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SYSTÈMES MULTI-CLASSIFICATEUR ADAPTATIFS POUR LA
RECONNAISSANCE DE VISAGE EN APPLICATIONS DE RÉIDENTIFICATION

Miguel Angel DE LA TORRE GOMORA

RÉSUMÉ

Dans la vidéo-surveillance, les systèmes décisionnels reposent de plus en plus sur la reconnais-

sance de visage (RV) pour déterminer rapidement si les régions faciales capturées sur un réseau

de caméras correspondent à des personnes d’intérêt. Les systèmes RV en vidéo-surveillance

sont utilisés dans de nombreux scénarios, par exemple pour la détection d’individus sur la liste

noire, la ré-identification de visages, et recherche et récupération. Cette thèse se concentre

sur la RV vidéo-à-vidéo, où les modèles de visages sont créés avec des données de référence,

puis mis à jour avec de nouvelles donées collectées dans des flux vidéo. La reconnaissance

d’individus d’intérêt à partir d’images de visages capturées avec des caméras vidéo est une

tâche qui représente de nombreux défis. Plus particulièrement, il est souvent supposé que

l’aspect du visage des personnes cibles ne change pas au fil du temps, ainsi que les propor-

tions des visages capturés pour des individus cibles et non-cibles sont équivalentes, connues

a priori et fixes. Cependant, de nombreuses variations peuvent se manifester dans les condi-

tions d’observation, par exemple l’éclairage, le brouillage, la résolution, l’expression, la pose

et l’interopérabilité avec la caméra. De plus, les modèles de visages utilisés pour calculer des

correspondances ne sont généralement pas représentatifs car désignés a priori, avec une quan-

tité limitée d’échantillons de référence qui sont collectés et étiquetés à un coût élevé. Enfin,

les proportions des individus cibles et non-cibles changent continuellement durant le fonction-

nement du système.

Dans la littérature, des systèmes adaptatifs multi-classificateur (en anglais, multiple classifier

systems, MCS) ont été utilisés avec succès pour la RV vidéo-à-video, où les modèles de visages

de chaque individu cible sont générés en utilisant un ensemble de classificateurs à 2-classes

(entraînés avec des échantillons cibles et non-cibles). Des approches plus récentes utilisent

des ensembles de classificateurs Fuzzy ARTMAP à deux classes, entraîné avec une stratégie

DPSO (dynamic particle swarm optimization) pour générer un groupement de classificateurs

dont les paramètres sont optimisés, ainsi que la combinaison Booléenne pour la fusion de leur

réponses dans l’espace ROC (Receiver Operating Characteristics). Des ensembles actifs de

classificateurs sensibles au biais ont été récemment proposés, pour adapter la fonction de fusion

d’un ensemble selon le débalancement des classes mesuré sur des données opérationnelles.

Ces approches estiment les proportions cibles contre non-cibles périodiquement au cours des

opérations. La fusion des ensembles de classificateurs est ensuite adaptée à ce débalancement

des classes. Finalement, le suivi du visage peut être utilisé pour regrouper les réponses du

système liées à une trajectoire du visage (captures du visage d’une seule personne dans la

scène) pour une reconnaissance spatio-temporelle robuste, ainsi que pour mettre à jour les

modèles du visage au cours du temps à l’aide des données opérationnelles.
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Dans cette thèse, des nouvelles techniques sont proposées pour adapter les modèles de visages

pour des individus enrôlés dans un système de RV vidéo-à-vidéo. L’utilisation de stratégies

d’auto-mise à jour basées sur l’utilisation de trajectoires est proposée pour mettre à jour le sys-

tème, en considérant les changements brusques et progressifs dans l’environnement de classifi-

cation. Ensuite, des classificateurs adaptatifs sensibles au biais sont proposés pour l’adaptation

du système au débalancement des classes lors de la phase opérationnelle.

Dans le chapitre 2, un cadre adaptatif est proposé pour l’apprentissage partiellement super-

visé des modèles de visages au fil du temps en fonction des trajectoires capturées. Lors des

opérations, des informations recueillies à l’aide d’un suivi de visages et des ensembles de

classificateurs spécifiques à l’individu sont intégrés pour la reconnaissance spatio-temporelle

robuste et l’auto-mise à jour des modèles du visage. Le suiveur définit une trajectoire de vis-

age pour chaque personne qui apparaît dans une vidéo. La reconnaissance d’un individu cible

passe si les prédictions positives accumulées d’une trajectoire dépassent un seuil de détection

pour un ensemble. Lorsque le nombre de prédictions positives dépassent un seuil de mise à

jour, tous les échantillons du visage de la cible de la trajectoire sont combinés avec des échan-

tillons non-cibles (choisi parmi le modèle cohorte et le modèle universel) pour mettre à jour le

modèle du visage correspondant. Une stratégie learn-and-combine est utilisée pour éviter la

corruption de la connaissance lors de l’auto-mise à jour des ensembles. En outre, une stratégie

de gestion de la mémoire basée sur la divergence Kullback-Leibler est proposée pour ordonner

et sélectionner des échantillons de référence cible et non-cible les plus pertinents. Ensuite, les

échantillons choisis sont stockés dans la mémoire alors que les ensembles évoluent. Pour une

preuve de concept, le système proposé a été validé avec des données synthétiques et vidéos de

la base de données Face in Action, émulant un scénario de vérification passeport. Les résultats

mettent en valeur la réponse des systèmes proposés à des changements graduels et brusques

dans l’apparence des visages des individus, tels que l’on trouve dans la vidéo-surveillance,

dans des conditions semi-contrôlées ou non contrôlées de capture. Initialement, les trajec-

toires capturées à partir de vidéos de référence sont utilisées pour l’apprentissage supervisé des

ensembles. Ensuite, des vidéos de plusieurs scénarios opérationnels ont été présentés au sys-

tème, qui a été automatiquement mis-à-jour avec des trajectoires de haut niveau de confiance.

Une analyse des résultats image par image avec des données réelles montre que l’approche

proposée surpasse les systèmes de référence qui ne s’adaptent pas aux nouvelles trajectoires.

De plus, le système proposé offre des performances comparables à des systèmes idéaux qui

s’adaptent à toutes les trajectoires cibles concernées, à travers l’apprentissage supervisé. Une

analyse par individu révèle la présence d’individus particuliers, pour lesquels les ensembles

automatiquement mis à jour avec les trajectoires de visages sans étiquette présentent un avan-

tage considérable. Enfin, une analyse au niveau des trajectoires révèle que le système proposé

permet une RV vidéo-à-vidéo robuste.

Dans le chapitre 3, une extension et une mise en oeuvre particulière du système de RV spatio-

temporelle utilisant des ensembles est proposée, et il est caractérisé en scénarios avec des

changements progressifs et brusques dans l’environnement de classification. L’analyse des

résultats image par image montrent que le système proposé permet d’augmenter la précision

AUC (surface sous la courbe ROC) d’environ 3 % dans les scénarios avec des changements
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brusques, et d’environ 5 % dans les scénarios avec des changements graduels. Une analyse

par sujet révèle les limitations de la reconnaissance de visage avec des variations de pose,

affectant plus de façon significative les individus de type agneaux et chèvre. Par rapport à

des approches de fusion spatio-temporelle de référence, les résultats montrent que l’approche

proposé présente une meilleure capacité de discrimination.

Dans le chapitre 4, des ensembles adaptatifs sont proposés pour combiner des classificateurs

entraînés avec des niveaux de débalancement et complexité variables pour améliorer la per-

formance dans la RV vidéo-à-video. Lors des opérations, le niveau de débalancement est péri-

odiquement estimé à partir des trajectoires d’entrée utilisant la méthode de quantification HDx,

et des représentations d’histogrammes pré-calculés de la distribution des données débalancées.

Les réponses des ensembles sont accumulées pour la reconnaissance vidéo-à-vidéo sensible au

débalancement. Les résultats sur les données synthétiques montrent qu’en utilisant l’approche

proposée, on observe une amélioration significative de la performance. Les résultats sur des

données réelles montrent que la méthode proposée surpasse la performance des techniques de

référence dans des environnements de surveillance vidéo.

Mots clés: Systèmes multi-classificateur, reconnaissance adaptatif de visages, apprentis-

sage semi-supervisé, combinaison sensible au biais, débalancement de classes





ADAPTIVE MULTI-CLASSIFIER SYSTEMS FOR FACE RE-IDENTIFICATION
APPLICATIONS

Miguel Angel DE LA TORRE GOMORA

ABSTRACT

In video surveillance, decision support systems rely more and more on face recognition (FR)

to rapidly determine if facial regions captured over a network of cameras correspond to indi-

viduals of interest. Systems for FR in video surveillance are applied in a range of scenarios,

for instance in watchlist screening, face re-identification, and search and retrieval. The focus

of this Thesis is video-to-video FR, as found in face re-identification applications, where facial

models are designed on reference data, and update is archived on operational captures from

video streams. Several challenges emerge from the task of recognizing individuals of interest

from faces captured with video cameras. Most notably, it is often assumed that the facial ap-

pearance of target individuals do not change over time, and the proportions of faces captured

for target and non-target individuals are balanced, known a priori and remain fixed. However,

faces captured during operations vary due to several factors, including illumination, blur, reso-

lution, pose expression, and camera interoperability. In addition, facial models used matching

are commonly not representative since they are designed a priori, with a limited amount of ref-

erence samples that are collected and labeled at a high cost. Finally, the proportions of target

and non-target individuals continuously change during operations.

In literature, adaptive multiple classifier systems (MCSs) have been successfully applied to

video-to-video FR, where the facial model for each target individual is designed using an en-

semble of 2-class classifiers (trained using target vs. non-target reference samples). Recent

approaches employ ensembles of 2-class Fuzzy ARTMAP classifiers, with a DPSO strategy

to generate a pool of classifiers with optimized hyperparameters, and Boolean combination to

merge their responses in the ROC space. Besides, the skew-sensitive ensembles were recently

proposed to adapt the fusion function of an ensemble according to class imbalance measured

on operational data. These active approaches estimate target vs. non-target proportions peri-

odically during operations distance, and the fusion of classifier ensembles are adapted to such

imbalance. Finally, face tracking can be used to regroup the system responses linked to a fa-

cial trajectory (facial captures from a single person in the scene) for robust spatio-temporal

recognition, and to update facial models over time using operational data.

In this Thesis, new techniques are proposed to adapt the facial models for individuals en-

rolled to a video-to-video FR system. Trajectory-based self-updating is proposed to update

the system, considering gradual and abrupt changes in the classification environment. Then,

skew-sensitive ensembles are proposed to adapt the system to the operational imbalance.

In Chapter 2, an adaptive framework is proposed for partially-supervised learning of facial

models over time based on facial trajectories. During operations, information from a face
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tracker and individual-specific ensembles is integrated for robust spatio-temporal recognition

and for self-update of facial models. The tracker defines a facial trajectory for each individual

in video. Recognition of a target individual is done if the positive predictions accumulated

along a trajectory surpass a detection threshold for an ensemble. If the accumulated positive

predictions surpass a higher update threshold, then all target face samples from the trajec-

tory are combined with non-target samples (selected from the cohort and universal models) to

update the corresponding facial model. A learn-and-combine strategy is employed to avoid

knowledge corruption during self-update of ensembles. In addition, a memory management

strategy based on Kullback-Leibler divergence is proposed to rank and select the most rele-

vant target and non-target reference samples to be stored in memory as the ensembles evolves.

The proposed system was validated with synthetic data and real videos from Face in Action

dataset, emulating a passport checking scenario. Initially, enrollment trajectories were used for

supervised learning of ensembles, and videos from three capture sessions were presented to the

system for FR and self-update. Transaction-level analysis shows that the proposed approach

outperforms baseline systems that do not adapt to new trajectories, and provides comparable

performance to ideal systems that adapt to all relevant target trajectories, through supervised

learning. Subject-level analysis reveals the existence of individuals for which self-updated en-

sembles provide a considerable benefit. Trajectory-level analysis indicates that the proposed

system allows for robust spatio-temporal video-to-video FR.

In Chapter 3, an extension and a particular implementation of the ensemble-based system for

spatio-temporal FR is proposed, and is characterized in scenarios with gradual and abrupt

changes in the classification environment. Transaction-level results show that the proposed

system allows to increase AUC accuracy by about 3% in scenarios with abrupt changes, and

by about 5% in scenarios with gradual changes. Subject-based analysis reveals the difficulties

of FR with different poses, affecting more significantly the lamb- and goat-like individuals.

Compared to reference spatio-temporal fusion approaches, the proposed accumulation scheme

produces the highest discrimination.

In Chapter 4, adaptive skew-sensitive ensembles are proposed to combine classifiers trained

by selecting data with varying levels of imbalance and complexity, to sustain a high level the

performance for video-to-video FR. During operations, the level of imbalance is periodically

estimated from the input trajectories using the HDx quantification method, and pre-computed

histogram representations of imbalanced data distributions. Ensemble scores are accumulated

of trajectories for robust skew-sensitive spatio-temporal recognition. Results on synthetic data

show that adapting the fusion function with the proposed approach can significantly improve

performance. Results on real data show that the proposed method can outperform reference

techniques in imbalanced video surveillance environments.

Keywords: Multiple Classifier Systems, Adaptive Face Recognition, Semi-Supervised

Learning, Skew-Sensitive Combination, Class Imbalance
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INTRODUCTION

Video-based face recognition (FR) is employed more and more to assist operators of intelligent

video surveillance (VS) systems in industry and public sectors, due in large part to the low cost

camera technologies and the advances in the areas of biometrics, pattern recognition and com-

puter vision. Decision support systems are employed in crowded scenes (airports, shopping

centers, stadiums, etc.), where an human operator monitors live or archived videos to analyze

a scene (Hampapur et al., 2005). VS systems perform a growing number of functions, ranging

from real time recognition and video footage analysis to fusion of video data from different

sources (Gouaillier, 2009). FR in VS (FRiVS) can be employed in a range of still-to-video (as

found in, e.g., watchlist screening) and video-to-video (as found in, e.g., face re-identification)

applications. In still-to-video FR, a gallery of still images is employed in the construction of

facial models, whereas in video-to-video FR facial models are designed from video streams.

Of special interest in this Thesis is the automatic detection of a target individual of interest

enrolled to a video-to-video FR system. In this human-centeric scenario, live or archived videos

are analyzed, and the operator receives an alarm if it detects the presence of a target individual

enrolled to the system. Due to the high amount of non-target individuals appearing in crowded

scenes, avoiding false alarms while maintaining a high detection rate is challenging for such a

system. The design of a FR system for real world applications raises many challenges.

Problem Statement

FR systems employed in VS face numerous problems that are related to the time and spatial

variations in the real world capture conditions. For instance, the natural ageing of people induce

gradual changes in the facial appearance of enrolled individuals after enrollment. Besides,

variations in capture conditions like the position of the camera, lighting and pose induce abrupt

changes in the classification environment. In addition, facial models are designed a priori

with a limited amount of reference faces that are often captured under controlled conditions at

enrollment time, and therefore loose their representativeness over time. The matching process
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is also challenging due to changes in camera interoperability issues. The performance of a

system for video-to-video FR is significantly degraded due to these factors.

Several classification systems have been proposed that can be employed for face matching in

VS applications (De-la Torre et al., 2012b; Li and Wechsler, 2005; Pagano et al., 2012; Polikar

et al., 2001). Recent approaches take advantage of modular architectures with one ensemble

of 2-class classifiers to design the facial model of each target individual (trained using target

vs. non-target reference samples) Pagano et al. (2012). These modular strategies reduce the

complexity of the problem faced by multi-class classifiers to find multiple decision frontiers,

and add the robustness of ensemble techniques.

Adaptive multiple classifier systems (MCS) capable of incremental learning allow to update

the facial models with new reference facial captures (Polikar et al., 2001; Connolly et al.,

2010a; De-la Torre et al., 2012a). For example, systems like (De-la Torre et al., 2012a,b)

allow to design a facial model for each target individual using an adaptive ensemble of 2-class

classifiers. However, the requirement of manual acquisition and labeling of the new reference

data is costly or unfeasible in practice.

The proposed strategy to address this problem consists in a system that is initially designed

with reference samples, and is capable of learning highly confident operational data through

self-update, improving this way the representativeness of the facial models. However, tech-

niques in literature are not adapted for video-to-video FR and face re-identification applica-

tions. Adaptive biometric systems have been proposed to incorporate new reference samples

based on semi-supervised learning schemes (Rattani, 2010; Marcialis et al., 2008; Poh et al.,

2009). Self-update strategies allow to reduce or eliminate this labeling cost at expenses of some

false updates, affecting a trade-off between self-adaptation and accuracy of facial models.

The effects of the differences in class proportions (imbalance) the performance of classifiers

have been widely studied in pattern recognition literature Guo et al. (2008); Landgrebe et al.

(2006); Forman (2006); Lopez et al. (2013), and several ensemble-based methods to train en-

sembles on imbalanced data have been proposed Galar et al. (2011). Algorithms designed
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for environments with data distributions that change over time can be categorized according

to the use of a mechanism to detect concept drift or change Ditzler and Polikar (2013). Ac-

tive approaches seek explicitly to determine whether and when a change has occurred in the

class proportions before taking a corrective action Radtke et al. (2013a,b); Ditzler and Polikar

(2013). Conversely, passive approaches assume that a change may occur at any time, or is

continuously occurring, and hence the ensembles are updated every time new data becomes

available Ditzler and Polikar (2013); Oh et al. (2011). The advantage of active approaches

mainly consists in the avoidance of unnecessary updates. However, they are prone to both

false positive and false negative drift detections, with the respective false updates and false

no-updates. Passive approaches avoid some of these problems at an increased computational

cost due to the constant update.

A representative example of active approaches for changing imbalances is the skew-sensitive

Boolean combination (SSBC) that continuously estimates the class proportions using the Hellinger

distance between histogram representations of operational and validation samples Radtke et al.

(2013b). Every time the operational imbalance changes, SSBC selects one of the pre-calculated

fusion functions that correspond to a set of prefixed imbalances. However, the limited number

of validation imbalance levels that can be used to approximate the imbalance in operations is a

limiting factor for the estimation of operational imbalance. Rather than selecting the closest im-

balanced histogram representations, more sophisticated estimation methods may be employed

for accurate estimation of the class proportions. Moreover, although it is scarcely exploited, the

abundant non-target samples in video surveillance allow to produce training sets with different

complexities and imbalances, and use them to generate diverse pools. A specialized combina-

tion and selection scheme of these diversified pools may lead to robust ensembles, considering

both the different levels of complexity and imbalance Lopez et al. (2013).

This discussion raises various research questions that require to be addressed. For instance,

what kind of architecture would allow for facial models that provide the best performance for

each of the individuals enrolled to the system? Given the abundant videos from non-target indi-

viduals available for system design, what is a good strategy to select representative non-target
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samples to train an individual specific ensemble, and yet avoid a bias toward the non-target

class? Since adaptive MCS employ a long term memory (LTM) to avoid knowledge corruption

while learning incrementally, what is an effective strategy to avoid running out of resources

after several updates? Which is a good strategy to combine spatial and temporal informations

from videos? How the system operates in scenarios with gradual and abrupt changes in the

distribution of faces in the feature space? Given the abundant non-target samples, can these

samples be employed to train the ensembles that perform better under imbalanced conditions?

And finally, how individual-specific ensembles can be efficiently adapted under abrupt and

gradual environmental changes and inconstant proportions of target and non-target individu-

als?

Objective and contributions

In this Thesis, a new framework for adaptive MCSs is proposed for partially-supervised learn-

ing of facial models over time based on facial trajectories. This framework is designed to

implement systems for video-to-video FR, as needed for face re-identification applications,

where gradual or abrupt environmental changes occur over time. In Bayesian decision the-

ory, these changes correspond to changes in the probability density function of the faces (e.g.

appearance of the face), or the prior probabilities (class proportions). The main contribu-

tion of this Thesis includes the proposal of an adaptive MCS for video-to-video FR for video

surveillance, capable of spatio-temporal recognition and self-updating based on highly confi-

dent facial trajectories captured in scene. The system is also capable of adapting the fusion

function of individual-specific classifiers to the operational imbalance in video-to-video FR.

This contribution is divided into three parts.

The first part (Chapter 2) consists in the proposal of a whole framework for partially-supervised

learning of facial models, which adapts over time based on operational face trajectories. The

proposed framework consists of a segmentation module for face detection, a face tracker, a

individual-specific modular classification system, a decision fusion system, a design/update

system, and a sampling selection system. On the whole, it provides the mechanisms for the
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design and self-update of individual-specific facial models based on a modular classification

system with one adaptive ensemble of detectors (EoD) per individual of interest. During op-

erations, tracking IDs are combined with the responses from individual-specific ensembles for

robust spatio-temporal recognition and for self-update of facial models. Trajectories are formed

by regrouping facial regions with the same tracking ID (provided by the tracker), ensuring that

all belong to the same individual that appears in a video.

Recognition of a target individual is achieved when the positive predictions accumulated along

a trajectory surpass an individual-specific detection threshold. If the accumulated positive en-

semble predictions surpass a higher update threshold, then all target face samples from the

trajectory are combined with non-target samples to update the corresponding facial model.

The most representative non-target samples for training and validation are selected from the

cohort and universal models employing condensed nearest neighbor (CNN) selection, and a

learn-and-combine strategy is employed to avoid knowledge corruption during self-update of

ensembles, and Boolean combination (BC) is used to combine classifiers. In addition, a se-

lection strategy for memory management based on Kullback-Leibler divergence is proposed

to rank and select the most relevant target and non-target reference samples to be stored in

memory as the ensembles evolves.

In Chapter 3, a particular implementation of the adaptive MCS is proposed to maintain and

update independent detectors, using ensembles of 2-class PFAM classifiers per individual to

discriminate between the target and non-target individuals. The one-sided selection (OSS)

strategy is employed to select non-target training samples (replacing the original CNN), and

the PFAM classifiers are generated using a DPSO training strategy. A learn and combine strat-

egy is employed for adaptation of facial models, avoiding this way the corruption of knowledge.

Iterative boolean combination (IBC) is employed to dynamically select individual thresholds

and combination functions in ROC space. This implementation of the system was character-

ized using the CMU-FIA database, emulating a scenario with gradual changes (e.g. aging), and

abrupt changes (e.g. pose). For a wide picture of the system operation under real world con-
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ditions, a global evaluation was performed using a three-levels analysis: transaction-, subject-

and trajectory-based.

Finally, in Chapter 4, adaptive skew-sensitive ensembles are proposed to adapt the system to

the continuously changing operational imbalance. In the proposed active approach, the oper-

ational imbalance is approximated with HDx quantification, showing a lower mean squared

error when compared to other techniques (Gonzalez-Castro et al., 2013). And the generation

of base classifiers take advantage of the availability of abundant non-target samples to train

ensemble members on different levels of complexity and imbalance (Lopez et al., 2013).

For proof-of-concept, the proposed system was validated with synthetic data and real videos

from Face in Action dataset, emulating a passport checking scenario. The analysis with real

data is divided in three levels. Transaction-based analysis considers the response of the system

to each captured facial region, and performance measures are drawn in the ROC and PROC

spaces. Subject-based analysis evaluates the performance of the system for each target in-

dividual, employing the categorization provided by the Doddington zoo taxonomy. Finally,

trajectory-based analysis allows to evaluate the overall performance of the system involving all

the modules (segmentation, tracking, classification and decision fusion).

Structure of the Thesis

This Thesis is organized into four chapters that describe the different parts of the steps followed

through the advance of the research process (see Figure 0.1). Chapter 1 presents a survey of the

most recent advances of FR in video and adaptive biometrics, as well as the pattern recognition

concepts used for design and evaluation of the system after each experimentation.

In Chapter 2 a framework for partially-supervised learning of facial models over time based on

facial trajectories is proposed and described. Chapter 2 was published as a special issue article

in the journal Information Fusion from Elsevier (De-la Torre et al., 2014a).
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Figure 0.1 Structure of the Thesis. Solid arrows indicate the sequence of the chapters,

whereas dotted arrows indicate the relationship between a chapter and the appendixes.

Underlined titles in the boxes indicate that the material in the chapter (or appendix) has

been submitted to a journal for publication

Appendix IV describes an individual-specific strategy for the management of reference sam-

ples stored in a long term memory, suitable to be employed in the framework proposed in

Chapter 2. The content of Appendix IV corresponds to an extended version of a paper pre-

sented in the international conference on imaging for crime prevention and detection (De-la

Torre et al., 2013), and was submitted to the journal IET-Computer Vision after invitation.

Chapter 3 describes the proposed implementation of the ensemble-based system for spatio-

temporal FR and the selection of parameters for gradual and abrupt changes in the classification

environment. Chapter 3 was accepted with revision to be published in the journal Machine

Vision and Applications from Springer (De-la Torre et al., 2014b).
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In Chapter 4, skew-sensitive ensembles have been proposed for adaptive skew-sensitive FR in

video surveillance, employing a strategy that takes advantage of various levels of complexity

and imbalance to design ensembles of classifiers. Chapter 4 was submitted to the journal

Pattern Recognition from Elsevier.



CHAPTER 1

A REVIEW OF TECHNIQUES FOR ADAPTIVE FACE RECOGNITION IN VIDEO
SURVEILLANCE

Intelligent video surveillance systems that employ face recognition (FR) for decision support

are important in many private, but mostly public sector applications. The extensive use of

FR systems is due in part to the universality of the human face as a biometric trait that can

be covertly captured, the availability of low cost cameras, and to advances in biometrics, pat-

tern recognition and image/video processing. These systems are being considered for video

surveillance in crowded scenes (airports, shopping centers, stadiums, etc.) In these scenes, an

operator observes the scene through surveillance cameras and monitor who or what is in scene

(Hampapur et al., 2005). Although many decision support systems exist, there are still many

functions to be developed or improved. These areas of opportunity for researchers range from

the real time recognition to fusion of video data from different sources, passing through the

design of compact biometric models and the preservation of performance over time (Gouail-

lier, 2009; Ahmad et al., 2008). Of special interest in this Thesis is the automatic detection

of individuals of interest enrolled to a system, based on the appearance of their face, and the

preservation of system’s performance regardless of variations over time of a target individual’s

appearance.

In the human-centeric scenario assumed in this thesis, an operator monitors the surveilled place

employing an intelligent video surveillance system capable of video-to-video FR (for applica-

tions like, e.g. real-time monitoring or search and retrieval from video archive.) The system

generates a set of alarms on each of the individuals of interest enrolled to the system, and the

operator must confirm the detection –that the individual detected by the system truly corre-

sponds to an individual of interest. In this scenario, facial models are designed considering

spatial and temporal information from video streams for video-to-video FR.

In this Chapter, a literature review was conducted in the different areas related to the most

recent advances on systems for video-to-video FR for face re-identification. The Chapter sum-
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marizes the most up-to-date academic systems and technologies for FRiVS, semi-supervised

learning, adaptive biometrics, incremental and on-line learning of classifiers, and adaptive

skew-sensitive ensembles including passive and active approaches.

1.1 Face Recognition in Video-Surveillance

Video technologies have been widely investigated over the last years (Zhao et al., 2003; Wang

et al., 2009; Matta and Dugelay, 2009). Challenges addressed by video based FR systems are

being investigated from diverse research areas, including computer vision, pattern recognition

and perception. Figure 1.1 depicts a general biometric system for video to video FR, where one

or several cameras capture the real world scene over time, and the system responds according

to its particular functionality. According to Figure 1.1, the video frames feed a segmentation

module that detects and isolates the facial regions of interest (ROIs) used for tracking and clas-

sification. The tracking system follows the facial ROI across frames, whereas the classification

system compares feature representations of the input ROIs against facial models stored in a

biometric database. Then, tracking IDs and classification scores are combined for enhanced

spatio-temporal recognition.

Figure 1.1 A general biometric system for FRiVS
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Segmentation consists on isolating and retrieving the facial region of interest (ROI) (position

and the pixels) in the input frame(s). The wide range of techniques appearing in literature

are generally categorized into four types. Knowledge based methods work with predefined

rules based on human knowledge to determine if an image is a face. Feature invariant ap-

proaches find face structure related features, which are robust to pose and lighting condi-

tions. Template matching methods employ pre stored face templates to decide if an image

is a face. Appearance-based methods use learning strategies to produce face models from a

set of training samples. The general trend indicates that appearance-based methods produce

superior performance than others (Yang et al., 2002), and the most representative example of

an appearance-based method is the so called Viola-Jones algorithm (Viola and Jones, 2004).

In that work authors represent images using AdaBoost to create a classifier that selects critical

visual features, and propose a “cascade” classifier combination method to extract faces. Since

the Viola-Jones algorithm, boosting based face detection schemes have evolved as de-facto

standard of face detection in real world applications (Zhang and Zhang, 2010).

The feature extraction module extracts and selects the most discriminant measurable charac-

teristics from the ROIs to form a feature vector. A good feature extractor would yield a rep-

resentation that facilitates the task of classification. Holistic, feature-based (structural) and

hybrid matching methods require then compatible features. Of special interest are the holistic

features, which use the whole face (ROI) as the raw input to the FR system. Common feature

extraction techniques of this type are the eigenfaces based on principal component analysis

(PCA) (Turk and Pentland, 1991), Fisherfaces that take advantage of linear discriminant anal-

ysis (LDA) (Belhumeur et al., 1997; Martinez and Kak, 2001) or a combination of both LDA

and PCA (Marcialis and Roli, 2002). Independent component analysis has been also proposed

as a generalization of PCA (Bartlett et al., 2002), with the advantages that the transformation

matrix can be estimated with limited/unlabeled data, both local and global features are consid-

ered and higher order statistics between pixels/images are exploited. Variants of PCA which

take advantage of information of the two dimensions in the image have also been proposed,

like the 2D2PCA (Zhou and Zhang, 2005). This last approach is sometimes preferred given its
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accuracy at a reduced set of coefficients for image representation. Some other approaches like

Gabor filters are used to extract features characterized by spatial frequency, locality and orien-

tation to compensate variations that occur due to change in illumination, pose and expression.

Local binary patterns (LBP) is also used to represent the face, and address the problem of light-

ing variations LBP (Ojala et al., 1996; Marcel and Rodriguez, 2007). Once the feature vector

is defined, the most representative subset of features is selected to reduce the dimensionality of

the feature space.

The classification or matching module compares the feature vector to facial models within

the biometric database, producing a classification score (similarity or distance based). Match-

ing approaches have been divided in holistic, feature-based, and hybrid methods (Zhao et al.,

2003). Holistic methods like eigenfaces or Fisherfaces use the whole set of pixels from a face

to obtain a smaller representation, and then apply matching for recognition. Feature-based

methods like graph matching or hidden Markov models typically use positions and statistics

of local features (eyes, nose and mouth). Hybrid methods like modular eigenfaces use local

features as well as the whole set of pixels from the face region.

The Spatio-temporal fusion module applies a threshold to the score in order to produce a de-

cision on the input ROIs, that depends on the functionality of the system (e.g. accept/ reject,

detect, identify). In that sense, hyperparameters and architecture of the classifier, together with

the parameters of the decision module (e.g. user specific threshold), constitute the biometric

model corresponding to an individual of interest enrolled to the system (biometric database).

Approaches for video based FR combine temporal and feature informations to improve match-

ing performance. Matta and Dugelay categorize existing approaches in those that neglect tem-

poral information, and those that propose strategies to exploit temporal information (Matta and

Dugelay, 2009). Two variants can be distinguished among spatio-temporal FR approaches.

Tracking-then-recognition approaches use segmentation to first crop a detected face, and then

track the facial region over time. These approaches typically perform face matching on each

frame, and then use majority voting for a final result. Tracking-and-recognition approaches



13

attempt to simultaneously track and recognize, and may combine temporal and spatial infor-

mation in a unified manner (Barry and Granger, 2007; Ekenel et al., 2010; Zhou et al., 2004),

or integrate tracking and recognition within a single algorithm (Franco et al., 2010; Lee et al.,

2005; Matta and Dugelay, 2006). This categorization is shown in Table 1.1.

Table 1.1 Categorization of spatio-temporal approaches for FR in video

Temporal Information Approach

Neglected

Eigenfaces (Turk and Pentland, 1991)

Fisherfaces (Matta and Dugelay, 2009)

Active appearance models (Matta and Dugelay, 2009)

Radial basis function neural networks (Matta and Dugelay, 2009)

Elastic graph matching (Matta and Dugelay, 2009)

Hierarchical discriminative regression trees (Matta and Dugelay, 2009)

Unsupervised pairwise clustering techniques (Matta and Dugelay, 2009)

Open Set TCM-kNN (Li and Wechsler, 2005)

Ensembles of Fuzzy ARTMAP classifiers (Pagano et al., 2012)

Exploited

Tracking-

then-

recogni-

tion

Fisherfaces with facial optical flow (Chen et al., 2001)

Dictionary-based face recognition (Chen et al., 2014)

Score and quality driven matching (Despiegel et al., 2012)

HMM extension for video (Liu and Cheng, 2003)

Tracking-

and-

recogni-

tion

What-and-Where fusion Neural Network (Barry and Granger, 2007)

Local appearance-based face models (Ekenel et al., 2010)

Tracking and Recognition using Probabilistic Appearance Manifolds (Lee et al., 2003, 2005)

Stochastic tracking and recognition through particle filtering (Zhou et al., 2004)

GMMs on unconstrained head motion (Matta and Dugelay, 2006)

Recognition confidence and interframe continuity (Franco et al., 2010)

From approaches in literature, it can be seen that recognition performance in video-based

approaches is highly degraded by variations in pose, illumination and expression. Spatio-

temporal approaches that integrate contextual information over time, and decisions over a se-

quence of frames in general achieve more robust and accurate performance (Matta and Duge-

lay, 2009). An interesting case of spatio-temporal combination is the method proposed by

Barry et al. (Barry and Granger, 2007), where a what-and-where fusion neural network is used

to combine classifier responses (Fuzzy ARTMAP) with location of faces (Kalman filter bank).

1.1.1 Specialized Architectures for FRiVS

Despite the nature of the task, FRiVS has been addressed by only a few authors as an open set

problem. This problem consists in managing the fact that there are individuals that might be
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rejected, but no information is available on them. Specifically in a surveillance scenario, the

amount of unknown (non-target) individuals that may appear in scene usually greatly outnum-

ber the (target) individuals enrolled to the system (See Figure 1.2).

Figure 1.2 Open set (a) and its specialization watch list (b) tasks,

extracted from (Li and Wechsler, 2005)

Some performance tests (like FRVT2002) evaluate face recognition algorithms applying a

threshold to the output scores of algorithms to decide if the individual is accepted as indi-

vidual of interest or rejected. Then, identification is performed by comparing such a threshold.

Classification architectures that have been found that directly address the open set problem

in face recognition are not numerous. For instance, Li and Wechsler use a modified version

of k-NN called TCM-kNN (Transduction Confidence Machine- k Nearest Neighbors) which

considers the new input patterns in order to tune up the rejection threshold (Li and Wechsler,

2005). Tax and Duin propose in (Tax and Duin, 2008) a multi class classifier formed by 1-class

binary classifier per class, in which posterior probabilities are normalized to apply a common

rejection threshold to all classes, but adapted to each distribution. It is interesting that some

results show that the smaller the list of individuals enrolled to the system, the better perfor-

mance is achieved (Li and Wechsler, 2005; Zhao et al., 2003). This is consistent with idea that

individual specific parameters (a sub-system specialized on each individual) might outperform

global approaches. This idea is not new, and has been addressed in literature by estimating user

specific parameters and thresholds. This strategy leads to a better estimation of facial models
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using a specialized matcher for each individual in a modular approach (Bengio and Mariéthoz,

2007; Jain and Ross, 2002; Pagano et al., 2012). And from the classification point of view, it

is also known that modular approaches with a classifier per class generally outperform mono-

lithic approaches, specially when data is limited and the classification task is complex (Oh and

Suen, 2002; Kapp et al., 2007).

The approach proposed by Kamgar and Parsi, that identifies the decision region(s) in the feature

space for each individual face by training a dedicated feed-forward neural network for each

individual of interest (Kamgar-Parsi et al., 2011). Another example of such a system is the

ensemble of detectors (EoD) designed for each person in a watch list. Non-target samples

are retrieved from the CM (database maintained with trajectories from non-target individuals

of interest) and the UM (database with training samples from unknown people appearing in

scene). Base classifiers are co-jointly trained using a training strategy based on DPSO. It allows

for the generation of a diversified pool of ARTMAP neural networks, and trained detectors are

then selected and combined using Boolean combination (BC) (Pagano et al., 2012).

In other applications like speaker recognition, the use of the so called “Universal Background

Model” to discriminate the target voice from all other sounds is widely used. Also the co-

hort model uses selected samples from non-target known voices to discriminate known and

unknown speakers in open set speaker identification (Brew and Cunningham, 2009, 2010).

From all this, we can see that the surveillance problem can be efficiently addressed as multi-

ple detection problems. This is also consistent with the user-specific parameter optimization,

and the use of samples from a negative class (the cohort model) have also provided a better

discriminative estimation as it has been applied in speaker verification applications. Besides

that, experimental evidence shows that multiple discriminative classifiers generally need less

careful calibration and training set selection than generative models (Drummond, 2006). Also

ensemble techniques that take advantage of decision level combination are suitable of being

used to achieve better performance.
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1.1.2 Challenges of FRiVS

Many challenges have been found in FRiVS that remain as a research area. As stated by Zhao

et al. in (Zhao et al., 2003), FR from outdoor images of dense scenes, under unconstrained

conditions, is still a research problem. This problem has been addressed by considering time

information in video-based approaches (Matta and Dugelay, 2009). However noisy sensed data

from the complex, changing environment may lead biometric model that does not correspond

to the true biometric samples, which affects directly the accuracy of the matching algorithm.

Overlapping class distributions due to inter-class similarity also increases the number of false

alarms produced by the system. Facial models designed with a limited set of training data from

the complex data distribution of faces in feature space are scarcely representative. Even if the

facial models are representative, most FR systems assume that face samples in operation are

acquired by the same sensor as the used to acquire training data, which is not necessarily true

and affect accuracy. Also factors like an inappropriate interaction of the biometric system with

the sensor, and inherent scene properties like environmental or temporal changes of the true

distribution of faces in feature space, may degrade the accuracy of the system (Rattani, 2010;

Poh et al., 2009). The quality of facial models is then a critical issue in the overall biometric

application performance. The recognition problem becomes more challenging if we consider

that faces do not remain static over time, and present either gradual (e.g. aging) or abrupt (e.g.

pose, illumination) changes along the system’s operation.

Representative works for FR in video consider the task as an open set problem, where the

non-target individuals greatly overcome the target individual of interest. Although FR in video

can be addressed with multi-class classifiers, architectures with ensembles of 2-class classifiers

(target vs. non-target) take advantage of individual-specific classification parameters, and use

the information provided by the abundant non-target samples for increased discrimination.

Another challenge is the retrieval of representative data to design the facial models, which

is commonly an expensive (or sometimes not possible possible) activity that require manual

labeling of representative images from video archive. Automatic labeling is commonly ad-
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dressed in adaptive biometrics by partially-supervised learning techniques, that take advantage

of system responses to select label operational samples for system update. The so acquired

samples are typically added to a gallery for template matching, but can also be employed for

the update of facial models designed with incremental learning classifiers.

The focus of this Thesis lies on the investigation of adaptive FR systems that employ modu-

lar architectures with one ensemble of 2-class classifiers per individual of interest enrolled to

the system. Adaptive biometric systems may provide initial high performance on face-based

video-surveillance, and maintain or increase this performance after adapting with new refer-

ence (operational) data. The problem is addressed at the classification stage, considering the

accurate design of facial models, and the use of semi-supervised learning to incorporate new

knowledge to the biometric database.

1.2 Adaptive Face Recognition

1.2.1 Semi-Supervisd Learning

Many researchers have recently focused on the interesting area of updating biometric models

over time employing new acquired data. These adaptive biometric systems can be categorized

according to the way class labels are obtained. Unsupervised approaches do not require class

labels to update biometric models, and a simultaneous recognition and update is performed.

On the other hand, Supervised approaches use only labeled data previously acquired in an off-

line update. Approaches in which biometric models are built supervised, and unsupervised

adaptation is performed online, are also called partially-supervised or semi-supervised.

Table 1.2 shows different approaches to adapt facial models as new data becomes available,

either from daily operations or security reports.

It is important to note that even if matching algorithm is a supervised classifier, the construction

or adaptation of biometric models can be performed in an unsupervised way. This is the case

of the approach described in (Mou et al., 2006; Mou, 2010), where author use the classification
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Table 1.2 Different adaptive approaches for FR and their methods to build and adapt

facial models

Approach Build BM Adaptation BM Matcher
Eigenfaces (Turk and Pentland, 1991) Supervised Unsupervised 1-NN

(Okada et al., 2001) Supervised Unsupervised Elastic Bunch

Graph

(Mou et al., 2006; Mou, 2010) Unsupervised Unsupervised Distance based

(Black box: FaceVACS)

(Rattani et al., 2008b; Rattani, 2010) Supervised Unsupervised Graph Matching

(Singh et al., 2010) Supervised Unsupervised 2ν-Online Granular SVM

(Connolly et al., 2010a) Supervised Supervised Fuzzy ARTMAP

(Connolly et al., 2010b) Supervised Supervised Ensemble of Fuzzy ARTMAP

(Franco et al., 2010) Supervised Unsupervised Distance-based template matching

(Ekenel et al., 2010) Supervised Unsupervised (adapt thresholds) kNN (DTM and DT2ND)

(De-la Torre et al., 2014a) Supervised Unsupervised Ensembles of PFAM classifiers

algorithm as a black box that produces a score (distance based), and the decision of incorporat-

ing or not a new sample is based on rules that compare a threshold to its corresponding score.

In a human centered scenario, where new labeled data from individuals of interest becomes

available (e.g. due to security reports), semi-supervised approaches seem more interesting

since human knowledge can be combined with human expertise.

1.2.2 Adaptive Biometrics

In the literature, several approaches allow for supervised adaptation providing reliable results

(De-la Torre et al., 2012a; Connolly et al., 2012; Tax and Duin, 2008), and yet obtaining

labeled reference samples is costly or impractical. To overcome this difficulty, some semi-

supervised methods have been introduced for automatic template updates (Roli and Marcialis,

2006; Franco et al., 2010; Roli et al., 2007, 2008; Okada et al., 2001; Rattani et al., 2008a,

2009b). This chapter focuses on the semi-supervised updating of biometric models. Self-

training and co-updating are two well-known algorithms for semi-supervised adaptation using

template matching.

In self-update methods (Roli et al., 2007), the biometric models are first designed storing sam-

ples from a labeled data set DL in a template gallery G . Prediction is possible by applying a

decision threshold γd to the similarity score produced after template matching. Then, during
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operations, similarity scores are produced for the unlabeled samples, and those with a high

degree of confidence (surpassing an updating threshold γu ≥ γd), are integrated to the gallery

G , thereby updating the corresponding biometric models. The notion of “high degree of confi-

dence” is subjective, and depends on both the matching algorithm and the application domain,

but an update threshold higher or equal than the prediction threshold is commonly used. This

procedure is detailed in Algorithm 1.1.

Algorithm 1.1: Self-update algorithm to adapt a gallery for template matching

Input :

G = {t1, ..., tN} // Gallery with initial templates
D = {d1, ...,dL} // Unlabeled adaptation set

Output :

G ′ = {t1, ..., tN , ..., tM}, M ≥ N // Updated template gallery

Estimate threshold γu ≥ γd for the templates in G
G ′ ⇐ G // Initialize with G
// For all samples dl ∈ D
for l = 1, ...,L do

// For all templates in the gallery tl ∈ G
for n = 1, ...,N do

sn,l ⇐ similarity_measure(dl , tn) // Compute score against all samples in G

sl ⇐ max{sn,l : n = 1, ...,N}
if sl > γu then

G ′ ⇐ G ′ ∪dl // Include the sample surpassing γu in the new data set

Co-update is a semi-supervised learning strategy adapted for use with two diversified matchers

with galleries specialized on distinct biometric traits, which are designed to improve perfor-

mance mutually (Roli et al., 2007). For example, in (Roli et al., 2007), authors propose the use

of fingerprints and the face, using co-training for semi-supervised updates of the facial and fin-

gerprint models. Algorithm 1.2 presents the co-training algorithm. The procedure starts with

the design of the two matchers with the labeled templates in galleries G1 and G2, and selecting

ad-hoc the thresholds for decision (γd
1 and γd

2 ) and update (γu
1 and γu

2 ). Once the unlabeled

sets D1 and D2 are collected, both matchers are used to label the samples, and those with high

degrees of confidence (at least in one of the matchers) are added to the updated galleries G ′
1

and G ′
2. Also the decision and update thresholds are be updated over time in accordance with

the newly acquired data. A potential advantage of the co-update algorithm is that it can retrieve
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update samples that are not typical of the distribution of target data from a single trait, allowing

adaptation to diverse, possibly abrupt changes.

The advantages of adapting a biometric system using operational data carries an inherent risk.

There exists a trade-off between the false updates and false rejections that affect of perfor-

mance. A conservative threshold (or other parameters in the biometric model) may allow a

system without false updates, but also a system that is never adapted to changes in the environ-

ment. Conversely, a less conservative threshold may contribute to increase in the number of

false updates and the inherent deterioration of biometric models. Following this reasoning, we

can easily see that a good selection of adaptation criteria (decision threshold) is crucial in the

design of the system.

Algorithm 1.2: Co-update algorithm to adapt a gallery for template matching

Input :

G1 = {t1
1 , ..., t

1
N1
}

and G2 = {t2
1 , ..., t

2
N2
} // Galleries with initial templates

D1 = {d1,1, ...,dL,1}
and D2 = {d1,2, ...,dL,2} // Unlabeled adaptation sets, dl,1 corresponds to dl,2
Output :

G ′
1 = {t1

1 , ..., t
1
N1
, ..., t1

M1
},

M1 ≥ N1 // Updated galleries for both modalities

G ′
2 = {t2

1 , ..., t
2
N2
, ..., t2

M2
}, M2 ≥ N2

Estimate thresholds γu
1 ≥ γd

1 and γu
2 ≥ γd

2 for the G1 and G2 respectively
// For each gallery Gi, i = 1,2
for i = 1,2 do

G ′
i ⇐ Gi // Initialize with templates in the gallery i

// For all samples dl,i ∈ Di
for l = 1, ...,L do

// For all templates in the gallery tn,i ∈ Gi
for tn,i ∈ Gi, n = 1, ...,Ni do

sn,l,i ⇐ similarity_measure(dl,i, tn,i) // Compute score for all dn ∈ Di

sl,i ⇐ max{sn,l,i : n = 1, ...,Ni}
if sl,i > γu

i then
j ⇐ mod (i+1,2)+1 // Samples added to the complementary
gallery
G ′

j ⇐ G ′
j ∪dl, j
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Other semi-supervised approaches take advantage of neural or statistical classifiers in the con-

struction of biometric models. For instance, in (Okada et al., 2001), a view representation

that combines facial and torso-color histograms was used with bunch graph matching for adap-

tive person recognition. The system is capable of updating existing biometric models and to

automatically enroll unknown individuals based on a double thresholding strategy. Update

was performed on operational video streams that provide high sequence-to-entry similarity,

measure of confidence. The sequence-to-entry similarity is the average of maximum frame-

to-entry similarity values, which in turn was defined as the maximum similarity value over all

facial representations in a database entry (Okada et al., 2001). Bayesian networks were also

used to recognize facial expression and detect faces using a stochastic structure search algo-

rithm (Cohen et al., 2004). This approach combined labeled and unlabeled samples to train the

Bayesian networks, and seek for the Bayesian network structure that provided the minimum

probability of error, using maximum likelihood estimation. SVMs with locality preserving pro-

jections have also been combined to update facial models, by incorporating information from

operational ROIs taken from video (Lu et al., 2010). The algorithm first builds a data model of

a video sequence, and then uses semi-supervised locality preserving projections to assemble a

graph with the geometrical structure of the feature space of faces.

MCSs have also been used in conjunction with the co-training and self-training. In (Didaci and

Roli, 2006), for instance, an ensemble of five classifiers was trained with two different diver-

sity generation techniques (bootstrap and the training of different classifiers). These techniques

are based on a re-training schema for biometric model updates, and improve accuracy by 18%

using the product rule for combination. Another modification of the co-training algorithm

for MCS was proposed for updating only unlabeled samples that produced high confidence

(El Gayar et al., 2006). The five patterns with highest probability of belonging to the specific

person, were selected as the most confident. This system was tested with 3 non-homogeneous

classifiers in the ensemble, and provided the highest performance with a voting combination

scheme. Finally, a semi-supervised classification schema based on random subspace dimen-

sionality reduction was proposed for graph-based semi-supervised learning. In this approach,
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a kNN graph is built in each processed random subspace, and semi-supervised classifiers are

trained on the resulting graphs, using majority voting rule for combination (Yu et al., 2012).

1.2.3 Challenges of Adaptive FR Systems

Adaptive FR systems that perform partially-supervised learning commonly employ the clas-

sifier predictions to assign unlabeled data to a determined class, and add those recently la-

beled patterns to a gallery for template matching. Adaptive biometric systems for partially-

supervised learning provide two main strategies. Self-update based on the output scores of a

single matcher, whereas co-update employs two diversified matchers with galleries specialized

on distinct biometric traits, which are designed to improve performance mutually.

In this Thesis, co-update and self-update strategies are explored for FRiVS, and a strategy is

proposed for self-update of facial models based on face trajectories. Several challenges emerge,

including how to combine the tracking and classification information, how to correctly select

the optimal decision and update thresholds, and how the new samples are learned to update the

facial model while avoiding the knowledge corruption.

1.3 Incremental and On-Line Learning of Classifiers

Adaptation of biometric models for FR has been addressed by adapting the feature space

(amount and orientation of feature vectors that generate the feature space), or the classifier

(internal knowledge of the classification algorithm) (Ozawa et al., 2005). In this Thesis, the

adaptation is addressed using ensemble-based learning and a learn-and-combine strategy that

allows to integrate information of changes in feature space, avoiding the corruption of knowl-

edge of the facial models.

The design of neural or statistical classifiers involves the estimation of a mapping f : a → Ω,

between the feature vector a ∈ RI and class labels Ω = {C1,C2, ...,CK}. Generative classifiers

tend to approximate probability distribution functions of the different classes from training

data (e.g. k-NN, RBF). On the other hand, discriminative classifiers approximate classification
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boundaries by finding discriminant functions (MLP, SVM). In discussion of which performs

better no one can be favored for a general case. However it has been shown that generative clas-

sifiers commonly require more training data and require more careful calibration to overcome

multiple discriminative classifiers (Drummond, 2006). Some algorithms like the ARTMAP

family provide characteristics from both approaches. These neural networks are characterized

by fast supervised, unsupervised and incremental learning from limited amounts of data, and

comparable classification accuracy when compared to state of the art classification algorithms

(Lerner and Guterman, 2008).

In real world applications, it is typical that new data becomes available over time, and the

knowledge of a pattern recognition systems may be adapted to maintain accuracy. Figure 1.3

shows the scenario where a classifier performs supervised learning of data incrementally. This

capacity of learning data incrementally allows classifiers to update their internal knowledge.

According to Polikar et al. (Polikar et al., 2001), an incremental learning algorithm should

be able to learn additional knowledge from a new block of data without requiring storage or

access to previously learned data, should preserve previously acquired knowledge, and should

be able to learn new classes that may be introduced with new data. In Figure 1.3 a classifier

hyp1 is initially designed using a set of user-defined hyperparameters and a limited amount of

training data D0. Different datasets D1, ...,Dt from existing and/or new classes may become

available over discrete instants of time t = 1,2, ..., and parameters of hyp1 are updated to hyp2

by incorporating data samples from D1. Similarly hyp2 is updated to hyp3 on the basis of data

D2 and so on.

In literature, three types of pattern classification algorithms for IL have been proposed (see

Table 1.3). The first consists on classifiers that have been designed with the inherent abil-

ity to perform supervised incremental learning, and examples this category are the ARTMAP

(Lerner and Guterman, 2008) and Growing Self-Organizing (Fritzke, 1996) families of neu-

ral networks. The second category is composed of some well-known pattern classifiers, such

as Support Vector Machines (SVM), the Multi Layer Perceptron (MLP) and the Radial Basis
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Figure 1.3 Incremental learning (IL) scenario, where new data Dt is learned by the

classifier to update its parameters and architecture,

extracted from (Connolly et al., 2008)

Function (RBF) Neural Network, which have been adapted to perform supervised incremental

learning. Finally the third consists on ensembles of classifiers that may update parameters or

architecture when new data becomes available.

Table 1.3 Classifiers that are capable of Incremental learning

IL Approaches

INHERENT

ARTMAP based, categorized according to category class activation:

Winner-Take-All. ARTMAP(Carpenter et al., 1991), Fuzzy ARTMAP (Carpenter et al., 1992), ARTMAP-IC(Carpenter and Markuzon, 1998).

Distributed. ART-EMAP(Carpenter and Ross, 1995), distributed ARTMAP (Carpenter and Milenova, 1999).

Probabilistic. PFAM (Lim and Harrison, 1995, 1997), PSFAM (Jervis et al., 1999), Gaussian ARTMAP (Williamson, 1996),

hypersphere ARTMAP (Anagnostopoulos and Georgiopulos, 2000), Ellipsoid ARTMAP (Anagnostopoulos and Georgiopoulos, 2001),

boosted ARTMAP (Verzi et al., 1998), μARTMAP (Gomez-Sanchez et al., 2002) and Bayesian ARTMAP (Vigdor and B., 2007).

Hybrids. Default ARTMAP 2 (Amis and Carpenter, 2007) (WTA training and distributed activation).

Growing Self-Organizing Feature Maps:
Growing Neural Gas (Fritzke, 1996) and Hybrid Self-Organizing Neural Gas (Graham and Starzyk, 2008)

MODIFIED

Support Vector Machines. Incremental SVM and variants (Syed et al., 1999; Ruping, 2001; Li and Huang, 2002);

(Diehl and Cauwenberghs, 2003), 2ν-Online Granular Soft SVM (Singh et al., 2010)

Multi Layer Perceptron. Incremental back-propagation algorithm (Fu et al., 1996; Wang and Kuh, 1992);

(Osorio and Amy, 1999; Lee, 1990).

Radial Basis Function neural networks. Resource allocation network (RAN) (Platt, 1991),

Kalman filter (RANEKF) (Kadirkamanathan and Niranjan, 1993), MRAN(Yingwei et al., 1997),

Growing and Pruning-RBF (Salmeron et al., 1999, 2001)

ENSEMBLE

Learn++. Learn++ (Polikar et al., 2002), Learn++.NSE, Learn++.MT (Muhlbaier et al., 2004), Learn++NC (Muhlbaier et al., 2009),

Learn++.UDNC (Ditzler et al., 2010), Learn++.MF (Polikar et al., 2010)

Adaptive Fuzzy ARTMAP ensemble. Connolly et al (Connolly et al., 2010b)

Classifiers designed with the inherent ability to perform supervised incremental learning are in-

spired on the well-known self-organizing neural networks (SONNs). The unsupervised learn-

ing paradigm used in SONNs is related to clustering, since it permits the assignment of adap-

tively defined categories to unlabeled patterns. Modifications of typical classifiers including
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SVM or MLP have been also proposed to give them the capacity of learning new data after

classifiers are in operation. Ensemble based approaches in general outperform single mono-

lithic classifier, which can be explained with the degradation that may occur while updating

the state of knowledge of classification algorithms. This state of knowledge may conduct the

classifier to be trapped in local optima.

Figure 1.4 Illustration of knowledge corruption with monolithic approaches for

incremental learning

extracted from (Khreich et al., 2012)

In Figure 1.4, a monolithic classifier is initially trained on block D1 sampled from a probabil-

ity distribution, producing the costs represented by hyp1 on a determined parameter p of the

classification algorithm. Given that the first time of training is equivalent to batch learning, it

is possible to reach the global minimum (a) that fits with samples in D1. Then hyp1 is updated

on the new data block D2, and the new minimum (c) is estimated instead of (d), because of

the current parameters of the classifiers are affected by the previous estimation (b). This phe-

nomenon is called knowledge corruption, and ensemble based classifiers avoid this problem by

maintaining several solutions to the classification problem. This allows this techniques to be

less likely to fall in local minimums. In fact, performing incremental learning with ensemble
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based techniques, using a learn and combine approach has been successfully applied in some

areas (Polikar et al., 2001; Polikar, 2006; Arandjelovic and Cipolla, 2006).

This Thesis focus on ensemble-based techniques for designing the classification system for in-

cremental learning scenarios. The following sub-sections present detailed descriptions of the

techniques employed for classification, including the ARTMAP classifier, Boolean combina-

tion and the DPSO training strategy for generation of classifiers.

1.3.1 Fuzzy ARTMAP

The fuzzy ARTMAP neural network is a member of the ARTMAP family, which integrates

a fuzzy ART module to process both analog and binary-valued input patterns to the original

ARTMAP architecture (Carpenter et al., 1992). Simplified architecture of the Fuzzy ARTMAP

classifier is shown in Figure 1.5. Two fully connected layers of nodes (F1 and F2) constitute

the main ART network, and a third layer (Fab) is used for training by using back propagation

strategies. Connections between layers are associated with different weights W and Wab. Tun-

ing parameters of this classifier are the learning rate β , choice α , match tracking ε and the

baseline vigilance parameter ρ̄ .

Real valued weights W = {wi j ∈ [0,1] : i = 1,2, ...,M; j = 1,2, ...,N} are associated to the

connections between the input layer F1 and the competitive layer F2. Each node j from

F2 represents a recognition category that learns a prototype vector wj = (w1 j,w2 j, ...,wM j).

Learned connections between nodes from layer F2 to Fab are associated with binary weights

Wab = {wab
jk ∈ [0,1] : j = 1,2, ...,N;k = 1,2, ...,L}. The link that joins the F2 j node with one of

the L output classes, is the vector wab
j = (wab

j1,w
ab
j2, ...,w

ab
jL). Input patterns for batch supervised

training mode are pairs (a, t) where a is the pattern itself and t is its binary supervision pattern

set.

Activation of each node j in layer F2 from layer F1 is determined by the Weber Law choice

function given by

Tj(A) =
|A∧w j|
α + |w j| , (1.1)
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Figure 1.5 Simplified architecture of ARTMAP Neural Networks

extracted from (Granger et al., 2007)

where | | is defined by |w j|= ∑ |wi j|Mi=1, ∧ is the fuzzy AND operator, (A∧w j) = min(Ai,wi j).

After F2 nodes are activated, the layer produces a binary pattern of activity y = (y1,y2, ...,yN)

by applying the winner-take-all strategy, where only the node j = J with the greatest activation

value J = argmax{Tj : j = 1,2, ...,N} remains active. Then, the degree of match between

expectation vector wJ and the input vector A are compared against the vigilance parameter

with the vigilance test (1.2).

|A∧wJ|
|A| =

|A∧wJ|
M

≥ ρ. (1.2)

Depending on this test it is said that resonance occur, or the network inhibits the active F2 node

and searches for another node that passes the test. Once this pattern wJ is found, Fab layer

produces a binary pattern of activity yab = t∧wab
J , and the most active Fab node (K = k(J))

which constitutes the prediction class. Prediction function uses the Winner-Take-All strategy,

obtaining a competing score with (1.3).

Sab
k (y) =

N

∑
j=1

y jwab
jk (1.3)
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When a wrong prediction is obtained compared to the target class t of the pattern, the vigilance

parameter ρ must be updated by

ρ =
|A∧wJ|

M
+ ε (1.4)

Fuzzy ARTMAP learning algorithm can be summarized in the following five steps:

1. Initialization. F2 nodes are uncommitted1, wi j weights are initialized to 1, wab
i j weights

are initialized to 0, and parameters α > 0, β ∈ [0,1], 0 < ε << 1 and ρ̄ ∈ [0,1] are set.

2. Input Pattern Coding. For each presented input training pattern (a, t)= (a1,a2, ...,am, t1, t2, ..., tL),

the complement coding of a is evaluated. F1 input is then transformed to A = (a,ac) =

(a1,a2, ...,am;ac
1,a

c
2, ...,a

c
m), where ac

i = (1−ai), ai must be normalized (ai ∈ [0,1]). Pa-

rameter ρ is set to ρ̄ .

3. Prototype Selection. Pattern A activates F1 and is propagated through W to F2. Activation

of each j-node in F2 is determined by (1.1). Winner node J = argmax{Tj : j = 1,2, ...,N}
propagates its top-down expectation and vigilance test is performed with (1.2). If test is

passed, J remains active and resonance is said to occur. Otherwise the active F2 node is

inhibited and the net searches another J node that passes the test. If such a node does not

exist, a new F2 node is committed and the net goes to learning (step 5).

4. Class Prediction. The Fab layer generates yab = (yab
1 ,yab

2 , ...,yab
L ) = t∧wab

J and gets the

class prediction K = argmax{yab
k : k = 1,2, ...,L} = k(J). The score function (1.3) is

evaluated and,if node K constitutes a wrong prediction, ρ is updated with (1.4). This

search continues until either an uncommitted F2 node becomes active or a node J that

previously learned the correct class prediction K becomes active.

5. Learning. When a pattern a produces resonance with an F2 committed node J, or an

uncommitted node becomes active, prototype vector wJ is updated according to

w′
j = β (A∧wJ)+(1−β )w j. (1.5)

1An F2 node becomes committed when is selected to code an input vector a, and then linked to an Fab node.
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1.3.2 PFAM Neural Classifier

Of special interest are probabilistic variants of the Fuzzy ARTMAP algorithm like the proposed

by Lim and Harrison, which uses the discriminative learning strategy of Fuzzy ARTMAP, and

the generative prediction of Probabilistic Neural Networks (PNN)(Lim and Harrison, 1995,

1997). The list below summarizes the few differences in the learning and prediction phases of

both approaches.

1. Learning Phase. A FAM structure is used as supervised, clustering algorithm: Fa
2 nodes

are used to code prototype patterns and update centers of mass (wa−c
j =(wa−c

1 j ,wa−c
2 j ...wa−c

M j )).

It also encodes the frequency counts associated with F2 node activations by using the fre-

quency counts in W ab.

2. Prediction Phase. The PNN is used to perform probability estimation, and Bayes’ de-

cision theorem is applied to select the class whith maximum a posteriori probability, or

use another risk-weighted classification rule. In this way, each category j is represented

as a hyper-spherical Gaussian pdf according to

g j(a) =
1

(2π)M/2σM
j

exp
(
−(a−wa−c

j )T (a−wa−c
j )

2σ2
j

)
, (1.6)

where the variance σ j is the ratio of the sqared minimum Euclidean distance between

wa−c
j and any other center vector, to the value of an overlap parameter r > 0.

1.4 Adaptive Ensembles

Ensemble-learning techniques combine classifiers with diversity of opinions to increase classi-

fication performance. The design process can be divided into three main steps – generation of a

pool of base classifiers, selection and fusion of classifiers (Duda et al., 2001; Kuncheva, 2004;

Zenobi and Cunningham, 2001; Britto et al., 2014). The first step allows to train base classifiers

with diversity of opinions, and the last two take advantage of this diversity to produce more
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accurate predictions. Diversity can be created by employing distinct classifiers, train distinct

instances of a classifier with different initial conditions (parameters), or using different training

sets (Kuncheva, 2004).

Representative examples of ensemble methods are bagging, boosting, random subspaces, which

employs different training sets of data or features from the training set to build distinct base

classifiers (Kuncheva, 2004; Kittler, 1998). An example of diversity generation by various

parameters is the work of Connolly et al. (Connolly et al., 2012), which takes advantage of

diversity in the hyperparameter space of classifiers to produce useful diversity of opinions. Ex-

amples of selection strategies are greedy search, clustering-based methods and ranking-based

methods, and examples of fusion strategies can be divided in feature-based, score-based and

decision-based (Tao and Veldhuis, 2008).

1.4.1 Generation of Pools

There are different ways to generate a diverse ensemble. The use of different training datasets

for different classifiers usually take advantage of resampling techniques with (bootstrapping

or bagging) or without (jackknife or k-fold data split) resampling. Using different internal

parameters for different classifiers, or even different algorithms is also a common strategy to

produce disagreement between ensemble members. The use of different features to train each

ensemble member is also used and referred as random subspace method. Some measures of

diversity used in literature include diversity, correlation, Q-Statistic, disagreement and double

fault measures, entropy, Kohavi-Wolpert variance and difficulty (Polikar, 2006). An interesting

technique to generate (and maintain) diversity in the optimization space takes advantage of PSO

techniques and produces an heterogeneous ensemble of ARTMAP classifiers. Such a technique

has been successfully applied in face recognition applications (Connolly et al., 2010b).

Of special interest are the PSO-based training strategies that co-jointly optimize parameters and

architecture of 2-class binary classifiers, according to both accuracy and resources. First intro-

duced by Kennedy and Eberhart in 1995, Particle Swarm Optimization (PSO) is a population-
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based stochastic optimization technique that takes advantage of Artificial-Life ideas like bird

flocking or fish schooling, together with evolutionary computation to search for the global best

of nonlinear functions. Each particle corresponds to a single solution in the optimization space,

and the population of particles is called a swarm. In this strategy, the best position and the best

position of its surrounding corresponding to each particle are kept in memory.

The main idea can be formally stated as follows. Diversity is maintained employing a local

neighborhood topology and by dynamically creating subswarms around masters (particles that

are their own best position amongst their neighborhood). Particles that are not part of any sub

swarms are called free particles and are allowed to move by themselves. The position of the

particles that are members of a subswarm are updated with

hn(t +1) = hn(t)+w0(hn(t)−hn(t −1)) (1.7)

+r1w1/2(h∗master −hn(t))

+r2w1/2(h∗n −hn(t))

where hn(t +1) is the position of particle n in the optimization space at iteration (t+1), w0 and

w1 are inertia weights, r1 and r2 are random numbers generated at each iteration, hn(t) and h∗n
are respectively the current position of the subswarm master’s personal best (social influence)

and particle n personal best (cognitive influence). Free particles move only according to their

own cognitive influence using:

hn(t +1) = hn(t)+w0(hn(t)−hn(t −1)) (1.8)

+r3w1(h∗n −h(t)),

where r3 is another random number generated at each iteration. The global best particle is

referred to as gbest, and in case there is a tie for the global best position, the particle with the

smallest index wins.
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The dynamic PSO (DPSO) training algoritm employed to generate base classifiers was pro-

posed by Connolly et al. (Connolly et al., 2010b), and is based on the DNPSO algorithm

developed in (Nickabadi et al., 2008). Algorithm 1.3 describes the DPSO-based incremental

learning strategy for co-optimization of hyperparameters, weight and architecture of the fuzzy

ARTMAP neural network. Given new learning data block Dt , it produces the optimal set of hy-

perparameters and network using a particle swarm with N particles, and N + 2 fuzzy ARTMAP

neural networks with one network per particle PFAMn, used to preserve the model associated

to the best position of that particle (h∗
n), one temporary neural network used for the fitness

estimation during the algorithm (PFAMestimation), and one optimal network (PFAMoptimal).

1.4.2 Selection and Fusion

From the point of view of information fusion, the fusion of classifier outputs can be achieved

at matching score and decision levels (See Figure 1.6).

Figure 1.6 Different information fusion levels in biometric systems

extracted from (Tao and Veldhuis, 2009)

The Matching score fusion level is probably the most used and studied. Three categories

are basically studied in literature, including transformation-based, density-based and classifier
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Algorithm 1.3: DPSO learning strategy to generate diverse classifiers (Connolly et al.,
2010b)

Input : A set of particles (swarm with DNPSO parameters), and neural networks: PFAMn ,

where 1 ≤ n ≤ N , PFAMestimation, and PFAMoptimal , and data Dt for learning.

Output : PFAMoptimal (Weights and architecture obtained with the optimal h) and PFAMn where

1 ≤ n ≤ N (Set of PFAM neural networks associated to the best position of each

particles).

Initialization:
1: Set the swarm parameters (N,w0,w1).
2: Randomly initialize particles positions for t = 0 and t =−1 within their range.

3: Initialize PFAMoptimal and all PFAMn, where 1 ≤ n ≤ N.

4: Set PSO iteration counter at t = 0.

Upon reception of a new data block Dt , the following incremental process is initiated:
Update the fitness of networks associated to the personal best positions:
5: for each particle n, where 1 ≤ n ≤ N do
6: PFAMn ⇐ PFAMoptimal

7: Training of PFAMn with validation using Dt and Dv
t , and f (h∗n, t) estimation using D f

t .

Optimization process:
8: while DNPSO did not reach stopping condition do
9: Define the subswarms and update position of each particle with Eq. 1.7 and 1.8.

10: for each particle n, where 1 ≤ n ≤ N do
11: PFAMestimation ⇐ PFAMoptimal
12: Training of PFAMestimation with validation using Dt and Dv

t , and

13: f (hn(t), t) estimation using D f
t .

14: if f (hn(t), t)> f (h∗n, t) then
15: h∗n ⇐ hn(t)
16: f (h∗n, t)⇐ f (hn(t), t)
17: PFAMn ⇐ PFAMestimation

18: t = t +1

Define the neural network with the highest accuracy:
19: PFAMoptimal ⇐ PFAMgbest

based. In transformation-based fusion, all component matching scores are first transformed

or normalized, and then simple scalar functions are applied to produce a new matching score.

Some commonly used functions are product, sum, mean, max, etc. And under some ideal

situations, they can achieve statistically optimal performance in the Neyman-Pearson sense.

Density-based schemes are based in the estimation of joint densities of matching scores. Fusion

is done by using statistical tests like likelihood ratio. Optimal performance of these schemes

could be achieved when a large number of representative training matching scores are avail-

able. Classifier-based fusion schemes concatenate the matching scores as a new feature vector,



34

and an additional classifier is trained on this representation. However it has been concluded

in a study by Roli et al. (Roli et al., 2002), that trained rules could not provide significant

advantages over fixed rules, specially in ensembles with members that achieve different per-

formances.

Decision level fusion techniques include the well known majority voting, weighted major-

ity voting, Bayesian decision fusion and the Dempster-Shafer theory of evidence. Operating

points in this space can be selected according to their performance characterized by the pair

( f pr, t pr). When only a non-continuous curve is available, it can be always possible to interpo-

late between two points. Scott et al (Scott et al., 1998) use the so called Maximum Realizable

ROC (or Convex Hull), interpolating between non-existing points. Also the selection of spe-

cific thresholds of different classifiers to pick specific operating points in ROC space, to be

combined with AND and OR rules has been studied by Haker et al. in (Haker et al., 2005).

Barreno et al. (Barreno et al., 2008) use AND and OR rules to combine all points in ROC space

produced by classifiers, and find an optimal ROC curve given by such a combination of deci-

sion rules. This way of combining binary classifiers is optimal in the Neyman-Pearson sense,

however a high complexity in their algorithm (22n
possible Boolean rules). Tao and Veldhuis

(Tao and Veldhuis, 2009) propose a decision level fusion scheme in which thresholds at score

level are tunned to fix a false-acceptance rate, such that the decision false rejection rate is min-

imal. This threshold optimized scheme takes advantage of AND and OR rules, and its main

disadvantage is the limited possibility of decision boundaries, because operations are restricted

to thresholding, AND and OR. The more recent iterative Boolean combination proposed by

Khreich et al in (Khreich et al., 2010b), extend the approaches in (Tao and Veldhuis, 2009;

Barreno et al., 2008) to use not only two, but ten binary combination rules between individ-

ual ROC points. ROC based decision-level fusion methods share the advantage that combine

points in the ROC space, and matching score normalization is not needed. Although decision

and score fusion levels carry the possibility that representational information is lost during

combinations, the lower complexity of the combination method and superior performance of

the final system usually compensates the drawback.
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The following section describes the iterative Boolean combination (IBC) as a state of the art

algorithm for the selection and combination of classifiers based on their performance evaluated

in the ROC space. This algorithm was employed for classifier combination in most of the

methods proposed in this Thesis due to its robustness and accuracy.

1.4.2.1 Iterative Boolean Combination

The iterative Boolean combination (IBC) algorithm is capable of adapting the fusion func-

tion and pool of base classifiers according to the most recently acquired data. In this way,

the ensemble is adapted to changes in the probability distribution of data in the feature space.

Following a learn-and-combine strategy, when new data becomes available a diverse pool of

classifiers is generated and combined with previously-learned classifiers. In order to take into

account for class imbalance, a validation set with specific imbalance may be employed to rep-

resent the expected characteristics of the operational environment. The algorithm for Boolean

combination of classifiers proposed by W. Khreich (Khreich et al., 2010b), applies ten Boolean

operations shown in Table 1.4 to combine their responses and improve the convex hull.

Table 1.4 Table of truth of the Boolean functions used in Boolean Combination

extracted from (Khreich et al., 2010b)

Ca Cb Ca ∧Cb ¬Ca ∧Cb Ca ∧¬Cb ¬(Ca ∧Cb) Ca ∨Cb ¬Ca ∨Cb Ca ∨¬Cb ¬(Ca ∨Cb) Ca ⊕Cb ¬(Ca ⊕Cb)

0 0 0 0 0 1 0 1 1 1 0 1

0 1 0 1 0 1 1 1 0 0 1 0

1 0 0 0 1 1 1 0 1 0 1 0

1 1 1 0 0 0 1 1 1 0 0 1

Algorithm 1.4 shows the pseudo code of the BC algorithm, which estimates the operations

points with highest performance as plotted in the ROC space, according to a validation set.

Then, the Boolean combination of multiple classifiers can be extended following the same

approach, with the SBCMALL strategy. Such an algorithm applies BCALL to the first pair of

ROC curves, and the result is then combined with the third, fourth and so on (see Algorithm

1.5).
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Algorithm 1.4: Boolean Combination of classifiers BCALL
Input : Thresholds of ROC curves, Ta and Tb, Dc

t labels and skew
Output : PROCCH and fused responses (Rab) of combined curves

m ← |Ta|
n ← |Tb|
Allocate F2×m·n // Temporary results of fusions
BooleanFunctions ←{a∧b,¬a∧b,a∧¬b,¬(a∧b),a∨b,¬a∨b,a∨¬b,¬(a∨b),a⊕b,¬(a⊕b)}
Compute ROCCHold of original curves

for All b f ∈ BooleanFunctions do
for i = 1, ...,m do

Convert threshold of the 1st ROC, to responses in Ra
for j = 1, ...,n do

Convert threshold of the 2nd ROC to responses in Rb
Combine responses with b f , and produce Rc
Compute ( f pr, t pr) using Rc, labels

Push ( f pr, t pr) onto F (temporary results of fusions)

Compute ROCCHnew (Convex Hull) of F ∪ROCCHold
s∗global ← (Tax ,Tby ,b f ) // to be used during operations

Store responses of these emerging points into R // to be used with BCMALL and IBCALL
ROCCHNEW ← ROCCHOLD // Update ROCCH

Return: ROCCHNEW ,R,s∗global

Algorithm 1.5: Boolean Combination of multiple classifiers BCMALL
Input : Thresholds of ROC curves, [T1, ...TK ] and Dc

t labels

Output : ROCCH and responses of the combination (R)

[ROCCH1,R1]← BCALL(T1,T2, labels,skew)
for k = 3, ...,K do

[ROCCHk−1,Rk−1]← BCALL(Tk−2,Tk, labels,skew)

Return : ROCCHK−1,RK−1 and stored tree of selected responses/thresholds fusions along with their

corresponding fusion functions

Also the iterative combination of such curves can be extended, using the ROC-AUC as the

performance measure to maximize given a determined skew (Algorithm 1.6).

Algorithm 1.6: Iterative Boolean Combination IBCALL
Input : Thresholds of ROC curves, [T1, ...TK ] and Dc

t labels

Output : PROCCH and fused responses (R)

[ROCCHOLD,ROLD]← BCMALL([T1...TK ], labels)
while (AUC(ROCCHNEW )≥ AUC(ROCCHOLD)+ ε) or (iterations ≤ maxIter) do

[ROCCHNEW ,RNEW ]← BCMALL(ROLD, [T1...TK ], labels)

Return: ROCCHNEW ,RNEW and stored tree of selected responses/thresholds along with their

corresponding fusion functions
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1.4.3 Ensembles for Class Imbalance

The algorithms designed for environments with changes in the probability distribution of data

in general, and particularly in the class priors, can be categorized according to the use of a

mechanism to detect changes in prior probabilities (Ditzler and Polikar, 2013). Approaches

with active detection of changes in prior probabilities seek explicitly to determine whether and

when a change has occurred in the prior probability before taking a corrective action (Radtke

et al., 2013a,b; Ditzler and Polikar, 2013). Conversely, approaches with passive change detec-

tion assume that a change may occur at any time, or is continuously occurring, and hence the

classifiers are updated every time new data becomes available (Oh et al., 2011; Ditzler and Po-

likar, 2013). The rest of this section describes representative approaches of passive and active

ensembles for changing priors.

1.4.3.1 Passive Approaches

Passive ensemble-based methods for class imbalance can be categorized in cost-sensitive en-

sembles, boosting-based, bagging-based and hybrids (Galar et al., 2011). In cost-sensitive ap-

proaches, the combination of classifiers (i.e. weights) is designed to consider the cost of class

independent errors. Examples of these approaches include the AdaCost, CSB, RareBoost,

AdaC1, AdaC2 and AdaC3 algorithms (Fan et al., 1999; Wu, 2012). Boosting-based en-

sembles include techniques that use data preprocessing embedded into boosting algorithms.

These methods bias the data distribution towards the minority class before the classifier gen-

eration step. Examples of these approaches are the Learn++.CDS, Learn++.NIE, SMOTE-

Boost, MSMOTEBoost, RUSBoost and DataBoost-IM algorithms (Ditzler and Polikar, 2013,

2010). Bagging-based ensembles integrate bagging with data preprocessing techniques, and

hence, they do not require to update any kind of weights. These techniques address the class

imbalance by the way they collect the training samples, using oversampling and/or undersam-

pling techniques to generate training sets of different sizes. Examples of these techniques

are the OverBagging, UnderBagging, UnderOverBagging and Imbalanced IVotes (Wang and

Yao, 2009; Barandela et al., 2003). Finally, hybrid ensembles combine a pre-processing tech-
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nique with a bagging and a boosting technique. Techniques in this category are also called ex-

ploratory undersampling, and basically include EasyEnsemble and BalanceCascade (Liu et al.,

2009).

Although the aforementioned methods account for class imbalance through adaptation every

time new reference samples become available, they are passive since they do not perform an

estimation of the imbalance before adaptation. The advantage of passive approaches lies in the

avoidance of false positive and false negative change detections, at the cost of the increased

complexity of continuous adaptation.

1.4.3.2 Active Approaches

Active methods for adaptation to class imbalance employ a mechanism to estimate the class

priors of the input data, and adapt the algorithm to the estimated class proportions when a

change occurs. Hence, these approaches avoid the assumption of continuous changes and the

complexity of continuous adaptations, with the potential disadvantage of false positive and

false negative change detections. Several examples of active approaches that employ ensem-

bles for classification in imbalanced environments appear in literature (Radtke et al., 2013a,b;

Wang et al., 2013a). In general, passive approaches for changing imbalance can be modified

by adding a mechanism to detect changes in prior probabilities. Some examples of such mech-

anisms are based in Hellinger distance (Radtke et al., 2013b), Kullback Leibler divergence

(du Plessis and Sugiyama, 2012), or accounting for class-specific performance measures like

recall (Wang et al., 2013a,b).

A recently proposed active approach employed in face recognition in video surveillance is

the skew-sensitive Boolean combination (SSBC), which estimates the imbalance using the

Hellinger distance between the distributions of validation data and the most resent unlabeled

operational samples (Radtke et al., 2013b).
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1.4.3.3 Skew-Sensitive Boolean Combination

The IBC strategy efficiently integrates the responses of multiple diversified classifiers in the

ROC space, yet the impact on performance of imbalanced data distributions is difficult to ob-

serve from ROC curves. The Skew-Sensitive Boolean Combination (SSBC) technique exploits

the Precision-Recall Operating Characteristic (PROC) space, leading to a higher level of per-

formance (Radtke et al., 2013b). A set of BCs of base classifiers is initially produced with

imbalanced reference data in the PROC space, where each BC curve corresponds to different

level of imbalance (a growing number of non-target samples versus a fixed number of target

ones). Then, during operations, the closest adjacent levels of class imbalance are periodically

estimated using the Hellinger distance between the data distribution of inputs and that of im-

balance levels, and used to approximate the most accurate BC of classifiers from operational

points of these curves. In this manner, the ensemble is capable of on-line adaptation of the

fusion function to the most recent operational imbalance.

During training, SSBC assumes that a diversified pool of binary classifiers P = {p1, ..., pn},

and operates at the combination level to take advantage of the diversity of opinions in the en-

semble. To do that, validation data with different levels of imbalance is used to estimate the

operations points of the Boolean combination function (covering the whole ROC space). Two

validation sets with that imbalances, the first (OPT) employed to estimate the operational imbal-

ance, and the other (VAL) to select the operation point with the propper estimated imbalance.

During operations, the imbalance is estimated using the Hellinger distance, and the opera-

tion points are selected from the predefined imbalances. The known levels of class imbalance

used by the approach form the set Λ = {λ bal = 1 : 1, ...,λ max}. A subset of class imbalances

ΛBC ⊂ Λ is selected from Λ to optimize a subset of BCs E. The subset of imbalances ΛBC

should contain evenly distributed intermediate class imbalance levels between the minimum

λ bal and the maximum level of imbalance λ max inclusively. The sets OPT and VAL are gener-

ated from imbalanced reference data that follows λ max. Different data sets with the levels of

class imbalance defined in Λ, in which the amount of target samples remains fixed, while the

amount of non-target samples are added to the set through random under sampling.
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The classification system operates by receiving streams of operational feature vectors corre-

sponding to facial regions detected in video. The operational histogram opd corresponding to

these operational samples is accumulated over time, and the closest level of class imbalance

λ ∗ ∈ Λ is estimated by comparing opd to the data sets in OPT using the Hellinger distance.

Recall that each data set in OPT follows a class imbalance from Λ. The estimated operational

class imbalance λ ∗ corresponds to the imbalance of the closest set in OPT to opd in terms of

Hellinger distance.

The Hellinger distance is a measure of similarity between two sets and is defined as fol-

lows. Given an unlabeled dataset U = {(an),n = 1, ...,N} and a labeled validation dataset

V = {(am, lm),m = 1, ...,M}, the Hellinger distance between these two sets can be computed

according to

HD(V,U) =
1

n f

n f

∑
f=1

HD f (V,U), (1.9)

where the feature-specific Hellinger distance is given by

HD f (V,U) =

√√√√ b

∑
i=1

(√
|Vf ,i|
|V | −

√
|Uf ,i|
|U |

)2

, (1.10)

where n f is the number of features, b is the number of bins used to construct the feature-

specific histogram representation of the probability density functions of the datasets. |U | is the

number of samples in U and |Uf ,i| is the number of samples whose feature f belongs to the bin

i, similarly with |V | and |Vf ,i| for the validation set V .

The operational imbalance λ ∗ estimated using the Hellinger distance is used to select the BC

that corresponds to that imbalance, and in the case λ ∗ is not available on ΛBC, the BCs for

the two closest imbalances are merged, and the convex hull is estimated (see Algorithm 1.7).

In Algorithm 1.7, the imbalanced sets of reference data OPT and VAL allow to select subsets of

target and non-target samples with different imbalances up to a maximum pre-determined λ max.

The subsets opt∗ ∈ OPT and VAL∗ ∈ VAL are generated according to the desired imbalance λ ∗.
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The whole set of target samples is maintained, and non-target samples are randomly selected

(random undersampling) to obtain the desired imbalance.

Algorithm 1.7: SSBC technique for adapting BC for a new class imbalance level λ ∗
Input : set of BCs E, set of class imbalance levels ΛBC, data sets OPT and VAL, the estimated

class imbalance λ ∗ ∈ Λ and the target f pr.

Output : Operations point op for the target f pr.

if λ ∗ ∈ λBC then
E∗ = Eλ ∗

else
Select λ i, λ j ∈ ΛBC, such that λ i < λ ∗ < λ j

Select opt∗ ∈ OPT, following λ ∗

E∗ = ROCCH(Eλ i ∪Eλ j ,opt∗)
Select val∗ ∈ VAL, following λ ∗

Select op ∈ E∗ for the target f pr with val∗

The strength of the SSBC algorithm lies in the adaptive selection of suitable fusion functions

(ROC operations points) according to the estimated operational imbalance. However, this tech-

nique assumes that the generation of a pool of classifiers, where each classifier is trained using

balanced target and non-target data, and provide enough diversity of opinions to discriminate

when input operational data is imbalanced. Another issue is related to the precision of the

method used by SSBC to estimate the class imbalance is limited by the amount and sampling

strategy used to create the set of imbalances Λ.

1.4.4 Challenges on Adaptive Ensembles for Class Imbalance

Exploiting imbalance to adapt a classifier system has been studied in literature, and is a con-

sequent option regarding the imminent imbalance in face based video surveillance. Although

the algorithms like SSBC have successfully used imbalanced validation data to update an en-

semble fusion function to the operational imbalance, two issues are still to be addressed in

practice. The first is related to the source of diversity of opinions among experts, where classi-

fiers may be trained on data with different imbalances and complexities. In this way, the base

classifiers trained on diverse levels of imbalance would provide increased useful diversity in
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the ensemble. Even more, training imbalance specific classifiers on data with different com-

plexities would provide even more diversity, leading to a more accurate and robust ensemble

under such an imbalanced environment.

The second issue is related to the resolution needed to reliably estimate the operational im-

balance. For example, SSBC estimation relies on the measurement of the Hellinger distance

between the histogram representation of a set with the most recent operational samples and

validation sets with pre-defined imbalance levels (Λ). If the operational imbalance is not con-

sidered in the set Λ, the combination functions corresponding closest adjacent imbalances are

considered, but the exact level of imbalance is never estimated. More accurate candidate quan-

tification methods like HDx and HDy may be used, where all the validation samples are em-

ployed for a more precise estimation, avoiding the subsampling requirement.

1.5 Measuring Classification Performance

In this Thesis a modular architecture is assumed, composed of an ensemble of 2-class classifiers

for each individual, and the performance for these detectors is measured as in verification

problems – e.g. using binary decision spaces. The measurement of performance for these

classifiers is explored in this section.

Probably the most commonly used measure of performance when evaluating classifiers is the

accuracy, or its complement, error rate. It is well known that a classifier that produces less

mistakes is preferable. However it is sometimes convenient to use other measures that focus

on a determined type of errors (e.g. false positive rate or false negative rate). The confusion

matrix is widely used when evaluating binary classifiers (Table 1.5).

Table 1.5 Confusion matrix for a binary classifier

Actual positive Actual negative
Predicted True Positives (TP) False Positives (FP)

positive Positives correctly classified Negatives incorrectly classified

Predicted False Negatives (FN) True Negatives (TN)

negative Positives incorrectly classified Negative correctly classified
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From the confusion matrix several measures are derived (See Table 1.6) with different charac-

teristics and each of them is useful under specific conditions.

Table 1.6 Common measures derived from the confusion matrix

sensitivity = recall = True Positive Rate = t pr = T P
T P+FN False Positive Rate = f pr = FP

FP+T N
True Negative Rate = tnr = T N

FP+T N = 1− f pr False Negative Rate = f nr = FN
T P+FN = 1− t pr

Accuracy = T P+T N
P+N precision = T P

T P+FP
F −measure = 2

1/precision+1/recall speci f icity = 1− f pr

Using distinct pairs of these measures lead to different 2-dimensional performance spaces,

which present distinct properties. As shown in Figure 1.7, one point (classifier) represented in

the ROC space dominates another if it is above and to the left: has a higher t pr and a lower

f pr.

Figure 1.7 ROC space and its different regions

extracted from (Flach, 2004)

ROC curves are insensitive to changes in class distribution (proportion of positive to nega-

tive instances). An operating point on the curve is a specific combination of misclassification

costs and class distributions (Fawcett, 2006). Some limitations of visual inspection using ROC

curves are stated in (Drummond and Holte, 2006). In ROC space, it is not possible to know
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what is the performance (expected cost) of a classifier, neither the difference in performance

between two classifiers. It is also not possible to know for what misclassification costs and

class probabilities is the difference in performance between two statistically significant clas-

sifiers. Besides, in ROC space it is not possible to know for what misclassification costs and

class probabilities a given classifier outperform the trivial classifier that assigns all samples to

the same class.

The space of Cost Curves maps each point in ROC space to a line as shown in Figure 1.8. The

slope of the segment of the convex hull in ROC space, that connects two points ( f pr1, t pr1),

( f pr2, t pr2), is given by

slope =
t pr1 − t pr2

f pr1 − f pr2
=

p(−)C(+|−)

p(+)C(−|+)
(1.11)

where p(a) is the probability of a given sample to be positive (a =+) or negative (a =−), and

C(a|b) is the cost when a sample a is classified as b (Drummond and Holte, 2006).

(a) (b)

Figure 1.8 Cost curves space, one point in ROC space maps to a line in cost curves

space (a), and varying a threshold generates a set of lines (b)

extracted from (Flach, 2004)
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Cost curves visually support several crucial types of performance assessments that cannot be

done easily with ROC curves, such as showing confidence intervals and visualizing statistical

significance on difference in performance of two classifiers. This curves are specifically de-

signed for a specific performance measure: the expected cost. The area under the cost curve

is the expected cost of the classifier assuming all possible probability-cost values are equally

likely. A perfect classifier is represented as a horizontal line from the point (0,0) to (0,1),

representing zero cost for any probabilities. For any X point, the corresponding Y points rep-

resent the expected costs of the classifiers. In ROC space the convex hull contains the set of

lowest-cost classifiers. In cost space, the lower envelope represents this set (Fawcett, 2004).

A disadvantage of ROC analysis is that given its invariance to variations in class priors, it

hides an important factor of evaluation in imprecise environments, where misclassification

costs can not be specified exactly, and class priors may not be reflected by the sampling. This

is also equivalent to the lines projected to the cost space, where to select operating points

(lines), misclassification may be specified. Even more, priors in imprecise environments may

vary continuously, and optimal decision threshold selection may be ill-defined. In this cases,

precision-recall space remains sensitive to performance on each class (Landgrebe et al., 2006;

Davis and Goadrich, 2006).

Figure 1.9 PROC (precision− recall) space
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P-ROC graphs have been used in applications where the number of negative samples is many

orders of magnitude greater than positives, and probably this ratio increases steadily as the

number of samples increase (Fawcett, 2004). P-ROC curves are not insensitive to changes in

class distribution, which is desirable in applications where high skew is expected (e.g. 106

negatives for 1 positive sample).

1.6 Summary of Overall Challenges

Video-based FR systems employed in video surveillance face numerous challenges related to

the time and spatial variations in capture conditions. Changes due to the natural ageing of

people and variations in capture conditions and camera interoperability induce gradual and

abrupt changes in the facial appearance of enrolled individuals during operation, and hence,

in the classification environment. Facial models are designed a priori with a limited amount

of reference faces that are often captured under controlled conditions at enrollment time, and

therefore loose their representativeness over time. The performance of a system for video-to-

video FR is significantly degraded due to these factors.

Whereas modular classification strategies may allow to reduce the complexity of the prob-

lem faced by multi-class classifiers to find multiple decision frontiers, they add the robustness

of ensemble techniques. Adaptive multiple classifier systems (MCS) capable of incremental

learning allow to update the facial models with new reference facial captures, providing the

posibility to maintain performance after the classification environment changes. However, the

requirement of manual acquisition and labeling of the new reference data is still an issue (it

is costly or unfeasible in practice). In this Thesis, the strategy to address this problem con-

sists in an adaptive system inspired in semi-supervised learning, but employing video-to-video

strategies for self-update. However, self-updating stragegies affect a trade-off between self-

adaptation and accuracy of facial models.

Finally, the proportions of target and non-target individuals in face re-identification are imbal-

anced, and these proportions also change over time, affecting the performance of the classifica-
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tion systems employed for matching. Although the SSBC algorithm was proposed to estimate

target vs. non-target proportions periodically during operations, there are some challenges that

arise from using SSBC in practical VS applications. For instance, SSBC is typically used to

combine a pool of classifiers designed on balanced data, ignoring the diversity that can be pro-

vided by employing several imbalance levels to train base classifiers. And the estimation of

operational imbalance depends on the availability of the validation set with a similar imbalance,

making it difficult to select the set of validation imbalances.
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ABSTRACT

Face recognition (FR) is employed in several video surveillance applications to determine if

facial regions captured over a network of cameras correspond to a target individuals. To enroll

target individuals, it is often costly or unfeasible to capture enough high quality reference facial

samples a prior to design representative facial models. Furthermore, changes in capture condi-

tions and physiology contribute to a growing divergence between these models and faces cap-

tured during operations. Adaptive biometrics seek to maintain a high level of performance by

updating facial models over time using operational data. Adaptive multiple classifier systems

(MCSs) have been successfully applied to video-to-video FR, where the face of each target in-

dividual is modeled using an ensemble of 2-class classifiers (trained using target vs. non-target

samples). In this chapter, a new adaptive MCS is proposed for partially-supervised learning of

facial models over time based on facial trajectories. During operations, information from a face

tracker and individual-specific ensembles is integrated for robust spatio-temporal recognition

and for self-update of facial models. The tracker defines a facial trajectory for each individual

that appears in a video, which leads to the recognition of a target individual if the positive pre-

dictions accumulated along a trajectory surpass a detection threshold for an ensemble. When

the number of positive ensemble predictions surpasses a higher update threshold, then all tar-
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get face samples from the trajectory are combined with non-target samples (selected from the

cohort and universal models) to update the corresponding facial model. A learn-and-combine

strategy is employed to avoid knowledge corruption during self-update of ensembles. In addi-

tion, a memory management strategy based on Kullback-Leibler divergence is proposed to rank

and select the most relevant target and non-target reference samples to be stored in memory as

the ensembles evolves. For proof-of-concept, a particular realisation of the proposed system

was validated with videos from Face in Action dataset. Initially, trajectories captured from

enrollment videos are used for supervised learning of ensembles, and then videos from various

operational sessions are presented to the system for FR and self-update with high-confidence

trajectories. At a transaction level, the proposed approach outperforms baseline systems that

do not adapt to new trajectories, and provides comparable performance to ideal systems that

adapt to all relevant target trajectories, through supervised learning. Subject-level analysis

reveals the existence of individuals for which self-updating ensembles with unlabeled facial

trajectories provides a considerable benefit. Trajectory-level analysis indicates that the pro-

posed system allows for robust spatio-temporal video-to-video FR, and may therefore enhance

security and situation analysis in video surveillance.

2.1 Introduction

In video surveillance applications, automated face recognition (FR) systems are increasingly

employed to match facial regions of interest (ROIs) captured across a network of video cam-

eras to individuals of interest enrolled to the system. These applications range from watch-

list screening, which involves still-to-video FR, to person re-identification (for search and re-

trieval), which involves video-to-video FR. Regardless, systems for FR in video surveillance

(FRiVS) must operate under semi- and unconstrained capture conditions, where scale, pose,

occlusion, blur/resolution, expression and illumination vary over time.

A facial model used for matching may be defined as a set of one or more reference samples (for

a template matching system), or a statistical model estimated through training with reference

samples (for a neural or statistical classification system). In video-to-video FR, reference sam-
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ples extracted from ROIs captured in video streams are employed to design of facial models,

integrating time and space information in facial models (Li and Wechsler, 2005; De-la Torre

et al., 2012a). In still-to-video FR, reference samples are extracted from one or more still

images.

In video surveillance, individuals in a scene may be tracked, and the facial ROIs captured

in videos that correspond to different individuals may be regrouped over multiple frames for

robust spatio-temporal recognitions (Matta and Dugelay, 2009). Tracking information can, for

instance, be used to record a complete trajectory1, from the arrival of individual in the scene

until he leaves. Predefined thresholds have been applied to matching scores and image quality

measurements to produce overall decisions based on the consecutive ROIs (Despiegel et al.,

2012). In addition, the sum rule has been applied over the matching scores produced by ROIs

in a trajectory (Ekenel et al., 2010). Tracking information as also been used to model the joint

posterior distribution of the motion and identity for the individual in the scene (Zhou et al.,

2003).

This chapter concerns system for video-to-video FR, where facial models for matching are

defined as a statistical model. Facial models are usually designed during enrollment, ideally

using several high quality reference ROIs captured for the target individual under controlled

conditions. In video-to-video FR, these reference ROIs are extracted along one or more refer-

ence trajectories. This requirement is rarely fulfilled in practical applications, and enrollment

of individuals often relies on a limited number of lower quality ROIs. FR performance tends to

decline since facial models are not representative of the faces to be recognized during opera-

tions. Both abrupt and gradual changes in capture conditions (due to, e.g., aging and variations

in pose and lighting) also lead to a decline in FR performance due to a growing divergence

between these facial models and faces captured during operations. Several adaptive classifiers

have been proposed in literature for supervised incremental learning of labeled samples (De-la

Torre et al., 2012a; Polikar et al., 2001; Singh et al., 2010; Connolly et al., 2012). These can be

1A facial trajectory is defined as a set of ROIs (isolated through face detection) that correspond to a same high

quality track of an individual across consecutive frames.
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used to update facial models after enrollment, as new reference data becomes available, allow-

ing to maintain or increase matching performance. Adaptive multiple classifier systems (MCS)

have been successfully applied for FRiVS (De-la Torre et al., 2012a; Pagano et al., 2012). In

these systems, the facial model of each individual is encoded using an ensemble of 2-class

classifiers or detectors (EoD), trained to discriminate between samples of a target individual

and non-target individuals.

An issue with the supervised update of classifiers is the analysis and extraction of labeled refer-

ence samples from operational videos. A domain expert must isolate target faces manually or

semi-automatically in video surveillance footage, which involves undesirable costs and delays.

Instead of relying on a human expert, the system may self-update face models with operational

videos. Several semi-supervised learning approaches have been proposed to update biomet-

ric models using a combination of labeled and unlabeled samples (Rattani, 2010; Roli and

Marcialis, 2006; Franco et al., 2010). In the area of adaptive biometrics, two representative

approaches for semi-supervised learning are the self-update and co-update techniques (Roli

et al., 2007). The first applies an update threshold (higher than the detection threshold) to

each matching scores to select input biometric samples as new templates, and the second seeks

corroboration of scores from two or more matchers for cross-updating.

To the authors’ knowledge, a FR system that allows for self-updating facial models in video

surveillance applications has not been proposed in literature. An issue encountered with self-

updating is the reliable selection of operational samples from the target individual to adapt

facial models. A high level of confidence is required to avoid updating models with non-target

data. In contrast, a facial model should also be adapted with a diversified set of reference

samples to improve the generalization performance. Given an adaptive MCS proposed in (De-

la Torre et al., 2012a; Pagano et al., 2012), information from a face tracker and individual-

specific ensembles may be integrated to provide a variety of high confidence reference samples.

In video surveillance, an abundance of reference samples may be extracted from non-target

facial trajectories acquired in the scene during routine system operation. Two databases may
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be formed with samples extracted (1) from trajectories of other individuals of interest besides

the target individual (known as the cohort model, CM), and (2) from unknown people appearing

in scene (known as the universal model, UM) (Li and Wechsler, 2005; De-la Torre et al., 2012a;

Pagano et al., 2012; Merati et al., 2010). This imposes the need to sub-sample non-target data

in order to design accurate facial models, using an ensemble of 2-class classifiers. Moreover,

adaptive MCSs require reference data to be stored in memory for validation (De-la Torre et al.,

2012a; Connolly et al., 2012). Practical memory limitations impose the need for a method to

rank and select the most relevant validation samples for each individual (EoD).

In this chapter, an adaptive MCS is proposed for video-to-video FR in semi- and unconstrained

video surveillance environments. Within the adaptive MCS, an EoD encodes and updates

the facial model of each individual of interest. This novel system allows for spatio-temporal

recognition and self-update of facial models based on high-confidence trajectories. During

operations, a face tracker defines facial trajectories for different individuals that appear in a

video. Track ID numbers are integrated with predictions of individual-specific ensembles at a

decision-level for enhanced video-to-video FR. The proposed system relies on tracker quality

to regroup ROIs into facial trajectories, and applies a double thresholding scheme to curves

produced by accumulating positive EoD predictions for a trajectory. An individual of interest

is recognized if the number of positive predictions accumulated over some time window of a

trajectory surpass a detection threshold for an EoD.

A second (higher) update threshold is applied to select high-confidence trajectories that are

suitable for self-updating a facial model. If the number of positive predictions surpasses this

threshold for an EoD, then all samples extracted from the target ROIs of the trajectory are

combined with non-target samples (selected from the CM and UM) to update the correspond-

ing face model. Since a trajectory may contain target ROIs that were incorrectly classified by

the EoD, facial models are adapted with a diversified set of reference samples that may refine

the decision boundary between target and non-target distributions, and thereby improve the

generalization performance. A sub-sampling technique based on condensed nearest neighbor

(CNN) (Hart, 1968) is employed to select non-target samples along this boundary. The data for
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EoD update is comprised of diverse facial regions associated with target and non-target trajec-

tories, and is employed to generate a new pool of 2-class classifiers, and to update the fusion

function of the user specific EoD. To avoid issues related to knowledge corruption in incre-

mental learning classification systems, the self-update of EoD employs a learn-and-combine

strategy (De-la Torre et al., 2012a). Finally, a long term memory (LTM) is maintained over

time with a fixed number of reference validation samples per individual. A memory manage-

ment strategy based on the Kullback-Leibler (KL) divergence criteria (Kachites McCallum and

Nigam, 1998) is proposed to rank and select the most relevant target and non-target reference

samples samples. This criteria seeks to preserve the highest relative entropy of ensemble over

time. In other words, the KL divergence becomes higher for samples that contain a higher level

of information according to the knowledge previously acquired by the individual specific EoD.

Video sequences from the Carnegie Mellon University Face in Action (FIA) dataset for video

FR was used for proof-of-concept validation. Video sequences were captured from 180 sub-

jects with an array of 6 cameras over three sessions separated by a three-month interval. In

this dataset, video of individuals were captured under semi-controlled conditions in a security

check point scenario. When a sequence is presented to the proposed system during operations,

trajectories are employed for spatio-temporal recognition, and high-confidence trajectories are

used for self-update. Three levels of performance evaluation are considered – transaction-based

analysis (in the ROC and precision-recall spaces), subject-level analysis (Doddington zoo char-

acterization), and trajectory-based analysis (of the overall system for video sequences).

This chapter is organized as follows. Sections 2.2 and 2.3 provide a brief overview of tech-

niques employed for FRiVS and adaptive biometrics, respectively. The adaptive MCS pro-

posed for self-update from facial trajectories is described in Section 2.4, including special-

ized individual-specific strategies for management of reference data, for fusion of tracking and

classification responses, and for self-update of facial models (EoDs). Section 2.5 describes

the experimental methodology – protocol, video data set and measures used in performance

evaluation. Finally, results are presented and discussed in Section 2.6.
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2.2 Video-to-video Face Recognition

Assume that video streams are captured using one or more video cameras (see Fig. 2.1). The

segmentation process isolates the facial regions of interest (ROIs) from successive frames, and

discriminative features are extracted to represent faces for tracking (vector b) and classifica-

tion (vector a). A new track is typically initialized when an emergent face is captured far from

others, and is defined over consecutive frames using the state of the facial region being tracked

x (appearance, scale, position, track number, etc.) and a vector of tracker-specific features b.

Classification features extracted from each ROI (vector a) are often image-based (using e.g.,

Local Binary Patterns) or pattern recognition-based (using e.g., Principal Component Analy-

sis). The tracking module follows the movement or expression of distinct faces across video

frames, while the classification module matches ROIs captured in video to the system’s facial

models. Finally, the decision fusion combines track IDs and classification scores s in order to

predict it target individuals appear before a camera.

Figure 2.1 Block diagram of a system for video face recognition
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2.2.1 Face Tracking

Facial tracking (FT) techniques allow to follow the movement of each of individual and to

regroup facial regions of a same person (without knowing his identity). The input of the tracker

is the stream of frames acquired with video cameras, and the initial face ROIs to be tracked,

while the output defines as a set of facial regions with the same ID for which the track has high

tracking quality QT . Note that only the first ROI in a trajectory (ROIs used for classification)

may be equivalent in a track (state of facial regions from the tracker) (Yilmaz et al., 2006).

The basic tracking steps are face representation, prediction filtering and data association. In

face representation, the tracked facial region is represented with distinctive features (tracking

feature vector b) in order to allow tracking from one frame to the next. Commonly used features

are color histogram, skin color probability map and active contours, just to mention a few. Pre-

dicting the next state with Kalman and Particle filters seeks the new state x (appearance, scale,

location, and/or velocity, etc.) of the facial region to be tracked in the current frame, based on

the information in the previous frames and some underlying model for state transitions. The

objective of the prediction filtering is to avoid drift and reduce the search space by using a

probability framework, although some methods perform data association heuristically instead

(e.g. Mean-shift and Cam-shift). Finally, in the data association step, the tracker associates a

feature vector of the facial region extracted from the previous frame with the feature vector in

the current frame. Tracking methods are categorized according to the type of descriptor used

for face representation: holistic, contour-based, and hybrid information. Most face-tracking

methods in literature rely on holistic representations due to their robustness.

2.2.2 Specialized Classification Architectures

In the literature, FR in video surveillance (FRiVS) is addressed as an open set problem, consid-

ering that the number of individuals of interest is highly outnumbered by other persons in the

scene. Multi-class classifiers have been used, which apply a rejection threshold for unknown

individuals. A multi-class classifier designed for video FR is the Open Set TCM-kNN (Li
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and Wechsler, 2005). It uses transductive inference to produce a classification score based on

randomness deficiency. Tax and Duin also proposed a technique to combine one-class classi-

fiers in a multi-class classifier. Their heuristic allows to adjust a class-specific outlier rejection

threshold, and combine non-generative class models (Tax and Duin, 2008).

Similarly, modular architectures with one detector per individual have been proposed to address

the problem with individual-specific 1- or 2-class classifiers. The convenience of these modular

approaches has been widely studied in the literature, setting individual- (or user-) independent

parameters (Jain and Ross, 2002). For instance, the approach proposed by Kamgar and Parsi,

that identifies the decision region(s) in the feature space for each individual face by training

a dedicated feed-forward neural network for each individual of interest (Kamgar-Parsi et al.,

2011). Another example is the SVM-based modular system proposed by Ekenel et al., applied

to a visitor interface scenario (Ekenel et al., 2010).

Finally, modular approaches have been extended to train an ensemble of classifiers per individ-

ual. An example of such a system is the ensemble of detectors (EoD) designed for each person

in a watch list. Non-target samples are retrieved from the CM (database maintained with tra-

jectories from non-target individuals of interest) and the UM (database with training samples

from unknown people appearing in scene). Base classifiers are co-jointly trained using a train-

ing strategy based on DPSO. It allows for the generation of a diversified pool of ARTMAP

neural networks, and trained detectors are then selected and combined using Boolean combi-

nation (BC) (Pagano et al., 2012).

2.2.3 Decision Fusion

Approaches for FR in video can be categorized according to those that neglect temporal infor-

mation and those that propose strategies to exploit it. Algorithms that neglect temporal infor-

mation have been proposed for still image recognition, and exploit only physiological infor-

mation on the face. Examples of these approaches include Eigenfaces, Fisherfaces and Active

Appearance Models. Alternatively, approaches that exploit temporal information present the
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advantage of increased contextual knowledge and data in video, allowing the use of physiolog-

ical and behavioral information. Discriminant analysis of facial optical flow, Hidden Markov

Models (HMMs), and the sequential importance sampling (SIS) algorithm are just some ap-

proaches in this category (Matta and Dugelay, 2009).

Spatio-temporal approaches for FR merge spatial information (e.g. face appearance) with the

sequential variations presented over time (e.g behavior). Zhang and Martinez use probabili-

ties accumulated by matching ROIs to the individual-specific Gaussian mean estimated from

gallery reference samples, and normalize to produce posterior probabilities. This temporal

analysis is independent of the matching or tracking algorithm (Zhang and Martinez, 2004).

Liu and Chen used HMMs to model the appearance and dynamics of a person, obtaining high

confident results on sequences that were then used to adapt the models. A potential problem

with the modeling of probability distributions of the motion is the assumption that the move-

ment will be very similar, regardless of the new scenario (Liu and Cheng, 2003). Accumulat-

ing classification responses over time eliminates the assumption, and still takes into account

the time information. For instance, the work of Ekenel et al. evaluates a video-to-video FR

system for individuals entering into a room, which progressively combines confidence scores

of the matchers using a sum rule over the full sequences to estimate the identity in video

(Ekenel et al., 2010). In their approach, they use a k-NN classifier on a DCT representation

of face images, and use min-max normalization on the distance-based output scores, and then

compare their proposed approaches: distance-to-model, distance-to-second-closest and a com-

bination of both. Score and quality driven fusion methods were used to combine responses

from frames in video sequences, within a border control system (Despiegel et al., 2012). In

the first method, matching scores are compared to a predetermined threshold, whereas the sec-

ond compares the intrinsic quality of the image intrinsic to the predefined threshold. Finally, a

joint sparse representation has been used to simultaneously take into account correlations and

coupling information among video frames (Chen et al., 2013). Sub-dictionaries for distinct

partitions are aligned using majority voting, and decisions are made under the minimum class

reconstruction error criterion.
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2.2.4 Challenges of Facial Modeling

One of the main challenges of FRiVS is that facial models lose their representativeness over

time because they are designed a priori design using a limited number of reference samples

captured under semi- and uncontrolled conditions. Facial captures incorporate considerable

variations because of the limited control over operational conditions in the scenes – changes in

illumination, pose, facial expression, orientation, occlusion, etc. Furthermore, the physiology

of enrolled individuals may change over time, either temporarily (e.g., hairstyle, cosmetics,

glasses, etc.) or permanently (e.g., aging, surgery, etc). These factors result in facial models

that are not representative of faces to be recognized. However, new information may emerge

during operations to update of re-enrollment, and formerly collected data may eventually be-

come obsolete in a changing environment. As described in Section 2.3, several adaptive bio-

metric techniques have been proposed to update biometric models over time, and maintain or

improve a high level of performance.

2.3 Adaptive Biometric Systems

The internal structure of biometric models dictates the most effective strategy for adaptation. In

general, it involves (1) the selection of diversified, relevant reference samples to update a tem-

plate gallery or an LTM of reference validation samples, and (2) the actual update of template

galleries or classifier parameters using supervised or semi-supervised learning schemes.

2.3.1 Selection of Representative Samples

In this chapter, adaptive MCS are considered for FRiVS, where an ensemble of detectors (EoD

with 2-class classifiers trained on target vs. non-target samples) is used to design the facial

models of individuals of interest (De-la Torre et al., 2012a). The level of informativeness of

an input sample a, may be estimated using selection techniques based on the data itself, or

using information retrieved from the ensemble. Examples of selection techniques used for FR
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include editing algorithms such as the CNN, used to manage a gallery of templates in template

matching systems (Freni et al., 2008).

Figure 2.2 Ranking levels that are relevant for an ensemble of 1- or 2-class binary

classifiers, e.g., for individual k

Fig. 2.2 presents the levels of selection that are relevant for ensembles of 1- or 2-class bi-

nary classifiers. The input data level (A) allows to use the dataset itself to filter out redundant

samples. At this level, the estimation of the data distribution of samples is not required in

the filtering process, which makes the methods at level (A) dependent only on the reference

samples. Filtering methods here do not use a ranking, but rather, the geometric relationship

between samples in feature space. At the classifier level (B), the relevance measure of samples

is retrieved from the internal response of the classifier to an input sample a. At the classifier

score level (C), the output scores s+m(a) of the M classifiers in the ensemble are combined to

produce a measure of relevance. When probabilistic classifiers are used as base classifiers,

the relevance measure computation is based on the combined estimated posterior probability

(classification scores s+m). At the classifier decision level (D), the decisions dm(a) of the clas-

sifiers in the ensemble are combined. Voting strategies can be used to generate a relevance

measure such as vote entropy. Finally, at the ensemble decision level (E), the global output of

the ensemble can be used as a measure of informativeness of the input sample.
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Table 2.1 Sampling techniques for the selection of representative samples according to

the five ranking levels from Fig. 2.2

Technique A B C D E
Uncertainty sampling (from Active Learning)

Less confident (Lewis and Catlett, 1994) �
Surprise (Liu et al., 2010) �
Margin Sampling (Scheffer et al., 2001) � �
Entropy Sampling (Shannon, 1948) �

Query by Committee (from Active Learning)
Average surprise (Liu et al., 2010) �
Average Margin Sampling (Scheffer et al., 2001) � �
Vote Entropy (Dagan and Engelson, 1995) �
Kullback-Leibler divergence (Kachites McCallum and Nigam, 1998) �

Other measures inspired in diversity of ensembles
Margin (voting) (Tang et al., 2006) �
Less confident (voting) (Lewis and Catlett, 1994) �
Surprise (voting) (Liu et al., 2010) �

Resampling techniques (Guo et al., 2008; Galar et al., 2011)

Condensed Nearest Neighbor rule (Hart, 1968) �
Random Undersampling �
SPIDER �
One-Sided Selection �
Wilson’s Edited Nearest Neighbor rule �
Neighborhood Cleaning Rule �
Tomek links (Tomek, 1976) �
Boosting weighting �
Budget-sensitive, progressive-sampling �

Table 2.1 presents sampling techniques from the literature according to the five ranking levels.

Techniques that operate at level A, are suitable when the distribution of the new incoming

data is unknown, e.g., before the samples are used in the design/update process. Using data

dependent techniques to select reference samples avoids any bias produced by the knowledge

already embedded in the system. At level B, information from the internal components of

the classifiers are used to estimate the relevance of test samples. However, given that such

information is incompatible from one classifier to another, such ranking techniques usually

suffer from poor representativeness of the informativeness of a sample.
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Levels C and D are independent of the classification algorithm used in the ensemble and in the

combination strategy. The only constraint imposed at level C lies in the compatibility of scores

produced by classifiers, a limitation that can be overcome by using normalization strategies.

Alternatively, probabilistic base classifiers can be used, taking advantage of their output esti-

mated posterior probabilities, and avoiding the need for normalization. Level D is also a good

candidate for combining decisions from (crisp) classifiers; however, the resolution is limited

by the number of classifiers in the ensemble. Finally, level E estimates the informativeness

of an input sample using information from ensemble members and the fusion function. Crisp

decision functions, such as the weighted majority voting or Boolean combination, provide a

decision that can produce a binary relevance measure. Otherwise, it must be converted to a

score in order to be used as a multiple-valued relevance measure (e.g. using the ROC space

(Flach and Matsubara, 2008)). In that case, an extra validation set may be required, which is

impractical in many real applications.

Given a set of positive target samples, and the availability of abundant non-target samples in the

application (the CM and UM), the selection of a representative subset of representative training

samples becomes essential for practical implementations. Level A in Fig. 2.2 provides a wide

spectrum of techniques, in which different approaches allow for the selection of samples from

distinct regions of the data distributions. For instance, the CNN finds the borderline samples,

whereas using Tomek Links allows to remove both noisy and borderline samples from the set

of data. On the other hand, one sided selection allows to remove noisy and borderline samples

from the majority class by combining Tomek Links followed by CNN. Due to the complexity

of the non-target distribution (e.g. it holds samples from all non-target individuals), non-target

borderline samples are important for classifier training. These samples allow for a fine tuning

of the decision frontier between classes. In this chapter, the CNN has been used to select

borderline samples between target and non-target data distributions, providing more relevance

to the samples closer to the overlapping area (Hart, 1968). In Section 2.4, a CNN-based strategy

is proposed to consider representative samples from the target and non-target distributions, and

especially those samples in their overlapping zone.
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Different from uninformed selection (level A), an informed selection of validation samples

considers the responses of the base classifiers in the ensemble, and takes advantage of the

current state of knowledge of the classification system. From the rest of the (informed) ranking

levels, level B is not considered because of the incompatibility of the internal information

between classifiers. And level E is not considered given that the information is reduced to a

single decision, and an extra validation set may be required to produce a multi-level ranking.

After this reasoning, ranking measures from levels C and D) are chosen as best candidates. The

graphs of the measures at these levels were analyzed (see I), and it can be seen that average

margin sampling (AMS), Kullback-Leibler (KL) divergence and vote entropy (VE) present a

peak in the overlapping region between target and non-target distributions. These samples in

the overlapping region are of special interest for validation given that they provide a higher

level of information. From the aforementioned measures, VE shows a lower resolution than

KL and AMS, and the smoothness of the KL divergence curve shows a better representation

of the overlapping area. Furthermore, the KL divergence takes advantage of the posterior

probabilities estimated by the base classifiers, and allows to select the samples that provide the

highest level of information, which appear in the overlap areas between classes, close to the

decision boundaries. In this chapter, the KL divergence is employed to implement a strategy

for assessing the relevance of reference samples in managing a fixed size memory of validation

samples.

2.3.2 Update of Biometric Systems

In the literature, several approaches allow for supervised adaptation providing reliable results

(De-la Torre et al., 2012a; Connolly et al., 2012; Tax and Duin, 2008), and yet obtaining

labeled reference samples is costly or impractical. To overcome this difficulty, some semi-

supervised methods have been introduced for automatic template updates (Roli and Marcialis,

2006; Franco et al., 2010; Roli et al., 2007, 2008; Okada et al., 2001; Rattani et al., 2008a,

2009b). This chapter focuses on the semi-supervised updating of biometric models. Self-
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training and co-updating are two well-known algorithms for semi-supervised adaptation using

template matching.

In self-update methods (Roli et al., 2007), the biometric models are first designed storing sam-

ples from a labeled data set DL in a template gallery G . Prediction is possible by applying a

decision threshold γd to the similarity score produced after template matching. Then, during

operations, similarity scores are produced for the unlabeled samples, and those with a high

degree of confidence (surpassing an updating threshold γu ≥ γd), are integrated to the gallery

G , thereby updating the corresponding biometric models. The notion of “high degree of confi-

dence” is subjective, and depends on both the matching algorithm and the application domain,

but an update threshold higher or equal than the prediction threshold is commonly used. This

procedure is detailed in Algorithm 2.1.

Algorithm 2.1: Self-update algorithm to adapt a gallery for template matching

Input :

G = {t1, ..., tN} // Gallery with initial templates
D = {d1, ...,dL} // Unlabeled adaptation set

Output :

G ′ = {t1, ..., tN , ..., tM}, M ≥ N // Updated template gallery

Estimate threshold γu ≥ γd for the templates in G
G ′ ⇐ G // Initialize with G
// For all samples dl ∈ D
for l = 1, ...,L do

// For all templates in the gallery tl ∈ G
for n = 1, ...,N do

sn,l ⇐ similarity_measure(dl , tn) // Compute score against all samples in G

sl ⇐ max{sn,l : n = 1, ...,N}
if sl > γu then

G ′ ⇐ G ′ ∪dl // Include the sample surpassing γu in the new data set

Co-update is a semi-supervised learning strategy adapted for use with two diversified matchers

with galleries specialized on distinct biometric traits, which are designed to improve perfor-

mance mutually (Roli et al., 2007). For example, in (Roli et al., 2007), authors propose the use

of fingerprints and the face, using co-training for semi-supervised updates of the facial and fin-

gerprint models. Algorithm 2.2 presents the co-training algorithm. The procedure starts with
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the design of the two matchers with the labeled templates in galleries G1 and G2, and selecting

ad-hoc the thresholds for decision (γd
1 and γd

2 ) and update (γu
1 and γu

2 ). Once the unlabeled

sets D1 and D2 are collected, both matchers are used to label the samples, and those with high

degrees of confidence (at least in one of the matchers) are added to the updated galleries G ′
1

and G ′
2. Also the decision and update thresholds are be updated over time in accordance with

the newly acquired data. A potential advantage of the co-update algorithm is that it can retrieve

update samples that are not typical of the distribution of target data from a single trait, allowing

adaptation to diverse, possibly abrupt changes.

The advantages of adapting a biometric system using operational data carries an inherent risk.

There exists a trade-off between the false updates and false rejections that affect of perfor-

mance. A conservative threshold (or other parameters in the biometric model) may allow a

system without false updates, but also a system that is never adapted to changes in the environ-

ment. Conversely, a less conservative threshold may contribute to increase in the number of

false updates and the inherent deterioration of biometric models. Following this reasoning, we

can easily see that a good selection of adaptation criteria (decision threshold) is crucial in the

design of the system.

Other semi-supervised approaches take advantage of neural or statistical classifiers in the con-

struction of biometric models. For instance, in (Okada et al., 2001), a view representation

that combines facial and torso-color histograms was used with bunch graph matching for adap-

tive person recognition. The system is capable of updating existing biometric models and to

automatically enroll unknown individuals based on a double thresholding strategy. Update

was performed on operational video streams that provide high sequence-to-entry similarity,

measure of confidence. The sequence-to-entry similarity is the average of maximum frame-

to-entry similarity values, which in turn was defined as the maximum similarity value over all

facial representations in a database entry (Okada et al., 2001). Bayesian networks were also

used to recognize facial expression and detect faces using a stochastic structure search algo-

rithm (Cohen et al., 2004). This approach combined labeled and unlabeled samples to train the

Bayesian networks, and seek for the Bayesian network structure that provided the minimum
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Algorithm 2.2: Co-update algorithm to adapt a gallery for template matching

Input :

G1 = {t1
1 , ..., t

1
N1
}

and G2 = {t2
1 , ..., t

2
N2
} // Galleries with initial templates

D1 = {d1,1, ...,dL,1}
and D2 = {d1,2, ...,dL,2} // Unlabeled adaptation sets, dl,1 corresponds to dl,2
Output :

G ′
1 = {t1

1 , ..., t
1
N1
, ..., t1

M1
},

M1 ≥ N1 // Updated galleries for both modalities

G ′
2 = {t2

1 , ..., t
2
N2
, ..., t2

M2
}, M2 ≥ N2

Estimate thresholds γu
1 ≥ γd

1 and γu
2 ≥ γd

2 for the G1 and G2 respectively
// For each gallery Gi, i = 1,2
for i = 1,2 do

G ′
i ⇐ Gi // Initialize with templates in the gallery i

// For all samples dl,i ∈ Di
for l = 1, ...,L do

// For all templates in the gallery tn,i ∈ Gi
for tn,i ∈ Gi, n = 1, ...,Ni do

sn,l,i ⇐ similarity_measure(dl,i, tn,i) // Compute score for all dn ∈ Di

sl,i ⇐ max{sn,l,i : n = 1, ...,Ni}
if si

n > γu
i then

j ⇐ mod (i+1,2)+1 // Samples added to the complementary
gallery
G ′

j ⇐ G ′
j ∪dl, j

probability of error, using maximum likelihood estimation. SVMs with locality preserving pro-

jections have also been combined to update facial models, by incorporating information from

operational ROIs taken from video (Lu et al., 2010). The algorithm first builds a data model of

a video sequence, and then uses semi-supervised locality preserving projections to assemble a

graph with the geometrical structure of the feature space of faces.

MCSs have also been used in conjunction with the co-training and self-training. In (Didaci and

Roli, 2006), for instance, an ensemble of five classifiers was trained with two different diver-

sity generation techniques (bootstrap and the training of different classifiers). These techniques

are based on a re-training schema for biometric model updates, and improve accuracy by 18%

using the product rule for combination. Another modification of the co-training algorithm

for MCS was proposed for updating only unlabeled samples that produced high confidence

(El Gayar et al., 2006). The five patterns with highest probability of belonging to the specific
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person, were selected as the most confident. This system was tested with 3 non-homogeneous

classifiers in the ensemble, and provided the highest performance with a voting combination

scheme. Finally, a semi-supervised classification schema based on random subspace dimen-

sionality reduction was proposed for graph-based semi-supervised learning. In this approach,

a kNN graph is built in each processed random subspace, and semi-supervised classifiers are

trained on the resulting graphs, using majority voting rule for combination (Yu et al., 2012).

MCSs for semi-supervised learning in the literature have provided improved accuracy, and

show the utility of unlabeled samples. In this chapter, an adaptive MCS is proposed for spatio-

temporal FR, that allows for semi-supervised learning from facial trajectories defined by the

face tracker. It exploits the two thresholds (γd and γu) from the self-update algorithm, and

the quality of tracking as a second source of confidence, characteristic borrowed from the

co-update algorithm. The tracking quality allows to regroup facial regions from the same

individual, and the accumulation of the predictions from the user-specific ensembles over time

allow for high confident decisions.

2.3.3 Adaptive Face Recognition

In the literature, adaptive FR systems have traditionally incorporated new training data to up-

date the selection of templates from a facial database, using clustering and editing techniques.

Processing thus allows an improved representation of intra-class variations to be obtained us-

ing a sole template. These systems were proposed to improve facial models considering the

intra-class variations from input samples (Roli et al., 2008).

Recent work on the supervised update of facial models includes an FR system formed from an

adaptive MCS. A DPSO based incremental learning strategy has been proposed for video-based

access control. It allows the evolution of an ensemble of heterogeneous multi-class classifiers

from new data, using an LTM to store validation samples for fitness estimation and to stop

training epochs. This approach reduces the effect of knowledge corruption (Connolly et al.,

2012). Another adaptive MCS for designing and updating facial models is composed of an
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EoD per individual, an LTM and a dynamic optimization based training module. When a new

data block becomes available, a diversified pool of ARTMAP neural networks is generated by

a DPSO based learning strategy. The combination function is updated using Boolean combina-

tion (BC) (De-la Torre et al., 2012a). Learn++ is another ensemble-based incremental learning

technique that has been tested on FR problems (Polikar et al., 2001). It performs supervised

incremental learning by training and integrating a new batch of weak classifiers to the ensem-

ble when new reference samples become available. These weak classifiers are generated using

a bagging strategy inspired in the AdaBoost algorithm.

Semi-supervised approaches for facial model update are generally based on the classification

similarity. For instance, in (Roli and Marcialis, 2006), semi-supervised learning has been

applied to FR with self-training, using an Euclidean distance-based measure of similarity. In

each iteration, the PCA-based feature space is updated with the newly acquired soft-labeled

samples. In (Hewitt and Belongie, 2006), the authors propose a method for combining tracking

and recognition to build a facial model based on co-training. This method is used to label face

samples and thus to build a learning dataset for each user. Their initial facial model consists of

a single manually selected frontal face picture, and the extraction of new face samples is done

off-line. In order to identify informative training samples, they replace the second classifier

with a tracker. An extension to the self-update algorithm named the Graph Mincut (Rattani

et al., 2008a), has been proposed to update templates. This approach analyzes the underlying

structure of operational data, and a pair-wise similarity measure between operational data and

existing templates is used to draw a graph that relates these samples.

A representative example that exploits not only the classification similarity, but also video

information, is presented in (Franco et al., 2010). The authors propose an update strategy

called incremental template update. It is based on the similarity between input samples and

gallery templates. It exploits the frequency of detection on the complete sequences for the

individuals in front of the camera, and combines this frequency with the coordinates of the

detection within the last frame in the sequences.
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2.4 A Self-Updating System for Face Recognition in Video Surveillance

In this chapter, an adaptive MCS is proposed for spatio-temporal FRiVS that allows for partially-

supervised learning from facial trajectories. As shown in Fig. 2.3, the proposed system is

comprised of a segmentation module for face detection, a face tracker, a modular classifica-

tion system with one EoD per individual of interest, a decision fusion system, a design/update

system, and a sampling selection system.

During operations, informations from a tracker and modular classifiers (user-specific EoDs)

are integrated at a decision fusion level for enhanced video-to-video FR. A highly confident

trajectory2 T is associated with an individual of interest k when the number of accumulated

positive predictions of a EoD over a fixed-size window of ROIs surpasses a predefined detection

threshold (γd
k ).

The MCS allows for self-update of facial models over time, based on diverse ROIs captured

within trajectories. When an individual of interest k is detected by the system within a high

quality trajectory T , and the number of positive predictions surpasses a second higher updating

threshold, γu
k ≥ γd

k , all the corresponding facial ROIs are combined (as target samples) with

selected non-target samples from the CM and UM to produce a labeled training data set D to

update a facial model. User-specific EoDs are updated using a learn-and-combine strategy,

thereby avoiding knowledge corruption (De-la Torre et al., 2012a). A new pool of detectors (2-

class classifiers) is generated with D, and combined with previously learned detectors to adapt

the EoD. For an accurate estimation of a fusion function and selection of an operations point,

the LTM stores and updates a representative set of validation samples. Finally, a strategy based

on Kullback-Leibler divergence is employed to rank and store only the most representative

facial samples from the LTM. It combines ROI matching scores of user-specific ensembles

within high quality facial trajectories captured with a tracker, for efficient self-updating of

facial models over time. The set of ROIs associated with trajectories provide diversity for

robust EoDs design.

2The notation Tk is reserved for trajectories assigned to an individual of interest k, for a design-update phase,

e.g. labeled trajectories, whereas T is used for unlabeled operational trajectories.
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Figure 2.3 Block diagram of the proposed self-updating system for spatio-temporal FR

in video surveillance

2.4.1 Modular Classification System

A modular classification architecture is proposed in this chapter. Individual-specific EoD al-

low for enhanced classification accuracy when only a limited number of training samples is

available for system design (Pagano et al., 2012). Accordingly, each EoD estimates discrimi-

nant bounds between the target (individuals of interest) and non-target (the rest of the world)

classes. Each ensemble EoDk is comprised of a pool of 2-class classifiers Pk = {c1,k, ...,cM,k},

and a fusion function Fk that is designed using a validation set Dc
k, for k ∈ {1, ...,K}.

During operations, each ensemble member cm,k produces an output score s+m,k(a) for a given

feature vector a corresponding to an input ROI. The scores are then combined using Fk. Each

individual-specific EoDk produces an output prediction pk(a). Positive predictions are then

accumulated over time in the decision fusion system to produce a composed decision (see Fig.

2.3).
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The fusion function Fk holds a set of operations points. Each point is comprised of classifier

specific thresholds and combination functions (e.g. a Boolean combination or voting scheme).

Depending on the strategy used for the estimation of the fusion function, a subset of the clas-

sifiers in the pool Pk is selected to maximize performance. The evaluation of the operations

points on a selection set Ds
k allow to select a specific operations point in the ROC space, given

a predefined acceptable f pr. Given that the system seeks to maximize the t pr under a con-

straint of the amount of false positives, the convex hull is selected in order to consider only the

points with highest t pr. If there is no operations point for a specific f pr, a virtual classifier is

produced by interpolating the closest adjacent operating points (Fawcett, 2006).

Finally, the self-update is achieved by using adaptive EoDs, each one is capable of supervised

incremental learning. A learn-and-combine strategy is employed to maintain performance even

after several adaptations, yet avoid knowledge corruption associated with many incremental

learning classifiers (De-la Torre et al., 2012a).

2.4.2 Tracking System

As shown in Fig. 2.4, the face tracker initializes a new trajectory with the first facial ROI

captured by the segmentation system in a different area of the scene. As the tracker follows the

facial region through the scene, the segmentation system captures high quality facial ROIs for

some of the frames, allowing to produce a trajectory (a trajectory T is defined over consecutive

frames). Note that the segmentation module does not retrieve a facial region from all frames.

The diverse set of facial ROIs belongs to the same individual is defined by the tracker. When the

tracking quality QT falls under a (manually) pre-defined overall quality threshold (QT < γT ),

its trajectory is dropped.

2.4.3 Decision Fusion System

The adaptive MCS detects the presence of individuals of interest based on the number of posi-

tive EoDk predictions over trajectories. Given a high quality trajectory T , each EoDk generates
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Figure 2.4 Illustration of the trajectory formation process within 30 frames of a FIA

video. The tracker is initialized with ROI1 and follows the face of an individual (person

with ID 2), through the scene (capture session 1). fi represents the position of the face in

the camera view for frame i. The ROIs in the trajectory are produced by segmentation at

f1, f4, f6, ..., f30, and the track is dropped at f30. The trajectory is

T = {ROI1,ROI2, ...,ROI14}

a prediction pk(an) for each sample an associated with a ROI in the trajectory. Output predic-

tions from EoDk over the ROI samples of a trajectory T , at the selected operations point, are

defined by the set Pk = {pk(a1), ..., pk(aN)}, associated with each input ROI sample an. Neg-

ative predictions set pk(an) = 0, and positive ones set pk(an) = 1. The decision fusion system

accumulates the number of positive predictions Ak of each EoDk on fixed size window W

according to:

Ak =
W−1

∑
i=0

pk(a(W−i)) ∈ [0,W ] (2.1)

For instance, a window of size W = 30 accumulates the last 30 positive predictions from the

same trajectory. Each EoDk accumulates a sequence of positive predictions that range from 0
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(EoDk made only negative predictions for W ), to a maximum of W (EoDk made only positive

predictions for the last W ROIs).

Based on these accumulations Ak, for k = 1, ...,K, the system produces decisions. If Ak sur-

passes threshold γd
k , the system detects the presence of individual k and alerts the operator.

Furthermore, if Ak surpasses the update threshold γu
k , the trajectory is suitable for self-updating

of the corresponding EoDk. Given the negative effects on performance caused by false updates,

threshold γu
k is greater or equal to γd

k .

For each EoDk, the detection threshold γd
k is estimated using a validation set composed of one

positive and several negative trajectories. In this way, a single target trajectory is required for

design and update of the facial model. An accumulation curve is computed for each trajectory

in the validation dataset. The higher negative envelope (hne) is defined as the curve formed

from the highest Ak values of the negative accumulation curves. The detection threshold for

EoDk is computed as the maximum value in the hne plus the maximum difference between the

hne and the positive accumulation curve (pac) for the corresponding individual k:

γd
k = max{hne( fi) : i = 1, ..., |Tk|}+

(
max{pac( fi)−hne( fi) : i = 1, ..., |Tk|}

2

)
(2.2)

where fi is the frame number i in the trajectory. By considering the presentation order of the

target (positive) and non-target (negative) facial regions, the time information is included in the

threshold estimation for specific facial models. The adaptation threshold γu
k is set to a value

equal to or greater than γd
k :

γu
k = γd

k +Γk (2.3)

where Γk is a user-defined real value between 0 and (W − γd
k ). Fig. 2.5 illustrates the measures

used in the threshold estimation strategy, presenting the pac and the hne. The reliability of γd
k

and γu
k estimates grows with the number of non-target trajectories present in the validation set.
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Figure 2.5 Detection and update threshold estimation on validation trajectories at the

decision level

When the accumulative curve corresponding to an operational trajectory T surpasses the detec-

tion threshold γd
k for one or more EoDs, the system outputs the corresponding decision signals.

The output to the decision support system lists all individuals of interest that are detected in

the scene.

2.4.4 Design/Update System

Given a trajectory T , if the number of accumulated positive predictions from the EoDk sur-

passes the update threshold, Ak ≥ γu
k , the design/update system assigns the corresponding label

to the trajectory. If conflict occurs (two or more EoDs detect the same trajectory as suitable

for update), the EoDk with highest Ak value is selected. If two or more trajectories present the

same Ak value, the system is prevented from updating, and these conflicting trajectories are

stored for further analysis by a human expert.

Once the trajectory has been successfully tested for conflicts, the system assigns the label

k to all the patterns corresponding to the facial ROIs of the trajectory T , and it becomes a

labeled trajectory Tk. An advantage of the proposed system is the incorporation of diversified

information into facial models of detected individual. Self-updating provides EoDs with a
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greater diversity of samples captured under various conditions (pose, lighting, etc). These

samples allow for a more accurate definition of the boundaries between target and non-target

individuals in accordance with the most recent facial samples.

When a new trajectory Tk is detected and labeled for update, it is divided into three subsets

in order to follow a learn-and-combine strategy. A CNN based selection algorithm allows to

retrieve borderline and distinctive samples from the negative distribution, by selecting negative

samples from the CM and UM (see Section 2.4.5). The CM database is comprised of a set

of trajectories from the individuals of interest, excluding individual k; and the UM database

is comprised of trajectories from other non-target individuals that represent the rest of the

world, e.g. random individuals that appear frequently in the scene. The subset Dt is used

for training3, De for validation on the number of training epochs, and D f
k for optimization of

classifier hyperparameters. Then, some ensemble generation strategy (e.g. random subspace

methods, boosting and bagging, (Kuncheva, 2004)) allows to generate a diversified pool of

classifiers, and add them to the previous pool Pk. The samples from the validation sets (De

and D f ) are then mixed with samples from the LTMk
4, stored to a short term memory (STMk),

randomized and divided into two subsets (Dc and Ds). The classifiers from the pool Pk and the

fusion function Fk are selected and combined using Dc, and the operations point is selected

using Ds. The process is repeated for all the EoDs. In summary, each EoDk is updated with

new ROIs from a trajectory Tk by generating new base classifiers, adding these to a pool Pk,

and updating the fusion function according to the old and new validation samples.

If the size of the LT Mk for EoDk is λk, the size of the ST Mk is chosen to be 2λk in order

to store enough new and old validation samples. This follows the assumption that old (from

LT Mk) and new samples are equally relevant. Then, the validation samples in the ST Mk are

ranked according to Eq. 2.4 (see Section 2.4.5), and the λk samples with the highest values are

stored in the LT Mk.

3For simplicity of notation, the k has been omitted from all design data blocks, e.g. Dt
k ≡ Dt .

4Note that the LTMk is initially empty, and filled with positive and negative samples after the initial design.
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Algorithm 2.3: Design and update of a user-specific ensemble of detectors, EoDk

Input : Tk, EoDk = {Pk,Fk}, LT Mk, UM, CM

Output : EoD′
k, LT M′

k // Updated EoD′
k = {P ′

k,F
′
k} and LTM′k

Divide Tk in Dt ,De,D f evenly // Tk keeps only positive samples

Dt ⇐CNN_NEG_SEL(Dt ,UM,CM) // Form 2-class data sets with target
(+) vs.
De ⇐CNN_NEG_SEL(De,UM,CM) // non-target (-) samples (see
Algorighm 2.4)
D f ⇐CNN_NEG_SEL(D f ,UM,CM)
P′

k ⇐{c′1,k, ...,c
′
M,k} // Generate a pool P ′

k using Dt, De and D f

Pk ⇐ P ′
k ∪Pk // Combine old and new classifiers in the pool

ST Mk ⇐ De ∪D f ∪LT Mk // Store old and new validation samples in
ST Mk
Divide ST Mk in Dc and Ds evenly

F ′
k ⇐ FUSION(Dc,Ds, f pr) // Estimate fusion function given a

predefined f pr
EoD′

k ⇐{P ′
k,F

′
k} // Updated selection of classifiers and fusion

function
LT M′

k ⇐ KL_SEL(ST Mk,λk) // Use KL to replace samples in LT Mk with
most

// informative in ST Mk

2.4.5 Sample Selection

Sample Selection for Training. Positive samples from the aforementioned design/update tra-

jectory Tk are coupled with negatives from the CM and UM to form the learning set D. Negative

samples from the CM and UM are stored in a single global fixed size memory capable of storing

recent facial captures from non-target individuals. The size of this memory should be deter-

mined according to system requirements, but it should be large enough to store trajectories

from several non-target individuals. In practice, the UM can be regularly updated with trajec-

tories from random or selected individuals (e.g. employees or frequent clients), and the CM

is updated every time the system receives update trajectories. The CNN subsampling strategy

(Hart, 1968) is employed to reduce the bias of training 2-class classifiers with imbalanced data

sets (limited positive vs. abundant negative samples). This method selects those samples from
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both classes that lie on the area of overlap or are difficult to classify (outliers). Nevertheless,

these samples are complemented with distinctive samples from the underlying distributions.

Distinctive samples are selected by storing all available positive references as well as a uni-

form sampling of negative ones from UM and CM after CNN selection. This CNN negative

selection strategy resembles one sided selection in the application of CNN selection, however

the CNN negative selection does not discard borderline samples, and includes distinctive sam-

ples through random selection. This permits the update of the ensemble considering not only

the most relevant past and present samples close to decision bounds, but also typical samples

distinctive of the most recent states of distributions of data.

The CNN negative selection strategy is detailed in Algorithm 2.4. When a trajectory Tk is

provided to the system for training/update, the corresponding ROIs are used to build dataset of

positive samples D+, and a set D− is formed with samples from the UM and CM. The CNN

algorithm is then applied to D+∪D− to select a consistent subset for design of the binary base

classifiers. The resulting dataset D comprises three parts of equal size: (1) the complete set of

positives D+, (2) the negative samples selected by CNN (close to the decision boundaries) D−′
cnn,

and (3) a uniform random selection of non-borderline negatives D−
d . In this way, D contains

all target samples and twice more non-target samples. Algorithm 2.4 makes no assumptions

concerning the probability distribution of the positive and negative samples, and permits an

unbiased selection of negative samples, based solely on the distribution of the new samples.

Management of LT Mk. Level C ranking measures (see Section 2.3.1) permit the selection of

samples from the LT Mk that are difficult to classify by the ensemble members (in Fig. 2.2).

These samples are distinctive of the decision bound between the target and non-target classes,

as estimated with the base classifiers in the EoD. The disagreement of base classifiers on a

determined validation sample is proportional to its difficulty, give a degree of information for

border specification when the fusion function is estimated. This is also valid for the accu-

rate selection of operations points. Among ranking measures available in the literature, the

Kullback-Leibler divergence produces a continuous measure of the disagreement between the

ensemble members that covers the overlapping area between class distributions (see analysis in
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Algorithm 2.4: CNN_NEG_SEL. Select negative samples to design the system

Input : D+, UM // Positive and negative samples from UM and CM
data bases

Output : D // Design dataset with all positive and selected
negative samples

D− ⇐UM∪CM // Consider all negative samples from UM and CM

[D+
cnn,D

−
cnn]⇐CNN(D+,D−) // Samples selected by CNN

np ⇐ |D+| // Number of positive samples

D−′
cnn ⇐ RAND_SEL(D−

cnn,np) // Select np negatives from D−
cnn belonging

to UM and CM evenly
D−

d ⇐ RAND_SEL(D−,np) // Select np distinctive negatives from D−,
not selected by CNN

D ⇐ D+∪D−′
cnn ∪D−

d

I). Accordingly, the KL divergence permits the exploitation of the knowledge from base classi-

fiers to select the validation samples that provide the highest level of information. Even more,

its continuous ranking values permit the discrimination between two samples that appear very

close to each other in the feature space. The KL divergence of an input sample a is computed

using:

KL(a) =
1

M

M

∑
m=1

(
∑
i∈Ω

si
m(a) log

si
m(a)

P̂i
EoDk

(a)

)
(2.4)

where M is the number of classifiers in the ensemble EoDk, and P̂i
EoDk

(a) given by (2.5) is the

consensus probability that the class i ∈ Ω is the correct label for sample a, given the scores

si
n(a) produced by the base classifiers:

P̂i
EoD(a) =

1

M

M

∑
n=1

si
n(a) (2.5)

The value of KL divergence is proportional to the level of information provided by a sample

a. The most informative samples present the largest average difference between scores of any

single committee member and the consensus.
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Algorithm 2.5 details the selection process that considers all the validation samples in the

STMk. Given an EoDk, the KL_SEL algorithm selects the λk most challenging samples from

the validation set, providing those samples lying on the overlapping area according to the

agreement of the ensemble members. When a validation dataset D is presented to the algorithm,

all samples are ranked according to the KL divergence using the scores produced by all the

base classifiers in the pool Pk. The λk highest ranked samples are retained, while the less

informative ones are discarded, maintaining the proportion of target and non-target samples.

Thus, the ranking method is based on past and present information on samples that are difficult

to classify, according to older and newer classifiers.

Algorithm 2.5: Subsampling using the KL divergence, KL_SEL(input =
{D,sk(ai),λk},out put = {Dr})

Input : D, sk(ai), λk // Data block, scores sk(ai), ai ∈ D produced by EoDk

// and size of the LT Mk
Output : Dr // Data block with λk representative samples from D
// For each sample in the data block
for ai ∈ D do

relevancei = KL(sk(ai)) // Compute the KL divergence according to
Eq. 2.4

D ⇐ SORT (D,relevance,dec) // Sort D in decreasing order, according to
relevancei

Dr+ ⇐ FIRST _POSIT IV ES(D,�λk
2
�) // Positive samples with highest KL

divergence

Dr− ⇐ FIRST _NEGAT IV ES(D,�λk
2
�) // Negatives with highest KL

divergence
Dr ⇐ Dr+∪Dr−

2.5 Experimental Methodology

Some methodologies for performance evaluation of adaptive biometric systems divide the

design-update data into subsets, and use a same independent test set to show the evolution

of performance (Singh et al., 2010; Roli and Marcialis, 2006; Franco et al., 2010; Liu and

Cheng, 2003). Others divide the unlabeled data set into subsets, and progressively update on
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a subset while testing on the next subset (Roli et al., 2007; Rattani et al., 2008a). This last

approach is followed in this chapter. The main task under evaluation is detecting the presence

of individuals of interest in semi-constrained environments, and the experimental protocol was

designed to study the evolution of system performance in a changing classification environ-

ment. The adaptive MCS is first trained using design trajectories from an enrollment session

(D), then the updating process was performed on three different capture sessions Dt , t = 1...3

in a video-to-video recognition scheme. The system is adapted after the presentation of each

session Dt with the trajectories detected as positives, and the performance is evaluated using

ROC and PROC spaces after the presentation of a different capture session Dt+1.

2.5.1 Video Surveillance Database

The proposed system was characterized in a video surveillance scenario using the Carnegie

Mellon University Face in Action (FIA) database (Goh et al., 2005). The FIA database contains

20-second videos that capture the faces of 180 participants that simulate a passport checking

scenario. Capture speed is fixed to 30 frames per second, with a resolution of 640×480 pixels.

An array of 6 cameras was positioned at the face level to capture the scene. However only the

2 frontal cameras are considered here. They are positioned at 0o (frontal) and ±72.6o angle

with respect to the individual. Three of the cameras were set at a zoomed focal-length (8-mm),

resulting in face areas over 300×300 pixels. The other three cameras were set at an unzoomed

focal length (4-mm), resulting in face areas over 100×100 pixels. Data was captured in three

sessions separated by a three-month interval for each individual. Facial regions of interest

(ROIs) were detected in videos using the Viola-Jones algorithm (Viola and Jones, 2004). Visual

tracking was also applied on video sequences, initializing the Continuously Adaptive Mean

Shift (CAMSHIFT) (Bradski, 1998) with the first face detected. All images were scaled to

70× 70 pixels, which is the maximum resolution of the smallest face detected by the Viola-

Jones algorithm. The Multi Scale Local Binary Patterns (MS-LBP) (Ojala et al., 2002) feature

extractor was used with three block sizes (3x3, 5x5 and 9x9), in conjunction to pixel-intensities
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features. These features were stacked, and the 32 principal characteristics (PCA) were selected

to form the feature vectors.

Design D Data D1 Data D2 Data D3 Design D Data D1 Data D2 Data D3

Individual 2 Individual 58

Individual 72 Individual 92

Individual 147 Individual 151

Individual 176 Individual 188

Individual 190 Individual 209

Figure 2.6 Sample images from individuals of interest detected in video sequences

from the FIA database

Ten individuals of interest were selected, and one EoD was designed for each of them. Variants

in expression, aging, pose, haircut, whiskers and beard made the problem more challenging

(see Fig. 2.6). From the remaining individuals, 88 were selected to build the universal model

(UM), and the rest were considered as unknown individuals and only appeared on the test

datasets. Note that samples from individuals belonging to the UM do not appear in the test set,

thus avoiding a positive bias.

One trajectory was retrieved from each individual in each capture session, and organized in

four datasets. The total number of ROI samples contained in the trajectories from each de-

sign/update datasets is summarized on Table 2.2. As shown in the table, the CM is comprised

of 9 trajectories from non-target individuals in the cohort, and the number of ROI samples is
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different for each EoD. For instance, the CM of individual with FIA ID=2 is comprised of 1,746

reference ROI samples. ROI samples in the UM are 6,167, 2,966, and 3,188 are retrieved from

each data block D1, D2 and D3 respectively, divided in 88 non-target trajectories per block. Fi-

nally, the total number of ROI samples in the trajectories from unknown individuals is 10,240,

10,967, and 5,104 for D1, D2 and D3 respectively. The fixed size memory containing the UM

and CM is maintained with a first-in-first-out strategy, and it stores up to 12,000 facial regions

belonging to the most recent trajectories from non-target individuals.

Table 2.2 Number of ROI samples in design and test trajectories for each

individual of interest enrolled to the system

FIA Individual (k) |Tk|, Tk ∈ D |Tk|, Tk ∈ D1 |Tk|, Tk ∈ D2 |Tk|, Tk ∈ D3

ID 2 149 114 109 119

ID 58 202 176 215 172

ID 72 223 144 184 151

ID 92 180 125 125 167

ID 147 235 128 163 161

ID 151 216 80 187 135

ID 176 113 90 210 126

ID 188 148 118 172 192

ID 190 190 132 92 88

ID 209 239 121 162 137

2.5.2 Implementation of the Proposed MCS

For proof-of-concept, the adaptive MCS proposed in Section 2.4 is implemented in the follow-

ing way. The classification system in the MCS is formed of an adaptive EoD per individual

(De-la Torre et al., 2012a). The base classifier for the EoD is the Probabilistic Fuzzy ARTMAP

(PFAM) (Lim and Harrison, 1995), which combines Fuzzy ARTMAP density estimation for

learning category prototypes, with a non-parametric posterior probability distribution proce-

dure inspired by the Probabilistic Neural Networks during the operational phase. A diversified

pool of base classifiers is generated through a dynamic particle swarm optimization (DPSO)

learning strategy (Connolly et al., 2012). The DPSO learning algorithm was initialized with a

swarm of 60 particles, 6 sub-swarms of maximum 5 particles, and a maximum of 30 iterations
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(+5 to ensure convergence). The classifier corresponding to the global best particle, as well as

the 6 local best classifiers from each sub-swarm are added to the ensemble. Finally, new clas-

sifiers are combined with previously trained ones (Pk) using the Boolean combination (BC)

that operates in the ROC space (Khreich et al., 2010b). BC starts by regrouping classifiers

according to performance and then combines all pairs of operations points for the two best

classifiers, according to their representation in the ROC space. Then, the convex hull of the

new operations points is successively combined with the next best classifiers, until the overall

convex hull stops improving.

The CAMSHIFT is a well known kernel-based tracking algorithm that uses region-based fea-

tures representation (Bradski, 1998). It uses a combination of a weighting kernel and a his-

togram to represent the target and attain frame-to-frame object tracks, using the probability

distribution of faces in video. It dynamically handles the changing distributions by adjusting

the size of the search window according to the area under such a window. The internal face

representation consists of the skin probability histogram of the face, and the kernel is a simple

step function. During data association, two histograms q1 and q2 corresponding to the pre-

dicted and actual facial regions respectively are compared with the Bhattacharyya coefficient

given by:

QT ≡ B̂(q1,q2) =
m

∑
u=1

√
q1(u)q2(u,y) (2.6)

where u varies over all histogram bins, and y is the target position. Coefficient Qt expresses the

quality of a trajectory from one frame to another in terms of the similarity between predicted

and actual face regions.

2.5.3 Experimental Protocol

Prior to computer simulations, four datasets were prepared using frontal videos of the FIA

database. The design dataset D is comprised of the positive trajectories in the zoomed cap-

ture session 1. The adaptation datasets D1 to D3 are constructed with tracks from the un-
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zoomed view of capture sessions 1 to 3, respectively. This capture scenario corresponds to

an environment with gradual changes of face models due to aging. Negative samples are in-

dependently selected for each of the training/validation sets using Algorithm 2.4, by selecting

samples from the CM and UM. Three different scenarios were prepared, with different design-

update schemes.

• Supervised learning on D only. Considered a static system, designed on the first dataset

D only. The test is performed on the other D1 to D3 datasets, but no update (additional

learning) is performed. The performance in this scenario establishes the lower bound for

the semi-supervised strategy, e.g., when no update is performed by the semi-supervised

system. The approaches considered in this scenario include the TCM-kNN, a single

PFAM, Learn++(PFAM) and EoD (PFAM).

• Supervised incremental learning. The system is first designed on D, and new reference

samples become available (D1 to D3), and are incorporated after the test is performed. It

is assumed that an expert has analyzed the video sequences of individuals enrolled to the

system, and manually labels them in order to update the system. Adaptive approaches

(PFAMinc, Learn++(PFAM) and EoDsup (PFAM) LT MKL,λ=∞) were updated with only

the new labeled data, and TCM-kNN is trained on batch mode, learning the past and new

samples from scratch5.

• Partially-supervised learning. Similarly to the supervised incremental learning scenario,

the system is designed on D, and new information on test sessions D1 to D3 is incorpo-

rated when a trajectory T yields an accumulation curve that surpasses the update thresh-

old, γu
k . The approaches considered in this scenario include the EoDss (PFAM) with 6

different sizes of LTM: λ = {0,25,50,75,100,∞}.

Learning is performed following 2x5-fold cross-validation for 10 independent experiments.

Positive samples from the incoming trajectory are randomly and evenly split in 5 folds of the

5For a new block Dn, TCM-kNN must be trained from scratch using a data superset Dbatch = D∪D1∪ ...∪Dn.
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same size. The folds are first distributed in three different design sets, including two folds

for training (Dt), 11
2 fold to stop training epochs (De), and 11

2 fold for fitness evaluation (D f ).

Once the classifiers are trained, De and D f are combined, randomized and divided into two

equally distributed subsets to produce a validation data to estimate a fusion function (Dc), and

to select the operations point (Ds). Negative samples are chosen from the UM as well as the

CM according to CNN selection (Algorithm 2.4). In each training/validation dataset, 33% of

positives is accompanied by approximately 58% of negatives from the UM, and the remaining

9% from the CM. About 87% of the negatives correspond to samples taken from the UM

and 13% are from the cohort. This is expected, given that the superset D− is composed of

close to 13.63% of samples from the CM, and 86.37% of samples from the UM. The folds

are distributed between the training/validation sets for each replication of the experiment, and

average performance measures are produced with five different assignments. At replication 5,

the sample order is randomized for each class and the five folds are regenerated. The procedure

followed in each trial of the experiment is summarized in Algorithm 2.6.

Algorithm 2.6: Experimental protocol to evaluate each EoDk, on a single 2× 5 cross-

validation trial

D− ⇐UM∪CM // Trajectories in the CM and UM
EoDk ⇐ DESIGN(Tk ∈ D,EoDk ≡∅,LT Mk ≡∅,D−) // Design the EoDk with
Algorithm 2.3
Estimate γd

k and γu
k using Tk and trajectories in D−

for t = 1...3 do
Evaluate performance of the EoDk on Dt // Classifier and decision levels

D− ⇐UM∪CM // Trajectories from CM and UM in Dt

// For every trajectory in the new data block Dt

for T ∈ Dt do
// If the accumulated predictions surpass the update

threshold
if (Ak(T )≥ γu

k ) then
Tk ⇐ T // Label the trajectory with tag k
EoDk ⇐UPDAT E(Tk,EoDk,LT Mk,D−) // Update with Tk (Algorithm
2.3)
Update γd

k and γd
k with Tk and trajectories in D−
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The proposed adaptive MCS was compared to other classifiers for FRiVS. The TCM-kNN

was trained with a fixed k = 1 on a batch learning scheme, as followed in (Li and Wechsler,

2005). The Learn++ algorithm was initialized to generate 7 PFAM base classifiers on every

incremental learning step, and weighted majority voting was validated on Dc. PFAM classifiers

used in all other approaches were trained using a DPSO based learning strategy to optimize

their hyperparameters.

2.5.4 Performance Analysis

The analysis of simulation results has been divided into three levels. First, transaction-based

analysis shows the performance of the system based on classification decisions on each ROI.

Then, a subject-based analysis allows a focus on specific individuals, which in turn allows for

levels of performance depending on particular characteristics. Finally, a trajectory-based anal-

ysis shows the overall performance of the system (shown in Fig. 2.3), viewed by accumulating

system predictions over input trajectories.

Transaction-based performance analysis is used to assess the performance of the system for

matching ROI samples to facial models. The true positive rate (t pr) and false positive rate

( f pr) are estimated for different ( f pr, t pr) operational points, and connected to draw a receiver

operations characteristic (ROC) curve. When equal priors and costs are assumed, the closest

operations point to the upper-left corner corresponds to the optimal decision threshold. In appli-

cations with f pr constraint, the selection of the operations point is obtained from the graphical

representation. The operations point is estimated on a validation subset used for operational

predictions, providing a test ( f pr, t pr) pair that reveals the generalization performance of the

system at the selected point. The AUC (area under the curve) summarizes the performance de-

picted in a ROC graph, and the partial AUC (pAUC) focuses on a specific region of the curve,

e.g. pAUC (5%) for an f pr ≤ 0.05.

For different priors and costs of errors, the Precision-Recall Operating Characteristic (PROC)

curve constitutes a graphical representation of detector performance where the impact of data
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imbalance is considered. The precision between positive predictions (precision = T P/(T P+

FP)) is combined with the t pr (or recall) to draw a PROC curve. In general, the t pr is increased

when the amount of positive (minority class) samples augments. On the contrary, the precision

decreases with this amount. To combine precision and recall at a particular operations point,

the scalar F1 produces a single performance indicator:

F1 = 2 · precision · t pr
precision+ t pr

(2.7)

According to the “Doddington zoo” effect, the performance of biometric systems may vary

drastically between individuals (Doddington et al., 1998). Instead of using the overall amount

of transactions, individual-specific error rates can be assessed according to four categories

(types of animals). The resemblance of individuals performance to that of these animals can

reveal fundamental weaknesses, and allows the development of more robust systems. Ac-

cording to this characterization, the system tend to perform well in a sheep-like individual,

irrespective of whether this individual belongs to the target or non-target class. Goat-like in-

dividuals belong to the positive class, but are difficult to identify (low matching scores against

themselves). A wolf -like individual belongs to the non-target class, and consistently imperson-

ate different targets (high scores when matched against other individuals), and tend to elevate

the false positive rate ( f pr) of the system. Finally, a lamb-like individual belongs to the target

class, and is easily impersonated (high matching scores when matched against others).

Table 2.3 Doddington’s zoo thresholds for generalization performance

at the operating point with f pr = 1%, selected on validation data

Category Positive class Negative class
Sheep t pr ≥ 50% and not a lamb f pr ≤ 1%

Lamb At least 5% of non-target individuals are wolves -

Goat t pr < 50% and not a lamb -

Wolf - f pr > 1%
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Typically, the likeliness of a user to one of the 4 aforementioned categories is defined at the

score space. However, for binary classifiers, the confusion matrix can be used (Li and Wech-

sler, 2005). To establish a criterion, thresholds can be set at the f pr and f nr, and applied to

each EoDk. Table 2.3 shows a criterion based on a system constraint of f pr ≤ 1%, considering

a good f nr when it is just below 50%.

Trajectory-based performance analysis allows to assess performance over time of the entire

system for FRiVS (see Fig. 2.3). This analysis is specially relevant given that it provides a

global performance assessment of the system for FRiVS, with combined impact of face seg-

mentation, tracking, recognition and fusion. Thus, all system functions are employed to process

a video stream, and decisions taken by an operator occur on a time scale longer than a frame

rate. Within the decision fusion system, positive predictions of each EoDk are accumulated

over a moving window of time for input ROI samples that correspond to a high quality facial

track. Assume for instance a system that produces predictions at a maximum of 30fps. Each

detected ROI is presented to all user-specific EoDs of the system, which produces predictions

(positive or negative) for each person enrolled to the system. Given a high quality face track,

the number of positive predictions from an EoD should grow rapidly for the person of interest.

Thus, the operator can more reliably detect a person of interest.
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The adaptive MCS proposed in this chapter accumulates the positive predictions (responses of

each EoDk) over a window of W predictions. As shown in Fig. 2.7a, the quality of this system

can be evaluated graphically by observing the evolution of positive predictions according to the

frame count (discrete time defined by the frame rate). In addition, once several individuals have

appeared before of camera in a long video stream, and related trajectories have been processed,

the quality of system decisions (i.e., the t pr, f pr, trr, f rr) may be assessed over the range of

decision threshold values, and represented in the ROC space (see Fig. 2.7b).

2.6 Results

2.6.1 Transaction-Based Analysis

Reference systems used in comparison reflect the current state-of-the-art approaches appear-

ing in literature. TCM-kNN was proposed by Li and Wechsler in (Li and Wechsler, 2005), and

constitutes a main reference in FRiVS. Learn++ is a popular reference point in ensemble-based

techniques capable of supervised incremental learning (Polikar et al., 2001). Modular archi-

tectures with a single classifier per individual have been used for FR in (Ekenel et al., 2010),

and implemented in experiments using monolithic PFAM and PFAMinc. These modular archi-

tectures were extended to use ensembles of classifiers per individual in (Pagano et al., 2012;

Tax and Duin, 2008), and implemented in experiments as EoD (PFAM). In this research it is

shown how the self update with the proposed approach presents higher level of performance

with respect to those approaches that are not updated. And it may perform better than cer-

tain approaches that perform supervised incremental learning (e.g., Learn++), even though the

proposed self update approach automatically assigns the labels to the trajectories in the update

data.

Table 2.4 presents the average transaction-level performance for the 3 updating scenarios ob-

tained after updating the proposed and reference systems on ROI samples from trajectories

stored in data blocks D, D1 and D2 (while testing on D1, D2 and D3, respectively). Systems are

compared according to the partial AUC for a 0 ≤ f pr ≤ 0.05: pAUC (5%), as well as f pr, t pr
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and F1 measures at a specific operating point selected on the validation ROC curve for a desired

f pr = 1%. Performance for modular systems were measured for each individual (user EoD),

and average values are presented. In order to have comparable results for the multi-class TCM-

kNN, empirical ROC curves were estimated on validation for each individual. The selection

of the operations point, as well as performance evaluation were computed after applying the

specialized rejection threshold of the TCM-kNN. Note that this rejection threshold is estimated

on the training data, taking advantage of the peak-side-ratio that characterizes the distributions

of p-values for each class.

Table 2.4 Average transaction-level performance of the system over the 10 individuals

of interest and for 10 independent experiments. Systems were designed-updated with D,

D1 and D2, and performance is shown after testing on D1, D2 and D3 respectively (shown

D1 → D2 → D3). In all cases, the operations point was selected using the ROC space on

the validation dataset Ds at a f pr = 1%, except for the partial AUC that comprises the

area for 0 ≤ f pr ≤ 0.05. Bold values indicate significant differences

from other approaches

fpr (%) ↓ tpr (%) ↑ F1 ↑ pAUC (5%) ↑
No update (supervised learning on D only)

TCM-kNN
20.13
±0.42 → 24.74

±0.50 → 18.88
±0.53

90.65
±1.43 → 54.86

±3.30 → 49.03
±4.01

0.093
±0.003 → 0.055

±0.004 → 0.102
±0.009

88.71
±1.47 → 48.55

±3.39 → 46.05
±4.06

Monolithic PFAM
0.95
±0.18 → 0.94

±0.20 → 0.82
±0.18

80.84
±2.05 → 32.88

±3.44 → 37.35
±3.91

0.665
±0.019 → 0.280

±0.029 → 0.358
±0.035

90.40
±1.21 → 54.67

±3.24 → 61.54
±3.58

Learn++ (PFAM)
0.60
±0.07 → 0.62

±0.08 → 0.56
±0.06

16.90
±2.37 → 11.36

±2.05 → 12.13
±2.22

0.161
±0.017 → 0.111

±0.013 → 0.139
±0.018

47.87
±2.71 → 32.62

±2.22 → 32.67
±2.61

EoD (PFAM)
0.62
±0.09 → 0.64

±0.10 → 0.53
±0.09

77.02
±2.10 → 26.75

±2.99 → 31.85
±3.44

0.679
±0.018 → 0.255

±0.025 → 0.337
±0.032

92.88
±0.81 → 60.17

±2.94 → 65.96
±3.12

Supervised update (supervised incremental learning on D → D1 → D2)

TCM-kNN
20.13
±0.42 → 22.81

±0.41 → 18.32
±0.19

90.65
±1.43 → 54.26

±3.22 → 87.91
±1.67

0.094
±0.003 → 0.058

±0.004 → 0.175
±0.004

88.71
±1.47 → 48.54

±3.34 → 83.16
±2.29

PFAMinc
0.95
±0.18 → 1.20

±0.12 → 1.91
±0.24

80.84
±2.05 → 54.06

±3.46 → 84.52
±2.31

0.665
±0.019 → 0.438

±0.029 → 0.666
±0.024

90.40
±1.21 → 69.18

±2.86 → 87.75
±1.66

Learn++ (PFAM)
0.60
±0.07 → 0.57

±0.04 → 1.19
±0.11

16.90
±2.37 → 11.87

±1.80 → 20.57
±2.78

0.161
±0.017 → 0.128

±0.014 → 0.192
±0.020

47.87
±2.71 → 36.81

±2.45 → 34.19
±2.64

EoDsup (PFAM) LTMKL,λ=∞
0.62
±0.09 → 0.67

±0.05 → 0.84
±0.07

77.02
±2.10 → 45.51

±3.63 → 76.70
±2.71

0.679
±0.018 → 0.404

±0.031 → 0.691
±0.023

92.88
±0.81 → 72.03

±2.76 → 93.64
±0.84

Self update (semi-supervised incremental learning on D → D1 → D2)

EoDss (PFAM) LTMKL,λ=∞
0.62
±0.09 → 0.74

±0.07 → 0.93
±0.11

77.02
±2.10 → 43.33

±3.59 → 50.10
±4.12

0.679
±1.77 → 0.388

±0.031 → 0.461
±0.037

92.88
±0.81 → 68.50

±2.90 → 75.60
±3.04
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In the no-update scenario, the EoD (PFAM) approach is generally the most accurate approach

in terms of pAUC (5%). Overall results for all approaches show a degradation in the system

performance after testing on D2, with a slight recovery after testing on D3, indicating the

presence of changes in the classification environment going from D to D1 and to D2. This

decline in performance underscores the importance of adapting facial models as new reference

videos become available.

At the selected operations point (fpr=1%), it is interesting to note that, compared to monolithic

classifiers (PFAM and TCM-kNN), both ensemble-based classifiers provide lower f pr, along

with a lower standard error. The only multi-class classifier used in the comparison, the TCM-

kNN, yields a significantly higher f pr, even though it was designed to avoid false acceptances

by using a specialized rejection threshold. This issue is related to the difficulty faced by multi-

class classifiers in estimating multiple decision boundaries during the same design process:

between cohort and unknown individuals, and between individuals in the cohort. Modular

architectures simplify the task by optimizing parameters for user-specific 2-class classifiers for

determining individual-specific bounds, which provides greater discrimination when design

data per target individual is limited (Oh and Suen, 2002). Consequently, TCM-kNN achieves

the highest t pr, but fails meeting constraints for the f pr on test data. Ensemble approaches

(Learn++ and EoD) have the lower f pr, although the PFAM and EoD (PFAM) provide the

highest t pr and F1 measures. This translates to a greater discrimination for target ROI samples.

Results suggest that the EoD (PFAM) can achieve the most robust overall performance to

gradually changing environments.

The average results (Table 2.4) for the supervised update scenario show the impact on perfor-

mance of updating the facial models. The degradation seen in the no-update case is reduced.

The pAUC (5%) reveals that the EoDsup (PFAM) LTMKL,λk=∞ provides a significantly higher

level of performance, which confirms the utility of adaptive ensembles. This approach es-

tablishes an upper bound for self-updating, given that it correctly updates facial models with

every new target trajectory. As in the no-update case, it can be seen that adaptive ensembles

present lower f pr but also lower t pr, and PFAMinc and EoDsup (PFAM) LTMKL,λ=∞ provide
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the greater discrimination on target ROI samples. TCM-kNN presents the most significant

degradation in performance after testing on D2, even though it was retrained with samples

from D∪D1. However, it also presents an important recovery after testing on D3. A Kruskall-

Wallis statistical test on the pAUC (5%) between the EoDsup (PFAM) and PFAMinc gives a

p-value of 0.0123, which confirms that the differences between the mean performances are

significant with a 95% confidence interval.

Average results achieved with the proposed semi-supervised adaptive MCS (EoDss) indicate

that the performance is generally comparable to that of the supervised approaches in terms of

pAUC (5%), although a higher f pr is eventually present. This degradation is the cumulative

effect of false adaptations followed by trajectories that are incorrectly labeled (see analysis

in Section 2.6.2). However the performance of the semi-supervised system evolves with a

general improvement with respect to the no-update case as new reference data is integrated.

And it remains close to the upper bound established by the approaches that perform supervised

update.

Table 2.5 Average transaction-level performance of the EoDss (PFAM) system given

different LTM sizes λk, after testing on D1 → D2 → D3. In all cases, the operations point

was selected using the ROC space on the validation dataset Ds for an f pr = 1%, except

for the pAUC (5%) that comprises the area for 0 ≤ f pr ≤ 0.05

fpr % ↓ tpr % ↑ F1 ↑ pAUC (5%) ↑
EoDss (PFAM), LTMKL,λ=0

0.62
±0.09 → 0.96

±0.09 → 1.55
±0.22

77.02
±2.10 → 44.25

±3.60 → 51.39
±3.95

0.679
±0.018 → 0.373

±0.030 → 0.428
±0.032

92.88
±0.81 → 65.88

±2.92 → 72.37
±3.09

EoDss (PFAM), LTMKL,λ=25
0.62
±0.09 → 1.42

±0.22 → 1.74
±0.24

77.02
±2.10 → 36.17

±3.43 → 48.83
±3.85

0.679
±0.018 → 0.306

±0.029 → 0.402
±0.031

92.88
±0.81 → 62.80

±3.04 → 70.95
±3.05

EoDss (PFAM), LTMKL,λ=50
0.62
±0.09 → 1.25

±0.16 → 1.44
±0.15

77.02
±2.10 → 35.28

±3.35 → 48.84
±3.90

0.679
±0.018 → 0.304

±0.029 → 0.407
±0.032

92.88
±0.81 → 62.35

±3.08 → 71.48
±3.13

EoDss (PFAM), LTMKL,λ=75
0.62
±0.09 → 1.27

±0.16 → 1.90
±0.29

77.02
±2.10 → 36.76

±3.53 → 50.13
±3.90

0.679
±0.018 → 0.307

±0.029 → 0.404
±0.032

92.88
±0.81 → 61.50

±3.12 → 71.84
±3.11

EoDss (PFAM), LTMKL,λ=100
0.62
±0.09 → 0.92

±0.09 → 1.45
±0.18

77.02
±2.10 → 45.43

±3.71 → 54.27
±3.86

0.679
±0.018 → 0.385

±0.031 → 0.468
±0.033

92.88
±0.81 → 68.44

±3.00 → 74.93
±2.98

A key parameter related to the accuracy and resources of EoDss (PFAM) systems is the LTM

size needed to store validation data. Table 2.5 shows the evolution of the average performance
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for LTM sizes λk = {0,25,50,75,100} patterns. As the system self-updates, the overall per-

formance improves when λk grows, at the expense of memory and computational complexity.

However, this trend occurs differently for distinct individuals, as analyzed in the subject-based

analysis. Finally, Fig. 2.8 shows the box plots for pAUC (5%) for the EoDss (PFAM) system

with different λk values. The first box in the graphs corresponds to the EoD (PFAM) that learns

only on D, and establishes the lower bound in performance. The second box is the supervised

EoDsup (PFAM) with a λk = ∞, and establishes the upper bound. It can be seen that pAUC

(5%) grows with the LTM size. Using a λk = 100 provides a performance that is comparable

to what is seen when λk = ∞.
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Figure 2.8 Box plots comparing the pAUC (5%) of systems (a) after learning D1

(testing on D2), and (b) after learning D2 (testing on D3). The systems from left to right

are (1) EoD (PFAM), (2) EoDsup (PFAM) LTMKL,λk=∞, (3) EoDss (PFAM) LTMKL,λk=0,

(4) EoDss (PFAM) LTMKL,λk=100, (5) EoDss (PFAM) LTMKL,λk=∞

2.6.2 Subject-Based Analysis

Table 2.6 presents the average performance of ensembles for the semi-supervised scenario ob-

tained after self-update using ROI samples from trajectories stored in D, D1 and D2. The LTM

size used corresponds to λk = 25 and 100 patterns. Modules 58 and 209 correspond to individ-

uals of interest with good initial performance (pAUC (5%) ≥ 95). They are easy to detect with

an EoDss (PFAM) (t pr ≥ 50%), and to differentiate from non-target individuals ( f pr ≤ 1%):
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These are typically sheep-like individuals in the Doddington zoo taxonomy. Results after learn-

ing D reveal the existence of 4 non-target individuals that are incorrectly detected more than

1% of the time (wolves) in both cases, corresponding to the 2.58% of the non-target individuals

during tests. In contrast, EoDsss 151 and 188 were selected because they initially provide poor

performance (pAUC (5%) < 95%). EoDss 151 corresponds to an individual that is difficult to

detect by the system (t pr < 50%), but is also difficult to impersonate ( f pr ≤ 1%). The test

at t = 1 reveals 5 wolves for this goat-like individual in the Doddington zoo taxonomy. The

number of wolves corresponds to 3.23% of non-target individuals. EoD188 corresponds to an

individual which while being easy to detect by the system (t pr ≥ 50%), it is also easy to imper-

sonate ( f pr > 1%). The test on D1 reveals 32 wolves, corresponding to 20.65% of non-target

individuals. Given the number of wolves, EoD188 corresponds to a lamb-like individual.

Results for EoDss 58 after updating on D1 (testing on D2) show a decline in pAUC (5%)

performance for both λk values. However, the F1 performance shows a greater decline for

λk = 100, which reveals that D1 contains some ROI samples that corrupt the facial model, and

degrades the EoDss (PFAM) accuracy. It can be seen however that some of these are filtered out

by the KL selection strategy, given the higher performance with λk = 25. The overall results

suggests that for this sheep-like individual, the performance can be maintained using small λk

values.

The pAUC (5%) for EoDss 209 after testing on D2 also shows a decline in performance for

λk = 25. Alto a small recovery is shown after testing on D3, performance does not regain the

same level due to the lack of representative validation data. On the other hand, an LTM with

λk = 100 is shown to be able to maintain and improve the level of performance. This results

suggest that sheep-like individuals benefit from higher λk values, and low λk values may lead to

the corruption of the facial models. Given the results form EoDs 58 and 209, one can conclude

that high values of λk ensure performance for sheep-like individuals, and individual-specific λk

values should be estimated based on the evolution of specific EoDs.
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Table 2.6 Average performance of the system for 4 individuals of interest

over 10 independent experiments, after test on D1 → D2 → D3. Two cases

that initially provide a high level of performance correspond to EoDs with

an initial pAUC (5%) ≥ 95% on D1. Cases with initial performance

that is poor are those with an initial pAUC (5%) < 95% on D1

EoDs with good initial performance
EoDss 58 EoDss 209

(sheep-like) (sheep-like)

EoDss (PFAM), semi-supervised incremental learning, LT MKL, λ = 25

| fpr (%) ↓ 0.23
±0.09 → 0.85

±0.07 → 1.46
±0.45

0.34
±0.07 → 5.44

±1.56 → 2.74
±0.68

| tpr (%) ↑ 84.43
±3.33 → 39.35

±7.06 → 44.24
±12.73

86.28
±3.54 → 11.79

±9.76 → 33.80
±13.22

| F1 ↑ 0.849
±0.023 → 0.402

±0.061 → 0.373
±0.077

0.792
±0.018 → 0.047

±0.031 → 0.205
±0.086

| pAUC (5%) ↑ 98.45
±0.23 → 73.74

±3.52 → 79.52
±5.93

97.61
±0.31 → 46.81

±10.51 → 64.13
±10.52

EoDss (PFAM), semi-supervised incremental learning, LT MKL, λ = 100

| fpr (%) ↓ 0.23
±0.09 → 0.86

±0.09 → 1.62
±0.39

0.34
±0.07 → 0.46

±0.07 → 1.10
±0.26

| tpr (%) ↑ 84.43
±3.33 → 35.44

±8.10 → 51.16
±14.32

86.28
±3.54 → 88.33

±3.33 → 98.10
±0.71

| F1 ↑ 0.849
±0.023 → 0.353

±0.066 → 0.384
±0.093

0.792
±0.018 → 0.793

±0.023 → 0.802
±0.037

| pAUC (5%) ↑ 98.45
±0.23 → 74.58

±3.54 → 80.44
±6.34

97.61
±0.31 → 97.16

±0.27 → 99.59
±0.11

EoDs with bad initial performance
EoDss 151 EoDss 188

(goat-like) (lamb-like)

EoDss (PFAM), semi-supervised incremental learning, LT MKL, λ = 25

| fpr (%) ↓ 0.13
±0.04 → 0.43

±0.22 → 0.31
±0.15

2.54
±0.57 → 0.95

±0.09 → 0.57
±0.21

| tpr (%) ↑ 37.50
±7.91 → 19.14

±10.17 → 51.19
±13.86

89.58
±4.26 → 85.17

±4.68 → 90.78
±5.33

| F1 ↑ 0.447
±0.065 → 0.182

±0.089 → 0.509
±0.112

0.472
±0.054 → 0.670

±0.024 → 0.863
±0.039

| pAUC (5%) ↑ 82.19
±5.46 → 65.30

±9.46 → 91.34
±3.85

91.12
±2.41 → 95.48

±1.14 → 99.73
±0.05

EoDss (PFAM), semi-supervised incremental learning, LT MKL, λ = 100

| fpr (%) ↓ 0.13
±0.04 → 0.25

±0.14 → 0.26
±0.15

2.54
±0.57 → 1.18

±0.20 → 0.31
±0.10

| tpr (%) ↑ 37.50
±7.91 → 27.17

±12.63 → 48.15
±13.56

89.58
±4.26 → 89.88

±3.09 → 93.70
±1.74

| F1 ↑ 0.447
±0.065 → 0.274

±0.119 → 0.498
±0.112

0.472
±0.054 → 0.667

±0.032 → 0.920
±0.013

| pAUC (5%) ↑ 82.19
±5.46 → 68.64

±9.32 → 91.39
±3.86

91.12
±2.41 → 96.39

±0.48 → 99.72
±0.05

With EoDss 151, pAUC (5%) and F1 performance declines after testing on D2. This decline

accentuated when λk = 25 patterns. Similarly to EoDss 58, this trend reveals that D2 contains

some samples that corrupt this facial model. However, in this case, the system benefits from
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higher λk values. Both EoDs show an increase in performance after testing on D3, showing

comparable performance in terms of F1 and pAUC (5%) for both λk values. This reveals that,

in the presence of corrupted data, goat-like individuals benefit from greater LTM sizes.

EoDss 188 presents a constant increase in pAUC (5%) and F1 performance. Despite the number

of incorrect updates produced by multiple wolves, the f pr decreases after each self-update.

This suggests that lamb-like individuals benefit from diverse samples from these updates as

well. Similar performance is achieved by the EoDss (PFAM) for small or large λk values.

It is well known that samples from wolf-like individuals negatively affect the f pr of EoDs,

and by definition, the effect is more pronounced if the EoD corresponds to a lamb-like individ-

ual. Figure 2.9 presents the percentage of samples from wolf-like individuals selected by KL

divergence, Average Margin Sampling (AMS) and Vote Entropy (VE), corresponding to the

analyzed individuals of interest. Different sizes of LTM were tested following the exponential

scale λk = �ex�, where x = 0,0.2,0.4, ...4.6 6. Results show no clear tendency for the good

cases, as shown in the graphs in Figure 2.9a and 2.9b. For these two sheep-like individuals

(EoD58 and EoD209) the AMS and KL divergence select a similar amount of samples from

wolf-like individuals in different cases. As shown in Figure 2.9c, the KL divergence retrieves

more samples from wolf-like individuals when the EoD corresponds to a goat-like individual.

Finally, Figure 2.9d shows that for lamb-like individuals, the KL divergence is specially effec-

tive in finding samples from wolf-like individuals given a small LTMs (λ < 50). In summary,

the KL divergence is useful in cases with poor initial performance (lamb-like and goat-like

individuals), and with only small LTM sizes.

2.6.3 Trajectory-Based Analysis

Fig. 2.10 presents the accumulation curves showing the positive predictions produced by the

EoDs in response to target and non-target trajectories in D1 (replication 1). The detection and

update thresholds estimated on the validation set are also depicted on the graphs. As can be

6Note that λk = �e4.6�= 100, the maximum λk considered in experiments.
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(c) EoDss 151 (d) EoDss 188

Figure 2.9 Percentage of wolf-like individuals in LTMs for the EoDs in the

subject-based analysis

observed in this case, the accumulative curves corresponding to the two sheep-like individuals

surpass both detection and update thresholds. And the upper envelope for non-target individ-

uals is always below the thresholds, which means that none of the negative trajectories was

incorrectly assigned to the target individual. EoDs for IDs 58 and 209 both exhibit a correct

detection through D1, allowing for the correct rejection of all negative trajectories in D1.

The accumulative curves for EoDss 151 and 188 for the same replication are also presented

in Fig. 2.10. While the goat-like individual (ID 151) remains hard to detect, the lamb-like

individual (ID 188) is impersonated by wolves present in D1. Results suggest that the level

of Γk (in Eq. 2.3) should be different for each type of individual. For instance, sheep-like
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Figure 2.10 Accumulated positive prediction curves produced by the EoDss (PFAM) of

target vs. the non-target individuals, after training on D (testing on D1), along with

detection and update thresholds

individuals require smaller Γk values, and lamb-like individuals require larger Γk values. On

the other hand, goat-like individuals may require a reduction of the detection threshold.

Fig. 2.11 shows the ROC curves for the overall system at the decision level. These curves were

obtained by varying the decision thresholds on the accumulation curves produced by target and

non-target trajectories in D3 (Fig. 2.10). It shows the high level of discrimination achieved

with these EoDss (PFAM) at the decision fusion system after two updates, by accumulating

evidence. Even though the selected update threshold γu
188 permitted some false updates after

testing on D1, the EoDss increased its level of discrimination, achieving only correct updates

after testing on D3.
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(a) ROC curve for EoDss 209 (b) ROC curve for EoDss 188

Figure 2.11 ROC curves for EoDs 209 (a) and 188 (b) at the decision fusion level, test

on D3, experiment trial 1. In both cases the final curves are perfect after two updates, even

though the EoDss 188 was updated 5 times with non-target trajectories in D1

Table 2.7 The average performance of the overall system following a trajectory-based

analysis. The number of target trajectories is 10, and the number of non-target trajectories

is 1050 for the 10 replications after test on D1. Results are produced by the system EoDss
(PFAM) LTMKL,λk=100, for the 4 cases in analysis

Measure
EoDs with good initial performance EoDs with bad initial performance
EoDss 58 EoDss 209 EoDss 151 EoDss 188

tpr 100.00 100.00 50.00 100.00

fpr 0.00 0.00 0.00 0.86

F1 1.00 1.00 0.667 0.6896

pAUC (5%) 100.00 100.00 51.25 91.40

Table 2.7 shows the average number of correct and incorrect trajectories detected by the se-

lected EoDss (PFAM) at the decision level. The benefit of accumulating predictions over a

trajectory becomes evident for these EoDs by comparing the t pr and f pr before and after

decision fusion. For instance, EoDss 58 presents a t pr = 84.43% and f pr = 0.23% using

transaction-based decisions (see Table 2.6), but using the whole trajectories in making the de-

cision it produces a t pr = 100% and f pr = 0%. This means that every time a target trajectory

from D1 was presented to the system, it was correctly detected by the corresponding EoDss, and

all non-target trajectories were correctly rejected. A similar behavior is shown by EoDss 209,

which confirms that EoDs for sheep-like individuals may achieve a high level of discrimination

with the proposed approach.
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Performance is also seen to be increasing in EoDs for individuals 151 and 188, the t pr growing

considerably and simultaneously reducing the f pr to about 0%. Moreover, using the decisions

based on trajectories, the number of wolves is reduced from 32 to only 5 for the wol f -like

individual 188. This suggests that the EoDs for both goat- and lamb-like individuals may also

benefit from the proposed trajectory-based decision scheme.

Table 2.8 IDs corresponding to the trajectories in FIA that surpassed the update

threshold and were used for updating the selected EoDs on different replications (r) of the

experiment (EoDss, LTMKL,λk=100). Bold numbers correspond to trajectories used for

correct updates, and conflicts are marked with a box around the ID of the trajectory

Rep. EoDss 58 EoDss 151 EoDss 188 EoDss 209 EoDss 58 EoDss 151 EoDss 188 EoDss 209
Update trajectories in D1 Update trajectories in D2

r=1 58 - 6,60,186,188,193,224 209 - - 188 209
r=2 58 - 188,224 209 - - 104,188 -

r=3 58 151 188 209 58 - - 209
r=4 58 - 188 209 - - - 209
r=5 58 - 188,224 209 58,134 - 188 209
r=6 58 151 188 209 58 151 104,188 209
r=7 58 - 188,224 209 - - 188 209
r=8 58 151 188 209 58 - 104,122,188 209
r=9 58 151 188,224 209 - 151 104, 151 ,153,188 209
r=10 58 151 188 209 58 151,174 104,188 209

Table 2.8 provides further details on the updates over replications 1 to 10 for selected EoDs

with LTMKL,λk=100. After testing on D1, EoDss 58 is always correctly and never incorrectly

updated. However, after testing on D2, only 50% of correct updates were performed, and an

incorrect update was present at replication 5. This phenomenon is explained by the drop in

performance due to the existence of ROI samples on D1 that corrupted the facial model, as

discussed earlier. A similar trend is presented by EoDss 151, dropping from 5 correct updates

on D1, to 3 correct and 1 incorrect updates. However, at replication 9, the correct update is

discarded due to the conflict with EoDss 188. The facial model for individual 188 was correctly

updated on all replications after testing on D1, but 9 wrong updates were also performed on five

of the replications. After test on D2 the number of correct updates dropped to 8, and incorrect

updates dropped to 8, in 5 of the replications. And one of the incorrect updates was discarded

due to the conflict detected with EoDss 151. A different trend is shown by EoDss 209, for
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which a reduction in the number of correct updates was only seen at replication 2, and never

presented a wrong update.

2.7 Conclusion

In this chapter, an adaptive MCS is proposed for video-to-video FR, where the face of each

target individual is modeled using an ensemble of 2-class classifiers. During operations, this

new system integrates information from a face tracker and individual-specific ensembles for

robust spatio-temporal recognition and for efficient self-update of facial models. The tracker

defines a facial trajectory for each individual that appears in a video. Spatio-temporal FR oc-

curs if the number of positive predictions accumulated along a trajectory surpass the detection

threshold for an individual-specific ensemble. A higher update threshold allows the system to

determine if the trajectory incorporates enough confidence for self-update of facial models. To

update a facial model, all target samples extracted from the trajectory are combined with non-

target samples selected from the cohort and universal models. Facial models are updated using

a learn-and-combine strategy to avoid knowledge corruption that can occur during self-update

with an incremental learning classifier. In addition, a memory management strategy based on

Kullback-Leibler divergence is used to rank and select the most relevant target and non-target

reference ROI samples for validation.

Proof of concept validation has been performed on the CMU-FIA video dataset with a par-

ticular realisation of the proposed system.The individual-specific EoDs are formed with of

ARTMAP neural network classifiers generated using a DPSO incremental learning strategy,

where classifiers are combined using BC. Transaction-level results indicate that the proposed

adaptive MCS improved pAUC (5%) by about 8% over the system that do not perform self-

update. It provides an average performance comparable to the same system that performs

supervised update of facial models with all relevant trajectories. Subject-level analysis reveals

that facial models from sheep- and goat-like individuals benefit from using a large LTM, while

lamb-like individuals present similar performance with large or small LTM sizes. This is a

consequence of the capacity of the KL divergence to select samples from wolf-like individuals,
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which are more numerous for EoDs corresponding to lamb-like individuals. For trajectory-

level analysis shown by the accumulated decisions, the system increases discrimination and

robustness compared to transaction-level decisions. In all the cases that were analyzed, the

individual-specific EoDs were able to simultaneously increase the overall pAUC (5%), t pr and

F1 measures, and reduce the f pr. Finally, an analysis of the updates achieved by the system

shows that by virtue of the increased discrimination, it presented a low number of incorrect

updates even with the large number of non-target trajectories presented to the system during

simulations.

In this chapter, trajectories define the design samples used for (re)enrollment (supervised learn-

ing) and update (supervised or unsupervised learning) of facial models encoded in a video-to-

video FR system. The proposed MCS has been characterized using data that exhibits a gradual

pattern of changes over different capture sessions. Future research should analyze performance

under abrupt patterns of change, as seen in sharp variations of illumination and face pose. A

dynamic adaptation of the fusion functions of the ensembles to these scenarios may allow a

better exploitation of the availability of abundant operational data. Since the proportion of tar-

get to non-target ROIs captured in practice is imbalanced, and the level of imbalance changes

over time, classifier ensembles should be selected dynamically according to the context to im-

prove performance. Regarding resource management, the exploration of pruning strategies for

ensembles is another open issue. In practice, the system should exploit internal knowledge

(age, performance relevance, etc.) to remove some older or redundant classifiers over time.

With respect to the KL based LTM management scheme, it might be characterized on different

applications of adaptive ensembles, like iris or gait recognition, signature verification, or in

general object recognition. Finally, the system may also benefit from knowledge of ROI sam-

ples from wolf- and goat-like individuals, and the amount of validation samples stored in LTM

may be optimized per individual. This could allow to select target and non-target ROI samples

that lead to more discriminant individual-specific EoDs.
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ABSTRACT

Recognizing individuals of interest from faces captured with video cameras raises several chal-

lenges linked to changes in capture conditions (e.g., variation in illumination and pose). More-

over, in person re-identification applications the facial models needed for matching are typi-

cally designed a priori, with a limited amount of reference samples captured under constrained

temporal and spatial conditions. Face tracking can however be used to regroup the system re-

sponses linked to a facial trajectory (facial captures from a person) for robust spatio-temporal

recognition, and to update facial models over time using operational data. In this paper, an

adaptive ensemble-based system is proposed for spatio-temporal face recognition (FR). Given

a diverse set of facial captures linked to a trajectory of a target individual, an ensembles of

2-class classifiers is designed. A pool of ARTMAP classifiers is generated using a dynamic

PSO-based learning strategy, and classifiers are selected and combined using Boolean com-

bination. To train classifiers, target samples are combined with a set of reference non-target

samples selected from the cohort and universal models using One-Sided Selection. During

operations, each individual-specific ensemble of the system seeks to detects target individuals,

and may self-update their facial models, using facial trajectories. A learn-and-combine strat-

egy is then employed to avoid knowledge corruption during self-update of ensembles, and a
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memory management strategy based on Kullback-Leibler divergence allows to rank and se-

lect validation samples over time to bound the systems memory consumption. Spatio-temporal

fusion is performed by accumulating classifier predictions over a time window, and a second

threshold allows to self-update facial models. The proposed systems was validated in a pass-

port checking scenario with real-world Face in Action videos that feature abrupt and gradual

patterns of change. At the transaction level, results show that the proposed system allows

to increase AUC accuracy by about 3% for scenarios with abrupt changes, and by about 5%

with gradual changes. Subject-based analysis reveals the difficulties of face recognition with

different poses, affecting more significantly the lamb- and goat-like individuals. Compared

to reference spatio-temporal fusion approaches, results show that the proposed accumulation

scheme produces the highest discrimination.

3.1 Introduction

In person re-identification (or search and retrieval) applications, target individuals of interest

must be recognized from face images captured across a network of video cameras. Automated

face recognition (FR) systems are increasingly employed for decision support in such appli-

cations (Best-Rowden et al., 2013; Fischer et al., 2011), where a human operator seeks to

reliably detect the presence of target individuals in several video feeds. In this case, the facial

regions captured in videos are matched against the facial models of target individuals (enrolled

to the system). These facial models are usually designed with a limited amount face captures

collected under controlled conditions. Each model may be defined as a set of one or more

reference samples (for a template matching system), or a set of parameters estimated during

training with reference samples (for neural or statistical classifiers). However, faces acquired

under semi- and unconstrained capture conditions may match poorly with stored facial mod-

els, because operational environments are complex and change abruptly or gradually due to

variations in pose, illumination, expression, etc.

Adaptive biometric systems may be used to update facial models over time, given a new block

of reference data. Using adaptive ensembles has shown to provide a robust solution when lim-
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ited data is available for system design, and to avoid knowledge corruption (De-la Torre et al.,

2012a; Pagano et al., 2012; Polikar et al., 2001). However, since the collection and analy-

sis of new reference data (e.g., through re-enrollment) for system update is often expensive

and not always possible, several adaptive techniques enable biometric systems to update with

unlabeled operational data (Rattani, 2010; Roli et al., 2007, 2008). In video surveillance ap-

plications, individuals may be tracked in a scene, and facial captures across multiple frames

may be regrouped in facial trajectories,1 integrating both time and space information (Matta

and Dugelay, 2009). And accumulated matching scores or decisions for the facial captures in

a trajectory allow for robust spatio-temporal recognition (Despiegel et al., 2012; Ekenel et al.,

2010; Zhou et al., 2004) and accurate self-update of facial models (De-la Torre et al., 2014a;

Franco et al., 2010).

In a recent publication (De-la Torre et al., 2014a), the authors proposed a general framework

for partially supervised learning from facial trajectories, in which tracking and classification in-

formation are combined. When the face of a new person is first captured in a video, the tracker

is initialized to follow that face across frames, and a facial trajectory is captured. Predictions

from individual-specific ensembles of detectors (EoDs) are accumulated for a fixed size time

window. A detection threshold is then estimated on validation trajectories, and applied to the

accumulated predictions to provide overall decisions. When a new trajectory surpasses a sec-

ond (higher) update threshold, the system performs self-update of the corresponding facial

model using all facial captures linked to the high confidence trajectory. That framework also

provides the mechanism to select non-target training samples, and to rank and select validation

samples to be stored in a long term memory, permitting to limit memory consumption after

each self-update. However, the thresholding scheme only allows adapting to gradual changes

in the video surveillance environment (e.g., due to aging), and only the most recent validation

trajectory is considered for threshold estimation, which degrades system’s knowledge.

1A facial trajectory is defined as a set of facial captures (produced by face segmentation) that correspond to a

same high quality track of an individual across consecutive frames.
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In this chapter, an adaptive ensemble-based system is proposed for spatio-temporal FR in per-

son re-identification (search and retrieval applications). This particular realisation of the sys-

tem is inspired by the framework described in (De-la Torre et al., 2014a), and considers not

only gradual, but also abrupt changes in data, as found in real world person re-identification

applications. When a new trajectory becomes available to design or update the facial model

of an individual of interest, the target’s facial captures are used to design an EoD. A pool of

probabilistic Fuzzy ARTMAP 2-class classifiers (Lim and Harrison, 1995) is generated us-

ing a dynamic particle swarm optimization (DPSO)-based learning strategy (Connolly et al.,

2012), and is combined with previously trained classifiers. These base classifiers are selected

and combined using Boolean combination (BC), which takes advantage of the ROC space to

choose the desired operations point (Khreich et al., 2010b). A learn-and-combine incremental

learning strategy incorporates the new data from an update trajectory, yet avoids knowledge

corruption during self-update of EoDs. To train 2-class classifiers, a variation of the One-Sided

Selection (OSS) algorithm is employed to select non-target training samples, and avoid the

bias through the non-target class. A data management strategy based on the Kullback-Leibler

divergence (KL) allows to rank and select a fixed number of validation samples over time,

and bound memory consumption. The system accumulates ensemble predictions in a fixed

size time window, and an individual-specific detection threshold is applied for accurate spatio-

temporal FR. If accumulated predictions surpass a second (higher) update threshold, the EoD

will self-update the corresponding facial model with the input trajectory. Finally, decision and

update thresholds for spatio-temporal fusion are re-estimated with accumulations from past

and new update trajectories every time the system is self-updated.

Video sequences from the Carnegie Mellon University Face in Action (FIA) video FR database

were used for validation. Videos were captured from 180 subjects with an array of 6 cameras

over three sessions separated by a three-month interval. In this data, individuals were captured

under semi-constrained conditions for a security check point scenario. When a sequence is

presented to the system during operations, high confidence target trajectories are used for per-

formance estimation and self-update. Three levels of evaluation are used for benchmarking
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– transaction-based analysis (ROC and precision-recall spaces), subject-level analysis (Dod-

dington zoo characterization), and trajectory-level analysis (overall system behavior over video

sequences).

The rest of the chapter is organized as follows. Sections 3.2 and 3.3 provide a survey of

techniques used for FR in video surveillance and adaptive biometrics, respectively. Then,

the adaptive ensemble-based system proposed for spatio-temporal FR is presented. Section

3.5 describes the experimental methodology –protocol, data set and performance measures.

Finally, results are presented and discussed in Section 3.6.

3.2 Video-to-Video Face Recognition in Person Re-identification

The search and retrieval of individuals previously seen over a network of cameras finds many

applications in video surveillance. Person re-identification typically exploits clothing appear-

ance and gait for short term re-identification (Satta, 2013) and/or classical biometric traits when

clothing is not constant, e.g., for long term re-identification (Best-Rowden et al., 2013; Fischer

et al., 2011). This chapter focuses in person re-identification based on facial captures from a

network of video cameras.

Figure 3.1 A generic track-and-classify system for spatio-temporal face recognition
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Assume a system where 2D frames are captured from video streams using one or more IP cam-

eras in a network. Spatio-temporal FR involves several processing steps, as shown in Fig. 3.1.

First, the segmentation process isolates the facial regions of interest (ROIs) corresponding to

faces captured in successive frames. Then, the feature extraction module extracts specific char-

acteristics for tracking and classification. A tracker is typically initialized when a new person

is viewed by a camera and emergent ROIs are detected far from other faces. A track is de-

fined over consecutive frames using the state of the tracked facial region x (using appearance,

scale, position, track number, etc.) and tracker-specific features (into vector b). Invariant and

discriminant classification features are extracted from each ROI (into vector a): facial features

can be categorized according to three levels of detail (Klare and Jain, 2010). Level 1 features

contain low dimensional appearance information (e.g., principal component analysis on pixel

intensities), level 2 features require information from the structure and specific shape and tex-

ture of the face (e.g., local binary patterns), and level 3 features are mostly used in forensic

identification, and include scars, marks, and other micro features of the face. Tracking follows

the movement or expression of distinct faces across video frames, whereas the classification

function compares the ROIs to the facial models of individuals enrolled to the system. Finally,

the decision function combines the tracking and classification information in order to predict a

list of likely individuals in the scene.

Applications in video-surveillance include still-to-video FR (e.g., watchlist screening) and

video-to-video (e.g., person re-identification) FR. Although many systems neglect temporal

information, and use video sequences as a source of isolated facial regions, it is possible to

design facial models from video streams, integrating time and space information. In particu-

lar, the presentation order of the frames affects the recognition accuracy in spatio-temporal FR

(Matta and Dugelay, 2009).

Two variants can be distinguished among spatio-temporal FR approaches. Tracking-then-

recognition approaches use segmentation to first crop a detected face, and then track the facial

region over time. These approaches typically perform face matching on each frame, and then

use majority voting for a final result. Tracking-and-recognition approaches attempt to simul-
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taneously track and recognize, and may combine temporal and spatial information in a unified

manner (Barry and Granger, 2007; Ekenel et al., 2010; Zhou et al., 2004), or integrate track-

ing and recognition within a single algorithm (Franco et al., 2010; Lee et al., 2005; Matta and

Dugelay, 2006). Table 3.1 shows a survey of approaches from each category. In this chap-

ter, spatio-temporal FR approaches with parallel tracking-and-recognition are considered for

person re-identification.

Table 3.1 Categorization of approaches for FR in video in literature

Temporal Information Approach

Neglect

Eigenfaces (Turk and Pentland, 1991)

Fisherfaces (Matta and Dugelay, 2009)

Active appearance models (Matta and Dugelay, 2009)

Radial basis function neural networks (Matta and Dugelay, 2009)

Elastic graph matching (Matta and Dugelay, 2009)

Hierarchical discriminative regression trees (Matta and Dugelay, 2009)

Unsupervised pairwise clustering techniques (Matta and Dugelay, 2009)

Open Set TCM-kNN (Li and Wechsler, 2005)

Ensembles of Fuzzy ARTMAP classifiers (Pagano et al., 2012)

Exploit

Tracking-

then-

recogni-

tion

Fisherfaces with facial optical flow (Chen et al., 2001)

Dictionary-based face recognition (Chen et al., 2014)

Score and quality driven matching (Despiegel et al., 2012)

HMM extension for video (Liu and Cheng, 2003)

Tracking-

and-

recogni-

tion

What-and-Where fusion Neural Network (Barry and Granger, 2007)

Local appearance-based face models (Ekenel et al., 2010)

Tracking and Recognition using Probabilistic Appearance Manifolds (Lee et al., 2003, 2005)

Stochastic tracking and recognition through particle filtering (Zhou et al., 2004)

GMMs on unconstrained head motion (Matta and Dugelay, 2006)

Recognition confidence and interframe continuity (Franco et al., 2010)

3.2.1 Face Tracking

Facial tracking (FT) techniques allow to follow the location of each of individual and to regroup

facial regions of a same person (without knowing his identity). The input of the tracker is the

stream of frames coming from a video camera, and the initial face ROIs to be tracked, while

the output track ID and defines a trajectory (set of ROIs with the same ID) for which the track

maintains a high tracking quality QT . As a result, facial regions are regrouped as belonging

to the same individual. Note that only the first ROI in a trajectory (ROIs from segmentation,
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used for classification) has an exact match in a track (state of facial regions from the tracker)

(Yilmaz et al., 2006).

The basic tracking steps are face representation, prediction filtering and data association. In

face representation, the tracked facial region is represented with distinctive features that permit

to track the face from one frame to the next. Commonly used features are color histogram,

skin color probability map, Eigenfaces and active contours, just to mention a few. Predicting

the next state with Kalman and Particle filters seeks the new state x (appearance, scale, loca-

tion, and/or velocity, etc.) of the facial region to be tracked in the current frame, based on

the information in the previous frames and some underlying model for state transitions. The

objective of the prediction filtering is to avoid drift and reduce the search space by using a prob-

ability framework, although some methods perform data association heuristically instead (e.g.

Mean-shift and CAM-shift). Finally, in the data association step, the tracker associates a fea-

ture vector of the facial region extracted from the previous frame with the feature vector in the

current frame. Tracking methods are often categorized according to the type of descriptor used

for face representation: holistic, contour-based, and hybrid information. Most face-tracking

methods in literature rely on holistic representations due to their robustness (Dewan et al.,

2013).

3.2.2 Face Matching

FR systems used for person re-identification usually consider an open set problem, with the

premise that the number of individuals of interest is greatly outnumbered by non-target indi-

viduals. A multi-class classifier designed to reject unknown individuals in video FR is the Open

Set TCM-kNN (Transduction Confidence Machine-k Nearest Neighbors) proposed by Li and

Wechsler (Li and Wechsler, 2005). It provides a local estimation of the likelihood ratio used for

detection, based in the relation between transduction and Kolmogorov complexity. The rejec-

tion threshold for never enrolled individuals is based on the distribution of the peak-side-ratio

that characterizes the distribution of p-values that approximate the randomness deficiency. The

p-values are constructed using the strangeness measure, which is the ratio of the sum of the k
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nearest distances from the same class, divided by the sum of the k nearest distances from all

other classes (Li and Wechsler, 2005).

Similarly, modular architectures with one detector per individual have been proposed, using 1-

or 2-class classifiers per individual of interest. The advantages of these approaches has been

widely studied in biometrics literature, and include the convenience for enrolling individuals

and optimizing individual-specific parameters (Jain and Ross, 2002; Pagano et al., 2012). For

instance, Kamgar and Parsi propose an approach based on the identification of the decision

region(s) in the feature space of individual-specific faces by training a dedicated feed-forward

neural network for each individual of interest (Kamgar-Parsi et al., 2011). Tax and Duin pro-

posed a heuristic to combine any type of one-class classifiers for multi-class classification with

outlier rejection. It allows to adjust the rejection threshold per individual, and to combine mod-

els that are not based on probability densities. By doing this, they combine classification scores

from different probability densities for accurate FR (Tax and Duin, 2008). Another example

is the SVM-based modular system proposed by Ekenel et al., applied to a visitor interface

scenario (Ekenel et al., 2010).

Finally, given the limited reference samples and the complexity of environments, modular ap-

proaches have been extended to train an ensemble of classifiers per individual. An ensemble

of detectors (1 or 2-class classifiers) may be designed for each individual in a watch list. For

classifier design, non-target samples are retrieved from the cohort model (CM, database main-

tained with trajectories from non-target individuals of interest) and the universal model (UM,

database with training samples from unknown people appearing in scene. For example, Pagano

et al. (Pagano et al., 2012) proposed ensembles of 2-class classifiers co-jointly trained using a

DPSO based training strategy. It allows for the generation of a diversified pool of ARTMAP

classifiers that are selected and combined in the ROC space using Boolean combination (BC)

(Pagano et al., 2012).
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3.2.3 Spatio-Temporal Fusion

Spatio-temporal FR approaches merge spatial information (e.g. face appearance) with the se-

quential variations presented over time (e.g behavior). Many of these approaches internally

implement a tracking-like algorithm, whereas others take advantage of mature state of the art

trackers to build trajectories. Regardless, motion information and matching scores or decisions

are combined over time, and the matching performance may be improved on a time scale that

is larger than the frame rate. As the tracker follows a face in the scene, it defines a track with

all the followed regions, and a trajectory is defined as a set of facial ROIs (produced by face

segmentation) that correspond to the same quality track of an individual across consecutive

frames.

Liu and Chen used HMMs to model the appearance and dynamics of a person, obtaining high

confident results on sequences that were then used to adapt the facial models. This approach

merge spatial and temporal information within the HMM by modeling the probability distribu-

tions of the motion, and select the highest likelihood score provided by the HMM to decide the

identity of the test video sequence. Authors compare their approach to a baseline system that

performs IPCA recognition and apply majority voting for the identification decisions over the

whole sequence (Liu and Cheng, 2003).

Probabilistic appearance manifolds expressed as a collection of subsets (pose manifolds) were

used in video-based face recognition. In this approach exemplars are sampled from videos,

and clustered with K-means, learning the probability between pose manifolds from training

videos (Lee et al., 2003). Zhang and Martinez divide the facial ROI in several sub-regions, and

use an estimation of optical flow to weight the importance of each of them when estimating

posterior probabilities. This technique allows to consider the motion between each pair of

frames, including information from changes of expression (Zhang and Martınez, 2006).

Evidence accumulation strategies have shown to be gaining more interest in the field. They

take into account multiple consecutive frames and allow to integrate matching responses over

time. In the framework for video FR proposed by Gorodnichy in (Gorodnichy, 2005), different
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strategies are mentioned for the sequential combination of output scores (postsynaptic poten-

tials, or PSP) obtained from video frames. These combinations include (1) applying a threshold

to the output scores of a sequence, (2) average or median of several consecutive frame deci-

sions, (3) average or median of several consecutive PSP outputs, and (4) any combination of

the above.

In the approach proposed by Zhou et al., the movement and identity are characterized using a

motion vector and an identity variable (Zhou et al., 2004). They estimate the joint posterior

distribution of the motion vector and identity variable by combining three equations. The

identity equation that governs the temporal evolution of the identity variable is given by

θt = f (θt−1,ut); for t ≥ 1 (3.1)

where ut is a noise model, a common selection of θt is the affine motion parameters, and a

common choice of the f function is an additive function. The motion equation governs the

behavior of the tracking motion vector assume that the identity does not change over time:

nt = nt−1; for t ≥ 1 (3.2)

The observation equation establishes the link between the equations 3.1 and 3.2, and is given

by

zt = T {yt ;θt}= gnt + vt ; for t ≥ 1 (3.3)

where vt is the observation noise at time t, and T {yt ;θt} is a transformed version of the

observation yt . Then, the overall state transition probability is given by

p(xt |xt−1) = p(nt |nt−1)p(θt |θt−1) (3.4)

The What-and-where fusion neural network was applied for video-to-video FR of individuals

in Video Surveillance (Barry and Granger, 2007). In this fusion scheme, an evidence accumu-

lation module accumulates the classifier responses according to each track. The predictions of
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this network are the results of multiple responses by the classifier, and in the particular imple-

mentation given in (Barry and Granger, 2007), the evidences are accumulated at in the category

choice function Th of a fuzzy ARTMAP neural network classifier. The evidence accumulation

field Fe
h is connected to a track h, and its output prediction is given by

Ke = argmax
ke

{T e
hke : ke = 1,2, ...,L} (3.5)

where L is the number of output class nodes.

Ekenel et al. (Ekenel et al., 2010) present another example is the video-to-video FR system that

progressively combines scores of the matchers using a sum rule over the full sequences to esti-

mate the identity in video. In this approach, classification is performed using k-NN on a DCT

representation of face images, and a min-max normalization is applied to the distance-based

output scores. Weighted sum variants were also proposed and analyzed using the distance-

to-model, distance-to-second-closest and a combination of both. The three frame weighting

schemes allow to implement a more sophisticated spatio-temporal weighted sum. The distance-

to-model (DTM) weights are given by

wDT M( fi) =

⎧⎨
⎩

1 if d( fi,c)< μ

e−
d( fi,c)−μ

2σ2 otherwise
(3.6)

where d( fi,c fi) is the distance of all frames to the closest representative class c f , i is the frame

counter, and μ and σ are the mean and variance of the distribution of frame distances, estimated

on an independent set. The the distance-to-second-closest weighting scheme is given by

WDT 2ND( fi) = ε(Δ( fi)) = 1− e−Δ( fi) (3.7)

where ε(x,λ ) = 0.1λe−λx, with λ = 0.5 is the distribution of frame distances to the second

closest, and Δ( fi) is the difference of distances to the closest and second closest. The frame-

wise fusion scheme employs the sum-rule over all the sequence, adding the scores for all the

ROIs in each trajectory T :
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ss_Decision(T ) = ∑
ROIi∈T

score(ROIi) (3.8)

where score(ROI) is the matching score that may be produced with any of their proposed

weighting schemes.

Two methods were analyzed by Despiegel et al. (Despiegel et al., 2012) to summarize the pro-

cessing of video images from video sequences for a border control system. In the score driven

method, facial regions are continuously matched against facial models until a matching score

is above a predetermined threshold, which indicates a positive identification of the sequence.

This method considers the highest matching score given by

ms_Decision(T ) = max
ROIi∈T

{score(ROI)} , (3.9)

and apply a predefined decision threshold. In the quality driven method, images are processed

until a quality intrinsic to the considered image is above a predefined threshold, and the match-

ing score over the predetermined threshold indicates a positive identification of the sequence.

They observe in their experiments that when using score driven methods, the operational FPR

cannot be computed off line. And using quality driven methods the off line DET curve corre-

sponds to operational performances.

A dictionary-based method was proposed for person recognition in unconstrained environ-

ments, which builds video-dictionaries for still images to encode temporal, pose and illumina-

tion information (Chen et al., 2014). This method takes advantage of the face and body traits,

and apply kernel methods to learn nonlinearities to design several sub-dictionaries that encode

distinct captures of the traits into biometric models. The minimum residual R for a ROI pat-

tern indicates that the ROI is closest to one of the sub-dictionaries represented in the feature

space, and is closely related to distance-based scores. They use majority vote for sequence-

level decisions for identification, and minimum residual among all images in the sequence for

verification.
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mv_Decision(T ) = argmax
ω=Ω

{
∑

ROIi∈T
dω

i

}
, (3.10)

where dω
i is the classification decision corresponding to the ROIi given the class ω ∈ Ω. The

classes in Ω are the labels assigned to the individuals enrolled to the system. In mathematical

notation, dω
i is given by

dω
i =

⎧⎨
⎩ 1 if the classifier decides class ω

0 otherwise
(3.11)

Franco et al. (Franco et al., 2010) propose a system that exploits recognition confidence (RC)

and interframe continuity (IC) for template update. Although this system evaluates the recog-

nition rate as the raw percentage of correctly recognized ROIs in a closed-set scenario (no time

information), it uses the IC to decide if a ROI is suitable to be added to the gallery. The RC

condition for a ROI pattern a given the two templates ϒi1 and U psiloni2 closest to a, is fulfilled

if
d(a,ϒi2)−d(a,ϒi1)

d(a,ϒi1
> RCthr, (3.12)

where d(a,ϒ) is the distance between the feature vector a and a template ϒ. The individual-

specific threshold RCthr is pre-fixed and updated according to the frequency of detection of the

subjects. The IC condition is fulfilled if

∃(i1,v′, p′,s′) ∈ X |(||p− p′||< ICthr)∧ (v′ ≥ vthr), (3.13)

where i1 is the identity according to previous detections, and v′ is the amount of times a face

was detected close to p′ with scale close to s′. X is the set with new candidate faces, p and s

are the position and scale corresponding to the previous candidate face, and ICthr and vthr are

thresholds estimated according to the ITU algorithm (Franco et al., 2010).

Finally, a framework was recently proposed for the combination of responses produced by

commercial-of-the-shelf systems that for still-to-still FR over multiple frames (Best-Rowden
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et al., 2013). Two fusion levels were distinguished, which allow for different combination

schemes. Rank-level fusion allows to use combination schemes like majority voting to produce

a single decision based on the responses produced for all frames in a trajectory. On the other

hand, score-level fusion allows combination schemes like min, max, medium or averaging rules

to reduce the theoretical error and improve empirical performance over using single-sample

decisions.

3.2.4 Key Challenges in Person Re-Identification

One of the main challenges is that facial models are designed a priori with a limited number of

reference facial captures. Facial models so designed are also limited in their representativeness,

and yield poor accuracy when matched against faces captured during operations, under semi or

uncontrolled capture conditions, and possibly with different cameras. However, evidence ac-

cumulation in spatio-temporal approaches allows to increase the overall matching performance

of FR systems by using several captures in the final prediction.

Another challenge is the representativeness of facial models over time. Facial captures incor-

porate considerable variations due to limited control over operational conditions when images

are acquired from unconstrained scenes (e.g., illumination, pose, facial expression, orienta-

tion and occlusion). New information may suddenly emerge during operations, and previously

acquired data may eventually become obsolete in changing environments. Moreover, the phys-

iology of the individuals may change over time, either temporarily (e.g., haircut, glasses, etc.)

or permanently (e.g., scars, aging). These factors result in facial models that diverge over time

with respect to the underlying data distributions. Automatic FR systems capable of adapting

facial models over time constitute a potential solution to maintain or improve performance.

Facial models designed with a few frontal facial regions captured under controlled conditions

are not expected to provide a high level of performance when matched against faces captured

in different conditions with changes in illumination, pose, aging, etc. High quality face tracks

allow to regroup ROIs that correspond to the same individual. Thus, if a facial model is updated
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with a facial trajectory, it may be enriched with a variety of information that may not be possible

to be automatically acquired from a single ROI.

In this chapter, a specialized system is proposed for video-to-video FR in person re-identification.

It is composed of adaptive individual-specific EoDs, and uses evidence accumulation with a

fixed size window over trajectories for robust spatio-temporal recognition.

3.3 Update of Facial Models

Several approaches allow for supervised update, providing reliable results (Connolly et al.,

2012; De-la Torre et al., 2012a; Tax and Duin, 2008). However, obtaining new labeled refer-

ence data is often costly or impractical. To overcome this difficulty, several semi-supervised

methods have been introduced for automatic template update during operational phases (Franco

et al., 2010; Okada et al., 2001; Rattani et al., 2009b, 2008a; Roli et al., 2007, 2008; Roli and

Marcialis, 2006). This chapter focuses on using self-updating algorithms to adapt facial models

of a video-to-video FR system using trajectories.

3.3.1 Adaptive Biometrics

Self-update techniques (Roli et al., 2007; Roli and Marcialis, 2006) were proposed to update

biometric models based on the classification score produced by the system given an input

biometric sample. The system is initially designed using reference samples from a set DL

of labeled data, and a set of unlabeled data Du is employed for semi-supervised learning. A

decision threshold γd is applied to the similarity scores generated after matching unlabeled

samples. Then, samples with scores that surpass a higher updating threshold, γu ≥ γd (i.e.,

matched with a high degree of confidence), are used to update the corresponding biometric

model. The subjective notion of high degree of confidence depends on both the application

domain and matching algorithm, and usually the update threshold is chosen to be higher or

equal than the decision threshold.
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The advantages of adapting a biometric system using operational data carries an inherent risk.

There exists a trade-off between the false updates and false rejections that affect of perfor-

mance. A conservative threshold (or other parameters in the biometric model) may allow a

system without false updates, but also a system that is never adapted to changes in the environ-

ment. Conversely, a less conservative threshold may lead to an increase in the number of false

updates and the inherent deterioration of biometric models. An accurate selection of adaptation

criteria (decision and adaptation thresholds) is crucial in the design of such systems.

Another technique that is commonly used in semi-supervised learning is called co-update. This

strategy is adapted for use with two diversified matchers with independent galleries specialized

on different biometric traits, modalities or scores, designed to mutually improve performance.

The biometric traits originally used are the fingerprints and the face, where co-training is used

to update the template-based face and fingerprint models (Roli et al., 2007).

Different semi-supervised approaches have been proposed in literature, where statistical or

neural classifiers are used to design the biometric models. For instance, a view representa-

tion that combines facial and torso-color histograms was used with bunch graph matching for

adaptive person recognition (Okada et al., 2001). This system is able to update existing bio-

metric models, and automatically enroll unknown individuals based on a double thresholding

strategy. Update is performed on operational video streams that provide high sequence-to-entry

similarity, measure of confidence. The sequence-to-entry similarity is the average of maximum

frame-to-entry similarity values, which in turn was defined as the maximum similarity value

over all facial representations in a database entry (Okada et al., 2001). Bayesian networks

were also used for facial expression recognition and face detection using a stochastic structure

search algorithm (Cohen et al., 2004). This approach combined labeled and unlabeled data to

train the classifier and search for the Bayesian network structure that provided the minimum

probability of error, using maximum likelihood estimation. SVMs with locality preserving pro-

jections have also been combined to update facial models, by incorporating information from

operational ROIs taken from video (Lu et al., 2010). The algorithm first builds a data model
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of a video sequence, and then uses semi-supervised locality preserving projections to build a

graph with the geometrical structure of the face space.

MCSs have also been used in conjunction with the co-training and self-training. For instance,

Didaci and Roli (Didaci and Roli, 2006) proposed an ensemble of five classifiers was trained

with two different diversity generation techniques (bootstrap and the training of different clas-

sifiers). These techniques are based on a re-training schema for biometric model updates, and

improve accuracy by 18% on the test set composed of the training (labeled) and unlabeled

data, using the product rule for combination. In another variation, the co-training algorithm

for MCS was proposed for updating only unlabeled samples that produced high confidence

(El Gayar et al., 2006). The five patterns with highest probability of belonging to the specific

person, were selected as the most confident. This system was tested with 3 non-homogeneous

classifiers in the ensemble, and provided the highest performance with a voting combination

scheme. Finally, a semi-supervised classification schema based on random subspace dimen-

sionality reduction was proposed for graph-based semi-supervised learning. In this approach,

a kNN graph is built in each processed random subspace, and semi-supervised classifiers are

trained on the resulting graphs, using majority voting rule for combination (Yu et al., 2012).

MCSs for semi-supervised learning in the literature have provided improved accuracy, and

show the utility of unlabeled samples. In this chapter, an adaptive MCS is proposed for video-

to-video FR, that allows for semi-supervised learning from facial trajectories. It exploits the

two thresholds (γd and γu) for self-update, and the quality of tracking as a second source

of confidence, a characteristic borrowed from the co-update algorithm. The tracking quality

allows to regroup facial regions from the same individual, and the accumulation of the positive

predictions of each individual-specific ensemble over time allow for high confident decisions.

3.3.2 Adaptive Face Recognition Systems

Adaptive FR systems in literature have traditionally incorporated newly-acquired reference

samples to update the selection of a user’s template from a gallery, via clustering and editing
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techniques. These systems allow to augment the representation of the intra-class variations in

facial models.

Recent work on supervised incremental learning of facial models includes a FR system that re-

lies on an adaptive MCS. An incremental learning strategy based on DPSO has been proposed

to update an ensemble of incremental learning classifiers based on new data for video-based

access control. It allows the evolution of an ensemble of heterogeneous multi-class ARTMAP

classifiers from new reference data, using an LTM to store validation samples for fitness es-

timation and determining the number of training epochs. This approach reduces the effect of

knowledge corruption by integrating information from diverse classifiers that are guided by a

population-based evolutionary optimization algorithm (Connolly et al., 2012). Another adap-

tive MCS that allows for design and update of facial models is composed of an ensemble of

binary detectors (EoDs) per individual, an LTM and a dynamic optimization module. When

a new data block becomes available, a diversified pool of 2-class ARTMAP classifiers is gen-

erated using a learning strategy based on the DPSO optimization algorithm. The combination

function is updated using Boolean combination (BC) (De-la Torre et al., 2012a). Learn++ is

another well-known ensemble-based technique for incremental learning that has been tested

on FR problems. This technique was proposed by Polikar et al. (Polikar et al., 2001), and is

inspired by the AdaBoost algorithm. It allows for supervised incremental learning by incor-

porating a new set of classifiers to the ensemble each time new data becomes available. The

generation of weak classifiers is performed using a bagging strategy, by training distinct base

classifiers on bootstrap replicates of the training set.

Semi-supervised approaches for facial model update are generally based on the classification

similarity. For instance, in (Roli and Marcialis, 2006), self-training has been applied to a FR

system using Euclidean distance. In each iteration, the PCA-based feature space is updated

with the newly acquired soft-labeled samples. In (Hewitt and Belongie, 2006), a method is

proposed to combine tracking and recognition to build facial models based on co-training.

This method is used to label facial samples, and thus to build a learning dataset for each user.

Their initial facial model consists of a single manually selected frontal image, and the extrac-
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tion of new face samples is done off-line. They use a tracker instead of a second classifier to

identify informative training examples. The Graph Mincut method, which can be seen as self-

update given that the system updates its own templates using the recognition scores thrown

by the same templates, has been proposed to update templates by analyzing the underlying

structure of input operational data (Rattani et al., 2008a). In this extension, a pair-wise similar-

ity measure between operational face captures and existing templates is used to draw a graph

that relates these samples, allowing for a global template optimization. A system that exploits

classification similarity and video information, is presented in (Franco et al., 2010), to per-

form incremental template update. It is based on the similarity between acquired facial images

and existing templates, and exploits the frequency of detection on the complete sequences of

the different subjects in the scene. Recognition confidence and interframe continuity mea-

sures were integrated in a face recognition system that can assign unlabeled images to subjects

in the gallery. When these two quantities surpass independent individual-specific thresholds,

templates are recognized as belonging to a subject, and are incorporated to the gallery.

Figure 3.2 Block diagram of the proposed adaptive spatio-temporal system for

video-to-video FR
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Finally, a framework that allows to combine tracking and classification information to rec-

ognize individuals in video-to-video FR was proposed in (De-la Torre et al., 2014a). In that

framework, decisions from classifiers corresponding to consecutive ROIs in a trajectory are

accumulated over time, allowing to estimate a decision threshold γd
k based on the maximum

difference between the positive accumulation curve and the higher negative envelope. An up-

date threshold γu
k > γd

k is applied to the accumulated decisions of a trajectory in order to decide

if that trajectory can be used for self-update. In that way, the system can incorporate new

knowledge from high confident trajectories acquired during operations. The next section de-

scribes a particular realization of a self-updating system for spatio-temporal face recognition,

based on the aforementioned framework.

3.4 A Self-Updating System for Spatio-Temporal Face Recognition

The structure of the adaptive MCS for video-to-video FR is shown in Fig. 3.2. It is composed

of 7 subsystems: 5 used in normal operation and 2 used in the design/self-update phase. The

segmentation module is used for face detection, the feature extraction/selection module and

the matcher with one EoD per enrolled individual produces classification predictions. The IVT

face tracker follows faces in scene allowing the spatio-temporal fusion system to regroup and

accumulate target predictions over a fixed size window for enhanced spatio-temporal FR. De-

tection (γd
k ) and update (γu

k ) thresholds for spatio-temporal fusion are estimated using validation

trajectories, and the design/update module avoids knowledge corruption by using a learn-and-

combine strategy. Individual-specific EoDs are designed by the design/update module, by

training a pool of PFAM 2-class classifiers using a DPSO training strategy, and estimating the

fusion function with BC. The sample selection system allows to reduce the negative bias of the

training and validation sets using the OSS and random selection strategies.

In the operational phase, the feature vectors corresponding to ROIs captured in scene are

matched against facial models. In the matching process, the scores produced by the PFAM

classifiers in the EoDs are thresholded and combined with the operations point selected on

validation with BC. Target predictions for a trajectory T produced by the EoDs are then ac-
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cumulated over a fixed size time window, and the detection γd
k and update γu

k thresholds are

applied to the resulting accumulation. When the accumulation of predictions from the EoDk

surpasses the detection threshold γd
k , the individual k is positively detected. If it surpasses the

update threshold γu
k , the trajectory T is assigned to individual k (Tk), and the self-update process

is triggered. The impact of different sizes of the time window, as well as different detection

and update thresholds are analyzed in ROC space (see Section 3.6).

The design/update phase starts when a labeled (or self-labeled) trajectory Tk becomes available.

The sample selection subsystem allows to build a labeled training set D with all target ROIs

from Tk, and a combination of non-target samples selected from the CM and UM. The proposed

OSS+Rand selection combines the target samples with non-target samples in the borderline

between distributions, and samples that are representative of the non-target data distribution.

The design/update subsystem splits D into learning and validation subsets that are used to

generate a new pool of PFAM classifiers, which in turn, is integrated with the old pool. Then,

a mix of new and old validation samples from the LTM is temporarily stored in the short term

memory (STM). BC is used to select and combine the classifiers in the pool using a subset of

the validation samples in the STM, and the remaining samples are used to select the operations

point (e.g. at f pr = 1%). Finally, the validation samples in the STM are ranked and selected

using the KL divergence, and the most relevant are stored in the LTM for further validation.

3.4.1 Modular Classification System

The modular classification system is composed of individual-specific EoD that allow for en-

hanced classification accuracy when only a limited amount of data is available for system de-

sign (De-la Torre et al., 2012a; Pagano et al., 2012). Accordingly, each EoD estimates discrim-

inant bounds between the target (individuals of interest) and non-target (the rest of the world)

populations. Each ensemble EoDk is comprised of a pool of Probabilistic Fuzzy ARTMAP

(PFAM) classifiers (Lim and Harrison, 1995) Pk = {c1,k, ...,cM,k}, and a fusion function Fk

that is designed in the ROC space using the Boolean combination (BC) (Khreich et al., 2010b).
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The PFAM neural network classifier combines Fuzzy ARTMAP density estimation for learn-

ing category prototypes, with a non-parametric posterior probability distribution procedure

inspired by the Probabilistic Neural Networks during the operational phase (Lim and Harrison,

1997). It allows for incremental learning of new data, and can learn quickly and efficiently

with limited data. Additionally, the PFAM classifier allows to produce estimated posterior

probabilities of class membership.

Given an input sample a, the output prediction for each class ω j ∈ Ω, Ω = {ω1,ω2}, is repre-

sented by:

p(a|ω j) =
1

(2π)M/2σM
j

exp

{
−(a−wa

j)
T (a−wa

j)

2σ2
j

}
(3.14)

where σ j is the variance represented by the ratio of the squared minimum distance between a−
wa

j and any other center M-dimensional pattern, and wa
j are the centers of mass corresponding

to the category prototypes in the Fa
2 layer inherited from the Fuzzy ARMAP architecture. The

estimation of posterior probabilities for 2-class classifiers is given by:

P̂(ω j|a) = p(a|ω j)P(ω j)

∑2
i=1 p(a|ωi)P(ωi)

(3.15)

where priors P(ω j) are estimated based on the proportions of each class in the training data.

PFAM inherits four hyperparameters from its underlying Fuzzy ARTMAP architecture. These

hyperparameters are the learning rate β ∈ [0,1], the choice α > 0, the match tracking 0< ε � 1,

and the baseline vigilance ρ̄ ∈ [0,1]. A fifth hyperparameter r controls the overlap between

probability densities for prediction using the probabilistic neural network.

An incremental learning strategy based on the DPSO algorithm allows to evolve a pool of

classifiers in the five-dimensional space of hyperparameters h = [α,β ,ε, ρ̄,r]. It generates a

diversified pool of PFAM classifiers taking advantage of the correlation between the diversity
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within a dynamic particle swarm and the diversity within a corresponding pool (Connolly et al.,

2012).

Given a new training set Dt , and validation sets to stop training epochs (De) and for fitness

evaluation (D f ), the algorithm initializes N PFAM networks and PFAMstart
n , and sets the swarm

parameters with the initial iteration counter at τ = 0. Then, the positions and velocities of the

particles in the swarm are randomly initialized. The N particles (PFAM classifiers) are trained

on Dt and De respectively, and the DPSO fitness function f (hn(τ), t) is the AUC of the ROC

produced by the classifier after evaluation on D f :

f (hn(τ)) = AUC(ROC(chn(τ),D
f )), (3.16)

where chn(τ) is the classifier trained on Dt with the hyperparameter vector hn at the iteration τ

of the algorithm, and validated with De.

The iterative process starts by a random initialization of the N particle positions in the optimiza-

tion space h, and training the corresponding PFAM classifiers with hn and a random pattern

presentation order. The fitness for the N PFAM networks that correspond to each particle are

evaluated, and those with highest fitness value are considered local bests. The old particles for

which the fitness was improved are updated: the fitness, position and network associated with

the PFAM networks are replaced. In the case that previous and new fitness is equal, the net-

work with lower complexity (the least F2 nodes) is chosen. The positions hn are updated, and

the procedure is repeated from the fitness evaluation. The process is repeated until the DPSO

reaches the stopping condition, after fitness converges.

The fusion function Fk is estimated using Boolean combination (BC), and holds a set of oper-

ations points (maximum realizable ROC curve vertices). Thus, it provides an increased AUC

that is equivalent or higher than the maximum realizable ROC (MRROC) of the ROC curves

produced by the classifiers in Pk. BC selects an ensemble from the pool of classifiers, and

Boolean fusion functions and thresholds are adapted for improved accuracy. Initially, the algo-

rithm receives the scores produced by the classifiers to be combined after presentation of the
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combination set Dc, and starts by ordering the PFAM classifiers according to the AUC accuracy

in decreasing order. All pairs of operations points in the ROC curves from the first two classi-

fiers are combined using all Boolean functions, and the convex hull of the collection of original

and new points is obtained. Then, the vertices in this convex hull are combined with the op-

erations points in the ROC curve from the third classifier, and a new convex hull is obtained.

The process is repeated until the ROC curves for all the classifiers are combined, and the con-

vex hull that includes all the classifiers is obtained. The newly generated operations points are

successively re-combined, in the same order, with operations points of the classifiers, until the

overall convex hull stops improving (Khreich et al., 2010b). The so estimated operations points

–vertices of the final convex hull– are comprised of classifier specific thresholds and Boolean

combination functions. The use of all Boolean functions in the combination allows this method

to make no assumptions with respect to the independence of the classifiers. In practice, this

technique has proven to be more accurate than majority voting, median (Khreich et al., 2010a),

and weighted majority voting (Learn++) (De-la Torre et al., 2012b).

After the MRROC is estimated by BC, each vertex (operations point) is evaluated on an inde-

pendent selection set Ds
k, which allows to select an unbiased operations point in the ROC space

for a predefined f pr. If no operations point exists for the specified f pr, a virtual classifier is

produced by interpolating the closest adjacent operating points (Fawcett, 2006).

During operations, the classifiers cm,k of each ensemble EoDk, k = 1, ...,K, m = 1, ...,M, pro-

duces an output score s+m,k(a) for a given ROI pattern a. The scores are then combined using

Fk. Each individual-specific EoDk produces an output prediction pk(a). Positive predictions

are then accumulated over time for each trajectory in the spatio-temporal fusion system to

produce a global decision (see Fig. 3.2). Finally, self-update is achieved by using adaptive en-

sembles of ARTMAP classifiers, each one capable of supervised and unsupervised incremental

learning. A learn-and-combine strategy is employed to maintain performance even after sev-

eral adaptations, yet avoid knowledge corruption associated with many incremental learning

classifiers (De-la Torre et al., 2012a).
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3.4.2 Tracking System

The face tracker initializes a new trajectory with the first facial ROI captured by the segmen-

tation system in a different area of the scene. Then, the individual is tracked independently.

As the tracker follows the facial region through the scene, the segmentation system captures

high quality facial ROIs for some of the frames, allowing to produce a trajectory. Note that the

segmentation module does not retrieve a facial region from all frames. The diverse set of facial

ROIs regrouped with the tracker belongs to the same individual. When the tracking quality QT

for a trajectory T falls under a pre-defined quality threshold (QT < γT ), the track is dropped,

and its trajectory is closed.

The incremental visual tracker (IVT) is considered in the proposed system. Accurate data as-

sociation is performed by updating a low-dimensional subspace that represents the appearance

of each person’s facial regions (Ross et al., 2008). It adapts over time to changes in the appear-

ance of the target face based on capture conditions. This generative method takes advantage

of the Eigen-faces representation with particle filters, and data association is performed with

Euclidean and Mahalanobis distances. Once a new person (or face) is initially detected, IVT

uses template matching to track the face within the first n frames. Then, it defines a data block

to compute an appearance-based face model represented in the Eigenspace spanned by these

first n samples. The Sequential Karhunen-Loeve algorithm is used to update the Eigenspace

and corresponding face representation.

The quality (confidence) of the new tracked face region measures the likelihood of that region

to belong to the initial trajectory. In IVT, it can be derived from the observational model, given

an image face patch It and a predicted position (particle) Xt , as

QT = p(It |Xt) = pdt (It |Xt)pdw(It |Xt)

= N (It ; μ,UUT + εI)N (It ; μ,UΣ−2UT )
(3.17)

where pdt (It |Xt) is the probability of a sample generated from a subspace, and pdw(It |Xt) is the

likelihood of the projected sample within a subspace, modeled by the Mahalanobis distance
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from the mean. I is an identity matrix, μ is the mean, and εI corresponds to the additive

Gaussian noise in the observation.

3.4.3 Spatio-Temporal Fusion System

The adaptive MCS detects the presence of an individual of interest when on the number of

positive predictions by EoDk surpasses the detection threshold γd
k . Given a trajectory T , each

EoDk generates a prediction pk(an) for each sample an associated with a ROIi ∈ T . Output

predictions from EoDk over the ROI samples of a trajectory T , at the selected operations point,

are defined by the set Pk = {pk(a1), ..., pk(aN)}, associated with each input ROI sample an.

Negative predictions set pk(an) = 0, and positive ones set pk(an) = 1. The spatio-temporal

fusion system accumulates the number of positive predictions Ak of each EoDk on fixed size

window W according to:

Ak =
W−1

∑
i=0

pk ·a(W−i) ∈ [0,W ] (3.18)

For instance, a window of size W = 30 accumulates the last 30 predictions from the same

trajectory. Each EoDk accumulates a sequence of predictions that range from 0 (EoDk made

only negative predictions for W ), to a maximum of W (EoDk made only positive predictions

for the last W ROIs).

Based on these accumulations Ak, for k = 1, ...,K, the system produces overall decisions. If Ak

surpasses threshold γd
k , the system detects the presence of individual k and alerts the operator.

Furthermore, if Ak surpasses the update threshold γu
k , the trajectory is used for self-updating of

the corresponding EoDk. Given the negative effects on performance caused by false updates,

threshold γu
k is greater or equal to γd

k .

The detection threshold γd
k for each EoDk is estimated using a validation set composed of one

positive and several negative trajectories (see Fig. 3.3). In this way, a single target trajectory is

required for design of the facial model. An accumulation curve is computed for each trajectory
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within the validation dataset. The higher negative envelope (hne) is defined as the curve formed

from the highest Ak values of the negative accumulation curves. The positive accumulation

curve (pac) is the accumulated predictions over the trajectory for the corresponding individual

k. The detection threshold for the EoDk is computed by a weighted sum of two components,

and is given by

γd
k = w1(max{pac( fi)−hne( fi) : i = 1, ..., |Tk|}) (3.19)

+w2(max{hne( fi) : i = 1, ..., |Tk|})

where fi is the frame number i in the given trajectory. The first term maximizes the capacity

of the system to differentiate between target and non-target trajectories, and the second maxi-

mizes the correct rejection capacity. These weights remained equal and fixed in (De-la Torre

et al., 2014a), but an increase in the operational conditions eventually require increasing the

importance for one term or the other. The weights must respect the constraint of w1 +w2 = 1

in order to avoid thresholds out of boundaries.

By considering the presentation order of the target and non-target ROI patterns, the time in-

formation is included in the threshold estimation for particular facial models. The adaptation

threshold γu
k is set to a value equal to or greater than γd

k , and it is manually set according to

prior knowledge:

γu
k = γd

k +Γk (3.20)

where Γk is a user-defined real value between 0 and (W − γd
k ). Fig. 3.3 illustrates the measures

used in the threshold estimation strategy, presenting the pac and the hne. The reliability of γd
k

and γu
k estimates grows with the number of non-target trajectories present in the validation set.

When the accumulation from a trajectory T surpasses the detection threshold γd
k for one or

more EoDs, the system outputs the corresponding decision signals. The output to the decision

support system lists all individuals of interest that are detected in the scene. When the accumu-

lation surpasses the update threshold γu
k , the corresponding trajectory is used for update of the

classification system and the detection and update signals. The decision threshold is updated
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Figure 3.3 Estimation of detection and update threshold on validation trajectories at the

decision level

considering the higher positive envelope (hpe) instead of the pac used for single trajectory

scheme, as follows

γd
k = w1(max{hpe( fi)−hne( fi) : i = 1, ..., |Tk|}) (3.21)

+w2(max{hne( fi) : i = 1, ..., |Tk|})

where the hpe corresponds to the highest accumulation values for all the overlapping target

trajectories, assuming target trajectories start at the same point. This hpe represents the highest

values obtained in the accumulation curves from past and current target trajectories, and define

the highest possible values obtained for the target individual over time.

3.4.4 Design/Update System

When a new trajectory Tk is detected and labeled for design/update, all its facial ROIs from

segmentation share the same label. Then, these facial ROIs are used to update the EoDk, thus

incorporating the diversified set of ROIs into the corresponding facial model. This greater di-

versity of samples is augmented when the captured ROIs over the trajectory present diversity of

conditions (pose, lighting, etc). These samples allow for facial models that are more represen-
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tative of video capture, increasing the capacity of the system to recognize faces from different

capture conditions. In pattern recognition terms, the incorporation of these diversified set of

reference samples allows to extend the boundaries between target and non-target individuals in

the feature space, in accordance with the most recent facial ROIs.

Given a design/update trajectory Tk produced by the self-update system, the set with all its fa-

cial ROIs is divided into three subsets to follow a learn-and-combine strategy. Each combines

target samples (from Tk) and non-target samples. An OSS based selection algorithm allows to

retrieve borderline and distinctive non-target samples. It is used to select non-target samples

from the CM and UM to populate the three training/validation data subsets (see Section 3.4.5).

The CM database is comprised of a set of trajectories from other individuals of interest (ex-

cluding individual k); and the UM database is comprised of trajectories from other non-target

individuals that represent the rest of the world, e.g. random individuals that appear frequently

in the scene.

The first subset Dt is assigned for training2, the second De for validation on the number of

epochs that the classifiers are trained, and the third D f
k for optimization of classifier hyperpa-

rameters. Then, the incremental learning strategy based on DPSO (Connolly et al., 2012) is

used to generate a diversified pool of classifiers, and add them to the previous pool Pk. The

validation sets (De and D f ) are then added to a short term memory (STMk). At the first design

step, the LTMk is empty, however after the first adaptation, the validation samples in the STMk

are mixed with those stored in the previous LTMk. Samples in both memories are combined,

randomized and divided into two subsets. The first set Dc is used to select the classifiers from

Pk to form the Fk and the EoDk, and the second Ds to select the operations point in the

ROC space. Given the modular architecture, the process is similar for samples stored for all

the EoDs. In summary, an ensemble EoDk is updated with new ROIs from a trajectory Tk by

generating new base classifiers, adding these to a pool Pk, and updating the fusion function

according to the old and new validation samples.

2For simplicity of notation, in this chapter the k has been omitted from all design data blocks, e.g. Dt
k ≡ Dt .



133

Algorithm 3.1: Design and update of the EoDk

Input : Tk, EoDk = {Pk,Fk}, LT Mk, UM, CM

Output : EoD′
k, LT M′

k // EoD′
k = {P ′

k,F
′
k} and LTM′k

Divide Tk in Dt ,De,D f evenly // Tk (target samples)
Dt ⇐ OSS_NEG_SEL(Dt ,UM,CM) // 2-class sets
De ⇐ OSS_NEG_SEL(De,UM,CM)
D f ⇐ OSS_NEG_SEL(D f ,UM,CM)
P′

k ⇐{c′1,k, ...,c
′
M,k} // Pool generated on Dt, De, D f

Pk ⇐ P ′
k ∪Pk // Combine old and new pools

ST Mk ⇐ De ∪D f ∪LT Mk // Old and new samples
Divide ST Mk in Dc and Ds evenly

F ′
k ⇐ FUSION(Dc,Ds, f pr) // Fusion function

EoD′
k ⇐{P ′

k,F
′
k} // Updated EoDk

LT M′
k ⇐ KL_SEL(ST Mk,λk) // Use KL to manage LT Mk

Assuming that the size of the LT Mk for EoDk is λk, the ST Mk size is chosen to have at least

2λk in order to store enough new and old validation samples. Then, the validation samples in

the ST Mk are ranked according to Eq. 3.22 (see Section 3.4.5), and the λk samples with the

highest values are stored in the LT Mk.

3.4.5 Sample Selection

Target samples from the design/update trajectory Tk are coupled with negatives from the CM

and UM to form the learning set D. The OSS subsampling strategy (Kubat and Matwin, 1997)

is employed to reduce the bias of training 2-class classifiers with imbalanced data sets (limited

positive vs. abundant negative samples). This method preserves all target (minority class)

samples and selects those non-target (majority class) samples that lie close to the area of overlap

between classes. Then, those samples that are redundant, and those that are difficult to classify

(involved in Tomek links) are discarded.

When a trajectory Tk is provided to the system for training/update, the corresponding ROIs

are used to build dataset of positive samples D+. A set of negative samples D− is also built

by subsampling from the UM and CM. The system applies the OSS algorithm to D+ ∪D−

to select a consistent subset for design of the binary base classifiers. The resulting dataset D

comprises the complete set of positives D+, as well as the negative samples selected by OSS
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(close to the decision boundaries) D−′
oss, and (3) a uniform random selection of negatives D−

d .

This algorithm makes no assumptions with respect to the probability distribution of the positive

and negative samples. Border (selected by OSS) and non-border (randomly selected) samples

are both included in D. The OSS algorithm permits an unbiased selection of negative samples,

based solely on the distribution of the new samples.

Algorithm 3.2: OSS_NEG_SEL. Select non-target samples for system design

Input : D+, UM // Samples from Tk, UM and CM
Output : D // Target and non-target samples
D− ⇐UM∪CM // All non-target samples
[D+

oss,D
−
oss]⇐ OSS(D+,D−) // Select by OSS

np ⇐ |D+| // Number of target samples

D−′
oss ⇐ RAND_SEL(D−

oss,np) // Select np non-target
D−

d ⇐ RAND_SEL(D−,np) // Select np distinctive non-target from D−,
not selected by OSS

D ⇐ D+∪D−′
oss ∪D−

d

Level C ranking measures permit the selection of samples from the LT Mk that are difficult

to classify by the ensemble members. These samples are distinctive of the decision bound

between the positive and negative classes, as estimated with the base classifiers. The disagree-

ment of base classifiers on a determined validation sample is proportional to its difficulty, give

a degree of information for border specification when the fusion function is estimated. This is

also valid for the accurate selection of operations points. Among ranking measures available

in the literature, only the Kullback-Leibler divergence produces a continuous measure of the

disagreement between the ensemble members (De-la Torre et al., 2013). The KL divergence

of an input sample a is computed using:

KL(a) =
1

M

M

∑
m=1

(
∑
i∈Ω

si
m(a) log

si
m(a)

P̂i
EoDk

(a)

)
(3.22)

where M is the number of classifiers in the ensemble EoDk, and P̂i
EoDk

(a) given by (3.23) is

the consensus probability that the class i ∈ Ω is the correct label for sample a, given the scores

si
n(a) produced by the base classifiers:
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P̂i
EoD(a) =

1

M

M

∑
n=1

si
n(a) (3.23)

The value of KL divergence is proportional to the informativeness of a sample a. The most

informative samples present the largest average difference between scores of any single com-

mittee member and the consensus.

Algorithm 3.3: LTM management using the KL div., KL_SEL(input =
{D,sk(ai),λk},out put = {Dr})

Input : D, sk(ai), λk // Data block, scores sk(ai),
// ai ∈ D produced by EoDk and
// the size of the LT Mk

Output : Dr // Data block with λk representative samples from D
// For each sample in the data block
for ai ∈ D do

relevancei = KL(sk(ai)) // Compute the KL divergence according to
Eq. 3.22

D ⇐ SORT (D,relevance,dec) // Sort D in decreasing order, according to
relevancei

Dr+ ⇐ FIRST _POSIT IV ES(D,�λk
2
�) // Positive samples with highest KL

divergence

Dr− ⇐ FIRST _NEGAT IV ES(D,�λk
2
�) // Negatives with highest KL

divergence
Dr ⇐ Dr+∪Dr−

Algorithm 3.3 details the procedure to select the most relevant validation samples from the

whole validation set in the STM. Given an EoD, the KL_SEL algorithm allows for the se-

lection of the most challenging samples from the validation set, providing information on the

overlapping area according to the agreement of the ensemble members. When a validation

dataset D is presented to the algorithm, all samples are ranked according to the KL divergence

using the scores produced by base classifiers in the pool Pk. The highest ranked samples are

retained, while the less informative ones are discarded. Thus, the ranking method is based on

past and present information on samples that are difficult to classify, according to older and

newer classifiers.
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Table 3.2 Parameters for all the blocks in the proposed adaptive system

Process Technique Parameter Value

Face Segmentation

Viola-Jones Pose and eyes training Haar files from OpenCV

Scale factor 1.1

Minimum overlapping detections 2

Flags Scale Image

Smallest region 0.1×0.1 the size of the image

Face Tracking

Incremental Visual Tracker Particle filters Standard (Ross et al., 2008)

Batch size 5

Forgetting factor 0.9

Feature Extraction
MLBP Block sizes 3×3, 5×5, 9×9

PCA Principal components 32

Learn-and-combine

DPSO

Initial particles in swarm 60

Particles per sub-swarm 5

Sub-swarms 6

Maximum iterations 30

Extra iterations 5

IBC
Iterations 1

Points in ROC curves All

LTM management λk 100

Decision fusion

Window accumulation Window size 30 frames

Weights w1 = w2 = 0.5
Update discrimination Γk = 1

3.5 Experimental Methodology

The experiments described in this section follow a common evaluation protocol for adap-

tive systems, which divides the design-update data into different subsets, and a separate in-

dependent test set that represents the reference never seen operational environment (Singh

et al., 2010; Roli and Marcialis, 2006; Franco et al., 2010; Liu and Cheng, 2003). The

main goal in these experiments is to characterize the proposed adaptive video-to-video face

re-identification system in two semi-constrained environments, considering different video se-

quences that present changes in age and pose for the same individual.

The parameters for each block belonging to the system are summarized in Table 3.2. For face

segmentation, tracking and feature extraction, the standard parameters were used according to

the published references. The parameters for the DPSO learning strategy and BC were also

fixed to already published values (De-la Torre et al., 2012a), and a sensitivity analysis was

performed on the size of the LTM, picking the value that globally benefited the performance

of the system (see Section 3.6). The weights and update discrimination parameters of the

decision fusion were also fixed to the previously published values, and a sensitivity analysis
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was conduced on the size of the LTM, finding that 30 frames is a good enough size (see Section

3.6).

3.5.1 Database for Face Re-Identification

Videos from the Carnegie Mellon University Face in Action (FIA) database were used in ex-

periments (Goh et al., 2005). It consists of 20-second videos captured at 30 frames per second,

from 180 participants in a passport checking scenario. An array of 6 cameras was positioned at

the face level to capture the scene, with a resolution of 640×480 pixels.. They are positioned

at 0o (frontal) and ±72.6o angle with respect to the individual. Three of the cameras were set

at an 8-mm focal-length (zoomed), resulting in face areas around 300× 300 pixels, and the

other three at a 4-mm focal length (unzoomed) resulting in face areas around 100×100 pixels.

Videos were captured in three sessions separated by a three-month interval for each subject.

Zoomed cameras in all angles were used to retrieve enrollment/update trajectories, and the tra-

jectories from unzoomed cameras were regrouped in a separated test set, and organized for the

two experiments described below. Facial regions of interest (ROIs) were detected in videos

using the well known Viola-Jones algorithm, using frontal, left and right profile according to

the camera view (Viola and Jones, 2004).

Visual tracking was also applied on video sequences, initializing the Incremental Visual Tracker

(IVT) (Ross et al., 2008) with the first face detected, and tracking quality was stored for trajec-

tory formation. All images were scaled to the highest possible resolution of the smallest face

obtained after face detection (70x70 pixels). Features were extracted using Multi Scale Local

Binary Patterns (MS-LBP) (Ojala et al., 2002) with three block sizes (3×3, 5×5 and 9×9),

along with pixel-intensity features. The resulting features were stacked in feature vectors, a

PCA mapping was applied, and the 32 principal characteristics were selected.

Ten individuals of interest were randomly selected from the database, and one EoD was de-

signed for each of them. Fig. 3.4 presents sample individuals in the two distinct scenarios

considered in comparison: abrupt changes (pose) and gradual changes (age). However, the
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Individual Design dataset Abrupt changes Gradual changes
ID DF = D1 Dataset DR Dataset DL Dataset D2 Dataset D3

3

21

72

188

Figure 3.4 Samples of facial ROIs from 4 of the individuals of interest enrolled to the

system. Faces were detected in video sequences from the FIA database using the

Viola-Jones face detector trained with frontal faces for gradual changes, and frontal, right

and left poses for abrupt changes

precise pose and age changes cannot be completely isolated, and in both scenarios some indi-

viduals also exhibit changes in makeup and expression. From the remaining individuals in the

database, 88 were selected to build and maintain the universal model (UM), and the rest were

considered as unknown individuals and appeared only on test. Note that in order to avoid a

performance bias, the samples from individuals belonging to the UM do not appear in the test

set, and similarly, samples from unknown individuals never appear on training stage.

During simulations, the amount of ROI samples retrieved from the trajectories for each indi-

vidual of interest is shown on Table 3.3. The CM for individual k is comprised of 9 trajectories

from non-target individuals in the cohort, and the number of ROI samples depends on the faces

segmented for the corresponding trajectory. For example, in the scenario with abrupt changes,

the reference ROI samples from trajectories in the CM of individual 2 are 1,474, 487 and 396

for the frontal, right and left datasets respectively. Similarly, the ROI samples from trajectories

in the UM for the same scenario are 10,807, 1,713 and 3,205 from DF , DR and DL respec-

tively, extracted from 88 non-target trajectories in each block. Finally, the ROI samples in
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the trajectories from unknown subjects ascend to 16,460, 2,678 and 5,081 for DF , DR and DL

respectively.

Table 3.3 Number of ROI samples in design and test trajectories for each individual of

interest in the training and test datasets for both experiments. The system is designed with

a single trajectory from DF or D1 (experiments 1 or 2 respectively), and updated twice

with one trajectory from DR (D2) and DL (D3). The test set is composed of one trajectory

from each pose for experiment 1, and from each capture session for experiment 2

ID |Tk| in experiment 1 Dtst−abrupt (pose) |Tk| in experiment 2 Dtst−gradual (age)

(k) Tk ∈ DF Tk ∈ DR Tk ∈ DL Front Right Left Tk ∈ D1 Tk ∈ D2 Tk ∈ D3 Front S1 Front S2 Front S3

2 149 54 80 114 30 73 149 208 184 114 109 119

3 170 62 54 194 31 23 170 149 123 194 151 165

21 92 61 38 75 31 36 92 138 184 75 79 101

58 202 57 11 176 6 64 202 254 202 176 215 172

72 223 38 41 144 22 58 223 268 246 144 184 151

99 82 53 40 57 72 43 82 146 0 57 115 0

121 126 63 48 68 47 27 126 122 113 68 57 46

188 148 46 72 118 66 52 148 183 233 118 172 192

190 190 65 60 132 18 59 190 217 148 132 92 88

213 241 42 32 110 39 48 241 210 234 110 83 85

3.5.2 Experimental Protocol

Prior to simulations, the design, update and test datasets were prepared for the two experiments,

using trajectories extracted from FIA videos. The first experiment characterizes the system in

a classification environment with abrupt changes (pose). Videos from the frontal, left and right

cameras in the first capture session were used. The design set contains the enrollment trajec-

tories from the frontal, zoomed camera (DF ). The trajectories from the right and left zoomed

cameras were used to form the first and second update datasets, DR and DL respectively. The

test set (Dtst−abrupt) is fixed, and contains trajectories from the frontal, right and left unzoomed

views (poses).

The second experiment shows the behavior of the system in an environment with gradual

changes, as propitiated by 3 months aging of the individuals. Here, the facial trajectories were

extracted from videos recorded by the frontal cameras across the three capture sessions. The

design set contains the enrollment trajectories from the first capture session, zoomed camera
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(D1). The trajectories from zoomed frontal view of the second and third sessions were used to

form the first and second update datasets, D2 and D3 respectively. The test set (Dtst−gradual)

is fixed, and contains trajectories from the frontal unzoomed view across the three capture

sessions.

The CM and UM databases were maintained for each experiment, containing trajectories with

similar characteristics than the design/update set. For instance, in the first experiment, the UM

used for system design is composed of trajectories from the selected 88 individuals captured

in the first session, with frontal, zoomed camera. In the second experiment, the CM at the

first update stage is formed by trajectories of the non-target individuals of interest (enrolled

to the system), captured in the second session, with frontal, zoomed camera. Non-target sam-

ples used for design and update are independently selected from the UM and CM for each

training/validation set, using the proposed variant of One-Sided Selection.

The reference supervised incremental learning systems were first trained using trajectories from

the design dataset, and new labeled reference samples were used for update. For these systems,

it is assumed that the video sequences from the update datasets were manually labeled by an

expert, and then used to update the system. In that sense, this scenario reflects the optimal case

where the system is correctly updated anytime new reference samples become available, but

also the most costly in terms of human effort. The reference supervised adaptive approaches

include PFAMinc, Learn++(PFAM) and EoDsup (PFAM) LT MKL,λ=∞. These systems were

updated with only the new labeled data. PFAM base classifiers were generated using the DPSO

training algorithm, with an initial swarm of 60 particles, and a maximum of 5 particles within

each of the 6 sub-swarms. The algorithm is set to run a maximum of 30 iterations, allowing

5 extra iterations to ensure convergence. Once the global best particle is found, its classifier

as well as the 6 local best classifiers from each sub-swarm are added to the ensemble. The

TCM-kNN was trained using k = 1, as published in (Li and Wechsler, 2005), and follows a

batch learning scheme: on each update, past and new samples are learned from scratch. For

instance, if a new trajectory becomes available at t = 3, the system is trained from scratch using

Dbatch = D1 ∪D2 ∪D3.
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Finally, the self-supervised system is first trained using the design set, and updated only when

a trajectory T from unlabeled data blocks yields an accumulation that surpasses the update

threshold, γu
k . The approaches considered in this scenario include the EoDss (PFAM) with 6

different sizes of LTM: λ = {0,25,50,75,100,∞}.

Learning is performed following a 2× 5-fold cross - validation process for 10 independent

trials. Positive samples from the incoming trajectory are randomly and evenly split in 5 folds

of the same size. The folds are first distributed in three different design sets, including two

folds for training (Dt), 11
2 fold to stop training epochs (De), and 11

2 fold for fitness evaluation

(D f ). Once the classifiers are trained, De and D f are combined, randomized and divided into

two equally distributed subsets to produce a validation data to estimate a fusion function (Dc),

and to select the operations point (Ds). Negative samples are chosen from the UM as well

as the CM according to the proposed OSS+Rand selection strategy. Each fold is assigned to a

different training/validation set for each replication of the experiment, and average performance

measures are produced with five different assignments. At replication 5, the five folds are

regenerated after a randomization of the sample order for each class.

3.5.3 Performance Analysis

The analysis of simulation results has been divided into three levels. First, transaction-based

analysis shows the performance of the system based on classification decisions on each ROI.

Then, a subject-based analysis allows a focus on specific individuals, which in turn allows

for levels of performance depending on particular characteristics. Finally, a trajectory-based

analysis shows the overall performance of the system after the decision fusion accumulates

predictions for complete input trajectories (shown in Fig. 3.5).

Transaction-based performance analysis is used to assess the performance of the system for

matching ROI samples to facial models. The true positive rate (t pr) and false positive rate

( f pr) are estimated for different ( f pr, t pr) operational points, and connected to draw a receiver

operations characteristic (ROC) curve. When equal priors and costs are assumed, the closest
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operations point to the upper-left corner corresponds to the optimal decision threshold. In appli-

cations with f pr constraint, the selection of the operations point is obtained from the graphical

representation. The operations point is estimated on a validation subset used for operational

predictions, providing a test ( f pr, t pr) pair that reveals the generalization performance of the

system at the selected point. The AUC (area under the curve) summarizes the performance de-

picted in a ROC graph, and the partial AUC (pAUC) focuses on a specific region of the curve,

e.g. pAUC (5%) for an f pr ≤ 0.05.

For different priors and costs of errors, the Precision-Recall Operating Characteristic (PROC)

curve constitutes a graphical representation of detector performance where the impact of data

imbalance is considered. The precision between positive predictions (precision = T P/(T P+

FP)) is combined with the t pr (or recall) to draw a PROC curve. In general, the t pr is in-

creased when the amount of positive (minority class) samples augments. On the contrary, the

precision decreases with this amount. The scalar value of F1-measure defined as 2 ·(precision ·
t pr)/(precision+ t pr) is used as a single performance indicator to combine recall and preci-

sion at a specific operations point.

It is well known that ensemble diversity has an impact in the performance of the ensemble, and

the ambiguity is commonly used to measure diversity in ensembles (Zenobi and Cunningham,

2001). The ambiguity is defined by

Ens. Ambiguity =
1

MN

M

∑
m=1

N

∑
n=1

amb(an,dm,d∗), (3.24)

where M is the number of classifiers in the ensemble, N is the amount of test samples, and the

ambiguity defined for an independent sample an, given the decision dm of the classifier cm in

the EoD, is given by

amb(an,dm,d∗) =

⎧⎪⎨
⎪⎩

0 if dm = d∗

1 otherwise.

(3.25)
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The performance of FR systems may vary drastically from one person to the next, which is

known as the “Doddington zoo” effect (Doddington et al., 1998). In subject-based analysis, the

error rates are assessed according to four different types of animals, rather than with the overall

number of transactions. The resemblance of individuals performance to that of these animals

can expose fundamental weaknesses in a biometric system, and allows the development of

more robust systems. According to this characterization, the system tend to perform well in a

sheep-like individual, irrespective of whether this individual belongs to the positive or negative

class. Goat-like individuals belong to the positive class, but are difficult to identify, as they

record consistently low classification scores against themselves. Goat-like individuals tend to

determine the performance of the system through the disproportionate contribution to the false

negative rate ( f nr) of the system. A wolf -like individual belongs to the negative class, and is

exceptionally successful at impersonating many different targets. Wolf-like individuals receive

high scores when matched against others, and tend to elevate the false positive rate ( f pr)

of the system. Finally, a lamb-like individual is easy to impersonate, and thus seems usually

susceptible to many different impostors. Lambs, on average, tend to produce high match scores

when being matched against another user. For the last two cases, the match score distributions

are significantly different from those of the general population.

Table 3.4 Doddington’s zoo thresholds for generalization

performance at the operating point with f pr = 1%,

selected on validation data

Category Positive class Negative class
Sheep t pr ≥ 55% and not a lamb f pr ≤ 1%

Lamb At least 5% of non-target -

individuals are wolves

Goat t pr < 55% and not a lamb -

Wolf - f pr > 1%

Typically, the likeliness of a user to one of the 4 aforementioned categories is defined at the

score space. However, for binary classifiers, the confusion matrix can be used (Li and Wech-

sler, 2005). To establish a criterion, thresholds can be set at the f pr and f nr, and applied to
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each EoDk. Table 3.4 shows a criterion based on a system constraint of f pr ≤ 1%, considering

a good f pr when it is just below 55%.

Trajectory-based performance analysis allows to assess performance over time of the entire

system for person re-identification (see Fig. 3.2). All system functions are employed to process

a video stream, including face detection, classification, tracking and spatio-temporal fusion.

Indeed decisions taken by an operator occur on a time scale longer than a frame rate. Within

the decision fusion system, positive predictions of each EoDk are accumulated over a moving

window of time for input ROI samples that correspond to a high quality facial track. Assume

for instance a system that produces predictions at a maximum of 30fps. Each detected ROI is

presented to all individual-specific EoDs of the system, which produces predictions (positive

or negative) for each person enrolled to the system. Given a high quality face track, the number

of positive predictions from an EoD should grow rapidly for the person of interest. Thus, the

operator can more reliably detect the presence of a person of interest.
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Figure 3.5 Trajectory-based analysis to evaluate the quality of a system for

spatio-temporal FR in person re-identification

The adaptive system proposed in this chapter accumulates the positive predictions (responses of

each EoDk) over a window of W predictions. As shown in Fig. 3.5a, the quality of this system

can be evaluated graphically by observing the evolution of positive predictions according to the
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frame count (discrete time defined by the frame rate). In addition, once several individuals have

appeared before of camera in a long video stream, and related trajectories have been processed,

the quality of system decisions (i.e., the t pr, f pr, trr, f rr) may be assessed over the range of

decision threshold values, and represented in the ROC space (see Fig. 3.5b).

3.6 Results

Four strategies to select non-target training samples were compared in order to establish the

most appropriate for the proposed system. The target samples in the datasets were maintained

constant for all four strategies, and only the non-target samples were selected from CM and

UM. A recently proposed CNN+Random method for the selection of non-target samples (De-

la Torre et al., 2014a) was used in comparison, as well as a distance based strategy, and the

uniform random selection (Burghouts et al., 2014). In general, the proposed OSS+Random se-

lection of non-target samples permits to achieve a significantly higher level of performance

than distance based and random selection alone in terms of F1 at the selected operations

point ( f pr = 1%), as shown in Figure 3.6. And although it presents similar performance

than CNN+Random, its lower standard error makes OSS+Random selection a more desirable

option. The OSS+Random strategy was used along all the simulations to select non-target

samples for design and update of the EoDs.

Table 3.5 presents the average transaction-level performance obtained after design and update

of the proposed and reference systems on ROI samples from trajectories stored in data blocks

DF → DR → DL, the scenario with abrupt changes. Measures used in comparison are the par-

tial AUC for a 0 ≤ f pr ≤ 0.05, pAUC (5%), as well as f pr, t pr and F1 at a the operations point

selected on the validation ROC curve for a desired f pr = 1%. Performance for modular sys-

tems were measured for each individual-specific EoD, and average values over 10 individuals,

10 separated experiments (2×5 cross validation) are presented. The estimation of individual-

specific ROC curves allows for a comparable performance measurement for the multi-class

TCM-kNN. Note that the operations points and performance evaluation were computed after

applying the rejection threshold provided by TCM-kNN, which is estimated during training.
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Figure 3.6 Comparison of different strategies to select training non-target samples from

the CM and UM

Results on Table 3.5 show that TCM-kNN presents the poorest level of performance in terms of

pAUC (5%) in the initial evaluation. After two updates, its level of performance is increased,

but still remains significantly below all other approaches. Learn++ presents a pAUC (5%)

significantly higher than TCM-kNN, however its performance consistently decreases after two

updates. For PFAMinc, the initial level of performance is higher than the last two approaches,

and it also presents a performance decrease after updates, demonstrating the corruption of

biometric models due to the abrupt changes in update trajectories. The EoDsup is the approach

that presents the highest initial performance in terms of pAUC (5%), and it also presents a

consistent increase that indicates its capacity to avoid the corruption of biometric models after

each of the two updates. A similar trend is shown by all the approaches in terms of F1 at

the selected operating point. In addition, it can be observed that Learn++ and TCM-kNN

allow to maintain a f pr close to the desired f pr = 1%, at the expenses of a consistently low
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Table 3.5 Average transaction-level performance over the 10 individuals of

interest and for 10 independent experiments. Systems were designed-updated

with DF → DR → DL, and performance is shown after testing on Dtest−abrupt ,

which involves ROIs from frontal, right and left views. In all cases, the

operations point was selected using the ROC space on the validation dataset

Ds at a f pr = 1%, except for the partial AUC that comprises the

operations points points for 0 ≤ f pr ≤ 0.05

fpr (%) ↓ tpr (%) ↑ precision (%) ↑
• TCM-kNN

1.40
±0.44 → 0.67

±0.23 → 0.71
±0.23

5.59
±1.69 → 5.44

±1.65 → 7.72
±2.33

0.50
±0.15 → 1.10

±0.36 → 1.33
±0.42

• PFAMinc
2.72
±0.35 → 5.31

±0.68 → 4.44
±0.74

50.81
±1.65 → 55.13

±3.12 → 55.08
±3.28

31.92
±2.32 → 26.48

±2.77 → 26.41
±2.52

• Learn++ (PFAM)
1.00
±0.09 → 1.26

±0.32 → 0.50
±0.08

15.99
±1.95 → 11.32

±2.12 → 3.68
±0.98

12.07
±1.06 → 13.23

±1.70 → 7.26
±1.54

• EoDsup (PFAM) LTMKL,λ=∞
2.36
±0.30 → 2.48

±0.25 → 2.75
±0.28

50.51
±1.51 → 59.36

±2.09 → 59.79
±2.06

33.58
±2.15 → 26.06

±1.42 → 24.80
±1.47

• EoDss (PFAM) LTMKL,λ=∞
2.36
±0.30 → 1.54

±0.14 → 1.54
±0.14

50.51
±1.51 → 46.01

±1.41 → 46.03
±1.41

33.58
±2.15 → 34.63

±1.97 → 34.68
±1.97

F1 ↑ pAUC (5%) ↑
• TCM-kNN

0.0091
±0.0028 → 0.0177

±0.0056 → 0.0223
±0.0070

2.81
±0.07 → 3.41

±0.08 → 3.92
±0.09

• PFAMinc
0.3281
±0.0165 → 0.2344

±0.0190 → 0.2641
±0.0190

49.18
±1.55 → 47.39

±1.95 → 46.33
±2.60

• Learn++ (PFAM)
0.1204
±0.0125 → 0.0731

±0.0090 → 0.0274
±0.0053

24.13
±1.58 → 20.26

±1.59 → 13.27
±1.16

• EoDsup (PFAM) LTMKL,λ=∞
0.3533
±0.0163 → 0.3357

±0.0143 → 0.3244
±0.0147

53.16
±1.38 → 58.09

±1.50 → 64.31
±1.58

• EoDss (PFAM) LTMKL,λ=∞
0.3533
±0.0163 → 0.3667

±0.0150 → 0.3670
±0.0150

53.16
±1.38 → 56.18

±1.27 → 56.18
±1.27

t pr < 20%. The opposite tendency is shown by PFAMinc and EoDsup, which present around

twice the desired f pr, but with a relatively high t pr > 50% that is maintained after update.

The proposed EoDss maintains the capacity of avoiding knowledge corruption, inherited from

EoDsup, and also permits the reduction of manual labeling effort. Although it presents a slight

reduction in pAUC (5%) with respect to EoDsup, it is capable of enhanced performance in

terms of F1 at the selected operations point. This increase in performance can be explained by
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the inherent increase in the diversity of the individual-specific EoDs after several self-updates

with trajectories with different facial poses. And the fact that training and validation samples

selected with the OSS+Random algorithm lie in the region of the feature space that causes

most disagreement between base classifiers (Lu et al., 2009). However, the performance of this

system is also dependent on the amount of trajectories that the system correctly or incorrectly

detected for self-update, number that highly variates from one individual to the other (see Table

3.1).

In a similar way, Table 3.6 presents the performance for design and update from trajectories in

D1 → D2 → D3 and test on Dtst−gradual , the scenario with gradual changes. Note that in this

challenging scenario, all classifiers are initially trained using samples from frontal trajectories

from the first capture session only, and are required to recognize samples from the three capture

sessions. This scenario provides changes in expression, short term age (3 months) and distinct

lookup like earrings, beard whiskers (see Fig. 3.4). Results in Table 3.6 show that TCM-kNN

presents an increasing level of performance after each update, in terms of pAUC (5%), but this

level still remains lower than other approaches, similar behavior presented in the scenario with

abrupt changes. Learn++ produces an initial level of performance that is similar to the level

shown in the scenario with abrupt changes, and the pAUC (5%) after two updates reveals that

the models were also affected by knowledge corruption. The level of performance presented by

the EoDsup in terms of pAUC (5%) is also superior to other approaches. And the self-update

strategy of the EoDss allows to increase the level of performance after update on D2, but this

level suffers a slight decrease after update on D3. This reduction is also related to the amount

of trajectories that the system correctly or incorrectly employed for self-update, which affect

differently to each individual-specific EoD (see Tables 3.9 and 3.2). In fact, the amount of

non-target trajectories wrongly used for the first self-update was superior in the scenario with

gradual changes with respect to the scenario with abrupt changes (261 vs. 181 wrong updates).

And most of the wrong updates in the scenario with abrupt changes were performed by the

EoDss from a single individual (111 wrong updates from individual 58).
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Table 3.6 Average transaction-level performance over the 10 individuals of

interest and for 10 independent experiments. Systems were designed-updated

with D1 → D2 → D3, and performance is shown after testing on Dtest−gradual ,

which involves frontal ROIs from the first, second and third capture sessions.

In all cases, the operations point was selected using the ROC space on the

validation dataset Ds at a f pr = 1%, except for the partial AUC that

comprises the operations points for 0 ≤ f pr ≤ 0.05

fpr (%) ↓ tpr (%) ↑ precision (%) ↑
• TCM-kNN

2.18
±0.67 → 1.99

±0.62 → 1.97
±0.61

7.46
±2.25 → 9.46

±2.86 → 9.90
±2.98

0.39
±0.12 → 0.55

±0.17 → 0.57
±0.18

• PFAMinc
2.43
±0.22 → 3.01

±0.31 → 3.30
±0.36

64.25
±2.33 → 74.54

±2.50 → 73.01
±2.36

30.11
±1.67 → 35.93

±2.42 → 34.57
±2.34

• Learn++ (PFAM)
1.01
±0.08 → 1.67

±0.23 → 1.97
±0.21

16.03
±2.36 → 19.94

±2.39 → 19.17
±2.69

12.16
±1.17 → 12.69

±1.35 → 8.40
±0.81

• EoDsup (PFAM) LTMKL,λ=∞
2.28
±0.19 → 2.18

±0.20 → 2.43
±0.39

63.92
±2.41 → 61.93

±2.58 → 60.09
±2.62

29.83
±1.46 → 30.00

±1.70 → 30.92
±1.80

• EoDss (PFAM) LTMKL,λ=∞
2.28
±0.19 → 5.44

±0.61 → 4.95
±0.64

63.92
±2.41 → 63.63

±2.78 → 55.19
±2.93

29.83
±1.46 → 21.05

±1.82 → 24.46
±2.32

F1 ↑ pAUC (5%) ↑
• TCM-kNN

0.0073
±0.0022 → 0.0103

±0.0032 → 0.0108
±0.0034

3.94
±0.07 → 4.45

±0.05 → 4.59
±0.04

• PFAMinc
0.3662
±0.0125 → 0.4051

±0.0172 → 0.4029
±0.0187

66.55
±1.85 → 73.58

±1.85 → 73.26
±1.78

• Learn++ (PFAM)
0.1170
±0.0128 → 0.1312

±0.0131 → 0.1040
±0.0118

24.90
±1.93 → 25.70

±2.14 → 19.76
±1.98

• EoDsup (PFAM) LTMKL,λ=∞
0.3664
±0.0121 → 0.3652

±0.0146 → 0.3620
±0.0153

70.83
±1.56 → 81.78

±0.97 → 83.24
±0.97

• EoDss (PFAM) LTMKL,λ=∞
0.3664
±0.0121 → 0.2599

±0.0144 → 0.2710
±0.0184

70.83
±1.56 → 77.15

±1.35 → 75.27
±1.53

Finally, the experiment was repeated with 10 different lists of randomly selected individuals

to design 10 different modular systems. The system was characterized in both test scenarios

with gradual and abrupt changes. Since user-specific analysis shows that the system behaves

differently from individual to individual (see Section 3.6.1), this variation in the experiment

allows to discard the bias induced by the initially selected group of individuals of interest.

The average performance for the system over all the lists of randomly selected individuals of

interest is shown in Table 3.7. Looking at the results for scenario with abrupt changes (first
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Table 3.7 Average transaction-level performance over the 10 different systems designed

for 10 randomly selected individuals of interest each. In the first case (top row), the

systems were designed-updated with DF → DR → DL, and performance is shown after

testing on Dtest−abrupt , which involves ROIs from frontal, right and left views. In the

second case (bottom row), the systems were designed-updated with D1 → D2 → D3, and

performance is shown after testing on Dtest−gradual , which involves frontal ROIs from the

first, second and third capture sessions. In all cases, the operations point was selected

using the ROC space on the validation dataset Ds at a f pr = 1%, except for the partial

AUC that comprises the operations points for 0 ≤ f pr ≤ 0.05

fpr (%) ↓ tpr (%) ↑ precision (%) ↑ F1 ↑ pAUC (5%) ↑
Abrupt Changes (DF → DR → DL)

• EoDss (PFAM) LTMKL,λ=∞
2.38
±0.64 → 2.40

±0.65 → 1.94
±0.56

8.92
±2.72 → 8.91

±2.70 → 8.41
±2.62

6.06
±2.42 → 6.05

±2.39 → 7.22
±2.73

0.0587
±0.0176 → 0.0586

±0.0177 → 0.0617
±0.0186

12.90
±3.16 → 12.10

±2.96 → 20.66
±5.76

Gradual Changes (DF → DR → DL)

• EoDss (PFAM) LTMKL,λ=∞
17.72
±5.94 → 12.91

±6.05 → 8.28
±4.71

22.21
±10.24 → 9.03

±7.07 → 11.94
±7.25

1.14
±0.59 → 2.29

±1.43 → 2.66
±1.40

0.0214
±0.0111 → 0.0240

±0.0137 → 0.0316
±0.0144

13.57
±3.65 → 49.94

±11.08 → 50.96
±10.81

row of the Table 3.7), it can be seen that the pAUC (5%) performance of the system slightly

drops after one self-update step, but is increased after two self-updates, reaching a level that is

higher than the initial performance. This confirms the tendency observed in Table 3.5 for the

different performance measures. Similarly, when the trajectories used in self-update present

gradual changes (second row of the Table 3.7), the self-update system shows an increase in the

level of performance in terms of pAUC (5%). This is also consistent with the tendency found

in the results from Table 3.6, confirming the behavior of the system for the different individuals

in the FIA database.

Different conclusions can be made from the comparison of the performances achieved in the

two scenarios (Tables 3.5, 3.6 and 3.7). Regarding the supervised approaches, the pAUC (5%)

of TCM-kNN increases after each update, although it is in general lower than all other ap-

proaches, even though all reference samples are stored in the facial model. This phenomenon

is related to the difficulty faced by multi-class classifiers in finding multiple boundaries, as op-

posite to 2-class classifiers that only divide the feature space in two regions. On the contrary,

the pAUC (5%) of the Learn++ approach decreases after 2 updates in both scenarios, although

the same data and training strategy was used to design its base classifiers. PFAMinc is success-

ful adapting to gradual changes: when update trajectories contain ROIs that are very similar to
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those originally used for design. However, when update trajectories significantly differ from

training trajectories (abrupt changes), PFAMinc suffers of knowledge corruption. As expected,

the EoDsup allows to alleviate the knowledge corruption presented by PFAMinc by using the

learn-and-combine strategy, and in general it achieves the highest pAUC (5%). And the EoDss

allows to improve the performance of facial models in both scenarios in terms of pAUC (5%).

However, in the scenario with gradual changes it present difficulties at selecting an operations

point that generalizes the performance, which is reflected in a decrease in F1. These difficulties

are originated because training and validation samples for design and update in the scenario

with gradual changes are very similar, which biases the operations point selection and causes

the overtraining of the ensemble.

Besides, it is well known that the diversity of opinions in an ensemble is correlated with the

final accuracy of the ensemble (Kuncheva, 2004), and the ambiguity in the scenario with grad-

ual changes decreases after each update (see Fig. 3.7). Thus, when the changes in the environ-

ment are gradual, it is preferable to weaken the learning strategy of the EoDss by reducing the

amount of base classifiers learned on each adaptation. And a scenario with abrupt changes is

better addressed by the proposed EoDss.
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Figure 3.7 Evolution of the average ensemble ambiguity of the EoDss after each update

in the scenarios with abrupt changes (a), and gradual changes (b)
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3.6.1 Subject-Based Analysis

In order to proceed with the subject-based analysis, four individuals were selected by their

characterization under the Doddington zoo terminology, after their initial design/test cycle, and

test on Dtest−abrupt . According the criteria established on Table 3.4, the EoDss (3) corresponds

to a sheep-like individual. For this individual, 5 of the 146 unknown subjects in the test set are

recognized as targets more than 1% of the time (wolves), and present an average f pr > 1%.

Similarly, the EoDss (21) and EoDss (188) correspond to lamb-like individuals, with 37 and 51

wolves respectively, and a f pr > 1% in both cases. The EoDss (72) corresponds to a goat-like

individual, with 28 wolves and an f pr > 1%.

Table 3.8 presents the average subject-based performance for the 4 individuals of interest in

the scenario with abrupt changes. Even though the EoDss for individual 3 presented the initial

highest performance in terms of pAUC (5%) and F1 when compared to the EoDss from other

individuals, the system was never updated on ROIs from the update sets (DR and DL). The

low level of f pr on test indicates that the EoDss rejects very well the non-target ROIs, and the

relatively high t pr indicates that a high amount of ROIs were correctly recognized as target.

However, the self-update mechanism is never activated, and the reason can be easily explained

by observing the accumulated responses from the EoDss (3) shown in Fig. 3.8.
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Figure 3.8 Example of accumulated responses of the EoDss (3) after design on DF , and

test on frontal, right and left trajectories from Dtest−abrupt , which includes pose changes
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The curves in Fig. 3.8 show that a high amount of ROIs from the trajectory from the frontal

view can be correctly detected by the EoDss (3), but none of the target ROIs from right and left

poses. Recalling the number of ROIs retrieved from individual 3 in Dtest−abrupt (see Table 3.3),

around 78% of them correspond to the frontal trajectory, and constitute bias towards frontal

facial captures. These observations evidence a weakness of the transaction-based analysis

applied to spatio-temporal systems, and encourage the use of trajectory-based evaluation.

Table 3.8 Average performance of the system for 4 individuals of interest over 10

independent experiments, after design/update on DF → DR → DL

EoDss (3) EoDss (21) EoDss (188) EoDss (72)
(sheep-like) (lamb-like) (lamb-like) (goat-like)

fpr (%) ↓
0.38
±0.08 → 0.37

±0.07 → 0.37
±0.07

4.97
±0.97 → 4.24

±2.31 → 4.21
±2.31

1.61
±0.83 → 5.53

±2.60 → 5.50
±2.60

1.94
±0.59 → 1.78

±0.37 → 1.78
±0.37

tpr (%) ↑
56.13
±3.79 → 56.77

±3.77 → 56.77
±3.77

58.45
±2.68 → 35.99

±7.02 → 35.77
±7.03

49.93
±3.63 → 49.79

±3.94 → 49.92
±3.87

55.80
±1.86 → 51.74

±2.91 → 51.74
±2.94

Precision (%) ↑
70.05
±2.99 → 70.18

±2.83 → 70.18
±2.83

12.11
±2.80 → 13.89

±4.12 → 13.88
±4.23

37.28
±6.12 → 20.23

±3.47 → 20.46
±3.48

36.03
±5.61 → 34.53

±5.99 → 34.47
±6.01

F1 ↑
0.611
±0.025 → 0.617

±0.025 → 0.617
±0.025

0.185
±0.028 → 0.179

±0.047 → 0.179
±0.048

0.383
±0.042 → 0.272

±0.036 → 0.274
±0.036

0.410
±0.038 → 0.389

±0.041 → 0.390
±0.042

pAUC (5%) ↑
71.31
±1.20 → 71.31

±1.20 → 71.31
±1.20

48.28
±3.34 → 47.64

±2.60 → 47.64
±2.60

51.33
±2.10 → 51.87

±2.53 → 51.87
±2.53

59.04
±1.05 → 58.17

±1.13 → 58.17
±1.13

The two analyzed lamb-like individuals are specially interesting given that each of them presents

a different affectation in their performance. Individual 21 shows an initial high t pr, which is

negatively affected as the system performs self-update, whereas the f pr remains high but al-

most constant. This means that the EoDss (21) maintains a robust rejection against non-target

samples, but is weak maintaining the level of target ROIs. On the other hand, individual 188

presents a relatively low f pr, and it increases as the system performs the self-update, maintain-

ing a t pr almost constant. Thus, the EoDss (188) maintains its robustness in detecting target

trajectories, but is weak maintaining the rejection capacity against non-target. From this ob-

servations, it can be concluded that false updates can affect differently to distinct lamb-like

individuals, remarking the need for an individual independent characterization of the system.

Figure 3.9 shows the accumulated decisions of the EoDss for individuals 21 and 188. The

curves produced by the EoDss (21) for the trajectories in Dtst−abrupt show that this system
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is capable of a correct discrimination between target and non-target frontal trajectories, but

present difficulties recognizing the face of the individual captured with different poses, spe-

cially from the left view. As a consequence, the EoDss (21) is often correctly updated with

right pose trajectories, but the incorrect updates are also common. The curves for EoDss (188)

show that the system is capable of correctly detect target trajectories from the frontal and right

views, but also wrongly detect non-target trajectories. And it fails to detect target trajectories

from the left view, but wrongly detects non-target trajectories from the left view.
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EoDss (188)
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Figure 3.9 Example of accumulated responses of the EoDss for the lamb-like

individuals, after design on DF , and test on frontal, right and left trajectories from

Dtest−abrupt , which includes pose changes

Finally, the goat-like individual 72 maintains over time a relatively constant f pr that is not

significantly affected by its wolf-like individuals (samples from wolf-like individuals represent

less than 1% of the fpr, f pr < 1%). It also shows a low t pr that avoids any correct self-updates
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by the system (see Table 3.1). However, the EoDss (72) is capable to maintain the low level of

f pr even though it presented several wrong updates.
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Figure 3.10 Example of accumulated responses of the EoDss for the goat-like

individual 72

Figure 3.10 presents the accumulated responses for the trajectories in Dtest−abrupt , showing the

difficulty of the system to differentiate between target and non-target trajectories. The EoDss

(72) successfully detects frontal target trajectories but presents difficulties detecting target tra-

jectories from the left and right view, and it wrongly detects several non-target trajectories from

all views.

Table 3.9 presents the individual-specific average performance of ensembles for the semi-

supervised scenario obtained after self-update using ROI samples from trajectories stored in

D1, D2 and D3. According to these results, the EoDss (3) allows to maintain the initial level

of performance after two updates, although it is lower in terms of F1 score. This trend is sim-

ilar as the observed in the scenario with abrupt changes, but in this case is product of several

correct and incorrect self-updates. The EoDss (21) maintained the level of f pr after two self-

updates, but the t pr decreased significantly, also a similar trend as shown in the scenario with

abrupt changes. In the same way, for the EoDss (188) the f pr was augmented and the t pr

reduced as product of multiple false updates. And differently from the scenario with gradual

changes, the EoDss (72) presents an increasing f pr and decreasing t pr, produced by multiple

wrong self-updates. According to these observations, the biometric models for individuals 3
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and 21 were slightly affected by wrong self updates. For individuals 188, the biometric model

was corrupted by wrong self-updates, and follows the same trend as the scenario with abrupt

changes. This trend is related to wrongly detect an increasing number of non-target individuals

which eventually will make it useless. The biometric model of individual 72 was also damaged

by wrong self-updates, shows a similar decreasing performance trend, and is reinforced by its

initial low performance.

Table 3.9 Average performance of the system for 4 individuals of interest over 10

independent experiments, after design/update on D1 → D2 → D3

EoDss (3) EoDss (21) EoDss (188) EoDss (72)
fpr (%) ↓

0.69
±0.21 → 3.11

±2.30 → 1.41
±0.97

3.12
±0.53 → 4.75

±1.56 → 3.37
±1.21

4.77
±1.11 → 12.05

±2.76 → 10.84
±3.78

2.12
±0.39 → 6.83

±2.00 → 8.08
±2.43

tpr (%) ↑
39.24
±5.95 → 38.35

±4.04 → 37.82
±7.05

73.57
±3.86 → 76.27

±4.51 → 65.06
±5.99

95.27
±2.00 → 98.22

±0.62 → 83.24
±8.00

34.03
±2.52 → 37.29

±7.51 → 28.81
±4.50

Precision (%) ↑
55.48
±5.21 → 52.41

±9.05 → 60.51
±8.06

20.76
±3.45 → 17.97

±3.25 → 29.00
±6.94

30.38
±4.14 → 18.18

±4.24 → 26.00
±7.61

23.61
±2.63 → 12.66

±3.05 → 8.72
±2.67

F1 ↑
0.424
±0.039 → 0.368

±0.043 → 0.422
±0.063

0.302
±0.031 → 0.270

±0.035 → 0.342
±0.061

0.443
±0.045 → 0.288

±0.056 → 0.347
±0.081

0.263
±0.013 → 0.170

±0.036 → 0.124
±0.032

pAUC (5%) ↑
71.89
±3.84 → 76.23

±3.97 → 74.30
±4.82

70.59
±1.98 → 77.51

±2.00 → 79.23
±2.21

90.13
±1.96 → 93.13

±1.32 → 89.10
±3.01

38.87
±1.78 → 53.72

±4.82 → 45.86
±5.19

In summary, although the initial performance for the sheep-like individual 3 was very similar

in terms of pAUC (5%) with respect to the gradual changes scenario, it was increased after

two self-updates. The lamb-like individuals 188 presented a slight degradation in performance

produced by several wrong self-updates, similar trend with respect to the scenario with abrupt

changes. But the performance for individual 21 was increased in terms of pAUC (5%), indicat-

ing that the wrong and correct self-updates allowed to increase the diversity of the EoDss (21)

without affecting its accuracy. Finally, the level of performance for the EoDss (72) shows an

increase in terms of pAUC (5%), but a constant decrease in terms of F1 score. This tendency

differs from the scenario with abrupt changes, and can be explained by the multiple wrong

self-updates compared with the few correct self-updates (see Table 3.2).
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3.6.2 LTM management

Figure 3.11 presents the average performance in terms of F1 score for different sizes of LTM

(λk values) used by EoDss. The graph shows the performance for the whole system, as well as

the average for the 2 lamb-like individuals analyzed before. The average for the whole system

shows a constant increase as λk increases, supporting that more data in the LTM allows for

a more accurate system. However, as shown by individual-specific graphs, this affirmation is

different for each individual. The EoDss (21) shows the highest performance when λ21 =∞, but

the performance does not increases in the same manner as the value of λ21. An increase in the

performance for λ = 25,50, and a decrease for λ = 75,100 shows that the LTM management

strategy allows to filter out some non-useful samples that negatively affect the performance. On

the other hand, the EoDss (188) presents its peak performance when λ188 = 100, confirming

that some non-useful samples were discarded.
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Figure 3.11 Performance in terms of F1 at the operations point with f pr = 1%. Average

for all individuals and the EoDss for the lamb-like individuals with ID 21 and 188
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Preserving validation samples from wolf-like individuals is crucial to reduce or maintain a low

f pr as the system is self-updated. Specially for lamb-like individuals, for which the f pr perfor-

mance is affected by wolf-like individuals, and the proposed LTM management scheme allows

to rank and select these samples to be retained over time. Fig. 3.12 shows the percentage of

samples from wolf-like individuals for a LTM with different sizes (λk = [1...100]). The three

different ranking measures that were compared are the KL divergence, average margin sam-

pling (AMS) and vote entropy. Results shown in Fig. 3.12 reveal that both, the KL divergence

and vote entropy, enable the system to select the highest amount of samples from wolf-like in-

dividuals. And is the KL divergence the measure that consistently shows the highest percentage

for small LTM sizes (λk ≤ 20).
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Figure 3.12 Percentage of samples from wolf-like individuals for the EoDss for the

lamb-like individuals with ID 21 and 188

3.6.3 Trajectory-Based Analysis

Different decision fusion methods were compared in order to establish the cases where the

proposed scheme is strong. Fig. 3.13 presents an example of the sequential output produced by

the system after the input of three different trajectories. The proposed method that accumulates

decisions, either over a window of frames or detections, is presented at the top of the Fig. 3.13,
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followed by the raw scores that are commonly used in literature (Despiegel et al., 2012). Then

the accumulated scores over a fixed size window of frames serves as a reference point for

comparison, as well as the sum of the maximum scores provided by the EoDss (Ekenel et al.,

2010).

Even though the graphs in Fig. 3.13 correspond to a single experiment (replication 5 for in-

dividual 21), they allow to observe the behavior of the different decision fusion techniques.

Now, the response of the system to the easiest trajectory for the EoDss can be analyzed, i.e. TF

with frontal views as seen before. The accumulated decisions for TF provide a wide separation

between accumulations for the target and non-target trajectories. A similar trend is shown by

the accumulation of decisions over a window of frames, with less separation, followed by the

accumulation of scores with an even smaller separation between target and non-target trajecto-

ries. For the raw scores fusion, the separation cannot be easily established, and for this case, the

sum of maximum scores does not provides any discrimination given that non-target trajectories

produce higher accumulations than the sum of target scores.

Figure 3.14 presents the average trajectory-based ROCs for 10 individuals, 10 replications, in

the two scenarios, using the different methods for decision fusion. These results confirm that

the proposed fusion strategy allows for higher discrimination between trajectories.

A test on the sensitivity of the system to different window sizes was performed for the both

analyzed scenarios, comparing distinct decision fusion methods. Fig. 3.15 presents the average

pAUC(5%) for the curves after applying different thresholds to the trajectories from Dtst−abrupt

and Dtst−gradual . Reference decision fusion methods compared include using the maximum

score on each trajectory (Despiegel et al., 2012), the accumulation of maximum scores over a

time window, and the sum of all scores over consecutive frames. As expected, the performance

of the single-score decision scheme is not affected by the size of the window. The accumula-

tion of scores scores over a window of frames improves the performance of the single-score

approach, but the sum over all the frames in the trajectory is slightly better, as shown in Fig.

3.15. The proposed accumulation on decisions for each facial detection is superior to all other



160

1 T_F 600 1 T_R 600 1 T_L 600
0

5

10

15

20

25

30

Frame number

S
um

 o
n 

a 
w

in
do

w
 o

f 3
0 

de
te

ct
io

ns

(a) Accumulated decisions on a fixed size window of detections
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(b) Accumulated decisions on a fixed size window of frames
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(c) Raw scores on a fixed size window of frames

1 T_F 600 1 T_R 600 1 T_L 600
0

5

10

15

20

25

30

Frame number

S
um

 o
n 

a 
w

in
do

w
 o

f 3
0 

fr
am

es

(d) Accumulated scores on a fixed size window of frames
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Figure 3.13 Examples of evolution curves for different decision fusion methods

approaches in terms of pAUC(5%), as can be shown in the Fig. 3.15. And the accumulation

over a window of frames allows co-jointly evaluate the performance of the whole system at

once, including not only the tracker and classifier, but also the face segmentation algorithm.
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Figure 3.14 Average global ROCs for the system after update in the scenarios with

abrupt changes (a) and gradual changes (b)
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Figure 3.15 Impact of the window size on the pAUC (5%) produced by the system. The

window size ranges from 0 to 4 seconds (1 to 120 frames), applied to the different fusion

methods for the scenarios with (a) abrupt and (b) gradual changes
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3.7 Conclusions

In this chapter, an adaptive ensemble-based system was proposed for spatio-temporal video-

to-video FR, as found in person re-identification and search and retrieval applications. A pool

of Probabilistic Fuzzy ARTMAP classifiers is generated using a DPSO learning strategy, and

classifiers are selected and combined using Boolean combination. Classifiers are trained using

the target samples from the trajectory, and a set of non-target samples selected from the co-

hort and universal models using One-Sided Selection. Each ensemble seeks to recognize target

individuals and self-update facial models based on facial trajectories defined by the tracker,

tunning up individual-specific parameters for classification and decision fusion, During opera-

tions, it integrates track IDs of a face tracker and predictions of a individual-specific ensemble

at a decision-level for enhanced video-to-video FR. Classifier predictions for a trajectory are

accumulated over a fixed-size time window window, and a detection threshold is applied for

spatio-temporal fusion. A higher update threshold is applied to detect high confidence trajecto-

ries that serve for self-update. The set of facial captures linked to such trajectories for a target

individual are used for self-update, to design an ensembles of 2-class classifiers or detectors

(EoDs). A learn-and-combine strategy is then employed to avoid knowledge corruption during

self-update of EoDs, and a memory management strategy based on Kullback-Leibler diver-

gence is used to rank and select validation samples over time to avoid unbounded memory

consumption.

The adaptive ensemble-based systems was validated with real-world Face in Action videos that

feature abrupt (pose) and gradual (aging) patterns of changes. Experimental results indicate

that the proposed system allows for improved overall performance after self-update with oper-

ational face trajectories. It was also observed that a decrease in the ambiguity of the ensemble

has a negative impact in the performance of the system after self-update. Transaction-based

analysis shows that the proposed system allows to increase the average pAUC (5%) accuracy

in about 3% for the scenario with abrupt changes, and about 5% for the scenario with grad-

ual changes. Subject-based analysis reveals the difficulties faced to recognize under different

face poses, affecting most significantly the performance of lamb- and goat-like individuals.
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A comparison between different spatio-temporal fusion approaches shows that the proposed

scheme produces higher trajectory-based pAUC (5%) accuracy than other approaches, even

for different window sizes.

Even though the system deals with imbalanced training data using a selection strategy, fu-

ture work should consider the operational class imbalance to adjust classification parameters

and achieve a performance closely related to the real environment. In order to maintain en-

semble diversity, it would be interesting to explore different classifier generation strategies to

provide more robust ensembles. Although the system allows to limit memory growth with

the number of validation samples, a resource management strategy is still required to control

the constant growth of the pool of classifiers with each self-update, and maintain a high level

of performance. In that sense, time- and performance-based pruning techniques should be

applied according to the individual-specific behavior. Finally, the system was characterized

in environments with gradual and abrupt changes, but it would be interesting to analyze the

performance of the system in an environment where multiple individuals are simultaneously

present in scene.
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ABSTRACT

Decision support systems for surveillance rely more and more on face recognition (FR) to de-

tect target individuals of interest captured with video cameras. FR is a challenging problem

in video surveillance due to variations in capture conditions, to camera interoperability, and

to the limited representativeness of target facial models used for matching. Although adaptive

classifier ensembles have been applied for robust face matching, it is often assumed that the

proportions of faces captured for target and non-target individuals are balanced, known a priori,

and do not change over time. Recently, some techniques have been proposed to adapt the fusion

function of an ensemble according to class imbalance of the input data stream. For instance,

Skew-Sensitive Boolean combination (SSBC) is a active approach that estimates target vs.

non-target proportions periodically during operations using Hellinger distance, and adapts its

ensemble fusion function to operational class imbalance. Beyond the challenges of estimating

class imbalance, such techniques commonly generate diverse pools of classifiers by selecting

balanced training data, limiting the potential diversity produced using the abundant non-target

data. In this chapter, adaptive skew-sensitive ensembles are proposed to combine classifiers

trained by selecting data with varying levels of imbalance and complexity, to sustain a high

level of performance for video-to-video FR. Faces captured for each person in the scene are

tracked and regrouped into trajectories. During enrollment, captures in a reference trajectory
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are combined with selected non-target captures to generate a pool of 2-class classifiers using

data with various levels of imbalance and complexity. During operations, the level of imbalance

is periodically estimated from the input trajectories using the HDx quantification method, and

pre-computed histogram representations of imbalanced data distributions. This approach al-

lows to adapt pre-computed histograms and ensemble fusion functions based on the imbalance

and complexity of operational data. Finally, the ensemble scores are accumulated of trajectories

for robust spatio-temporal recognition. Results on synthetic data show that adapting the fusion

function of ensemble trained with different complexities and levels of imbalance can signifi-

cantly improve performance. Results on the Face in Action video data show that the proposed

method can outperform reference techniques (including SSBC and meta-classification) in im-

balanced video surveillance environments. Transaction-based analysis shows that performance

is consistently higher across operational imbalances. Individual-specific analysis indicates that

goat- and lamb-like individuals can benefit the most from adaptation to the operational imbal-

ance. Finally, trajectory-based analysis shows that a video-to-video FR system based on the

proposed approach can maintain, and even improve overall system discrimination.

4.1 Introduction

Video surveillance systems commonly rely on spatio-temporal face recognition (FR) to detect

the presence of target individuals of interest in live or archived videos, either for watchlist

screening or search and retrieval applications. Video-to-video FR systems commonly match

input facial trajectories1 from videos against the facial models of all target individuals enrolled

to the system, and raise a warning in the case of positive detection. In this challenging scenario

several persons may appear before a camera view point, and their appearance varies either

abruptly or gradually due to, e.g., changes in illumination and pose. Changes in the capture

conditions are associated with changes in the representation of the underlying class distribution

of data in the face matching space. Uneven proportions between target and non-target individ-

1A trajectory is set of facial regions of interest (ROIs) captured in video that correspond to a same (high

quality) track of a person appearing across consecutive frames.
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uals are related to the prior probability of occurrence for a given individual, and are commonly

referred to as class imbalance or skew.

Facial models used for matching are composed of a set of reference samples (for template

matching), or a statistical model estimated during training with reference samples (for sta-

tistical or neural classification). For instance, some recent systems for face re-identification

applications successfully employ adaptive ensembles of 2-class (target vs. non-target) classi-

fiers to design and update facial models based on new reference trajectories, yet avoiding the

knowledge corruption (De-la Torre et al., 2012a, 2014a). And approaches to address the class

imbalance problem in face recognition have also been proposed (Radtke et al., 2013a,b). This

chapter focuses on the design of facial models based on adaptive skew-sensitive ensembles of

2-class classifiers.

The effects of class imbalance on classifier performance have been shown by several authors

(Guo et al., 2008; Landgrebe et al., 2006; Forman, 2006; Lopez et al., 2013), and pattern

recognition literature presents several ensemble-based methods to train ensembles on imbal-

anced data (Galar et al., 2011). Algorithms designed for environments with data distributions

that change over time can be categorized according to the use of a mechanism to detect con-

cept drift or change (Ditzler and Polikar, 2013). Approaches with active detection of changes

in prior probabilities seek explicitly to determine whether and when a change has occurred

in the prior probability before taking a corrective action (Radtke et al., 2013a,b; Ditzler and

Polikar, 2013). Conversely, passive approaches assume that a change may occur at any time,

or is continuously occurring, and hence classification systems are updated every time new data

becomes available (Ditzler and Polikar, 2013; Oh et al., 2011). The advantage of active ap-

proaches mainly consists in the avoidance of unnecessary updates. However, they are prone

to both false positive and false negative drift detections, with the respective false updates and

false no-updates. Passive approaches avoid these problems at an increased computational cost

due to the constant update.
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A representative example of active approaches for changing imbalances is the skew-sensitive

Boolean combination (SSBC) that continuously estimates the class proportions using the Hellinger

distance between histogram representations of operational and validation samples (Radtke

et al., 2013b). Every time the operational imbalance changes, SSBC selects one of the pre-

calculated fusion functions that correspond to a set of prefixed imbalances. However, the lim-

ited number of validation imbalance levels that can be used to approximate the imbalance in

operations is a limiting factor for the estimation of operational imbalance. Rather than selecting

the closest imbalanced histogram representations, more sophisticated estimation methods may

be employed for accurate estimation of the class proportions. Moreover, although it is scarcely

exploited, the abundant non-target samples in video surveillance allow to produce training sets

with different complexities and imbalances, and use them to generate diverse pools. A special-

ized combination and selection scheme of these diversified pools may lead to robust ensembles,

considering both the different levels of complexity and imbalance (Lopez et al., 2013).

In this chapter, adaptive skew-sensitive classifier ensembles are proposed for video surveil-

lance applications. The proposed approach allows to select training data with varying levels of

imbalance and complexity to design ensembles of classifiers that provide enhanced accuracy

and robustness. Face captures of each person in the scene are tracked and regrouped into tra-

jectories, and a decision threshold is applied to the accumulation of positive predictions from

base classifiers for robust spatio-temporal recognition. During enrollment, facial captures from

a reference trajectory are combined with selected non-target captures from the universal and

cohort models2 to generate a pool of 2-class classifiers using data with various levels of im-

balance and complexity (class overlap and dispersion). Training/validation sets with different

imbalances and complexities are built through random undersampling, and cover a range of

imbalances from 1:1 to a maximum imbalanced estimated according to experience 1 : λ max.

During operations, the operational level of imbalance is periodically estimated from the input

data stream using the HDx quantification method, and pre-computed histogram representations

2The universal model (UM) is a database containing non-target trajectories from selected unknown people

appearing in scene, and the cohort model (CM) is database with trajectories belonging to other target individuals

enrolled to the system.
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of imbalanced data distributions. The HDx quantification allows to estimate the prior proba-

bility of operational data based on the Hellinger distance between histogram representations of

class distributions in the feature space, and employ a single validation set that is not required to

provide a specific imbalance (Gonzalez-Castro et al., 2013). Finally, the proposed approach al-

lows to adapt pre-computed histograms and ensemble fusion functions based on the imbalance

and complexity of operational data.

The proposed approach is validated with synthetic and video data, and compared against refer-

ence adaptive ensembles using BC, meta kNN fusion and score-level average fusion. The syn-

thetic problem was designed to observe the impact of different theoretical probabilities of error

as well as distinct imbalance levels in the performance of the system (Gaussian distributions in

a two-dimensional feature space). The Carnegie Mellon University Face In Action (FIA) video

database was used to emulate face re-identification applications. The transaction-based perfor-

mance evaluates face matching of the system using the ROC and precision-recall spaces, and

individual-specific characterization allows to analyze specific cases. Finally, trajectory-based

analysis is employed to show the overall system performance over time.

The rest of this chapter is organized as follows. Section 4.2 presents a brief review of tech-

niques for ensemble design (generation, selection and fusion) techniques, and specifically en-

semble techniques proposed to address the problem of class imbalance. Section 4.3 describes

the adaptive skew-sensitive ensembles proposed for FR in imbalanced environments. Section

4.4 provides synthetic experiments that motivated the proposed approach. Section 4.5 presents

the experimental methodology and results with the FIA video data for validation of the pro-

posed approach in face re-identification applications.

4.2 Ensemble Methods for Class Imbalance

Ensemble-learning techniques combine classifiers with diversity of opinions to increase classi-

fication performance. The design process can be divided into three main steps – generation of a

pool of base classifiers, selection and fusion of classifiers (Duda et al., 2001; Kuncheva, 2004;
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Zenobi and Cunningham, 2001; Britto et al., 2014). The first step allows to train base classifiers

with diversity of opinions, and the last two take advantage of this diversity to produce more

accurate predictions. Diversity can be created by employing distinct classifiers, train distinct

instances of a classifier with different initial conditions (parameters), or using different training

sets (Kuncheva, 2004).

Representative examples of ensemble methods are bagging, boosting, random subspaces, which

employs different training sets of data or features from the training set to build distinct base

classifiers (Kuncheva, 2004; Kittler, 1998). An example of diversity generation by various

parameters is the work of Connolly et al. (Connolly et al., 2012), which takes advantage of

diversity in the hyperparameter space of classifiers to produce useful diversity of opinions. Ex-

amples of selection strategies are greedy search, clustering-based methods and ranking-based

methods, and examples of fusion strategies can be divided in feature-based, score-based and

decision-based (Tao and Veldhuis, 2008).

The algorithms designed for environments with changes in the probability distribution of data

in general, and particularly in the class priors, can be categorized according to the use of a

mechanism to detect changes in prior probabilities (Ditzler and Polikar, 2013). Approaches

with active detection of changes in prior probabilities seek explicitly to determine whether and

when a change has occurred in the prior probability before taking a corrective action (Radtke

et al., 2013a,b; Ditzler and Polikar, 2013). Conversely, approaches with passive change detec-

tion assume that a change may occur at any time, or is continuously occurring, and hence the

classifiers are updated every time new data becomes available (Oh et al., 2011; Ditzler and Po-

likar, 2013). The rest of this section describes representative approaches of passive and active

ensembles for changing priors.

4.2.1 Passive Approaches

Passive ensemble-based methods for class imbalance can be categorized in cost-sensitive en-

sembles, boosting-based, bagging-based and hybrids (Galar et al., 2011). In cost-sensitive ap-
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proaches, the combination of classifiers (i.e. weights) is designed to consider the cost of class

independent errors. Examples of these approaches include the AdaCost, CSB, RareBoost,

AdaC1, AdaC2 and AdaC3 algorithms (Fan et al., 1999; Wu, 2012). Boosting-based en-

sembles include techniques that use data preprocessing embedded into boosting algorithms.

These methods bias the data distribution towards the minority class before the classifier gen-

eration step. Examples of these approaches are the Learn++.CDS, Learn++.NIE, SMOTE-

Boost, MSMOTEBoost, RUSBoost and DataBoost-IM algorithms (Ditzler and Polikar, 2013,

2010). Bagging-based ensembles integrate bagging with data preprocessing techniques, and

hence, they do not require to update any kind of weights. These techniques address the class

imbalance by the way they collect the training samples, using oversampling and/or undersam-

pling techniques to generate training sets of different sizes. Examples of these techniques

are the OverBagging, UnderBagging, UnderOverBagging and Imbalanced IVotes (Wang and

Yao, 2009; Barandela et al., 2003). Finally, hybrid ensembles combine a pre-processing tech-

nique with a bagging and a boosting technique. Techniques in this category are also called ex-

ploratory undersampling, and basically include EasyEnsemble and BalanceCascade (Liu et al.,

2009).

Although the aforementioned methods account for class imbalance through adaptation every

time new reference samples become available, they are passive since they do not perform an

estimation of the imbalance before adaptation. The advantage of passive approaches lies in the

avoidance of false positive and false negative change detections, at the cost of the increased

complexity of continuous adaptation.

4.2.2 Active Approaches

Active methods for adaptation to class imbalance employ a mechanism to estimate the class

priors of the input data, and adapt the algorithm to the estimated class proportions when a

change occurs. Hence, these approaches avoid the assumption of continuous changes and the

complexity of continuous adaptations, with the potential disadvantage of false positive and

false negative change detections. Several examples of active approaches that employ ensem-
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bles for classification in imbalanced environments appear in literature (Radtke et al., 2013a,b;

Wang et al., 2013a). In general, passive approaches for changing imbalance can be modified

by adding a mechanism to detect changes in prior probabilities. Some examples of such mech-

anisms are based in Hellinger distance (Radtke et al., 2013b), Kullback Leibler divergence

(du Plessis and Sugiyama, 2012), or accounting for class-specific performance measures like

recall (Wang et al., 2013a,b).

A recently proposed active approach employed in face recognition in video surveillance is

the skew-sensitive Boolean combination (SSBC), which estimates the imbalance using the

Hellinger distance between the distributions of validation data and the most resent unlabeled

operational samples (Radtke et al., 2013b). During training, SSBC assumes that a diversified

pool of binary classifiers P = {p1, ..., pn}, and operates at the combination level to take advan-

tage of the diversity of opinions in the ensemble. To do that, validation data with different lev-

els of imbalance is used to estimate the operations points of the Boolean combination function

(covering the whole ROC space). Two validation sets with that imbalances, the first (OPT) em-

ployed to estimate the operational imbalance, and the other (VAL) to select the operation point

with the propper estimated imbalance. During operations, the imbalance is estimated using the

Hellinger distance, and the operation points are selected from the predefined imbalances. The

known levels of class imbalance used by the approach form the set Λ = {λ bal = 1 : 1, ...,λ max}.

A subset of class imbalances ΛBC ⊂ Λ is selected from Λ to optimize a subset of BCs E. The

subset of imbalances ΛBC should contain evenly distributed intermediate class imbalance levels

between the minimum λ bal and the maximum level of imbalance λ max inclusively. The sets

OPT and VAL are generated from imbalanced reference data that follows λ max. Different data

sets with the levels of class imbalance defined in Λ, in which the amount of target samples

remains fixed, while the amount of non-target samples are added to the set through random

under sampling.

The classification system process streams of input patterns. The operational histogram opd

corresponding to these operational samples is accumulated over time, and the closest level

of class imbalance λ ∗ ∈ Λ is estimated by comparing opd to the data sets in OPT using the
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Hellinger distance. The estimated operational class imbalance λ ∗ corresponds to the imbalance

of the closest set in OPT to opd in terms of Hellinger distance. Then, λ ∗ is used to select the

BC that corresponds to that imbalance, and in the case λ ∗ is not available on ΛBC, the BCs for

the two closest imbalances are merged, and the convex hull is estimated.

The strength of the SSBC algorithm lies in the adaptive selection of suitable fusion functions

(ROC operations points) according to the estimated operational imbalance. However, this tech-

nique assumes that the generation of a pool of classifiers, where each classifier is trained using

balanced target and non-target data, and provide enough diversity of opinions to discriminate

when input operational data is imbalanced. Another issue is related to the precision of the

method used by SSBC to estimate the class imbalance is limited by the amount and sampling

strategy used to create the set of imbalances Λ. Specialized methods to quantify the class priors

of unlabeled (operational) data have been proposed in literature (Gonzalez-Castro et al., 2013),

and two of them are summarized in the next section.

4.2.3 Estimation of Class Imbalance

Quantification (i.e. estimation of the class distribution in Bayesian terms) is the task that deals

with the estimation of the number of samples belonging to each class in an unlabeled set (For-

man, 2006; Bella et al., 2010; Forman, 2008). In the literature, different quantification methods

appear and are based either on the classifier confusion matrix (Forman, 2006; Chan and Ng,

2006), the posterior probability estimates provided by a classifier (Bella et al., 2010), or the

comparison of class conditional probability densities of data sets with known and unknown

proportions (Radtke et al., 2013b; Gonzalez-Castro et al., 2013; Forman, 2008; González-

Castro et al., 2010). Regarding the estimation task from the point of view of a classification

algorithm, two levels can be identified to estimate the class imbalance of a distribution rep-

resented by a set of unlabeled (operational) samples. Data-level estimation operates in the

feature space, employing the probability distribution of samples for each feature (Radtke et al.,

2013a,b; Gonzalez-Castro et al., 2013). On the other hand, score-level allows to employ the

probability distribution of the scores generated by a probabilistic classifier.
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Two representative quantification methods were recently proposed to use the Hellinger distance

to estimate the prior probability of unlabeled data, either using the features (HDx quantifica-

tion) or scores from a classifier (HDy quantification) (Gonzalez-Castro et al., 2013). Given an

unlabeled dataset U = {(an),n = 1, ...,N} and a labeled validation dataset V = {(am, lm),m =

1, ...,M}, the Hellinger distance between these two sets can be computed according to

HD(V,U) =
1

n f

n f

∑
f=1

HD f (V,U), (4.1)

where the feature-specific Hellinger distance is given by

HD f (V,U) =

√√√√ b

∑
i=1

(√
|Vf ,i|
|V | −

√
|Uf ,i|
|U |

)2

, (4.2)

where n f is the number of features, b is the number of bins used to construct the feature-

specific histogram representation of the probability density functions of the datasets. |U | is

the number of samples in U and |Uf ,i| is the number of samples whose feature f belongs to

the bin i, similarly with |V | and |Vf ,i| for the validation set V . The Hellinger distance between

the probability densities of the unlabeled and validation sets can be computed by making the

assumption

|Vf ,i|
|V | =

|S−f ,i|
|S−| Pv(−)+

|S+f ,i|
|S+| Pv(+), (4.3)

where |S−| is the number of non-target training samples and |S−f ,i| is the number of non-target

samples whose feature f belongs to bin i in the histogram representation of the probability

distribution of the training data S. Similarly, |S+| and |S+f ,i| are equivalent measures for the

target class. The prior probability Pv(+) (and similarly Pv(−)) can be manually assigned by

the quantification method (see Algorithm 4.1). Algorithm 4.1 summarizes the process followed

by the HDx quantification method.
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Algorithm 4.1: Quantification HDx, extracted from (Gonzalez-Castro et al., 2013)

Input : Labeled data S; operational data U (non-labeled); Number of bins b;

Output : Estimated target prior probability for U : P̂(+)
Compute |S+|, |S−| and |U |
for f = 1...n f do

for i = 1...b do
Compute |S+f ,i|, |S−f ,i| and |Uf ,i|

for Pv(+) = 0...1 in small steps do
for f = 1...n f do

Compute HD f according to (4.2), using (4.3) with Pv(+)

HD[Pv(+)] = 1
n f

∑n f
f=1 HD f [Pv(+)]

P̂(+) = argmin(HD)
P̂(−) = 1− P̂(+)

For HDy, the Hellinger distance between the distributions of classifier outputs is estimated as

HD(V,U) =

√√√√ b

∑
i=1

(√
|Vy,i|
|V | −

√
|Uy,i|
|U |

)2

(4.4)

where |Uy,i| and |Vy,i| are the number of unlabeled and validation samples whose output y

belongs to the bin i= 1...b. Similarly to the HDx method, the substitution to avoid subsampling

and/or oversampling is given by

|Vy,i|
|V | =

|S−y,i|
|S−|Pv(−)+

|S+y,i|
|S+|Pv(+), (4.5)

where |S+y,i| and |S−y,i| represent the number of non-target samples whose output y belongs to bin

i in the histogram representation of the probability distribution of the scores. Algorithm 4.2

summarizes the process followed by HDy quantification to obtain the prior probability based.

4.2.4 Challenges

Exploiting imbalance to adapt a classifier system has been studied in literature, and is a con-

sequent option regarding the imminent imbalance in face based video surveillance. Although

the algorithms like SSBC have successfully used imbalanced validation data to update an en-
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Algorithm 4.2: Quantification HDy, extracted from (Gonzalez-Castro et al., 2013)

Input : Labeled data S; Operational data U (non-labeled); Classifier Cw; Number of bins b;

Output : Estimated target prior probability for U : P̂(+)
Compute |S+|, |S−| and |U |
Compute classifier outputs for S as {yk =Cw(ak),k = 1, ...,K} Compute classifier outputs for U
as {yl =Cw(al), l = 1, ...,N} for i = 1...b do

Compute |S+y,i|, |S−y,i| and |Uy,i|
for Pv(+) = 0...1 in small steps do

Compute HD[Pv(+)] according to (4.2), using (4.3) with Pv(+)

P̂(+) = argmin(HD)
P̂(−) = 1− P̂(+)

semble fusion function to the operational imbalance, two issues are still to be addressed in

practice. The first is related to the source of diversity of opinions among experts, where classi-

fiers may be trained on data with different imbalances and complexities. In this way, the base

classifiers trained on diverse levels of imbalance would provide increased useful diversity in

the ensemble. Even more, training imbalance specific classifiers on data with different com-

plexities would provide even more diversity, leading to a more accurate and robust ensemble

under such an imbalanced environment.

The second issue is related to the resolution needed to reliably estimate the operational im-

balance. For example, SSBC estimation relies on the measurement of the Hellinger distance

between the histogram representation of a set with the most recent operational samples and

validation sets with pre-defined imbalance levels (Λ). If the operational imbalance is not con-

sidered in the set Λ, the combination functions corresponding closest adjacent imbalances are

considered, but the exact level of imbalance is never estimated. More accurate candidate quan-

tification methods like HDx and HDy may be used, where all the validation samples are em-

ployed for a more precise estimation, avoiding the subsampling requirement. Moreover, the

prior probabilities Pv(+) and Pv(−) are explicit – in other words, the step size in algorithms

4.1 and 4.2. The optimal size of each “small step” can be easily deducted by considering the

maximum expected imbalance λ max, which can be used to estimate the optimal size for these

steps (See Section 4.4.2.4).
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4.3 Adaptive Skew-Sensitive Ensembles for Video-to-Video Face Recognition

The proposed architecture for skew-sensitive video-to-video FR is depicted in Figure 4.1. It

consists of a tracker, a skew-sensitive classification system with individual-specific parameters,

a spatio-temporal fusion module, a sample selection and a classifier design/update systems. It

is inspired on the framework proposed in (De-la Torre et al., 2014a), and incorporates the

functionality provided by skew-sensitive ensembles to adapt the individual-specific ensembles

to the most recent operational imbalance. In order to adopt this functionality, some of the

original blocks were modified, and others related to the operation skew-sensitive ensembles

were added. The system works in two different phases that separate normal operation from the

design and update of facial models of enrolled individuals.

Figure 4.1 Adaptive skew-sensitive MCS for video-to-video FR

In the operational phase, the tracker follows the position of the segmented faces in video, build-

ing a face trajectory composed of sequential ROIs. Simultaneously, features for classification
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are extracted and selected from segmented ROIs to form feature vectors (a), which are sequen-

tially feed to all the individual-specific ensembles of classifiers. Each skew-sensitive ensemble

k –corresponding to the enrolled individual k– produces a sequence of predictions according

to the input order of the ROIs belonging to a face trajectory. In order to adapt the fusion func-

tion to the most recent operational imbalance, the feature specific histogram representation of

the distribution of the operational data (opd) from facial captures of the last predefined time

period (e.g. 15 minutes) is computed. The most recent distribution stored in opd is employed

to estimate the operational imbalance λ ∗ (see Section 4.3.1). Then, the combination function

corresponding to the estimated operational imbalance λ ∗ is approximated, and the operations

point (op) in each individual-specific ensemble is selected. Finally, the spatio-temporal fusion

module accumulates ensemble predictions over a fixed size window of face detections. When

the accumulation of predictions from an individual-specific ensemble that corresponds to a tra-

jectory surpasses a pre-defined detection threshold γd
k , the individual of interest k is detected in

scene. For if self-update is required, the accumulation is compared to a second update thresh-

old γu
k that triggers the adaptation process using all the ROIs belonging to the face trajectory

(see (De-la Torre et al., 2014a)).

The design/update phase is triggered when a new reference trajectory becomes available. Tar-

get samples are combined with non-target samples from UM and CM to form a learning data

set Dk (for training and validation). The learning set Dk follows the maximum predefined im-

balance λ max, which is selected a priori in accordance with the experience in the field. An

individual-specific selection strategy is employed to select the amount of non-target samples

that accomplishes with the maximum expected imbalance λ max. The learning data set Dk is

evenly divided for imbalanced generation (Dgen
k ) and validation of fusion functions (Dval

k ). The

imbalance-based generation of classifiers allows to generate a pool P ′
k of classifiers, which are

incorporated to the previous pool following a learn-and-combine strategy (see Section 4.3.2).

A long term memory (LTM) is employed to store individual-specific reference samples and

avoid knowledge corruption (De-la Torre et al., 2013). Then, the validation samples used for

combination are stored in the datasets optmax for operational imbalance estimation (see Sec-
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tion 4.3.1) and the approximation of imbalanced BC. Finally, the skew-sensitive combination

allows to select the operations point with validation data with the approximated imbalance λ ∗

(see Section 4.2.2).

4.3.1 Approximation of Operational Imbalance

Initially, the classification system starts its operation considering a balanced operational en-

vironment. Feature vectors corresponding to input facial regions feed the data set with the

most recent operational samples ops. The set ops is renewed with new input samples every

certain prefixed period of time, let’s say every 15 minutes. The operational feature histogram

is estimated based on the evidence accumulated on the feature distributions of input facial re-

gions during that period of time. Then, the prior probability of the most recent target class

distribution P∗(+) of operational samples is estimated using HDx quantization, based on the

feature histograms from unlabeled operational (ops) and reference validation (optmax) samples

(Algorithm 4.1).

Let |V+| be the number of target samples in a validation data set V (e.g., optmax). The number

of non-target samples required to accomplish with the estimated class distribution P∗(+) is

given by

|V−|= |V+|
(

1

P∗(+)
−1

)
, (4.6)

and the estimated class imbalance λ ∗ can be represented assuming |V+| = 1 and substituting

in the notation given by Eqn. 4.11.

The HDx quantification method require a single validation set (optmax), which preserves the

useful abundance of non-target samples that provide information from both imbalance and

complexity in the feature space. The procedure for imbalance estimation is summarized in

Algorithm 4.3.

The adaptation of the combination function for the new approximated class imbalance λ ∗ is

performing in accordance to the skew-sensitive algorithm, either updating the combination



180

Algorithm 4.3: Estimation of the level of imbalance λ ∗ from reference data optmax and

operational data ops

Input : Data set optmax, Operational samples ops, number of bins b
Output : Imbalance estimation λ ∗

Estimate prior probability using Algorithm 4.1

Assume |V+| = 1

Compute |V−| using Eqn. 4.6

Compute imbalance λ ∗ using Eqn. 4.11

weights (weighted voting or meta-classification combiners) or selecting the imbalance-specific

operations point (SSBC). The advantage of using an estimation of the prior probability as given

by HDx provides a good estimation of the class imbalance, and the selection of the correct

imbalance in validation set VAL reduces the error propagation induced by some algorithms for

imbalance estimation (see Section 4.3.1).

4.3.2 Design and Adaptation of Ensembles

The imbalance-based generation strategy proposed in this section allows to generate useful di-

versity of opinions, which can be successfully exploited with other skew-sensitive combination

strategies. The operational imbalance in a real scenario suffers from constant changes, and it

is inaccurate to assume a single imbalance. Active skew-sensitive ensembles allow to estimate

the operational imbalance, and select and combine the classifiers from a pool. Robustness of

the ensembles may be enhanced with base classifiers trained on different levels of imbalance

and complexity.

Limitations in resources make impractical to train a classifier for every possible imbalance,

and a number of training imbalances should be fixed before training. The combination func-

tion is responsible for the selection of the classifiers with the proper imbalances according to

the estimated operational imbalance. In this way, given predefined minimum and maximum

imbalances denoted by λ min and λ max respectively, a fixed number of imbalances is chosen

between them. Two issues appear from this affirmation, i.e. how to estimate the number im-

balance levels are enough for the application, and how close should be from each other. The
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first question is equivalent to estimate the number of classifiers in the ensemble that allow the

fusion function to provide a high level of performance under distinct operational imbalances.

The second question can be re-stated as which imbalances between the maximum and mini-

mum should be used to train the base classifiers.

Algorithm 4.4: Generation of diversified classifiers based on different levels of imbalance

and complexity

Input : Training data Dt , maximum imbalance λ max
GEN , levels of imbalance |ΛGEN |, size of

subpools sp.

Output : P Pool of |ΛGEN |× sp diversified classifiers.

Generate ΛGEN by sampling the levels of imbalance with a log scale (e.g. 1:100, 1:10
log10(λ

max)×i
maxCls f−1 ,

... 1:100)

Generate the imbalanced training sets DImb
i according to the imbalances in ΛGEN

for i = 1...|ΛGEN | do
Train a new subpool with sp classifier Pi using DImb

i and a source of diversity

P ⇐ P ∪Pi

The proposed procedure for imbalance-based generation of diversified classifiers is shown in

the Algorithm 4.4. In order to generate more diversity, the subpools of classifiers for each spe-

cific imbalance can be generated employing typical sources of diversity like different subsets

of data, presentation orders, distinct hyperparameters, or other techniques (e.g. boosting, use

different classification algorithms to train base classifiers, DPSO generation, etc.).

According to the results described in Section 4.4, |ΛGEN | = 7 levels of imbalance are a good

choice to train base classifiers, assuming that FR problems present high probability of classi-

fication error between target and non-target individuals. And the parameter that controls the

size of the subpools may consider a small number of classifiers (e.g. sp = 2 or 3) to take ad-

vantage of complexity as a source of ensemble diversity, and train robust ensembles avoiding

an excessive increase in memory requirements.
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4.4 Synthetic Experiments

Consider a modular system used for matching in FR (Pagano et al., 2012), where individual-

specific ensembles of 2-class classifiers are trained independently. The scenario is replicated

employing a Gaussian distribution to generate samples for the minority target class, and a

second Gaussian distribution to draw samples for majority class (the rest of the individuals in

the world).

The objective of these experiments is to characterize the performance of skew-sensitive ensem-

bles with imbalance-generation of classifier ensembles in five axis. First, to show the capacity

of the proposed imbalance-based generation of classifiers to produce ensemble diversity, since

this affects positively the performance (accuracy and robustness) of ensembles. Second, a sen-

sitivity analysis to decide the number of classifiers trained on different levels of imbalance

levels that provide useful diversity to the ensemble. Third, to provide evidence of the effective-

ness of the skew-sensitive ensembles in imbalanced environments compared to other ensemble

techniques. Fourth, the generation of more than one classifier for each level of imbalance,

bringing to the table the concept of imbalance-specific sub-pools. This approach provides

combined sources of diversity from imbalanced training sets and different complexities. A

sensitivity analysis allows to define size of the subpools that provide the best classification per-

formance and robustness. And fifth, to provide a deep analysis of the behavior of the data- and

score-levels employed in the approximation of imbalance employing quantification methods

based on the Hellinger distance.

4.4.1 Experimental Protocol

The synthetic problem was designed in the 2 dimensional feature space, and the two overlap-

ping multivariate Gaussian distributions with simple linear decision boundaries are shown in

Figure 4.2a. Target and non-target data distributions are characterized by a fixed center of mass

μ1 = [0,0], μ2 = [3.29,3.29] respectively, and the degree of overlap was variated by adjusting

the covariance matrix σ of both distributions at the same time. The degree of overlap, and thus



183

the total probability of error between classes is variated according to six different levels, per-

mitting the analysis of the impact of the overlap and imbalance level in the performance. The

variances and levels of overlap of the class distributions used in these experiments are shown

in Figure 4.2b. Ten different levels of imbalance were used to train 2-class PFAM clas-

Total Probability of Error Covariance Matrix
1% I
5% 2× I
10% 3.304× I
15% 5.038× I
20% 7.672× I
25% 11.90× I

(a) Synthetic overlapping (b) Covariances matrices

Figure 4.2 (a) Representation of the synthetic overlapping data set used for simulations

and (b) covariance matrices used to control the degree of overlap between distributions (I
is the 2×2 identity matrix). The covariance matrix allows to change the degree of

overlap, and thus the total probability of error between classes. These parameters were

extracted from (Granger et al., 2007)

sifiers3, corresponding to a logarithmic sampling between balanced and the maximum level

of imbalance λ max = 1 : 1000. This sampling scheme was selected according to the follow-

ing reasoning: First, it is recalled that the diversity of opinions between the base classifiers

in an ensemble is an important characteristic for enhanced classification performance, and a

good scheme should favor this diversity. Assuming no other source of diversity in an ensem-

ble but the class imbalance, two similar classifiers (same algorithm and parameters) trained

on data with different imbalance levels should produce different decision boundaries. Then,

the scheme to subsample the space between λ 1
GEN and λ max

GEN should maximize the diversity of

3ΛGEN = {λ 1
GEN , ...,λ

max
GEN}= {1 : 1,1 : 2,1 : 5,1 : 10,1 : 22,1 : 46,1 : 100,1 : 215,1 : 464,1 : 1000}
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opinions, and hence produce distinct decision boundaries for each ensemble member. Figure

4.3 illustrates a linear and a logarithmic scheme, and the different theoretical optimal decision

boundaries. It can be seen that a logarithmic scale produced a more even distribution of the

decision boundaries along the feature space, thus generating a greater diversity of opinions be-

tween each classifier compared to the linear scheme. For this reason, the logarithmic scheme

was chosen, allowing for enhanced diversity of opinions whereas evenly covering the space of

decision boundaries for different imbalances. The standard hyperparameters of the PFAM

(a) Linear scheme (b) Logarithmic scheme

Figure 4.3 Cross-cut of the overlapping data distributions for target (right-blue curves)

and non-target (left-red curves) samples. Linear scheme (a) with imbalances

ΛGEN = {1 : 1,1 : 2,1 : 3,1 : 4,1 : 5} and logarithmic scheme (b) with imbalances

ΛGEN = {1 : 20,1 : 21,1 : 22,1 : 23,1 : 24}

classifiers were used (e.g. [α = 0.001,β = 1,ε = 0.001, ρ̄ = 0,r = 0.60]), and a hold-out val-

idation process was employed to optimize the number of training epochs with different orders
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in the presentation of training samples. A constant number of 10 positive (target) samples was

maintained in the training and validation sets, which is typical of applications where a lim-

ited amount of training samples is available. Similarly, the number of negative samples was

variated according to the desired imbalances in ΛGEN , assuming the wide availability of non-

target samples, which is typical of surveillance scenarios where facial captures from non-target

individuals may be easily retrieved from every day operational videos (the UM). The level

of imbalance (prior probability) is internally estimated by the PFAM classifiers, based on the

amount of positive and negative samples in the training data.

4.4.2 Results

4.4.2.1 Classification on Imbalanced Problems

Figure 4.4 shows the decision boundaries estimated by the ten classifiers trained on the imbal-

ances in ΛGEN . The test data set with 100 positives and the highest imbalance is plotted behind

(λ max
GEN = 1 : 1000), with blue for target and red for non-target samples. The differences in the

decision boundaries is the agent that produces the diversity of opinions that can be exploited

by ensemble techniques for increased robustness and accuracy.

The cost curves are graphical representations of the expected cost (or error rate) of 2-class clas-

sifiers over the full range of possible probability costs (class distributions or misclassification

costs) (Drummond and Holte, 2006). In order to find the relation with the representations in

the ROC and PROC spaces, the error rate can be defined as the difference between the false

negative rate ( f nr) and false positive rate ( f pr) multiplied by the prior probability of a sample

being from positive class p(+) (see Eqn. 4.7). In Eqn. 4.7, the quantities of a 2-class confusion

matrix are represented as FP or false positives, TP or true positives, FN or false negatives and

FP or false positive predictions.

error rate = (FN −FP)∗ p(+)+FP (4.7)

= (1−T P)∗P(+)
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Figure 4.4 Test set characterized by a 1:1000 imbalance, and the decision lines drawn

by the ten PFAM classifiers trained with different levels of imbalance in ΛGEN . Classifiers

and test samples correspond to the problem with a total probability of error

corresponding to 20%

The extreme values of the x-axis in the cost curves represent the situations where all samples

are classified as belonging to the same class. A point in the left extreme represents the probabil-

ity of positives p(x) = 0 (all samples are negative), and a point in the right extreme represents

p(x) = 1 (all samples are positive). Thus, a trivial classifiers can be represented with a cost

curve that starts on the lower left corner (0, 0), grows linearly up to the point with equal pos-

itive and negative probabilities with error rate of 50% (0.5, 0.5), and ends at the lower right

corner (1, 0). And a cost curve that corresponds to a perfect classifier should be drawn as a

flat horizontal line at zero expected cost. On the other hand, the more commonly used receiver

operating characteristics (ROC) curves plot the f pr in the x-axis and the t pr in the y-axis, with

a point for each confusion matrix corresponding to an operational point (Fawcett, 2006). Sim-

ilarly, the precision-recall (PROC) curves represent the recall (t pr) in the x-axis against the

precision in the y-axis, although inverted axis can be employed to compare ROC and PROC

spaces with the t pr in the y-axis. Examples of test ROC, PROC and cost curves(Drummond

and Holte, 2006) for the ten PFAM classifiers trained with different levels of imbalance in the

training set are shown in Fig. 4.5 for an overlap of 20%. The curves were obtained on a com-

mon test set with 100 positives and the highest imbalance used in the experiments (1:1000), the

same as shown on Fig. 4.4. These results confirm that there is a significant difference in the
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(c) Cost curves

Figure 4.5 (a) ROC, (b) PROC and (c) cost curves corresponding to the seven PFAM

classifiers trained on different imbalances, for the problem with a theoretical total

probability error (overlap) of 20%

performance of the different classifiers, which constitutes a different view of the diversity of

opinions provided by the distinct classifiers. This difference confirms the diversity of opinions

that can be exploited using ensemble techniques, and that is related to the different levels of

imbalance used in the training data.

In order to show the impact of training the classifiers with the same imbalance as the appearing

in operations (test), each classifier was tested on a test set composed of 100 positive sam-

ples, and the necessary negative samples to complete the imbalance used for training. The

experiment was repeated 10 times, and for each repetition the training data was randomly
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Figure 4.6 Average AUC estimated over 10 replications of the synthetic experiment

with overlap between distributions of 20%. The left bar for each pair (blue) corresponds

to the average AUC for the PFAM classifier trained on a balanced set (1:1), estimated on

the test set with the imbalance indicated in the abscissa axis. The right bar for each pair is

the average ROC AUC for the PFAM classifier trained on the same level of imbalance

appearing in test

re-generated to design a completely independent experiment. After that, the ten classifiers

were combined using skew-sensitive ensembles (SSBC), and the test set with the maximum

imbalance (λ max
GEN = 1 : 1000) was used to compare its performance with the single classifier

approach.

Figure 4.6 presents the AUC performance for each of the classifiers and the skew-sensitive en-

semble. It can be seen that the classifiers trained with the same level of imbalance that appears

in test show a higher performance in terms of AUC than a classifier that learns from a balanced

training set. Skew-sensitive ensembles estimate the level of imbalance in test and adapts the

fusion function to the operational class proportions, providing the highest level of AUC perfor-

mance and smaller standard error, as shown at the very right of the Fig. 4.6. A similar tendency

was seen on the six levels of overlap, being more evident with higher probability of error. In

general, as the probability of error increases, the problem is more difficult and the classifiers

present lower performance, but the AUC performance of the ensemble was lower bounded by

the performance of the best classifier in the ensemble.
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4.4.2.2 Ensemble Generation

In order to define the levels of imbalance that provide the highest useful diversity to the

imbalance-based ensemble, a sensitivity experiment was designed. The aim of this experi-

ment is to explore how many of the ten classifiers are more useful for the ensemble, providing

the best performance after selecting the operations point at a target f pr = 1%. This scenario

provides a situation where the ensemble is deployed and the operations point gives the final de-

cisions, evaluating together the accuracy of the classifiers after the selection of the operations

point, and not only a range of values in the ROC space. The number of PFAM classifiers was

variated from 2 to 10, adding to the pool the classifiers in descendant order according to the

ROC AUC accuracy evaluated on an independent validation set. In this way, the two classifiers

that present the highest performance are first combined, then the third most accurate and so on,

until the ensembles contain the ten classifiers trained according to the imbalances in ΛGEN .

The five combination strategies used in the comparison are the max rule, average rule, meta

kNN, BC and SSBC. The max rule selects the maximum target score produced by the base

classifiers in the pool. The avg rule estimates the mean of the target scores produced by the

base classifiers in the pool. In meta kNN, the 1NN classifier was trained on independent score-

level validation data, and it was employed in test to produce output distance-based scores. In

Boolean combination (BC), the ten Boolean functions are applied to different pairs of clas-

sifiers, and the BC algorithm was run on an independent validation set to find the operation

points that maximize the ROC convex hull (Khreich et al., 2012). Finally, the SSBC was ap-

plied with a validation set containing a profile with the same imbalance as the expected in test

(Radtke et al., 2013b).

In all cases, the operations point for a target f pr = 1% was selected using an independent

validation set. The performance of all the approaches was evaluated on a same test set with

imbalance λ max
GEN = 1 : 1000, using precision and F1 measure in the comparison, together with

the ambiguity that measures the ensemble diversity. Formally, the ambiguity is defined by

Zenobi and Cunningham in (Zenobi and Cunningham, 2001), and include the responses of the
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base classifiers as well as the responses produced by the ensemble.

Ens. Ambiguity =
1

MN

M

∑
m=1

N

∑
n=1

amb(an,dm,d∗), (4.8)

where M is the number of classifiers in the ensemble, N is the amount of test samples. The am-

biguity for an independent sample an, given the decision dm of the classifier cm in the ensemble,

is given by

amb(an,dm,d∗) =

⎧⎪⎨
⎪⎩

0 if dm = d∗

1 otherwise.

(4.9)

Figure 4.7 presents the resulting F1 measure and ambiguity for the ensembles in the scenarios

with total probability error of 15% and 20%. Regarding the F1 measure, the maximum, aver-

age, BC and SSBC combinations perform better than meta-kNN at all times, and a significant

superiority in performance is shown by SSBC when the ensemble contains between 5 and 8

classifiers. The phenomenon was repeated for the other overlaps (1%, 5%, 10% and 25%),

becoming more evident as the total probability error grows. The ambiguity of the meta-kNN

combination stays at a high compared to the other four approaches, which combined with the

low performance shown in terms of F1 measure, allows to see that this approach is the one

that exploits the diversity of opinions in a less efficient way. On the other hand, the ambiguity

shown by SSBC remains low compared to the meta-kNN, reinforcing that useful diversity of

opinions is correctly exploited by this approach.

Regarding the F1 measure in Fig. 4.7, it can be observed that the last value in the curve for

SSBC in Fig. 4.7 (a), corresponding to 10 classifiers in the ensemble, is significantly higher

than its starting point (2 classifiers). The same phenomenon was observed for the problems

with total probability of error lower than 15%. However, in Fig. 4.7 (d) the same point in

the curve presents an F1 level that is only slightly higher than the starting point (2 classifiers).

Similarly, this decrease in performance was observed in the problem with 25% total probability

of error. This is related to the order used to add the base classifiers in the ensemble, in which

the classifier with lowest level of performance is added in the last moment. This last classifier
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Figure 4.7 Sensitivity on the number of classifiers in the ensemble, using different

combination strategies and adding the classifiers in descendant order according to the

ROC-AUC evaluated on validation: the most accurate classifiers are the first

added to the ensemble

negatively affects the diversity of opinions in the ensemble, and thus, the global performance.

This tendency is more evident in problems with a high level of total probability of error, in

which the classifiers with less performance bias the ensemble towards the erroneous decisions.

And the classifiers with lower level of performance are commonly those trained with lower

imbalance levels. For instance, regarding the problem with 20% total probability of error, in 8
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of the 10 replications of the experiment, the classifier with less performance was trained with

a training set with an imbalance lower than 1:50, and the imbalance used in test was 1:1000.

In general, the approaches that show a higher diversity tend to produce a lower performance,

showing that there is a limit in the useful diversity, and beyond that limit, it damages the

ensemble accuracy.

Table 4.1 Average performance of the different combination methods, the ensembles are

composed of 7 base classifiers. The bold numbers represent the performance values

significantly higher than other approaches

Imbalanced PFAM Average Meta kNN SSBC
f pr(↓) t pr(↑) prec(↑) F1(↑) f pr(↓) t pr(↑) prec(↑) F1(↑) f pr(↓) t pr(↑) prec(↑) F1(↑) f pr(↓) t pr(↑) prec(↑) F1(↑)

Total probability error: 1%
13.26% 94.30% 1.61% 0.0314 11.74% 99.90% 1.57% 0.0307 1.37% 97.70% 16.04% 0.2496 0.81% 58.50% 6.85% 0.1219

(4.19) (4.94) (0.40) (0.0078) (3.06) (0.10) (0.39) (0.0075) (0.51) (0.56) (5.03) (0.0623) (0.07) (5.53) (0.45) (0.0077)

Total probability error: 5%
13.92% 50.30% 0.79% 0.0153 16.62% 92.30% 0.93% 0.0183 8.86% 87.40% 2.37% 0.0441 0.93% 57.50% 6.17% 0.1102
(3.70) (11.06) (0.32) (0.0061) (4.64) (2.21) (0.18) (0.0034) (2.16) (2.33) (0.99) (0.0174) (0.08) (5.51) (0.73) (0.0118)

Total probability error: 10%
12.32% 39.50% 0.75% 0.0140 13.71% 75.80% 1.40% 0.0267 15.67% 81.70% 0.62% 0.0122 1.24% 36.80% 3.50% 0.0625
(4.48) (10.02) (0.30) (0.0054) (4.16) (5.32) (0.47) (0.0087) (2.11) (3.80) (0.10) (0.0019) (0.20) (4.07) (0.66) (0.0106)

Total probability error: 15%
14.52% 42.00% 0.38% 0.0075 10.44% 49.10% 1.35% 0.0234 23.12% 78.20% 0.39% 0.0078 1.13% 21.80% 2.16% 0.0390
(3.55) (9.58) (0.10) (0.0020) (3.97) (10.47) (0.38) (0.0059) (2.50) (2.72) (0.06) (0.0013) (0.13) (2.50) (0.34) (0.0059)

Total probability error: 20%
19.00% 51.50% 0.28% 0.0057 11.99% 54.50% 0.74% 0.0144 27.88% 75.00% 0.28% 0.0056 1.12% 14.20% 1.32% 0.0240
(3.06) (9.33) (0.04) (0.0007) (3.77) (5.68) (0.13) (0.0024) (2.30) (2.56) (0.02) (0.0004) (0.10) (2.13) (0.22) (0.0038)

Total probability error: 25%
12.62% 32.40% 0.47% 0.0083 10.92% 42.20% 0.60% 0.0115 31.27% 68.60% 0.23% 0.0046 1.22% 8.10% 0.67% 0.0123
(3.78) (6.52) (0.15) (0.0020) (3.30) (7.13) (0.09) (0.0017) (2.56) (2.55) (0.02) (0.0003) (0.10) (1.03) (0.07) (0.0012)

Table 4.1 allows for a more deep comparison between the different combination strategies,

by considering 7 levels of imbalance in the ensembles. The empirical f pr and t pr were ob-

tained after predictions for the selected operations point, together with the precision and F1

measures. According to these results the SSBC provides the most accurate f pr in all cases,

remaining always close to the desired f pr = 1% regardless of the total probability of error

between classes. On the other hand, the average rule and meta kNN provide the highest t pr

at the expenses of increased f pr, which is a costly trade off in video surveillance due to the

amount of false alarms in an environment full of non-target individuals, or in other words, the

operational imbalance. Comparing the F1 measure for the different combination methods, it

reflects that the SSBC significantly outperforms all other approaches, and is only the problem

with an overlap of 1% that seems to be better addressed by the meta kNN. From this it can be
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said that traditional combination methods are suitable to be used in imbalanced environments

when the classification problems are easy enough –e.g. with lower total probability of error

between classes, simple decision boundaries, etc. However, as the total probability of error

grows, the superiority of the SSBC becomes more evident.

4.4.2.3 Using Several Classifiers per Imbalance

Up to here, a single classifier was trained for each imbalance level in ΛGEN . However, using

a single classifier per imbalance is not the only option to generate useful ensemble diversity

and increase the robustness of the ensemble. Adding more than one classifier for each level

of imbalance is a possibility that can be explored by generating a sub-pool instead of single

classifiers. In this experiment, the number of classifiers in the ensembles was augmented by

training more classifiers per imbalance, introducing variations in the classifiers by changing

the presentation order in the training sets. A sensitivity analysis was conduced to observe the

performance variations of the ensembles after changing the size of these sub-pools from 1 to

3 classifiers per imbalance, resulting in pools of 7, 14 and 21 classifiers. The test set was kept

with the maximum imbalance (λ max
GEN = 1 : 1000), and the samples were taken from the data

distributions with 20% total probability of error.

Table 4.2 Average performance measures for the skew-sensitive ensemble

with a pool of classifiers with 7 imbalances, problem with 20% total

probability of error. A sub-pool for each of the imbalances was growth from

one to three classifiers, resulting in pools of 7, 14 and 21 classifiers

SS ensemble (7x1) SS ensemble (7x2) SS ensemble (7x3)

fpr(↓) 1.12% 0.97% 0.96%

(0.10) (0.04) (0.04)

tpr(↑) 14.20% 17.20% 17.80%

(2.13) (1.16) (1.01)

prec(↑) 1.32% 1.75% 1.83%

(0.22) (0.11) (0.09)

F1(↑) 0.0240 0.0317 0.0331

(0.0038) (0.0020) (0.0017)
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Table 4.2 shows the average performance of the skew-sensitive ensemble with 7 levels of im-

balance using the three different sizes of sub-pools, at the operations point for f pr = 1%. It

can be seen that the best performance is achieved by the ensemble with 21 classifiers, at the

expenses of an increased memory complexity, presenting the need to store three times more

classifiers than using a single classifier per imbalance. The difference between using 7 and

14 classifiers is evident from the numbers in Table 4.2, showing that the ensemble with 14

classifiers presents a higher average performance and lower standard error. This is also true

comparing the cases of 14 and 21 classifiers, but with a smaller difference in average perfor-

mance and standard error. This confirms that more robust ensembles can be obtained by adding

more classifiers to the sub pools, and the trade-off between resources and accuracy should be

considered at the deployment stage.

SSBC (7x1) SSBC (7x2) SSBC (7x3)
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Figure 4.8 Box plots for the F1 measure for the skew-sensitive ensemble with a pool of

classifiers with 7 imbalances, problem with 20% total probability of error. A sub-pool for

each of the imbalances was growth from one to three classifiers, resulting in pools of 7, 14

and 21 classifiers

Figure 4.8 presents the box plots for the F1 measure achieved by the skew-sensitive ensemble

with different sizes of pools of classifiers. It can be seen that the median is higher as the
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number of classifiers increases, but there is also evidence of wide variations represented by the

distance between upper and lower bars, which become narrower as the number of classifiers

augments. The difference in the performance between the second (7x2 classifiers) and the third

(7x3 classifiers) boxes is small, and other criteria like spatial complexity may be used to decide

the size of the sub-pools.

4.4.2.4 Approximation of Imbalance Through Quantification

The level of class imbalance in the proportions of a set of samples is related to the prior prob-

ability of target (and equivalently non-target) samples. Given an imbalanced validation set V

with |V | samples, this relationship follows the definition of prior probability given by

P(+) = 1−P(−) =
|V+|
|V | =

|V+|
|V+|+ |V−| , (4.10)

where |V+| and |V−| correspond to the number of target and non-target samples in V respec-

tively. In the notation followed in this chapter, the level of imbalance is represented as

Imbalance =
|V+|
|V+| :

|V−|
|V+| , (4.11)

and the number of target samples |V+| is given by the context. By simple algebraic substitution

it is easy to see that both are representations of the same quantity. Hence, the HDx and HDy

quantification methods provide an estimate of posterior probability P(+), and equivalently, an

estimate of the class imbalance.

The estimation of imbalance based on representations at feature (HDx) and score (HDy) spaces

are characterized employing the Gaussian 2-class problem with different probabilities of error

(see Figure 4.2b). The underlying probability densities employed to generate samples for the

target (P(x,+)) and non-target (P(x,−)) were provided with prior probabilities P(+) = 0.4

and P(−) = 0.6 respectively. Binned distributions (histograms) for the test data were esti-

mated after generating 1 000 samples for the joint distribution (400 target samples and 600

for non-target samples). Following this procedure, the original synthetic experiment with the
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shift dataset was replicated (Gonzalez-Castro et al., 2013), with the variant of a customizable

overlap between distributions. The target prior probability P(+) of the validation set kept a

fixed amount of 100 target samples, whereas non-target samples were added one at the time to

cover the different possible class prior probabilities. The probabilistic classifier employed to

estimate the Hellinger distance at score level is the PFAM trained with balanced data.
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Figure 4.9 HDx and HDy quantification examples related to the comparison between

target and non-target distributions for the different cases.

The resulting Hellinger distance in feature and score spaces, corresponding to the low and

high overlaps with single and multiple features are shown in Figure 4.9. In general, the HDy



197

provides a softer curve for easy problems (e.g., small overlap between classes and few fea-

tures). But as the standard deviation is increased and the overlap between probability densities

grows, both curves present irregularities. Irregularities in the HDx curve are more evident with

less features and a higher overlap between classes, but still using the distance based Hellinger

distance provides a good estimation of the prior probability. Irregularities in the HDy curve

increase with both the number of features and the overlap between classes, but still is capable

of a good estimation of the prior probability. These irregularities in HDy are highly depen-

dent on the complexity of the problem, and at the same time the accuracy of the classifiers

employed to generate the estimated posterior probabilities (scores). Furthermore, the methods

have been compared for a small fixed imbalance (1:2.5), but in video surveillance applications

the imbalance is generally higher and changes over time.

The accuracy of the quantification methods was evaluated using data sets with 15 levels of

imbalance, including 7 levels distinct to those used for training and validation. The samples

were drawn from the overlapping Gaussian distributions described in this section. Test imbal-

ances that appear in Λ are {1:5, 1:7, 1:10, 1:15, 1:22, 1:32, 1:46, 1:68, 1:100, 1:147, 1:215,

1:316, 1:464, 1:681, 1:1000}. Equivalently, the target prior probabilities of these datasets can

be computed as { 1
5+1 = 0.1667, 1

7+1 = 0.1250, ...}. A single validation set with the maximum

level of imbalance was used with the quantification methods, avoiding the requirement of using

several validation sets with different levels of imbalance. The size of the “small steps” in Al-

gorithms 4.1 and 4.2 is set in accordance to the minimum possible probability, or equivalently,

the maximum expected imbalance λ max = 1 : 1000. The STEPSIZE employed in experiments

was defined using the validation set V , and is given by

ST EPSIZE = Pmin(+) =
V+

V++V− (4.12)

The average mean squared error between true prior probabilities and the estimations obtained

with the HDx and HDy classification methods are shown in Figure 4.10. Comparing Figs.

4.10 (a), 4.10 (b) and 4.10 (c), it can be seen that the HDy quantification outperforms HDx
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when the total probability of error is small, and HDx outperforms HDy as the classifiers are

less accurate. This is consistent with the affirmation that HDy is more reliable when classifiers

are more accurate, as stated in (Gonzalez-Castro et al., 2013). We can reformulate and affirm

that according to the results shown in Fig. 4.10, HDy is more reliable when the target and

non-target samples are easily separable, but HDx is preferable for problems with higher total

probability of error (e.g. overlap between class distributions).
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(c) 20% probability of error

Figure 4.10 Average mean squared error (MSE) between the true prior probability in

test and the estimation produced using the quantification methods HDx and HDy
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According to the observations in this section, the estimation of the class imbalance should

be guided by the characteristics of the data employed in the application and the particular

algorithm used for classification. In this chapter, an experiment was conduced to select the

proper method, and the results are analyzed in Section 4.5.4.

4.4.3 Discussion

In conclusion, the following affirmations should be considered in the choice of parameters for

systems that will operate in environments with changing class imbalance. First, the design of

classifiers considering the imbalance expected in test allows the classifiers to outperform those

classifiers that are trained with balanced data. Second, according to the simulations, a genera-

tion strategy that considers 7 imbalances to train base classifiers is a good choice, specially for

problems that present high probability of error between classes. In general, the approaches that

present a higher diversity tend to produce a lower performance, showing that there is a limit in

the useful diversity, and beyond that limit it damages the ensemble accuracy. Third, from the

combination methods analyzed in this section, skew-sensitive ensembles provide the highest

level of performance in terms of F1 measure in environments with different levels of imbalance.

Fourth, the use of several classifiers per imbalance is an option to increase the performance of

the ensemble and reduce the standard error, and the advantage has to be contrasted with the

significant increase of the pool size at deployment time. Finally, quantification methods may

be used within skew-sensitive approaches to obtain a more precise estimation of the operational

imbalance, and HDx quantification is a good candidate specially when the total probability of

error is high.

4.5 Experiments on Video Data

4.5.1 Experimental Protocol

This section presents the methodology used in simulations, following a video surveillance

scenario using real data to demonstrate the effectiveness of the proposed imbalance-based
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generation method, and the characterization of this method when combined with SSBC. The

video-based FR system that was used as a model in the experiments is depicted in Figure 4.11.

A single IP camera continuously captures the scene and feeds the segmentation module that

isolates the facial regions of interest (ROIs) in each consecutive frame. After a first ROI is

captured from an individual in scene, the tracking and classification modules are triggered in

parallel. The tracking module starts following the individual’s face and regrouping ROIs from

a same individual in trajectories, whereas the classification module produces consecutive iden-

tity predictions for each ROI. Finally, the spatio-temporal decision fusion module allows to

accumulate target predictions, and applies individual-specific thresholds for enhanced spatio-

temporal FR, as described in (De-la Torre et al., 2014a).

Figure 4.11 Generic video-based FR system used in video surveillance applications

In this particular implementation, the popular Viola-Jones face detector was used to extract

grayscale ROIs (Viola and Jones, 2004). Pixel intensities are concatenated with multi-block

local binary patterns (MBLBP) features, and the 32 principal components are selected after

application of PCA. Training feature vectors a are used to design the biometric database, and

the pixels of never seen ROIs are projected to the 32 dimensional feature space employed for

face matching. Face tracking was implemented using the incremental visual tracking (IVT)

algorithm, which incrementally learns the low-dimensional subspace representation (Eigen ba-
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sis) by efficiently adapting online to changes in the appearance of the face model (Ross et al.,

2008).

The classification architecture used for matching is composed of an ensemble of 2-class ARTMAP

classifiers for each individual. This architecture has been widely used for face matching in lit-

erature, which models the general recognition problem in terms of individual-specific detection

problems (De-la Torre et al., 2012b; Pagano et al., 2012; Radtke et al., 2013b). In the refer-

ence system used in comparison, the individual-specific EoDs are co-jointly trained using a

DPSO learning strategy, which allows for the generation of a diversified pool of Probabilistic

Fuzzy ARTMAP classifiers. The proposed approach preserves the same architecture, but the

base classifiers are trained independently on different imbalances, using DPSO to optimize the

hyperparameters and the global best is added to the pool.

4.5.2 Video Surveillance Data

Videos from the Carnegie Mellon University - Face in Action (FIA) database are used in experi-

ments (Goh et al., 2005). These videos correspond to 20 seconds sequences for 244 individuals

that act simulating a passport checking scenario. Six cameras capture the scene at a resolution

of 640×480 pixels, at a frame rate of 30 frames per second. Data was captured over three dif-

ferent capture sessions separated by a three months interval. The six cameras were distributed

in three pairs with focal lengths of 2.8 mm (unzoomed) and 4.8 mm (zoomed), and positioned

in horizontal positions with frontal, left and right orientations corresponding to 0o, and ±72o.

In the experiment, a video stream from a single IP camera is formed using the frontal zoomed

and unzoomed cameras along the three capture sessions.

Ten individuals of interest were selected from the FIA database for enrollment (FIA IDs 2,

58, 72, 92, 147, 151, 176, 188, 190 and 209), and the rest was divided into two independent

subsets of non-target classes appearing in training and test. For each individual of interest, 100

non-target individuals are selected for training (UM and CM), and 100 different individuals

are selected for test, providing a maximum class imbalance of λ max = 1 : 100. The cohort and
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universal models (CM and UM) allow to train 2-class ensembles with improved discrimination

between target and non-target classes, training one EoD for each individual of interest as the

target class, as described in (Pagano et al., 2012).

4.5.3 Experimental Protocol

For enrollment, an adaptive skew-sensitive ensemble of classifiers was trained for each one

of the selected individuals of interest. In the initial step, a pool of PFAM classifiers (Lim

and Harrison, 1995, 1997) was generated using seven different imbalances for training. The

DPSO learning strategy was used to co-jointly optimize the hyperparameters of a PFAM neural

network for each imbalance in ΛGEN , using training and validation data that follows the corre-

sponding imbalances in ΛGEN . The DPSO algorithm was initialized with a population size of

20 particles, a maximum of 6 subswarms of 5 particles maximum, and a maximum of 10 itera-

tions (Granger et al., 2007). At the end of the DPSO learning process, the global best classifier

was selected as the classifier the level of imbalance that corresponds to each the training levels

in ΛGEN .

Let λ 1 and λ max be the minimum and maximum possible imbalances in the classification envi-

ronment. λ max can be manually set according to the amount of detectable faces that can fit in a

frame captured by the camera. The range of possible imbalances has to be sampled in as many

imbalances as classifiers are required in the pool. Having established a maximum imbalance

of λ max = 1 : 100, five subdivisions were established in a logarithmic scale in order to obtain

seven different imbalances between λ 1 = 1 : 1 and λ max = 1 : 100. The resulting imbalances

used are Λ = {1 : 1,1 : 101/3,1 : 102/3,1 : 10,1 : 104/3,1 : 105/3,1 : 100}.

Learning is performed following a 4× 6-fold cross-validation process for 24 independent tri-

als. Positive samples from the incoming sequence are randomly split according to a uniform

distribution, in 6 folds of the same size. The first two folds combined in a training set (Dt), and

the rest of the folds are distributed in validation sets used to stop training epochs (De), fitness

evaluation (D f ), estimation of combination points in the ROC space (Dc) and selection of the
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operational point (Ds). Four imbalance levels are produced for each training and validation

set, picking different number of negative samples from the CM and UM. The levels of class

imbalance used for the different test blocks are 1/20, 1/35, 1/80, 1/55, 1/100, 1/70, 1/50 and

1/15, for t=1, ..., 8 respectively. The changes in the class imbalance of the test sets are obtained

by randomly removing individuals from each block of 30-min.

The proposed system is evaluated at transaction-level using the ROC and PROC spaces after

selecting the operations point for a fixed f pr = 1%. The operational measures used in the

characterization are the f pr, t pr (or recall), precision and the F1 measure. The ambiguity

is used as a measure of the diversity of opinions generated by the base classifiers trained on

different imbalances (Zenobi and Cunningham, 2001). Individual specific analysis is employed

Table 4.3 Doddington’s zoo taxonomy for binary decisions.

False negative rate ( f nr) and false positive rate ( f pr)

thresholds are applied to each individual-specific ensemble

Category Target class Non-target class
Sheep t pr ≥ 55% and not a lamb f pr ≤ 1%

Lamb At least 5% of non-target -

individuals are wolves

Goat t pr < 55% and not a lamb -

Wolf - f pr > 1%

following the Doddington’s Zoo taxonomy (Doddington et al., 1998; Rattani et al., 2009a),

with the thresholds shown in Table 4.3. Finally, time-based analysis is employed to see the

adaptation of the system to the operational class imbalance over time.

4.5.4 Results

This section presents the results obtained after computer simulations, divided into four differ-

ent levels of analysis. The first level presents transaction-based analysis, which corresponds

to the evaluation of the classification system after the presentation of each single facial region,

and its evolution as the system adapts to the imbalance in the environment. It is known that
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biometric systems have different performance depending on each specific case, and the second

level of analysis presents the individual-specific characterization of the system. The third level

of analysis is related to the functionality of the system to perform operational imbalance esti-

mation. Finally, as a video-based FR system, the trajectory level analysis presents the overall

evaluation of the system for trajectories from the different individuals of interest.

4.5.4.1 Transaction-Based Analysis

Table 4.4 shows the average performance of the system for the different approaches after se-

lecting the operations point for a desired f pr = 1%. The first two approaches are the ref-

erence systems that use the baseline balanced DPSO generation method, either using BC or

the proposed approach. These two approaches present the same initial performance, the F1

score presented by the proposed approach after adaptation to each block of test data is higher

than DPSO+BC. This superiority is product of the better estimation of the operations point

when the fusion function considers the class imbalance in the environment, which results in

a more accurate combination than employing balanced training without imbalance estimation.

It is remarkable to observe that the proposed approach preserves a f pr closer to the desired

f pr = 1%, which is an evidence of the correct exploitation of the imbalance to select a more

accurate operations point.

The last two approaches presented in Table 4.4 correspond to the same approaches as the first

two, but replacing the balanced generation by the proposed imbalanced generation scheme. A

similar trend can be observed when the combination methods are compared. The proposed

approach overcomes the performance of imbalanced training + BC in terms of F1 score, and

the rejection of false positives ( f pr) obtained by the proposed approach is more accurate than

using imbalanced training + BC. This trend confirms that the adaptive capacity of the proposed

approach provides a powerful tool for combination in environments with changing imbalance,

regardless of the generation method.
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Table 4.4 Average performance for different approaches for a target 1% f pr on test

blocks at different t times, including the different individuals enrolled to the system. The

standard error is detailed between parenthesis

Approach Measure t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8

Balanced training+BC

f pr
4.80% 4.14% 5.93% 5.57% 4.35% 4.11% 3.00% 3.19%

(0.032) (0.023) (0.030) (0.023) (0.024) (0.022) (0.014) (0.021)

t pr 57.02% 57.63% 58.39% 59.49% 58.09% 56.29% 55.61% 54.70%

recall (0.317) (0.327) (0.213) (0.230) (0.223) (0.262) (0.349) (0.342)

precision
43.28% 36.82% 20.09% 26.04% 24.11% 27.47% 36.99% 54.96%

(0.190) (0.191) (0.086) (0.082) (0.132) (0.143) (0.194) (0.249)

F1
0.436 0.400 0.267 0.328 0.302 0.326 0.394 0.479

(0.225) (0.226) (0.110) (0.117) (0.155) (0.172) (0.248) (0.284)

Balanced training+SSBC

f pr
4.80% 1.17% 1.61% 1.69% 1.17% 1.08% 0.55% 0.62%

(0.032) (0.011) (0.007) (0.009) (0.007) (0.009) (0.005) (0.006)

t pr 57.02% 43.45% 42.35% 42.92% 41.56% 38.34% 43.09% 42.19%

recall (0.317) (0.293) (0.231) (0.257) (0.281) (0.311) (0.343) (0.335)

precision
43.28% 56.34% 33.81% 39.20% 34.59% 39.21% 54.97% 67.62%

(0.190) (0.300) (0.163) (0.144) (0.184) (0.208) (0.303) (0.313)

F1
0.436 0.428 0.339 0.372 0.339 0.338 0.441 0.453

(0.225) (0.272) (0.154) (0.179) (0.209) (0.233) (0.311) (0.328)

Imbalanced training+BC

f pr
4.96% 4.25% 5.18% 5.06% 4.30% 4.15% 3.33% 4.03%

(0.037) (0.025) (0.025) (0.021) (0.025) (0.022) (0.015) (0.028)

t pr 59.78% 60.09% 61.32% 59.97% 59.36% 57.12% 59.42% 59.67%

recall (0.279) (0.271) (0.174) (0.206) (0.174) (0.224) (0.309) (0.310)

precision
44.11% 39.17% 23.72% 28.59% 23.19% 26.11% 37.45% 54.82%

(0.196) (0.180) (0.079) (0.086) (0.089) (0.100) (0.183) (0.239)

F1
0.456 0.420 0.302 0.351 0.297 0.320 0.408 0.502

(0.220) (0.209) (0.094) (0.115) (0.111) (0.131) (0.220) (0.261)

Proposed approach

f pr
4.96% 1.78% 1.69% 1.92% 1.52% 1.49% 1.06% 1.60%

(0.037) (0.018) (0.009) (0.013) (0.008) (0.010) (0.006) (0.013)

t pr 59.78% 52.91% 56.71% 55.64% 58.33% 53.87% 54.83% 54.56%

recall (0.279) (0.290) (0.192) (0.281) (0.270) (0.348) (0.364) (0.360)

precision
44.11% 57.30% 42.92% 47.83% 38.46% 41.80% 52.95% 64.75%

(0.196) (0.302) (0.155) (0.182) (0.136) (0.166) (0.263) (0.315)

F1
0.456 0.491 0.445 0.467 0.428 0.427 0.510 0.541

(0.220) (0.262) (0.112) (0.180) (0.170) (0.228) (0.300) (0.328)

In conclusion, skew-sensitive ensembles are benefited by considering different levels of imbal-

ance and complexities for training the pool of base classifiers. And adapting the fusion function

to the most recent operational imbalance employing the proposed scheme allows to provide a

higher level of performance, mainly in the capacity of the system to preserve a low f pr.

4.5.4.2 Individual-Specific Analysis

Following an individual-specific analysis, Table 4.5 shows the average f pr, t pr, precision and

F1 performance measures for two of individuals enrolled to the system. The performance of
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the eight test blocks with different imbalance levels are included, following the same structure

as the Table 4.4. The levels of imbalance for each block are shown in the first row of Table 4.7.

Table 4.5 Average performance measures for different individuals enrolled to the

system, setting a target 1% f pr on test blocks at different t times. The standard error is

detailed between parenthesis

Approach Measure t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8

Module for Individual 58

Imbalanced training+BC

f pr
1.71% 1.73% 3.18% 2.63% 3.96% 3.27% 2.98% 3.06%

(0.027) (0.023) (0.040) (0.031) (0.041) (0.035) (0.038) (0.032)

t pr 32.24% 33.48% 46.23% 31.94% 56.97% 38.89% 36.14% 36.10%

recall (0.320) (0.391) (0.360) (0.329) (0.333) (0.351) (0.358) (0.390)

precision
56.55% 48.65% 33.62% 29.30% 27.14% 23.99% 24.46% 43.11%

(0.370) (0.284) (0.242) (0.222) (0.179) (0.161) (0.160) (0.263)

F1
0.351 0.317 0.331 0.270 0.318 0.255 0.248 0.307

(0.291) (0.295) (0.225) (0.218) (0.163) (0.176) (0.206) (0.242)

Proposed approach

f pr
1.71% 0.16% 0.36% 0.39% 1.15% 0.74% 0.57% 1.05%

(0.027) (0.002) (0.003) (0.004) (0.005) (0.005) (0.004) (0.009)

t pr 32.24% 29.41% 48.96% 24.07% 66.76% 32.71% 31.75% 33.47%

recall (0.320) (0.353) (0.344) (0.193) (0.243) (0.237) (0.249) (0.350)

precision
56.55% 77.72% 68.22% 63.57% 49.26% 47.01% 50.74% 47.28%

(0.370) (0.311) (0.278) (0.241) (0.178) (0.186) (0.290) (0.361)

F1
0.351 0.348 0.530 0.329 0.556 0.362 0.370 0.365

(0.291) (0.366) (0.330) (0.224) (0.184) (0.211) (0.251) (0.343)

Module for Individual 209

Imbalanced training+BC

f pr
9.97% 8.04% 5.79% 7.45% 3.64% 4.32% 4.66% 7.93%

(0.066) (0.056) (0.043) (0.052) (0.027) (0.031) (0.035) (0.072)

t pr 83.54% 81.21% 78.82% 78.42% 90.01% 94.53% 92.37% 91.18%

recall (0.285) (0.291) (0.287) (0.274) (0.212) (0.172) (0.213) (0.228)

precision
36.71% 31.30% 25.34% 27.34% 33.52% 35.10% 37.73% 44.58%

(0.225) (0.209) (0.140) (0.136) (0.175) (0.183) (0.223) (0.254)

F1
0.489 0.421 0.363 0.386 0.469 0.491 0.507 0.557

(0.233) (0.211) (0.171) (0.162) (0.195) (0.196) (0.230) (0.241)

Proposed approach

f pr
9.97% 4.19% 2.57% 4.00% 1.77% 2.15% 1.65% 3.12%

(0.066) (0.022) (0.012) (0.021) (0.008) (0.014) (0.011) (0.030)

t pr 83.54% 84.36% 84.18% 83.81% 89.98% 95.20% 93.82% 91.30%

recall (0.285) (0.273) (0.216) (0.295) (0.216) (0.154) (0.203) (0.195)

precision
36.71% 40.55% 40.17% 39.39% 44.80% 49.18% 56.83% 63.42%

(0.225) (0.183) (0.143) (0.173) (0.143) (0.168) (0.157) (0.241)

F1
0.489 0.536 0.534 0.529 0.585 0.628 0.694 0.725

(0.233) (0.201) (0.158) (0.209) (0.156) (0.148) (0.166) (0.208)

According to the initial performance presented by the system for individual 58, it can be cat-

egorized as a goat-like individual (see Table 4.3). For this individual, the t pr is initially low

(t pr < 55%) and maintained at that level for all test blocks except for t = 5. And the initially

low f pr level that is very close to the desired 1%, is also maintained low through the operation
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of the system. This evidences that the performance for this goat-like individual increased after

the adaptation to the operational imbalance, but it remains in the same Doddington category

with a low t pr, and also presents a low f pr regardless of the adaptation. It can also be seen

that adapting the fusion function to the operational imbalance can potentially increase the t pr

of the system at certain imbalances, as it happened for t = 3 and t = 5.

Similarly, according to the initial performance shown for individual 209, it can be categorized

as a lamb-like individual. Although a high level of positive detections is presented by this

individual-specific ensemble, a high level of negative acceptances is also shown in Table 4.5.

This high f pr is significantly reduced after the system is adapted to the operational imbalance,

becoming more accurate to discard the non-target samples. On the other hand, the t pr for this

module is initially high t pr > 80%, and is maintained or increased when the system is adapted

to the operational imbalance. This shows the effectiveness of the system to maintain or even

increase the amount of correct positive detections when the operational imbalance is taken into

account. It also confirms the difficulty faced by the BC algorithm in the estimation of detection

thresholds with balanced validation data.

4.5.4.3 Approximation of Operational Imbalance

As the operational imbalance changes over time, the system produces an estimate of such

imbalance. In the SSBC algorithm, the accuracy of this estimation directly depends on the

levels of imbalance considered in the initial set of imbalances Λ. This problem is avoided by

the HDx and HDy methods. A sensitivity analysis was performed by variating the amount of

imbalance levels in Λ, employing the balanced case and three other imbalanced cases. The

imbalance space was evenly sampled adding five imbalances at the time. In that manner, the

first set is composed of the balanced set plus 5 different imbalances (Λ1 = {1 : 1,1 : 20,1 : 40,1 :

60,1 : 80,1 : 100}), the second is composed of balanced and 10 imbalances (Λ2 = {1 : 1,1 :

10,1 : 20, ...,1 : 100}), the third is composed of balanced and 20 imbalances (Λ20 = {1 : 1,1 :

2,1 : 3, ...,1 : 20}), and the last set contains 50 imbalances (Λ50 = {1 : 1,1 : 2,1 : 3, ...,1 : 50}).
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Table 4.6 Average performance measures for different sizes of Λ,

for a desired 1% f pr on a test block with the maximum imbalance

λ max = 1 : 100. The standard error is detailed

between parenthesis

Measure Λ1 Λ2 Λ20 Λ50

f pr 1.59 % 1.52 % 1.53 % 1.49 %

(0.18) (0.16) (0.15) (0.15)

t pr 58.41 % 58.33 % 58.47 % 57.93 %

(5.62) (5.51) (5.32) (5.33)

precision 37.49 % 38.46 % 38.63 % 38.73 %

(2.88) (2.78) (2.82) (2.94)

F1 0.42 0.43 0.43 0.43

(0.04) (0.03) (0.03) (0.03)

Table 4.6 presents the performance evaluated for the whole system using different resolutions

of Λ, using a single test set with the maximum level of imbalance used in the experiment,

λ max = 1 : 100. Zooming to a more general scope, we can conclude that it may not be necessary

to use the highest available resolution in terms of known levels of class imbalance (Λ), in order

to obtain a good estimation of the operational imbalance.

The accuracy of the method based on the Hellinger distance employing the set Λ of validation

sets was compared for different sizes of Λ (levels of imbalance employed by SSBC). The HDx

and HDy quantification methods are included in the comparison in the scenario with real data.

Table 4.7 presents the average imbalance estimated with three different sizes of Λ, and the

HDx quantification method. The test includes the blocks of operational data for t=2, 5, 7 and

8 (from Table 4.4). Blocks for t=2, 8 were selected for its relatively small imbalance (1:35

or less), block for t=7 presents medium imbalance (1:50), and the block for t=5 presents the

maximum imbalance employed in the experiments (1:100).

Results in Table 4.7 show increasing the size of Λ (adding imbalance levels) allows to in-

crease the accuracy of the imbalance estimation. However there is a limit imposed by the

characteristics of the histogram representations of the joint conditional probability of target

and non-target samples. As it was seen in the synthetic experiment, as the probability of error
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Table 4.7 Actual imbalance in test and the average number of ROIs for target

individuals, as well as average imbalance estimated with the different lambda values and

the HDx method (2 estimations per block - every 15 minutes)

t=2 t=5 t=7 t=8
Imbalance in test blocks

1:35 1:100 1:50 1:15

Average target ROIs per block for 10 individuals
65.50 116.40 113.30 95.00

(4.62) (5.87) (5.84) (6.44)

Estimated imbalance, |Lambda| = 5
1:59.6 1:69.7 1:59.8 1:79.5 1:74.3 1:61.0 1:65.9 1:60.8

(0.25) (0.31) (0.25) (0.31) (0.37) (0.29) (0.32) (0.31)

Estimated imbalance, |Lambda| = 20
1:51.0 1:61.8 1:55.8 1:72.8 1:69.1 1:53.1 1:60.8 1:54.1

(0.31) (0.27) (0.27) (0.31) (0.29) (0.33) (0.37) (0.25)

Estimated imbalance, |Lambda| = 50
1:47.3 1:57.7 1:53.2 1:68.9 1:64.9 1:51.0 1:55.5 1:51.9

(0.32) (0.30) (0.28) (0.26) (0.29) (0.33) (0.32) (0.25)

Estimated imbalance, HDx
1:9.1 1:9.8 1:8.5 1:10.5 1:13.4 1:11.7 1:12.0 1:11.3

(0.49) (0.47) (0.19) (0.42) (0.69) (0.54) (0.39) (0.35)

increases (i.e. the uncertain overlapping zone between class distributions in the feature space),

the joint conditional probability becomes more complex. Several non-target samples lying in

the overlapping zone contribute to the histogram bins that correspond to the target class. Thus,

the joint probability (histogram representation) of a data set with a high imbalance resembles

the joint probability of a data set with lower imbalance. This phenomenon may be emphasized

if a data management strategy is employed to select the most informative validation samples,

like the one proposed in (De-la Torre et al., 2013). That strategy is based on the KL divergence,

and picks those target and non-target samples lying precisely in the region of overlap. How-

ever, if the data management strategy is reversed to include the less representative samples,

the samples in the overlapping zone will be discarded. In this way, the samples that are useful

for imbalance estimation can be separated from those that provide more information for class

discrimination. However, this issue falls out of the reach of this chapter.
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Comparing the approximation based on the Λ validation sets with the HDx quantification, the

first shows a higher accuracy for imbalances close to 1:50, although fails for other cases. In

the same sense, the HDx quantification is better for small imbalances (close to 1:15), although

it fails to estimate greater operational imbalances. This phenomenon can be explained by the

fact that HDx employs the whole set of validation samples, which provides the maximum

imbalance but also the greatest amount of samples in the overlapping area. Anyhow, a more

detailed analysis and comparison is required in order to evaluate which of the methods provide

a better estimation in operations.

Individual 58
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Figure 4.12 Hellinger distance between validation and test data from target and

non-target distributions across different prior probabilities. The small circles correspond

to the global minimum of the estimations, and constitute the approximation to the target

prior probability. The experiment was realized with data from target individuals 58 and

209 and randomly selected non-target samples
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A deeper characterization of the Hellinger distance between histogram representations of joint

conditional probabilities for real samples is presented in Figure 4.12. The Hellinger distance

was obtained by comparing a test set with different (but fixed) imbalances against randomly

selected validation samples, and all the possible imbalances (prior probabilities) were covered.

The curves shown in Figure 4.12 evidence the difficulty faced by both quantification methods

to accurately estimate the imbalance of a set of test samples. Figures 4.12 a, b and c show that

the imbalance for the goat-like individual 58 is more easily estimated employing the Hellinger

distance in the feature space, and the score space produces less accurate estimations. However,

both methods are accurate when the imbalance is high (target prior close to 0.01). This effect

is related to the difficulty of the classification problem, as it was seen in Section 4.4 and dis-

cussed before. Figures 4.12 d, e and f show that the imbalance estimation for the lamb-like

individual 209 is also challenging for both methods, that in all cases fail in finding the true

target prior probability. This problem can be associated with the abundance of samples from

wolf-like individuals, which lie precisely in the region that defines the target class in the feature

space, and bias the imbalance estimation towards the target class. In any way, the Hellinger

distance estimated in the feature space seems to provide a better estimation of the target prior

probability.

Figure 4.13 shows the real and estimated imbalances for the same trajectory, with randomized

ROIs for generalization purposes. The Λ sets employed in the simulation where Λ1, Λ4, Λ10,

with 5, 20 and 50 levels of imbalance respectively, and the HDx quantification method. The

operational imbalance was estimated every 3 minutes with a window that considers operational

data for the last 15 minutes of captures and corresponds to the black dashed line. The true im-

balance estimated over time corresponds to the red solid line. It can be seen that the estimation

of class imbalance for the first minutes falls to zero in the four cases, which is related to the

initial state of the system with an empty buffer of operational samples. The highest peak in

the curve for true class imbalance was chosen for a visual comparison, which appears close to

minute 140. The blue ellipses in the four graphs show the estimated imbalance levels, showing

that the best fit between real and estimated imbalances is given by the HDx quantification, with
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(c) |Λ10|= 50 (d) HDx quantification

Figure 4.13 Adaptation of the level of class imbalance over time, corresponding to

individual 58 at the first experimental trial. Comparison of four different sizes of |Λ|
corresponding to 5 (a), 20 (b) and 50 (c) levels of imbalance, for an evenly sampled space

of imbalances between 1:1 and 1:100

a narrower peak closer to the solid red graph. However, this tendency is not always true, as can

be seen looking at the peak of the black dashed line that appears between minutes 90 and 100

minutes in the four cases, indicating that the estimated imbalance was better with any of the Λ

sets. This shows that even though the HDx quantification performs better than the raw com-

parison of Hellinger distance between operational and validation histograms, there is a limit in

the estimation related to the data used in validation. In any case, the superiority of the HDx

quantification is evidenced by the more objective comparison shown below.
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Figure 4.14 Average mean squared error between real and estimated operational

imbalances for different number of imbalance levels in Λ for the method based on

different validation sets, compared to the HDx and HDy quantification (right extreme)

A numeric estimation of the difference between the real and estimated imbalance curves is the

mean squared error (MSE), which is widely employed in statistics to measure the average of

the squares of the differences between the estimation and the quantity that is estimated. Figure

4.14 presents the average of the mean squared error between the true and estimated imbalances

for all the twenty different resolutions used in the experiment using the method that employs

different validation sets (Radtke et al., 2013b), and the HDy and HDx quantification methods

(Gonzalez-Castro et al., 2013). The results involve the 24 replications of the experiment and

the 10 individuals of interest. In the Figure 4.14, the mean of the MSE observed in the first

bar that corresponds to 5 levels of imbalance in Λ is close to 0.162, and drops to 0.137 when

20 levels of imbalance are employed. After using 20 levels of imbalance, the reduction in

the MSE for more levels of imbalance in Λ is not significant but consistent, as evidenced by

a median of 0.128 and 0.125 for 50 and 100 imbalances respectively. Finally, the HDy and

HDx quantification methods present a significantly lower average MSE of 0.117 and 0.101

respectively.

A Kruskal-Wallis analysis on the complete set of results using the original approximation

method (first 20 boxplots) throws a p-value of 6.82× 10−29 ≤ 0.05, which confirms that the
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differences in MSE between the estimated and real imbalances are significant with a 95%

confidence interval. The same analysis on the last 17 test cases using the original method (re-

moving Λ1 with 5, 10 and 15 levels of imbalance) throws a higher p-value of 0.1193 > 0.05,

which means that there’s no significant difference between all the last 17 cases with a confi-

dence interval of 95%. However, pairwise Kruskal-Wallis analysis for (Λ4,Λ20) and (Λ5,Λ20)

produce p-values of 0.0021 < 0.05 and 0.0436 ≮ 0.05, confirming a significant difference.

Thus, according to these results using more levels of imbalance in Λ provides significantly

higher resolution for imbalance estimation. Finally, the Kruskal-Wallis test between the orig-

inal imbalance estimation method with Λ20 and the HDx quantification throws a p-value of

3.94×10−17 � 0.05, showing a significant superiority of the HDx quantification method when

compared the method based on several validation sets.

4.5.5 Trajectory-Level Analysis

In this scenario videos were concatenated one after the other, emulating a passport checking

scenario where individuals approximate to the camera one after the other from the waiting line.

Four blocks of 30 minutes were obtained (D1, D2, D3 and D4), showing different imbalances

in a realistic scenario. The first two blocks are composed of trajectories from capture session 2,

and the last two blocks are composed of trajectories from capture session 3. Trajectories from

blocks D1 and D3 were captured with an unzoomed camera, and trajectories from blocks D2

and D4 were captured with a zoomed camera. The four blocks were presented to the system in

order.

Table 4.8 shows the average performance of the system using balanced BC and SSBC for the

passport checking scenario, after selecting the operations point at f pr = 1%. It can be seen that

the performance of the proposed approach is significantly higher than the performance for the

reference system. And comparing the f pr for both systems, it can be seen that the performance

superiority of the proposed approach is mainly due to its capacity to keep a low amount of

false alarms after the operations point is adapted to the operational imbalance. This capacity

proposed approach is related to the employment of the widely available non-target samples
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Table 4.8 Average performance measures for different approaches for an

f pr = 1% on test blocks at different t times. The standard error is detailed

between parenthesis, and bold numbers symbolize significant difference in

terms of F1 measure with respect to the reference system

Approach Measure t = 1 t = 2 t = 3 t = 4

Reference system

f pr
5.15% 4.15% 4.71% 3.30%

(0.025) (0.024) (0.023) (0.014)

t pr 61.54% 56.94% 59.74% 59.41%

recall (0.171) (0.234) (0.283) (0.313)

precision
23.19% 24.67% 30.61% 34.43%

(0.077) (0.099) (0.154) (0.171)

F1
0.300 0.307 0.363 0.383

(0.094) (0.135) (0.183) (0.217)

Proposed approach

f pr
5.15% 1.47% 1.61% 1.11%

(0.025) (0.010) (0.013) (0.006)

t pr 61.54% 54.60% 49.79% 54.40%

recall (0.171) (0.327) (0.341) (0.354)

precision
23.19% 40.82% 48.82% 48.13%

(0.077) (0.158) (0.251) (0.247)

F1
0.300 0.422 0.434 0.477

(0.094) (0.204) (0.238) (0.285)

to establish the decision frontier at the combination function, enhancing the discrimination

between target and non-target classes.

The face trajectories built using the IVT face tracker to regroup target facial regions were used

for trajectory-based analysis of the system in this real passport-checking scenario. The first

time a face is found in the video sequence, the location of the facial region is employed to

initialize the tracker that follows it until the individual leaves the scene. Target predictions

produced by the system were accumulated over time for full trajectories to provide overall

decisions, and the detection threshold was applied to these accumulations.

Figure 4.15 presents an example of the accumulation of detections produced by the EoD trained

on samples from individual 151, for the sequence of individuals entered in the scene over

time. Two zoomed regions that are representative of the system response are also shown in

the same figure. The accumulation of positive predictions produced in response to the target



216

��������������������������������		 ��������������������������������		

Figure 4.15 Examples of target detection accumulations for concatenated input

trajectories corresponding to the module trained for individual 151. The left and right

zoomed views of the graph show the target individual entering in the scene, as well as two

non-target individuals with ID 174 and 188

trajectory are drawn in a bold, solid blue line, and the accumulations for non-target trajectories

are drawn in bold, dashed red line. The detection threshold is drawn with a dashed black

horizontal line. Target and non-target trajectories produce accumulation levels that may surpass

the detection thresholds, producing true and false positive detections. In the left zoomed area in

Fig. 4.15, the target trajectory was correctly detected, whereas one of the non-target trajectories

was incorrectly recognized as belonging to the target individual. In the right zoomed area

in Fig. 4.15, the target trajectory was detected with a higher accumulation than the initial

left zoomed area, and the non-target trajectories were correctly rejected showing an increased

discrimination after adapting the system to the operational imbalance.

As followed in the protocol, the first adaptation of the fusion function is performed after 30

minutes of operation, where the last block of operational samples are used for imbalance es-

timation. When the first capture session is presented, the discrimination between target and
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non-target trajectories is less clear, evidenced by some false positive detections (see the left

zoomed area in Fig. 4.15). When the operation point is adapted –after minute 30–, the system

increases its capacity to discriminate between target and non-target trajectories, as shown in

the right zoomed area in Fig. 4.15. This is a clear evidence that selecting the operations point

based on a validation set with the appropriate class imbalance allows for a better discrimina-

tion between target and non-target classes, which is extended to the overall trajectory-based

response of the system.

Table 4.9 Average operational imbalance and overall AUC-5% for the

reference system and the proposed approach, considering the 10

individuals over 24 trials. The standard error is shown in parenthesis

t=1 t=2 t=3 t=4
Average Imbalance 1:15.73 1:16.02 1:10.14 1:15.16

Average target ROIs
85.3 102.7 79.3 95.0

(7.07) (6.56) (5.35) (6.44)

Reference system (AUC-5%)
67.87 67.67 71.41 73.36

(2.21) (2.40) (2.36) (2.28)

Proposed approach (AUC-5%)
67.87 79.45 78.61 74.07

(2.21) (1.98) (2.14) (2.57)

Table 4.9 shows the average operational imbalance, as well as the average overall AUC for the

ROC curves obtained over 0 ≤ f pr ≤ 0.05 (AUC-5%). The performance of the system for

the first test block, when the operational imbalance is not considered, is significantly lower in

terms of AUC-5%, compared to the performance after adapting the fusion function. This is

the same tendency as the observed in the transaction-based evaluation, which confirms that the

performance increase of the system using proposed approach can be extended to the overall

system performance in video-to-video FR.

4.6 Conclusion

In video surveillance, it is often assumed that the proportions of faces captured for target and

non-target individuals are balanced, known a priori and do not change over time. Recently,
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some techniques have been proposed to adapt the fusion function of an ensemble according to

class imbalance measured on operational data. However, skew sensitive ensembles commonly

employ balanced training data to generate diverse pools of base classifiers, limiting the poten-

tial diversity produced using the abundant non-target data, with multiple levels of imbalance

and complexity.

In this chapter, skew-sensitive adaptive classifier ensembles have been investigated and applied

to video-to-video FR in video surveillance applications. The proposed scheme allows to com-

bine classifiers trained by selecting data with varying levels of imbalance and complexity, and

leads to a significant improvement of system’s accuracy and robustness. During enrollment,

target facial captures from a reference trajectory are combined with selected captures from

non-target trajectories to generate a pool of 2-class classifiers using data with various levels of

imbalance and complexity. During operations, face captures of each person in the scene are

tracked and regrouped into trajectories for video-to-video FR, producing enhanced discrimina-

tion between target and non-target trajectories. The level of imbalance is periodically estimated

from the input data stream using the HDx quantification, and pre-computed histogram repre-

sentations of imbalanced data distributions. Finally, pre-computed histograms and ensemble

fusion functions are updated based on the imbalance and complexity of operational data.

Results on synthetic problems show that the combination of the classifiers trained with dif-

ferent imbalance levels and complexities increases ensemble diversity and robustness, leading

to an increase in the ROC and precision-recall performances. A comparison of imbalance

quantification based on Hellinger distance in score and feature spaces shows that feature-based

estimation is more accurate when the probability of error is high. Similarly, results on the

CMU-FIA video data show that the proposed method can outperform other techniques in im-

balanced environments. In that sense, transaction-based analysis shows a significantly higher

performance in terms of F1 measure, that is consistently higher for different operational imbal-

ances. Individual-specific analysis indicates that goat- and lamb-like individuals can benefit the

most from adaptation to the operational imbalance. Trajectory-based analysis shows that the
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improvement presented at transaction level is propagated to the overall performance evaluated

in a realistic video-to-video FR scenario.

The future work should consider exploiting the class imbalance at decision fusion level, set-

ting imbalance-specific thresholds for the estimated test skew. Although HDx quantification

method provided the highest accuracy with respect to the compared methods, there is still room

for further improvement. Further characterization of the system in different and more chal-

lenging scenarios would be interesting, including for instance crowded and outdoor places.

Other applications like gait-based biometrics may also be benefited from the findings of this

research, since several individuals appear in videos. Finally, adaptation to permanent changes

in the probability distribution of data due to changes in facial appearance may be addressed

employing self-update techniques, leading to further improvement in the performance of the

system.





GENERAL CONCLUSION

Systems for face recognition (FR) in video surveillance are applied in a range of scenarios

like watchlist screening, face re-identification and search and retrieval. Several challenges are

present in these applications, including the common assumption that the facial appearance of

target individuals do not change over time, and that the proportions of faces captured for target

and non-target individuals are balanced, known a priori and remain fixed. However, faces

captured during operations vary due to capture conditions, the proportions of target and non-

target individuals continuously change during operations, and facial models used matching

are commonly not representative since they are designed a priori, with a limited amount of

reference samples that are collected and labeled at a high cost.

In this Thesis, a framework for adaptive systems for video-to-video face recognition (FR) in

video surveillance is proposed, contributing with new techniques to adapt the facial models for

enrolled individuals of interest. This framework allows the systems for trajectory-based self-

updating to automatically update facial models, considering gradual and abrupt changes in the

classification environment. Besides, with the use of a modification to SSBC, the systems are

capable to adapt the individual-specific ensembles to the operational imbalance.

In Chapter 1, a review on the most recent advances in adaptive video-to-video FR for video

surveillance is described. It was found that adaptive multiple classifier systems (MCSs) have

been successfully applied to video-to-video FR, where ensembles of 2-class Fuzzy ARTMAP

classifiers, employing a DPSO strategy to generate a pool of classifiers with optimized hy-

perparameters, and Boolean combination (BC) to merge their responses in the ROC space.

Besides, active skew-sensitive ensembles were recently proposed to adapt the fusion function

according to the class imbalance measured on operational data. Finally, face tracking can be

used to regroup the system responses linked to a facial trajectory (facial captures from a single

person in the scene) for robust spatio-temporal recognition, and to update facial models over

time using operational data.
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In Chapter 2, the baseline framework is described. In this framework, the face of each target

individual is modeled using an ensemble of 2-class classifiers, and integrates information from

a face tracker and individual-specific ensembles for robust spatio-temporal recognition and for

efficient self-update of facial models. Facial models are updated with all target samples ex-

tracted from highly confident trajectories (facial captures from a single person in the scene)

are combined with non-target samples selected from the cohort and universal models. A learn-

and-combine strategy is employed to avoid knowledge corruption and a memory management

strategy based on Kullback-Leibler divergence is used to rank and select the most relevant tar-

get and non-target reference ROI samples for validation. Proof of concept validation has been

performed on the CMU-FIA video dataset. Results show the response of proposed systems

to gradual changes in facial appearance of individuals, as found in video surveillance, under

semi-controlled or uncontrolled capture conditions. Transaction-level analysis shows that the

proposed approach outperforms baseline systems that do not adapt to new trajectories, and

provides comparable performance to ideal systems that adapt to all relevant target trajecto-

ries, through supervised learning. Subject-level analysis reveals the existence of individuals

for which self-updating ensembles with unlabeled facial trajectories provides a considerable

benefit. Trajectory-level analysis indicates that the proposed system allows for robust spatio-

temporal video-to-video FR, and may therefore enhance security and situation analysis in video

surveillance.

In Chapter 3, a particular implementation of the system has been characterized in a scenario

with gradual and abrupt changes in the probability distribution of faces in feature space. This

implementation consists in a pool of Probabilistic Fuzzy ARTMAP classifiers generated using

a DPSO learning strategy. The classifiers are trained using the target samples from reference

trajectories, and a set of non-target samples selected from the cohort and universal models using

One-Sided Selection. The individual-specific pools of classifiers are combined using Boolean

combination. Each ensemble seeks to recognize target individuals and self-update facial mod-

els based on facial trajectories defined by the tracker, tunning up individual-specific parameters

for classification and decision fusion. Transaction-level results show that the proposed system
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allows to increase AUC accuracy by about 3% in scenarios with abrupt changes, and by about

5% in scenarios with gradual changes. Subject-based analysis reveals the difficulties of face

recognition with different poses, affecting more significantly the lamb- and goat-like individu-

als. Compared to reference spatio-temporal fusion approaches, results show that the proposed

accumulation scheme produces the highest discrimination. The characterization of the sys-

tem under abrupt (pose) and gradual (aging) patterns of changes indicate that the proposed

system allows for improved overall transaction-level performance after self-update with oper-

ational face trajectories. Subject-level analysis reveals the difficulties faced to recognize the

individuals under different face poses, affecting most significantly the performance of lamb-

and goat-like individuals. A comparison between different spatio-temporal fusion approaches

shows that the proposed scheme produces higher trajectory-based pAUC (5%) accuracy than

other approaches, even for different window sizes. An analysis of the updates achieved by

the system shows that by virtue of the increased discrimination, it presented a low number of

incorrect updates even with the large number of non-target trajectories presented to the system

during simulations.

In Chapter 4, skew sensitive adaptive ensembles of classifiers were investigated and applied

to video-to-video face recognition in video surveillance. In the proposed scheme, classifiers

are trained by selecting data with different levels of imbalance and complexities, leading to

a significant improvement of the system’s robustness and performance. During operations,

face captures of an individual are tracked and regrouped to form face trajectories, employed

for spatio-temporal recognition. The level of operational imbalance is periodically estimated

from input data stream using the HDx quantification, and the fusion function as well as the

pre-computed histogram representations of imbalanced data distributions are updated. Results

on synthetic problems show that the combination of the classifiers trained with different levels

of imbalance and complexity allows to increase ensemble diversity, and ROC and precision-

recall accuracy. Subject-based analysis shows that goat- and lamb-like individuals are greatly

benefited from adaptation to the operational imbalance. Finally, the system was successfully

applied for skew-sensitive video-to-video FR.
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Future Work

Although the proposed system demonstrated efficient adaptation in changing environments,

it is very complex and more strategies may be required to control resources growth. In that

sense, an important pending issue is to assess the scalability of the proposed system when the

number of target individuals grows, as well as the number of cameras that capture the scene.

In this case, resources were not limited, but pruning techniques may be employed to remove

not relevant classifiers. In practice, the system should exploit internal knowledge (age, perfor-

mance relevance, etc.) to remove some older or redundant classifiers over time. Moreover, the

exploitation of the diversity of opinions should be guided by intelligent strategies, that validate

the amount of classifiers used in the ensemble, and which of them are more useful according

to a trade off between resources and accuracy. Change detection strategies may be employed

to limit the number of classifiers added when self-update is activated.

Up to now, the system was characterized in environments with gradual and abrupt changes,

but it would be interesting to analyze the performance of the system in an environment where

multiple individuals are simultaneously present in scene. The use of skew-sensitive ensembles

in video-to-video face recognition has shown to reduce the number of false positives, and

combining these ensembles with self-update techniques may be a potential tool to reduce the

number of false updates. Although HDx quantification provided the highest accuracy with

respect to the compared methods, there is still room for improvement, and other techniques may

be explored for the estimation of operational imbalance. Finally, other applications like gait or

keystroke dynamics may also benefit from the findings of this research, which are biometric

characteristics that also suffer of changes according to the age or certain health conditions.



APPENDIX I

SYNTHETIC EXPERIMENT ON RELEVANCE MEASURES

Two synthetic 2-class problems were designed to characterize the relevance measures in the

1D space. Fig. I-1 shows the original probability distributions used to generate the data for ex-

periments. The central Gaussian distribution in both problems generates the positive samples,

with a center of mass μ2 = 0.5. The centers of mass of the negative Gaussian distributions in

Fig. I-1 (a) are μ1 = 0.2 and μ3 = 0.8, and in Fig. I-1 (b) the negative samples are randomly

drawn from the 1D space according to a uniform distribution. All Gaussian distributions are

characterized by a fixed variance of σ = 0.01. An ensemble of 7 PFAM classifiers has been

trained for both problems on a balanced training set. A learning strategy based on DPSO is used

for generation of base classifiers and co-jointly optimize all PFAM parameters, as proposed in

(Connolly et al., 2012). Classifier fusion is performed using BC.
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(a) (b)

Figure-A I-1 Data distributions used to generate the training data for problems 1 (a) and

2 (b). In both figures the Gaussian distribution at the center generates the positive (+)

samples, and the left and right distributions generate the negative (-) samples

The value of relevance measures for the PFAM ensembles corresponding to both problems are

presented in Fig. I-2. Whereas the extension of surprise (average surprise) follows a shape

similar to that of the surprise estimated for a single model, other measures focus on the over-

lapping of data distribution zones. Vote entropy uses decision level information (level D from
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Figure-A I-2 Value of relevance measures obtained over the input space with an

ensemble of 2-class PFAM classifiers for the 3 Gaussians (top) and Gaussian vs. uniform
(bottom) problems. From left to right, average margin sampling (AMS) at level B on g j,

AMS at level B on Tj, AMS at score level, average surprise (AS) at score level,

Kullback-Leibler (KL) divergence at score level, and vote entropy (VE) at prediction level

Fig. 2.2), and hence presents a lower resolution (e.g. fewer ranking values). While KL diver-

gence and average margin sampling both present a good resolution, the smoothness of curves

for KL divergence, provide a better representation of the overlapping area.



APPENDIX II

FULL UPDATE TABLE IN A PROGRESSIVE TEST-UPDATE SCENARIO

Table 2.1 presents the details of the updates for the 10 independent replications of the experi-

ment for the individuals of interest enrolled to the system, with the EoDss (PFAM) LTMKL,λk=100.
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APPENDIX III

FULL UPDATE TABLES IN A SCENARIO WITH GRADUAL AND ABRUPT
CHANGES

Tables 3.1 and 3.2 present the correct and incorrect update trajectories used by the system for

self-update. The tables correspond to the scenarios with abrupt (pose) and gradual (aging)

changes respectively.

Table 3.1 Update table for the system with correct (bold) and incorrect

update trajectories in the Left and Right update trajectories

Update trajectories in DR
Replication EoDss (2) EoDss (3) EoDss (21) EoDss (58) EoDss (72)

r = 1 - - - 11,13,21,22,34,37,43,48,58, 11
64,74,79,82,99,121,130,155,

162,188,193,195,201
r = 2 - - 21,188 11,48,58,74,82,99 7,11,22,37,58,62,

79,124,136,190,201,213
r = 3 - - 21,34,48,82,99,162,188 11,13,21,22,43,48,58,74,79, -

82,99,162,188,195,201
r = 4 - - 16,206 11,13,16,22,34,37,48,58,72, -

74,79,80,82,92,157,188,206
r = 5 - - 16,21,64 11,48,82 -
r = 6 - - - - 7,213
r = 7 - - 21,34,37,48,58,82,99, 2,7,11,21,22,34,37,43,48,58,64,

162,188 74,79,82,99,121,130,156,157,162,
167,188,190,193,195,201

r = 8 - - 21,188 11,21,22,34,37,48,58,74,79,82,99, -
162,188,195,201

r = 9 - - 21,34,48,82,162,188 11,22,48,58,74,82,99 -
r = 10 - - 21,34,37,48,58,64,74,99, 11,22,48,58,74,82,99,162 -

130,162,188

Replication EoDss (99) EoDss (121) EoDss (188) EoDss (190) EoDss (213)

r = 1 - - - - -
r = 2 - - - - -
r = 3 - - - 16 -
r = 4 - 74,121 - - -
r = 5 - - 188 - -
r = 6 - - - - -
r = 7 - - 60,67,165,209 - -
r = 8 - - 2,3,7,34,60,62,67,73,107, - -

121,133,167,188,201,202,209
r = 9 - - - - -
r = 10 - - - - -

Update trajectories in DL
Replication EoDss (2) EoDss (3) EoDss (21) EoDss (58) EoDss (72)

r = 1 - - - 176 -
r = 2 - - - - -
r = 3 - - - - -
r = 4 - - - - -
r = 5 - - - - -
r = 6 - - - - 130
r = 7 - - - - -
r = 8 - - 99,162,209 124 -
r = 9 - - - 3,121 -
r = 10 - - - - -

Replication EoDss (99) EoDss (121) EoDss (188) EoDss (190) EoDss (213)

r = 1 - - - - -
r = 2 - - - - -
r = 3 - - - - -
r = 4 - - - - -
r = 5 - - - - -
r = 6 - - - - -
r = 7 - - - - -
r = 8 - - 3,130 - -
r = 9 - - - - -
r = 10 - - - - -
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Table 3.2 Update table for the system with correct (bold) and incorrect

update trajectories in the Left and Right update trajectories

Update trajectories in D2
Replication EoDss (2) EoDss (3) EoDss (21) EoDss (58) EoDss (72)

r=1 2,41,220 3,43,74 21,31,34,56,118 58,92,134,148,235 23,72,94,99,127,
175,197,201,206,209

r=2 2,220 3,43,74 118 37,58,92,102,134, 23,72,127,201
148,235

r=3 2,91,220 3,13,43,74 21,31,49,118,132 58,92,148,235 23,72,99,127,148,
201,206,209

r=4 2,91,220 3 21,31,56,70,71, 37,58,92,102,134, 19,23,72,94,148,
132,207,227 148,235 175,198,201,206,209

r=5 2,220 3 21,31,118,207 58,92,134,148 72
r=6 220 3,43,74 21,31,34,56,70, 37,58,92,134,148, 23,197

102,118,132,227 235
r=7 220 3,74 21,31,34,118 58,92,134,148 72
r=8 2,220 3,43,74 21,34,207 37,58,92,134,148, 23,72,127

235
r=9 2,220 3 21,31 58 23,127,206
r=10 2,220 3 - 58,92,134,148,235 -

Replication EoDss (99) EoDss (121) EoDss (188) EoDss (190) EoDss (213)

r=1 - 73,121 29,49,83,96,104, 127,136,157,175, 213
122,140,147,179,188 190,197,201

r=2 99,106,136,190 73,121,170 96,104,122,188 58,127,136,157,190, 147,157,213
201

r=3 12,99,106,136,157, 121 96,104,122,179,188 127,136,190,197,201 188
175,190,201,229

r=4 - 73,121,123,170 104,122,188 80,127,136,157,190, 49,213
197,201

r=5 99,106,136,190 121,123 96,104,122,140,179, 136,190 131,147,213
188

r=6 - 121 147,188 136,157,190,197,201 147,157,213
r=7 99,106,136,190 121,123 147,188 12,127,136,157,175, 49,106,147,157,188,213

190,197,201
r=8 99,106,136,157, 57,73,108,114, 104,122,188 136,190,197 188,213

175,190,197 121,123,170
r=9 99,106,136,190 73,121,123 - 127,136,190,201 213
r=10 99 121,170 96,104,122,188 99,127,136,190,201 213

Update trajectories in D3
Replication EoDss (2) EoDss (3) EoDss (21) EoDss (58) EoDss (72)

r=1 2 3 21 37,92,134,148 58,84,148,157
r=2 2,41 - - 37,58,84,92,102, 2,43,108,118

134,148
r=3 2 3,154,186 21,49,91,118,202, 58,157 -

213
r=4 2 3 16,21,140 37,58,92,134,148, 198

157,206
r=5 2 3 21 37,58,84,92,102, 148

134,148,157
r=6 2,113 3,11,30,91,124, 21,91 37,58,84,92,134, 102,197

151,197,209 148,157,206
r=7 - 197 21 37,58,84,92,134, 47

148
r=8 2 3,151,167,177 21,91 37,92,148,157 72
r=9 2 3 21 58,92,148,157 37,134,148
r=10 2 3,113,162,197 21,67 37,58,92,134,148, -

157

Replication EoDss (99) EoDss (121) EoDss (188) EoDss (190) EoDss (213)

r=1 - 121 140,176,188 190 12,47,186,202,213
r=2 - 121,170,176 188 47,84,136,190 213
r=3 136 121,176 188 12,47,58,84,136,148, 188,213

157,177,184,190,197
r=4 213 43,66,79,121, 96,140,147,188 47,58,84,136,148, 213

154,157,176 157,190,197
r=5 12,136 66,79,121 11,79,108,140,151, 84,190 12,186,213

176,188,209
r=6 136 121 151,176,188 136,190 47,213
r=7 136 2,43,58,66,79, 188 12,47,84,136,157, 213

121,154,157,166, 190
174,176,206

r=8 12,136 66,121 11,96,121,176,188, 12,47,84,136,190 213
209

r=9 136 66,121 - 47,58,84,134,136, 16,118,186,213
148,190,197

r=10 213 66,79,121 72,96,107,118,179, 12,37,47,58,84, -
186,188,206 134,136,148,157,190,

197,206
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ABSTRACT

In video surveillance, face re-identification allows to recognize target individuals of interest

from faces captured across a network of video cameras. In such applications, face recogni-

tion is challenging because faces are captured under limited spatial and temporal constraints.

Additionally, facial models for recognition are commonly designed using a limited number of

representative reference samples from faces captured under specific conditions, regrouped into

facial trajectories. Given new reference samples (provided by an operator or through some self-

updating process), updating facial models may allow maintaining a high level of performance

over time. Although adaptive ensembles have been successfully applied to robust modeling

of an individual’s facial appearance, reference data samples from a trajectory must be stored

for validation. In this paper, a memory management strategy based on Kullback-Leiber (KL)

divergence is proposed to rank and select the most relevant validation samples over time in

adaptive individual-specific ensembles. When new reference samples become available for an

individual, updates to the corresponding ensemble are validated using a mixture of new and

previously-stored samples. Only the samples with the highest KL divergence are preserved

in memory for future adaptations. This strategy is compared with reference classifiers using

videos from the Face in Action data. Simulation results show that the proposed strategy tends
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to select discriminative samples from wolf-like individuals for validation. It allows maintain-

ing a high level of performance, while reducing the number of samples per individual by up to

80%.

1. Introduction

In many video surveillance applications, automated face recognition (FR) is increasingly em-

ployed to alert a human operator to the presence of individuals of interest appearing in either

live (real-time monitoring) or archived (post-event analysis) videos. FR in video surveillance

(FRiVS) is employed in a range of applications that involve still-to-video FR (e.g., watchlist

screening) and video-to-video FR (e.g., person re-identification). This paper focuses on the

problem of re-identifying individuals from faces captured using video surveillance cameras,

as found in search and retrieval, face tagging, video summarization and other security-related

applications.

Using a decision support system for person re-identification, the operator seeks to captures

reference facial trajectories corresponding to a target individual of interest appearing in video

feeds, and designs a facial model (e.g. templates or statistical representation) to be stored in a

gallery. A facial trajectory is defined as a set of facial captures (regions of interest produced by

face segmentation) that correspond to the same high quality track of a same individual across

consecutive frames. Facial models are typically designed a priori using high quality captures

(reference trajectories) obtained under controlled conditions. Then, during operations, facial

trajectories captured in live or archived video streams are compared against facial models of

individuals enrolled to the system.

Face re-identification in video surveillance is typically performed across a network of surveil-

lance cameras. Accurate and timely responses are required for FR from face trajectories cap-

tured in potentially complex semi-constrained (e.g., inspection lane, portal and checkpoint

entry) and unconstrained (e.g., cluttered free-flow scene at an airport or casino) environments.
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Automated systems require robust operation under a wide variety of conditions, and must be

fast and scalable to several enrolments and input videos from several IP cameras.

The unobtrusive capture of video sequences with target individuals provides only a limited

amount of high quality reference samples to design facial models. Indeed, faces captured in

video surveillance incorporate variations due to pose, illumination, blur, restoration, expres-

sion, etc. Updating facial models with new reference target trajectories has been shown to im-

prove or maintain a high level of performance over various capture conditions (Connolly et al.,

2012; De-la Torre et al., 2012a, 2014a). Abundant non-target facial trajectories are regrouped

in the cohort model (CM, non-target individuals enrolled to the system) and universal model

(UM, non-target individuals from operational trajectories). These models provide a source of

information for designing discriminant face models, leading the need to select the most relevant

samples that avoid biasing matchers towards the negative class (Kubat and Matwin, 1997).

This paper is focused on adaptive video-to-video FR using multi-classifier systems (MCSs). It

is assumed that faces captured within trajectories (obtained from post-analysis of video feeds)

are used to update facial models. Although adaptive ensembles have previously been applied

to face modeling (Connolly et al., 2012; De-la Torre et al., 2012a; Polikar et al., 2001), they

require the storage of reference validation samples in a long term memory (LTM) to preserve

accuracy. One challenge for practical implementation is bounding the growing number of

reference samples collected over several updates. Bounding the size of LTMs raises the issue

of selecting the most relevant samples to be preserved in memory to maintain performance

(Freni et al., 2008). The selection of the most relevant validation samples, as well as the size

of individual-specific LTMs also depends on the specific target individual.

In this paper, a strategy is proposed to select the most representative validation samples for an

individual to be stored in a fixed size LTM. It is assumed that an ensemble of 2-class classifiers

or detectors per target individual (EoD, target vs. non-target) is used for face matching. When a

new reference trajectory becomes available, its target samples extracted from captured regions

of interest (ROIs) are combined with non-target samples from the CM and UM selected using
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one sided selection (OSS) (Kubat and Matwin, 1997). The corresponding EoD is updated and

validated using a mixture of new and pre-stored samples in LTM. Among different relevance

measures inspired by techniques in active learning, the Kullback-Leibler (KL) divergence is

proposed to accurately rank samples in the overlapping area between target and non-target

populations. The least relevant samples are discarded.

The strategy proposed to manage a LTM is evaluated on face trajectories collected in semi-

constrained environments from the CMU-FIA database (Goh et al., 2005). Three capture ses-

sions with three months separation are considered for experiments on a scenario with gradual

changes, whereas a single capture session with frontal, right and left capture views are consid-

ered for a scenario with abrupt changes. For validation, the adaptive MCS is composed of an

ensemble of 2-class ARTMAP classifiers for each enrolled individual. Average performance

is presented and Doddington zoo (Doddington et al., 1998) analysis is employed to compare

individual-specific parameters for LTM management. Using the menagerie terminology intro-

duced in (Li and Wechsler, 2005), this analysis allows to categorize subjects into 4 groups of

individuals (sheep, goat, wolf and lamb) according to their performance.

2. Adaptive Face Recognition in Video

Assume that video streams are captured from one or more video cameras. During operations,

FRiVS involves several processing steps. First, segmentation isolates the facial regions of in-

terest (ROIs) corresponding to faces appearing in each frame using, e.g., the Viola-Jones algo-

rithm. In order to build face trajectories, a tracker (e.g., CAMSHIFT) simultaneously follows

the face of individuals in scene and assigns a same ID to facial ROIs from the same individual.

Then, feature extraction extracts and selects discriminant features for classification from the

extracted ROIs and arranged into feature vectors. Common feature extraction-selection tech-

niques include the Local Binary Pattern (LBP) algorithm and Principal Component Analysis

(PCA). Input feature vectors are compared with facial models, producing matching scores that

are compared to individual specific thresholds. In video surveillance applications, the system

detects all matching identities where matching scores surpass thresholds. Finally, a decision
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fusion allows to combine tracking IDs with the output classifier predictions and accumulate

responses over a face trajectory. This process allows for reliable spatio-temporal detection of

persons of interest (Matta and Dugelay, 2009).

In literature, matching for FRiVS has been addressed as an open-set problem, where the num-

ber of individuals of interest is greatly outnumbered by non-target individuals. Multi-class clas-

sifiers have been used in video surveillance with a rejection threshold for unknown individuals.

A multi-class classifier designed to address the open set problem in video face recognition is the

TCM-kNN (Li and Wechsler, 2005). This matcher takes advantage of transductive inference

to generate a class prediction based on randomness deficiency. Modular architectures with a

detector (1- or 2-class classifier) per individual have been proposed, allowing to set individual-

independent parameters (Jain and Ross, 2002). An individual-specific approach is based on

the identification of the decision region(s) in the feature space of individual specific faces, and

training a dedicated feed forward neural network for each individual of interest (Kamgar-Parsi

et al., 2011). Another example is an SVM-based modular system that was applied to an access

control scenario (Ekenel et al., 2009). To improve accuracy and reliability ensembles of 2-class

classifiers or detectors (EoD) have been proposed to implement individual-specific detectors.

EoDs are co-jointly trained using a dynamic particle swarm optimization (DPSO) based train-

ing strategy, generating a diversified pool of ARTMAP neural networks. Trained detectors are

selected and combined using boolean combination (BC) (Pagano et al., 2012).

Adaptive systems for FR in video have also been proposed in literature to maintain a high level

of performance. These allow to update facial models over time through supervised incremental

learning of new data. An incremental learning strategy based on DPSO has been proposed

for video-based access control. It allows to evolve an ensemble heterogeneous multi-class

classifiers from new data, using a LTM to store validation samples for fitness estimation and

to stop training epochs. This approach reduces the effect of knowledge corruption (Connolly

et al., 2012). Another adaptive MCS for FRiVS is composed of an ensemble of binary 2-class

classifiers per individual, a DPSO module and a LTM. ARTMAP neural networks are used

as ensemble members, and the combination function is updated using BC (De-la Torre et al.,
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2012a). Learn++ is another well-known ensemble-based technique for incremental learning

that has been applied to FR. It employs Adaboost to generate a new set of weak classifiers

every time new data becomes available, and combines old and new classifiers using weighted

majority voting (Polikar et al., 2001).

To assure a high level of accuracy, adaptive MCSs require the storage of reference validation

samples in a LTM. However, memory limitations imposed by real-world systems prevent the

indefinite growth of the amount of stored validation samples. In literature, editing algorithms

like the condensed nearest neighbor have been used to manage a gallery of templates in tem-

plate matching systems, and bound the amount of reference samples stored in memory (Freni

et al., 2008). In this paper adaptive MCSs are considered for FRiVS, where an ensemble of

2-class classifiers is used to estimate the facial model of individuals of interest (De-la Torre

et al., 2012a, 2013). An individual-specific strategy is proposed to manage (rank and select)

the most informative validation samples over time for each adaptive ensemble.

3. Selection of Representative Samples

Some methods in literature allow to select a subset of representative samples for validation, and

the criteria for representativeness is related to the level of information provided for the specific

system. Fig. IV-1 presents the levels of selection that are relevant for ensembles of binary 1-

or 2-class classifiers.

At the input data level (A) the dataset itself is used to filter out redundant samples, information

about data distributions of samples is not required. At the classifier level (B) the relevance mea-

sure of samples is retrieved from the internal response of the classifiers in the ensemble, to an

input sample a. At the classifier score level (C), the output scores S+m(a) of M classifiers in the

ensemble may be combined to produce a measure of relevance. When probabilistic classifiers

are used as base classifiers, the computation of relevance measures is based on the combined

estimated posterior probability (classification scores S+m). At the classifier decision level (D),

the output predictions dm(a) of classifiers in the ensemble are combined. Voting strategies can
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Figure-A IV-1 Levels of ranking that are relevant for an ensemble of detectors (1 or

2-class binary classifiers) for individual k

be used to generate a relevance measure like vote entropy. Finally, at the ensemble decision

level (E), the global output of the ensemble can be used as a measure of the informativeness of

the input sample.

Uninformed Selection. Unlike other levels, methods from level A do not require previously

trained classifiers to provide information in the selection process. For instance, random under-

sampling is the easiest non-heuristic method that randomly eliminates samples from the major-

ity class. Other methods exploit the geometric relationship between samples in feature space,

like the condensed nearest neighbor rule (CNN) and one sided selection (OSS) (Guo et al.,

2008).

OSS is considered in this paper to select representative samples from the CM and UM. It

aims to eliminate the samples from the majority (non-target) that are distant from the decision

boundary in the original set D. It starts by building a training set D′ with all target samples and

one randomly selected non-target sample. Then, 1-NN is trained on D′, and used to classify the

remaining non-target samples. Misclassified non-target samples are incorporated to D′, which

at the end will constitute a consistent subset of D.

Informed Selection. Methods at levels C and D are independent of classification algorithm

used in the ensemble as well as combination strategy, and allow to rank and select represen-



238

tative samples. The only constraint imposed by level C lies in the compatibility of scores

produced by classifiers, a limitation that can be defeated by using normalization strategies.

A method that operates at level C is the average margin sampling. It is inspired on the margin

sampling proposed by Scheffer et al in (Scheffer et al., 2001), and is defined as

AMS(a) =
1

M

M

∑
m

MSm(a) , (A IV-1)

where M is the number of ensemble members, and MSm(a) is the margin sampling estimated

for each ensemble member cm given the input sample a. Margin sampling is computed by

MS(a) = S(ωmax,a)−S(ω2max,a) , (A IV-2)

where ωmax,ω2max are the first and the second most probable class labels respectively, and

S(ω) is the output score (e.g. posterior probability) of a given classifier for class ω . Margin

sampling aims to incorporate the posterior probability of the second most likely class label to

the relevance measurement.

The disagreement between base classifiers on a test sample a has also been used as a measure of

relevance. For instance, the Kullback-Leibler (KL) divergence (or relative entropy), proposed

by McCallum and Nigam, operates at level C (Kachites McCallum and Nigam, 1998). The KL

divergence is defined as

KL(a) =
1

M

M

∑
m=1

(
∑
i∈Ω

Si
m(a) log

Si
m(a)

P̂i
EoDk

(a)

)
, (A IV-3)

where M is the number of classifiers in the ensemble, and P̂i
EoDk

(a) given by Eqn. A IV-4 is

the consensus probability that the class i ∈ Ω is the correct label for sample a, given the scores

Si
n(a) produced by the base classifiers.

P̂i
EoDk

(a) =
1

M

M

∑
n=1

Si
n(a) . (A IV-4)



239

For KL divergence, the most informative samples are those with the largest average difference

between the class distributions of any one of the committee members and the consensus.

An example of level D relevance measure is the vote entropy (Dagan and Engelson, 1995),

defined as

V E(a) =− ∑
i∈Ω

V (ωi,a)
M

log
V (ωi,a)

M
, (A IV-5)

where V (ωi,a) is the number of votes for the class ωi ∈ Ω provided by the ensemble. Simi-

larly to KL divergence, VE increases with the disagreement in the ensemble members, but its

resolution (e.g., ranking levels) is bounded by the number of base classifiers in the ensemble.

Synthetic Analysis. For more insight on the selective capacity of the relevance measures,

two synthetic 2-class problems were designed in the 1D space. Fig. IV-2 shows the original

probability distributions of data. Central Gaussian distribution in Fig. IV-2a and IV-2b have

a center of mass μ2 = 0.5. Centers of mass of the non-target distributions in Fig. IV-2a are

μ1 = 0.2 and μ3 = 0.8, and in Fig. IV-2b the non-target samples are randomly drawn according

to a uniform distribution. All Gaussians have a variance of σ = 0.01.
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(a) Problem 1 (b) Problem 2

Figure-A IV-2 Data distributions used to generate the training data for both problems.

Central Gaussian distributions in both figures generate the positive (+) samples, and left

and right distributions generate negative (-) samples
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A pool of 7 probabilistic Fuzzy ARTMAP (PFAM) classifiers was trained for each problem us-

ing balanced data. The PFAM classifier combines the Fuzzy ARTMAP learning to encode cate-

gory prototypes and update centers of mass of estimated class distributions (Lim and Harrison,

1997). A DPSO learning strategy was used for base classifiers generation and hyperparameter

optimization (Connolly et al., 2012).

3 Gaussian distributions

Gaussian vs. uniform

AMS KL VE

Figure-A IV-3 Value of relevance measures obtained over the feature space with an EoD

(PFAM) for the 3 Gaussians (top) and Gaussian vs. uniform (bottom) problems

The value of relevance measures produced by the ensembles are presented on Fig. IV-3. The

three measures show a good characterization of the overlapping region between target and

non-target populations, specially on the problem with three Gaussians. Vote Entropy shows

a lower resolution than KL divergence and AMS, and the smoothness of the KL divergence

curve shows a better representation of the overlapping area. In this paper, the KL divergence

is employed to implement a strategy to assess the relevance of reference samples to manage a

fixed size memory.
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4. Individual-Specific Management of LTM

Fig. IV-4 presents the modular architecture for FRiVS that allows for supervised adaptation

of facial models from new trajectories. During operations, the system will process the ROI

patterns extracted from each frame, and along input trajectories. ROI feature vectors are ex-

tracted and presented to each EoDk. Using a face tracking algorithm, different faces in a video

sequence are followed frame to frame and regrouped, and the successive predictions pk from

EoDk for each trajectory are accumulated over time for spatio-temporal recognition, in order

to provide an overall prediction for each track ID. Finally, an individual specific threshold is

applied to the accumulation curves of each EoDk in order to generate an overall decision dk for

each EoDk. Note that there are several accumulation modules per track ID, to simultaneously

recognize several people at a time in the scene.

During design/update, each EoDk performs independent supervised incremental learning. When

a new trajectory Tk becomes available for a person k, OSS is used to form a consistent individual-

specific training set Dk with all target samples and non-target samples selected from CM and

UM. Then, a DPSO-based strategy is employed to generate a new pool of diversified binary

classifiers that are combined with previously trained detectors corresponding to person k (De-la

Torre et al., 2012a). A fixed size LTM is maintained with validation samples that are represen-

tative of the overlapping zone between target and non-target distributions. The KL divergence

measure (Eq. A IV-3) is employed to rank reference samples and store the λk most represen-

tative in the LTM, where λk is the size of the LTM for person k enrolled to the system. At

each adaptation step, new validation samples are combined with those stored in the LTM to

accurately estimate a new fusion function and select an operations point.

Algorithm 4.1 shows the procedure followed by the management strategy to rank and select

representative validation samples to be stored in the LTMk. When a new validation set D

with target and non-target samples becomes available for individual k, all samples are ranked

according to the KL divergence. Then, the λk/2 highest ranked target samples, as well as the

λk/2 highest ranked non-target samples are preserved, whereas the rest are discarded.
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Figure-A IV-4 Adaptive MCS for FRiVS. In the design/update phase, when a new face

trajectory Tk becomes available for a person k, a training set Dk is formed with all its

target samples, and non-target samples selected from CM and UM using OSS. Then, an

evolutionary optimization strategy is employed to generate a new pool of diversified

classifiers with optimized hyper parameters, and the decision-level fusion function is

updated based on new data and pre-stored reference samples (from the LTM). Finally the

λk most relevant samples from previous and newly-learned trajectories are stored in LTM

according to the KL divergence

Algorithm 4.1: KL relevance subsampling for the EoDk
Input : D, Sk(ai), λk // Validation data, scores

// and size of LT Mk

Output : Dr // Representative samples

for ai ∈ D do
ri = KL(Sk(ai)) // Rank with Eq. A IV-3

D ⇐ sort(D,r,d) // Sort D according to ri

Dr+ ⇐ f irst_pos(D,� λk
2 �)

Dr− ⇐ f irst_neg(D,� λk
2 �)

Dr ⇐ Dr+ ∪Dr−

The new set Dr is formed from old and new validation samples that are difficult to classify by

old and new classifiers. Then, the selection is based on past and present information retrieved

from the classifiers by choosing the samples in the overlapping area of the target and non-target
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distributions. Thus, the proposed selection strategy allows to store the samples that contain the

most relevant information to define the decision frontier.

5. Experimental Methodology

The CMU Face in Action (FIA) database (Goh et al., 2005) is employed to characterize the pro-

posed strategy in a person re-identification scenario that presents gradual and abrupt changes.

The FIA database consists of 20 second videos of face data from 180 participants mimicking

a passport checking scenario. An array of 6 cameras horizontally positioned at the face level

capture the scene at 30 fps. Pairs of cameras were positioned at 0o (frontal) and ±72o (left

and right) angle with respect to the individual. Three cameras were set to an 8-mm focal-

length (zoomed), resulting in face areas around 300×300 pixels, and the other three to a 4-mm

focal-length (unzoomed) resulting in face areas around 100×100 pixels. The cameras utilize

the Sony ICX424 sensor, with a maximum resolution of 640x480 pixels and a 6mm diagonal

image size. Data has been captured on three sessions separated by a three months interval for

each individual.

Facial trajectories were formed with facial regions segmented using the Viola-Jones algorithm

(Viola and Jones, 2004) (see Fig. IV-5). An ideal face tracker is assumed, and all images

were scaled to the resolution of the smallest face obtained after face detection (70x70 pixels).

The Multi Scale LBP (Ojala et al., 2002) feature extractor has been used with three different

block sizes (3× 3, 5× 5 and 9× 9), along with pixel intensities features. Resulting features

were combined into feature vectors, and PCA was applied to select the 32 most discriminant

projected features.

Ten individuals were randomly selected for re-identification, and one EoDk was designed for

each. 88 of the remaining individuals are selected as part of the universal model (UM), and

the rest are considered as never seen test individuals. The cohort model (CM) comprises tra-

jectories from non-target individuals enrolled to the system. It is important to highlight that

individuals from the UM never appear in test. Face trajectories from individuals of interest
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Design face Test/Update Abrupt changes Gradual changes
D (zoomed) DF = D1 DR DL D2 D3

Figure-A IV-5 Samples of design/update facial regions from one of the individuals

enrolled to the system (ID 188). Faces were detected in video sequences from the FIA

database using the Viola-Jones face detector trained with frontal faces for gradual

changes, and frontal, right and left poses for abrupt changes

contain between 80 and 239 facial regions, and non-target training and test samples differ in

each dataset.

Prior to computer simulations, five data subsets have been prepared. Trajectories in the design

dataset D are comprised of target ROI patterns from the the zoomed view of capture session 1.

In order to build a scenario with gradual changes (age), the test/adaptation datasets D1 to D3

have been constructed with ROI patterns from the unzoomed view of capture sessions 1 to 3

respectively. On the other hand, for the scenario with abrupt changes (pose), the test/adaptation

datasets DF , DR and DL have been constructed with ROI patterns from the unzoomed view of

capture session 1, with the frontal, right and left cameras respectively. Non-target samples are

independently selected for each of the training/validation sets picked from the CM and UM,

using OSS (Kubat and Matwin, 1997).

The classifiers were initially trained using trajectories in the design set D, and tested on tra-

jectories in D1 (or equivalently DF for the scenario with abrupt changes), obtaining the perfor-

mance for the first evaluation. After performance evaluation on D1 (DF ) the classifiers were

updated with trajectories in D1 (DF ) and tested on D2 (DR). The same process was repeated

for update/test on D2 (DR) and D3 (DL) respectively in both scenarios with gradual and abrupt

changes.
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The approaches capable of incremental learning (PFAM, Learn++ (PFAM) and EoDk (PFAM))

were updated with only the new labeled dataset. In contrast, TCM-kNN was trained on batch

mode, learning from scratch the previous and new samples. The MCS used for LTM analysis

was composed of an ensemble of 2-class Probabilistic Fuzzy ARTMAP (PFAM) classifiers

per individual, EoDk (PFAM). The DPSO learning strategy was used for classifiers generation

and hyperparameters optimization, and BC was applied for decision level fusion of classifiers

on the ROC space (De-la Torre et al., 2012a). The LTM was managed according to the KL

divergence with six individual-specific values of λk were explored: 0, 25, 50, 75, 100 and ∞.

Evaluation was performed following 2×5-fold cross-validation for 10 independent trials. Tar-

get samples from the learning set were randomly split according to a uniform distribution, in

5 folds of the same size. The folds were first distributed in three different design sets, includ-

ing two folds for training (Dt
t), 11

2 folds to stop training epochs (De
t ), and 11

2 folds for fitness

evaluation (D f
t ). Once the classifiers were trained, De

t and D f
t are combined, randomized and

divided in two equally distributed subsets to produce a validation data for threshold/fusion

function estimation (Dc
t ), and to select the operations point (Ds

t ). Each fold was assigned to

a different training/validation set at each replica of the experiment. At replication 5, the five

folds were regenerated after a randomization of the sample order for each class, and the process

was repeated to generate a standard error on ten different assignments.

Reference approaches in comparison include TCM-kNN, single PFAM in incremental learning

mode and Learn++ with 7 PFAM base classifiers. TCM-kNN was trained with a fixed k = 1

on a batch learning scheme. PFAM classifiers used in all other approaches, were trained using

DPSO based learning strategy to optimize hyperparameters. Validating the number of training

epochs for classifier convergence was performed on De
t , whereas particle fitness was evaluated

on D f
t . The DPSO algorithm was initialized with a swarm of 60 particles, and a maximum of

5 particles within each of the 6 subswarms. The algorithm was set to run a maximum of 30

iterations, allowing 5 extra iterations to ensure convergence. Once the global best particle is

found, its classifier and the 6 local bests from each subswarm were added to the EoD.
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6. Simulation Results

Figure IV-6 presents the average performance of the system for the 10 individuals of interest,

after incremental learning. The ROC and PROC performance spaces are used for comparison,

with partial area under the ROC curve for 0≤ f pr ≤ 0.05 (pAUC (5%)), and empiric estimation

of t pr, f pr and F1 measure.
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Figure-A IV-6 Average transaction-based performance of the different classifiers after

two updates (D1 → D2 → D3). More details on this comparison can be found in (De-la

Torre et al., 2013). The t pr, f pr and F1 measure are estimated at the operations point

selected for a fixed f pr = 1%

Figure IV-6 (a) shows that TCM-kNN yields the highest f pr, that is related to the difficulty

faced by multi-class classifiers in finding multiple boundaries during the same optimization

process. In contrast, Learn++ (PFAM) and EoDk (PFAM) LTMkl,λk
present the lowest f pr,

proving the enhanced capacity of ensemble-based classifiers to discard non-target samples.
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Besides, Fig. IV-6 (b) shows that TCM-kNN presents the highest t pr, followed by the PFAM

and EoDk (PFAM) in the third place. In general, Figures IV-6 (c) and (d) show that the EoDk

(PFAM) with a LTM managed with KL divergence presents the highest overall performance

with a lower standard error.

Table IV-1 presents the average performance obtained after incremental learning in the scenar-

ios with gradual and abrupt changes. Regarding the pAUC (5%), the tendency shown by the

system in a scenario with gradual changes is characterized by an increase in the performance

after two adaptations. An opposite tendency is shown on a scenario with abrupt changes, where

the performance is constantly decreasing. This tendency is natural since facial models are de-

signed with frontal faces, and it is required to recognize the individuals on right or left poses

(see Fig. IV-5). However, the system behaves differently for each individual in each scenario,

and the impact of using a LTM is also different in each case.

Table-A IV-1 Average performance of the system on 10 individuals and 10 trials, for the

scenarios with gradual (top) and abrupt (bottom) changes. The operations point was

selected at f pr = 1%

f pr (%) ↓ t pr (%) ↑ F1 ↑ pAUC (5%) ↑
Gradual changes (D1 → D2 → D3)

EoDk (PFAM) LT MKL,λk=∞

| 0.62
±0.09 → 0.67

±0.05 → 0.84
±0.07

77.02
±2.10 → 45.51

±3.63 → 76.70
±2.71

0.6789
±0.0177 → 0.4041

±0.0308 → 0.6909
±0.0231

92.88
±0.81 → 72.03

±2.76 → 93.64
±0.84

Abrupt changes (DF → DR → DL)

EoDk (PFAM) LT MKL,λk=∞

| 0.62
±0.09 → 5.38

±1.13 → 2.73
±0.34

77.02
±2.10 → 13.48

±2.444 → 11.68
±2.42

0.6789
±0.0177 → 0.0571

±0.0121 → 0.0605
±0.0147

92.88
±0.81 → 22.0747

±2.598 → 19.68
±2.5450

Table IV-2 presents the performance of the ensemble during incremental learning for two indi-

viduals, using λk = 25,75 and 100. EoD58 was selected because of its good initial performance

(pAUC (5%) ≥ 95%). This individual is easy to detect by the system (t pr > 80%), and easy

to differentiate against non-target individuals ( f pr < 1%) – it is a sheep-like subject in the

Doddington zoo taxonomy (Li and Wechsler, 2005). Conversely, EoD188 was selected because

of its low initial performance (pAUC (5%) < 95%). It corresponds to a lamb-like individual

that even though is easy to detect by the system (t pr > 80%), it is also easy to imperson-
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ate ( f pr > 1%). For individual 188, the test on D1 throws 32 non-target individuals that are

wrongly detected more than 1% of the time (wolves).

Table-A IV-2 Average performance of the EoD58 and EoD188 after tests on scenarios of

gradual (D1 → D2 → D3) and abrupt (DF → DR → DL) changes

Gradual changes Abrupt changes
EoD58 EoD188 EoD58 EoD188

LTMKL,λk=25

f pr ↓ | 0.23
±0.09 → 0.87

±0.07 → 3.92
±0.71

2.54
±0.57 → 1.01

±0.10 → 0.84
±0.24

0.23
±0.09 → 29.51

±1.83 → 3.71
±0.407

2.54
±0.57 → 1.952

±0.17 → 3.17
±0.64

t pr ↑ | 84.43
±3.33 → 39.49

±7.01 → 90.93
±3.02

89.58
±4.26 → 84.88

±5.36 → 97.29
±0.82

84.43
±3.33 → 43.33

±3.35 → 0.62
±0.15

89.58
±4.26 → 28.33

±2.05 → 6.15
±0.87

F1 ↑ | 0.8492
±0.023 → 0.4029

±0.061 → 0.5710
±0.043

0.4720
±0.054 → 0.6594

±0.038 → 0.8730
±0.027

0.8492
±0.023 → 0.0134

±0.001 → 0.0016
±0.001

0.4720
±0.054 → 0.3119

±0.021 → 0.0370
±0.005

pAUC (5%) ↑ | 98.45
±0.23 → 72.46

±3.74 → 97.18
±1.09

91.12
±2.41 → 96.43

±0.80 → 99.64
±0.07

98.45
±0.23 → 8.15

±0.57 → 8.93
±0.4281

91.12
±2.41 → 38.71

±1.73 → 14.51
±0.97

LTMKL,λk=75

f pr ↓ | 0.23
±0.09 → 0.84

±0.10 → 4.29
±0.62

2.54
±0.57 → 1.02

±0.10 → 1.07
±0.31

0.23
±0.09 → 33.23

±1.71 → 2.98
±0.13

2.54
±0.57 → 2.62

±0.16 → 1.83
±0.29

t pr ↑ | 84.43
±3.33 → 41.49

±7.76 → 94.65
±3.25

89.58
±4.26 → 89.53

±3.21 → 97.60
±0.64

84.43
±3.33 → 48.33

±3.96 → 0.16
±0.049

89.58
±4.26 → 26.51

±1.86 → 5.38
±1.11

F1 ↑ | 0.8492
±0.023 → 0.4171

±0.064 → 0.5619
±0.053

0.4720
±0.054 → 0.6838

±0.026 → 0.8511
±0.033

0.8492
±0.023 → 0.0122

±0.001 → 0.0007
±0.001

0.4720
±0.054 → 0.2743

±0.017 → 0.0385
±0.007

pAUC (5%) ↑ | 98.45
±0.23 → 71.92

±3.50 → 98.60
±0.77

91.12
±2.41 → 96.21

±0.67 → 99.63
±0.09

98.45
±0.23 → 8.44

±0.60 → 9.78
±0.45

91.12
±2.41 → 38.19

±1.22 → 17.94
±1.16

LTMKL,λk=100

f pr ↓ | 0.23
±0.09 → 0.84

±0.08 → 3.64
±0.73

2.54
±0.57 → 1.09

±0.14 → 0.84
±0.19

0.23
±0.09 → 30.42

±1.56 → 4.14
±0.23

2.54
±0.57 → 2.59

±0.22 → 1.74
±0.26

t pr ↑ | 84.43
±3.33 → 38.28

±8.46 → 95.81
±1.63

89.58
±4.26 → 88.08

±3.06 → 97.60
±0.52

84.43
±3.33 → 45.00

±3.52 → 4.06
±0.88

89.58
±4.26 → 31.52

±2.08 → 5.38
±1.01

F1 ↑ | 0.8492
±0.023 → 0.3808

±0.071 → 0.6168
±0.053

0.4720
±0.054 → 0.6669

±0.032 → 0.8720
±0.022

0.8492
±0.023 → 0.0125

±0.001 → 0.0151
±0.004

0.4720
±0.054 → 0.3231

±0.020 → 0.0379
±0.007

pAUC (5%) ↑ | 98.45
±0.23 → 71.91

±3.56 → 98.36
±0.79

91.12
±2.41 → 96.25

±0.55 → 99.67
±0.09

98.45
±0.23 → 8.44

±0.61 → 9.33
±0.47

91.12
±2.41 → 41.25

±1.20 → 19.42
±1.13

Regarding the scenario with gradual changes, the F1 measure for EoD58 after test on D2, re-

sults show a performance that declines more importantly for EoD58 with λ58 = 100, and using

a λ58 = 75 shows the best performance. However, after test on D3, the appearance of new rep-

resentative samples in the LTM leads to a recovery in the performance. A similar but smaller

recovery is presented by EoD58 in the scenario with abrupt changes, suggesting that sheep-like

individuals benefit from high λk values either in scenarios with gradual or abrupt changes.

A different trend is shown by EoD188 in the scenario with gradual changes, which in general

presents a performance increase every time it is updated, regardless the value of λ188. A com-

parison between λ188 values shows that there is no significant difference between using a large

or small LTM, indicating that the performance of the EoD188 for this lamb-like individual is

maintained using this KL-based selection, even with small λ188 values (e.g. λ188 = 25). Note
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that the average number of samples selected by OSS for validation in experiments is 139.1 ±
5.07 (global average for the 10 individuals over the 10 trials), and λ188 = 25 samples constitutes

the 17.97% of the data.

Regarding the scenario with abrupt changes, the EoD188 shows a performance decrease as

expected by pose changes. But regarding its final performance, the use of large λ188 values sig-

nificantly benefits its final performance. This suggests that lamb-like individuals are benefited

by large λ values in scenarios with abrupt changes.
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Figure-A IV-7 Average percentage of samples from wolf-like individuals for the EoD58

(a and c) and EoD188 (b and d), in the scenarios with gradual (upper graphs) and abrupt

(lower graphs) changes
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Samples from wolf-like individuals degrade the f pr of EoDs for lamb-like individuals, and

are useful for system’s validation, allowing for better discrimination. Fig. IV-7 shows the per-

centage of samples from wolf-like individuals selected by the KL algorithm for the EoD58 and

EoD188, using a λk that grows up to 100 samples characterizing the scenarios with gradual and

abrupt changes. The three selection strategies presented in section 3 are compared. Regarding

the scenario with gradual changes, it can be seen that LTM management strategies based on KL

divergence and VE are successful in storing samples from wolf-like individuals, and the KL

divergence retrieves the highest percentage for the lamb-like individual 188 (Fig. IV-7b). Re-

sults for the scenario with abrupt changes reveal that the KL divergence overcomes the other

strategies at retrieving a greater proportion of samples from wolf-like individuals, either for

lamb- or sheep-like target individuals . This becomes more evident for small values of λ .

Finally, when a new trajectory for an individual of interest becomes available, it takes around

150 min. to update its facial model, and the modular architecture allows for parallel update

of multiple facial models. The algorithm was implemented in Matlab� R2010B, running on

Linux Gentoo, on a 2.53GHz Intel� Xeon� processor. This makes the system appropriate for

off-line update from, e.g., daily police reports.

7. Conclusion

In this paper, an individual-specific strategy was proposed for the management of reference

samples used for validation of adaptive ensembles applied to face re-identification. When new

reference samples become available for an individual enrolled to the system, its facial regions

are combined with non-target samples from the universal and cohort models selected with OSS.

Old and new validation samples are combined and ranked using Kullback-Leibler divergence,

and the highest ranked are stored in a LTM for future validations. The theoretical foundation of

this relevance measure lies on the relative entropy, where the disagreement between ensemble

members is an indicator of the informativeness of reference samples.
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This strategy was tested on real-world CMU-FIA video data emulating scenarios with grad-

ual (aging) and abrupt (pose) changes in the classification environment. Simulation results

indicate that using the proposed strategy allows individual-specific ensembles to maintain a

level of performance comparable to that achieved by an ensemble where all validation samples

are preserved, yet storing less than 20% of samples. Comparing different LTM sizes (λk) for

individual-specific ensembles suggests that sheep-like individuals benefit from high λk values,

whereas low λk values may be selected for lamb-like individuals. This is related to the capac-

ity of the KL divergence to rank and select samples from wolf-like individuals, compared to

vote entropy and average margin sampling. Future research includes investigating strategies

to find the optimal amount of samples required for each EoD, affecting a trade-off between

performance and resources.
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