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SIGNATURE
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ABSTRACT

Earphones are no longer a novelty or substandard to large sound systems. People use them for

music reproduction, on the go and even at home. However, the frequency responses of the ear-

phones nowadays available are as different as the exterior designs of the earpieces. This master

thesis aims at identifying the contributing factors, from a psycho-acoustics point of view, to a

good sound signature for earphones. It also presents the components necessary to achieve such

a sound signature from a design point of view. To do so, this thesis presents an important liter-

ature review and highlights an issue not present when sound reproduction is performed with a

distant source: the variability of the coupling between the ear and the earphone. In a first part,

the psycho-acoustics of listening with earphones is explained because earphones do not pro-

vide important cues that listeners would naturally perceive when listening to a distant source.

Various perceptual audio descriptors such as loudness, frequency response and other metrics

are also presented in order to establish the requirements for earphone design. In a second part,

the measurement of earphones and the measurement tools available to these measurement are

presented. The concept of electrical impedance, frequency response and distortion measure-

ment are covered. The reliability of these tools as indicators of the variability of the coupling

between the ear and the earphone for a given population is compiled from various published

studies. In a third part several modelling methods, such as the lumped-elements, control-system

block diagrams and two-port networks, are detailed and the models of electro-acoustic trans-

ducers and passive components are covered. A simulation is performed on earphones recently

developed by the industrial partner of this work with software tools like MATLAB®, Simulink®

and Simscape®. Lastly, this thesis presents areas identified during this research that would ben-

efit from further research, such as the need for a new broad-band measurement apparatus and

the need for psycho-acoustic studies on the impact of the coupling between the ear and the ear-

phone. A practical solution to the delicate question of the earphone/ear coupling variability is

offered and relies on the automated and individualized adjustment of the earphones frequency

response based on the measurement -by the digital audio player- of the electrical impedance of

the earphones.

Keywords: acoustics, electro-acoustics, psycho-acoustics, product development, percep-

tual audio, headphones, earphones, loudspeaker, modelling, design, two-port,

lumped-element, loudness, simulation, innovation theory, measurement
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RÉSUMÉ

Les écouteurs ne sont plus une nouveauté ou une alternative bon marché à des systèmes de

reproduction sonore dits de salon. Ils sont maintenant utilisés pour écouter de la musique

autant en déplacement qu’à la maison. Cependant, les réponses en fréquence des écouteurs

disponibles actuellement sont aussi différentes que leurs designs extérieurs. Ce mémoire vise

à identifier les facteurs qui contribuent, du point de vue de la psychoacoustique, à une bonne
signature sonore pour un écouteur donné. Il présente également les composantes nécessaires à

la réalisation d’une telle signature sonore d’un point de vue de la conception. Pour ce faire, une

importante revue de la littérature est produite et met en évidence l’effet de la variabilité du cou-

plage entre l’écouteur et l’oreille. Dans un premier temps, les aspects psychoacoustiques pro-

pres aux écouteurs sont présentés étant donné que les écouteurs ne fournissent pas des indices

sonores qu’un sujet reçoit habituellement lors de l’écoute de sources distantes. Une présen-

tation est faite de plusieurs descripteurs perceptifs tels que la sonie, la réponse en fréquence

et d’autres métriques nécessaires à la mise en place des requis de base pour la conception

d’écouteurs. Dans un deuxième temps, les méthodes de mesure des écouteurs ainsi que les out-

ils disponibles pour ces mesures sont passés en revue. L’impédance électrique, la réponse en

fréquence et la mesure de la distorsion sont ainsi présentées en détail. La fiabilité de ces outils

comme des indicateurs de la variabilité du couplage entre l’oreille et l’écouteur pour une popu-

lation donnée est analysée à travers une synthèse de diverses études publiées. Dans un troisième

temps plusieurs approches de modélisation sont présentées, notamment celle par éléments lo-

calisés, celle des schémas de contrôle de système et celle des quadripôles, et les modèles des

transducteurs électroacoustiques et des composants électriques passifs sont rappelés. Une sim-

ulation de plusieurs écouteurs récemment commercialisés par le partenaire industriel de ce pro-

jet est par la suite faite à l’aide des outils logiciels MATLAB®, Simulink® et Simscape®. Pour

terminer, ce mémoire identifie des domaines qui pourraient bénéficier d’avantage de recherche,

à savoir de nouveaux appareils de mesure large-bande et des études psychoacoustiques sur

l’impact du couplage entre l’oreille et l’écouteur. Parallèlement, une solution pratique à la déli-

cate question de la variabilité dans le couplage écouteur/oreille est proposée et s’appuie sur

le réglage automatisé et individualisé de la réponse en fréquence des écouteurs à l’aide d’une

mesure -par le lecteur audionumérique- de l’impédance électrique des écouteurs.

Mot-clés : Acoustique, électro-acoustique, psycho-acoustique, dévelopement de produit,

audio perceptuel, écouteurs, haut-parleurs, modélisation, conception, bi-porte,

quadripôle, loudness, simulation, mesure
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INTRODUCTION

An earphone, as defined by the International Electrotechnical Commission (2010a), is an elec-

troacoustic transducer by which acoustic oscillations are obtained from electric signals and

intended to be closely coupled acoustically to the ear. Nowadays, earphones are no longer a

substandard of higher quality sound reproduction equipment. Consumers and audiophiles turn

to them for high quality sound on the go, and even at home. Market analysis frequently re-

port increases in sales and willingness by the customers to pay a premium for good sound

reproduction equipment. A NPD Group (2012) market analysis identified sound quality as the

most important feature for customers, far beyond any other attributes, and as the second deci-

sion factor after brand reputation when deciding to buy earphones. Even if it is asked for by the

consumers, a good sound signature is rather easier to state than to define since sound signatures

available on the market are as different as the earpiece design itself.
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Figure 0.1 Components of an earphone design and

their interaction.



2

This thesis aims at identifying the contributing factors to a good sound signature as well as

the other components of earpiece design. All these components are interacting with each other,

as presented in Figure 0.1. Each topic can be analyzed on its own, but must also be analyzed

in conjuncture with the others to achieve a quality earpiece. Therefore, each of the contribut-

ing components to the earphone’s design is presented in a specific chapter and the relation to

the other components is explained. More specifically, this thesis explores the insert earphone,

which is defined as a "small earphone that fits either in the outer ear or is attached directly to a

connecting element, for example an earmould inserted into the ear canal" by the International

Electrotechnical Commission (2010a).

The diagram presented in Figure 0.1 was devised by cross-referencing publications made by

different authors in the last 60 years from several fields of study, including engineering and

psycho-acoustics. The main contributions of this thesis are to offer an extensive literature re-

view on earphone design and explore the coupling between the earphone and the ear, for which

future works is proposed in Chapter 4.

Chapter 1 explains the contributing factors that relate to the sound quality of an earphone.

It starts with an overview of the particularities of listening to a distant source versus with

earphones, covers the measurement of the sound quality of earphones and reviews the literature

to establish a definition of a target frequency response. The effect of the variability of each

factor is reviewed as well to determine their impact on the sound quality.

In Chapter 2, the measurement of earphones is explained. It includes the Frequency Response

Function (FRF), Total Harmonic Distortion (THD), Intermodulation Distortion (IMD), Multi-

Tone Distortion (MTD), and the triggered distortion, also called Rub and Buzz Distortion

(RBD). These are also metrics of the build quality of the earpiece because they are the direct re-

sults of the electroacoustic transduction process and the transformation of the acoustical power

by the geometry of the earphone and the ear canal. The electrical measurement, to determine

the main characteristics of transducers, including DC resistance and impedance measurement

in the small and large signal of the frequency domain are presented. The ear simulators and

measuring couplers necessary to measure the acoustical response are also shown in Chapter 2.
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In Chapter 3, the modelling and simulation of the earphone are explained. Models of two

types of transducers typically used in earphone design are covered, namely the moving-coil

micro-loudspeakers and balanced-armature receivers. Models of acoustical components typi-

cally found in earphones design such as tubes, horns, meshes, generic cavities, etc. are also dis-

cussed in this chapter for various abstraction modelling methods: lumped-element, two-ports

(transmission line) and control-system block diagram.

Even if the frequency response function is considered as the foundation of sound quality in

earphones, at the time of publication no research has yet defined an unequivocal frequency re-

sponse as a "one size fits all". Even though many studies identify several factors that strongly

contribute to the pleasantness perceived by subjects, the challenge in finding a universal fre-

quency response comes from the variability in individual preference and in the physical shape

of the human ear. Therefore, there is a need for a customized process for the frequency response

is introduced in Chapter 4. This proposed process is intended to be usable across multiple smart

devices featuring increased signal processing capabilities. This suggestion is part of the future

works identified during this research that would contribute to a better understanding of the ear-

phone design such as new measurement tools and the perceptual effect of the coupling of the

earphone with the ear for a population.





Chapter 1

ACOUSTICS AND PSYCHO-ACOUSTICS OF EARPHONES

In the literature, when compared to loudspeakers, earphones represent a relatively new field

of study, which came lately with the rise of Portable Electronic Devices (PEDs). A Google ®

Ngram is a visual representation of the occurrence of a specific string within books indexed

by Google for a determined time frame. In Figure 1.1, it can be seen that the presence of

the word loudspeaker in books peaked in the mid-1950’s by being 6 times more prevalent

than earphones or headphones. The presence of the word headphones increased after 1965 and

surpassed loudspeaker in Google Books the years after the introduction of the iPod® by Apple®

in October 2001. Literally, the definition of the word headphones and earphones changed over

time, since over time both words were sometimes used to describe the same object. The word

headphones is becoming more prevalent in the literature while loudspeaker is disappearing.

Interestingly, loudspeaker design science is partially transferable to the earphone because of

a certain similarity in the application. However, the psycho-acoustics of loudspeakers are not

transferable as will be explored later in section 1.1.2.2. The word earphone will be used in

this thesis since it is defined by the International Electrotechnical Commission (2010a) as the

generic term for a device closely coupled acoustically to the ear.

Figure 1.1 Google® Ngram of loudspeaker, earphones and headphones in Google books

from 1920 to 2008. [English, Smoothing=1]
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A complementary field of research is hearing aids. A hearing aid is a device usually worn by

hearing impaired individuals to improve hearing through an amplification process, for which

applications are closely related to earphones. Its presence in the literature follows the same

trend as headphones, as shown in Figure 1.2. Yet the main difference between them is that one

is typically dedicated to enhance certain frequency bands for a hearing impaired individual to

achieve intelligibility while the earphone is mostly intended to reproduce a musical experience

for a listener and covers a wider frequency range. Some issues, such as colouration, are not

considered as critical for hearing aid wearers as for earphone users.

Figure 1.2 Google® Ngram of hearing aid and headphones in Google books from 1920

to 2008. [English, Smoothing=3]

This chapter reviews the available normative and scientific publications in the fields of loud-

speakers, earphones and other related fields of psycho-acoustics. It presents an overview of

the hearing process, including the differences between a subject listening to a distant source

or to earphones. It then presents objective and subjective measurement methodology, putting

emphasis on the large variability of the coupling between the ear and the earphone, and lead-

ing to a review of the main studies on the preferred frequency response based on contributing

factors such as: loudness compensation, missing 6 dB and Just Noticeable Sound Change. This

chapter highlights the complex relation between the preferred frequency response, so-called

target, and the perceived sound quality by subjects.
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1.1 Specificities of hearing sound emitted by a distant source versus with earphones

This section is not intended to be a comprehensive explanation of the human hearing process.

However, it would be useful to simply give a general notion of how sound waves into electrical

impulses that can be interpreted by the brain by describing the ear and the basic principles of

hearing from a distant source versus when wearing earphones.

1.1.1 Overview of the hearing process

Figure 1.3 A diagrammatic view of the outer, middle and inner

ear. [From "Tidens naturlære", Poul la Cour]

The human ear is divided into three sections, the outer ear, the middle ear and the inner ear.

A sectional view of the ear is presented in Figure 1.3. What is commonly called the ear -

part protruding the head - is scientifically known as the pinna (also known as the auricle).

The pinna collects and transforms incoming sound waves and redirects them into the ear canal

(or meatus), identified by (gg) in Figure 1.3. The sound waves then reach the eardrum, also

called tympanic membrane or tympanum (tf). The eardrum is the boundary between the outer
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ear and the middle ear. It is important to note that this boundary is the limit of non-intrusive

physical measurement. As it will be explained in section 1.2.1, a measurement apparatus known

as a probe tube, can be used to measure sound pressure close to the eardrum. The outer ear’s

function is to collect a sound pressure and transfer this pressure to the eardrum. A sound source

close to the pinna or inserted into the ear canal, such as the use of earphones, would alter the

transfer function of the pinna. This is explored in section 1.1.2.2 and 1.1.3.

The middle ear, in a first approximation, is a mechanical system matching the impedance of

the sound in the outer ear, a gaseous medium, to the impedance of the fluid in the inner ear.

This impedance matching is possible due to the connection between the eardrum (tf) and the

oval window created by three bones - ossicles - called malleus (h), incus (a) and stapes (s). The

malleus (h) is connected to the eardrum while the stapes (s) is connected to the oval window.

The incus (a) relates the malleus (h) to the stapes (s) The oval window (not explicitly seen

in the Figure 1.3) is the interface between the middle ear and the cochlea (vh). Two major

components contributes to the impedance matching performed by the middle ear between the

outer ear and the inner ear. The first is the ratio of the surface area of the eardrum over the

oval window, matching the force by a surface variation. The second component contributing

to the impedance matching is the lever effect created by the ossicles. The displacement of the

malleus is slightly larger than the displacement of the stapes. This impedance matching leads

to the inner ear.

The inner ear could be seen as the spectrum analyser of the ear. It is a complex system per-

forming the conversion of the fluid pressure variations transmitted by the ossicles (h, a, s) into

an electrical signal. This conversion process is performed by a snail-shaped organ called the

cochlea (vh, vht, tht). Within this organ, a series of hairlike structures move with the fluid pres-

sure variations and activate nerves, which ultimately transmit the electrical signal through the

nervous system to the brain. Further explanation on how this process occurs can be found in

anatomy [Gelfand (2009)] and otolaryngology manuals [Nadol Jr. and McKenna (2005)].
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1.1.2 Hearing a distant source: Sound paths, room reflections and the Head-Related

Transfer Function (HRTF)

When someone is hearing a sound, a complex interaction process between the sound source,

the environment and the human body transforms the sound wave before it reaches the tympanic

membrane. This interaction is explained in section 1.1.2.1, which explains the sound travelling

toward a subject. Then, section 1.1.2.2 explains how that sound is transformed by the contact

with the body until it reaches the tympanic membrane. These transformations are natural pro-

cesses of hearing and humans learn and adapt to these transformations. As a result they occur

almost subconsciously and need to be taken into account for an earphone design, as covered in

section 1.1.3.

1.1.2.1 Sound paths and room reflections

Figure 1.4 Sound reaching a person from one distant source 1) Direct

path of sound 2) Early reflection of sound 3) Late reflection of sound.

When in a room where one - or many - sound source(s) are emitting sound, a subject is expe-

riencing the effect of the sound wave travelling through space as presented in Figure 1.4. This

image is simplified to a single source, located in front of the subject, emitting sound toward

the subject, with the center of the source at the same height as the center of the subject’s ear

canal entrances (this corresponds to the 0◦ elevation and 0◦ azimuth.) As a result, the sound
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takes different paths to reach the pinna of the subject. Three of all possible paths are shown in

Figure 1.4 to demonstrate the combination of the direct and reverberant field. The first path to

reach the subject is the direct (1) path. The second path is the so-called early reflection (2) of

sound. The last sound to reach the subject is the so-called late reflection (3) of sound which

travels more distance before reaching the subject. The sound travelling by path 2 and 2+3 will

not reach the subject at the same time as the direct path since path 2 and 2+3 have a longer

distance to travel and the speed of sound (≈ 343 m/s) is constant. The difference between

an early reflection and a late reflection is the time it takes sound to travel to the measurement

point.

A room sound field can be quantified in relation to the reverberant field, or quantity of reflec-

tions compared to the direct sound. Beranek (1993) states that all the reflections reaching a

subject following the first 80 ms after the direct sound are part of the reverberant field. Oth-

erwise the early sound encompasses all the sound reaching the subject within the first 80 ms,

including the direct path of sound. From the definition established by Beranek (1993), it can be

seen that the two extreme fields are free-field equivalents and diffuse-field equivalents, defined

below:

• Free-field: The determination of the sound power level radiated in an anechoic or a hemi-

anechoic environment is based on the premise that the reverberant field is negligible at

the positions of measurement for the frequency range of interest.

• Diffuse field: At any position in the room, energy is incident from all directions with

equal intensities and random phases and the reverberant sound does not vary with the

receiver’s position.

As noted by Hodgson (1994), several factors such as surface reflection, surface-absorption

distribution and surface-absorption magnitude as well as fitting density are necessary to achieve

a diffuse field condition. Therefore, from the definition given above, a diffuse field is an ideal

reverberant field and if the required conditions are not met, the field is not diffuse.
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1.1.2.2 Head Related Transfer Function

A Head-Related Transfer Function (HRTF) is a measurement of how a sound emitted from

a source located in a specific position in a three-dimensional space is modified, filtered and

shaped by the human body before it reaches a specific point of the ear canal(s) of a subject.

The most usual method to acquire a HRTF is by positioning a microphone or a probe tube at

the ear canal entrance and playing a sound from a loudspeaker positioned at a specific position

relative to the subject in a defined acoustic field environment. The HRTF defines the filters

required to process the signals sent to each ear in order to recreate the specified location of the

virtual sound source in space. This is later explained in this section. This binaural approach

gives the impression to the subject that a virtual sound source is located at the right position in

space.
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Figure 1.5 Frequency response function of a subject measured at the entrance of

the ear canal in a free-field and a diffuse-field.

The HRTF is dependant on two factors. The first, explained in section 1.1.2.1, summarizes how

the position of the sound source and its acoustic space influence the perception and measure-
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ment of the HRTF. The second factor of the HRTF is how the human body transforms the sound

wave and what is the resulting effect of this transformation.

The two extreme sound fields, free-field and diffuse-field, are typically used in the measurement

of HRTF and are commonly found in the literature. The HRTFs measured in the free-field

are used to reproduce a virtual environment and are expected to be free of any reverberation,

which is added when the binaural signal is synthesized in order to replicate an environment.

The diffuse field HRTFs is sometimes suggested as a compensatory frequency response for

an earphone which is not dedicated to binaural reproduction. Figure 1.5 presents a frequency

transfer function measured in free field and diffuse field at the ear canal entrance position of a

subject.

It is clear that the typical listening field in a room is not free-field nor diffuse-field, but some-

where in-between. A listening room will have, at the listener’s position, a combination of direct

and reverberant fields that would be pleasant to the listener, which would reproduce the sound

with clarity, intelligibility, liveness, etc. Based on the idea that an earphone should approximate

these conditions, Olive et al. (2013) established an average HRTF dedicated to be applied to a

headphone frequency response function by using a different method than the usual microphone

positioned at the entrance of the ear canal:

First, the frequency response of each loudspeaker channel was measured sep-

arately at the primary listening seat using a log sweep [...] pressure calibrated mi-

crophone vertically positioned at 6 locations around the listener’s head location to

provide a spatial average. The spatially averaged response for each speaker was

equalized flat, and the in-room target curve was added using shelving filters. A

GRAS 43AG [IEC60318-4 compliant] was flush mounted in the head of a Sty-

rofoam manikin, located at the primary seat. A spatial average was achieved by

rotating the head at -30, 0, and +30 degrees in the horizontal plane. A total of

21 measurements were thus taken for the 7 channels, averaged and smoothed to

generate the [...] headphone target response curves.
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A shelf filter is reducing or enhancing, the frequencies under or above a transition frequency

of a desired gain while leaving the frequencies not included in the shelf at a unity gain.

The HRTF method used by Olive et al. (2013), that was developed and tested for circumaural

headphones, is expected to yield the best result as a predetermined frequency response for

earphones since it is based on a "preferred" listening field which is replicated for an average

person. However, the HRTF assumption as a basis for earphone is limited by the time invariant

nature of the earphone response because, for Schönstein and Katz (2010), "in order to achieve

high fidelity renderings many studies have shown that HRTFs need to be individualized for

the listener [...]" Schönstein and Katz (2010) explored the variability of the HRTF from a

perceptual point of view and concluded that any design solely based on a generic HRTF would

be affected by a large variability due to the subject’s morphology. Many studies were performed

to determine the variability of the HRTF and the contribution of each part of the human body

on the resulting HRTF: Mehrgardt and Mellert (1977), Hammershøi and Møller (1996), Hudde

and Schmidt (2009), Algazi et al. (2001) and Takemoto et al. (2012). From Algazi et al. (2001),

one can have an overview of the variability of the human anatomy, and therefore of the inter-

individual variations of the HRTFs.

Localization of sound is based on two phenomena, as presented in Figure 1.6. The first one

is when the sound reaches the subject and if the incident angle is not in quadrature with the

inter-aural axis, one of the sound path must travel further to reach the farther ear ERR (f) than

to reach the closer ear ERL (f). This phenomenon is the inter-aural time difference (ITD).

The second one is the sound level differences between a subject’s ears, because for frequencies

whose wavelengths are small relative to the dimensions of the head, the ear farther from the

source generally receives less energy than the nearer ear. This phenomenon is called inter-aural

level difference (ILD) - or inter-aural intensity difference (IID) - depending upon authors. In

Figure 1.6, this is represented by the change between ERR (f) and ER′
R (f) linetype. The

change in the linetype represents the level variation compared to the original linetype after the

early reflection.
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Figure 1.6 Inter-aural Time Difference ER′
R (f) of a

sound and the Inter-aural Level Difference (change in

linetype).

The previously mentioned ITD and ILD have a large impact on a subject’s perception of lo-

calization and space, the descriptor for localization and space will be covered in section 1.2.2.

Litovsky et al. (1999) explain: "the precedence effect [which] refers to a group of phenomena

that are thought to be involved in resolving competition for perception and localization between

a direct sound and a reflection. When the delay is zero and the speakers are stimulated equally,

the stimuli to the two ears of the listener are approximately equal and a single "fused" image

is perceived in the plane of symmetry, approximately straight ahead of the listener." Brown

and Stecker (2013) complete the idea by explaining that: "the precedence effect depends on

essentially two phenomena: (1) fusion of the early arriving (lead) and late-arriving (lag) sound

and (2) dominance of the localization cues carried by the lead over those carried by the lag

(termed localization dominance)". Again, Litovsky et al. (1999) note that there is a difference

depending on whether the sounds are presented in free field or over headphones. This effect

is of interest when music playback is intended since it is usually mastered with monitors and,

sometimes, evaluated over headphones after for comparison. The specificity of the ILD, ITD

evaluation with headphones will be discussed in section 1.1.3.
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Another phenomenon linked with the HRTF and the inter-aural differences is the difficulty

typically experienced when one attempts to locate the source of a sound coming from a position

located in a virtual cone having its axis centered on the interaural (going through both ears)

axis. When the source is located in this cone, which is either on the subject’s right or left,

the time needed for the sound to go around the head is about the same wherever the source

is located on that cone. This leads to a front-back confusion as well as misjudgement of the

elevation of the sound source. This effect is the so-called cone of confusion. This effect is

naturally compensated by the movement of the head which helps to "get rid of" the cone.

Sound 
Event

Cone of 
confusion

Interauralaxis

Perceived 
Event

Figure 1.7 Representation of the cone of confusion as

experienced by a subject.

ILD, ITD and the cone of confusion are the main characteristics of binaural hearing (com-

pared to monaural hearing). They are the source of important psycho-acoustic effects such as

lateralization, localization, binaural loudness. These phycho-acoustic effects are some of the

fundamental effects that contribute to the important sensations of a room acoustics such as

clarity, separability, diffuseness, spaciousness, echo-content, etc. These sensations leads to an
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impression of high-fidelity reproduction of a recording when proper - non-distorted - reproduc-

tion equipment is used. These criteria are discussed in section 1.2.

1.1.3 Hearing with earphones
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Figure 1.8 Comparison between the measured spectrum using the proper measurement

method for each type of sound source along the horizontal line and the spectrum at the

eardrum for a same source signal on the vertical line.

Figure 1.8 presents the frequency response for various types of electro-acoustic sound sources.

On the top horizontal lines, the source spectrum measured at the proper position in the proper

field is presented. On the bottom horizontal line, the frequency spectrum in the vicinity of the

eardrum is also presented for the proper measurement method. It can be seen that contrary to

sound coming form a distant source, sound produced by earphones do not involve the trans-

formation of the sound wave caused by the body as it naturally happens for a subject when a

distant source is used. A paradigm shift is necessary from what would be described as a flat

frequency response - the so-called X-curve for loudspeakers - for a distant source (first column)

to a corrected frequency response for an earphone which would recreate the distant field when

coupled with the ear (last column). Figure 1.8 also includes the effect of a coloured source,

meaning it is not a flat frequency response. When measured at the eardrum, it could be seen

as pleasing in certain situations by a group of subjects, as explained in section 1.2.2. An ear-
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phone producing a flat frequency response is consider to have a poor perceived quality, when

Fleischmann et al. (2012) include this frequency response in perception evaluation of several

frequency responses.

Bauer (1961) established the foundation of stereophonic reproduction for earphones and bin-

aural loudspeakers and the basic principles underlying his work are still used and discussed

today. His statement explaining the effect: "this, evidently, is caused by the lack of suitable

cross-feed between the two ears", is still a valid statement from Atsushi and Martens (2006)

point of view:

This is primarily due to the effective absence of crosstalk between the two ears

signals delivered to the headphone user. In contrast, both loudspeaker reproduced

signals reach both of the listeners ears, and this crosstalk that occurs in loudspeaker

playback contributes significantly to the formation of stereophonic imagery. [...]

the resulting auditory spatial imagery is very different from the usual stereophonic

result, and has been termed biphonic to distinguish this result from the more fa-

miliar stereophonic imagery.

Consequently, most of the effort deployed since Bauer (1961) is to improve on his work and

make the integration between the stereophonic-intended recording and convert it into a quality

signal for earphones and not only a biphonic one. The principle of binaural reproduction and

stereo reproduction is presented in Figure 1.9.

The main challenge is that almost all music recordings are intended for stereophonic repro-

duction, so the earphone frequency response must be altered to take this fact into account, as

presented in Figure 1.8.

Litovsky et al. (1999) states that while the reproduction of a binaural environment over ear-

phones, as presented in Figure 1.8, "is successful in providing a quantitative measure of the

perceptual weights of the lead and lag, they certainly did not provide a realistic acoustic en-

vironment". Hartmann and Wittenberg (1996) investigated the use of simulated ITD and ILD
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Figure 1.9 Binaural vs stereo reproduction of a sound and effect for the listening subject.

to create a localization effect with headphones and concluded that "the headphone technique

was sufficiently accurate that listeners could not distinguish a baseline synthesis of the virtual

source from the real source in a forced-choice discrimination experiment." A forced-choice

discrimination experiment forces a subject to choose between two or more stimuli. Typically

a previous stimulus is included in the group of stimuli as a reference. In short, "a headphone

signal will be perceived as a real source if the amplitudes and phases of its components, as

measured by microphones in the ear canals, are correctly adjusted." It seems the reproduction

of a vivid sound image is possible with earphones and is a matter of the proper adjustment of

the frequency response to reproduce these effects in order to position the virtual sound source at

the right position. The definition of that proper frequency response is however a more difficult

task than it might seem, as presented in section 1.2.2.
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Brown and Stecker (2013) reported that: "headphone stimuli that carry manipulated values of

one cue (e.g., ITD) but leave the other cue (ILD) fixed at zero are inherently artificial in that

they impose on a single stimulus substantial and consistent disagreement in the two major cues

to its location. While cues in the free field normally agree, being consistent in sign and ap-

proximately consistent in magnitude across azimuth, headphone stimuli introduce cue-conflict

and produce an unnatural perception of source location." Their analysis leads to the conclusion

that the fusion aspect of the precedence effect is more robust for stimuli lateralized by ITD

than stimuli lateralized by ILD. "This perceptual boundary between one fused sound and two

separate sounds is often referred to as the echo threshold." The binaural effect expected from

a distant source and reproduced over earphones are still under investigation and still open to

argument over its quality.

1.1.4 Coupling of the earphone with the ear

From an electro-mechanic point of view, in a first approximation, a distant sound source is

typically impeded by a coupling impedance corresponding to free air (Z = ρc) which is often

approximated to 415± 10
[

Pa·s
m

]
for an operating temperature of 20± 12◦C. This would result

in a variation of 0.2 to 2 dB. Ćirić and Hammershøi (2006) reported that the coupling between

the earphone and the ear is critical:

The acoustic loading of the pinna, ear canal, eardrum, and ossicular chain are

potential sources that influence the acoustic signal received by the eardrum. [...]

Two distinct factors are related to the variability [of the frequency response]; A

factor causing the variability at low frequencies, and resulting in uncontrolled

variations of the pressure, is the leakage. [...] at higher frequencies (above ap-

proximately 2000 Hz), the sound pressure depends on the wave properties of the

earphone and the external ear. In this frequency region, the size and shape of the

cavity enclosed by the earphone, factors that are dependent on the earphone and its

positioning, the geometry of the pinna, and the ear canal, become very important.
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The calculation of the variation of the coupling between the earphone and the ear which "de-

pends on individual subject characteristics and on the earphone itself" is a process presented by

Møller et al. (1995a), as discussed in section 1.2.1. Using this method, Ćirić and Hammershøi

(2006) found larger standard deviations, compared to a measurement with a coupler defined in

section 2.2, in the low and mid frequencies (5 to 8 dB) when supra-aural earphones are used

compared to circumaural ones (2 to 3 dB). The earphone types are defined by the International

Electrotechnical Commission (2010a). Ćirić and Hammershøi (2006) concluded that a large

impedance variation "in the order of 15 dB or even more" is to be expected for the frequency

response of an earphone, which is much larger than what is expected in a free field, as they

measured. For headphones, the impact of the pinna is to be considered. "At higher frequencies

(above approximately 2000 Hz), the sound pressure depends on the wave properties of the ear-

phone and the external ear. In this frequency region, the size and shape of the cavity enclosed

by the earphone, factors that are dependent on the earphone and its positioning, the geometry

of the pinna, and the ear canal, become very important."

In principle, for insert earphones, the pinna is not accounted for as an impedance load, as just

stated. However, Oksanen et al. (2012) did study the individual sound pressure levels at the

eardrum for insert earphones and reported that: "deviations of approximately 3 mm from the

average diameter of the ear canal could cause errors above 3 dB [...] However, deviations that

large were not seen amongst the test participants [of their study]." In the same line of thought,

Valente et al. (1994) measured the SPL near the eardrum for six discrete frequencies between

500 and 4000 Hz using conventional (TDH-39P) and insert earphones (ER-3A), the magnitude

of the intersubject variability determined and concluded that "the presence of large intersubject

differences in the SPL measured near the eardrum questions the validity of predicting individ-

ual performance based upon averaged group data. Intersubject differences were independent of

the type of earphone used to make the measure."

From an earphone design point of view, this variation is important because two people can have

a different perception of the sound quality solely because the coupling to the ear changes the

SPL at the eardrum and not because the subject would not appreciate the response for which
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the earphone is designed for. Furthermore, another observation by Valente et al. (1994) is that

the type of earphones have a significant impact on the SPL measured at the eardrum for a same

subject. Again, this might have an impact on the perceived quality. Sound signature evaluation

is explained in section 1.2 which explains the measurement of the sound quality of earphone

and the contributing factors to this perceived quality while section 1.3 explores important study

on the relation between the measured frequency response and the perceived sound quality of

earphone.

1.2 Measuring the sound quality of earphones

As briefly presented in the previous section, measuring the sound quality of an earphone is per-

formed by measuring objective metrics but also subjective metrics to understand how subjects

perceive an acoustical phenomenon. This section presents the main methods used to assess the

sound quality of an earphone. Electro-acoustic engineers design products that will ultimately

be used on or by humans. On the one hand, to assess sound quality, objective measurements us-

ing measurement tools that are fitted in the ear or a replicate human’s outer-ear are performed

and objective metrics are recorded, as described in Chapter 2. On the other hand, subjective

measurements obviously require the an active participation of the subject. The validity of the

measurement depends on the input from the subject. Some measurement methods, like a probe

tube inserted into a subject’s ear canal, are used to compare the subject’s perception with the

physical measurement. This relationship between the subjective and objective measurements is

known as the Perceptual Evaluation of Audio Quality (PEAQ). As it will be presented in sec-

tion 2.2, the ITU-T recommendation has been modified by Temme et al. (2012) for loudspeaker

and headphones applications.

1.2.1 Objective measurement of sound quality

Two methods are used to perform objective measurement of sound quality: the Acoustic Test

Fixture (ATF) and the probe microphone. By using either of these measurement methods, the

ATF or the probe microphone, it is possible to compare the perceptual effect elicited by a

subject to an "absolute" physical reference.
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1.2.1.1 Acoustic test fixture

The so-called Acoustic Test Fixture (ATF) is a simulator that enables objective measurement

of sound. A type of ATF is the Head and Torso Simulator (HATS), as normalized by the Inter-

national Electrotechnical Commission (2011). It is intended to simulate the change that occurs

to sound waves as they pass a human head and torso, the HRTF defined in section 1.1.2.2. It

is fitted with a rubber-like replica (called pinna simulator) of an average ear with a fixture that

includes a microphone to replace the ear canal and eardrum. Toole (1984) readily noted that

"the rubber replica was mechanically different from a real external ear and it did not fold and

crush as readily in the same manner as the real thing". This lack of mechanical properties repli-

cation discourages any attempt to have an earphone that modifies the shape of the ear such as a

supra-aural type since the pinna simulator is still mono-material and does not behave as a real

ear would, with its complex blend of hard cartilage and softer tissue. A proper ear simulator

for these types would be made of several layers of various material properties to simulate the

movement of the cartilage and skin.

Measurement of supra-aural and circumaural earphones is performed using the coupler spec-

ified by the International Electrotechnical Commission (2009). The details of these couplers

are explained in section 2.1. Inanaga et al. (2008) and Hiipakka et al. (2010) investigate the

intra-aural and insert earphones and Blau et al. (2010) the variability between the coupler and

real ears. Blau et al. (2010) concluded that "the less frequently used artificial ears do a better

job in representing the average ear, but can of course not account for interindividual differences

in ear canal acoustics, which may reach 20 dB in the frequency range up to l0 kHz."

1.2.1.2 Probe microphone

An alternative to the use of ATF is the use of a very small microphone, also called probe mi-

crophone tube, at the entrance, or inserted into the ear canal, which records the sound pressure

transformed by the pinna and the ear canal and measures how the sound is affected by the

outer ear, as explained in section 1.1.2.2. This method also presents limitations, mostly due to
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disturbance in the wave propagation in the ear canal but is used because it is a viable way to

assess inter-subject variation.

The validity of the method for circumaural earphones has been explored by Møller et al. (1992,

1995a,b). They found an intra- and inter-subject variability which is qualified as: "in general

the error is low up to 7 kHz. Above this frequency the error increases to an almost constant

level for the rest of the audio frequency range. [...] The blocked ear canal method provides the

smallest standard error of the mean. The reason is that the method totally ignores the effect of

the ear canal [...]".

Unfortunately, the blocked ear canal is not very useful for the measurements of intra-aural and

insert earphones. However, Blau et al. (2010) stated that "probe tube measurements [...] become

inaccurate at high frequencies (above a few kHz) if the probe tube is not positioned in the

immediate vicinity of the ear drum, which is difficult to assure in everyday practice. In occluded

ear situations (e.g., closed ear molds for hearing aids), probe tube measurements suffer from

leaks caused by the presence of the tube, resulting in large errors at low frequencies (typically

below 1 kHz)." The probe microphone tube measurement made by Ćirić and Hammershøi

(2006) also lead them to several conclusions related to the use of probe microphones:

• For frequencies under 1 kHz, an earphone could be considered as a nearly ideal sound

pressure source;

• The Thévenin impedances for free-field and earphone exposure (the radiation and ear-

phone impedance) are considerably smaller than the impedance of the ear canal at low

frequencies;

• The intrasubject and intersubject variations of the earphone transfer functions [between

the voltage and the SPL] confirm that the sound pressure level generated in an ear could

differ considerably from the defined value. This difference could be in the order of 15 dB

or even more;

• The earphone transfer functions measured in human ears differ from the corresponding

ones measured in the coupler, especially when individual functions are analysed;
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• All earphones could be considered to behave very similar on a mean basis in respect to

the ratio of the earphone impedance and the impedance of the average human ear canal;

• Some important effects of coupling of [...] earphones to human ears do not exist in cou-

pling of the earphones to the coupler.

1.2.2 Subjective measurement of sound quality

Perceptual audio evaluation of a product is a murky topic summarized by Bech and Zacharov

(2006) who describe methodologies and list the bounds of perceptual audio evaluations. They

cover the important components of a study, namely the definition of test, experimental vari-

ables, calibration, reproduction equipments and rooms, quantification of impressions and statis-

tics. Bech and Zacharov (2006) explain the challenge related to the subjective measurement of

sound quality:

[Subjective measurement of sound quality is] focused on a specific attribute

of the sound, and often the stimuli are specifically designed to (hopefully) excite

the attribute of interest. This often has the consequence that the stimuli are (very)

synthetic and thus quite dissimilar to the natural sounds. [...] The starting point is

the existence of an acoustically complex stimulus a sound field impinging on the

ears of a subject which is then transformed by the physiology and neurology of

the hearing system into neural energy. The acoustic stimulus is characterized by

physical measurements of variables [...].

Elicitation is defined by Merriam-Webster (1998) as "the process by which something latent

or potential is brought out". Again, Bech and Zacharov (2006, p.43-44) indicate that direct

elicitation method assume "there is a close relationship between a given sensation and the

verbal descriptors used by the subject to describe the sensation." Indirect elicitation "tries to

separate sensation and verbalisation, as verbalisation, it is argued, depends strongly on the size

and availability of suitable terms in the subject’s lexicon." Secondly, it is questioned whether

the assumed relationship between what is being said and what is being perceived actually exists
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while non-verbal elicitation is described as "the information communicated from one person

to another in addition to the verbal communication. This includes hands and arm movements

such as when the person points in a given direction to indicate the origin of the sound or when

the explanation of something is accompanied by a sketch, and so on."

The foundation of comparative judgement, often used in audio quality perception comes from

Thurstone (1927) who describes how to compare the physical stimulus intensities and also

the qualitative comparative judgement like for the excellence of specimen. Most of the work

relative on judgement is still based on the principles he established. For example, Letowski

(1989) categorized auditory judgements as:

A formalized auditory assessment may be of heuristic or diagnostic character.

In the former case, the purpose of assessment is to collect normative data while in

the latter case the purpose is to evaluate if and to what extend a specific property

or an object differs from the accepted standard. The aim of such auditory assess-

ment is either to gather information about the external world (objects) or about the

listeners themselves (subjects).

These two dichotomies create four basic domains of auditory judgements as shown in Table

1.1.

Table 1.1 Basic applications of auditory assessment

Subject-oriented tests Object-oriented tests
Heuristic judgements Psychoacoustic Research Sound Quality Assessment

Diagnostic judgements Audiological Evaluation Diagnostic Listening Tests

Letowski (1989) also identifies three criteria for the subjective evaluation of sound quality:
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• Fidelity (accuracy): relates one auditory image to another, like a standard or a golden

reference. It is a way to quantify any modifications that may occur to a signal between

the input and the output of a device;

• Naturalness: relates an auditory image to a specific internal standard, which can be a

generalized conceptual image residing in the memory of the listener and used as the

point of reference;

• Pleasantness: relates an auditory image to a set of various internal standards, manifesta-

tion of the subjective satisfaction resulting from listening to a given sound.

Letowski (1989) notes that "there are situations (synthetic signals, hearing impaired listeners,

etc.) where less natural sounds can be regarded as more pleasing." Bech and Zacharov (2006)

agree that an unnatural sound may elicit more pleasantness than a natural sound of the same

nature, like in music. Gabrielsson et al. (1990) completes the idea: "Overall evaluations of the

systems in terms of fidelity of pleasantness may be regarded as weighted combinations of the

separate perceptual dimensions. [...] Among the physical variables the frequency response is

often considered as the most important." They explain the perceptual dimension:

Brightness and sharpness increase (dullness and softness/gentleness decrease)

with rising frequency response toward higher frequencies and/or falling response

toward higher frequencies and/or falling response toward lower frequencies. [...]

Fullness is favoured by a broad frequency range and relatively more emphasis on

lower frequencies. [...] Clarity, spaciousness, and (to some extent) nearness are

likewise favoured by a broad frequency range, often with a certain emphasis on

midhigh to high frequencies.

In addition, Lorho (2005) divided necessary attributes for the audio evaluation of headphones

into three (3) dimensions, namely: localization, space and timbre. Attributes related to distance,

direction, movement and localization are presented in Table 1.3. These attributes are related to

a common criticism made about earphones: the sound is within the head, not solid in front of

the subject, as stereo provides which is an attribute of localization.
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Table 1.2 Space attributes for evaluation of earphones

[as proposed by Lorho (2005)]

Attributes Range Description

Quality of echo Unpleasant

Pleasant

This attribute describes how well the echoes re-

late to their sound source(s) in a qualitative way.

Amount of echo
No echo

Adequate Echo

Excessive echo

This attribute describes how the listener expe-

riences the amount of echo in relation to the

sound sources.

Sense of space Not definable

Well definable

This attribute describes how well the space rep-

resented in the audio sample can be defined.

Balance of space Out of balance

In balance

This attribute relates to the space represented by

the audio sample in relation to the listener’s in-

ner reference. A negative value means that the

space is weighted in some direction. If no space

is perceived, the space is out of balance.

Broadness Inside Head

Broad

This attribute describes the perceived extent of

the soundscape relative to the listener’s head.

Attributes related to space are presented in Table 1.2 and pertain for example to the lack of

important cues which is natural with a sound field generated by loudspeakers in a room. These

cues are typically expected from a sound mastering engineer, so it is up to the earphone designer

to reproduce the expected sound field.

Table 1.3 Localization attributes for evaluation of earphones

[as proposed by Lorho (2005)]

Attributes Range Description

Sense of distance Not definable

Well definable

This attribute describes how well the distance

between the sound sources and the listener can

be defined.

Sense of direction Not definable

Well definable

This attribute describes how well the direction

of the sound source(s) can be defined.

Sense of movement Not definable

Well definable

This attribute describes how well the movement

of the sound source(s) can be defined.

Ratio of localizability None

All

Localizability describes how well the direction

and the distance of a sound source(s) can be

defined. The attribute ratio of localizability de-

scribes how many sound events can be localized

from those present in the audio sample.
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Attributes related to timbre, which are most frequently used when there is a need to describe

how earphones sound, are presented in Table 1.4

Table 1.4 Timbre attributes for evaluation of earphones

[as proposed by Lorho (2005)]

Attributes Range Description

Separability None

All

This attribute describes how well the sound

events can be [singled] out in the audio sample.

Tone color

Lower sounds

emphasized

Higher sounds

emphasized

This attribute describes the spectral content of

the audio sample.

Richness
Flat

Neutral

Rich

This attribute describes how rich and nuanced

the audio sample is overall, and relates to a

combination of harmonics and dynamics per-

ceived in the sample.

Distortion Distorted

Not distorted

This attribute describes the possible metallic,

machine-like, electrical-like artifacts in the au-

dio sample.

Disruption Disrupted

Not disrupted

This attribute describes how much hiss,

snap/crackle/pop is perceived in the audio sam-

ple.

Clarity Muffled

Clear

This attribute describes if the sound sample ap-

pears clear of muffled, for example if the sound

source is perceived as covered by something.

Balance of Sounds Out of balance

Well balanced

This attribute describes the possible difference

in loudness between the sound sources present

in the audio sample. The sound sample is well

balanced if it contains only one sound source.

The attributes presented in the Tables 1.2, 1.3 and 1.4 define one dimension of sound quality

at a time, the complex interrelation between each has to be assessed from a general, overall,

impression. In practice, every researcher establishes his own test protocol in order to elicit the

studied attributes as reported by Bech and Zacharov (2006). However, as explained by Borwick

et al. (2001, p.565-584), the testing protocol should limit the presence of nuisance factors. Nui-

sance factors may be of a bias nature or of external nature. A typical testing approach would

invite one, or many subject(s) to sit in a room where listening equipment is already installed.
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If the researcher wants to know the impact of the colour, shape or size of the device under test

(DUT) on the perceived quality, the subject will be allowed to see the DUT and - hopefully

- change his perception because of that, otherwise, the DUT will be hidden from the subject.

Then specific stimuli will be played and the subject will be asked to comment on the studied

attributes, either verbally of by way of a standard evaluation form. In this case, affective mea-

surement is of high interest. Bech and Zacharov (2006, p.65-67) explain in detail the affective

measurement: Preference tests, Acceptance tests and Appropriateness tests. For these tests, the

scales and statistical processing are described by the authors. The studies presented in the later

sections are essentially based on these tests, which although somewhat different rely on the

same process of elicitation and description of a phenomenon.

1.2.3 Loudness and earphone sound quality

As explained by Toole (2008, p.432), "loudness is the perceptual correlate of sound level. It is

dependent on frequency, sound level, incident angle, the duration of the signal, and its tempo-

ral envelope." The subjective judgement of the loudness amplitude level of a sound referenced

in SPL is expressed in phons. The phon is numerically equal to the median sound pressure

level in decibels of a 1000-Hz reference tone. This difference exists to demonstrate the sub-

jective aspect of the measurement. The normalized equal loudness curves are compiled in the

International Organization for Standardization (2004) (ISO226:2003). Equal loudness is de-

fined as an intensity sensation divided in two types of loudness models, the time-variant and

time-invariant models. By definition, the time-variant models should be processed using active

methods, beyond the scope of this work, which use a signal processor to analyse the sound sig-

nal and apply loudness corrections accordingly. The proper loudness compensation is expected

to have an important impact on the perceived quality, since it is an indicator of richness and

other descriptors of audio quality, as presented in Figure 1.11. In Figure 1.11, various descrip-

tors of the perception of sound are related to the relative variation of amplitude for a range of

frequency. For example, in the low end of the spectrum, a positive gain in amplitude is related

to a perception of solidity. Gabrielsson et al. (1990) noted that "The available evidence indi-

cates that an increase in sound level will usually increase the perceived fullness, spaciousness,
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Figure 1.10 Equal loudness curve - ISO226:2003. [Permission to use figure A.1 from

ISO 226:2003 was provided by Standards Council of Canada. No further reproduction is

permitted without prior written approval from Standards Council of Canada.]

and nearness as well as sharpness and brightness; a decrease in sound level gives the opposite

results". They then add: "[...] a program reproduced by a system with boosted treble may sound

even sharper and brighter if the sound level is increased while a reproduction with boosted bass

will probable sound even duller if the sound level is raised."

The first comprehensive loudness measurement was performed by Fletcher and Munson (1933).

It then became a reference until Robinson and Dadson (1956). The ISO226:2003 is the most

renowned loudness model. It lies between the model of Fletcher and Munson (1933) and that

of Robinson and Dadson (1956). A series of issues were listed by Moore et al. (1997) about

loudness models as they were presented in the ISO226:1997:

• Loudness models were mainly intended to predict the loudness of sounds presented bin-

aurally;
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• The ISO226:1997 did not correctly predict the relationship between monaural loudness

and binaural loudness;

• Contours are significantly affected by biases [such as sound transmission path in the low

frequencies];

• The models predict zero loudness (MAF in Figure 1.10) for the absolute threshold even

if the absolute threshold is statistically determined [by a method of average, standard

deviation of subjects threshold].

A definition of bias is given in 1.3.2. Moore et al. (1997) propose a new time-invariant loudness

model based on earphone measurements to limit the biases. In the International Organization

for Standardization (2004), these concerns were not addressed and since this standard is for

ontologically normal people aged between 18 and 25 inclusively, it has a limited application

for earphone development on a mass-consumer scale. Defining the best model to compensate

for loudness for earphones is yet to be presented, but the inclusion of a loudness model in

the frequency response seems to show more advantages than drawbacks. This is because most

earphone users are not in a fixed environment and the ambient noise changes, so the users

change the SPL of the earphone in order to keep a proper signal-to-noise ratio, as later presented

in section 1.2.4.1.Variations in SPL have an impact on perceived loudness and should be taken

into account.

1.2.3.1 Just-Noticeable Sound Changes

Just-Noticeable Sound Changes (JNSC) are the minimum variation of amplitude of a given

stimulus that can be perceived by a subject. As explained by Zwicker and Fastl (2007, p.175),

two types of assessments are possible for a variation of sound change. The just-noticeable

variation is a level of comparison which is used to adjust one source to match a known quality

reference source for a psychological attribute. Signal matching of a test apparatus to a reference

source is used for earphone design for loudness balancing. Bech and Zacharov (2006) explain

loudness balancing for headphones:
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Loudness balancing aims to match the level of headphone reproduction to that

of a source (e.g. loudspeaker) in a given sound field. The sound field often com-

prises either a free field or a diffuse field. Subjects listen to one-third octave, band-

pass filtered pink noise from the loudspeaker source and then over headphones.

The subjects then adjust the level of the headphone to match the loudspeaker’s

level using the method of adjustment. This process is iterated until the subjects

find the matching loudness level in each frequency band. Typically, eight subjects

are used for this process. Such methods are defined in detail in IEC 60268-7 and

have applications in both diffuse and free-field measurements [See section 2.2.1

for complementary information].

The other option is the comparison of differences, the just noticeable difference, between two

similar objects which are in essence the same but show differences that can be described by

a subject. This assessment depends on several factors. Is the assessment of monaural (1 ear)

or of binaural (both ears) nature? Is the type of stimuli used of a nature that would allow

the proper elicitation for which the test was designed for? These two Just-Noticeable Sound

Changes methods are used to test earphones, the matching of signal between a reference source

and the earphone is the most commonly used approach. The variation as a function of time

is used principally to explain the perceived quality of the same signal on the same listening

apparatus when one of the components is changed. The other aspect is related to the quality

of the design. The JNSC can be analysed in frequency, amplitude, phase, etc. The JNSC in

loudness is explored in section 1.2.3.2. The JNSC in frequency is mentioned in section 2.2.3.

1.2.3.2 Signal matching and loudness function

From an earphone designer’s point of view, loudness has specificities related to the character-

istics of reproduction, recording and mastering method used. Morgan and Dirks (1974) studied

the loudness discomfort levels (LDL) and the alternate binaural loudness balance (ABLB) for

earphones compared to a free-field equivalent. They concluded that "when the sound pressure

level in the ear canal under earphone or in the free field is accounted for, there are essentially no

differences between the two measuring conditions for suprathreshold loudness measures." It is
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to be noted that the evaluation was performed using audiometric earphones, which were sealed

to the ear by a cushion. The loudness balance in the earphones is modified by the occlusion ef-

fect when the earpiece seals the ear canal generating a different perception of loudness, as pre-

sented later in section 1.2.4.1. Keidser et al. (2000a) did compare loudness from a loudspeaker

to loudness in a occluded ear and found a discrepancy in the reading, a t-test for dependent

samples and "the difference between the open ear and the occluded ear measurement is highly

significant (p=0.0008)" The results are presented in table 1.5.

Table 1.5 Average equal loudness levels measured in dB SPL with a

probe tube less than 6 mm from the eardrum (N=11). The figures in

parenthesis show the intersubject standard deviation

[From Keidser et al. (2000a)]

Frequency [Hz] Open Ear [dB SPL] Occluded Ear [dB SPL]
500 60.6 (5.1) 70.7 (5.3)

1500 62.5 (3.1) 62.8 (1.8)

3000 67.1 (3.6) 70.4 (4.6)

The nature of this difference is not explicitly explained by the authors. They review a many

factors that could influence this perception and comment on the likeliness of the impact. The

loudspeaker location and training of the listener was the only contribution that was left for

further testing while the other potential contributor - distortion, mechanical vibration, etc. -

were deemed as unlikely to contribute to this effect. In the case of LDL, Morgan and Dirks

(1974) found that subjects are no more tolerant to loudness, when reported on a SPL scale,

whether with earphones or with loudspeakers. This report of loudness difference from Keidser

et al. (2000a)) seems to relate to the so-called missing 6 dB effect discussed in section 1.2.3.3.

1.2.3.3 The missing 6 dB effect

Völk and Fastl (2011) introduce the issue by stating that: "in Acoustic Measurements, Leo L.

Beranek constitutes supra-aural [headphone]s to require 6 to 10 dB more level at the eardrums

to elicit the same loudness perception as a free sound field [...]". They recall from Fastl (1985)

that: "typically the sound signals at the eardrums are regarded as the most essential acoustical
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input parameters leading to auditory sensations in subjects." The 6 dB difference at minimum

audible pressure (MAP) between a loudspeaker source and an earphone is attributed to method-

ological shortcomings, as identified by Killion (1978). However, as presented above, the study

by Keidser et al. (2000b) identified a similar effect for insert earphones in levels above the

minimum audible pressure (MAP), interestingly the difference is 10 dB, as noted by Beranek.

Völk and Fastl (2011) explain that "different inter-aural phase relations are not detected by

the sound level" and when explored from a binaural perception point of view, "comparing the

situations with the same (root-mean-square) sound pressure levels caused by headphone and

loudspeaker box reproduction does not assure the same ear signals. [Because] identical time

functions of the ear signals in headphone and loudspeaker reproduction on the contrary actually

leads to equal loudness perception at equal level in the auditory canal." Their conclusion is that

the same loudness perception can only be elicited if the auditory event position is comparable

in both cases.

1.2.3.4 Identifying the reference recording SPL to differentiate the proper loudness

transfer function

In Figure 1.11, an interesting representation of the complexity of managing loudness in sound

reproduction is presented by Alten (2011). Perceptual evaluation of the audio quality is a com-

pound of many of these features and the attempt to dissociate (elicit) each of them individually

to explain their impact on the overall experience proves to be a challenge in itself because it

implies that the recording and restitution chain are fully controlled.

Unfortunately, no recording explicitly states the recording level at which the original sound

was recorded nor the recording equipment that was used, making it difficult to evaluate the

right listening level at which a reproduction equipment could be evaluated. Furthermore, the

equipment used to do the recording in the first place has been evaluated by using recordings

at an unknown SPL with equipment of unknown quality. This conundrum, identified by Toole

(2008), is presented in figure 1.12. Gabrielsson et al. (1974) noted this fact in their experiment

: "This may partly be explained by the reference to the sound level and the frequency range of
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the respective music sections. A reduction of its sound level, [...], makes this music lose much

of its fortissimo."

Figure 1.11 Representation of the various qualitative names used in sound definition in

relation to magnitude and frequency. [Reproduced with permission from Alten (2011)]

Identifying the proper SPL to compensate for the loudness difference is even more complex to

manage because, as presented by Bech and Zacharov (2006, p.99-105) "the basic purpose of

the signal is to excite the perceptual differences [like the loundness] between the devices under

test, for the chosen response attribute(s). If there is no energy in the signal at low frequencies,

it is not likely that any differences in the attribute related to the low frequency range will be

detected between the devices under test." As it can be seen in Figure 1.10, there is already

a lack of loudness in the low frequencies, when it is combined to the absence of bass in the

recording, nothing is left for the evaluation. Another challenge linked to music reproduction

is to identify the average SPL at recording and mixing, since it has an impact on the quality

of the reproduction. On the one hand, if a flat frequency response transducer is set to produce

the same average SPL as the recording, the subject will have the same perception. On the other
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hand, if the SPL is set at a lower - or higher - level, there will be a lack - or an over-presence

- of loudness perceived by the subject. The perception between the reproduced sound and

the original sound will be skewed. This is because "at low frequencies, the [loudness] curves

converge. This means that as the overall sound level is reduced, the low bass decreases in

perceived loudness faster than the middle and high frequencies, eventually becoming inaudible.

[...] Many loudness controls mistakenly try to follow the shapes of the equal loudness contours

rather than the difference in the shapes , and they boost the highs as well." as explained by

Toole (2008, p.434).

Gabrielsson et al. (1974) identified explicitly the levels for the songs they used in their psycho-

acoustics experiments before they recorded them on a single tape for a single level playback

in different loudspeakers. This gives insight into the wide variety of levels at which recording

can be made ranging from 70 dB SPL for a chamber choir to 95 dB SPL for a philharmonic

orchestra playing fortissimo.

One might enquire about the feasibility of comparing a live performance with the same recorded

performance over reproduction equipment. Toole (2008) gives insight on the difficulties to

achieve such an endeavour. The following are two reasons of those Toole identified. The first

reason given by Toole is that very few people have listened to a singer or a musical instrument

from where a recording microphone would be positioned. In fact, a recording microphone is

placed far from a musician accentuates certain frequency bands resulting in a more strident

noise than what is heard by the audience. It is the sound engineer’s work to balance the entire

set of recording microphones to reproduce what a person would normally hear in the audi-

ence. Another challenge is the time it takes for the sound engineer to master the recording, as

it may take up to several days to achieve an accurate repositioning of the instrument. Such a

long time difference between listening to the live and recorded performances might make the

comparison difficult and therefore affect the reliability of the test. Other factors contribute to

the challenge of comparing a live performance with a recorded performance. See Toole (2008)

for more details.
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Figure 1.12 Circle of confusion describing the conundrum of sound reproduction.

[Adapted with permission from Toole (2008)]

1.2.4 Ear canal sealed by the earphone

Sealing the ear canal with an earphone produces two impacts on the performance of earphones

and is to be taken into account. The first is the attenuation of outside noises. The second is the

residual sealed ear canal volume which changes the impedance of the ear canal, as presented in

section 1.1.4, and has a resulting effect on the earphone’s frequency response. The attenuation

is tested by different methods: Real Ear Attenuation at Threshold (REAT), Microphone In

Real Ear (MIRE), Field-Microphone In Real Ear (F-MIRE), etc. However, the REAT is still

considered the "gold standard" of attenuation measurement, as presented by Berger (2005).

Figure 1.13 presents the attenuation of EERS, a custom fit earphone, by Sonomax® (Mon-

tréal, Canada). The earphone was tested on 20 subjects, 2 times (N=40) for 7 frequencies. The

straight line is the normal distribution expected from the sampling while the individual sub-

jects’ data is represented by markers. It can be seen that some subjects get amplification for
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the 125 Hz, 250 Hz and 500 Hz octave-bands corresponding to a negative attenuation. This is

likely due to resonance of the coupling of the earplug with the subjects’ ear canals.
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Figure 1.13 Normal probability plot for 7 octave band frequencies of the attenuation in

dB of custom fit earphones tested according to ANSI S12.6.

1.2.4.1 Increase of the Signal-to-Noise Ratio

A Signal-to-Noise Ratio (SNR) is a measure of the square of the amplitude of a signal over

the square of the amplitude of the background noise. The attenuation offered by earphones

modifies the listening behaviour of the wearer in a positive way. It allows a safer listening

level and, as a result, helps preserve one’s hearing, as reported by Voix et al. (2008). They

concluded that "the preferred listening level (PLL) is, for a given individual, essentially driven

by the background noise level." The first impact of the attenuation of sound by the earphone is

the increase of the SNR between the sound played back by the earphones (inside the ear canal)

and the ambient noise (outside the earphone). Voix et al. (2008) concluded that: "Using a

simple statistical analysis on existing published data, the percentage of wearers using a regular

non-isolating earphone exposed to a potentially dangerous noise dose has been established

to 45.1%. The use of the proposed custom isolating earphone would lead theoretically to a

substantial decrease (down to 3.1%) of the percentage of users putting their hearing at risk."
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The attenuation of an earphone is measured using the same standard as a hearing protector and

the International Electrotechnical Commission (2010a) refers to ISO 4869-1 for the attenuation

testing.

As a complement to the observations of Voix et al. (2008), Shimokura and Soeta (2012) "ex-

amine the listening level of music through earphones in the noisy environment of a train car".

They took the stringent hearing protection recommendations of the WHO, recommending a

limit of 75 dB(A) for a 8-h period and 70 dB(A) for a 24-h period and compared the impact on

the noise level generated by the train car to the level generated by the intra-concha earphone,

as set by the subject and measured by a IEC 711 coupler (see section 2.2). They concluded that

the optimum level of music volume heard through a headphone increased as the train car noise

level becomes higher. These results correlate with Voix et al. (2008). Furthermore, a study by

Keith et al. (2011) in a quieter environment found the same trend, that is, playback levels are

driven by background noise.

Relating to previous studies establishing the relation between the listening levels and the signal-

to-noise ratio, it seems that people do not necessarily listen to music at higher levels with ear-

phones than on loudspeakers. The main indicator is the difference between the outside noise

and the inside noise, so an attenuation of 20 dB or more provides sufficient SNR for the back-

ground noise not to have an influence on the preferred listening level. This will greatly help

reduce the potential hearing loss of individuals who use earphones.

1.2.4.2 Effect of sealing the ear canal on the low frequencies reproduction

As presented in Borwick et al. (2001, p.596) and explored again by Poldy (2006), creating

a seal between the earphone and the ear canal has a direct impact on the reliability of the

frequency response for low frequencies reproduction.

p = ξωρc (1.1)

In equation 1.1, the proportionality of the increase of the displacement (ξ) to match the decrease

in frequency (ω) is explicit in order to keep the same pressure (p). So, for a same excursion of
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the diaphragm, a cut-off frequency will appear if there is a leak. This phenomenon is a likely

reason why people often comment about the lack of bass in the earphone sound reproduction.
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Figure 1.14 The effect on the frequency response function of a leak in the earpiece.

Figure 1.14 presents the frequency response function of three typical cases for an earphone

designed to seal the ear canal: a properly sealed earphone, a properly inserted earphone with

a small leak and a wrongly inserted, not sealed earphone. Thus, by sealing the ear canal, the

diaphragm displacement acts like the displacement of a piston in a closed volume (Vx). The

displacement reduces, or increase, the volume of a known quantity, increasing the pressure (Px)

regardless of the frequency. In a first approximation, the increase in pressure, proportionally to

a reference pressure of 20 μPa, defines the sound pressure level experienced by a subject.

P1V
γ
1 = P2V

γ
2 (1.2)



41

This approximation does not take into account the displacement of the ear canal from sound

pressure and other artifacts linked to the masking of sound by human body noise, accentuated

by sealing the ear with an earphone.

1.3 On the definition of an earphone target frequency response

Many attempts to define a target frequency response have been made by studying the real ear

transfer function in different fields. The resulting frequency responses have been evaluated for

sound quality with psycho-acoustic tests. This method seems to be the preferred way to achieve

accurate sound reproduction with earphones, essentially because the most important aspects are

the signal at the eardrum and how it is perceived.

1.3.1 Issues related to earphone sound reproduction

Before establishing what is the preferred frequency response for an earphone, it is of interest

to know the main issues raised about the sound reproduction with earphones. Sakamoto et al.

(1976) listed two of the main issues pertaining to earphone sound reproduction:

• The sound image remains "within" the area of the head;

• there is a lack of richness in the quality of reproduced sound.

The richness of the quality of reproduced sound greatly improved since the publication of their

article, but the challenge of the "out-of-the-head" music listening is still very present, even in

today’s publications. Sakamoto et al. (1976) listed possible reasons contributing to the aspect

of in-head listening (IHL):

• Lack of effect of head movement relative to the sound;

• the absence of bone conduction, [a phenomenon by which sound travels to the auditory

system by a solid path and not only by the aerial path] ;

• distortion in the [sound reproduction chain, including headphones];

• incorrect transfer function from the earphones to the [eardrum].
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The lack of effects related to head movement, as covered in section 1.1.2.2 is inherent to ear-

phone use. Compensation for this can be achieved through a complex convolution of sound and

head tracker sensors, not covered here because this thesis analyzes time invariant frequency re-

sponses of earphone. Bone conduction impact as an indicator of sound quality seems of minor

importance compared to the aerial path for most of the listening experience. The distortion

levels are one or two orders of magnitude less important, as presented in section 2.2. The in-

correct transfer function from the earphone to the ear is deemed to have the most impact on

sound quality, as explored in section 1.3.2. The approach of Sakamoto et al. (1976) to compen-

sate for the in-head sound location consists in superimposing a delayed signal to the original

signal, to match the delay present in a room with loudspeakers playing and achieve the acoustic

ratio (AR) defined as:

AR =
ER

ED

(1.3)

Where ER is the acoustic energy density of reflected sound and ED, the acoustic energy density

of direct sound. This approach is a basic lead, lag method as presented in section 1.1.2.2.

A research conducted by Toole (1984), who undertook a very comprehensive work to define

what is implied in the acoustics and psycho-acoustics of headphones, states that:

This very specific kind of performance is not likely to happen by accident. [...]

Mainly the evidence suggested that in-head localization occurred when the acous-

tical signals at the ears did not fit a familiar pattern. [...] This is simply loudspeaker

stereo with the loudspeakers whispering in the ears. Sound images (as opposed to

vague spatial impressions) located between the ears will occur only for highly-

correlated sounds arriving at the ears within about 0.7 ms of each other. [...] How-

ever, at the present time serious listeners are likely to find the use of headphones

an unnatural if not an unpleasant experience."

He then concludes: "it is not only that the products fail to meet the proper objectives; the proper

objective has not been defined."
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1.3.2 Comparison of studied frequency response

Many studies were performed to find the frequency response that would elicit a virtual repro-

duction from a stereo signal. These studies will be presented in a chronological order to ease the

relation and concerns of latter studies in relation to former ones. Also, this section discusses the

earphone and headphone frequency response function. Since most of the measurements were

performed in the vicinity of the eardrum or at the entrance of the ear canal, it is assumed that it

is applicable for circumaural as well as insert earphones.

In their study, Gabrielsson et al. (1990) shaped the frequency response using signal processing

to evaluate the impact of a band-limited gain on the preference of subjects in music reproduc-

tion. Their results are summarized in Table 1.6, presenting many perceptual descriptors as well

as their impact on sound quality. It is a vivid representation of the complexity of audio quality

assessment illustrating that it is more complex than identifying a generic frequency response.

This study looked at jazz music, pink noise and the female voice and finds different results for

each type of stimulus. Other type of music might yield different conclusions on the preferred

frequency response of earphones. Thus, it would be of interest to adjust the target frequency

response presented in this section if the earphone is to be dedicated to a specific music type.

One of the first studies about earphones that used a probe microphone and a coupler to relate

a real ear acoustical load to a frequency response came from Villchur (1969), who published a

study on how to calibrate a headphone in free-field. He readily noted the effect of the cushion-

fit variations and the acoustic gain of the earphone. His study was performed for circumaural

type earphones. In the same line of thought, Toole (1984) demonstrated what a good and a

poor earphone frequency response would be, reaching conclusions similar to Villchur (1969)

in many aspects. He also noted the possibility of using the diffuse-field approach for com-

pensation. Theile (1986) concludes that "a flat diffuse-field response, measured with a probe

microphone in the auditory canal of real ears, defines the optimum correct performance".

In a complementary approach, Møller et al. (1992) measured the HRTF of 24 subjects where

they found very large variations in amplitude for frequencies as low as 2.5 kHz. Then, Møller
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et al. (1995a) established the design criteria for headphones by measuring the diffuse-field and

free-field transfer function. They observed that "above 8 kHz quite large variations are seen -

5-10 dB for the diffuse-field and slightly higher for the free-field calibration. The peaks and

dips of this variation can be seen in the work of Hammershøi and Møller (1996) in which they

measured at different sound transmission positions to and within the ear canal. The variability

in the multiple options leaves place for an educated decision on what is a good frequency re-

sponse for an earphone or a bad one. As stated by Borwick et al. (2001, p.653), "a palate of

different frequency responses is available to cater for individual preferences, and each manu-

facturer has its own headphone philosophy with frequency responses ranging from flat to free

field and beyond." However, that variability is not very high below 8 kHz, giving leave for

"the assumption in [Lorho (2009)]that an optimal perceived quality exists for a specific com-

bination of parameters values." Lorho (2009) studied the effect of the 3 kHz and 11 kHz peak

amplitude by asking 80 subjects to assess what they preferred. His experiment opened a new

chapter in earphones target frequency response by concluding that a 3 dB amplitude at 3.1 kHz

is optimal. An exploration of other options by Fleischmann et al. (2012) proposed that Lorho’s

target amplitude is not optimal. The former showed by their results from different groups that

no specific frequency response would yield unequivocal results.

This observation can be also found in Olive and Welti (2012a); Olive et al. (2013). They

have shown by their results that other options (like the diffuse-field approach by Møller et al.

(1995a)) cannot be discarded altogether since their mean preference, even if lower, are still

rated to a level leaving room for discussion. Olive and Welti (2012a); Olive et al. (2013) con-

cluded that listeners prefer a non-coloured frequency response with a good spectral balance.

They defined a frequency response based on the measurement explained in section 1.1.2.2 and

concluded that the frequency response they identified offers the best performance. Essentially,

their frequency response curve is similar to the frequency response presented in Figure 1.5 with

a 3 kHz amplitude of 10 dB.

This conclusion is based on several factors. One of these is the sequential contraction bias: "the

preceding stimuli will have an influence on the assessment of the succeeding stimuli. So the
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general rule for context effects is that humans adapt to the environment that they are presently

in. This means that evaluations of impressions will not - as a general rule - be absolute, but

will always be a function of the surroundings – that is the context." as stated by Bech and

Zacharov (2006, p.87). This problem has been greatly dampened by Olive’s randomization of

stimulus and double-blind testing. Although, no study is free of the bias effect: "A bias effect

that is independent of context would be the general conservative nature of subjects to save

parts (upper and lower) of the rating range to be assigned to the yet unknown stimuli." Again,

Olive and Welti (2012b) used trained listeners for their experiment, meaning that these subjects

have a sense of magnitude on sound quality. They have a knowledge of the vocabulary and are

familiar with what stimulus variations to assess, so it can be assumed that they use the full range

of the scale. Using a trained panel of listeners creates other biases, like the transfer bias, where

they refer extensively to their background instead of focusing on the samples in the study.

Unfortunately, the most important factor is that a large number of subjects are needed, typically

in the range of hundreds, to obtain statistically valid results. The reason is that subjects differ

in hearing abilities, interests, ability to work as test subjects, and so on, as noted by Bech

and Zacharov (2006, p.121). This is a very important limitation of most of the studies on

earphone sound signature: they rely on several subjects and several variations of variables. It

limits the relevance of most studies on audio quality assessment. Experiments by Olive and

Lorho had more subjects on their panel, and their conclusions are also the most challenged by

other authors.

1.4 Conclusions on the psycho-acoustics of earphone

In this chapter, the fundamentals of psycho-acoustics related to earphones are presented. The

large variability of the coupling between the earphone and the ear is identified. This includes

several effects, such as the impact of occluding the ear on the bass reproduction, that contribute

to the perceived quality of earphones. The words used to describe this impact, for example thin,

boomy, and full is listed for each of the attributes of sound perception.
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This chapter also highlights the differences between listening to a distant source and listening

with earphones. The impact of the HRTF approximation on the perceived quality of earphones

is considered very important since it is a natural effect people are naturally accustomed to. This

is why many studies try to recreate a frequency response based on this concept. However, at the

time of the writing, no frequency response function could be said to constitute the definitive

target response. The author concludes that this is most likely because of the inter/intra sub-

ject variability, something less prevalent for loudspeakers. Another factor contributing to this

variability is the coupling between the ear and the earphone, something not experienced with

loudspeakers. The only agreement of all the studies presented in this chapter is the need for a

3 kHz amplitude boost in order to recreate the resonance of the open ear canal.
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Chapter 2

MEASUREMENT OF EARPHONES: METHODOLOGY AND DEFINITION

This chapter presents the various standards and metrics related to the measurement of ear-

phones and the measuring methodology used in order to compare simulations to objective data.

It covers the electrical measurement -the impedance- and the acoustical measurement -the fre-

quency response and distortion- of earphones. It also covers the particularities of each test by

explaining specific aspects related to earphones that differ from regular size loudspeaker.

Two types of measurements are possible: collocated and non-collocated measurement of ac-

tuation. As defined by Janschek (2012, p.264), collocation happens "when the actuation and

the observation of motion (measurement with the appropriate sensors) takes place on the same

body [...]" In a collocated system, the measured frequency response of the system is indepen-

dent of the position of the sensor while in a non-collocated system, the position of the sensor

will have an impact on the measured frequency response.

COUPLER

B) Non-collocated measurement

TRANSDUCER

SENSOR

A) Collocated measurement

Figure 2.1 Difference between a collocated measurement

and a non-collocated measurement.
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2.1 Collocated measurement of earphones

The main collocation measurement of an earphone is the impedance/frequency characteristics.

The International Electrotechnical Commission (2010a) requires a complete measurement of

the impedance for a frequency range of 20 Hz to 20 kHz (the hearing spectrum). The input

signal shall be a variable sinusoidal voltage or current at an amplitude allowing for linear

operation of the transducer. This requirement might be more difficult to achieve for balanced-

armature transducers because their building architecture is based on the cantilever principle,

as extensively explained by Jensen (2009); Jensen et al. (2011). The impedance measurement,

by its collocation nature, can also be used as a basis to determine the modelling parameters of

a transducer. The most renowned modelling method based on the impedance measurement is

the small-signal analysis of a loudspeaker. The small signal analysis is the process by which

nonlinear systems are approximated by a linear equivalent for an input signal amplitude where

the nonlinear and the linear system approximation yield similar responses. For the equations

of the small signal parameters from the impedance measurement, refer to Appendix I.
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Figure 2.2 Modulus of the impedance curve of a micro-loudspeaker measured with

the method presented in D’Appolito (1998).
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2.1.1 Application to moving-coil micro-loudspeaker

As stated previously, the small-signal is widely used and extensively explained in the literature

e.g. : Struck (1987), D’Appolito (1998). One could comprehend a small signal as a signal that

yields a linear (k) incremental pressure output (Pout) for the studied frequency band in relation

to the electrical input (Vin).

k ∝ Pout

Vin

(2.1)

An important difference exists when a moving-coil micro-loudspeaker is measured, compared

to a larger size driver, a generic name for electro-mechanical machines also used for loud-

speakers, for the equivalent compliance volume parameter
(
VAS

[
N
m

])
. The equivalent volume

parameter is an equivalent volume of air acting upon a piston of surface area (SD [m2]) that

represents the same compliance as the compliance - reciprocal of stiffness - of the driver’s sus-

pension. One of the most renown method to measure the VAS is by the close-volume method.
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Figure 2.3 Impedance curve of a moving-coil micro-loudspeaker measured in free

air and with a 2cc closed volume air load.
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This method requires two measurement. The first measures the driver’s impedance to identify

the resonance in the free air. A second measurement measures the impedance of the same

driver when it is sealed against a known closed volume, in the case of Figure 2.3 it is 2 cm3,

acts again the membrane to shift the resonance. The main challenge with the added stiffness by

closed-volume method is that "the box size used must cause the in-box resonant frequency of

the driver under test to shift upwards by 50% or more of its free-air value in order to obtain a

reliable result" as stated by D’Appolito (1998, p.27). For a micro-loudspeaker, it means shifting

from about 500 Hz to a minimum of 750 Hz or even more depending of the natural resonant

frequency, which might be difficult to achieve since VAS is proportional to the square of the

driver’s surface, as it can be seen from equation 2.2.

VAS = ρc2CMSS
2
D (2.2)
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.
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Given the small diameters and the difficulty to properly adjust the air volume in front of the

driver, the 50% criteria might be difficult to achieve and not repeatable. As presented in Figure

2.4, the driver radius has more impact on the selection of the air volume than the compliance

of the membrane. So, for a low compliance, small radius driver, the VAS necessary to achieve

adequate results is very small. For example, the micro-loudspeaker used in the article presented

in section 3.3, is of an equivalent radius of .006 m and the driver’s suspension compliance is

13.41× 10−3 m
N

, so a volume of the order of magnitude of 10−6 m3 is necessary. In this case, an

alternative is to limit the resistance from air to ease the displacement of the diaphragm and shift

the peak to a lower frequency to achieve the 50% difference between peaks. This means that

for the same driver, a 500 Hz peak has to be shifted down to approximately 333 Hz to reach

the same accuracy. This peak shift is possible by placing the driver into a sealed enclosure

and lowering the pressure in order to achieve the 50% mark. VAS is an equivalent parameter

characterizing how a loudspeaker behaves and is also used to change the load, and the resulting

impedance. RE , the voice-coil resistance, and LE , the voice-coil inductance, are more com-

plex to measure since they are frequency dependent. D’Appolito (1998, p.32) explains how to

compute them from the impedance measurements. It requires access to the impedance curve

measurement in Figure 2.2. RE is the real part of the impedance curve and is equivalent to RDC

until the heat loss becomes significant, then RE increases and becomes frequency dependent.

The voice-coil inductance, LE , can be computed using equation 2.3.

LE =
1

4π2f 2
0CES

=
0.0253

f 2
0CES

(2.3)

Equation 2.3 is valid at the second zero phase, which can be seen in Figure 2.5, and is where the

voice-coil resistance and inductance creates an impedance rise. In order to determine voice-coil

inductance with reasonable accuracy at frequencies above the second zero phase point, both

the magnitude and phase of the driver impedance are required. It can be computed using the

following steps:
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Figure 2.5 Frequency response function of an earphone (top) and the phase (bottom)

with the second zero phase identified.

a. At each frequency of interest, compute the reactive component of driver impedance

where |Z| is the impedance magnitude and θ is the impedance phase angle;

X = |Z|sinθ (2.4)

b. At each frequency f, for which LE is desired, correct the reactance determined in step a.

for the effect of CES using:

XL = X +
1

2πfCES

= X +
0.1592

fCES

(2.5)

c. Compute LE using:

LE =
0.1592XL

f
(2.6)

Other methods using curve match - or an empirical transfer function - can also be used depend-

ing on processing power available.
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2.1.2 Application to balanced-armature receivers

As for moving-coil drivers, balanced-armature receivers have a second-order impedance curve.

When measured, the impedance curve will have the same shape as a moving-coil micro-

loudspeaker. An important difference is the difference in the voice coil LE , which is typically

more significant than for a moving-coil configuration. An impedance curve can be seen in

Jensen (2009, p.7, Figure 3.3.1). Another difference comes for the actuation process where

the armature is in a cantilever position. Figure 3.14 presents a schematic view of a balanced-

armature driver. In Jensen (2009, p.3, Figure 2.1.3), one can see the cantilever armature and

the coil around it dedicated to it’s actuation. Jensen (2009); Jensen et al. (2011) is very com-

prehensive as for measurement and explanation of the balanced-armature receivers design and

need not to be further discussed from a measurement point of view since the same computation

applies for non-collocated measurements.

2.2 Non-collocated measurement of earphones

Measuring the various drivers and receivers in their enclosure is done to determine the Fre-

quency Response Function (FRF) as well as other metrics: Total Harmonic Distortion (THD),

Intermodulation Distortion (IMD), Rub and Buzz, etc. used in the quality definition of an ear-

phone and are compared to the perception of a listener. The recommended method to measure

earphones is to use a coupler originating from telecommunication and audiology. This is now

Table 2.1 Table of the type of coupler by their commonly used names and

some of their characteristics

Common Name Standard Operation Range [Hz] Main use
Ear Simulator IEC 60318-1 20 - 10000 R & D

for Telephonometry (Formely IEC 60711) (up to 16000 (Circumaural

for certain conditions) & Supra-aural)

IEC 711 IEC 60318-4 100 - 10000 R & D

(Formely IEC 60711) (up to 16000 (Intra-aural)

for certain conditions)

2 cc coupler IEC 60318-5 125 - 8000 QC/QA

(Intra-aural)
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standardized by several IEC standards which defines the measurement tools as well as the mea-

surement methods. Three of the couplers that are standardized as earphone measurement tools

are presented in table 2.1. Figure 2.6 presents, as an example, the fine band transfer function re-

sponse between the original signal (white noise) and the coupler (IEC 60318-4) signal recorded

by a data acquisition system and processed with MATLAB.
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Figure 2.6 Exemple of a transfer function between the electrical input and the measured

SPL (top) and coherence (bottom) of an earphone measured on an IEC 60318-4 coupler.

The coherence between the input signal and the recorded signal by the coupler is not unity

below 100 Hz, as expected from the standard. Toole (1984) noted that "in general it seemed

reasonable to rely on replica-ear measurements at frequencies above 300-500 Hz". While the

improvement of measurement tools is noticeable, reliable coherence of measurements under

100 Hz is still very difficult to achieve. This is principally because of noise pollution which

is very difficult to eliminate from the surroundings. The use of a room especially designed to

eliminate outside noise pollution, such as an anechoic chamber, greatly improve the coherence.

When such an environment is available, it is necessary to confirm if coherence can be achieve

under 100 Hz on a case-by-case basis. The IEC 60318-1 coupler is efficient down to 20 Hz
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because it is entirely made of steel which is less affected by the outside noise pollution than

when coupled with a rubber ear replica.

For non-collocated measurement of earphones, the following testing conditions should be cal-

ibrated to ensure the validity of the measurement:

• A standardized coupler is used as a measurement tool. The selection of the coupler is

based on the type of earphones to be measured, see Table 2.1;

• the coupler and the related equipment are calibrated with a sinusoidal source of a known

frequency to 94 dB (1 Pa when referenced to 20 μPa). The International Electrotechnical

Commission (2010a) requires 500 Hz as a reference signal. However, most commercial

calibrators are set to produce a 1 kHz reference sinusoidal wave since it is defined as

the preferred reference frequency by the International Organization for Standardization

(1997);

• the earphone is inserted - or pressed against the head - with a known application force,

ideally representative of the average force subjects would use to insert the earpiece.

As for any other type of measurement, the main purpose of the control of these variables is to

ensure a reproducibility of the tests, when a variable is changed, or for an independent tester to

be able to replicate the measurements.

2.2.1 Frequency Response Function

A frequency response function is a dependent magnitude plot of a certain physical quantity as

a function of the frequency of a known, and generally fixed, stimulus. For more details about

the nature of the frequency response functions, see section 3.1.1. Frequency response function

are typically used in earphone measurement to:

• Assess, through correlation, the electro-acoustical output to the audio quality of the sys-

tem;

• determine the natural frequency and harmonics of a system;
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• identify stiffness and the relative damping;

• identify the cut-off frequency of the system.

Other uses of the frequency response functions exist based on the application. The assessment

of sound quality is a comparison between the preference model presented in section 1.3 and the

actual frequency response measurement. Typically, the frequency response also provides a first

indication of the distortion of a system, when measured in fine bands, because the response

curve presents near-random oscillation usually in the high frequencies. The natural frequency

of a system and its relative damping is essentially the collocated measurement presented in

section 2.1 translated into a non-collocated measurement. However, an amplitude variation

in the impedance curve might be affected by the coupler load and the acoustical enclosure

the transducer is encapsulated in. In this respect, the acoustical and the electrical frequency

response function provide complementary information. The relation between the two measure-

ments depend on the sensor location. In the case of headphones, the sensor is an ear simulator,

as presented in section 2.1.

GE,A(ω)
(Loudspeaker ) 

(Acoustical )
PA,out(ω)

GE,E(ω)
(Loudspeaker ) 

(Electrical )
VE,out(ω)

VE,in(ω)

HA,E(ω)
(Microphone)

PE,out(ω)

MEASUREMENT 
LINK

Figure 2.7 Presentation of the Frequency transfer function and the link between

the acoustical and electrical measurement of the driver under test.

The measurement relation, for a linear time-invariant (LTI) system, which is typically the case

for moving-coil micro-loudspeakers for small displacements, is given by equation 2.7. The

limit of that relation is the uniformity of the membrane, i.e. the membrane acts like a rigid

body. This limit is represented by the dotted vertical line in Figure 2.8. A phenomenon called
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the cone breakup may occur, this means that not only does the membrane have axial modes

when actuated, but the actuation force and the membrane movement become out of phase with

radial modes. A demonstration of the measurements that characterizing a cone breakup has

been made by Klippel and Schlechter (2006).

GE,E(ω) =
VE,out(ω)

VE,in(ω)
⇔ GE,A(ω) =

PE,out(ω) · VE,in(ω)

HA,E(ω)
(2.7)

Where VE,in(ω) is the voltage used to stimulate the DUT. VE,out(ω) is the voltage across the

driver. PA,out(ω) is the acoustical pressure generated by the loudspeaker and measured by the

microphone. PE,out(ω) is the voltage generated by the microphone when stimulated by the pres-

sure PA,out(ω). The transfer function G and H are those of the loudspeaker and microphone,

respectively. Two dotted boxes in in Figure 2.8 identifies artefacts in the frequency response

that could be related by the relation presented in equation 2.7.
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Figure 2.8 Presentation of the frequency response of a micro-loudspeaker measured in a

IEC 60318-4 coupler and the impedance measurement of the same micro-loudspeaker

with the IEC 60318-4 coupler as air load.

The International Electrotechnical Commission (2010a) allows for a field comparison of the

frequency response measured by test subjects using the loudness matching method. This fre-
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quency response would be a loudness response of the earphone, not an SPL frequency response.

It is of interest, but also introduces more variability with problems such as the "missing 6 dB"

and the inter/intra subject variability, as explained in section 1.2.2. As recommended by the

International Electrotechnical Commission (2010a), the frequency response function of the

pressure output is measured using a low to high swept-frequency for the frequencies between

20 Hz and 20 kHz. The result is then plotted on a scale in which a 50 dB amplitude is of the

same size as a decade on the frequency axis. In other terms, to cover two decades (20 Hz to

20 kHz), the amplitude of the plot will be of 100 dB.

2.2.2 Harmonic Distortion

For an earphone, the International Electrotechnical Commission (2010a) establishes the spec-

ification of the harmonic distortion measurement and requests two measurements: harmonic

distortion by order (HD) and Total Harmonic Distortion (THD). Temme et al. (2012) explain

that "in an electromagnetic driver, the force factor of the motor, the electrical inductance of the

voice coil and the stiffness of the cone suspension are nonlinear functions of the cone excursion.

A strong 2nd harmonic will indicate an asymmetry of these characteristics along the excursion

range and/or poor centering of the voice coil in the magnetic gap. A strong 3rd harmonic will

reveal a symmetrical alteration at both ends of the excursion range." Further details can be

found in the work of Cunningham (1949). The equations to calculate the harmonic distortion

are:

• harmonic distortion of the nth order (n = 2 or 3), which is the ratio of the output sound

pressure Pf at n times the input frequency to the total sound pressure PfN :

HDn [%] =
Pfn√

Pf
2
1 + Pf

2
2 + . . .+ Pf

2
N−1 + Pf

2
N

× 100 (2.8)

Converted in dB:

HDn [dB] = 20 log10

(
HDn[%]

100

)
(2.9)
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• total harmonic distortion, which is the ratio of the r.m.s. sum of the output sound pres-

sures at multiples of the input frequency to the total sound pressure:

THD [%] =

√
Pf

2
2 + . . .+ Pf

2
N−1 + Pf

2
N√

Pf
2
1 + Pf

2
2 + . . .+ Pf

2
N−1 + Pf

2
N

× 100 (2.10)

Converted in dB:

THDn [dB] = 20 log10

(
THD [%]

100

)
(2.11)

Vanderkooy and Krauel (2012) reported "that in a room, one could often find nodal positions

for which the fundamental was nearly absent, so that very low distortion values were audible.

On headphones, and for typical positions in the room, the distortion needed to be over 1% to be

audible!" Using equation 2.11, a total harmonic distortion of 40 dB under the fundamental for

earphones might not impede on the audio quality. Harmonic distortion might not be, in itself,

an issue. The Perceptual Evaluation of Audio Quality (PEAQ) tool, as standardized by the ITU,

is dedicated to the assessment of the perceived impact of distortion (including harmonic dis-

tortion) as a source of non quality. It is demonstrated that distortion is dependant on the nature

and type of distortion, even or odd, random or periodic, etc. For harmonic distortion, Temme

et al. (2012) state that "even order harmonics (especially powers of two multiples of the fun-

damental frequency) coincide with perfect octave intervals on the musical scale and can even

enhance the sound." The audibility of harmonic distortion is influenced by loudness, temporal

and frequency masking and other factors that are not considered in HD or THD calculations.

As such, these distortion metrics are not good indicators of the perceptual effects. However,

they can be useful for identifying and assessing nonlinear behavior in the loudspeaker.

2.2.3 Intermodulation Distortion

When two sine waves are used as a system’s input, the system’s output signal should con-

sists of a sum of only two sine waves. If the system is not ideal (nonlinear), its output signal

contains sine wave components at frequencies other than those of the input signal. This is

called intermodulation distortion. If we suppose the frequency components of the input signal
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as f1 and f2, in general, the frequency components of the output intermodulation components

will be (nf1 ±mf2). A nonlinear system will output values at: f3 = f2 − f1, f4 = f2 + f1,

fk = nf2 ±mf1, etc. Where n and m are positive integers. The International Electrotechnical

Commission (2010a) calls for f1 = 70 Hz and f2 = 600 Hz with an amplitude ratio of 4:1.

By using the method presented in the former paragraph, one can calculate that f3 = 530 Hz,

f4 = 670 Hz, and so on.

The computation of the nth order intermodulation distortion (IMDn) is performed using equa-

tion 2.12:

IMDn =
|P (jω2 − (n− 1)jω1)|+ |P (jω2 + (n− 1)jω1)|

|P (jω2)| × 100 (2.12)

Converted in dB:

IMDn [dB] = 20 log10

(
IMDn [%]

100

)
(2.13)

The total IMD is calculated as:

IMDtotal =

√√√√√ N∑
n=2

10

⎛
⎝ IMDn [dB]

10

⎞
⎠
× 100 (2.14)

Converted in dB:

IMDtotal [dB] = 20 log10

(
IMDtotal [%]

100

)
(2.15)

Klippel (2006) suggests analyzing the IMD in the Amplitude Modulation (AM) which "causes

a variation in the envelope of the first tone (carrier) according to the modulating second tone

but does not affect the phase of the carrier" as well as the Frequency Modulation (FM) which

"does not change the envelope of the signals but changes the phase of the high-frequency tone."

A phenomenon occurring when the same loudspeaker has to output the low frequency and the

high frequency simultaneously is the Doppler effect. This effect is the result of the FM. It is a

factor of the cone displacement, so-called Doppler shift, Xp, typically in the range of 0,1 mm
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to 1 mm and the two frequencies tested f1 and f2

Δf2 [Hz] =
2πf1f2Xp

c
(2.16)

For a typical earphone, depending on the cone displacement, the Doppler shift would be in

the range of 0.1 Hz to 8 Hz for a combination of extreme values (f1 = 20 Hz, f2 = 20 kHz

kHz and 1 mm of displacement). It is unlikely that a Doppler effect in earphones would be

the driving non-linearity because the just noticeable sound change in frequency is 0.002f [Hz],

above 500 Hz, as stated by Zwicker and Fastl (2007, p.186).

2.2.4 Multi-tone Distortion

A multi-tone measurement is the closest approximation one can achieve in a controlled simu-

lation of a complex signal and an extension of the intermodulation analysis. While intermodu-

lation distortion provides important information on the mecano-acoustic coupling of an audio

transducer, it is limited as a tool to describe how a loudspeaker will reproduce music.

On the one hand, employing musical stimuli is very useful because it is the type of signal for

which a micro loudspeaker is designed. On the other hand, it is difficult to relate a product of

nonlinearity generated by a transducer with such random signal. Music changing in frequency

range as well as relative amplitude for each frequency. Establishing a relation between a time-

varying input and retrieving the nonlinear products of the output might prove tedious.

An alternative to the use of music is to employ a music-like stimuli when stimulating the micro

loudspeaker. This music-like stimulus is in fact a series of tone IMDn - typically between 3 and

9 constant amplitude tones by octave - which are use to mimic fundamental and harmonics of a

musical instrument. The main advantage of using a multi-tone measurement approach for dis-

tortion measurement instead of music is that it facilitates the removal of the stimulating signal,

since they are static in position and amplitude, to keep only the resulting complex intermod-

ulation distortion by-product. The resulting part is a summation of the distortion by-product

over the summation of the original signal. With the processing power available nowadays, this

method will most likely lose its advantage, but it is still of noteworthy interest.
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2.2.5 Triggered Distortion

Temme et al. (2009) report that rub and buzz, also called triggered distortion, "often does not

cause major failures of the loudspeaker but may be very irritating to the person listening to it."

High order harmonic distortion is not yet defined by International Electrotechnical Commis-

sion (2010a) but it is already included in many commercial measurement systems because of

the sensitivity of the human ear these noises of irregular and unexpected nature. It has been

suggested by Klippel GmbH (Dresden, Germany) to call these effects triggered distortion be-

cause of their nature: they are triggered by a specific stimulus in a particular situation whereas

linear and nonlinear distortions are always present when the transducer is moving, only their

amplitude changes with the amplitude of the displacement. For Temme et al. (2009), "the sig-

nature of the resulting harmonic distortion depends on the details of the defect. Some generate

low order harmonics in the range of the 2nd to the 5th and others generate high-order harmonics

that may extend up to the 50th or higher. [...] Some of the defects may also increase so-called

intermodulation distortion [...]."

The rub is a generic term coined to describe a phenomenon that occurs when a part rubs

against another and produces a noise resulting from that rubbing. A non-comprehensive list of

the micro-loudspeaker’s rub effects is presented below:

• Voice-coil misalignment with the magnet assembly generating a rubbing noise when the

voice-coil rubs against the magnet assembly;

• Voice-coil hitting against the backing element of the construction;

• Membrane hitting against the front tuning plate of the micro-loudspeaker.

The buzz is a phenomenon occurring at the interface of two components which are intended, by

design, to be in contact with one another. These interfacing effects can be of quality insurance

nature or of wearing and tearing nature. The following lists two situations when the buzz effect

may occur:
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• Loose interface, the components have their own resonant frequency and begin to vibrate

when that frequency reaches a certain amplitude;

• Improper gluing method: the glue between two components does not perform properly

and the parts vibrate in a non-joint nature.

Hiebel (2012) explored a triggered phenomenon called suspension creep and explains for

micro-loudspeakers:

Microspeaker designs do not use a combination of surround and a centering

device (usually called ’spider’), preserving the axial motion of the membrane as-

sembly, but a single-suspension only. Manufacturers of microspeakers generally

want to avoid the use of a spider due to restrictions in product size and because

of the added manufacturing costs. Since the spider impedes rotational vibration

modes, its omission gives rise to increased amplitudes of rotational modes, the so-

called "rocking modes" [...]. The deflection in a severe rocking mode can cause

contact between the transducers voice coil and its magnet assembly and this usu-

ally creates a very unpleasant [noise].

2.2.6 Relation between distortion and physical phenomena in a moving-coil

micro-loudspeaker

Klippel (2006) provides an exhaustive list of nonlinearities linked with the contributing factors

that creates them, presented in Table 2.2. He identifies 4 nonlinear parameters: Bl(x), Le(x),

Le(i) and Kms(x). These parameters are either dependent on the position x of the diaphragm in

relation to its resting position or the current i travelling through the voice-coil, the velocity ν of

the diaphragm, sound pressure p, or deformation of the diaphragm and suspension material ε.

Klippel’s list could be used to make design choices since many of these non-linearities can have

a greater or lesser impact depending on the trade-off that can be tolerated, when the perceived

audio quality is factored in.
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2.3 Conclusions on the measurement of earphones

In this chapter, the earphone measurement is explored. The nature of the collocated and non-

collocated measurement is presented. The relationship that exist between the two measure-

ments is also presented: it can be use to identify the load applied on the earphone given that

it also induces a change in the impedance resonance. The measurement tools available have a

limited frequency range, usually less than 10 kHz, as well as limited measurement capabilities

in the low frequencies. From a design assessment point of view, this limitation is problematic

and new measurement tools would be beneficial in this respect.
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Chapter 3

EARPHONE MODELLING AND SIMULATION

An earphone is essentially an electromechanical acoustics system. It could be described as an

aggregation of components and assemblies, acoustic transducers and passive components, with

explicit specifications and bounded capabilities such as maximum SPL, distortion, and other

parameters listed in Chapter 2. Earphones are intended to work synergistically to perform a

value-added task, sound reproduction, in order to satisfy an operational need in a prescribed

operating environment, the outer-ear, with a specified outcome.

In this chapter, the fundamentals of electro-mecano-acoustic systems is presented. The first

section of the chapter presents the notions of abstraction levels, impedance, physical analogy

as well as three modelling methods: the lumped-elements, the two-ports and the control system

block diagram. In the second section, various models of micro-loudspeaker and acoustical

components necessary to model an earphone are listed. In the third section, the simulation

of earphones is made with the two-ports and the lumped-elements approach. The lumped-

elements approach is an integration of a scientific article submitted for review to the Journal

of the Audio Engineering Society in the text. In this regards, some notions are duplicated on

purpose.

When designing an electromechanical acoustic system, such as earphones, the device can be

described from various points of view. A functional description is definitely the most relevant

from an end user’s point of view, while a designer has to confirm that a specific component

will meet specific requirements, for example, by evaluating that the component’s geometry

will be able to support a specific stress. An abstraction level describes how a general - or very

specific - idea of quality needs to be so the expected performance is achieved. If for instance

the frequency response of the system is of interest, it is possible that several interchangeable

subsystems could meet the specific frequency response. Thus, it would be more relevant to

describe the subsystem from an input/output relation rather than in terms of its components.
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When a model is simulated, the abstraction level of the model can be established using the list

adapted from the work of Jardin (2010):

• The functional level describes the various functions of a system and the environment

where the system will be used;

• the system level is an aggregation of sub-systems presented as black boxes and describes

how each sub-system needs to perform in order to assess that the system will meet the

functional level requirements;

• the subsystem level is hierarchically a sub part of the main system that can be analyzed

as a black-box comprising an aggregation of components;

• the component level is a description of the dynamic and physical behaviour of each

element from an input/output point of view and is also known as lumped-element models;

• the geometric level describes how the geometry of a component affects its performance.

It includes the force within the components and is also known as distributed-element

models or finite-element models.

Earphone modelling could be defined as the description of the interaction between physical

dimensions that propagates from one, or many, transducers, which then generate a sound wave

and how that wave is transformed before it reaches a subject’s eardrum. The model explores

the resulting effect - or action - on each medium as they interact. To simulate these models,

many softwares are available. However, none covers the full range of abstraction levels neces-

sary to simulate at all levels, as presented in Table 3.1. MATLAB/Simulink (The Mathworks

Inc. (2013), Natick, MA, USA) is selected for the simulation because of its prevalence in the

engineering field, offering a high-level programming language and the levels of abstraction

required by the design approach.

A similar open-source software, known as Scilab/Xcos (Scilab Enterprises S.A.S. (2013), Ver-

sailles, FR), is an alternative for modelling and simulation that enables the use of MATLAB/S-

cilab Dictionary to translate the commands used in this document. MATLAB also offers the

option to interface, by using Livelink with COMSOL Multiphysics (COMSOL Inc. (2013),
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Burlington, MA, USA), a finite element analysis software which could complete the simu-

lation of the design by its geometrical abstraction level. The simulation with COMSOL is

not covered in this document. Simscape is a library integrated in Simulink which is used to

simulate physical systems. An equivalent software, Modelica (Modelica Association) used by

Janschek (2012, p.125-131), is built around the same programming approach as Simscape to

create a model representation of a physical systems could also be used. Simscape is a library

of Simulink. Simulink uses MATLAB functions and engines to simulate systems.

Table 3.1 Table presenting various commercially available software and their

abstraction level in relation to system modelling (Adapted from the work of Jardin (2010))

Software Abstraction level
Editor Functional System Subsystem Component Geometric

MATLAB/Stateflow X

The Mathworks

ASCET X X

ETAS

MATLAB/Simulink X X X

The Mathworks

MATLAB/Simscape X X X

The Mathworks

Scilab/Scicos X X X

INRIA

MapleSim X X X

Maplesoft

Dymola X X X

Dassault Systèmes

LMS Imagine.Lab X X X

LMS

OpenModelica X X X

Association Modelica

COMSOL Multiphysics X

Comsol

ProEngineer X X X

PTC

CATIA/Abaqus X

Dassault Systèmes

Fluent X

ANSYS
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3.1 Fundamentals of electro-acoustic modelling

Modelling of a physical component is based on the correct definition of the quantity Across

and Through and the resulting conjugate Power. The differential in the Across quantity, called

drop, induce a Through quantity, called flow, that moves in the opposite direction of the Across

quantity to compensate the differential, as presented in Figure 3.1. The Through value can also

be the driving quantity. If so, the flow will induce a drop. The physical meaning of the measured

component is dependent of the way the Across and Through quantities are chosen as explained

by Beranek (1993, p.49). If one of the two Power variables is a very small value, that is, the

power transferred from one subsystem to the other is approximately zero, then this model will

use a single interface variable that is called a Signal and the model is so-called Signal-coupled.

Janschek (2012, p.90) uses Effort instead of Drop for the Across quantity between two points

of analysis. Effort is also linked to a human action and can also refer to an applied force. To

avoid ambiguity, the term Drop will be used to describe the Across quantity and Flow will be

used to describe the Through quantity. In Figure 3.1, the drop in acoustics is the pressure p̂ and

the quantity going through, the flow, Û in acoustics.

Figure 3.1 Conceptual view of signal Across
and Through of a physical component in

schematic representation.

3.1.1 Impedance of physical quantities

An impedance opposes the flow when a drop is applied. If the drop is applied in a constant way,

the flow restriction - or resistance - is proportional and constant. The power necessary to create
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this specific flow is constant too. If the drop is applied on an alternating basis, at a specific rate

per second - the frequency - the resistance is no longer constant because of the release of the

drop at each cycle. When an alternating drop is applied and released, the component impedes

the flow in a reactive way. This reactance is of an accumulative nature. It either accumulates

the drop or the flow, as explained in section 3.1.2. When the reactance is combined to the

resistance, it is called an impedance. This relation is presented in equation 3.1.

Ẑ =
d̂r

f̂
(3.1)

The impedance is defined as the complex ratio between the Across quantity (dr) and Through

quantity (f ). As previously mentioned, the impedance of physical quantities, when explored in

the frequency domain, gives valuable information to understand the response of a system to a

specified stimulus, as explained in section 2.2.1.

The frequency response function is of interest for a linear time-invariant (LTI) system. A time-

invariant system is defined as a system whose output is not explicitly dependant on time. The

coefficient of transformation α, β and γ, representing the value of the components in the system

for the various physical domains, do not vary for the studied period. By definition, linearity is

the characteristic of a system f satisfying for any superposition of two input signals x1(t), x2(t)

and scalable for a constant κ:

f (x1(t) + x2(t)) = f (x1(t)) + f (x2(t))

κf (x1(t)) = f (κx1(t))
(3.2)

For example, the stiffness of a loudspeaker’s suspension, when studied in its linear region, will

produce an opposite force that is proportional to the exterior force applied to it by the voice-

coil. In the large displacement region, this approximation does not hold, as discussed in section

3.2.3 and distortion occurs, as presented in section 2.2.2.
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3.1.2 Physical analogy of components by domain

This section is inspired by a combination of the work of Beranek (1993, p.47-69) and Janschek

(2012, p.92-97). It describes the physical quantities and their equivalent in other physical do-

mains in reference to the flow f and the drop dr in the time domain. Let us consider three

proportionality constants: α, β and γ. By definition, a power consumer, or load, is described as

affected by a proportionality constant α if:

dr(t) = αf(t) (3.3)

While a flow accumulator can be analysed for the two quantities:

f(t) = β
d

dt
dr(t) or dr(t) = dr(t0) +

1

β

∫ t

t0

f(τ)dτ (3.4)

And the drop accumulator is:

dr(t) = γ
d

dt
f(t) or f(t) = f(t0) +

1

γ

∫ t

t0

dr(τ)dτ (3.5)

The specific quantities of α, β and γ for the various physical domains are in Table 3.2 and the

components specificities are listed as follows:

• Mechanical Resistance displaces in direct proportionality to the sum of forces

applied to it;

• Mechanical Mass accelerates, either linearly or angularly, in direct proportionality to

the sum of forces applied to it;

• Mechanical Compliance has a velocity in direct proportionality to the sum of forces

applied to it;

• Electrical Resistance is a component which opposes to the passing current

by dissipation;
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• Electrical Capacitance is the ability of a component to store an electrical charge as a

result of a difference in voltage;

• Electrical Inductance is a conductor which generates a magnetic field when a current

passes through it;

• Acoustical Resistor induces dissipative losses linked with a viscous movement of a

quantity of gas going through an acoustical component;

• Acoustical Compliance is a volume of air compressed by the sum of forces applied to it

without an appreciable displacement of its center of gravity;

• Acoustical Mass is a mass of air displaced by a sum of forces applied to it without

appreciably compressing it.

Table 3.2 Table of the analogy between electrical, mechanical and

acoustical quantities

Element Mechanical Electrical Acoustical

Power consumer [α] Resistance

[
N s

m

]
Resistor [Ω] Resistor

[
N s

m5

]
Flow accumulator [β] Mass [kg] Capacitor [F] Mass

[
kg

m4

]
Drop accumulator [γ] Compliance

[m

N

]
Inductance [H] Compliance

[
m5

N

]

The analogy between across and through quantities in the electrical, mechanical and acoustical

domain is presented in Table 3.3. These three domains are those that are typically found in an

earphone.

3.2 Modelling earphone-ear system coupling

Various modelling methods exist and Janschek (2012, p.90) comprehensively covers them. He

suggests five requirements to verify if a modular dynamic model is usable for computational

simulation (p.119):
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Table 3.3 Dimension type and designation by physical domain

Type Across Quantity designation Through Quantity designation

Electrical Potential Volt [V] Current Ampere [A]

Mechanical Force Newton [N] Velocity
Δlength

Δtime

[m

s

]
Acoustical Pressure Pascal

[
N

m2

]
Particle Velocity

Δlength

Δtime

[m

s

]

• The physical system topology should remain visible in the system of equations;

• the models of individual system elements should be interchangeable while maintaining

the power relation at interface (i.e., power-conserving);

• the models of system elements should support hierarchical operations (decomposition,

aggregation);

• the system components from different physical domains (multi-domain components)

should be described using consistent models; this requirement is automatically met at the

computational level using a differential algebraic equation (DAE) system, but is equally

desirable for abstract model precursors;

• the coupling should be possible for power-flow and signal-oriented models.

To confirm that a model reflects how a physical system reacts to a stimulus, it should accurately

estimate for:

• Small-signal responses in the time and frequency domains for characterizing the re-

sponse, controller design and dynamic analysis;

• nonlinear large-signal responses to determine possible operational limitations (e.g. un-

stable operating regime;

• state equilibrium to determine steady-state operating points;

• clarity in the structure of the multi-domain transduction phenomena;
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• clear assignments of physical and implementation parameters to model parameters.

The models presented in this thesis are analyzed with these criteria to establish how many are

met and, therefore, how reliable the model is.

3.2.1 Common methods used to describe physical systems

Three methods are presented. They were extensively used in the literature to describe electro-

acoustical systems and the outer-ear: the lumped-element, control system block diagram and

the two-port method. Janschek (2012, p.102) briefly discussed the application of the bond

graph as a modelling tool for multi-port systems and Jardin (2010, p.198-201) covers an ap-

plication of this method to describe a moving-coil loudspeaker. Even if the main advantage of

this method is the ability to describe the domain neutral bi-directional flow of energy, some-

thing of interest for acoustically-related systems designers, this method is not covered in this

section because of the very limited literature related to it for electro-acoustic systems. Table

3.4 lists different modelling methods, and details how accurate and how reliable they are. A

section based on Control System Block Diagram is not included in the original table and has

been added.

3.2.1.1 Control System Block Diagram modelling method

A Control System Block Diagram describes the qualitative behaviour of a system and its inter-

connection within a functional model where an input data is transformed into its output using

predefined rules. It can be done in continuous time, Laplace, or discrete time domain. It is

a visual representation of the differential algebraic equations and state space equations. It is

very flexible depending on need and preferences. It can include non-linearity blocks as well as

mathematical operations and user defined functions. On the one hand, it is the most complete

and flexible modelling method, but on the other hand, it is usually more complex to use. In this

respect, it means that the control system block diagram is the modelling method that covers the

most abstraction levels. However it does not take into account the geometrical topology of the
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Table 3.4 Table of the relationship between modelling methods

[Adapted from Mapes-Riordan (1993)]

Achievable Computational Effect of

Model Applicability accuracy complexity geometry

Lumped-parameter kL << 1 Least Least Dimensionless

method ka << 1

Transmission-line 0 < kL < ∞ Intermediate Intermediate One-dimensional

element method ka < 1.84

Control System Variable Good Intermediate One-dimensional

Block Diagram Variable

Finite-element 0 < kL < ∞ Better Most Three-dimensional

method 0 < ka < ∞

components, it only describes their behaviour. The simplest time domain output is given by:

y(t) = x(t) ∗ g(t) (3.6)

Which is represented in the block diagram as:

Figure 3.2 Control system type block diagram

representing the temporal input and output.

Then, by applying the appropriate methods, the Control System Block Diagram can be ex-

panded, reduced and modified as described by Bolton (2011) and Nise (2011). All the blocks

needed to create a Control System Block Diagram are available in the main Simulink library.

See Karris (2009) who covers several aspects of the implementation of physical components
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in MATLAB/Simulink such as the state-space implementation and the lumped-element repre-

sentation in the time domain.

3.2.1.2 Port modelling method

Figure 3.3 Illustration of lumped networks components (terminals and ports).

[reproduced with permissions from Janschek (2012, p.90)]

A physical component can be investigated as a sub-system with two or more terminals, which

in turn can be grouped into port components, as presented in Figure 3.3. (Janschek, 2012, p.89)

describes all port components as "spatially and functionally delineated elements [which] can

mutually exchange energy with other coupled elements (the network) via interfaces (terminals

or ports)".

A one-port component is also known as a branch. A branch is a simple path composed of

a single device. By definition, the component is lumped into a geometrically dimensionless

descriptor and the relation between the branch across and branch through quantities is the

branch impedance value. The resulting product is the conjugate power handled by the branch

component. A network built out of one-port lumped-elements is connected together by lossless

connections. For a comprehensive review of the lumped-element analysis method, see Agarwal

and Lang (2005) and Lenk et al. (2011).

A Two-port network describes the relation between four quantities, two across quantities (AC)

and two through quantities (TR), linked together by a set of four transmission parameters,

A, B, C and D. Other sets of parameters exist for the transformation purpose as covered by

Attia (1999), namely z- to describe the open-circuit impedance, y- short-circuit admittance, h-
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hybrid parameters containing open-circuit parameters (TR1 = 0) and short-circuit parameters

(AC2 = 0) and g- the inverse of the h- parameters.

Figure 3.4 Illustration of a two-port component.

⎡⎣AC1

TR1

⎤⎦ =

⎡⎣A B

C D

⎤⎦×
⎡⎣AC2

TR2

⎤⎦ (3.7)

Where A and D are unitless ratios

A =
AC1

AC2

∣∣∣∣
TR2=0

D =
TR1

TR2

∣∣∣∣
AC2=0

(3.8)

While B is an impedance and C is an admittance

B =
AC1

TR2

∣∣∣∣
AC2=0

C =
TR1

AC2

∣∣∣∣
TR2=0

(3.9)

A system is considered causal when a system output y(t), as presented in Figure 3.2, is at any

time tn only affected by the input x(t) up to time tn. So any description method presenting a

direct relation between the input and output of a system is causal. For Janschek (2012, p.118),

"it should be pointed out again that the advantages of multi-port physical modeling come from

its equation-oriented description with indeterminate causal structure, and not, mistakenly, from

acausal models".

In earphones, cascade association of two-port as well as parallel association can be consid-

ered. The computation of the cascade and parallel features are performed using the derived

Kirchoff’s law applied to fluid flow by using the analogies described in Table 3.3. The physical
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elements transfer the mass from one element (k) to another (l) at the junction between them.

As stated above, the elements can be defined by a generic two-port representation:

[a]k =

⎡⎣Ak Bk

Ck Dk

⎤⎦ [a]l =

⎡⎣Al Bl

Cl Dl

⎤⎦ (3.10)

Upon inspection, the following relation can be found when in cascade as presented in Figure

3.5:

Figure 3.5 Cascade of a two-port network presented with the across and

through quantities.

⎧⎨⎩Ak
Cin �= Ak

C1

T k
Rin = T k

R1

⎫⎬⎭
⎧⎨⎩Ak

C1 = Al
C2

T k
R1 = T l

R2

⎫⎬⎭
⎧⎨⎩Al

C2 �= Al
Cout

T l
R2 = T l

Rout

⎫⎬⎭⇒
⎧⎨⎩Al

Cin �= Ak
Cout

T l
Rin = T k

Rout

⎫⎬⎭ (3.11)

And the equivalent transmission line matrix of element k combined to element l is given by:

[a]k ∗ [a]l =
⎡⎣Ak Bk

Ck Dk

⎤⎦ ∗
⎡⎣Al Bl

Cl Dl

⎤⎦ =

⎡⎣AkAl +BkCl AkBl +BkDl

CkAl + ClDk BlCk +DkDl

⎤⎦ (3.12)

When the same matrices are in parallel to each other, again, the relation is:⎧⎨⎩ACin = Ak
Cin = Al

Cin

TRin = T k
Rin + T l

Rin

⎫⎬⎭
⎧⎨⎩ACout = Ak

Cout = Al
Cout

TRout = T k
Rout + T l

Rout

⎫⎬⎭⇒
⎧⎨⎩Ak

Cin = Al
Cin �= Al

Cout = Ak
Cout

TRin = TRout �= T k
R �= T l

R

⎫⎬⎭
(3.13)
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Figure 3.6 Parallel of a two-port network presented with the across and

through quantities.

[a]k ‖ [a]l =

⎡⎣Ak Bk

Ck Dk

⎤⎦ ‖
⎡⎣Al Bl

Cl Dl

⎤⎦ =

⎡⎢⎣
AkBl + AlBk

Bk +Bl

BkBl

Bk +Bl

Ck + Cl
(Al − Ak) (Dk −Dl)

Bk +Bl

DkBl +DlBk

Bk +Bl

⎤⎥⎦
(3.14)

3.2.2 Models of a human ear

The couplers that simulate the average human ear are presented in Table 2.1 of section 2.2. A

sectional view of the IEC 60318-4 coupler is presented in Figure 3.7. To simulate the couplers,

it is necessary to establish the behaviour of the components in order to reproduce the coupler as

an assembly of lumped-elements. Jønsson et al. (2004) compared the lumped-element model

provided by Brüel & Kjær (1997), presented in Figure 3.8, with a Finite Element Model (FEM).

They found a very good agreement across the entire frequency range where it is expected,

validating the lumped-element model. The coefficients of each lumped-element are presented

in Table 3.5.

An alternate model is to approximate the ear by the equivalent compliance of a close volume of

2 cm3. The equivalent compliance is 1.4049 × 10−11
[

m5

N

]
. The details of this calculation can

be found in Appendix IV. The model approximated by an equivalent compliance is of limited

application because of the limitation of the lumped-element method as shown in Table 3.4.
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Figure 3.7 Sectional view of the Brüel & Kjaer Ear Simulator Type

4157, compliant to IEC 60318-4 (Formerly known as IEC 711) [as

presented in Jønsson et al. (2004)]

Figure 3.8 Equivalent Lumped-Element model of the Brüel & Kjaer

Ear Simulator Type 4157, compliant to IEC 60318-4 (Formerly known

as IEC 711) built with Simscape components [as presented in Jønsson

et al. (2004)]

3.2.3 Models of moving-coil micro-loudspeakers

Micro-loudspeaker models increase in complexity with the requirements for accuracy in large-

signal response simulations. The loss of accuracy in the frequency band exists because the

higher modes are not taken into account by the models. This section presents the principal
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Table 3.5 Coefficient of the Brüel & Kjær IEC 60318-4 coupler for figure 3.8

[Retrieved from Brüel & Kjær (1997)]

Power consumer
[

N s
m5

]
Flow accumulator

[
kg
m4

]
Drop accumulator

[
m5

N

]
RA5 = 50.6× 106 MA4 = 78.8 CA4 = 0.9× 10−12

RA7 = 31.1× 106 MA5 = 9.4× 103 CA5 = 1.9× 10−12

MA6 = 132.3 CA6 = 1.5× 10−12

MA7 = 983.8 CA7 = 2.1× 10−12

MA8 = 153.5 CA8 = 2.1× 10−12

models required to simulate a moving-coil loudspeaker. Loudspeakers were already well un-

derstood by Villchur (1957) since the introduction of the C-shaped suspension woofer in the

Acoustic Research AR-1 in 1954. Except for the work of White (1963), the study of micro-

loudspeakers, and by extension their application in mobile devices, happened 45 years after the

main research on loudspeakers. The main components of a typical loudspeaker are presented

in figure 3.10.

The fundamentals of a moving-coil transducer is present in both designs. The North and South

pole of the magnet are on each side of the voice-coil. When a current flows through the voice-

coil, an induced magnetic field opposes its force to the magnetic field generated by the magnet

and the resulting force pushes the diaphragm to generate air movement. For a comprehensive

review of the nature, behaviour and design parameters of a moving-coil micro-loudspeaker, see

Bright (2002) and for typical loudspeakers, see Leach Jr. (2010).

Figure 3.9 presents a sectional view of a generic micro-loudspeaker prior to parametric analysis

to show the main components that could be compared to a regular manufacturable unit loud-

speaker presented in Figure 3.10. The rest of this section is dedicated to the micro-loudspeaker

since it is the most common design found in earphones.
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Figure 3.9 Sectional view of a 8 mm moving-coil

micro-loudspeaker with identification of the principal

components.

Figure 3.10 Sectional view of a 16 cm moving-coil loudspeaker with

identification of the principal components. [Derivative work from a 3D

model by Ian Peterman used with permission]

3.2.3.1 Simple and complex lumped-element model

The representation of a micro-loudspeaker by a lumped-element model comes from the small-

signal approximation which is a reduction of the system to a second-order system. This ap-

proximation is based on three components: MMS , RMS and CMS . The driving elements being

the mechanical components, only these can be transferred into another physical equivalent di-

mension using the transfer equation presented in the Table 3.6.
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Figure 3.11 Equivalent lumped-element network for the discrete

components of a loudspeaker, A) Mechanical abstraction, B) Mechanical

equivalent network, C) Electrical equivalent network, D) Acoustical

equivalent network.

In the models presented in figure 3.11, ideal transformers are used. An ideal transformer is used

to link a physical domain to another. It is a lossless transformation of the across in one domain

to the through in another domain. The transformation relation of ϑ : 1 for across quantities AC1

and AC2 and their relative quantities TR1 and TR2 is given by equation:

ϑAC1 = AC2 and
TR1

ϑ
= TR2 (3.15)

While the three main elements are sufficient to achieve a low-frequencies approximation of the

response of the driver - up to the first resonance - in the stiffness controlled section, the part

controlled by the voice-coil inductance losses is not taken into account. The lossy voice-coil
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Table 3.6 Table of the analogy between electrical, mechanical and

acoustical quantities

Element Mechanical Electrical Acoustical

Power consumer RMS

[
kg

s

]
RES =

(Bl)2

RMS

[Ω] RAS =
RMS

S2
d

[Ωa]

Flow accumulator MMS [kg] CES =
MMS

(Bl)2
[F] MAS =

MMS

S2
d

[
kg

m4

]
Drop accumulator CMS

[m

N

]
LES = CES(Bl)2[H] CAS = CMSS

2
d

[
m3

Pa

]

inductance is explained by Leach Jr. (2010, p.106) and can be added to the model to achieve

greater accuracy. The computation of LE and RE is covered in section 2.1.

3.2.3.2 Two-Port model

A two-port model of a loudspeaker is presented by Darlington (1998) as:

⎡⎣A B

C D

⎤⎦ =

⎡⎢⎣ZEBSD

Bl

ZMZEB + (Bl)2

Bl
S

Bl

ZM

Bl

⎤⎥⎦ (3.16)

In the equation 3.16, the parameters are the same as the lumped-element model. ZM is the me-

chanical impedance in
[
Ns
m

]
and ZEB is the blocked electrical impedance in [Ω]. The MATLAB

code for the two-port application is presented in Appendix II.

3.2.3.3 Block-diagram model

The complex block-diagram model, which includes nonlinearities, as presented by Sturtzer

et al. (2012) is reproduced hereafter. The current-driven model is presented in Fig. 3.12 while

the voltage-driven model is presented in Fig. 3.13. When the quality of the acoustical output

of a micro-loudspeaker is not considered in a model, the micro-loudspeaker is fundamentally a

generic loaded mechatronic transducer as defined by Janschek (2012, p.311-349). Sturtzer et al.

(2012) uses polynomial coefficients to express the relationships between diaphragm excursion
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and other variables dependent on membrane excursion. The polynomial regression used is a

relationship between the independent relation, excursion and a dependent variable, in this case

CM(x), Bl(x) and LE(x). The general representation of a polynomial regression for a system

f is:

f(x) = a0 + a1(x) + a2(x)
2 + . . .+ an(x)

n + ε (3.17)

where every coefficient an is determined experimentally and the error ε is a factor of N(0, σ2),

the difference between the measured value and the estimated value of the regression.

Figure 3.12 Current driven micro-speaker block diagram.

[As presented in Sturtzer et al. (2012)]

By applying the regression approach for the excursion x as the independent variable, Sturtzer

et al. (2012) gave three nonlinear approximations by using these regressions:

CM(x) = CM0 +
n∑

n=1

(CMnx
n)

Bl(x) = Bl0 +
n∑

n=1

(Blnx
n)

LE(x) = LE0 +
n∑

n=1

(LEnx
n)

(3.18)
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Equation 3.18 can be computed using typical measurements. Comparison of Figure 3.12 and

Figure 3.13 LE(x) is absent from the current driven loudspeaker model. This is because, as

presented in equation 3.5 and table 3.2, the voice-coil is current driven by definition.

Figure 3.13 Voltage driven micro-speaker block diagram.

[As presented in Sturtzer et al. (2012)]

The block diagram model is more complete, but also more complex. Each model can comple-

ment each other by either offering speed or more reliable results. For example, the lumped-

element implementation provides a quick first approximation of the frequency response of a

moving-coil micro-loudspeaker earphone while a control system block diagram would require

more measurements but would yield a more accurate result.

3.2.4 Models of balanced-armature micro-loudspeakers

Jensen (2009) describes a balanced-armature loudspeaker as presented in figure 3.14 as fol-

lows:

An armature is balanced in the magnetic field between two permanent magnets.

The armature (the piece of metal in the air gap between the magnets) is balanced in

the sense that both permanent magnets exert an equal but opposite magnetic force
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on the armature when the electrical current in the coil is zero. The armature itself

is not a very efficient sound radiator so the armature is rigidly connected to a thin

and light diaphragm, where the front and back of the diaphragm are acoustically

isolated.

Figure 3.14 A sectional view of a Knowles Electronic EH

balanced-armature loudspeaker. [Reproduced with permission from

Knowles Electronics, Itasca, IL.]

For a complete description of the interaction between each of the domains included in a

balanced-armature receiver, see Jensen (2009) and Vitt (2011).

3.2.4.1 Lumped-elements models

Balanced-armature lumped-elements models are constructed using the same approach as the

moving-coil micro-loudspeaker. Table 3.4 presents the equivalent quantities to use for model

construction. The presence of gyrators in the model is to be noted. A gyrator is a lossless

component that relates two sets of across and through by a constant factor. In a gyrator, the

quantity across in one domain is proportional to the quantity through in the other domain.

In figure 3.15, the model presents the aggregation between the same domains as for the moving-

coil loudspeaker, namely electrical to mechanical via a magnetic field and from mechanical to

acoustical with a membrane. This relationship depends on the distance between the armature

and the magnet. As presented by Jensen (2009, p.19), the reluctance of the air gap is considered
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Figure 3.15 Balanced-armature micro-speaker lumped-element model.

[Reproduced with permission from Knowles Electronics, Itasca, IL.]

to be much larger than the reluctance of the core and the magnet. Therefore, changing the

position of the armature and reducing the air gap will change the reluctance.

3.2.4.2 Complex control system block-diagram model

As stated above, the position of a balanced-armature loudspeaker is dependant on its position,

but also on the variation of the position within the air gap. The variation of the air gap is an in-

dependent variable of a moving-coil loudspeaker since it moves axially and not radially. These

relationships, explicitly presented by Jensen (2009), are converted into a Simulink control sys-

tem block diagram in figure 3.16. The input is a current and the output is either a position,

a velocity or an acceleration of the armature. The sound pressure generated by the unit in a

known volume is a function of the position, the surface of the diagram and the specific acoustic

compliance |p| = CASD|x|.
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Figure 3.16 Balanced-armature micro-loudspeaker block diagram.

[built from the equation of Jensen (2009)]

3.2.5 Models of acoustical features found in earphones

This section regroups various methods to present the acoustical components necessary for the

modelling and simulation of earphones.
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3.2.5.1 Acoustic mass, resistance and compliance

Beranek (1993, p.131) and Rossi (2007, p.391) provide an easy computation for a lumped-

element model of the acoustical mass of a tube. An acoustical mass is defined as a body of air

moving without appreciable compression.

Figure 3.17 A straight tube of radius a and lenght l.

MA =
ρ · l
S

[
kg

m4

]
(3.19)

The condition of validity of eq. 3.19 is 0.05√
f

< a < 10
f

and l < λ
16

. For example, a tube with

a length of 10 mm with 1 mm radius would not be accurately represented without taking into

account the visco-thermal effects. Therefore, a correction factor is used for a capillary tube that

combines a resistance to the acoustic mass as presented by Beranek (1993). The acoustic mass

equation then becomes:

MA =
4

3
· ρl
S

[
kg

m4

]
(3.20)

The correction factor is changed to match the specific shape and size of the tube. For the

rectangular section, the factor suggested by Rossi (2007) is
[
6
5

]
instead of

[
4
3

]
. As presented

in Appendix IV, for a volume of air that is compressed by a net force without notable average

displacement of the center of gravity, the compliance is computed by using a different equation:

CA =
V

γ · P0

[
m3

Pa

]
(3.21)
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A model of the propagation of sound waves in tubes using a two-port approach is presented by

Egolf et al. (1978) for a tube of lenght ln and radius an:

⎡⎣An Bn

Cn Dn

⎤⎦ =

⎡⎣ coshΓnln ZnsinhΓnln

Z−1
n sinhΓnln coshΓnln

⎤⎦ (3.22)

Where Γn is the propagation operator of tube n

Γn = ı
ω

c

⎧⎨⎩1 + 2(γ − 1)
[

[J1(αan
αanJ0αan

]
1− 2J1(βan)

βanJ0(βan)

⎫⎬⎭
1
2

(3.23)

and Zn is the caracteristic impedance of tube n

Zn =
ρc

πa2n

{[
1− 2J1βan

βanJ0(βan)

] [
1 + 2(γ − 1)

J1(αan
αanJ0(αan

]}− 1
2

(3.24)

while α =
(

−ıωρσ
μ

) 1
2

and β =
(

−ıωρ
μ

) 1
2

This two-port model is applicable for acoustic mass as well as acoustical compliance since it

takes into account the wave behaviour within the component. A similar way to compute the

two-port model of a small tube including visco-thermal effects, is presented in Keefe (1984).

This equation is reused by Mapes-Riordan (1993) to describe transmission-line elements of

horns. He offers a simpler definition of Γn and Zn

Γn = k

⎡⎣⎛⎝1.045

(√
ρωS

ηπ

)−1
⎞⎠+ ı

⎛⎝1.045

(√
ρωS

ηπ

)−1
⎞⎠⎤⎦ (3.25)

Zn =
ρc

S

⎡⎣⎛⎝1 + 0.369

(√
ρωS

ηπ

)−1
⎞⎠−1

−
⎛⎝ı0.369

(√
ρωS

ηπ

)−1
⎞⎠⎤⎦ (3.26)

An alternate model from Zuercher et al. (1988) helps simplify the computation. This is a FOR-

TRAN based approximation program which accelerates the process compared to the Bessel



95

function-based approach. This approximation is of interest for computation-intensive models

since it provides good results for small tubes, one of the most frequently found components in

earphones.

3.2.5.2 Horn

Figure 3.18 Image of an axisymmetric horn with the variables defining its geometry.

Borwick et al. (2001, p.30) explains why a horn is of interest from a loudspeaker design point

of view. "Despite the useful effects of mutual coupling, the radiation efficiency of even large

loudspeaker diaphragms is small. Sound power output is proportional to the product of the

mean-squared velocity and the radiation efficiency, [...]. Horn loudspeakers combine the high

radiation efficiency of large diaphragms with the low mass of a small diaphragm in a single

unit. This arrangement can result in electro-acoustic efficiencies of 10-50%, of ten times the

power output of the direct-radiating loudspeaker [...]." Leach Jr. (2010, p.157) completed the

idea by stating that this increased performance is the result of "the horn [that] acts as an acous-

tic transformer to provide a better impedance match between the loudspeaker diaphragm and
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the load." Many horn configurations exist but only axisymmetric ones are presented here. The

model of Mapes-Riordan (1993) simulates the model of Webster and Salmon (1944), as pre-

sented in Post (1994) and Leach Jr. (2010, 157-174). The curvature of the walls of the horn

are dependent on the factor T which provides the shape of the horn. Detailed variations of the

possible shapes of an axisymmetric horn are presented in Leach Jr. (2010, 157-174). Mapes-

Riordan (1993) offer a model of a conical lossless horn in a two-port configuration:

A =

(
x1

x0

)
cos(kL)−

(
1

kx0

)
sin(kL)

B =

(
x0

x1

)
jR0sin(kL)

C =

(
j

R0

)[(
x1

x0

(
1

kx0

)2
)
sin(kL)−

(
L

x0

)(
1

kx0

)
cos(kL)

]

D =

(
x0

x1

)(
cos(kL) +

(
1

kx0

sin(kL)

))
(3.27)

And a dissipative two-port option:

A =

(
x1

x0

)[
cosh(ΓL)−

(
1

Γx1

)
sinh(ΓL)

]
B =

(
x0

x1

)
Zcsinh(ΓL)

C =

(
1

Zc

)(
x1

x0

−
(

1

Γx0

)2
)
sinh(ΓL) +

(
ΓL

(Γx0)
2

)
cosh(ΓL)

D =

(
x0

x1

)[
cosh(ΓL)−

(
1

Γx0

)
sinh(ΓL)

]
(3.28)

For certain applications where the horn is much larger than the wavelength, the lossless ver-

sion, which only expresses the flow and drop accumulator behaviours, yields a good result

because the loss is not significant. For applications such as earphones, the loss from the small

components becomes important enough that it needs to be taken into account.
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3.2.5.3 Sudden section change

When a sudden section change occurs, as presented in Figure 3.19, the pressure at the interface

is the same, but the flow becomes different since the space to fill is changing. This ratio of

through quantity is represented in the D coefficient of the 2× 2 matrix of a two-port represen-

tation, as explained in section 3.2.1.2. The ratio is computed in the direction of the flow: if the

S1
S2

Figure 3.19 Image of a sudden change from

section S1 to section S2.

flow is coming from S1, the ratio is as presented in equation 3.29.

⎡⎣A B

C D

⎤⎦ =

⎡⎢⎣1 0

0
S2

S1

⎤⎥⎦ (3.29)

If the flow is reversed, ratio
S2

S1

is reversed as well.

3.2.5.4 Synthetic material membrane

Poldy (1983b) models a membrane as a second-order component equivalent to a frequency

independent RLC network in the electric analogy, as established in Table 3.2. It is the equivalent

of the lumped-elements model for a loudspeaker. The main difference is the mass of the voice-
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Figure 3.20 Schematic of a synthetic material membrane

activated by a displacement source. [Adapted from Poldy (1983b)]

coil and former which is not present. These values are presented in Table 3.6. In practice, the

measure of the impedance of a device is performed by using a tool as presented in Figure 3.21.

The left and right sides of the tubes are modelled as two-ports of a one-dimensional acoustic

tube using equation 3.22. The adjustment piston is used to change the standing wave frequency

dependent on the length of the tube, to be able to measure the material under test for any

frequency and achieve a more reliable model.

Figure 3.21 Schematic of a measurement apparatus used to measure membranes and

porous material [Adapted from Poldy (1983b)]

As presented in equation 3.9, the impedance of a system is represented by the B coefficient of

the 2 × 2 matrix of a two-port representation. For a very thin and non-porous membrane, it is

assumed that volume velocity behind and in front of the membrane is the same, leaving the A
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factor to 1, leaving C = 0 and D = 1.

⎡⎣A B

C D

⎤⎦ =

⎡⎣1 Zm

0 1

⎤⎦ (3.30)

The approximation for a membrane without air flowing through is given by equation 3.31

where values Rm, Lm and Cm are mechanical quantities as defined in Table 3.2:

Zm = Rm + ıωLm

(
1− 1

ıωCm

)
(3.31)

A complete two-port model can be obtained by measuring both pressure and particle velocity

on either side of the membrane that is to be used in a specific design. The pressure must be

measured using four microphones as presented in Figure 3.21 to successfully measure particle

velocity as well as the pressure. Measurement of the particle velocity ul variation is possible

by the differential in pressure amplitude Δp of a single frequency ω propagating along the tube

L at a position l. The distance between the microphones Δmicl should be much smaller than

the studied wavelength. The relation is:

ul =
Δp(l)

ωρ0Δmicl
(3.32)

3.2.5.5 Perforated sheets, meshes and foams

Perforated sheets, meshes and foams are known as acoustic mixed-elements. They are usu-

ally placed in cascade with other components of the acoustical path to transform the sound as

needed, to protect a fragile component such as the diaphragm, or prevent debris from penetrat-

ing into the assembly. These features have a noticeable impact on the frequency response of

the micro-loudspeaker. The method in Figure 3.21 is a way to quantify their impact.

An alternative to the measurement of the two-port network for these features is to use the

lumped-element modelling method as demonstrated by Shiah et al. (2008). They analysed a

perforated sheet which is essentially a series of acoustic masses and resistances coupled with
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Figure 3.22 Image of a perforated sheet, as

typically found in moving-coil micro-loudspeaker

to protect the diaphragm.

a radiation impedance. They studied the shape of the front cover by using a lumped-element

approach. The acoustical resistance due to the presence of the front cover Rfc is given by

equation 3.33:

Rfc =
8πμtsh
Afc

(3.33)

where μ is air viscosity, tsh is the plate thickness in m and Afc is the surface area of the hole.

The acoustical mass is given by equation 3.19. And Cfc uses the equation 3.21 to model the

space between the diaphragm and the front cover.

3.2.6 Limitations of the modelling and simulation methods

Models and simulations increase in reliability, as compared to a Real World Observation, when

they take into account more and more design variables. On the one hand, when an important

variable such as the stiffness of a material is quantified, it provides a more accurate model. A

model disregarding important variables is not reliable and therefore not useful. On the other

hand, including all the phenomena that are part of a physical system would be computation-

ally intensive and would not necessarily yield more reliable results because of the introduction

of uncontrollable factors. It is preferable to model and simulate only the frequency range of

interest, as it has been done in section 3.2.7, because a very accurate simulation is time and

resource consuming, so it should be proportionate to the expected outcomes. A new design
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is bounded by uncertainties which could be readily reduced by prototyping at the right time.

For an existing design, the designer already knows what is of interest and the focus can there-

fore be oriented on that task of identifying the source. The factors influencing the accuracy of

models and simulations are presented in Figure 3.23. This thesis is mostly oriented towards

the presentation of the models since the simulation has been partially covered in section 3.3.

The specificities of each solver is beyond the scope of this work. The errors from the models’

accuracy are presented in section 3.2.7.

Figure 3.23 Verification and validation versus modelling and simulation.

[Adapted with permission from Janschek (2012, p.51)]

3.2.7 Simulation and computation method using two-port models

The computation of the two-port model is executed as in Figure 3.24. The first step is to create a

two-port for each component of the earpiece to be simulated. The cross-product of the separate

two-ports component is made to get an equivalent two-port, dependant on the frequency. The

general trend with each element has been studied by using lumped-element simulation and is
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Figure 3.24 Methodology of computation of a two-port network

presented in section 3.3. In this simulation, it is proposed that the first resonance at 2.1 kHz and

the second resonance at 5.5 kHz are a combination of the horn, loudspeaker and bass reflex,

the main components of the earphone.
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Figure 3.25 Frequency response of an earphone with unknown artefacts at 4 kHz and

5.6 kHz.
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Figure 3.26 Frequency response of an earphone with artefacts at 4 kHz and 5.6 kHz due

to front tubes.

One of the purposes of using the two-port approximation is to identify small artefacts in the

frequency response, not present in the lumped-element simulation. However, no model is more

precise than its least precise component, as explained in section 3.2.6. Two of these artefacts

have been identified around 4 kHz and 5.6 kHz. By their position and amplitude on the fre-

quency response, the front section of the earpiece has been modelled by using the two-port

approximation of a tube, as in section 3.2.5. The front section is composed of two distinctive

sections, one made of silicone of a diameter of 2.5 mm by 3 mm long. The second section

is a rigid plastic section of a diameter of 3 mm by 0.7 mm long. By using the two-port ap-

proximation of a tube, it is seen that the 4 kHz artefact is present when the plastic section is

present and the 5.6 kHz artefact is present when the silicon section is present. Ultimately, the

earpiece is dedicated to sound reproduction and the decision to rework the design to eliminate

these artefacts has to be counterbalanced with the perceived effect by a subject, a topic that was

explored in Chapter 1.
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3.3 Introduction to Design, Modelling and Simulation of Earphones with Simulink®

This section presents a journal paper submitted to the Journal of the Audio Engineering Society

by Cédrik Bacon and Jérémie Voix on June 27th, 2013.

3.3.1 Abstract

Electro-acoustic simulation is a field that implicitly requires multi-domain analysis to success-

fully integrate electrical, mechanical and acoustical phenomena from various sources, to facili-

tate and accelerate the conversion of models from heterogeneous to homogeneous. This article

proposes Simulink®, a block diagram environment for multi-domain simulation and Model-

Based Design. This software allows for heterogeneous models when simulating, which results

in more efficient and flexible implementation. Models of electro-acoustic components typically

found in insert earphones such as micro-loudspeakers models as well as components such as

tubes, cavities and average ear models are included; solver characteristics as well as coupling

between domains necessary for the simulation are also covered. Simulations of earphones with

several components are presented to demonstrate implementation.

3.3.2 Introduction

This article introduces how to use Simulink® as an electro-acoustical model simulator and more

precisely, how to implement electro-acoustic models from various sources into the software.

To the authors’ knowledge, this topic has not yet been directly covered in the literature. Several

software programs can be used to simulate electro-acoustic systems. For instance, Leach Leach

Jr. (1991) has documented how to use SPICE as a computer-aided electro-acoustic design tool.

Yet, despite being widely in-use and convenient Kahrs (2009), SPICE does not convert all mod-

els into electrical circuit equivalents. Simulink offers this possibility by enabling multi-domain

simulations and Model-Based Design. Another valuable feature is the Graphic User Interface

(GUI) that enables a new user to reuse blocks constructed by other users without having to

master all the steps needed to create them. Within Simulink, there is a library of components

called Simscape™, which provides an environment for modelling and simulating physical sys-
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tems with their dimensions, while Simulink is by default dimensionless. This article covers

two modelling methods, Lumped-Element and Control System Block Diagram in Section 3.3.3.

It presents how to use simple acoustical components in the Lumped-Element abstraction in

Section 3.3.4 and how to reproduce the equivalent model for an occluded-ear simulator (IEC

60318-4) and a 2 cm3 coupler (IEC 60318-5) within Simscape. It also presents two types of

micro-loudspeakers, moving-coil and balanced-armature, and their description in the Lumped-

Element and Control System Block Diagram modelling methods in Section 3.3.4.3. In Section

3.3.5, particularities of the simulation are presented. Finally, the models presented in the article

are compared and the measurement of physical units is made in Section 3.3.7.

3.3.3 Description of modelling methods

The models of physical phenomenon presented in technical documentation are not presented

in a uniform way; Differential-Algebraic Equation are used for mathematical representation

while Lumped-element, and Control System Block Diagram are common representation meth-

ods found in the literature Poldy (1983a), Beranek (1993), Lenk et al. (2011). Converting one

of these representations into another representation can be tedious. Using software that uses

the models as they are presented in the original research accelerates the process and reduces

the possibility of introducing an error. This section covers these types of model representations

and how to implement them in Simulink.

3.3.3.1 Ordinary Differential Equation and Differential Algebraic Equation

Systems of differential equations that are subject to algebraic constraints are called Differential

Algebraic Equations (DAEs). A DAE without algebraic constraints is called an Index-0 DAE

or Ordinary Differential Equation (ODE). By definition, "An Ordinary Differential Equation

(ODE) is an equation that contains one or several derivatives of an unknown function, which

we usually call y(x) (or sometimes y(t) if the independent variable is time t). The equation

may also contain y itself, known functions of x (or t), and constants" Kreyszig (2010). Thus,

the application is similar for ODEs and for DAEs. However, Simulink differentiates between

DAEs and ODEs when selecting a solver because of the algebraic loop issue. It is preferable to
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be able to recognize the general form of DAEs and ODEs in order to choose a proper solver, but

it is not essential since Simulink will issue a warning as to solver limitations. A very common

ODE in electro-acoustics is the mass-spring-damping equivalent of the cone and suspension

of a loudspeaker. Sturtzer et al. Sturtzer et al. (2012) presented a micro-speaker model using

DAE, constraining the displacement of the membrane. Jensen et al. Jensen (2009) also used

DAEs to describe the behaviour of a balanced-armature loudspeaker.

3.3.3.2 Lumped-Element circuit abstraction

Lumped-Element modelling is often used to describe physical systems and is extensively cov-

ered in the literature. Lumped-Elements are discrete components modelled under the concept

presented in Fig 3.27; there is a quantity across the component characterized by a differen-

tial in the measurement, the drop, p̂ in acoustics and a quantity going through, the flow, Û in

acoustics.

Figure 3.27 A lumped-element model characterized by a

differential across and a quantity going through.

The only independent variable in a Lumped-Element model is time, the connection between

elements are considered perfect wires so the modelled behaviour is only one of the elements.

The relation between p̂ and Û is called impedance Ẑ:

Ẑ =
p̂

Û
(3.34)
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Any other circuit analysis methods can be used using the Lumped Matter Discipline (LMD)

assumptions Agarwal and Lang (2005). Beranek comprehensively explains the application for

other physical domains Beranek (1993). It is suggested that for mechanical system representa-

tion admittance 1

Ẑ
is preferred, because forces are usually easier to measure than displacement.

It is of interest when a displacement, such as movement in loudspeaker diaphragm, is con-

sidered in the analysis. The Lumped-Element model has an important limitation. It does not

assert the time it takes a wave to propagate through a component. The validity of the model

is for λA � λCOMP where λA is the wavelength for which the model is reliable and λCOMP

is the wavelength of the longest component studied Lenk et al. (2011). A way to avoid this

limitation is by applying a method called Distributed-Element modelling. This method implies

a subdivision of the Lumped-Element components into smaller discrete components in order to

enlarge the validity spectrum of the analysis. In acoustics, the higher frequency of interest 20

kHz dictates the sufficient limit of the discretization process depending on the desired effects

- such as visco-thermal - that are to be included in the analysis. An example of the applica-

tion of the distributed-element modelling method applied to a model of the human outer ear

is presented by Gardner Gardner and Hawley (1973). Distributed-Element is not covered in

this article but could certainly be a topic for future work. The Lumped-Element fundamental

building blocks are in the Simscape™ library of the software. In Section 3.3.4, Lumped Element

modelling examples with Simscape are presented.

3.3.3.3 Control System Block Diagram

A Control System Block Diagram describes the qualitative behaviour of a system and its inter-

connection within a functional model where an input data is transformed into its output using

predefined rules. It can be done in continuous time, Laplace, or discrete time domain. It is

a visual representation of DAEs and State Space equations. It is very flexible depending on

need and preferences. It can include nonlinearities blocks as well as mathematical operations

and user defined functions. On the one hand, it is the most complete and flexible modelling

method, but on the other hand, it is usually more complex to use. The simplest time domain
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output is given by:

y(t) = x(t) ∗ g(t) (3.35)

Which is represented in the block diagram representation as:

Figure 3.28 Generic components for a control

system type block diagram representing the

temporal input and output.

Then, by applying the appropriate methods, the Control System Block Diagram can be ex-

panded, reduced and modified Bolton (2011), Nise (2011). All the blocks necessary to the

creation of Control System Block Diagram are in the main Simulink library.

Figure 3.29 Control System Block Diagram built in Simulink® of a current

driven moving-coil micro-loudspeaker as presented in Sturtzer et al. (2012).
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3.3.4 Models of acoustical components

This section covers the implementation of mathematical models of the acoustical components

used in Section 3.3.7, by explaining the library component selection as well as the specific

particularities pertaining to the use of these libraries. In Fig. 3.30, the converter from Simulink

signal to the Physical System (PS)-called Simscape-and back are presented with the Solver

Configuration for the PS section. The Solver Configuration block is necessary for the simula-

tion when a Simscape section is involved. Note the presence of these blocks into each model

that is built using physical components.

Figure 3.30 Presentation of typical Simscape

components in a Simulink window.

3.3.4.1 Model of an Acoustic Mass (MA)

An acoustical mass is a moving body of air within a tube of length l and cross sectional area

S and is analogue in the Lumped-Element abstraction to an inductor. The simplest equation to

know the equivalent value is:

MA =
ρ · l
S

[
kg

m4

]
(3.36)
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A correction factor is used for a capillary tube that combines a resistance to the acoustic mass

Beranek (1993). The acoustic mass equation becomes:

MA =
4

3
· ρl
S

[
kg

m4

]
(3.37)

A correction factor is used to match the specific shape and size of the tube. For a rectangular

section, like the front tube in Fig. 3.37, the factor is 6
5

Rossi (2007).

3.3.4.2 Model of an Acoustic Compliance (CA)

An acoustic compliance is a volume of air that is compressed by a net force without notable

average displacement of the center of gravity Beranek (1993). The compliance is analogue

to a capacitor in its capacity to accumulate energy and is used to represent a 2 cm3 coupler,

standardized by the IEC 60318-5 standard International Electrotechnical Commission (2006).

CA =
V

γ · P0

[
m3

Pa

]
(3.38)

Applying Eq. 3.38 for a 2 cm3 coupler, the resulting compliance value is ≈ 1.4049×10−14
[

m3

Pa

]
and is used in Section 3.3.5. In the Lumped-Element model of the balanced-armature presented

in Section 3.3.4.5, a variable capacitor is used. The component is not typically considered

a Lumped-Element and is explained here since it is less common. The input signal being a

voltage, the output signal then needs to be a voltage as well. Therefore:

∫
dVc

dt
=

∫
1

C
· iC (3.39)

A variable capacitor is included in the SimElectronics™ library of Simscape and an equivalent

explicit model is made using Simulink components should it be is missing from the user’s

library. See Fig. 3.31. The variable capacitor offers the option to replace the constant capacitor’s
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value by one that is frequency dependant, as in the CI balanced-armature micro-loudspeaker

simplified model in Fig. 3.33.

Figure 3.31 Description of the variable capacitor

model and equivalent Simulink explicit model.

3.3.4.3 Model of Acoustic Resistance (RA)

An acoustic resistance is an air flow restriction that results in a variation of the drop, as pre-

sented in Fig. 3.27 and is calculated in [Ωa]. An acoustic resistance is analogue to an electrical

resistance in the Lumped-Element abstraction. It is impossible to have a perfect acoustic re-

sistor, so in practice it is coupled with another component, usually an acoustic mass Poldy

(1983a).

RA =
Re(p̂)

Re(Û)
[Ωa] (3.40)

The resistance of air in a capillary tube is computed with this equation Beranek (1993):

RA =
8ηl

πr4
[Ωa] (3.41)
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A different equation is used for the front rectangular tube Rossi (2007):

RA =
rpηl

a3b
[Ωa] (3.42)

An ideal resistor model is present in Simscape, as shown in Fig. 3.30.

Modelling of micro-loudspeakers response in artificial ears and coupler

This section presents the Lumped-Element and Control System Block diagram models of a

moving-coil micro-loudspeaker and a balanced-armature micro-loudspeaker. It also presents a

Lumped-Element model of an ear simulator.

3.3.4.4 Models of Moving Coil Micro-Loudspeakers

Figure 3.32 Lumped-Element equivalent electrical

impedance circuit of a moving-coil micro-loudspeaker.

A moving coil micro-loudspeaker converts electrical energy into acoustical energy through the

axial movement of a membrane. A comprehensive explanation of how a loudspeaker works is

presented by Borwick Borwick et al. (2001). Two main representations of micro-loudspeakers

are used. The Lumped-Element representation is very popular since the electro-acoustic param-

eters are introduced. They can be inserted into a SPICE network and computed as an electrical

network equivalent Leach Jr. (1991). However, it is necessary to convert electrical components

to acoustical components by using a conversion factor to match the units related to a specific
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domain. For example, a factor (Bl)2 is necessary to convert the electro-acoustic parameters

into electrical parameters Rossi (2007). The ODEs of the micro-loudspeaker are also presented

in the Control System Block Diagram method. It is possible to integrate it readily into Simulink

as presented in Fig. 3.29 from Strutzer et al. Sturtzer et al. (2012). The model presented by

Sturtzer et al. is thoroughly demonstrated by the author to be a reliable model and will there-

fore not be further explored in this article. However, it will be used in Section 3.3.8 as a hybrid

model combining a Lumped-Element and a Control System Block Diagram to demonstrate the

impact of the solver selection on the time necessary to perform a simulation when a model is

or is not a stiff system. The definition of stiffness is provided in Section 3.3.6.

3.3.4.5 Balanced Armature Micro-Loudspeakers

Figure 3.33 Lumped-element model of the Knowles CI balanced-armature

micro-loudspeaker as reproduced from the documentation provided by Knowles.

Balanced armature micro-loudspeakers are by design nonlinear. Yet, the armature stiffness and

the electromagnetic force acting upon it are proportional and will create a linear behaviour. The

models are generally more complex - nonlinear - than for a moving coil micro-loudspeaker.

Because of this, a modified Lumped-Element model is presented in Fig. 3.33. The CI micro-

speaker model is reproduced from the documentation provided by Knowles®. The ODEs in

Jensen’s work Jensen (2009) are presented in a Control System Block Diagram representation

in Fig.3.34. All the constants and coefficients in the model in Fig.3.34 match Jensen’s work

to facilitate correspondences to its work. The model yields the same results when a Fixed-step
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ode1 (Euler) solver is used for the simulation. Faster simulation is possible when a Variable-

step solver is used.

Figure 3.34 Control System Block Diagram equivalent to Jensen ODE

description of the CI Loudspeaker Jensen (2009).

3.3.4.6 Ear Simulator Model

For this article, only Lumped-Element models are used to represent couplers. As previously

mentioned, the 2 cm3 coupler (IEC 60318-5) is modelled by an equivalent compliance of ≈
1.4049× 10−14

[
m3

Pa

]
. Alternatively, another model that can used is the equivalent model to the

Brüel & Kjaer Ear Simulator Type 4157 International Electrotechnical Commission (2010b),

given in Fig. 3.8.
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Figure 3.35 Equivalent Lumped-Element model of the Brüel & Kjaer

Ear Simulator Type 4157 which is compliant to IEC 60318-4

(Formerly known as IEC 711) Jønsson et al. (2004).

Sturtzer et al. and Jensen et al. models can be connected to these coupler equivalent networks

by the S-PS block, as shown in Fig. 3.35.

3.3.5 Simulation with Simulink®

Simulink is a block diagram environment for multi-domain modelling and simulation inte-

grated in MATLAB®. It uses the tools available in MATLAB and is presented with GUI to

facilitate software interaction. For simulation using Simulink, two major issues must be ad-

dressed: first, solver solver selection and its configuration, which will be covered in Section

3.3.6 and second, coupling between the model’s domain sections, which will be covered in

Section 3.3.6.1.

3.3.6 Selection of a Solver

In Simulink, while it is important to select the proper solver to obtain accurate results, it is

possible to achieve accurate simulations by using the default solver. A solver determines the

time necessary to simulate the next step and it applies a specific numerical method to solve

the various ODEs that represent the model. Simulink solvers have different characteristics,

the advantages and disadvantages and various options of which are extensively covered by

Simulink’s documentation as well as by the reference cited by the documentation to distinguish



116

Fixed-Step from Variable-Step and Explicit from Implicit. Many conditions are involved when

selecting a solver. For instance, fixed-step solvers cannot solve for discrete states and usually

a stiff system, as defined by equation 3.43, is better solved by an Implicit solver. Most of the

block diagrams built in a Control System Block Diagram can be accurately solved by using

the default settings of the software (ode45) which is a variation of the Runge-Kutta method

Kreyszig (2010).

Table 3.7 Definition of terms used to describe various solvers in Simulink

Property Definition
Fixed-Step vs. Variable-Step Fixed-step solvers compute every step of a simulation ac-

cording to the specified timestep while Variable-Step dy-

namically adapts the step size based on the local error

Explicit vs. Implicit An explicit method uses the previous state results to com-

pute the current state while the implicit method must com-

pute the current state as well as the subsequent state to

achieve accuracy.

Continuous vs. Discrete A continuous solver computes the solution for a continuous

integrator while the discrete solver computes the solution

for a system in which the integrator has been replaced by a

discrete equivalent.
Note: See Simulink documentation for specificity of each solvers available in the software

When the model includes high stiffness components, the system must be studied more atten-

tively since not all solvers will perform an accurate simulation. By definition, "the stiffness [of

a system] arises from the fact that the system has some eigenvalues [λ] with large magnitude

negative real parts, corresponding to the fast mode, and other eigenvalues with small magni-

tude negative real parts, the slow mode." Hartley et al. (1994). Determination of the eigenvalues

can be done within MATLAB or by several other methods Kreyszig (2010). Once known, the

eigenvalues can be used to compute the stiffness ratio of a system.

Stiffness ratio =
max|Re(λ)|
min|Re(λ)| � 1 (3.43)
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"A system is stiff if the timestep [increment of time at which a simulation computation occurs]

required to produce a stable simulation of the system is significantly smaller than the timestep

required to produce an accurate simulation of the system assuming that stability is not an issue."

Hartley et al. (1994). A system is considered slightly stiff when the ratio is greater than 103

and highly stiff when the ratio is greater than 106. Usually, a system corresponding to the high

stiffness criterion, such as certain acoustic models, will be solved by an implicit, variable-step

solver.

3.3.6.1 Coupling Between Domain Sections of the Model

Another aspect of simulating using Simulink is the connection between domains. By default,

Simulink is dimensionless and by using integration or derivation methods, it is possible to ex-

tract a specific state of a vector’s physical quantity such as position, speed and acceleration.

When changing from one physical domain to another, e.g. electrical to mechanical, it is im-

portant to keep track of the transformation between blocks since it might yield unexpected

behaviour from the models because Simulink authorizes most of the connections. This is most

relevant when impedance matching is considered for acoustical, electrical and mechanical sys-

tems. For example, cetain Lumped-Element diagrams use the CGS units reference while others

use the MKS units reference, which can lead to an important mismatch since the ratio of magni-

tude MKS
CGS

is 105 for CA and MA. Another important coupling is between Control System Block

Diagram and Lumped-Element section. Lumped-Element uses by analogy p̂ and Û as compo-

nents across and through, but Control System Block Diagrams have vector physical quantities

for output. Therefore, transformation of the vector physical quantities - e.g. position, speed

or acceleration - into the across (or through) quantities is necessary; To transform position

| x | ejωt into pressure p̂, a gain of the air impedance is necessary.

3.3.6.2 Simulating Frequency Response Function and Plotting Poles and Zeros

Electro-acoustic engineers rely heavily on the frequency response function and the phase plot,

commonly known as Bode plot, and the Pole-Zero Plot as design tools. Simulink provides

these plot tools as built-in blocks (see Fig. 3.36). When simulating Lumped-Elements using
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Figure 3.36 Image of the Bode plot analysis tool

in Simulink.

Simulink, the resulting frequency response curve is usually around -120 dB on the y-axis,

which is about 94 dB less than what would be measured with a physical set-up. The reason for

this is that the ratio of the input over the output is not converted by the Bode plot to Sound

Pressure Level (SPL). Since an input of 1 V is used in the simulation, the ratio to the reference

(Pref = 20×10−6[Pa]) is not taken into account because the ratio 94 dB = 20·log10( 1
20×10−6 ) is

not by default in the simulation. This particularity has also been noted for the SPICE simulation

Kahrs (2009).

Figure 3.37 A) Section view of a moving-coil

micro-loudspeaker in the enclosure with the B)

Lumped-Element model Rossi (2007).
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3.3.7 Case study: Lumped-elements of two micro-loudspeakers

Two types of speakers, moving-coil in its enclosure and balanced-armature, are simulated using

the Lumped Element representation and are compared to the unit measured in a coupler. First,

the enclosure of the moving-coil micro-speaker is described and then the simulation results for

the balanced-armature simulation are presented.

3.3.7.1 Lumped-Element Moving-Coil Micro-Loudspeaker Simulated with Simscape™
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Figure 3.38 Comparison of frequency response between the earphone

measured on a HATS with ear simulator (IEC 60318-4) [reliable from 100 Hz to

10 kHz] and a lumped-element simulated in Simulink®/Simscape™.

The moving-coil micro-loudspeaker used is in its enclosure, as in Fig. 3.37, and is commer-

cially known as EERS, manufactured by Sonomax, model PCS-150. The qualitative description

and equivalent lumped-element model are beneath under the section view of the earpiece.

The moving-coil Thiele & Small parameters are presented in Table 3.8 Dedieu (2008):

Table 3.8 Thiele & Small parameters of the used moving coil micro-speaker

MMS CMS RMS

7,46 μ 13,41 m 6,27 m
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The bass-reflex tube has a radius of 0.26 mm and length of 10 mm. Because of the ratio of

length over diameter ( 10
.260

≈ 38.5), the visco-thermal effect is computed for the bass reflex

tube. The back volume is 2.32× 10−8 m3. The front volume is 1.80× 10−8 m3. The front tube

is rectangular with a horn shape on one side and parallel walls on the other. For the purpose of

the simulation, this is replaced by an equivalent rectangular section of 0.75 × 1.5 mm. Where

a ≤ b and rp is a coefficient based on the ratio between height and width of the rectangular

section. In this case, the ratio of 0.75
1.5

yields a value of ≈ 22.

Table 3.9 Reference Name, Equation and Values for the component used in the

Lumped-Element model

Component reference Value Units
Bass Reflex RBR ≈ 1.66× 109 [Ωa]

MBR ≈ 3.04× 105 [kg · m−4]
Back Volume CBV ≈ 1.63× 10−13

[
m3 · Pa−1

]
Front Volume CFV ≈ 2.48× 10−13

[
m3 · Pa−1

]
Front Tube RFT ≈ 3.53× 106 [Ωa]

MFT ≈ 1.29× 104 [kg · m−4]

Comparison between the simulation with Simulink and the physical units measured using the

ear simulator and the 2 cm3 coupler is presented. The particularities of the results are discussed

in Section 3.3.8. Fig. 3.38 presents the general behaviour of the studied earphone with only

6 lumped-elements for the enclosure and 3 elements for the micro-loudspeaker behaviour in

compliance with IEC 60318-4 (formely known as IEC 711).

Fig. 3.39 presents the general behaviour of the studied earphone with only 6 lumped-elements

for the enclosure and 3 elements for the micro-loudspeaker behaviour in an IEC 60318-5 cou-

pler. This model is simulated in Simulink and the results are presented in Fig. 3.39.
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Figure 3.39 Comparison of the frequency response between the earphone

measured on a 2 cm3 coupler (IEC 60318-5) [reliable from 125 Hz to 8 kHz]

and a lumped-element simulated in Simulink®/Simscape™.
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Figure 3.40 Comparison of the fine-band frequency response of a Knowles®

CI22955 - reproduced from the PSpice model provided by Knowles® - measured

on an IEC 60318-4 Ear Simulator and a lumped-element simulated in

Simulink®/Simscape™.

3.3.7.2 Results of Balanced-Armature Micro-Loudspeaker Simulation

Fig. 3.40 shows the comparison between a CI balanced armature micro-loudspeaker, presented

in Fig. 3.33, inserted into an IEC 60318-4 ear simulator presented in the Fig. 3.35 sealed into

position without a tube or enclosure. The two networks are interconnected together.
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3.3.8 Discussion on simulating earphones with Simulink®

The modelling method used in this article is a small signal simplification of a complex system:

a micro-loudspeaker in its enclosure. The moving-coil is approximated by a second order elec-

trical network equivalent and while the balanced-armatures have a higher order behaviour, but

they are also simplified. Since the driving pole-zero couple is a second order system, the roll-off

is 40 dB/dec., for frequencies above the resonance. Higher order systems have a steeper roll-

off. To achieve a more accurate simulation, the models can be substituted by a block diagram

model that takes into account nonlinearities and other behaviour inherent to the component as

demonstrated by Sturtzer et al. and Jensen et al., and that were not explored in depth in this

article. A coupling between the models is possible using tools included in the software and are

intended to convert Simulink signals into physical signals. Furthermore, Simscape allows for

the creation of new blocks to include more complex equations that would take into account

visco-thermal effects within the component. However, even a very simple model, that could

be built within an hour provides valuable design information. Resonances, created by faster

pole-zero couples, provide an estimate of the general behaviour of the earphones and if further

development is of interest. The building methods shown in this article are in no way intended

to provide an accurate reproduction on the entire hearing frequency spectrum, which would be

of interest for a designer, but rather to provide a tool to assess whether a design would be worth

further development, or not. If further development is necessary more complex and, but more

accurate methods, such as the four-port network, not covered in this article can be used. As for

other simulation methods, the type of model used, its implementation and solver set-up are the

main variables to a successful simulation.

Two systems are studied with the pole-zero plot. Fig. 3.41 shows the poles and zeros for a

mix elements model and Fig. 3.42 shows the poles and zeros for the simulation of a Lumped-

Element only model. The plots shows what the pole-zero plot provides when a pole is selected.

For the hybrid system, the ratio is:

StiffnessHybrid =
10324

69
≈ 189 (3.44)



123

Figure 3.41 Two extreme poles (minimum and maximum)

necessary to compute the system stiffness of a hybrid system

leading to the proper solver selection.

This system is not considered stiff since it is under the 103 reference. And for a Lumped-

Element only model, the ratio is:

StiffnessLE =
2.61× 104

9.345× 10−6
≈ 2.79× 109 (3.45)

Which is much larger than 106, known as a highly stiff system. The time necessary to compute

the same system in the same conditions with different solvers is presented in Table. 3.10:
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Figure 3.42 Two extreme poles (minimum and maximum)

necessary to compute the system stiffness of a hybrid system

leading to the proper solver selection.

Table 3.10 Time to compute 1 s of simulation of a hybrid model of Control System
Block Diagram connected to Lumped-Element model and only Lumped-Elements model

for different solvers with default setting

Solver Time [s] to complete the hybrid
simulation

Time [s] to complete a Lumped
Element only simulation

ode45 56.9 ≈ 104

ode23 44.5 ≈ 105

ode113 94 > 105

ode15s* 139.8 0.59

ode23s* 84.3 0.74

ode23t* 50.2 0.48

ode23tb* 47.2 0.47
*Implicit solver (suggested for stiff problems)
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3.3.9 Conclusions

This article is intended as an introduction to Simulink/Simscape as an electro-acoustic design

tool to complete the generic tutorial provided by MathWorks on how to use the tools by ad-

dressing the fundamentals of earphone design with this software. Open-source options, like

Scilab/Xcos, could also be explored to perform simulations. As stated above, Simulink has all

the necessary features to implement models into a Control System Block Diagram as well as

Lumped-Element model and blocks to acquire the frequency response function, pole-zero plot,

etc. These features are very useful to design earphones and are built in the software. Simulink

has potential because it is not limited to a single physical dimension. The accuracy in the time

domain is not explored in depth and solver selection and settings is outside the scope of the

present article, but the intent was to raise awareness so as to keep in mind as a tool for the

simulation of models, even if only to save time. A definition of stiffness and the demonstration

of its impact on the simulation time were made. The topic psycho-acoustic filters that could be

coupled to the model to evaluate the perceived quality of an earphone has not been discussed

but could be a features that could be added to the block library. This article has opened the topic

of using Simulink and Simscape as an acoustical modelling and simulation tool. The authors

feel there is still much to be explored on the topic.
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3.4 Conclusions on earphone modelling and simulation

This chapter presented the modelling and simulation of earphone for three modelling methods:

the lumped-elements, two-ports and control system block diagram methods. It demonstrated

that it is possible to model adequately earphones with one or several of these methods for the

frequency range in which it can be measured by an ear simulator. The accuracy of the model

and simulation depends largely on the selected modelling method which will have accuracy in

relation to the size of the components intended to be modelled. In complement, an extensive

library of models necessary to model earphones is listed for each modelling method.

This chapter also identified powerful simulation tools which provide the flexibility and the

capability to implement the various modelling methods into a single interface. This chapter

focused on the use of Simulink because its important presence in the engineering world and

its capability to be use in synergy with other tools such as finite elements softwares. It demon-

strated that Simulink is a tool with all the features necessary to adequately simulate design of

earphone.



Chapter 4

FUTURE WORKS

This chapter identifies two areas in need of research in order to offer to earphone designers

the tool they need to control the development of their earpieces. The first work identified is

the improvement of the measurement apparatuses, which are limited in the frequency band it

is reliable when compared the entire human hearing spectrum. The second work is a proper

assessment of the psycho-acoustic impact of the coupling between the earphone and the ear.

Previous studies identified a large variability related to this topic. However, the impact of this

variability on the perceived quality is not yet defined in the literature.

Another topic discussed in this chapter is a proposed approach to address the issue of the vari-

ability of the coupling between the earphone and the user’s ear. It is suggested that leaving to

the user the control of the perception description and embedding the frequency response cor-

rection in a background run application would be the best way to address the issue of coupling.

Furthermore, it is suggested that a cross-device compatibility is a key component of the success

of this approach.

4.1 Improvement of the measurement apparatuses

As presented in Chapter 2, the normalized measurement tools available at the time of the writ-

ing of this thesis provides reliable measurement in a range of 100 Hz to 10 kHz. Human hearing

range is accepted to be from 20 Hz to about 20 kHz. In this regard, the limited ability of the ear

simulator, which measure about 70% of the frequency range typically heard by a human, limits

the ability to evaluate a proper design. The earphone designer rely heavily on his experience as

well as a very quiet surrounding for compensation.

Another limitation of the actual measurement tools is that they replicate the response of an

average ear, while the variability of the human ear frequency response is important, as it is

explained in the next section.
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It is suggested that a new type of manikin with an ear simulator that would also simulate the

variability of the ear canal as well as being able to measure an extended frequency response

would be a great improvement for designers.

4.2 Assessment of the psycho-acoustic impact of the coupling between the earphone and

the ear

Many studies measured the variability of individuals in-ear response, for example Hammershøi

and Møller (1996), as well as the coupling between the ear and the earphone (Møller et al.

(1992) and Ćirić and Hammershøi (2006)). From an amplitude point of view, as explained in

Chapter 1, this variability is significant. It ranges from several dB around 2 kHz up to 30 or

40 dB above 8 kHz. It is also known that the Just Noticeable Sound Change (JNSC) is small

compared to the variability, in the order of magnitude of 1 to 5 dB. The objective and subjective

research suggest that the coupling of the ear with the earphone will have a significant impact

on the perceived quality of an earphone, when it is evaluated by a large panel of subject.

The same observation can be made for the variability in the position of the ear canal resonant

frequency. Positioned on average around 2.7 kHz, it can range from 2 kHz up to 3.5 kHz.

Such difference between the natural resonance of the ear canal and an earphone designed to

replicate the average seems to be of a noticeable nature by an individual lying in the extreme

of the measured population.

However, is this variability an issue or not? Most of the study as of now aim at identifying an

average frequency response that would be the starting point for the development of the next

generation of earphone. They do not evaluate if this average will be suitable for a large group.

For example, a well known contributing factor to the perceived quality of sound is sealing the

ear with the earphone, which have a known impact of a perceived fullness of sound. The lack of

bass is a well known critic of many earphones. The source of these critics is already addressed

by several approach available on the market which ensure that the ear canal is sealed by the

earphone.
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Since the variability of the human ear is known, it is suggested to take advantage of this knowl-

edge to offer a customization process to the user, discussed in the next section.

4.3 Enhancing user experience through customization

One common observation is that all the earphones on the market up to now are push demand

products, based on strong marketing and off the shelf design. Olive’s experiments have re-

peatedly demonstrated that people, even groups of people who sometimes use lower quality

sources, prefer good sound reproduction. This trend is unlikely to change and would comply

with a study by Pralong and Carlile (1996) stating that a personalized equalization is better

than a generic equalization for headphones, distortion wise. Customers will not change their

buying habits except if a new way of buying earphones is presented to them, basically because

they are accustomed to the actual offering. However, if a new set of performance metrics is

presented, like the possibility of defining a sound signature that would be specific to the user,

the improvement in quality would be appreciated by the users, as noted by Keiper (1997):

In today’s highly competitive markets, manufacturers all over the world might

actually use the same machinery and the same raw materials to make their product.

It is the product engineering and design where the differentials between similar

products come in. Since everybody can hear and perceive acoustic quality (and

claim to be an expert), good acoustic engineering and design are needed and rep-

resent an excellent chance of market success.

This quote is about any consumer’s product, from hair dryers to washing machines, but cannot

be more true for earphones and consumer electronics as a whole. Users expect improvement in

the product they buy. They expect that every iteration will be more satisfying than the previous

version. It is highly unlikely that earphone offering will differ from other consumer products

where mass-customization - or personalization - will occur when the product offering shifts

from goods to experience products, as noted by Davis (1997) because consumers will look

for the product that would do the best job for them, not a one size fits all. A legitimate ques-

tion arises from these observations: Toward which personalization should earphones designers
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orient their efforts? Based on previous sound quality research, it is likely that, at some point,

customers will expect a sound that would really reflect their preference, and not an ideal defined

in a remote lab.

On this, the author suggests that consumers would rather choose the sound signature they prefer

for their earphones by presetting the relative loudness of bass, mid and treble. Their person-

alized sound signature would be reproduced on any compatible device at any moment based

on their preferences. Customization of the frequency response is expected to be performed not

the modification of the earphone itself but by the programming of the playback device. The

device would recognize the earphone by an identification chip embedded in the earphone on

which the description of the earpiece is stocked and then returned on the different smart de-

vices to recall the user’s preferences. It would produce a high-end product with features that

would empower the end-user by addressing the issue of intra/inter-subject variability. The by

default sound signature could be one such as proposed by Olive et al. (2013) so the average

person would already have a preset quality sound. For those who deviate from the average, this

compensation option would allow them to use the earphone to its fullest capacity.

4.3.1 Post-setting the relative loudness of earphones

As suggested previously, it is unlikely that a universal frequency response function satisfies

every consumer. It is necessary to give to the consumer the opportunity to adjust the frequency

response function by an easy and interactive tool. This tool would articulate around anchors

defined in amplitude as well as center frequency that would be modified based onto the user’s

preference. These anchors are necessary to match the main ingredient of earphone frequency

response matching, an accurate bass reproduction. The resonance of the ear canal and the ex-

tension in the high frequencies, associated with the brilliance of the sound, as presented in

Figure 1.11. These criteria are chosen for the agreement in the literature of their impact on

sound quality ratings. It is expected that not all users are seasoned in audio, and there is a need

to broaden the typical equalizer to descriptors that would be significant to users using what is

already present for naive psycho-acoustic studies. For example, a user could have the option
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to describe its earphone sound as too bassy or lacking bass which would be translated in an

increase by the system.

4.3.2 Using the impedance frequency relation for compensation

In Chapter 2, the relationship between the frequency response and the impedance is demon-

strated. There is also a demonstration of the impedance resonance variation when a air load is

applied to the earpiece. Based on this concept, it is possible to assess the coupling between the

ear and the earphone and correct the frequency response accordingly in order to provide the

frequency response expected by the user without the user’s intervention. When used combined

to the user preference, this approach would allow for a better music listening experience.

4.4 Conclusions on future works

The future works identified in this chapter all have a common root, the variability of the cou-

pling between the earphone and the ear of the users, which is known to be large and its impact

not well known. Three approaches to this issue are proposed, which could be implemented in

altogether or singularly. The first one is to study the relation between the coupling of the ear-

phone with the ear and the impact of this coupling from a psycho-acoustic point of view for a

large population and assess if there is a correlation and of what nature it is, if there is one.

The second proposed approaches is to develop measurement apparatuses that would allow

designers to assess how their design perform for a larger population. In this case, the apparatus

would have to replicate the variability of several features of the human ear anatomy in order to

modify the in-ear response to replicate the variability of the population.

The third approach would be to take advantage of the, nowadays, largely available signal pro-

cessing capabilities found in many device music listeners use to listen to their music. By using

the relationship between the measurement of impedance and the frequency response when the

earphone is under the same load, it is possible to adjust the earphone to correct for the preferred

frequency response identified by the user. Therefore avoiding the issue to design multiple phys-

ical earphone to match many user preferences.





CONCLUSION

This thesis aims at identifying the contributing factors to a good sound signature and also

explains the other components contributing to a proper earphone design. In Chapter 1, it is

demonstrated that earphone frequency responses are, nowadays, as different as the exterior de-

sign of the earpiece. This is partially because of design philosophies, but also because there

is no unequivocal agreement on what a proper frequency response for an earphone, or for a

headphone, should be. A tendency for a compensation that would replicate the head related

transfer function in a specific field is prevalent, but the variability of the human anatomy, when

analyzed on a large scale, tends to limit the applicability of any study reporting a specific fre-

quency response based on this premise. Many studies already explored this approach and none

were deemed satisfactory when re-evaluated by other researchers. Furthermore, the consumers’

expectations is high not only toward earphone build quality, but also in sound quality. Several

areas are still in need of research and development in order to achieve a design based on re-

liable data. How to handle the variability of the impedance coupling between the ear and the

earphone still presents the most challenges.

In Chapter 2, the measurement methods for earphones and the tools available have been pre-

sented. It is demonstrated that the measurement apparatuses available at the moment are limited

for earphones development. Commercially available ear simulators would typically provide an

accurate frequency response, when compared to a group of subjects, up to 8 kHz. At the other

end of the frequency spectrum, the correlation of the measurement drops significantly under

100 Hz, leading to unreliable measurement for four octave bands, two at each end of the hearing

spectrum. These octave bands are known to provide the sensation of power and brilliance, two

very important attributes of so-called high-fidelity reproduction when compared to low-fidelity

reproduction. A manikin that would be adaptable so as to reproduce a various array of shapes

of the external ear would greatly improve the assessment of the variability in the frequency

response which would have an impact on sound quality. The development of an extended fre-

quency range measurement apparatus would allow a designer to confirm that his design will

offer a good frequency response for a known percentage of the population.
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A contrario to the psycho-acoustic models discussed in Chapter 1, the models of acoustic

transducers and passive acoustical components have been studied extensively and their lim-

itations are well recognized, as presented in Chapter 3. In light of this, it is possible for an

earphone designer to match a desired target frequency response with the design tools available.

The complementarity of the levels of abstraction and the software available contribute to this

capacity. Furthermore, the improvement of finite element multi-physics analysis, not covered

in this thesis, allows for accurate determination of how an earphone would respond to a spe-

cific stimulus. While models and modelling methods have greatly improved, the actual tools

for measurements seems inadequate to confirm that a physical model actually behaves as per

design.

Chapter 4 presents two future works to help earphone designers in the design of earpiece that

would provide music reproduction with fidelity. The first one is to study the variability of

the coupling between the ear and the earphone in order to include it into a design plan. The

second is to develop a measurement apparatus that would reliably replicate the variability of

the coupling by reproducing a large array of ear shape. An alternate approach, also presented

in Chapter 4, suggests that the frequency response of an earphone should be modified on an

individual basis since any music player released in the near future will have the necessary signal

processing capabilities to correct for the frequency response desired by a user. Two challenges

exist for this approach. The first challenge lies in the making of a user-friendly interface, easy

to understand for a non-specialist, who might have a great interest in good music reproduction

without necessarily wanting to learn how it is achieved. The second challenge would be to

make this individualized response cross-platform and cross-device so the user is not limited to

a single device, or operating system.

In retrospect, most of the tools necessary for a proper earphone design, as positioned in Fig-

ure 0.1, are already available. Measurement methods and models, either physical or psycho-

acoustical, have extensively been studied. However, several areas are still in need of research

and development in order to achieve a design based on reliable data. This seems to be mostly

because the coupling of the earphone to the ear, which is very variable from one individual to



135

another. It induces a variability in sound quality which is much less prevalent when the music

reproduction is performed with a distant source. When it comes to earphone sound quality and

design, it is no longer a question of how to achieve the two, but rather an understanding of who

are the users and what their expectations are.





APPENDIX I

SMALL-SIGNAL APPROXIMATION OF A MOVING-COIL
MICRO-LOUDSPEAKER

This section presents the equation of the small-signal approximation of a moving-coil micro-

loudspeaker. This analysis is a complement to the measurement of the speaker impedance curve

presented in section 2.1. From this measurement, it is necessary to identify FS , the resonant fre-

quency of the driver. At that frequency, the impedance value is denoted ZMAX . The parameters

CAS , MAS and RAS are used in section 3.2.3

r0 =
Zmax

RE

(A I-1)

|Z| = √
r0RE (A I-2)

QMS =
FS

√
r0

F2S − F1S

(A I-3)

QES =
QMS

r0 − 1
(A I-4)

The subscript AC stands for Alternative Compliance (AC) as many methods can be used to

modifiy the load on the transducer and therefore shift the peak of the impedance curve.

QMAC =
FAC

√
r0

F2AC − F1AC

(A I-5)

QEAC =
QMAC

r0 − 1
(A I-6)
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QTS =
QMSQES

QMS +QES

(A I-7)

VAS = VT

[
FACQEAC

FSQES

− 1

]
(A I-8)

CAS =
VAS

1000ρ0c2
(A I-9)

MAS =
1

4π2F 2
SCAS

(A I-10)

MAAC = MAS
F 2
S

F 2
AC

(
1 +

VAS

VT

)
(A I-11)

BL =

√
2πFACREMAACS

2
D

QEAC

(A I-12)

RAS =
BL2QES

QMSRES2
D

(A I-13)

η0 =

(
4π2

c3

)(
F 3
SVAS

QES

)
(A I-14)



APPENDIX II

MATLAB, SIMULINK AND SIMSCAPE LIBRARY

Two-port of loudspeaker

The two-port representation of a loudspeaker comes from a publication by Darlington (1998).

The MATLAB code supplied by Darlington for a loudspeaker in cascade with other compo-

nents is:

1 % Input variables....

2 % s cone area

3 % bl motor constant

4 % zeb electrical blocked impedance (vector of n elements)

5 % zm mechanical impedance (vector of n elements)

6 % freq Frequencies (vector of n elements)

7

8 function [chain] = lschain(s,bl,eb,zm,f)

9

10 omega=2*pi*f;

11 chain(1,1,:)=s*zeb/bl;

12 chain(1,2,:)=(zeb.*zm+bl^2*cos(0*omega))/bl;

13 chain(2,1,:)=(s/bl)*cos(0*omega);

14 chain(2,2,:)=(1/bl)*zm;
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Two-port of a tube

A small tube with and without visco-thermal effects is presented by a two-port:

1 function [ output ] = tube( freq, l, r, method )

2

3 omega_i=2*pi*freq;

4

5 if method==1 %Basic

6

7 c_0=353.027;

8 gamma=1i*(omega_i./c_0);

9 output=[cosh(gamma*l) sinh(gamma*l); sinh(gamma*l) cosh(gamma*l)];

10

11 if method==2 %Egolf

12

13 omega(1,1,:)=2.*pi.*freq;

14

15 l_n=l;

16 rho=1.1385; %approximated density of air (37 C)

17 sigma_pr=0.71256; %approximated Prandlt number of air (37 C)

18 mu=1.6696e-5; %absolute viscosity of air (37 C)

19 gamma=1.401; %Heat specific ratio of air (37 C)

20 c=353.027; %speed of sound in air (37 C)

21

22 alpha(1,1,:)=sqrt((-1i.*omega.*rho.*sigma_pr)./mu);

23 beta(1,1,:)=sqrt((-1i.*omega.*rho)./mu);

24

25 Z_n(1,1,:)=((rho.*c)./(pi.*r^2)).*sqrt(1-((2.*besselj(1,beta.*r)./...

26 (beta.*r.*besselj(0,beta.*r)))).*(1+2.*(gamma-1).*...

27 (besselj(1,alpha.*r)./(alpha.*r.*besselj(0,alpha.*r)))));

28

29 Gamma_n(1,1,:)=(1i.*(omega./c)).*sqrt((1+2.*(gamma-1).*...

30 (besselj(1,alpha.*r)./(alpha.*r.*besselj(0,alpha.*r))))./...

31 (1-(2.*besselj(1,beta.*r))./(beta.*r.*besselj(0,alpha.*r))));
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32

33 output(1,1,:)=cosh(Gamma_n.*l_n) ;

34 output(1,2,:)=Z_n.*sinh(Gamma_n.*l_n);

35 output(2,1,:)=(1./Z_n).*sinh(Gamma_n.*l_n);

36 output(2,2,:)=cosh(Gamma_n.*l_n);

37

38 end

39

40 if method==3 %Killion

41

42 AREA=2*pi*r^2

43 M1=1; % M1 Initial value

44 M2=(4/3); % M2 Initial value

45 M3=0; %M3 Initial value

46 M4=1; %M4 Initial value

47 omega_n=omega*r^2

48 M1=(sqrt(1+0.214*omega_n))/(1+0.24*omega_n/...

49 (2.2+omega_n^2)-2.2*omega_n/(625+omega_n^2));

50 M2=sqrt((1.69+0.05*omega_n)/(1+0.05*omega_n));

51 M3=0.303*omega_n^2/((1+0.3*omega_n^1.6)^0.33*(1+omega_n^2/...

52 (1+0.3*omega_n^1.6)^0.66));

53 M4=1+0.4/(1+(omega_n/(0.61+0.79*omega_n^(3/4))^2));

54

55 ZT==(1/AREA)*((8*U/r^2*M1)+j*omega*rho*M2);

56 YT==(AREA/(rho*c^2))*((1/r^2)*M3+j*omega*M4;

57

58 elseif

59

60 fprintf('error see notes on tubes');

61

62 end

63

64 end
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Example of a Simscape program

Simscape components use the branch approach with a variable across and a variable through

defined in chapter 3.

1 component capacitor < foundation.electrical.branch

2 % Capacitor

3 % Models a linear capacitor. The relationship between voltage V and

4 % and current I is $I=C*dV/dt$ where C is the capacitance in farads.

5 %

6 % The Initial voltage parameter sets the initial voltage across the

7 % capacitor. Note that this value is not used if the solver ...

configuration

8 % is set to Start simulation from steady state.

9 %

10 % The Series resistance and Parallel conductance represent small

11 % parasitic effects. The parallel conductance can be used to model

12 % dielectric losses and the series resistance used to represent the

13 % effective series resistance (ESR) of the capacitor. Simulation of

14 % some circuits may require the presence of the small series resistance.

15 % Consult the documentation for further details.

16

17 % Copyright 2005-2008 The MathWorks, Inc.

18

19 $ parameters

20 c = { 1e-6, 'F' }; \% Capacitance

21 v0 = { 0, 'V' }; \% Initial voltage

22 r = { 1e-6, 'Ohm' }; \% Series resistance

23 g = { 0, '1/Ohm' }; \% Parallel conductance

24 end

25

26 variables

27 vc = { 0, 'V' }; \% Internal variable for voltage across ...

capacitor term

28 end
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29

30 function setup

31 if c ≤ 0

32 pm_error('simscape:GreaterThanZero','Capacitance')

33 end

34 if g < 0

35 pm_error('simscape:GreaterThanOrEqualToZero','Parallel ...

conductance')

36 end

37 if g == {inf, '1/Ohm'}

38 pm_error('simscape:LessThan','Parallel conductance','inf')

39 end

40 if r < 0

41 pm_error('simscape:GreaterThanOrEqualToZero','Series ...

resistance')

42 end

43 if r == {inf, 'Ohm'}

44 pm_error('simscape:LessThan','Series resistance','inf')

45 end

46 vc = v0; \% Assign initial voltage

47 end

48

49 equations

50 v == i*r + vc;

51 i == c*vc.der + g*vc;

52 end$





APPENDIX III

EXPERIMENTAL SET-UP

A Brüel & Kjær Type 4128-C Head and Torso simulator, which includes a IEC 60318-4 com-

pliant coupler as ear simulator, was used. It is connected on a NI-DAQ PXI-4461 inserted in

a PXI-1033 chassis as the acquisition tools. Post-processing was performed using MATLAB

and a LabView based in-house software. The headphone amplifier is a Behringer Powerplay

PRO-8 HA8000.

All hardware components were tested to ensure that they would not introduce any noise of bias

in the frequency range of interest, which is limited by the applicable frequency range of the

coupler.

The set-up for the non-collocated measurement is presented in Figure A III-1 and A III-2.

Figure-A III-1 Picture of the experimental set-up for the

non-collocated measurements
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Figure-A III-2 Diagram of the experimental set-up for the

non-collocated measurements
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