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ROBOTIC MACHINING: EVALUATION OF THE POSITIONING ACCURACY
AND THE MACHINED SURFACE QUALITY

Behrang MAJEDI

ABSTRACT

Due to the importance of the surface quality of machined parts, many research works have

been devoted to the surface irregularities and their generating mechanisms. However, the sur-

face quality of the robotic machining operations has not been sufficiently investigated. Indeed,

the relative works are restricted to the finishing operations such as grinding and deburring. In

this work, the surface quality of the slot milling operation which is executed by an industrial

robot on an aluminum block is investigated. For this purpose, several slots at different direc-

tions are machined on the block by applying various cutting parameters. In order to investigate

the surface quality of the slots, the machined surfaces are evaluated by a mechanical profiler,

and then the results are analyzed using the power spectrum density method. Moreover, to mon-

itor the machining conditions, the machining forces are measured with a dynamometer table.

To identify the generating factors of the irregularities, both the kinematic and the dynamic

properties of the robot are experimentally examined. The kinematic properties of the robot are

investigated by measuring its straightness using a laser tracker, and the dynamic properties are

evaluated by applying the impact test.

Lack of accuracy is one of the difficulties restricting the usage of robotic machining. Indeed,

the poor accuracy of industrial robots makes the off-line programming uneffective. Conse-

quently, the operators are forced to use on-line method which is a time consuming approach.

However, if a robot is calibrated properly, the off-line method could be effectively applied.

To this end, before analyzing the surface quality, the accuracy of the robot is investigated and

improved using a hybrid calibration model considering both the geometric errors and the joint

compliances.

Keywords: industrial robots, calibration, machining, aluminium, surface quality and accu-

racy





ROBOTIC MACHINING: EVALUATION OF THE POSITIONING ACCURACY
AND THE MACHINED SURFACE QUALITY

Behrang MAJEDI

RÉSUMÉ

En raison de l’importance de la qualité de surface des pièces usinées, de nombreuses recherches

ont été consacrées aux irrégularités de surface et à leurs mécanismes générateurs. Cependant,

la qualité de surface des opérations d’usinage robotisées n’a pas été suffisamment étudiée.

En effet, les travaux relatifs sont limités aux opérations de finition telles que le meulage et

l’ébavurage. Dans ce travaille de recherche, la qualité de surface d’usinage de rainures est

étudiée. les rainures sont usinées par le robot industriel sur un bloc d’aluminium. A cet effet,

plusieurs rainures dans différentes directions sont usinées sur le bloc en appliquant différents

paramètres de coupe. Afin d’étudier la qualité de surface des rainures, les surfaces usinées sont

examinées par un profilomètre. Ensuite, les résultats sont analysés selon la méthode de la den-

sité spectrale de puissance. Par ailleurs, afin de surveiller les conditions d’usinage, les forces

d’usinage sont mesurées avec une table dynamométrique sur laquelle le bloc d’aluminium est

monté. Pour identifier les facteurs générateurs des irrégularités, les propriétés de la cinématique

et de la dynamiques du robot sont expérimentalement examinées. Les propriétés cinématiques

du robot sont étudiées en mesurant sa rectitude en utilisant un appareil a poursuite laser. En

plus, les propriétés dynamiques sont évaluées en se basant sur les résultats du test d’impact.

Le manque de précision est l’une des difficultés limitant l’usage de l’usinage robotisé. En effet,

le manque de précision des robots industriels rend inefficace la programmation hors-ligne. Par

conséquent, les opérateurs sont obligés d’utiliser la méthode en ligne qui prennent beaucoup

de temps de programmation.Toutefois, si un robot est étalonné correctement, la méthode hors

ligne pourrait être appliquée efficacement. Pour cette raison, avant d’analyser la qualité de

surface, la précision du robot est étudiée et améliorée en utilisant un modèle d’étalonnage

hybride considérant à la fois les erreurs géométriques et des la rigidité articulations.

Mot-clés : robots industriels, étalonnage, usinage, aluminium, qualité de surface et préci-

sion
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INTRODUCTION

Without flexibility in manufacturing, it is almost impossible for manufacturers to improve and

even keep their ranks in nowadays competitive marketplace. As market demands change very

rapidly, manufacturers should be able to adapt their production systems to meet these variation

as soon as possible. For this reason programmable machines that can be adjusted quickly to

meet the new production settings are highly desirable. CNC machine tools have been used

for decades to increase the flexibility in machine shops. Despite the fact that, CNCs can per-

form almost every machining operation, there are some cases in which the use of CNCs is not

recommended. Deburring, for example, is an operation which is mostly performed by skilled

workers; in this operation a craftsman takes the deburring tool and drags it over the edges of

a machined part to remove its burrs. However, due to the problems arising from hand-held

tool operations, inconsistency in the products for example, manufacturers tend to develop au-

tomated systems as much as possible. Industrial robots are programmable machines that can

be easily integrated to a production system for this issue.

Nowadays, industrial robots are commonly used in machining operations not requiring high

accuracy. Indeed, finishing and pre-machining operations are the fields in which industrial

robots are very popular. In a typical finishing operation, grinding for example, the robot moves

the tool mounted in a flexible tool holder over the desired surface or edge to improve the quality

of the product; in a typical pre-machining operation, removing runners and gates from casting

parts as an instance, a low power sawing tool is attached to the robot to remove the casting

wastes.

High flexibility in addition to reasonable price of industrial robots drive a great tendency for

machining industries to use these machines in their machining applications. Moreover, robots

can be used for handling parts in a machining cell, which brings more benefits because CNCs

need workers to load and unload them. However, using robots instead of CNC machines brings

some difficulties. Poor surface quality and lack of accuracy arising from the low rigidity of

robotic machining systems are the main difficulties restricting the application of robots in ma-

chining industries.
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Up to now, some studies have been done to overcome robotic machining barriers; however,

most of these researches have been devoted to improve the accuracy of robotic machining

systems rather than the quality of machined surfaces. Indeed, the investigation on the surface

quality is restricted to the finishing processes such as robotic deburring or robotic grinding, but

the quality of the surfaces generated by robotic milling systems has barely been the subject of

any study. Investigating the surface irregularities formed by a typical robotic milling system is

the main focus of this work; however, the accuracy of the robot is examined in advance.

This thesis is organized as follows. The next chapter present a summary of previous studies

related to the subject of this thesis. In Chapter 2, the objective and the methodology of this

research are explained. Then, in Chapter 3, the industrial robot under study is calibrated using

a novel approach based on the use of Creaform’s C-Track optical CMM. Chapter 4 focuses

on the surface quality and its generating mechanisms. Finally, in Chapter 5, the results of this

research is discussed.



CHAPTER 1

LITERATURE REVIEW

Flexibility and programmability in addition to ease of integration to production systems have

made industrial robots desirable for many industries. Assembly lines, welding shops, automo-

tive and aerospace industries are a few examples of the fields in which robots are commonly

used; however, applying robots in machining applications is relatively problematic. Indeed,

robots are successfully applied in machining soft materials, composites for example, but ma-

chining harder materials such as aluminium parts generates forces cannot be tolerated by an

ordinary industrial robot. Tool vibration and force-induced tool displacement are the main

drawbacks hindering applying robots for machining applications. Many researchers recognise

the inherited low structural stiffness of robots as the source of these difficulties. Geometric and

kinematic errors, poor path accuracy and uneven tool motion along the cutting path are other

problems making robotic machining systems inappropriate.

In order to face these problems, many different approaches have been proposed in the literature.

However, these approaches can be divided into two main categories. One of these categories

involves the approaches improving the performance of robotic machining systems via mod-

elling their static and dynamic behaviour. Indeed, by modelling the static and the dynamic

behaviour of a robotic machining system its machining errors can be predicted and compen-

sated. Next category, however, involves the approaches using extra sensors in order to increase

the accuracy of machining systems. In fact, by applying extra sensors in a robotic machining

system the position error of the tool in the workspace is identified, and then compensated. In

the following sections, these two categories will be briefly reviewed.

1.1 Static and dynamic models

Both the static and the dynamic behaviour of a robotic machining system effect on its machin-

ing performance. During a robotic machining process the tool exhibits a relatively constant

deviation from the commanded path due to the machining forces exerted to the tool tip; this
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tool deviation can be predicted to a great extend by the static model of the system. Tool vi-

bration is another problem persisting in almost every robotic machining process; the dynamic

model of a robotic machining system predicts the possible frequency at which the system may

exhibit resonance vibration. In this section both the static and the dynamic models of serial

robots will be reviewed respectively.

The static model of a robot relates the tool displacement to the wrench, forces and torques,

exerted to it. Therefore, the static model of a robot can be considered as a part of its geometric

model defining the position of tool in the workspace. So far, many different geometric models

have been introduced in the literature. B. W. Mooring (1991) has done an extensive study about

the geometric models and different aspects of the calibration methods. However, as the force-

induced tool displacement is the matter of concern in robotic machining systems, the static

models will be studied here.

In the literature, the flexibilities of the joints of a serial robot are recognised as the main source

of the overall compliance of the system, and the flexibilities of the links are ignored. Indeed,

the links of a serial robot are so stiff that they can be assumed rigid. In this case, the relation

between the tool compliance in the Cartesian space and the joint compliances can be depicted

by the classical compliance model, Eq. 1.1:

H = JHqJ
T , (1.1)

where Hq and H are the joint compliance and Cartesian compliance matrices respectively.

The joint compliance matrix is a diagonal matrix whose diagonal elements consist of the joint

compliances. If
−→
δθ = [δθ1 δθ2 δθ3 δθ4 δθ5 δθ6]

T is the vector of the joint deflections, and

−→τ = [τ1 τ2 τ3 τ4 τ5 τ6]
T is the vector of torques which is applied to the joints, then the joint

compliance matrix relates them as
−→
δθ = Hq

−→τ . However, the Cartesian compliance matrix is a

6×6 matrix which relates the wrench ,
−→
W = [FxFY FZ τX τY τZ ]

T , applied to the end-effector,

to the tool displacement in the Cartesian space
−→
δ = [δX δY δZ δα δβ δγ]T as

−→
δ = H

−→
W . The
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matrix J in the above equation is the configure-dependant Jacobian matrix relating the small

joint displacements to the small tool displacement,
−→
δ = J(θ)

−→
δθ.

The compliance classical model relating the joint compliances to the Cartesian compliance can

be used to identify the joint compliances too. Replacing Eq. 1.1 in
−→
δ = H

−→
W results in the

following equation:

−→
δ = (JHqJ

T )
−→
W. (1.2)

Then, rearranging the above equation results in:

−→
δ = λ

−→
Hq, (1.3)

where
−→
Hq = [H11 H22 ... H66]

T , and λ is a 6× 6 matrix as below:

λ =

⎡
⎢⎢⎢⎣
J11

∑6
i=1 Ji1wi . . . J16

∑6
i=1 Ji6wi

...
. . .

...

J61
∑6

i=1 Ji1wi . . . J66
∑6

i=1 Ji6wi

⎤
⎥⎥⎥⎦ . (1.4)

Some researchers, Dumas et al. (2010) for example, applies Eq. 1.3 in addition to the least

squares method to identify the joint compliances. For this purpose, the displacement of the tool

as the result of the applied load is measured at different configurations. If the tool displacement

is measured at m configurations, then the measured values can be rearranged in the following

form:

−→
Δ = Λ

−→
Hq, (1.5)
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where
−→
Δ = [

−→
δ1

−→
δ2 ...

−→
δm]

T is a 6m× 1 vector, and Λ is a 6m× 6 matrix as follows:

Λ =

⎡
⎢⎢⎢⎣
λ1

...

λm

⎤
⎥⎥⎥⎦ . (1.6)

Then, the compliance vector
−→
Hq can be identified by applying the least square method as fol-

low:

−→
Hq = (ΛTΛ)−1ΛT−→Δ . (1.7)

The other form of the Eq. 1.1 can be shown by Eq. 1.8 that is the classical stiffness model:

K = J−TKqJ
−1, (1.8)

where K is the 6 × 6 Cartesian stiffness matrix, and Kq is the diagonal 6 × 6 joint stiffness

matrix which the ith diagonal component is the rotational stiffness of the ith joint. Some

researchers have claimed that the classical model, have been explained in almost every robot

textbook, is incomplete, and proposed more advanced models to achieve better results. Alici

and Shirinzadeh (2005) proposed an advanced model that also considers the small change in

the robot configuration which is neglected in the classical model. Indeed, as the joints of a

robot deflect due to the exerted load, the Jacobian of the robot which is identified by the joint

positions will not remain constant, and consequently the classical stiffness model which is

defined based on considering a constant Jacobian will not be valid any more. The model which

is proposed by Alici and Shirinzadeh (2005) is as follows:

K = J−T (Kq − Kc)J
−1, (1.9)
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where Kc is the complementary stiffness matrix. For example, in the case of a 3-R planar serial

robot, this matrix would be:

Kc = [
∂JT

∂q1

−→
F

∂JT

∂q2

−→
F

∂JT

∂q3

−→
F ]. (1.10)

In this work, a pre-known load is exerted to the robot, Motoman SK120, with a simple pulley

mechanism, whereas the robot is equipped with a force sensor. The displacement of the tool is

measured by a laser tracker via the reflector target attached to the tool as it is shown in Figure

1.1. In that work, the accuracy of the advanced model has been validated experimentally;

indeed, the values predicted by the model are very close to the ones measured by the laser

tracker. However, the accuracy of the classical model has not been mentioned in this work.

Authors have mentioned that in order to compare the accuracy of these two models a more

precise measuring system is needed.

Figure 1.1 Loading setup mechanism

Alici and Shirinzadeh (2005)

Dumas et al. (2010) applied the advanced stiffness model established by Alici and Shirinzadeh

(2005) to develop a new methodology to identify joint compliances of a robot. Indeed, they

have distinguished the configurations at which the amount of the complimentary stiffness ma-

trix, Kc, is negligible. Then in order to investigate the joint compliances, the force-induced
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tool displacement is examined at those configurations. In this research a pre-known load is ap-

plied to the end-effector of a serial robot, KUKA KR240-2, at pre-determined configurations,

and then the resultant tool displacements are measured by a laser tracker. As the effect of the

complimentary stiffness matrix is negligible, then the classical Cartesian compliance model

Eq. 1.8 could be applied more precisely. The authors have claimed that the joint compliances

identified by this method can estimate the force-induced tool displacement of the robot with a

precision of 80%.

Abele et al. (2007) developed an experimental stiffness model and compared it to the classical

one. The experimental model has been developed based on measuring the tool displacement

at different configurations as the result of applying a pre-known force to it. Then these two

models have been applied to predict the amount of the tool deflection during a robotic milling

operation. However, in order to build the classical model the joint compliances must be identi-

fied in advance. The joint compliances that are used in the classical model have been measured

experimentally in this research. For this purpose, in order to investigate the compliance of the

joint i all other joints have been locked mechanically. In this way only one joint is loaded at

a time, and the effect of the compliance of other joints is eliminated. These two compliance

models, experimental and classical, have been used to predict the amount of the tool displace-

ment in the robotic milling process. The result show that the experimental model is much more

accurate in predicting the tool displacement than the classical model.

In another work, Abele et al. (2008) developed an advanced stiffness model based on the virtual

joints concept. In this method two virtual joints are added to each joint in order to model the

rotational elastic deformation of the joint bearings. Comparing the advanced model with the

classical model in predicting the tool displacement demonstrates great improvement. Indeed,

the maximum error of the advance model is not more than 30% different from the values

measured experimentally. While, this value for classical model is near to 60% in some cases.

Dynamic behaviour of serial robots is another subject that have been studied by researcher to

improve the machining performance of serial robots. Tool vibration is one of the important

problems restricting robotic machining applications. Indeed, defining cutting parameters that
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assure free-vibration is almost impossible. In machine tools the mechanisms generating vibra-

tion have been studied in depth. However, the vibration in robotic machining applications has

not been studied much. Pan et al. (2006) have studied the vibration of a robotic machining

system in cutting aluminium parts. In this study an ABB robot, IRB6400, has been equipped

with a high speed spindle holding a two-flute helical end mill. After the milling operation, low-

frequency chatter marks have been generated on the machined surface that is shown in Figure

1.2. The chatter is so severe that it can be seen by the naked eye. The low frequency of the

chatter, as it is visible by the naked eye, proves that the regenerative effect which is responsible

for chatter vibration in machine tools is not the main source of the chatter in robotic machining

systems. The authors have calmed that the mode coupling chatter generated due to the simul-

taneous excitation of two close modes is the main source of the vibration in robotic machining

systems. Based on the experiment, it is mentioned that changing machining parameters does

not diminished the low-frequency vibration, and only changing the machining direction can

remove it.

Figure 1.2 Robotic milling chatter mark left on

the aluminium block Pan et al. (2006)
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Impact test is an experimental test widely applied on mechanical systems in order to identify

their dynamic parameters. In this test an impact is delivered by the instrumented hammer to

the mechanical system, and then the response of the system will be captured by displacement,

velocity or accelerometer sensors. Then, the dynamic parameters of the system will be iden-

tified by applying Fourier analysis of both the impact and the response. The Fourier spectrum

of the impact would be flat for a certain range of frequencies, this means that the level of the

energy of the exerted impact at those frequencies would be same. However, the Fourier spec-

trum of the response may consist of some picks that are the possible natural frequencies of the

system. Rafieian et al. (2009) established the dynamic model of a robotic grinding system,

SCOMPI, that has been manufactured by the Institut de recherche d’Hydro-Quebec (IREQ)

to grind hydro-power turbines. This model have been established based on the information

provided by the manufacturer; however, the researchers have examined the dynamic model, by

the impact test. In most of the cases the results of the dynamic model have been similar to the

result of the impact test, but in some cases due to the approximation that have been made to

establish the mass matrix of the dynamic model the results of the model differ from the result

of the test.

Zaghbani et al. (2013) performed an experimental study to investigate the effect of the ro-

tational speed of the spindle on the surface quality generated by the robotic machining. The

results of this experiment shows that the variation of spindle speed does not affect on the quality

of the machined surfaces.

Bisu C. (2012) have investigated the dynamic behaviour of a six-axis industrial robot, KUKA

KR240-2, used in milling operation of composite parts. For this purpose the authors have

developed an experiment in three phases. In the first phase, an impact test have been performed

on the system; the response of the system exhibits resonant vibration at two different range,

low-frequency range and high-frequency range. The authors mentioned that the excitation of

the base’s natural frequency is the cause of this low-frequency vibration. In the next phase,

the vibration of the system has been measured while the spindle was rotating at the speed of

12, 032rpm, and the robot was moving along the cutting path without machining any materials.
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Measuring the vibration of the robot during this free motion and comparing it to the vibration

of the machining system during the milling operation provides an excellent insights about the

cause of the vibrations in the system. Again at this phase, the robot exhibits the resonance

vibration at the two different ranges, low-frequency range and high-frequency range. Finally,

the vibration of the system during the milling process has been measured. Again the results

of machining vibration represents that the robot exhibits vibration at both low-frequency and

high-frequency range. By comparison these three phases it can be concluded that the low-

frequency vibration and some part of the high-frequency vibration of the robot observed during

machining are generated due to the motion of the robot regardless of the machining process.

1.2 Adding sensor and actuator

Although the performance of a robotic machining system could be improved by identification

the dynamic and the kinematic parameters of the robot, developing a mathematical model

predicting all types of kinematic and dynamic errors is too complicated. Moreover, in order to

achieve an accurate model, thermal errors, defects in the mechanical transmission system, and

the errors related to the control system must be taken into account too. For this reason some

researchers use another method to improve the positioning error of robotic systems. In this

method the positioning error of a robotic system is directly measured with a sensor instead of

being predicted by a mathematical model. Then, the amount of the error can be compensated

either by the robot or by means of a micro manipulator or actuator attached to the wrist of the

robot.

Applying this method for a robotic machining process requires both measuring and compen-

sating the positioning error in real time. Indeed, the tool position along the cutting path must

be measured and then after calculation of the tool deviation from the cutting path, it must be

immediately compensated. To satisfy these requirements the control system of the robot should

be able to handle a high volume of data and calculations. Therefore, this approach may not be

suitable for most serial robots that are now applied in industries as their controllers are not

powerful enough for this purpose.
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Controlling the force-induced tool displacement of a robotic machining system via controlling

the cutting forces is the approach that has been applied successfully. Wang et al. (2009) have

devised a control strategy in which the machining forces are kept constant by adjusting the feed

speed during the process. Indeed, when a robot cuts an uneven surface, the depth of cut varies

repeatedly. These variations affect the cutting forces and consequently the force-induced tool

displacement. In this approach the feed speed of the machining process is adjusted based on

the information which is received from the force sensor. In fact, when the machining forces

increase, the feed speed of the machining process is decreased, and visa versa. Wang et al.

(2009) have applied this method on a robotic milling system used for cutting an aluminium

block; the results show that applying this strategy reduces the deviation of the tool from 0.5 to

0.1 mm.

Srivastava et al. (1992) have developed a mathematical model to improve the finishing quality

of a robotic grinding system, PUMA 762, which is used for grinding the cold-rolled steel

samples. In this work, it is claimed that by increasing the feed rate, the normal cutting force

is also increased. As a pneumatic spindle has been used in this work, increase in the normal

cutting force will decrease the rotational speed of the grinding disk. Decreasing the rotational

speed effects on the machined surface, and will reduce its quality. Based on this, the authors

developed a model that adjusts the feed rate of the machining with respect to the normal force

in order to control the surface roughness of the products.

Applying compliant tool holders to control the material removal rate has been introduced by

some researchers. A compliant tool holder adds more compliance to the system in the feed

direction and the direction that is perpendicular to the machined surface. However, the compli-

ance which is provided by the holder in the feed direction is greater than the compliance in the

perpendicular direction. For this reason, when the tool cuts extra material due to machining an

uneven surface, the tool is displaced in the feed direction and as a result the feed speed will

decrease for some moment. In this way the raising of the cutting forces is controlled and the

force-induced tool displacement remain constant in other directions. Compliant tool holders

are divided into two main categories; active and passive tool holders. Passive tool holders are
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composed of mechanical components such as springs and dampers to adjust the feed speed;

while, active holders include electrical components like motors and force sensors to increase

the compliance of the system.

Asada and Goldfine (1985) have introduced an effective solution applying compliance tool

holder to reduce vibrations during robotic grinding process. Indeed, they have modelled and

characterised the grinding tool suspension system demonstrated in Figure 1.3.

Figure 1.3 Grinding tool suspension system

Asada and Goldfine (1985)

They have determined the suspension parameters, kq, kp and α analytically; based on their

calculation the best result will be achieved when kp << kq and α = 0. They have incorporated

a passive damper that provides tangential compliance to the end-effector of the robotic grinding

system. The result shows that the robot removes seam welding footprint without recognisable

chatter mark.
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ATI Industrial automation has developed a pneumatic spindle for deburring processes. The

compliance provided by air pressure in radial direction allows the tool to move up to ±9 mil-

limetre, Figure 1.4 shows the spindle.

Figure 1.4 ATI Deburring spindle.

ATI-Catalog (2005)

Although passive tool holders improve the performance of robotic machining systems, the

limitation in modulating the holders’ stiffness causes some practical problems. In fact as it is

mentioned by Asada and Goldfine (1985), to achieve smoother surface quality the compliance

of the system at the normal direction must be small. On the other hand, in some cases in

order to compensate the positioning error of the end-effector large tool holder compliance at

that direction is desirable. Therefore, to response to the both conditions, the modulation of

the dynamic behaviour of holders must be possible. This requirement could be answered by

applying active tool holders as the dynamic characteristics of passive holders are constant.

An example of active tool holder could be seen in Kazerooni (1988). He developed an active

compliant tool holder that could grasp a pneumatic grinder for light deburring processes. This

holder, pictured by Figure 1.5, is, indeed, a planar five-bar linkage that includes two DC mo-

tors, and a two-dimensional force sensor. In this work, the authors have developed a control

strategy through which the compliance of the tool holder can be adjusted at the normal and the

tangential directions.
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Figure 1.5 Planar active compliant tool holder

Kazerooni (1988)

Inflexibility of robot programs is one of the barriers restricting the application of robots in

machining applications. Indeed, a slight amount of inaccuracy in fixturing components or

dimensional inaccuracy of raw parts could make the robotic machining programs worthless.

Therefore, a robotic machining system must be able to adjust itself with the new machining

conditions automatically. Akbari and Higuchi (2002) have applied a learning system on a

robotic grinding system that makes it enables to adjust its grinding disk with different inclined

machining surfaces. In this method, the machining forces are measured by a piezoelectric

dynamo-meter table; the sign and the amount of the measured forces define the inclination

angle of the disk; Figure 1.6 presents the concept of this experiment. The results of the grinding

test show that the best surface quality will be achieved when the angle between the machining

surface and the grinding disk is set to 2◦.

Vision sensors are another type of sensors that are commonly used in robotic applications.

Horaud et al. (1992) have added a linear camera to a robotic deburring system. The robot

moves the camera around the part for inspection. If any seam is detected by the camera, its

position is captured and then the deburring tool is used to remove it; Figure 1.7 shows this
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Figure 1.6 Adjustment of the grinding disk

Akbari and Higuchi (2002)

system. Lee et al. (1999) has devised a control strategy for robotic deburring system. In this

method the shape and the length of burrs have been measured by the camera; then, the feed

speed of the deburring system is adjusted in order to keep the material removal rate constant,

MRR.

To sum up, two different methods used to improve the performance of robotic machining sys-

tems have been explained. In the first method mathematical methods have been used to increase

the positioning accuracy of the robot. This method is simply applicable on every robot; how-

ever, due to the difficulties in modelling all the source of errors the positioning accuracy will

not increase beyond a certain level. For example, Nubiola and Bonev (2013) have calibrated the

kinematic model of an industrial robot, ABB 1600, and improved the mean of the positioning

error in 1000 arbitrary robot configurations within a cubic workspace, 60× 60× 60 cm, from

0.981 mm to 0.292 mm. In another method the positioning errors of serial robots have been

improved by applying sensors. For example, Wang et al. (2009) have improved the tool devia-

tion of a robotic machining system from the cutting path from 0.5mm to 0.1mm by applying

a force sensors; however, applying sensors will increase the expense, and it is applicable on

robots having advanced controllers. The surface quality of robotic machining operation have

been investigated by some researchers, but most of them have related to the finishing process
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Figure 1.7 Robotic deburring system equipped

with a camera Horaud et al. (1992)

such as deburring and grinding. The mean object of this research focuses on the investigation

of the surface quality of the robotic milling process, however, the positioning accuracy of the

tool have been explored also. The positioning accuracy of the robots determines the program-

ming method that could be used for machining application. If the positioning error is within

the acceptable range the robot can be taught by the programming software, and if not the robot

must be taught by the teach pendant.





CHAPTER 2

OBJECTIVE AND METHODOLOGY

Investigation on the surface quality of the cuts machined by the robotic milling system, pre-

sented in Figure 2.1, is the main topic of this research. For this purpose different slots are

machined on an aluminium block, type 6061 T6, by applying different feed speeds and depth

of cuts. Then the topology of the irregularities which are formed on the machined surfaces and

their generating factors will be investigated.

In this project the surface quality of the cuts is preliminary inspected by an electro-optic micro-

scope in order to study the topology of the surface irregularities visually. After this elementary

inspection, a mechanical surface profiler, stylus, is applied to generate the profile of the ma-

chined surfaces. The profiles depict the surface heights along the path over which the stylus

probe is dragged. Both the visual inspection and the surface profiles depict low frequency irreg-

ularities on the surface. In order to identify the frequency of these irregularities, the measured

profiles are analysed with the discrete Fourier transformation method. This method identifies

the dominant periodic irregularities embedded in the surface profiles.

The cutting forces are another parameters measured in order to investigate the cutting condi-

tions. The measured forces provide valuable information about the motion of the tool along

the cutting paths; indeed, any deviation from the cutting paths effects on the machining forces.

Therefore, the irregularities formed on the surface are accompanied with the analogues ones on

the force profiles, so the discrete Fourier transformation analysis will be applied on the mea-

sured forces to identify the frequency of the dominant periodic forces embedded in the force

profiles.

After detecting the surface irregularities their generating factors could be identified; in fact,

identification of the irregularities is the first step toward studying these factors. These irreg-

ularities may arise either from the tool vibration, chatter for example, or from the motion of

the robot regardless of the machining process. For this reason, the motion of the robot in the
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same cutting paths will be analyzed. In order to do this, a special artefact equipped with a

laser tracker target is attached to the robot, and its position is contentiously measured while it

moves. The measured positions generate the motion profiles that is compared by the related

surface profiles. This comparison identifies the irregularities that have been formed on the

surface due to the motion of the robot.

Next, in order to find the irregularities formed due to the tool vibration, an impact test is

executed. By applying the impact test the natural frequencies of the machining system will

be identified. These natural frequencies determine the frequencies at which the system may

exhibit the resonant vibration; if one or some of the natural frequencies of the system are

excited, the machining system starts to vibrate. This vibration may transfer to the tool tip and

effect the surface quality of the machined part.

Before executing the machining test, the positioning accuracy of the robot is evaluated. The

positioning accuracy of the robot represents the average error between the target that is set

via the programming software and the one which is met by the robot in the workspace. If the

amount of this error is negligible then the machining process can be completely programmed

via the software, and the needed points can be taught with the software. However, if the

positioning error, even after applying a calibration method, is so large that it affects the cutting

parameters, depth of cut for example, then every needed point must be taught by teach pendant.

In this case the positioning errors do not affect the cutting parameters.
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Figure 2.1 Robotic milling system, ABB IRB 1600





CHAPTER 3

CALIBRATION AND POSITIONING ACCURACY

Although robots are successfully used in different industries, their use in machining applica-

tions has been restricted. Indeed, some machining applications demand finish qualities that are

impossible to achieve with industrial robots. Among these qualities, the positioning accuracy

has the key role in qualification of a robot for a particular machining applications. Actually,

the positioning accuracy of robots is the main drawback restricting their use in machining in-

dustries. To be more specific, due to the lack of accuracy, a typical robotic machining system

removes more or less material from the parts and generates out-bounded dimensions on the

machined parts.

The positioning accuracy of a robot is defined as the distance between the point that is set by its

programming software and the mean of the points visited for a number of times by the robot to

meet the set point. This distance may arise from different sources of errors, but the geometric

errors and the elasticity of the robot are the main ones. Indeed, when a point is defined by the

software, the controller calculates the coordinates of the joints which must be set to meet that

point; actually, the joint coordinates are calculated by means of an inverse kinematic method

developed based on the nominal geometric model of the robot. Ideally, when the calculated

joint coordinates are set, the tool center point, TCP, of the robot must meet the point defined by

the software exactly. However in practice, as the nominal geometric model of a robot differs

from the actual one due to the errors occurred during the manufacturing process of the robot’s

parts and the assembly stages, the points that are met by the robot differ from the one defined

by the software.

It must be noted that as in a robotic machining application the ability of the robot in moving its

cutting tool along a desired path is the mater of concern, the path accuracy of the robot should

be evaluated rather than its positioning accuracy. The path accuracy of a robot depends to its

dynamic, geometric and static characteristics; however, in the case that the robot moves in a

relatively low speed, as it is the case of this research, the dynamic errors could be neglected. In
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this condition evaluating the positioning accuracy of the robot would be enough to determine

its ability in moving the tool along a desired path.

As previously mentioned, the overall elasticity of a robot also effects on its positioning ac-

curacy; indeed, when a load is applied to the robot, it exhibits considerable deflection that

displaces the position of the TCP. Most of the researchers have recognised the compliances of

the joints responsible for the overall elasticity; in fact, when a load is exerted to a robot, its

joints deflect due to their low stiffnesses. As in a typical serial robot joint positioning sensors,

encoders or resolvers, are installed on the shafts of the joints’ motors, the joint deflections

cannot be recognised by the controller, and consequently are not compensated. The effect of

the joint deflections on the position of the tool center point can be calculated by applying the

Jacobian matrix; since the Jacobian matrix depends to the robot’s configuration, the effect of

these deflections on the positioning accuracy of the robot may be magnified to a large extend.

However, it must be considered that the compliances of the joints are not the only source of

joint positioning errors, and other defects such as backlash, eccentricities and partial geomet-

ric imperfections of the gear trains could also generate joint coordinate errors , and therefore

decrease the positioning accuracy of the robot.

Evaluating the positioning accuracy of the robot and developing a calibration method including

identification of the kinematic features of the joints and joint positioning errors are the main

topic of this chapter. The positioning accuracy is evaluated by measuring the distance between

the position defined by the software and the one actually met by the robot at relatively large

number of random points within the workspace. The positioning accuracy of the robot may be

as poor as several millimetres; however, it could be improved by applying suitable calibration

methods. For this purpose in this chapter, first the geometric model of the robot is defined,

and its parameters are identified experimentally. Next, the joint compliances and other sources

of joint coordinate errors are modelled and incorporated to the geometric model in order to

improve its accuracy. Finally, the positioning accuracy of the robot before and after calibration

is compared. It must be added that the CAD model of the robot is shown in Figure I-1.
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In order to identify the joint compliances a special fixture capable to hold load disks have

been devised; Figure 3.1 demonstrates the robot and loaded fixture attached to it. In this way,

by adding loads to the fixture and measuring the deflection of the robot its stiffness can be

investigated. In order to measure the robot position, a portable camera made by Creaform

is used. This camera measures the position of a rigid body if at least three C-Track targets

attached to it are visible. The C-Track is shown in Figure 3.2.

Figure 3.1 Robot and loaded fixture Figure 3.2 C-Track

3.1 Geometric model and calibration

Developing the geometric model of a robot is the first step that must be taken to identify the

pose of its end-effector in the workspace. Actually, a geometric model is composed of trigono-

metric functions relating the joint coordinates as the input to the pose of the end-effector as the

output. To develop the geometric model of a robot, its kinematics must be studied; generally,

the kinematic structure of serial robots can be explained by the concept of kinematic chain. A

kinematic chain is composed of several rigid bodies that are connected together by the joints;

A serial robot has an open kinematic chain structure in which every joint connects only two

links, bodies. One end of the robot kinematic chain, its base, is fixed to the ground while the
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other end, the end-effector, moves in the workspace. The geometric model of a robot, indeed,

defines the pose of the end-effector with respect to a fixed frame which is usually attached to

the base as a function of joint coordinates.

In order to develop the geometric model of a robot different methods have been introduced.

However, the methods which are explained in the robotic textbooks are mostly based on apply-

ing the transfer matrices. In this method, one frame is assigned to every link of a robot; then,

the pose of the end-effector which is constant with respect to the frame attached to the end-

effector is transferred back to the previous one by means of a transfer matrix related these two

frames. In the same way the pose of the end-effector is transferred back via the frames until

the pose of the end-effector is transferred to the base frame; as the base frame is fixed in its po-

sition, it is usually chosen as the reference frame; therefore, when the pose of the end-effector

is identified with respect to the base frame, its position in the workspace will be understood.

The famous Denavit-Hartenberg model, explained in almost every robotic textbook, and the

S-model, Stone (1986), are the examples of the geometric models applying transfer matrices

to identify the pose of the end-effector in the workspace.

However, in this experiment it was preferred to calculate all the measurement with respect to

the fixed frame of the C-Track. In this case, there is no need to assign a frame to every link

of the robot; indeed, all vectors and rotation matrices are calculated only with respect to one

frame. Nevertheless, before presenting the geometric model of the robot, it is necessary to

define the kinematic features of its joints. For this reason, first the kinematic features of the

joints are identified, and then the geometric model is defined based on it.

The kinematic features of a rotational joint is defined by two parameters; axis of rotation and

center of rotation of the joint. Both the center and the axis of rotation of a joint are identified

by means of the circle of rotation of that joint. The circle of rotation of the ith joint connecting

the (i − 1)th link to the ith link could be identified by measuring the position of a C-Track

target attached to the ith link while the joint rotates within a pre-defined range. In this case the

target moves on a circular path defining the circle of rotation of that joint. The center of this

circle defines the center of the joint, and the normal vector of the plane of circle defines the
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joint’s axis, Figure 3.3 shows the kinematic features of a rotational joint. In the literature this

identification method is called single joint method as each joint is considered separately; Stone

(1986) applies this method to calibrate PUMA 560 robot.

Figure 3.3 Kinematic features of a joint

In order to build the geometric model of the robot, some notations need to be defined. −→ai
is defined as the vector connecting the center of rotation of the ith joint, Oi, to the center of

rotation of the (i+1)th joint, Oi+1, where i varies from 1 to n− 1. In addition, −→a0 is defined as

the vector connecting the origin of the C-Track frame, Oc, to the center of rotation of the first

joint, O1, and −→an as the vector connecting the center of the last joint, On, to the position of the

tool tip, P . Therefore, it is obvious that the position of the tool tip with respect to the C-Track

frame is equal to the sum of the connecting vectors that is

−→p = −→a0 +−→a1 +−→a2 + ...+−→a6 . (3.1)

Figure 3.4 shows the vectors of ai, where the first joint rotates 90◦ and other joints are at their

zero positions; however, a0 is not depicted in the figure. It must be mentioned that the position
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Figure 3.4 Geometric model of the robot

of the centrer of rotation of each joint could be anywhere on the axis of rotation. If −→ai ′ denotes

the vector of −→ai at zero configuration, the configuration at which the kinematic features of the

joints have been identified, then the relation between these two vectors can be demonstrate by

the rotation matrices as below;

−→ai = R1R2...Ri
−→ai ′. (3.2)

Identifying vector −→ai ′ is straightforward; however, identifying the rotation matrices, Ri, needs

more elaboration; if vector −→ei denotes the axis of rotation of the ith joint and θi denotes its

angle of rotation, the corresponding rotation matrix Ri is calculated by Eq. 3.3, given by
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Angeles (2007):

Ri =
−→ei−→ei T + cos(θi)(1−−→ei−→ei T) + sin(θi)Ei, (3.3)

where 1 is the 3×3 identity matrix, and Ei is the cross-product matrix of vector −→ei = [e1e2e3]
T

which is calculated as

Ei =

⎡
⎢⎢⎢⎣

0 −e3 e2

e3 0 −e1

−e2 e1 0

⎤
⎥⎥⎥⎦.

Finally, by combining Eq. 3.1 and Eq. 3.2, Eq. 3.4 will be achieved:

−→p = −→a0 +R1
−→a1 ′ +R1R2

−→a2 ′ + ...+R1R2R3R4R5R6
−→a6 ′. (3.4)

The above equation demonstrates the geometric model of the robot in which the position of the

tool center point, P , is calculated based on the rotation matrices of the joints and the vectors

connecting the center of the joints at zero configuration. It must be noted that in the above

equation the values of the rotation matrices change based on the joint coordinates, but the

values of vectors −→ai ′ are constant.

3.2 Joint errors

Elasticity, backlash, eccentricities and partial geometric imperfections of a joint are the main

sources of the joint positioning errors. Although joint errors are infinitesimal, they may change

the position of the end-effector up to several millimetres due to the robot configuration. For this

reason, modelling the joint positioning errors could improve the accuracy of the end-effector

considerably. In this section, the positioning errors of each joint is measured experimentally,

and then modelled and incorporated into the geometric model of the robot.

In order to measure the positioning errors of a joint, its actual position is measured at equal

intervals within the pre-assigned joint space; then, the measured values are subtracted from the
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related nominal ones; the results demonstrate the positioning errors of the joint. To measure

the actual positions of the ith joint connecting the (i − 1)th link to ith link at the pre-assigned

intervals, following equation is applied:

θm = arccos

−−→
OiP0

T−−−→OiPm

| −−→OiP0 |
2 , (3.5)

where
−−→
OiP0 is the vector connecting the origin of the ith joint to the position of the target

attached to the ith link when the joint is positioned at 0◦, and
−−−→
OiPm is the vector connecting the

origin to the position of the target after passing m intervals. The sign of the θm is defined by

the direction of the rotation. As in this experiment C-track is used to measure the position of a

body, at least three C-Track targets attached to the body must be visible to the C-track camera.

The C-Track calculate the position of the body based on the positions of the attached targets;

Figure 2.1 shows the placement of C-Track targets on the robot. Moreover, as the position of

the target at Pm is the average of the positions that are met by the target to reach Pm from the

both directions of the joint, the effect of the gears backlash on measuring the actual positions

of the joint is minimized.

After identifying the positioning errors of a joint, a numerical regression model is developed to

model these errors. This model does not have any physical meaning, but it can predict the errors

of the joint very accurately. Moreover, the elasticities of the joints are identified separately and

incorporated to the regression model. Finally, the geometric model of the robot is improved by

adding the model of the joint positioning errors.

Although the elasticity of the base of the robot has been ignored in this research, for the sake

of complete investigation on the stiffness of the robot, the base stiffness is studied in the next

section first.

3.2.1 Base Stiffness

Although in robotic textbooks the base of a robot is considered as a rigid body which is fixed

in its position, the base demonstrates recognizable rotational deflection when a considerable
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torque is applied to it. Indeed, as the arm of a serial robot is relatively heavy, its rotation can

impose a great torque to the base. Judd and Knasinski (1987) have identified the base deflection

as the function of the arm configuration which is defined by the coordinates of the second and

third joints. They have examined the base stiffness of the robot AID-900 experimentally, and

claimed that the main source of the base deflection is the radial stiffness of the bearing of the

first joint that generates the base deflection up to 2◦ when the arm is fully extended in front

of the robot. However, the radial stiffness of the bearing is not the only source of the base

deflection, and the stiffness of the other parts, the beams used to screw the robot to the ground

for example, could be effective too; Figure 3.5 presents the possible sources of base deflection.

Figure 3.5 The base deflection sources: the bearing of the first joint

and the beams screw the base to the ground

The rotational deflection of the base can be measured by observing the positions of two dif-

ferent points placed on it,P1 and P2. If the new positions of these points as the result of the

torque exerted from the weight of the robot is shown by P1
′ and P2

′, then the related rotational
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deflection of the base is calculated by Eq. 3.6.

δθBase = arccos

−−→
P2P1

T−−−→
P2

′P1
′

| −−→P2P1 |
2 , (3.6)

where
−−→
P2P1 and

−−−→
P2

′P1
′ are the vectors connecting the positions of the second group to the first

group before and after changing arm configuration. Figure 3.6 shows the positions of P1 and

P2 on the base of the robot. Figure 3.7, demonstrates the base deflection as the result of the

rotation of the second joint when the arm is fully extended. The figure shows that the base

deflection will change linearly with respect to the exerted torque.

Figure 3.6 Position of the two targets on the base

Although the rotational deflection of the base effects on the positioning accuracy of the robot,

the base of the robot can be safely assumed as a rigid body. Indeed, as the weight of the

arm exerts the same torque to the base and the second joint, the rotational deflection of the
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Figure 3.7 Rotational deflection of the base with respect

to the rotation of the second joint

base would be a constant fraction of the rotational deflection of the second joint; moreover, as

the configuration of the base with respect to the second joint in the plane of the arm rotation

is fixed, the effect of the base deflection on the position of the tool center point cannot be

discriminated from the effect of the rotational deflection of the second joint. In this case it

would be reasonable to consider the base as a rigid body, and combine its rotational deflection

to the rotational deflection of the second joint.

3.2.2 Errors of the first joint

As mentioned, the errors of a joint can be summarized as elasticity, backlash, eccentricity and

partial geometric imperfections; however, the elasticity of the first joint is not studied in this

research as this joint is never loaded. In order to measure the positioning errors of the first

joint, the actual position of the joint is measured by Eq. 3.5 at the intervals of 2◦ when the joint

rotates from −150◦ to −110◦. During the rotation of the first joint the other joints are fixed at

their zero positions except the second joint which is positioned at 30◦. Figure 3.8 demonstrates

the configuration of the robot at its first and last configuration in addition to the placement of

the targets. The positioning errors of the first joint have been depicted by the red line, and

modelled by the straight blue line in Figure 3.9.
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a) First configuration at −150◦ b) Last configuration at −110◦

c) Placement of the targets

Figure 3.8 The first and last configurations of the first joint

Figure 3.9 Errors of the first joint
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3.2.3 Errors of the second joint

To identify the positioning errors of the second joint, the actual position of the joint is measured

while it rotates from −30◦ to 30◦ at the intervals of 3◦; during the rotation other joints are

fixed at their zero positions except the first joint which is positioned at −150◦. Figure 3.10

demonstrates the different configurations of the second joint when the joint rotates within the

pre-assigned joint space. During the rotation, the C-Track measures the positions of the targets

attached to the lower arm of the robot.

a) −30◦ b) 0◦ c) 30◦

Figure 3.10 Configurations of the second joint at the

first, middle and end of its rotation range

The actual position of the second joint are measured by Eq. 3.5 at the equal intervals within the

range. The positioning errors of the second joint calculated by subtracting the actual positions

from the nominal ones are shown in Figure 3.11 by the red curve while the blue curve shows

its sixth degree regression model. The regression model have been generated by the Matlab

function. Unlike the first joint, the second joint experiences both the torque exerted from the

weight of the arm and the load disk attached to the fixture. Therefore, the effect of the elasticity

of the second joint on the joint positioning must be considered too. The torque exerted to the

joint from the weight of the arm can be modelled by the following equation:

T2 = m2gLc2 sin(θ2) +m3gL2 sin(θ2) +m3gLc3 cos(θ2 + θ3), (3.7)

where m2g and m3g are the weight of the lower arm and upper arm, and Lc2 and Lc3 are the

lengths of their centres of gravity from the rotation axes of the second and the third joints
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Figure 3.11 Rotational error of the second joint

respectively. Finally L2 is the length of the lower arm. Eq. 3.7 can be rewritten as follows:

T2 = (m2gLc2 +m3gL2) sin(θ2) +m3gLc3 cos(θ2 + θ3) (3.8)

By applying Hook’s law, δθ2 = C2 T2 where C2 is the compliance of the second joint, the

above equation is converted to

δθ2 = C2(m2gLc2 +m3gL2) sin(θ2) + C2m3gLc2 cos(θ2 + θ3). (3.9)

Finally, by replacing the coefficients of the sine and cosine terms on the right side of the above

equation by A and B a new equation is achieved:

δθ2 = A sin(θ2) + B cos(θ2 + θ3), (3.10)
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where A and B are constants representing the rotational deflection of the second joint regarding

to the positions of the second and third joints. However, Figure 3.11 shows the positioning

errors of the second joint while the third joint is always kept constant at 0◦; therefore, in

order to take into account the effect of the torque exerted by the weight of the arm configured

randomly, changing in the position of the third joint must be considered. Eq. 3.11 demonstrates

the amount of the rotational deflection of the second joint because of changing the position of

the third joint:

δθ2
′ = B(cos(θ2 + θ3)− cos(θ2)). (3.11)

δθ2
′ gives the amount of deflection that must be added to the related positioning error gives

by Figure 3.11 in order to take into account the rotational deflection of the second joint for a

random arm configuration. B, as mentioned, is the constant representing the rotational deflec-

tion of the second joint. However, in order to be more specific, B is equal to the amount of

rotational deflection of the second joint, positioned at 0◦, when the the third joint rotates from

−90◦ to 0◦. For calculating B, the position of the targets attached to the lower arm, Figure 3.8,

are observed while the upper arm rotates from −90◦ to 0◦; in this case, B would be calculated

by

B =
ΔL2

d2
, (3.12)

where ΔL2 is the displacement of the targets attached and d2 is the distance between the the

targets and the axis of the second joint; B was calculated as 0.012◦.

The force induced to the end-effector is another source exerting torque to the second joint and

generating the rotational deflection. This deflection could be modelled by the joint stiffness.

To measure the joint stiffness, four one-kilogram load disks are attached to the fixture, and then

the displacement of the targets attached to the lower arm, ΔL2
′, is measured. By dividing ΔL2

′

to d2 the amount of the rotational deflection of the second joint due to the load disks attached to

the fixture is calculated. Finally, the stiffness is obtained by dividing the exerted torque to the

related rotational deflection; the amount of the stiffness of the second joint is shown in Table
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3.1 and compared with the ones identified by the ones provided by the ABB company and the

ones given by Nubiola and Bonev (2013).

Table 3.1 Stiffness of the joints [KNm/Rad].

Joint Stiffness ABB Nubiola
2 451.528 700 500
3 90.306 200 230
4 9.128 13 6.7
5 3.048 8 5.4

3.2.4 Errors of the third joint

As the second joint, the third joint represents rotational deflection as the result of the torque ex-

erted by the weight of the upper arm and the load disks attached to the fixture, so the elasticity

of the joint must be taken into account in determining the joint errors. However, before de-

termining the positioning errors of the third joint, identification of its kinematic features must

be reviewed. As already mentioned, the kinematic features of a rotational joint, including the

center of rotation and the axis of rotation, are identified by measuring the position of the target

attached to the moving link of the joint while the joint rotates and the other joints are fixed at

their positions. In this case the target rotates on a circular path; the center of the circle and

the normal vector of its plane define the center and the axis of the rotation of the joint respec-

tively. However, in reality the target does not move on the circular path due to the elasticity

of the robot. Indeed, when the third joint rotates, the second joint is deflected; this deflection,

denoted in the previous section by B, deviates the motion of the targets supposed to move on

a circular path. This deviation varies the position of the center of the rotation; however, as the

plane of rotation is still identical the normal vector of the plane defining the axis of rotation

remains unchanged. Therefore, in order to identify the center of the rotation of the third joint,

the deflection of the second joint must be compensated. The result shows that the center of the

rotation of the third joint is displaced 0.13mm while the effect of the second joint compliance

is compensated.
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Figure 3.12 presents the configurations of the robot while the joint rotates from −30◦ to 30◦;

during the rotation the other joints are kept constant at their zero positions except the first joint

which is positioned at −150◦. Positioning errors of the joint are shown by Figure 3.13; regard-

ing to the figure it is obvious that the positioning errors of the third joint such as eccentricities,

backlash and geometric imperfections are relatively small and can be ignored. Therefore, the

positioning errors of this joint can be assumed from its elasticity.

a) −30◦ b) 0◦ c) 30◦

Figure 3.12 Configurations of the third joint at

the first, middle and end of its rotation range

Figure 3.13 Positioning errors of the third joint
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The rotational deflection of the third joint as the result of the load exerted to the end-effector

can be identified by measuring its stiffness. The stiffness of the third joint can be identified

by calculating the displacement of the target attached to the upper arm as the result of the

load exerted to the end-effector; however, calculating the stiffness of the third joint needs more

elaboration than calculating the stiffness of the second joint. The displacement of the target

can be decomposed to the linear displacement of the center of the third joint followed by the

rotation around this joint. This rotation itself is composed of the rotational deflection of the

second joint and the rotational deflection of the third joint; therefore, the rotational deflection

of the third joint will be identified by subtracting the rotational deflection of the second joint

from the overall rotation of the target. The identification of the rotational deflection of the

second joint has been explained in the previous section, but the identification of the overall

rotation of the target attached to the upper arm will be explained below.

As already mentioned, the movement of the upper arm due to an exerted load is decomposed

to the linear displacement of the center of rotation of the third joint and the rotation around

this joint. This linear displacement can be calculated as
−−→
ΔX3 = δθ2

−→e2 × −→a2 in which −→a2
is the vector connecting the center of the second joint to the center of the third joint while

δθ2 and −→e2 represent the angle of rotational deflection and the axis of rotation of the second

joint, respectively. Therefore, the new position of the center of rotation of the third joint after

deflection would be
−→
O′

3 =
−→
O3 +

−−→
ΔX3. If the positions of the targets attached to the upper arm

before and after deflection are denoted by P3 and P ′
3 respectively, then the rotation of the upper

arm will be calculated by the following equation:

δθUpperArm =
arccos(

−−−→
O′

3P
′
3

T−−−→
O3P3)

| −−−→O3P3 |
2 (3.13)

After calculating the rotation of the upper arm, calculating the rotational deflection of the third

joint δθ3 would be straightforward, δθ3 = δθUpperArm − δθ2. Consequently, the stiffness of the

third joint would be K3 =
T3

δθ3
where T3 is the exerted torque to the third joint from the load

applied to the tool. The stiffness of the third joint has been depicted in Table 3.1.
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The rotational deflection of the third joint as the result of the exerted torque from the weight

of the upper arm can be understood by comparing the stiffness of the third joint to the stiffness

of the second joint. The stiffness of the second joint is five times greater than the stiffness of

the third joint; therefore, the rotational deflection of the third joint as the result of its weight is

five times greater than the deflection of the third joint, so this deflection can be expressed by

following formula:

δθ3
′ = B′(cos(θ2 + θ3)− cos(θ2)) (3.14)

where B′ is equal to 5B, 0.06◦, and δθ3
′ is the rotational deflection of the third joint as the

result of the weight of the upper arm.

3.2.5 Errors of the fourth joint

The positioning errors of the fourth joint like the positioning errors of the second and third

joints involve elastic deflection. To identify the positioning errors of this joint, the actual

position of the joint is measured at the intervals of 3◦ within the range spanned from −30◦ to

30◦. During the measurement of the joint positions, other joints are positioned at their zero

degree except the first and fifth ones; in fact, the first and the fifth joints are positioned at 150◦

and 90◦ respectively. Figure 3.14 shows the different configurations of this joint during the

rotation.

a) −30◦ b) 0◦ c) 30◦

Figure 3.14 Configurations of the fourth joint at the

first, middle and end of its rotation range
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The positioning errors of this joint are presented in Figure 3.15 by the red line. It is assumed

that the elasticity of the joint and joint ratio are the main spurce of the positioning errors. For

this reason the errors can be modelled by the following equation:

α4 = B4 | sin(θ4) | +κ24θ4 (3.15)

where the first term of the right side of the equation represent the elasticity of the joint and the

Figure 3.15 Positioning errors of the fourth joint

second term represents the joint ratio. Based on the experiment the B4 is equal to 0.045◦ and

κ4 is 1.8 × 10−4. The blue line on the figure demonstrates the model of the joint positioning

errors. However, it must be noted that the rotational deflection of the joint, identified by the

first term of the right side of Eq. 3.15, will varies with respect to the configuration of the robot.

In fact, the positions of the first joint and last joint do not affect on the rotational deflection of

the fourth joint, but the positions of the other joints are effective. The amount of the rotational

deflection of the fourth joint regarding to the configuration of the arm is calculated by the
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following equation:

δθ4 = (cos(θ2 + θ3) sin(θ4) sin(θ5))B4 (3.16)

In order to identify the stiffness of the joint, four load disks are attached to the fixture then the

amount of the joint deflection will be measured. Table 3.1 represents the stiffness of the fourth

joint.

3.2.6 Errors of the fifth joint

Before identifying the positioning errors of the fifth joint, the kinematic features of the joint, the

center and the axis of rotation, must be revised by the method applied to revise the kinematic

features of the third joint. After revising the features, the positioning errors of the robot are

measured within the joint range spanned from −90◦ to 90◦ at steps of 9◦. Figure 3.16 shows

the joint at different configurations during this rotation.

a) −90◦ b) 0◦ c) 90◦

Figure 3.16 Configurations of the fifth joint at the

first, middle and end of its rotation range.

The geometric imperfections, joint ratio, in addition to rotational elastic deflection are assumed

as the main sources of the positioning errors shown in Figure 3.17 by the red line. Due to this
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assumption the following formula is applied to model the positioning errors of the joint:

α5 = B5 cos(θ5) + κ25θ5 (3.17)

where the first term of the right side of the equation, models the elasticity of the joint, and the

second term models its ratio. Regarding to the measurement, B5 is equal to 0.08◦, and κ5 is

equal to 3.7× 10−4.

Figure 3.17 Positioning errors of the fifth joint

Equation 3.17 is shown by the blue curve in Figure 3.17; the small deviation between the blue

and red curve in the figure shows the exactness of the model. However, it must be noted that by

varying the configuration of the robot the amount of the torque exerted to the fifth joint from

the weight of the end-effector will change. Equation 3.18 demonstrates the deflection of the

fifth joint with respect to the positions of the other joints:

δθ5 = B5((cos(θ2 + θ3) cos(θ5)− sin(θ2 + θ3) cos(θ4) sin(θ5))) cos(θ4)) (3.18)
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In order to measure the effect of the load imposed to the end-effector on the positioning errors

of the fifth joint, simply four one-kilogram load disks are attached to the fixture, and then the

positioning errors of the fifth joint are measured by the method explained 3.2.3. Figure 3.18

demonstrates the positioning errors of the fifth joint both when the load is applied and when no

load is imposed to the end-effector. Regarding to the figure it is obvious that the elasticity of

this joint has an important role in the positioning errors of the joint. Based on the measurements

shown in Figure 3.18, the stiffness of the fifth joint is calculated; the stiffness is depicted in

Table 3.1.

Figure 3.18 Deflection of the fifth joint versus its angular positions
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3.2.7 Errors of the sixth joint

Much like the first joint, the sixth one does not experience elastic rotational deflection under

the symmetric load of the end-effector, so other errors like backlash, eccentricities and partial

geometric imperfections of the gear train generate joint positioning errors. Figure 3.19 shows

different configurations of the joint while it rotates from −175◦ to −115◦ at steps of 3◦. The

positioning errors of this joint and the related model are shown in Figure 3.20.

a) −175◦ b) −135◦ c) −115◦

Figure 3.19 Configurations of the sixth joint at

the first, middle and end of its rotation range
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Figure 3.20 Positioning errors of the sixth joint

3.3 Results and conclusion

In order to investigate the effect of the geometric and the elastic errors on the positioning accu-

racy of the robot, different geometric models are examined in this section. First, the nominal

geometric model which has been developed based on the CAD model of the robot, presented

in Figure I-1, is investigated. Next, the calibrated model of the robot established based on the

method explained in Section 3.1 will be considered; finally, the advanced model of the robot

developed based on adding joint errors, calculated in the previous sections, to the calibrated

model will be studied.

The accuracy of these models have been evaluated in two different spaces; the planar space and

the spatial space. In the planar space, only three joints of the robot which are the second, the

third and the fifth joints are movable while the other joints are fixed. However, in the spatial

space all the joints are moveable. The range of each joint in each space is depicted in Table

3.2.
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Table 3.2 The range of the joint positions [◦]

Joint Planar Spatial
1 0◦ [−120◦ −150◦ ]

2 [−25◦ 25◦ ] [−30◦ 30◦ ]

3 [−30◦ 30◦ ] [−30◦ 30◦ ]

4 0◦ [−30◦ 30◦ ]

5 [−90◦ 90◦ ] [−90◦ 90◦ ]

6 0◦ [−175◦ −115◦ ]

The result of the positioning errors of the geometric models are shown by the histograms pic-

tured in Figure 3.21 and Figure 3.22. First, Figure 3.21 shows the errors of the models in the

planar space. As expected, the results of the advanced model is better than the nominal and

calibrated model. Indeed, the mean of the positioning errors of the advanced model is equal

to one-third of the errors originating from the nominal model. However, the calibrated model

does not provide recognisable advancement with respect to the nominal one. Next, Figure 3.22

presents the positioning errors of the geometric models in the spatial space. As expected, the

accuracy of the advanced model is better than the other models. Indeed, the mean of the po-

sitioning errors of the advanced model is equal to half of the errors generated from nominal

model. Also, the accuracy of the calibrated model has improved considerably; in fact, the

mean of the errors originated by geometric model is 60% of the ones originated by the nominal

model. The results shows that the mean of the error at the best case is not less than 0.15mm,

that belongs to the planar motion where the joint errors are integrated to the calibrated model.

This shows that programming the robot by the software for performing the machining opera-

tions will lead to dominant positioning errors that in some cases makes machining processes

impossible. Indeed, as in this research, the depth of some cuts are equal to 0.25 mm, the

positioning error that is equal to 0.15 mm can falsify the results of machining operation sub-

stantially. Moreover, it must be consider that the tool positioning errors during the motion

would be worse than the positioning errors of the tool at the final positions. Therefore, the

positioning errors during the milling operation is worse than the ones pictured by Figure 3.21

and Figure 3.22. For this reason, to execute the milling operation some guiding points must be

taught along the cutting path in order to maintain the required accuracy.
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Finally, the joint stiffnesses depicted in Table 3.1 are examined by measuring the displacement

of the end-effector due to the four kilograms load disks attached to the fixture at different

configurations within the planar space. The results shows that the identified stiffnesses predict

the force-induced displacements up to 85%.
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a) Nominal geometric model b) Calibrated geometric model

STD=0.26 mm STD=0.20 mm

Maximum error=1.23 mm Maximum error=0.92 mm

Average= 0.49 mm Average= 0.46 mm

c) Calibrated geometric model

plus non-geometric parameters

STD=0.09 mm

Maximum error=0.40 mm

Average=0.16 mm

Figure 3.21 Histogram of positioning errors for planar motion of

the robot at 185 sample points
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a) Nominal geometric model b) Calibrated geometric model

STD=0.30 mm STD=0.23 mm

Maximum error=1.63 mm Maximum error=1.27 mm

Average= 0.72 mm Average= 0.43 mm

c) Calibrated geometric model

plus non-geometric parameters

STD=0.30 mm

Maximum error=1.26 mm

Average=0.35 mm

Figure 3.22 Histogram of positioning errors for spatial motion of

the robot at 150 sample points





CHAPTER 4

SURFACE IRREGULARITIES

The surface quality of machined parts plays an important role in their performance; indeed,

rough surfaces of a mechanical system increase friction, noise and heat. For this reason, many

research works have been conducted to study the effects of different machining factors on the

quality of machined surfaces; however, most of these works are devoted to the investigation of

the surfaces generated by machine tools or CNCs, and only a few of them have been assigned

to study the surface quality generated by robotic machining systems. In this chapter, the impact

of the dynamic and the kinematic properties of the robotic milling system, Figure 2.1, on the

surface quality will be investigated.

Joint and link offsets of a serial robot are the main kinematic errors affecting the positioning

accuracy of the tool. In robotic machining, these errors decrease the dimensional accuracy

of the machined parts, and generate form errors which do not have any effect on the surface

quality of the parts; while, gear eccentricities, an other type of geometric errors, affect the

surface quality. This type of errors causes the tool of a robotic machining system moves on a

wavy path rather than a straight line, so the system generates rough machined surfaces. Slamani

and Bonev (2013) identified the effect of the gear eccentricities on the motion of a series of

ABBIRB1600 robots. In their work, the tool position was measured at every millimetre by

means of a laser interferometer while the tool was moving along one-meter straight line. Based

on these measurements, the profile of the tool motion was prepared, and then the frequencies

of the dominant periodic waves embedded in the motion profile were detected by applying the

FFT algorithm. The authors concluded that as the frequencies of the dominant periodic waves

correspond to the rotational speeds of the robot’s gears, the gear eccentricities are responsible

for the waviness of the tool motion.

The dynamic behaviour of the robotic machining system is another issue affecting the quality

of the machined surfaces. Dynamic characteristics of a system can be represented by its natural

frequencies; In fact, the natural frequencies of a system demonstrate the frequencies at which
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the system may exhibit resonance. In the same way, the natural frequencies of a robotic milling

system exhibit the frequencies at which the machining system resonates, and generates high

amplitude tool vibration. Due to this large vibration, the surface quality is lost. Therefore,

identifying the machining condition under which the process is stable would be highly impor-

tant. Although by applying conservative machining parameters the machining stability can be

preserved, choosing the conservative parameters is not desirable as it reduces the production

rate of the system. Therefore, identifying the machining parameters that guarantees both the

stability and the productivity of a system is highly demanded.

In this chapter the effects of the kinematic and dynamic behaviours of the serial robot on the

quality of the machined surfaces will be examined. In the first place to achieve an initial idea,

the machined surfaces are inspected by a microscope. Next, the surface of the cuts is examined

by a mechanical profiler, stylus, to prepare the surface profiles. Power spectrum density, PSD,

is the method which is applied on the profiles in order to analyse the embedded irregularities.

Machining forces are another criteria that are measured by a dynamometer table to investigate

the machining conditions. After identifying the surface irregularities, their generating mecha-

nisms will be investigated. To this end, the kinematic and dynamic properties of the robot are

investigated through experimental tests.

4.1 Experimental setup

Figure 4.1 shows the setup of the experimental test. In this experiment the ABB serial robot

IRB 1600 − 6/1.45 performs slot milling operation on the aluminium block, type 6061-T6,

mounted on the Kistler dynamometer table type 9255B. The dynamometer table is able to

measure the component of cutting forces in the three main orthogonal axis, X, Y and Z. Fur-

thermore, an ATI force sensor, measuring both the exerted forces and torques, is attached to the

wrist of the robot. Although the cutting forces could be measured with the both sensors, the

dynamometer is more reliable than the other one due to its high sampling frequency. A milling

tool, two-flute carbide, is mounted on a high speed spindle SLF FS33-60/0.15 which is hold by

an alumina bracket. The holder has been equipped by a tool changer to facilitate attaching and

removing the spindle holder.
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Figure 4.1 Experimental setup.

The machining experiment involves three sets of cuts that each of them consists five U-shaped

segments involving three linear cuts in the +Y , +X and −Y direction, Figure 4.2. Each set of

cuts have a same depth of cut while its feed speed varies in each of its segment. In this way,

the depth of the first set of cut for all of its segments is constant and equal to 0.25mm, while

its feed speed along its five segments varies from 1 mm
Sec

to 5mm
Sec

in the step of 1mm
Sec

. The feed

speed of the second set of cut varies same as the feed speed of the first set while its depth of

cut is twice greater, 0.5 mm. Finally, The feed speeds of the third set of cut are twice of the

feed speeds of the first set; in fact, they varies from 2mm
Sec

to 10mm
Sec

in the step of 2mm
Sec

, while

the depth of cut of this set is same to the depth of cut of the first set, which is 0.25mm. The

spindle speed for all cuts is constant and equal to 28000 rpm.

Before performing machining test, the tool was calibrated with respect to the aluminium block

which was screwed to the dynamometer mounted on the table. For this purpose, a reference

frame Ro was defined at the corner of the block, and both the direction and position of the tool

frame were calibrated with respect to this frame.
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Figure 4.2 Experimental machined part

4.2 Visualizing the machined surfaces

An opto-digital microscope, Olympus DSX 100, was used to visualize and magnify the ir-

regularities formed on the machined surfaces; the microscope is presented in Figure 4.3. To

Figure 4.3 Opto-digital microscope

compare the surface quality of the robotic machining system with a common CNC machine

the picture of the machined surfaces generated by the robot and the CNC is presented in Figure
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4.4. The applied machining parameters are same for the both cases; indeed, the spindle speed,

the depth of cut and the feed rate are 28000 rpm, 0.25mm, and 4 mm
Sec

, respectively. Regarding

to the figure, the quality of the surface generated by the CNC machine is far better than that

generated by the robotic machining system. The harsh tool marks on the surface machined by

the robotic system exhibits the presence of strong tool vibration at low frequency.

Robotic milling CNC

Figure 4.4 The surface generated by the robotic system and a common CNC

The yellow bars at the figure show 1mm

In order to have a better insight about the quality of the machined surfaces, the surfaces of the

third set of the cuts are presented in Figures 4.5, 4.6 and 4.7. Although all the figures present a

poor quality of the surface finish, the picture of the cut which was machined by the maximum

level of the feed rate demonstrates the worst surface finish.

Although visualizing the machined surfaces provide a general view about the surface quality of

the cuts, an accurate method need to be applied to achieve more details of the surface quality.

For this purpose, in the next section the surface quality is examined by a mechanical surface

profiler.
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a) Feed 2 mm/s b) Feed 4 mm/s

c) Feed 6 mm/s d) Feed 8 mm/s

e) Feed 10 mm/s

Figure 4.5 Machined surfaces in +Y direction

Depth of cut is 0.25mm. The yellow bars are 1mm
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a) Feed 2 mm/s b) Feed 4 mm/s

c) Feed 6 mm/s d) Feed 8 mm/s

e) Feed 10 mm/s

Figure 4.6 Machined surfaces in +X direction

Depth of cut is 0.25mm. The yellow bars are 1mm
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a) Feed 2 mm/s b) Feed 4 mm/s

c) Feed 6 mm/s d) Feed 8 mm/s

e) Feed 10 mm/s

Figure 4.7 Machined surfaces in −Y direction

Depth of cut is 0.25mm. The yellow bars are 1mm
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4.3 Characterizing the machined surface irregularities

Although the microscopic image shows the general condition of the machined surfaces, the

mechanical profiler, stylus, depicted in Figure 4.8 could provide more information about the

topology of the machined surfaces. This device is composed of a sharp probe dragged lin-

early over the examined surface; while dragged, the probe moves up and down due to the

surface irregularities, and its position is recorded at the same intervals along the travelling

length. Plotting the recorded positions versus the travelling length provides a two-dimensional

graph demonstrating the surface irregularities. This graph is called the measured profile of the

surface.

Figure 4.8 Stylus and a surface profile

The surface irregularities shown by a measured profile could be divided into waviness and

roughness. Waviness is the larger periodic irregularities generated due to the chatter or other

type of vibrations occurred during the machining process. Roughness, on the other hand, is the

finer periodic irregularities that are actually superimposed on the waviness. The geometry of

the tool tip, the feed rate and the kinematics of the machining process are the main parameters

affecting the roughness. Direction of the irregularities is another parameter characterizing

the topology of the machined surfaces. Although this parameter affects the surface quality,

it cannot be detected on a 2-D surface profile. Moreover, geometric errors of a machining

system, for example out-of-straightness and out-of-flatness of guides in machine tools and joint
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and link offsets in robots, generate form errors, dimensional errors, not affecting the surface

quality. Elastic deflection, wear of the tool and misalignment of the tool and the workpiece

are the other governing factors of form errors. Figure 4.9 demonstrates different features of a

machined surface.

Figure 4.9 Features of a machined surface

ASME (2009)

According to Figure 4.10a the measured profile of a robotic machined surface has a distinctive

inclination that can be shown by the red curve. This error which is mostly generated due to

the inclined motion of the probe of the profiler with respect to the targeted surface forms the

underlying shape of the profile. As this underlying shape affects all the measured values, it

must be removed. In this work, a Matlab function, detrend(), has been applied to remove the

inclination of the profile. Figure 4.10b depicts the detrended profile.

After detrending, a surface profile is filtered to better distinguish waviness from roughness;

indeed, in the case that the major irregularities are buried under the finer ones, a low-pass

frequency filter is applied in order to cut-off the finer irregularities. However, the waviness of

the profile presented in Figure 4.10b is distinctive, so filtering is not necessary.
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(a) Measured profile

(b) Detrended Profile

Figure 4.10 Measured profile and detrended profile

The profiles of the machined surfaces presented in Figures 4.14, 4.15, 4.16, II-1, II-2, II-3, II-4,

II-5 and II-6; in order to measure each profile, the related machined surface was placed under

the probe of the mechanical profiler in a way that the probe was moving in the same direction of

the cutting feed direction which is presented in Figure 4.11. Regarding to the figures, it can be

noted that the major irregularities, waviness, are periodic, and their wavelengths are almost the

same and is around 2.5mm. The equality of the wavelengths proves that some sort of periodic

kinematic errors of the machining system, will be dissuaded later, form these irregularities, and
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the dynamic errors are not responsible for their generation. In fact, as the feed speed of the tool

does not affect the wavelength of the major irregularities, it can conclude that the formation of

these irregularities are related to the joint positions not the their derivatives.

Figure 4.11 The motion directions

of the the probe

Figure 4.12 depicts the waviness of the profile presented in Figure 4.16a more clearly by the red

curve. The maximum distance between the peaks and valleys of the waviness profile is defined

as the maximum height denoted by Wt. This value varies from some micrometers to some

tens of micrometers regarding to the cutting direction; indeed, machining in the X direction

corresponds to the minimum values of Wt, while machining in the +Y direction provides the

maximum value.

The wavelengths of the finer irregularities vary with respect to the different levels of feed

speeds. According to Figure 4.13, it is obvious that the wavelength of the roughness of the

surface machined by using the minimum feed speed is extremely shorter than that machined
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Figure 4.12 Waviness profile

by applying the maximum speed. Therefore, it can be stated that the derivatives of the joint

positions are effective on the surface quality; therefore, the dynamic characteristics of the robot

must be considered.

Generally the roughness and the waviness of a profile are detected by applying Gaussian filter.

In this way the cut-off wavelength λc defines the border between these two types of irregu-

larities. Indeed, the irregularities whose wavelengths are greater than λc is recognised as the

waviness and the ones whose waviness are smaller than the λc is consider as the roughness

irregularities. Although filtering identifies the waviness and the roughness of a surface pro-

file, this method cannot provide useful information about the generating mechanisms of the

irregularities. Fast Fourier transformation which is a numerical method applied to analysed the

digital signals is used in this chapter to analyse the surface quality of the machined parts. In the

next section, the application of this method in analysing the surface quality will be explained.
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a) Roughness profile. Feed rate 2 mm/Sec, Depth of cut is 0.25 mm.

b) Roughness profile. Feed rate 10 mm/Sec, Depth of cut is 0.25 mm.

Figure 4.13 Roughness profile
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a) Feed 2 mm/s b) Feed 4 mm/s

a) Feed 6 mm/s b) Feed 8 mm/s

c) Feed 10 mm/s

Figure 4.14 Profile of the cuts in +Y direction, Depth of cut 0.25 mm and

the spindle speed 28000 rpm
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(a) Feed 2 mm/s (b) Feed 4 mm/s

(c) Feed 6 mm/s (d) Feed 8 mm/s

(e) Feed 10 mm/s

Figure 4.15 Profile of the cuts in +X direction, Depth of cut 0.25 mm and

the spindle speed 28000 rpm
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(a) Feed 2 mm/s (b) Feed 4 mm/s

(c) Feed 6 mm/s (d) Feed 8 mm/s

(e) Feed 10 mm/s

Figure 4.16 Profile of the cut in −Y direction, Depth of cut 0.25 mm and

the spindle speed 28000 rpm
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4.3.1 Power spectral density analysis of surface profiles

Although filtering does not provide proper information about the forming components of a

surface profile, spectral analysis which is a signal processing method decomposes a surface

profile into its components. This method, transfers a periodic signal measured over a discrete

time domain or a space domain to its harmonic components over the related frequency domain.

Therefore, since the motion of a milling tool over the machining surface is a combination

of the harmonic motions, the spectral analysis of the surface profile can identify the effects

of the harmonic motions on the surface. In fact, the spectral analysis of a surface profile

provides the spectrum of the power or energy of the profile versus the spatial frequency domain;

the frequencies of the maximum points of the spectrum demonstrate the frequencies of the

harmonic components.

Discrete Fourier transformation, DFT, is the main core of the spectral analysis. DFT transfers

the real quantities of a discrete signal, ordered in a time or a spatial series, into complex num-

bers, known as the DFT coefficients, ordered in a time frequency or a spatial frequency series,

Eq. 4.1 shows the DFT formula:

Z(k) =
N−1∑
n=0

z(n)e−j 2πkn
N (4.1)

where k = 0, 1, ..., N − 1, Z(k) is the kth coefficient, and z(n) is the discrete signal, and N is

the number of samples. As previously described, DFT transfers a signal from its discrete time

or space domain into the related frequency domain. Therefore, the corresponding frequency

of a DFT coefficient need to be calculated. The frequency of the kth coefficient is determined

as kf0, where f0 is the fundamental frequency that is equal to
fs
N

; where fs is the sampling

frequency.

Generally the phase or amplitude of the DFT coefficient are presented in the spectrum, and

plotting the DFT coefficients which are complex numbers is not continent. The amplitude of

a DFT coefficient is calculated as same as of complex numbers; however, in spectral analysis

the normalized amplitude of a coefficient is more desirable; Equation 4.2 gives the normalized
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amplitude:

A(k) =
1

N
| Z(k) |= 1

N

√
(Real(Z(k))2 + (Imag(Z(k))2 (4.2)

Power spectrum is another diagram that is common in spectral analysis. The normalized power

of a DFT coefficient can be calculated using Eq. 4.3:

P (k) =
1

N2
| Z(k) |2 = 1

N2
(Real(Z(k))2 + (Imag(Z(k))2) (4.3)

Indeed, the power spectrum density is an acceptable method to analyse the irregularities of a

machined surface profile. The power spectrum density, PSD, of a surface profile demonstrates

the frequencies of the irregularities which are embedded in the profile. In fact, frequencies

of the peaks of the spectrum demonstrates the frequency of the irregularities of the surface

profile. The unit of the power of a surface profile is μm2, and the unit of the frequencies is

mm−1. Figure 4.17 presents the power spectrum of the profile presented in Figure 4.10b. The

sampling rate or sampling frequency ,fs, and the sampling number, N , are equal to 800mm−1

and 12000, respectively. Based on the sampling frequency and the number of the samples, the

fundamental frequency, f0, is 0.067mm−1.

It must be noted that as the spectrum is symmetrical around
fs
2

, the frequency domain of the

spectrum is spanned from 0 to
fs
2

. The spanned spectrum from 0 to
fs
2

is called one-sided

spectrum like the power spectrum depicted in Figure 4.17.

Although the DFT coefficients can be calculated directly by equation 4.1, in practice the FFT

algorithm is used to calculate the coefficients more fast than the direct method. Explanation of

this algorithm is beyond the scope of this research; however, interested readers are referred to

Tan (2013). In this work, fft(), which is a Matlab function, was used to calculate the DFT

coefficients of the measured profiles.

The power spectrums of the surface profiles will be presented in the following section. How-

ever, as the frequencies of the dominant peaks are very low, regarding to Figure 4.17, the left

side of each spectrum are magnified for better identification of the irregularities. For this pur-

pose, each spectrum are plotted in two different frequency domains. The first domain, that
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Figure 4.17 Power spectrum of figure 4.10b

presents the very left sides of the power spectrums, is spanned from 0 to 1 mm−1. As the

wavelengths of the peaks placed at this range are the longest ones, the waviness irregularities

are supposed to detect in this range. The next domain is spanned from 0 to 30mm−1, and this

range is suppose to encompass the roughness irregularities. The figures of the power spectrums

of the third series of the cuts are presented in Figures 4.18, 4.19, 4.20, 4.21, 4.22 and 4.23. The

power spectrums of the first and second series of cuts are presented in Annex. 2.
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a) Feed 2 mm/s b) Feed 4 mm/s

a) Feed 6 mm/s b) Feed 8 mm/s

c) Feed 10 mm/s

Figure 4.18 Power spectrum of the cuts in +Y direction, Depth of cut 0.25 mm and

the spindle speed 28000 rpm
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a) Feed 2 mm/s b) Feed 4 mm/s

a) Feed 6 mm/s b) Feed 8 mm/s

c) Feed 10 mm/s

Figure 4.19 Power spectrum of the cuts in +X direction, Depth of cut 0.25 mm and

the spindle speed 28000 rpm
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a) Feed 2 mm/s b) Feed 4 mm/s

a) Feed 6 mm/s b) Feed 8 mm/s

c) Feed 10 mm/s

Figure 4.20 Power spectrum of the cuts in −Y direction, Depth of cut 0.25 mm and

the spindle speed 28000 rpm
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a) Feed 2 mm/s b) Feed 4 mm/s

a) Feed 6 mm/s b) Feed 8 mm/s

c) Feed 10 mm/s

Figure 4.21 Power spectrum of the cuts in +Y direction, Depth of cut 0.25 mm and

the spindle speed 28000 rpm
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a) Feed 2 mm/s b) Feed 4 mm/s

a) Feed 6 mm/s b) Feed 8 mm/s

c) Feed 10 mm/s

Figure 4.22 Power spectrum of the cuts in X direction, Depth of cut 0.25 mm and

the spindle speed 28000 rpm
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a) Feed 2 mm/s b) Feed 4 mm/s

a) Feed 6 mm/s b) Feed 8 mm/s

c) Feed 10 mm/s

Figure 4.23 Power spectrum of the cuts in −Y direction, Depth of cut 0.25 mm and

the spindle speed 28000 rpm
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4.3.2 RMS of the irregularities

Applying PSD to analysis a machined surface is a common approach. Indeed, some researchers

such as Elson and Bennett (1995) used the PSD to calculate the root mean square, RMS, of

surface irregularities. Based on the Parseval’s theorem, the sum of the squares of a discrete

series of a numbers is equal to the sum of the squares of the related DFT coefficients; therefore,

if z(n) demonstrates the series of a surface profile and Z(k) demonstrates the series of the

related DFT coefficients, therefore:

N−1∑
n=0

z(n)2 =
1

N

N−1∑
k=0

| Z(k) |2. (4.4)

Moreover, the RMS of the irregularities of a surface profile, for example a roughness profile,

can be calculated by Eq. 4.5:

Rq =

√√√√ 1

N

N−1∑
n=0

z(n)2. (4.5)

Combining Eqs. 4.3, 4.4 and 4.5, the final equation which relates the power of the DFT coeffi-

cients to the RMS of the surface irregularities:

Rq =

√√√√N−1∑
k=0

P (k). (4.6)

Although in theory the RMS of the irregularities of a profile can be calculated via the power

of the DFT coefficients, in practice, due to the non periodic irregularities of the profile, the

resultant RMS is unreliable. Increasing the number of samples reduces the unreliability of the

measurements. However, increasing the number of cuts needs more time and effort, and even

in some cases is impractical. Splitting the profile of a cut into equal-length segments could

generate more samples without any further cost. Then by applying the spectral analysis on the

segments, more reliable result can be achieved.
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The RMS of the irregularities of the three series of cuts were analysed by applying the pro-

posed method, and the results are presented in Tables 4.1 and 4.2. Table 4.1 demonstrates

the average RMS of the profiles that generated by splitting the measured profiles into the de-

terended segments having 2.5 mm length, and the Table 4.2 presents the RMS of the de-

terended segments having 0.25mm length. Comparing the results show that the machining in

the direction +Y generates the rougher surface than machining in the other directions; more-

over, increasing the feed speed increases the amplitude of the irregularities.

Table 4.1 RMS [μm] of the waviness

Cut First Second Third
+X +Y −Y +X +Y −Y +X +Y −Y

1 0.61 2.95 2.17 1.02 3.02 1.40 1.24 5.07 2.45

2 0.95 4.85 2.91 1.27 4.38 2.13 1.42 6.81 2.60

3 1.25 6.43 3.39 1.78 5.51 2.21 2.30 6.50 2.21

4 1.00 6.52 1.90 1.64 5.77 2.07 2.36 5.51 2.28

5 1.15 6.17 1.31 2.55 6.06 1.92 2.20 6.77 2.41

Table 4.2 RMS [μm] of the roughness

Cut First Second Third
X +Y −Y X +Y −Y X +Y −Y

1 0.18 0.59 0.26 0.23 0.70 0.33 0.25 0.76 0.24

2 0.20 0.72 0.27 0.27 0.81 0.27 0.27 0.77 0.32

3 0.20 0.75 0.30 0.27 0.77 0.34 0.84 0.90 0.39

4 0.23 0.88 0.18 0.30 0.87 0.40 0.84 0.88 1.51

5 0.26 0.79 0.21 0.33 1.21 0.37 1.51 1.21 1.74

4.4 Cutting forces

In the previous section the quality of the surfaces was analysed to investigate the cutting condi-

tions; however, analysing the machining surfaces is not the only criteria defining the machining

conditions; indeed, other criteria such as machining forces or machining noise also can be used

for this purpose. Any kind of variation in the cutting parameters directly affects the cutting
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forces. This exhibit that any type of chatter or tool vibration varying the cutting parameters is

detectable if the cutting forces are measured and analysed properly.

In this section, the machining condition of the robotic milling operation will be investigated

trough analysing the forces captured by the dynamometer table, and the affect of the tool vi-

bration on the measured forces are investigated. However, first the fundamentals of the milling

cutting forces are briefly explained.

4.4.1 Fundamental of milling cutting forces

The kinematic of the robotic milling operation is generated by the rotary motion of the tool

around the tool axis and the relative motion between the tool and workpiece. The mechanics of

helical end mills have been studied in Altintas (2000); however, as in our case the axial depth

of cut is considerably smaller than its diameter, Eqs. 4.7 that are simpler can be applied:

Ft(φ) = Ktcah(φ) +Ktea, (4.7a)

Fr(φ) = Krcah(φ) +Krea, (4.7b)

Fa(φ) = Kacah(φ) +Kaea, (4.7c)

where, Ft, Fr and Fa are the forces exerted to a teeth of the tool in the tangential, radial and

axial directions respectively, and φ is the immersion angle which defines the angular position

of a teeth. The tangential and the radial forces have been presented in Figure 4.24, but the axial

force is not presented as it perpendicular to the surface. The cutting forces which is measured

in the X and Y directions, Fx and FY , are the sum of the radial and the tangential forces that

are projected in these axis. However, the measured forces in the axial direction Fa simply

represents the cutting forces in the Z direction. According to Eq. 4.7, the cutting forces in a

milling operation are periodic as the chip thickness is periodically changed with respect to the

immersion angle, h(φ) = csin(φ), where c is the feed rate per teeth.

The period of the cutting forces is defined by the spindle speed, immersion angle and the

number of flutes. In this experiment, the spindle speed is 28000 rpm, immersion angle is π and
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Figure 4.24 Tangential and radial forces

in a milling operation

the number of the flutes is two. Based on this information, the shape of the cutting forces at

the Z direction, regardless of its amplitude has been modelled in Figure 4.25.

Figure 4.25 Modelling the cutting forces in the Z direction
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4.4.2 Results and discussion

Figure 4.26a presents a robotic milling forces which is magnified in Figure 4.26b. Due to

the chatter and other tool vibration, the magnified part of the cutting forces does not present

harmonic waves same as the ones modelled in Figure 4.25. Although the variation of the cutting

forces presented in Figure 4.26b is not harmonic, it can be assumed periodic as generated by

the periodic motion of the tool during the milling operation. Therefore, PSD can identify the

dominant waves embedded in the measured force signals.

Figure 4.27 presents the power spectrum of the cutting forces presented in Figure 4.26a. Re-

garding to the spectrum, it would be understand that the frequencies of the dominant peaks

could be more than 10000Hz. This finding seems contradicting to the results achieved in the

previous chapter explaining that the frequencies of the dominant peaks are very low. However,

it must be mentioned that the sampling frequency of the mechanical profile used in the previ-

ous chapter is not sufficient enough to investigate high frequencies. Indeed, the dynamometer

table provides more information about the machining conditions than the profiler. Therefore, in

order to investigate the low-frequency forces, the left side of the force spectrums must be mag-

nified. At the next paragraph two different ways are explained to visualize the low-frequency

forces.

In the previous section, two types of the irregularities have been identified on the machined

surfaces. First, irregularities form the waviness of a surface profile. The wavelengths of these

irregularities are relatively large, and the kinematic errors are recognized as their generating

factors. Second, finer irregularities form the roughness. The dynamic errors of the system

are recognized as the generating mechanisms. As the kinematic errors depend of the joint

coordinates, it is better to present power spectrum of these irregularities with respect to the

spatial frequencies. In this way, applying different feed speeds does not affect the frequency of

the irregularities. Similarly, the power spectrum of the profiles generated due to the dynamic

errors are better to be presented versus the time frequency domain. For this reasons every

power spectrum is presented with respect to the both spatial and time frequency domain.
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(a) Force profile

(b) Magnified Profile

Figure 4.26 Measured force and its magnification

Figures 4.28, 4.29 and 4.30 present the spectrum of each profile of the third series of the cuts

versus the low-frequency spatial domain, lower than 5mm−1. These figures demonstrate that

the frequency of the kinematic irregularities is around 0.5mm−1. This frequency conforms

with the frequency identified by studying the surface quality of the cuts. Figures 4.31, 4.32 and

4.33 presents the spectrums versus the time frequency domain spanned from 0Hz to 250Hz.

All the spectrums demonstrate a dominant peak in the range of 60Hz to 120Hz. The spectrums

of the other first and second series of cuts are presented in App. 3.
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Figure 4.27 Power of the cutting forces presented in 4.26a

According to the experimental results, it can be observed that irrespective to the cutting direc-

tions and cutting parameters, the robot vibrates at low frequencies between 60 to 100Hz.
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a) 2 mm/Sec b) 4 mm/Sec

c)6 mm/Sec d) 8 mm/Sec

e) 10 mm/Sec

Figure 4.28 Power spectrum of the machining forces of the cuts perform in +Y

direction, the spindle speed is 28000 rpm and the DOC 0.25mm
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a) 2 mm/Sec b) 4 mm/Sec

c)6 mm/Sec d) 8 mm/Sec

e) 10 mm/Sec

Figure 4.29 Power spectrum of the machining forces of the cuts perform in +X

direction, the spindle speed is 28000 rpm and the DOC 0.25mm
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a) 2 mm/Sec b) 4 mm/Sec

c)6 mm/Sec d) 8 mm/Sec

e) 10 mm/Sec

Figure 4.30 Power spectrum of the machining forces of the cuts perform in −Y
direction, The spindle speed is 28000 rpm and the DOC 0.25mm
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a) 2 mm/Sec b) 4 mm/Sec

c)6 mm/Sec d) 8 mm/Sec

e) 10 mm/Sec

Figure 4.31 PSD of the machining forces of

the cuts perform in +Y direction
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a) 2 mm/Sec b) 4 mm/Sec

c)6 mm/Sec d) 8 mm/Sec

e) 10 mm/Sec

Figure 4.32 PSD of the machining forces of

the cuts perform in +X direction
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a) 2 mm/Sec b) 4 mm/Sec

c)6 mm/Sec d) 8 mm/Sec

e) 10 mm/Sec

Figure 4.33 PSD of the machining forces of

the cuts perform in −Y direction
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4.5 Monitoring the robot path straightness

The performance of a robotic machining system to moves its tool along cutting paths has a

great impact on the quality of machined parts. The path accuracy and path repeatability are

the terms mostly used to characterize this performance of the robot. The path accuracy of

a machining system, defined as the tool deviation from the commanded path affects the di-

mensional accuracy of machined parts. The path repeatability, defined as the closeness of the

repeated paths also affects the dimensional tolerances of the products. However, path straight-

ness, another path-related error, could be also effective on the quality of the machined parts.

Path straightness is defined as the deviation from the straight line, and in the case of robotic ma-

chining the path straightness errors cause the tool exhibits repeated small-amplitude deviations

perpendicular to the main direction of the motion.

Different equipments and techniques could be applied to measure robotic path straightness.

Laser interferometry is one of the equipments that have been utilised successfully in previous

research works, Slamani and Bonev (2013) and Paziani et al. (2009). Although laser interfer-

ometers are highly accurate, the measurement setup needs special configuration restricting the

experiments. Indeed, after spending hours of adjustment, the tool motion could be monitored

only when it moves linearly between the leaser interferometer and the laser reflector. More-

over, measurement with the available interferometer device can be done only in static mode.

That means measuring the position of the tool during motion is not supported.

In this experiment, a FARO laser tracker, shown in Figure 4.34a, which is a portable measuring

device, is used to measure the straightness errors of the ABB robot. This devise is able to

measure the position of the tool even during the motion. For this purpose, an artefact equipped

with a small laser tracker mirror presented in Figure 4.34b was attached to the robot flange.

Then, the position of the artefact is measured when it moves along the cutting paths. The laser

tracker measures the position of the artefact continuously with the frequency of 815Hz. The

measured positions are originally ordered in a time series; however, in order to compare these

measurements with the surface profiles presented in the section 4.3, the measured positions are

rearranged in the spatial order.



93

(a) Laser tracker (b) ABB robot and Artefact

Figure 4.34 Laser tracker and its target

attached to the robot

The motion of the artefact along the cutting paths in ±Y directions are presented in Figures

4.35 and 4.37. The profile of the presented figures, specially the ones that are related to the

lower speed, demonstrate the irregularities whose wavelength is about 2mm. This wavelength

that corresponds to the wavelength of the surface profile irregularities proves that the major

irregularities on the surface profile have been generated due to the path straightness error of

the robot. However, in order to analyse the path straightness profiles more accurately, power

spectrum analysis have been applied on them. Figures 4.36 and 4.38 show the power spectrum

of the tool motion profiles. As it expected all the spectrum graphs demonstrate the dominant

peaks at low frequencies; the spatial frequencies of these peaks are less than 0.5 mm−1 that

conforms the major irregularities wavelength are larger than 2mm.

Slamani and Bonev (2013) mentioned that the eccentricity of the gears at the gear trains are the

main source of the path straightness errors. Therefore, in order to investigate this, the spatial

frequencies of the gear trains have been calculated during the cutting process. The spatial

frequencies of the gear trains have been calculated and presented in the App. III. The results
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show that spatial frequency of the major irregularities on the surface profiles conforms with

some spatial frequencies of the gear trains.

The presented profiles of the artefact motion also depict finer irregularities that are superim-

posed on the measure ones. These irregularities have the constant time frequency which is

equal to 13Hz. Therefore, when the profile of the straightness is rearranged in the spatial

order, their wavelength will vary with respect to the feed rate. Therefore, they are heavily

packed in the path straightness diagrams that are related to the low feed speed. As this low-

frequency irregularities have not been observed in the profile of the machined surfaces, it can

be concluded that the machining process have damped these types of irregularities.

Surface profiles of the cuts that are related to the feed speed equal to 8mm/sec or 10mm/sec

depict finer irregularities superimposed on the major irregularities; Figure 4.16 depicts these

profiles. In order to investigate the source of these irregularities, the power spectral of the

artefact motion profiles for the same cutting paths and the same feed speeds are plotted in

Figure 4.39. The presented figures do not show any dominant peak at those frequencies. This

proves that the robot motion is not the source of finer irregularities. In the next section, the

dynamic behaviour of the robot is investigated to understand the source of these irregularities.
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a) Feed speed 2 mm/Sec b) Feed speed 4 mm/Sec

c) Feed speed 6 mm/Sec d) Feed speed 8 mm/Sec

e) Feed speed 10 mm/Sec

Figure 4.35 Deviation of the robot that moves the artefact along the

cutting path in +Y direction
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a) Feed speed 2 mm/Sec b) Feed speed 4 mm/Sec

c)Feed speed 6 mm/Sec d) Feed speed 8 mm/Sec

e) Feed speed 10 mm/Sec

Figure 4.36 PSD of the robot’s motion pictured in Figure 4.35
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a) Feed speed 2 mm/Sec b) Feed speed 4 mm/Sec

c)Feed speed 6 mm/Sec d) Feed speed 8 mm/Sec

e) Feed speed 10 mm/Sec

Figure 4.37 Deviation of the robot that moves the artefact along the

cutting path in −Y direction
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a) Feed speed 2 mm/Sec b) Feed speed 4 mm/Sec

c)Feed speed 6 mm/Sec d) Feed speed 8 mm/Sec

e) Feed speed 10 mm/Sec

Figure 4.38 PSD of the robot’s motion pictured in Figure 4.37
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a) Feed speed 8 mm/Sec

b) Feed speed 10 mm/Sec

Figure 4.39 PSD of the robot’s motion in −Y direction at higher frequencies
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4.6 Dynamic behaviour

Until now two types of irregularities have been identified on the machined surfaces; the major

ones which are arising from the kinematic errors of the robot and the minor ones which are

superimposed on the major ones. In the previous sections the generating mechanism of the

major irregularities was discussed, but the generating mechanisms of the minor irregularities

will be investigated in this section.

The profiles of the cuts presented in Figures 4.16d and 4.16e demonstrate the minor irregulari-

ties that can be visually detected. The power spectrums of these profiles show that their spatial

frequencies are around 8mm−1 which are equal to 64 Hz and 80 Hz if the spatial frequency

domain of the spectrums converted to time frequency domain. However, the existence of the

minor irregularities are not restricted to these cuts, and the minor irregularities can be traced in

all of measured force profiles. Figures 4.31, 4.32 and 4.33 demonstrate the power spectrums

of the force profiles. Every figure show a dominant peak close to 80 Hz that shows the tool

vibrates with this frequency during each cutting trial. The existence of the peak may be ex-

plained by the excitation of one or some of the natural frequencies of the system that are near

to this frequency. Therefore, identifying the natural frequencies of the system and the excita-

tion mechanisms during the machining process would be essential. At bellow different types

of vibrations occurred in machine tools and their generating mechanisms will be introduced

briefly.

Generally, the vibration in machining processes can be divided into three groups; free, forced

and self-excited vibration. The free vibration is occurred when a mechanical shock is exerted to

the system, in this case the system vibrates at one or some of its natural frequencies. However,

the free vibration does not last for ever, and will die after some time due to the damping of

the system. The collision between the tool and workpiece at the entry point and spontaneous

motion of a drive, for example, can act as an impact and generate free vibration.

Forced vibration is another type of vibrations that is very common in machine tools. Eccentric

or imbalanced motion of a moving part in a machine tool can generate the forced vibration.
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When a periodic force is exerted to a mechanical system, the system exhibits a vibratory re-

sponse with the same frequency as the exciting force has. This type of vibration will be devas-

tating if the frequency of the oscillating force corresponds to one of the natural frequencies of

the system; in this case the machining system resonates with a great amplitude.

The self-excited vibration, chatter, is the last type of vibration occurred in machine tools. This

type of vibration interacts with the machining process; indeed, the chatter vibration produces

the vibrating machining forces, and the vibrating forces, in turn, intensify the vibration. As it

seems the generating mechanism of this type of vibration is more complicated than the other

ones; however, There are some theories explaining the chatter vibration in machine tools. Re-

generative effect is the most famous theory for chatter vibration analysis in machine tools.

Altintas (2000) has extensively studied this form of vibration in milling operation. Based on

this theory, the machining forces oscillate when a machine tool cuts a wavy surface which is

machined in the previous turn. If the frequency of the vibratory forces corresponds to one of

the natural frequencies of the system, the system resonates and increases the vibration. This

response is transmitted to the tool, and surface waviness is intensified. However, this theory

does not explain the low-frequency vibrations that are very common in robotic machining. In

fact, few researchers such as Pan et al. (2006), mentioned the mode-coupling chatter as the

generating mechanisms for this kind of vibration.

Boothroyd and Knight (2006) explained the Mode-coupling chatter vibration in machine tools

as the result of a special motion of the tool during the machining. Indeed, if two modes of a

system are excited at the same time, the tool rotates along an elliptical path rather than a single

direction. The cutting forces increase the elastic potential energy of the system at one half of

the path, where the cutting forces and the tool motion are at the same direction. However, the

cutting forces reduce the potential energy of the system at the other half of the path, where the

cutting forces oppose the moving direction of the tool; the elliptical path of the tool is presented

in Figure 4.40. Therefore, if the introduced energy is more than the reduced one, the elliptical

motion of the tool in the system will increase and the chatter vibration will occur.
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Figure 4.40 Mode coupling

Boothroyd and Knight (2006)

In this section, an experimental modal analysis is performed to identify the natural frequencies

of the robot, that may correspond to the frequency of the minor irregularities that are formed on

the machined surfaces. As the frequency of the irregularities is relative low, i.e. around 80Hz,

the modal experimental test is set to evaluate the natural frequencies at a low-frequency range.

In this section first the fundamentals of the vibration will be explained, and then the impact test

and its results will be provided.

4.6.1 Single degree of freedom vibration

A mechanical system exhibits harmonic motion if the energy which is introduced to it could

be reserved as the potential energy, and then converted to the kinetic energy and visa versa.

For example, a simple mass-spring system which is shown in Figure 4.41 reserves the potential

energy if it is deviated from its equilibrium; when the mass is released, it start moving and the

stored potential energy is converted to the kinetic energy. By passing the mass over the equi-

librium position the potential energy will be stored again in the system. This type of vibration
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in which the system is excited initially and then vibrates freely, is called free vibration. In

practice, free vibration does not last for ever and will be damped after a while. Eq. 4.8 present

the equation of motion of the free vibration:

Figure 4.41 Spring-mass system

mẍ+ cẋ+ kx = 0, (4.8)

where m, c and k are mass, damping coefficient and stiffness respectively. The solution of the

above equation could be represent as

x(t) = Ae−ζωnsin(ωdt+ φ), (4.9)

where;

ζ is the damping ratio ζ =
c

2
√
km

,

ωn is the natural frequency ωn =

√
k

m
,

ωd is the damping vibratory frequency wd = wn

√
1− ζ ,

A and φ are the constants which are calculated based on the initial conditions of the system.
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The under damp vibration is occurred when the ζ is less than one. Figure 4.42 presents the

harmonic motion of an under damped system.

Figure 4.42 Free under-damped vibration,

ωn = 70Hz, ζ = 0.25 and A = 5m

Forced vibration is the next type of the vibration occurred in machine tools. In this type of

vibration, a periodic force is exerted to the system, and then the system exhibits a response

vibration with the same frequency but with a phase delay. If the harmonic force is denoted by

f(t) = f0sin(ωt), then the equation of the motion of a single degree of freedom system would

be as

mẍ+ cẋ+ kx = f0sin(ωt). (4.10)

The above equation has two solutions; the homogenises solution and the particular solution.

The homogeneous solution determines the transient response of the system that will die after

some time. However, the particular solution represents the steady state response that last as

long as the force is exerted to the system. Therefore, the particular solution is considered

as the response of the system to the harmonic force. The particular solution is denoted by

xp(t) = x0sin(ωt + φ) where x0 is the amplitude of the steady state, and φ is the phase shift.
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By inserting the particular solution to Eq. 4.10, the following equations will be achieved:

x0

f0
=

1

k

1√
(1− r2)2 + (2ζr)2

and (4.11)

tan(φ) =
2ζr

1− r2
, (4.12)

where r is frequency ratio equals to
ω

ωn

. Eq. 4.11 represents the relation between the exerted

force and the amplitude of the response vibration. When the frequency of the exciting force

corresponds to the natural frequency of the system, the system vibrates with the maximum

amplitude. Another parameter which affects the amplitude of the response is the damping

ratio; as the damping ratio increase the amplitude of the response decrease and vice versa.

Regarding to Figure 4.43, the phase and amplitude of the response is almost changed smoothly

with respect to the frequency; however, at the frequency near to the natural frequency of the

system the phase shift will be near to π rad, and the amplitude will sharply increase.

The calculations and equations have been derived until now are presented in the time domain;

however, it is also useful to calculate the response of the system in the frequency domain.

Laplace transformation could be utilised to generate the solution of Eq. 4.10 in the frequency

domain. By applying the Laplace transformation to the both side of the equation, the following

equation will be achieved:

ms2X(s) + csX(s) + kX(s) = F (s), (4.13)

where s is the Laplace complex variable, X(s) and F (s) denotes the Laplace transformation

of the xp(t) and f(t) respectively. Rearrange Eq. 4.13 we will have

X(s)

F (s)
=

1

ms2 + cs+ k
. (4.14)

The above equation is called the Laplace transfer function which defines the ratio between the

Laplace transform of the input, the exciting force, the Laplace transform of the outputs and the
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Figure 4.43 Amplitude and phase variation with respect to frequency ratio

response of the system. In practice, it is very common to apply accelerometers to capture the

response of the system. In this case the s2X(s) would be the Laplace transformation of the

output instead of the X(s).

In vibrational analysis it is more convenient to convert the transfer function in to the frequency

response function, which describes the transfer function in another way. To determine the
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frequency response function, FRF , the complex variable s in Eq.4.14 is replaced by iω, in this

case Eq. 4.15 is derived as

Φ(iω) =
X(iω)

F (iω)
; (4.15)

where Φ(iω) is the frequency response function which is a complex function, and therefore has

the real and imaginary parts as G(ω) and H(ω) respectively:

G(ω) =
1− r2

k[(1− r2)2 + (2ζr)2]
and (4.16)

H(ω) =
−2ζr

k[(1− r2)2 + (2ζr)2]
. (4.17)

Using the imaginary and real part of the frequency response function, its magnitude and phase

can be calculated which are

| Φ(iω) |=
√
G(ω)2 +H(ω)2) =

1

k

1√
(1− r2)2 + (2ζr)2

and (4.18)

φ = tan−1H(ω)

G(ω)
= tan−1 2ζr

1− r2
. (4.19)

Eqs 4.18 and 4.19 equations correspond to Eqs. 4.11 and 4.12 which have been derived pre-

viously. Figure 4.43 represents the amplitude and phase of a transfer function. However, a

transfer function can be presented by its real and imaginary part as well; Figure 4.44 shows the

transfer function by presenting its imaginary and real parts.

Up until now, the equations of motions corresponding to the single-degree-of-freedom system

are studied; however, robots and machine tools are multi-degree-of-freedom systems whose

structures can be modelled by several lumped masses connected by linear or torsional springs.

Therefore, in order to identify the response of these systems, the mass, the stiffness and the

damping factor of each degree of freedom must be considered. Unfortunately, in many cases
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Figure 4.44 Real and imaginary part

these information is not provided by the manufacturer, but they can be identified by experi-

mental methods. For this reason, the impact test as a common experimental modal analysis

method, has been applied in this research to identify the natural frequencies.
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4.6.2 Experimental modal test

As mentioned earlier the transfer function identifies the ratio of the input and output of the

system, Eq.4.11 for example. Therefore, the transfer function can be identified by measuring

the output and input of the system. For this purpose, a pre-known forcing function is imposed

to the system, and then its displacement response is measured by an appropriate sensor. Gen-

erally, accelerometers are used to capture the responses of the systems; however, in some cases

velocity transducers are preferred.

Electromechanical shakers and instrumented impact hammers are the common equipments ap-

plied for the experimental analysis. A Shaker delivers an exciting force at a desirable frequency

to the subjected mechanical structure. During the excitation process, the response of the sys-

tem is captured by the sensor, and then the transfer function of the system is derived. The

impact hammer, on the other hand, deliver a wide range of exciting frequencies to the system.

In this method, the hammer gives a short period impact to the system that excites the natural

frequencies of the system. Indeed, the short time impact involves a broad range of frequencies

that can excite the natural frequencies of the system that are in the band. The delivered impact

is measured by the force sensor placed in the hammer’s head, and the response of the system,

on the other side is captured by the accelerometer attached to the structure of the subject. The

impact force and its response are captured in the time domain. However, to calculate the trans-

fer function, the measured values must be transferred to the frequency domain. Fast Fourier

transformation method, FFT, can be used to transfer the signals from time domain into the fre-

quency domain. Indeed, the FFT algorithm generates the DFT coefficients of the signals that

are the complex numbers. By dividing the imaginary and real part of the DFT coefficients of

the response signal to the corresponding imaginary and real part of the DFT coefficient of the

force signal, the frequency response function, FRF, of the system will be evaluated. Figure 4.45

shows a typical transfer function of the robot which composed of three sub-figures. The upper

sub-figure shows the real part of the transfer function, the middle one presents the imaginary

part, and the last sub-figure demonstrates the coherence.
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According to Figure 4.45, identifying the natural frequencies of the system would be straight

forward. First of all, the real part of the response shows local maximum and minimum values

with different signs around its natural frequencies . Second, the imaginary part of the transfer

function shows a maximum or minimum at those frequencies. And finally, the coherence

of the system at the natural frequencies must be more than 75%, the coherence shows the

effectiveness of the exerted impact on the response of the system. Therefore, if a frequency

has these conditions, that frequency will be recognised as one of the natural frequencies of the

system.
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Figure 4.45 Real and Imaginary part of a multi

degree of freedom system
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4.6.3 Test Setup

The impact test setup is composed of the instrumented impact hammer, an accelerometer to

measure the response of the system, a multi-channel vibration analyser, and post-processing

software to visualise the frequencies of the system. TestXpress, developed by LMS company,

is used to visualise the impact results. This software has been equipped with the auto-reject

function that automatically detects improper impacts.

In this experiment, it was planned to exert the impacts and measure the responses as close as

possible to the tool tip. Figure 4.46 represents the location of the sensor and the impact. The

response of the system was measured at each direction while the system was excited by the

hammer impacts exerted at all directions. In this way each direction has one direct transfer

function and two cross transfer functions. The measurement of each FRF was repeated five

times, and then the captured data was averaged to reach more reliable results. The results of

this experiment have been presented in Figures 4.47, 4.48, 4.49, 4.50, 4.51, 4.52, 4.53, 4.54

and 4.55. Acording to obtained results, the natural frequencies of the system are around 20, 35,

60, 67, 70 and 72Hz.

Figure 4.46 Impact test
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Figure 4.47 FRF diagram

impact in X direction and measure in X direction
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Figure 4.48 FRF diagram

impact in Y direction and measure in X direction
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Figure 4.49 FRF diagram

impact in Z direction and measure in X direction
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Figure 4.50 FRF diagram

impact in X direction and measure Y direction
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Figure 4.51 FRF diagram

impact in Y direction and measure in Y direction
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Figure 4.52 FRF diagram

impact in Z direction and measure in Y direction
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Figure 4.53 FRF diagram

impact in X direction and measure in Z direction
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Figure 4.54 FRF diagram

impact in Y direction and measure in Z direction
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Figure 4.55 FRF diagram

impact in Z direction and measure in Z direction
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4.7 Conclusion

In this chapter the topology of the machined surfaces was studied, and the effects of the kine-

matic and dynamic properties of the robot on the surface quality were identified. It was shown

that the geometric errors of the gear trains have the major effect on the surface quality and gen-

erate the major irregularities on the machined surfaces. However, it was proved that the minor

irregularities on the machined surfaces have been generated due to the low-frequency vibration

of the robot. In fact, it was observed that the robot has two natural frequencies near to the

vibration frequency. The closeness of the two modes of the robot to the frequency of the vibra-

tions proves that in robotic machining the mode-coupling is the main phenomena generating

the tool vibration.



CHAPTER 5

DISCUSSION

In this research the performance of a robotic milling system in machining an aluminium block

type 6061T6 was investigated. At the first step, the positioning error of the robot was evaluated,

and then, the quality of the machined surfaces was examined. Until now, many research works

have been devoted to study the positioning accuracy of robots and the calibration methods.

However, the quality of machined surfaces generated by a robotic milling operation has not

been studied.

The accuracy of a robot considerably affects on its performance, especially in machining oper-

ations. Indeed, the accuracy of a robotic machining system defines the dimensional accuracy

of machined parts. Moreover, the poor accuracy of a robot makes its off-line programming

software ineffective; in fact, as machining robots are used for cutting the parts having com-

plex contours, their programming would be very time consuming if the on-line programming

method is applied. For this reason, the positioning accuracy of the robot was investigated in

Chapter 3.

Single joint calibration method developed by Stone (1986) was used in this work to calibrate

the ABB robot IRB1600. In this method, the geometric features of each joint is recognised

by measuring its circle of rotation as explained in Section 3.1. Stone (1986) assumed that

during the kinematic identification of each joint, the other joints remain fixed in their positions;

however, in reality motion of a joint could change the configuration of the robot and may

change the torque exerted to its joints from the weight of the robot. Therefore, during the

identification the kinematic features of a joint the other joints may rotationally deflect. These

deflections affect the circle of rotation and falsify the identified kinematic features. In this

work, the effect of this type of errors were considered, and the kinematic features of the third

and fifth joint were revised in Sec 3.2.4 and Sec 3.2.6.
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In addition to identifying the kinematic features of the joints, the joint positioning errors were

modelled to achieve a higher level of accuracy. In order to model the positioning errors of a

joint, a hybrid model has been developed. In this approach, the elasticity of a joint is modelled

by Hooke law which is combined to the regression model considering the local geometric

errors of the joint. In this research, the elastic deflection of the joint as the result of both

the load imposed to the tool and the weight of the arm was investigated and modelled. The

regression model of the positioning errors of every joint was prepared based on the actual

measured values of each joint at pre-assigned intervals. Finally, the models of joint positioning

errors are incorporated to the geometric model in order to developed an advanced geometric

model of the robot.

In this work, the accuracy of nominal, geometric and advanced model were studied in two

different spaces; planar and spatial spaces. In the planar motion the advanced model of the

robot presents recognisable improvement with respect to the geometric model of the robot;

indeed, the mean of the positioning errors of the geometric model in planar space is 0.20mm

while the one of the advanced model is 0.09mm. However, this improvement is lost when we

look at the performance of these models in spatial space, where the mean of the positioning

errors of the geometric model is 0.45mm and the mean of positioning errors of the advanced

model is 0.36 mm. This shows that when the robot moves on a spatial space, identification

of its geometric parameters, circle of rotations, are more important than modelling the joint

positions. Finally, the identified joint stiffnesses are examined by measuring the tool displace-

ments as the result of the load attached to it at several positions within the workspace. The

average of difference between displacements predicted by the classical stiffness model and the

measured displacements is not more than 0.15%. This amount of the errors can be raised from

the repeatability and the measuring equipment uncertainties.

The findings of this research are in good aggreement with the findings of Nubiola and Bonev

(2013) who worked on the accuracy of the same robot in some aspects. They measured the

actual position of the end-effector by a laser tracker during the rotation of each joint while the

other joints are in their zero positions. They divided the positioning errors of each joint into
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the tangential and the normal directions. Indeed, every positioning error of a joint is divided

into the tangential direction which is defined by the tangent line to the circle of rotation at

the measuring point, and the normal direction which is perpendicular to the tangent line in the

plane of the rotation. The tangential positioning errors measured by Nubiola and Bonev (2013)

show the same pattern as the joint positioning errors measured in this research. However,

the stiffness of the joints that are reported by Nubiola and Bonev (2013) shows recognisable

difference with the ones identified in Section 3.2. The method which is applied in this research

is straight and is based on measuring the rotational deflection of each joint directly as the result

of the imposed load to the end-effector. However, the method which was proposed by Nubiola

and Bonev (2013) is based on measuring the position of the tool at some carefully pre-selected

points and then identifying the joint stiffnesses in addition to other geometric parameters by

the help of an optimisation method. Moreover, the average positioning errors stated by Nubiola

and Bonev (2013) is equal to 0.292 mm which is slightly better than the average positioning

errors achieved in Chapter 3 which is equal to 0.36mm. This difference may be explained by

the different measuring equipments which were applied. Nubiola and Bonev (2013) used the

laser tracker that is more accurate than C-Track which was used in our research. To sum up,

the positioning errors of the robot show that the robot is not accurate enough to be programmed

and taught directly from the programming software for machining applications where the depth

of cut is equal to 0.25mm.

The quality of the machined surfaces was the subject of Chapter 4. Although, robotic ma-

chining was introduced to the industries for decades, investigation on the quality of machined

surfaces are only restricted to few applications, such as grinding and finishing. However, in

this research, the surface quality of the robotic milling operation were investigated. For this

purpose, the machined surface were visually inspected by an opto-electro microscope in Sec-

tion 4.2. The results show extremely rough surfaces on which the tool-marks even can be seen

by the naked eye. The visibility of the tool-marks proves that the tool vibrates with a relatively

low frequency during the machining application. Although the visual inspection of the surface

presents the poor quality of the machined surfaces, they were examined by a mechanical pro-

filer in order to achieve more accurate information in Section 4.3. In this section the profile
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of the machined surfaces were presented. Two types of the irregularities were detected on the

profiles; the major irregularities which form the waviness and the minor irregularities which

form the roughness superimposed on the waviness. Power spectrum analysis were applied to

the measured profiles to identified the spatial frequencies of the waves embedded in the signal.

The results show that the spatial frequencies of major irregularities are less than 0.6 mm−1.

As applying different feed speeds does not affect the wavelengths of the major irregularities, it

was concluded that the geometric errors of the robot originated the major irregularities because

the geometric errors are depend to the joint positions not to their derivatives. However, in order

to confirm this theory, the ability of the robot in moving its end-effector was measured.

In order to measure the ability of the robot in moving its end-effector, the path straightness

test was executed in Section 4.5. For this purpose, an especial artefact was equipped with the

reflecting target that its position was measured by the laser tracker. The results present the

same irregularities on the measured positions as same as the ones detected on the machined

surfaces. This sameness proves that the major irregularities of the surface were generated due

to the motion of the robot, and the machining operation is not effective. Slamani and Bonev

(2013) recognised that the errors in the gear trains such as axial and radial eccentricities cause

the tool periodically vibrates when it moves along a commanded line. Therefore, the spatial

frequency of the gears were calculated in App. III to identify if the errors of the gear trains

generate the periodic motion of the tool. The calculation shows that some spatial frequencies

of the gear trains are in accordance with the spatial frequencies of the major irregularities of

the positioning errors of the artefact and the machined surfaces.

Based on the Parseval’s theorem, the root mean squared of the surface irregularities were calcu-

lated in Section 4.3.2. The results shows that by increasing the feed rate of the roughness of the

irregularities is increased. This finding, indeed, is in accordance with the general machining

expectations. However, it can be inferred that the machining direction is highly effective on

the quality of the machined surfaces. In fact, machining in the direction extending the arm of

the robot generates rougher irregularities on the machined surfaces than the other directions.
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In Section 4.4 the power spectrums of the cutting forces were presented. All the spectrums

show that the tool vibrated during the cutting process with the frequency near 80Hz, this fre-

quency is near to the frequency of the minor irregularities that are recognised on the machined

surfaces as the roughness. The generating factor of this vibration were explained to some ex-

tent in Section 4.6; in this section the natural frequencies of the system were identified by the

impact test. The result of the impact test proved that the robot has some natural frequencies

close to 80 Hz. The closeness of these frequencies to the frequency of the tool vibration in-

creases the possibility of mode-coupling chatter vibration that are mostly happened in robotic

machining applications.





CONCLUSION

The positioning accuracy of the robot was investigated in Chapter 3.1, and a hybrid calibration

method considering both the compliance and geometric imperfections of the gears was intro-

duced. Although the positioning accuracy of the robot is improved considerably using this cal-

ibration method, this improvement is not enough to qualify the off-line programming software

to program the robot for machining applications where high accuracy is needed. Therefore,

applying extra equipments such as force sensors or touch probes to increase the accuracy of

the robot are recommended.

The quality of the machined surfaces was investigated in Chapter 4. The results show that the

both kinematic and dynamic properties of the robot affect on the surface quality of the cuts;

however, the kinematic errors have the main effects. In fact, the gear eccentricities of a robotic

machining system cause the tool oscillates during the motion along the cutting surfaces and

generates major irregularities. Therefore, in order to improve the surface quality, the kinematic

errors must be considered first. Indeed, without removing or decreasing the kinematic errors,

focusing on the tool vibration such as chatter would not be effective.

Although the dynamic properties of the machining system were investigated to some extend,

machining parameters assuring chatter-free machining were not provided. In fact, the natural

frequencies of the system were identified, and it was presented that the minor irregularities of

the system were generated due to the excitation of one or some of those natural frequencies;

in addition, it was shown that the cutting direction and feed speed have the important effect on

the quality of the machined surfaces, but a mathematical formula modelling the vibration of

the robotic machining system was not provided.





ANNEX I

CAD MODEL OF THE ROBOT

Figure I-1 presents the CAD model of the robot.

Figure-A I-1 CAD model of the robot

ABB (2004)





ANNEX II

SURFACE QUALITY

1 Surface profiles of the first and second series of the cuts

a) Feed 1 mm/s b) Feed 2 mm/s

c) Feed 3 mm/s d) Feed 4 mm/s

e) Feed 5 mm/s

Figure-A II-1 Profile of the cut in +Y direction, Depth of cut 0.25 mm and

the spindle speed 28000 rpm
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a) Feed 1 mm/s b) Feed 2 mm/s

c) Feed 3 mm/s d) Feed 4 mm/s

e) Feed 5 mm/s

Figure-A II-2 Profile of the cut in +X direction, Depth of cut 0.25 mm and

the spindle speed 28000 rpm
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a) Feed 1 mm/s b) Feed 2 mm/s

c) Feed 3 mm/s d) Feed 4 mm/s

e) Feed 5 mm/s

Figure-A II-3 Profile of the cut in −Y direction, Depth of cut 0.25 mm and

the spindle speed 28000 rpm
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a) Feed 1 mm/s b) Feed 2 mm/s

c) Feed 3 mm/s d) Feed 4 mm/s

e) Feed 5 mm/s

Figure-A II-4 Profile of the cut in +Y direction, Depth of cut 0.5 mm and

the spindle speed 28000 rpm
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a) Feed 1 mm/s b) Feed 2 mm/s

c) Feed 3 mm/s d) Feed 4 mm/s

e) Feed 5 mm/s

Figure-A II-5 Profile of the cut in +X direction, Depth of cut 0.5 mm and

the spindle speed 28000 rpm
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a) Feed 1 mm/s b) Feed 2 mm/s

c) Feed 3 mm/s d) Feed 4 mm/s

e) Feed 5 mm/s

Figure-A II-6 Profile of the cut in −Y direction, Depth of cut 0.5 mm and

the spindle speed 28000 rpm



139

2 Power spectrums of surface profiles of the first and second series of the cuts

a) Feed 1 mm/s b) Feed 2 mm/s

c) Feed 3 mm/s d) Feed 4 mm/s

e) Feed 5 mm/s

Figure-A II-7 Amplitude spectrum of the cuts in +Y direction, Depth of cut 0.25 mm

and the spindle speed 28000 rpm
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a) Feed 1 mm/s b) Feed 2 mm/s

c) Feed 3 mm/s d) Feed 4 mm/s

e) Feed 5 mm/s

Figure-A II-8 Amplitude spectrum of the cuts in +X direction, Depth of cut 0.25 mm,

spindle speed 28000 rpm
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a) Feed 1 mm/s b) Feed 2 mm/s

c) Feed 3 mm/s d) Feed 4 mm/s

e) Feed 5 mm/s

Figure-A II-9 Amplitude spectrum of the cuts in −Y direction, Depth of cut 0.25 mm

and the spindle speed 28000 rpm
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a) Feed 1 mm/s b) Feed 2 mm/s

c) Feed 3 mm/s d) Feed 4 mm/s

e) Feed 5 mm/s

Figure-A II-10 Amplitude spectrum of the cuts in +Y direction, Depth of cut 0.5 mm

and the spindle speed 28000 rpm
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a) Feed 1 mm/s b) Feed 2 mm/s

c) Feed 3 mm/s d) Feed 4 mm/s

e) Feed 5 mm/s

Figure-A II-11 Amplitude spectrum of the cuts in +X direction, Depth of cut 0.5 mm,

spindle speed 28000 rpm
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a) Feed 1 mm/s b) Feed 2 mm/s

c) Feed 3 mm/s d) Feed 4 mm/s

e) Feed 5 mm/s

Figure-A II-12 Amplitude spectrum of the cuts in −Y direction, Depth of cut 0.5 mm

and the spindle speed 28000 rpm
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3 Power spectrums of measured forces

a) 1 mm/Sec b) 2 mm/Sec

c)3 mm/Sec d) 4 mm/Sec

e) 5 mm/Sec

Figure-A II-13 Power spectrum of the machining forces of the cuts perform in +Y
direction, depth of cut is 0.25mm
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a) 1 mm/Sec b) 2 mm/Sec

c)3 mm/Sec d) 4 mm/Sec

e) 5 mm/Sec

Figure-A II-14 Power spectrum of the machining forces of the cuts perform in +X
direction, depth of cut is 0.25mm
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a) 1 mm/Sec b) 2 mm/Sec

c)3 mm/Sec d) 4 mm/Sec

e) 5 mm/Sec

Figure-A II-15 Power spectrum of the machining forces of the cuts perform in −Y
direction, depth of cut is 0.25mm
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a) 1 mm/Sec b) 2 mm/Sec

c)3 mm/Sec d) 4 mm/Sec

e) 5 mm/Sec

Figure-A II-16 Power spectrum of the machining forces of the cuts perform in +Y
direction, depth of cut is 0.5mm
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a) 1 mm/Sec b) 2 mm/Sec

c)3 mm/Sec d) 4 mm/Sec

e) 5 mm/Sec

Figure-A II-17 Power spectrum of the machining forces of the cuts perform in +X
direction, depth of cut is 0.5mm
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a) 1 mm/Sec b) 2 mm/Sec

c)3 mm/Sec d) 4 mm/Sec

e) 5 mm/Sec

Figure-A II-18 Power spectrum of the machining forces of the cuts perform in −Y
direction, depth of cut is 0.5mm



ANNEX III

GEAR TRAIN ERRORS

Geometric errors in the field of industrial robots are more referred to the joints and links’

offsets. These errors are the matter of concern when the accuracy of a robot is investigated.

However, these offsets does not affect the path straightness of the robot. Actually, other geo-

metric errors such as axial and radial eccentricities or local geometric imperfections of the gear

trains are the factors affecting machined surfaces. In a robotic machining system these errors

cause the tool oscillates during the cutting and generates wavy surface. In this annex the affect

of the eccentricities are investigated.

In an industrial robot the joint positions are measured by the help of the encoders or resolvers

that are mounted on the shafts of the DC motors driving the joints. In this case, the kinematic

errors of gear trains affect on the relationship between the delivered rotation angle and the one

received at the joint shaft. B. W. Mooring (1991) modelled the eccentricities of a joint by

θi = ki1 + ki2ni + ki3sin(ki4ni + ki5), (A III-1)

where ki1 and ki2 denote the ith joint ratio and joint offset respectively, and ni is the signal

measured by the encoder or the resolver. Finally, ki3sin(ki4ni+ki5) determines the eccentricity

of the joint. If −→ri is the vector connecting the origin of the ith joint to the tool tip, then the

Cartesian displacement at the tool tip as the result of the small joint displacement will be

calculated as
−−→
δXi =

−→
δθi×−→ri . By importing Eq. A III-1 to the recent equation, and distributing

the cross product, the recent equation can be rewrite as

−−→
δXi = ki1(δni)

−→ei ×−→ri + ki3sin(ki4δni + ki5)
−→ei ×−→ri (A III-2)

when the tool of a robot is commanded to follow a straight line with a certain speed, the joints’

speeds need to be up-dated continuously in order to preserve the tool speed. Therefore, the
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resultant tool motion
−→
δX at a random point along the path would be

−→
δX =

∑−−→
δXi =

∑
ki1(δni)

−→ei ×−→ri +
∑

ki3sin(ki4δni + ki5)
−→ei ×−→ri . (A III-3)

It is obvious that the first part of the right side of the above equation cannot effect on the

periodic motions that are superimposed on the surface profiles of the cuts. Therefore, if the

FFT analysis is applied to a surface profile, the low-frequency dominant peaks on the related

frequency spectrum will belong to the joint eccentricities.

Moreover, when the tool moves in a short displacement, the rotation angle for each joint can be

calculated based on the Jacobian matrix. Then, the rotation angles of the gears that are mounted

in the gear train of every joint is calculated based on the information mentioned in the Table

III-1 and the calculated joint rotation angle. Next, the spacial frequency of each gear, the cycle

of rotation per millimetre, will be identified By dividing the number of rotation of each gear to

the length of the tool displacement. Tables III-2, III-3 and III-4 presents the spatial frequencies

of the gears at different cuts. As the spacial frequencies of the waviness irregularities identified

in Section 4.3.1 is not more than 0.6mm−1 so the gears whose spacial frequencies are less than

0.6mm−1 are the probable source of errors.

Tableau-A III-1 The gear trains of each joint

Joint N1 N2 N3 N4 N5 N6 N7 N8 Gear ratio
1 10 131 13 129 129.99

2 10 131 13 129 129.99

3 11 134 14 120 104.42

4 11 84 14 110 60.00

5 26 78 29 39 5 79 63.74

6 26 52 28 22 5 70 15 30 44.00
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Tableau-A III-2 Spacial frequencies of the first gear

of each joint [cycle/millimetre]

Direc. Joint1 Joint2 Joint3 Joint4 Joint5 Joint6
+Y 5.95 6.69 8.02 3.67 1.76 1.77

Cut 1 X 7.90 4.96 5.88 5.16 0.91 2.66

−Y 6.51 6.60 7.95 3.70 1.80 1.77

+Y 6.08 6.53 7.91 3.70 1.84 1.76

Cut 2 X 7.66 5.10 6.10 5.06 0.91 2.65

−Y 6.11 6.46 7.88 3.70 1.89 1.76

+Y 6.14 6.39 7.85 3.70 1.93 1.75

Cut 3 X 7.42 5.21 6.31 5.99 0.91 2.64

−Y 6.16 6.32 7.82 3.70 1.99 1.74

+Y 6.42 6.25 7.79 3.69 2.02 1.72

Cut 4 X 7.19 5.32 6.52 4.87 0.92 2.62

−Y 6.20 6.18 7.75 3.68 2.07 1.71

+Y 6.22 6.12 7.72 3.67 2.10 1.70

Cut 5 X 6.96 5.43 6.73 4.79 0.93 2.61

−Y 6.23 6.06 7.70 3.65 2.15 1.68

Tableau-A III-3 Spacial frequencies of the second gear

of each joint [cycle/millimetre]

Direc. Joint1 Joint2 Joint3 Joint4 Joint5 Joint6
+Y 0.45 0.51 0.65 0.48 0.58 0.88

Cut 1 X 0.60 0.38 0.48 0.67 0.30 1.33

−Y 0.46 0.50 0.65 0.48 0.60 0.88

+Y 0.46 0.50 0.65 0.48 0.60 0.88

Cut 2 X 0.58 0.38 0.50 0.66 30 1.30

−Y 0.46 0.49 0.64 0.48 0.63 0.88

+Y 0.46 0.48 0.64 0.48 0.64 0.88

Cut 3 X 0.56 0.39 0.51 0.65 0.30 1.32

−Y 0.47 0.48 0.64 0.48 0.66 0.87

+Y 0.47 0.47 0.63 0.47 0.68 0.86

Cut 4 X 0.54 0.40 0.53 0.63 0.30 1.32

−Y 0.47 0.47 0.63 0.48 0.68 0.85

+Y 0.47 0.462 0.63 0.48 0.70 0.85

Cut 5 X 0.53 0.41 0.55 0.62 0.31 1.30

−Y 0.47 0.46 0.63 0.47 0.71 0.84
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Tableau-A III-4 Spacial frequencies of the third gear

of the fourth and fifth joints [cycle/millimetre]

Direc. Joint5 Joint6
+Y 0.43 1.13

Cut 1 X 0.23 1.70

−Y 0.45 1.13

+Y 0.46 1.12

Cut 2 X 0.22 1.68

−Y 0.46 1.12

+Y 0.48 1.11

Cut 3 X 0.22 1.68

−Y 0.49 1.10

+Y 0.50 1.09

Cut 4 X 0.22 1.67

−Y 0.51 1.09

+Y 0.52 1.08

Cut 5 X 0.23 1.66

−Y 0.53 1.07
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