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EXPERIMENTAL PROCESS DEVELOPMENT AND AEROSPACE ALLOY 
FORMABILITY STUDIES FOR HYDROFORMING 

 

Saeed MOJARAD FARIMANI 
 

RÉSUMÉ 

 

Dans le procédé d’hydroformage, la pression d’un fluide est utilisée pour déformer 
plastiquement un tube paroi mince à l’intérieur d’une matrice fermée afin de remplir la cavité 
de la matrice. L’hydroformage des tubes possède de nombreux avantages qui rendent ce 
procédé très intéressant pour plusieurs industries telles que l’automobile et l’aérospatiale. 
Mais, à cause de différents facteurs tels que la formabilité des matériaux, l’ordre et les 
séquences du chargement (force de compression axiale et pression interne pendant le 
procédé), la géométrie de l’outil et la friction, c’est un procédé de mise en forme assez 
complexe. Ainsi, la simulation par éléments finis combinée à des méthodes d’optimisation 
peuvent réduire significativement le coût de l’approche “Essai – Erreur” utilisée dans les 
méthodes conventionnelles de mise en forme. Dans ce mémoire, pour étudier les effets de 
différent paramètres tels que les conditions de friction, l’épaisseur du tube et la compression 
axiale sur la pièce finale, des essais d’hydroformage de tube ont été menés en utilisant une 
matrice de forme ronde à carrée. Les expériences ont été effectuées sur des tubes d’acier 
inoxydable 321 de 50.8 mm (2 in) de diamètre et deux différentes épaisseurs ; 0.9 mm et 1.2 
mm. L’historique du chargement a été enregistré avec le système d’acquisition de la presse. 
Un système de mesure de déformation automatique, Argus, a été utilisé pour mesurer les 
déformations sur les tubes hydroformés. Les données collectées à partir des essais initiaux 
ont été utilisées pour comparer avec les simulations. Le procédé a été simulé et optimisé à 
partir des logiciels Ls-Dyna et Ls-Opt, respectivement. Les variations de déformations et 
d’épaisseurs mesurées à partir des expériences ont été comparées aux résultats de la 
simulation par éléments finis dans les zones critiques. La comparaison des résultats de la 
simulation et des expériences sont en bon accord indiquant que l’approche peut être utilisée 
pour prédire la forme finale et les variations d’épaisseurs de pièces hydroformées pour des 
applications aérospatiales.  
 
Mots-clés: Hydroformage de tube; analyse par éléments finis, optimisation, alliages 
aéronautiques 
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Saeed MOJARAD FARIMANI 

 
ABSTRACT 

 
In tube hydroforming process, a pressurized liquid is used to expand a thin walled tube inside 
a closed die in order to fill the die cavity. Tube hydroforming has many advantages that make 
it interesting for different industries such as automotive and aerospace, but due to the effects 
of different factors, such as formability of the material, load path (end feeding force and 
internal pressure during the process), tool geometry and friction, it is a quite complex 
manufacturing process. Therefore, finite element simulation along with optimization methods 
can significantly reduce the cost of trial and error approach used in conventional 
manufacturing methods. In this work, to investigate the effects of different process 
parameters such as friction condition, tube thickness and end feeding on the final product, 
tube hydroforming experiments were performed using a round to square-shape die. 
Experiments were performed on stainless steel 321 tubes with 50.8 mm (2 in) diameter and 
two different thicknesses; 0.9 mm and 1.2 mm. Experimental load paths were obtained via 
the data acquisition system of the hydroforming press, which is fully instrumented. An 
automated deformation measurement system, Argus, was used to measure the strains on the 
hydroformed tubes. Data collected from the initial experiments were used to simulate and 
then optimize the process. The process was simulated and optimized using Ls-Dyna and Ls-
Opt software, respectively. Strains and thickness variations measured from experiments were 
compared to FE simulation results at critical sections. The comparison of the results from FE 
simulations and experiments were in good agreement, indicating that the approach can be 
used for predicting the final shape and thickness variations of the hydroformed parts for 
aerospace applications. 
 
Keywords: Tube hydroforming; Finite element analysis; Optimization, Aerospace Alloys 
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INTRODUCTION 

 

By increasing demand from different transportation industries for producing low weight and 

safe structures, manufacturers have to use cutting edge materials and manufacturing 

techniques to make lightweight, reliable and, cost-efficient structures with consistent quality. 

During last decade, Tube hydroforming (THF) process has emerged as a suitable 

manufacturing process to produce complex shapes with minimum dimensional variations and 

fewer secondary operations. Hence, having a good insight into this relatively new metal 

forming process is quite important. This chapter will put forward a brief introduction about 

THF process and its pros and cons. Then the objectives of the present study will be presented 

followed by the thesis outline.  

 

Hydroforming concept 

The fundamentals of hydroforming were established in 1940s when Grey et al. used internal 

pressure and axial load to investigate the production of seamless copper fittings with T 

protrusions (Alaswad, Benyounis et Olabi, 2012). The first use of the hydroforming process 

in mass production dates back to about 40 years ago when it was used to manufacture copper 

tubes for sanitary industry. By growing demand for more efficient manufacturing methods, 

hydroforming has widely opened its way in various industries such as automotive and 

aerospace as an advanced manufacturing technology and as an alternative for conventional 

production processes such as stamping and welding. Exhaust manifolds, exhaust pipes, 

radiator enclosures, frame rail, chassis and engine cradles are some of the most well-known 

hydroformed parts in automotive industries (Dohmann et Hartl, 1997). Although different 

classifications have been made by different researchers (Siegert et al., 2000; Zhang, 1999), 

hydroforming can be classified into two main categories, sheet hydroforming and tube 

hydroforming (Koç et Altan, 2001). Despite some differences between these two processes, 

the basic principle remains the same: using an internal fluid pressure to form a blank 

material. The focus of the present study is on the tube hydroforming process. 
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Tube hydroforming 

Tube hydroforming is a metal forming process in which a tube is formed into complex 

shapes inside a closed die using simultaneously an internal pressure and axial loads at the 

tube ends. Figure 0.1 shows the sequence of a typical THF process. The process begins with 

placing the blank tube, which has been cut to the appropriate length, inside the die cavity 

(Figure 0.1a). Then the die closes and the plungers move towards the tube ends to press 

against the ends of the tube and seal it (Figure 0.1b). In the next step, the liquid is pressurized 

inside the tube and axial force is applied to the tube ends to form the tube into the die  

shape (Figure 0.1c).   

 

 

Figure 0.1: Typical tube hydroforming process 
(Guan, Pourboghrat et Yu, 2006) 

 

Thanks to the recent technological improvements, especially in control systems, tube 

hydroforming of massive parts has become a viable technique during the last two decades. 

Tube hydroforming offers many advantages in comparison with traditional manufacturing 

methods (Ahmetoglu et Altan, 2000; Dohmann et Hartl, 1996; 1997) such as: 
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1) weight reduction of the final part through tailoring of the section design and  

tube geometry. 

2) decreasing the production costs by eliminating the secondary operations, such as 

welding/trimming, and reduction in material waste. 

3) reducing the labor costs through part consolidation, tighter tolerances and reduced 

spring back that increases production repeatability. 

4) increasing structural strength through optimized section design. 

With its unique advantages, THF have some drawbacks (Ahmetoglu et Altan, 2000; 

Ahmetoglu et al., 2000; Koç, 2008; Koç et al., 2000; Zhang, 1999) such as: 

1) slow cycle time; 

2) expensive equipments; 

3) insufficient existing knowledge base for process and tool design.  

To fill this lack of knowledge and to improve and optimise THF process, many studies have 

been carried out up to now. In the next chapter a thorough review of the past research will  

be presented.  

 

Research objectives and methodology 

In this thesis, we will follow two main goals. The first one is to study the effect of different 

parameters like material properties, tube thickness, load path and friction condition on THF 

process. To study these parameters, a finite element model (FEM) was developed using 3D 

non linear LS-DYNA as the solver. For validating the FEM, a series of experiments have 

been performed using stainless steel 321 (SS321) with two different thicknesses; 0.9 mm and 

1.2 mm. A fully instrumented hydroforming press was used to apply different loading paths 

during the experiments. A laser measurement system was mounted on the press to measure 

tube expansion during the hydroforming process. Furthermore, the strains on the surface of 

the deformed tubes were measured using an automated deformation measurement system 
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(ARGUS®). In the end, the results from finite element analysis (FEA) and the experiments 

were compared to check the reliability of the FEM. 

 

The second objective of this project was to predict the optimum loading path for the tube 

hydroforming process using LS-Opt software. The objectives of the optimization procedure 

were to maximise the expansion of the tubes with minimum wall thickness variation. 

 

Thesis outline 

This thesis will be presented in the following chapters: 

In chapter 1 a thorough literature review on FEA, parameters that affect the THF process and 

optimisation procedures will be presented. In chapter 2 the FEM, the experimental and the 

optimization approach used for this study will be explained. In Chapter 3 the results that have 

been obtained from the FEA and experiments will be presented and discussed. And finally, 

chapter 4 summarizes the conclusions of this research and offers some recommendations for 

future works. 

 

 



 

CHAPTER 1 
 
 

LITERATURE REVIEW 

This chapter presents an overview of available published results concerning various aspects 

of THF. First, the design parameters and process condition that affect the forming process is 

presented. After that, the failure modes that usually occur during the process and the 

technique to predict and avoid these failure modes are discussed. Finally, an overview on the 

optimisation techniques used to improve the quality of final part is presented.  

 

1.1 Effective parameters in THF process 

The end result of a THF process is highly relied on different parameters like the tube material 

properties, the geometrical parameters of the tube and die such as corner radius of the die, 

tube length, tube diameter and tube thickness and the process parameters such as load path 

and friction condition. The effect of each parameter should be taken into consideration to 

produce a sound product. Many researchers have studied the effects of these parameters in 

THF process up to now. In this section a review on these researches is presented 

 

1.1.1 Effect of material properties 

Material property plays an important role in THF process. It can affect the magnitude of the 

process parameters such as the internal pressure and the axial load as well as the tube 

expansion and the thickness variation (Ahmetoglu et Altan, 2000). On the other hand, as 

mentioned before, FEA has become a common tool in investigating the THF process and it 

demands reliable material parameters such as elastic module, yield strength, ultimate tensile 

strength and anisotropy to simulate the forming process of the tube accurately. However, 

there is not a standard procedure for extracting the material properties of the tubular materials 

and different researchers proposed different approaches.  
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Uni-axial tensile test is the most common way to extract the material property and stress-

strain relationship in the sheet metal forming process. In this test, samples with a dog bone 

shape and with a standard size are cut out of the metallic sheet. Due to the tube 

manufacturing process that can include rolling or extrusion, welding and sizing operations, 

the characteristics of the tube can be different than those of blank sheet from which the tube 

is made. So the material properties of the blank sheet is not similar to the tube and it is not 

very useful for FEM of the THF, even if they have the same grade and composition 

(Fuchizawa et Narazaki, 1993). To eliminate this error, the samples that are cut directly from 

the tube are used in tensile testing (Figure 1.1).  

 

 

Figure 1.1: Tensile test specimens cut from the tube  
(Zribi, Khalfallah et BelHadjSalah, 2013) 

 

Even in this case, using the material properties extracted from tensile testing for the THF 

process is questionable as (a) the force that is used to straighten the specimens curvature may 

alter the material property of the samples, (b) the stress state in tensile test is uni-axial 

whereas bi-axial stress state is governing in THF and (c) the friction conditions in THF and 

tensile test are not similar (Koç, Aue-u-lan et Altan, 2001). Therefore, using a test that 
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represent the bi-axial condition can provide more reliable material properties and stress-strain 

relationship. Free expansion or bulge test is a suitable approach for this purpose as it has the 

most similarity to the THF process (Jansson, Nilsson et Simonsson, 2005; Strano et al., 

2004). In this test a tube is sealed from its both ends. Then the tube is filled with a fluid that 

is used to increase the internal pressure of the tube up to the bursting. So far, several 

procedures have been proposed for obtaining the tube material properties in a bulge test 

(Fuchizawa et Narazaki, 1993). The main problem in this approach is the measurement of the 

longitudinal curvature (rᵠ) of the deforming tube (Figure 1.2), which is used for stress 

components calculation. Basically two main methods for obtaining rᵠ have been proposed: 

analytical calculation and experimental measurement. 

 

 

Figure 1.2: The schematic of free expansion test 
(Lianfa et Cheng, 2008) 

 

As experimental measurement of the rᵠ is difficult and needs special equipment, many 

researchers have tried to evaluate the rᵠ based on the assumptions of specific geometrical 

profiles encountered during the tube deformation in bulge test (i.e. circular and elliptical 

profiles) (Hwang et Lin, 2002; Hwang, Lin et Altan, 2007; Velasco, Boudeau et Michel, 

2008). However, these profiles may be different from what happens in real bulge forming 
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and because of that the accuracy of the results might be questionable. Despite the difficulties  

in experimental measurement, some researchers tried to measure the rᵠ by experimental 

means (Bortot, Ceretti et Giardini, 2008). But up to the recent years, an accurate 

experimentally measurement of the rᵠ in bulge forming was not possible. In the recent years, 

thanks to the improvements in optical measurement systems, the online and accurate 

measurement of the strain distribution and bulge shape of the deformed tubes  

becomes possible.  

 

Study on the effect of material characteristics on final part dates back to 1966 when Fuchs 

(Fuchs, 1966) conducted some experiments on expansion and flanging of copper tubes to 

explore the effect of material tensile strength. He concluded that a small increase in tensile 

strength would increase the formability severely. The effect of strain hardening exponent (n-

value) was investigated by Fuchizawa (Fuchizawa, 1984). He concluded that by increasing 

the amount of n-value, more uniform thickness is achievable and besides greater expansion 

becomes possible. In addition the required internal pressure to form a certain bulge height 

decreases by higher n-value. Manabe et al. (Manabe et Nishimura, 1983) reached to the same 

results in a separate study. Kridli (Kridli et al., 2003) developed a 2D FEM of hydroforming 

process in a square-shape die using commercial finite element code ABAQUS/Standard. He 

showed that tubes with higher n-value can be formed to smaller die corner radius. In other 

words, by increasing the n-value the formability of the tube increases as well. Also, wall 

thickness variation decreases by increasing the n-value (Figure 1.3). In another study, an 

analytical model was developed by Orban (Orban et Hu, 2007) for the same problem and the 

same conclusions were made. Carleer et al. (Carleer et al., 2000) investigated the effect of 

material properties by means of an analytical model along with FEA and experiments in free 

expansion process. He reached to the same conclusion for the effect of n-value.  
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Figure 1.3: Wall thickness distribution for different n-values 
(Kridli et al., 2003) 

 

Kim et al. (Kim et al., 2006) investigated the influence of material parameters, n-value and 

strength coefficient (K-value), on bursting pressure. Their results showed that the bursting 

pressure increases by increasing the K-value or by decreasing the n-value as presented  

in Figure 1.4. 

 

 

Figure 1.4: The effect of n-value and K-value on bursting pressure  
(Kim et al., 2006) 
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The other important material parameter in THF is anisotropy (r-value). Fuchizawa 

(Fuchizawa, 1987) explored the effect of r-value on deformation of thin-wall tubes in 

hydroforming process. His study showed the critical role of the r-value in THF process. 

Based on his results, anisotropy in longitudinal direction has considerable influence on 

expansion limit and thinning ratio while anisotropy in hoop direction affects the required 

internal pressure. Xia (Xia, 2001) studied the effect of r-value on bursting pressure through a 

mathematical analysis (Figure 1.5). He presented the results of his research as hydroforming 

failure diagram in the end feed—internal pressure space. Other researchers reached to the 

same results for the effect of r-value in THF process (Carleer et al., 2000; Kim et Kim, 2002; 

Manabe et Nishimura, 1983). 

 

 

Figure 1.5: The effect of r-value on bursting pressure in 
THF process 
(Xia, 2001) 
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1.1.2 Effect of geometrical factors 

Geometrical factors have an important influence on the THF process. The effect of the tube 

diameter on formability and thickness variation in THF of a vehicle bumper rail with 

complex cross section was investigated by Kang et .al (Kang, Kim et Kang, 2005). They 

found that increasing the tube thickness by 10% will decrease the thinning rate by one-third 

and will result in more uniform thickness distribution. Also, for the tubes with outer diameter 

more than 100 mm the influence of the pre-pressure is more distinct. Koc et al (Koç et al., 

2000) used Low Cost Response Surface Method (LCRSM) which is a design of experiments 

technique along with FE simulations to study the effect of geometrical parameters on T-

shape THF process as plotted in Figure 1.6. With this study, they concluded that the most 

affecting parameters on bulge height (Hp) are the distances between protrusion and edges 

(Lpe1 and Lpe2).  

 

 

Figure 1.6: The effect geometrical parameters on 
bulge height in T-shape THF 

(Koç et al., 2000) 
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Kridli et al. (Kridli et al., 2003) investigated the effect of the die corner radius and initial tube 

thickness on corner filling and thickness distribution in a square cross section THF process. 

They concluded that with a larger corner radius, more uniform thickness distribution is 

attainable. Also, they reported that the initial thickness mostly affects the required internal 

pressure and the thinning pattern remains the same for all the thicknesses. In another 

research, the effects of tube outer diameter on hydroforming with a square cross section die 

performed by Kömmelt (Kömmelt, 2004). He concluded that by increasing the tube diameter, 

the thickness distribution of the hydroformed part will be more uniform.  

 

1.1.3 Effect of loading path 

The effect of loading path (internal pressure and axial loading) during the THF process is a 

key factor for production of a sound hydroformed part. Therefore, considerable researches 

have been carried out by various researchers on this matter. In 1968, Ogura and Ueda (Ogura 

et Ueda, 1968) investigated the effect of internal pressure and axial loading in T-branch 

hydroforming of low and medium carbon steel tubes. A variety of combinations of internal 

pressure and end feed were tested and finally a proper forming zone was defined for the T-

branch hydroforming. In 1973, Limb et al. (Limb et al., 1973) presented their results on bulge 

forming of different materials with different thicknesses. They found that applying internal 

pressure and axial feeding simultaneously leads to better thickness distribution and tube 

expansion. In the same year, Woo (Woo, 1973) studied the effect of internal pressure and 

axial-feeding in bulge forming of copper tubes experimentally and numerically. The stress-

strain relationship in his FE simulation was obtained from bi-axial test and the results were in 

good agreement with experimental results. In 1976, a study was carried out by Kandil 

(Kandil, 1976) on THF of tubes with different materials such as Brass, Aluminum and 

Copper using only internal pressure. Manabe et al. (Manabe et al., 1984) used an analytical 

approach to predict the required internal pressure and axial load for hydroforming of 

aluminum tubes. Then a computer control press was used to implement predefined loading 

paths to investigate the deformation behavior and forming limits of the aluminum tubes. In a 

later research, two different loading paths: pressure predominant and feed predominant 
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loading path were compared to each other by Ahmed and Hashmi (Ahmed et Hashmi, 1998). 

They concluded that using pressure predominant loading path leads to better deformation as 

feed predominant loading path may result in buckling or wrinkling. Ahmetoglu et al. 

(Ahmetoglu et al., 2000) in their study declared that it is better to increase the axial feed to 

obtain better wall thickness uniformity. However, by increasing the end feed the required 

internal pressure increased too. Effect of axial load on wall thickness distribution was studied 

by Manabe and Amino (Manabe et Amino, 2002) analytically and numerically. They 

observed that axial feeding and lubrication condition have a great influence on tube thickness 

distribution in THF process. Koc (Koç, 2003) studied the effects of loading path and material 

properties of blank tubes in hydroforming process of a production scale automotive structural 

frame part. The results showed the significant effect of loading path on the final part. The 

effect of three different end conditions: free end, fixed or pinched end and forced end on 

forming limit diagram (FLD) of aluminum alloy AA6082-T4 were examined by Imaninejad 

et al. (Imaninejad, Subhash et Loukus, 2004). It was noticed that free end condition has the 

lowest forming limit followed by fix end and forced end conditions. They also found that 

weld material anisotropy and end-condition are the two major parameters that affect the 

failure location in hydroforming of the tubes. In a subsequent work Imaninejad et al. 

(Imaninejad, Subhash et Loukus, 2005) suggested multiple strokes for axial and vertical 

actuators to improve the formability of the process (Figure 1.7). Also they found that the 

majority of the axial feed should be provided after tube material yielding under  

internal pressure.  

 

Hama et al. (Hama et al., 2006) developed FE simulation to study the effect of three different 

loading paths: pressure advanced, linear and feed advanced (Figure 1.8) on THF process with 

a rectangular cross section die. The results showed that the pressure advanced loading path in 

which the internal pressure increases to a certain amount prior to starting the axial feeding 

leads to better formability as the initial internal pressure prevents the local wrinkling in the 

early stage of the process and thus the compressive longitudinal stress will be attained in the 

whole process.  
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Figure 1.7: Schematic of single and multiple 
strokes axial feed paths in THF 

(Imaninejad, Subhash et Loukus, 2005) 
 

 

Figure 1.8: (A) Pressure advanced, (B) Linear, and 
(C) Feed advanced loading paths 

(Hama et al., 2006) 
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However, in another study performed by Ray (Ray et Mac Donald, 2005) on X-shape tube 

hydroforming, it was recommended to use feed advanced loading path as pressure advanced 

loading path may causes bursting due to excessive wall thinning at certain weak points or 

sensitive zones. Kang et al. (Kang et al., 2007) conducted hydroforming experiments with 

different die shapes such as rectangular, circular and triangular for production of metallic 

elbows. It was concluded that proper axial feed avoids occurrence of cracks in all the cases. 

In a later study by Varma et al. (Varma et Narasimhan, 2008), the effects of two different 

pressurizing methods: prescribing fluid pressure and specified volume flow rate were 

investigated. They found that using specified volume flow rate method leads to proportional 

strain path while using prescribing fluid pressure will results in non-proportional strain path.  

 

1.1.4 Effect of friction and lubrication 

High contact pressures and large contact surfaces between the die and the tube in THF 

process lead to high frictional forces between the tube and the die. Furthermore, as 

mentioned before, in most cases in the THF process, axial feeding is required to feed the 

material into the deforming zone. In addition, hydroforming from a circular cross section to 

the die cross section requires minimum material movement resistance to fill the die 

completely. Therefore, careful consideration should be taken to decrease the friction between 

the tube and the die to avoid failures such as bad surface quality due to sticking and galling 

or bursting due to excessive thinning. Schmoeckel et al. (Schmoeckel et al., 1997) classified 

three different friction zones: guiding zone, transition zone and expansion zone in a typical 

THF process as presented in Figure 1.9. Base on their study, the friction condition, sliding 

velocity and stress state identified to be different in each of the mentioned zones. In the 

guiding zone, compressive state of the stress, high sliding velocity and low surface strains are 

governing. In the transition zone the expansion or reduction of the tube is notable. The stress 

state consisted of compressive stresses due to the axial load and tensile hoop stresses due to 

expansion of the tube and the sliding velocity is less than the guiding zone, but still 

appreciable. In the expansion zone, sliding velocity is negligible and tube expansion is large 

and tensile stresses in hoop direction are dominant.  
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Figure 1.9: Friction zones in THF 
(Plancak, Vollertsen et Woitschig, 2005) 

 

The parameters that affect the friction condition are categorised to four groups: (I) process 

parameters, such as internal pressure, (II) tool parameters like die surface finish and die 

hardness, (III) workpiece parameters, such as tube surface condition and tube material 

properties and (IV) lubricant (Ahmetoglu et Altan, 2000).  

 

Lubrication in THF process is very important; as a good lubrication allows the tube to 

expand much more than a bad lubrication, which causes excessive friction stress and will 

result in wrinkling, bursting or bad surface quality. To evaluate lubricants for hydroforming 

applications, different tests have been proposed (Koç, 2008). Corner fill test and Pear-shaped 

expansion test are two main experimental methods to evaluate the lubricants for 

hydroforming applications. In the corner fill test (Figure 1.10a), the tube corner radius along 

with wall thickness distribution are two references for evaluating the lubricant performance. 

In pear-shaped expansion test (Figure 1.10b), the performance evaluation of the lubricants 

can be achieved based on wall thinning distribution, protrusion height (δ) and  

bursting pressure. 
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Figure 1.10: (a) Corner fill and (b) Pear-shaped expansion test 
for evaluate the lubricants in expansion zone 

(Koç, 2008) 
 

Studying the effects of friction and lubrication in THF process date back to 1973 when Limb 

et al. (Limb et al., 1973) presented their results on the effect of friction and different 

lubrications on protrusion height in T-branch hydroforming process. It was reported that a 

lower protrusion height was obtained and the bulged dome of the T branch became more 

pronounced due to improper lubrication condition while proper lubrication condition resulted 

in higher protrusion height as well as a flat bulge protrusion area. Lee et al. (Lee, Keum et 

Wagoner, 2002) designed a sheet metal friction tester to investigate the effect of lubricant 

viscosity on friction. The results showed that the lubricant viscosity has an inverse relation 

with coefficient of friction (COF). In the same paper the effect of surface roughness on COF 

was investigated. They concluded that for all lubricants in an extremely high (< 1 μm) or low 

(> 0.5 μm) surface roughness, the COF is higher. The COF in guiding zone for different 

materials and different lubricants was studied by Vollertsen and Plancak (Vollertsen et 

Plancak, 2002) using an experimental procedure that is called upsetting test. Tube upsetting 

test was recognised a good mean for evaluating COF for the processes with plastic 

deformation. Ngaile et al. (Ngaile, Jaeger et Altan, 2004a; 2004b) studied lubrication 

mechanisms and the appropriate tests for measuring the COF in transition and expansion 

zones. They concluded that the limiting dome height (LDH) and pear-shaped expansion tests 

are appropriate for evaluating the COF in transition and expansion zones, respectively. 

Yeong-Maw et al. (Yeong-Maw et Li-Shan, 2005) investigated the effect of axial feeding 



18 

velocity and internal pressure on COF. They found that by increasing the internal pressure, 

the contact surface increases resulting in the tube surface roughness decreases, which leads to 

a decrease in the COF. Also, they found that axial feeding velocity has not significant effect 

on COF value. Plancak et al. (Plancak, Vollertsen et Woitschig, 2005) proposed an analytical 

model based on the tube-material properties and the tube geometry before and after 

deformation in the tube-upsetting test for calculating the COF. They also concluded that 

higher amount of internal pressure will results in lower COF values and by decreasing the 

friction, the thickness variation decreases too. An analytical model was proposed by Orban 

and Hu (Orban et Hu, 2007) to study the effect of the COF and material properties on wall 

thickness distribution in THF process. They explained how a sticking friction develops and 

restricts the material from further stretching. In a recent study, Yi et al. (Yi et al., 2011) 

investigated the COF in three different die shapes. They found that an increase in lubricants 

viscosity, tube diameter and tube material strength, the COF decreases. It was reported that 

the COF in guiding zone is lower than that in expansion zone and the die shape does not have 

any effect on the COF.  

 

1.2 Instabilities and failures 

THF is a highly nonlinear process in which loads in different directions and ratio acts during 

forming process. So, it is important to delimit affecting parameters to avoid instability and 

defects throughout the process. The loading limits in the THF process are imposed by three 

main failure modes namely: buckling, wrinkling and bursting (Figure 1.11). The danger of 

buckling prevails especially at the initial stages of hydroforming process when excessively 

high axial load is applied on long tubes. Wrinkling is most probable at initial and 

intermediate stages of hydroforming. Depending the severity of the wrinkle, it may be 

eliminated by increasing the internal pressure. During the final stage of the forming process, 

high internal pressure along with insufficient material flow may cause local necking and 

finally bursting of the tube. These failure modes can be postponed or avoided through the 

adjustment of tube material properties, friction condition, process control parameters and  

tool design. 
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Figure 1.11: Different failure mode in THF process 
(Abrantes, Szabo-Ponce et Batalha, 2005) 

 

In order to achieve a defect free workpiece in THF process, a proper load path should be 

considered. A proper load path for a THF process resides within the operating window 

(Figure 1.12) which varies for different material and different tube dimensions.  

 

 

Figure 1.12: Process windows for THF process 
(Kim et Kim, 2002) 

 

Bursting as one of the failure modes in THF process is an irrecoverable defect in contrast 

with buckling and wrinkling. Therefore, predicting the bursting is from a high degree of 



20 

importance. Failure limit diagram (FLD) is a standard approach for measuring the 

formability in sheet metal forming and burst prediction. For generating the FLD, a series of 

material failure tests have to be done. By plotting major strain versus minor strain for 

different linear strain paths, the FLD can be generated. The formability limit on a FLD is 

presented as a line at which failure is onset and is called failure limit curve (FLC). The area 

below the FLC shows the safe region while the area above the FLC represents the failed 

region. Figure 1.13 shows a typical FLD and different linear strain paths. 

 

 

Figure 1.13: A typical FLD 
(Holmberg, Enquist et Thilderkvist, 2004) 

 

Koc and Altan (Koç et Altan, 2002) developed an analytical model based on membrane and 

thin-thick walled tube theories to predict the process limits and parameters in THF process. 

Although their model was not designed for complex parts, it could give an initial guess for 

further investigation with the use of FEA. An analytical model for analysing the tube 

material properties effect on different failure mode was determined by Chu et al. (Chu et Xu, 

2004). Their study showed that the geometrical parameters such as the ratio between the 

initial tube thickness to the initial tube radius (t0/r0), the ratio between the initial tube radius 

to the initial tube length (r0/l0) and work hardening coefficient have great effect on the 

occurrence of buckling and axisymmetric wrinkling. It also revealed that wrinkling is the 
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dominant failure in short tubes while buckling occurs in longer tubes. In a different 

investigation, the bursting of seamed tube in bulge tube hydroforming was studied by Kim et 

al. (Kim et al., 2004) through FEA. They found that the initial fracture takes place on heat 

affected zone near the weld line. Yuan et al. (Yuan et al., 2007; Yuan, Yuan et Wang, 2006) 

divided the wrinkling effect in THF into three groups including dead wrinkles, that are not 

removed by the end of THF, bursting wrinkles, that result to bursting of the tube and useful 

wrinkles, that can be removed by the end of THF. They mentioned that while the dead and 

bursting wrinkles considered as defects, useful wrinkles can improves the expansion ratio in 

THF. But the drawback of useful wrinkles is the ununiform thickness distribution along the 

axial direction. The minimum wall thickness is found at top of wrinkle wave whereas the 

maximum wall thickness can be found in the bottom of wrinkle wave.  

 

1.3 Finite element modeling 

As discussed before, THF has many advantages, though it is quite a complex process due to 

many parameters involve in it, such as formability of the material, loading path (end feeding 

force and internal pressure), tool geometry and friction. Hence having a good understanding 

of these parameters helps to improve the quality of the final part. Hydroforming try-outs to 

investigate the effect of these parameters is expensive and highly time consuming. Therefore, 

the application of numerical simulation for investigating and optimizing the hydroforming 

process has become a standard practice for engineers. The FEA can be used at designing 

stage to verify the feasibility of the process and to predict failure location. In this stage the 

FEA helps to improve the part design. In the next stage, the computer simulation along with 

optimization algorithms can be used to optimize the process parameters. 

 

The history of using FEA for metal forming processes dated back to 1960s when the first 

commercial FEA codes were developed. At that stage due to the technological limitations, 

the application of the FEA was restricted to deformations with less than 1% strain. By the 

end of 1970s, a few nonlinear FE solvers was introduced to the world. But only by the 

beginning of 1990s the use of FEA became a standard tool for researchers to investigate the 
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metal forming processes (Alaswad, Benyounis et Olabi, 2012; Koç et Altan, 2001). 

Nowadays, many commercial FE modeling softwares such as LS-DYNA, ABAQUS, 

ANSYS, AUTOFORM are used to predict the output of the metal forming processes. 

 

Depending on the complexity of the analysis and the required degree of accuracy, the FE 

model can be constructed with a wide range of options; from a simple implicit two-

dimensional (2D) model to a very complex explicit three-dimensional (3D) model. Because 

of the severe non linearity due to large deformations, plastic behavior of the material and 

contact conditions in THF process, usually a 3D model is required to present the real forming 

condition and make it possible to detect forming defects during the process, such as 

wrinkling and buckling. From the formulation point of view, there are two types of 

approaches to develop FEM; implicit and explicit formulations. The implicit approach is 

mainly used for analyzing the static models while the explicit approach is used for dynamic 

ones. There are also a few processes that can be analysed either by implicit or explicit 

formulation. These processes are called quasi-static problems. THF can be considered as a 

quasi-static problem due to the low strain rates during the process. Modeling the THF 

process with either of the formulations has its own pros and cons. An implicit formulation is 

less time consuming and is effective especially for simplified problems. Many researchers 

have used this technique to reduce the processing time (Ahmed et Hashmi, 1998; Koç et al., 

2000; Mac Donald et Hashmi, 2000; Ray, 2005). But implicit approach is not as effective as 

explicit technique when dealing with more complex problems. Explicit formulation has better 

capabilities for modeling nonlinear problems with high degree of deformations and gives a 

better insight into the forming process (Rebelo et al., 1992). There are many parameters to 

take in consideration for developing an accurate and efficient FE model; assumptions and 

simplifications, elements type, mesh density, boundary conditions and material formulation. 

 

In 1991, Lange et al. (Lange et al., 1991) developed a finite element code for modeling metal 

forming processes like bending and bulge forming base on elasto-plastic material model. 

Ahmed and Hashmi (Ahmed et Hashmi, 2001) used LS-DYNA software to simulate the T-
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branch bulge forming under two different loading conditions. Because of the symmetry, only 

a quarter of the problem was modeled using solid elements to describe both the die and the 

tube. A piecewise linear plastic material model was used to describe the tube while the die 

was considered as rigid. They showed that with the same axial load rate, using the lower 

internal pressure rate will results in more uniform stress strain distribution and will enable the 

internal pressure to reach to the higher values. The comparison between implicit and explicit 

method in FEA for predicting the wrinkling in THF process was investigated by Kim et al. 

(Jeong, Sung-Jong et Beom-Soo, 2003). They also studied the effects of time scaling and 

mass scaling in explicit method. It was explained that implicit method requires more 

attention especially for friction force calculation while the dynamic explicit method leads to 

more reasonable results that are in good agreement with experimental results. Also they 

concluded that for a suitable scaling factor, the kinetic energy must be less than 0.1 of the 

internal strain energy. The effect of internal pressure in THF process was investigated using 

FE simulations by Nikhare et al. (Nikhare, Weiss et Hodgson, 2009). The results showed that 

in high pressure tube hydroforming (HPTH) the stress variation and thinning are more 

pronounced that low pressure tube hydroforming (LPTH). Also it was showed that HPTH is 

more sensitive to friction than LPTH. 

 

1.4 Process optimization 

Finding the optimum combination of the process parameters in THF in order to produce the 

desired part have been always the main challenge for manufacturer. The traditional method 

of trial and error is time consuming and non-systematic and usually does not lead to optimum 

combination of input parameters. Though, optimization methods along with FE simulations 

can help to overcome this problem. These methods can be classified in two major  

groups: adaptive simulation methods and optimisation procedures (Jansson, Nilsson et 

Simonsson, 2007).  

 

In the adaptive method, the FE simulation is continuously monitored for defects and input 

parameters are adjusted in each subsequent time increment. This procedure was used by 
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many researchers to optimise the loading path in THF process (Aydemir et al., 2005; Johnson 

et al., 2004; Labergere et Gelin, 2004; Ray et Mac Donald, 2004; Sillekens et Werkhoven, 

2001a). The advantage of this method is the optimum parameters can be obtained in only one 

FE simulation. 

 

The optimisation procedures try to find the optimum solution in an iterative way and by 

using the constraints of the process. The optimisation methods divided in three sub groups 

including (I) iterative algorithms, (II) evolutionary and genetic algorithms (GA) and (III) 

approximate optimization algorithms (Meinders et al., 2008). Classical iterative optimisation 

algorithms like conjugate gradient, BFGS, etc try to find the optimum solution based on 

minimisation of an objective function and with repeating FE simulations. As illustrated in 

Figure 1.14a, there is a direct interface between the FE simulation and optimisation algorithm 

in iterative optimisation methods which means for each function evaluation of the algorithm 

a FE calculation needs to be run. Despite these algorithms are well known and widely spread 

which is their advantages, they may trap in local optimum solutions instead of the global 

ones which is disadvantageous of these techniques. However, these methods have been used 

by many researchers to optimise the THF input parameters. (Endelt et Nielsen, 2001; Fann et 

Hsiao, 2003; Jirathearanat et Altan, 2004;  Sillekens et  Werkhoven, 2001b; Yang, Jeon et 

Oh, 2001). 

 

To overcome the disadvantages of iterative algorithms, GA can be used to find the global 

optimum solution. The GA is an optimising method that mimics the process of natural 

evolution. However, the large number of required FE simulations in this method makes it 

very time consuming and is considered as a serious drawback. Abedrabbo et al. (Abedrabbo 

et al., 2011) used this method and LS-DYNA finite element code to optimise the load path in 

THF process. 
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Figure 1.14: (a) Direct and  
(b) approximate optimisation 

(Meinders et al., 2008) 
 

The last group of optimisation method is the approximate optimization algorithms. Response 

surface methodology (RSM) is a well known method among this group. In this method a set 

of input parameters are chosen and through FE simulations, the response to each of these sets 

are calculated. Then a low order polynomial is used to fit through response points and the 

best combinations are used for the next step, by repeating this process the optimized 

combination could be found. In this approach there is not a direct link between FE simulation 

and optimization algorithm as it was in two previous methods and a metamodel is placed in 

between as a buffer (Figure 1.14b). Kriging and neural networks are two other metamodeling 

techniques. Compared to iterative algorithms, approximate optimization algorithms have the 

ability to find the global optimum solution and at the same time they are less time consuming 

compared to evolutionary algorithms. These advantages make it appealing for researchers in 

metal forming process (Alaswad, Olabi et Benyounis, 2010; 2011; Koç et al., 2000). 

 





 

CHAPTER 2 
 
 

Methodology 

THF is an advanced metal forming process that requires special attention in designing the 

part/tool and developing the process parameters due to hard tooling involved in it. The 

process development stage is an expensive and time consuming part of the THF process in 

complex shapes. Thus, using a trial and error procedure for developing a THF process is not 

an option and using FEA as a predictive tool seems inevitable. FEA increases the efficiency 

by reducing the lead time and the total cost of manufacturing through eliminating the trial 

and error procedure. To conduct FEA, a FEM with appropriate geometrical contacts, 

boundary conditions and material model has to be developed. Once the results of the FEA are 

verified by the experimental results it can be used to study the affecting parameters and to 

predict the failure/defects and critical regions in the THF process of components with  

similar complexity.  

 

The first goal of the present work is to study the effects of different process parameters such 

as geometrical characteristics, load path and friction condition in the THF process. Therefore, 

a FEM, that will be described, was developed and validated by comparing the numerical and 

experimental results. 

 

2.1 Finite element model (FEM) 

The FEM that was used in this study consisted of two parts; (i) tube and (ii) rigid die. The 

process is called round-to-square hydroforming as it starts with a tubular shape material and 

the final product has a square shape. Due to symmetry planes over the tube length and the 

cross section, the model was simplified by applying the symmetry boundary conditions to the 

boundary nodes along the symmetry planes. Only half of the length and one quarter of the 

cross section of the tube and the die were used in the simulation (Figure 2.1). The initial tube 
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length and the outer diameter were 220 mm and 50.8 mm (2”) respectively. The tube material 

was stainless steel 321 (SS321) with two different wall thicknesses; 0.9 mm and 1.2 mm.  

 

 

Figure 2.1: Symmetry planes 

 

The tube thickness was varied in the circumferential direction for both tube thicknesses, so 

the average values of the thicknesses (0.94 mm and 1.22 mm) were used for modeling the 

tubes. Ansys v13.0 was used to mesh the model and Ls-Dyna v970 was used as the FEM 

solver. 4619 four nodes Belytschko-Tsay shell elements with aspect ratio of 1 and with five 

integration points through the thickness were used to generate the tube model. As shell 

elements are not able to capture the through thickness stress, two other models were 

generated using solid elements and thick-shell (Tshell) elements to compare the results. 

Tshell element is a special element in LS-DYNA which is developed to have both advantages 

of solid and shell elements. It can capture 3D stresses like solid element, but it needs less 

computation time. The solid model was generated using 13279 constant stress solid elements 

with three elements through wall thickness. The aspect ratio of the solid elements for the 

FEM of both tubes thicknesses was equal to one. The Tshell model consisted of 8839 

elements with 2 elements through thickness, as recommended by LS-DYNA (LS-Dyna 
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Keyword User's Manual, 2013). The aspect ratio of the TShell elements for the FEM of both 

tube thicknesses was equal to one. The die was modeled as rigid body using 6669 four nodes 

shell elements. Figure 2.2 illustrates the FEMs with different element types. 

 

 

Figure 2.2: (a) shell and (b) solid FEM  

 

2.1.1 Contact condition 

To simulate the contact condition between the tube and the die, a surface to surface contact 

(CONTACT_SURFACE_TO_SURFACE) with Coulomb friction law was applied and 

different COF values from 0.01 to 0.2 were applied to study the effect of COF on thickness 

variation and the expansion of the tube. In the shell element model, to avoid tube self 
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penetration in case of wrinkling or buckling, a contact with single surface entity 

(CONTACT_AUTOMATIC_GENERAL) was defined for the tube.  

 

2.1.2 Load path simulation 

For simulating the load path during the process, different displacement curves were assigned 

to the tube end nodes to simulate the end feed condition. A linear path was defined for 

increasing the internal pressure during the process. As shown in Figure 2.3, the forming 

process consisted of three stages: (a) sealing, (b) forming and (c) calibration stages. At the 

beginning of the process a displacement was applied to the end of the tube to mimic the 

sealing operation. During the experiments it was noticed that in order to seal the tube end we 

need 35 kN load which was obtained at 1.2 mm end feed displacement. During the sealing 

period the internal pressure is equal to zero. At the second stage of the process, while the 

internal pressure starts to increase linearly, the end feed increases with a high slope. In the 

last part of the process or the calibration stage the internal pressure continues to increase 

while there is no noticeable end feeding. This load path was obtained from the experiment, 

which will be described later in the THF experiments section.  

 

 

Figure 2.3: A typical end feed and internal pressure versus time curve 
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2.1.3 Material model 

In order to simulate the tube material behavior, the Swift work hardening law (Equation 2.1) 

was used. 

 

σ = K(ε0+ε)
n (2.1)

 

where σ is the true stress, ε0 is the initial true strain, ε is the true strain, K is the strength 

coefficient and n is the strain hardening exponent. The material properties were used from an 

ongoing study in the THF process. The material was considered isotropic and the material 

properties of the tubes (0.9 mm and 1.2 mm) were extracted by performing free expansion 

test and tensile test. The samples for tensile test were cut from the tubes based on ASTM E8. 

Using the data obtained from the free expansion test and tensile test the values for ε0, K and n 

were obtained. Table 2.1 summarizes the experimental material parameters used for the 

SS321 tubes. Figure 2.4 illustrates the related true stress-strain curves for both tube 

thicknesses, which are extrapolated up to 100% strain. 

 

Table 2.1: Material properties of the SS321 tubes 

Stainless Steel (SS321) 

Material 

Thickness = 0.9 mm Thickness = 1.2 mm 

Free Expansion Tensile Free Expansion Tensile 

K (MPa) 1427.4 1458.29 1397.8 1461.54 

n 0.53 0.49 0.62 0.62 

ε0 0.03 0.026 0.05 0.048 

Yielding Stress (MPa) 250 260 

Density (g/mm³) 8.0E‐03 8.0E‐03 

Elastic Modulus (MPa) 193.00E+03 193.00E+03 

Poisson Ratio 0.29 0.29 
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Figure 2.4: True stress-strain curves for tubes with (a) 0.9 mm and (b) 1.2 mm thicknesses 

 

2.1.4 Time scaling 

According to Jeong et al. (Jeong, Sung-Jong et Beom-Soo, 2003) for time scaling in quasi 

static processes like hydroforming, the kinetic energy should be maintained less than 10% of 

the internal strain energy during the simulation. In this case the dynamic effect in explicit 

method, which may affect the results accuracy in FEA, will be minimized. Therefore, 

different simulation durations were tested and their ratio of the kinetic energy to the internal 

strain energy was checked to find an appropriate time scaling for the simulations. After a few 

trials, 8 ms was selected as termination time. In other words, to minimize the dynamic effect 

in the simulation and to avoid high computational costs, the total hydroforming process was 

modeled in 8 ms compared to 150 s in the experiments. The hydroforming codes for shell, 

solid and Tshell FEMs are shown in Appendix A. 

 

2.1.5 Spring back 

After the hydroforming simulation, a file was generated (Dynain file) by LS-DYNA which 

contained the deformed mesh, stress, and strain state of the tube. This file was used as an 
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input for the spring back simulation, using a static implicit solver in LS-DYNA. The material 

information used in the spring back simulation was the same as the hydroforming simulation. 

The spring back code is presented in Appendix B. 

 

2.2 Experimental setup 

In order to verify the FEA results, the experimental data is required. The THF experiments 

were conducted at NRC using a fully equipped hydroforming press manufactured by 

Interlaken Technology Corporation (Figure 2.5).  

 

 

Figure 2.5: Hydroforming press at NRC 

 

The vertical cylinders of the press delivers a 1000 ton clamping force and the two horizontal 

cylinders provide maximum capacity of 1000 kN axial load at each end of the tube. The 
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pressure intensifier unit of the press was designed to apply a maximum internal pressure of 

413 MPa (60000 Psi). To perform the THF experiments, a tooling system consisted of the 

die, end plungers and expansion measurement units was designed and manufactured at NRC. 

 

2.2.1 Die 

A round-to-square die set was designed and manufactured at NRC. The die was made of 

hardened tool steel and had a square cross section with corner radii of 2.4 mm. In Figure 2.6, 

the die and its guiding zone, transition zone and expansion zone are illustrated.  

 

 

Figure 2.6: Round-to-square die Set 
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2.2.2 Plungers 

The plungers (Figure 2.7) were designed and mounted on the left and right horizontal 

cylinders of the press. The plungers slide in the guiding zone of the die and apply the axial 

load on both ends of the tube. The sealing shoulder of the plungers provides the sealing 

required during the hydroforming process. 

 

 

Figure 2.7: Plungers setup 

 

2.2.3 Expansion measurement unit 

The distance that the tube expands at the corners of the square was considered as the 

expansion of the tube (Figure 2.8). To monitor the expansion of the tubes during the THF 

process, two laser measurement systems in conjunction with two expansion measurement 

devices, implemented inside the die, were used during the experiments. As illustrated in 

Figure 2.8a, at the beginning of the process the distance between the laser measurement unit 
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and the expansion measurement device is equal to L0. As the hydroforming process starts, the 

tube pushes the pins outward and as the result, the value that is read by laser measurement 

unit at each time increment (Ln) decreases (Figure 2.8b). The laser measurement units were 

connected to the data acquisition system of the press and record the expansion of the tube 

during the THF process. The difference between the Ln and L0 was considered as the 

expansion of the tube at each time increment. In Figure 2.9 the expansion measurement unit 

setup on the hydroforming press is presented. 

 

 

Figure 2.8: Expansion measurement unit (a) initial stage (b) final stage 
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Figure 2.9: Setup of the expansion measurement units 

 

2.2.4 Tube preparation 

Before the THF experiments, the tubes were cut with a band saw and the two ends of the tube 

were straight cut, using a turning machine, to the final length of 220 mm. Then, the outer 

surface of the tube was polished by a sandpaper (CAMI Grit designation = 100) to prepare 

the surface for electrochemical etching. To check the thickness uniformity in the blank tubes, 

the thicknesses were measured in longitudinal and circumferential directions using an 

ultrasonic thickness measurement device (38DL Plus) manufactured by Olympus 

Corporation company (Figure 2.10).  

 

It was noticed that the thickness along longitudinal direction was uniform while in 

circumferential direction the thickness variation was about 0.05 mm and 0.07 mm for the 0.9 

mm and 1.2 mm thick tubes, respectively (Figure 2.11).  
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Figure 2.10: The ultrasonic thickness 
measurement device (38DL Plus) 

 

 

Figure 2.11: Circumferential thickness variation for tubes with 
(a) 0.9 mm (b) 1.2 mm thickness (dimensions in mm) 

 

In order to be able to measure the strains after the hydroforming process, a pattern of black 

circle dots was etched on the outer surface of the tubes. Since the tubes are in contact with 
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the die during the hydroforming process, electrochemical etching process was required to get 

more stable dots on the tubes, so the dots will be more visible at the contact zone between the 

tube and the die after deformation. The electrochemical etching system consisted of an anode 

(positive pole), a cathode (negative pole), power unit, electrolyte solution and a stencil sheet. 

The stencil is used to produce the dot pattern on the surface of the tube. In our case, the dot 

pattern was 1mm in diameter with 2 mm distance between the centers of the  

dots (Figure 2.12). 

 

 

Figure 2.12: Pattern produced on the tube surface 

 

In order to investigate the effect of lubrication in the THF process, two different lubricants 

were applied on the surface of the tubes using an air spray device. To obtain the best 

lubrication condition, the lubricant thickness should be between 0.04 to 0.06 mm according 

to the manufacturer. After the lubricants dried, the thickness of the lubricants on the surface 

of the tubes was measured for uniformity, using an ultrasound device to check that a uniform 

lubrication was applied on the surface of the tubes.  
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2.2.5 Hydroforming 

After the tube preparation, the tubes were placed inside the die for the hydroforming process. 

As mentioned before, the pressure intensifier of the press was capable of delivering 413 MPa 

(60000psi) internal pressure, but during the experiments it was noticed that 260 MPa pressure 

is enough to fill the die completely in all cases. For this reason 260 MPa was selected as the 

maximum internal pressure for the experiments. During the experiments, the pressure started 

from zero at the end of the sealing stage at the beginning of the forming stage and increased 

linearly up to the maximum value of 260 MPa. 

 

The control system of the press has the ability to end feed material into the die cavity in two 

different methods: (i) force control and (ii) position control. In the first method, the amount 

of axial load at the tube ends is specified while in the second method the position of the 

plungers during the hydroforming process is controlled by the control system of the press. A 

typical THF process is divided into three stages including sealing, forming and calibration 

stages (Figure 2.13). At the beginning of the experiments (sealing stage), a 35 kN sealing 

force was applied at tube ends, using the force control method. For the forming and 

calibration stages two different approaches were used. In the first approach, the force control 

method was used in the forming and calibration stages to conduct a free end hydroforming 

process. During the free end hydroforming, the end feeding forces that are applied to the tube 

are enough to only hold the sealing during the process and no material is fed into the die 

cavity. To calculate the required end feeding force at any specific time, the following 

equation was used: 

 

F = P.A/1000+35 (2.2)

 

Where F is the end feeding force in kN, P is the internal pressure in MPa at any given time 

and A is the plunger’s cross section area in mm2. 35 kN in this equation is the initial sealing 

force before applying the internal pressure. According to the equation 2.2, by increasing the 

internal pressure the end feeding force increases, compensating the opposing force on the 
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plunger due to the internal pressure. Therefore, the plungers will apply a constant 35 kN end 

feeding force at the tube ends during the THF process. Using the equation 2.2 and a few tests, 

the final end feeding force curve was obtained for the free end hydroforming for both tube 

thicknesses. These tests showed the plungers’ axial movement data and the minimum 

required end feed for a successful THF process. Values lower than the minimum end feed 

will lead to loosing the seal. As is shown in Figure 2.14a and b, the minimum end feed for 

tubes with 0.9 mm and 1.2 mm thickness is 5.5 mm and 4.5 mm, respectively. Also, the 

curves show that most of the plungers’ movement occur up to the 40 MPa of internal 

pressure, which is the transition from the forming to the calibration stage. In the second 

approach, based on the free end experiments, three loading paths were considered and tested 

for each tube thickness using the position control approach. Load path 1 was representing the 

minimum end feed condition. Load path 2 and load path 3 were obtained by doubling and 

tripling the load path 1. Figure 2.14 illustrates the three load paths applied during the THF 

experiments. The advantage of the position control end feeding over the force control end 

feeding is that in the position control method, the end feeding is more uniform on the 

 tube ends. 

 

To investigate the effect of lubrication on the thickness variation and the tube expansion, two 

more contact conditions were tested using the lubricated tubes. Free end feed experiment 

using force control method was not appropriate due to severe non-uniform end feeding on 

left and right sides of the tube. Also, loading path 1 was not applicable as the sealing could 

not be maintained during the THF process. Hence, loading path 2 was chosen for the THF 

experiments with lubricated tubes. 
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Figure 2.13: Free end load path for tube with 0.9 mm thickness 

 

 

Figure 2.14: Loading paths for tubes with 
(a) 0.9 mm and (b) 1.2 mm thickness 
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2.2.6 Strain and thickness measurement 

To capture the strain state of the deformed tubes after the hydroforming process, ARGUS® 

measurement system was used. ARGUS® is a non-contact optical 3D deformation 

measurement system that can automatically analyze, calculate and document the deformation 

that occurred in the deformed part. Prior to the deformation, as mentioned in section 2.2.1, a 

dot pattern was applied to the outer surface of the tubes. After the hydroforming process, a 

camera records the measuring points through several images that are captured from different 

views (Figure 2.15 and Figure 2.16). These pictures are then transferred to the ARGUS® 

software. The ARGUS® software correlates the images and the center position of each point 

in the space will be calculated using the reference points. Finally, The ARGUS® software 

generates the 3D measuring data by comparing the 3D positions of the deformed points with 

undeformed points.  

 

 
Figure 2.15: Camera movement around measuring object 

(ARGUS User's Manual, 2012) 
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Figure 2.16: Pictures from different views of the deformed tube 

 

The other parameter that was measured after the hydroforming process was the tube 

thickness. The thickness of the deformed tubes was measured using the same ultrasonic 

thickness measurement device which was presented in Figure 2.10. A cross section at the mid 

length of the tubes was used for the thickness measurements. As mentioned before, a quarter 

of the tube cross section was used for the simulations, which represents 90° of the cross 

section. In addition, as mentioned before, tube thickness at the cross section was not uniform 

(Figure 2.11). In order to track this un-uniformity, always the tubes were placed in the die in 

a way that the minimum thickness was in the front quarter and the maximum thickness was 

in the back quarter. Therefore, as illustrated in Figure 2.17, the front and back quarters of the 

tube cross section were measured to compare the thickness variations with the FEA results.  
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Figure 2.17: Thickness measurement regions 

 

2.3 Optimization 

As mentioned before, finding the best load path in the THF process is highly desired for 

production purposes. Therefore, a commercial optimization software, LS_OPT v4.2, was 

used to find the optimum loading path for the hydroforming process. The objective was to 

minimize the thickness variation in the hydroformed tubes.  Therefore, two objective 

functions were defined as follow: 

 ܱܾ݆ଵ = 	൬ܶ݊݅ܯℎ݅ܿ݇݊݁ݏݏ − ݏݏℎ݅ܿ݇݊݁ܶ݉݋ܰݏݏℎ݅ܿ݇݊݁ܶ݉݋ܰ ൰ଶ (2.3)

ܱܾ݆ଶ = 	 ൬ܶݔܽܯℎ݅ܿ݇݊݁ݏݏ − ݏݏℎ݅ܿ݇݊݁ܶ݉݋ܰݏݏℎ݅ܿ݇݊݁ܶ݉݋ܰ ൰ଶ (2.4)

 

Where the MinThickness and the MaxThickness are the minimum and the maximum tube 

thickness after hydroforming, and the NomThickness is the nominal tube thickness (before 
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hydroforming), which was equal to 0.94 and 1.22 for the two different tube thicknesses used 

in this study. 

 

As most of the end feeding was applied during the forming stage, finding the optimum 

internal pressure (P) and end feeding (F) at the end of the forming process is critical. So, 

these two parameters were chosen as the two design variables. The free end load path gave a 

good estimation of the internal pressure at the end of the forming stage in the THF process 

(Figure 2.18). Based on the experimental free end load path, 20 MPa and 60 MPa were 

considered as the lower and upper band values for the internal pressure at the end of the 

forming stage. By performing a few FEAs, 20 mm was selected as the upper band for end 

feeding. The lower band value for the end feeding was set to zero.  

 

 

Figure 2.18: Design variables (P and F) in optimum loading path 

 

To prevent the occurrence of the failure modes such as bursting and severe wrinkling, FLD 

of the materials was selected as the constraint for the optimization process. Like the material 

parameters, the FLCs were generated separately in an ongoing study. Figure 2.19 shows the 

FLCs used for both tube thicknesses. 
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Figure 2.19: FLD for SS321tubes with 
0.9 mm and 1.2 mm thicknesses 

 

Optimization strategy, sampling method and algorithm are the other required settings that 

were set in the LS-OPT software using the graphic user interface (GUI). These settings, 

which are based on the previous study done by An (An, 2010), are listed in Table 2.2 and the 

optimization codes are presented in Appendix C. in Table 2.2, The first column is the 

strategy for choosing the sampling points in the experimental design. By selecting the 

strategy, the sampling parameters will be set automatically. By the settings mentioned in this 

table, 10 points are selected at each iteration base on the Doptimal design. Using the selected 

points as the input parameters, the simulations are done and the results obtained (responses). 

In the next step a quadratic polynomial surface (response surface) will be passed through the 

responses. Then a hybrid genetic algorithm (hybrid GA) is used to find the optimum point in 

the response surface. The hybrid GA algorithms start with the GA to find an approximate 

global optimum after which the gradient-base algorithm is used to sharpen the solution. With 

this method, the computational time is reduced compared to the GA method. 
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Table 2.2: Optimization settings in LS-OPT 

Strategy Sampling Algorithms 

sequential with 
domain reduction 
(SRSM) 

1) metamodel: polynomial; 
2) order: quadratic;  
3) point-selection: Doptimal; 
4) number of simulation points: 10 

hybrid GA with population size: 100 
and number of generations: 250 

 

 



 

CHAPTER 3 
 
 

RESULTS AND DISCUSSION 

In this chapter the results obtained from the experimental and numerical analysis will be 

presented and discussed. In each section the results for the tube expansion and the tube 

thickness as the measuring parameters will be presented. In the first section, the experimental 

data from the THF experiments for both tube thicknesses will be discussed. To verify the 

developed FEMs, the FEA results obtained from the two different material properties and 

three element types (shell, solid and Tshell) will be compared with the experimental results. 

After finding the best material property and element type, the strain distribution of tubes, 

measured by ARGUS® measurement system, will be compared with this FEA results. Then, 

the effect of COF on the tube expansion and tube thickness will be discussed and finally the 

last section will present the optimized load-path and its results.  

 

3.1 Experimental results 

Four different loading paths, one with force control and three with position control method, 

were applied to the tubes ends for both tube thicknesses. Each Loading path was repeated 

three times (Appendix D) and the mean value was used to plot the tube expansion versus the 

internal pressure (Figure 3.1). As illustrated in Figure 3.1a and b, by increasing the internal 

pressure, the tube starts to expand rapidly up to about 40 MPa which is the end of forming 

stage. By the beginning of the calibration stage, the tube expansion rate decreases. This stage 

continues till the internal pressure reaches to 260 MPa. The tube expansion during the first 40 

MPa internal pressure is almost equal to the amount of tube expansion during the rest of the 

process. In other words, for both tube thicknesses half of the tube expansion occured up to 

the 40 MPa internal pressure; during the forming stage. 

 

Figure 3.1 also reveals the effect of end feeding on the tube expansion. The maximum tube 

expansion for free end loading path is 8.8 mm and 8.5 mm for the 0.9 mm and 1.2 mm tubes, 

respectively. By tripling the end feed (loading path 3), the maximum tube expansion was 
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decreased to 8.65 mm and 8.2 mm for the 0.9 mm and 1.2 mm tubes, respectively, and the 

expansion trend remains the same. This phenomenon can be explained as the higher end 

feeding results in less thickness reduction and so the tube is thicker/tougher to deform at the 

corners. As the differences in total expansion are small, it can be concluded that the end 

feeding does not have a noticeable effect on the total tube expansion for both  

tube thicknesses.  

 

 

Figure 3.1: Expansion in tubes with 
(a) 0.9 mm and (b) 1.2 mm thickness 
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Tube thickness was the other parameter that was measured after the hydroforming process. 

As illustrated in Figure 2.17, the tube thickness in two quarters of the tube mid cross section 

was measured using the ultrasound thickness measurement device. The thickness 

measurement results for all cases are presented in Appendix E. Figure 3.2 illustrates the 

average thickness value of the front and back sides of the tubes for both tube thicknesses. 

 

 

Figure 3.2: Thickness variation of tubes with 
(a) 0.9 mm and (b) 1.2 mm thickness 
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In this figure, 0˚ corresponds to the tube corner and +45˚ and -45˚ correspond to the end 

points on one quarter of the tube, as shown in Figure 3.3. Twenty one points were selected in 

each quarter and thickness was measured 3 times at each point. At each point the average 

value from the front and back quarters was considered to draw the experimental curves in 

Figure 3.2. It can be seen that the maximum thinning occurs at the end of the contact region 

between the tube and the die. This region of the tube is subjected to a tensile stress in 

circumferential direction, but the tube is stuck to the die at this region due to high friction 

forces, which limits the material flow. It was observed that the thinning pattern is similar for 

both tube thicknesses. Also, by tripling the end feeding, the minimum thickness increased by 

18% and 10% for tubes with 0.9 mm and 1.2 mm thickness, respectively. These results 

suggest that end feeding results in more uniform thickness distribution since the end feeding 

assists the material flow into the deformation zone.  

 

 

Figure 3.3: Tube position after hydroforming 
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3.2 FEM verification 

To find the best FEM that can represent the real THF process, the FEA results were verified 

by comparing them with the results obtained from experiments. As mentioned before, several 

FEMs with two different material properties and three element types were developed. The 

tube expansion and tube thickness results from these FEMs were extracted for comparison 

purpose. 

 

3.2.1 Material properties 

As mentioned in the previous chapter, free expansion test and tensile test were used to extract 

the material properties. Using the shell FEM, the tube expansion and the tube thickness 

variation predicted by these two material properties were compared with the experimental 

results. Figure 3.4 illustrates the tube expansion versus internal pressure for 0.9 mm tube 

with different load paths. Here, Figure 3.4a and b, which represent the tube expansion with 

minimum end feedings, the tube expansion curve is smooth during the process. For load 

paths with higher end feedings (Figure 3.4c and d) there is a sudden slope in the curve at the 

end of the forming stage. The slope change is amplified with the increase of the end feeding. 

This jump is due to pushing extra material into the die cavity, which results in the formation 

of good wrinkles during the forming stage. They are called good wrinkles because they will 

disappear later by increasing the internal pressure. Also, Figure 3.4 shows that the FEA 

results for both material properties show the same trend and they are relatively in good 

agreement with the experimental results.The maximum deviation between the simulation and 

experimental results for expansion of the 0.9 mm tubes is about 5% at the end of the  

THF process. 
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Figure 3.4: Tube expansion in 0.9 mm thick tube 
(a) free end (b) load path 1 (c) load path 2 and (d) load path 3  

 

Figure 3.5 illustrates the expansion results for the 1.2 mm thick tubes with different end 

loading conditions. Here, like the 0.9 mm tubes, the predicted expansion results for both 

material properties follow the same trend as the experimental data, but the expansion curves 

resulted from the tensile testing show higher deviation from the experimental curves. On the 

other hand, the results from the free expansion show a good agreement with the  

experimental data. 
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Figure 3.5: Expansion of the tubes with 1.2 mm thickness 
(a) free end (b) loading path 1 (c) loading path 2 and (d) loading path 3 

 

Figure 3.6 and Figure 3.7 represent the tube thickness variation for 0.9 mm and 1.2 mm 

tubes, respectively. As mentioned before, the thickness of the blank tubes varies along the 

circumferential direction. So, the thickness measurement results in both figures represent the 

front and back quarters of the tubes. These results are average results of three measurements.  

 

In addition to the experimental results, the FEA results obtained from both material 

properties (free expansion and tensile tests) are presented in both figures. As it can be seen 

from these figures, the FEA results could predict the tube thickness variation of both tube 

thicknesses with a good accuracy. At the end of the contact regions the experimental results 

show a higher variation compared to the FEA results. The experimental thickness curves 

have a W-shape at the corners, while the simulation results are almost flat and cannot capture 
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extra thinning at the contact regions. This can be due to the inefficiency of the shell element 

that cannot capture through thickness stresses. Therefore, at the tube corners where the 

through thickness stresses are high, it is probable that the FEM cannot predict the material 

behaviour and as a result the difference between the FEA and experimental results starts to 

increase in these regions. 

 

 

Figure 3.6: Thickness variation in tubes with 0.9 mm thickness 
(a) free end (b) loading path 1 (c) loading path 2 and (d) loading path 3 
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Figure 3.7: Thickness variation in tubes with 1.2 mm thickness 
(a) free end (b) loading path 1 (c) loading path 2 and (d) loading path 3 

 

By comparing the results of both material properties, it is concluded that the material 

properties that are obtained from the free expansion test leads to better results and can 

simulate the real THF process better than the material properties that are based on tensile test. 

 

3.2.2 Different element types 

To compare the effect of element type on the simulation results, FEMs with three different 

element types; shell, solid and Tshell, were developed. Then, the FEA results for the tube 

expansion and thickness variations were plotted to compare with each other. 
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Figure 3.8 and Figure 3.9 illustrate the expansion of 0.9 mm and 1.2 mm thick tubes with 

different element types, respectively. As it can be seen from the figures, the trends and 

magnitudes of all the results obtained from different elements are very similar and there is no 

noticeable difference between the results obtained from the three types of elements. 

 

 

Figure 3.8: Expansion of the tubes with different element types for 0.9 mm thick tube 
(a) free end (b) loading path 1 (c) loading path 2 and (d) loading path 3 
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Figure 3.9: Expansion of the tubes with different element types for 1.2 mm thick tube 
(a) free end (b) loading path 1 (c) loading path 2 and (d) loading path 3 

 

In Figure 3.10 and Figure 3.11 the tubes thicknesses at the mid length of the tubes after 

hydroforming are presented for 0.9 mm and 1.2 mm thick tubes, respectively. As the 

thickness parameter is not calculated for solid and Tshell elements by LS-DYNA, the 

thickness of the deformed tubes was measured by comparing the distance between the inner 

and outer nodes at different locations throughout the cross section. All three element types 

predicted the tube thickness with good accuracy at the regions far from the tube corner, but, 

at the tube corner (-15° to 15°) the results are different from experiment. At this region, the 

shell element resulted in the lowest values. The results obtained from the solid element have 

the same trend as the shell element, but with slightly higher values. Although a small W-

shape was observed in the results that were obtained from the shell and solid elements, 

neither the shell nor the solid element could capture the W-shape, which was observed in the 
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experimental data. On the other hand, the Tshell element could capture the W-shape at the 

tube corner, but with deviation from the experimental data. From the Figure 3.10 and Figure 

3.11, it can be seen that the tube thickness results obtained from the shell and solid elements 

were relatively closer to the experimental results compared to the Tshell element.  

 

 

Figure 3.10: Thickness variation in tubes with 0.9 mm thickness 
(a) free end (b) loading path 1 (c) loading path 2 and (d) loading path 3 

 



61 

 

Figure 3.11: Thickness variation in tubes with 1.2 mm thickness 
(a) free end (b) loading path 1 (c) loading path 2 and (d) loading path 3 

 

The third parameter that was taken into account for selecting the best element type was 

calculation time. For the same simulation, the calculation time was 35 hours and 25 minutes 

for the Tshell, 4 hours and 30 minutes for the solid and 40 minutes for the shell element. In 

other words, the shell element is almost seven times faster than the solid element and 53 

times faster than the Tshell element. 

 

From the above results, it was concluded that using FEM constructed with shell elements is 

the best choice among the other options as it is faster and has a good computational accuracy.  
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3.2.3 Strain distribution 

ARGUS® measurement system was used to measure the in-plane strain distribution at the 

outer surface of the tubes to verify the accuracy of the FEMs. From Figure 3.12 to Figure 

3.15 the measured strains are compared with the simulation results.  

 

Figure 3.12 and Figure 3.13 show the major and minor strains of the tube with 0.9 mm 

thickness that was hydroformed using the minimum end feeding (load path 1). The major 

strain is in the hoop or circumferential direction and the minor strain is in the axial or 

longitudinal direction of the tubes. The experimental and simulation results show that the 

maximum major strain occurs at the tube corner. During the calibration stage, most of the 

tube surface is in contact with the die and the deformation continues at the tube corners 

where there is no restriction for metal to flow. The maximum major strain that is measured 

by ARGUS® is equal to 50% while this value is equal to 53% from the simulation results. 

This shows 6% error between the experimental and simulation results. 

 

The maximum value of the minor strain for loading path 1 occurred at the end of transition 

zone and at the beginning of the expansion zone, as shown in Figure 3.13. This is due to the 

low end feeding in load path 1 that makes the tube to stretch mostly in the longitudinal 

direction during the process. 
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Figure 3.12: Major strain distribution on the surface of the tube 
for loading path 1 (0.9 mm) (a) simulation (b) experiment 

 

 

Figure 3.13: Minor strain distribution on the surface of the tube 
for loading path 1 (0.9 mm) (a) simulation (b) experiment 
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Figure 3.14 and Figure 3.15 illustrates the major and minor strains of the tube with 0.9 mm 

thickness that was hydroformed using the maximum end feeding (load path 3). In this case, 

the maximum major strain that is obtained from ARGUS® measurement system and FEA is 

equal to 45% and 43%, respectively; which indicates 4% error. By comparing the results of 

loading path 1 and loading path 3, it can be seen that both ARGUS® and FEA results show a 

reduction in major strain value. Also, by comparing the minor strains in the loading paths it 

can be seen that the minor strain in loading path 3 has changed to compression state while in 

loading path 1 the strain state is a combination of compression and tension, which is due to 

less end feeding in loading path 1.  

 

 

Figure 3.14: Major strain distribution on the surface of the tube 
for loading path 3 (0.9 mm) (a) simulation (b) experiment 
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Figure 3.15: Minor strain distribution on the surface of the tube 
for loading path 3 (0.9 mm) (a) simulation (b) experiment 

 

To have a better understanding of the strain distribution in hydroformed tubes, the major, 

minor and through thickness strain distributions at mid length of the tubes are plotted in 

Figure 3.16. As it can be seen, the results from both ARGUS® and FEA follow the same 

trend. Both experimental and FEA results of the strain distribution in hydroformed tubes 

show that end feeding changes the strain distribution in hydroformed tubes in a way that 

higher expansion is possible. However, there are some differences between the ARGUS® and 

FEA results for minor and through thickness strains in loading path 3 (Figure 3.16b). The 

differences between the experimental and FEM results could be due to utilization of shell 

element in the FEM. As mentioned before, the shell elements cannot capture the through 

thickness stresses and this deficiency could affect the results. The other source of error in the 

FEM is the COF was considered constant during the simulation, while in reality it is not 

constant during the whole THF process.  
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Figure 3.16: Strain distribution for mid length cross section of 0.9 mm 
tubes hydroformed with (a) loading path 1 (b) loading path 3 

 

3.3 Effect of lubrication 

To investigate the effect of lubrication and friction force on the tube expansion and tube 

thickness variation, two different lubricants were used in this study. The load path 2 was 
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considered as the loading path for hydroforming the lubricated tubes. Then, the hydroforming 

process with 0.9 mm and 1.2 mm thick tubes and different COFs were modeled. The tube 

expansion and the tube thickness were compared from experiments and FEMs to find the 

proper COF that can be used in the FEM for lubricants used in this study. 

 

Figure 3.17 shows the experimental results of the tube expansion versus the internal pressure 

for 0.9 mm and 1.2 mm thick tubes with different COF values. The results show no big 

difference between the two lubricants that were tested in this study. By comparing the 

expansion values from lubricated and unlubricated tubes, it can be seen that there is an 

increase in the tube expansion for lubricated tubes after the forming stage (P > 40 MPa). At 

the beginning of the process, the tube does not have that much of contact with the die in the 

expansion zone. Therefore, friction does not play an important role in the tube expansion at 

the beginning of the forming stage. So, the tube expansion is the same for different 

lubrication conditions. At the end of forming stage, most of the tube surface is in contact with 

the die cavity and the contact between the tube and the die increases, so the friction effect 

becomes more noticeable. As it is illustrated in Figure 3.17, the tubes with lubrication start to 

expand more compared to the tubes without lubrication at P > 40 MPa. The reason is that the 

lower friction in lubricated tubes assists the material flow in circumferential direction, so the 

lubricated tubes can deform and expand easier compared to the unlubricated tube; where 

higher friction restricts the material flow. For both tube thicknesses, at higher internal 

pressures (P > 150 MPa), the tube expansion for lubricated and unlubricated tubes converge 

to the same value. At this point the die is almost filled and there is no more room for the tube 

to expand. At the end of the process, the maximum tube expansion is almost the same for 

both lubricated and unlubricated tubes. Figure 3.18 illustrates the tube thickness variation in 

circumferential direction for both lubricated and unlubricated tubes. As it is seen, the 

thickness of the tubes with lubrication is much more uniform compared to the unlubricated 

tube, which shows severe thickness variation. These variations are more severe at the regions 

close to the corners which deform the most compared to the other regions. These results 

suggest that the tube expansion at the end of the calibration stage in unlubricated tubes is 
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obtained due to the thickness reduction. The tube expansion and thickness variation results 

for both lubricants are presented in Appendix F and G, respectively. 

 

 

Figure 3.17: Expansion for tubes with different lubricants  
(a) 0.9 mm and (b) 1.2 mm thick tubes 
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Figure 3.18: Thickness variation of tubes with different lubricants 
(a) 0.9 mm and (b) 1.2 mm thick tubes 

 

To investigate the effect of friction on the final part, different COF values were used in the 

FEM to simulate the process. Figure 3.19 shows the effect of COF on the tube expansion for 

both tube thicknesses. It can be seen that up to 40 MPa, the tube expansion is almost the 

same for all the COF values. From this point up to about 120 MPa internal pressure, the tube 

expansion increases by decreasing the COF. After that up to the end of the process, the tube 

expansion value converges to the same value for all COFs; indicating the die is fully filled at 

this point. Based on the Figure 3.19, the tube expansion curve obtained from FEA with COF 

equal to 0.01 is the closest to the experimental curve.  
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Figure 3.19: Tube expansion curves for different COFs 
(a) 0.9 mm (b) 1.2 mm thick tubes 

 

In Figure 3.20 the predicted tube thickness variation for different COF values are presented. 

Based on this figure, by increasing the COF value, the thickness variation increases as well. 

So the most uniform thickness distribution is obtained using COF equal to 0.01. For 0.9 mm 

thick tubes, the minimum thickness that was obtained from the maximum COF (0.2) is equal 
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to 0.66 mm while this value for the minimum COF (0.01) is equal to 0.86 mm. This indicates 

30% increase in the minimum thickness in the section. The minimum thickness for 1.2 mm 

thick tubes is equal to 1.05 mm and 0.89 mm for 0.01 and 0.2 COFs, respectively. This 

shows 18% increase in the minimum thickness by decreasing the COF from 0.2 to 0.01. 

Also, the experimental results that are obtained from lubricated tubes are in good agreement 

with the FEA results from COFs equal to 0.05 indicating the performance of the lubricants 

used in this study. 

 

 

Figure 3.20: Tube thickness variation for different COFs 
(a) 0.9 mm (b) 1.2 mm thick tubes 
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3.4 Optimization  

LS-OPT software was used for loading path optimization of the THF process. The goal was 

to find a loading path that could hydroform a tube with the most uniform thickness 

distribution. The no lubrication condition was used for the optimization process to eliminate 

the effects of lubrication. The optimization process was conducted using the settings 

described in chapter 2. Hundred load paths (10 iterations of 10 runs each) for tubes with 0.9 

mm thickness and sixty load paths (6 iterations of 10 runs each) for tubes with 1.2 mm 

thickness were simulated to find the optimum loading path. Figure 3.21 compares the 

optimum loading paths that are obtained from optimization process with the applied loading 

pathes and Table 3.1 and Table 3.2 summarises the results from all the loading paths for both 

tube thicknesses. 

 

Table 3.1 and Table 3.2 indicate that the maximum and minimum tube thicknesses that are 

obtained from optimum load paths are closer to the initial tube thicknesses. Compared to the 

load path 1, the optimum load paths increased the minimum tube thickness by 26% and 21% 

in 0.9 mm and 1.2 mm thick tubes, respectively. The difference between the minimum and 

the maximum thickness for load path 1 is equal to 0.53 mm and 0.59 mm for 0.9 mm and 1.2 

mm thick tubes, respectively. This difference for the optimum load path is equal to 0.45 mm 

and 0.43 mm for 0.9 mm and 1.2 mm thick tubes, respectively. The results suggest that using 

the optimum load path for hydroforming leads to more uniform tube thickness, which was 

the objective of the optimization process.  
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Figure 3.21: Loading paths for tubes with 
(a) 0.9 mm (b) 1.2 mm thicknesses 

 

Table 3.1: Optimization results for 0.9 mm tube thickness 

 
Pressure 

(MPa) 

End feed 

(mm) 

Minimum 

thickness (mm) 

Maximum 

thickness (mm) 

Loading path 1 45 5.5 0.57 1.1 

Loading path 2 45 11 0.66 1.16 

Loading path 3 45 16.5 0.71 1.25 

Optimum loading path 32.2 17 0.72 1.17 
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Table 3.2: Optimization results for 1.2 mm tube thickness 

 
Pressure 

(MPa) 

End feed 

(mm) 

Minimum 

thickness (mm) 

Maximum 

thickness (mm) 

Loading path 1 45 4.5 0.79 1.38 

Loading path 2 45 9 0.86 1.43 

Loading path 3 45 13.5 0.92 2.19 

Optimum loading path 41 14.2 0.96 1.39 

 

The optimized loading paths that were obtained for 0.9 mm and 1.2 mm thick tubes were 

used for hydroforming of the tubes. Figure 3.22 and Figure 3.23 compare the experimental 

and numerical results for tube expansion and tube thickness, respectively. Some minor 

differences can be seen between the results that can be due to utilization of shell element and 

friction condition during the experiments. The simulation results correspond well with the 

experimental results, indicating that the approach can be used for optimization of more 

complex shapes. The tube expansion and the tube thickness results for optimum load paths 

are presented in Appendix H and I, respectively. 
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Figure 3.22: Tube expansion curves for optimum loading paths 
(a) 0.9 mm and (b) 1.2 mm thicknesses 
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Figure 3.23: Tube thickness variations for optimum loading paths 
(a) 0.9 mm and (b) 1.2 mm thicknesses 

 

 



 

CONCLUSION 

 

Experimental and numerical analyses were conducted to study the close die THF process. 

The effects of end feeding and lubrication on THF of SS321 tubes with 0.9 mm and 1.2 mm 

thicknesses were investigated. Different FEMs were developed using two different material 

properties and three element types. Then, the results from experimental and FEA were 

compared to verify the developed FEMs. For comparison, the tube expansion and thickness 

variation were measured experimentally and numerically. The shell model was used to 

investigate the effect of lubrication as well as finding the optimum loading path in the  

THF process. 

 

Different loading paths were used to hydroform the tubes. The thickness at the mid section of 

the blank tubes was measured, which was varying in the circumferential direction. For this 

reason, an average thickness was considered based on averaging the thickness in the front 

and back quarters of the tube at mid section.  

 

It was shown that by tripling the end feeding, the minimum thickness of the tubes increased 

by 18% and 10% for 0.9 mm and 1.2 mm thick tubes, respectively. The expansion at the 

calibration stage was limited to the die corners. Because the tubes fully filled the die cavity, 

the effect of end feeding was less evident on the total tube expansion.  

 

Two different material properties were obtained from the free expansion and tensile tests and 

were used for the FEAs. The comparison between the FEM results and the experimental data 

showed that the material properties obtained from the free expansion test leads to more 

accurate results.  

 

Three different elements were used in modelling of the THF process; shell, solid and Tshell. 

Compared to the Tshell element, the results of the shell and solid elements were relatively 

closer to the experiments. For reducing the computational cost the shell element was used in 

this study as it was seven times faster than solid element. 
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Measured principal strains were compared with the ones that were obtained from the FEAs. 

For 0.9 mm thick tube, the FEA predicted the maximum major strain with maximum 6% 

errors. Although there was a slight discrepancy between the FEA and experimental results, 

the trend and magnitudes of the results were in good agreements, indicating that the FEM 

developed in this study can be used with good confidence for predicting the THF process of 

components with similar complexities. 

 

Different COFs were used to model the process and predict the tube expansion along with the 

tube thickness in THF process. The results showed that during the forming stage, decreasing 

the COF increased the tube expansion for both tube thicknesses. Also, decreasing the COF 

led to more uniform thickness in the tubes. The simulation results with COF equal to 0.01 

predicted better the experimental data for the lubricated tubes. 

 

LS-OPT software was used to find the optimum load path in hydroforming process. The goal 

was to find a load path that could hydroform the tube with the most uniform thickness 

distribution. Compared to minimum end feed condition (load path 1), it was shown that the 

optimum load path increased the minimum tube thickness by 26% and 21% in 0.9 mm and 

1.2 mm thick tubes, respectively. 

 

 



 

RECOMMENDATIONS 

 

The following recommendations are proposed to further improve numerical and experimental 

investigation of THF process. 

 

In the present study, a square shape hydroforming process was investigated. This work can 

be extended further by investigating hydroforming of more complex geometries with 

different performing stages.  

 

For generalizing the approach adopted in this study, further studies can be performed using 

different aerospace materials. 

 

The FEM used in this study is not predicting the necking and bursting in the THF process. 

Therefore, developing a FEM with the ability to predict failure in the process would be  

of interest.  

 

For optimization procedure, other objectives and constraints could be defined and various 

aspect of the THF process can be investigated. Also developing an optimization code for 

comparing the obtained results would be a good approach. 

 





 

APPENDIX A 

SHELL ELEMENT MODEL FOR ROUND TO SQUARE HYDROFORMING 

$ User supplied input: 
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8 
$                                                                                
$ Title:         Shell Element Model of Round to Square Hydroforming 
$ Date:          Feb 12, 2013                                              
$ Base units of: mm, msec, grams gives other units of N, MPa                     
$ Author:        Saeed Mojarad Farimani 
$                                                                                                                                                               
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8 
$ 
*KEYWORD 
$ 
*TITLE 
Round to Square 
$                                                                                
*CONTROL_TERMINATION                                                             
$ Time (in millisec) that the simulation stops after.                            
$   ENDTIM    ENDCYC     DTMIN    ENDNEG    ENDMAS                               
               8.0                  0                                                             
$                                                                                
*CONTROL_HOURGLASS                                                               
$ Change the default hourglass control to a Flanagan-Belytschko with exact volum 
$ integration... recommended for large deformations                              
$      IHQ        QH                                                             
             3         0.1                                                             
$                                                                                
*CONTROL_SHELL                                                                   
$ BWC (warping stiffness) changed from 2 to 1.  Recommended for B-T elements     
$ ISTUPD (shell thickness change option) changed to 1 to allow membrane strains  
$ to affect the shell thickness.                                                 
$   WRPANG    ITRIST     IRNXX    ISTUPD    THEORY       BWC     MITER           
              20.0                2              -1                1                  2              2                1  
$ 
$--------------------------Only for solid model------------------------------------ 
*CONTROL_SOLID 
$    ESORT    FMATRX   NIPTETS    SWLOCL 
                 1                  1                 4                  2 
$--------------------------------------------------------------------------------- 
$ 
*CONTROL_CONTACT                                                                 
$ Allow the Shell thickness to be considered in surface to surface and node to   
$ surface type contacts. 
$THE LAST TWO LINES ARE FOR INTFOR AND FRICTIONAL ENERGY 
$                                                         
$   SLSFAC    RWPNAL    ISLCHK    SHLTHK    PENOPT    THKCHG     ORIEN           
              0.1                   0                 2                  1                1                    0               1      
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$   USRSTR    USRFAC     NSBCS    INTERM    XPENEN                               
                  0                 0              10                 0               4.0                               
$    SFRIC     DFRIC       EDC       VFC        TH     TH_SF    PEN_SF           
 
$   IGNORE    FRCENG   SKIPRWG    OUTSEG   SPOTSTP   SPOTDEL           
                  1 
$                                                                                
*CONTROL_ENERGY                                                                 
$ Used to allow hourglass energy to be calculated and stored in the              
$ GLSTAT and MATSUM ASCII files                                                  
$     HGEN      RWEN    SLNTEN     RYLEN                                         
               2                 2                 2                 1                                        
$                                                                                                                                                               
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8 
$                                                                                
$ ASCII and LS TAURUS output                                                     
$                                                                                
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8 
$                                                                                
*DATABASE_BINARY_INTFOR                                                                 
$       DT                                                                       
         0.2                                                                       
$                                                                                                                                                               
*DATABASE_RCFORC                                                                 
$       DT                                                                       
         0.2                                                                       
$                                                                                
*DATABASE_RBDOUT                                                                 
$       DT                                                                       
         0.2                                                                       
$                                                                                
*DATABASE_BINARY_D3PLOT                                                          
$  DT/CYCL      LCDT    NOBEAM                                                   
         0.2                                                                       
$                                                                                
*DATABASE_EXTENT_BINARY                                                          
$    NEIPH     NEIPS    MAXINT    STRFLG    SIGFLG    EPSFLG    RLTFLG    ENGFLG 
                2              0                  5                 1                1                1                  1                1 
$   CMPFLG    IEVERP    BEAMIP     DCOMP      SHGE     STSSZ                     
                   0                0                 0                 2               0              0                     
$                                                                                                                                                               
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8 
$                                                                                
$ Parts                                                                          
$                                                                                
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8 
$                                     
*PART 
Tube 
$      PID     SECID       MID     EOSID      HGID      GRAV    ADPOPT 
            1               2             1              0               0               0                0 
$          
*PART 
Die 



83 

$      PID     SECID       MID     EOSID      HGID      GRAV    ADPOPT 
            2               1             2              0               0              0                  0      
$                                                                         
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8 
$                                                                                
$ Section data                                                          
$                                                                                
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8 
$                                                                               $                                                                                
*SECTION_SHELL                                                                   
$      SID    ELFORM      SHRF       NIP     PROPT   QR/IRID     ICOMP           
            1                  2            1.0        3.0             0.0             0.0               0           
$       T1        T2        T3        T4      NLOC                               
         1.0       1.0       1.0        1.0              0  
$ 
$--------------------------Only for shell model------------------------------------ 
*SECTION_SHELL                                                                   
$      SID    ELFORM      SHRF       NIP     PROPT   QR/IRID     ICOMP           
            2                  2            1.0        5.0             0.0             0.0               0           
$       T1        T2        T3        T4      NLOC                               
      1.22      1.22      1.22     1.22              0                                        
$---------------------------------------------------------------------------------- 
$ 
$--------------------------Only for solid model------------------------------------ 
*SECTION_SOLID 
$#   secid    elform       aet 
             2              1          0 
$---------------------------------------------------------------------------------- 
$ 
$--------------------------Only for Tshell model----------------------------------- 
*SECTION_TSHELL                                                                   
$      SID    ELFORM      SHRF       NIP     PROPT   QR/IRID     ICOMP           
            2                  3          0.83           3            3.0              0.0               0 
$---------------------------------------------------------------------------------- 
$ 
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8 
$                                                                                
$ Contact Definitions                                                            
$                                                                                
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8 
$ 
*CONTACT_SURFACE_TO_SURFACE_ID 
$#     cid                                                                 title 
         Die to Tube                                                            
$#    ssid      msid     sstyp     mstyp    sboxid    mboxid       spr       mpr 
             1           2            3            3             0               0         1            1 
$#      fs        fd        dc        vc       vdc    penchk        bt        dt 
        0.2       0.2      1.0 118.65      20.0              0         0         0 
$#     sfs       sfm       sst       mst      sfst      sfmt       fsf       vsf 
 
$ 
$--------------------------Only for shell model------------------------------------ 
*CONTACT_AUTOMATIC_GENERAL 
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$     SSID      MSID     SSTYP     MSTYP    SBOXID    MBOXID       SPR       MPR 
              1             0               3                                                    
$       FS        FD        DC        VC       VDC    PENCHK        BT        DT 
         0.2        0.2       1.0   118.65            20                  0            0  
$      SFS       SFM       SST       MST      SFST      SFMT       FSF       VSF 
 
$---------------------------------------------------------------------------------- 
$ 
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8 
$                                                                                
$ Internal Pressure Load                              
$                                                                                
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8 
$ 
*LOAD_SEGMENT_SET_ID 
$#      id                                                                
           1                                                                       
$#    ssid      lcid        sf        at        dt 
             1         2       1.0      0.0      0.0 
$ 
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8 
$ 
$ End-Feeding 
$ 
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8 
$         
*BOUNDARY_PRESCRIBED_MOTION_SET                                                
$     NSID       DOF       VAD      LCID        SF       VID     DEATH     BIRTH 
              5             3             2             12       1.0            0             8.0             0.0  
$ 
*INCLUDE 
Material.insert 
$ 
*INCLUDE 
Load-Path.insert 
$ 
*INCLUDE 
Tube.insert 
$ 
*INCLUDE 
Die.insert 
$ 
*END 
 



 

APPENDIX B 

CODE FOR SPRING BACK SIMULATION 

*KEYWORD 210000000 
$ 
*TITLE 
 Springback 0.4ff                                            
$ 
$ User supplied input: 
$ 
$ This is the deck for springback of the 3" tube bending operation 
$                                                                                
$ User supplied input:                                                           
$                                                                                
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8 
$                                                                                
$ Title:          
$ Date:           
$ Base units of: mm, msec, grams gives other units of N, MPa                     
$ Author:         
$                                                                                
$ Optional Control Cards that have been modified.                                
$                                                                                
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8 
$                                                                                
*CONTROL_TERMINATION                                                             
$ Time (in millisec) that the simulation stops after.                            
$   ENDTIM    ENDCYC     DTMIN    ENDNEG    ENDMAS                               
            0.004                   0                                                             
$                                                                                
$                                                                                
*CONTROL_SHELL                                                                   
$ BWC (warping stiffness) changed from 2 to 1.  Recommended for B-T elements     
$ ISTUPD (shell thickness change option) changed to 1 to allow membrane strains  
$ to affect the shell thickness.                                                 
$   WRPANG    ITRIST     IRNXX    ISTUPD    THEORY       BWC     MITER           
           20.000               2               -1                1                   2              2                1           
$                                                                                
$                                                                                
*CONTROL_ENERGY                                                                  
$ Used to allow hourglass energy to be calculated and stored in the              
$ GLSTAT and MATSUM ASCII files                                                  
$     HGEN      RWEN    SLNTEN     RYLEN                                         
                2                2                  2                 1                                         
$                                                                                
$                                                                                
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8 
$                                                                                
$ ASCII and LS TAURUS output                                                     
$                                                                                
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$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8 
$                                                                                
$                                                                                
$$*DATABASE_GLSTAT                                                                 
$       DT                                                                       
$$  0.025                                                                       
$                                                                                
$$*DATABASE_MATSUM                                                                 
$       DT                                                                       
$$  0.025                                                                       
$                                                                                
$$*DATABASE_RBDOUT                                                                 
$       DT                                                                       
$$  0.025                                                                       
$                                                                                
*DATABASE_BINARY_D3PLOT                                                          
$  DT/CYCL      LCDT    NOBEAM                                                   
            0.001                                                                       
$                                                                                
*DATABASE_EXTENT_BINARY                                                          
$    NEIPH     NEIPS    MAXINT    STRFLG    SIGFLG    EPSFLG    RLTFLG    ENGFLG 
                0               0                  5                 1                1                 1                 1                   1 
$   CMPFLG    IEVERP    BEAMIP     DCOMP      SHGE     STSSZ                     
                   0                 0                 0                  2               0              0                     
$                                                                                
$                                                                                
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8 
$                                                                                
$ Part definitions                                                               
$                                                                                
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8 
$                                                                                
*PART                                                                            
 Tube                                                                            
$      PID     SECID       MID     EOSID      HGID      GRAV    ADPOPT           
             1              1             1                0                                         
$ 
*SECTION_SHELL                                                                   
$      SID    ELFORM      SHRF       NIP     PROPT   QR/IRID     ICOMP           
             1                  2           1.0         5.0             0.0             0.0                0           
$       T1        T2        T3        T4      NLOC                               
      0.94      0.94     0.94     0.94                0 
$                                                                                
*INCLUDE 
dynain.insert 
$ 
$ 
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8 
$                                                                                
$ Material and section definitions                                               
$                                                                                
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8 
$ 
*INCLUDE                                                                         
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mat-S0.9-Spline.insert 
$                                                                                
$     
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8 
$                                                                                
$ Implicit Springback information  
$                                                                                
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8 
$ 
*CONTROL_IMPLICIT_GENERAL 
$   IMFLAG       DT0    IMFORM      NSBS       IGS 
                  1      0.001                  1               4            2                               
$ 
$ 
*CONTROL_IMPLICIT_STABILIZATION 
$      IAS     SCALE    TSTART      TEND 
             1         0.100 
$ 
$ 
*CONTROL_IMPLICIT_LINEAR 
$  LSOLVER    LPRINT    NEGEIG   
                    0                 0                 2 
$ 
$ 
*CONTROL_IMPLICIT_NONLINEAR 
$   NSOLVR    ILIMIT    MAXREF     DCTOL    ECTOIL     RCTOL     LSTOL      RSSF 
                   0               1               150              0.0             0.0                          99999         
$    DNORM   DIVFLAG   INISTIF   NLPRINT 
                                                                              1   
$ 
*CONTROL_IMPLICIT_AUTO 
$    IAUTO    ITEOPT    ITEWIN     DTMIN     DTMAX 
                1            200                0        0.0001           0.001 
$                                        
*END 
 
 

 





 

APPENDIX C 

CODE FOR OPTIMIZATION OF THF PROCESS USING LS-OPT 4.2 

"Round-to-Square-THF" 
$ 
Author "Saeed Mojarad Farimani" 
$ Created on Tue Sep 10 15:40:30 2013 
$ 
$ DESIGN VARIABLES 
$ 
variables 2 
 Variable 'F' 10. 
  Lower bound variable 'F' 0. 
  Upper bound variable 'F' 20. 
 Variable 'P' -40. 
  Lower bound variable 'P' -60. 
  Upper bound variable 'P' -20. 
 
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 
$      OPTIMIZATION METHOD    
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 
$ 
Optimization Method SRSM 
 
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 
$      SOLVER "THF-Process" 
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 
$ 
$ DEFINITION OF SOLVER "THF-Process" 
$ 
 solver dyna960 'THF-Process' 
  solver command "C:\LSDYNA\program\ls-dyna_smp_d_R700_winx64_ifort101.exe" 
  solver input file "1.k" 
  solver check output on  
  solver compress d3plot off  
$ ------ Pre-processor -------- 
$   NO PREPROCESSOR SPECIFIED 
$ ------ Post-processor -------- 
$   NO POSTPROCESSOR SPECIFIED 
$ ------ Metamodeling --------- 
  solver order quadratic 
  solver experiment design dopt 
$ ------ Job information ------ 
  solver concurrent jobs 5 
$ 
$ RESPONSES FOR SOLVER "THF-Process" 
$ 
 response 'MaxThickness' 1 0 "D3PlotResponse -pids 1  -res_type misc  -cmp shell_thickness -select MAX -
start_time 0.0000" 
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 response 'FLD' 1 0 "D3PlotResponse -pids 1  -res_type fld  -cmp upper_eps1/fldc -fld_curve 4  -select MAX -
start_time 0.0000" 
 response 'MinThickness' 1 0 "D3PlotResponse -pids 1  -res_type misc  -cmp shell_thickness -select MIN -
start_time 0.0000" 
 
composites 2 
$ 
$ COMPOSITE EXPRESSIONS 
$ 
 composite 'Obj1' {((MinThickness-1.22)/1.22)*((MinThickness-1.22)/1.22)} 
 composite 'Obj2' {((MaxThickness-1.22)/1.22)*((MaxThickness-1.22)/1.22)} 
$ 
$ OBJECTIVE FUNCTIONS 
$ 
 objectives 2 
 objective 'Obj1' 1 
 objective 'Obj2' 1 
$ 
$ CONSTRAINT DEFINITIONS 
$ 
 constraints 1 
 constraint 'FLD' 
  strict 
  upper bound constraint 'FLD' 1 
$ 
$ PARAMETERS FOR METAMODEL OPTIMIZATION 
$ 
 Metamodel Optimization Strategy DOMAINREDUCTION 
$ 
  iterate param design 0.01 
  iterate param objective 0.01 
  iterate param stoppingtype and 
  iterate param response 1 
$ 
$ OPTIMIZATION ALGORITHM 
$ 
 Optimization Algorithm hybrid ga 
  Use GSA 
$ 
$ JOB INFO 
$ 
 iterate 10 
STOP 
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8.
09

 

8.
16

 

8.
16

 

8.
16

 

8.
17

 

8.
26

 

8.
11

 

8.
17

 

8.
26

 

8.
07

 

7.
90

 

7.
94

 

7.
84

 

7.
90

 

7.
95

 

7.
84

 

22
0 

8.
22

 

8.
28

 

8.
19

 

8.
26

 

8.
29

 

8.
22

 

8.
22

 

8.
27

 

8.
12

 

8.
22

 

8.
26

 

8.
21

 

8.
24

 

8.
33

 

8.
22

 

8.
24

 

8.
33

 

8.
23

 

7.
99

 

8.
08

 

7.
91

 

7.
97

 

8.
07

 

7.
92

 

23
0 

8.
26

 

8.
33

 

8.
21

 

8.
34

 

8.
35

 

8.
25

 

8.
26

 

8.
31

 

8.
24

 

8.
26

 

8.
28

 

8.
18

 

8.
30

 

8.
39

 

8.
30

 

8.
30

 

8.
39

 

8.
21

 

8.
06

 

8.
10

 

8.
05

 

8.
06

 

8.
12

 

8.
02

 

24
0 

8.
31

 

8.
33

 

8.
22

 

8.
43

 

8.
49

 

8.
34

 

8.
34

 

8.
39

 

8.
32

 

8.
34

 

8.
35

 

8.
33

 

8.
39

 

8.
49

 

8.
29

 

8.
39

 

8.
48

 

8.
32

 

8.
12

 

8.
21

 

8.
12

 

8.
14

 

8.
14

 

8.
09

 

25
0 

8.
36

 

8.
37

 

8.
36

 

8.
50

 

8.
55

 

8.
41

 

8.
39

 

8.
43

 

8.
33

 

8.
39

 

8.
45

 

8.
29

 

8.
45

 

8.
49

 

8.
37

 

8.
45

 

8.
54

 

8.
35

 

8.
19

 

8.
24

 

8.
09

 

8.
19

 

8.
23

 

8.
18

 

26
0 

8.
42

 

8.
48

 

8.
42

 

8.
52

 

8.
52

 

8.
50

 

8.
43

 

8.
49

 

8.
33

 

8.
43

 

8.
43

 

8.
42

 

8.
49

 

8.
53

 

8.
41

 

8.
49

 

8.
57

 

8.
44

 

8.
22

 

8.
28

 

8.
19

 

8.
22

 

8.
26

 

8.
19

 

 
 

 



 

APPENDIX E 

THICKNESSES AT TUBE CROSS SECTION 

P
os

it
io

n 
(d

eg
re

e)
 Tubes with 0.9 mm initial thickness 

Free end Loading path 1 Loading path 2 Loading path 3 

Front 
side 

Back 
side 

Front 
side 

Back 
side 

Front 
side 

Back 
side 

Front 
side 

Back 
side 

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

45
.0

 

0.
9 

0.
91

 

0.
90

 

0.
92

 

0.
93

 

0.
91

 

0.
92

 

0.
93

 

0.
92

 

0.
9 

0.
91

 

0.
89

 

0.
92

 

0.
93

 

0.
91

 

0.
94

 

0.
95

 

0.
93

 

0.
94

 

0.
94

 

0.
94

 

0.
95

 

0.
96

 

0.
95

 

40
.5

 

0.
9 

0.
92

 

0.
89

 

0.
92

 

0.
93

 

0.
91

 

0.
92

 

0.
93

 

0.
91

 

0.
9 

0.
91

 

0.
90

 

0.
92

 

0.
93

 

0.
91

 

0.
93

 

0.
93

 

0.
92

 

0.
93

 

0.
93

 

0.
93

 

0.
95

 

0.
95

 

0.
95

 

36
.0

 

0.
89

 

0.
90

 

0.
88

 

0.
9 

0.
90

 

0.
89

 

0.
9 

0.
91

 

0.
89

 

0.
88

 

0.
88

 

0.
86

 

0.
91

 

0.
92

 

0.
91

 

0.
92

 

0.
92

 

0.
92

 

0.
93

 

0.
94

 

0.
93

 

0.
94

 

0.
94

 

0.
94

 

31
.5

 

0.
88

 

0.
88

 

0.
86

 

0.
89

 

0.
91

 

0.
88

 

0.
89

 

0.
91

 

0.
89

 

0.
88

 

0.
89

 

0.
87

 

0.
91

 

0.
92

 

0.
91

 

0.
92

 

0.
93

 

0.
90

 

0.
92

 

0.
93

 

0.
92

 

0.
94

 

0.
95

 

0.
94

 

27
.0

 

0.
86

 

0.
86

 

0.
85

 

0.
88

 

0.
89

 

0.
86

 

0.
87

 

0.
88

 

0.
85

 

0.
86

 

0.
87

 

0.
85

 

0.
89

 

0.
91

 

0.
88

 

0.
91

 

0.
93

 

0.
90

 

0.
91

 

0.
93

 

0.
91

 

0.
93

 

0.
95

 

0.
93

 

22
.5

 

0.
84

 

0.
86

 

0.
83

 

0.
86

 

0.
87

 

0.
85

 

0.
85

 

0.
86

 

0.
84

 

0.
84

 

0.
86

 

0.
82

 

0.
88

 

0.
89

 

0.
86

 

0.
89

 

0.
90

 

0.
88

 

0.
9 

0.
91

 

0.
9 

0.
92

 

0.
93

 

0.
91

 

18
.0

 

0.
82

 

0.
83

 

0.
82

 

0.
82

 

0.
83

 

0.
82

 

0.
82

 

0.
83

 

0.
81

 

0.
8 

0.
82

 

0.
79

 

0.
86

 

0.
88

 

0.
85

 

0.
86

 

0.
86

 

0.
86

 

0.
87

 

0.
87

 

0.
87

 

0.
9 

0.
90

 

0.
89

 

13
.5

 

0.
78

 

0.
78

 

0.
77

 

0.
79

 

0.
80

 

0.
79

 

0.
77

 

0.
78

 

0.
77

 

0.
74

 

0.
75

 

0.
73

 

0.
82

 

0.
83

 

0.
80

 

0.
81

 

0.
82

 

0.
79

 

0.
82

 

0.
83

 

0.
82

 

0.
85

 

0.
85

 

0.
83

 

9.
0 

0.
7 

0.
72

 

0.
69

 

0.
69

 

0.
70

 

0.
67

 

0.
66

 

0.
68

 

0.
64

 

0.
66

 

0.
66

 

0.
65

 

0.
75

 

0.
77

 

0.
74

 

0.
74

 

0.
75

 

0.
73

 

0.
76

 

0.
77

 

0.
76

 

0.
79

 

0.
81

 

0.
72

 

4.
5 

0.
61

 

0.
61

 

0.
59

 

0.
61

 

0.
63

 

0.
60

 

0.
61

 

0.
61

 

0.
61

 

0.
64

 

0.
64

 

0.
63

 

0.
65

 

0.
66

 

0.
65

 

0.
65

 

0.
66

 

0.
64

 

0.
73

 

0.
75

 

0.
66

 

0.
76

 

0.
76

 

0.
68

 

0 

0.
62

 

0.
63

 

0.
60

 

0.
63

 

0.
64

 

0.
63

 

0.
66

 

0.
68

 

0.
64

 

0.
67

 

0.
69

 

0.
66

 

0.
68

 

0.
68

 

0.
67

 

0.
66

 

0.
67

 

0.
64

 

0.
75

 

0.
76

 

0.
69

 

0.
79

 

0.
79

 

0.
69
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.5
 

0.
62

 

0.
63

 

0.
62

 

0.
62

 

0.
62

 

0.
61

 

0.
62

 

0.
62

 

0.
61

 

0.
61
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61
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64
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65

 

0.
63

 

0.
65

 

0.
66

 

0.
64

 

0.
7 

0.
71

 

0.
68

 

0.
74

 

0.
75

 

0.
68

 

-9
.0

 

0.
69

 

0.
70

 

0.
67

 

0.
68

 

0.
64

 

0.
63

 

0.
72

 

0.
74

 

0.
71

 

0.
66

 

0.
66

 

0.
65

 

0.
72

 

0.
72

 

0.
71

 

0.
76

 

0.
77

 

0.
76

 

0.
78

 

0.
80

 

0.
78

 

0.
8 

0.
81

 

0.
8 

-1
3.

5 

0.
76

 

0.
78

 

0.
75

 

0.
74

 

0.
75

 

0.
72

 

0.
77

 

0.
77

 

0.
76

 

0.
76

 

0.
76

 

0.
75

 

0.
8 

0.
81

 

0.
80

 

0.
84

 

0.
85

 

0.
84

 

0.
86

 

0.
87

 

0.
86

 

0.
86
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86

 

0.
86

 

-1
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0 

0.
81

 

0.
82

 

0.
80

 

0.
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0.
82

 

0.
80

 

0.
81

 

0.
82

 

0.
81

 

0.
82

 

0.
83

 

0.
82

 

0.
84

 

0.
85

 

0.
82

 

0.
89

 

0.
91

 

0.
89
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9 

0.
90

 

0.
9 

0.
91

 

0.
93

 

0.
91
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2.

5 

0.
84

 

0.
85

 

0.
84

 

0.
84

 

0.
85

 

0.
82

 

0.
85

 

0.
86

 

0.
83

 

0.
85

 

0.
87

 

0.
85
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89
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90
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88
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91

 

0.
89
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92
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92

 

0.
93
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92
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7.

0 

0.
86

 

0.
86

 

0.
86

 

0.
87

 

0.
87

 

0.
85

 

0.
87

 

0.
89

 

0.
86

 

0.
87

 

0.
88

 

0.
87

 

0.
9 

0.
91

 

0.
89

 

0.
93

 

0.
93

 

0.
92

 

0.
92

 

0.
93

 

0.
92

 

0.
92

 

0.
94

 

0.
92

 

-3
1.

5 

0.
88

 

0.
88

 

0.
87

 

0.
89

 

0.
89

 

0.
88

 

0.
89

 

0.
91

 

0.
87

 

0.
89

 

0.
90

 

0.
88

 

0.
9 

0.
91

 

0.
90

 

0.
93

 

0.
93

 

0.
92

 

0.
93

 

0.
93

 

0.
93

 

0.
93

 

0.
95

 

0.
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0 

0.
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0.
90

 

0.
89

 

0.
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0.
90

 

0.
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0.
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0.
91

 

0.
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0.
89

 

0.
89

 

0.
88

 

0.
92

 

0.
92

 

0.
91

 

0.
94

 

0.
94

 

0.
94

 

0.
94

 

0.
96

 

0.
94

 

0.
93

 

0.
94

 

0.
93
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0.
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0.
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91

 

0.
89

 

0.
91

 

0.
92
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91

 

0.
91
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92
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90
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0.
91

 

0.
90
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92
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92

 

0.
92

 

0.
94

 

0.
95
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93
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94
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94
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94
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94

 

0.
94
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0.
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90
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89
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92

 

0.
94
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91

 

0.
91
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92
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90
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91

 

0.
91

 

0.
91
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93

 

0.
94

 

0.
92

 

0.
94

 

0.
95

 

0.
93

 

0.
95

 

0.
97

 

0.
95

 

0.
94

 

0.
96

 

0.
94
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P
os

it
io

n 
(d

eg
re

e)
 Tubes with 1.2 mm initial thickness 

Free end Loading path 1 Loading path 2 Loading path 3 

Front 
side 

Back 
side 

Front 
side 

Back 
side 

Front 
side 

Back 
side 

Front 
side 

Back 
side 

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

45
.0

 

1.
14

 

1.
15

 

1.
13

 

1.
17

 

1.
18

 

1.
16

 

1.
14

 

1.
14

 

1.
14

 

1.
18

 

1.
20

 

1.
18

 

1.
15

 

1.
16

 

1.
15

 

1.
19

 

1.
20

 

1.
18

 

1.
17

 

1.
17

 

1.
16

 

1.
25

 

1.
26

 

1.
24

 

40
.5

 

1.
12

 

1.
12

 

1.
10

 

1.
16

 

1.
16

 

1.
16

 

1.
13

 

1.
13

 

1.
11

 

1.
17

 

1.
19

 

1.
16

 

1.
15

 

1.
15

 

1.
14

 

1.
19

 

1.
19

 

1.
18

 

1.
17

 

1.
18

 

1.
16

 

1.
25

 

1.
26

 

1.
24

 

36
.0

 

1.
1 

1.
10

 

1.
09

 

1.
15

 

1.
16

 

1.
14

 

1.
12

 

1.
14

 

1.
11

 

1.
16

 

1.
16

 

1.
15

 

1.
13

 

1.
14

 

1.
12

 

1.
18

 

1.
18

 

1.
17

 

1.
16

 

1.
17

 

1.
15

 

1.
24

 

1.
24

 

1.
23

 

31
.5

 

1.
09

 

1.
11

 

1.
09

 

1.
14

 

1.
15

 

1.
13

 

1.
1 

1.
11

 

1.
10

 

1.
14

 

1.
15

 

1.
12

 

1.
12

 

1.
12

 

1.
12

 

1.
17

 

1.
18

 

1.
15

 

1.
14

 

1.
14

 

1.
13

 

1.
23

 

1.
23

 

1.
23

 

27
.0

 

1.
06

 

1.
08

 

1.
05

 

1.
12

 

1.
12

 

1.
10

 

1.
07

 

1.
07

 

1.
06

 

1.
12

 

1.
12

 

1.
11

 

1.
1 

1.
11

 

1.
08

 

1.
16

 

1.
16

 

1.
15

 

1.
13

 

1.
14

 

1.
11

 

1.
22

 

1.
23

 

1.
22

 

22
.5

 

1.
03

 

1.
04

 

1.
02

 

1.
09

 

1.
10

 

1.
08

 

1.
04

 

1.
04

 

1.
03

 

1.
1 

1.
10

 

1.
10

 

1.
08

 

1.
09

 

1.
06

 

1.
14

 

1.
16

 

1.
14

 

1.
12

 

1.
14

 

1.
10

 

1.
2 

1.
20

 

1.
18

 

18
.0

 

1 

1.
01

 

1.
00

 

1.
05

 

1.
07

 

1.
03

 

1.
01

 

1.
02

 

1.
00

 

1.
07

 

1.
08

 

1.
07

 

1.
05

 

1.
07

 

1.
03

 

1.
12

 

1.
12

 

1.
12

 

1.
09

 

1.
09

 

1.
08

 

1.
16

 

1.
17

 

1.
14

 

13
.5

 

0.
93

 

0.
94

 

0.
93

 

1.
01

 

1.
02

 

1.
01

 

0.
97

 

0.
97

 

0.
96

 

1.
01

 

1.
02

 

0.
99

 

1.
01

 

1.
02

 

1.
00

 

1.
09

 

1.
10

 

1.
08

 

1.
05

 

1.
06

 

1.
03

 

1.
11

 

1.
12

 

1.
09

 

9.
0 

0.
84

 

0.
85

 

0.
83

 

0.
91

 

0.
91

 

0.
91

 

0.
88

 

0.
89

 

0.
87

 

0.
93

 

0.
94

 

0.
91

 

0.
93

 

0.
93

 

0.
92

 

1.
02

 

1.
04

 

1.
00

 

0.
98

 

1.
00

 

0.
98

 

1.
02

 

1.
03

 

1.
02

 

4.
5 

0.
76

 

0.
78

 

0.
76

 

0.
84

 

0.
85

 

0.
84

 

0.
77

 

0.
78

 

0.
76

 

0.
85

 

0.
86

 

0.
84

 

0.
82

 

0.
82

 

0.
80

 

0.
9 

0.
91

 

0.
90
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86
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86
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86
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96
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98
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95
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0.
85
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85
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84
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86
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85
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0.
85
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94
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0.
94

 

0.
9 

0.
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89

 

0.
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0.
98

 

0.
96

 

0.
94

 

0.
94

 

0.
93

 

1.
04

 

1.
04

 

1.
03
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0.
76

 

0.
78

 

0.
74

 

0.
83

 

0.
84

 

0.
82
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74

 

0.
75
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73
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86

 

0.
86
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85
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84
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85

 

0.
84
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88
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89
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87
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83
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84

 

0.
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93

 

0.
93

 

0.
93
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.0

 

0.
8 

0.
81

 

0.
80
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89
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90
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89
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85
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85
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97
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98
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97
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89
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01
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03

 

1.
00
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89
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91

 

0.
88
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1.
00

 

0.
99
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3.
5 

0.
9 

0.
91

 

0.
89

 

0.
97

 

0.
98

 

0.
96

 

0.
94

 

0.
95

 

0.
92

 

1.
04

 

1.
05

 

1.
03

 

0.
99

 

1.
00

 

0.
99

 

1.
08

 

1.
10

 

1.
07

 

0.
99

 

1.
00

 

0.
98

 

1.
1 

1.
12

 

1.
09

 

-1
8.

0 

0.
97

 

0.
98

 

0.
97

 

0.
86

 

1.
05

 

1.
03

 

0.
99

 

1.
01

 

0.
98

 

1.
09

 

1.
09

 

1.
09

 

1.
04

 

1.
06

 

1.
04

 

1.
12

 

1.
13

 

1.
11

 

1.
05

 

1.
05

 

1.
03

 

1.
15

 

1.
16

 

1.
14

 

-2
2.

5 

1.
02

 

1.
02

 

1.
00

 

0.
83

 

1.
09

 

1.
07

 

1.
02

 

1.
03

 

1.
00

 

1.
13

 

1.
15

 

1.
12

 

1.
08

 

1.
08

 

1.
06

 

1.
15

 

1.
15

 

1.
15

 

1.
08

 

1.
08

 

1.
07

 

1.
19

 

1.
19

 

1.
18

 

-2
7.

0 

1.
04

 

1.
04

 

1.
04

 

0.
89

 

1.
11

 

1.
10

 

1.
04

 

1.
05

 

1.
02

 

1.
16

 

1.
17

 

1.
15

 

1.
11

 

1.
12

 

1.
10

 

1.
16

 

1.
16

 

1.
16

 

1.
11

 

1.
13

 

1.
09

 

1.
21

 

1.
23

 

1.
20

 

-3
1.

5 

1.
07

 

1.
07

 

1.
06

 

0.
97

 

1.
15

 

1.
12

 

1.
06

 

1.
07

 

1.
05

 

1.
17

 

1.
17

 

1.
15

 

1.
13

 

1.
14

 

1.
13

 

1.
18

 

1.
18

 

1.
16

 

1.
12

 

1.
13

 

1.
11

 

1.
22

 

1.
24

 

1.
21

 

-3
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0 

1.
09

 

1.
10

 

1.
08

 

1.
14

 

1.
15

 

1.
13

 

1.
08

 

1.
10

 

1.
06

 

1.
19

 

1.
20

 

1.
17

 

1.
14

 

1.
14

 

1.
12

 

1.
2 

1.
22

 

1.
18

 

1.
13

 

1.
14

 

1.
12

 

1.
22

 

1.
23

 

1.
21

 

-4
0.

5 

1.
11

 

1.
11

 

1.
10

 

1.
15

 

1.
16

 

1.
15

 

1.
1 

1.
11

 

1.
10

 

1.
2 

1.
20

 

1.
19

 

1.
15

 

1.
16

 

1.
14

 

1.
2 

1.
21

 

1.
19

 

1.
14

 

1.
15

 

1.
13

 

1.
22

 

1.
24

 

1.
20

 

-4
5 

1.
12

 

1.
12

 

1.
11

 

1.
17

 

1.
18

 

1.
17

 

1.
11

 

1.
11

 

1.
09

 

1.
21

 

1.
22

 

1.
19

 

1.
16

 

1.
17

 

1.
14

 

1.
21

 

1.
23

 

1.
19

 

1.
15

 

1.
15

 

1.
15

 

1.
22

 

1.
22

 

1.
21

 

 
 

 



 

APPENDIX F 

TUBE EXPANSION FOR DIFFERENT LUBRICANTS 

 

P
re

ss
ur

e 
(M

P
a)

 Tubes with 0.9 mm initial thickness Tubes with 1.2 mm initial thickness 

Lubricant A Lubricant B Lubricant A Lubricant B 

Front 
side 

Back 
side 

Front 
side 

Back 
side 

Front 
side 

Back 
side 

Front 
side 

Back 
side 

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

0 

0.
00

 

0.
00

 

0.
00

 

0.
00

 

0.
00

 

0.
00

 

0.
00

 

0.
00

 

0.
00

 

0.
00

 

0.
00

 

0.
00

 

0.
00

 

0.
00

 

0.
00

 

0.
00

 

0.
00

 

0.
00

 

0.
00

 

0.
00

 

0.
00

 

0.
00

 

0.
00

 

0.
00

 

10
 

1.
00

 

1.
03

 

0.
98

 

1.
02

 

1.
09

 

0.
93

 

0.
89

 

0.
89

 

0.
81

 

0.
92

 

0.
98

 

0.
82

 

0.
63

 

0.
65

 

0.
53

 

0.
43

 

0.
43

 

0.
38

 

1.
97

 

1.
97

 

1.
89

 

0.
59

 

0.
65

 

0.
49
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APPENDIX G 

TUBE THICKNESS FOR DIFFERENT LUBRICANTS 

P
os

it
io

n 
(d

eg
re

e)
 Tubes with 0.9 mm initial thickness Tubes with 1.2 mm initial thickness 

Lubricant A Lubricant B Lubricant A Lubricant B 

Front 
side 

Back 
side 

Front 
side 

Back 
side 

Front 
side 

Back 
side 

Front 
side 

Back 
side 

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3
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APPENDIX H 

TUBE EXPANSION FOR OPTIMUM LOADING PATHS 

 

P
re

ss
ur

e 
(M

P
a)

 Tubes with 0.9 mm initial thickness Tubes with 1.2 mm initial thickness 

Front side Back side Front side Back side 

1 2 3 1 2 3 1 2 3 1 2 3 
0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
10 1.22 1.28 1.22 1.41 1.50 1.36 0.62 0.65 0.60 0.67 0.74 0.58
20 2.62 2.66 2.53 3.07 3.13 3.05 1.83 1.88 1.80 1.98 2.01 1.88
30 3.80 3.90 3.80 4.28 4.29 4.20 3.12 3.19 3.02 3.08 3.16 3.06
40 4.53 4.63 4.44 4.91 4.99 4.91 4.12 4.19 4.08 4.18 4.23 4.16
50 4.74 4.84 4.68 5.10 5.16 5.02 4.44 4.49 4.44 4.44 4.50 4.41
60 5.10 5.14 5.02 5.28 5.35 5.18 4.93 4.94 4.86 4.84 4.86 4.77
70 5.57 5.59 5.54 5.64 5.72 5.62 5.46 5.53 5.38 5.36 5.39 5.31
80 6.02 6.04 6.01 6.15 6.15 6.11 5.92 5.98 5.86 5.82 5.82 5.76
90 6.42 6.44 6.32 6.53 6.61 6.51 6.25 6.33 6.16 6.20 6.23 6.18
100 6.74 6.84 6.73 6.85 6.95 6.75 6.54 6.64 6.51 6.46 6.52 6.36
110 7.07 7.15 7.07 7.10 7.17 7.10 6.77 6.78 6.67 6.67 6.69 6.66
120 7.29 7.37 7.24 7.27 7.33 7.25 7.00 7.09 7.00 6.89 6.93 6.82
130 7.48 7.50 7.38 7.46 7.53 7.40 7.16 7.16 7.16 7.11 7.20 7.02
140 7.64 7.70 7.57 7.65 7.68 7.56 7.35 7.39 7.28 7.30 7.40 7.24
150 7.79 7.85 7.69 7.77 7.85 7.70 7.50 7.53 7.40 7.45 7.49 7.45
160 7.95 7.96 7.87 7.96 8.04 7.88 7.67 7.70 7.65 7.62 7.69 7.61
170 8.04 8.06 8.01 8.05 8.15 7.96 7.81 7.87 7.71 7.74 7.83 7.69
180 8.16 8.26 8.12 8.14 8.20 8.07 7.89 7.93 7.85 7.88 7.88 7.79
190 8.27 8.37 8.25 8.24 8.26 8.16 8.00 8.03 7.97 8.00 8.09 7.98
200 8.32 8.33 8.31 8.32 8.42 8.26 8.09 8.15 8.00 8.12 8.15 8.04
210 8.41 8.45 8.35 8.37 8.42 8.31 8.18 8.27 8.12 8.21 8.30 8.11
220 8.46 8.55 8.38 8.45 8.55 8.40 8.27 8.36 8.25 8.30 8.39 8.29
230 8.54 8.58 8.53 8.52 8.58 8.48 8.31 8.40 8.31 8.35 8.44 8.26
240 8.58 8.67 8.58 8.60 8.60 8.55 8.36 8.46 8.26 8.43 8.52 8.36
250 8.69 8.74 8.59 8.65 8.69 8.64 8.40 8.44 8.32 8.50 8.59 8.40
260 8.71 8.78 8.63 8.72 8.82 8.65 8.45 8.49 8.42 8.52 8.60 8.45

 
 

 





 

APPENDIX I 

TUBE THICKNESS FOR OPTIMUM LOADING PATHS 

 

P
os

it
io

n 
(d

eg
re

e)
 Tubes with 0.9 mm initial thickness Tubes with 1.2 mm initial thickness 

Front side Back side Front side Back side 

1 2 3 1 2 3 1 2 3 1 2 3 
45.0 0.91 0.92 0.91 0.91 0.91 0.91 1.11 1.12 1.10 1.21 1.21 1.21
40.5 0.91 0.93 0.90 0.91 0.92 0.90 1.10 1.10 1.09 1.20 1.20 1.19
36.0 0.90 0.92 0.88 0.91 0.92 0.89 1.10 1.12 1.09 1.19 1.21 1.19
31.5 0.90 0.92 0.88 0.90 0.90 0.88 1.09 1.11 1.08 1.18 1.19 1.16
27.0 0.90 0.90 0.88 0.89 0.89 0.89 1.08 1.08 1.07 1.15 1.15 1.13
22.5 0.88 0.88 0.88 0.87 0.89 0.87 1.06 1.07 1.05 1.12 1.14 1.12
18.0 0.85 0.85 0.83 0.84 0.84 0.83 1.03 1.04 1.02 1.08 1.08 1.07
13.5 0.80 0.82 0.80 0.76 0.76 0.74 0.99 0.99 0.97 1.00 1.00 0.99
9.0 0.70 0.71 0.69 0.68 0.68 0.68 0.90 0.91 0.88 0.95 0.96 0.93
4.5 0.66 0.66 0.66 0.65 0.66 0.64 0.82 0.82 0.81 0.92 0.92 0.91
0 0.68 0.68 0.67 0.69 0.70 0.69 0.87 0.87 0.86 0.98 0.99 0.98

-4.5 0.65 0.66 0.63 0.66 0.68 0.65 0.79 0.81 0.78 0.93 0.94 0.93
-9.0 0.75 0.75 0.75 0.69 0.70 0.69 0.87 0.88 0.86 1.06 1.06 1.04
-13.5 0.82 0.83 0.81 0.79 0.81 0.78 0.96 0.96 0.95 1.11 1.12 1.10
-18.0 0.88 0.89 0.86 0.85 0.86 0.83 1.02 1.04 1.02 1.14 1.15 1.13
-22.5 0.90 0.91 0.88 0.89 0.89 0.88 1.05 1.07 1.05 1.16 1.18 1.15
-27.0 0.91 0.92 0.89 0.90 0.90 0.88 1.09 1.11 1.07 1.17 1.18 1.16
-31.5 0.91 0.93 0.90 0.91 0.92 0.90 1.10 1.11 1.09 1.18 1.19 1.18
-36.0 0.91 0.92 0.90 0.91 0.92 0.91 1.11 1.11 1.11 1.19 1.19 1.19
-40.5 0.92 0.93 0.91 0.92 0.93 0.92 1.12 1.14 1.11 1.19 1.21 1.17
-45 0.92 0.92 0.90 0.92 0.92 0.91 1.13 1.15 1.13 1.19 1.20 1.18
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