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FIXTURELESS GEOMETRIC INSPECTION OF NONRIGID PARTS USING
“GENERALIZED NUMERICAL INSPECTION FIXTURE”

Hassan RADVAR ESFAHLAN

RESUMÉ

Aujourd’hui les pièces mécaniques de forme libre et qui sont souples (non rigides) sont 

fréquentes dans les industries automobile et aéronautique. Ces pièces possèdent des formes 

significativement différentes à l'état libre que leurs formes nominales, telles que définies dans 

un modeleur numérique, en raison de leurs variations dimensionnelles et géométriques, 

l’effet de la gravité et les contraintes résiduelles induites par le procédé de fabrication. Pour 

l'inspection géométrique de ces pièces flexibles, des appareils d'inspection spécialisés tel que 

les gabarits de conformation, en combinaison avec les machines à mesure tridimensionnelle 

(MMT) et/ou des dispositifs d'acquisition de données optiques (scanners) sont utilisés. Ce qui 

se traduit immanquablement par des coûts et des délais additionnels qui se traduisent par une 

carence de compétitivité pour l’industrie.

L'objectif de cette thèse est de faciliter l'inspection dimensionnelle et géométrique des 

composants flexibles à partir d'un nuage de points sans l'aide d’un gabarit ou autre opération 

de conformation secondaire. Plus précisément, nous visons à développer une méthodologie 

pour localiser et quantifier les défauts de profil dans le cas des coques minces qui sont 

typiques pour les industries aéronautique et automobile.

La méthodologie présentée est basée sur le fait que la distance géodésique entre deux points 

d'une forme demeure invariante au cours d'une déformation isométrique (absence 

d’étirement, stretch). Cette étude développe donc la théorie générale, les méthodes et outils

pour une métrologie des pièces non rigides en se basant sur l’hypothèse d’une déformation 

isométrique. Nous avons ainsi développé une méthode originale que nous avons nommée

‘Gabarit d'Inspection Numérique Généralisée (GNIF)’. C’est une méthodologie robuste qui 

utilise les découvertes et technologies récemment développées en géométrie métrique et 

algorithmique. Les techniques de réduction dimensionnelle non linéaire sont employées pour 
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identifier les meilleures correspondances entre deux sets de points (CAD et nuage mesuré). 

Finalement, la méthode des éléments finis est employée en post-traitement pour ‘caler’ les 

deux nuages de points et produire un état numérique ‘virtuel’ d’une opération de 

conformation pour atteindre le but du projet qui est de développer  une approche générale de 

l'inspection géométrique sans gabarit pour les pièces non rigides. La validation et 

l’exploration des performances métrologiques de notre approche sont réalisées sur des 

composants typiques de l’industrie.

Mots-clés: Inspection assistée par ordinateur, inspection géométrique; pièce flexible, calage

nonrigid par éléments finis; distance géodésique, les techniques de réduction dimensionnelle 

non linéaire, calage.
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ABSTRACT

Free-form nonrigid parts form the substance of today’s automotive and aerospace industries.

These parts have different shapes in free state due to their dimensional and geometric 

variations, gravity and residual strains. For the geometric inspection of such compliant parts, 

special inspection fixtures, in combination with coordinate measuring systems (CMM) and/or 

optical data acquisition devices (scanners) are used. This inevitably causes additional costs 

and delays that result in a lack of competitiveness in the industry.

The goal of this thesis is to facilitate the dimensional and geometrical inspection of flexible 

components from a point cloud without using a jig or secondary conformation operation. 

More specifically, we aim to develop a methodology to localize and quantify the profile 

defects in the case of thin shells which are typical to the aerospace and automotive industries.

The presented methodology is based on the fact that the interpoint geodesic distance between 

any two points of a shape remains unchangeable during an isometric deformation. This study 

elaborates on the theory and general methods for the metrology of nonrigid parts. We have 

developed a Generalized Numerical Inspection Fixture (GNIF), a robust methodology which 

merges existing technologies in metric and computational geometry, nonlinear 

dimensionality reduction techniques, and finite element methods to introduce a general 

approach to the fixtureless geometrical inspection of nonrigid parts.

Keywords: Computer aided inspection; Geometric inspection; Compliant part; Nonrigid finite 

element registration; Geodesic distance; Nonlinear dimensionality reduction techniques,

Registration
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INTRODUCTION

Thesis Problem Definition

This research targets the geometric inspection of a specific category of mechanical parts 

called nonrigid (or flexible). This kind of components is frequently used in automotive and 

aircraft construction (body, thin-walled parts, skin, etc.). For example, 37% of all car 

assembly stations are performed on flexible parts (Shiu, Ceglarek et al. 1997).

From solid mechanics we know that the mechanical behaviour of every part can be simulated 

as an ideal spring (or sets of ideal springs). On the other hand Hook’s Low states that the 

force F needed to deform a spring by some distance x is proportional to that distance. By this 

definition, stiffness ( )Fk
x

� is the Load divided by Deformation. Simply put, the stiffness is 

the amount of force needed to achieve a certain part deformation. While this description is 

very simplistic, the stiffness of any structure requires an exact definition of load 

configuration and the kind of metric used for measured deformation. The opposite concept of 

stiffness is flexibility. When said part A is more flexible than B, it means that A deforms 

more than B for a certain amount F applied in the same manner on both A and B. Thus

flexibility is a relative notion. Indeed, asymptotically, all parts are flexible and conformable 

with some amount of force. In (Abenhaim, Desrochers et al. 2012) the authors suggest the 

following definition. If the application of the force 40 N1 induces a distortion less than 5% of 

the allowable tolerance, then the component is classified as rigid. Therefore, a flexible part is

a component where the application of the same force induces a displacement of more than 

5% of the required tolerance.

Currently, a flexible workpiece must be constrained or clamped during the measurement 

process in order to simulate the use state2 (Fig. 0.1 and 0.2). To that end, expensive and 

1 40 N is widely used as the limit of acceptable force during manual assembly operations. The amount of force 
is justified by considerations of health and safety at work.
2 Assembly conditions
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special inspection fixtures (jigs) need to be designed and manufactured. On the other hand, 

some inspection stages cannot be fully automated with this conventional approach. As a 

result, the geometric inspection of flexible parts remains a time and money consuming 

process. Typically some inspection set-up processes for nonrigid parts in the aerospace 

industry require over 60 hours of operations3. On the other hand, even for simple parts, the 

quality of a planned inspection depends on the ability and experience of the operator.

Despite the multitude of papers and research that have been produced in the CAD, CAM and 

CAI fields, the inspection of flexible parts continues to pose difficulties and significant costs 

to industry because they need special fixation devices. This is also evidence of the lack of 

knowledge and theoretical foundations surrounding this special field. Thus, specific long-

term goals must be set and systematically accomplished. 

Figure 0.1 Inspection fixture for an aluminum part
(Ref. Bombardier Aerospace)

3 Project’s industrial partner (Bombardier Aerospace)
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Figure 0.2  Aluminum part from the aerospace industry
(Ref. (Sabri, Tahan et al. 2013))

Geometric inspection, geometric modeling, range data acquisition and analysis have 

developed as separate fields of engineering among the various engineering and scientific 

communities. However, all these fields share common scientific concepts and there are many 

missed opportunities because of a lack of mutual connection and wasted synergy. Computer-

Aided Inspection is one of these connection points, while nonrigid geometric inspection 

shares a profound degree of understanding with all the mentioned disciplines. 

In this thesis we have developed Generalized Numerical Inspection Fixture (GNIF) and a 

more high-performing version named Robust numerical inspection fixture (RNIF) for an 

original and robust inspection methodology, one that brings together existing theories in 

Metric and Computational Geometry, Nonlinear Dimensionality Reduction Methods

(NLDR), and Finite Element Analysis (FEM) to introduce a general approach to the 

fixtureless geometrical inspection of nonrigid parts.
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Research Objectives

The aim of this thesis is to develop a holistic strategy in order to eliminate the use of 

inspection fixtures (jigs) and all constrain operations. To this end, the presented method has 

to be able to identify the actual geometric deviation (process error) from the defectless part 

with deformation (gravity, spring back, etc.). The amplitude and the location of profile defect 

should also be distinguished, with adequate accuracy4, without any fixation device. Figure 

0.3 demonstrate a simplified view of the inspection technique.

CAD-
model

Free-state
range data

Inspection
technique

Geometrical
deviations

Figure 0.3 Simplified view of the inspection technique.

Note: For many industrial products it is possible to attribute some particular defects which 

are inherent to the process. This can be performed with prior knowledge of that product’s 

manufacturing nature. As an example, unwanted shrinkage in some directions of moulded 

part, sand inclusion, pinhole, core shift, ram-off and other similar defects are, to some degree 

predictable as common foundry defects. Besides, if a causal mechanism which is related to 

each kind of defect can be recognized as priori, then a quantitative inspection of such defects 

can be automated. These kinds of surface defects can not only be recognized with 

machine/computer vision technologies, but can also be classified with pattern recognition

methods. This study does not speak to these methods.

4 Adequate precision is generally defined as � 10 � 30% of the permissible tolerance.
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Thesis Organization

Our methodology was inspired by real industrial inspection processes. When we place the 

flexible part on the inspection fixture the prevailing idea is that we are going to simulate the 

use state. This is absolutely correct! But more specifically we can say that we are looking for 

some connection (correspondence) between distorted part and fixture, which in this thesis 

represents our CAD-model. We present a methodology based on the fact that the interpoint 

shortest path (geodesic distance) between any two points on a shape remains unchanged 

during an isometric deformation. We call this property as distance-preserving property of 

nonrigid parts. In Figure 0.4, the CAD-model and range data are represented as a cantilever 

beam. For simplicity and without loss of generality, let’s assume that some of prior 

information about boundary conditions is already known (e.g. support pint). Rigid 

registration (e.g., ICP based algorithm) can be done using this prior information. In the 

absence of plastic deformations, displacing x1 to y1 will deform the beam. This means that

there will be a bijective (one-to-one correspondence) distance-preserving map between these 

two shapes (by bijective we do not mean the exact nodal correspondence). Also we assume 

that all pair-wise geodesic distances between the points on X (CAD-model) and Y (scanned 

data) are available (e.g., using fast marching). If we can introduce a similarity measure in 

order to find a correspondence between these two metric spaces, the step that we call finite 

element nonrigid registration (FENR) can be performed: (a) Find the correspondence (e.g. y1

is the image of x1). (b) Knowing that some boundary conditions such as prior information 

apply, find the the best correspondence then displace x1 towards y1. (c) Calculate the 

geometric deviation between the deformed CAD-model and measure range data. Based on 

the FENR approach, two methodologies were developed and tested (Radvar-Esfahlan and

Tahan 2011, Radvar-Esfahlan and Tahan 2011).
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Figure 0.4 Finite Element Nonrigid Registration (FENR)

The content of this thesis consists of three chapters. The aim of Chapter 1 is to construct a 

solid frame work in order to uncover a unique horizon along with new metrological 

definitions such as distance preserving property of nonrigid parts and finite element nonrigid 

registration. For the first time in dimensional metrology we will construct a theoretical 

foundation which will brings together certain existing technologies from different domains in 

Chapter 1. In brief, we will seek out geometric properties that are invariant to elastic 

deformations. In Chapter 2 we will try to robustify the GNIF technique by filtering some 

incoherent geodesics out of similarity detection algorithm. In Chapter 3 we will present a 

systematic comparison of some well-known dimensionality reduction techniques in order to 

evaluate their accuracy and potential for non-rigid metrology. Chapter 3 looks at the 

potential, precision and accuracy of nonlinear dimensionality reduction methods. What’s 

more, the content of this chapter paves the way for future research. Figure 0.5 provides a

quick snapshot of the thesis organization.



7

Figure 0.5 Fixtureless geometric inspection of nonrigid parts using GNIF
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REVIEW OF PREVIOUS RESEARCH

Geometric inspection of flexible parts using range data

Non-contact 3D digitizing systems exposed a new perspective in the geometric inspection of 

both rigid and nonrigid parts because they can handle a huge number of range data in seconds

whereas using traditional touch probes is a time-consuming process. These systems are 

suitable for the fast and contact free measurement of parts without clamping. In the case of 

flexible materials this contactless measurement capability is very important. Bibliographical 

research demonstrates that -in the field of nonrigid inspection- there are only three 

distinguished studies.

Weckenmann and Gabbia (Weckenmann and Gabbia 2005) proposed a measurement method 

using virtual distortion compensation. They used measurement results to extract object 

features like holes or edges. After the feature extraction process, they transformed the range 

data into a finite element analysable CAD-model. Then using some prior information about 

boundary conditions they gradually transformed the modeled range data into a CAD-model. 

Their method was not completely automated because their suggested method needed some 

human challenges to identify the correlation between certain special points like holes and 

assembly joint positions. For each part, the reverse engineering process had to be performed. 

Transforming the point cloud to a computer aided analyzable model is a highly time-

consuming process. Besides, transforming each range data into CAD-model can introduce a 

geometric defect caused by the modeling process. On the other hand we know that, a FEM

mesh created from a CAD-model provides more precise results than a triangle mesh from a

measurement result. Finally, it seems that this method is not suitable for really flexible parts 

because the effect of gravity and the 3D scanning position of the part have not been taken 

into consideration.

The concept of the Small Displacement Torsor (SDT) has been developed by Bourdet and 

Clément (Bourdet and Clément 1976) to solve the general problem of rigid surface 

registration using rigid body movements. Lartigue et al. (Lartigue, Theibaut et al. 2006) took 

advantage of the possibilities offered by voxel representation and SDT methods for the
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dimensional metrology of flexible parts. This time, they considered the effects of gravity and 

spatial situation of a scanned part. The method is fundamentally based on finding the 

correspondence between the measured range data and the CAD-model. They simulated the 

use state and knowing some prior information about the inspection process they deformed the 

CAD-model in order to measure the real geometric deviation. They did not consider the 

effect of spring back which is the inseparable part of majority of mechanical products. On the 

other hand, the SDT is more suitable for the small deformations. More accurate results can 

even be achieved if one considers the effect of material flexibility.

Abenhaim, Tahan et al. (Abenhaim, Tahan et al. 2011) developed an iterative displacement

inspection (IDI) which smoothly deformed the CAD mesh data until it matched the range 

data. Their method was based on optimal step nonrigid ICP algorithms (Amberg, Romdhani

et al. 2007). The proposed IDI method had some limitations. Their method was not tested in 

non-continuous areas such as holes, and the point cloud needed to be dense enough because 

the method’s similarity measure was only based on nearest distance calculation. The major 

flaw of this method was hidden in the fact that it strongly depended on finding some trials

and prior flexibility parameters which would vary depending on thickness (local rigidity of 

the part).

Recently, in (Jaramillo, Prieto et al. 2013, Jaramillo, Prieto et al. 2013) the authors proposed 

a methodology that used the partial range captures of the workpiece. The inspection process 

was based on an iterative nonrigid alignment algorithm. To this end, a transformation to the 

CAD model was applied at each iteration which was calculated by minimizing the error with 

a partial-view model. By this method it was assumed that the acquired region contains 

sufficient feature points that would enable model alignment. We underline that the ability of 

partial inspection is one of the capabilities of the GNIF technique first presented in (Radvar-

Esfahlan and Tahan 2011).

While previously mentioned methods seek a quantitative analysis of nonrigid parts

(geometric deviation), qualitative visual inspection of these parts using light-reflection 

patterns werefirst introduced by Gentilini and Shimada (Gentilini and Shimada 2011).

Although the accuracy of their method was acceptable (0.3-0.6mm) for average industrial 
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applications, those kinds of defects are widely traceable with machine/computer vision

technologies.

The drawback of all these studies is that the aforementioned methods have limited industrial 

applications. As a result, nowadays in industry the only way for the geometric inspection of 

flexible parts is to use high cost inspection fixtures. In this research we will try to construct a 

solid theoretical framework to handle fixtureless nonrigid geometric inspection.

Rigid and nonrigid surface registration

In tandem with mechanical engineers but in different fields like Computer Vision,

Biomedical Engineering and Pattern Recognition, much research has been done on rigid and 

nonrigid registration, as well as deformable surface comparison. Besl and McKay (Besl and 

McKay 1992) developed the Iterative Closest Point (ICP) algorithm. ICP is an iterative 

method for the rigid registration of 3D shapes. The ICP algorithm is one of the common 

techniques for 3D rigid surface registration. Suppose that we are given two shapes X and Y.

The goal of ICP is to find the rigid transformation which brings two shapes as close as 

possible. The closeness is measured by the Hausdorff distance between two shapes. Many

versions of ICP have been proposed. They differ from the selection and matching of points,

to the minimization strategy(Bentley 1975, Greenspan and Godin 2001). We refer the reader 

to (Rusinkiewicz and Levoy 2001) for an account and comparison between some ICP 

variants.

Myronenko, Song et al. (Myronenko, Song et al. 2007) introduced a probabilistic method for 

rigid, affine, and nonrigid point set registration, called the Coherent Point Drift algorithm.

They considered the alignment of two point sets as the probability density estimation, where 

one point set represents the Gaussian Mixture Model centroid, and the other represents the 

data point. They iteratively fitted the GMM centroids by maximizing the likelihood and 

found the posterior probabilities of centroids, which provide the correspondence probability. 

The method based on forcing the GMM centroids to move coherently as a group, preserved 

the topological structure of the point sets. The convergence of presented method when there 

is no exact nodal correspondence between two range data sets is under question. 
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Schwartz, Shaw et al. (Schwartz, Shaw et al. 1989) were the first to use the Multidimensional 

Scaling (MDS) method. They flattened the convoluted surfaces of the human brains in order 

to compare them to each other in order to study the functional architectures of the brain. For 

some, their work was a breakthrough in which surface geometry was translated into a plane. 

They presented an iterative method in which they gradually decreased the dimension of a 

multidimensional space. In our knowledge of differential geometry, the Gaussian curvature is 

an intrinsic invariant of the surfaces. For example, a sphere and a flat surface cannot be 

mapped into each other without distortion. As a result of plane restriction, their presented 

method was not capable of properly matching convoluted surfaces. The stress and the 

goodness of fit used in the mentioned paper have been historically proposed by Kruskal 

(Kruskal 1964). Zero Stress means perfect Goodness of fit, in other words, there is a perfect 

relationship between similarity and interpoint distance. From the first generation of MDS 

until now, many variants of minimization algorithms have been created to minimize stress

function. One of the most straightforward and successful among them was developed by De

Leeuw (De Leeuw 2005). SMACOF (scaling by majorizing a complicated function) to 

minimize a complicated function p(x) (e.g. stress function), constructs a quadratic function 

q(x,y) in such a way that the constructed function is always above the complicated function 

except for one coincidence point. In each iteration with initial value x0 , q(x, x0) it is 

minimized to find x1. In the next iteration q(x, x1) is minimized. The iteration continues until 

convergence.

The Fast marching method was introduced by Sethian (Sethian 1996). It is like a Dijksta 

algorithm in discrete domains which solves the Eikonal equation in order to compute the 

geodesic distance on range surfaces. The only difference with the Dijkstra algorithm is in the 

updating process. The fast marching method was extended to triangulated surfaces by 

Kimmel and Sethian (Kimmel and Sethian 1998). Vast ranges of FMM applications in 

geometry, grid generation, image enhancement and noise removal, shape detection and 

recognition, CAD and computational geometry as well as other applications in optimal path 

planning, etching and deposition in microchip fabrication have been discussed in (Sethian 

1999). In fact, Sethian was the first to introduce a solid framework in order to solve the 

boundary value problem without iteration. 
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Elbaz and Kimmel (Elbaz and Kimmel 2003) presented a blend of topology and statistical 

methods, to introduce the concept of Invariant signature for surfaces. Their method was 

based on fast marching on a triangulated domain algorithm followed by an MDS technique. 

They have practically transformed the problem of matching isometric-nonrigid surfaces into 

the problem of rigid surface matching. Using MDS, they embedded surfaces X and Y into 

some common embedding spaces Z called Canonical form and then measured the similarities

using the Hausdorff distance. Their method is strongly based on the Kimmel and Sethian

(Kimmel and Sethian 1998) method in wich computing the geodesic distance is done on 

triangular meshes. As the nature of their study was based on classification and pattern 

recognition, the accuracy of their presented method as a measure metric space similarity was 

not discussed. On the other hand the uncertainty of canonical forms as a result of geodesics 

by means of fast marching method, as well as the uncertainty related to the least square 

multidimensional scaling process should be investigated in depth. In this particular project,

the similarity measure plays a critical role in the accuracy of canonical forms where of

nonrigid inspection will be considered using typical mechanical engineering case studies.  

In spite of the canonical forms in which two metric spaces are mapped into acommon space, 

Bronstein et al. (Bronstein, Bronstein et al. 2006) proposed a method which mapped two 

metric shapes directly into each other. Despite classic MDS here the distortion was a kind of 

similarity measure. The distortion showed that in which degree two shapes are similar (or 

dissimilar). Other advantages of their method are the ability to measure the similarity of 

shapes in which there is no exact nodal correspondence between range data sets. The 

presented method was also suitable in the case of partial matching.

Nonlinear dimensionality reduction 

Dimensionality reduction is the meaningful transformation of high dimensional data into low 

dimensional space by minimizing information loss. Principal Component Analysis (PCA) 

(Jolliffe 2005) is the most traditional linear dimensionality reduction method which 

maximizes the variance preservation. However this linear technique along with other linear 

methods cannot handle complex nonlinear data. This is why nonlinear dimensionality 

reduction techniques are at the core of most research. A large number of nonlinear techniques 
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have been developed in the last decades (Maimon and Rokach 2005, Lee and Verleysen 

2007).

Any manifold can be fully described by a matrix of interpoint distances. This can simply be 

done by means of a graph based on distance calculation methods. In many applications, like 

in our particular case, the distance remains unchangeable during manifold deformation. In 

this case, geodesics instead of Euclidean distance can be used. In the previous section we 

reviewed one of the distance-preserving dimensionality reduction methods. In fact, distance 

preservation is one of the first criteria to be used for dimensionality reduction. There are also 

other kinds of nonlinear dimensionality reduction (NLDR) methods. 

In (Sammon Jr 1969) Sammon mapped an N, L-dimensional space into a lower dimensional 

space in such a way that the inherent structure of the higher space was preserved, all the

while mapping into the lower space. The idea behind Sammon’s NLM is to try to 

approximately preserve the pairwise distance in two higher and lower spaces. To this end the 

author used the same idea as MDS. Sammon’s NLM first defines an error parameter and then 

uses the steepest descent procedure to try to minimize error function. The NLM algorithm 

does not need any prior information about the data except that the number of iterations 

should be set before iteration. It is also an efficient algorithm when dealing with hyper-

spherical and hyper-ellipsoidal data structures. In spite of these advantages, the output scatter 

diagram of NLM can be confusing when dealing with high dimensional data structures. On 

the other hand, it is incapable of handling a large number of data vectors. To this end, the 

author proposes a data compression technique in order to reduce the larger data sets. Many 

variants of NLM which differ in optimization techniques are presented by other researchers. 

For instance, Mao and Jain (Mao and Jain 2002) presented the SAMANN (Sammon’s 

artificial neural network) method, which instead of classical optimization techniques (i.e. 

steepest descent), uses modern methods of optimization (i.e. neural network based methods). 

Other variants of MDS and NLM are presented by Demartines and Hérault (Demartines and 

Hérault 1997). The CCA (curvilinear component analysis) minimizes the same error/stress 

function, based on pairwise distance in both higher and lower data structure as in MDS and 

NLM. However, it is closely related to Kohenon’s self organizing map (SOM) (Kohonen 
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1982). Inother words, it borrows both the idea of multivariate data analysis and the principals 

of the SOM method. It has all the advantages of previously mentioned methods, however in 

spite of the SOM in which a high dimensional data structure was mapped into a fixed lattice; 

CCA maps it into a continuous space in order to take the shape of a high-dimensional 

manifold. CCA performs two tasks, vector quantization of higher data set followed by the 

nonlinear projection of these quantizing vectors toward a lower dimensional space. In 

comparison to previously reviewed methods, CCA converges very fast. 

In addition to distance preserving techniques, topology preserving methods are another class 

of dimensionality reduction techniques that tend to preserve important data structures in the 

geometric mapping structure. One simple example of topology preserving maps is a Mercator 

projection of the earth into 2D space. While this kind of mapping gives invaluable visual 

information, distortion can’t be prevented in some areas. Locally linear embedding (Roweis 

and Saul 2000) is an eigenvector based technique (like PCA and MDS) where  optimization 

doesn’t involve local minima and iterative optimizations. It tries to preserve the local angles. 

LLE supposes that each point with its neighbors on the manifold lies on, or close to, a locally 

linear patch. Then it tries to characterize the local geometry of the patches by finding linear 

coefficients that reconstruct each point by using its k-nearest neighbors.

State of the art summary

Rigid and Nonrigid surface registration, Nonlinear Dimensionality Reduction and Geometric 

inspection of flexible parts using range data have developed as separate fields of engineering 

among the various engineering and scientific communities. However, all these fields share 

common scientific concepts, and there are many missed opportunities because of a lack of 

mutual connection and wasted synergy. Computer-Aided Inspection is one of these 

connection points, while nonrigid geometric inspection shares a profound degree of 

understanding of all the mentioned disciplines. While in the last decade a variety of papers 

have been published on Rigid and Nonrigid surface Registration and Dimensionality 

reduction methods, this volume of publication does not compare to the number of research on 

the nonrigid inspection of flexible (deformable) parts. As a result, the inspection of flexible 
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parts continues to pose difficulties and imposes significant costs on industry because of the 

need for special fixation devices.
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1.1 Abstract

Freeform surfaces have become an integral part of the automobile and aerospace industries.

The parts with a very thin wall in proportion to their size are referred to as nonrigid (or 

flexible) parts. Generally, for the geometric inspection of such flexible parts, special 

inspection fixtures, in combination with coordinate measuring systems (CMM), are used 

because these parts may have different shapes in a free state from the design model due to 

dimensional and geometric variations, gravity loads and residual strains. A general procedure 

to eliminate the use of inspection fixtures will be developed. Presented methodology is based 

on the fact that the interpoint geodesic distance between any two points of a shape remains 

unchangeable during isometric deformation. This study elaborates on the theory and general 

methods for the metrology of nonrigid parts. We will merge existing technologies in metric 

and computational geometry, statistics, and finite element method to develop a general

approach to the geometrical inspection of nonrigid parts.

Keywords: Geometric inspection; Compliant part; Intrinsic geometry; Geodesic distance;

Nonrigid registration; Multidimensional scaling
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1.2 Introductoin

It is clear that quality product control is essential to company survival in a competitive 

market. With computer-aided inspection (CAI), raw data from a 3D scanner or CMM can be 

compared to the original CAD design to generate impressive inspection reports. Generally, 

for the geometric inspection of nonrigid parts, inspection fixtures, in combination with 

coordinate measuring systems (CMM), are used. The aim of this study is to develop new 

methodology to eliminate the use of inspection fixtures. Three-dimensional optical digitizing 

systems are suitable for the measurement of large-sized flexible parts for they allow non-

contact measurement and are able to deliver, in a relatively short time, large clouds of points 

that are representative of object surfaces. The part is setup on a portable 3D optical digitizing 

system which is installed in a production line regardless of datum shown in the engineering 

drawings. Due to weight, and of course supports, part deformations occur. An identification 

method must be defined in order to extract geometrical profile deviations due to 

manufacturing defects while simulating the use state to compensate for a spring-back effect 

and gravity. 

In many cases, it is possible to associate specific products, materials, and manufacturing 

processes with particular types of seeable surface defects. For instance, injection-moulded 

components may tend to present undesired sink. Similarly, cutting, grinding, and polishing 

operations may produce characteristic surface markings, including an altered texture and 

excessive burrs due to tool wear or the inclusion of foreign abrasive materials. It is important 

to appreciate that in each case, in addition to possible surface discoloration, these defects 

tend to induce a deviation in the component’s surface shape away from a nominal form. The 

nature of this deviation, or the type of expected defect, is often somewhat predictable. If in 

addition, a causal mechanism can be identified, then a quantitative analysis of such defects 

may be used as a basis for automatic process control. These surface defects can be 

recognized with machine vision technologies.  They can also be classified with pattern 

recognition methods. This study does not address these methods.
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The remainder of this paper presents the theory and methods for geometric inspection in 

nonrigid parts. Section 2 provides a comprehensive literature review of the necessary fields. 

Section 3 gives theoretical foundations in metric and discrete geometry as well as fast 

marching method and multidimensional scaling. In section 4 we introduce the methodology 

to measure the geometric deviation of nonrigid bodies. Section 5 gives verification and 

validation of these methods using four case studies.  Section 6 presents conclusions.

1.3 Prior Work

1.3.1 Geometric inspection of solid and flexible parts

Non-contact 3D digitizing systems exposed a new horizon in industrial inspection of both 

rigid and nonrigid parts because they deliver much more data than mechanical probes, in a 

shorter time. A state of the art review of the most important measuring techniques is 

presented in (Savio, De Chiffre et al. 2007) along with their capacity  for freeform measuring 

tasks. Throughout these presented methods (Li and Gu 2004, Li and Gu 2005, Gao, Gindy et 

al. 2006, Shi and Xi 2008), the manufactured part is assumed to have a similar shape to the 

CAD model, allowing for comparison. All presented methods, and most recently 

Ravishankar, et al. (Ravishankar, Dutt et al. 2010), have used rigid registration as similarity 

measures. 

Weckenmann and Gabbia (Weckenmann and Gabbia 2005) proposed a measuring method 

using virtual distortion compensation. They used the measurement results to extract object 

features like holes or edges. Some of these were relevant to the assembly process; others 

were subject to further inspection. From the information about the transformation of 

assembly features from their actual to their nominal position, virtual distortion compensation 

was used to calculate feature parameters of the distortion compensated shape. Their method 

was not completely automated because the suggested method needed some human challenges 

to identify the correlation between some special points like holes and assembly joint 

positions. These led the controller to find the boundary conditions of the FEM problematic. 

Besides, transforming the point cloud to a computer-aided analyzable model is a very time 
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consuming process. These drawbacks then largely improved in (Weckenmann, Weickmann 

et al. 2007). To this end they deformed CAD-model and mapped it towards range data. By 

this way, they decreased the time of inspection. A FEM-mesh created from a CAD-model, 

also provided more precise results than a triangle mesh from measurement results. However, 

proposed method still needed human intervention in order to find the correspondence 

between CAD-model and range data. 

The concept of the Small Displacement Torsor (SDT) was  developed by Bourdet and 

Clément (Bourdet and Clément 1976) to solve the general problem of a geometrical surface 

model fit to a set of points using rigid body movements. Lartigue et al. (Lartigue, Theibaut et 

al. 2006) took  advantage of the possibilities offered by voxel representation and SDT 

method for the dimensional metrology of flexible parts. This time, they considered the effect 

of gravity and the spatial location of a scanned part. This method is fundamentally based on 

finding the correspondence between the cloud of all measured points and CAD meshed data. 

In fact, the SDT is more suitable for small deformations.  

Abenhaim et al. (Abenhaim, Tahan et al. 2011) developed an Iterative Displacement 

Inspection (IDI) which smoothly deformed the CAD mesh data until it matched the range 

data. Their method was based on optimal step nonrigid ICP algorithms (Amberg, Romdhani 

et al. 2007). The point cloud needs to be dense enough because the method’s similarity 

measure is based on the nearest distance calculation. The method depends on finding some 

flexibility parameters which could vary according to thickness. The mentioned drawbacks 

cause previously mentioned methods to limit their applicability in industrial applications.

1.3.2 Rigid and nonrigid surface registration

Besl and Mckay (Besl and McKay 1992) developed an iterative method for the rigid 

registration of 3D shapes. The ICP algorithm is one of the common techniques for the 

refinement of partial 3D surfaces (or models) and many variant techniques have been 

investigated (Bentley 1975, Rusinkiewicz and Levoy 2001). Shi et al. (Shi, Xi et al.) pointed 

out that ICP-based algorithms may not fit inspection applications because the transformation 
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matrix for registration is estimated in a way that total shape error is minimized.  This cannot 

be applied to industrial quality control. Myronenko and Song (Myronenko, Song et al. 2007)

introduced a probabilistic method for rigid, affine and nonrigid point set registration, called 

the Coherent Point Drift algorithm. They considered the alignment of two point sets as the 

probability density estimation, where one point set represents the Gaussian Mixture Model 

centroid, and the other represents the data point. They iteratively fitted the GMM centroids 

by maximizing the likelihood and found the posterior probabilities of centroids, which 

provide the correspondence probability. The method based on forcing the GMM centroids to 

move coherently as a group preserved the topological structure of the point sets.

The Fast Marching Method was introduced by Sethian (Sethian 1996, Sethian 1999, Sethian 

2008) as a computationally efficient solution to Eikonal equations on flat domains. The fast 

marching method was extended to triangulated surfaces by Kimmel and Sethian (Kimmel 

and Sethian 1998). The extended method solved the Eikonal equation on flat rectangular, or 

curved triangulated, domains. Elad and Kimmel (Elad and Kimmel 2003) presented the 

concept of Invariant Signature for surfaces. Their method used fast marching on triangulated 

domains followed by Multidimensional Scaling (MDS) technique. They practically 

transformed the problem of isometric-nonrigid surface matching into a matching of rigid 

surfaces problem. Using MDS, they embedded surfaces X and Y into some common 

embedding space Z called Canonical form and then measured their similarity using the 

Hausdorff distance. Their method is strongly based on the Kimmel and Sethian (Kimmel and 

Sethian 1998) method in computing the geodesic distance on triangular meshes. In fact, 

Euclidean embedding is rarely without distortion. Cox and Cox (Cox 2000) showed how 

points of a configuration from non-metric MDS can be forced to lie on the surface of a 

sphere. Bronstein et al. (Bronstein, Bronstein et al. 2006, Bronstein, Bronstein et al. 2007)

proposed a method: instead of embedding X and Y into some common embedding space Z

that introduced inevitable distortions, they embedded X directly into Y. In spite of the Elad 

and Kimmel (Elad and Kimmel 2003) method, they did not use canonical forms anymore and 

the distance between two surfaces was obtained from the solution of the embedding problem 

itself.
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1.4 Theoretical Foundations

1.4.1 Metric spaces

Let X and Y be metric spaces and ƒ: X � Y an arbitrary map. The distortion of ƒ is defined 

by:

.
dis  sup ( ( ), ( )) ( , )Y X

a b X
f d f a f b d a b

�
� � (1)

The distance dX (a,b) between a pair of points in X is mapped to the distance dY (f(a), f(b))

between the images of a and b under f. For a complete Riemannian manifold, the metric 

d(a,b) is defined as the length of the shortest curve (geodesic) between a and b (Burago, 

Burago et al. 2001).We denote X and Y as subsets of a metric space (Z,dZ). The Hausdorff 

distance between X and Y, dH (X, Y), is defined by:

( , ) max supinf ( , ),supinf ( , )H Z Zy Y x Xx X y Y
d X Y d x y d x y
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� �� 	 

� �

(2)

and Gromov-Hausdorff distance between two metric spaces (X, dx) and (Y, dy) is defined as:

 �
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( , ) inf ( ( ), ( )Z
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where f: X ��Z and g: Y ��Z are isometric embeddings (distance preserving) into the metric 

space (Z,d) . With computational perspective one can say:
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dGH satisfies the triangle inequality, i.e. ,

1 3 1 2 2 3( , ) ( , ) ( , )GH GH GHd X X d X X d X X� � (5)

for any metric spaces Xl , X2 , X3. Moreover dGH (X, Y) = 0 if and only if X and Y are 

isometric. Now for functions : X Y� � and :Y X� � consider the numbers

1 2, 1 2 1 2( ) : sup ( , ) ( ( ), ( ))x x X X YA d x x d x x� � ��� � ,

1 2, 1 2 1 2( ) : sup ( ( ), ( )) ( , ) ,y y Y X YB d y y d y y� � ��� �

,( , ) : sup ( , ( )) ( ( ), )x X y Y X YC d x y d X y� � � �� �� �
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Then dGH can be written as:

 �
:
:

1( , ) inf max ( ( ), ( ), ( , )
2GH X Y

Y X

d X Y A B C
�
�
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�
�

� (6)

This expression is the main idea behind the computational approaches in (Bronstein, 

Bronstein et al. 2006) and (Mémoli and Sapiro 2005) and is the alternative formulation of (3) 

which is computationally tractable. The main difference between GH and ICP distances lies 

in that while the former only looks at the interpoint distance between points on each shape, 

without any regard for the ambient space, the latter requires finding a Euclidean isometry that 

aligns the shapes. Mémoli (Mémoli 2008) proved that Euclidean distance admits the GH 

distance as upper bound, more precisely that, for some constants c>0,  1/2.( )ICP GHd c d� .

1.4.2 The fast marching method on range data

The notion of geodesic distance was originally defined as the length of a geodesic path, 

where the geodesic path between two points on the surface of the Earth is considered the 

shortest path since one is constrained to travel on the Earth's surface. The concept of 

geodesic distance can generalized to any mathematical surface, and defined as the length of 

the shortest path between two points that lie on a surface, when the path is constrained to lie 

on the surface. The first and most important of our approaches is to approximate the geodesic 

distance between all range data. If the sampling domain is dense enough, one idea is to 

approximate the geodesic distance between points with the famous Dijkstra’s shortest path 

algorithm (Dijkstra 1959); but the shortest path computed by Dijkstra’s algorithm does not 

always lead to the real shortest path. This inconsistency is due to the fact that we are allowed 

to move in the graph using only nodal points. Fast marching method (FMM) (Sethian 1996,

Sethian 1999, Sethian 2008) is a numerical algorithm for solving an Eikonal equation on a 

rectangular orthogonal mesh. Later on, Kimmel and Sethian (Kimmel and Sethian 1998)

extended the fast marching method to triangulated domains with the same computational 

complexity. The standard methods for the boundary value view require iteration. Sethian 

described FMM as a method which allows one to solve the boundary value problem without 

iteration. Technically, it is a dynamic programming sequential estimation method, very 
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similar to Dijkstra’s algorithm. We refer the reader to (Sethian 1999, Bronstein, Bronstein et 

al. 2007) for an account. In this way, we are going to compute the geodesic distance between 

one vertex and the rest of the surface vertices. 

1.4.3 Isometric embedding

In order to compare the nonrigid shapes we should look at their intrinsic geometries because 

they rest unchanged during isometric deformations. Consider X and Y as two metric shapes

(Fig. 1.1).

Figure 1.1 Canonical form distance

Let us compute the Canonical Form (CF) as:

:

:

. ... ...
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and compare the extrinsic geometries of canonical forms,
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The term canonical form, computed as Hausdorff distance between the minimum distortion 

embeddings of two shapes X and Y into some common metric space (Z,dZ), is used as well. In 

fact, canonical form is the extrinsic representation of the intrinsic geometry of shape X, and 

using this, we can transform our nonrigid shape similarity into the rigid similarity problem. 

Recalling our knowledge of differential geometry, we know that the Gaussian curvature is an 

intrinsic invariant of a surface. As an example, a sphere of radius r has constant Gaussian 

curvature which is equal to 1/r2. At the same time, a plane has zero Gaussian curvature. As a 

corollary of Gauss's Theorema Egregium, a piece of paper cannot be bent onto a sphere 

without crumpling. Conversely, the surface of a sphere cannot be unfolded onto a flat plane 

without distorting the distances. Although a truly isometric embedding of shape X is not 

always possible, we can try to construct an approximate representation of X by minimizing 

the distortion as we defined in equation (1). In our point cloud setting, where the shape X is 

sampeled at N points {x1,x2,…,xN}, the distortion criteria will be:

, 1,...,
max ( ( ), ( )) ( , )m i j X i ji j N

d f x f x d x x�
�

� �
�

(9)

The function� which measures the distortion of distances is called stress. As a routine 2� is 

used as the distortion criterion. Considering Zi = f (xi) an N m� matrix of canonical form 

coordinates and ( ) ( , )mij i jd Z d z z�
�

, then:

2

2 ( ; ) ( ) ( , )X ij X i j
i j

Z D d Z d x x�
�

� �� (10)

Where DX = dX(xi, xj) is a N N� matrix of geodesic distances and dij(Z) is the Euclidean 

distance between the points on the canonical form. Using this formulation, the coordinates of 

discrete canonical forms are the solution to the nonlinear least-squares problem: 
*

2arg min ( )
N mZ

Z Z�
��

�
�

(11)

and the minimization algorithms known as Multidimensional scaling that are closely related 

to dimensionality reduction. Elbaz and Kimmel (Elad and Kimmel 2003) used a SMACOF 
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(Cox 2000) (Scaling by MAjorizing a Complicated Function) algorithm to minimize the 

stress function.

1.4.4 Geodesic distance interpolation

In practice, the objects are often given as general triangular meshes rather than parametric 

surfaces and therefore have to be parameterized. In the case of complicated topologies, 

finding global parameterization is a challenge. The solution is to use local parameterization 

and a good candidate is to use Barycentric coordinates. Each y’i is represented by a triangle 

index ti and a triplet 1 2 3( , , )i i i iu u u u� . Starting with a particular case where y’ is one of the 

mesh vertices: My y�� (Fig. 1.2). In this case, d1, d2 and d3 can be precomputed using the fast 

marching method. This yields the following interpolation formula:
1 2 3

1 2 3
ˆ ( , ) T

Yd y y u d u d u d d u� � � � � (12)

where d = (d1, d2, d3)T.

Figure 1.2 Geodesic distance interpolation

If y’ = (t’, u’) is an arbitrary point on the mesh, the distances d1, d2 and d3 are unknown. 

Once more we assume that y’ falls into triangle t’ = (y4, y5, y6). Applying the same approach 

in four steps one can obtain (Bronstein, Bronstein et al. 2007):

ˆ ( , ) ( , )T
Y Yd y y u D t t u� � �� (13)
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1.4.5 Generalized multidimensional scaling

The main idea is to find the minimum distortion embedding of X into Y which allows 

quantifying the dissimilarity of the intrinsic geometries of two surfaces. The lowest 

achievable distance can be demonstrated as embedding distance:

:
( , ) inf dis  E f X Y

d Y X f
�

� (14)

We are reminded of the prototype MDS problem with 2� stress as equation (10). Here the 

minimizer is the canonical form of the shape X and the minimum is the embedding distortion 

2� . In practice, the distortion is non-zero, but yet it can be reduced by finding a better 

embedding space. Replacing the Euclidean geometry of the embedding space with a 

spherical one usually gives  smaller metric distortion (Cox 2000) but still this distortion is not 

zero. Bronstein et al. (Bronstein, Bronstein et al. 2006) directly embedded X into Y by 

solving the following problem:

1

2

' ,..., '
min ( ' , ' ) ( , )

N
Y i j X i jy y Y i j

d y y d x x
�

�

�� (15)

We denote the image of �� in Y as y’i. The minimum stress value measures how much the 

metric of X should be distorted in order to fit into Y. Now there is no more need to compare 

canonical forms and the dissimilarity is obtained directly from the embedding distortion. But 

the challenge is that, unlike the Euclidean or the spherical cases, there is no more closed-

form expression for dY (y’i, y’j) and metric needs to be approximated, as y’i are the 

optimization variables. The computational tool for the interpolation of the geodesic distances 

on triangular mesh is obtained in previous section. Substituting (13) to the generalized MDS 

term (15), the quadratic stress function can be obtained:

 �2

1 1( , ,..., , ) ( , ) ( , )T
N N X i j i Y i j jt u t u d x x u D t t u� � �� (16)

Generalized stress can be minimized by block coordinate descent algorithms as in (Bronstein, 

Bronstein et al. 2006) and (Boyd and Vandenberghe 2004). Figure 1.3 tries to construct a 

simplified representation of similarity measure. The total number of point clouds in two 

shapes X and Y are represented by n and m, respectively. DX and DY represent symmetric 

matrixes of pairwise geodesic distances, calculated by fast marching method.
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Generalized multidimensional scaling

Figure 1.3 Simplified representation of similarity measure

1.5 Nonrigid geometric metrology

Free-state variation is a term used to describe part distortion after the removal of forces 

applied during manufacture. This distortion is principally due to the part’s weight (gravity), 

flexibility, and the release of internal stresses resulting from fabrication. A part of this kind, 

for example, a part with a very thin wall in proportion to its diameter, is referred to as a 

nonrigid part (ASME Y14.5). As the state of weightlessness is rarely possible, the shape of 

an assembly component is generally defined in the use state (constraint state) when joined 

with other parts. This use state defines the boundary condition, which will define the 

constrained geometry. When the boundary conditions (or permissible loads) are applied to 
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the theoretical free shape, the geometry of the assembled component is identical to a CAD 

model and this theoretical free shape can be analyzed with finite element method. The actual 

free shape is not the same as a theoretical free shape, because it is not possible to elaborate its 

exact geometry; it includes geometric deviation. The free-state does not correspond to the 

state of weightlessness which we named free shape. In ISO 10579, the position of the part in 

regard to the direction of the gravity is clearly defined. The condition that occurs when a 

cold-worked metal part has a tendency to partially return to its original shape is called 

spring-back. This is because of the material’s elastic recovery when the forming force is 

released. This severely affects the dimensional accuracy of the part. The proposed inspection 

method should be effectively capable to explain the material behavior during registration 

between free-state (scanned point cloud) and nominal CAD data. At this stage, assuming the 

availability of scanned point clouds, the goal is to register two clouds of points, the first 

belongs to a CAD model and the second belongs to range data obtained in free-state. For 

flexible parts and before scanning, one should take into consideration the effect of spatial 

positioning (part set-up) in the final geometrical form of scanned data. Without knowing the 

important fact of gravity direction, serious errors in results can be predicted. Thus, before 

scanning, the part is setup onto reference support points in which their position is clearly 

defined within the part frame. Note that the set-up must not be over-constrained, unless 

otherwise specified according to designer request (ISO 10579). In this case, the same 

constraints must be taken into consideration during finite element analysis. 

1.5.1 Identification of geometric deviation

Let xi be the theoretical point obtained within a CAD model, and x’i its correspondence 

obtained from finite element analysis and finally y’i the correspondence of two premier 

points in range data. Assuming linearity, for geometrical deviation, the following equation 

can be derived:

[Rreal] = [Rmeasured] – [Rtheorical]                                           (17)

which [Rmeasured] = xi y’i is the geometrical deviation between point clouds of CAD model 

and the measured surface. [Rtheorical] = xi x’i results from the finite element simulation of the 

part in free-shape state, in addition to gravity. As mentioned before, the same set-up
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constraints applied to the scanning process must be taken into consideration as boundary 

conditions. At this stage, real geometrical deviation [Rreal] can be calculated. Correspondence 

between xi and x’i is evident; the challenge is how to find the y’j which corresponds to xi.

Let X and Y be metric spaces with metrics dX and dY; the first correspond to the CAD model 

and the second to scanned range data. Due to the fact that xi and yi belong to two different 

metric spaces; similarity measure cannot be computed using Hausdorff distance. Assuming 

that our deformation is a distance preserving one, that is to say dX(xi, xj) = dY(y'i, y’j). Thus, 

our goal is to find a mapping like ƒ: X � Y, by solving the problem (15) where the y’i is the 

image of xi in Y. The minimum stress value measures how much the metric of X should be 

distorted in order to fit into Y. To this end, GMDS can be used to find the correspondence 

between simulated CAD and scanned clouds of points. Mathematically speaking, the 

embedding process does not need primary surface registration (X and Y are different metric 

spaces). In the next section we propose a generalized numerical inspection fixture which is a 

new challenge for getting rid of conventional inspection fixtures.

1.5.2 Generalized numerical inspection fixture (GNIF)

The part is setup onto reference support points where the position is clearly defined within 

the part frame. These points, as priori information, will be utilized as the boundary condition, 

where it will simulate the gravity and support effect on the CAD-model. The part is scanned 

in a distorted state without a fixation device. Preprocessed measured data is put together with 

the CAD-model. Note that the CAD-model should be previously analyzed, applying the 

gravity and support effects in the same direction as the scanning process (Fig. 1.4). The 

transformations that map the preprocessed CAD-model towards range data can be obtained 

by a regular ICP method. In practice and at this stage, we put the measuring part on the 

inspection fixture. In our methodology, this range data plays the role of inspection fixture and 

we call it numerical inspection fixture. Again we notice that mapping the CAD-model into 

range data has some advantages. Transforming the range data into a computer-aided 

analyzable model especially for complicated surfaces is a very time consuming process. For 

such surfaces, more human intervention is needed. Furthermore, parts with hidden stiffening 
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structure or other details at the back side of scanned surface, are so difficult to be modelized 

as FEM-analyzable model. The main advantage of proposed method is that only one FEM-

analyzable model should be created. This really decreases inspection time specially is mass 

production. Using geodesic distance as a similarity measure tool, enable us to find the 

correspondence between CAD-model and range data even in the presence of large 

deformations. Also note that embedding process does not need primary surface registration, 

so the similarity detection can take place before the rigid registration. If we suppose that 

there is no a priori information for the assembly process, then the contour or other assured 

points with negligible deformations such as rigid attachments can be used for nonrigid 

mapping of preprocessed CAD-model into the range data. Generalized multidimensional 

scaling can be used as isometry-invariant partial surface matching so there is no need for 

perfect contour hypothesis. This is very useful when dealing with parts containing missing 

data. Defects due to geometric deviation can be found after finite element nonrigid 

registration, eliminating the spring-back effect. Also note that the meshed CAD-model and 

the scanned workpiece may have a different number of vertices (as in Figure 1.5).  

Preprocessed
CAD-model
(using FEM)

Range data 
processing

Distorted
scanned

workpiece

!" Denoising
!" Sampling

CAD-model

Simulation of B.C.
during scanning
!" Supports positions
!" Gravity direction

Geometrical
deviation

Similarity
measure using 

GMDS *

Rigid
registration

Finite Element 
Nonrogid

registration

Figure 1.4 Inspection process flowchart using GNIF

*Similarity measure can also be done before rigid registration.
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The part can be scanned in a production line or it is indispensable to the fast scanning 

process.  The other steps are realized offline using a PC, thus there is no more need to stop 

production lines for testing a part.

1.6 Results

We have tested presented methodology in a series of typical mechanical parts. This section 

presents four case studies containing free-forms, sharp edges and discontinuities (holes) and 

with different sizes that evaluates performance and validates the methods developed in 

previous sections. To this end, the free-form model is simulated by CATIA® and ANSYS®

then a finite element analysis of the model is done simulating the free-state range data. At 

this step, an external force is applied to the model to simulate unknown spring back 

deformation.  Predefined profile defect was also added to all case studies. Due to the fact that 

we have used predefined deformation in range data generation steps (spring back and profile 

defect), qualitative performance evaluation is effectively traceable. Point clouds of free-form 

and free-state are simulated with a different number of vertices to evaluate the geodesic 

distance interpolation. We have used Voronoi tessellation in order to represent the sampled 

discrete nodes of (metric) surface. After ICP based rigid registration, similarity detection has 

been done using GMDS. Then CAD-model was mapped towards range data using detected 

points. Still in the absence of prior information about assembly process, contour points along 

with holes can be used using correspondent points. We used the contour points for nonrigid 

registrations. Only the maximum geometric deviation is presented (Table 1.2). For better 

visualization, a sampled tessellated section of the third case study with 100 sampled points is 

illustrated in Figure 5. Geodesic distance interpolation enables us to accurately measure the 

similarity between the CAD and scanned data; still there is no exact nodal correspondence. In 

rigid registration process, some prior defined points, or in the areas with the least defect 

probability, may be used for increasing the procedure speed. Overall size and engineering 

properties of the four case studies are represented in Table 1.1. The results are shown in 

Table 1.2.
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Table 1-1 Overall size and engineering data
1st case study 2nd case study

1400x1000x450

t=0.5

80x60x23

t=0.5

3rd case study 4th case study

330x130x78

t=0.2
#80x100

t=0.5

Note: Profile defect area is presented by a circle.
Dimensions are in mm.
Young’s modulus = 2e+11 Pa
Poisson’s ratio = 0.3
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Figure 1.5 Similarity measure between CAD-model 
and range data, for the 3rd case study (Enlarged view of 
upper section. Bold black points represent the sampling 

by Voronoi tessellation.)

Table 1-2 GNIF verification
1st case study

Rmax [mm] #

2nd case study

Rmax [mm]

3rd case study

Rmax [mm]

4th case study

Rmax [mm]

GNIF Results 5.34 (200)* 0.79 (100) 0.86 (100) 0.55 (200)

8.74 (500) 1.01 (200) 1.20 (300) 1.10 (500)

9.93 (1000) 1.10 (500) 1.73 (500) 1.44 (1000)

Maximum predefined 

profile deviation+

10 1. 5 2 2

* The values between parentheses represent  sampled points on CAD-model and range data.
# Maximum geometric deviation calculated by GNIF.
+ Considered as reference value.

All case studies were performed on an AMD Phenom(tm) II X4 B95 Processor 3.00 GHz PC 

using a 64-bit operating system. For instance, similarity measure on first case study and for 

200, 500 and 1000 sampled points took 1.5min, 9.7min and 37.5min, respectively. 

Correspondence search and putting the results with nonrigid registration algorithm are the 

main computational demanding steps. As expected, increasing the density of sampled points 

causes more accurate results (see case studies by column in Table 1.2). On one hand, in order 
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to better represent the underlying surface deviation, we prefer the point sampling to be as 

densely as possible.  On the other hand, we need to keep in mind that the discrete 

representation is used by computer algorithms, and every additional point increases storage 

and computational complexity costs. 

When acquiring three-dimensional shapes using range cameras, a phenomenon called 

topological noise is a well-known problem. Topological noise affects the intrinsic geometry 

of shape. In order to evaluate the effect and robustness of the presented methodology we 

contaminated the range data of the third case study by Gaussian noise of mean 0$ � and 

standard deviation 0.0 .3 mm� � which is independently distributed in each node. Choosing 

the Gaussian noise was because of their simplicity for simulation.  Although some researches 

(Sun, Rosin et al. 2008) demonstrate that real scanner noise is neither Gaussian, nor 

independently distributed. With different iterations we have found up to 0.14 mm deviation, 

passed from what was calculated at noiseless case with 500 sampled points. This means that 

topological noise strongly affects the intrinsic geometry of surface and similarity measure. 

Topological noise may have serious consequences if it affects the connectivity of nodes. 

Connectivity changes definitely touch the geodesics. Consequently, if we try to compute the 

canonical forms, they will absolutely have different forms. For the fourth case study, in 

arrowed point, topological noises affect the canonical form as illustrated in Figure 1.6.
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Figure 1.6 Effect of the topological noise on the computation of 
canonical forms.

1.7 Conclusion

Including part compliance with intrinsic geometry of surfaces in the metrology of free-form 

surfaces is an area of research pioneered in this study.   We merged the technologies in 

metric and computational geometry along with statistics and finite element methods to 

develop a general approach to the geometrical inspection of nonrigid parts. This method 

enables us to verify a diverse range of flexible parts without using special inspection fixtures. 

Although we have tried to present convincing results, no method with such promise is likely 

to be widely accepted until more practical testing can be done. Despite the fact that the 

proposed GNIF method is quite efficient, there is plenty of work to do for future 

computational speedup and accuracy. As a matter of fact, the proposed method is not a 

perfect and faultless substitution for inspection fixtures and CMM reports.  However, in real-

time applications it can be used for variational control of production lines so there will be no 

more need to stop production to test a workpiece.
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In the proposed inspection methodology, and for a full process automatization, we used the 

contour for nonrigid, isometry-invariant surface matching. In fact, this is the only way to 

proceed when there is no prior knowledge of assembly joints and areas. This is not what to 

expect for a vast range of engineering applications. For more crucial results, prior 

information in assembly joints is needed. In production lines, and for each series of products, 

this information is available, so full automatization of the inspection process is still possible. 

Unlike the methods presented by other authors to find the similarity between a CAD-model 

and range data (two different metric spaces), presented embedding processes do not need 

primary surface registration. This really speeds up the measuring process, especially given 

prior information about the assembly process. One of the significant specifications of GNIF 

was the capability for isometry-invariant partial surface matching. This means that contour 

matching can be safely utilized in the existence of missing data. Proposed similarity measure 

is suitable for large deformations. Correspondence search is also completely automatic.

We did not deal with the effect of the diverse smoothing methods to reduce the topological 

noise effect. Also, uncertainty associated with the material properties has not been 

considered. These methods as well as the effect of material uncertainty should also be studied 

in depth. With modern technologies in laser scanners, millions of points presenting the 

topology of surface are accessible. This means that the sample Dijkstra algorithm in graphs 

may give the closest results in comparison with the fast marching method. This is something 

that requires further experiments. Actually, this study may be criticized due to a lack of 

practical experiments. In spite of the fact that we tried to present persuasive results, there is 

no equivalent method for comparison and accurate assessment. Future work should expand 

and verify our presented methods with practical tests. Presently we are developing a more 

accurate geodesic distance calculation in discrete domains. Further deepening of this research 

would involve studying measuring uncertainty and classifying it with surface extrinsic 

geometry. 
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2.1 Abstract

Free-form non-rigid parts form the essence of today’s automotive and aerospace industries. 

These parts have different shapes in free state due to their dimensional and geometric 

variations, gravity and residual strains. For the geometric inspection of such compliant parts, 

special inspection fixtures are used in combination with coordinate measuring systems 

(CMM) and/or optical data acquisition devices (scanners). In our previous work, a general 

procedure was developed to eliminate the use of inspection fixtures. We measured the 

similarities between CAD model and scanned data by taking the advantage of the geodesic 

distance metric. Then, using finite element non-rigid registration, we deformed the CAD 

model into range data to find the geometric deviations.  Here, we apply a new method to 

robustify the generalized numerical inspection fixture (GNIF). We filter out points causing

incoherent geodesic distances, and demonstrate that our approach has several significant 

advantages, one being the ability to handle parts with missing range data. The other 

advantage of the method presented is its capacity to inspect parts with large deformations.

Keywords: Geometric inspection, Compliant part, Intrinsic geometry, Geodesic distance, 

Finite element non-rigid registration, Multidimensional scaling
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2.2 Introduction

Geometric inspection, geometric modeling, range data acquisition and analysis have 

developed as separate fields of engineering among different engineering and scientific 

communities. However, all these fields share a common scientific concept, and the 

opportunity cost for the lack of their mutual connections is a waste of the synergy which 

could otherwise exist. Computer-aided inspection is one of these connection points, while 

non-rigid geometric inspection shares a profound degree of understanding of all the 

mentioned disciplines. Currently, a flexible workpiece must be fixed or clamped during the 

measurement process in order to simulate the use state. To that end, special inspection 

fixtures need to be designed and manufactured. On the other hand, some inspection stages 

cannot be fully automated with this conventional approach. As a result, the geometric

inspection of flexible parts remains a time- and money-consuming process. For example, 

according to our industrial partner (Bombardier Aerospace), some inspection set-up 

processes for non-rigid parts demand 60 to 75 hours of operations. On the other hand, even 

for simple parts, the quality of a planned inspection depends on the ability and experience of 

the operator. Despite the tons of papers and research that have been produced in the CAD, 

CAM and CAI (computer-aided inspection) fields, the inspection of flexible parts continues 

to pose difficulties and to impose significant cost on industries because they need special 

fixation devices. This also points to a lack of knowledge and theoretical foundations 

surrounding this special field. Our approach (Radvar-Esfahlan and Tahan 2011) represents an 

effort to eliminate the use of special inspection fixtures in the metrology of flexible parts. 

However, the method has some drawbacks, which we present here in greater detail, with 

respect to the algorithms used. The other aim of this paper is to robustify the algorithm 

mentioned. Before getting into the details of the proposed inspection methodology, we begin 

by defining some of the terms used in this paper.
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Definition 1. A “Non-rigid part is “a part which deforms to an extent that in the free-state is 

beyond the dimensional and/or geometrical tolerances on the drawing.” [ISO 10579:2010]

Definition 2. “Free-state is the condition of a part subjected only to the force of gravity.” 

[ISO 10579:2010]

Definition 3. “Free-state variation is the distortion of a part after removal of forces applied 

during manufacture. This distortion is principally due to weight and flexibility of the part and 

the release of internal stress resulting from fabrication. A part of this kind (e.g. a part with a 

very thin wall in proportion to its diameter) is referred to as a non-rigid part.”  [para.  5.5 

ASME Y14.5-2009].

Definition 4. Isometric deformation is a kind of deformation in which the geodesic distance 

between points is preserved during deformation. 

Definition 5. Isometric embedding is a distance preserving mapping.

The remainder of this paper is structured as follows.  Section 2 provides a comprehensive 

literature review on rigid and non-rigid registration methods, range data segmentation and the 

metrology of flexible parts. In Section 3 the robust version of GNIF will be introduced in 

details. To this end, this section is divided into five sub-sections. Brief discussion on fast 

marching method will be introduced in Section 3.1. Section 3.2 gives an introduction on 

isometric embedding as a measure used in this paper for similarity detection. As the main 

contribution of this paper is the improvement of GNIF, incoherent geodesics will be 

introduced in Section 3.3. Finite element non-rigid registration (FENR) and geometric 

inspection process of flexible parts will be discussed in Sections 3.4 and 3.5, respectively. 

Section 4 gives verification and validation of presented methodology using four case studies. 

Finally Section 5 presents conclusions.
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2.3 Prior works

2.3.1 Rigid and non-rigid registration

Simultaneously with mechanical engineers, but in different fields, such as Computer Vision, 

Biomedical Engineering and Pattern Recognition, the engineers have conducted a great deal 

of research on rigid and non-rigid registration and deformable surface comparison. Besl and 

McKay (Besl and McKay 1992) developed the Iterative closest point (ICP) algorithm, an 

iterative method for the rigid registration of 3D shapes, and one of the common techniques 

for 3D rigid surface registration. With two shapes on hand, X and Y, the goal of ICP is to find 

the rigid transformation which would bring the two as close as possible. The closeness is 

measured by the Hausdorff distance between two shapes. Many versions of ICP have been 

proposed. These methods differ from the selection and matching of points, to the 

minimization strategy (Bentley 1975, Greenspan and Godin 2001). We refer the reader to 

(Rusinkiewicz and Levoy 2001) for an account of, and comparison between, some ICP 

variants. In (Holden 2008), Holden provides a comprehensive and quantitative review of 

spatial transformation models for non-rigid image registration. 

Multidimensional scaling (MDS) (Borg and Groenen 2005), which is widely used and 

developed in human sciences like sociology and economy, used to serve as a bridge to 

represent the intrinsic geometries of the shapes in a common metric space where they could 

be compared using rigid similarity algorithms. In (Schwartz, Shaw et al. 1989), the authors 

flattened the convoluted surfaces of human brains in order to carry out mutual comparisons, 

and finally, to study the functional architectures of the brain. Some people consider their 

work to have been a breakthrough in which surface geometry was translated into a plane. 

Starting from the first generation of MDS until now, many variants of minimization 

algorithms have been developed for minimizing the stress function. One of the most 

straightforward and successful among these was developed by de Leeuw (De Leeuw 2005).

In (Elad and Kimmel 2003), the authors presented the concept of Invariant Signature for 

surfaces. Their method used fast marching on triangulated domains, followed by the MDS 

technique. They transformed the problem of isometric-non-rigid surface matching into a 
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matching of rigid surfaces problem. Using MDS, they embedded surfaces X and Y into a 

common embedding space Z called a Canonical form, and then measured their similarity 

using the Hausdorff distance. Their method is strongly based on the Kimmel and Sethian 

(Kimmel and Sethian 1998) method in computing the geodesic distance on triangular 

meshes. As the nature of their study was based on classification and pattern recognition, the 

accuracy of their presented method as a measure of the similarity of metric spaces was not 

discussed. On the other hand, the uncertainty of canonical forms due to geodesics based on 

the fast marching method, as well as the uncertainty related to the least square 

multidimensional scaling process, should be investigated in depth. Because the similarity 

measure plays a critical role in our special case, the accuracy of canonical forms in cases of 

non-rigid inspection will be studied using real engineering case studies.  

Despite of canonical forms in which two metric spaces were mapped into a common space, 

Bronstein et al. (Bronstein, Bronstein et al. 2006) proposed a method which mapped two 

metric shapes directly into one another. In spite of classic MDS, here the distortion was a 

kind of similarity measure tool. The distortion showed the degree to which two shapes are 

similar (or dissimilar). Another advantage of their method is its ability to measure the 

similarity of shapes in which no exact nodal correspondence exists between the sets of range 

data. The presented method was also suitable in cases of partial matching.

2.3.2 Point cloud segmentation

In spite of world’s continuous phenomena, usually in engineering applications such as image 

processing and computer vision, we encounter issues with discrete data. In our application 

(i.e. geometric inspection), features of range data captured by optic scanners should be 

extracted. To this end, the edges play an important role as one of the feature detection tools. 

Various approaches have been proposed for detecting edge points in measured range data. 

Chen and Schmitt (Chen and Schmitt 1992) presented a method for calculating principal 

curvatures on a triangulated surface. Yang and Lee (Yang and Lee 1999) used surface 

curvature properties to detect edge points. They investigated the behaviour of the surface 

curvature in a cross-section of the surfaces: step edge, crease edge, edge formed by a 
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concave/convex surface and a flat surface, and finally, an edge formed by a concave and 

convex surface. If the range images are relatively noise-free, then the first the two principal 

curvatures can first be computed followed by the zero crossing and extrema of the largest 

principal curvature. 

Alrashdan et al. (Alrashdan, Motavalli et al. 2000) proposed a hybrid segmentation approach, 

involving the edge-based segmentation performed by the Kohenon network to detect step and 

roof edge points. They used Laplacian filter and surface normal values at each point as an 

input of the Kohenon network; after which they then used mean and Gaussian curvatures in 

order to perform the region-based segmentation. The next step was the integration of the two 

previous steps.

In (Anguelov, Taskar et al. 2005, Munoz, Vandapel et al. 2008), and more recently 

(Shapovalov and Velizhev), the authors address the problem of object class segmentation of 

3D range data using Markov random fields. Although MRF-based methods give acceptable 

results in object recognition, for feature detection (i.e., finding the boundaries, sharp edges 

and corners which are the subject of similarity measuring process), this method should be 

combined with others. On the other hand, the accuracy of MRF-based methods in the 

correspondence measure of the metric space should be investigated in depth. In this paper, as 

one of the essential steps of our methodology, a novel method of contour detection will be 

presented. 

2.3.3 Geometric metrology of non-rigid parts

3D geometric inspection of free forms has become an integral part of automotive and 

aerospace industries. Despite the revolution that has occurred in computer sciences and 

digital data acquisition devices such as laser scanners, non-rigid shape measurement is 

strongly based on using fixation devices to simulate the state of use. Free-form, non-rigid 

geometrical inspection has not undergone extensive study, and state-of-the-art industries still 

use fixation devices for this purpose. A state-of-the-art review of the most important 

measuring techniques is presented in (Chen, Brown et al. 2000, Savio, De Chiffre et al. 

2007), along with their capacity  for free-form measuring tasks. For all these methods 
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presented (Li and Gu 2004, Li and Gu 2005, Gao, Gindy et al. 2006, Shi and Xi 2008), the 

manufactured part is assumed to have a similar shape as the CAD model, allowing for 

comparison. Li et al. (Li and Gu 2005) used a two-step registration, and employed some local 

surface properties (e.g., Principal and Gaussian curvature) in order to find the coarse 

correspondence between CAD model and range data. They then performed fine localization 

based on the least square principal. The benefits of their method in comparison to the single-

step ICP algorithm are not discussed. All presented methods, and most recently Ravishankar 

et al. (Ravishankar, Dutt et al. 2010), use rigid registration as a similarity measure.

Early efforts at non-rigid inspection were undertaken by Weckenmann and Gabbia 

(Weckenmann and Gabbia 2005), who proposed a measuring method using virtual distortion 

compensation. The idea behind their method was to deform the actual distorted point cloud 

into the nominal use state (CAD model). Feature (e.g., holes and edges) extraction was the 

key to measuring the correspondence between CAD model and range data. From the acquired 

point cloud, a triangle mesh of the surface was generated, and then the meshed surface was 

transformed into an FEM model to simulate the fixation process by using extracted features 

as the boundary condition. Their method was not completely automated because the 

suggested method posed some human challenges in terms of identifying the correlation 

between some special points like holes and assembly joint positions. These were used by the 

controller to find the boundary conditions of the FEM problem. Furthermore, transforming 

the point cloud to a computer-aided analyzable model is a very time consuming process. 

These drawbacks were then largely tackled in (Weckenmann, Weickmann et al. 2007). To 

that end, they deformed the CAD model and mapped it towards range data, thus decreasing 

the time of inspection. An FEM mesh created from a CAD model also provided more precise 

results than a triangle mesh from measurement results. However, the proposed method still 

required human intervention in order to find the correspondence between CAD model and 

range data. 

The Small Displacement Torsor (SDT) concept was  developed by Bourdet and Clément 

(Bourdet and Clément 1976) to solve the general problem of a geometrical surface model 

fitted to a set of points using rigid body movements. Lartigue et al. (Lartigue, Theibaut et al. 

2006) took  advantage of the possibilities offered by voxel representation and the SDT 
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method for the dimensional metrology of flexible parts. They considered the effect of gravity 

and the spatial location of a scanned part. This method is fundamentally based on finding the 

correspondence between the cloud of all measured points and CAD meshed data. In fact, the 

SDT is not suitable in the presence of large deformations.  

Abenhaim et al. (Abenhaim, Tahan et al. 2011) developed an Iterative Displacement 

Inspection (IDI) which smoothly deformed the CAD mesh data until it matched the range 

data. Their method was based on optimal step non-rigid ICP algorithms (Amberg, Romdhani 

et al. 2007). The point cloud had to be dense enough because the method’s similarity 

measure was based on the nearest distance calculation. The method depended on finding 

some flexibility parameters which could vary according to thickness. They used the same 

number of nodes in two datasets, which rarely happens in real applications. 

Radvar-Esfahlan and Tahan (Radvar-Esfahlan and Tahan 2011) merged the technologies in 

metric and computational geometry with statistics and finite element methods to develop a 

general approach to the geometrical inspection of non-rigid parts. By taking the advantage 

offered by the geodesic distance metric, they measured the similarities between CAD model 

and range data. Then, using finite element non-rigid registration (FENR), they deformed the 

CAD model into range data to find the geometric deviations.

Recently, in (Jaramillo, Prieto et al. 2013, Jaramillo, Prieto et al. 2013) the authors proposed 

a methodology that used the partial range captures of the workpiece. The inspection process 

was based on an iterative nonrigid alignment algorithm. To this end, a transformation to the 

CAD model was applied at each iteration which was calculated by minimizing the error with 

a partial-view model. By this method it was assumed that the acquired region contains 

sufficient feature points that would enable model alignment. We underline that the ability of 

partial inspection is one of the capabilities of the GNIF technique first presented in (Radvar-

Esfahlan and Tahan 2011).

While previously mentioned methods seek a quantitative analysis of nonrigid parts 

(geometric deviation), qualitative visual inspection of these parts using light-reflection 

patterns were first introduced by Gentilini and Shimada (Gentilini and Shimada 2011).

Although the accuracy of their method was acceptable (0.3-0.6mm) for average industrial 
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applications, those kinds of defects are widely traceable with machine/computer vision 

technologies.

2.4 Robust numerical inspection fixture (RNIF)

In (Radvar-Esfahlan and Tahan 2011), we presented a methodology based on the fact that the 

shortest inter-point path (geodesic distance) between any two points on the parts remains 

unchanged during an isometric deformation. We called this property a distance preserving 

property of non-rigid parts. Here, we provide a more detailed image of the property. The aim 

is to construct a more robust algorithm. To this end, we will filter out some geodesic 

distances which influence our algorithm. Using depicted examples, we will discuss the 

source of such incoherent geodesics. 

2.4.1 Geodesics on range data

Fig. 2.1 shows a thin-wall part deformed under its weight. Let xi be the theoretical point 

within a CAD model and let iy� represent the image of xi in Y on free state; where

1
,..., nx x X� ;

1
,..., my y Y� � � and n, m are the sampled points which represent two spaces X and 

Y. Despite the large deformation present, the two shapes are intrinsically similar, which 

means that it is possible to unfold one surface onto the other without stretching it (in the 

absence of plastic deformations), i.e., a map of one surface can be unfolded over the other, 

while preserving its distance. The shortest path (geodesic distance) between x1 and x2 remain 

unchanged during isometric deformation, so � �
1 2 1 2x x y y

d d
� �

� . As we will discuss later, this 

property enables us to find the correspondence between CAD model and scanned data. 

Mathematically speaking, intrinsic properties remain unchangeable due to isometric 

deformations, and so to compare the non-rigid shapes, we should look at their intrinsic 

geometries. In other words, since X and Y belong to different metric spaces 3� , we cannot 

measure their similarity using a Hausdorff distance-based similarity measure (e.g., ICP). 
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Figure 2.1 Intrinsic similarity in deformed shapes

The first and most important step of our approach is therefore to approximate the pair-wise 

geodesic distance between all points on range data and CAD model. If the sampling domain 

is dense enough, one idea is to approximate the geodesic distance between points with the 

famous Dijkstra shortest path algorithm (Dijkstra 1959); however, the shortest path 

computed by the Dijkstra algorithm does not always yield the real shortest path. For example, 

we may consider a unit square graph and its shortest path between the upper left and lower 

right angles, which is equal to 2 while the shortest path calculated by the Dijkstra algorithm 

is equal to 2. This problem is due to the fact that we are allowed to move in the graph using 

only nodal points. To overcome this inconsistency of the Dijkstra algorithm, the Fast 

Marching Method (FMM) was introduced by Sethian (Sethian 1996) as a numerical method 

for solving boundary value problems of the Eikonal equation:

0( ) ( ) 1,        ( ) 0T x F x T X% � � (18)

which describes the propagation of a closed curve in 2� (or a surface in 3� ) with speed F in 

the direction normal to itself so that the sign of the speed function never changes. Kimmel 

and Sethian (Kimmel and Sethian 1998) developed a version of  the Fast Marching algorithm 

on triangulated domains with the same computational complexity. The initialization of T was, 

like in Dijkstra algorithm, zero at 0X . Unlike the Dijkstra algorithm, where the shortest path 

was restricted to graph vertices, the shortest path in the FMM can pass through the triangular 

mesh. Fig. 2.2 (left) depicts the idea behind the FMM in the triangulated domain. Let us 

assume that we are given two points x1 , x2 with known front arrival times T1 and T2. The 

x1

x2

y’1

y’2
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question is how to estimate the front time T3 when it arrives at the point x3. Note that we can 

freely switch between the path length and arrival time, thus d1=T1, etc. In this case, d can be 

calculated as the point-plane distance d 1= n.x1+p, d 2= n.x2+p. These two equations can be 

written with matrix notation as follows:

.1TV n p d� � (19)

where d = [d1, d2]T , V = [x1, x2] , 1 =  [1, 1]T . The unit normal vector n can be easily drived

from equation (2). 

Figure 2.2 Calculation of arrival time in 2� for an expanding front F>0

Assuming that the front is planar ( 2
1 2 3, ,x x x �� ), the discretization of the Eikonal equation 

leads to the following quadratic equation (Bronstein, Bronstein et al. 2007):
2
3 3.1 1 2 .1 1 0T T Td Q d Qd d Qd� � � � (20)

where Q = (VTV)-1 . Equation (20) has two solutions, with both n, -n satisfying it. In this 

case, the smaller solution is not acceptable (Fig. 2.2, right) because the front propagation 

time is a monotonically increasing function, which means that d3 > d1, d2. This is equivalent 

to saying that 0TV n & .

Another effect of this monotonicity can be translated as:

3 3

1 2

, 0
T

d d
d d

� �' '
�	 
' '� �

(21)

which means that d3 should increase when d1, d2 increase or simply QVTn < 0. Given that Q = 

(VTV)-1 then QVTV = (VTV)-1VTV = I. This means that the rows of QVT are orthogonal to 
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triangle edges, which mean that n must lie within the triangle and 1 3 2x x x� should be acute. 

Thus, the entire update step can be summarized as in Algorithm 1.

Algorithm 1 Fast marching update

In the case of obtuse meshes in (Kimmel and Sethian 1998), the authors propose to split the 

obtuse triangle into two acute ones.

2.4.2 Isometric embedding

Fig. 2.3 depicts two similar non-rigid shapes. As stated in the previous section, our goal is to 

compare and find the correspondence between shapes X and Y with the metrics of dX and dY.

In most non-rigid part applications, the deformations are isometric. This means that two 

shapes X and Y, in spite of deformations, are isometrically equal. In this case, because the 

two metrics are different, we cannot find their similarity using Hausdorff-based methods like 

ICP. 

input: triangulated surface
output: shortest inter-point path

1 Solve the quadratic equation (3) and select the larger solution. 
2 Compute the front propagation direction n.
3 if QVTn > 0

use Dijkstra’s algorithm:
( )3 1 1 3 2 2 32 2

min ,d d x x d x x� � � � �

else
d3 = min {d3 , p}
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Figure 2.3 Illustration of the isometric embedding problem

In fact, non-rigid registration is somewhat difficult than the rigid registration. Despite the 

rigid case, here we should be looking for the intrinsic similarity because intrinsic geometry 

remains unchanged during isometric deformations. Fig. 2.3 also demonstrates a method for 

dealing with the non-rigid registration problem. Let us assume that we are capable of 

embedding two shapes (left) in a common metric space (right). If we can construct this 

embedding such that the Euclidean distance between all inter-point nodes during embedding 

remain equal in terms of geodesics, in this case we can transform a non-rigid similarity 

problem into a rigid registration problem. This method seems like an ideal method for the 

non-rigid registration problem. The problem now is how to map the shapes onto a common 

space in an ideally isometric manner. From geometry we know, for example, that mapping a 

sphere onto a flat surface (and vice versa) produces unwanted distortions, because both the 

sphere and the flat surface have different Gaussian curvatures. One way of overcoming such 

a problem is by trying to construct an approximate construction by minimizing the distortion. 

This is the basic idea behind the canonical forms proposed in (Elad and Kimmel 2003). In 

our point cloud setting, where the shape X is sampled at N points {x1,x2,…,xN}, the distortion

(Burago, Burago et al. 2001) criteria will be:

, 1,...,
max ( ( ), ( )) ( , )m i j X i ji j N

d f x f x d x x�
�

� �
�

(22)

(X, dX)

(Y, dY)
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In MDS literature, the function� which measures the distortion of distances is called stress.

Historically, 2� has been used as the distortion criterion. Let us assume that Zi = f (xi) is a 

matrix of canonical form coordinates and ( ) ( , )mij i jd Z d z z�
�

, then:

2

2 ( ; ) ( ) ( , )X ij X i j
i j

Z D d Z d x x�
�

� �� (23)

Here DX is a matrix of geodesic distances and dij(Z) is the Euclidean distance between the 

points on the canonical form. The minimization algorithms which minimize the stress 

function known as Multidimensional scaling (MDS). Historically, MDS has been classified 

as a dimensionality reduction method. SMACOF (scaling by majorizing a complicated 

function) is one of the well-known MDS algorithms for minimizing the stress function 

2 ( ; )XZ D� with respect to Z. This algorithm was proposed by De Leeuw (De Leeuw 2005) is 

the core of our study in (Radvar-Esfahlan and Tahan 2011). We refer the reader to (Borg and 

Groenen 2005) for a detailed discussion on SMACOF algorithm. Despite its simplicity, the 

SMACOF guarantees a monotonically decreasing sequence of stress values. Fig. 2.4

illustrates the convergence of the SMACOF algorithm applied to the problem of embedding 

surface X (Fig. 2.3) sampled with N = 1511 points.

Figure 2.4 Convergence plot of SMACOF algorithm 
applied to shape X (Fig. 2.3) with N=1511 nodes
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As discussed in (Radvar-Esfahlan and Tahan 2011) Euclidean embedding is rarely without 

distortion, especially if embedding is attempted for a surface that looks more like a sphere 

than like a plane into a Euclidean space. One way of overcoming this drawback is by 

choosing one of the surfaces, say Y, as the embedding space (Fig. 2.5). In other words, we 

would like to embed X into Y by solving the following problem:

1

2

' ,..., '
min ( , ) ( ' , ' )

N
X i j Y i jy y Y

d x x d y y
�

��
(24)

where iy� is the image of xi in Y. Mathematical solution to this minimization problem on 

triangulated surfaces is known as Generalized multidimensional scaling (GMDS). We refer 

the reader to (Bronstein, Bronstein et al. 2006, Bronstein, Bronstein et al. 2007, Radvar-

Esfahlan and Tahan 2011) for further accounts.

Figure 2.5 Generalized MDS

2.4.3 Incoherent geodesic distances

In this section, we discuss what we call incoherent geodesics and the origin of incoherency. 

Figs. 2.6a and 2.6b depict X and Y as two metric spaces corresponding to CAD model and 

range data. In Fig. 2.6a and in the middle of the part (white), consider an area with missing 

data. This is normally a common problem during the data acquisition process. Missing data 

can be caused by the operator’s error or scanner precision. Data sampling and meshing can 
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also cause such a missing data region. While the actual geodesic between xi and xj in the 

CAD model is calculated by a straight (black) line, the geodesic in the range data (red dashed

line) significantly varies from the nominal one (Fig. 2.6a). Fig. 2.6b depicts a case in which 

the operator decides to perform a partial inspection. In this case as well, the actual geodesic 

(red line) on the boundary of range data may vary from the nominal one (black line in the 

CAD model). 

It should also be noted that in (Radvar-Esfahlan and Tahan 2011) we dealt with a very 

general case of inspecting a flexible part. We compared it with CAD-model. However in 

industry according to ASME Y14.5 and ISO 10579 normally use state (constraint state when 

joined with other parts) should be simulated. This kind of use state simulation can be 

considered as a special case of GNIF where some boundry conditions are known. In this 

study, we also use the boundary of the parts to perform the finite element non-rigid 

registration (section 3.4). However in most cases, the boundary of the parts is the most

contaminated area with noise and geometric deviation. Thus, it may be another source of 

incoherency. So far, we know of two such geodesics: 1) those that have contact with the 

missing data region, and 2) others that have contact with the boundary of the scanned part. 

We will filter all these geodesics which we call incoherent geodesics out of the MDS 

procedure. In the next section the new method for contour detection will be presented.
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(b)

Figure 2.6 Incoherency caused by (a) missing data and 
(b) partial matching 

2.4.3.1 Boundary detection

Geodesic distances are vital and critical as the inputs for the MDS algorithm. As discussed in 

previous section any incoherency can cause an inaccurate correspondence between CAD 

model and range data. To prevent such situations, we find all geodesics in contact with the 

mentioned regions and filter points causing such an incoherent geodesic distance. To this 

end, we propose a simple method for calculating the boundaries. Of course, as discussed in 

Section 2.2 there are many algorithms for edge and boundary detection in range data. Our

method’s simplicity comes from the ability of transforming the higher dimensional data into 

lower dimensional space. 

(a)
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Figure 2.7 Boundary detection for the part in Fig. 2.6
(embedding using SMACOF)

In Fig. 2.7 any point j is a boundary point if all its neighbours are on one side of it. This 

simple idea leads us to following boundary detection algorithm:

Algorithm 2 Boundary detection algorithm

2.4.4 Finite element non-rigid registration

Our methodology is inspired by real industrial inspection processes. When the flexible part is 

placed on the inspection fixture, the prevailing idea is that we are going to simulate the use 

state; more specifically however, we can say that we are looking for some correspondence

between the distorted part and the inspection fixture, which represents our CAD model. In 

(Radvar-Esfahlan and Tahan 2011) we presented a methodology based on the fact that the 

shortest inter-point path (geodesic distance) between any two points on a shape remains 

input: points cloud
output: boundary points (inner and outer)
1 repeat {1,..., }j N* �
2 calculate the K nearest neighbours of the j
3 apply SMACOF algorithm to K K� matrix of nearest neighbours
4 calculate the center of gravity for K nearest neighbours
5 compute the distance between j and the center of gravity
6 if this distance is larger than some threshold then label it as boundary point
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unchanged during an isometric deformation. We called this property the distance preserving 

property of non-rigid parts. In Fig. 2.8, CAD model and range data are represented as a 

cantilever beam. For simplicity and without loss of generality, let us assume that some prior 

information about boundary conditions (e.g., support point) is already known. Rigid 

registration (e.g., ICP-based algorithm) can be done using this prior information. In the 

absence of plastic deformations, displacing x1 to y1 will deform the beam, and so there will be 

a bijective (one-to-one correspondence) distance-preserving map between these two shapes 

(by bijective we do not mean the exact nodal correspondence). Also, we assume that all pair-

wise geodesic distances between the points on X (CAD model) and Y (scanned data) are 

available (e.g., using fast marching method). If we can introduce a similarity measure in 

order to find a correspondence between these two metric spaces, the step we call the finite 

element non-rigid registration (FENR) can be performed: (a) Find the correspondence (e.g., 

y1 is the image of x1); (b) Knowing some boundary conditions as prior information and 

finding the correspondence then displace x1 towards y1; (c) Calculate the geometric deviation 

between deformed CAD model and measure range data.

Figure 2.8 Finite element non-rigid registration

Notice that mapping the CAD model into range data has some advantages. Transforming the 

range data into a computer-aided analyzable model, especially for complicated surfaces, is a 

very-time consuming process. For such surfaces, more human intervention is needed. 

Furthermore, parts with hidden stiffening structures or other details on the back side of 

scanned surface, are very difficult to model as FEM-analyzable models. The main advantage 
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of the proposed method is that only one FEM-analyzable model should be created. This 

really decreases the inspection time, especially for mass production inspection.

2.5 Geometric inspection process

Detailed flowchart of our presented methodology is depicted in Fig. 2.9. Compared to GNIF 

(Radvar-Esfahlan and Tahan 2011), the main difference is to detect the incoherent geodesics 

in range data. Two kinds of incoherent geodesics have to be detected: those that have contact 

with the missing data region, and those that have contact with the boundary of the scanned 

part. Performing what introduced in Section 3.3.1 incoherent geodesics then have to be 

filtered out of GMDS algorithm. Then FENR step is applied to quantify the profile defect.

Preprocessed
CAD-model
(using FEM)

Range data 
processing

Distorted
scanned

workpiece
CAD model

Simulation of B.C.
during scanning
!" Supports positions
!" Gravity direction

Profile
deviation

Similarity
measure using 

GMDS *

Rigid
registration

Finite Element 
Non-rigid

registration

Incoherent
geodesics
detection

!" Denoising
!" Sampling

Contour
detection

Figure 2.9 Inspection process flowchart using RNIF5

*Similarity measure can also be performed before rigid registration.

As GNIF, it should be noted that FENR was performed to quantify the amount of defect. 

Defect detection (visualisation) is completely possible without passing to this very time 

consuming stage. In fact in most cases of mass production it is desirable to find out where 

5 We refer the reader to Annex I for more details.
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and when surface defects occur. Comparing two matrix of pairwise geodesic distances 

between CAD model and range data even visually can depict where the defect occurs. 

Before going on to the next section it has to be noted that in this paper we assume the 

following: 

1. The surface that is sampled is a valid surface. 

2. There is a finite set of points that sample the surface. 

3. There is no duplication of sampled points. 

4. Any small perturbation of point locations does not change the connectivity in the 

reconstructed surface (Radvar-Esfahlan and Tahan 2011).

5. The different methods for meshing will not be discussed, and we assume that such 

(triangular) meshing exists for range data and the CAD surface.

6. The effect of the diverse smoothing methods in reducing the topological noise effect 

will not be discussed.

7. There is a bijective mapping between range data and the CAD model. 

2.6 Results and discussion

We tested the presented methodology with four typical mechanical parts. Table 1 presents the 

overall size and engineering data. These case studies contain free forms, sharp edges, 

discontinuities (holes), and different sizes that evaluate the metrological (accuracy) 

performance of the method developed in the previous section. To this end, the free-form 

model was simulated by CATIA®, and a finite element analysis of the model was performed, 

simulating the free-state range data. At this step, a displacement and/or a force was applied to 

the model to simulate unknown deformation. Fig. 2.10 represents such a free-state simulation 

for the first case study. A predefined profile defect was also added to all case studies. For 

instance, Fig. 2.11 illustrates such a profile defect (8 mm maximum amplitude over a Ø200 

mm area) for only one propeller blade.

Because we used predefined deformation in the range data generation steps (deformation and 

profile defect), qualitative performance evaluation is effectively traceable. Free-form and 

free-state point clouds were simulated with a different number of vertices to evaluate the 
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geodesic distance interpolation. We used a Voronoi tessellation to represent the sampled 

discrete nodes of the (metric) surface, after which incoherent geodesic detection was 

performed. To this end, we filtered out all the geodesics containing the inner and outer 

boundary points. In each part, we also added the regions with some missing data. After ICP-

based rigid registration, similarity detection was performed using GMDS. The CAD model 

was then mapped to range data using detected points. Finally, the finite element non-rigid 

registration was performed. Here, only the maximum geometric deviation is presented (Table 

2). For better visualization, a sampled tessellated section of the first case study with 50 

sampled points is illustrated in Fig. 2.12. Geodesic distance interpolation enables us to 

accurately measure the similarity between the CAD and the scanned data, and there is still no 

exact nodal correspondence. In the rigid registration process, some prior defined points, or in 

the areas with the least defect probability, may be used to increase the procedure speed. As 

shown in Table 2, the primary GNIF results were significantly improved by the presented 

methodology (RNIF). This improvement is due to the capabilities presented by the filtering 

method. In fact, filtering the incoherent geodesic distances out of the multidimensional 

scaling process results in more accurate similarity measure detection. 
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Table 2.3 Case study size and engineering data

Case study 1 

(wind turbine blade) 

Case study 2 

(propeller)

l =1200, r =150 (blade profile radius)

Thickness =0.5

Aluminum

�������	
�������

Thickness =0.5

Aluminum

Case study 3 

(hood)

Case study 4 

(cover)

1900x1600x400

Thickness =0.5

Aluminum

600x400x225

Thickness =0.5

Aluminum

Note: Dimensions are in mm.
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Figure 2.11 Sample predefined profile defect for Case study 2

Bump (8 mm)
Deformation 
center

Limit curve 
(Ø200 mm)

Figure 2.10 Predefined deformation for wind turbine 
blade (to simulate free-state) – Blade side view



63

CAD model                    Range data     

Figure 2.12 Similarity measure between CAD 
model and range data (with 1833 and 7140 
nodes, respectively), End of turbine blade 

(Case study 1)

Table 2.4 Verification of RNIF

Case study 1 Case study 2 Case study 3 Case study 4

GNIF RNIF GNIF RNIF GNIF RNIF GNIF RNIF

Values 

identified 

by GNIF / 

RNIF

2.67a

(50)b

2.93

(50)

5.07

(100)

5.98

(100)

3.00

(50)

3.73

(50)

2.09

(100)

2.16

(100)

2.85

(500)

3.20

(500)

7.67

(250)

7.73

(250)

5.02

(100)

6.11

(100)

6.95

(500)

7.09

(500)

4.57

(1500)

4.71

(1500)

7.90

(500)

7.95

(500)

6.47

(500)

6.91

(500)

9.19

(1000)

9.38

(1000)

Predefined 

profile 

deviation

5.00 8.00 7.00 10.00

a All dimensions are in mm.
b The values between parentheses represent sampled points.
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All case studies were performed on an AMD Phenom(tm) II X4 B95 Processor 3.00 GHz PC 

using a 64-bit operating system. For instance, the similarity measure in the first case study 

and for 50, 500 and 1500 sampled points took 1.2min, 9.9min and 117.8min, respectively. A 

correspondence search and the combination of the results with a non-rigid registration 

algorithm were the main computational demanding steps. As expected, increasing the density 

of sampled points led to more accurate results (see case studies by column in Table 2). On 

the one hand, to better represent the underlying surface deviation, we preferred to have the 

point sampling to be as dense as possible.  On the other hand, we had to bear in mind that the 

discrete representation is used by computer algorithms, and every additional point increases 

storage and computational complexity costs. 

2.7 Conclusion

Given the lack of theoretical knowledge and inspection methodology for non-rigid part 

inspection, the only method used to handle this problem today in industry involves using 

high cost inspection fixtures. In this study, we propose a robust foundation for a fixtureless 

non-rigid inspection. This research pioneers the inclusion of part compliance with intrinsic 

geometry of surface in the metrology of free-form surfaces. We introduced a new 

methodology based on the fact that the shortest path (geodesic distance) between any two 

points on a shape remains strictly unchanged during an isometric deformation. We called this 

property the distance preserving property of non-rigid parts. We merged the technologies in 

metric and computational geometry with nonlinear dimensionality reduction methods and 

finite element analysis to develop a general and robust approach to the geometrical 

inspection of non-rigid parts. Preliminary results proved that the proposed method, based on 

distance-preserving nonlinear dimensionality reduction methods (NLDR), was quite efficient. 

In the next study, we will develop and verify the proposed methodology with real-world tests 

in cooperation with our industrial partner. Also, in this study we did not deal with how the 

various smoothing methods reduce the topological noise effect. The uncertainty associated 

with the material properties was not examined. These methods, as well as the effect of 

material uncertainty, should also be studied in depth. 
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Another application of proposed methodology is to confirm the datums. According to ASME 

Y14.5-2009 a datum is a theoretically exact point, axis, line, plane, or combination thereof 

derived from the theoretical datum feature simulator. In most free-form parts datums are 

established by datum targets. A datum target is a specified point, line, or area of contact 

between the part and the machine surface, inspection equipment or a CAD model. It ensures 

that the part will be located the same way during both assembly and inspection. In most free-

form shapes a critical question is how to confirm the datums. In this case, as discussed 

before, GNIF/RNIF as a framework for isometry-invariant partial surface matching can be 

used to verify the correspondence between selected datum areas between CAD model and 

captured point clouds.

The proposed method is not a perfect and faultless substitution for inspection fixtures and 

CMM reports.  However, in real-time applications, it can be used for variational control of 

production lines; thereby removing the more need to stop production to test a workpiece. 

Although there are few research projects involving the geometric inspection of non-rigid 

parts, no general-purpose, fully automated and real-world practical method which can be a 

substitute for CMM reports exists. Specific long-term goals must be set and systematically 

accomplished.
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3.1 Abstract

The geometric measurement of parts using a coordinate measuring machine (CMM) has been 

generally adapted to the advanced automotive and aerospace industries. However, for the 

geometric inspection of deformable free-form parts, special inspection fixtures, in 

combination with CMM’s and/or optical data acquisition devices (scanners), are used. As a 

result, the geometric inspection of flexible parts is a consuming process in terms of time and 

money. The general procedure to eliminate the use of inspection fixtures based on distance 

preserving nonlinear dimensionality reduction (NLDR) technique was developed in our 

previous works. We sought out geometric properties that are invariant to inelastic 

deformations. In this paper we will only present a systematic comparison of some well-

known dimensionality reduction techniques in order to evaluate their accuracy and potential 

for non-rigid metrology. We will demonstrate that even though these techniques may provide 

acceptable results through artificial data on certain fields like pattern recognition and 

machine learning, this performance cannot be extended to all real engineering metrology 

problems where high accuracy is needed.

Keywords: Computer Aided Inspection, Geometric inspection, Flexible parts, imensionality 

reduction.
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3.2 Introduction

Geometric inspection, geometric modeling, range data acquisition and analysis have 

developed as separate fields of engineering among the various engineering and scientific 

communities. However, all these fields share common scientific concepts, and there are 

many missed opportunities because of a lack of mutual connection and wasted synergy. 

Computer-Aided Inspection is one of these connection points, while nonrigid geometric 

inspection shares a profound degree of understanding of all the mentioned disciplines. 

Currently, a flexible workpiece must be constrained or clamped during the measurement 

process in order to simulate the use state. To that end, expensive and special inspection 

fixtures need to be designed and manufactured (Abenhaim, Desrochers et al. 2012). On the 

other hand, some inspection stages cannot be fully automated with this conventional 

approach. As a result, the geometric inspection of flexible parts remains a time and money 

consuming process. Typically some inspection set-up processes for nonrigid parts in 

aerospace industry request over 60 hours of operations. Despite the multitude of papers and 

research that have been produced in the CAD, CAM and CAI fields, the inspection of 

flexible parts continues to pose difficulties and significant costs to industries because they 

need special fixation devices. This is also evidence of the lack of knowledge and theoretical 

foundations surrounding this special field. Our approach (Radvar-Esfahlan and Tahan 2010,

Radvar-Esfahlan and Tahan 2011, Radvar-Esfahlan and Tahan 2011) was an effort to 

eliminate the use of special inspection fixtures in the metrology of flexible parts. We tried to 

provide a better understanding of the developed algorithms by having the comparison 

between different existing methods. We also added some techniques to robustify our 

Generalized Numerical Inspection Fixture (GNIF) (Radvar-Esfahlan and Tahan 2011). Our 

philosophy was based on the fact that the interpoint shortest path (geodesic distance) between 

any two points on the parts remains unchanged during an isometric deformation. We called

this property distance preserving property of nonrigid parts. In fact GNIF was inspired by a

real industrial inspection process. When a flexible part is put on an inspection fixture, the 

prevailing idea is that we are going to simulate the state of use. But more specifically, one

can say that we are looking for some correspondence between distorted parts and inspection 
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fixtures, which represents our CAD-model. In spite of the accuracy of the presented 

methodology, the similarity detection process was extremely slow even for simple parts with 

zero Gaussian curvature. 

In Section (2) a brief introduction to six NLDR methods will be presented concisely with 

theirs mathematical fundaments. Then in Section (3), described methods will be evaluated 

using some typical world engineering data. The aim is to illustrate a systematic comparison 

and precision for each method.

3.3 Dimensionality Reduction

Most problems in pattern recognition, such as image processing and speech recognition, 

begin with the preprocessing of high-dimensional signals. The complexity of most learning 

algorithms depends on the number of input dimensions D . This is why we are interested in 

reducing the embedding dimensionality with minimizing the loss of information, of course.

In the literature there are two techniques for dimensionality reduction: feature selection and 

feature extraction. In feature selection the aim is to find d of D dimensions (where d D& )

which gives us the most information. In other words, we are interested in finding the best 

subset of the set of the features. In metrology, feature selection is not a good approach for 

dimensionality reduction because the individual vertices do not carry much information on 

their own. It is the combination of vertices that provides the most discriminative information. 

This is the idea behind the feature extraction techniques. We therefore consider the following 

problem. Given a high dimensional data  �1, , nX x x� � where D
ix �� the aim is to compute 

the output data d
iZ �� that is the low dimensional representation of X . For techniques used 

in this paper only general information, including the steps for each method, will be included 

without going into derivation. Our focus in this paper is to compare the dimensionality 

reduction methods on the geometric metrology view point. Consequently, the aim is not to 

provide the details of the algorithms. We invite the reader to refer to the original paper of 

each algorithm for further details. However, we will sketch a concise summary of each 

algorithm for comparison and reference purposes. Next section deals with methods that 
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reduce the dimensionality of data by using distance and topology preservation as the 

criterion.

3.3.1 Distance Preserving DR techniques

For linear dimensionality reduction, some simple criteria like maximizing the variance 

preservation leads to one of the robust dimensionality reduction methods like Principal 

Component Analysis (PCA) (Jolliffe 2005). However, in nonlinear cases the use of the same 

simple criteria requires more complex data models. On the other hand, every manifold can be 

described by its pairwise point distances whether by Euclidean, graph or geodesics metrics. 

Tons of research has been undertaken and motivated by a simple fact: if close points are  kept 

close and far points kept far, then the high dimensional data set and its low dimensional 

embedding share the same shape (Lee and Verleysen 2007). This section attempts to review 

some of the best-known existing methods.

3.3.1.1 Multidimensional Scaling (MDS)

Given the pairwise distance ijd between n points and assuming that we don’t know the exact 

coordinates of the points and how the distance is  calculated, MDS (also known as Principal 

Coordinates Analysis (Gower 1966)) tries to place these points in low dimensional space in 

such a way that the Euclidean distance between them is as close as possible to ijd .

Historically, the most significant achievement on MDS begins with Torgerson’s work  in 

1952 (Torgerson 1952). Before then, Young and Householder (Young and Householder 

1938) used the Euclidean distance as a metric of similarity measure. Let X andY be metric 

spaces and :f X Y� an arbitrary map. The distortion of f is defined by:

.
dis  sup ( ( ), ( )) ( , )Y X

a b X
f d f a f b d a b

�
� � (25)

The distance ( , )Xd a b between a pair of points in X is mapped to the distance ( ( ), ( ))Yd f a f b

between the images of a and b under f (Burago, Burago et al. 2001). In our point cloud 
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setting, where the shape X is sampled at N points ( )1, , NX x x� � , the distortion criteria 

will be:

, 1,...,
max ( ( ), ( )) ( , )m i j X i ji j N

d f x f x d x x�
�

� �
�

(26)

In MDS literature, the function� which measures the distortion of distances is called stress.

Historically 2� is used as the distortion criterion. Assume that  �i iZ f x� is a matrix of 

canonical form coordinates and ( ) ( , )mij i jd Z d z z�
�

, then:

2

2 ( ; ) ( ) ( , )X ij X i j
i j

Z D d Z d x x�
�

� �� (27)

Here XD is a matrix of geodesic distances and ( )ijd Z is the Euclidean distance between the 

points on the canonical form. The minimization algorithms which minimize the stress 

function known as Multidimensional scaling. Historically MDS is classfied as a

dimensionality reduction method. Scaling by Majorizing a COmplicated Function 

(SMACOF) is one of the well-known MDS algorithms for minimizing the stress function

2 ( ; )XZ D� with respect to Z. This algorithm was proposed by De Leeuw (De Leeuw 2005).

This algorithm is the core of our study in (Radvar-Esfahlan and Tahan 2011). Here we 

present a brief introduction on SMACOF. We refer the reader to (Borg and Groenen 2005)

for an account. Before summarizing the SMACOF algorithm, we describe some relations and 

notations. Equation (27) can be written in matrix form:
2

2 ( ; ) ( ) 2 ( ( ; ) ) ( , )T T
X X X i j

i j
Z D tr Z VZ tr Z B Z D Z d x x�

�

� � �� (28)

Here V is a constant N N� matrix with elements:
1

1ij

i j
v

N i j
� +,

� - � �.
(29)

and ( ; )XB Z D is an N N� matrix with elements:
1( , ) ( ) ( )...

...
0

( ; ) 0 ( ) 0
X i j ij ij

ij X ij

iki k

d x x d Z i j and d Z
b Z D i j and d Z

b i j

�

+

,� + +
/

� + �-
/ � �. �

(30)

Thus, the SMACOF algorithm can be summarized as:
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Algorithm 1 SMACOF algorithm

Step 6 of SMACOF algorithm contains  findings for the difference in the stress values 

between the two previous iterations. If it is less than some predefined tolerance, or if the 

maximum number of iterations has been reached, then the algorithm  stops.

3.3.1.2 ISOmetric feature MAPping (ISOMAP)

This technique described by Tenenbaum et al.(Tenenbaum, De Silva et al. 2000) is the 

variant of MDS which uses graph distance (obtained by Dijkstra algorithm (Dijkstra 1959))

as an estimation of geodesic distance, and applies MDS to lower the dimension of input data. 

The ISOMAP technique can be summerized as:

Algorithm 2 ISOMAP algorithm

input: matrix of geodesic distances 0 1X N N
D

�

output: canonical form Z*

1   set some initial (0)Z and 0k �

2   compute the raw stress 
(0)

2 ( ; )XZ D�
3 repeat
4 compute 

( 1) 1 ( ) ( )( ; )k k k
XZ N B Z D Z� �� (Guttman transform)

5 compute the stress for this iteration ,
( 1)

2 ( ; )k
XZ D� �

6 compute the difference 
7 1k k� �
8 until convergence
9   set ( )* kZ Z�

1   construct the graph of input data
2   calculate the shortest pairwise distance between all points
3   apply the MDS to the shortest path found in step 2
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3.3.1.3 Maximum Variance Unfolding (MVU)

Weinberger et al. (Weinberger and Saul 2004) developed MVU algorithm (also known as 

Semidefinite Embedding) based on mapping the high dimensional data set into a low 

dimensional space that preserves the distance and angle between nearby input patterns. In 

MDS, the pairwise Euclidean distance of input date sets was used as they were. In ISOMAP, 

Euclidean distance was replaced by geodesic distance. In MVU, the transformation of 

distance is somehow more complicated than in MDS and ISOMAP. Distances are assumed to 

be preserved locally, while nonlocal distances are optimized in such a way that suitable 

embedding can be found. For instance, in 3D data sets the pairwise Euclidean distance is 

shorter than 2-dimensional embedding. Therefore MVU is considered to maximize the long 

distances while maintaining the shortest ones.

To this end, the aim of the MVU is to unfold data by maximizing pairwise distances, i.e.:
2

i jij
Max z z�� � � (31)

subject to
2 2

..( , ) ; . i j i ji j edges x x z z* � � � �
� � � � (32)

and

0ii
z ��

�� (33)

The latter constraint was put in place to eliminate translational degrees of freedom in the 

lower space by centering the output on the origin. The aforementioned optimization objective 

is a non-convex problem (multiple local minima) because it means maximizing a quadratic 

form subject to quadratic equality constraints. In (Weinberger and Saul 2004) the authors 

propose a Semidefinite Programming (Vandenberghe and Boyd 1996) technique by using dot 

products instead of squared distances. If D denotes the square matrix of squared Euclidean 

distances, and K the Gram matrices of X ; i.e. .ij i jK x x� , without going into detail, the 

MVU algorithm can be summarized as follows:
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Algorithm 3  MVU algorithm

3.3.1.4 Sammon’s Mapping 

The main weakness of MDS is that it tries to maintain large pairwise distances and does not 

retain the small ones (Van der Maaten, Postma et al. 2009). Sammon’ Mapping (SM) 

(Sammon Jr 1969) tries  to overcome MDS’ weakness by weighting the contribution of each 

pair. To this end, SM minimizes the following stress function:
2

1

( ( , ) ( , ))1
( , ) ( , )

X Z
SM

iX Xij i j

d i j d i jE
d i j d i j�

&

�
� ��

(34)

where d is measured by Euclidean metrics. The minimization of Sammons’s stress function 

can be performed using a pseudo-Newton optimization method.

3.3.1.5 Curvilinear Component Analysis (CCA)

Originally developed by Demartines and Herault (Demartines and Hérault 1997), Curvilinear 

Component Analysis (CCA) is an improvement of Sammon’s mapping. This technique 

combines some of the attitudes of SM and MDS along with artificial neural network 

strategies in order to map the higher dimensional data to lower dimensional space. At first, 

CCA processes a vector quantization step (Gersho and Gray 1992) as a way to reduce the 

data set size. Then, like MDS, the authors defined a stress function in such a way as to 

preserve the interpoint distances during mapping. The CCA stress function closely resembles 

Sammon’s stress function:

1   Compute all squared pairwise distances in matrix D
2   determine the k-nearest neighbours G, of each data point 
3   find   Max trace(K) subject to:

2
...2 ( , )

0

0

ii jj ij i j

ijij

k k k x x for i j G

k

K

� � � � * �

�

2

�

4   perform classical metric MDS on matrix K
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( )2

1 1

1 ( , ) ( , )) ( ( , )
2

N N

CCA i j i j i j
i j

E d x x d z z F d z z3
� �

� ��� (35)

While we would like to have ( , ) ( , )i j i jd x x d z z� , this is not always possible without 

distortion, so they introduced a weighting function F3 . The choice of F3 is based on the fact 

that preserving the short distances is more significant than the longer ones, because the long 

distances on the manifold have to be stretched to unfold the manifold. Thus, F3 was 

choosing as monotically decreasing function (Gersho and Gray 1992). In order to minimize 

cost function, Demartines and Herault (Demartines and Hérault 1997) developed a novel 

variant of gradient descent techniques. We refer the reader to their original work for an 

account. In our study we didn’t sampled the range data. Therefore, the vector quantization is 

considered an optional processing. Curvilinear Distance Analysis (CDA) developed by Lee et 

al. (Lee, Lendasse et al. 2002) is considered a variant of CCA which uses graph distance

instead of Euclidean distance. 

3.3.2 Topology preserving techniques

As depicted in the previous section, dimensionality reduction can be reached by distance 

preservation. In this category numerous methods were discussed. While the comparative 

distances seem to give sufficient information on manifold, most distance functions make no 

distinction between manifold and its surrounding space. Topology preserving methods are 

another class of dimensionality reduction techniques that tend to preserve important

structures of the data in the geometric structure of the mapping. One simple example of 

topology preserving maps is a Mercator projection of the earth into 2D space. While this kind 

of mapping gives invaluable visual information, distortion can’t be prevented in some areas. 

In metrology, the topology gives the neighbourhood relationship between defect areas and 

the rest of the shape. The most problematic area in topology preserving techniques is how to 

represent a topology. All physical objects subjected to metrology are continuous. 

Unfortunately, continuous topology representation is not always possible. This is why 

discrete representation is used by a ‘lattice’ (or grid). In this category we have selected the 

most well-known technique which we will summarize in the next section. 
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3.3.2.1 Locally Linear Embedding (LLE)

Locally linear embedding (Roweis and Saul 2000) is an eigenvector based technique (like 

PCA and MDS) where  optimization doesn’t involve local minima and iterative 

optimizations. It tries to preserve the local angles. LLE supposes that each point with its 

neighbors on the manifold lies on, or close to, a locally linear patch. Then it tries to 

characterize the local geometry of the patches by finding linear coefficients that reconstruct 

each point by using its k-nearest neighbors. Saul and Roweis (Roweis and Saul 2000)

measured the reconstruction error by :
2

( ) i ij ji j
w x w x4 � �� � (36)

where jx is the k-nearest neighbors of ix . ijw summarizes the contribution of the jth data point 

to the ith reconstruction and are found by optimizing the equation (12) subject to 1ijj
w �� .

The authors found optimal weights by using a least squares method. The final step of the 

algorithm is to reconstruct a representation iz of the ix in a low dimensional space. This was 

performed by minimizing the embedding cost function: 
2

( ) i ij ji j
z z w z5 � �� � (37)

The authors also proposed a sparse eigenvector problem in order to minimize the 

aforementioned cost function. We refer the reader to LLE’s original paper for more details on 

the minimization technique. 

The comparison of DR methods on Pattern classification and Data visualization can be 

found in (Yin 2007, de Medeiros, Costa et al. 2011).

3.4 Experiment and results

In the previous section we summarized some well-known NLDR techniques. In this section, 

the systematic comparison of the methods, along with their accuracy (minimum 

correspondence error) and performance in typical mechanical parts, will be investigated. To 
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this end, we have categorized the very real engineering problems to four groups. Flexible 

parts with: 

1) Zero Gaussian curvature with sharp edge (study case A); 

2) More complex shape with mostly zero Gaussian curvature (study case B);

3) Free-form high curvature (study case C);

4) Combination of both (study case D).

The aim of this study is to investigate the performance of NLDR methods on nonrigid parts 

from the viewpoint of metrology. To this end, all case studies (CAD-model & range data) are 

considered to be intrinsically similar (Radvar-Esfahlan and Tahan 2010). This means that all 

case studies considered are geometrically defectless. Figure 3.1 illustrates four case studies 

investigated for this study. The models were created by CATIA® V5.  Afterwards, a finite 

element analysis of the model was performed to simulate the free-state range data. At this 

point, a displacement and/or a force were applied to the model to simulate spring back 

deformations. Then arbitrary translational and rotational displacements were added to the range 

data. In this way, the CAD-model and range data were simulated in different coordinate systems. 

Table 3.1 represents the geometric and mechanical properties of the case studies.
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(A) (B)

(C) (D)

Figure 3.1 Study cases



79

Table 3-1 Geometric and mechanical properties of case studies

Case study Material Thickness

[mm]

Dimension

[mm]

# of nodes

A Al-6061-T6 1.0 120x120x100 496

B Al-6061-T6 2.0 100x100x80 701

C Al-6061-T6 5.0 1600x1000x450 996

D Al-6061-T6 0.5 340x130x50 1322

In order to compare similarities between the CAD-model and range data after reducing the 

dimensionality, a Procrustes analysis was performed. Then the Euclidean distances between 

all corresponding points have been calculated. As an instance the performance study on the 

case study D is presented in Figure 3.2. All case studies were performed on an AMD 

Phenom(tm) II X4 B95 Processor 3.00GHz PC using a 64-bit operating system. Table 3.2

demonstrates the computational time for each NLDR algorithm. The results of the analysis as 

mean (Accuracy) and standard deviation (Precision) for all study cases were illustrated in 

Table 3.3. The effect of registration error is considered to be equal for all case studies. 
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(a) (b)

(c) (d)

(e) (f)

Figure 3.2 2D embedding of case study (D) using:
(a) MDS; (b) ISOMAP; (c) MVU; (d) SM; (e) CCA; (f) LLE.
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Table 3-2 Computational time [sec] 

Case 

study

MDS ISOMAP MVU SM CCA LLE

(A) 0.371 15.596 0.930 16.493 1.050 0.789
(B) 0.782 33.202 3.073 40.840 2.236 1.097
(C) 1.096 72.249 4.086 106.172 3.788 2.346
(D) 1.912 140.833 6.004 297.410 5.345 4.525

Table 3-3 Mean and Standard deviation

Case 

study

MDS ISOMAP MVU SM CCA LLE

(A) mean 0.09 1.78 1.95 0.056 0.86 1.18
std 0.06 1.42 0.99 0.03 0.44 0.78

(B) mean 0.29 0.30 0.14 0.18 0.08 3.84
std 0.16 0.17 0.10 0.07 0.06 2.38

(C) mean 0.61 0.38 11.56 0.47 0.44 12.15
std 0.26 0.23 10.24 0.19 0.64 8.52

(D) mean 0.23 0.10 0.44 0.16 0.17 0.50
std 0.11 0.16 0.30 0.08 0.12 0.24

Table 3-4 Overall performance of NLDR methods in metrology

Study case A Study case B Study case C Study case D

MDS ���� �� �� ��
ISOMAP �� � ���� ����
MVU � ��� � ��
SM ���� ��� ��� ���
CCA ��� ���� ��� ���
LLE �� � � �

3.5 Discusion

According to the results of means and standard deviations, Table 3.4 illustrates the overall 

performance of dimensionality reduction methods for each study case. For free form high 

curvature parts (Study case C), a graph distance based ISOMAP perform better than other 

methods. This is something we already expected. In (Radvar-Esfahlan and Tahan 2010,
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Radvar-Esfahlan and Tahan 2011, Radvar-Esfahlan and Tahan 2011) the authors used 

geodesics instead of graph distance as a similarity measure. However experiments shows that 

ISOMAP stands behind Sammon’s nonlinear mapping as one of the computationally high 

casting methods. Classical MDS can be effectively used in simple parts with zero Gaussian 

curvature. On the other hand, classical MDS stands to be the fastest among the others. The 

performance of ISOMAP is notably worse than classical MDS in cases where parts have zero 

Gaussian curvature with sharp corners. The reason behind this phenomenon is the error of the 

geodesic/graph distance computation where the sharp bends occur. However, where the 

complexity increases (in the absence of sharp bends), ISOMAP offers more chances to 

achieve good precision. Although MVU uses the graph distance, it doesn’t perform in the 

same manner as ISOMAP. Classical scaling cost functions used by Isomap retain the large 

geodesic/graph distances, while MVU focuses on keeping the local/small structure data. 

MVU should be avoided in the case of free form highly curved parts with large deformations 

where the curvature changes instantly.

Unlike classical MDS and MVU, Sammon’s mapping can effectively handle all kinds of 

linear and nonlinear manifolds. While its global convergence is not always guaranteed it is 

also the most time-consuming NLDR technique.

By comparison, CCA proves to be much more flexible and can handle most linear and 

nonlinear data sets mostly because it gives the user the possibility of choosing the weighting 

function F3 . In spite of the fact that CCA’s cost function is mostly like Sammon’s mapping, 

its convergence is faster.

The results of our experiments show that in spite of LLE’s simplicity (there are only two 

parameters to be set); this topology preserving technique doesn’t outperform the distance 

preserving techniques. In fact, the performance of LLE is somehow disappointing for the 

majority of real-world parts. LLE suffers from a fundamental weakness in its cost function 

(Chen and Liu 2011).
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3.6 Conclusion

With (Radvar-Esfahlan and Tahan 2010, Radvar-Esfahlan and Tahan 2011, Radvar-Esfahlan 

and Tahan 2011) the authors have pioneered the concept of dimensionality reduction 

methods in 3D geometric metrology. In this paper we presented a review and systematic 

comparison between NLDR methods in order to evaluate their performance for applications 

on the metrology of flexible parts. We showed that even though these techniques may give 

acceptable results by artificial data on some fields like pattern recognition and machine 

learning, their performance cannot be extended to real engineering problems such as 

geometric metrology where high accuracy is needed. In spite of their undeniable performance 

for the metrology of flexible parts, special attention should be paid to each case for selecting 

the particular nonlinear dimensionality reduction technique.





CONCLUSION

In-depth bibliographical research shows that for the geometric and dimensional inspection of 

nonrigid parts using range data, a general-purpose, fully automated and practical method 

doesn’t yet exist. Even today, our industrial partner Bombardier Aerospace and Creaform 3D

use special fixtures (jig) with CMM to inspect flexible parts. This inspection method 

typically requires 60 hours of operations. While 3D scanning devices allow for a quick and 

economic point cloud generation in high precision, registration and measuring processes

using these kinds of scanners cause certain difficulties in industry in the case of nonrigid 

parts.

In this thesis we developed and proposed a theoretical foundation along with a novel concept 

for the fixtureless geometric inspection of nonrigid parts. Including part compliance with the 

intrinsic geometry of surface is an area of research pioneered with this thesis as a solution to 

the industry’s increasing problems in the field of nonrigid metrology. We introduced a

comprehensive methodology based on the fact that the shortest path (geodesic distance) 

between any two points on a shape remains unchanged during an isometric deformation. We 

call this property a distance preserving property of nonrigid parts. We merged the 

technologies in metric and computational geometry along with nonlinear dimensionality 

reduction methods and finite element analysis to develop a general approach to the 

geometrical inspection of flexible parts. The preliminary results proved that the proposed 

methods, based on distance preserving NLDR methods were quite efficient. 

This thesis was advanced in three chapters. In Chapter 1, we sought out the intrinsic 

geometric properties which are invariant to isometric deformations. We used geodesics as a 

similarity measure. Then we used these similarities for nonrigid finite element registration 

between CAD-model and range data. We called this technique the GNIF (Radvar-Esfahlan 

and Tahan 2011). In fact GNIF was the numerical replacement of traditional inspection 

fixtures. Then in Chapter 2, we tried to robustify the GNIF by filtering some incoherent 

geodesics out of similarity detection algorithm. We did not even think that the mission was 

accomplished by robust GNIF. In Chapter 3, we presented a systematic comparison of some 
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well-known dimensionality reduction techniques in order to evaluate their accuracy and 

potential for non-rigid metrology. Special kinds of mechanical flexible parts, i.e., parts with 

zero Gaussian curvature were also discussed in Chapter 3.

Originality of the thesis

The significant contributions made by this thesis include the following: 

1) A comprehensive system was developed for the geometric inspection of nonrigid 

parts. Bibliographical research shows that we are the first to introduced concept of 

intrinsic surface geometry in order to simulate the inspection process of flexible 

(deformable) parts.

2) Unlike the methods presented by other authors which were the subject of discussion 

in Chapter 1, for the embedding process, to find the similarity between a CAD-model 

and range data (two different metric spaces), there is no need for primary surface 

registration. This really speeds up the measuring process, especially when we have 

prior information about the assembly process. 

3) More recently, Jaramillo et al. (2013) tried to handle the problem of nonrigid 

inspection using partial captures. In fact one of the significant specifications of GNIF 

(Radvar-Esfahlan and Tahan 2011) was the capability for isometry-invariant partial 

surface matching.

4) Large deformations are completely normal for more flexible parts. Where 

appropriate, large deformations were involved in the case studies. Then GNIF was 

implemented and tested. The results were encouraging. 

5) During this research we were looking to quantify the amount of profile defects. Thus, 

it should be noted that FENR was performed to quantify the amount of defect. Defect 

detection is completely possible without passing to this very time consuming stage. In 

fact in most cases of mass production it is desirable to find out where and when 
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surface defects occur. Comparing two matrix of pairwise geodesic distances between

CAD model and range data even visually can depict where the defect occurs. 

6) So far all the parts we dealt with were sheet metal. However it should be noted that 

GNIF/RNIF can be successfully applied to the parts with hidden stiffening structures

(variable flexibility). In fact any FEM-analysable CAD model/material can be used 

for embedding the FENR process. The beauty of this presented methodology is that, 

this was a CAD model which was mapped into range data and not vice-versa.

7) It should also be noted that we dealt with a very general case flexible (deformable)

part inspection. We compared it with a CAD-model. However in industry according 

to ASME Y14.5 and ISO 10579 normally a use state (constraint state when joined 

with other parts) should be simulated. This kind of use state simulation can be 

considered a special case of GNIF where some boundry conditions are known.

8) According to ASME Y14.5-2009 a datum is a theoretically exact point, axis, line, 

plane, or combination thereof derived from the theoretical datum feature simulator. In 

most free-form parts datums are established by datum targets. A datum target is a 

specified point, line, or area of contact between the part and the machine surface, 

inspection equipment or a CAD model. It ensures that the part will be located the 

same way during both assembly and inspection. In most free-form shapes a critical 

question is how to confirm the datums. In this case, as discussed before, GNIF as a 

framework for isometry-invariant partial surface matching can be used to verify the 

correspondence between selected datum areas between CAD model and captured 

point clouds.





RECOMMENDATIONS

Although we have tried to present convincing results, no method with such promise is likely 

to be widely accepted until more practical testing can be done. Several topics that should be 

investigated further arose during the course of this research.

1) The developement of more accurate geodesic distance calculation in triangulated 

surfaces should be absolutely considered for future research.

2) More in-depth research would involve the study of uncertainties and their 

propagation. Metrology variables can be divided into two categories: material 

variables (e.g. yield strength and ultimate strength) and geometry variables (e.g. 

pairwise geodesic distance and plate thickness). The accuracy of the GNIF is limited

by measurement uncertainty. The measurement uncertainty is the sum of the 

uncertainty of the following items:

! Uncertainty of data acquisition system (scanner).

! Uncertainty of denoising filters.

! Uncertainty in the simulation of the fixation system.

! Uncertainty of pairwise geodesic distance calculation (FMM).

! Uncertainty of GMDS and other NLDR methods.

! Uncertainty of FENR.

! Uncertainty of material variables (e.g., Young’s modulus, yield strength)

3) In this thesis we developed the theoretical foundation for the metrology of flexible 

parts. However the research can be criticized due to a lack of practical experiments. 

Currently Mr. Vahid Sabri (Ph.D. candidate at École de technologie superieure) tries

to fill this gap with practical tests. In (Sabri, Tahan et al. 2013) the authors 

successfully applied GNIF to a real case study involving our industrial partner 

(Bombardier Aerospace) (Fig. 0.2).  The results were encouraging. 
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4) According to ASME Y14.5.1M-1994 a profile tolerance zone is an area (profile of 

line) or a volume (profile of surface) generated by offsetting each point on the 

nominal surface in a direction normal to the nominal surface at that point. Thus, a 

geometric deviation for a point can be defined as a deviation measured normal to the

tolerance zone. While this definition was applied to all dimensioning and tolerancing 

applications during the last decades, we believe that this definition can be modified

according to the technological advances in numerical data capturing systems using 

CMM/Scanners. This thesis demonstrated that point to point correspondence between 

a CAD model and scanned data are precisely accessible. Thus, a point’s geometric 

deviation can be defined as spatial-point-to-point distance between a specific point on 

range data and its correspondence on the CAD model. We believe that for the case of 

very flexible parts the conventional deviation identification should be modified.

5) Although this research did not cover the GD&T discussions (tolerancing), the author 

was engaged to this interesting area as a hand-on-operation engineer during most his 

carrier. GD&T defines itself as a system for defining and common communication 

language on engineering specifications and tolerances. The core of this standard 

evolved around pass/fail inspection by Go/No Go gaging (Maximum and Least 

Material Conditions: MMC & LMC). Even in its latest edition (ASME Y14.5-2009) 

this standard stands far behind the technological evolution on modern statistical based 

practices such as probabilistic tolerance analysis methods and advances in range data 

capturing devices. However we find wide range of softwares claiming statistical 

analysis for deformable parts while there is no consensus as what the right approach 

is. We invite researchers for more focusing to this abandoned area.oned area.
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