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VISUALIZATION OF LARGE AMOUNTS OF MULTIDIMENSIONAL
MULTIVARIATE BUSINESS-ORIENTED DATA

Jean-François IM

ABSTRACT

Many large businesses store large amounts of business-oriented data in data warehouses. These

data warehouses contain fact tables, which themselves contain rows representing business

events, such as an individual sale or delivery. This data contains multiple dimensions (indepen-

dent variables that are categorical) and very often also contains multiple measures (dependent

variables that are usually continuous), which makes it complex for casual business users to

analyze and visualize. We propose two techniques, GPLOM and VisReduce, that respectively

handle the visualization front-end of complex datasets and the back-end processing necessary

to visualize large datasets.

Scatterplot matrices (SPLOMs), parallel coordinates, and glyphs can all be used to visualize the

multiple measures in multidimensional multivariate data. However, these techniques are not

well suited to visualizing many dimensions. To visualize multiple dimensions, “hierarchical

axes” that “stack dimensions” have been used in systems like Polaris and Tableau. However,

this approach does not scale well beyond a small number of dimensions.

Emerson et al. (2013) extend the matrix paradigm of the SPLOM to simultaneously visualize

several categorical and continuous variables, displaying many kinds of charts in the matrix de-

pending on the kinds of variables involved. We propose a variant of their technique, called the

Generalized Plot Matrix (GPLOM). The GPLOM restricts Emerson et al. (2013)’s technique to

only three kinds of charts (scatterplots for pairs of continuous variables, heatmaps for pairs of

categorical variables, and barcharts for pairings of categorical and continuous variable), in an

effort to make it easier to understand by casual business users. At the same time, the GPLOM

extends Emerson et al. (2013)’s work by demonstrating interactive techniques suited to the

matrix of charts. We discuss the visual design and interactive features of our GPLOM proto-

type, including a textual search feature allowing users to quickly locate values or variables by

name. We also present a user study that compared performance with Tableau and our GPLOM

prototype, that found that GPLOM is significantly faster in certain cases, and not significantly

slower in other cases.

Also, performance and responsiveness of visual analytics systems for exploratory data analy-

sis of large datasets has been a long standing problem, which GPLOM also encounters. We

propose a method called VisReduce that incrementally computes visualizations in a distributed

fashion by combining a modified MapReduce-style algorithm with a compressed columnar

data store, resulting in significant improvements in performance and responsiveness for con-

structing commonly encountered information visualizations, e.g., bar charts, scatterplots, heat

maps, cartograms and parallel coordinate plots. We compare our method with one that queries

three other readily available database and data warehouse systems — PostgreSQL, Cloudera
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Impala and the MapReduce-based Apache Hive — in order to build visualizations. We show

that VisReduce’s end-to-end approach allows for greater speed and guaranteed end-user re-

sponsiveness, even in the face of large, long-running queries.

Keywords: scatterplot matrix, SPLOM, generalized plot matrix, GPLOM, mdmv, VisRe-

duce, MapReduce, incremental visualization



VISUALISATION DE JEUX DE DONNÉES D’AFFAIRES MULTIDIMENSIONNELS
MULTIVARIÉS VOLUMINEUX
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RÉSUMÉ

Plusieurs grandes entreprises stockent des volumes importants de données d’affaires dans des

entrepôts de données. Ces entrepôts de données contiennent des tables de faits, qui elles

mêmes contiennent des rangées représentant des évènements d’affaires, comme une vente ou

une livraison. Ces données comprennent plusieurs dimensions (variables indépendantes et

catégoriques) et fréquemment plusieurs mesures (variables dépendantes et habituellement con-

tinues), ce qui rend ardue la tâche d’analyser et de visualiser ces types de données par des

utilisateurs non-experts. Nous proposons deux techniques, GPLOM et VisReduce, qui gèrent

respectivement la visualisation de jeux de données complexes et le traitement nécessaire à la

visualisation de jeux de données volumineux.

Les matrices de nuages de points (Scatter PLOt Matrices, ou SPLOMs), les coordonnées par-

allèles et les glyphes peuvent être utilisés pour visualiser plusieurs mesures dans les jeux de

données multidimensionnels multivariés. Cependant, ces techniques ne sont pas efficaces pour

la visualisation de plusieurs dimensions. Pour visualiser plusieurs dimensions, des axes hiérar-

chiques qui imbriquent les dimensions ont été utilisés dans des systèmes comme Polaris et

Tableau. Cependant, cette approche fonctionne mal lorsqu’appliquée à plus que quelques di-

mensions.

Emerson et al. (2013) étend le paradigme de la SPLOM pour visualiser simultanément plusieurs

variables catégoriques et continues, affichant plusieurs types de graphiques dans la matrice

selon la combinaison de variables impliquées. Nous proposons une variante de leur tech-

nique, appelée la matrice de graphiques généralisée (Generalized PLOt Matrix, ou GPLOM).

La GPLOM restreint la technique d’Emerson et al. (2013) pour n’utiliser que trois types de

graphiques (des nuages de points pour les paires de variables continues, des thermogrammes

pour les paires de variables catégoriques et des graphiques à bâtons pour les paires de variables

continues et catégoriques) afin de la rendre plus accessible à des utilisateurs non-experts. En

même temps, la GPLOM augmente le travail d’Emerson et al. (2013) en démontrant des tech-

niques d’interaction appropriées à la matrice de graphiques. Nous discutons du design visuel

et des fonctionnalités interactives de notre prototype de la GPLOM, entre autres une fonction-

nalité de recherche textuelle qui permet aux utilisateurs de chercher des valeurs et des variables

par nom. Nous présentons aussi une expérience contrôlée avec des utilisateurs qui compare la

performance de Tableau et de notre prototype de la GPLOM qui démontre que la GPLOM est

significativement plus rapide dans certains cas et non significativement plus lente dans d’autres

cas.

Aussi, la performance et la rapidité de réponse des systèmes d’analyse visuels pour l’exploration

de jeux de données volumineux est un problème connu et identifié comme un problème impor-
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tant pour la communauté de visualisation, problème auquel la GPLOM n’échappe pas. Nous

proposons alors une technique appelée VisReduce qui calcule une visualisation de façon in-

crémentale et distribuée en combinant un algorithme similaire à MapReduce avec un engin

de stockage compressé orienté colonne, résultant en des améliorations significatives de per-

formance et de temps de réponse pour la construction de graphiques fréquemment utilisés,

comme les graphiques à bâtons, les nuages de points, les thermogrammes, les cartogrammes

et les graphiques à coordonnées parallèles. Nous comparons notre méthode avec une qui in-

terroge trois systèmes de gestion de bases de données et systèmes d’entrepôts de données statu

quo — PostgreSQL, Cloudera Impala et Apache Hive — pour construire des visualisations.

Nous démontrons que VisReduce permet une meilleure performance et un temps de réponse

garanti, même pour des requêtes volumineuses ayant un long temps d’exécution.

Mot-clés : matrice de nuages de points, SPLOM, matrice de graphiques généralisées,

GPLOM, VisReduce, MapReduce, visualisation incrementale
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INTRODUCTION

Business intelligence is a collection of tools and processes that support business decisions by al-

lowing the various business stakeholders to base their decision process on facts. As businesses

collect and store ever increasing amounts of data, they seek to discover more key insights and

trends that have been previously hidden in their data.

Information visualization supports this process of discovery, as Heer and Shneiderman (2012)

discuss, by helping the user discover patterns and correlations contained within data. Ware

(2004) explains that visualization has several advantages:

• Visualization provides an ability to comprehend huge amounts of data

• Visualization allows the perception of unanticipated emergent properties that can often

be the basis of a new insight

• Visualization often makes problems within the data immediately apparent

• Visualization facilitates understanding of both large-scale and small-scale features of the

data

• Visualization facilitates hypothesis formation

All of these advantages can be linked to the fact that information visualization amplifies cogni-

tion by taking advantage of the high bandwidth of the human perceptual system to understand

patterns in data. These advantages have been well studied; for example, Table 2.2 of Thomas

and Cook (2005) lists many other advantages with references to other work that has been done.

Yet, even with those advantages, there are still hurdles with regards to visualizing and under-

standing large amounts of data by casual business users. Grammel et al. (2010) explores this

issue with business school students, asking them to build visualizations to answer questions

on business-oriented data sets. They identified three steps that were challenging for users:

translating questions into data attributes, constructing visualizations that help to answer these
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questions and interpreting the visualizations. For these users, having a system that automati-

cally produces visualizations that are easy to understand would be very helpful.

There are also performance challenges that arise with very large databases, which impact us-

ability. When queries to a database require more than a few seconds to process, such queries

cannot be performed in a very interactive manner.

We propose two techniques, GPLOM and VisReduce, that improve the front-end and back-end,

respectively, of a database visualization system. Both techniques address a specific need that

is currently not fulfilled. GPLOM is a front-end for data with many dimensions and measures

that enables visualization with minimal user effort. VisReduce is a processing back-end that

supports incremental, distributed visualizations of large datasets. GPLOM and VisReduce can

be used together or separately.

GPLOM allows the exploration of multidimensional multivariate datasets. In a typical tabular

database, often occuring in business intelligence systems and elsewhere, some columns are

independent variables; these are also called dimensions and are typically categorical variables

(or they are discretized, which reduces them to categorical variables). Other columns are best

thought of as dependent variables, also called measures, and are typically continuous vari-

ables. Steele and Iliinsky (2010) present a few visualization techniques that work well with

categorical data: treemaps (Shneiderman and Wattenberg (2001)), mosaic plots (Theus (2003))

and parallel sets (Bendix et al. (2005)). These do not scale to many variables and do not allow

the simultaneous visualization of continuous variables. There are also several techniques for

visualizing multivariate data (i.e., multiple measures), such as parallel coordinates (Inselberg

(1985)) and scatterplot matrices (Hartigan (1975)), but they do not handle dimensions very

well.

Tableau (Mackinlay et al. (2007)), the commercial descendent of Polaris (Stolte et al. (2002a)),

is a system that allows casual business users to create various types of charts and plots by simple

drag and drop operations. It does so by displaying a list of all variables, segregated by type,

and picking an appropriate display depending on the type of the variables chosen by the user.
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However, as Tableau’s design depends on the user explicitly constructing a visualization by

choosing variables to plot, it does not initially display any visual overview of the contents of

the dataset.

Recent work by Emerson et al. (2013) introduced the generalized pairs plot which shows all

possible pairs of variables, like scatterplot matrices, but uses different types of plots depending

on the type of variables paired together. Their technique, which uses complex plot types,

provides a rich overview of a dataset, at the expense of understandability by a casual business

user.

The GPLOM technique proposed in our work is designed to display multidimensional multi-

variate data containing categories and yet be easily understood by business users to allow them

to explore data sets with minimal set up. We pose the hypothesis that GPLOM allows casual

users to be faster than a commercially available tool, Tableau, for certain types of exploratory

queries. We evaluate GPLOM, and test our hypothesis, with a controlled experiment involving

users.

In business settings, data is often stored in analytical stores and data warehouses. Data that is

to be visualized may be fetched through SQL queries, computed as the output of MapReduce

jobs or calculated from OLAP datacubes. Unfortunately, SQL is designed to answer queries

by computing an exact result, which can lead to long wait times for complex queries on large

datasets. MapReduce, similarly, is designed for batch processing of large amounts of data

rather than interactive operation. This is a problem, because responsiveness is key to interactive

visual analytics. As Mackinlay et al. (2007) put it: “Tableau has users with very large databases

who are willing to wait minutes for database queries to run so that they can see a graphical view

of their valuable data. However, users do not want interactive experiences that include such

pauses.” SQL and MapReduce, therefore, have severe drawbacks for exploratory analysis of

large datasets.
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Recently, Agarwal et al. (2013) proposed BlinkDB, a database that uses precomputed strati-

fied samples to allow queries with bounded response time, further demonstrating the need for

databases to give rapid feedback over absolute result accuracy.

OLAP datacubes offer rapid computation of aggregates by preaggregating the data along di-

mensions, needing only simple aggregations of aggregates at query time instead of processing

all the data. However, there are limits to how many dimensions can be preaggregated, as

cube volume increases exponentially with the number of dimensions that are aggregated. Fur-

thermore, some descriptive statistics cannot be computed through the usage of cubes, such as

percentiles.

VisReduce enables the incremental rendering of a visualization, so that an analysis of a large

dataset can give responsive feedback to the user while the back end still processes the data. Be-

cause VisReduce allows incremental construction of a visualization as data is being processed,

it enables rapid feedback loops that would not have been otherwise possible if the user had

to wait for the completion of a database query in order to see results. While the advantages

of incremental visualization are obvious, we also wanted to ensure that the performance of

VisReduce was comparable to existing systems; existing user studies with incremental visual-

ization, such as the one done by Fisher et al. (2012), only focus on the end user aspects, not

implementation. The performance of VisReduce is tested by comparing its query performance

with other readily available systems which are not incremental in nature.

GPLOM and VisReduce have each been presented in international conferences (Im et al.

(2013b,a)). In the following thesis, each of the two techniques is discussed separately in its

own chapter, with a background section, implementation details as well as details of the evalu-

ation of each technique.



CHAPTER 1

BACKGROUND

As mentioned in the introduction, business intelligence is a collection of tools and processes

that support business decisions by allowing the various business stakeholders to base their

decision process on facts. Information visualization is an important part of these processes, as

many stakeholders need not only to understand patterns in data but also communicate them.

As the old adage goes, “a picture is worth a thousand words.”

1.1 The need for visualization

Heer and Shneiderman (2012) explain that information analysis requires human judgement to

interpret patterns, groups, trends and outliers so as to understand their domain-specific signifi-

cance. For example, a business analyst for a coffee chain might notice that sales of coffee are

higher in December than in July; while both a computer and a human can discern such a pat-

tern, only a human can infer that such a trend is due to the weather rather than, say, the number

of vowels in the name of the month, even though both are correlated with sales. Leinweber

(2007) writes an entertaining demonstration on the importance of human common sense dur-

ing correlation analysis by showing that the performance of the S&P 500 is strongly correlated

with butter production in Bangladesh, even though such a correlation is clearly fortuitous and

nonsensical.

Furthermore, descriptive statistics are sometimes insufficient to understand the details present

in data. Anscombe (1973) presents the four data sets shown in Table 1.1 that appear identical

under cursory analysis — each having equal averages x̄ and ȳ, standard deviations σx and σy,

as well as the same linear regression equation and correlation coefficient R2 — yet are very

different when displayed graphically, as in Figure 1.1. Anscombe (1973) makes the case that

one should not only rely on statistical analysis but should also visualize the data in order to

understand it.
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Table 1.1 Data for Anscombe’s Quartet: four different data sets of (x, y) points that

nevertheless share the same summary statistics.

Dataset 1 Dataset 2 Dataset 3 Dataset 4

Values x y x y x y x y

10 8.04 10 9.14 10 7.46 8 6.58

8 6.95 8 8.14 8 6.77 8 5.76

13 7.58 13 8.74 13 12.74 8 7.71

9 8.81 9 8.77 9 7.11 8 8.84

11 8.33 11 9.26 11 7.81 8 8.47

14 9.96 14 8.1 14 8.84 8 7.04

6 7.24 6 6.13 6 6.08 8 5.25

4 4.26 4 3.1 4 5.39 19 12.5

12 10.84 12 9.13 12 8.15 8 5.56

7 4.82 7 7.26 7 6.42 8 7.91

5 5.68 5 4.74 5 5.73 8 6.89

n 11 11 11 11

x̄ 9.00 9.00 9.00 9.00

ȳ 7.50 7.50 7.50 7.50

σx 3.32 3.32 3.32 3.32

σy 2.03 2.03 2.03 2.03∑
(x− x̄)2 110.0 110.0 110.0 110.0

Equation y = 3.00 + 0.50x y = 3.00 + 0.50x y = 3.00 + 0.50x y = 3.00 + 0.50x
R2 0.67 0.67 0.67 0.67

Ware (2004) explains that data visualization provides an ability to comprehend huge amounts

of data by using the perceptual power of the brain’s visual processing system. Tory and Möller

(2004b) add that by using the advantages of visual perception, we can compensate for cogni-

tive barriers, such as a limited working memory. Table 2.2 of Thomas and Cook (2005) lists

additional advantages of visualization.
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Figure 1.1 Plot of Anscombe’s Quartet: visualizing the data shows large differences

between datasets. The linear regression is shown in blue.

1.2 Business intelligence technologies

Chaudhuri et al. (2011) give an overview of the various technologies used for business intelli-

gence. Typically, business intelligence systems are architected by combining several compo-

nents. Operational (also called transactional) databases contain the data used in daily opera-

tions. For example, a hypothetical factory that makes nuts and bolts could have an operational

database that contains addresses of customers and their orders, while another might contain

customer service requests. These databases are collated together during a process called ex-

tract, transform and load (ETL), during which the transactional records are extracted from

various data sources, transformed into business events suitable for analysis and loaded into a

data warehousing system. These data warehouses are often also relational databases, although

this need not be. For example, some data warehouse systems use parallel processing systems

such as Apache Hadoop when dealing with large data sets.
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There are different approaches to querying such data warehouses for analytical purposes. A

popular approach, online analytical processing (OLAP) — also frequently called multidimen-

sional online analytical processing (MOLAP) — uses structures called data cubes. Data cubes

contain precomputed aggregates across sets of predefined dimensions, speeding up certain

types of queries. For example, a data cube about sales information for a company with three

dimensions (region, quarter and product category) would be as shown in Figure 1.2.

Region
East

West

Central

Q
ua

rt
er

Product category

Q1

Q2

Q3

Fruit Candy Butter

Figure 1.2 Data cube for a hypothetical supermarket. Each cell of the cube represents an

individual aggregate for a particular combination of dimensions.

Each cell of the data cube contains aggregate information about the data matching that partic-

ular cell, but not the data itself. This means that certain aggregate operations (COUNT, SUM,

MIN, MAX, AVG) can be done in constant time, no matter how much data the cube represents.

On large data sets, the cubes might be generated offline during the night, allowing analysts to

analyze them the next day.

Wilkinson et al. (2005) mentions an important caveat with the usage of data cubes: because

data cubes do not contain the data but only aggregated information about it, several key statis-
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tics cannot be derived from a data cube, such as the median, mode, percentiles or quartiles.

They also do not allow ad hoc queries on dimensions that are not part of the cube. For ex-

ample, it is impossible to query the data cube of Figure 1.2 to only show sales by a particular

salesman or that have taken place during a particular month, as neither are dimensions of the

cube. It would obviously be possible to add more dimensions to the cube to solve this problem,

but this also increases the volume of the cube due to dimensional explosion, making it imprac-

tical to use cubes with many dimensions. Wilkinson et al. (2005) summarizes the intersection

of data cubes and data visualization in a single sentence: “Few of the graphics in this book and

in other important applications can be computed from a data cube.”

On the other hand, the relational online analytical processing (ROLAP) approach stores the data

in a relational database and queries it directly; this allows the data to be queried in different

fashions as the data is stored verbatim but performance is a function of the amount of data

stored in the system.

Because all of these systems are used for business reporting, they compute exact values for

any given query. However, for visual analytics, a fast approximation rather than an exact result

improves the end user experience, as explored by Fisher et al. (2012). The prototype built

by Fisher et al. (2012) builds incremental approximations of a database query, letting the user

control the threshold between accuracy and timeliness by waiting for the query to have smaller

error bounds. As their prototype was built to explore the user experience of such an incremental

visual analytics system rather than designing a high performance incremental query processing

engine, it does not address the issue of designing such a system, which is still a current research

problem. Later, we will show that VisReduce contributes a new approach for such systems.

1.3 Multidimensional multivariate visualization

Many datasets can be represented in tabular form, with one column for each variable, and

one row for each tuple. There are two types of columns: independent variables, also called

dimensions, which are usually categorical variables (or discretized variables that are almost

equivalent to categorical variables), and dependent variables, also called measures, which are
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normally continuous variables. Such datasets, with a mix of dimensions and measures, are

sometimes called multidimensional multivariate, or MDMV, data. Surveys of techniques for

visualizing MDMV data can be found in (Wong and Bergeron (1997); Grinstein et al. (2001);

Keim (2002)). We will consider the most relevant of these techniques, and consider a fictitious

“nuts-and-bolts” dataset to illustrate some differences between previous work. The nuts-and-

bolts data is stored as a table, and involves three (independent) categorical variables: Region

(North, Central, or South), Month (January, February, ...), and Product (Nuts or Bolts). It also

involves three (dependent) continuous variables: Sales, Equipment costs, and Labor costs. The

values of the categorical variables yield 3 × 12 × 2 = 72 combinations of categorical values,

each corresponding to a row in a table, and each mapping to values of the continuous variables:

Table 1.2 The tabular representation of the nuts-and-bolts dataset.

Region Month Product Sales Equipment Labor

costs costs

North Jan Nuts 2.76 0.92 4.30

North Jan Bolts 4.92 1.64 4.30

North Feb Nuts 4.20 1.00 4.30

North Feb Bolts 8.40 2.00 4.30

North Mar Nuts 5.28 9.60 4.30
...

...
...

...
...

...

South Dec Bolts 9.50 2.44 5.20

TableLens (Rao and Card (1994)) and FOCUS (Spenke et al. (1996)) (later renamed InfoZoom)

provide ways to aggregate the tuples in a list such as the one above, while still presenting an

essentially tabular view to the user. Both systems allow the user to sort tuples by any variable,

but have limited ability to ease the understanding of multiple categorical variables.

Scatterplot matrices (SPLOMs) were proposed by Hartigan (1975), and display a scatterplot

for every possible pair of variables. Notable more recent work includes Scagnostics (Wilkinson
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et al. (2005)), which enable SPLOMs to scale up to many continuous variables, and Scatter-

dice (Elmqvist et al. (2008)), which demonstrates how they can be made highly interactive.

SPLOMs nevertheless have shortcomings when used to visualize categorical variables. In Fig-

ure 1.3, the top three scatterplots (e.g., Month vs Region) each show a crossing of two categor-

ical variables, resulting in an uninformative grid of points. Scatterplots showing a continuous

vs categorical variable suffer from overplotting: in the Sales vs Product scatterplot, it is not

obvious which of the products resulted in higher overall sales.

Figure 1.3 A SPLOM of the nuts-and-bolts dataset.

HyperSlice (van Wijk and van Liere (1993)) displays a matrix of slices of a scalar function

of many dimensions, but cannot display several (dependent) continuous variables at once.

The heatmaps of GPLOM, explained in the next chapter, are similar to HyperSlice, though

GPLOM’s heatmaps display aggregations of data rather than slices.
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Parallel coordinates (Inselberg (1985); Wegman (1990)) show each tuple as a polygonal line

intersecting an axis once for each of the variables. Figure 1.4 shows an example. The 3 right-

most axes show continuous variables, allowing us to see the distribution of values along them

(the range and central tendency of values, and outliers). However, the three left-most axes

show categorical variables, where every possible combination of values is covered, resembling

complete bipartite graphs. This creates ambiguities that prevent us from visually tracing a tuple

across all axes (although interactive highlighting could alleviate this).

A technique called parallel sets (Bendix et al. (2005)) displays multiple categorical variables

side by side, as in a parallel coordinate plot. While it allows tracing tuples across multiple axes,

parallel sets also have very cluttered displays when used with high cardinality variables.

Figure 1.4 A parallel coordinates plot of the nuts-and-bolts dataset.

Various combinations of scatterplots and parallel coordinates have been proposed, displaying

them side-by-side (Qu et al. (2007); Steed et al. (2009)) or more tightly integrated (Yuan et al.

(2009); Holten and van Wijk (2010); Viau et al. (2010); Claessen and van Wijk (2011)), but

none of these approaches facilitate the visualization of categorical variables.

Arrays of glyphs can be used to visualize MDMV data, where each glyph shows one tuple

(Bertin (1967); Chernoff (1973); Kleiner and Hartigan (1981); Pickett and Grinstein (1988);
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Ward (2002)). This works well when there are at most 2 (independent) categorical variables.

For example, an arrow plot (Wittenbrink et al. (1996)) can display an arrow-shaped glyph at

each of the points on a 2D grid, showing wind speed and wind direction over a geographic

map. Extending this to 3 spatial dimensions results in occlusion, and beyond 3 dimensions it

becomes very difficult to understand the ordering of glyphs along each dimension.

Dimensional stacking (LeBlanc et al. (1990); Mihalisin et al. (1991)) allows more than one

categorical variable to be mapped to the same spatial axis, and has been used in database visu-

alization (Stolte et al. (2002a); Mackinlay et al. (2007)). Figures 1.5 and 1.6 show examples,

each of which shows a total of 4 variables. The two innermost variables of the stacking de-

termine the type of chart shown: if the innermost vertical variable is a continuous variable

(e.g., Sales), and the innermost horizontal variable is a categorical variable (e.g., Month), then

barcharts are used. On the other hand, scatterplots are used if the two innermost variables are

continuous variables (e.g., Equipment costs vs Sales).

Figure 1.5 Examples of dimensional stacking with the nuts-and-bolts data. Left:

Product and Sales are mapped to the vertical axis, Region and Month are mapped to the

horizontal. Right: Product and Equipment costs mapped to the vertical, Region and Sales

to the horizontal.

Each of the charts in Figures 1.5 and 1.6 show a slice of the data, allowing the user to see more

detail. For example, Figure 1.6 reveals that sales were very low in the South in April and May.

By comparison, in Figure 1.3, the Sales vs Month scatterplot also shows low sales in April and

May, without revealing the Region.
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Figure 1.6 Another example of dimensional stacking applied to the nuts-and-bolts data.

Region and Sales are mapped to the vertical axis, Month and Product to the horizontal.

The added detail visible in Figures 1.5 and 1.6, however, comes at the cost of exponential

growth in space requirements as categorical variables are added. For example, if the dataset

had an additional categorical variable Year with values 2001, 2002, ..., 2010, adding this as an

outer variable to Figure 1.6 would increase the number of charts by a factor of 10. Partly for

this reason, software like Tableau (Mackinlay et al. (2007)) does not show the user an initial

visualization of the data. Instead, Tableau initially shows a list of variables (Figure 1.7) from

which the user may drag and drop to construct a desired visualization (Figure 1.8).

Figure 1.7 An empty workbook in Tableau. At this point, the user must construct a

visualization by dragging variables onto the shelves. Tableau’s interface does not expose

the contents of the various variables, only their names and data types.
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Figure 1.8 A visualization in Tableau. In this case, the user has added several filters to

see a subset of the data and built a visualization that shows the median of a variable,

broken down by state.

Figure 1.9 A generalized pairs plot generated with the ggpairs package, showing all

pairs of dimensions. Plot types in this pairs plot are — from top left to bottom right — bar

charts of variable cardinality, box plots of variable distribution, barcode plots of variable

distribution, scatterplots and correlation coefficients.

Emerson et al. (2013) propose the generalized pairs plot (Figure 1.9), which extends the

SPLOM by using different types of charts depending on the types of variables paired together,

alleviating the problems that occur when categorical variables are shown in a SPLOM (Fig-

ure 1.3). The generalized pairs plot is promising step in the direction of better visualizations

of multidimensional multivariate datasets, because the choice of chart in the matrix is based on

the types of variables involved. However, Emerson et al. (2013)’s work still leaves room for

improvement. First, their implementation only generates static visualizations. Many interac-

tive features could be added, to allow the user to interactively highlight and explore the data

in the visualization. Second, their implementation uses several kinds of charts, some of which

(such as mosaic plots and boxplots) do not scale well for high-cardinality variables and may
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be unfamiliar to casual business users. We therefore propose the GPLOM (Generalized PLOt

Matrix) that makes Emerson et al. (2013)’s generalized pairs matrix both highly interactive,

and simpler to understand.



CHAPTER 2

THE GENERALIZED PLOT MATRIX

2.1 Introduction

Many datasets are stored in tabular form, with one row for each tuple, and one column for each

attribute. If the attributes are dependent variables (e.g., dependent variables of a key or row id),

we speak of multivariate data, for which many techniques exist for visualizing several variables

at once, such as scatterplot matrices (SPLOMs) (Hartigan (1975)), parallel coordinates (Insel-

berg (1985)), and glyphs (Bertin (1967); Chernoff (1973); Kleiner and Hartigan (1981); Pickett

and Grinstein (1988)). Some of the columns, however, may be best thought of as independent

variables, in which case we speak of multidimensional multivariate (MDMV) data (Wong and

Bergeron (1997)). Stolte et al. (2002a) use the term dimension for a (categorical or ordinal)

independent variable, and measure for a dependent variable. We will refer to dimensions as

categorical variables, and measures as continuous variables.

The aforementioned techniques, of SPLOMs, parallel coordinates, and glyphs, all suffer from

problems when naively applied to datasets with many categorical variables. An alternative

approach involves “stacking” multiple categorical variables along axes, used in trellis charts

and other techniques (LeBlanc et al. (1990); Mihalisin et al. (1991); Stolte et al. (2002a))

and more recently in the commercially successful product Tableau (Mackinlay et al. (2007)).

However, dimensional stacking suffers from a combinatorial explosion if too many categorical

variables are displayed at once.

Recent work (Emerson et al. (2013)) offers a new solution for visualizing MDMV data, based

on the observation that SPLOMs need not display scatterplots for all pairs of variables. A plot

matrix could instead display different charts for different pairs of variables, which Emerson

et al. (2013) demonstrated with a wide variety of charts. We adapted this idea with our own

technique called the Generalized Plot Matrix (GPLOM). In our approach, the visualization

is simpler than Emerson et al. (2013)’s, as we use only three kinds of charts, chosen with
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rules similar to those of Mackinlay et al. (2007): scatterplots for pairs of continuous variables,

barcharts to show a continuous variable as a function of a categorical variable, and heatmaps

to show a selected continuous variable as a function of a pair of categorical variables. These

three charts are the minimum number necessary to cover the three possible pairings of variable

types. This makes the matrix easier to understand, which could be beneficial to casual business

users and other non-expert users. At the same time, we extend part of Emerson et al. (2013)’s

work by presenting interactive features for highlighting, selecting, searching, and filtering the

data.

Both Emerson et al. (2013)’s technique, and our own GPLOM, can comfortably display sev-

eral categorical and continuous variables at once, avoiding the combinatorial explosion of di-

mensional stacking because the data can be aggregated within each chart. This makes these

approaches appropriate for data with multiple categorical variables, as is common in business

intelligence and other domains. These approaches can also provide the initial overview of a

database shown to a user, serving as a visual launching point for further investigation. This

is in contrast to the approach in Polaris (Stolte et al. (2002a)) or Tableau (Mackinlay et al.

(2007)), where the user must first select one or several variables of interest to explicitly con-

struct a visualization. Finally, for non-expert users, the GPLOM approach has the advantage of

only using three kinds of charts, avoiding the more complicated charts such as mosaic plots or

box plots that may be difficult for non-expert users to understand and that don’t scale as well

to high cardinality variables.

Our contributions in this chapter are (1) the GPLOM technique for visualizing multidimen-

sional multivariate data using only three kinds of charts, making it as easy to understand as

possible while still showing charts that are adapted to the kinds of variables involved; (2) a de-

scription of the visual design choices and features of our prototype implementation, including

bendy highlights, associative highlighting, and a text search feature that highlights data, allow-

ing users to quickly find charts of interest; and (3) an experimental comparison of GPLOM and

Tableau that found GPLOM to be significantly faster in certain cases.
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2.2 Previous Work

The most closely related work to ours is the Generalized Pairs Plot (Emerson et al. (2013)),

which extends the matrix in a SPLOM to allow a mix of chart types to be displayed, including

mosaic plots, box plots, histograms, and density contours. As demonstrated in the next sec-

tion, this is scalable to a larger number of continuous and categorical variables than previous

techniques, because the space requirements scale linearly with the number of variables, rather

than exponentially as with the previous example of dimensional stacking. Our GPLOM work

further explores Emerson et al.’s ideas by (1) only using three kinds of charts, to make the

visualization easier to understand by non-expert users who may simply want a visual overview

of a business database as a first step in asking analytic questions; and by (2) extending the

static plots of Emerson et al. (2013) through interactive techniques. We also (3) empirically

compared GPLOM to a commercial product and found significant advantages with GPLOM in

certain cases.

2.3 Description

Figure 2.1 shows an example GPLOM of 6 variables. In the Sales vs Product chart, we clearly

see that Bolts outsold Nuts, thanks to the use of aggregation (via a sum operator) that generated

the bar heights. The overplotting seen in Figure 1.3’s Sales vs Product scatterplot is thus

avoided.

Figure 2.2 shows the layout of a GPLOM for M categorical variables x1, ..., xM and N con-

tinuous variables y1, ..., yN . A full matrix would have (M + N) × (M + N) cells, however

we only display the lower triangular half, without the diagonal, as is often done with SPLOMs

(e.g., Wilkinson et al. (2005)). Thus, our GPLOM saves space compared to the full matrices

of Emerson et al. (2013), leaving room for interactive elements such as the infobox (discussed

shortly).

The red region in Figure 2.2 contains pairs of categorical variables, and GPLOM visualizes

these with heatmaps. The green region contains pairings of a continuous vs categorical vari-

able, shown as barcharts. The purple region contains pairs of continuous variables, shown as
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Figure 2.1 A GPLOM of the nuts-and-bolts dataset. Barcharts and heatmaps show data

aggregated by sum. The vertical axes on the barcharts extend to 250, to accommodate the

larger values than in the scatterplots. The heatmaps are colored to show “Sales” as a

function of categorical variables, and use a color scale varying from cyan for low values,

through grey for mid values, to red for the highest values.

scatterplots. (This grouping of variable types is comparable to Peng et al. (2004)’s ordering of

variables in a SPLOM according to their cardinality.) Note that the scatterplots show individual

tuples, whereas the barcharts and heatmaps show aggregated data.

Other charts in these regions are possible, as demonstrated by Emerson et al. (2013), such as

boxplots or linecharts. However, their example plots show categorical variables with at most

four distinct values. Complex charts, such as box plots and mosaic plots, become difficult to

read with categorical variables with high-cardinality (Figure 2.3).

An interactive prototype of the GPLOM technique was created using D3 (Bostock et al. (2011))

and JavaScript. Figure 2.4 shows the prototype displaying a large real-world dataset, where the

categorical variables of Year, Day of month, and Carrier have 26, 31, and 32 distinct values,
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Figure 2.2 Structure of a GPLOM.

respectively. As can be seen in Figure 2.4, restricting the GPLOM to only show three kinds

of simple charts — heatmaps, barcharts, and scatterplots — helps keep the charts readable at

these higher cardinality values.

One tradeoff in designing a GPLOM is deciding if axes of the same variable should be scaled

to the same range (facilitating comparisons of adjacent charts) or scaled to the maximum of

the data in the chart. In Figure 1.3, all axes are scaled to 35. However, in Figure 2.1, the

barcharts contain (aggregated) sums, and are therefore scaled to a larger range. The scatterplots

in Figure 2.1, however, are still scaled to 35, to avoid having all the points clustered in a corner

of the scatterplots. Furthermore, the heatmaps in Figure 2.1 share the same color scale, and we

notice that only one of the heatmaps has a value close to the maximal red, because the other

heatmaps are subdivided into months, reducing the values in them. Figure 2.4 instead scales

each chart independently, according to the maximal value within it. This makes better use of

spatial (and color) resolution, but makes it more difficult to compare charts.
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Figure 2.3 Example plots extracted from a matrix generated with the gpairs package

in R (Emerson and Green (2012)). Top row: boxplots over variables of cardinality 5, 13,

and 35, respectively. Bottom row: mosaic plots with cardinality 3×5, 5×13, and 13×35,

respectively.

2.3.1 Interaction

The user may interact with the GPLOM in several ways. A GPLOM contains bars and rectan-

gles that afford easier pointing and clicking than the small points or dots in a normal SPLOM.

In our GPLOM prototype, rolling the mouse cursor over a barchart bar or heatmap cell causes

it to highlight. Clicking on a bar or cell selects it.

2.3.1.1 Linking

Linking (or coordination (Roberts (2007); Wang Baldonado et al. (2000); North and Shneider-

man (2000))) between charts is shown in two ways: bendy highlights, and associative high-

lighting.

Bendy highlights are specialized links that connect different charts, comparable to previous

work that also draw links between views (Collins and Carpendale (2007); Steinberger et al.

(2011); Claessen and van Wijk (2011); Viau and McGuffin (2012)). Bendy highlights are

curved links that show the value of a categorical variable during rollover or selection. A text
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Figure 2.4 A GPLOM of 8 categorical variables, 8 continuous variables, and 144

million flights from the OnTime dataset. The menubar at the top displays the possible

aggregation operators for barcharts and heatmaps: Average (currently selected), Sum,

Count, Min, and Max. The menubar also shows that “Departure delay” is the currently

selected (dependent) continuous variable for heatmaps. Other interface elements: A:

bendy highlight; B: textual search box; C: infobox. Note that heatmaps and barcharts are

computed over the whole dataset, but scatterplots only show a random sample of 200 data

points each.

string is displayed at the curved corner of the link to show the category (for example, the 5-

6pm departure time block is displayed as “1700-1759” on the corner of the bendy highlight in

Figure 2.4, A). Bendy highlights can also help understand the relationship between a heatmap

cell and other charts (Figure 2.5).

Associative highlighting shows the relationship between charts when a categorical value is se-

lected. There are three types of such highlighting. If the aggregation used in barcharts and

heatmaps is the Sum or Count operator, then associative highlighting is achieved by highlight-

ing the fraction of bars in other barcharts that is associated with the selected value (Figure 2.6).

This is similar to the proportional highlighting of bars of Zhang and Marchionini (2004). If, in-

stead, the aggregation used is Average, Min, or Max, then associative highlighting is achieved
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Figure 2.5 Bendy highlights and a tooltip.

by displaying dots to show the average, min, or max value of data for the selected value (Fig-

ure 2.7). Finally, regardless of the aggregation operator, the corresponding dots in the scatter-

plots are highlighted.

2.3.1.2 Filtering

To drill down, the user can double click on a bar (such as a bar for “Year” = 2012), causing a

filter to be created that restricts the displayed data to that value. This “sheds” the corresponding

categorical variable, removing a row and column of charts from the GPLOM, and creates a filter

box that the user can later click on to roll back up. Figure 2.6 shows the result of applying four

successive filters: “Year” = 2012, “Quarter” = 1, “Month” = 1 and “Carrier” = EV. We call this

feature “dimensional shedding”.

2.3.1.3 Infobox

Additional information about the element under the cursor is displayed in the infobox (upper

right corner of Figure 2.4), which contains the results of the various aggregation operators
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Figure 2.6 With the Sum aggregation operator, associative highlighting fills in the

fraction of bars associated with the selected value “Departure time block” = “1800-1859”.

Figure 2.7 With the average aggregation operator, associative highlighting displays

circles showing the average values for the selected value “Departure time block” =

“1800-1859”.

as well as a kernel density estimate plot, allowing the user to judge whether the underlying

distribution is normal or not, its modality and its skewness.
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2.3.1.4 Text Search

Because GPLOM displays a large number of charts, it may be time consuming for users to visu-

ally scan all variable names to find a desired chart. Thus, a textual search function (Figure 2.8)

allows the user to enter a string, suggests autocompletions, and highlights the corresponding

elements once the string is entered. Currently, our prototype only allows the user to enter val-

ues, however it would be easy to extend the prototype to also allow entering names of variables.

This feature is similar to one proposed in section 6.1 of Grammel et al. (2010).

Figure 2.8 Entering the name of a value causes it to be highlighted in the GPLOM.

2.3.1.5 Labels

Due to the density of information displayed in a typical GPLOM, there is often insufficient

room for labels showing the values of all categorical variables along their axes. Instead,

GPLOM relies heavily on tooltips and bendy highlights that show the value under the cur-

sor. In our first version of the prototype, we arranged categorical values on vertical axes sorted

top-to-bottom, resulting in Figure 2.9. This resulted in many crossing bendy highlights. We

therefore modified the prototype to sort values bottom-to-top, yielding Figure 2.10, which is

the order shown in other figures in this paper. A third possibility is shown in Figure 2.11, which

avoids excessive crossed links while maintaining the usual top-to-bottom ordering of values.
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Figure 2.9 A variant of bendy highlights: alphabetical vertical sorting (e.g., Asia,

Europe, USA).

Figure 2.10 A variant of bendy highlights: reverse alphabetical vertical sorting (e.g.,

USA, Europe, Asia).
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Figure 2.11 A variant of bendy highlights: a “reversed” GPLOM with alphabetical

vertical sorting.

2.4 Implementation

The GPLOM architecture follows the three-tier architecture. The data tier is a standard SQL

database such as SAP HANA or MySQL, the logic tier consists of a web application imple-

mented using the Play framework1 and the presentation tier is a JavaScript application that

renders SVG on the client’s browser using D3.

The logic tier computes aggregates as requested by the presentation tier and serves as an ab-

straction of the underlying database.

2.5 Experimental Evaluation

We suspect that one of the advantages of GPLOM is that users can answer questions by sim-

ply scanning for the appropriate chart, whereas in the commercial product Tableau they must

explicitly construct a visualization. To investigate this idea, we performed an experimental

comparison of user performance with both tools.

1http://www.playframework.com/
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We chose three datasets for the experiment: a warm-up dataset (a converted sample SQL server

database called Adventureworks) that was used to introduce users to both visualization tools,

and two other datasets (Cars2, and the OnTime3 airline delay data for the month of December

2012). Cars and OnTime were each used with one of the tools, counterbalanced for dataset

and ordering. One quarter of the users did (Tableau+Cars, GPLOM+OnTime), another quarter

did (Tableau+OnTime, GPLOM+Cars), another quarter did (GPLOM+OnTime, Tableau+Cars)

and the last quarter did (GPLOM+Cars, Tableau+OnTime).

Each trial required the user to answer a question about the dataset. There were two types of

questions, and for each type of question, there could be zero or more criteria involved in the

question. The type of question consisted of either questions that asked which type of trend or

correlation (positive, negative or null) exists between two variables, if any, and questions that

asked to find a particular data value, such as the year in which the average mileage per gallon

for all cars was the highest. The criteria count ranged between zero to three criteria, so that

a question “find the carrier with the highest average arrival delay” has zero criteria, while the

question “find the day of the week when Hawaiian Airlines (HA) has the highest average delay

for flights departing between 9:00-9:59” has two criteria (carrier=HA, departureTime=0900-

0959).

In total, the experiment involved:

2 types of questions (trend or data)

× 4 criteria counts (0 through 3)

× 2 technique-dataset pairs (GPLOM and Tableau 7.0)

× 12 users

= 192 trials

The 12 students who participated (11 male, 1 female) were either from the software engineer-

ing or information technology engineering programs at ETS, at both the undergraduate and

graduate levels. Each student was assigned to one of the four between-subjects groups and was

2http://lib.stat.cmu.edu/datasets/
3http://www.transtats.bts.gov/Fields.asp?Table_ID=236



30

asked to explore the warm-up dataset for five minutes with one of the two techniques (either

Tableau or GPLOM, depending on the participant’s group), as an exploration phase. Once the

five minutes were over, each participant was shown how to use the software in order to answer

the questions, then presented with eight questions for the warm-up dataset. After the questions

on the warm-up dataset were answered, a second dataset (either Cars or OnTime, depending

on the participant’s group) was shown and the participant was asked to answer questions about

the new dataset. Then, the participant explored the warm-up dataset again, using the other

technique, answered the same eight questions using the other technique and, finally, answered

a set of questions on a different dataset than the one explored with the first technique.

None of the participants indicated that they had any prior experience with Tableau or with the

GPLOM prototype. During the exploration phases and warm up trials, users were free to ask

questions, and were shown all the features of the user interfaces that were necessary to answer

the questions in the experiment.

The participants used a single monitor workstation equipped with a 24 inch monitor, keyboard

and mouse.

The GPLOM prototype consisted of a web application built using D3 and JavaScript, running

in the Chrome web browser (version 25), as well as a server-side backend. The server-side

backend managed communication between the client and a MySQL server, computing agre-

gates to be consumed by D3. It was built using the Play framework 2.0.4 and ran in production

mode during user tests.

Tableau and GPLOM both connected to the same MySQL database over a wired gigabit Eth-

ernet network.

As the GPLOM prototype was not optimized for performance, each time a participant added

a filter by double clicking, a full page load by Chrome was executed, requiring Chrome to

re-interpret and run JavaScript code (in theory, this could be eliminated with more careful

coding) and also regenerating all charts (this is unavoidable with the GPLOM approach). We
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subsequently measured that the median time for all this to occur was 1.7 seconds for the Cars

dataset, and 5.7 seconds for OnTime.

The questions were displayed to users on a second monitor controlled by the experimenter.

When the user indicated they were ready to start a trial, the experimenter clicked a button to

display the question and start a timer. The user then read the question and interacted with the vi-

sualization tool until they said they could answer the question, at which point the experimenter

stopped the timer (triggering a simultaneous screen grab of the user’s screen), and transcribed

the user’s verbal answer. The time elapsed was recorded. If the user decided they wished to

check or change their answer by performing further interactions with the visualization tool, the

time of their last answer determined the recorded duration. No feedback was given to indicate

to the user if their final answer was correct or incorrect.

2.5.1 Results

Because each participant was only exposed to half of the four {GPLOM, Tableau} × {Cars,

OnTime} combinations, the performance data were separated by dataset for analysis. Some of

the main results are summarized in Figure 2.12 and below:

Table 2.1 Breakdown of error rate and median time to complete tasks by dataset and

technique.

GPLOM Tableau

median time (s) error rate median time (s) error rate

Cars 23.67 13% 41.14 10%

OnTime 48.68 17% 59.58 33%

The time taken by participants to answer was non-normally distributed (Shapiro-Wilk normal-

ity test, p < 0.01). The non-parametric ANOVA-type statistic (ATS) revealed that GPLOM

was significantly faster than Tableau for the Cars dataset (p < 0.01), and that the criteria count

had a significant effect on time in both the Cars dataset (p < 0.01) and the OnTime dataset
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Figure 2.12 Task completion time for each method, as a function of number of criteria,

broken down by dataset and question type. A robust linear model was fitted to yield the

straight lines.

(p < 0.01), with time increasing with criteria count. There was no significant difference in

time between GPLOM and Tableau for the OnTime dataset, although GPLOM had a lower

median time (48.68 seconds for GPLOM vs 59.58 seconds for Tableau).

Examining Figure 2.12, we note that the case where GPLOM seemed to have the least ad-

vantage with respect to Tableau was with “data” questions about the OnTime dataset when the

criteria count was 2. This particular case corresponds to the only question that required the user

to use the Count aggregation operator in GPLOM. In hindsight, we recall several users having

difficulty with this question, and suspect that this question was relatively easier in Tableau be-

cause Tableau has a pre-defined variable “Number of records”, obviating the need for users to

select a Count aggregation operator in Tableau.

A logistic regression revealed that questions about the OnTime dataset had a significantly

higher error rate than questions about Cars. GPLOM had a lower overall error rate than

Tableau, but not significantly.
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Post-questionnaires asked users to rate the two interfaces against nine criteria such as “intu-

itive”, “easy to learn”, etc. On average, users gave a higher (i.e., more positive) rating to

GPLOM than Tableau for all of these criteria, but Wilcoxon signed rank tests showed that only

two were significant: users judged GPLOM to be significantly more “fast” (p < 0.01) and sig-

nificantly more “fluid” than Tableau (p < 0.05). Additional details about the statistical analysis

are available in Annex I.

2.5.2 Discussion

We did not attempt to subtract the full page load time per filter incurred by the GPLOM pro-

totype from the recorded time taken by the participant to answer, as there is no way to differ-

entiate between the user waiting for Chrome to render the page and the user thinking about

the next filter to enter while the page is loading. It is possible that, if the page load time were

reduced with better coding, this would further differentiate GPLOM from Tableau, as Tableau

did not incur such an overhead.

On the other hand, the error rate with Tableau was sometimes rather high, and this may be

because the users were too inexperienced with it, despite the warm up trials. It is possible that

a follow-up study with more experienced users would yield different results.

Nevertheless, in our study, GPLOM resulted in a lower median time in both datasets, and a

significantly lower time in the Cars dataset. A possible explanation for this difference would

be the difference between the process of building a filter in each visualization.

In Tableau, the process to build a filter comprises the following steps:

a. Pick the categorical variable to filter from the list of dimensions

b. Drag the selected categorical variable to the filter shelf

c. Select the desired value for the filter from the list of possible values for the categorical

variable
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d. Click OK to dismiss the filter dialog box

On the other hand, in GPLOM, the process to build a filter requires the following steps:

a. Locate one bar chart whose x axis corresponds to the categorical variable to filter

b. Locate the particular bar that corresponds to the desired value on which to filter by hov-

ering over the bar and reading its associated tooltip

c. Double-click the bar

Alternatively, the user can build a filter in GPLOM in the following fashion:

a. Move the mouse cursor to the search box and click it

b. Enter the desired value to search for using the keyboard

c. Move the mouse cursor to one of the highlighted bars on a bar chart

d. Double-click the bar

Another explanation for the faster performance of GPLOM relative to Tableau would be the

dimensional shedding feature of GPLOM. As participants drilled down in GPLOM by double

clicking, the number of displayed charts was correspondingly reduced and the possible values

on each chart’s horizontal axis only contained the list of allowed values. In contrast, Tableau’s

design requires the list of dimensions (categorical variables) to stay static and building a filter

often listed values incompatible with other filters. For example, even if a previous filter filtered

out cars by Asian manufacturers, Honda and Toyota would still appear if the user attempted to

add a filter for the manufacturer’s name. Furthermore, when users built an invalid combination

of filters, Tableau displayed no data at all, which stumped some participants and caused them

to search (often for an extended period of time – see for example the outlier points in Fig-

ure 2.12) for a reason as to why the display was completely blank. As GPLOM always shows
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all available data and filtering is done by picking a particular subset of the displayed data, it is

impossible for a user to build such a filter combination.

Another problem participants encountered with Tableau was their building of a chart that con-

tained too many categorical variables or did not answer the question they were asking; on the

other hand, some participants answered some questions using the wrong chart in GPLOM, so

the problem could be one of user education or wanting to please the experimenter by answering

something.

2.5.3 Improvements

Several improvements can be made to the GPLOM prototype. In its current iteration, the search

box only contains the data contained in the database, without mapping it to more user friendly

concepts (carrier name “WN” instead of Southwest or “1” as a day of the week, instead of

Monday). This confused some of the users, who tried several times, unsuccessfully, to get the

search box to find the values they were looking for. Ensuring that there is a rich data dictionary

that has multiple synonyms for values would significantly improve the users’ experience in that

regard.

Another problem was that the search box’s color contrast was insufficient (see top right of

Figure 2.4) and eight of the twelve users missed it entirely during the five minute exploration

period. Improving its contrast and adding a magnifying glass icon might make it easier for

users to discover the feature. Even when they were told that the search box existed, most users

did not use it, instead using the mouse to find and select values to filter on.

One significant problem that was repeatedly encountered during user testing of the GPLOM

prototype is the lack of clear affordances for interaction. Users did not seem compelled to

click, much less double click, on charts. During the exploration phase, out of twelve users,

only one found that it was possible to filter data by double clicking on bars, although some

tried right-clicking (which only brought Chrome’s default right-click menu). This lack of clear

affordances meant that users often tried to click and double click on the brightly colored bendy
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highlight, which did nothing; in retrospect, it seems like an obvious affordance for user inter-

action which could be used for highlighting and filtering.

The associative highlighting, while useful for part-to-whole comparisons, was often misun-

derstood by users; it was almost never used to answer questions on datasets, even though it

displays the exact same data that double-click filtering on a particular value would.

Another misunderstood feature was the kernel density estimate plot, which confused users

much more than it helped them. We postulate that histograms, density plots, Q-Q plots, rug

plots and other statistical tools, while very important to evaluate distribution shape, are unlikely

to be understood by average business users.

2.6 Conclusion and Future Directions

Despite a large variety of charts and visualizations, it remains unclear to many non-expert

users how to visualize the contents of a typical database in a way that gives them an overview

of variables they may not be familiar with. Many advanced techniques have been proposed

(Wong and Bergeron (1997); Grinstein et al. (2001); Keim (2002)), but most of these have

seen limited real-world deployment, and almost none of them are designed for the simulta-

neous visualization of multiple categorical and continuous variables, with the exception of

Emerson et al. (2013). Both Emerson et al. (2013)’s approach and the GPLOM can give users

a visual overview of more than 10 variables, allowing them to visually scan for interesting rela-

tionships and allow for serendipitously discovering outliers or thinking of unplanned questions

for further analysis.

Compared to Emerson et al., GPLOM (1) only uses three kinds of charts, the minimum num-

ber necessary to cover the three kinds of pairings of variables, which may make it easier to

understand for non-expert users and scale better to high-cardinality categorical variables; (2)

demonstrates two ways of interactively linking charts, through bendy highlights and associa-

tive highlighting; (3) demonstrates text search to quickly find values of interest; and (4) saves

screen space by only displaying the lower triangular half of the matrix. We also presented ex-
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perimental evidence that GPLOM is sometimes significantly faster than Tableau, a commercial

product, for the kinds of questions we tested.

Future work might compare the performance of the reversed GPLOM (Figure 2.11) with the

upright version. During the exploration phase of our study, most of the participants seemed

to explore the software from top to bottom, left to right and spent most of their time trying

to understand the heat maps. The reversed GPLOM would mean that the first visual elements

encountered by users would be barcharts, which are easier to understand. This might better

ease novice users into the GPLOM.

Future work could also compare GPLOM with other MDMV visualizations or database tools,

such as xmdv, ggobi or Mondrian.

The GPLOM prototype could be modified to accommodate a wider range of user skills. Novice

users could be shown only the matrix of barcharts, while more advanced types of plots (such

as those of Emerson et al. (2013)) could be available for expert users.

There might also be hybrid ways to combine the matrix layout of GPLOM with the dimensional

stacking of Polaris / Tableau, giving the user more control over the tradeoff of number of charts

and level of detail.

Finally, we plan to explore ways of improving the performance of GPLOM with extremely

large datasets. While performance of the GPLOM prototype on the complete OnTime dataset

(≈144 million records) was still within acceptable bounds for interactive exploration, it re-

quired the usage of an in-memory columnar database running on a server with 16 dual-core

processors equipped with 512 gigabytes of RAM. Incremental approaches for large data visu-

alization, such as VisReduce (Im et al. (2013b)), could also be applied to reduce the perceived

system latency.





CHAPTER 3

VISREDUCE

3.1 Introduction

Visualization for business intelligence often involves querying large databases to generate plots

such as line charts, barcharts, scatterplots, or potentially more exotic visualizations (Wong and

Bergeron (1997); Grinstein et al. (2001); Keim (2002)) such as parallel coordinate plots (Insel-

berg (1985)). These visualizations provide more insight when the user can interact with them to

quickly refine queries, drill down, or choose new paths of exploration. Unfortunately, common

back-end systems for processing very large datasets have one or both of the following prob-

lems: (1) they exhibit high latency, precluding feedback at interactive rates, or (2) they require

expensive pre-computations (such as indices or datacubes) that accelerate restricted classes of

queries, but do not accelerate all of the common queries involved in data visualization.

For example, systems based on SQL are not designed to run arbitrary code as part of a query1.

Hence, generating a scatterplot or parallel coordinates plot of a large dataset with SQL requires

running a query that transfers all the data tuples from the database to the client, and then

generating the plot on the client. The client becomes a bottleneck, and the work of generating

the visualization cannot be distributed over multiple nodes. Scalability is thus severely limited.

OLAP datacubes (Chaudhuri and Dayal (1997)) support fast aggregation queries, but only over

the dimensions that were included during the construction of the cube. With large datasets

involving 20 or more dimensions, constructing a “full” cube with all dimensions is often not

feasible (Liu et al. (2013)) due to memory restrictions, and queries involving dimensions that

are left out will not be possible.

1Technically, many DBMS support user defined aggregation functions, as proprietary extensions to SQL.

These have different caveats depending on the DBMS. For example, MySQL requires them to be written in C,

Oracle requires PL/SQL, C, C++ or Java, SQL Server requires them to run on the .NET framework while Post-

greSQL supports many languages. Furthermore, the C APIs are incompatible between DBMS. Also, depending on

the database and foreign language combination, there may be a significant overhead to calling a foreign function

millions of times. Finally, DBMS-internal languages have no intrinsic support for image manipulation.
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MapReduce (Dean et al. (2004)) has recently gained attention as a tool for processing large

data, but is designed for batch jobs, and has high latency. Just starting up a new job can

require several seconds with typical implementations. To quote Heer and Shneiderman, “While

popular platforms for large data analysis such as MapReduce achieve adequate throughput,

their high latency and lack of online processing limit fluent interaction” (Heer and Shneiderman

(2012)).

Interactive visualization of large data is an important problem, covering two challenges listed

by Johnson (“human-computer interaction” and “scalable, distributed, and grid-based visual-

ization” (Johnson (2004))) and two more listed by Chen (“usability” and “scalability” (Chen

(2005))). Tableau, a leading commercial front-end for visualization of databases for business

intelligence, has only limited features for dealing with very large data. However, more pow-

erful solutions would clearly be valuable: “Tableau has users with very large databases who

are willing to wait minutes for database queries to run so that they can see a graphical view

of their valuable data. However, users do not want interactive experiences that include such

pauses.” (Mackinlay et al. (2007))

We present a simple yet promising solution called VisReduce, that (1) allows queries to run

arbitrary code on multiple computers called worker nodes (unlike SQL-based solutions); (2)

scales up in speed as the number of worker nodes is increased; (3) gives continual feedback

to the client about the progress of a query, so that the user knows roughly how long they will

need to wait; (4) incrementally updates the result displayed by the client, so that the user sees

an approximate visualization of the data processed so-far during the entire query, as illustrated

by the bar charts of Figure 3.1. The visualization is displayed within 1 second of launching the

query and is updated frequently and continually during the query, gradually converging toward

the final result, allowing the user to cancel a query before it has finished if they so desire.

VisReduce achieves these properties by avoiding all large transfers of data between nodes,

never writing large output files to disk, leveraging compressed columnar storage data formats,

and keeping runtime environments on worker nodes “warm” (i.e. persistent) rather than starting
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up new runtime environments each time a new query is initiated so that processing can start

and visual feedback can be displayed within 1 second.

Figure 3.1 In this example, the output being displayed by the VisReduce client is a

barchart. As the query progresses, the barchart is updated incrementally, shown here as a

sequence of screenshots, starting at top left and ending at bottom right. Respective times

since the start of the query are 270 ms, 1137 ms, 3988 ms and the completed result at

5021 ms shows average delay for all 149.5 million flights. The bars initially oscillate in

length, but quickly converge to their final lengths as the query progresses and becomes

more accurate. As the query progresses, new bars are occasionally created and inserted

(these have been manually highlighted in this figure with a lighter color).

We evaluated VisReduce by comparing its performance with three other popular systems:

Apache Hive2 (built on top of Hadoop MapReduce), Cloudera Impala3 (a recently-released

implementation of Dremel for Hadoop), and PostgreSQL4. Tests were performed with the On-

Time5 flight data set, which has approximately 150 million records and over 100 columns. Of

these systems, VisReduce is the only one that provides an incrementally updated visualization

2https://hive.apache.org/
3http://impala.io/
4http://www.postgresql.org/
5http://www.transtats.bts.gov/Fields.asp?Table_ID=236
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during the query, and the results of our tests indicate that it also completes queries signifi-

cantly faster than the other systems. We feel that the design ingredients of VisReduce provide

valuable lessons for the design of future interactive visualizations engines for large datasets.

3.2 Previous Work

Rapid interactive visual queries on databases were pioneered with Shneiderman’s dynamic

queries (Shneiderman (1994)), which emphasized the value of providing real-time feedback to

the user for a tight interaction loop. TreeJuxtaposer (Munzner et al. (2003)) is an example of a

visualization that achieves a guaranteed constant frame rate during navigation through a large

tree structure. It achieves this by progressively rendering data into the video card’s front buffer

(rather than the usual back buffer), drawing the more important data and landmarks first, and

stopping the rendering whenever a new frame must be started. This way, if there is not enough

time to draw the full data set in the allocated time for a frame, the user at least sees the most

salient information before the next frame is started. VisReduce is designed to scale up to much

larger data sets, but still adheres to the idea of displaying a visualization that is updated often

(several times per second) and becomes increasingly accurate as the query progresses.

We now survey the most relevant types of backends for large data processing.

SQL-based systems are programmer-friendly because the query language is familiar and easy-

to-understand. Examples of systems that expose an SQL-like language include Dremel (Melnik

et al. (2010)), a query system developed at Google for low-latency querying of large data sets

stored on their infrastructure, and Cloudera Impala, a recently-released open-source implemen-

tation of the same concept. As explained in the introduction, such systems cannot efficiently

generate a scatterplot or parallel coordinates plot, because they would require all the data to be

first transferred to the client for rendering.

Of particular note is the work of Hellerstein et al. (Hellerstein et al. (1997)) on implementing

online aggregation inside of a database engine, in which they explain how they implemented

online aggregration of simple aggregate statistics (sum, count, avg, var and std dev) in Postgres.
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OLAP datacubes (Chaudhuri and Dayal (1997)) only accelerate queries on the cubes that have

been pre-computed. As mentioned in the introduction, with large data sets, these cubes cannot

incorporate all dimensions, otherwise they become too large. The imMens (Liu et al. (2013))

system has a clever workaround for this problem: it only pre-computes small cubes of 3 or

4 dimensions, and can afford to pre-compute many such cubes, each with a different set of 3

or 4 dimensions. This allows the user to perform brushing and linking on overviews of data

with very rapid visual feedback. However, business intelligence tasks can require the user

to filter along 3 or 4 dimensions (e.g., to examine only the data for a particular country, a

particular year, and a particular month) and then explore further, and such filtering along many

dimensions means these small datacubes will no longer be useful. In addition, although many

small cubes require far less space than one full cube, they can still require significant space and

pre-computation time: in a data set with 20 dimensions, computing all possible 4-dimensional

cubes requires storage for
(
20
4

)
= 4845 cubes.

MapReduce (Dean et al. (2004)) is a framework used at Google for writing distributed pro-

grams that can be run on large clusters of computers. An open-source implementation, Hadoop

MapReduce, is a popular approach for handling large datasets. Both are optimized for through-

put of large batch jobs, not latency, and thus involve overhead that is a significant barrier to

real-time interaction. Just starting up a new job can take several seconds, partly because new

Java Virtual Machines (JVMs) must be started on each worker node. Furthermore, running

MapReduce on large datasets involves moving lots of data between machines (Figure 3.2).

Finally, common implementations of MapReduce do not return any partial results; the client

must wait for a job to complete before seeing feedback.

Some previous work (Jermaine et al. (2006); Joshi and Jermaine (2008); Fisher (2011)) has

studied how to structure databases so that queries iterate over data in a statistically random

order. This allows confidence bounds on the current result to be computed and displayed

throughout the query, so that the user not only sees the current result, but also bounds on

what the final result may be, giving the user more information to decide whether they can

stop a query before it completes. User studies (Fisher et al. (2012)) have shown that such



44

Figure 3.2 Computing averages with MapReduce. The map, shuffle, and reduce

operations are each distributed over multiple nodes. Tables with thick borders may be

very large, resulting in slow disk I/O operations and heavy network traffic.

confidence bounds provide end users with valuable information to accelerate decisions by the

user. Unfortunately, this approach comes with a significant up-front cost: randomly shuffling

all records in the database (Jermaine et al. (2006)) or constructing an “ACE Tree” (Joshi and

Jermaine (2008)) structure which itself requires multiple complete passes through the dataset.

Our current VisReduce prototype performs no such pre-processing but this also means we

cannot provide confidence bounds on the incrementally updated result during a query. Note

also that, because VisReduce uses a columnar data format, it can greatly benefit from having

data that is not randomly shuffled: run-length encoding can greatly compress the columns if

there are many repeated values. For example, generating an “average sales by month” barchart

of a large dataset with VisReduce would only require reading in two columns, one of which

(the “month” dimension) may be greatly compressed because it contains many repeated values,

thus saving disk read time.

There have also been efforts to extend MapReduce to allow for online aggregation (Böse et al.

(2010); Condie et al. (2010)). These approaches require some time to start up before they

can return results. For example, Figure 4 of Condie et al. (2010) shows almost 20 seconds
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elapsing before any progress is made. The latency achieved with VisReduce is much lower

(under 1 second) and more suitable for interactive feedback; this faster start up time allows

rapid sequences of partial queries to be explored with no perceived waiting time by the user,

such as a user executing multiple sequential drilldowns in GPLOM (Im et al. (2013a)) without

waiting for query completion.

Table 3.1 summarizes some key differences between SQL, MapReduce, and our proposed

VisReduce.

Table 3.1 A comparison of SQL, MapReduce, and VisReduce. VisReduce is the only

approach to have all the advantages listed, because it is designed especially for interactive

visualizations.

3.3 Description

VisReduce differs from MapReduce by making two assumptions in order to increase the per-

formance to interactive levels:

• the resulting output aggregate is small enough to fit in memory and be transmitted in a

reasonable time (less than 250 ms) over the network;
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• there always exists an inverse aggregate, so that partial results can be removed from the

output aggregate.

An overview of VisReduce running on two worker nodes is shown in Figure 3.3, which can

be contrasted with Figure 3.2 for MapReduce. One key difference is that MapReduce doesn’t

return a result until the entire job is finished. With VisReduce, however, results are computed

incrementally, so that at time t, the 2 workers produce partial results rt,1 and rt,2, respectively.

These results are combined by the master node with its previous partial result yielding rt =

rt−1⊕ rt,1⊕ rt,2. In the example shown in Figure 3.3, this partial result rt might be displayed

by the client in the form of a barchart, with the heights of bars gradually converging toward

their final heights, i.e., rt converging toward its final value as t increases.

Figure 3.3 Computing averages with VisReduce over two worker nodes. Tables with

thick borders may be very large, but do not leave the worker node they are stored on.

Only relatively small amounts of data are transferred between nodes. At time t, each

worker w produces result rt,w; the master node assembles these into result rt to be

displayed by the client. Specifically to compute averages, both the sum and the number of

data points seen need to be tracked.

Another key difference between Figure 3.2 and Figure 3.3 is seen by noting which tables are

“big” (drawn with a thick border). In Figure 3.2, there are 5 big tables, requiring large volumes
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of data to be transferred over the network. MapReduce supports an optional optimization

where a combiner is run over the output of the mapping phase before transmitting it over the

network, but it still requires writing the potentially large output of the mapping phase to disk.

With VisReduce, however (Figure 3.3), the two large tables remain on their respective worker

nodes, and only small results rt,w and rt need to be transferred between nodes with no disk

writes. In Figure 3.3, the transmitted results are heights of bars in a barchart, and the master

node’s ⊕ operator simply computes average values. Alternatively, if we were using VisReduce

to compute a scatterplot or parallel coordinates plot, the partial results rt,w and rt could be

bitmap images, with the master node’s ⊕ operator performing image compositing.

Because the partial results rt,w and rt are small in size, VisReduce doesn’t need to write results

to disk, saving time.

Notice also that, if we increase the number of worker nodes, VisReduce’s speed will increase

almost linearly, because worker nodes can work in parallel and still only send small results

over the network, even if the raw data set grows in size.

Also, no matter how large the dataset is, workers can send frequent partial results to the master

(several times per second), to display incrementally updated feedback to the user. This is unlike

most database approaches.

As a partial result can be “removed” by inverting it and reducing it into the current state,

results can be sent to the client without waiting for completion of an input segment while still

maintaing fault tolerance. In contrast, MapReduce’s fault tolerance mechanisms require an

input segment to be completely mapped before reducing the mapper’s output, leading to long

delays before the first results are sent to the client in online approaches, as shown in Figure 4

of Condie et al. (2010).

Unlike MapReduce, the runtime environments on VisReduce’s worker nodes are kept “warm”,

to decrease start-up time.



48

VisReduce further saves time by using a simple columnar data store, which is combined with

a dictionary encoding (e.g., replacing each string “Dallas, TX” with an integer value) and run-

length encoding. Unlike a general database, with VisReduce we care much more about fast

agregation performance, and not individual row lookups or updating the data.

Previous work has demonstrated the performance advantages of such columnar approaches.

Pavlo et al. (2009) compared Hadoop MapReduce with two commercially available massively

parallel databases — an unnamed row-oriented database6 and a column-oriented one (Vertica)

— and show that the column database is faster than the other two approaches for aggregation

workloads. Abadi et al. (2006) discuss how adding various simple compression techniques to

a column-oriented DBMS offer significant gains in both query run time and storage size.

3.4 Theory

Formally, if R is the set of possible results (e.g., key-value pairs for barcharts, or bitmap images

of scatterplots), then the ⊕ operator used to combine partial results is a binary operator from

R×R �→ R. We furthermore require that (R,⊕) be an Abelian group:

Closure ∀a, b ∈ R⇒ a⊕ b ∈ R

Associativity a⊕(b⊕ c) = (a⊕ b)⊕ c

Commutativity ∀a, b ∈ R, a⊕ b = b⊕ a

Identity element ∀a ∈ R, ∃0 ∈ R such that a⊕0 = a

Inverse element ∀a ∈ R, ∃ − a ∈ R such that a⊕−a = 0

Associativity and commutativity mean that the master node can combine partial results from W

workers in any order with rt = rt−1⊕ rt,1⊕ . . .⊕ rt,W . The existence of inverses means that

the master node can also remove a partial result rt,i from rt if the master decides that worker

6Many commercial database vendors prohibit publishing benchmarks in their licensing agreements. In the case

of Pavlo et al., the database is known as DBMS-X, “a parallel DBMS from a major relational database vendor.”



49

node i is malfunctioning and the partial result needs to be recomputed, either by a different

worker node or by the same worker node.

We further define an operator � : R ×D �→ R which combines a single data element d ∈ D

with a partial result r ∈ R to produce a new partial result. This operator is used by the

worker nodes to construct their partial results. Each worker node w begins with an empty

result 0 ∈ R (e.g., 0 could be a blank bitmap image) and combines it with data elements to

generate rt,w = 0� d1� . . .� dn.

The � operator in VisReduce is analogous to the map operator in MapReduce. However, with

MapReduce, the map operator must map to a list of key-value pairs, whereas our � operator

can map to any object of reasonable size, including key-value pairs and bitmap images.

VisReduce jobs can be implemented by defining the four side effect-free functions listed below.

These could be the basis for four methods in a Java interface or an abstract base class in C++,

that must be implemented by the programmer.

• a ⊕ function that combines two partial results

• a � function that combines a partial result with a data element

• an identity function which returns the empty result (identity element) 0

• an inverse function which returns the inverse −r of a partial result r

Those four functions, or methods, can be packaged together to form a work-object, which can

then be distributed across a cluster (as a single .class file, in the case of Java) for parallel

processing.

3.5 Implementation

Our VisReduce prototype has been implemented as a web application using Play7 for serving

the web content and Akka8 for clustering and actor-based inter-node communication. Each

7http://www.playframework.org/
8http://akka.io/
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worker node has a copy of the entire data set which is saved on disk in a compressed and

bit-packed read-only column oriented format, split in several segments called tablets. Upon

receiving a request from a client, the master node gathers a list of tablets for a particular table,

then sends a list of tablets and a work-object to each worker node. Worker nodes then run the

work-object on the tablet, sending the resulting state from the processing to the master node

and requesting additional work.

The master node aggregates the results of tablet processing on the cluster as they are received

and pushes back the aggregate onto the client at an appropriate speed for the client, which

updates the data visualisation shown to the user. To ensure interactivity, the master node can

request a partial result from the processing of a tablet by a worker, so that slow tasks running

on large tablets still display partial aggregates.

Complete node failures are detected using the ϕ accrual failure detector (Hayashibara et al.

(2004)), while exceptions caught by VisReduce are reported to the master node. Should a

node fail during tablet processing with its partial state sent to the client, the partial state can

be removed by inverting it and sending the negative delta to the client, while scheduling the

execution of the failed tablet on another node, thus ensuring a consistent final state.

3.5.1 Examples

The bar chart in Figure 3.1 was generated using simple operations for each operator:

0 Initialize an empty associative array of grouping keys to sum and count pairs

− Invert all sums and counts in the associative array

⊕ Combine both associative arrays, removing values with a count of 0

� Add or update the value in the associative array

The resulting associative array is then turned into an animated bar chart by the VisReduce

client. The heat map of Figure 3.4 was generated using the following operators:
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Figure 3.4 Example of a heat map and accompanying histogram of arrival delay by time

of day, with the median, 90th and 99th percentiles of the arrival delay highlighted.

0 Initialize an empty array of bins, each containing a count of 0

− Invert all counts of the array

⊕ Sum both arrays together

� Increment the count for the appropriate bin

The bins are then turned into an image and the appropriate percentiles for each time block are

highlighted.

3.6 Architecture

We use a client-server model where the master node brokers communications between the

client and the workers. First, the client sends a work-object to the master, containing the

functions to execute over the dataset. The master then breaks the work to be done over all

the input tablets and splits the execution of the work-object over the workers. As the workers
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process the dataset, partial results are returned to the master on a regular basis, which are then

aggregated with the⊕ operator and sent back to the client. Thus, the client sees an incremental

view of the data that converges towards the final value of r as more data is loaded from disk.

Communication between the parts of the system are implemented using the actor model of

computation in which messages are sent between actors using the ! operator and messages are

processed by an actor one at a time from its mailbox. We define the following three messages:

• BeginComputation

• PartialResult

• CompleteResult

Given those messages, the message flow in a system with one worker and a dataset that has

two tablets would be as illustrated in Figure 3.5.

Client Master Worker
BeginComputation(O)

BeginComputation(O,1)

PartialResult(1,R)

PartialResult(S)

CompleteResult(1,R)

BeginComputation(O,2)

CompleteResult(2,R)

CompleteResult(S)

Figure 3.5 Message flow for a data set with two tablets
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3.6.1 Client Actor

The client actor is responsible for displaying the visualisation to the user and maintains an

internal state S for the computation. It can send the BeginComputation and must handle

the PartialResult and CompleteResult messages.

Of all the actors in the system, the client actor is the simplest. It simply sends a message to

the master actor to begin the computation, then either merges the incoming partial results into

its local state or displays the final state. Depending on the type of computation asked of the

cluster, it can display different types of charts, such as bar charts, scatterplots or density plots.

Algorithm 3.1 shows how the client actor can initiate the computation on the cluster by sending

the BeginComputationmessage to the master and handles the incoming PartialResult

and CompleteResult messages by updating the display.

Algorithm 3.1 Client Actor

� S the computation state

procedure STARTCOMPUTATION(O)

� O a work-object to execute

S ← 0
master ! BeginComputation(O)
Update display

end procedure
procedure HANDLEPARTIALRESULT(Rp)

� Rp a partial result

S ← S⊕Rp

Update display

end procedure
procedure HANDLECOMPLETERESULT(Rc)

� Rc the complete result

S ← Rc

Update display

end procedure



54

3.6.2 Worker

The worker actor is responsible for calculating the value of r over by iterating over the records

on a single tablet and reporting on the state of the computation to the master as appropriate. It

receives BeginComputationmessages and sends PartialResult and CompleteResult

messages back to the master, as shown in algorithm 3.2.

Each worker is completely independent of all the other workers, so that VisReduce can scale

near-linearly with the number of workers, up to the number of input tablets. Furthermore, a

single node with multiple cores or CPU sockets can run multiple worker actors to increase

parallelism and total throughput.

Algorithm 3.2 Worker Actor

procedure HANDLEBEGINCOMPUTATION(O, It)
� O the work-object

� It an input tablet identifier

� D the data in the input tablet It
� S the computation state

S ← 0
for all d in D do

S ← S� d
if we haven’t updated the master in a while then

master ! PartialResult(It, S)
end if

end for
master ! CompleteResult(It, S)

end procedure

3.6.3 Master Actor

The master actor dispatches work to worker actors and reports the results of the processing

back to the client. Like the client, it maintains an internal computation state S. It also main-

tains a state ΔS which contains the results that have not yet been sent to the client. It handles

all three messages, as shown in algorithm 3.3, and sends BeginComputation messages to

worker actors.
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Algorithm 3.3 Master Actor: External message handling

� I∀ a list of all input tablet identifiers

� I a list of unprocessed input tablet identifiers

� W a list of all the workers

� P a map of partial results

� A a map containing which actor is working on a particular input tablet identifier

� S the computation state

� ΔS the computation state not yet sent to the client
procedure HANDLEBEGINCOMPUTATION(O)

� O the work-object

S ← 0,ΔS ← 0, I ← I∀
for all worker in W do

if I = ∅ then
worker ! BeginComputation(O, I.head)
P [I.head]← 0, A[I.head]← worker
I ← I.tail

end if
end for

end procedure
procedure HANDLEPARTIALRESULT(It, Rp)

� Rp the partial result

� It an input tablet identifier

if P [It] = ∅ and A[It] = sender then
S ← S⊕Rp⊕−P [It],ΔS ← ΔS⊕Rp⊕−P [It] � Merge Rp into S and ΔS
P [It]← Rp

end if
end procedure
procedure HANDLECOMPLETERESULT(It, Rc)

� Rc the complete result

� It an input tablet identifier

S ← S⊕Rc⊕−P [It],ΔS ← ΔS⊕Rc⊕−P [It] � Merge Rc into S and ΔS
if P [It] = ∅ and A[It] = sender then

P [It]← ∅

worker ! BeginComputation(O, I.head)
P [I.head]← 0
I ← I.tail
if I = ∅ then

client ! CompleteResult(S)
end if

end if
end procedure
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Internally, a Tick message is sent at a regular interval to the master to ensure that the client

gets regular updates. Algorithm 3.4 shows how ticks are handled.

Algorithm 3.4 Master Actor: Tick message handling

� I a list of unprocessed input split identifiers

� ΔS the computation state not yet sent to the client
procedure HANDLETICK

if I = ∅ then
client ! PartialResult(ΔS)
ΔS ← 0

end if
end procedure

3.6.4 Fault tolerance

Algorithm 3.5 Master Actor: Fault handling

� I a list of unprocessed input split identifiers

� W a list of all the workers

� P a map of partial results

� A a map containing which actor is working on a particular input tablet identifier

� S the computation state

� ΔS the computation state not yet sent to the client
procedure HANDLEFAULT(It)

� It an input tablet identifier which failed

S ← S⊕−P [It],ΔS ← ΔS⊕−P [It] � Merge the inverse of the partial result

W ← W − A[It] � Remove the worker from the pool

I ← I + It � Add the tablet so it gets processed again

P [It]← 0, A[It]← ∅

if W = ∅ then
worker ! BeginComputation(O, I.head)
P [I.head]← 0, A[I.head]← worker
I ← I.tail

else
No workers left, failure

end if
end procedure

In VisReduce, fault detection is done using an implementation of the ϕ accrual failure detector

of Hayashibara et al. (2004). This ensures that faults are detected within seconds and can be
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recovered from without a significant impact on interactivity. If there is a fault or an exception

that occurs during processing of a tablet (either detected by the runtime or a catastrophic node

failure), −s is merged back into the computation state, where s was the last sent accumulated

state during the processing of the failed tablet.

3.7 Evaluation

VisReduce is designed to ensure that query performance is comparable to other non-incremental

systems; it would not be very useful to see incremental results while having to wait significantly

longer for any given query, compared to a non-incremental approach.

We evaluate our approach using a dataset of domestic US flights by major carriers from October

1987 until February 2013 and their associated delay information, for a total of 149,598,920

records with 109 columns. The dataset comprises 305 CSV files for a total of 65.74 GB. The

size of the data set and its number of records are consistent with the findings of Rowstron et al.

(2012) for typical analytical workloads on clusters of computers.

The query performance of VisReduce was compared with PostgreSQL, Apache Hive and

Cloudera Impala. All systems were benchmarked using queries that spanned one, two and

three columns. The one column query counted the number of flights by carrier, which resulted

in 32 rows of output across all 149.5 million flights. The two column query calculated sim-

ple aggregate statistics (min, max, count and sum) for the arrival delay of flights grouped by

carrier, which also resulted in 32 rows of output. Finally, the three column query calculated

the same aggregate statistics for the arrival delay but grouped by origin and destination airport

pairs, resulting in 8431 pairs of airports and their associated arrival delay information.

Queries were run on a five node cluster used for production analytical workloads at a commer-

cial dating website during times when no other jobs were running. The cluster was comprised

of heterogenous nodes equipped with either one or two Intel Xeon processors ranging from

2.13 GHz to 2.66 GHz, memory sizes ranging between 8 and 16 gigabytes and Western Digi-

tal hard drives ranging in size from 160 GB to 600 GB spinning at 7200 RPM. All nodes ran

Debian 6.0 “Squeeze,” had Cloudera’s CDH 4.2.0 Hadoop distribution installed and used the
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vendor-supplied patches for Apache Hive 0.10.0 and Apache Hadoop 2.0. We used Impala

1.0, as it was the most recent version available at the time of writing. PostgreSQL was tested

using version 9.1.3 on a desktop computer running Windows 7 equipped with a hard drive with

a rotational speed of 7200 RPM as well as a laptop computer running PostgreSQL 9.1.9 and

Ubuntu 10.04.4 LTS equipped with a 120 GB Intel 330 series solid state drive.

The data was loaded directly from the set of CSV files in the case of PostgreSQL, generating a

large table with 109 columns. For Apache Hive, the data was loaded from CSV file using CSV

SerDe and put into a text table as well as a table encoded in record columnar format, also known

as RCFile (He et al. (2011)). As Impala supports an efficient column-oriented file format called

Parquet natively, we also copied the data from the text table into its preferred Parquet format.

For VisReduce, data was imported from CSV and written as its native columnar format, each

tablet being the columnar representation of an input CSV file.

To minimize the effect of disk caching, the operating system’s read cache was flushed between

runs of Apache Hive, Impala and VisReduce; this was done to ensure that the data for each

query was loaded from disk. Neither Impala nor VisReduce keep data resident in memory, but

both benefit from the operating system cache in the case where data from a previous run is re-

read on the same node. As the PostgreSQL database size was larger than the available memory,

this step was not deemed necessary for PostgreSQL. Queries on Impala and VisReduce were

run 20 times each, five times for Apache Hive and PostgreSQL on SSD and three times for

PostgreSQL on a standard hard drive. As is common for benchmarks on the JVM, queries for

VisReduce were ran several times before the actual timing runs as a warm up phase as to avoid

JIT compilation during benchmarking.

3.8 Results

The performance of VisReduce is significantly better than row-oriented databases, as shown

in Figure 3.6. As column-oriented databases only transfer the columns required to answer a

query, they have much higher effective I/O utilization than row-oriented approaches for large

aggregation-oriented workloads on a subset of columns. Column compression further increases
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Figure 3.6 Log10 plot of mean query completion time by query type. Error bars

represent a 95% confidence interval for the mean. Queries on three columns for

PostgreSQL were aborted after twenty minutes.

the performance advantage in the case of columns containing highly redundant data, such as the

carrier name column in our dataset, which has a very low cardinality compared to the number

of records. Finally, as the data in VisReduce is static, there is no need for locks, row versions or

other forms of concurrency control, as would be the case in a general purpose database where

data can be written at any time, such as PostgreSQL.

In the case of Apache Hive, there is a significant per-job overhead due to the query being

translated into a MapReduce job before being deployed onto the cluster. Once the job has

been deployed, it requires several MapReduce iterations, with each iteration incurring fixed

start up time costs and the need to write to disk between each iteration. While very general

— for example, Hive can join arbitrarily sized tables, which neither Impala nor VisReduce can

do — there is a significant performance cost to this generality, which makes Hive unsuitable

for exploratory visual analytics if the data can be processed by faster systems. At the time of

testing, Hive lacked stable support for the more efficient Parquet file format.
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As for Cloudera Impala, it is possible that its query planning phase limited its performance

relative to VisReduce; the current implementation of VisReduce has no query optimizer and

naively processes all tablets across the cluster. Furthermore, Impala has a pluggable storage ar-

chitecture and supports multiple input formats, while the current implementation of VisReduce

only supports its own native column store format.
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Figure 3.7 Incrementally updated output with VisReduce. The number of records

aggregated and sent to the client since query start time using a cluster with a single

worker node.

For the bar charts displayed by the client, our VisReduce implementation attempts to send

JSON-formatted data every 250 milliseconds to the browser via WebSocket, which is then

turned into an animated chart using JavaScript. Figure 3.7 shows the number of records that

have been sent to the client for visualisation as a query progresses. We experimented a little

with changing this parameter, but it seemed a reasonable compromise between perceived end-

user latency and the capabilities of current web browsers to ingest data at a fast rate while

animating many SVG elements without any perceived choppiness.
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Increasing the rate at which data is sent to the browser also has another unfortunate tradeoff; as

the data displayed to the user rapidly converges at the beginning of the computation, showing

a visualisation right after the user clicks to start a job means that the user will see a quickly

updating and “jumpy” visualisation. Our first iteration on VisReduce simply iterated through

tablets in chronological order, which caused the bars in the resulting bar chart to rapidly shift

for several seconds as new carriers that did not operate in the year 1987 were introduced into

the bar chart and pushed the other bars around while the vertical axis changed its scale to

accomodate the fluctuating bars. Shuffling the tablet processing order greatly reduced this

shifting. We believe that pre-populating bars with cardinality information gathered from the

column store metadata would make the resulting visualisation more aesthetically pleasing, as

it would prevent new bars from being introduced.

3.9 Limitations

As we mostly focused on the technical aspects of computing the underlying data for an in-

formation visualisation in an incremental fashion, most of the human interface aspects were

ignored. For example, adding error bars as the query processes more information seems like

an obvious improvement, which has been explored by Fisher (2011); Fisher et al. (2012).

Another limitation is the fact that programming a VisReduce job is not as simple as writing a

SQL query. The endurance of SQL as a query language shows how user friendly and useful

it is to answer a wide range of queries. However, in many visualisation systems, such as

Tableau (Stolte et al. (2002a)), SQL is merely an implementation detail that is hidden from

the user. We believe that it would be possible to provide built-in VisReduce jobs that compute

aggregates in an online fashion and offer a more familiar interface just as Apache Hive provides

a SQL-like abstraction on top of MapReduce.

VisReduce is also not as general as MapReduce, which can handle arbitrarily sized outputs and

enormous input data sizes that would simply be too large to visualize in an interactive fashion;

this is by design. In VisReduce, we trade generality for performance and quick feedback.
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VisReduce is simply not a good match for batch processing or processing of arbitrary data, just

as common implementations of MapReduce are not a good match for interactive processing.

We also do not currently address algorithms that require multiple passes over the input data.

For example, it is not possible to compute the standard deviation in a single pass as it requires

knowing the mean of the input data, which is unknown at the start of a job. Algorithms that de-

pend on a global ordering, such as computing the exact median of the data, are also impossible

to express in a single pass.

3.10 Conclusion and Future Directions

VisReduce is a novel approach for interactive visualization of large data sets, that is scalable,

distributed, achieves low latency, returns incremental feedback to the user multiple times per

second, and was found to be significantly faster than three competing readily available solu-

tions.

The main drawback with VisReduce is that it currently has no way of computing confidence

bounds on the partial results it displays to the user over the course of a query. As mentioned in

the previous section, adding estimation of error bounds of partial aggregates would be helpful

for analysts to determine if they should stop a query or wait for its completion. Jermaine et al.

(2006) and Joshi and Jermaine (2008) suggest ways of doing so on relational databases and,

while VisReduce isn’t a relational database, similar approaches could be used to provide online

estimates of error.

An additional direction for future work would be to modify VisReduce to allow pre-loading all

data in memory in the case of smaller data sets, as is done by Shenker et al. (2012). Further

work is also needed to evaluate VisReduce with much larger data sets and cluster sizes to

identify potential performance bottlenecks.



CONCLUSION

Visualization of databases by casual business users is still something that is not done often. We

looked into solving that problem by developing the GPLOM, which allows automatic visual-

ization of multidimensional multivariate data that is stored in databases and found that users

prefer it and it allows exploring datasets faster than Tableau, a commercially available product.

Our contributions with GPLOM are (1) a novel interactive technique for data exploration of

multidimensional multivariate datasets that is accessible to casual users; (2) a demonstration

of textual search to find quickly values of interest in a composite plot matrix; (3) a novel link-

ing technique called “bendy highlights” that links the various charts; (4) an improvement over

Emerson et al. (2013)’s technique that allows adding interactive elements by only displaying

half of the matrix; (5) an experimental comparison with Tableau, a popular commercial soft-

ware product, that shows GPLOM being significantly faster in certain cases.

Still, further work is required on the GPLOM prototype in order to explore ways of making it

friendlier and less intimidating than the current approach, such as presenting the matrix upside

down. There are also performance issues that can happen with large data sets, due to the large

number of charts that need to be computed at any given point in time.

In order to address these performance issues, we developed a prototype of an incremental

visualization system called VisReduce. By using a modified MapReduce-style approach, it

provides incremental visualization of datasets by sending partial aggregates to the client. We

also compared its performance with several approaches and found that VisReduce has several

performance advantages due to its usage of colunmar storage and simple programming model.

Our contributions with VisReduce are (1) a novel approach for interactive visualization of large

datasets that is scalable, distributed, achieves low latency and returns incremental feedback to

the user multiple times per second; (2) a comparison with three other readily available solutions

— PostgreSQL, Apache Hive and Cloudera Impala — that shows VisReduce is faster for all

queries that were tested.
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Extending VisReduce to add error bounds for calculations is a logical next step for VisRe-

duce, as well as packaging it with built-in operators that compute frequently done operations

— such as the average, min, max, etc. — and exploring computing other types of visualisa-

tions. It would also be interesting to run user studies on how actual business users and data

analysts perceive incremental visualisation is perceived to confirm if the incremental approach

has benefits over non-incremental approaches.

Also, modifying the GPLOM prototype so that it uses VisReduce for incremental calculation

seems like an obvious improvement. Unfortunately, current browser technology (circa 2013)

does not allow for smooth interpolation of large numbers of SVG elements and would require

GPLOM to be reimplemented as an application that uses GPU rendering for fast and smooth

animations.

We believe that both of these techniques offer improvements over the current state of the art

and, when combined together, plant the seeds for a new visualization tool that significantly

outperforms currently available commercial visual analytics tools.



ANNEX I

DETAILS OF THE METHODOLOGY USED FOR THE GPLOM EVALUATION

1 Methodology

As mentioned in section 2.5, the experiment involved a mixed design with 12 participants:

2 types of questions

× 4 criteria counts (0 through 3)

× 2 technique-dataset pairs (GPLOM and Tableau 7.0)

× 12 users

= 192 trials

All participants were handed a pre-questionnaire and a post-questionnaire.

2 Statistical analysis

Three variables were analyzed using R (R Core Team (2013)): the time required by participants

to formulate an answer using the visualization tool, their error rate as well as their subjective

preferences.

2.1 Time to answer

The time to answer was analyzed using the nparLD R package by Noguchi et al. (2012). Be-

cause participants were not exposed to each possible combination of dataset and software, the

data was separated by dataset for analysis; each participant used each dataset only once, with

either Tableau or GPLOM.

Variables used in the analysis are method (either GPLOM or Tableau), questionType (either

data value lookup or trend analysis) and criteria (number of criteria, zero to three, inclusive).

The non-parametric ANOVA-type statistic (ATS) was used for analysis, due to the presence



66

of outliers, non-normality and heteroscedasticity between the various levels of the criteria

variable, following the suggestions of Erceg-Hurn and Mirosevich (2008).

Table-A I-1 Analysis of variance for the time to answer

Cars

Statistic df p-value sig

method 23.0686710 1.000000 1.563171e-06 ****

questionType 0.5930081 1.000000 4.412583e-01

criteria 12.8925133 2.593155 1.435815e-07 ****

method × questionType 4.3133304 1.000000 3.781486e-02 *

criteria × questionType 3.3022601 2.037353 3.592508e-02 *

method × criteria 0.8958475 2.593155 4.303616e-01

method × questionType × criteria 0.4142911 2.037353 6.645895e-01

OnTime

method 0.831071886 1.000000 3.619628e-01

questionType 0.002258413 1.000000 9.620966e-01

criteria 36.442713095 2.079264 4.152101e-17 ****

method × questionType 2.409977165 1.000000 1.205641e-01

criteria × questionType 3.287611907 2.330942 3.023219e-02 *

method × criteria 1.090446622 2.079264 3.378095e-01

method × questionType × criteria 0.581364532 2.330942 5.846854e-01
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Figure 1.1 Faceted view of the time to answer
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While the method variable was not significant for the OnTime dataset, the low number of

participants for each method (six per method) and the larger variance for both techniques due

to the higher complexity of the OnTime dataset1 might hide a difference between Tableau and

GPLOM. GPLOM also had a computational disadvantage compared to Tableau, due to the cost

of generating the numerous charts over 494218 data points. It took several seconds to generate

charts in GPLOM2, due to each chart requiring a separate query to the database. Comparatively,

it took roughly one second to do the same in Tableau. As each drill down requires a full

page load and regenerating the charts in GPLOM, this meant that GPLOM had an approximate

performance penalty of 12-15 seconds over Tableau in the case of a question with three criteria,

assuming no errors being made by the participant in selecting filters (median performance of

questions with three criteria on OnTime for GPLOM was 52 seconds). As mentioned in section

2.5.2, there was no correction for this factor.

Furthermore, one question asked of the participants was found to be unusually hard to answer

in both GPLOM and Tableau. The question was “Pour quel groupe d’heures de départ est-ce

que Delta (DL) a eu le plus de vols le jour de Noël (25),” translating to “For which departure

time group did Delta (DL) have the most flights on Christmas (25)?” To answer the question,

participants had to infer in GPLOM that the count aggregation for any given variable returns

the number of flights. In Tableau, participants had to use the special variable called “Number

of records.”

Finally, one participant was found to consistently underperform by a wide margin on the On-

Time dataset using GPLOM, as shown in figure 1.2. Such a pattern did not occur with Tableau,

neither on the OnTime dataset nor the Cars dataset.

1As a rough comparison point, the dataset explanation sheet given to participants for OnTime took two pages,

while the one for Cars did not fill a single page.
2An instrumented version of GPLOM later showed that the median time to reload the page and generate charts

for the OnTime dataset was 5.663 seconds (min = 3.035 s, max = 7.962 s). This measurement was not taken

during the experiment. For the much smaller Cars dataset, this median time was 1.695 seconds (min = 1.48 s, max

= 3.146 s).
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Correcting for all of these factors — removing questions with a criteria count of 23, removing

participant 12 and applying a 3 second correction per criteria for GPLOM — makes the method

variable attain weak significance level (p = 0.0667) and a study with a larger number of

participants would be required to determine whether or not such an effect holds. Figures 1.3

and 1.4 show the ECDFs of the unadjusted data and the adjusted data, respectively.

Figure 1.2 Performance of participant 12 on the OnTime dataset

3Both questions with two criteria were removed, as to keep the experiment balanced, otherwise the criteria

count of 2 would not have both the data and trend levels.
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Figure 1.3 Unadjusted ECDF of participant time to answer for the OnTime dataset

Figure 1.4 Adjusted ECDF of participant time to answer for the OnTime dataset

2.2 Error rate

Error rates were evaluated between GPLOM and Tableau using a logistic regression using

R’s glm with the binomial family. Table I-2 shows the resulting analysis of deviance table.
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Interactions between variables were due to certain questions having higher error rates than

others. GPLOM had a lower error rate than Tableau, but this was not significant.

Table-A I-2 Analysis of deviance table for the error rate

Df Deviance Resid. Df Resid. Dev Pr(>Chi) sig

NULL 191 182.34

method 1 1.7217 190 180.62 0.1894755

questionType 1 0.3176 189 180.30 0.5730409

dataset 1 6.0891 188 174.21 0.0136016 *

criteria 1 0.5921 187 173.62 0.4416001

method × questionType 1 0.2437 186 173.38 0.6215398

method × dataset 1 1.9697 185 171.41 0.1604814

questionType × dataset 1 0.7545 184 170.65 0.3850422

method × criteria 1 12.5770 183 158.08 0.0003905 ***

questionType × criteria 1 0.0357 182 158.04 0.8500568

dataset × criteria 1 0.0228 181 158.02 0.8798699

method × questionType × dataset 1 8.3081 180 149.71 0.0039468 **

method × questionType × criteria 1 0.0845 179 149.63 0.7713250

method × dataset × criteria 1 4.1948 178 145.43 0.0405481 *

questionType × dataset × criteria 1 0.1442 177 145.29 0.7041066

method × questionType × dataset × criteria 1 0.0000 176 145.29 0.9998463

2.3 User preferences

In a post-questionnaire, users had to give a rating to both Tableau and GPLOM on a scale of 1

(not at all) to 5 (very) on nine different aspects.

User preferences between GPLOM and Tableau were evaluated by using a series of Wilcoxon

signed rank tests. As the Wilcoxon signed rank test is unable to give an exact p-value in the

case of ties, the exactRankTests R package by Hothorn and Hornik (2006) was used, which

computes the exact p-value using the Shift-Algorithm.

To control the familywise error rate, the p-values were corrected using the Bonferroni correc-

tion.
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Table-A I-3 User preferences between GPLOM and Tableau

Question p Corrected p sig Mean rating

GPLOM Tableau

Is intuitive? 0.04492 0.40428 3.88 2.92

Easy to learn? 0.3906 1 3.92 3.50

Was able to do everything? 0.3594 1 4.42 4.08

Comfortable? 0.08594 0.77346 4.25 3.42

Easy to use? 0.1016 0.9144 4.33 3.58

Fast? 0.0009766 0.0087894 ** 4.92 3.00

Satisfied? 0.125 1 4.08 3.50

Fluid interface? 0.003906 0.035154 * 4.50 3.00

Like? 0.08594 0.77346 4.08 3.42
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