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TOWARDS FLEXIBLE, SCALABLE AND AUTONOMIC VIRTUAL TENANT
SLICES

Mohamed FEKIH AHMED

ABSTRACT

Multi-tenant flexible, scalable and autonomic virtual networks isolation has long been a goal
of the network research and industrial community. With Software-Defined Networking (SDN)
and Overlay Virtualization technologies (OVT), multiple and independent virtual networks
each with potentially different and heterogeneous addressing, forwarding and tunneling mech-
anisms can coexist above the same underlay infrastructure. For today’s cloud platforms, pro-
viding tenants requirements for scalability, elasticity, and transparency is far from straightfor-
ward. SDN addresses isolation and manageability through network slices, but suffers from
scalability limitations. SDN programmers typically enforce strict, inflexible, and complex
traffic isolation resorting to low-level encapsulations mechanisms which help and facilitate
network programmer reasoning about their complex slices behavior. Overlay protocols have
successfully overcome scalability issues of isolation mechanisms, but remain limited to sin-
gle slice. However, the opportunity cost of the successful implementation of transparent and
flexible slices is to find an alternative isolation design to satisfy multiple and different tenant’
requirements such as slice scalability and enabling the deployment of arbitrary virtual network
services and boundaries.

In this thesis, we propose Open Network Management and Security (OpenNMS), a novel
software-defined architecture overcoming SDN and OVT limitations. OpenNMS lifts several
network virtualization roadblocks by combining these two separate approaches into an unified
design. It enables to reap the benefits of network slice while preserving scalability. Our design
leverages the benefits of SDN to provide Layer 2 isolation coupled with network overlay pro-
tocols. It offers multi-tenants isolation with simple and flexible Virtual Tenant Slices (VTSs)
abstractions. This yields a network virtualization architecture that is both flexible, scalable
and secure on one side, and self-manageable on the other. At the core of these challenges, we
extend our research to outline the SDN control plane scalability bottleneck and demonstrate
the benefits of OpenNMS to limit the load on the controller for supporting larger number of
tenants. OpenNMS exploits the high flexibility of software-defined switches and controllers
to break the scalability bottleneck and scale the network to several thousands of isolated ten-
ants networks on top of shared network infrastructures. It requires only a small amount of
line as extended application to OpenFlow controller without any modifications on SDN data-
plane which makes it suitable for legacy systems. Furthermore, this work takes a step towards
reducing the complex network management operations. We designed OpenNMS as an auto-
nomic communication based architecture, to provide self-configured and self-awareness VTSs
network for cloud tenants. The result is recursive, layered isolation architecture, with con-
trol and management planes both at tenant and overall network levels. Moreover, we describe
novel capabilities added for the isolation model: Split, Merge and Migrate (SMM) that can
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be well suited for cloud requirements. We implemented our approach on a real cloud testbed,
and demonstrated our isolation model’s flexibility and scalability, while achieving order of
magnitude improvements over previous isolation approaches investigated in this work. The
experiment results showed that the proposed design offers negligible overhead and guarantees
the network performance while achieving the desired isolation goals.

Keywords: Isolation, Flexibility, Scalability, Autonomic Management, Transparency,
Software-Defined Networking
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RÉSUMÉ

L’isolation flexible, évolutive et autonome des réseaux multi-locataire a été pour longtemps un
objectif de la recherche et de la communauté industrielle. Avec Software-Defined Network-
ing (SDN) et Overlay Virtualization Technologies (OVT), plusieurs réseaux virtuels indépen-
dants, chacun avec mécanismes d’adressage, expédition, et tunnels potentiellement différents
et hétérogènes, peuvent coexister au-dessus de la même infrastructure. Pour les plateformes de
Cloud Computing d’aujourd’hui, les exigences des locataires en termes d’évolutivité, l’élasticité
et la transparence sont loin d’être simple. SDN aborde l’isolation et la gestion des réseaux
multi-locataires par les tranches virtuelles, mais souffre de limitations d’évolutivité. Les pro-
grammeurs de SDN appliquent généralement une isolation stricte, rigide et complexe du trafic
et ont recourt à des mécanismes d’encapsulations de bas niveau afin d’aider et faciliter le raison-
nement du locataire pour le comportement de leurs tranches complexe. Les protocoles d’OVT
ont réussit à surmonter les problèmes d’évolutivité des mécanismes d’isolation, mais restent
limités pour une seule tranche du réseau. Cependant, l’opportunité de réussir à mettre en œu-
vre une tranche transparente et flexible est de trouver un autre design de l’isolation afin de
satisfaire les exigences de multiples et différents locataires telles que l’évolutivité du tranches
et le déploiement arbitraire des services et les zones de limitations des réseaux virtuels.

Dans ce mémoire, nous proposons une nouvelle architecture intitulée, Open Network Man-
agement and Security (OpenNMS), qui nous permet de surmonter les limites de SDN et OVT.
OpenNMS soulève plusieurs barrages de virtualisation de réseau. En combinant ces deux
approches distinctes en une conception unifiée, notre design nous permet de profiter des avan-
tages du tranchement du réseau tout en préservant l’évolutivité. Notre conception s’appuie
sur SDN afin de fournir une isolation au niveau du couche 2 couplée avec les protocoles de
OVT. Elle offre une isolation pour les multi-locataires avec des abstractions simples et flex-
ibles des tranches virtuelles d’un locataire (Virtual Tenant Slices (VTSs)). On obtient ainsi
une architecture de virtualisation des réseaux qui est à la fois souple, évolutive, et sécurisée
d’un côté, et l’auto-gérable sur l’autre. Au cœur de ces défis, nous étendons nos recherches
pour pointer sur le problème major du plan de contrôle du SDN plan. On démontre que le
design d’OpenNMS nous a permis de limiter la charge sur le contrôleur afin de soutenir plus
grand nombre de locataires. OpenNMS exploite la grande flexibilité des commutateurs et con-
trôleurs de SDN afin de briser le goulot d’étranglement de l’évolutivité et d’étendre le réseau
à plusieurs milliers de locataires isolés sur la même infrastructure de réseau partagés. Notre
design nécessite seulement une centaine de lignes comme application prolongée au contrôleur
OpenFlow sans aucune modification sur le plan de données de SDN, qui le rend approprié
pour les systèmes existants. En outre, ce travail fait un pas vers la réduction des opérations de
gestion de réseau complexes. Nous avons conçu OpenNMS comme une architecture à base de
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communication autonome afin de fournir un réseau SDN auto-configuré et l’indépendance aux
locataires de nuages. Le résultat est récursive, une architecture en couches d’isolation, avec des
plans de contrôle et de gestion accessible au même temps par le fournisseur de l’infrastructure
et les locataires. De plus, nous décrivons des fonctionnalités supplémentaires pour notre mod-
èle d’isolation: Split, Merge et Migration (SMM) qui peut être bien adapté pour la nature du
cloud computing. Nous avons implémenté notre approche sur un nuage réel. On a démontré
la flexibilité et l’évolutivité de notre modèle d’isolation, tout en réalisant des améliorations de
grandeur par rapport aux approches d’isolation précédentes étudiées dans le cadre de ce travail.
Les résultats de l’expérience ont montré que le modèle proposé offre des coûts négligeables et
garantit les performances du réseau tout en atteignant les objectifs d’isolation souhaités.

Mots-clés: Isolation, Flexibilité, Évolutivité, Gestion autonome, Transparence, Software
Defined Networking



CONTENTS

Page

CHAPTER 1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Cloud Computing and Network Virtualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Paradigm Shift for Network Security in Cloud Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Multi-Tenant Network Isolation: What is missing ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3.1 Multi-Tenant Flexible and Scalable Isolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3.2 Autonomic Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3.3 SDN Controller Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4 Purpose of the Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.5 Organisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

CHAPTER 2 BACKGROUND AND RELATED WORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.1 Current Multi-tenant Data Center Practices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2 Definitions and Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.1 Virtual Network Overlay Protocols: Virtual Isolation . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.1.1 Virtual Local Area Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.1.2 Generic Routing Encapsulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2.1.3 Virtual eXtensible Local Area Network . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2.1.4 Network virtualization using GRE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.2 Software-Defined Networking, OpenFlow and Virtual Isolation . . . . . . . . . . . 20
2.2.2.1 Software-Defined Networking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2.2.2 OpenFlow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.2.2.3 Forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.2.2.4 SDN Slicing Technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2.3 Security Middleboxes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.3 Software Defined Components: Switches, Controllers and Applications . . . . . . . . . . . . 29

2.3.1 Software Defined Switches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.3.2 OpenFlow Hardware Switches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.3.3 OpenFlow Virtual Switches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.3.4 Software Defined Controllers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.3.5 Software Defined Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.4 Multi-tenant Network Isolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.4.1 Research Isolation Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.4.1.1 SDN Hypervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.4.1.2 SDN Middle-boxes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.4.1.3 SDN traffic Isolation through OpenFlow Controller . . . . . . . . . . . . 37

2.4.2 Industrial Isolation Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.5 Network Management Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.5.1 Management of Software-Defined Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.5.2 Autonomic Management Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.6 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44



XIV

CHAPTER 3 VIRTUAL TENANT SLICES ABSTRACTION MODEL . . . . . . . . . . . . . . . . 47
3.1 Our Isolation Goals: Flexible, Transparent, and Scalable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.2 Our Layer 2 Isolation Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2.1 Layer 2 Isolation Model’s Definitions and Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.2.2 Layer 2 Isolation Abstraction Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.3 Multi-tenant Network Isolation using OpenNMS: Example . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.4 How Our L2 Isolation Model Meets the Goals ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.5 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

CHAPTER 4 OPEN NETWORK MANAGEMENT & SECURITY ARCHITECTURE
DESIGN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.1 Open Network Management & Security Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.2 OpenNMS Detailed Planes and Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.2.1 OpenNMS Agent (OA) Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.2.2 OpenNMS Autonomic Manager (OAM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.3 OpenNMS Security Objectives and Policy Enforcement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.4 Virtual Tenant Networks Scalability and Extended Tenant Capabilities . . . . . . . . . . . . . 78

4.4.1 Inter Virtual Tenant Networks Sharing Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.4.2 Extended Tenant Capabilities: Split, Merge and Migrate . . . . . . . . . . . . . . . . . . 79

4.5 SDN Controller Scalability: Enabling To Provide A Global Large Scale
Network View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.6 L2 Isolation Model Flowcharts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.7 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

CHAPTER 5 OPEN NETWORK MANAGEMENT & SECURITY ARCHITECTURE
IMPLEMENTATION & EVALUATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.1 Deploying OpenNMS OAM and OA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
5.2 OpenNMS Lab Setup and Testbed Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
5.3 Experimental Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .100

5.3.1 Performance Overhead . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .100
5.3.2 OpenNMS L2 Slicing Model and Types Evaluation . . . . . . . . . . . . . . . . . . . . . . .101
5.3.3 Multi-tenant Network Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .103
5.3.4 Inter Tenant’s Networks Sharing Methods: Trusted and Restricted

Security Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .105
5.3.5 Autonomic Design Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .108
5.3.6 Elasticity: Split, Merge and Migrate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .109
5.3.7 SDN Controller Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .115

5.4 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .118

CHAPTER 6 CONCLUSIONS AND FUTURE WORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .121
6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .121
6.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .124



XV

APPENDIX I OPENNMS AGENT: OPENFLOW APPLICATION EXTENDING
NOX 1.3 DEPLOYED IN C++ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .127

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .137





LIST OF TABLES

Page

Table 2.1 OpenFlow Controllers and Programming Languages . . . . . . . . . . . . . . . . . . . . . . . . . 33

Table 2.2 Comparison of industrial network virtualization solutions . . . . . . . . . . . . . . . . . . . . 39

Table 3.1 V T S1,1 dedicated/shared OpenFlow tables and group tables . . . . . . . . . . . . . . . . . . 58

Table 3.2 OpenNMS’s Virtual Tenant Slice Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Table 3.3 VTS Types Advantages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Table 4.1 OpenNMS Master Controller Packets Verification Functions . . . . . . . . . . . . . . . . . 88

Table 5.1 OpenNMS Tenants Dedicated Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

Table 5.2 OpenNMS Tenants’ Slices Shared Resources and Trust Level . . . . . . . . . . . . . . .100

Table 5.3 OpenNMS Master Controller Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .100

Table 5.4 OpenNMS Architecture Overheads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .101

Table 5.5 OpenNMS Cross-Planes Response Time for Tenant Scalability . . . . . . . . . . . . .106

Table 5.6 OpenNMS Scaling Methods Response Time: Trusted and Restricted
Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .107

Table 5.7 OpenNMS Management Planes Detailed Costs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .108

Table 5.8 Elastic Simulation Configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .110





LIST OF FIGURES

Page

Figure 2.1 Current Multi-tenant Data Center Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Figure 2.2 SDN/OpenFlow Network Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Figure 2.3 Packet Processing Through Multiples OpenFlow Tables . . . . . . . . . . . . . . . . . . . . . 23

Figure 2.4 OpenFlow Flow Entry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Figure 2.5 ForCES Architectural Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Figure 2.6 Software-Defined Networking Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Figure 2.7 Typical Architecture for OpenFlow Control Plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Figure 2.8 4WARD VNET Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Figure 3.1 Open Network Management and Security’s L2 Isolation Model . . . . . . . . . . . . . 51

Figure 3.2 OpenNMS Multi-tenancy Support: example VTNs and related
VTSs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Figure 4.1 OpenNMS’s High Level Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

Figure 4.2 Autonomic OpenNMS Architecture Detailed Planes . . . . . . . . . . . . . . . . . . . . . . . . . 68

Figure 4.3 OpenNMS L2 Isolation Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Figure 4.4 L2 Isolation using OpenNMS Packets Verification Mechanism . . . . . . . . . . . . . . 72

Figure 4.5 VTS Shared and Dedicated OVSs’ Tables/Group Tables . . . . . . . . . . . . . . . . . . . . . 73

Figure 4.6 Example: Packets Processing using OA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Figure 4.7 OpenNMS Multi-tenancy support. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Figure 4.8 OpenNMS Usage Control for Shared/Trusted resources. . . . . . . . . . . . . . . . . . . . . . 77

Figure 4.9 OpenNMS Trusted/Restricted Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

Figure 4.10 Split/Merge Vitual Tenant Slices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

Figure 4.11 Migrate a portion of VTS to another . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81



XX

Figure 4.12 Migrate VTS to new Location. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

Figure 4.13 Hierarchical Control Plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

Figure 4.14 Offloading Centralized Controller’s Functionalities . . . . . . . . . . . . . . . . . . . . . . . . . . 87

Figure 4.15 Packet Processing Diagram in OpenNMS Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

Figure 4.16 Multi-tenant Network Deployment using OpenNMS . . . . . . . . . . . . . . . . . . . . . . . . . 91

Figure 4.17 VTS Configuration Initialization and Update using OAM at run
time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

Figure 4.18 VTS Update and Re-Scaling by Tenant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

Figure 5.1 OpenNMS Lab Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

Figure 5.2 Delay imposed over UDP flows by OpenNMS with different VTS
Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .102

Figure 5.3 Pushing one flow entry with different slicing levels . . . . . . . . . . . . . . . . . . . . . . . . .103

Figure 5.4 Latency vs. VM count . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .104

Figure 5.5 Latency vs. VTS count . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .105

Figure 5.6 Inter Tenant Networks Scalability Scenario: Trusted/Restricted
Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .106

Figure 5.7 Elastic Multi-tenant Network Evaluation Scenario . . . . . . . . . . . . . . . . . . . . . . . . . .109

Figure 5.8 Scaling CSCFs by Merging Tenant VTSs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .111

Figure 5.9 Split Tenant VTS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .113

Figure 5.10 Scenario 1: CSCFs Live Migration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .114

Figure 5.11 Scenario 2: CSCFs Virtual Migration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .115

Figure 5.12 Average Delay Under Various Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .116

Figure 5.13 Response time CDF Comparaison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .118



LIST OF ABREVIATIONS

API Application Program Interface

CE Control Element

CIA Confidentiality, Integrity and Availability

CLI Command Line Interface

CRUD Create, Read, Update and Delete

DCNs Data Center Networks

DDoS Distributed Denial-of-Service

Dp DataPath

DPI Deep Packet Inspection

FE Forwarding Element

ForCES Forwarding and Control Element Separation

FW Firewall

GENI Global Environment for Network Innovations

GRE Generic Routing Encapsulation

IaaS Infrastructure as a Service

IDS Intrusion Detection System

IETF Internet Engineering Task Force

IP Internet Protocol

IPS Intrusion Prevention System



XXII

IT Information Technology

KVM Kernel-based Virtual Machine

L2 Layer 2

L3 Layer 3

LB Load Balancer

LLDP Link Layer Discovery Protocol

MAC Media Access Control

MAPE Monitoring, Analyzing, Plan, and Execute

NaaS Network as a Service

NFV Network Function Virtualization

NP-hard Non-deterministic Polynomial-time hard

NVGRE Network Virtualization using Generic Routing Encapsulation

NVP Network Virtual Platform

OA OpenNMS Agent

OAM OpenNMS Autonomic Manager

OF OpenFlow

OF-Config OpenFlow Configuration protocol

ODL OpenDayLight

OpenNMS Open Network Management and Security

ONF Open Networking Foundation



XXIII

OVS Open vSwitch

OVSDB Open vSwitch DataBase

OVT Overlay Virtualization Technologies

OVN Overlay Virtualized Network

PaaS Platform as a Service

PF Permitted Flow

QoS Quality of Service

SaaS Software as a Service

SDN Software Defined Networking

SLA Service Level Agreement

SMM Split, Merge and Migrate

TCAM Ternary Content Addressable Memory

TCP Transmission Control Protocol

TOR Top Of Rack

TNI Tenant Network Identifier

TVD Trusted Virtual Domain

UCLP User Controlled LightPaths

UDP User Datagram Protocol

vCDNI vCloud Director Network Isolation

VLAN Virtual Local Area Network



XXIV

VNF Virtuak Network Function

VNI VXLAN Network Identifier.

VNI Virtual Network Interface.

VM Virtual Machine

VTN Virtual Tenant Network

VTS Virtual Tenant Slice

VXLAN Virtual Extensible Local Area Network



CHAPTER 1

INTRODUCTION

1.1 Cloud Computing and Network Virtualization

Cloud computing has emerged as a new paradigm for sharing computing and networking re-

sources among multi-tenant. By moving the applications and services to the cloud, the organ-

isations no longer have to build and maintain expensive Data Center. Cloud Computing has

become very popular because it reduces the cost of IT capital. Additionally, cloud providers

offer a “pay-as-you-go” service, where tenants can scale their applications and services on de-

mand. It allows them to keep pace with demand spikes, and save money when the demand is

low.

The cloud providers can be classified in four main categories, depending on the model of ser-

vice they are offering. The first category is the Infrastructure as a service (IaaS), which is the

most basic categorie. IaaS consists in providing computer resources (can be physical or virtual

machines), servers, storage, and network devices (switches, routers, . . . ). IaaS clients have

to install and configure their operating systems on allocated computing resources as well as

networking topology. For example, Amazon EC2, Rackspace and OpSource are cloud IaaS

providers. These providers allow clients to dynamically scale up and down their applications,

and provision resources by adjusting them to the current demand. Secondly, there is the Plat-

form as a service (PaaS) model where providers deliver only a computing platform. Tenant can

develop and run their private cloud platform without the cost and complexity of building a Data

Center. Examples of PaaS include Amazon AWS and Microsoft Azure. The third category is

the Software as a service (SaaS), which is the most widely known cloud service. SaaS basi-

cally refers to the use of the software through internet, which could be an online service (e.g.,

Google Apps). In this model, service provider handle all the management and configuration

operations of the infrastructure and platform where the application is installed. This means that

tenant are no longer need to go on the infrastructure details. Finally, the last category is the



2

Network as a service (NaaS), which refers to the use of network and transport services (e.g.,

VPN, Bandwidth on demand, and Virtual Nerworks). It is a business model for delivering

online connectivity services on a “pay-per-use” manner. Moreover, with the introduction of

new paradigms in server and network virtualization, other new categories are proposed for the

Cloud Computing.

Cloud Computing has completely changed the IT scenery. Along with the spread of Cloud

Computing, network virtualization is highly used in Data Center Networks (DCNs). The pop-

ularity of network virtualization results from flexible and efficient management. It makes the

infrastructure of network providers more profitable on one side, and helps tenants to decrease

their IT capital expense on the other. It allows also new features and dynamic usage mod-

els while eliminating the costs and overhead of underlay networks management. In DCNs,

network resources such as switches and routers are shared among multiple tenants to reduce

physical resources and power costs.

However, despite all the advances in server virtualization, traditional network security practices

are still common. Network virtualization benefits have created new opportunities (e.g., scaling

application) as well as new challenges (e.g., node migration) for the network security tasks

such as security services and applications scalability, migration and provisioning. Thus, the

opportunity cost of the virtualization spread and Cloud Computing success is to rethink about

security enforcement in the cloud applications. Two major challenges for network security are

relevant to be discussed in next sections: Data Center fast and unplanned growth, and the cloud

tenant requirements for flexible, scalable and elastic isolation.

1.2 Paradigm Shift for Network Security in Cloud Computing

With rate and scale unforeseen, large companies are building progressively more enormous

data centers. For example, Ericsson as the world’s largest maker of wireless networks, is build-

ing three data centers to be up to 120,000 square meters, approximately the size of 14 football

fields. It will open the third center with massive 40,000 square meters in Montreal Vaudreuil-
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Dorion. Imagine Ericsson’s data centers area filled with nothing but servers and networking

equipment, and supporting tens and hundreds of thousands of tenants. Several tenants require

substantial number of virtual networks for separating their different types of applications. As

tenant numbers and applications continue to scale, scaling the capacity of the network fabric

for isolated virtual networks becomes a major challenge. Such cloud-computing platform has

grown so large that it has become not possible to separate such number of tenants and ap-

plications with the traditional isolation techniques (e.g., Overlay protocols, Local Hypervisor,

Middleboxes). In addition, only the infrastructure provider has all the privileges to configure

and isolate each virtual network using the same old tools. These traditional isolation mecha-

nisms are no more suitable for the cloud environment. It is very difficult to apply a consistent

access control and implement a network-wide isolation.

Furthermore, this exciting environment presents also powerful management challenges not

seen before on the “open” cloud. A data center exists always under a single administrative

domain. The overly complicated control of traditional routers makes network management

more complex. This is principally resulted by the tight coupling of control plane and data

plane in the same box. Due to this high complexity, telecommunication vendors and network

operators are seeking for new protocol and technology to facilitate the management operations.

Providing transparent control according to high-level security policies specifications for cloud

tenants is the most challenging objective.

From multi-tenant perspective, the single and privileged control is no more adequate for the

current cloud applications requirements. Security concerns are raised and it is becoming in-

creasingly difficult to follow the elasticity of cloud computing as soon as one begins to run

applications beyond the designated security defense line (e.g., Firewall, Load-Balancer, Virtual

Private Network, and Intrusion Detection System) and move them to unprotected perimeter. In

addition to adopting network virtualization, the dynamic and elastic nature of cloud computing

is challenging many aspects of network virtualization including isolation tools and technolo-

gies which are no longer practical, efficient, or flexible enough for today’s tenant requirements.

Network architectures limitations are attributed to big-data workload setting, traffic changing
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and resources sharing among between virtual tenant networks. They suffer of the following

drawbacks: (i) expensive scaling of the network to the sizes needed by service providers, (ii)

limited support for multi-tenancy as they do not give the possibility to the tenant for designing

his virtual networks and defining its own Layer 2 and 3 spaces, and (iii) complex and manual

management operations of large set of network nodes including switches, routers and firewalls.

With all these challenging objectives, it is a very exciting time for networking research. We are

on the cusp of a major shift in network virtualization, and the related technologies of network

security and isolation. It is evolving toward open standards of control. It is argued that the

clear separation and open interfaces between the control and data planes is a major factor for

the rapid innovation and growth in network virtualization. Thereby, network research and

industrial community are leading of innovative and complementary networking technologies

and protocols designed for the internet at large. One interesting evolution to the growth story of

data centers is the design of new overlay protocols to solve the scalability bottleneck of existing

low-level encapsulation protocols (e.g., VLAN, GRE). An industrial competition was started to

replace these traditional isolation mechanisms. New encapsulations approaches are proposed

as successor (e.g., Cisco’s VXLAN (Mahalingam et al. (2012)), HP’s NVGRE (Sridharan et al.

(2013))). At the core of this challenge is how to provide a large number of segmentation that

can solve the VLAN limits.

The major recent development in network virtualization is the notion of Software-Defined Net-

working (SDN) (McKeown (2009)). It was the results of the research community frustration by

the difficulty faced with large-scale networks experimentation. Networking researchers were

calling for the same thing to solve the previous challenges: the decoupling of network control

from the underlying physical devices. These calls successfully reached their goals by the de-

sign and implementation of new protocols like OpenFlow (McKeown et al. (2008) and ForCES

(Doria et al. (2007)).

Finally, another approach related to the introduction of SDN is the virtualization of network se-

curity middleboxes. Network-based security boxes were traditionally implemented and placed
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at network choke points as one classes of functions in physical middleware boxes across data

centers with significant configuration overhead and assuming the underlay network would re-

main static with occasionally update. Therefore, there has been efforts in research community

aiming to integrate these security middleboxes into SDN for exploiting the benefit of pro-

grammability to redirect selected network traffic through small, chained and distributed mid-

dleboxes.

In section 2.2, we give more details about the previous technologies and protocols which are

important to our work.

1.3 Multi-Tenant Network Isolation: What is missing ?

While the emerging areas of network virtualization and SDN are teeming with exciting un-

solved problems and research opportunities, this work attempts to tackle three specific chal-

lenges that arise from the cloud elastic nature and today’s tenant urgent needs; namely, i)

Virtual Networks Isolation Scalability and Flexibility, ii) Multi-Tenant Network Autonomic

Management, and iii) Both SDN Controller and Network Scalability. We discuss each of these

challenges in turn.

1.3.1 Multi-Tenant Flexible and Scalable Isolation

The multi-tenancy nature of the cloud is challenging many aspects of traditional and current

virtual network isolation tools and technologies. The research and industrial network com-

munities have tackled the basic isolation functionality that guarantees the separation between

tenants’ traffic as one block of security application and assuming the tenant security defense

would remain static with occasionally update. They have proposed three different approaches

for the isolation presented above: 1) Overlay Encapsulation Protocols, 2) Middleboxes and, 3)

SDN Slicing Technique (See section 2.2). They are relying on low-level encapsulation mecha-

nisms (e.g., VLANs, GRE, VXLAN, NVGRE), burden special-purpose security middleboxes

(e.g., L3, L4-L7 Firewalls, Intrusion Detection and Prevention Systems, Deep Packet Inspec-
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tion) or complicated SDN hypervisor installed on data plane which are no longer practical,

efficient, or flexible enough for today tenants’ requirements.

With the OVT, they provide traffic isolation by compiling and installing packet-processing

rules with diverse sets of tenant-specific requirements into a single configuration space to

avoid multi-tenant traffic interference and information leaks. Furthermore, They make blurred

boundaries between multi-tenants’ virtual networks and add extra complexity to the already

difficult task of writing a single security network configurations sharing the underlay infras-

tructure. Additional time for the consistency of the enforced, bugs and conflicts are often faced.

For both overlay and underlay levels, the origin of security consciousness in cloud computing

comes from the complexity of management operations of security middleboxes. For example,

firewalls boxes or data plane processing rules require complex management operations and

they are difficult to manipulate, modify and update. Middleboxes approaches limitations are

attributed also to big-data workload setting, traffic changing, resources sharing between virtual

tenant networks, and tenant VMs migration. With one complex block of security configuration

including a mix of tenants’ policy rules, they do not address how to create and build a single

virtual tenant network out of multiple, independent, reusable network policies that can be suit-

able for the nature of the cloud. Tenant shields must escort the protected cloud applications,

so they can be merged, separated and moved depending on applications status, requirements

and locations. We must release the network programmers from having to reason, analyze and

verify the buggy complex block of security configuration and labored architecture issues such

as tenant’s VMs and related security boxes placements (Qazi et al. (2013)). In addition to un-

satisfactory and complex middleboxes, they offer little ability for cloud’s users to leverage their

benefits. Two complex and static manners cannot be avoided: first, the overlay level where ten-

ants can allocate security VMs dedicated for necessary traffic redirection and protection (e.g.,

allocating NAT VM in Amazon Virtual Private Cloud (VPC)), and second the underlay level

where cloud provider implements specific hypervisor (e.g., Amazon VPC Route Tables) and

lets tenants actively create and manage their networks.
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The common drawback of research approaches is focusing on exploiting SDN capabilities to

provide only strict and inflexible isolation without considering both cloud providers and tenants

requirements. They suffer from the following drawbacks that will be addressed in this work:

• Scaling the network to the size needed of isolated virtual tenant networks by service providers

is very expensive and requires huge number of nodes (e.g., hosts, switches, routers) which

demand complex management steps to enforce one of the traditional isolation mechanisms

listed above.

• Limited support for multi-tenancy with different security requirements as they do not give

the possibility to the tenant for designing his virtual networks and defining his own layer

L2 and L3 spaces.

• No support for tenant scalability and flexibility needs such as adding more computing and

networking resources, splitting tenant virtual network into two or many or merging it back

into one.

• Cannot act in case of tenant VMs migration resulting security domain changing. Tenant

security defense must be migrated with the target VM. The defense on the source location

must be no longer active and enforced on the destination host. It requires also doing some

configuration adjustments in the new host. IaaS providers are seeking for an alternative

design for the virtual tenant networks boundaries that support larger number of tenants

with arbitrary topologies, scalability support, ease of management operation at low cost,

and satisfy the tenant’s needs by enabling to take full control of his virtual programmable

networks.

1.3.2 Autonomic Management

Network virtualization approaches are facing increasing difficulty to meet the requirements of

current cloud applications, network services, multi-tenants and infrastructure providers. Net-

work researchers were led to think more about new network architecture as well as manage-
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ment technologies. Network management poses challenges that need to be addressed in order

to fully achieve an effective and reliable networking environment.

Early network management systems were designed with limited access and provided only to

network administrators who were responsible for responding, monitoring, querying, and man-

ually configuring every virtual tenant network. Involving tenant in management plane is a

new goal for network research and industrial community. It can reduce the management com-

plexity for the fast growing network and automate the control. Providing transparency and

self-management for multi-tenants represent today an urgent need which must be built on

top of efficient isolation. It is widely accepted that next-generation networks will require a

greater degree of service awareness and optimal use of network resources. It is becoming pri-

mordial that future networks should be self-controlled and self-manageable. Furthermore, the

new emerging SDN paradigm seems ignoring or not addressing properly network management

problem. The first time that the management plane has been introduced with SDN and Open-

Flow, was with OpenFlow-Config protocol (OF-Config; Pfaff and al.). However, small network

management functions are proposed with OF-Config. Few network management approaches

for Software-Defined Networks (e.g., Devlic et al. (2012a), Devlic et al. (2012b)) were pro-

posed using a combination between OpenFlow protocol, OF-config protocol, and management

protocols like SNMP (Feit (1993)) or its successor NETCONF (Enns et al. (2011)).

In particular, some researchers have taken a different and interesting track with the Autonomic

Communication (Sestinim (2006)) or IBM’s Autonomic Computing (Murch (2004)):

• Autonomic communication is one of the emerging research fields in future network control

and management. Self-Awareness, Self-Configuration, Self-Protection, Self-Healing, Self-

Optimization and Self-Organization represent the autonomic communication attributes.

The objective of introducing these autonomic self-* attributes into network management

plane is to decrease the complexity of network control and management operations, and to

automate the network configuration.
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• Autonomic computing is an initiative started by IBM in 2001. It aims to create self-

manageable networks and enable their further growth. It frequently refers to the same

self-* attributes. IBM’s vision defines a general management framework in which the au-

tonomic manager is responsible for four main tasks: Monitoring, Analyzing, Plan and

Execute, termed MAPE loop. This loop is a knowledge-base that maintains the necessary

information for the managed systems.

We believe that by introducing the Autonomic self-* attributes into SDN-based architecture

and involving the tenant in management plane, the programmable capability of the SDN could

be enhanced to an environment aware programmable capability. Autonomic SDN-based ar-

chitecture could build a specified network application to provide self-configuration in tenant

level and self-organization in network provider level. It can also improve its performance by

supporting self-optimization through the self-awareness attribute. SDN, which decouples con-

trol and forwarding capabilities, has improved its intelligence in network control so that the

operation and management functions of SDN could be more efficient.

1.3.3 SDN Controller Scalability

Despite all the discussed SDN advantages, there have always concerns about the OpenFlow

controller scalability in DCNs which must be considered to avoid its negative effects on SDN

based solutions. SDN-based architectures rely completely on centralized or distributed con-

trollers to manage all network switches and neglect the management plane, which has major

drawbacks including lack of either network or controller scalability or both.

Unfortunately, as the network scales up, both the number of physical and virtual switches

increases to guarantee the minimal QoS to the end host. Regardless of the controller capacity,

a controller likes NOX does not scale as the network grows. The SDN controller becomes a

key bottleneck for the network scalability. Specially, SDN community (Tavakoli et al. (2009))

estimates that large DCNs consisting of 2 million VMs may generate 20 million flow per second

( f ps) and current OpenFlow controllers can handle 103 f ps. Another study (Tootoonchian
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et al. (2012b)) demonstrates that NOX-MT (Tootoonchian et al. (2012a)), Beacon (Erickson

et al. (2013)), and Maestro (Ng (2012) process 1.6 million f ps with an average time of 2

milliseconds when controlling 64 emulated switches using up to 8 core machine with 2 GHZ

CPUs. Later measurements (Voellmy and Wang (2012)) demonstrated that NOX-MT can scale

up to 5 million f ps using 10 CPU cores machine and Beacon scales to 13 million f ps with 10

more CPU cores.

The relying on a centralized network control plane introduced scaling bottleneck with the fast

and unplanned growth of the network. Some approaches have attempted to reduce the burden

on the centralized controller by using distributed controllers or by including some changes

on SDN paradigm and delegating a part of control functionalities to network switches. For

example, DevoFlow (Curtis et al. (2011)) focuses on improving the performance of OpenFlow

controller tasks such as installing flow entries and network monitoring. It reduces the load

on OpenFlow controller by refactoring the OpenFlow API and extending the network switch

with control engine. However, DevoFlow reduces the decoupling between control and data

planes and loses the centralized visibility. With a similar approach, DIFANE (Yu et al. (2010))

treats the controller scalability by keeping all traffic in data plane. It considers the switch

rule memory like a large distributed cache and releases the controller from handling the traffic

processing and checking.

Towards a similar goal but with different method, NOX-MT, Beacon, and Maestro scale net-

work controllers using multi-threaded controller. In particular, Maestro is based on a 8 cores

server machine. It distributes the controller workload among available cores, so that will bal-

ance the load between the 8 cores. Actually 7 cores are used for worker threads and one core

is used for management functionalities.

Other systems Onix (Koponen et al. (2010)) and HyperFlow (Tootoonchian and Ganjali (2010))

provide multiple distributed controllers in order to load balance the incoming events load across

between them. They partition network state across these multiple network control systems and

alleviate scalability and fault-tolerance concerns. They take advantages from the OpenFlow 1.3
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version that allows multiple controllers connection with OpenFlow enabled switches in aim to

resolve the controller issue. Thus allowing distributed multiple controllers in managing DCNs

is an appropriate solution, however there is no mechanism for cross virtual tenant networks

packets processing and no approaches for multi-tenant scalable isolation. Using cluster of

synchronized controllers (Master/Slaves) to offload the network charges would be sufficient to

resist and recover from control failures but would leave parts of the network brainless and loose

the key advantage of SDN: centralized control and global network view.

1.4 Purpose of the Research

We have seen that multi-tenant network isolation is a major hurdle to the cloud adoption, and

that the complex and manual network configuration makes it hard to manage and enable its fur-

ther growth. Due to the elastic nature of multi-tenant network, it is not possible to keep the old

and manual management approaches in a similar way to what is done in the private networks. It

would not be flexible and reactive enough to meet with the cloud applications requirements for

dynamic network boundaries changes, policy rules adaptation and transformation on-demand,

and allocated resources migration between isolated networks.

As results, we have identified the multi-tenant isolation as the first requirement of our model.

First of all, we have seen the Overlay Virtualization Technologies (OVT), where low encap-

sulation protocols (e.g., VLAN, GRE, VXLAN, NVGRE) are used to separate tenant virtually

from one another. These techniques provide a guaranteed scalability but remain limited to

a single virtual tenant network or slice. The last isolation technology evoked was the SDN

slicing approach. It allows multiple researchers to share the same underlay network by creat-

ing separate and independent virtual slices. However, this approach faces a critical scalability

bottleneck.

In order to build our solution that considers all the discussed multi-tenant network require-

ments, we believe the more suitable technology would be the last one exposed (See section

2.2.2.4 for more details). Indeed, the decoupling between SDN planes leads to interesting
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properties and brings numerous advantages such as flexibility. Furthermore, OpenFlow proto-

col is becoming essential for network control. It can manipulate each incoming packet finely

such that deciding the forwarding port on-the-fly based on dynamically set flow rules and al-

tering destination address or path. These properties give us a great opportunity to define elastic

and flexible virtual tenant networks. Therefore, our solution is built as a SDN-based architec-

ture. It will allow us to provide multi-tenant isolation by defining a high level abstraction at

the application layer before being mapped on the underlay layer. This abstraction can summa-

rize all the tedious details related to the security configuration implementing the desired tenant

isolation. We believe that our abstraction should be based on modularity which is the key of

managing complexity in any software system, and SDN is no exception.

In this work, we present Open Network Management & Security (OpenNMS), a novel modular

software-defined architecture enabling multi-tenant scalable, flexible and autonomic isolation

for virtual networks. OpenNMS takes a step towards providing L2 isolation with simple and

flexible Virtual Tenants Slices (VTSs) abstractions in an automatic and dynamic way. To over-

come SDN scalability bottleneck and overlays protocols limitation to single slice, OpenNMS

lifts several roadblocks by combining these two separate technical approaches into an unified

design. This yields a network virtualization architecture that is both flexible, and secure on

one side, and scalable on the other. OpenNMS exploits the high flexibility of software-defined

components and the scalability of overlay protocols to create several thousands of VTSs on top

of shared network infrastructures. It gathers tenant’s distributed VMs across physical networks

into distributed VTSs which can be split, merged or migrated. It requires only a small amount

of line as extended application to OpenFlow controller.

Using hierarchical OpenFlow controllers, we succeed to enforce our flexible isolation model

and provide in the same manner an efficient and scalable offloading of control functions without

losing the SDN centralized advantage. By delegating VTSs frequent and local packets to tenant

controller, we limit the overhead on centralized controller that will process only global and

rare events to maintain network-wide view. One master application on the control plane will

orchestrate, build and map small tenant distinct portions or VTSs into the virtual and underlay
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networks. VTS space on data plane will be allocated for each tenant for building his own small

security boxes out of multiple, independent, reusable network policies included in the VTS

abstraction. Thus, as results of the simple and flexible VTS definitions model, we describe

novel features and capabilities added for the isolation: Split, Merge and Migrate that can be

well suited for the tenants’ requirements in such dynamic nature of cloud computing.

In compliance with the latest trends in network management, we adopt the autonomic com-

puting approach to add the autonomic aspect for our isolation model. Autonomic computing

can be a complementary approach to SDN for evolving the neglected management plane and

self-aware network configuration. It can allow an embedded management of all VTSs and

gradual implementation of management functions providing code life cycle management for

multi-tenant applications as well as the ability to on-the-fly configuration update. The Self-*

capabilities in a SDN network can accomplish the centralized controller functions by recom-

mending an appropriate action based on the overall network policies and tenant requirements.

These capabilities are included in OpenNMS through control loop in the cloud provider’s man-

agement plane.

1.5 Organisation

The remainder of this thesis presents a detailed description of our L2 multi-tenancy isolation

approach, Virtual Tenant Slices abstraction model, OpenNMS framework design and evalua-

tions.

The rest of this thesis is organized as follows:

Chapter 2 begins with all definitions and concepts required for this work, introducing the cur-

rent multi-tenant data center practices and presenting the existing OpenFlow enabled compo-

nents implementations. The rest of Chapter 2 lays out the required background for the three

aforementioned network isolation techniques of this thesis and investigates their related issues.

We follow with an overview of the currently available autonomic computing architectures.
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In Chapter 3, we present the flexible L2 isolation model proposed for OpenNMS and detail how

it can be exploited to provide VTSs scalability. We describe the concept, motivation behind it,

and detail the used syntax. Finally, we show how OpenNMS reaches the isolation goals as well

as the scalability of SDN controller.

Next, in Chapter 4, we describe the OpenNMS design and detailing the composition of Open-

NMS planes including the autonomic management plane. We present OpenNMS evaluation

along with experiments and results in chapter 5.

Finally, we draw conclusions, discuss OpenNMS limitations and present avenues of future

research.



CHAPTER 2

BACKGROUND AND RELATED WORK

The current chapter provides a literature review of the current data center practices for the

cloud’s tenants. We introduce also all definitions and concepts about the previous technologies

and protocols which are important to our work. As evoked in the previous chapter, the actual

isolation approaches are facing scalability roadblocks and raises many challenges regarding to

the cloud applications elasticity.

Next, we will present the existing Software-Defined Networking (SDN) implementations. Across

our analysis, we will provide a detailed description of the industrial and research isolation using

the SDN slicing or the Overlay Virtualization Technologies. We will analyse the different ways

existing in order to separate the traffics in a multi-tenant infrastructure. We will expose their

issues and advantages, before giving our conclusions on their utility for the current multi-tenant

network requirements.

In a multi-tenant data center, any network isolation approach must provide enough scalability

and flexibility in order to cope with the tenant requirements for network scalability and must

tolerate the cloud applications live migration as a particular characteristic of the cloud elastic

environment.

Our second goal is to provide an autonomic isolation solution. The isolation process has to

be automatic in order to provide self-manageable virtual networks. In order to do so, we want

establish a combination between SDN-based architecture and Autonomic Computing; this is

why the literature review of the available Autonomic Computing is articulated as follow.

Finally, the conclusion will summarize and close the chapter, recapitulating the main draw-

backs in actual isolation solutions while enlightening the key improvement that need to be

achieved in order to provide flexible, scalable and autonomic virtual tenant networks using a

high-level abstraction while providing secure and independent slices to each tenant.



16

2.1 Current Multi-tenant Data Center Practices

In cloud architectures, the provider’s resources are pooled to serve multi-tenants, with different

physical and virtual resources (e.g., compute, network, and storage) dynamically assigned and

reassigned on demand. Any individual or business can get a portion or slice of the available

resources for hosting their applications and deploying the desired topology in order to gain

price and performance advantages compared to the cost of private data center. The cloud ser-

vice providers are offering “a pay-as-you-go” model with little costs versus buying all of the

hardware and software for building an individual data center. Each tenant subscribed to com-

pute, network, and storage resources in a cloud is entitled to a given Service Level Agreement

(SLA).

The notion of a tenant in the context of cloud computing is not as simple as it might first appear.

The first security concerns in server virtualization relate to the co-existence of virtual machines

(VMs) owned by different tenants. For this purpose, a very specialized and optimized software

system, termed Hypervisor, was included to separate tenants’ VMs. It is a virtualized layer

located between VMs and physical hosts resources providing resources isolation allocated for

different tenants. Operating systems, such as KVM (Habib (2008)), and Xen (Menon et al.

(2006)), are developed for providing the means of turning a single piece of hardware into many

separated VMs. These technologies can provide performance isolation between collocated

VMs and prevent information leaks.

The missing piece for shared platform was the network isolation. A next generation for modular

and virtualized platform for multi-tenant data center was proposed with basic concepts for

network virtualization. It involves new low-level encapsulations protocols (e.g., VLAN, GRE,

. . . ) for creating network tunnels between hypervisors. These tunnels allow the infrastructure

to create virtual networks between different groups of VMs that are allocated for multi-tenants.

With the rapid development of management platforms and the emergence of different open-

source laaS frameworks (e.g., OpenStack and OpenNebula), they have been developed in or-

der to facilitate the deployment of cloud environments. They have been widely used due to
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their scalability with increasing number of resources, some of them can substitute commercial

cloud management platforms. In particular, OpenStack is a collection of open source software

projects which delivers a massively scalable cloud operating system and controls large pools

of compute (Nova), storage (Swift), networking (Neutron) and Orchestration (Heat). However,

these exciting environment present powerful management challenges not seen before on the

open cloud. A data center exists under a single administrative domain. The overly complicated

control of traditional routers makes network management more complex.

Despite all progress in virtualization and cloud management platforms (See Figure 2.1), the

decision to choose the most suitable framework that meets the customers’ needs becomes a

difficult task, because every platform has its specific characteristics. The tenant generally has

no control or knowledge over the virtual and physical configurations and even the deployed

network topology. He is not able to pull any change on the allocated resources or specify the

modification needed at a higher level of abstraction.

Figure 2.1 Current Multi-tenant Data Center Architecture

The situation has improved with the emergence of new network virtualization paradigm: SDN

and related technologies like OpenFlow switches (e.g., Nicira’s Open vSwitch) and Controllers
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(e.g., NOX, OpenDayLight), which create an open and transparent approach for multi-tenant

network and automate the network control and management operations. SDN has great poten-

tial and flexibility to create a new generation for multi-tenant data center. SDN is still evolving

but it is not ready for the data center business plan.

2.2 Definitions and Concepts

In this section, we will discuss the use of previous and novels technologies and protocols in

order to provide secure virtual networks isolation. First, we review the use of classic encapsula-

tion protocols, where Virtual Local Area Network (VLAN) and Generic Routing Encapsulation

(GRE) are the most popular. Second, we focus on Virtual eXtensible LAN (VXLAN) and Net-

work Virtualisation using GRE (NVGRE), which extend the VLAN and GRE protocols. Then,

we move our focus on SDN paradigm and present the critical role of the OpenFlow protocol

in SDN. In addition, we present and discuss the SDN slicing technique as emergent network

isolation approach. Finally, we introduce the evolution of middleboxes approaches with SDN.

2.2.1 Virtual Network Overlay Protocols: Virtual Isolation

The concept of multiple and isolated virtual networks that can coexist in the same underlay

infrastructure appeared in the networking literature with different segmentation capacities. In

this subsection, we discuss four protocols: VLAN, GRE, VXLAN and NVGRE.

2.2.1.1 Virtual Local Area Network

Initially, traditional multi-tenant data centers have employed VLANs (Clear et al. (2002)) to

isolate the machines of different tenants on a single Layer 2 (L2) network. They have deployed

Ethernet networks based on IEEE 802.1Q to provide for VLAN bridging and isolation among

tenants. The VLAN tag is a 12-bit field in the VLAN header, limiting this to at most 4K tenants.

This imposes a growth limitation on the number of tenants that can be supported, depending on

services and topology. Additionally, the VLAN widespread utilization makes an inescapable
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complexity in network management nowadays. It cannot be used as it represents a limitation

to the scalability and management of the cloud model. It is rare to find VLANs in recently

proposed cloud architecture.

2.2.1.2 Generic Routing Encapsulation

Similar to VLAN, Generic Routing Encapsulation (GRE) (Farinacci et al. (1994)) has been

developed by Cisco Systems and allows tunneling to encapsulate a wide range of types of

packets from the Internet Protocol (IP) layer. GRE tunnels encapsulate isolated L2 traffic in

IP packets. The originality of GRE tunnels is that they are designed to eliminate the need

of maintaining the connection state, which means that each tunnel does not keep any state

information of the remote connection. Using GRE tunnels as tenant networks in Cloud solution

avoids the need for a network interface connected to a switch configured to trunk a range of

VLANs. For example, connection with servers that need to encrypt the data, can use GRE

tunnel inside virtual point-to-point links over the internet for secure Virtual Private Networks.

Another key benefits of GRE is the IP address and MAC address table scalability.

2.2.1.3 Virtual eXtensible Local Area Network

An industrial competition was started to replace the previous traditional isolation mechanisms.

New encapsulations approaches were proposed as successor. At the core of this challenge,

Virtual eXtensible Local Area Network (VXLAN by Mahalingam et al. (2012)) was proposed

and implemented by Cisco to provide a large number of segmentation that can solve the VLAN

limits. VXLAN addresses the scalability requirements of the L2 and L3 data center network in

a multi-tenant environment. It extends the VLAN segmentation capacity and allows up to 16

million VXLAN segments to coexist within the multi-tenant network. The VXLAN segment

is a 24-bit field, hereafter termed the VXLAN Network Identifier (VNI). The VNI scopes the

inner MAC frame originated by the Virtual Machine (VM). Thus, it allows to overlap MAC

addresses across VXLAN segments but never have cross over traffic since the traffic is isolated

using the VNI qualifier which is an outer header envelope over the inner MAC frame originated
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by the VM. We can define shortly VXLAN with a L2 overlay scheme over a L3 network. Each

overlay network is termed a VXLAN tag. Only VMs within the same overlay network can

exchange packets. VXLAN was the first MAC-over-IP overlay virtual networking technology

that could be implemented for large-scale L2 multi-tenant DCNs (e.g., VMware’s vSphere).

2.2.1.4 Network virtualization using GRE

Another concurrent network virtualization technology to VXLAN with similar objectives, Net-

work Virtualization using Generic Routing Encapsulation (NVGRE), was also developed by

Hewlett-Packard (Sridharan et al. (2013)). However, it is not widely adopted as VXLAN.

The companies supporting the development of NVGRE are Microsoft, F5 Networks, Arista

Networks, Mellanox, Broadcom, Dell, Emulex, and Intel. NVGRE attempts to alleviate the

scalability problems associated with large multi-tenant DCNs. It extends the GRE encapsula-

tion to tunnel L2 packets over L3 networks and create large numbers of VLANs. Every virtual

L2 network is associated with a 24 bit Tenant Network Identifier (TNI). This TNI represents

a virtual L2 broadcast domain and allows up to 16 million virtual networks in the same multi-

tenant DCNs in contrast to only 4K achievable with VLANs.

2.2.2 Software-Defined Networking, OpenFlow and Virtual Isolation

This thesis certainly would not have been possible without the emerging Software-Defined

Networking (SDN, McKeown (2009)) paradigm. Next, we present SDN architecture and key

aspects of the OpenFlow (McKeown et al. (2008)) protocol, which enables controller to switch

interaction through a standardized protocol. We also describe SDN alternative standards such

as ForCES (Doria et al. (2007)). Finally, we introduce the slicing technique proposed and

deployed by SDN researchers.
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2.2.2.1 Software-Defined Networking

SDN has gained significant traction and momentum in the network research and industrial

communities in recent year. It is one promising technology and suitable to substitute tradi-

tional network architectures. Traditional architectures follows an unified design where the

control and data planes are tightly coupled in the same network box. It usually results in overly

complicated control plane and complex network management. Due to this high complexity,

research community is convinced that networking must also start to shift and argue that the

clear separation and open interfaces between control and forwarding planes is the key major

factor for the rapid innovation and growth in multi-tenant networks. This was the heart of what

they term SDN. Some researchers consider that Ethane project (Casado et al. (2007)) was the

key turning point of the SDN paradigm. Ethane architecture allows fine-grained admission and

routing policies for tenant applications in enterprise networks using a centralized networking

control. Similar to Ethane, SDN uses an external centralized controller to manage the behav-

ior of all network switches. Switches are abstracted as simple forwarding engines, and they

export incoming packets to SDN controller which defines a set of actions (e.g., forward, drop)

for each packet. This global network view and control allows fine-grained security and high

performance required from a datacenter network. SDN allows also a global management ab-

stractions. A network manager would collect the network view and topology graph discovered

by the centralized controller. It would orchestrate and present possible management actions

and event triggers (e.g. node failures). The SDN architecture has drawn the attention of the

whole network community. It has been used and implemented with a variety of researchers and

industrials, including management and control solutions for the SDN switch implementations

(Naous et al. (2008), Koponen et al. (2010), Sherwood et al. (2009), Mattos et al. (2011)),

network virtualization (Drutskoy et al. (2013), Rotsos et al. (2012), Monsanto et al. (2013)),

and network security enforcement (Schlesinger et al. (2012), Porras et al. (2012), Qazi et al.

(2013), Shin et al. (2013a)).
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Figure 2.2 SDN/OpenFlow Network Architecture

2.2.2.2 OpenFlow

The missing puzzle to reach the desired decoupling between control and data planes was the

SDN OpenFlow standard (McKeown et al. (2008)). OpenFlow has emerged as powerful, pro-

gramming API for managing and controlling large-scale distributed network systems. It allows

the network programmer to customize network switches behaviours through OpenFlow appli-

cations extending the centralized SDN controller (See Figure 2.2). This open design exposes

the capabilities of network nodes and provides for both infrastructure providers and tenants
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an increased flexibility in managing and deploying network services. This uniform forward-

ing abstraction allows to support various and multiple network processing functions, such as

L2 isolation, IP multicast forwarding, traffic policing, monitoring, load balancing, multi-path

routing, access control and quality-of-service (QoS) forwarding.

Figure 2.3 Packet Processing Through Multiples OpenFlow Tables

OpenFlow standard is rapidly evolving and is becoming more mature, from the 1.0 specifica-

tion version (Pfaff et al. (2009a)) to the 1.3 version (Pfaff et al. (2012)), and the current 1.4

version (Pfaff et al. (2013)). OpenFlow protocol has made significant progress by: (i) enabling

forwarding plane abstraction for distributed switches using multiple flow tables (See Figure

2.3), (ii) notifying the centralized controller with incoming flows at data plane and allowing

it to install forwarding rules on forwarding table with matching flows and query the state of

packets, (iii) extending OpenFlow features such as ability for multiple controllers connection

to underlay data plane, and (iv) offering a simplified interface for caching packet forwarding

rules in OpenFlow tables, and querying traffic statistics and notifications for topology changes.

The OpenFlow table allows packets to be matched based on their Layer 2 (dlsrc, dldst , dltype),
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Layer 3 (nwsrc, nwdst , nwproto), and Layer 4 (t psrc, t pdst) headers 1, in addition to the switch

port ID where the packet arrived on (See Figure 2.4). When a packet enters an OpenFlow en-

abled switch, it will be checked with the already installed flow entries. If there is no matching

rule, the packet will be forwarded to the connected OpenFlow controller via the secured chan-

nel. Next, the controller will decide how to handle this type of packet based on the existing

network applications and install the required flow entry on the corresponding switch. Once

the new flow entry is installed on the switch, flows of this match are handled at the data plane

without been sent to the controller.

Figure 2.4 OpenFlow Flow Entry

Diverse open source deployments have been proposed to achieve the full potential for this stan-

dards. For example, between the top ranked OpenFlow controller platforms, we can cite NOX

(Gude et al. (2008)), POX (Mccauley et al.), Floodlight (Erickson et al. (2012)), Trema (Shi-

monishi et al. (2011)), Beacon (Erickson et al. (2013)), Ryu (Ryu SDN Framework (2013)),

and OpenDaylight (Linux Foundation (2013)). Altogether, OpenFlow and the SDN has un-

1dl, nw, and tp denote data link layer (MAC), network layer (IP), and transport (TCP/UDP) port layer respec-

tively. dst refers to destination and src to source
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deniably sparked a new generation of network architectures, enabling exciting projects like

FlowVisor (Sherwood et al. (2009)), Onix (Koponen et al. (2010)), MiniNet (Lantz et al.

(2010)), Maestro (Ng (2012)), Hedera (Al-Fares et al. (2010)) among others too numerous

to list. In parallel, OpenFlow has quickly become a standard with broad industry support. It

has being incorporated into switches made by virtually all major telecommunication vendors

like Big Switch, Cisco, Ericsson, IBM Blade, Juniper, and others.

2.2.2.3 Forces

Figure 2.5 ForCES Architectural Diagram

The IETF working group defined the Forwarding and Control Element Separation architecture

and protocol (ForCES, Doria et al. (2007)). ForCES came before OpenFlow with several years.

Several works provide detailed comparisons of OpenFlow and ForCES (e.g., Tsou et al. (2012),

Lara et al. (2013)). Similar to OpenFlow, it attempts to separate the control and forwarding data

planes of multiple network devices (e.g., L2/L3 router, switches and security middleboxes).
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Therefore, the ForCES model shares many similarities with OpenFlow protocol but they are

technically different. ForCES specification allows more flexible definition of the data plane

(See Figure 2.5). ForCES data plane contains directly connected Forwarding Elements (FEs)

and Control Elements (CEs). FEs are flow tables with OpenFlow. Inside the same network

box, each FE can be connected to one or more local CE. All local CEs are connected to distant

CE Manager. FE can be managed also by distant FE Manager. However, ForCES appears to

be less widely deployed than OpenFlow. In this thesis, we focus entirely on programming flow

tables, which can also be implemented on ForCES using FEs.

2.2.2.4 SDN Slicing Technique

Novel approaches for multi-tenant isolation that are not based on traditional encapsulations

mechanisms have became a real possibility since the appearance of SDN. SDN has allowed

network researchers to try different isolation ideas via slicing. Providing multi-tenant isolation

by creating virtual network slices (e.g, FlowVisor with Sherwood et al. (2009), HyperFlow with

Tootoonchian and Ganjali (2010), Onix with Koponen et al. (2010)) is a very challenging issue

that has not been completely solved before the introduction of SDN mechanisms like Open-

Flow and ForCES. SDN has gained a lot of attention due to its flexibility for creating separate

and independent virtual slices on top of underlay network infrastructures. SDN and OpenFlow

enable dynamic configuration of an entire network using a control brain in an open approach

thus decoupling control and data planes which represents the fundamental difference to tra-

ditional architectures. This decoupling leads to interesting properties. Both SDN planes can

evolve independently by adding extension components to each plane. The scalability of SDN

planes brings numerous advantages such as high flexibility and cloud resiliency. This propriety

gives us the opportunity to define elastic and flexible virtual tenant slices. OpenFlow is becom-

ing essential for network flows control because it can manipulate each incoming packet finely

such that deciding the forwarding port on-the-fly based on dynamically set flow rules and alter-

ing destination address or path. In particular, the last OpenFlow version (1.3) offers a standard

interface for caching packet forwarding rules in the flow table, querying traffic statistics and
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notifications for topology changes. To accomplish isolation requirements, Software-Defined

switches like Open vSwitch (OVS) (Nicira, Pfaff et al. (2009b)) and controllers like NOX

(Gude et al. (2008)) can be used to separate tenants’ flows. Such components capabilities offer

high flexible network control and management.

2.2.3 Security Middleboxes

Network-based security middleboxes were traditionally implemented and placed at network

choke points as one class of network functions in monolithic physical boxes across data cen-

ters with significant configuration overhead and assuming the underlay network would remain

static with occasionally update (e.g. Cisco ACE Web Application Firewall (Cisco (2008a))).

Network providers deploy middleboxes to supplement the network with additional functional-

ities such as firewalling, intrusion detection and prevention, and load balancing. They rely on

pre-built middleboxes that require significant manual management operations and high exper-

tise to ensure that the desired security functions through the placement sequential are provided.

Generally, the size, the number, and the places for these boxes are planned in advance and are

most of the times over-estimated or under-estimated.

With virtualization, these solutions become so difficult and unfeasible due to the dynamicity

of the overlay network. The underlay network is subject to the rapid change of the overlay

network due to orchestration requirements between virtualized resources. With the advances

in virtualization technology and the introduction of new paradigms like SDN and OpenFlow,

network security providers start offering virtual middleboxes, but still in the same bloated

boxes. Such complicated and overloaded virtual security appliances are not suitable for the

cloud elastic nature and even more for the “pay-as-you-go” model. They are usually designed

to protect against all possible attacks, while they are consuming huge memory and processing

resources and generating overgrown traffic.

Recently, there has been efforts for the integration of middle-boxes into SDN exploiting the

benefit of programmability for traffic steering and services chaining in aim to redirect tenant
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network traffic through small boxes. For example, the Slick architecture (Anwer et al. (2013))

proposes a centralized controller for network middleboxes, which is responsible for installing,

removing and migrating security functions throughout the network. It is similar protocol to

OpenFlow’s, in that the controller installs the necessary action/match policy rules based on

tenant security requirement. Applications can then direct the Slick controller to install the nec-

essary functions for routing particular flows based on security requirements. Slick supports

multiple concurrent group of policies or security code running on a the same middlebox. An-

other architecture termed FlowTags (Fayazbakhsh et al. (2013)) proposes an API enabling the

interaction between SDN controller and middleboxes. The authors proposes FlowTags which

consist of traffic flow information embedded in packet headers. FlowTags provide flow track-

ing and enable controlled routing of tagged packets. A clear disadvantage of FlowTags is the

fact that it supports only pre-defined policies and does not handle dynamic actions. In contrast

to Slick and FlowTags, the SIMPLE-fying middlebox policy enforcement (Qazi et al. (2013))

is an approach for using SDN to manage middleboxes deployments without any modifications

to SDN capabilities or middlebox functionality, which makes it appropriate for legacy systems.

In particular, middleboxes approaches using SDN, such as CoMb (Sekar et al. (2012)), SideCar

(Shieh et al. (2010b)) and Flow-Stream (Greenhalgh et al. (2009)) introduced novel mecha-

nisms for providing scalable programmability in data plane and efficiently redirecting flows to

network security applications using processing nodes. They can share the processing resources

with middleboxes in order to increase resource utilization and decrease the number of net-

work nodes. Kandoo (Hassas Yeganeh and Ganjali (2012)) is orthogonal to these approaches

in the sense that it operates the flow redirection in the control plane, but it provides a similar

distribution for control applications.

In the context of network security, Frenetic (Foster et al. (2011)) and Fresco (Shin et al.

(2013a)), and CloudNaaS (Benson et al. (2011)) provide a language for managing middleboxes

and SDN installed flow entries. Frenetic and Fresco propose a framework for composing se-

curity modules and resolving security policy rules conflicts. CloudNaaS leverages SDN by

providing a flexible language for tenants to request middlebox interposition and custom end-
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point addressing in virtual networks. It considers the problem of traffic processing to specific

nodes and middlebox placement in conjunction with cloud applications. However, it does not

consider middlebox migration or dynamic network behaviour transformations.

2.3 Software Defined Components: Switches, Controllers and Applications

SDN has lead out of massive projects working on the design and deployment of OpenFlow

products: hardware and virtual OpenFlow switches and OpenFlow controllers. The majority

of these projects are an open source SDN initiative aiming to evolve, mature, and accelerate a

common robust SDN platform. The current SDN products can be classified into three layers:

OpenFlow switches, OpenFlow Controllers, and OpenFlow Applications (See Fig 2.6). In the

following, we review the most popular OpenFlow-enabled implementations.

2.3.1 Software Defined Switches

2.3.2 OpenFlow Hardware Switches

The SDN paradigm has attracted a lot of attention in the networking community. Several

OpenFlow-enabled Ethernet switches have been commercialized by networking equipment

vendors (See Fig 2.6). Network Industries are competing to achieve high performed Open-

Flow switch on one hand, and flexible configuration on the other hand. The idea of OpenFlow-

enabled switch originates from the fact that most Ethernet switches use a flow table for imple-

menting network and security services (e.g., L2/L3 switching, firewalls, NAT, QoS, . . . ). Most

OpenFlow switches use Ternary Content Addressable Memory (TCAM) (Pagiamtzis and Sheik-

holeslami (2006)) to implement multiple flow tables. TCAM was chosen as memory chip for

OpenFlow hardware implementations because it supports fast lookup and efficient matching of

packet with flow entries installed on flow tables comparing to Static Random Access Memory

(SRAM) and others memories. However, TCAM is very expensive and has limited amount of

space. It is important to use flow tables capacity efficiently otherwise it will lead to network
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Figure 2.6 Software-Defined Networking Products
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performance degradation and over workload on the OpenFlow controller handling the packets

processing.

2.3.3 OpenFlow Virtual Switches

Several OpenFlow software switches were proposed and implemented in networking commu-

nity (e.g., Open vSwitch, Link, Pantou, . . . ). The most popular is Nicira’s Open vSwitch

(OVS). OVS is an open source OpenFlow software switch designed to be used as a virtual

switch in virtualized server environment. It supports popular Linux-based virtualization plat-

forms using KVM, Xen, and other hypervisors. It is used to manage virtual networking shar-

ing the same physical server and also forward traffic between VMs and the underlay network.

OVS can be extended programmatically and controlled using OpenFlow controller and OVSDB

management protocol. It supports standard management interfaces such as sFlow (Wang et al.

(2004)), NetFlow (Cisco (2008b)), and CLI.

2.3.4 Software Defined Controllers

The attraction to SDN and OpenFlow has led also to various implementations of OpenFlow

controllers. SDN controllers typically consist of three distinct layers, as illustrated in Figure

2.7. The lowest layer in the control plane is the South-bound interface. It manages the con-

nections with OpenFlow-enabled switches (hardware and software) and implements the basics

of the OpenFlow protocol and other network control protocols (e.g., Netconf, OF-Config, . . . ).

The middle layer consists of network service functions and others OpenFlow applications de-

veloped as plug-ins (e.g., monitoring, DDoS protection, . . . ). The upper layer, called North-

bound controller API, enables the network administrator to control and monitor networks be-

haviour. It consists of business and network logic applications that use the last two layers to

gather network intelligence, deploy the required topology and orchestrate the network’s policy

rules. Many SDN controllers exist as seen in section 2.2.2.2, primarily distinguished by their

programming languages. Some examples are presented in Table 2.1. In particular, the project

OpenDaylight (ODL), is an open source SDN initiative aiming to create, accelerate and ad-
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Figure 2.7 Typical Architecture for OpenFlow Control Plane

vance a common centralized robust SDN platform. This project has the support of many major

technology companies (e.g., Ericsson, Big Switch, Brocade, Cisco, Citrix, . . . ).

2.3.5 Software Defined Applications

SDN did not bring only on the decoupling between control and data planes. In addition to

this interesting propriety, it delivers also the ability to externally program network nodes in

real time through emerging protocol like OpenFlow. OpenFlow has emerged as powerful pro-

gramming API for managing and controlling large-scale distributed network systems. It allows

the network programmer to customize network switches behaviours through OpenFlow appli-

cations extending the centralized SDN controller. This open design exposes the capabilities
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Table 2.1 OpenFlow Controllers and Programming Languages

Programming Language Controllers

C Trema

C++ NOX

Python POX

Ryu

Java Beacon

Maestro

Floodlight

OpenDayLight

of network nodes and provides for both infrastructure providers and tenants with increased

flexibility in managing and deploying network services. This uniform forwarding abstraction

allows to support network processing functions, such as L2 isolation, IP multicast forward-

ing, traffic policing, monitoring, load balancing, shortest path routing, access control and QoS

forwarding.

The concept of a programmatic network has extended the basic networking services with more

personalized and sophisticated network applications that were not realisable before the intro-

duction of OpenFlow-enabled applications. This includes Onix as distributed control platform

(Koponen et al. (2010)), Veriflow as monitoring and packets verification application (Khur-

shid et al. (2012)), FortNox, FRESCO and Avant-Guard as security enforcement applications

(Porras et al. (2012); Shin et al. (2013a,b)), flow scheduling and multipathing with Hedera (Al-

Fares et al. (2010)), VM Migration (Arora and Perez-Botero) and service chaining and network

steering (Gember et al. (2013); Qazi et al. (2013)).

Recently with the introduction of Network Function Virtualization (NFV) (Brief, 2014), the

notion of a composed OpenFlow applications has recently coalesced into the more general

notion of SDN-enabled applications, in which the network is treated as another programmable
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resource for delivering multiple and independent Virtual Network Functions (VNF). This is

provided and facilitated by abstraction layers like OpenDaylight in which an open north-bound

APIs are provided. These APIs allow to include pluggable modules to perform needed network

tasks such as dynamic bandwidth reservation, virtual networks isolation, chaining and traffic

steering, etc.

2.4 Multi-tenant Network Isolation

The advancement of network virtualization with the Overlay Virtualization Technologies (OVT)

and Software-Defined Networking (SDN), outlined in chapter 1 and previous sections of this

chapter, has led to interesting approaches for achieving multi-tenant network isolation. In the

following, we are resuming the most important research and industrial approaches for reaching

the isolation goal.

2.4.1 Research Isolation Approaches

Some approaches concerning the concept of multi-tenancy isolation have been proposed for

network virtualization before the introduction of SDN. For example, Cabuk et al. (Cabuk

et al. (2010)) presented prototype of automated security policy enforcement for multi-tenancy

based on the concept of Trusted Virtual Domains (TVDs). Their approach allows to group

VMs belonging to a specific tenant dispersed across multiple Xen Hypervisor into a TVD

zone. Tenant’s requirements for isolation are automatically enforced by a privileged domain

(DOM-0). Such solution offers tenants separation using VLAN, EtherIp and VPN tagging.

Their solution presents a significant step towards: (i) tenant transparency by automating the

deployment and mapping of tenants desired network topology, and (ii) isolation elasticity by

orchestrating TVDs through a management framework that automatically enforces isolation

necessary changes (e.g., load balancing, migration) among different hosts’ hypervisors.

Based on network virtualization paradigms, SDN comes with better alternative than using the

TVD privileged domain, which is not recommended for the security. By decoupling control
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and data planes, SDN offers a new way to create transparent and isolated virtual networks by

dividing, or slicing, the network resources.

In the SDN space, there are several temptations to achieve a complete isolation solution suitable

for multi-tenant data center. We can classify these software-defined techniques depending on

the emplacement of their isolation engine as the following:

2.4.1.1 SDN Hypervisor

FlowVisor (Sherwood et al. (2009)) is a one of popular project working on developing virtual

network slicing in hardware programmable router. The FlowVisor hypervisor is implemented

as OpenFlow proxy to allow multiple researchers use the same network resources using mul-

tiple controllers and enforcing strict traffic isolation between tenants’ controllers. It enables

filtering events to controllers and masking messages to switches. Such mechanism aims to

separate researchers’ slices called “Flowspaces” and let each slice managed by a single con-

troller. In addition, FlowVisor manages provisioning of shared resources (e.g., bandwidth, con-

troller) using heuristics to estimate the amount of each processing resources needed by each

slice. Nevertheless, these slices are completely independent and FlowVisor does not consider

the virtual tenant networks scalability and inter-domains collaboration requirements.

HyperFlow (Tootoonchian and Ganjali (2010)) has a complementary approach. It introduces

the idea of enabling the interconnection between separated slices. HyperFlow uses multiple

controllers to manage each tenant slice following the same concept as FlowVisor. The connec-

tion between slices is provided by a shared publish/subscribe system because controllers use

to update the network state and send commands to the other controllers. This mechanism does

not support routing over slices and either the network scalability.

Similar to HyperFlow, Onix (Koponen et al. (2010)), is also one of the most prominent exam-

ples of systems that provide isolation using OpenFlow/SDN. It represents a distributed control

platform that facilitates implementation of distributed control planes in aim to enable tenant to

create virtual topologies that will be mapped to physical elements. It provides control applica-
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tions with a set of general APIs to facilitate access to network state, which is distributed over

Onix instances.

Previous SDN researches’ works have successfully achieved the transparent isolation in virtual

data center networks which has been a long goal of the infrastructure providers. However, it

lacks the ability to use OpenFlow slices within individual SDN programs. They have made use

of centralized or distributed controllers to achieve strict isolation between different tenant’s

slices without addressing tenant requirements of today (e.g., slice scalability, inter/intra slices

communication and collaboration, load-balancing, migration, . . . ) and arriving to a consistent

solution that consider both networks and SDN control plane scalability bottleneck (See 1.3.3

for more details).

2.4.1.2 SDN Middle-boxes

Before the spread of network virtualization, isolation was being enforced through special de-

vices or middle-boxes located protecting tenant applications. Recently, there have been efforts

to bring this practice to virtualized environments which still valid to provide the necessary

network security functions that can guarantees the defense for multi-tenant data center. For

example, Anwer et al. propose (Anwer et al. (2013)) sLICK architecture exploiting the benefit

of SDN to redirect tenant traffic through middle-boxes. sLICK is based on a centralized Open-

Flow controller which is responsible for installing and migrating security functions onto tenant

allocated middle-boxes. Another similar approach is FlowTags (Fayazbakhsh et al. (2013)),

proposing the interaction with the controller through FlowTags application programming inter-

face using an embedded traffic flow information in the packet headers in aim to track the flow

and enable controller traffic redirection based on tagged packets. Unlike sLICK and Flowtags,

requiring modifications to SDN capabilities, SIMPLE architecture (Qazi et al. (2013)) is con-

gruent to standards. Simple authors present SDN-based policy enforcement layer for efficient

middlebox-specific traffic steering.
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A clear disadvantage of this architecture is the fact that it works with only pre-defined policies

and currently does not handle dynamic actions. Based on these approaches, it would appear

that tenant isolation requirements can be achieved using a simple and traditional practice by

redirecting traffic to appropriate security devices. However, satisfying tenant requirement is

not straightforward as that. This practice brings other questions to be discussed before talk-

ing about traffic steering between middle-boxes: (i) which the appropriate placement of these

middle-boxes? (ii) What is the penalty that can be tolerated when traffic is redirected through

additional nodes? and (iii) finally how these middle-boxes can follow the movement of pro-

tected VMs?. Such questions have not yet been answered.

2.4.1.3 SDN traffic Isolation through OpenFlow Controller

A variety of SDN controller platforms have been developed as seen in section 2.2.2.2, includ-

ing Beacon (Erickson et al. (2013)), NOX (Gude et al. (2008)) and POX (Mccauley et al.),

Maestro (Ng (2012)), Nettle (Voellmy and Hudak (2011)), Ethane (Dixit et al. (2013)) and

OpenDaylight (Linux Foundation (2013)), but none of them come with traffic isolation for net-

work applications running on the shared infrastructure. In reason to overcome this challenge,

a number of systems were proposed to provide traffic isolation in multi-tenant data center

through OpenFlow controller:

• Splendid Isolation (Gutz et al. (2012); Schlesinger et al. (2012)): is one notable contri-

bution. Gutz et al. sustain that old isolation practice increase the complexity of the net-

work configuration. They propose building network slices to isolate traffic using high-level

language-based security called “Pyretic” enabling flow-based policy enforcement imple-

mented as NOX application to forward and add automatically OpenFlow rules to the virtual

switches. More recently, they proposed also (Monsanto et al. (2013)) an extension to their

work that supports the idea of parallel and sequential composition of tenant slices’ rules to

support multiple concurrent and parallel tenant network tasks execution in SDN platform.
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• Fresco (Shin et al. (2013a)): introduced a new OpenFlow security application development

framework in SDN extending FortNox (Porras et al. (2012)), a security enforcement kernel

which handles and solves possible conflicts when adding new rules on OpenFlow switch.

The idea behind Fresco is to solve several key issues during combining security modules

on demand, which can be incorporated as an OpenFlow application. They presented a

library of scripting language for reusable modules which can be used for the detection and

mitigation against attacks.

• NetLord (Mudigonda et al. (2011)) and VL2 (Greenberg et al. (2009)): provide isolation

through OpenFlow controller using VLAN encapsulation. NetLord provides tenants net-

work abstractions, by fully and efficiently virtualizing the address space at both L2 and

L3. VL2 supply tenant security functions through a directory service that makes address

assignment independent of the underlying topology.

• CloudPolice (Popa et al. (2010)): is different from the previous approaches depending

on centralized OpenFlow controller. CloudPolice designed a distributed access control

mechanism providing tenant isolation for Cloud Computing using a more general end-host

based architecture for enforcing security properties implemented as hypervisor on virtual

switches interacting with the controller.

• Seawall (Shieh et al. (2010a)): goes beyond basic traffic isolation objective and address

performance isolation as well by proposing weight abstraction that provides dynamic fair

sharing of data center networks’ resources between tenants. Authors presented algorithms

that allocate and manage bandwidth at run-time that guarantee that each tenant receives a

fair proportion of the available capacity.

2.4.2 Industrial Isolation Approaches

Industrial isolation approaches are ideally based to provide the transport by the physical net-

work and the VM service by the hypervisors. The traditional slicing technique has employed

VLAN to isolate tenants’ machines on a single L2 virtual network. However, this simple iso-
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lation approach depends heavily on routing and forwarding protocols and is not easily config-

ured. VLAN management complexity imposes limitations on cloud nature and services. More

importantly, VLAN lacks scalability resulting to a segmentation capacity limit to 4K tenants.

Table 2.2 summarizes the competing multiple overlay virtualization approaches as alternative

technologies to substitute VLAN. These technologies have been proposed within industrials

that are in contrast with the open standards used in OpenFlow solutions. They use Open

vSwitch (OVS) plus typical L2/L3 physical switch to provide virtual networking isolation and

tunneling unlike VLAN which ignores and dumbs OVS (e.g., VMware’s vCloud Director Net-

working Infrastructure (vCDNI) (Krieger et al. (2010)), HP’s NVGRE (Sridharan et al. (2013)),

Nicira’s Network Virtual Platform (NVP) (Rosenblum (1999))). More recently, Cisco’s Virtual

eXtensible LAN (VXLAN) (Mahalingam et al. (2012)) has been adopted within several net-

work vendor for scalable LAN segmentation and automated provisioning of logical networks

between data centers across L3 networks.

Table 2.2 Comparison of industrial network virtualization solutions
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VXLAN L2-over-UDP 7 7 7 7 3 Some IP Multicast

NVGRE MAC-over-IP 7 7 7 7 3 3 3

vCDNI MAC-in-MAC 7 7 3 7 3 3 Hypervisors’ MAC

Nicira NVP MAC-over-IP 3 7 7 7 Some 7 7

ODL VTN – 3 3 3 7 7 7 7
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The major inconvenience of overlay technologies (e.g., VXLAN, NVGRE, vCDNI) is the miss-

ing of control plane. They can support only one Overlay Virtualized Network (OVN) or slice

due to the lack of scalability. They are competing encapsulations with minor technological dif-

ference (e.g., TCP offload, load balancing, Security features) and no one supported by legacy

systems. The key mechanism of scalable architecture is the control plane which maps remote

VMs’ MAC address into a transport network IP address. These technologies face a crucial

problem to determine the VM destination’s IP address.

Nicira’s NVP seems to be solving the problem with better scalable solution than VXLAN us-

ing an OpenFlow controller to install MAC-to-tunnel forwarding rules on OVS. Nicira’s NVP

extends the SDN/OpenFlow standards and introduces OVS database (OVSDB) protocol to con-

figure OVSs. Through user-space OVSDB, it keeps track of the topology existing tunnels. This

approach scales better than VXLAN but causes network overall performance degradation.

The OpenDayLight project has a complementary approach to Nicira’s NVP. Among Open-

DayLight proposals, we find Virtual Tenant Network (VTN) which is recently proposed to fill

the gap of existing OVN technologies by building an OpenDayLight application to support

multi-tenancy. OpenDayLight VTN used OpenFlow ports, VM’s MAC and VLAN mapping to

isolate tenants’ flows and enabling to configure virtual tenant networks across multiple SDN

controllers. VTN design relies on OpenFlow 1.0 specification and do not take benefit from 1.3

extended features such as ability for multiple controllers connection to OVS. It uses a VTN

manager extended to OpenDayLight controller and an extern VTN coordinator to manage and

synchronize distributed OpenDayLight controllers. Despite the efforts of the OpenDayLight

project, the bridge between the SDN paradigm and OVN is no sufficient to provide today

cloud’s tenants requirements.

2.5 Network Management Systems

As presented in last chapter in section 1.3.2, network management systems are facing several

roadblocks even after the introduction of SDN paradigm. The explosion of cloud applications
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and services is driving network community to rethink of management technologies. Network

management is posing new challenges that need to be addressed in order to fully achieve an

flexible and reliable networking environment suitable for the elastic nature of cloud computing.

It is becoming primordial that future networks should be transparent, self-controlled and self-

manageable. It is widely accepted that next-generation of multi-tenant network will require a

greater degree of service awareness and optimal use of network resources.

Next, we will discuss the management challenges for the emerging SDN paradigm. We present

Autonomic management as the last trend in network management and overview some ap-

proaches enforcing this technology.

2.5.1 Management of Software-Defined Networks

SDN appears to be a major evolution towards network programmability. It has become ex-

tremely popular as a means to program and customize network behavior. However, SDN relies

only on the virtualization layer, which decouples the control and data planes. The management

layer in SDN networks seems to be ignored or not addressed properly. The major issue of SDN

is the huge load in the centralized controller, which has to perform all control and manage-

ment tasks in real time. Moreover, in case of using a cluster of OpenFlow controllers, each

controller has to handle the monitoring of internal resources such as policy rules database and

sharing the status of the controlled nodes. For example in FlowVisor, the virtualization layer

was used to slice the network and provide isolated “Flowspaces” to different researchers shar-

ing the same infrastructure. One of the main issues in which FlowVisor must deal is managing

among multiple Flowspaces. These slice are managed by a centralized controller used to sep-

arate bandwitdh, CPU and Openflow tables’s memory allocated for each group of researcher

through a series of checking loops. Also, the centralized controller is used to provision the

shared resources using heuristics and estimate the amount of each processing resources needed

by each space. In addition to basic controller tasks (e.g., create, remove, update, and delete

flow entries), other isolation mechanisms were added in control plane including the verifica-
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tion of flow entries limits in flow tables allocated for each “Flowspace” and the rewriting of

control messages originated at a particular portion to prevent conflicts with other tenants.

Commonly, it is admitted that SDN/OpenFlow could be complementary to classical manage-

ment technologies, but they have limited management capabilities and completely ignore the

lasted advances in network management such as autonomic computing and communication

concepts. The Autonomic management represent an opportunity for evolving the management

capabilities in SDN networks. It allows for embedded management of all network nodes and

gradual implementation of management functions providing their code life cycle management

as well as the ability to on-the-fly code update. So far, only few papers on this subject were

published: Wendong et al. (2012); Kim (2013); Cannistra et al. (2014); Li et al. (2013)

2.5.2 Autonomic Management Background

Autonomic management is one of the ascending research fields in future network control and

management. Self-Awareness, Self-Configuration, Self-Manageable, Self-Optimization and

Self-Organization are a series of autonomic management attributes. The objective of intro-

ducing these self-* autonomic attributes into SDN networks is to decrease the load on the

centralized OpenFlow controller and move the management functionalities to an external man-

agement entity. The ultimate objective is to create self-manageable virtual networks for multi-

ple tenants, overcome the rapidly growing management complexity and enable both tenant and

network scalability.

Very often, any management architecture uses a local agent in network device connected to

external manager. Autonomic management approaches vary in how managers and agents are

organized. Some approaches rely on a centralized manager responsible for all management

tasks, while others uses a cluster of distributed managers to share the task of managing the

infrastructure. Next, we have selected one recent project in network management to be repre-

sentative of autonomic management model.

4WARD: Distributed Autonomic Management Approach
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Figure 2.8 4WARD VNET Architecture

The 4WARD (FP7-4WARD (2008); Niebert et al. (2008); Correia et al. (2011)) is one of the

attractive network management project. 4WARD aims to create dependable and interoperable

networks providing direct, transparent and faster access for multi-tenancy. Its goal is to de-

sign future networks adaptable to the current and future needs with acceptable cost. Among

4WARD proposals, we can find VNET framework for network virtualization. VNET is de-

signed to manage multiple virtual networks sharing the same infrastructure. They have de-

veloped a systematic and general approach for managing and controlling the shared virtual

resources using standardised interfaces. Based on high level abstraction and using the control

and management interfaces, VNET is developing a systematic approach to enable dynamic

instantiation of virtual networks and enabling the on-demand network deployment and scala-

bility. This framework includes also the discovery of available resources as well as dynamic
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provisioning of resources needed for virtual networks. Once virtual networks have been instan-

tiated, management mechanisms are required to control their resources and support dynamic

update during the lifetime of the virtual networks. Figure 2.8 depicts the 4WARD management

framework along with the relationships among VNET components. VNET agents are placed

at the physical infrastructure and linked to the physical nodes. It is responsible for providing

updated information about physical and virtual resources to the centralized manager. VNET

offers a Virtualization Management Interface (VMI) based on XML-RPC and placed at vir-

tual networks. These interfaces orchestrate virtual networks and update their configurations

on-demand.

2.6 Summary and Conclusions

In this chapter, we studied the literature in order to realize what is the current practices in

multi-tenant network. Particularly, we focused on the criteria of scalability, flexibility and

automatism in multi-tenant network isolation approaches.

We first have introduced the used architecture for supporting multi-tenancy, where the server

and network virtualization and SDN are the key technologies to provide multiple and indepen-

dent virtual networks. We then presented all required definitions and concepts for previous

multi-tenant isolation approaches. We have introducted also the typical organization of SDN

planes and related components: OpenFlow hardware and software switches, OpenFlow con-

troller, and OpenFlow applications.

Furthermore, we have studied the existing research and industrial solutions in order to differen-

tiate and separate the traffic between the different tenants. These solutions are resorting to SDN

slicing technique, security middleboxes or overlay protocols. They pave the way towards the

security of the cloud networks, but none of them was able to achieve our isolation goals, as we

consider the elastic nature of the cloud and the urgent need to support network scalability. The

common drawback between research and industrial multi-tenant isolation approaches is focus-

ing on exploiting SDN capabilities to provide only strict isolation without considering the ex-
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tended requirements added for the security such as node migration and virtual tenant networks

scalability. They have tackled the basic isolation functionality that guarantees the separation

between tenants’ traffic as one block of security application and assuming the tenant security

defense would remain static with occasionally update. However, with one complex block of

security configuration including a mix of tenants’ policy rules, they do not address how to cre-

ate and build a single virtual tenant network out of multiple, independent, reusable network

policies that can be suitable for the nature of cloud computing that can be merged, separated

and moved with cloud applications. We believe that multi-tenant isolation should be defined

with high level abstraction at the application layer before being mapped on the underlay layer.

This abstraction can summarize all the tedious details related to the security configuration im-

plementing the desired tenant isolation and releasing the network programmers from having

to reason, analyze and verify the buggy complex block of security configuration and labored

architecture issues such as tenant’s VMs and related security boxes placements (Qazi et al.

(2013)). We believe that our abstraction should be based on modularity which is the key of

managing complexity in any software system, and SDN is no exception. We believe that we

can lift several roadblocks by combining SDN network virtualization approaches and overlay

techniques. More precisely, SDN addresses flexibility, isolation, and manageability through

network slices, but suffers from scalability limitations. Network overlay techniques overcome

scalability issues of cloud isolation mechanisms, but remain limited to single slice. In addition,

both solutions do not offer a complete transparent isolation and lack the ability to use multiple

network slices within individual SDN programs. We can overcome their respective limitations

into a unified design and arrive to a consistent solution that consider both networks and Open-

Flow control plane scalability bottleneck. This combination enables to reap the benefits of

SDN slices while preserving scalability. This yields a network virtualization architecture that

is both flexible and secure on one side, and scalable on the other.

Finally, we described one autonomic management approach (4WARD), and present the prin-

cipal components and related relationships to achieve a self-manageable, self-configurable and

self-ware multi-tenant environment. By introducing the self-* autonomic attributes into SDN-
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based architecture, we believe that programmable capability of the control plane could be en-

hanced to an environment aware programmable capability. It will be efficient to release the

centralized controller from the extra management and control tasks (e.g., monitoring, provi-

sioning, slice boundaries checking . . . ) and keep just the basic control functionalities (create,

read, update and delete flow entries on OpenFlow tables). This can also improve the controller

performance, decrease the overhead added for packet processing and improve the control in-

telligence in multi-tenant network.

In this thesis, we develop a network management and security system for SDN architecture,

called OpenNMS. It takes a step towards providing elastic, scalable and autonomic isolation for

multi-tenancy by presenting L2 isolation with high level abstraction for Virtual Tenant Slice

(VTS) that guaranties the tenant security as the basic objective. One master application on

the control plane will orchestrate, build and map small tenant distinct portions representing

the required VTSs into the virtual and underlay networks. VTS space on data plane will be

allocated for each tenant for building his own small security boxes out of multiple, independent,

reusable network policies included in the VTS abstraction. Thus, as results of the simple and

flexible VTS definitions model, we describe novel features added for the isolation: Split, Merge

and Migrate (SMM) that can be well suited for the tenants’ requirements in such dynamic

environment.



CHAPTER 3

VIRTUAL TENANT SLICES ABSTRACTION MODEL

In the previous chapters, we studied the literature on the research and industrial mechanisms

used in order to provide multi-tenant network isolation. Although these techniques are tackling

a basic, inflexible and strict isolation objective, we believe they are no longer suitable for

today’s cloud applications. Indeed, these solutions are not remaining consistent through tenant

networks boundaries transformation and network nodes migration. The current SDN slicing

solution shows scalability issues and overlay protocols remain limited to single virtual network.

OpenFlow Slice Benefits– Among the studied approaches, the SDN slicing technique is be-

coming very popular due to its high flexibility. SDN-based virtual slice has introduced several

advantages for cloud applications. First, it allows multi-tenants to manage the shared network

resources using multiple OpenFlow controllers. Second, it simplifies packet forwarding mecha-

nism in the network without adding any extension to the packet header. OpenFlow is becoming

essential for controlling network flows. OpenFlow can manipulate each incoming packet finely

such that deciding the forwarding port on-the-fly based on the set of flow rules, and altering

destination address or path. In particular the last OpenFlow “1.3” version (ONF (2012)) offers

a standard interface for caching packet forwarding rules in OpenFlow tables, and querying traf-

fic statistics and notifications for topology changes. Moreover, OpenFlow controller enables

variety of actions including the basic ones (e.g., push, pop, copy, drop, forward, and header

modification). Finally, OpenFlow enables both proactive and reactive behaviors. OpenFlow

rules can be set at the initial slices deployment or can dynamically created on flows arrivals.

However, the remain challenge to arrange isolation between multi-tenants virtual networks is

the correct configuration of all OpenFlow switches and controllers.

Next, we build on what we have learned in the previous chapters in order to develop our own

isolation solution by combining SDN slicing technique and overlay technologies into unified

design. We want to enhance the SDN slicing technique flexibility and performance while

conserving its advantages for creating secure virtual networks. Furthermore, we intend to give
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the cloud provider the possibility to dynamically enforce the desired isolation and boundaries in

a multi-tenant network as well as providing transparent and self-manageable virtual networks

for cloud’s tenants.

In order to do so, we will first define the isolation goals which we want to reach with our

solution. It will help us to define the Virtual Tenant Slices (VTSs) abstraction model. Then, we

will analyze and refine our objectives regarding the isolation solution that we plan to develop

based on both tenants and cloud provider current requirements. Next, we will present the

L2 isolation model, complete definitions and proprieties of the proposed model, which will

include and summarize the proposed solution. We will also go through the use cases once

again in order to see the behavior of our model. Lastly, we will precise how we did to meet

the planned objectives and which technologies we plan on using. An early version of this work

appeared in IC2E conference (Fekih Ahmed et al. (2014)).

3.1 Our Isolation Goals: Flexible, Transparent, and Scalable

Software-Defined slicing technique typically enforces strict and inflexible traffic isolation us-

ing a hypervisor sitting between SDN planes as extension to OpenFlow switches. SDN slices

enforce basic isolation properties by translating, inspecting, rewriting, and policing OpenFlow

entries received from tenant controllers (e.g., no flows originating from tenant1 slice can reach

another tenant2’s slices). This isolation layer added between SDN planes provide a mean for

infrastructure provider to limit the scope of tenant, restricting the network resources that may

be affected by the tenant configuration. However, SDN slices suffer from scalability limita-

tions. To facilitate the tenant to reason about his virtual networks limits and the complex iso-

lation mechanism, overlay network virtualization approaches resort to low-level encapsulation

mechanisms (e.g., VLAN, GRE) that help to understand his virtual network compositions and

boundaries. This basic technique limits the tenant access to the allocated network resources,

remains limited to a single overlay network and increases the complexity of management.
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Achieving multi-tenants flexible isolation suitable for cloud tenant requirements is far from

straightforward. The opportunity cost of the successful implementation of SDN slices for

cloud computing is to find an alternative design supporting transparent, flexible and scalable

isolation on one side, and reducing the complexity of management on the other side. We

take a step towards providing rich and extensible SDN slices by presenting high level Layer

2 isolation abstraction which divides the shared network into VTSs. We lift SDN and overlay

technologies limitations by combining them into an unified design. With such combination,

we enable to reap the benefits of SDN slices while preserving scalability. The results are

recursive, solving overlay approach by adding the missing control plane, and overcoming both

virtual networks and SDN control plane scalability bottleneck by coupling SDN slices with

overlay protocols. Furthermore, providing a high level abstraction for multi-tenant network

will help us make the isolation suitable for the cloud elastic environment and applicable for

general tenant requirements. This approach will enable tenant to: (i) easily update and scale

(in/out) his allocated virtual networks by adding new virtual resources, (ii) share allocated

switches ports, tables, and links between his slices, and (iii) easily transport his VMs to new

locations while maintaining the isolation proprieties.

3.2 Our Layer 2 Isolation Model

Strange as it may seem, but despite the huge number of research papers adopting the SDN slic-

ing technique (e.g., Sherwood et al. (2009); Koponen et al. (2010); Tootoonchian and Ganjali

(2010); Shin et al. (2013a); Schlesinger et al. (2012); Monsanto et al. (2013), . . . ), none of

them has attempted to define and apply formal model for SDN slices. These researchers have

succeeded to provide only formal techniques to verification and compilation of SDN slices

behaviour. We believe the formal model for SDN slices and topology can substantially en-

hance the portability of cloud applications and tenants’ networks running on complex software

and hardware infrastructure. It can also enable the association of the higher-level operational

behavior with cloud infrastructure management.
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3.2.1 Layer 2 Isolation Model’s Definitions and Syntax

Model Notations

p OpenFlow Port

t OpenFlow Table

gt OpenFlow Group Table

c OpenFlow Controller

f e Flow entry

p f Permitted flow

sw Physical OpenFlow switch

h Open Virtual Switch installed on host

d p Datapath

map Virtual-To-Underlay Resource Mapping

In the following, we present our novel L2 isolation model of Virtual Tenant Slices (VTSs).

Figure 3.1 depicts our L2 isolation model in which we provide a high level abstraction for

virtual tenant networks. Today’s SDN slicing techniques miss such abstraction for L2 isolation

in multi-tenant network. This model will be further formalized and extended in our future

work.

The first layer, Data Plane, contains all OpenFlow switches that can exist in multi-tenant data

center. It can be physical OpenFlow switch (sw) or virtual one (h) installed on hosts. Each
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Figure 3.1 Open Network Management and Security’s L2 Isolation Model

of these OpenFlow-enabled switch represents a ”datapath” (d p). The set of all datapaths (d p)

is denoted as D={d p0,d p1, . . . ,d pu}; u = |D| ≥ 1. Each data path (d pi;i=1..u) contains a set

of OpenFlow resources including Ports, Tables and Group Tables. It presents a high level

abstraction for OpenFlow switches’s resources. Each flow table contains a set of flow entry

which define packets’s fields to match, and an action (such as send out-port, modify packet’s

field, or drop packet). When an OpenFlow switch receives a packet that has never seen before

and it has no matching flow entries, it sends this packet to the controller. The controller then

makes a decision on how to handle this packet. It can drop the packet, or it can add a flow entry

directing the switch on how to forward similar packets in the future.

In the second layer, Virtualization Plane, we allocated for the service provider a set of the

OpenFlow resources on each data path and we share the remaining resources between multi-
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tenant network. A set of OpenFlow controllers is provided to isolate and manage tenants

networks and slices. Each tenant slice be composed of multiple and distributed OpenFlow

resources. They can be physical or/and virtual OpenFlow resources. Virtual tenant networks

is a set of Virtual Tenant Slices (VTSs) distributed over the data center. Inter and Intra VTSs

communication is controlled by tenant dedicated OpenFlow controller.

Given a set of OpenFlow physical switches SW and a set of virtual switches H where:

SW = {sw0,sw1, . . . ,swn}; n = |SW | ≥ 1 , H = {h0,h1, . . . ,hm}; m = |H| ≥ 1 and SW ∪ H = D

Let’s f a function specifying the category of data path (d pi;i=1..u) that may either physical or

virtual.

f : D →→ {0, 1}, where :

f (d pi) =

1 if d pi is an OpenFlow hardware switch

0 if d pi is an OpenFlow virtual switch

Each physical or virtual OpenFlow switch represents one datapath (d pi;i=1..u). Each d pi is

composed of subset of OpenFlow ports, tables and group tables, denoted respectively P(i)
+ ,

T (i)
+ ,and GT (i)

+ .

d pi = {P(i)
+ , T (i)

+ , GT (i)
+ } / P(i)

+ ⊂ P, T (i)
+ ⊂ T , and GT (i)

+ ⊂ GT

where:

• P={p0, p1, . . . , pk}; k = |P| ≥ 1: the set of all OpenFlow switches’ ports in the multi-tenant

data center. These ports can be classified into two types. The first class (Pext) is composed of

the external ports which link between switches (pi;i=1..k ∈ Pext). It must be shared between
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multi-tenant network to forward packets to external networks or neighbours. The second

class (Pin) regroups the edge or internal port which links OpenFlow port to virtual machine’s

virtual network interface (VNI) (pi;i=1..k ∈ Pin). Therefore, P can be defined as P = Pin∪

Pext .

A port of an OpenFlow switch is considered as boolean vector: pi =(status, type, dedicated)∈

{0, 1}3. The first class status indicates the activation status of port (pi(0) = 0 for inacti-

vated port and pi(0) = 1 for activated one). The arriving packets to this port will be au-

tomatically dropped. For the type value, If pi(1) = 0 then pi ∈ Pin , otherwise pi ∈ Pext .

Finally, the dedicated class indicates if the port is dedicated only for one tenant (pi(2) = 1)

or shared between multi-tenant network (pi(2) = 0).

• T ={t0, t1, . . . , th}; h = |T | ≥ 1: the set of OpenFlow tables where:

ti;i=1..h is boolean vector: ti =(status, dedicated)∈{0, 1}2. ti(0)= 0 points out inactivated

table and ti(0)= 1 for activation. The dedicated class indicates if the table is dedicated only

for one slice (ti(1) = 1) or shared between multiple tenant slices (ti(1) = 0).

• GT ={gt1,gt2, . . . ,gtl}; l = |GT | ≥ 1: the set of OpenFlow group tables 1. Each gti;i=1..l

is handling similar or common actions. Similar to OpenFlow table, gti is boolean vector:

gti = (status, dedicated) ∈ {0, 1}2.

We define a set of controllers C={c1,c2, . . . ,cr}; r = |C| ≥ 1 that can be connected to one or

more OpenFlow switches. Each controller, ci;i=1..r can manage one or more VTS.

Multi-tenant Network is a set of virtual networks dedicated for multi-tenant, denoted as

V T M = {V T N1,V T N2, . . . ,V T Nw}; w = |V T M| ≥ 1.

Virtual Tenant Network is a set of virtual tenant slices, denoted as V T N={V T S1,V T S2, . . . ,

V T Sq}; q = |V T N| ≥ 1. We allocate for each V T N a dedicated and shared resources from D.

1A group table consists of group entries. The ability for a flow entry to point to a group enables OpenFlow
protocol to present additional methods of forwarding (e.g. select and all). It can be used for grouping common
actions of different flows or handling specific forwarding like load-balancing.
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V T Ni;i=1..w can be composed of one or more Virtual Tenant Slice (V T S) where given SDN

resources allocated for tenant topology are dedicated for each slice including:

• a subset of OpenFlow switches ports (P), denoted as : P(i)
− / P(i)

− ⊂ P,

• a subset of processing tables (T ), denoted as : T (i)
− / T (i)

− ⊂ T ,

• a subset of groups tables (GT ), denoted as : GT (i)
− / GT (i)

− ⊂ GT .

• dedicated OpenFlow controllers, denoted as : C(i)
− / C(i)

− ⊂C,

• and finally the list of the installed OpenFlow entries (FE(i)
− ⊂ FE) in the allocated process-

ing space T (i)
− and GT (i)

− where:

FE={ f e1, f e2, . . . , f ev}; v = |FE| ≥ 0. f ei;i=1..v can be installed on OpenFlow table ti or

group table gti and is dedicated for specific port pi. By default, we deny all flow enter-

ing the tenant slice’s port similar to basic firewall configuration. f ei groups the list of all

permitted flows, denoted as PF={p f1, p f2, . . . , p fz}; z = |PF | ≥ 0. Each p fi;i=1..z is detail-

ing the permitted packet header attributes (e.g., IP source and destination, Port source and

destination, VXLAN tag . . . ).

3.2.2 Layer 2 Isolation Abstraction Properties

Ou L2 isolation model ensure that no intersection can be found between different tenants’

networks (V T Ns) and tenant’s slices (V T Ss):

V T Ni ∩ V T N j = ∅; ∀ i 6= j and V T Si ∩ V T S j = ∅; ∀ i 6= j

The following properties guarantee the separation between V T Ns and V T Ss:

Property 1 (OpenFlow port connection)

Each in-port (pi;i=1..k ∈ Pin) can be linked only to one virtual machine (vm j; j=1..p) where:

V M={vm1,vm2, . . . ,vmp}; p = |V M| ≥ 0, is the set of virtual machines running on the multi-

tenant data center.
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(vm j, pi) - (vmo, pi) 6= (α , 0); α 6= 0, ∀ i ∈ k and j, o ∈ p.

Each out-port (pi ∈ Pext) can be linked only to one out-port p j from another datapath.

Property 2 (Processing Space Allocation)

Each table, ti;i=1..h, is the unique responsible for a distinct group of vms’ traffic processing.

Similar to OpenFlow table, each group table, gti;i=1..l , is the unique responsible for a distinct

group of vms with similar traffic forwarding behaviour.

Property 3 (OpenFlow Controller Connections)

Each OpenFlow controller, ci;i=1..r, can manage only one V T N but can control more than one

V T S.

3.3 Multi-tenant Network Isolation using OpenNMS: Example

As our previous definitions and properties states, VTS is a subset of virtual tenant topology

including :

• OpenFlow switches’ ports linked to allocated tenant’s VMs,

• OpenFlow allocated processing spaces which are responsible for the tenant slice’s VMs

traffic forwarding,

• a list of flow entries installed on processing spaces specifying VTS behaviors,

• and a cluster of OpenFlow controllers managing the incoming flows into the tenant slice.

The only remaining puzzle for our VTS definition is the mapping from tenant logical topol-

ogy to the real one. Our high-level abstraction specifies only the logical network resources

contained in VTS. The mapping will indicate how tenant allocated network elements will be

translated to the corresponding resources in the underlay network.
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Figure 3.2 OpenNMS Multi-tenancy Support: example VTNs and related

VTSs

Listing 3.1: Example: Tenant1’s V T N1 Definition

1{"OpenNMS-VTN": { "ID": "1",

2"VTSs": {

3{"VTS_ID": "11", "P": [...], "T": [...], "GT": [...], "FE": [...], "C": [...]},

4{"VTS_ID": "12", "P": [...], "T": [...], "GT": [...], "FE": [...], "C": [...]}

5}}}

To illustrate the use of VTS abstraction in practical use case the following JSON structures

in Listings 1, 2, 3 and 4 are used to define and deploy the tenant1 virtual network (V T N1)

in Figure 3.2 which is composed of two VTSs: V T S1,1 and V T S1,2. The first listing depicts

V T N1’s general elements. We can notice that the first VTS is distributed into two pieces. The

first portion of V T S1,1 is allocated on d p1 and the second on d p2. We allocate only OpenFlow
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resources for V T S1,2 in the second datapath d p2. Next, V T S1,1 is taken as an example to

encompass all cloud’s tenant requirements. The tenant can have distributed VMs across hosts.

Listing 3.2: Example: Tenant1’s V T S1,1 Definition (Part 1)
2{"VTS_ID": "11",

3"P":[

4{"p_ID":"p1","dp_ID":"dp1","dp_map":"0x01","p_map":"1","Dedicated":"false"},

5{"p_ID":"p2","dp_ID":"dp1","dp_map":"0x01","p_map":"2","Dedicated":"true"},

6{"p_ID":"p3","dp_ID":"dp1","dp_map":"0x01","p_map":"3","Dedicated":"true"},

7{"p_ID":"p6","dp_ID":"dp2","dp_map":"0x02","p_map":"1","Dedicated":"false"},

8{"p_ID":"p7","dp_ID":"dp2","dp_map":"0x02","p_map":"2","Dedicated":"true"},

9{"p_ID":"p8","dp_ID":"dp2","dp_map":"0x02","p_map":"3","Dedicated":"true"},

10],

11...}

The first block in Listing 2 defines the tenant1’s logical ports allocated for V T S1,1, represented

as P. These ports are allocated on two data paths identified as dp1 and dp2. We use pmap

function to identify them on underlay spaces as well as their status indicated in Dedicated

field. Dedicated field with value “true” (equal to pi;i=1..k(2) = 1) means that OpenFlow port is

not shared with other VTSs, and vice-versa. This simple condition simply states that no p can

be both dedicated and shared. d pmap field defines the OpenFlow switch mapping from VTS

down to the underlay network: dp1 maps to 0×01 (the physical switch sw0) and dp2 maps to

0×02 (the virtual switch installed on h0). The intersection between V T SX ’s dedicated P and the

others VTSs’ dedicated P, for the same or different tenants, must be empty: V T S1,1{pi(2) = 1}

∩ V T S j∈w,o∈q; o6=1 {pi(2) = 1} == ∅ ∀ i in 1..k.

In this example, V T S1,1 has four dedicated ports (p2, p3, p7 and p8) and two shared ports (p1

and p6). Usually, we share all external OpenFlow switches ports linked to their hosting servers’

network interface cards (NICs) between different tenants’ VTSs (p1 and p6 in our case) which

models the behaviour of real network program supporting multi-tenancy. As results, incoming

packets on shared pi must be processed by shared tables and group tables, and managed by

neutral OpenFlow controller. For VTSs collaboration and inter/intra communications, pi can

also be shared between VTSs (See details in 3.4). These conditions are automatically enforced

either by tenants or service providers controllers.
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Listing 3.3: Example: Tenant1’s V T S1,1 Definition (Part 2)
3{"VTS_ID": "11",

4...

5"T":[

6{"t_ID":"t1","dp_ID":"dp1","dp_map":"0x01","t_map":"54","Dedicated":"false"},

7{"t_ID":"t2","dp_ID":"dp1","dp_map":"0x01","t_map":"1","Dedicated":"true"},

8{"t_ID":"t3","dp_ID":"dp1","dp_map":"0x01","t_map":"2","Dedicated":"true"},

9{"t_ID":"t7","dp_ID":"dp2","dp_map":"0x02","t_map":"54","Dedicated":"false"},

10{"t_ID":"t8","dp_ID":"dp2","dp_map":"0x02","t_map":"1","Dedicated":"true"},

11{"t_ID":"t9","dp_ID":"dp2","dp_map":"0x02","t_map":"2","Dedicated":"true"}

12],

13"GT":[

14{"gt_ID":"gt1","dp_ID":"dp1","dp_map":"0x01","t_map":"54","Dedicated":"false"},

15{"gt_ID":"gt2","dp_ID":"dp1","dp_map":"0x01","t_map":"1","Dedicated":"true"},

16{"gt_ID":"gt3","dp_ID":"dp1","dp_map":"0x01","t_map":"2","Dedicated":"true"},

17{"gt_ID":"gt7","dp_ID":"dp2","dp_map":"0x02","gt_map":"54","Dedicated":"false"},

18{"gt_ID":"gt8","dp_ID":"dp2","dp_map":"0x02","gt_map":"1","Dedicated":"true"},

19{"gt_ID":"gt9","dp_ID":"dp2","dp_map":"0x02","gt_map":"2","Dedicated":"true"}

20],

21...}

Similar to P block, the subsequent elements T and GT define the tenant processing space,

specified as shared or dedicated OpenFlow tables and Group tables, and mapped from the

tenant slice down to the underlay network (See Table 3.1). In this example, shared tables (t1

and t7) and group tables (gt1 and gt7) are used to process all incoming multi-tenant flows from

an external source.

Table 3.1 V T S1,1 dedicated/shared OpenFlow tables and group tables
hhhhhhhhhhhhhhhhhhhhhhhhhhh

DataPath identifier

Tables and Group Tables
Dedicated Shared

d p1 T : t2, t3 T : t1

GT : gt2, gt3 GT : gt1

d p2 T : t8, t9 T : t7

GT : gt8, gt9 GT : gt7
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Listing 3.4: Example: Tenant1’s V T S1,1 Definition (Part 3)
4{"VTS_ID": "11",

5...

6"FE":[

7{"fe_ID":"fe1", "p_ID":"p1", "t_ID":"t1", "OF_action":"GoTo(SP_controller)", "OF_priority":"0"

, "PF":[]},

8{"fe_ID":"fe2", "p_ID":"p2", "t_ID":"t2", "VXLAN_ID":"100", "OF_action":"GoTo(c1)", "

OF_priority":"0",

9"PF":[

10{"pf_ID":"pf1", "port_src":"8443"},

11{"pf_ID":"pf2", "ip_src":"10.0.0.12", "eth_src":"00:11:11:11:11:02", "port_dst":"5984"}

12]

13},

14{"fe_ID":"fe3", "p_ID":"p3", "t_ID":"t3", "VXLAN_ID":"101", "OF_action":"GoTo(c1)", "

OF_priority":"0",

15"PF":[

16{"pf_ID":"pf1", "port_src":"5984"},

17{"pf_ID":"pf2", "ip_src":"10.0.0.13", "eth_src":"00:11:11:11:11:03", "port_dst":"8443"}

18]

19}

20,

21{"..."}

22],

23"C":[{"c_ID":"c1","c_adr":"10.21.100.2","c_port":"6633"}]}

24} //End VTS

The last block of V T S1,1 definition contains:

• the list of all FE associated with each tenant slice’s pi, and detailing the permitted packet

header’s attributes. The first f e with identifier f e1 is installed on the shared t1 table and

will forward any incoming packet on port p1 to the provider controller (SPcontroller). The

second flow entry f e2 will accept incoming traffic into tenant’s virtual machine linked to

VTS’ p2 port and forward it to tenant controller c1. We exclude all traffic with V XLAN tag

different than 100.

• The list of all tenant dedicated OpenFlow controllers (C) with their attributes such IP ad-

dress and connection port to OpenFlow switches.
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Our L2 isolation model simply states that no network element (pi;i=1..k, t j; j=1..h or gto;o=1..l)

can be simultaneously dedicated and shared. A tenant slice could allocate entire datapath’ ports

and processing spaces. Furthermore, it may consist of a mix of physical and virtual ports, and

multiple processing spaces (t j and gto) on different and distributed OpenFlow switches. The

mapping process is required to ensure VTS isolation and compatibility on underlay network.

Every logical identifier must map to unique real one. This condition should be satisfied for

all OpenFlow switches and their related ports, tables and groups tables. Moreover, FE and

their respective PF specifies the list of permitted flows entering the VTS at P linked to ten-

ant’s VMs. Finally, VTS can be programmed independently by tenant allocated controllers (C)

while ensuring that VTS functions are compatible with pushed FE, and that packets do not

get interfering or sticking during processing, except possibly by processing incoming flows on

shared P which are checked on shared T and GT . Even this form of interference is automat-

ically ruled out through service providers’ neutral controllers. These controllers manage the

shared network resources by detecting and eliminating any possible conflicts between tenants’

FE before pushing it down to the underlay network. This last feature is already covered by

previous researches (e.g., Porras et al. (2012), Shin et al. (2013a)).

From these definitions, a VTS extends the network with new self-ruling virtual networks that

can be programmed in a standalone mode just like an ordinary OpenFlow switch, without

worrying about other OpenFlow applications running on the top of any other VTSs. OpenFlow

applications managing tenant ports will be written exclusively for a specific VTS, and will

not affect any other VTSs. We believe that our VTS definition model will serve a strong

specification for the infrastructure providers to translate and map it to the underlay network

while ensuring isolation properties. Even if tenant makes changes and updates on his VTS

program, the other slices belonging to the same or different tenants will stay intact. Our model

holds even if VTSs are overlapped over the same OpenFlow switches. If a flow arrives at a

shared pi between multiple VTSs, it will be checked first by service providers controllers and a

copy will be forwarded to the VTS whose FE’s attributes are matched with the packet header.

If there is no match with any VTS, the packet will be dropped.
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3.4 How Our L2 Isolation Model Meets the Goals ?

Cloud multi-tenants will have different, multiple and arbitrary virtual network services to de-

ploy. A tenant may need to scale his V T N to an arbitrary size or modify their boundaries

without getting forced into a complex and static reconfigurations. For example, new VM may

be needed to join tenant’s slice for arbitrary reasons such as scaling tenant applications capac-

ity or for load-balancing purpose. For that, we facilitate such operation by simply adding new

P, T and GT to the VTS allocated resources without getting forced to rebuilding steps. Also,

a tenant wishing to share a VM or processing space between two VTSs might simply need to

set a port, table or group table as shared network elements between them. A tenant might also

want to move some VMs or entire VTS’s VMs from one slice to another. Our flexible isolation

supports also this need by enabling tenant to replicate the same configuration of moving VMs

on the joined VTS. We simply link migrated VMs to the new OpenFlow ports added on the

target VTS and then copy and adapt all their related flow entries. For each p and related FE,

the following information must be updated:

a. pIDold ← pIDnew;

b. d pIDold ← d pIDnew;

c. d pmapold ← d pmapnew;

d. pmapold ← pmapold ;

e. For each f e in tenant’s FE do:

f eIDold ← f eIDnew;

pIDold ← pIDnew;

tIDold ← tIDnew;

gtIDold ← gtIDnew;

and OFactionold ← OFactionnew;
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Most existing SDN isolation solutions cannot meet all these needs simultaneously. OpenNMS’s

L2 isolation model gives each tenant a straightforward abstraction view of his allocated VTN

topology and related VTSs: each VM is linked to a single and unique pi, and one dedicated

processing space (t j and gto) is used to forward all flows entering and leaving the slice. Our

flexible and self-manageable model (See Chapter 4 for more details) handles all tedious details

related to enforcing the isolation, freeing cloud tenant from having to reason about tricky is-

sues and all complex management operations. This model allows a tenant to design his VTSs

as if it is the sole occupant of the shared infrastructure. That is, a tenant can be able to define

his own slices while he can also automatically: (i) scale them to desired size by adding new

instances, (ii) join migrated VMs from one to another, and (iii) apply optimizations that make

efficient use of the allocated network resources by sharing them between allocated slices. The

first two features are straightforward and automatically adapted by our high-level VTS abstrac-

tion. However, the last one needs to be more developed and discussed considering that several

questions related to security enforcement and resources optimization can be raised. If tenant

wants to share a virtual application between two VTSs (V T SX and V T SY ), all what he needs is

to change the “dedicated” field of VM’s linked pi from “true” to “false” in the first V T SX and

automatically add this OpenFlow port to the second V T SY with a shared state. The questions

that can be raised after these actions in order to accomplish the tenant requirement are:

• Which table (t j) and group table (gto) will handle the processing of entering and leaving

packets from/to this shared port (pi)?

a. It will be the dedicated processing space for V T SX or V T SY or both by simply adding

the shared application attributes (MAC/IP Addresses and TCP port) into the corre-

sponding PF?

b. Or, it will be redirected to a shared t j or gto grouping the same FE and PF?

• Are both VTSs controlled by the same tenant controllers (C)? IF not, the last possible

solution (b.) will be not valid for shared t j, unless the tenant will add also V T SX ’ controller

to V T SY in aim to handle all the shared pi’s traffic.
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Considering any possible tenant choice from the above solutions, we combine all possibilities

of sharing VTS’s resources that can have place, not only to predict any tenant needs but also

to have a rich and optimal isolation solution. Tenant’s VTSs can scale to huge sizes with

larger number of virtual applications or ports and accordingly the number of allocated tables,

group tables and controllers. To fully realize the benefits of network resources sharing, we

consider all multiplexing choices that can be used to achieve the best resource efficiency and

cost savings. Increasing the scale alone or resorting to sharing mechanisms like the first sharing

solution (a.), however, cannot fully minimize the total cost, on an attractive “pay-as-you-go”

model for cloud computing. Therefore, we propose different VTS types denoted by Sti∈{0..3}

in Table 3.2. Each St considers that one or more network resources types (P, T , GT , C) will be

dedicated only for the deployed VTS. Thus, this constraint eliminates the possibility of sharing

these dedicated resources with other VTSs.

Table 3.2 OpenNMS’s Virtual Tenant Slice Types
`````````````````````̀
VTS Type

Dedicated Resource
P T GT C

St0 3 3 3 3

St1 7 3 3 3

St2 7 3 7 3

St3 7 7 7 7

The core idea of these types is to provide different security levels that ensure the desired isola-

tion proprieties between tenant’s VTSs while managing shared resources under mutual agree-

ment enforcing unified security policies. Each St will enforce the tenant sharing constraints

but it will have advantages and drawbacks at the same time. The following table 3.3 compares

between VTS’s types basing on the following criteria:

• Scalability: will be always guaranteed for all St. Our isolation model supports VTS scala-

bility. It allows adding more network resources to VTS.
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Table 3.3 VTS Types Advantages
XXXXXXXXXXXXXXXXXX
VTS Type

Advantages

Scalability

O
ptim

ization

O
verhead

C
IA

St0 3 local highest high

St1 3 partial > St2 medium

St2 3 medium > St3 low

St3 3 overall negligible very low

• Optimization: A restriction mechanism is enabled by preventing the share of one or more

resource types. St0 restricts sharing all allocated resources, and thus network and compute

resources optimization can be done just locally in VTS. In St1, it is permitted to share

only P, so tenant will resort to replicate the same resources configurations (T , GT and C)

on VTSs sharing these P. This kind of optimization is indicated as “partial” because it can

minimize the total cost. The difference between St2 and St1 is that sharing OpenFlow tables

and controllers is permitted between VTS. Therefore, this type can offer better optimization

than the previous one. Finally, the last type St3 allows the most efficient usage of tenant’s

allocated resources and overall optimization suitable for the cloud “pay-as-you-go” model.

This isolation type provides the required optimization, smoothness and performance for

cloud application while ensuring the security between tenant’s VTSs. The tenant can adapt

the trust level and share any allocated network resources between his VTSs for any reasons

and any desired combination.

• Overhead: Obviously, any extended mechanism to flow processing will add more over-

head. Thus, enforcing each kind of St will require more additional time to check and verify

restrictions on VTS. Logically, St3 do not add any restriction on VTS definition. All al-

located resources may be shared. Therefore, it will generate negligible overhead. We can



65

conclude that more overhead will be added as much we add restrictions: St0 overhead

> St1 > St2 > St3, as shown in the evaluation section 5.3.2.

• Confidentiality, Integrity and Availability (CIA): Tenant must be aware about the risks

of each St on CIA before choosing. If a shared resource will be compromised, it can affect

the rest of tenant network. Thus, different security levels are attributed to VTS types, from

the highest (attributed to St0) to the lowest one (attributed to St3).

3.5 Summary and Conclusions

In this chapter, we have first introduced the benefits of SDN slicing technique and the actual

opportunities with such approach, where the multi-tenant flexible, scalable isolation can be

achieved by providing a solid Layer 2 model and combining it with the overlay technologies.

Second, we defined our Layer 2 isolation model providing high level abstraction for multi-

tenant network by combining SDN slicing technique and overlay virtual protocols (e.g., VXLAN,

NVGRE). Our model enhances the SDN slicing technique flexibility while preserves its advan-

tages for providing the basic isolation objectives. We take benefits of the scalability of overlay

protocols and overcome their limits to one overlay network by enabling to support several thou-

sands of isolated tenants networks and slices on top of shared network infrastructure. Using

these extended encapsulations mechanisms, the number of segmentation is increased and as re-

sult it offers the possibility of creating more number of VTSs. Our isolation model formalizes

the simultaneous use of multiple resources (ports, tables, group tables and controllers) allo-

cation for multi-tenant network. This allows service providers to define multiple processing

spaces dedicated for individualized network services. From our definitions and proprieties, the

VTS model extends the network virtualization with new self-ruling virtual networks that can

be programmed in a standalone mode just like an ordinary OpenFlow switch, without worrying

about other OpenFlow applications running on the top of any other VTSs. It will serve a strong

specification for the infrastructure providers to translate and map it to the underlay network

while ensuring isolation properties.
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Further, our VTS types show that we can leverage almost the full optimization of allocated

resources to meet differing tenant application objectives. Even if tenant switches between VTS

type for higher sharing or restriction level, the other slices belonging to the same or different

tenants will stay intact. However, some penalties are analysed with the tenant choice such as

the added overhead and the impact on CIA.

The next chapters introduce our autonomic SDN-based architecture design for achieving the

self-manageable multi-tenant network. It will bring this model in the real world and define hi-

erarchical controllers and managers enabling tenant to take full control of their virtual networks

and slices. It will give a straightforward interface for network providers to dynamically enforce

the L2 isolation with high level abstraction while supporting the scalability and flexibility for

the tenant. Flowcharts are provided for better understanding of our isolation model and the

interaction between network components and layers. We will evaluate a OpenNMS prototype

system including overhead, capacity in term of VTNs and VTSs, flexibility and the perfor-

mance of our slice types. Finally, we will extend our objectives to demonstrate the recursive

results of OpenNMS model on the OpenFlow controller centralized scalability.



CHAPTER 4

OPEN NETWORK MANAGEMENT & SECURITY ARCHITECTURE DESIGN

Open Network Management & Security (OpenNMS) architecture is designed with the follow-

ing principles that will be respected in all our components: (i) adopting the SDN/OpenFlow

standards without introducing any new layer, (ii) enforcing multi-tenant isolation in an auto-

matic and dynamic way, (iii) reaching both tenant and provider networks scalability without

losing the centralized controller’s global view.

4.1 Open Network Management & Security Design

Figure 4.1 OpenNMS’s High Level Components

The proposed OpenNMS architecture is depicted in Figure 4.1. The main two components of

the architecture are the following:
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• OpenNMS Agent (OA): an OpenFlow application extending the SDN Controller. It belongs

to control plane layer and it is responsible for providing isolated tenant slices by verifying

incoming packets.

• OpenNMS Autonomic Manager (OAM): enables an advanced and enriched self-manageability

of the SDN network which is realized through a number of control loops into the control

plane. It is a planning, analyzing, orchestrating and provisioning entity. It also represents

the third party component which verifies the identity of the network nodes requesting to

join a specific customer zone or sharing specific resources.

4.2 OpenNMS Detailed Planes and Components

Figure 4.2 Autonomic OpenNMS Architecture Detailed Planes

The OpenNMS detailed planes are depicted in Figure 4.2. The design is composed mainly of

the following four planes:
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• Data Plane : It is the physical layer, it includes physical servers hosting OpenFlow vir-

tual switches and tenants’ VMs, OpenFlow physical switches and routers (Top of Rack

(TOR), Edge, Aggregation and Core) and other network elements. The physical network

infrastructure achieves the basic connectivity of the networks. It also provides some secure

channel to connect SDN controllers to virtual data plane.

• Virtual Data Plane : It consists of all virtual applications hosting in servers and OpenFlow-

enabled switches (e.g., KVM, Open vSwitches, and VMs). It represents virtual forward-

ing layer resources such as OpenFlow virtual switches, Virtual Tenant Network (VTNs)

and related Virtual Tenant Slices (VTSs), and the provider network spaces (small switches

linked to the Master Control Plane). Tenant’s VTN is defined by a set of OpenFlow re-

sources composing VTSs, and relevant control and management functions running on the

northbound planes. The tenant control and management planes are created to provide trans-

parency and enable the self-management and self-controlling of the allocated virtual layer’s

resources. Our design can support different network architectures and services, and even

tenant’s VTSs types could also be different from one VTS to another, which is customized

according to the tenant’s requirement.

• Control Plane : our isolation approach gives to network virtualization a specific descrip-

tion of abstraction to the control layer. Tenant’s controller is responsible for specific VTS

behavior determination such as path creation, data forwarding rules, traffic engineering, etc.

The Master controller is the network brain. It is responsible for global network functional-

ities and requirements such as multi-tenancy isolation and cross-domains communication.

OpenNMS Agent (OA) is an OpenFlow application extending the OpenFlow Controller.

It belongs to control plane layer and it is responsible for providing the L2 isolation by

verifying incoming packets on datapath.

• Management Plane : there are two types of management plane in our design:

• OAM (Management Plane0): OpenNMS Autonomic Manager (OAM) enables an ad-

vanced and enriched self-manageability of the SDN network which is realized through
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number of control loops into the control plane. It is a planning, analyzing, orchestrat-

ing and provisioning entity. It also represents the third party component which verifies

the identity of the network nodes requesting to join a specific customer slice or shar-

ing specific resources. Control loop entity is responsible for collecting and analyzing

the network changes and the tenant’s needs from Master Controller. The analyzing en-

tity would analyze the context and produce the required sets of control policies. Then,

OAM will plan and execute the necessary management steps. The control loops are typ-

ically policy based. Once a certain condition is satisfied on the tenant’s modifications

and management requirements, an action will be running. Working with the Master

Controller, OAM could update its global knowledge of the network and implement

several functionalities such as self-provisioning, self-configuration, self-organization

and self-optimization. These new features in management plane improve the network

flexibility and automatism. This design supports the tenant networking services and

policies changes with guaranteed security for provider and the other tenants. OAM and

Master Controller are the key elements of an elastic, flexible and transparent isolation.

They give to tenants the possibility of controlling and managing their networks. This

design supports the tenant networking services and policies changes with guaranteed

security for service providers and the other tenants.

• Tenant Management Planes (Management Plane1toS): These planes give to the tenants

full access to control and manage their VTSs and VTNs. The desired tenant’s configu-

ration is uploaded on OpenFlow switches through the allocated controller.

A key advantage of the autonomic OpenNMS architecture is that it provides a flexible and

adaptive isolation and sharing of network resources for multi-tenants network. This autonomic

design enables the following network services to the tenants under its control:

• Scalability & Negotiation: each tenant is responsible for its own set of virtual resources

and managing services that it governs. Scalability enables a set of slices in data center net-

works to be combined into a larger network, where allocated resources of each constituent
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slice contribute to the overall resources of the larger network. For the priority definition

to access the shared resources between these domains, our design offers the possibility of

negotiation and priorities setting.

• Cloud Federation: Connectivity between VTSs to provide the vision of “one cloud” still a

challenge. There are situations where tenants need to be able to link between their allocated

resources from different cloud providers. Our approach reduces the multi-layer architec-

ture complexities such as L2 VTS definition and L3 forwarding networks and policies. It

provides a transparent workload orchestration between the data center networks on behalf

of the tenant.

4.2.1 OpenNMS Agent (OA) Design

Figure 4.3 OpenNMS L2 Isolation Concept

A full virtualization mechanism is needed in order to support multi-tenancy in data center net-

work. We designed OpenNMS Agent (OA) as OpenFlow 1.3 application for OpenFlow switch

(See Figure 4.3) based on extensible packet matching and pipeline processing. It belongs to



72

control plane layer and it is responsible for providing isolated network slices by verifying in-

coming packets. According to the specifications of this OpenFlow version, OpenFlow pipeline

is divided into multiple sub-pipelines (T and GT ). The pipeline of OpenFlow 1.3 software

switch contains up to 256 flow tables, each contains up to 1024 flow entries. The pipeline

processing always starts at the first flow table: the incoming packet is first matched against

flow entries of table 0 (t0). For that, we designed OpenNMS Agent to occupy the flow table

0 (OpenNMS Master Table) on each OpenFlow switch in data center network. We took this

design decision based on the VTS definition which is translated into flow entries in Master Ta-

ble. The rest of flows tables will be allocated or shared between OpenNMS slices. All VTSs’

ports are mapped to separated OpenFlow tables. Also, the processing table can be only ded-

icated or shared depending on tenant’s VTS type choice. Thus, the Master Table is used as

a de-multiplexer which dispatches flows to different and distributed VTSs and the extensible

packet matching and the pipeline features are used by OA to provide our flexible L2 isolation

model.

Figure 4.4 L2 Isolation using OpenNMS Packets Verification Mechanism

To control the OpenFlow port access (See Figure 4.4), the OA validates the required virtual

machine identification in OpenFlow matchfields. After each incoming packet in OpenNMS

Master Table, the OA adds a new flow entry to the VTS’s table. If it finds that the traffic

belongs to a specific VTS, the OA can go to the next step to check out-port and in-port in the

new flow entry’s matchfields and actions. In the VTS table, OA will deny any entry using not

allocated port. Therefore, the OA can fully or partially isolate OpenFlow ports and control
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the access. In each OpenFlow port, there is a waiting table for incoming packet. An easy

mapping of the table’s ID to the corresponding VTS’s ID and allocated port’s ID is used to

identify the incoming packet and forward it to the VTS’s table. This process is controlled

by the OA. The OA can change ports configuration on-the-fly without any modification on

the flow entries pushed to the VTS. After validating the OpenNMS VTS identification and

authorizing interfaces in OpenFlow matchfields, the OA verifies and validates the parameters of

the “GoTo” instruction in OpenNMS Master Table of the corresponding OpenFlow switch and

finally forwards incoming flow to the corresponding VTS’s table. It checks if VTS’s allocated

tables are all mapped to a separated datapath tables. Thus, these tables can be totally isolated

or shared depending on tenant’s choice, and flow entries are not modified when pushed.

VTS
Membership
Verification

VTSi₁'s dedicated Tables

VTSs' shared Tables

VTSiq's dedicated Tables
VTSiq's dedicated Group 

Tables

VTSs' shared Group Tables

OpenFlow Switches Pipelines

VTSiq dedicated
 processing 

space

VTSs shared 
processing 

space

VTSi₁  dedicated
 processing 

space

VTSi₁ 's dedicated Group 
Tables

Figure 4.5 VTS Shared and Dedicated OVSs’ Tables/Group Tables

For each VTS (See Figure 4.5), dedicated ports are used for intra-VTS forwarding and shared

one for inter-VTSs communication. OA redirects incoming packets to VTS tables. Figure 4.6

represents a detailed example for the packets processing using OA for two different tenants (1

and 2). When there is an incoming packet in Master Table (Table 0), the OA decides to redirect

the packet to a specific OpenFlow table or group table depending on its multi-tenant database

and VTS identification. To control the interfaces access, the OA validates the required VM

identification in OpenFlow match-fields. In this example, tenant1’s incoming packet originated

from a local VM hosted in the same server is forwarded to his allocated Table 1 and then to
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Group Table 2 with out-port 3. For the same tenant with different remote destination, the flow

is forwarded to Groupe Table 3 with out-port 0 different than the previous one. A tunnel tag is

added for this type of flow.

Figure 4.6 Example: Packets Processing using OA

4.2.2 OpenNMS Autonomic Manager (OAM)

Both centralized and distributed SDN-based architectures are facing increased difficulty to

meet the requirement of current virtualization users and the explosion of the cloud applications.

These trends are driving the research community to think more about new network architecture

as well as management technologies. Until now, the key elements in the concept of the network

virtualization’s switches are SDN and OpenFlow protocol. This concept is mainly based on

the separation of data plane and control plane. However, we need to improve the management

plane that can block and slow the progression of SDN ecosystem and limit its benefits. It is

necessary to use new technologies to improve protocols and network management.

In order to evolve management plane, we combine Autonomicity with SDN and design our

OpenNMS Autonomic Manager (OAM) which is the component responsible for managing all
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OpenNMS slices and verifying the identity of the network nodes requesting to join a specific

OpenNMS slice. It requires membership management which is defined by high level user

policies. Several parameters can be applied to decide whether an entity is allowed to join an

OpenNMS slice, for example: VM identity provided by KVM Hypervisor (UUID) (Hammel

(2011)) and encapsulation tag (e.g., VXLAN, NVGRE, VLAN, GRE . . . ).

In general, a network node needs to show its identities to prove its membership before it is al-

lowed to join an OpenNMS slice. We choose a Layer 2 isolation based on VM’s MAC-address

and VM’s allocated OpenFlow switch port for simplifying the isolation model and support-

ing heterogeneous encapsulations mechanisms. OAM is responsible for the global topology

definition, OpenFlow resources (tables, group Tables and ports) management and associated

services. This component decreases the complexity of the rapid growth of the network control

and management, automate and minimize manual configuration. It provides to the network

self-awareness, self-configuration, self-organization and self-optimization. OAM objective

is to automate the instantiation of a virtual infrastructure while automatically deploying the

corresponding security mechanisms to enforce the network isolation between different tenant

networks. This deployment is driven by tenant’ global isolation policy, and thus covers all

resources. The instant communication between the OAM and OA guarantees a global vision

of all the data center networks. This function can fullfill the demands from different VTNs and

VTSs and realize an optimal context of configuration and provisioning. This centralized con-

troller with the OA as extension solves the SDN scalability bottleneck and the cross-domains

(VTNs or VTSs) communications by managing inter-domain sharing resources and access pri-

ority in case of load-balancing for example.

Figure 4.7 illustrates an architecture example with multi-tenancy support in either the same

(e.g. Host A) or different (e.g. Hosts A, B, D and C) physical platform with different Open-

NMS slices memberships (two different V T N). Our slicing model is based on Layer 2 isolation,

VTN’s VMs can communicate in the same or different platforms with need for tunneling en-

capsulations (e.g., VLAN, VXLAN, NVGRE and GRE) to support remote communication. For

supporting heterogeneous protection and segmentation, our OAM provides to OA the required
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Figure 4.7 OpenNMS Multi-tenancy support

configuration with the ability of translation features for cross-domains communications. For

example in host D, two tenants’ VMs are running on the same physical host, and each VM is

connected to a same OpenFlow enabled virtual switch. In case of intra-DCN communication,

data packets coming from VMs are identified in OpenFlow switch using OpenNMS Master

Controller from their L2 matching fields. For inter-DCN communication, before packet pro-

cessing in the first switch, the specific tenant controller adds some ID based like Virtual Net-

work Identifier (VNI) on the tunneling protocol. The tagged frame is transmitted to its remote

destination based on flow entries which are decided by the Master Controller at each hop.

4.3 OpenNMS Security Objectives and Policy Enforcement

We are following the more promising approach in SDN slicing technique: FlowVisor (Sher-

wood et al., 2009) which provides multi-tenant isolation using a proxy sitting between Open-

Flow switches and tenants’ controllers. This proxy enables only the filtering of incoming events

to controllers and masking messages to switches and ensures the tenants’ rules verification be-

fore getting installed on network switches. However, no sharing and inter/intra communica-
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Figure 4.8 OpenNMS Usage Control for Shared/Trusted resources

tions are allowed between tenant’s allocated resources. The tenant do not have a full access to

the underlay resources to apply the required configurations for his applications.

With OpenNMS, we are providing a high level abstraction for multi-tenancy. OpenNMS’s

policy rules are applied to all shared infrastructure resources (VM, OpenFlow Switch Ports,

Tables and Group Tables) (See Figure 4.8). In the first step of network deployment, we define

for each slice a set of network nodes and associated resources to enforce the slicing type St0.

If a flow between two slices is allowed, resources can be shared between them. For example,

if a network customer wants to share a VM hosting a database with other slices, he can allow

network traffic of other slices. Each slice can define rules regarding incoming and outgoing

flows for restricting external communications (e.g. Flow denied). The OpenNMS policy-

enforcement guarantees that only resources trusted by a set of model slices can be shared. The

Datacenter Shared Resources in Figure 4.8 represents all resources that can be shared among

slices, each OpenFlow switch in a data center networks contains an OpenNMS Master Table
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on each data path, VMs trusted by all network nodes (e.g. OpenNMS Master Controller’s VM)

and trusted mutually ports.

Depending on the trust between the slices, there are two methods of enforcing rules. The first

method requires trusted resources in order to share resources that are accessed from two or

more slices while allowing controlling flows. This mechanism is used between slice 1 (V T Si1)

and 2 (V T Si2) in Figure 4.8. The second method is used to share two resources between slice 2

and 4 (V T Si4) connected by an intermediate slice 3 (V T Si3). In this method, each slice enforces

its flow control rules by means of its own shared resources. This method is used when the trust

level between slice 2 and 4 is low, and the two slices cannot agree on a shared resource that is

mutually trusted. The solution of this situation is to share resources through a “neutral” slice 3

with its own set of membership and identification requirements.

In an OpenFlow table, there are multiple priorities (rank) ranging from 0 to max. In each VTS’s

table, the permanent flow entries with the lowest priority (0) are used to send no matching

packets to the OpenFlow controller which decides the actions to be taken with the flow. We

give all permitted flows (Flowp f ) and denied flow (Flowd f ) a higher priority than the controller

flows (Flowc). The denied flows have higher rank than the permitted flows in the matching

table: rank(Flowc) = rank(Flowp f ) + 1 and rank(Flowp f ) = rank(Flowd f ) + 1.

4.4 Virtual Tenant Networks Scalability and Extended Tenant Capabilities

4.4.1 Inter Virtual Tenant Networks Sharing Methods

Depending on the desired trust between VTSs as explained in previous section, we propose

two methods of enforcing rules:

• Trusted : requires shared resources between two or more slices. This mechanism is used

in host 2 between V T N2’s V T S22 and V T N3’s V T S32 in Figure 4.9 when the desired trust

level between tenant’s slices is high. Tenant VMs in V T N2 can only communicate with the

shared resources circled in green (e.g., V Mn−1).
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Figure 4.9 OpenNMS Trusted/Restricted Resources

• Restricted : is used when the trust level is low and requires sharing resources with restric-

tion. The tenant shares slices’ resources using an intermediate slice “neutral” to connect

others slices. In this method, each slice enforces its flow control rules by means of its own

shared resources. This method is represented in host 1 using the 3 slices from different

VTNs.

4.4.2 Extended Tenant Capabilities: Split, Merge and Migrate

The Split, Merge and Migrate (SMM) capabilities enable transparent and balanced elasticity

for virtual tenants networks and their related slices and applications. Using SMM, virtual

tenant slices can continue to be deployed and configured individually and oblivious of the

future connection and re-scaling requirements that may be needed. SMM capabilities support

tenant topology and boundaries transformation on-demand. Deployed VTSs can be composed
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Figure 4.10 Split/Merge Vitual Tenant Slices

and decomposed as required by the tenant. The migration capability will permit to the provider

to move a portion or all tenant slices from data center to another and to the tenant to displace

his VTSs from one VTN to another. To realize the previous Trusted and Restricted scalability

methods, SMM will allow cloud tenant to flexibly compose and dynamically apply the desired

trust levels between allocated slices.

Supporting these capabilities with traditional isolation mechanisms (e.g., firewalls, middle-

boxes) was very difficult. Composing, decomposing and moving flow policies from one box to

another are very challenging for three as-yet-unresolved reasons. First, cloud tenant may have

to re-provision and re-scale (up or down) his virtual network dynamically to account for appli-

cation elasticity and potentially to mesh with the “pay-as-you-go” model of cloud computing.

Second, tenants may experience poor performance and insufficient flexibility due to the lack
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of transparency and control on his allocated resources, which may negate some of the benefits

of deploying VTN and VTSs. Finally, these operations were very complex and even if it can

be realisable, an efficient checking and compiling engines must be developed. In addition, net-

work policies typically require packets to go through a chain of services. If we change or move

a node from the chain, an interruption of network services could occur.

Using our tenant dedicated space or slice, we simplified the complexity of moving, composing

and decomposing flow rules. With SDN, the manual plan of flow path is eliminated. The

centralized controller can manage the services chaining and configure routes to enforce such

changes. By taking a network-wide view, OpenNMS Master controller eliminates errors from

these tedious process and has clear visibility to set up forwarding rules that account for such

transformations. All these capabilities will allow to load balance between VTSs when and

where it is needed. We introduce new dimensions for SDN that fall outside the purview of the

current multi-tenant isolation approaches functions that SDN tackles today.

Figure 4.11 Migrate a portion of VTS to another
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Figures 4.10, 4.11 and 4.12 depict how tenant slices can be split, merged and migrated when

re-scaling and load balancing tenant network components.

Split/Merge Capabilities: A VTS that has appropriately defined and deployed using our high

level abstraction can be dynamically split and merged. Tenant slice may be transparently split

between many VTSs or merged back into one, while ensuring the tenant flows are forwarded

to the correct VM. As illustrated in Figure 4.10, on split, the same configuration and definition

related to d p7 of V T S1,1 internal and external ports, shared and dedicated tables and groups is

replicated to the V T S1,2. Each V T S is managed by independent controllers (c1 and c2). This

allows each slice to work in parallel with its own allocated and shared resources. Coherent

installed flow entries are also moved with the replicated resources and remains consistent. In

our case, f e3 is installed on the allocated new slice space. On merging, one of VTSs is selected

to be destroyed. All resources belonging the deleted VTS are joining the remain slice. All

flow entries are merged into one VTS processing space. Based on this, we ensure that we

have sufficient degree of placement awareness that the target VTS have sufficient available

OpenFlow resources that will not violate the VTS capacity constraints. In other words, there

is sufficient number ports, tables and group tables to replicate the same configuration of the

deleted VTS.

Migration Capability: We support the migration capability by decomposing the migration

challenge into two main use cases: (i) a portion of the VTS migrating to another slice (e.g.,

VM live or offline migration) where both VTSs definition and policies need transformation and

adaption, and (ii) the migration of all the VTS to new location that only deals with datapaths

identifier translation. All the slice definition and flow entries will remain intact (See Figures

4.11 and 4.12).

We have implemented a SMM capabilities using the SMM engine on the OAM (See Figure

4.2). This engine implements the most fundamental primitive for enabling these capabilities for

tenant networks and slices. The SMM-aware engine is ensuring the appropriate transformation

and translation needed for VTN and VTSs re-provisioning and re-scaling. To do this, Master
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Figure 4.12 Migrate VTS to new Location

controllers is customized to communicate with OAM for enforcing and verifying all actions

needed for the tenant elasticity requirements. Packets belonging to new VTSs are forwarded to

the corresponding OpenFlow controller by default.

4.5 SDN Controller Scalability: Enabling To Provide A Global Large Scale Network
View

As introduced before in section 1.3.3, SDN controller scalability bottleneck affects directly the

scalability of the data center networks.

Some approaches have attempted to reduce the burden on the centralized controller by using

distributed controllers or by including some changes on SDN paradigm and delegating a part

of control functionalities to network switches. For example, Devoflow (Curtis et al. (2011))
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focuses on improving the performance of OpenFlow controller tasks such as installing flow

entries and network monitoring. It reduces the load on OpenFlow controller by refactoring the

OpenFlow API and extending the network switch with control engine. However, DevoFlow

reduces the decoupling between control and data planes and loses the uses centralized visibil-

ity. With a similar approach, DIFANE treats the controller scalability by keeping all traffic in

data plane. It considers the switch rule memory like a large distributed cache and releases the

controller from handling the traffic processing and checking. Other systems Onix (Koponen

et al. (2010)) and HyperFlow (Tootoonchian and Ganjali (2010)) provide multiple centralized

controllers but physically distributed in order to load balance the incoming events load across

between them. They partition network state across these multiple network control systems and

alleviate scalability and fault-tolerance concerns. They take advantages from the OpenFlow 1.3

version that allows multiple controllers connection with OpenFlow enabled switches in aim to

resolve the controller issue. Thus allowing distributed multiple controllers in managing data

center networks is an appropriate solution. However, current distributed controller architec-

tures fail to adequately address the scalability concern and raise two important concerns, (i)

increased overhead and inability to adapt to shifts in traffic load, (ii) there is no mechanism

supported for tenant scalability and no approaches for inter-domains communications and re-

sources sharing.

Towards a similar goal but with different method, NOX-MT (Tootoonchian et al. (2012a)),

Beacon (Erickson et al. (2013)), and Maestro (Ng (2012)) scale network controllers using

multi-threaded controller. In particular, Maestro is based on a 8 cores server machine. It

distributes the controller workload among available cores, so that will balance the load between

the 8 cores. Actually 7 cores are used for worker threads and one core is used for management

functionalities. Although, many efforts have been spent to improve the controller’s capacity

and scalability), they are not expected to satisfy the requirements of the fast and unplanned

growth of multi-tenant network.

Different to previous approaches, Pratyaastha (Krishnamurthy et al. (2014)) takes bottom-up

approach instead of assigning a controller to switch. For Pratyaastha, the switch will seek
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the optimal controller to connect. It is an Non-deterministic Polynomial-time hard (NP-hard)

problem for finding the optimal controller to assign to the switch. The assignment constraints

is based on CPU load, available memory and processing load (number of flow per second

is currently under processing). In addition, Pratyaastha enables multiple SDN applications

deployment using Master centralized controller or distributed controllers. SDN applications

requiring coordination are assigned and composed in sequence or parallel way in the master

controller. Applications with no coordination are deployed in distributed controllers where

incoming events will be sent in parallel to all controllers (Master and distributed controllers) .

This approach is preserving the centralized view advantage of SDN and decrease the load on

applications’ controller. But, the scalability problem is remaining with the master controller

which is facing increased amount of mirrored incoming packets from all data center switches.

Using cluster of synchronized controllers (Master/Slaves) to offload the network charges would

be sufficient to resist and recover from control failures but would leave parts of the network

brainless and loose the key advantage of SDN: centralized control and global network view.

We are following the more promising approach consisting on offloading the centralised con-

troller. This is enabled in our approach OpenNMS using hierarchical controllers (See Figure

4.13). In fact, benchmarks on OpenFlow switch shows that it regroups 255 tables with 1024

flow entries capacity per table. We believe that we can benefit from the OpenFlow switch

capacity and the current OpenFlow version “1.3” that allows multiples controllers connection

with OpenFow switches in aim to solve the controller issue by evolving both SDN planes. With

this advantage, our OpenNMS slicing model enables the network scalability by introducing the

centralized Master Controller which provides a global large scale network view and solves

SDN bottleneck.

As depicted in Figure 4.14, We succeed to overcome the scalability bottleneck and provide in

the manner an efficient offloading of control functionalities without losing the SDN centralized

advantage. By delegating tenant’s slices frequent and local packets to tenant controller, we limit

the overhead on centralized controller that processes only global and rare events to maintain

network-wide view. These events are the global network events including flows processing
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Figure 4.13 Hierarchical Control Plane

to the target VTN, CRUD VTN configuration (create, replace, update and delete OpenNMS

slices), inter VTNs and VTSs communication and unrecognized flows (remote communication

or unauthorized flows). We use a hierarchical design of the control plane (Master Controller –

Tenants Controller) to solve the bottleneck.

From the tenant viewpoint, the inflexibility of previous approaches is limiting the scalability

of its virtual networks (e.g., split, merge, update, migrate were not possible). The scalability

is supported for tenants with our approach. The results are recursive, solving overlay approach

by adding the missing control plane, and overcoming both virtual networks and SDN control

plane scalability bottleneck by coupling SDN slices with overlay protocols.

Our concept reduces the centralized controller workload, increases its capacity to scale as the

network grows and provides a satisfactory L2 isolation solution that removes the extra com-

plexity to already difficult task of writing network configurations and placing firewalls boxes

into topology. It automates and facilitates the slices definition and deployment by replacing
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Figure 4.14 Offloading Centralized Controller’s Functionalities

complicated security policies and VMs identification with a few lines which represent slice’s

allocated and shared data plane resources. The following representation of OpenNMS slice de-

creases the latency introduced by parsing operation of the controller back-end database which

has a compressed size.

The centralized OpenNMS Master controller (OMC) solves the SDN scalability bottleneck and

the cross-VTNs communications by managing inter-tenant slices sharing resources and access

priority (e.g., load balancing). Once the tenant’s slice is designed on OA, it will automatically

be mapped into underlying physical network, and then configured on the individual switch

leveraging SDN control protocol. The definition of logical plane makes it possible not only to

hide the complexity of the underlying network but also to better manage network resources. It

achieves reducing reconfiguration time of network services and minimizing network configu-

ration errors.
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In general, a network node needs to show its identities to prove its membership before it is

allowed to join an OpenNMS slice. For that, we choose VM’s Mac-address and VM’s allocated

OpenFlow switch port to identify tenant’s VM. VTNs’ VMs can communicate in the same or

different platforms with need for tunnelling encapsulations to support remote communication.

Our OA provides to OMC the required configuration with the ability of translation features

to support heterogeneous protection and segmentation. In case of intra-slices communication,

incoming flows are identified in OpenFlow switch using OMC from their L2 matching fields

based on specific parameter as shown in Table 4.1. For inter-tenant’s slices communication,

before flow processing in the first OpenFlow switch, the specific tenant controller adds virtual

tunnel ID for remote communication. The tagged frame is transmitted to its remote destination

based on flow entries which are decided by the OMC at each hop.

Table 4.1 OpenNMS Master Controller Packets Verification Functions

OpenNMS Master Controller

dp-src
ID

port-dstID

port-src
ID

M
ac-src

portM
apping

M
ac

M
apping

TunnelM
apping

Intra-VTSs 3 3 3 3 7 7 7

Inter-Tenant’s slices 3 7 7 7 3 3 3

Notations :

- port-dst ID : Only for intra-VTSs communication, OA will search for port destination ID.

- port Mapping : For remote communication, untagged frame mapping is supported but also

our design provides mapping between physical network interface (NIC) and OpenFlow switch

interface using the datapath ID, destination MAC address and encapsulation Tag ID of the in-

coming L2 frame.

- Mac Mapping : Maps NIC to an interface of OpenFlow switch using MAC address of the

incoming L2 frame.
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- Tunnel Mapping : Maps NIC to a port using encapsulation tag ID of the incoming L2 frame.

4.6 L2 Isolation Model Flowcharts
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belong to Tenant VTS  
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Figure 4.15 Packet Processing Diagram in OpenNMS Solution
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After the development of the L2 isolation model and the OpenNMS architecture design, we

now have a clear view of the concepts and components needed to achieve our goals. However,

in order to have a better understanding of it, the following flowcharts will help us in the deploy-

ment and development phase in order to efficiently build a proof of concept of our scalable,

flexible and autonomic multi-tenant network.

The first flowchart presented on Figure 4.15 summarizes the journey of OpenNMS packet. As

follow, we present the detailed explication of the packet processing flowchart in OpenNMS

network.

The initial situation is an incoming packet originated from any VM running on the same or dif-

ferent host in data center network. As an application installed on VM starts generating packets,

the related hypervisor running on the same server as the VM intercepts these packets and for-

wards them to the OpenFlow switch. The packet reaches the first switch, where it is recognized

as belonging to none of the existing flows, because it does not match any flow entry inside the

OpenFlow switch’s first flow table or OpenNMS Master Table. The pipeline processing al-

ways starts at the OpenFlow table 0. If the packet will be recognized as denied flow, it will be

dropped, otherwise it will be forwarded to the Master controller. The Master controller have

the capability to analyze the packet and decide what flow entries to push down the data path for

the incoming packet. For all unrecognised packets in Master table, the first step is to determine

destination of the flow. The Master controller parses his database to find any correspondence

between the incoming packet and tenants slices and networks. The packet’s destination can be

identified using the destination IP address, destination MAC and encapsulation tag identifier

(e.g., VXLAN). Once the Master controller holds a VTS matching with the arriving flows, it

defines the necessary action and installs new flow entry in Master tables to forward the packet

to the tenant’s allocated tables for the matching VTS. Finally, the tenant controller must de-

termine the destination port for the incoming flow, it can be forwarded to in-port or out-port

depending on the target destination and source.
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Figure 4.16 Multi-tenant Network Deployment using OpenNMS

The second flowchart presented on Figure 4.16 summarize the initialization and deployment of

Multi-tenant using our OpenNMS approach. To illustrate how our model works, we describe

in this flowchart the processes needed to deploy a multi-tenant topology.
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a. The first step is the build of the JSON file including all virtual tenants networks and related

virtual slices.

b. After, receiving the multi-tenant topology JSON structure, the OpenNMS Autonomic

Manager (OAM) will interpret and parse all contained elements. Next, OAM extracts

the VTNs and VTSs configurations and finally maps their logical identifier into real one.

c. Based on our L2 isolation model, OAM will checks the configuration of all elements.

Then, if it matches with the security strategy selected, in parallel, the manager will initial-

ize and install the required components for these networks (tenant controllers and secure

connection to OpenFlow switches) and deploy the required flow entries in OpenFlow

master tables.

Similar to the previous flowchart, the VTS configuration and update require similar processes

and tasks on the OAM. The third flowchart presented on Figure 4.17 illustrates adding and

update of tenant slice at run time by the service provider.

For self-controlling and self-management capabilities, our system supports also the update

and re-scaling operations from the network tenant. The last flowchart presented on Figure

4.18 illustrates the tenant update operation life cycle for applying the required changes on the

network.

4.7 Summary and Conclusions

In this chapter, we introduced Open virtual Network Management & Security (OpenNMS),

an autonomic SDN architecture for supporting multi-tenancy and providing elastic isolation

between tenants’ slices. Our architecture aims to automate the instantiation of a virtual infras-

tructure while dynamically deploying the corresponding security mechanisms to enforce the

network isolation between different tenant networks. This deployment is driven by tenants’

global isolation policy, and thus covers all resources. Our contribution is a new method that

manages virtual switches to explore, solve the scalability concerns in the SDN design infras-
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Figure 4.17 VTS Configuration Initialization and Update using OAM at run time

tructure while providing high flexibility and performance for packet processing and keeping

the benefits of network control centralization. The OpenNMS architecture gives each tenant

the control of its own isolated space, topology and controller and the ability for cross-domain

resources sharing.

We have described new capabilities for multi-tenant network, Split, Merge and migrate, that

enable transparent, balanced elasticity, flexible re-provisioning and re-scaling. Using our L2

isolation model with the high level abstraction for tenant networks and slices, tenant distributed

resources among slices which can be split into two or many VTS, merged together into a single

VTS, or migrated to new location separately or in group . At the same time, we ensure tenant

services chaining and traffic steering required for such requirements. As networks become
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Figure 4.18 VTS Update and Re-Scaling by Tenant

increasingly virtualized, the cloud addresses a need for elasticity in tenant networks and the

ability to split, merge and migrate tenant allocated resources is becoming even more important.

Our approach demonstrates the simplicity and the feasibility of Software-Defined security

mechanisms. The flexibility gained through this approach helps to adapt the network dynami-
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cally to both unforeseen and predictable changes in the network. It offers the possibility to run

multiple slices within the same logical and physical switches while adapting the trust level to

the desired performance and optimized usage of the allocated resources.





CHAPTER 5

OPEN NETWORK MANAGEMENT & SECURITY ARCHITECTURE
IMPLEMENTATION & EVALUATIONS

In this chapter, we present the deployment model of Open Network Management & Security

(OpenNMS) architecture, implementation, testbed and evaluation results.

This chapter will cover the experiments and tests with which we want our implementation to

go through for each objective defined in this work. We will describe the scenarios that we

made in order to gather the proof we want. We will explain our testbed as well as the materials,

software and tools used for our prototype.

After the deployment and implementation of our prototype is done and the testbed is created, it

was time to start testing our OpenNMS architecture. For each goal that we have succeeded to

achieve, we planned different experiments to demonstrate its feasibility with our architecture

and then we made observations on the behavior of our multi-tenant network. Thereafter, we

analyzed the obtained results and compare it with the actual approaches. For each scenario, we

justified the adopted choices as well as the tools that used for each experiment.

Our experiments will start by overhead evaluation as important criteria for the adoption of our

design and L2 isolation model in multi-tenant network. Next, we will test all types of our

slicing model and compare it with unmodified NOX controller. We evaluate the flexibility of

OpenNMS in aim to reach and demonstrate the feasibility of Trusted and Restricted sharing

methods as well as the elasticity aspect using Split, Merge and Migrate (SMM) capabilities.

We will end our experiments by demonstrating the scalability of SDN controller and how we

overcome the blocked bottleneck of SDN architectures. Finally, we will expose our design

limitations at each experiment as well as the potential solutions and improvements which can

be brought to our approach.
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5.1 Deploying OpenNMS OAM and OA

For improving management plane in SDN architecture, we use in the implementation OF-

Config (Pfaff and al.) and NetConf (Enns et al. (2011)) protocol for OpenFlow which are

emerging technologies for improving network management.

OAM is implemented as a plug-in for IaaS Framework (Figuerola et al. (2009)), it is devel-

oped using Scala (Cremet and Odersky) language and CouchDB (Anderson et al. (2010)) as

Datastore which saves slicing definitions and policies. OAM is responsible for checking slice

membership and identification in messages received in NetConf XML format. It answers OA

identity confirmation requests. OA is implemented as a Native C++ extension to NOX 1.3

OpenFlow controller (See Appendix I).

5.2 OpenNMS Lab Setup and Testbed Scenario

Figure 5.1 OpenNMS Lab Setup

As illustrated in Figure 5.1, We used 12 servers on Ericsson Blade System (EBS) intercon-

nected with two 100 Gbps Ethernet OpenFlow-based switch (d p0 and d p1). Each server is an



99

x86 based general processing board within EBS and utilizes a 64-bit, 6 cores, XEON L5638

running at 2.00 GHz and RAID support chipset with 24GB memory with several variants

(HDD, SSD, E1/T1).

Using KVM virtualization and Open vSwitch Software (Kis (2012)), we have created 8 vir-

tual machines per host (V M1...V M96) linked to OpenFlow virtual switch running on each host

(d p2...d p12). All switches supports OpenFlow 1.3 version. We run a NOX OpenFlow 1.3 con-

troller (Fernandes et al. (2012)) with our OA as extension which links the OpenFlow switches

and presents the centralized OpenNMS Master controller. The switches are based on the Er-

icsson software implementation (Kis (2012)), with a modification in the forwarding plane to

support OpenFlow 1.3. This switch is based on Nicira’s Open vSwitch, in which OpenFlow

processing model is replaced with “Oflib” from the OpenFlow 1.3 Software Switch.

We start our evaluation by deploying a simple scenario similar to the architecture in Figure

3.2, with two tenant (tenant1 and tenant2) and each V T Ni,i= 1,2 with four VTSs; each VTS has

1 VM running on each server. For each VTN, we use one NOX to control tenant allocated

resources. Tables 5.1, 5.2 and 5.3 represent the shared and dedicated resources in this scenario.

Table 5.1 OpenNMS Tenants Dedicated Resources

V T NID V T SID Dedicated resources

V T N1

V T S1,1 d pi.t1 , d pi.gt1 , d pi.p2

V T S1,2 d pi.t2 , d pi.gt2 , d pi.p3

V T S1,3 d pi.t3 , d pi.gt3 , d pi.p3

V T S1,4 d pi.t4 , d pi.gt4 , d pi.p4

V T N2

V T S2,1 d pi.t6 , d pi.gt6 , d pi.p5

V T S2,2 d pi.t7 , d pi.gt7 , d pi.p6

V T S2,3 d pi.t8 , d pi.gt8 , d pi.p7

V T S2,4 d pi.t9 , d pi.gt9 , d pi.p8
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Notations :

d pi ∈ Dp / ∀ i in {1..12}

d pi.p j : d pi’s p j

Dpi.t j : d pi’s t j

Si.gt j : d pi’s gt j

Table 5.2 OpenNMS Tenants’ Slices Shared Resources and Trust Level

V T NID V T SsID Shared resources / ∀ i in {1..12} Sec. Enforcement

V T N1

V T S1,1 & V T S1,2 d p2.t5 , d p2.gt5 , d pi.p1 , d p2.p2 Restricted

V T S1,2 & V T S1,3 d p5.t5 , d p5.gt5 , d pi.p1 , d p1.p3 , d p1.p4 Trusted

V T S1,3 & V T S1,4 d pi.p1 Basic

V T N2

V T S2,1 & V T S2,2 d p12.t10 , d p12.gt10 , d pi.p1 , d p12.p5 Restricted

V T S2,2 & V T S2,3 d p8.t10 , d p8.gt10 , d pi.p1 , d p8.p6 , d p1.p7 Trusted

V T S2,3 & V T S2,4 d pi.p1 Basic

Table 5.3 OpenNMS Master Controller Tables

OpenFlow Switches Tables

OpenNMS Master Tables d pi.t0 and

d pi.gt0 / ∀ i in {1..12}

5.3 Experimental Analysis

5.3.1 Performance Overhead

In the following, we evaluate the overhead generated by involving OA extending the NOX

controller for enforcing our L2 isolation. Since the Master controller intercepts all tenants’

first incoming and outgoing packets and installs the required flow entries on the corresponding
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datapaths, we measured its per-packets overheads by emulating random traffic using hping and

Iperf traffic generators from the 96 VMs running on the top of our 12 servers. Our hping

experiments used for latency measurement with 100 TCP packets per second. The Iperf traffic

generator can be used for network bandwidth performance on one way (client→ server) and

bi-directional tests (client↔ server). We compare our OpenNMS results against an unmodified

NOX.

The first row in Table 5.4 shows the results of latency evaluation. OA added few microseconds

to the latency time compared to basic NOX. We measured both one-way and bi-directional

TCP invocation throughput using Iperf. For each case, we ran over 100 iterations with default

1470 bytes packet size. The second and third rows in Table 5.4 show throughput results. Open-

NMS causes a 0.556 % decrease in mean one-way throughput, and a 1.84 % drop in mean

bi-directional test. Our L2 isolation model and design guarantees also negligible packets drops

with the minimal MTU1.

Table 5.4 OpenNMS Architecture Overheads

Tool Metric Basic NOX NOX with OpenNMS

hping (in µs)
Avg 96 98

Min-Max 90-112 94-118

Iperf One-Way (in Mbps)
Avg 981.91 976.45

Min-Max 980.11-981.98 975.23-978.63

Iperf Bi-directional (in Mbps)
Avg 1920.11 1884.64

Min-Max 1910.4-1925.88 1880.23-1917.46

5.3.2 OpenNMS L2 Slicing Model and Types Evaluation

Our Second experiment uses a the dedicated packet generator hping to evaluate the VTS types

Sti,i=0..3. In Figure 5.2, we generate 100 UDP flows per second, then we change the rate

1Maximum Transmission Unit
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from 100 to 1000 to compare the delay of different slicing types. The figure shows that the

variation of delay comparing to NOX is negligible. Even for VTS types, there is no remarkable

difference in delay between VTS types.
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Figure 5.2 Delay imposed over UDP flows by OpenNMS with
different VTS Types

While it is difficult to establish direct comparison with others SDN slicing approaches like

FlowVisor (Sherwood et al., 2009) since they have implemented their solutions using local

hypervisor on physical OpenFlow switches. FlowVisor results show that including the addi-

tional isolation layer in physical switches causes an average overhead for responses of 0.48

milliseconds with 200 flow per seconds. With the same number of requests, OpenNMS has

higher delay of 0.17 milliseconds (See Figure 5.2). However, this delay is acceptable seen we

use distant controller handling the isolation tasks.

Figure 5.3 illustrates the pushing time of one flow entry by the NOX controller and the corre-

sponding flow latency with the four slicing types. There is also no variance between our slicing
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types in pushing one flow entry time. As results, we add maximum 90 µs to the flow latency

which does not affect the network performance.
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Figure 5.3 Pushing one flow entry with different slicing levels

5.3.3 Multi-tenant Network Scalability

We did more experimental analysis for the OpenNMS isolation model and architecture design

to evaluate the scalability of multi-tenant network. To motivate the efficiency and robustness

of our model, we evaluate the OpenNMS’s scalability, performance, and capacity properties

for supporting the fast and unplanned growth of the multi-tenant network. We have asserted

before that OpenNMS can scale to large numbers of VMs and switches and can support several

thousands of isolated VTNs and VTSs on the top of the shared infrastructure.

Our current testbed is limited with four VTSs in each OpenFlow-enabled switch and 96 VMs

distributed over 12 hosts. So, to demonstrate the OpenNMS scalability, we emulated a much

larger number of VMs in our testbed that could normally run on 12 hosts using Mininet
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(Mininet; de Oliveira et al. (2014)). We implemented Mininet on each server to run four thou-

sand more VMs linked to running Open vSwitch and assigning a capacity of 100 Mb/s to each

link. Using this technique, we can emulate up to 48K of VMs in the multi-tenant data center.

We have created thousand VTS more per host and we assign each pair of VTSs for different

tenant and VTN. We allocated one Mininet’s VM for each VTS per host. With our real testbed

and this emulation, we have now up than 24.002 VTNs and VTSs. By generating random rate

of TCP requests from random VTSs and VMs using hping, we compared unmodified NOX to

OpenNMS. We ran several trials with varying numbers of tenants, related VTNs, VTSs and

VMs.

Figures 5.4 and 5.5 show that:

a. NOX does not scale as anticipated. Aside from failing to support the higher number of

networks. It drops incoming packets after the number of VMs exceeds one thousands.
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b. OpenNMS scales well with negligible overhead even with large number VTS and VM.

Figures show that the latency remains reasonable and flow processing is not affected by

the increased number of VTSs and VMs. We observe that OpenNMS’s latency increases

slightly as the number of VMs exceeds one thousand. We suspect that this peak is caused

by Open vSwitch’s links capacity for supporting more than 10K of VMs.
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Figure 5.5 Latency vs. VTS count

5.3.4 Inter Tenant’s Networks Sharing Methods: Trusted and Restricted Security Lev-
els

For evaluating the flexibility of our design, trusted level was chosen as one of the services

provided to the tenant with the first experiment. Figure 5.6 resumes testbed scenario for scaling

tenant’s VTSs by sharing VMs between them as trusted resources. For that, the tenant chooses

scale-in option and checks the list of shared resources and the method of security enforcement

(See section 4.4.1). This scenario evaluates the latency time of network response to the updated

configuration. Table 5.5 shows the result of sharing two VMs from different VTSs (V T S1,2 and
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Figure 5.6 Inter Tenant Networks Scalability Scenario: Trusted/Restricted Methods

V T S1,3) with the first V T S1,1. Network configuration can be updated in 2 milliseconds without

network packets processing interruption which is an acceptable response time for all OpenNMS

architecture’s involved components.

Table 5.5 OpenNMS Cross-Planes Response Time for Tenant Scalability

OpenNMS Action Response Time (ms)

Upload New configuration to tenant controllers 0,35

Master Controller Notification 0.52

OAM Cost 0.62

Master Controller Network Update 0.72

Total 2,21
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For evaluating the restricted level, we used the first testbed in Figure 5.1. The four tenant’s

VTSs have the same size in term of numbers of allocated virtual resources. This experiment

consists of comparing the two level of security enforcement in aim to scale tenant network and

slices. We have selected random two tenant’s VTSs in each host for enforcing the trusted level

and the remain VTSs for restricted level. As total, we will have 12 shared resources for each

level to apply. We evaluate in table 5.6 the latency time of network response to the updated

configuration in each component of OpenNMS architectures. Network configuration can be

updated at maximum 3.5 milliseconds (See Table 5.6) which is also an acceptable response

time. For the restricted configuration, we have observed some interruption and few packet

drops with 20 µs due to the added processing and checking time for this level comparing to the

trusted one.

Table 5.6 OpenNMS Scaling Methods Response Time: Trusted and Restricted
Scenarios

OpenNMS Action Trusted (ms) Restricted (ms)

Upload Desired Configuration to Tenant Controllers 1,15 1.58

Master Controller Notification 0.22 0.37

OAM Cost 2.14 3.31

Master Controller Update 0.05 0.13

Total Time 3.56 5.39

For the inter-tenant and external communications, currently OpenNMS requires that the tenant

enters some transformation within its own VTNs and VTSs, if a VTS’s VM needs to commu-

nicate with external VM in the same of different data center. Our design is supporting such

requirement by providing dynamic inter and intra VTSs policies adaptations.

Scalability and flexibility in such multi-tenant architecture as OpenNMS require much more

extensive testing than the experiments reflected in this thesis. We mean, for instance, experi-

ments within scenarios stressing specific planes or components of planes. This thesis reflects
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only the results of scalability tests in one particular scenario. Then we have to emphasize that

our system scales well under the conditions of this particular scenario, and that by no means

can these results be generalized to different scopes or situations. Additional testing is in fact

part of challenging future work.

5.3.5 Autonomic Design Performance

Beside the total cost evaluation in last experiments, we have not yet measured the detailed costs

for different tasks of the autonomic management plane, including OAM and tenant manager.

Table 5.7 OpenNMS Management Planes Detailed Costs

Task Autonomic Management Time Tenant Manager Time

Tenant Controller Setup 2,35 s –

VTS Setup 1,45 s 2,12 s

VTN Setup 2.43 s 3.01 s

VTS Tranformation 1,24 ms 1.53 ms

VTN Tranformation 2 ms s 2,71 ms

Open vSwitch Setup 5,11 s –

VM Setup 3,05 s 4.62 s

Port Setup 45 ms 61 ms

Flow entry Setup 32 ms 51 ms

We measured the setup time for SDN components including Open vSwitch and controller. We

also evaluate the time needed for the instantiation of new VTS and VTN and the configuration

of data plane that requires port and flow entry setup. We consider in our evaluation a VTS

composed of four ports, tables and group tables on one OpenFlow switch. The VTN in our

experience is grouping four VTSs distributed over the data center OpenFlow switches. The

setup cost of OAM includes the time required for control loops and communications with the

master controller. The VTS and VTN tranformation includes the necessary time for topology
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update and mapping and the flow entries setup and update. Table 5.7 shows the results of our

evaluation. We can conclude that the overhead associated with the hierarchical managers is a

fairly low (18.95 %).

5.3.6 Elasticity: Split, Merge and Migrate

                          
                             

OpenFlow Protocol

Tenant Controller 1 Tenant Controller 2

OpenFlow Protocol

Tenant 1 Manager
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Figure 5.7 Elastic Multi-tenant Network Evaluation Scenario

We now evaluate how well our design and isolation model is suitable for the elastic nature

of cloud computing. We demonstrate our first step towards elastic multi-tenant network by

the feasibility and robustness of our Split, Merge and Migrate (SMM) capabilities (See sec-

tion 4.4.2).
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We use for the elasticity experiment two tenant VTSs (V T S1,1 and V T S1,2) instantiated on

different sites. For each VTS, we deploy an OpenIMS (Vingarzan et al. (2005)) application,

consisting of IMS Call Session Control Functions (CSCFs) and Home Subscriber Server (HSS)

(See Figure 5.7). We use the configuration in table 5.8. Each VTS is responsible for a group of

clients and controlled by independent tenant controller.

Table 5.8 Elastic Simulation Configuration

Simulation Parameter Description

CSCFs CPU 8 vcpus

CSCFs memory 20 Gbytes

HSS CPU 2 vcpus

HSS memory 4 Gbytes

CSCFs/HSS bandwidth requirement 100 Mbps/flow

In the following, our objective of using SMM capabilities is enabling load balancing between

the two VTSs’ IMS components. We evaluate OpenNMS with the following goals:

• demonstrate OpenNMS’s ability to provide dynamic elasticity for the “pay-as-you-go”

cloud model in a real multi-tenant network,

• show OpenNMS’s ability to merge tenant slices to support the burden load of calls on IMS’s

CSCFs,

• demonstrate the ability to scale down by split the merged VTSs when calls return to normal

threshold,

• measure the gain in resource utilization when scaling in a deployment using OpenNMS’s

SMM capabilities, and

• quantify the performance overhead of migrating a portion of VTS under different IMS

loads.
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Figure 5.8 Scaling CSCFs by Merging Tenant VTSs

We set up a challenging performance scenario of IMS network to demonstrate the benefits of

SMM capabilities to solve unplanned situation such as the sudden overload on IMS’s CSCFs

and HSSs. We have installed “SIPp” traffic generator tool (Gayraud et al. (2007)) on four IMS

clients VMs.

We start generating traffic from the first VM client to V T S1,1’s CSCFs1 with a rate of 100

calls per second (cps). We induce CSCFs1 scaling by increasing the request rate with 2000 cps

each 100 seconds period; scale down is induced by decreasing the request rate to 100 cps. The

increased number of cps will stress both IMS’s CSCFs and HSS components.

Our first concern is the ability to detect the presence of a bottleneck with IMS components

in order to initiate scaling. Therefore before starting our elasticity experiment, we have ran

preliminary test for the CSCFs and HSSs capacity with the current configuration. We found



112

that HSSs cannot support up to 2K cps and for CSCFs up to 4K. We have programmed the

tenant V T S1,1 to load balance the requests over 2K cps for HSS1 using HSS2. The merge

with V T S1,2 will start with more than 3K cps. V T S1,1 scales up first by adding CSCFs2, then

HSS3, and finally HSS4. The results is a complete merge of V T S1,1 and V T S1,2 into one VTS

managed by the tenant controller 1.

OpenNMS response time for the IMS components bottleneck is a simple and effective metric

for the merging capability. When the request rate increases from 100 to 2000 cps, causing a

bottleneck in HSS1, the load balancing setup with HSS2 has required just 5 milliseconds and

the merging time with each V T S1,2’s components (CSCFs2, HSS3, and HSS4 in sequence) was

only 11 milliseconds on average.

The behavior of our merged VTSs is shown Figure 5.8, which depicts the number of calls

per second and the number of CSCFs and HSSs used over time while we enabled dynamic

elasticity between tenant’s slices.

With only one CSCFs and one HSS, the IMS network can support only 2K cps. The first

scaling action increases calls capacity to 2500 cps by using two HSSs. The first merging action

with V T S1,2’s CSCFs2 and HSS3 has increased calls establishment to 6K cps. Finally, scaling

to four HSSs was tried, but the 4th HSS is not solving the scalability bottleneck due to the

capacity of the two CSCFs which are not sufficient enough to support the burden load of calls.

As showed in Figure 5.9, the V T S1,1 obtained from the merging with V T S1,3 behaves in the

same manner as a single slice, until the decrease of load burst is detected around t = 200s.

Similar the merging scenario, we decrease the request rate with 2000 cps each 100 seconds

period. While V T S1,1 starts to deactivate load balancing between HSS4 and HSS3, the IMS

network have enough resources for the incoming requests. At second 250, the tenant manager

start splitting the two VTSs by eliminating HSS3 from V T S1,1 and finally cancel all merged

resources at t = 300s. The total split tasks distributed over scenario time have taken only 21

milliseconds to turn back to the original VTSs setting.
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Figure 5.9 Split Tenant VTS

To solve the bottleneck of the merge scenario, we have decided to migrate a third CSCFs, with

same configuration like the previous ones, from another tenant network which has only 10 %

workload. This CSCFs must still serving originated network subscribers (V T N2) and at the

same time increase the capacity of the joined V T N1.

To simulate live migration of CSCFs, we ran 15 trials of migration from both sides (V T N1

⇐⇒ V T N2). We separate the two ways migration test with 10 seconds of break. We consider

two scenarios for the migration: (i) the tenant can choose to keep the CSCFs’ VM running on

the same host and just VTNs’ configuration update is required, or (ii) for better performance,

tenant requires the migration of the VM to the same VTN’s host.

As depicted in Figure 5.10, the average of our migration experiment with the first scenario is

17.08s for the first way and and 16.07s for the second way. We can notice that the bottleneck
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Figure 5.10 Scenario 1: CSCFs Live Migration

is eliminated at each time we migrate CSCFs to V T N1 and almost subscribers’ requests are

served.

For the virtual migration scenario (See Figure 5.11), the average of joining the CSCFs to the

V T N1 and finishing all the necessary configuration is 1.45s for the first way and 1,65s for the

second way. Using this kind of migration, we did not succeed to serve all calls and eliminate

the bottleneck. The maximum established session is 7215 cps. We succeed to provide faster

response for the bottleneck without achieving the maximum performance. We believe that this

kind of migration can be the first solution for emergency and the live migration can be the next

step to overcome the bottleneck and achieve the best performance.
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Figure 5.11 Scenario 2: CSCFs Virtual Migration

5.3.7 SDN Controller Scalability

We have already compared our extended OpenFlow controller with basic NOX implementation

in the previous experiments. In paragraph 5.3.3, we demonstrated that NOX fails to support

large multi-tenant network and drops incoming packets when the number of VMs, generating

random rate of traffic, exceeds 1K. We proved that OpenNMS design scales well with fast

growing network with negligible overhead and reasonable latency.

With random rate of packets, we do not have the exact capacity of flows handling for the

OpenNMS Master centralized controller comparing to the traditional SDN architectures.
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In current software-defined network, the centralized OpenFlow controller performs all tenants

flow setup reactively. The load on this controller directly affects the flow completion times and

the response time.

With OpenNMS design, we succeed to enforce our flexible isolation model and provide in the

same manner an efficient and scalable offloading of control functions without losing the SDN

centralized view advantage. By delegating VTSs frequent and local packets to tenant controller,

we limit the overhead on centralized controller that processes only global and rare events to

maintain network-wide view. One master application on the control plane will orchestrate,

build and map small tenant distinct portions represented the required VTSs into the virtual and

underlay networks.
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In the following, we evaluate our design to demonstrate its benefits on the SDN controller

scalability and overcome the current bottleneck. We ran our experiments to study the relation

between the load level and response time.

We use the same testbed in figure 5.1 with one virtual network (V T N1) to evaluate the per-

formance of both NOX and OpenNMS Master Controller. We ran both NOX and OpenNMS

Master Controller on VMs with 6 vcpus and 10 Gbytes memory. We included also the ten-

ant controller in this experiment to demonstrate the repartition of network load between the

provider controller and tenant controller. To avoid the bottleneck for tenant control plane,

we offload the incoming traffic using a cluster of five controllers. For tenant1’s traffic, we

configured the OpenNMS master controller to install flow entries for all accepted packets as

permanent so that their lifetime is properly synchronised with the flow entries in the Master

tables. For each 100 seconds, we increase the requested rate and we generate different pack-

ets’ source header for the new added flows. This setup will allow us to compare the Master

controller behavior and response time each 10 seconds with higher traffic rate. The master

controller will handle only the new packets not matched with the already installed flow entries.

We have started our evaluation with 103 flow per second (fps) as the maximum load supported

by NOX with 20 million of incoming flows, introduced in earlier benchmark (Tavakoli et al.

(2009)).

Figure 5.12 shows the average delay comparison between NOX and OpenNMS Master con-

troller as well as tenant’s controllers. We find out that, under maximum load, NOX can achieve

a maximum throughput of 31,000 fps, and the average delay is 6129ms. Because the difference

in average delay for the OpenNMS controllers and NOX is very large, we use two X et Y axis.

Since the Master controller handles only frequent and global events, the average delay is lower

than NOX and tenant’s controllers. Only unrecognised packets will be forwarded to the Master

controller for being matched and then install the required flow entries. Using our design, we

decrease the load on the Master controller and we reach better performance and scalability.

For 5 million fps, the difference in average delay between OpenNMS Master controller and the

cluster of tenant’s controllers is 159.35 ms.
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To compare and evaluate OpenNMS controller response time and for better understanding of

the relation between controller load and response time, we plotted the response time Cumula-

tive Distribution Function (CDF) fixing the load level to 31K fps. The response time is varying

with the load level (See Figure 5.13). We find that for the same added workload, OpenNMS

controller has lower response time (≤ 20 ms) than NOX with increased load. Our OpenNMS

Master controller performs significantly with increased load up to 31K fps better than the basic

NOX controller handling all the incoming traffic of multi-tenant network.

5.4 Summary and Conclusions

In this chapter, we built a prototype of our OpenNMS architecture, in order to prove the via-

bility of its autonomic design and the performance of our L2 isolation model. Our prototype
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improves the management plane in SDN architecture. We used diver and rich tools to realize

our design and bring it to real multi-tenant network. Our design firstly prove that multi-tenant

isolation is automatically enforced, without any human intervention. We succeed to run mul-

tiple and independent VTNs and VTSs while we support full transparency for cloud tenant

and enable the self-configuration and self-management attributes of the autonomic computing

model.

We ran exhaustive experiments and imagined several scenarios so as to cover all our objectives,

our isolation features and situations that we believe are relevant to include in the evaluation.

Our overhead evaluation demonstrate that our L2 isolation model using OpenNMS Master

controller guarantees negligible packets drops with the minimal MTU comparing to unmodified

NOX controller. OpenNMS Agent extending the NOX adds at most only microseconds to the

end-to-end latency compared to NOX. The second evaluation for our slicing types shows that

there is no difference between them with flow entries setup time. We add at maximum 90

µs to the flow latency which does not affect the network performance. Next, we did more

experimental analysis for the OpenNMS isolation model and architecture design for evaluating

its scalability and elasticity in multi-tenant network. The results proved that OpenNMS scales

well, achieving negligible overhead, especially as the number of VTS and VMs increases.

We choose for the elasticity experiment the OpenIMS system as greedy cloud application

which requires flexible and elastic environment to overcome the unplanned load. We ran dif-

ferent and rich experiment to present the benefits of our SMM capabilities with such system.

OpenIMS networks and slices can split, merge and migrate easily to satisfy the subscribers de-

mand as well as the tenant needs. OpenNMS response time for the IMS components bottleneck

is a simple and effective metric for the merging capability. The total split tasks have taken only

21 milliseconds to turn back to the original VTSs setting. When a OpenIMS nodes migration,

our third experiment demonstrates that the security is still applied after the migration. We suc-

ceed to provide faster response for the bottleneck without achieving a fair performance with

the virtual migration approach. Indeed, the paths are reconfigured as the VM starts emitting
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packets again. The enforcement of the security policy can be realized either with live migration

of virtual one.

The last tests we implemented for the OpenNMS master controller compared with current SDN

architecture prove that our design overcome the SDN scalability bottleneck very well.



CHAPTER 6

CONCLUSIONS AND FUTURE WORK

In this chapter, we provide a summary of the contributions of this dissertation and a few con-

cluding remarks, and finally give some important directions for future research beyond this

work.

6.1 Conclusions

This work is accomplished by three conference papers (Fekih Ahmed et al., 2013a, 2014, 2015)

and one filed patent (Fekih Ahmed et al., 2013b) with the collaboration of Ericsson Research

Canada.

In this last chapter, we are reviewing all the contributions that has been done since the definition

of the problematic of our project : “Towards Elastic and Scalable Multi-tenant Network”.

Enforcing isolation in multi-tenant network is already tackled by previous industrial and re-

search approaches, but the nature of cloud brings on new requirements that we must meet.

We started our work with the review of the literature. Some researches have addressed the re-

quirements for flexible and scalable isolation by developing several solutions using Software-

Defined Networking (SDN) based slicing technique. This technique enforces basic and strict

isolation proprieties by translating, inspecting, rewriting, and policing OpenFlow entries in-

stalled on shared data plane. SDN slices suffer from scalability limitations. Industrial isolation

approaches are ideally based to provide the transport by the physical network and the virtual

machine service by the hypervisors. The traditional slicing technique has employed VLAN to

isolate tenants’ machines on a single Layer 2 (L2) virtual network. However, this simple iso-

lation approach depends heavily on routing and forwarding protocols and is not easily config-

ured. VLAN management complexity imposes limitations on cloud nature and services. More

importantly, VLAN lacks scalability resulting to a segmentation capacity limit to 4K tenants.

Multiple overlay technologies (e.g., VXLAN, NVGRE) have been proposed within industrials



122

as alternative approaches to substitute old encapsulation protocols that are in contrast with the

open standards used in OpenFlow solutions. These techniques overcome scalability issues of

cloud isolation mechanisms, but remain limited to single slice. In addition, both solutions do

not offer a complete transparent isolation and lack the ability to use multiple network slices

within individual SDN programs. However, no solution succeeds to provide the isolation goals

motivating this project. We proved that we overcome their respective limitations into a unified

design and arrive to a consistent solution that consider both networks and OpenFlow control

plane scalability bottleneck. This combination enables to reap the benefits of SDN slices while

preserving scalability. This yields a network virtualization architecture that is both flexible and

secure on one side, and scalable on the other.

We here summarize how we tackled each of our isolation goals: Flexible, Scalable and Auto-

nomic.

First, in chapter 3, we have introduced the benefits of SDN slicing technique and the actual

opportunities with such approach, where the multi-tenant flexible, scalable isolation can be

achieved by providing a solid L2 model and combining it with the overlay technologies. We

defined our L2 isolation model providing high level abstraction for multi-tenant network by

combining SDN slicing technique and overlay virtual protocols. Our model enhance the SDN

slicing technique flexibility while preserve its advantages for providing the basic isolation ob-

jectives. We take benefits of the scalability of overlay protocols and overcome their limits to

one overlay network by enabling to support several thousands of isolated tenants networks and

slices on top of shared network infrastructure. Using these extended encapsulations mecha-

nisms, the number of segmentation is increased and as result it offers the possibility of creating

more number of Virtual Tenant Slices (VTSs). Our isolation model formalizes the simultaneous

use of multiple resources (ports, tables, group tables and controllers) allocation for multi-tenant

network. This allows service providers to define multiple processing spaces dedicated for in-

dividualized network services. From our definitions and proprieties, the VTS model extends

the network virtualization with new self-ruling virtual networks that can be programmed in a

standalone mode just like an ordinary OpenFlow switch, without worrying about other Open-
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Flow applications running on the top of any other VTSs. It will serve a strong specification

for the infrastructure providers to translate and map it to the underlay network while ensuring

isolation properties. Further, our VTS types show that we can leverage almost the full opti-

mization of allocated resources to meet differing tenant application objectives. Even if tenant

switches between VTS types for higher sharing or restriction level, the other slices belonging

to the same or different tenants will stay intact. However, some penalties are analysed with

the tenant choice such as the added overhead and the impact on confidentiality, integrity and

availability.

Building an elastic and scalable multi-tenant network for datacenters is very challenging. This

thesis contributes to solve this challenge in three ways. First, we define a L2 isolation model

with high-level abstraction providing the required flexibility for both tenant and provider for

such elastic cloud nature. Secondly, we build a framework Open Network Management &

Security based on the combination between SDN paradigm and autonomic communication.

Autonomic computing is a complementary approach to SDN for evolving the neglected man-

agement plane and self-aware network configuration. It allows an embedded management of all

VTSs and gradual implementation of management functions providing code life cycle manage-

ment for multi-tenant applications as well as the ability to on-the-fly configuration update. The

Self-* capabilities in a SDN network can accomplish the centralized controller functions by

recommending an appropriate action based on the overall network policies and tenant require-

ment. These capabilities are included in OpenNMS through control loops in the management

plane. Our design adds the necessary components to achieve our ultimate goals for scalability,

flexibility and automaticity. The OpenNMS control and management planes are created in a

way to provide transparency and enabling the self-management and self-controlling of the al-

located OpenFlow resources (Ports, Tables and Group Tables). Lastly, we perform a general

scalability study of the SDN architecture design space and we demonstrate the benefits of our

isolation model and design for solving such controller scalability bottleneck. Using hierarchi-

cal OpenFlow controllers, we succeed to enforce our flexible isolation model and provide in

the same manner an efficient and scalable offloading of control functions without losing the
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SDN centralized advantage. By delegating Virtual Tenant Slices (VTSs) frequent and local

packets to tenant controller, we limit the overhead on centralized controller that processes only

global and rare events to maintain network-wide view. One master application on the control

plane will orchestrate, build and map small tenant distinct portions represented the required

VTSs into the virtual and underlay networks. VTS space on data plane will be allocated for

each tenant for building his own small security boxes out of multiple, independent, reusable

network policies included in the VTS abstraction. Thus, as results of the simple and flexible

VTS definitions model, we describe novel features and capabilities added for the isolation:

Split, Merge and Migrate that can be well suited for the tenants’ requirements in such dynamic

nature of cloud computing.

Finally, the OpenNMS design and evaluation chapters show that, as the network diameter in-

creases, the performance penalty for fast growing network decreases. Our approach demon-

strates the simplicity and the feasibility of Software-Defined security mechanisms. The flexi-

bility gained through this approach helps to adapt the network dynamically to both unforeseen

and predictable changes in the network. It offers the possibility to run multiple slices within

the same logical switch without performance degradation.

6.2 Future work

The Cloud Computing field is in its infancy and rapidly evolving, from an operations engi-

neering perspective in general, and a network interconnect design in particular. Even with the

deluge of data center networking research and innovation by academia, small start-ups, and

big industry players in the past decade, we feel that the community has barely scratched the

surface, and that there is an almost infinite amount of work to be done. We here mention some

exciting related on-going research and a few open problems.

In our model evaluation, with 12 servers, we have reached the limits to the size of an academic

testbed, and the prototypes presented here would be benefit from further evaluation at a larger

scale. Further, while we have attempted to measure our prototypes under reasonable assump-
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tions, the research community desperately needs additional data and guidance from industry

regarding tenants, workload, and network traffic characteristics. Network virtualization is an

important problem in industry, and establishing a robust solution is a necessary step for the

cloud computing model to meet its full potential. Several commercial systems are currently

being developed, and though the final product may not look like OpenNMS, we believe the

central ideas introduced in this thesis have strong advantages over other approaches and could

be integrated into a commercial network virtualization solution. Future work will be an ex-

tension for our work to demonstrate the simplicity of VTSs scalability which requires more

extensive testing that the experiment reflected in this thesis. Additional testing of tenant’s VMs

and VTSs migration is in fact part of challenging future work.





APPENDIX I

OPENNMS AGENT: OPENFLOW APPLICATION EXTENDING NOX 1.3
DEPLOYED IN C++

1 /*

2 * Use OpenNMS Agent application as part of NOX 1.3 version to deploy

Scalable, Flexible and Autonomic Isolation For Multi-Tenant Network.

3 *

4 * For More Information: https://github.com/CPqD/ofsoftswitch13/wiki/

OpenFlow-1.3-Tutorial

5 *

6 * NOX is free software: you can redistribute it and/or modify

7 * it under the terms of the GNU General Public License as published

8 * by the Free Software Foundation, either version 3 of the License,

9 * or (at your option) any later version.

10 *

11 * NOX is distributed in the hope that it will be useful,

12 * but WITHOUT ANY WARRANTY; without even the implied warranty of

13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

14 * GNU General Public License for more details.

15 *

16 * You should have received a copy of the GNU General Public License

17 * along with NOX. If not, see <http://www.gnu.org/licenses/>.

18 */

19

20 #include <boost/bind.hpp>

21 #include <boost/foreach.hpp>

22 #include <boost/shared_array.hpp>

23 #include <sys/time.h>

24 #include <cstring>

25 #include <netinet/in.h>

26 #include <stdexcept>

27 #include <stdint.h>

28 #include "openflow-default.hh"

29 #include "assert.hh"
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30 #include "component.hh"

31 #include "flow.hh"

32 #include "fnv_hash.hh"

33 #include "hash_set.hh"

34 #include "ofp-msg-event.hh"

35 #include "vlog.hh"

36 #include "flowmod.hh"

37 #include "datapath-join.hh"

38 #include <stdio.h>

39 #include <stdio.h>

40 #include <time.h>

41 #include <timeval.hh>

42 #include <iostream>

43 #include "netinet++/ethernetaddr.hh"

44 #include "netinet++/ipaddr.hh"

45 #include "netinet++/ethernet.hh"

46 #include "../../../oflib/ofl-actions.h"

47 #include "../../../oflib/ofl-messages.h"

48 using namespace vigil;

49 using namespace vigil::container;

50 using namespace std;

51 namespace {

52 struct Mac_source

53 {

54 /* Key. */

55 datapathid datapath_id; /* Physical or OpenFlow Virtual Switch

Identifier*/

56 ethernetaddr mac; /* Flow Source MAC. */

57 ipaddr ip; /* Flow Source IP. */

58 mutable int port; /* Port where packets from ’mac’ were seen.

*/

59 Mac_source() : port(-1) { }

60 Mac_source(datapathid datapath_id_, ethernetaddr mac_)

61 : datapath_id(datapath_id_), mac(mac_), port(-1)

62 { }
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63 };

64

65 bool operator==(const Mac_source& a, const Mac_source& b)

66 {

67 return a.datapath_id == b.datapath_id && a.mac == b.mac;

68 }

69

70 bool operator!=(const Mac_source& a, const Mac_source& b)

71 {

72 return !(a == b);

73 }

74

75 struct Hash_mac_source

76 {

77 std::size_t operator()(const Mac_source& val) const {

78 uint32_t x;

79 x = vigil::fnv_hash(&val.datapath_id, sizeof val.datapath_id);

80 x = vigil::fnv_hash(val.mac.octet, sizeof val.mac.octet, x);

81 return x;

82 }

83 };

84

85 Vlog_module log("ONMS-Agent");

86

87 class ONMS

88 : public Component

89 {

90 public:

91 ONMS(const Context* c,

92 const json_object*)

93 : Component(c) { }

94

95 void configure(const Configuration*);

96

97 void install();
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98

99 Disposition handle(const Event&);

100 Disposition handle_dp_join(const Event& e);

101 private:

102 typedef hash_set<Mac_source, Hash_mac_source> Source_table;

103 Source_table sources;

104

105 /* Set up a flow when we know the destination of a packet? This should

106 * ordinarily be true; it is only usefully false for debugging purposes

. */

107 bool setup_flows;

108 };

109

110 void

111 ONMS::configure(const Configuration* conf) {

112 setup_flows = true; // Boolean setting default value true

113 BOOST_FOREACH (const std::string& arg, conf->get_arguments()) {

114 if (arg == "noflow") {

115 setup_flows = false;

116 } else {

117 VLOG_WARN(log, "argument \"%s\" not supported", arg.c_str());

118 }

119 }

120 register_handler(Datapath_join_event::static_get_name(), boost::bind(&

ONMS::handle_dp_join, this, _1));

121 register_handler(Ofp_msg_event::get_name(OFPT_PACKET_IN), boost::bind(&

ONMS::handle, this, _1));

122 }

123

124 void

125 ONMS::install() {

126 }

127

128 Disposition

129 ONMS::handle_dp_join(const Event& e){
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130 const Datapath_join_event& dpj = assert_cast<const Datapath_join_event&>(

e);

131 /*

132 * Install Flow entries in Master Table (Table 0) in each OpenFlow switch

to route incoming packets basing on their identification to the

related VTS.

133 */

134 if (dpj.dpid.as_host() == ? || dpj.dpid.as_host() == 5) {

135 for (int tab=1; tab<N; tab++) { // N is the length of table containing

VTS list.

136 for (int slicenbrport=1; slicenbrport<Q; slicenbrport++) { // Q is the

length of VTS set.

137 Flow f;

138 if (dpj.dpid.as_host() == ? && tab == ? && slicenbrport == ?) {f.

Add_Field("in_port", ?);} // Repeat this for all VTS.

139 Actions *acts = new Actions();

140 Instruction *inst = new Instruction();

141 inst->CreateApply(acts);

142 inst->CreateGoToTable(tab);

143 FlowMod *mod = new FlowMod(0x00ULL,0x00ULL, 0,OFPFC_ADD,

OFP_FLOW_PERMANENT, OFP_FLOW_PERMANENT, 0, 0,

144 OFPP_ANY, OFPG_ANY, ofd_flow_mod_flags());

145 mod->AddMatch(&f.match);

146 mod->AddInstructions(inst);

147 send_openflow_msg(dpj.dpid, (struct ofl_msg_header *)&mod->fm_msg, 0/*

xid*/, true/*block*/);

148 VLOG_DBG(log,"Installing default flow with default priority to send

packets to the Dedicated ONMS Slices Tables on dpid= 0x%"PRIx64"\n"

, dpj.dpid.as_host());

149 }

150 }

151 }

152 /* The behavior on a flow miss is to drop packets

153 so we need to install a default flow */
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154 VLOG_DBG(log,"Installing default flow with priority 0 to send packets

to the controller on dpid= 0x%"PRIx64"\n", dpj.dpid.as_host());

155 if (dpj.dpid.as_host() == ? || dpj.dpid.as_host() == ? || dpj.dpid.

as_host() == ?) {

156 Flow *f = new Flow();

157 Actions *acts = new Actions();

158 acts->CreateOutput(OFPP_CONTROLLER); //add output action to send flow

to OFPP_Controller port: 6633

159 Instruction *inst = new Instruction();

160 inst->CreateApply(acts);

161 FlowMod *mod = new FlowMod(0x00ULL,0x00ULL, 0,OFPFC_ADD,

OFP_FLOW_PERMANENT, OFP_FLOW_PERMANENT, 0, 0,

162 OFPP_ANY, OFPG_ANY, ofd_flow_mod_flags());

163 mod->AddMatch(&f->match);

164 mod->AddInstructions(inst);

165 send_openflow_msg(dpj.dpid, (struct ofl_msg_header *)&mod->fm_msg, 0/*

xid*/, true/*block*/);

166 }

167 else {

168 for (int i=1; i<?; i++) {

169 Flow *f = new Flow();

170 Actions *acts = new Actions();

171 acts->CreateOutput(OFPP_CONTROLLER); // Add output action to send flow

to OFPP_Controller port: 6633

172 Instruction *inst = new Instruction();

173 inst->CreateApply(acts);

174 FlowMod *mod = new FlowMod(0x00ULL,0x00ULL, i,OFPFC_ADD,

OFP_FLOW_PERMANENT, OFP_FLOW_PERMANENT, 0, 0,

175 OFPP_ANY, OFPG_ANY, ofd_flow_mod_flags());

176 mod->AddMatch(&f->match);

177 mod->AddInstructions(inst);

178 send_openflow_msg(dpj.dpid, (struct ofl_msg_header *)&mod->fm_msg, 0/*

xid*/, true/*block*/);

179 }}

180 return CONTINUE;
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181 }

182

183 Disposition

184 ONMS::handle(const Event& e)

185 {

186 const Ofp_msg_event& pi = assert_cast<const Ofp_msg_event&>(e);

187 struct ofl_msg_packet_in *in = (struct ofl_msg_packet_in *)**pi.msg;

188 Flow *flow = new Flow((struct ofl_match*) in->match);

189

190 /* drop all LLDP packets */

191 uint16_t dl_type;

192 flow->get_Field<uint16_t>("eth_type",&dl_type);

193 if (dl_type == ethernet::LLDP){

194 return CONTINUE;

195 }

196

197 uint32_t in_port;

198 flow->get_Field<uint32_t>("in_port", &in_port);

199

200 /* Learn the source. */

201 uint8_t eth_src[6];

202 flow->get_Field("eth_src", eth_src);

203 ethernetaddr dl_src(eth_src);

204

205 if (!dl_src.is_multicast()) {

206 Mac_source src(pi.dpid, dl_src);

207 Source_table::iterator i = sources.insert(src).first;

208 if (i->port != in_port) {

209 i->port = in_port;

210 VLOG_DBG(log, "learned that @mac-src "EA_FMT" is on datapath %s

port %d",

211 EA_ARGS(&dl_src), pi.dpid.string().c_str(),

212 (int) in_port);

213 }

214 } else {
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215 VLOG_DBG(log, "multicast packet source "EA_FMT, EA_ARGS(&dl_src));

216 }

217

218 /* Figure out the destination. */

219 int out_port = -1; /* Flood by default. */

220 uint16_t vlan_vid = -1;

221 uint32_t ip_src;

222 uint32_t ip_dst;

223 uint8_t eth_dst[6];

224 flow->get_Field("eth_dst", eth_dst);

225 ethernetaddr dl_dst(eth_dst);

226 timeval tv;

227 gettimeofday(&tv, NULL);

228

229 timespec time;

230 time.tv_sec = tv.tv_sec;

231 time.tv_nsec = tv.tv_usec * 1000;

232 double t1=(time.tv_sec * 1000000000.0) + time.tv_nsec;

233 if (!dl_dst.is_multicast()) {

234 Mac_source dst(pi.dpid, dl_dst);

235 Source_table::iterator i(sources.find(dst));

236 if (i != sources.end()) {

237 out_port = i->port;

238 flow->get_Field<uint32_t>("ipv4_src", &ip_src);

239 flow->get_Field<uint32_t>("ipv4_dst", &ip_dst);

240 flow->get_Field<uint16_t>("vlan_id", &vlan_vid);

241 VLOG_DBG(log, "No matching Flow sent to Controller: @mac-src "EA_FMT" -

@ipsrc "IP_FMT" - @ipdst "IP_FMT" - datapath ID %s - inport %d -

outport %d - vlan %d -eth_type 0x\"%x\"",

242 EA_ARGS(&dl_src), IP_ARGS(&ip_src), IP_ARGS(&ip_dst),

pi.dpid.string().c_str(),

243 (int) in_port, (int) out_port , (int) vlan_vid,

dl_type);

244 }

245 }
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246 /* Set up a flow if the output port is known. */

247 if (setup_flows && out_port != -1) {

248 Flow f;

249 f.Add_Field("in_port", in_port);

250 f.Add_Field("eth_src", eth_src);

251 f.Add_Field("eth_dst",eth_dst);

252 Actions *acts = new Actions();

253 Instruction *inst = new Instruction();

254 acts->CreateOutput(out_port);

255 inst->CreateApply(acts);

256 FlowMod *mod = new FlowMod(0x00ULL,0x00ULL, 1,OFPFC_ADD,

OFP_FLOW_PERMANENT, OFP_FLOW_PERMANENT, OFP_DEFAULT_PRIORITY,in->

buffer_id,

257 OFPP_ANY, OFPG_ANY, ofd_flow_mod_flags

());

258 mod->AddMatch(&f.match);

259 mod->AddInstructions(inst);

260 send_openflow_msg(pi.dpid, (struct ofl_msg_header *)&mod->fm_msg, 0/*

xid*/, true/*block*/);

261 gettimeofday(&tv, NULL);

262 time.tv_sec = tv.tv_sec;

263 time.tv_nsec = tv.tv_usec * 1000;

264 double t2=(time.tv_sec * 1000000000.0) + time.tv_nsec;

265 VLOG_DBG(log, "Set Flow (Time to push: %.1lf nanoseconds ): @mac-src "

EA_FMT" to @mac-dst "EA_FMT" is on datapath %s inport %d and

outport %d",

266 t2-t1, EA_ARGS(&dl_src), EA_ARGS(&dl_dst), pi.dpid.

string().c_str(),

267 (int) in_port, (int) out_port);

268 }

269 /* Send out packet if necessary. */

270 if (!setup_flows || out_port == -1 || in->buffer_id == UINT32_MAX) {

271 if (in->buffer_id == UINT32_MAX) {

272 if (in->total_len != in->data_length) {

273 /* Control path didn’t buffer the packet and didn’t send us
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274 * the whole thing--what gives? */

275 VLOG_DBG(log, "total_len=%"PRIu16" data_len=%zu\n",

276 in->total_len, in->data_length);

277 return CONTINUE;

278 }

279 send_openflow_pkt(pi.dpid, Nonowning_buffer(in->data, in->

data_length), in_port, out_port == -1 ? OFPP_FLOOD :

out_port, true/*block*/);

280 } else {

281 send_openflow_pkt(pi.dpid, in->buffer_id, in_port, out_port ==

-1 ? OFPP_FLOOD : out_port, true/*block*/);

282 }

283 }

284 return CONTINUE;

285 }

286 REGISTER_COMPONENT(container::Simple_component_factory<ONMS>, ONMS);

287 }
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