrv.isp?cataloRld=LDC2QQ3S01>.

Consulte 2007.

20. Uebersax JS. 2006. « Likert scales: dispelling the confusion ». In le site du John S.

Uebersax. En ligne.

<http://ourworld.compuserve.com/homepages/isuebersax/likert.htm>. Consulte 2007.

21. Niels Landwehr, Mark Hall, and Elbe Frank. 2003. « Logistic Model Trees ». In Proc. of

the 14th ECML, pages 241-252.

22. Boufaden, N., Hoang, T. L. et P. Dumouchel. 2007. ((Detection et prediction de la

satisfaction des usagers dans les dialogues personne-machine». In Conference sur le

Traitement Automatique des Langues Naturelles (TALN 2007), Toulouse, France, 5-8

juin 2007.

http://www.cs.waikato.ac,nz/~ml/weka
http://www.ldc.upenn.edu/Catalog/CatalogEntrv.isp?catalogld=LDC2002S56
http://www.ldc.upenn.edu/Catalog/CatalogEntrv.isp?cataloRld=LDC2QQ3S01
http://ourworld.compuserve.com/homepages/isuebersax/likert.htm

76

23. Helen Wright Hastie, Rashmi Prasad and Marilyn A. Walker. 2002. « What's the trouble:

Automatically Identifying Problematic Dialogs in DARPA Communicator Dialog Systems

». In Meeting of the Association of Computational Linguistics.

24. Marilyn Walker, Irene Langkilde-Geary, Helen Wright Hastie, Jerry Wright, Allen Gorin.

2001. "Automatically training a problematic dialogue predictor for a spoken dialogue

system''. Joumal of Artificial Intelligence Research.

25. Marilyn Walker, Irene Langkilde, Jerry Wright, Alien Gorin, Diane Litman. 2000.

''Learning to predict problematic situations in a spoken dialogue system: experiments

with How May 1 Help You? ". In North American Meeting of the Association of

Computational Linguistics.

26. Irene Langkilde, Marilyn Walker, Jerry Wright, Allen Gorin, Diane Litman. 1999.

''Automatic prediction of problematic human-computer dialogues in 'How May 1 Help

You .?'". In ASRU99 , To Appear.

27. Diane J. Litman, Marilyn A. Walker and Michael S. Keams. 1999. "Automatic detection

of poor speech recognition at the dialogue level". In Proceedings of the 37th Armual

Meeting of the Association of Computational Linguistics, ACL99.

