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CONCEPTION DE RESEAUX OPTIQUES AVANCÉS  
BASÉE SUR LE CONCEPT DE SANS FILTRE 

 
Zhenyu XU 

 
RÉSUMÉ 

 
 
Le trafic Internet mondial continuera à croître à une très grande vitesse dans les années à 
venir. Pour répondre à cette exigence et ce défi, la capacité des réseaux optiques a augmenté 
de façon significative au cours des dernières années en s’appuyant sur l’avancement de la 
technologie du multiplexage en longueur d’onde (WDM en anglais).  
 
Les opérateurs de réseaux concentrent régulièrement sur la réduction des coûts opérationnels 
et l’augmentation de l’efficacité de transmission afin de déployer des réseaux optiques agiles 
plus rentables et plus efficaces spectralement. La résilience des réseaux est également une 
préoccupation majeure pour les opérateurs de réseaux étant donné que une énorme perte 
pourrait être causée par une petite défaillance de nœud ou de liaison dans les réseaux 
optiques à ultra haut débit.  
 
Le concept des réseaux sans filtre a été proposé comme une méthode plus simple et plus 
rentable de fournir l’agilité du réseau par rapport aux réseaux photoniques actifs basés sur 
commutateurs sélectifs en longueur d’onde (WSS en anglais). Ce concept est basé sur la 
prémisse que l’agilité et la reconfigurabilité des réseaux optiques peuvent être obtenues en 
utilisant des transmetteurs accordables et des récepteurs cohérents aux terminaux de réseau, 
comme les réseaux radio.  
 
Une solution du réseau sans filtre est obtenue en résolvant le problème d’interconnexion de 
liaison en fibre optique. Ensuite la solution obtenue est caractérisée par un ratio de protection 
inhérent. Dans cette thèse, nous proposons une stratégie de protection dédiée sur la couche 
optique pour les réseaux sans filtre en assurant une protection à 100% pour toutes les 
connexions dans la topologie sans filtre. La consommation de longueur d’onde des solutions 
sans filtre protégées est évaluée en résolvant le problème de routage et assignation de 
longueur d’onde (RWA en anglais). Les résultats de simulation montrent que les solutions 
des réseaux sans filtre protégées peuvent être réalisées avec un coût plus rentable que son 
homologue actif tout en gardant la consommation de longueurs d’onde à un niveau 
comparable.  
 
Le réseau optique à grille flexible est une méthode prometteuse pour améliorer l’efficacité et 
la flexibilité spectrale car la largeur de bande passante d’un canal peut être attribuée à une 
demande spécifiquement, selon la condition de capacité et distance. Dans cette thèse, nous 
présentons le concept des réseaux optiques sans filtre à grille flexible, qui combine les 
avantages des architectures des réseaux sans filtre et des réseaux a grille flexible. Nous 
proposons à la fois une optimisation linéaire en nombres entiers (ILP en anglais) et des 
méthodes heuristiques pour résoudre le problème de routage et assignation du spectre (RSA 
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en anglais) pour les réseaux optiques sans filtre à grille flexibles. Les solutions sans filtre à 
grille fixe et flexible sont comparées en termes de consommation spectrale et les avantages 
de la défragmentation du spectre périodique sont également quantifiés par des simulations.  
 
 
Mots-clés : Réseaux optiques à grille flexible, réseaux sans filtre, résilience, RSA, RWA, 
WDM 
 



 

DESIGN OF ADVANCED OPTICAL NETWORKS  
BASED ON THE FILTERLESS CONCEPT 

 
Zhenyu XU 

 
ABSTRACT 

 
 
Global Internet traffic will continue to grow at high speed in the forthcoming years. To meet 
this requirement and challenge, the capacity of optical core and regional networks has 
increased significantly over the past few years by leveraging the wavelength division 
multiplexing (WDM) technology.  
 
Telecommunications network providers have been steadily focusing on reducing their 
operational costs and increasing the transmission efficiency so as to deploy more cost-
effective and spectrally efficient agile optical networks. Failure survivability is one of 
network operators’ major concerns considering that enormous losses could be caused by one 
small node or link failure in actual ultra high capacity optical networks.  
 
The filterless network concept has been proposed as a simpler and more cost-effective 
method to deliver network agility compared to conventional wavelength selective switch 
(WSS) -based active photonic switching networks. This concept is based on the premise that 
the need for network agility and reconfigurability can be provided by using tunable 
transmitters and coherent receivers at the network edge terminals, as in radio networks.  
 
A filterless network is devised by solving the fiber link interconnection problem, and then the 
resulting solutions are characterized by an intrinsic protection ratio. In this thesis, we propose 
a 1+1 dedicated optical-layer protection strategy for filterless networks in an effort to provide 
100% protection for any connection within the topology. The wavelength consumption of 
protected filterless solutions is evaluated by solving the routing and wavelength assignment 
(RWA) problem. The simulation results show that the survivable filterless network solutions 
can be more cost-effective than its active counterpart while keeping the number of used 
wavelengths at a comparable level. 
 
Elastic (flex-grid) optical networking is a promising solution to improve spectral efficiency 
and flexibility since channel bandwidth can be assigned to a traffic demand dynamically, 
according to its capacity and distance requirements. In this thesis, we present the concept of 
elastic filterless optical networks, which combines the advantages of filterless network 
architectures and flex-grid networking. Besides, we propose not only an mathematical 
optimization method based on an integer linear programming (ILP) formulation but also 
more computationally efficient heuristic methods to solve the routing and spectrum 
assignment (RSA) problem in the elastic filterless optical networks. The performance in 
terms of spectrum utilization and cost for fixed- and flex-grid filterless solutions are 
compared and the benefits of periodical spectrum defragmentation are quantified through 
simulations as well.  
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Keywords: Elastic optical networks, filterless optical networks, routing and wavelength 
assignment (RWA), routing and spectrum assignment (RSA), survivability, Wavelength 
division multiplexing (WDM) 
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INTRODUCTION 

 

Global Internet traffic driven by the popularity of mobile devices, bandwidth-intensive 

applications (e.g., Netflix, Hulu, YouTube, Facebook etc.), data centers, and cloud-based 

services will continue to grow at extremely high speed in the coming years (Cisco, 2013). To 

meet this requirement, the capacity of optical backbone and metro networks has increased 

significantly over the past few years by leveraging on advances of wavelength division 

multiplexing (WDM) technology (Mukherjee, 2006). On the other hand, the revenues of 

network operators have not followed the same pattern. To address this imbalance, carriers 

have been steadily focusing on reducing their operational costs and at the same time 

increasing the transmission efficiency so as to deploy more cost-effective and spectrum-

efficient optically agile networks.  

 

0.1 Filterless Optical Networks Concept 

In current active photonic switching networks, agility and flexibility are provided by 

wavelength selective switches (WSS)-based reconfigurable optical add-drop multiplexers 

(ROADM) (Collings, 2013; Strasser & Wagener, 2010) or optical cross-connect (OXC) at 

intermediate nodes, whereas the hardware requirements are rather intense to realize these 

capabilities even though the number of fiber ports is relatively small. In the light of this 

context, the filterless optical network concept has been proposed as a simple and cost-

effective method to deliver network agility on the scale of wide area network (WAN) and 

regional networks. This passive network architecture is based on the premise that the need 

for agility and reconfigurability can be provided by using tunable transmitters and coherent 

receivers at the network edge terminals, similarly to radio networks. In the resulting 

architecture, active switches and colored components used for signal switching and local 

signal add-drop are replaced by passive optical couplers. This network architecture is also 

considered as a promising approach for Software Defined Networking (SDN) (Goth, 2011; 

Gringeri, Bitar, & Xia, 2013). Furthermore, the passive gridless architecture of filterless 

networks makes them naturally suitable for elastic optical networking, as the current fixed-
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grid dense WDM (DWDM) line systems can be upgraded to flexible ones without the need to 

replace the switching and filtering devices at intermediate nodes. Thus, in filterless networks, 

the gridless operation can be achieved at almost no cost without having to deploy gridless 

WSS, which are at present significantly more expensive than fixed-grid ones.  

 

0.2 Survivability in Filterless Optical Networks 

Resilience and survivability against potential node or link failures is always a major concern 

of network operators, considering that enormously economic loss could be caused by one 

small failure in actual ultra high capacity optical transport networks. The network protection 

can be realized in optical layer and/or its client layer. The filterless network solutions are 

characterized by an intrinsic protection ratio, which can be defined as the percentage of 

source-destination (s-d) node pairs connected by at least two link-disjoint paths among all the 

s-d node pairs in the network without any specific consideration for resiliency. The intrinsic 

protection ratio of a given filterless network solution is fully determined by the configuration 

of sets of interconnected optical fibers referred to as fiber trees (Christine Tremblay et al., 

2013). This ratio could be lower than 100% as it is not always possible to guarantee that all s-

d node pairs are covered by two edge-disjoint fiber trees. Therefore, some traffic demands 

may have only one single lightpath available in the network, and consequently, cannot be 

protected in the case of a link or node failure. Hence, the problem of providing protection 

against fiber link failures in a filterless outside plant needs to be addressed, similarly to the 

conventional active switched photonic networks.  

 

0.3 Paradigm of Elastic Optical Networking 

Based on DWDM technology, current wavelength-routed optical networks (WRON) use a 

fixed 50/100-GHz International Telecommunication Union Telecommunication Standards 

Sector (ITU-T) frequency grid (ITU-T, 2012) to offer high transmission capacity. Facing the 

ever-increasing interest of superchannels (i.e., a unified channel of data rate in the Terabit per 

second range) (Bosco, Curri, Carena, Poggiolini, & Forghieri, 2011) as well as the variations 

in the capacity required by different applications, it is unlikely to keep using the conventional 
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WDM systems with fixed channel spacing for long-haul transmission. The paradigm of 

flexible optical networking (also referred to as elastic, flex-grid and gridless networking in 

the literature) (Gerstel, Jinno, Lord, & Yoo, 2012; Jinno et al., 2009; Patel, Ji, Jue, & Wang, 

2012; Roberts, Beckett, Boertjes, Berthold, & Laperle, 2010) has emerged as a promising 

solution to provide enhanced spectral efficiency and flexibility. The migration from fixed-

grid to flexible grid paradigm has opened a gate to bring new potential architectural 

possibilities to optical networking design. According to ITU DWDM frequency grid 

definition (ITU-T, 2012), the center wavelength and bandwidth of the optical channels in 

elastic optical networks can be configured on the fly for end-to-end traffic demands of 

different data rates to optimize the spectrum requirements of individual channels. In the 

resulting configuration, a specific amount of channel bandwidth can be assigned dynamically 

to an end-to-end demand according to the capacity and distance conditions. An important and 

challenging design and planning problem is generally referred to as routing and spectrum 

assignment (RSA). The RSA problem can be defined as finding a proper lightpath for each 

end-to-end traffic request and assigning a set of continuous spectral resources with the 

objective of minimizing the overall spectrum consumption, while maintaining the spectrum 

contiguity and spectrum continuity constraints. Some key enabling technologies to realize 

elastic optical networks include multicarrier-based flexible transponders and flexible 

spectrum selective switches (Roberts et al., 2010).  

 

0.4 Contribution of the Thesis 

0.4.1 Protection Strategy for Filterless Optical Networks 

In the first part of this thesis, we study the survivability problem in filterless optical 

networks. To achieve a survivable filterless solution with 100% protection ratio (i.e., at least 

two link-disjoint paths could be found for all s-d node pairs in a filterless architecture), we 

present a 1+1 dedicated optical-layer protection strategy, referred to as Inter-tree Protection 

Path strategy (Xu Zhenyu et al., 2014), based on the deployment of wavelength blockers 

(WBs) and/or colored passive filters (CPFs) at some selected network nodes, as well as an 
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algorithm for their placement, and propose an efficient heuristic algorithm for solving the 

routing and spectrum assignment (RWA) problem in the survivable filterless optical 

networks. We validate the performance of proposed survivable filterless solutions in terms of 

wavelength consumption and cost for a number of physical network topologies by comparing 

them with WSS-based active photonic switching counterparts. The numerical results show 

that the filterless network solutions with 100% protection ratio obtained by using this method 

is much more cost-effective than its active counterpart while keeping the wavelength usage at 

a comparable level.  

 

0.4.2 Elastic Filterless Optical Networks 

Considering all previous work regarding the filterless network remains in the context of 

standard rigid ITU frequency grid (i.e., 50-GHz channel spacing), in the second part of this 

thesis, we introduce a new concept of elastic filterless optical networks, which combines the 

benefits of broadcast-and-select node structure in filterless networks with the spectrum 

efficiency and flexibility of elastic networking. In the third part of this thesis, we then present 

computationally efficient algorithms for the elastic filterless optical networks. An integer 

linear programming (ILP) formulation and two algorithmic methods, greedy and genetic 

algorithm based heuristic, are devised to solve the RSA problem in the elastic filterless 

optical networks with realistic traffic data. Elastic and fixed-grid filterless solutions are 

compared in terms of spectrum utilization and the benefits of periodical spectrum 

defragmentation is quantified through numerical results.  

 

0.5 Organization of the Thesis 

The content of this thesis is summarized based on our published and submitted journal 

papers. The remainder of this thesis is organized as follows. In Chapter 1, we review the 

literature including virtual topology design problem in WRON, the related work of elastic 

optical networking, and previous work in filterless optical networks design. In Chapter 2, we 

address the survivability issue in filterless optical networks. An inter-tree protection path 



5 

strategy is proposed to achieve fully protected filterless solutions and solve the RWA 

problem in the resulting filterless architecture with a heuristic algorithm. In Chapter 3, we 

introduce the concept of elastic filterless optical networks and evaluate its performance 

compared to fixed-grid filterless network solutions. In Chapter 4, we investigate the RSA 

problem in the elastic filterless optical networks and solve the problem with an ILP-based 

optimization as well as metaheuristic algorithms for finding optimal spectrum utilization. 

Finally, we conclude the thesis and point out some future work.  

 





 

CHAPTER 1 
 
 

BACKGROUND AND RELATED WORK 

1.1 Overview of Wavelength-Routed Optical Networks 

With the considerable advancement of WDM (Mukherjee, 2006) technology in recent years, 

current WDM optical fiber transmission systems are capable of offering a tremendous 

amount of transmission capacity on a single fiber-optic link (Bennett, Kuang-Tsan, Malik, 

Roy, & Awadalla, 2014; Essiambre, Kramer, Winzer, Foschini, & Goebel, 2010; Roberts et 

al., 2010). Wavelength-routed WDM networks, which typically utilize OXCs or WSS-based 

ROADMs at core nodes to manage the signal switching/routing and local add-drop functions, 

have been widely deployed in optical long haul and metro networks, which are mostly based 

on the mesh and ring topologies. An overview of typical core, metro (or metropolitan), and 

access optical networks is illustrated in Figure 1.1. The nodes shown in this figure are 

connected by optical links, which consist of multiple fiber pairs. Most of the traffic collected 

from individual business and homes in the access network is hubbed into carrier’s central 

office located in the metro network. Then the traffic from the metro network is further 

aggregated into the core network, which interconnects different cities and areas and spans 

hundreds to thousands of kilometers between nodes.  

 

In backbone (core) networks (see Figure 1.1), the optical signals between source nodes and 

destination nodes can be kept entirely in the optical domain throughout their end-to-end 

routes without optical-electrical-optical (O-E-O) conversion at intermediate nodes in order to 

avoid expensive electronic switching and processing within the nodes, such networks are 

referred to as all-optical wavelength-routed networks. Wavelength conversion technology 

(Mukherjee, 2006; Ramamurthy & Mukherjee, 1998; Yoo, 1996) can be used at intermediate 

nodes of WDM networks to improve the efficiency of wavelength usage by converting the 

data arriving on one wavelength from an ingress port into another wavelength at an 

intermediate node and forward it to an egress port. The all-optical connections between 

source-destination node pairs are called lightpaths (Chlamtac, Ganz, & Karmi, 1992). Figure 
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1.2 illustrates the lightpath establishment in a wavelength-routed optical core network. In the 

example shown in Figure 1.2, three lightpaths (e.g., between node [A, E], [B, D], and [A, C], 

each with a specific wavelength (λ)) are created in a mesh topology, where the access nodes 

represent end users equipped with a set of (tunable) transponders and optical switches (e.g., 

ROADM/OXC) in the mesh topology are responsible of routing ingress light signals to their 

desired egress links.  

 

 

Figure 1.1 An overview of core, metro and access optical networks. In this illustrated 
example, the mesh architecture is deployed in core networks and the ring architecture is 
deployed in the metro networks. ROADM (reconfigurable optical add-drop multiplexer), 

DWDM (dense wavelength-division multiplexing) 

 

ROADM

ROADM

DWDM

DWDM

DWDM

DWDM

DWDM

DWDM

PON

PON

Cellular
backhaul

PON

Access Metro Core

ROADM

ROADM



9 

 

Figure 1.2 An illustration of lightpath establishment in a wavelength-routed optical 
network 

Retrieved from Mukherjee (2006, p. 356) 

 

1.1.1 Routing and Wavelength Assignment Problem 

One of the challenges in planning the wavelength-routed optical networks (WRON) is to 

develop efficient approaches for solving the routing and wavelength assignment (RWA) 

problem, which can be further classified into static or dynamic RWA problem depending on 

the type of given traffic scenario that is considered in the problem. The RWA problem has 

been intensively studied in the literature (Banerjee & Mukherjee, 1996; Hui, 2000; R. 

Ramaswami & Sivarajan, 1995), and it can typically be transformed into a graph-coloring 

problem (Mukherjee, 2006), where each node in an auxiliary graph represents a lightpath 
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demand in the network and two nodes are connected by an undirected edge if their 

corresponding lightpaths share a common physical fiber link. The goal of the graph-coloring 

problem is to color all nodes of the auxiliary graph such that no two adjacent nodes have the 

same color. Due to the NP-completeness of the RWA problem (Chlamtac et al., 1992), it is 

generally decomposed into two sub-problems, Routing (R) and Wavelength Assignment 

(WA), which are solved sequentially by well-studied heuristic algorithms (Hui, 2000; 

Mukherjee, 2006). The static RWA problem, where a set of lightpaths demands is scheduled 

in advance in the form of a traffic matrix, has been studied in (Banerjee & Mukherjee, 1996; 

Christodoulopoulos, Manousakis, & Varvarigos, 2008; R. Ramaswami & Sivarajan, 1995). 

Possible optimization objectives of the problem can be minimizing the number of required 

wavelengths (called as min-RWA problem) or maximizing the served traffic given a limited 

number of wavelengths (called as max-RWA problem) (Jaumard, Meyer, Thiongane, & Yu, 

2004).  

 

In this thesis we assume that no wavelength conversion is available at intermediate nodes. 

This assumption implies that one same wavelength must be used for one connection 

throughout its lightpath. The problem of static RWA in WRON can be defined as follows. 

 

Given a network topology G (V, E) with a set of nodes V and a set of links E, a set of 

lightpath traffic demands must be accommodated on the network. For each lightpath demand 

between an s-d node pair, we need to determine the route over which the lightpath is 

established and assign an available wavelength to this lightpath. Without the wavelength 

conversion capability at intermediate nodes, the same wavelength must be used throughout 

fiber links passed by the lightpath, which is referred to as the wavelength continuity 

constraint. Consequently, two different wavelengths must be assigned to two lightpaths that 

share a common fiber link. The objective of the problem is typically to minimize the total 

wavelength consumption on all fiber links for the given traffic.  

 

A number of ILP formulations and heuristic approaches have been proposed in the literature 

(Banerjee & Mukherjee, 1996; R. Ramaswami & Sivarajan, 1995) to solve the static RWA 
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problem. Optimal solutions can be obtained by the ILP approach, however, due to the 

problem’s complexity and computational intensity, optimization with the ILP formulation 

may become computationally intractable (Hopcroft, Motwani, & Ullman, 2007) for large-

sized networks (e.g., more than 8 network nodes). This is because the number of variables 

and constraints, leading to the computational time, increase quickly with the increase of 

network size, thus it causes the problem intractable in large networks. For large-sized 

networks, a number of efficient heuristic methods have been proposed to solve the RWA 

problem in a reasonable time. However, only suboptimal results can be achieved with the 

heuristic algorithms. There is a tradeoff between the optimality of obtained results and the 

computational time.  

 

In the dynamic RWA problem, where random lightpath demands arrive on the fly and with 

certain amount of holding time, we need to choose one of available routes for each arriving 

lightpath demand and assign an available wavelength to it. The objective is to minimize the 

blocking probability or to maximize the number of accommodated demands for limited 

wavelength resources. A lightpath demand is blocked when there is no available wavelength 

can be assigned across all fiber links of its route.  

 

1.1.1.1 Formulate the Static RWA Problem as ILPs 

In the survey of RWA problem (Hui, 2000; Mukherjee, 2006), two most often studied 

methods of ILP formulation for the static RWA problem with two different objective 

functions have been presented: 1) the minimization of the flow in each link, which can be 

considered as equivalent to the problem of minimizing the number of wavelengths (referred 

to as min-RWA); 2) the maximization of the number of established connections for a given 

number of wavelengths (referred to as max-RWA).  

 



12 

1.1.1.2 Heuristics for Solving the Routing Subproblem 

To reduce the complexity of combined RWA problem, the RWA problem can be divided into 

the routing subproblem and the wavelength assignment subproblem and they are solved 

separately. We first review three effective heuristics for solving the routing subproblem that 

have been studied in the literature.  

 

1) Fixed routing 

One pre-determined routing path is calculated offline for each lightpath demand between an 

s-d node pair. Typically, the shortest routing path is used for simplification and best 

performance in terms of latency. The lack of flexibility is a major drawback of this method, 

as the routing path is fixed and it will possibly lead to high wavelength consumption and 

network blocking probability.  

 

2) Fixed-alternate routing 

To improve the performance of the fixed routing approach, fixed-alternate routing algorithm 

is proposed, where each demand may have several candidate routing paths. In this approach, 

each demand attempts to establish a connection by sequentially choosing one routing path 

from the candidate routing paths. The commonly used criteria for ordering these candidate 

routing paths include according to the physical distance, number of fiber link segments 

passed by the routing path or other user-defined metrics.  

 

3) Adaptive routing 

In this method, the routing path for each s-d demand is selected dynamically, according to 

the network state when the demand is served. For example, the network state can be defined 

as the total cost for establishing current connection or the least congested path. The network 

state is updated each time when a new connection demand has been served, which requires 

extensive coordination of the network control plane. There is a tradeoff between the network 

performance and the computational complexity in this approach.  
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1.1.1.3 Heuristics for Solving the Wavelength Assignment Subproblem 

The wavelength assignment subproblem has been well studied in the literature and the 

following heuristics have been proposed for solving the problem in single-fiber networks: 1) 

Random, (2) First-Fit, (3) Least-Used, (4) Most-Used, (5) Wavelength Reservation, and (6) 

Protection Threshold. We will briefly review these heuristics here in this section, more 

details of these heuristics can be found in (Hui, 2000; Mukherjee, 2006).  

 

1) Random wavelength assignment (R) 

This approach randomly chooses one wavelength among all available wavelengths and 

assigns it to a current demand.  

 

2) First-Fit (FF) 

In this scheme, all wavelengths are numbered. Each demand searches for an available 

wavelength from the lower-numbered wavelength to the higher-numbered one, and the first 

available wavelength will be assigned to a current demand.  

 

3) Least-Used (LU) 

This heuristic always selects the wavelength that is the least used in the network, in the hope 

of balancing the load among all the wavelengths. The usage of wavelength can be defined as 

wavelength × link.  

 

4) Most-Used (MU) 

Contrary to the LU, MU selects the most used wavelength in the network.  

 

5) Wavelength Reservation (Rsv) 

Rsv keeps a wavelength on a specified link for a traffic demand, usually a multi-hop demand. 

Therefore, this heuristic only reduces the blocking probability for multi-hop demands.  

 

6) Protection Threshold (Thr) 
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In this scheme, a single-hop demand (i.e., a connection traverses only one fiber link) is 

assigned a wavelength only if the number of available wavelengths on the link is at or above 

a given threshold. It should be noted that, both Rsv and Thr heuristics are utilized jointly with 

other heuristic to achieve a better performance.  

 

The performance of above heuristics in terms of the wavelength consumption can be ordered 

as follows: LU < R < FF < MU (Hui, 2000).  

 

1.1.1.4 General Framework for Optical Networks Design 

A general optimization framework for the formulation of optical networks design (Dutta & 

Rouskas, 2000; Leonardi, 2000; Mukherjee, Banerjee, Ramamurthy, & Mukherjee, 1996) has 

been summarized by (Degila & Sanso, 2004) as shown in Table 1.1.  

 

This table classifies the functional measures in modeling a topological design and an 

optimization problem for optical networks. For example, given a network physical topology, 

a traffic matrix, and a routing scheme (1-3 in Table 1.1), the virtual topology design problem 

can be classified into maximization or minimization problem (4-5 in Table 1.1) with the 

objective of finding optimal virtual topology and routing solutions (13-14 in Table 1.1), 

while satisfying certain constraints (8-12 in Table 1.1). Associated functional metrics are 

listed in the third column of the table.  

 

1.1.2 Light-tree and Optical Multicasting 

In this section we review the concept of light-tree and the problem of multicasting in WDM 

networks. Optical multicasting is a bandwidth-efficient solution for the transmission of 

information from one source to several destinations in a one-to-many fashion, such as 

audio/video conferencing, and media streaming applications.  
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Table 1.1 General functional measures optimization framework for the topological design 
for optical networks 

Retrieved from J. R. Degila et al. (2004, p. 29) 

 

  Functional Measures 

Given 1. Network physical topologies/System 
specifications 

2. Traffic matrix 
3. (Routing scheme) 

 

Objectives 4. Maximization a. Total external traffic 
b. One-hop traffic 

5. Minimization c. Maximal congestion 
d. Average weighted intermodal distance 
e. Mean delay 

Variables 6. Flow f. Portions of traffic over links 

7. Link g. Lightpath-fiber indicators 
h. Lightpath-fiber-wavelength indicators 

Constraints 8. Virtual structure i. Virtual node degree 
j. Lightpath hop or length limitation 

9. Flow k. Flow conservation 
l. Flow delay 

10. Coupling constraints m. Flow-lightpath 
n. Lightpath-wavelength 
o. Wavelength-fiber 

11. Wavelength constraints  

12. Variables range p. Binary variables 
q. Positive real variables 

Find 13. Virtual topologies 
14. (Routing scheme) 

 

 

1.1.2.1 The Concept of Light-tree 

A light-tree, proposed by (Sahasrabuddhe & Mukherjee, 1999), is a point-to-multipoint 

logical connection in a WDM optical network. As a generalization of a lightpath, a light-tree 

can be considered as a set of several lightpaths originating from a same source node. The 

benefits of a light-tree based topology compared to a lightpath-based topology lie in the 

support for not only unicast traffic (such as end-to-end lightpath demands), but also multicast 

and broadcast traffic because of its inherent point-to-multipoint logical structure. A 

comparative example between the lightpath and light-tree based virtual all-optical 

wavelength connections is illustrated in Figure 1.3. For instance, if we need to accommodate 
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the traffic between nodes [1-3], [1-4] and [1-5], three lightpaths with different wavelengths 

and six transponders (i.e., two transponders per lightpath) are required in the lightpath 

solution (as shown in Figure 1.3(a)). Alternatively, we can broadcast the traffic by creating 

one virtual light-tree connection from node 1 to node 3, 4 and 5, passing through node 2, with 

only one wavelength and four transponders (i.e., one deployed at the source node 1 and three 

at the destinations node 3, 4 and 5, respectively) to carry the traffic (as shown in Figure 

1.3(b)), assuming that the capacity of one wavelength in the light-tree is sufficient to support 

the total traffic. We can see from this example that the number of wavelengths and 

transponders can be reduced, and consequently leading to lower cost in light-tree based 

topology compared to the lightpath-based topology.  

 

On the other hand, the benefits of deploying light-trees come at expenses of deploying 

multicast-capable wavelength routing switches (MWRS) (Sahasrabuddhe & Mukherjee, 

1999) at certain nodes and requiring additional optical amplification in the network to 

maintain the optical signal power level without transmission errors. The multicast 

functionality in the MWRS (as shown in Figure 1.4) can be described as follows: First an 

incoming signal is demultiplexed and only the wavelength that needs to be duplicated (e.g., 

λb in Figure 1.4) is split by an optical power splitter; Then the output of the splitter is send to 

an optical switch (OSW shown in Figure 1.4), which routes different copies of the signal to 

their destination ports. The extra costs of MWRSs and optical amplifiers can be balanced by 

the savings of significantly reduced number of transponders at terminal nodes.  

 



17 

 

(a) 

 

(b) 

Figure 1.3 Comparative illustration of virtual connections produced by the lightpath (a) and 
light-tree (b) all-optical wavelength channel 
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Figure 1.4 A multicast-capable wavelength-routing switch 
Retrieved from J. He et al. (2002, p. 10) 

 

In (Sahasrabuddhe & Mukherjee, 1999), the authors formulated the light-tree-based optimum 

virtual topology design problem as a mixed-integer linear programming (MILP), and the 

simulation results showed that the light-tree-based virtual topology has superior performance 

in terms of the average packet hop distance and number of opto-electronic components 

compared to lightpath-based virtual topology.  

 

1.1.2.2 Multicasting in WDM Networks 

The paper of (Jingyi, Chan, & Tsang, 2002) surveys the problems of multicasting in three 

types of WDM networks: 1) broadcast-and-select, 2) wavelength-routed, and 3) optical burst-

switched WDM networks.  

 

Table 1.2 summarizes the major issues and corresponding solutions of multicasting in these 

three types of WDM networks. In a broadcast-and-select WDM network, network nodes are 

connected by passive broadcast-enabled components (e.g., passive star couplers), and the 
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signal stays in the optical domain from a source node to a destination node. The main 

problem in the broadcast-and-select networks is the coordination/scheduling of the 

transmissions because of the presence of contentions in such resource-shared networks. Such 

contention may occur when more than one transmitters want to use the same wavelength 

channel at the same time. Therefore, efficient multicast scheduling algorithms are highly 

necessary to avoid this problem.  

 

Table 1.2 Summary of multicasting in three types of WDM networks 
Retrieved from J. He et al. (2002, p. 3) 

 

WDM networks 
Application 
areas 

Major issues for 
multicasting 

Approaches 

Broadcast-and-select LAN, MAN Contentions in the shared-
media and shared-channel 
environment 

Multicast Scheduling 
Algorithms (MSAs) 

Wavelength-
routed 

Mesh WAN Limitations in 
• number of wavelengths 
• wavelength conversion 

capability 
• light splitting capability 

Multicast Routing and 
Wavelength Assignment 
(MC-RWA) 

Ring LAN, MAN, 
WAN 

Limited number of 
wavelengths 

 

Optical burst-
switched 

WAN Overheads of the control 
packets and guard bands 

Sharing schemes 

 

In a wavelength-routed WDM network, a light-tree is created for each multicast demand. The 

main challenge in such networks is solving the multicast routing and wavelength assignment 

problem where we need to route the light-trees and determine the wavelengths to be assigned 

to these routes.  

 

In an optical burst-switched WDM network, a control packet used for establishing a 

connection and resources reservation is sent prior to the transmission of a data burst. As a 

part of the data packet, guard bands are needed for each burst to mitigate the timing jitters 

when passing intermediate nodes. Hence, besides the challenge of establishing light-trees, 
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reducing the overheads of the control packets and guard bands has been a primary objective 

for multicasting in such networks.  

 

1.1.3 Advancements in Wavelength-Routed Optical Networks and Enabling 

Technologies 

In this section we briefly review some advances and enabling technologies in the 

wavelength-routed optical networks. We first look at the ROADM architecture in long-haul 

DWDM networks and then review the advances of high-capacity optical transmission 

systems.  

 

1.1.3.1 ROADM Architecture 

As a major part of core node in long-haul DWDM networks, ROADM supports all-optical 

signal switching and wavelength channel cross connecting through software control. The 

current generation of WSS-based ROADM primarily uses two architectures: broadcast-and-

select and route-and-select node architecture (Collings, 2013; Strasser & Wagener, 2010). 

The broadcast-and-select ROADM (as shown in Figure 1.5) uses a single WSS and passive 

splitter in each ROADM node degree. The passive splitter broadcasts all signals onto its 

output ports, and desired signals are then selected at each WSS input port. On the other hand, 

the route-and-select ROADM (as shown in Figure 1.6) uses two WSSs in each ROADM 

node degree. The required signals are selectively transmitted from one WSS to the other.  
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Figure 1.5 An example of broadcast-and-select ROADM node architecture 
Retrieved from B. Collings (2013, p. 67) 

 

Figure 1.6 An example of route-and-select ROADM node architecture 
Retrieved from B. Collings (2013, p. 68) 

 

The tradeoffs between these two ROADM architectures are summarized in Table 1.3 (Filer & 

Tibuleac, 2014). Benefits of broadcast-and-select architecture lie in lower optical and 
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electronic complexity, cost, and energy consumption because it requires only one WSS per 

input port. For these reasons, the passband narrowing effect when cascading ROADMs is 

higher in the route-and-select architecture than broadcast-and-select one, causing higher 

OSNR penalties. On the contrary, a major downside of the broadcast-and-select architecture 

is the lower isolation on the blocking ports due to crosstalk. Another limitation of the 

broadcast-and-select architecture is insertion loss, which scales with the number of ports, 

whereas this loss is constant regardless of port count for the route-and-select scheme. We can 

see clearly that the disadvantages of the broadcast-and-select architecture are advantages for 

the route-and-select one, and vice versa.  

 

The cascading of ROADMs in DWDM networks leads to significant optical bandwidth 

reduction and in-band crosstalk within the receiver bandwidth (Filer & Tibuleac, 2014). The 

results of a comparative study (Filer & Tibuleac, 2014) of above two ROADM node 

architectures in 120 Gb/s dual polarization quadrature phase shift keying (DP-QPSK) 

transmission showed that the broadcast-and-select ROADM architecture is preferred for node 

degrees less or equal to nine owing to lower system penalties, and route-and-select ROADM 

architecture for higher node degrees because of its fixed insertion loss and increased 

isolation.  

 

Next generation ROADM requires Colorless, Directionless, and Contentionless (C/D/C) 

capabilities at the add/drop switch ports for dynamic wavelength switching (Feuer & 

Woodward, 2012; Jensen, Lord, & Parsons, 2010). The true flexibility of the next generation 

of core node structure is to enable the wavelength tunability of each optical transponder 

installed on the ROADM (colorless), to enable the wavelength add/drop from any direction 

(directionless), and to allow multiple copies of the same wavelength on a single add/drop 

port (contentionless) (Gringeri, Basch, Shukla, Egorov, & Xia, 2010). With the increase of 

network traffic, more efforts have been made for designing C/D/C flexible grid ROADM 

architecture (Egorov, 2013; Way, 2012) to improve spectral utilization and support 

multicarrier or superchannel transport. Compared to basic ROADM architectures, the C/D/C 
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enabled ROADMs will bring more flexibility into next generation optical networks at the 

expense of higher node complexity and increased costs.  

 

Table 1.3 Comparison of broadcast-and-select and route-and-select ROADM architecture 
Summarized from M. Filer et al. (2014, p. 2) 

 

 Pros Cons 
Broadcast-
and-select 
ROADM 

1. Reduced cost 
2. Reduced power consumption 
3. Reduces optical and electronic 

complexity 
4. Smaller BW-narrowing effect 

1. Reduced isolation (higher 
crosstalk) 

2. Insertion Loss scales with node 
degree 

Route-and-
select 
ROADM 

1. Superior isolation (lower 
crosstalk) 

2. Insertion Loss fixed regardless 
of node degree 

1. Increased cost 
2. Increased power consumption 
3. Increased optical and electronic 

complexity 
4. Larger BW-narrowing effect 

 

1.1.3.2 High-capacity Transmission 

The single-channel capacity has been increased from 10 Gb/s to 400 Gb/s and beyond in the 

last two decades by leveraging significant technical advancements of modulation and 

multiplexing (Liu & Chandrasekhar, 2014; Roberts et al., 2010; Roberts et al., 2009), which 

include the following aspects: 1) symbol rate, 2) bits per symbol, 3) polarization 

multiplexing, 4) multiple frequency carrier, and 5) spatial multiplexing. Advances of 

coherent detection and digital signal processing (DSP) are indispensable for the improvement 

of transmission distance and impairment tolerance over conventional direct detection. 

Furthermore, forward error correction (FEC) (Nelson et al., 2012) with high coding gain has 

been extensively applied to further extend the reach of high-capacity optical transport 

systems. The system capacity can be increased by multiplexing channels by means of the 

DWDM transmission technology. The scaling trend of single channel capacity and WDM 

system spectral efficiency in research and commercial products is illustrated in Figure 1.7.  
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(a) 

 

(b) 

Figure 1.7 Historic serial bit rate capacity (a) and WDM system spectral efficiency (b) 
scaling in research and products. Optical transmission products (white), research 

demonstrations (red), router interfaces (black), and Ethernet standards (gray) 
Retrieved from P. J. Winzer (2014, p. 25) 

 

Figure 1.7(a) shows commercially available serial interfaces (e.g., SONET (synchronous 

optical network)/SDH (synchronous digital hierarchy), and OTN (optical transport network)) 
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(white circles) and router interfaces (black circles). Gray circles in Figure 1.7(a) represent 

related Ethernet standards. Research demonstrations of single-channel data rates are denoted 

by green circles. In the last decade, the modulation format underwent a transition from 

simple on/off keying (OOK) using direct detection to QPSK, 16-QAM using coherent 

detection, and the highest commercially available single-channel data rate has reached 

around 200 Gb/s. The increasingly closing gap between commercial single-channel data rates 

and pioneering transmission research will force the usage of an increasing level of optical 

parallelization (Winzer, 2010), requiring denser photonic integration. The growth of WDM 

system capacity is beneficial for creating transport networking with lower cost. However, this 

trend has not been sufficient to meet the requirement of fast traffic growth. As shown in 

Figure 1.7(b), a trend of changing slope of the WDM research and commercial capacity 

growth has been observed, going from 2.5 dB around the year 2000 to a present value of ~0.8 

dB per year. The limitation comes from i) the practical penalties due to technical difficulties 

in implementing high-level modulation formats at high interface rates, and ii) several 

fundamental considerations, such as the fundamental Shannon limit and spectrally efficient 

modulation formats ask for higher signal-to-noise ratios (SNRs).  

 

1.1.4 Elastic Optical Networking  

To meet the requirement of ever increasing traffic growth, the concept of elastic optical 

networking has been proposed as a promising architecture to enable the network efficiency 

and flexibility. In this section we review the concept and related network optimization 

problems. Some key enabling technologies to realize the elastic optical networks are also 

presented.  

 

1.1.4.1 Concept of Elastic Optical Networking: Fixed-grid vs. Flex-grid 

For the sake of standardization of the transmitters employed in dense wavelength division 

multiplexing (DWDM) systems, the 50 GHz ITU spectral grids (ITU-T, 2012) divide the 

optical spectrum range of 1530–1565 nm (referred to as the C-band) and 1565–1625 nm 
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(referred to as the L-band) into fixed 50 GHz spectrum slots. For such channel spacing on a 

fiber, the central frequencies of the transmitters in THz are defined as: 193.1 + n × 0.05, 

where n is an integer. With the commercialization of 100-Gb/s-based transmission systems in 

recent years, which are still compatible with 50 GHz ITU grids, more and more interests 

have been focused on a data rate beyond 100 Gb/s. Meanwhile, it is likely that such data rates 

higher than 100 Gb/s will not fit into this fixed 50-GHz configuration, especially for long 

distance transmissions.  

 

The paradigm of elastic optical networking, also referred to as flexible, flex-grid, or gridless 

optical networking in the literature (Gerstel et al., 2012; Gringeri et al., 2010; Jinno, 2013; 

Jinno et al., 2009; Palkopoulou et al., 2012; Patel et al., 2012; Roberts et al., 2010), has been 

proposed as a promising solution to offer superior spectral efficiency and flexibility for the 

superchannels and varied data-rate transmission (compared to traditional WDM transport 

operated at 10 Gb/s on a rigid 50-GHz channel spacing). According to the ITU DWDM 

frequency grid definition (ITU-T, 2012), the flexible DWDM grid is sliced into frequency 

slots occupying certain amount of frequency range (e.g., a granularity of 6.25/12.5/25 GHz), 

and the channel bandwidth in elastic optical networks will be tailored for traffic demands 

with different data rates to optimize spectral efficiency of individual channels. Here, the 

channel bandwidth consisting of a set of continuous frequency slots is assigned to a demand 

from its source node to the destination node along a physical route. For the flexible DWDM 

grid with 12.5-GHz slot width, the allowed central frequency in THz can be defined as: 193.1 

+ n × 0.00625, where n is an integer. Any combination of frequency slots is allowed as long 

as no two frequency slots overlap (ITU-T, 2012). A comparison between legacy WDM 

system with rigid frequency grid and optical orthogonal frequency-division multiplexing 

(OFDM)-based elastic optical networking is illustrated in Figure 1.8.  

 

As we can see in Figure 1.8, the elastic optical networking enables spectrally efficient 

accommodation of variable data rates (e.g., sub-wavelength and super-wavelength shown in 

Figure 1.8) owing to the feature of flexible bandwidth allocation. Compared to the elastic 

scheme, current WDM optical networks with rigid frequency grid cause inefficient frequency 
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spacing for lower data rate signals. Consequently, bandwidth saving can be achieved with the 

elastic optical networking (e.g., a variation of 100 G can be added in the elastic scheme for 

given spectral resources shown in Figure 1.8.).  

 

 

Figure 1.8 Spectrum assignment in OFDM-based elastic optical network. (a) Current 
WDM system with rigid frequency grid. (b) Flexible spectrum assignment 

Retrieved from M. Jinno et al. (2009, p. 68) 

 

The migration from fixed-grid to flex-grid paradigm has opened a gate to bring innovative 

architecture options in designing optical networks. In the resulting architecture, different 

channel bandwidths can be assigned to the traffic demands according to their capacity and 

distance requirements and the network conditions. To realize the elastic optical networks, 

elastic transponders and gridless WSSs are enabling elements (Jinno, 2013), seamlessly 

collaborating with emerging software defined networking (SDN) (Goth, 2011; Gringeri et al., 

2013) based on a centralized management and control plane technology. The following 

sections will provide more detail on related design problem and key enabling technologies.  
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1.1.4.2 Network Optimization for Elastic Optical Networks 

One of the challenges of network optimization for elastic optical networks is effectively 

provisioning data-rate variable demands and allocating specific amount spectral resources to 

them while minimizing the spectrum utilization. This adaptive bandwidth allocation problem 

in an elastic optical network is generally referred to as routing and spectrum assignment 

(RSA) problem (Christodoulopoulos, Tomkos, & Varvarigos, 2011; Gerstel et al., 2012; 

Guoying, De Leenheer, Morea, & Mukherjee, 2013; Patel et al., 2012; Talebi et al., 2014; 

Tomkos, Palkopoulou, & Angelou, 2012). Because the conventional RWA algorithms of 

traditional WDM networks presented in Section 1.1.1 are no longer directly applicable for 

solving the RSA problem due to the characteristic of flexible grids and heterogeneous 

demands (i.e., sub-wavelengths and super-wavelengths), this leads to the introduction of 

RSA algorithms. Additionally, as more flexibility is allowed by elastic optical networks, new 

appropriate constraints need to be taken into consideration in the RSA algorithms: 1) Instead 

of assigning a certain wavelength to each traffic demand, a specific number of contiguous 

spectrum resources (in terms of frequency slots) that meets the traffic requirement now needs 

to be assigned to each source-destination demand. This additional constraint is generally 

referred to as the spectrum contiguity constraint. 2) A guard band consisting of a set of 

frequency slots may need to be added between neighboring optical channels to mitigate inter-

channel interference. 3) The modulation and multiplexing format (e.g., binary phase shift 

keying (BPSK), quadrature phase shift keying (QPSK), 16-quadrature amplitude modulation 

(16-QAM), etc.) can be selected for each traffic demand considering its required data-rate, 

transparent reach, and physical layer impairments, such RSA problem can be referred to as 

routing modulation level and spectrum allocation (RMLSA), e.g., in (Christodoulopoulos et 

al., 2011; Jinno et al., 2010; Palkopoulou et al., 2012). Above additional constraints have to 

be considered in the RSA problem together with other well-known constraints that have been 

considered in the RWA algorithms (i.e., in a similar manner as the wavelength-continuity 

constraint is imposed, the continuity of spectral resources should be guaranteed along the 

routing path, and no spectrum overlapping is allowed among different connections if they 

share any fiber links along their physical routes).  
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The routing and spectrum assignment algorithms can solve the static (also called offline) 

network optimization problem in a single or multi-period traffic scenario, but also they can 

be applied to accommodate traffic demands that are dynamically established and released. 

For dynamic (also called online) and multi-period traffic scenarios, the problem of spectrum 

fragmentation appears, leading to lower spectral efficiency and higher blocking probability in 

the dynamic case. Therefore, the development of spectrum defragmentation algorithms is 

highly necessary.  

 

Similar to the conventional RWA problem, the RSA problem in elastic optical networks can 

be solved by mathematical optimization methods, such as an integer linear programming 

(ILP), for small network topology instances due to its complexity and computational 

intensity. Alternatively, more computationally efficient heuristic approaches can be applied 

for solving the problem in larger network topologies. In this case optimality can be 

compromised for the purpose of reducing the computational time.  

 

1.1.4.3 Enabling Technologies for Elastic Optical Networks 

Key enabling technologies for realizing elastic optical networks include multicarrier-based 

elastic transponders (Gerstel et al., 2012; Gringeri et al., 2013; Roberts & Laperle, 2012) and 

flexible spectrum selective switches (Amaya, Zervas, & Simeonidou, 2013; Gerstel et al., 

2012; Gringeri et al., 2010).  

 

1) Multicarrier-based Elastic Transponder 

The flexibility of flexible transceivers can be achieved by tuning any of following parameters 

(Gringeri et al., 2013): 1) modulation format (i.e., BPSK, QPSK, 16-QAM) etc., 2) symbol 

rate, and 3) number of optical carriers. In order to achieve high capacity and flexible 

transport in elastic optical networking, new technologies need to be developed by utilizing 

spectrally efficient multiplexing schemes, such as coherent optical orthogonal frequency-

division multiplexing (CO-OFDM) (Shieh, Bao, & Tang, 2008), coherent optical WDM 

(CoWDM) (Ellis & Gunning, 2005), Nyquist-WDM (Bosco, Carena, Curri, Poggiolini, & 
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Forghieri, 2010; Bosco et al., 2011), and dynamic optical arbitrary waveform generation 

(OAWG) (Geisler et al., 2011). Above four multicarrier solutions are illustrated in Figure 

1.9. All these technologies are based on combining multiple tightly spaced channels in 

parallel at low speeds, and they are all capable of utilizing various modulation levels with 

elastic bandwidth allocations and generation of superchannels offering up to terabit per 

second transmission capability.  

 

 

Figure 1.9 Comparison between CO-OFDM, CoWDM, Nyquist-WDM, and OAWG 
waveform generation: a) CO-OFDM; b) CoWDM; c) Nyquist-WDM; d) OAWG. Δf: 

subcarrier frequency spacing; ΔfG: frequency spacing between CO-OFDM bands; MBW: 
modulator bandwidth 

Retrieved from O. Gerstel et al. (2012, p. s19) 

 

Two multi-carrier-based OFDM solutions have been proposed in literature for optical 

systems: 1) E-OFDM (Christodoulopoulos et al., 2011; Dischler & Buchali, 2009; Takara et 

al., 2011; Xiang et al., 2011), where subcarriers are electrically OFDM modulated and 

assembled into superchannels. 2) CO-OFDM (Chandrasekhar, Xiang, Zhu, & Peckham, 

2009; Shieh et al., 2008), where a comb of frequency-locked subcarriers are conventionally 

modulated at the baud rate of the subcarrier spacing. The spectrum of CO-OFDM solution is 

shown in Figure 1.9(a), where each modulator generates many low-bandwidth (Δf) 

subcarriers to form each band, and the orthogonality is satisfied by ensuring a spacing of ΔfG 

= m × Δf for integer values of m. The Authors of (Guoying et al., 2013; Talebi et al., 2014) 

presented a survey on OFDM-based elastic optical network technologies including related 
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key enabling technologies (i.e., the data-rate/bandwidth-variable transponder and wavelength 

cross-connect design at the node level, RSA, traffic grooming, network survivability, 

virtualization, network control and management solutions at the network level) and indicated 

that optical OFDM is a promising technology for high-speed transmission owning to its high 

tolerance to CD/PMD, high spectral efficiency, and scalability to variable data rates.  

 

The solution of CoWDM as shown in Figure 1.9(b) consists of several tightly spaced 

subcarriers. The orthogonality between subcarriers is maintained by setting subcarrier 

symbol rate to the subcarrier frequency spacing. The CoWDM subcarrier bandwidth (~10-40 

GHz) is larger than that of CO-OFDM (~100 MHz). Consequently, subcarriers of CoWDM 

have lower peak-to-average-power ratio with comparable performance to single-carrier 

systems (Frascella et al., 2010).  

 

In N-WDM (as shown in Figure 1.9(c)) the subcarriers are spectrally shaped so that they 

occupy a bandwidth close or equal to the Nyquist limit for inter-symbol-interference-free and 

cross-talk-free transmission (Tomkos et al., 2012). 

 

In the case of OAWG (as shown in Figure 1.9(d)), arbitrary-bandwidth single- and 

multicarrier channels can be generated, each one them can be in a different modulation 

format. Lower peak-to-average-power ratios and pre-compensation of CD can be achieved in 

the scheme because of its customization of generated waveforms (Gerstel et al., 2012).  

 

2) Flexible Spectrum Selective Switch 

The introduction of elastic optical networking imposes fundamental changes in ROADM 

architecture, since current ROADMs are based on fixed-grid WSS using fixed 50/100 GHz 

channel spacing aligned with the standard ITU-T frequency grid and. The support of elastic 

spectrum allocation can be realized by replacing current fixed-WSS with flexible spectrum 

selective switches (SSS) (Amaya et al., 2013). The resulting ROADM architecture (Amaya et 

al., 2013; Ryf et al., 2005; Sygletos, Tzanakaki, & Tomkos, 2006) is introduced based on 
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liquid crystal on silicon (LCoS) or digital micro electro mechanical systems (MEMS) 

technology.  

 

1.1.4.4 Control Plane for Elastic Optical Networks 

To enable new capabilities of elastic optical networks, an advanced network control plane 

solution fully supporting adaptive bandwidth allocation is required. The concept of software-

defined networks (SDN) is a paradigm where a network is operated based on the separation 

of the data and control planes and a centralized controller is used to control the network 

activities (e.g., forwarding and switching functionalities). In (Gringeri et al., 2013) the 

application of an SDN-based control in optical networks that support various transport and 

switching technologies was reviewed. Both centralized and distributed control planes have 

their trade-offs and they are likely to coexist in the same network. Authors of (Ben Yoo, Liu, 

Proietti, & Scott, 2014) studied architecture, protocol, technologies, systems and networking 

testbed for software defined elastic optical networking. A path computation element (PCE) 

(Farrel, Vasseur, & Ash, 2006), which is considered as a control plane functional component 

as well as an application, is capable of computing a network path or route based on a network 

graph and applying computational constraints. In (Casellas, Muñoz, Martinez, & Vilalta, 

2013) the deployment and use of PCE as a functional element in the framework of control 

and management of optical networks and its role in impairment-aware RWA (IA-RWA) and 

RSA problem were discussed. PCEs are being integrated as functional components in SDN 

control architecture. In (Cugini et al., 2012) a PCE-based architecture has been deployed and 

validated on a flexible optical network. The demonstration showed that the PCE is capable of 

triggering dynamic frequency slot assignment and format adaptation at 100 Gb/s from DP-

16QAM to DP-QPSK and driving the dynamic bit-rate adaptation at DP-16QAM from 200 

Gb/s to 100 Gb/s.  
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1.2 Protection Strategies in Optical Networks 

In this section we briefly review some existing optical network protection strategies in 

literature. Optical networks are vulnerable to failures, for instance, fiber cuts, equipment 

failures, natural disasters, or operational errors, since one single failure could cause huge 

amount of economic loss, especially when the transmission capacity in a fiber cable has 

increased significantly in recent years to meet the challenge of rapid growth of global 

Internet traffic. Therefore, it’s essential to consider the protection mechanism as a routine 

throughout the network design process. The protection scheme can be implemented in optical 

layer and/or in its client layer. According to the location, the type of resource utilization, and 

the topology where the protection is implemented, different protection schemes have specific 

characteristics and applications (R. Ramaswami, K. Sivarajan and G. Sasaki, 2009; 

Simmons, 2008).  

 

1.2.1 Protection in Optical Layer and Client Layer 

A wide variety of protection mechanisms exist in client layers, for example, SONET/SDH, 

Internet Protocol (IP), multiprotocol label switching (MPLS), and Ethernet networks. The 

protection scheme in each client layer is designed to work independently of other layers (R. 

Ramaswami, K. Sivarajan and G. Sasaki, 2009). For example, 1+1, 1:1, 1:N, unidirectional 

path-switched ring (UPSR), and bidirectional line-switched ring (BLSR) protection 

techniques have been extensively used in legacy SONET/SDH networks. IP networks use 

“best-effort” and distributed protection scheme. In MPLS networks, the label-switched paths 

(LSPs) are protected by pre-computed “fast reroute” protection tunnel (i.e., 60 ms carrier 

grade protection switching time) to bypass the affected node and/or link.  

 

There is a growing interest of implementing protection in optical layer, since the optical 

protection is provided on the granularity of a wavelength (or a set of wavelengths or a fiber) 

and it scales gracefully with increasing traffic level (Simmons, 2008). As shown in Figure 

1.10, the optical layer in the OTN structure includes the optical channel (OCh) layer, the 
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optical multiplex section (OMS) layer, and the optical transmission section (OTS) layer. 

Different optical layer protection schemes presented in (R. Ramaswami, K. Sivarajan and G. 

Sasaki, 2009) include 1+1 OMS protection, 1:1 OMS protection, OMS-DPRing (dedicated 

protection ring), OMS-SPRing (shared protection ring), 1:N transponder protection, 1+1 OCh 

dedicated protection, OCh-SPRing, OCh-mesh protection, and GMPLS (generalized MPLS) 

protection.  

 

 

Figure 1.10 Optical layers and electronic layers within OTN 
Retrieved from R. Ramaswami et al. (2009, p. 478) 

 

Compared to the protection in the client layers, optical layer protection has following 

advantages and limitations. 

 

Advantages:  

• Cost-effective and efficient 

• Significant cost savings 

• Handle faults more efficiently 

• Provide an additional degree of resilience 

• Mesh protection requires less protection resources 
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Limitations:  

• Cannot handle all failures 

• Trigger the protection based on detecting loss or degradation of optical signal   

• Cannot protect part of the traffic 

• Longer protection routes 

 

Considering all protection strategies have pros and cons, a solid and effective protection 

strategy requires seamless cooperation and coordination between different network layers 

(e.g., IP/MPLS over WDM (Wei, 2002)). A proper implementation of control plane to create 

a communication channel between multilayers is also essential to realize this task.  

 

1.2.2 Ring vs. Mesh Protection 

Protection can be realized in ring topologies and mesh topologies. 1) When a failure occurs 

in a ring topology, all traffic passing through the failed link or node is routed in the reverse 

direction of the ring topology to re-establish the connection. 2) In a mesh topology, once the 

failure occurs, a protection path is established arbitrarily by rerouting on a secondary path, 

which is generally link-disjoint or node-disjoint with the primary path.  

 

Compared to the ring protection scheme, the mesh protection scheme generally has more 

freedom on choosing the protection path and requires less spare capacity. However, the mesh 

protection relies on more sophisticated higher-level control and coordination between nodes.  

 

1.2.3 Link vs. Path Protection 

When a failure occurs, link protection searches for a secondary link bypassing only the failed 

link. Path protection tries to establish a protection path completely link/node-disjoint with 

working path. For instance, as shown in Figure 1.11, when a failure has been detected 

between node 2 and 3, in the link protection scheme the traffic is rerouted through links [1-2-

5-6-3-4] to bypass failed link [2-3]; on the contrary, in the path protection scheme the traffic 
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is redirected through links [1-7-8-4], which share no common links with the working path [1-

2-3-4].  

 

Link protection is generally more capacity-efficient than path protection, since only the failed 

link of the working path need to be rerouted and therefore may be easier to find available 

resources within the topology.  

 

Figure 1.11 Comparison between link and path protection strategies 

 

1.2.4 Dedicated vs. Shared Protection 

According to the way of allocating protection resources, we can further classify the 

protection schemes into dedication protection and shared protection. Well-known dedicated 

protection schemes include 1+1 and 1:1 protection. The shared protection scheme mostly 

falls into the category of 1:N, or more general form M:N, where N working resource units 

(e.g., fiber links, transponders, router, lightpath, etc.) share M protection units. Apparently, 

dedicated protection scheme consumes more capacity resources than shared protection 

scheme, however dedicated protection scheme can respond to the failure quickly without 

sophisticated coordination and control.  

 

Path Protection

Link Protection

Working Path
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1.2.4.1 1+1 Protection 

In the 1+1 dedicated protection scheme, each working path is protected by generally a link 

and/or node disjoint path. The signal is transmitted on these two paths simultaneously. Once 

a failure is detected, the traffic is switched to the protection path immediately. The capacity 

redundancy is intentional in this scheme to improve the protection efficiency. Advantage of 

this scheme is a quick response to the failure.  

 

1.2.4.2 1:1 Protection 

Contrary to the 1+1 strategy, the backup path in the 1:1 dedicated protection scheme is 

activated only when a failure is detected in the working path. The response time of 1:1 

scheme is slower than the 1+1 scheme, since in the 1:1 scheme normally there is a 

synchronization delay from the detection of the failure to the activation of the protection 

path.  

 

1.2.4.3 1:N (M:N) Protection 

1:N protection scheme indicates that one unit of protection resource is shared among N 

working resource units. 1:N is a more resource-efficient protection strategy, since the 

redundancy in the dedicated protection scheme has been largely reduced. Nevertheless, the 

1:N scheme is more vulnerable in the scenario of multiple network failures. To address this 

issue, the M:N scheme has been proposed as a generalization of the 1:N protection scheme, 

i.e., M protection resource units are shared among N working resource units. The M:N 

protection scheme largely increases the robustness when multiple failures occur 

simultaneously.  
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1.3 The Filterless Optical Networks 

In this section we review the concept of filterless optical networks (C. Tremblay, Gagnon, 

Châtelain, Bernier, & Bélanger, 2007) and recent work on the design of filterless optical 

networks. A comparison between conventional and filterless optical line system in terms of 

required optical node components, physical impairments, and cost is presented. We then 

review previously developed filterless network design and simulation (FNDS) platform, 

which has been developed for solving the physical link interconnection and static RWA 

problem in filterless optical networks. Using the proposed platform, a simple filterless 

solution of a German 7-node topology is demonstrated as a case study. Finally, we discuss 

the research problematic of this thesis.  

 

1.3.1 Related Work 

The architecture of filterless optical networks (C. Tremblay et al., 2007) has been explored in 

recent years. In (Christine Tremblay et al., 2013) the filterless network concept based on 

advanced transmission technologies and passive optical interconnections was presented and 

resulting filterless solutions obtained using the FNDS tools were analyzed for various 

network topologies ranging from 690 to 1924 km. The performance in terms of cost and 

wavelength consumption was analyzed when compared to active photonic switching 

solutions and the results confirmed the cost-effectiveness and reliability of filterless optical 

networks as an alternative to the active counterpart. In (Archambault et al., 2010), the 

filterless network design and simulation (FNDS) tool is developed to solve the physical link 

interconnection and static RWA problem, and cost-effective filterless solutions achieve 

comparable wavelength consumption compared to active photonic networks. In (Savoie, 

Tremblay, Plant, & Belanger, 2010) a filterless analytical link engineering model was 

developed and validated using the commercial software VPItransmissionMakerTM. In more 

recent works (Mantelet, Cassidy, et al., 2013; Mantelet, Tremblay, Plant, Littlewood, & 

Belanger, 2013), the authors proposed path computation element (PCE)-based control plane 

for the filterless optical networks and studied the dynamic RWA problem.  
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1.3.2 The Concept of Filterless Optical Networks 

Filterless optical networks leverage the breakthroughs of coherent transmission and 

electronic dispersion compensation technologies (McNicol et al., 2005; Roberts et al., 2009) 

to offer network agility and cost-effectiveness. Instead of deploying WSS-based ROADM 

(see Figure 1.5 and Figure 1.6) as in conventional active photonic networks, link 

interconnection between network nodes and local add-drop are realized by passive 

splitters/combiners at intermediate nodes. Such passive WAN solution is referred to as the 

filterless optical network. Consequently, this broadcast-and-select architecture uses tunable 

transponders to adjust the transmitted wavelength at source nodes and coherent receivers to 

achieve the wavelength selection function at destination nodes, similar to the principle in 

radio networks (Christine Tremblay et al., 2013). As a promising alternative to the active 

photonic switching networks, the proposed filterless networks are expected to offer superior 

performance in terms of cost-effectiveness, robustness, energy efficiency, enabled flex-

grid/colorless ability, and multicast capability.  

 

1.3.3 Conventional vs. Filterless Optical Transmission Systems 

A comparison between convectional and filterless optical transmission systems is illustrated 

in Figure 1.12. In a filterless optical transmission system, optical multiplexers (Mux) and 

demultiplexers (Demux) as shown in Figure 1.12(a) are substituted for passive optical 

combiners and splitters as shown in Figure 1.12(b). Tunable transponders and DSP-assisted 

coherent optical receivers are used in the filterless optical transmission systems instead of 

conventional optical transmitters and receivers based on intensity modulated direct detection 

(IM-DD) used in legacy optical transmission systems. The resulting filterless architecture 

removes the dispersion compensation modules (DCMs) along the transmission line, since the 

physical impairments, such as chromatic dispersion (CD) (up to 50000 ps/nm), polarization 

mode dispersion (PMD) (up to 100 ps), and polarization-dependent loss (PDL), can be 

compensated by DSP-assisted receivers at edge terminals (Christine Tremblay et al., 2013).  
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Figure 1.12 Comparison between conventional (a) and filterless (b) optical transmission 
systems 

Retrieved from C. Tremblay et al. (2013) 

 

1.3.4 The Filterless Network Design and Simulation Platform 

In general, the relevant network design problem of filterless optical networks can be defined 

as follows. Given a topology G(V, E) with a set of nodes V and unidirectional fiber links E 

and a set of traffic demands (could be known in advance or dynamically arrived and 

released), firstly we need to ensure that any two nodes within the topology can be physically 

connected by fiber links using passive splitters and combiners at some nodes. We refer this 

problem as fiber link interconnection problem. Secondly, we must establish physical path in 

the topology for each connection request and assign specific spectral resources (such as a 

wavelength channel) to it, which is referred to routing and wavelength assignment (RWA) 

problem. The objective is to optimize the utilization of spectral resources in all fiber links, 

while satisfying the following constraints: 1) Laser loop constraint: no closed loop is allowed 

in interconnecting the nodes with splitters and combiners to avoid laser effects (i.e., 

accumulated amplified spontaneous emission (ASE) noise). 2) Transmission length 
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constraint: the maximum transmission distance of each connection is limited to 1500km 

without O-E-O regeneration, which is reasonable value for a long haul WDM system with 

the consideration of OSNR penalty and the deployment of coherent receivers at edge 

terminals. 3) Wavelength continuity constraint (see Section 1.1.1).  

 

A filterless network design and simulation (FNDS) tool has been developed under a 

MATLAB environment to solve above filterless network design problem. The fiber link 

interconnection problem is solved by a genetic algorithm (GA). The RWA problem, is solved 

sequentially (i.e., routing (R) + wavelength assignment (WA)) by using a GA and Tabu 

Search (TS) metaheuristic algorithm (Archambault et al., 2010).  

 

1.3.4.1 Fiber Link Interconnection Problem 

The objective of the fiber link interconnection problem is to establish full network 

connectivity in a filterless network by creating a set of edge-disjoint fiber trees, each 

representing a set of interconnected optical fibers and corresponding to a solution to the fiber 

link interconnection problem. A combination of all created fiber trees spanning all nodes 

ensures the full network connectivity between any two nodes in the network (i.e., all end-to-

end connection is connected by at least one physical route). The resulting broadcast-and-

select filterless architecture, and therefore the filterless network connectivity, is created by 

configuring splitters/combiners at each node. Considering the problem’s complexity, the 

fiber link interconnection problem is solved by a genetic algorithm presented in 

(Archambault et al., 2010). An example of obtained filterless solution with two fiber trees 

(i.e., black and gray) is illustrated in the right side of Figure 1.13. The fiber link 

interconnection problem is subject to the following constraints: 1) Full network connectivity 

constraint: any two nodes within the network should be physically connected by at least one 

route. More than one candidate route can be found for certain end-to-end connections in the 

network owning to the fiber-tree-based filterless architecture. The shortest route is generally 

referred to the working path, and other routes (excluding the shortest one) will serve as 

protection paths. Without any consideration of resilience mechanism in the filterless network, 
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the ratio of the number of demands with more than one available candidate routes over the 

number of total demands is referred to as intrinsic protection ratio. 2) Laser loop constraint: 

since filtering components, which are used to block certain wavelengths in active photonic 

switching networks, have been replaced by passive splitters/combiners in filterless networks, 

optical signals are broadcasted at each encountered intersections and continuously propagate 

along the fiber tree. This node feature is referred to as drop-and-continue (Mantelet, 

Tremblay, et al., 2013). Due to this drop-and-continue filterless node feature, no closed loop 

is allowed in fiber-tree-based filterless solution to avoid laser effect, which is caused by the 

accumulation of ASE noise. 3) Transmission length constraint: the maximum transmission 

reach is limited to 1500km to take into account physical impairments such as CD, PMD, and 

PDL and avoid O-E-O regeneration. This constraint is satisfied in the FNDS platform by 

setting the maximum length of fiber tree (i.e., the maximum root-leave distance in a fiber 

tree) to 1500km.  

 

 

Figure 1.13 A filterless solution example in the German 7-node topology (Archambault et 
al., 2010) with two fiber trees (gray and black solid line) 
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1.3.4.2 Static RWA Problem in Filterless Optical Networks 

Based on obtained fiber link interconnection solutions, the static RWA problem is solved 

sequentially in two steps (R+WA). Firstly, the routing (R) subproblem is performed by 

selecting the shortest path for each connection request. Secondly, the wavelength assignment 

(WA) subproblem is transformed to a well-known graph-coloring problem (Mukherjee, 

2006) and solved by a Tabu Search metaheuristic (O'Brien, Chatelain, Gagnon, & Tremblay, 

2008) with the objective of minimizing the maximum number of consumed wavelengths in 

all fiber links, while satisfying the wavelength-continuity constraint (i.e., for each connection 

a same wavelength must be used throughout its lightpath and no wavelength overlapping 

between two connections if they pass through same fiber links). Each wavelength channel in 

a fixed-grid solution occupies 50-GHz channel spacing and supports a channel capacity of 10 

Gb/s.  

 

1.3.5 Case Study: Filterless Network Solution vs. Active Photonic Switching 

Network Solution 

In this Section, we compare the cost and wavelength consumption performance of a filterless 

solution and an active photonic network solution (referred to as conventional) for a German 

7-node network topology, and point out some pros and cons of filterless optical networking 

when compared to the active counterpart.  

 

The network topology considered is illustrated in Figure 1.14, where each node in the 

conventional network is equipped with ROADM for signal switching and local add/drop, and 

on the other hand each node in the filterless network is configured with passive splitters and 

combiners to for signal broadcasting and local add/drop. The two-fiber-tree-based filterless 

solution shown in Figure 1.14 has an intrinsic protection ratio of 71%. The traffic matrix is 

known in advance in a static traffic scenario.  
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The cost analysis of above two solutions is presented by comparing only the active routing 

cost (using WSS for signal switching in the conventional case) and passive routing cost 

(passive signal splitting and combining in the filterless case). In this comparison, the 

broadcast-and-selection ROADM node structure (see Figure 1.5) is assumed for the 

conventional network. To achieve full switching capability, the number of WSSs in each 

node is equal to the nodal degree of that node for any node with a nodal degree greater than 2 

(Archambault et al., 2010). For example, in above German 7-node network we have five 

nodes with a nodal degree greater than 2 (i.e., node B, C, D, F, and G), and total nodal degree 

for these five nodes are 18, so the number of required WSSs is equal to 18. Additionally, we 

assume that similar number of optical amplifiers is required in both cases for simplification, 

so the cost of associated optical amplifiers used to compensate for the insertion loss (WSS or 

signal splitting) in the active and filterless solutions are not considered.  

 

 

Figure 1.14 Active photonic switching networks based on ROADMs (left) and filterless 
networks based on two fiber trees (right) for a German 7-node topology 

 

Another performance metric considered in this study is the wavelength consumption for a 

given traffic matrix. We assume that the channel capacity per wavelength in a 50-GHz 

channel bandwidth supports traffic of 10 Gb/s. A symmetrical traffic matrix with a total of 



45 

1.48 Tb/s traffic is applied for both the conventional and filterless network for a fair 

comparison. The number of utilized wavelengths in the conventional network is obtained by 

minimizing the demand length. On the other hand, the result of filterless solution is obtained 

by solving the RWA problem with the FNDS tool.  

 

The results of performance comparison between the conventional and filterless solution is 

summarized in Table 1.4. We can see from this table that the filterless solution on the 

German 7-node network has a comparable performance in terms of average demand length 

and wavelength consumption when compared to the conventional solution, whereas these 

performances are achieved with much lower cost in the filterless solution.  

 

Table 1.4 Performance comparison between active photonic switching and filterless 
solution on the German 7-node network topology 

 

Solution 
Avg. Dem. 

Length (km)
Number of 
wavelength

Added 
components

Unit cost Quantity
Added 
Cost 
(a.u.) 

Active 
photonic 
switching 
network a 

349 30 WSS 2.5 18 45 

Filterless 
optical 

network 
353 35 (32) b 

Passive 
splitters and 
combiners 

0.02 28 0.56 

a. The number of used wavelengths of active network is retrieved from (Christine 
Tremblay et al., 2013). 

b. The result in parentheses is obtained by solving the RWA problem in a joint manner.  

 

On the other hand, the filterless solution has an intrinsic protection ratio of 71% without any 

consideration of protection strategies, which means that certain demands (e.g., the connection 

between nodes C and F shown in Figure 1.14) have only one physical route available in the 

network and they were vulnerable to failures occurred along their routes. Besides, the major 

concern in the filterless network lies in the presence of unfiltered channels due to the drop-

and-continue filterless node feature (Mantelet, Tremblay, et al., 2013), as the wavelengths 
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occupied by them cannot be reused for other connections, which increases the wavelength 

utilization. That’s reason why the number of used wavelengths (shown in Table 1.4) in the 

filterless network is slightly higher than that of the active network.  

 

1.4 Research Problematic and Conclusions 

In this Section, we have reviewed the wavelength-routed optical networks (WRON) and 

some key enabling technologies in the WRON such as the routing and wavelength 

assignment, ROADM architectures and high-capacity transmission techniques, and the 

emerging paradigm of elastic optical networking as a promising solution to achieve spectral 

efficiency and transmission flexibility. We have also looked over the resilience issue in the 

WRON and the existing protection strategies in the literature.  

 

In previous work (Archambault et al., 2010; Christine Tremblay et al., 2013; C. Tremblay et 

al., 2007), the filterless optical networks have been proved to be much more cost-efficient 

than active photonic networks, while maintaining the wavelength utilization at a comparable 

level. The major concern in filterless architecture lies in the presence of unfiltered channels 

due to the drop-and-continue nature of filterless nodes (Mantelet, Tremblay, et al., 2013), 

where wavelength channels propagate beyond their destination nodes and all the way to the 

terminal nodes of filterless fiber trees. The existence of these unfiltered signals magnifies the 

wavelength consumption, as the spectral resources occupied by these channels cannot be 

reused by any other lightpath connections. In this regard, developing an efficient resource 

allocation solution is highly necessary to address this concern with an effort to minimize the 

presence of unfiltered channels, and therefore to optimize the spectral resource utilization. 

Besides, all existing studies of filterless network architecture have been considering fixed-

grid scenarios, i.e., the standard ITU grid with 50 GHz channel spacing supporting 10 Gb/s 

traffic per wavelength. Facing the rapidly increasing interest in the variations in capacity 

required by different applications, it is unlikely that long-haul transmission will keep using 

the conventional WDM systems with such fixed channel spacing. Therefore, there has been 

increasing interest in considering more spectrally efficient filterless solutions. 
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Another concern need to be addressed in designing filterless optical networks is the network 

survivability issue. The filterless network solutions are characterized by an intrinsic 

protection ratio, defined as the percentage of s-d node pairs connected by at least two link-

disjoint paths over total number of the s-d node pairs in the given network topology without 

any specific consideration for resiliency. For most network topologies, this intrinsic 

protection ratio of a given filterless solution is lower than 100%. Therefore, some traffic 

demands may have only one single route available, and consequently they cannot be 

protected in the case of a link/node failure. Hence, the problem of providing dedicated 

protection mechanism against potential fiber link/node failure in a filterless outside plant 

needs to be addressed.  
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Abstract 

 

We propose a dedicated optical-layer protection strategy for filterless optical networks 

offering a 100% protection ratio by introducing a limited number of wavelength selective 

components at selected intermediate nodes. A comparison with conventional active photonic 

switching networks is presented. The results show that the proposed 1+1 protection for 
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filterless networks exhibits a clear cost advantage at similar wavelength usage compared to 

active switching solutions.  

 

2.1 Introduction 

In order to cope with the growing traffic demand driven mainly by Internet traffic, capacity 

of optical backbone networks has increased significantly over the past few years. At the same 

time, the network operator revenues have not followed the same pattern. To address this 

imbalance, carriers have been steadily focusing on reducing their operational costs and hence 

looking into deploying more cost-effective optically agile networks. In current active 

photonic switching networks, agility is provided by reconfigurable add-drop multiplexers 

based on wavelength selective switches (WSS) at intermediate nodes (Strasser & Wagener, 

2010). The filterless network concept has been proposed in (C. Tremblay et al., 2007) as a 

simpler and more cost-effective method to deliver network agility. This concept is based on 

the premise that the need for agility and reconfigurability can be provided by using tunable 

transmitters and coherent receivers at the network edge terminals, as in radio networks 

(Archambault et al., 2010; Mantelet, Tremblay, et al., 2013; Christine Tremblay et al., 2013; 

C. Tremblay et al., 2007). In the resulting network architecture, the active switching 

components at intermediate nodes and the colored components used for local wavelength 

add-drop are replaced by passive optical splitters and combiners. This results in a cost-

effective broadcast and select network architecture that is currently considered as a candidate 

for software defined networking (Gringeri et al., 2013). Furthermore, the filterless optical 

network is considered as particularly suitable for submarine applications, which stringently 

require components with small footprint and low complexity.  

 

A filterless network can be created by placing passive splitters and combiners at some nodes 

for optically interconnecting all the nodes. A filterless network design tool based on 

metaheuristics has been developed for solving the fiber link interconnection problem by 

constructing sets of interconnected optical fibers referred to as fiber trees (Archambault et 

al., 2010). These generated fiber trees are edge-disjoint and some of them may not span all 



51 

nodes due to the limited connectivity of the network topology. The resulting filterless 

network architecture, and therefore the filterless network connectivity, depends on the 

configuration of splitters and combiners at each node.  

 

These filterless network solutions are characterized by an intrinsic protection ratio, defined 

as the percentage of source- destination (s-d) node pairs connected by at least two link- 

disjoint paths among all the s-d node pairs in the network without any specific consideration 

for resiliency. The intrinsic protection ratio of a given filterless network solution, which is 

fully determined by the fiber tree configuration, could be lower than 100% as it is not always 

possible to guarantee that all s-d node pairs are covered by two edge-disjoint trees (Christine 

Tremblay et al., 2013). Therefore, some traffic demands may have only a single route 

available, and consequently, cannot be protected in the case of a link failure. Hence, the 

problem of providing protection against fiber link failures in a filterless outside plant needs to 

be addressed, similarly to the conventional active switched photonic networks.  

 

In this paper, we propose a 1+1 optical-layer protection strategy for filterless networks. 

Protection paths are set up by using wavelength selective components placed at selected 

nodes for interconnecting the fiber trees. Fully protected filterless solutions with 100% 

protection ratio (e.g., at least two link-disjoint paths could be found for all the s-d node pairs 

in the network) are proposed for a number of physical network topologies and compared with 

WSS-based active photonic switching counterparts. The results show that the filterless 

network solutions with 100% protection ratio obtained by using this method can be much 

more cost-effective than its active counterpart while keeping the wavelength usage at a 

comparable level.  

 

2.2 Inter-tree Protection Path Strategy 

Each filterless network solution generated by the design tool is characterized by a single 

value for the intrinsic protection ratio. The intrinsic protection ratios of filterless network 

solutions are presented for several physical topologies in Figure 2.1 (Christine Tremblay et 
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al., 2013). The intrinsic protection ratio of all tested network topologies except the EuroCore 

11 (4-edge-connected) is less than 100% because it is not possible to find two edge-disjoint 

spanning fiber trees and cover each s-d node-pair. It can be seen that the intrinsic protection 

ratio of a filterless network solution correlates strongly with the filterless network 

connectivity, which is defined as 2k/n(n−1), where k is the number of fiber link 

interconnections and n is the number of nodes. This strong correlation suggests that the 

protection ratio of a filterless network could be increased by improving the filterless network 

connectivity. In this section, we propose a protection strategy to achieve a 1+1 dedicated 

optical-layer protection with a 100% protection ratio in filterless networks.  

 

Figure 2.1 The intrinsic protection ratio vs. the filterless network connectivity. The 
intrinsic protection ratio (solid triangles) of filterless solutions correlates extremely well with 

the filterless network connectivity (squares) for different types of network topology 
(Chatelain, Belanger, Tremblay, Gagnon, & Plant, 2009) 

 

The basic principle of the proposed protection strategy is to create extra protection paths by 

introducing a minimum number of wavelength blockers (WBs), referred to as inter-tree WBs, 

at some intersecting nodes between edge-disjoint fiber trees.  
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Figure 2.2 WB-only protection scheme on G7. WB-only protection scheme illustrated on a 
filterless solution for a 7-node subset of German network (G7) (Archambault et al., 2010) 

composed of two fiber trees (black and gray solid lines, respectively). Unfiltered wavelength 
λ1 and λ2 are marked by dashed lines 

 

Figure 2.2 illustrates the WB-only approach with an example of a filterless solution for a 7-

node subset of German network (G7). This filterless solution composed of two edge-disjoint 

fiber trees (represented by the black and gray lines, respectively) has an intrinsic protection 

ratio of 71%. In this example, the protection ratio is increased to 100% by placing two pairs 

of inter-tree WBs (one per direction) at intersecting nodes A and E between two trees. In the 
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resulting 1+1 protected solution, all s-d pairs are connected by two link-disjoint paths. For 

example, for the B-C node pair, there is only one path [B-C] (marked in blue) in the original 

filterless solution. A protection path [B-F-E-D-C] (represented in green solid line) is created 

by placing an inter-tree WB at node E. Inter-tree WBs can also prevent the wavelengths from 

passing from one fiber tree to another, thus preventing conflicts between connections using 

the same wavelength in two different (independent) fiber trees. The blocking function of the 

WB is depicted in Figure 2.2, where the wavelength λ1 in one fiber tree (gray line) is blocked 

by the WB at node E and hence can be reused in the second fiber tree (black line) for another 

traffic demand, whereas the wavelength λ2 carrying crossing-tree traffic passes the WB at 

node E and then is blocked by the WB at node A to relieve the wavelength continuity.  

 

Given the problems complexity, the inter-tree WB placement problem is solved through a 

heuristic algorithm (see flowchart in Figure 2.3). The objective is to ensure that all traffic 

demands are protected by using a limited number of wavelength selective components. In the 

first step, link-disjoint protection paths are provided for each s-d node pair by adding inter-

tree WBs to an existing unprotected solution. Two different routing methods are considered 

for inter-tree WB placement: shortest path and lowest node complexity, respectively. The 

shortest path minimizes the length of the protection paths, while the least node complexity 

minimizes the number of inter-tree WBs by selecting the inter-tree configuration with the 

lowest node degree amongst all the instances.  

 

In the second step, the laser loops introduced by the inter-tree WBs are removed by placing a 

minimum number of WBs (referred to as intra-tree WBs) in the fiber trees. WBs present the 

advantage of being wavelength reconfigurable (Christine Tremblay et al., 2013), but fixed 

colored passive filters (CPFs), such as fiber Bragg gratings (FBG) or red/blue filters, can also 

be used as a more cost-effective alternative (Chen et al., 2011). Two protection schemes have 

been considered: 1) based only on WBs, referred to as WB-only solution; and 2) a hybrid 

solution, using both WBs and CPFs, referred to as WB+CPF.  
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Figure 2.3 Flowchart of RWA heuristic algorithm for survivable filterless solutions. 
Proposed RWA heuristic algorithm for providing 1+1 protected solutions through inter-tree 

WB placement 
 

Start inter-tree WB placement
with n iterations, where n = number of unprotected demands

Input: a filterless solution with minimum edge-disjoint fiber trees, traffic matrix

End of n iterations

If any demand is still unprotected
Yes

Evaluate the intrinsic protection ratio

List all unprotected s-d node pairs

No

Choose the protection path routing method: 
1) shortest link-disjoint path; and 

2) link-disjoint path with least node complexity.

Set up inter-tree WBs by the selected routing algorithm for
all unprotected demands with random list order

If total number of inter-tree WBs > M

Set the max. number of inter-tree WB (M) = 2

Yes

No

End of routing all unprotected demands

Detect laser loop in the inter-tree WB solution

Remove laser loop by placing 1) intra-tree WB; or 2) WB+CPF

Wavelength assignment

Output: 1+1 protected solution, number and location of WBs and/or CPFs

M = M + 2

Add current inter-tree WB to the list of inter-tree WBs
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Figure 2.4 WB+CPF protection scheme on IT10. WB+CPF protection scheme applied on a 
filterless solution for the 10-node Italian network (IT10) (Archambault et al., 2010). 

Wavelength λ1 (in red) added at node A is blocked by CPF1 after reaching its destination at 
node B 
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In the final step, each traffic demand is routed through two link-disjoint paths (i.e., the 

primary and protection path, respectively). If more than two link-disjoint paths exist for one 

s-d node pair, the wavelengths, which are not used either in the primary or the protection 

paths, will be blocked by the first encountered inter- or intra-tree WB. Finally, the routing 

results are transformed into a conflict matrix, where nodes represent the networks traffic 

demands, and wavelength assignment is performed as a graph-coloring problem with the tabu 

search metaheuristic presented in (Archambault et al., 2010).  

 

A WB+CPF protection method, in which intra-tree fixed CPFs are used (instead of WBs) for 

eliminating the laser loops, is also proposed. Figure 2.4 illustrates the hybrid WB+CPF 

approach with an example of a filterless solution for the 10-node Italian network (IT10) 

characterized by an intrinsic protection ratio of 47%. In this case, two pairs of inter-tree WBs 

are placed at nodes C and H in order to obtain a 100% protection ratio. As a result of inter-

tree WB placement, one laser loop (represented in red) is created. An alternative to placing 

one pair of intra-tree WBs at nodes A (WB-only method) is to add 6 CPFs to drop 

wavelengths that have reached their destinations. To illustrate the blocking function of the 

CPF, we consider one wavelength λ1 transmitted from node A to node B in Figure 2.4. The 

intra-tree CPF placed between nodes A and B prevents the laser loop of [A-F-G-H-I-F-C-B-

A]. A CPF is a very simple fixed filter that can block only one wavelength, while WBs are 

more sophisticated reconfigurable devices that can block from one to all wavelengths. Thus, 

the WB+CPF approach can be considered as a more cost-effective solution while the WB-

only approach is recommended in the cases where several wavelengths need to be blocked or 

reconfigurability is desired. A tradeoff between cost and reconfigurability can be realized 

with the WB+CPF method by implementing both intra-tree WBs and CPFs. Figure 2.5 

illustrates this method with an example of a filterless solution for the 17-node German 

network (G17). In this case, 8 WBs and 14 CPFs are needed to achieve 100% protection, 

compared to 16 WBs by using the WB-only method.  
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Figure 2.5 WB+CPF protection scheme on G17. WB+CPF protection approach, with both 
intra-tree WBs and CPFs, applied on a filterless solution for the 17-node German network 

(G17) (Archambault et al., 2010) 
 

2.3 Performance Evaluation 

A cost and performance comparison of the protected and unprotected filterless network 

solutions for three network topologies is summarized in Table 2.1. In this exercise, only the 

extra wavelength selective components used for optical-layer protection are considered in the 

cost calculation. The unit costs of the added components (indicated in arbitrary units) are 

normalized to the cost of an erbium-doped fiber amplifier (EDFA) (Ciena, 2014). As 

expected, 100% protection ratio is obtained at the cost of the additional WBs. However, the 
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required amount of WBs is low, which makes the 1+1 protection very cost-effective, 

compared to active photonic switching solutions. Furthermore, some of the reconfigurable 

devices can be replaced by fixed CPFs to further reduce extra deployment costs. Performance 

results also show that the wavelength consumption for the proposed 1+1 protection is 

moderately higher than for the unprotected filterless solutions.  

 

Table 2.1 Comparison of 1+1 protection methods 

 

Network Topology 
Protection 

method 
Protection 

ratio 
Wavelength 
consumption 

Total cost a 
(a.u.) 

German 
7-node  

Intrinsic 71% 68 0.56 

WB-only 100% 89 18.6 

Italian 
10-node  

Intrinsic 47% 42 0.56 

WB-only 100% 53 27.6 

WB+CPF 100% 65 18.7 

German 
17-node  

Intrinsic 33% 126 1.16 

WB-only 100% 140 73.2 

WB+CPF 100% 143 37.4 
a. Assumption of unit costs: WB = 4.5 (including two optical amplifiers with unit cost 

of 1.0); splitter, combiner, CPF = 0.02 (Ciena, 2014).  
 

With the introduction of WBs and CPFs into a filterless network, the resulting network 

architecture, which can be referred to as a semi-filterless optical network (Chen et al., 2011), 

inherits the passive nature of the filterless network while providing 1+1 optical-layer 

protection. The use of wavelength selective components can provide 100% protection ratio 

without introducing extra fiber links but at the expense of higher wavelength consumption.  

 

The cost and performance of proposed 1+1 protected solutions for filterless networks has 

also been compared with their active photonic switching counterparts, which inherently 

provide 1+1 dedicated protection. The results are shown in Table 2.2. In the analysis realized 

on the G7, IT10, and G17 networks, four different protected solutions are proposed, 

depending on the optimization criteria used for the protection path (to minimize the length of 

protection paths, or the number of inter-tree WBs) and the protection scheme (WB-only or 
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WB-CPF). For the G7 network, no laser loop was detected after the inter-tree WB placement, 

and so there is no need to place intra-tree WBs (or CPFs). The WSS-based solutions 

presented in Table 2.2 are simulated by using the commercial software NetCalc Optical 

Planner 3.1 and can be considered to be the best cases, in terms of average demand length 

and number of link segments per demand. Meanwhile, it should be noted that these two 

metrics are averaged on primary and protection paths, and that the total path length can be 

reduced by using the shortest protection path routing method. As we can see from Table 2.2, 

the wavelength consumption of filterless network solutions with dedicated protection, where 

the WBs and CPFs have been deployed, is in average 15% higher than that of active photonic 

networks. We observe that the filterless “solution 1/WB” for G17 exhibits a lower 

wavelength consumption than its active photonic counterpart, at the expense of the 

deployment of 20 WBs. For this network topology, the least node complexity protection path 

routing algorithm used in filterless solutions outperforms slightly the shortest path routing 

algorithm used in WSS-based solutions. The cost advantage of filterless solutions is clearly 

demonstrated in Table 2.2 as well. While maintaining a comparable level in wavelength 

usage, 1+1 protected solutions for filterless networks with a cost advantage greater than 50% 

compared to active photonic switching solutions can be obtained.  

 

2.4 Conclusion 

In this paper, we have proposed a 1+1 dedicated optical layer protection strategy for filterless 

networks based on the deployment of WBs and CPFs at some selected nodes, as well as an 

algorithm for their placement. Our proposed protection scheme is validated on a number of 

network topologies. Results of the cost and performance evaluation show that the resulting 

1+1 protection solutions can achieve a significant cost saving with a comparable level of 

wavelength consumption to that of their active counterpart.  
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Table 2.2 Performance comparison of 1+1 protected solutions and active photonic 
switching solutions 

 

Network 
topology 

Solution 

Number of 
wavelength 

selective 
devices 

Average 
demand 
length 
(km) 

Average 
number 
of link 

segments 
per 

demand 

Number of 
wavelength 

a 

Total 
added 
cost 

(a.u.) 

German 
7-node 

Active photonic 18 WSS b 458 1.94 73 99 

Solution 1 c/WB 10 WB 493 1.94 85 45.8 

Solution 2/WB 4 WB 549 2.26 89 18.6 

Italian 
10-node 

Active photonic 24 WSS 557 2.56 44 132 

Solution 1/WB 12 WB 604 2.97 48 54.7 

Solution 1/WB+CPF
8 WB+6 

CPF 
604 2.97 61 36.8 

Solution 2/WB 6 WB 663 3.20 53 27.6 

Solution 2/WB+CPF
4 WB+6 

CPF 
663 3.20 65 18.7 

German 
17-node 

Active photonic 38 WSS 580 3.74 140 209 

Solution 1/WB 20 WB 688 4.39 133 91.2 

Solution 1/WB+CPF
14 WB+8 

CPF 
688 4.39 134 64.4 

Solution 2/WB 16 WB 742 4.82 140 73.2 

Solution 2/WB+CPF
8 WB+14 

CPF 
742 4.82 143 37.4 

a. The unitary traffic matrix is applied for the IT10 and G17 networks. The traffic matrix 
for the G7 network was retrieved from (Betker, 2003).  

b. Assumption of unit costs: WSS = 5.5 (including two optical amplifiers with a unit cost 
of 1.0) (Ciena, 2014) 

c. Routing methods for the protection paths: solution 1 obtained by minimizing the 
length of protection paths; solution 2 obtained by minimizing the number of inter-tree 
WBs.  
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Abstract 

 

We introduce the new concept of an elastic filterless optical network and propose an efficient 

heuristic algorithm for solving the static routing and spectrum assignment problem. Our 

simulation results obtained for different network topologies under multi-period traffic show 
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increasing bandwidth savings with the growth of traffic load compared to a fixed-grid 

scenario. We also show the benefits of periodical spectrum defragmentation. 

 

3.1 Introduction 

Elastic optical networking (Gerstel et al., 2012; Roberts et al., 2010), also referred to as 

flexible, gridless, and flex-grid networking, has the ability to improve spectral efficiency and 

flexibility, as channel spacing is no longer restricted to a fixed International 

Telecommunication Union (ITU) defined frequency grid, and specific channel bandwidths 

can be assigned to the traffic demands depending on the capacity and distance requirements. 

The corresponding bandwidth assignment problem is referred to as routing and spectrum 

assignment (RSA). Key technology enablers of elastic optical networks include multicarrier-

based bandwidth variable transponders and flexible spectrum selective switches (Gerstel et 

al., 2012; Roberts et al., 2010).  

 

The filterless optical network concept has been proposed as a simple and cost-effective 

architecture to deliver network agility (Christine Tremblay et al., 2013; C. Tremblay et al., 

2007). This concept is based on providing the network agility and reconfigurability by using 

tunable transmitters and coherent receivers at the terminals, as in radio networks. 

Consequently, in filterless optical networks, the active switching and colored components 

used at intermediate nodes and ingress/egress nodes, respectively, are replaced by passive 

optical splitters and combiners, leading to a significant cost reduction (C. Tremblay et al., 

2007). Additionally, the passive gridless architecture of filterless networks makes them 

suitable for elastic optical networking, thus avoiding replacement of the switching and 

filtering devices at nodes (in contrast to the current active photonic networks). Therefore, the 

gridless operation can be achieved at almost no cost without having to deploy gridless 

wavelength selective switches, which are at present significantly more expensive than fixed-

grid ones.  
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The existing studies of filterless network architecture have been considering fixed-grid 

scenarios, i.e., the standard ITU grid with 50/100 GHz channels spacing. In (Archambault et 

al., 2010), a design tool based on genetic and Tabu search algorithms was proposed to solve 

the physical link interconnection and static routing and wavelength assignment (RWA) 

problem in filterless networks. The analysis therein shows that filterless networks are cost 

effective and that resource optimization allows for keeping wavelength utilization within 

reasonable limits. The dynamic RWA problem in filterless networks was solved in (Mantelet, 

Cassidy, et al., 2013). A control plane for such networks was proposed in (Mantelet, 

Tremblay, et al., 2013), while the resilience against link and node failures was studied in (Xu 

Zhenyu et al., 2014).  

 

In this paper, we introduce the new concept of an elastic filterless optical network, which 

combines the benefits of filterless architectures based on passive broadcast-and-select nodes 

with the spectral efficiency and flexibility of elastic networking. An efficient heuristic 

algorithm is proposed for static RSA in elastic filterless networks under a multi-period traffic 

scenario. A comparison with fixed-grid filterless solutions indicates superior performance of 

the elastic filterless approach in terms of spectrum utilization. Moreover, simulation results 

show that additional bandwidth savings can be achieved by periodical spectrum 

defragmentation.  

 

3.2 Elastic Filterless Optical Networks Concept 

The physical layer architecture of elastic filterless networks is composed of a set of passive 

broadcast-and-select nodes interconnected by edge-disjoint fiber trees. The fiber trees, each 

denoting a set of interconnected optical fiber links, represent a solution to the fiber link 

interconnection problem obtained by a genetic algorithm based design tool from 

(Archambault et al., 2010), combined with the optical-layer protection scheme from (Xu 

Zhenyu et al., 2014) to provide 1+1 dedicated protection. The resulting physical topology and 

network connectivity are established by configuring the splitters and combiners at the nodes.  
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(a) Elastic filterless solution 

 

(b) Fixed-grid filterless solution 

 

(c) Traffic matrix 

Figure 3.1 Illustration of elastic (a) and fixed-grid (b) filterless solutions in a six-node 
network topology for a given traffic matrix (c). The filterless solution with 2 fiber trees (blue 

and red, respectively) is shown in the background 

 

Demand Source Destination Traffic Distance Line rate Modulation BW (Flex) BW (Fixed) 
1 1 4 80 Gb/s 1200 km 1×100G DP-QPSK 3×12.5 GHz 1×50 GHz 
2 2 5 150 Gb/s 700km 1×200G DP-16QAM 3×12.5 GHz 2×50 GHz 
3 2 3 380 Gb/s 300 km 1×400G DP-16QAM 6×12.5 GHz 4×50 GHz 
4 4 6 400 Gb/s 700km 2×200G DP-16QAM 6×12.5 GHz 4×50 GHz 
5 4 1 200 Gb/s 1200 km 2×100G DP-QPSK 6×12.5 GHz 2×50 GHz 
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Each node in the proposed elastic filterless network is equipped with coherent transponders 

(Gringeri et al., 2013), in which the modulation format and the corresponding channel 

capacity can be selected between quadrature phase shift keying (QPSK) and 16 quadrature 

amplitude modulation (QAM) through software control. In this work, we consider dual-

polarization (DP) coherent transponders that can operate at channel capacities of 100 and 200 

Gb/s (single-carrier) and 400 (dual-carrier) Gb/s, with a corresponding channel bandwidth of 

37.5/37.5/75 GHz and reach of 2000/700/500 km, respectively (Gerstel et al., 2012; Roberts 

& Laperle, 2012). Soft-decision forward error correction (SD-FEC) with overhead close to 

20% is assumed in order to achieve the maximum reach at the considered line rates. On the 

other hand, 50-GHz channels at 100 Gb/s are used in the fixed-grid case.  

 

An illustration of the elastic filterless optical network concept is depicted in Figure 3.1a. 

Unlike the conventional 50-GHz fixed-grid filterless solution shown in Figure 3.1b, the 

spectrum granularity of the elastic solution can be decreased to a single frequency slot unit 

(FSU) (Gerstel et al., 2012) (e.g., 12.5 GHz, used in Figure 3.1c). In principle, filterless 

optical networks do not have any limitation on the minimum FSU size, while the active 

switching based optical networks are typically restricted to a minimum FSU size (for 

example 6.25 or 12.5 GHz) due to the cumulative filtering at intermediate nodes.  

 

The advantage of spectral efficiency in the elastic filterless network, compared to the fixed-

grid case, is illustrated in Figure 3.1 through a spectrum allocation example. In general, 

spectrum assignment in elastic optical networks is subject to four constraints. Firstly, each 

traffic demand must be carried by the necessary number of consecutive FSUs throughout its 

physical route, which is referred to as the spectrum contiguity constraint. Secondly, each 

traffic demand must be assigned the same slots on all links it traverses, which is referred to as 

the spectrum continuity constraint. Thirdly, a guard band of 1 FSU is needed between any 

two neighboring channels to mitigate the interference and crosstalk effects, referred to as the 

guard band constraint. Finally, there must be no spectrum overlapping between different 

connections. Thus, in the example from Figure 3.1, the bandwidth (BW) required to carry 

demands 1-3 on the fiber link from node 2 to 3 is 175 GHz (14 FSUs including two FSU 
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guard bands between the three neighbouring channels) in the elastic filterless solution, while 

it requires 350 GHz (seven 50-GHz channels) in the fixed-grid filterless solution.  

 

A major concern regarding resource consumption in filterless optical networks is the 

existence of unfiltered channels (shown in gray color in Figure 3.1a and Figure 3.1b), which 

propagate all the way from the source to terminal nodes within a filterless fiber tree due to 

the drop-and-continue feature of filterless nodes (Mantelet, Tremblay, et al., 2013). The 

unfiltered channels increase the spectrum consumption, as the spectral resources occupied by 

them cannot be reused for other connections. Therefore, developing an efficient RSA 

algorithm is crucial to reduce the impact of unfiltered channels on the spectrum consumption.  

 

3.3 Problem Definition and Proposed RSA Algorithm for Elastic Filterless 
Networks (RSA-EF) 

The RSA problem in elastic filterless networks can be defined as follows. Given a traffic 

matrix for a certain time period and a physical network topology, where each node is 

equipped with coherent transponders supporting a set of line rates L with specific spectrum 

width B, modulation format M, and reach R. The nodes are interconnected with a set of fiber 

trees ensuring 1+1 dedicated path protection, generated using the methods from 

(Archambault et al., 2010) and (Xu Zhenyu et al., 2014), as described above. To solve the 

RSA problem, we must decide on the working and the backup path for each connection 

request, select the most spectrally-efficient line rate whose reach is greater or equal to the 

path length, and assign spectral resources, i.e., FSUs. The objective is to optimize the overall 

spectrum utilization by minimizing the maximum number of FSUs used in each fiber link, 

while taking into account the constraints on the spectrum continuity, contiguity, overlapping 

and guard bands.  
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Figure 3.2 Flowchart of the proposed RSA-EF algorithm 

 

The flowchart of the proposed static RSA algorithm for elastic filterless networks, denoted as 

RSA-EF, is shown in Figure 3.2. Due to the NP-completeness of the RSA problem 

(Christodoulopoulos et al., 2011), it is solved in two sequential steps, i.e., routing (R) and 

spectrum assignment (SA). The routing sub-problem is solved by selecting a shortest pair of 

I nput: Network topology, traffic matr ix

Output: Elastic filter less solution

1. Route working and backup demands 
through two shortest, disjoint paths

3.2 Assign the spectrum for all demands 
sequentially

3.1 Order the demands according to selected 
policy (Rand, LDF, HLF, MDF)

2.2 Create an auxiliary traffic matrix in 
number of FSUs

Begin current traffic period

yes

no

Next 
period

All the traffic periods have been served

2.1 Choose the most spectrally efficient line 
rate that meets the distance requirement
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disjoint paths in the fiber tree topology for the working and the backup path of each traffic 

demand. When solving the SA sub-problem, we consider a multi-period traffic scenario 

modeling the long-term traffic growth. The SA sub-problem is solved for the incremental 

traffic in each period without re-assignment of the previously assigned spectrum. In the 

beginning of each traffic period, an auxiliary traffic matrix containing the extra requested 

FSUs per demand is generated to accommodate the incremental traffic. In order to minimize 

spectrum consumption, the most spectrally efficient line rate whose reach meets the demand 

path length is selected for each demand. The spectral efficiency is defined as L/(B+G), where 

G is the bandwidth of guard bands.  

 

The algorithm proceeds by ordering the traffic demands for the current period using an 

ordering policy, and sequentially assigning FSUs to each demand. Three policies have been 

considered for ordering the demands: the longest distance first (LDF) (i.e., serve first the 

demand with the longest distance), the highest line rate first (HLF), and the most demanding 

first (MDF) (i.e., the largest value of the product of the path length and requested line rate). 

The algorithm first checks if a part of the traffic can be accommodated by the already used 

FSUs and modulation format between the same source-destination node pair. If the 

previously assigned bandwidth is not sufficient, the algorithm assigns the first available 

continuous spectrum from the short wavelength side to the current demand. The RSA-EF 

process is complete when all the demands in all periods have been accommodated.  

 

In RSA-EF, the routing of both working and backup paths is predetermined for each demand 

before performing the SA, and a greedy algorithm is used to decide the ordering policy. The 

computational complexity of RSA-EF, for a single demand in a given period, depends 

linearly on the size of the fiber tree accommodating the demand because the algorithm needs 

to check every branch of the fiber tree due to the filterless broadcast-and-select node 

architecture. Therefore, the worst-case computational complexity in a single period can be 

expressed as O(D·N), where D is the total number of demands and N is the number of nodes 

in the network.  
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Table 3.1 Results of the RSA algorithm for six elastic filterless optical network solutions 

 

Network Topology 

Filterless 
network 

connectiv
ity 

Avg. 
dem. 

length 
(km)

Total 
traffic 
(Tb/s)

Spectrum utilization (in 
number of FSUs) Spectrum 

utilization 
improvement 

Percentage of 
unfiltered 
spectrum: 

Elastic (Fixed-
grid) 

Fixed-
grid 

Elastic 

Rand LDF HLF MDF

G7 
 

1.33 597 

5.4 192 167 167 164 160 17% 

40% (46%) 
16.2 452 337 339 325 319 29% 
32.8 856 607 600 601 586 32% 
55.0 1408 977 963 947 956 33% 
82.8 2088 1401 1371 1367 1349 35% 

IT10 

 

0.8 717 

5.3 196 195 186 194 192 5% 

32% (39%) 
16.3 476 396 373 383 376 22% 
32.7 840 632 613 616 606 28% 
54.1 1312 956 912 949 923 30% 
81.8 1904 1346 1313 1336 1307 31% 

RN1 
 

0.48 836 
7.8 192 222 220 215 210 -9% 

25% (32%) 19.7 504 423 391 398 383 24% 
56.7 1288 975 912 914 894 31% 

RN2 
 

0.34 869 
8.3 216 260 243 243 254 -13% 

18% (23%) 21.4 540 472 450 454 454 17% 
63 1440 1089 1032 1017 1023 29% 

RN3 
 

0.37 785 
6.8 160 198 197 200 196 -23% 

19% (24%) 18.2 420 376 365 357 359 15% 
54.1 1092 849 809 800 789 28% 

RN4 
 

0.24 809 
13.2 320 426 402 420 395 -23% 

23% (28%) 35.8 872 811 770 782 755 13% 
106.3 2324 1825 1757 1760 1705 27% 

 

3.4 Simulation Results 

The RSA-EF was implemented and its performance in terms of spectrum utilization was 

validated through simulations on the 7-node German network (G7), 10-node Italian network 

(IT10) (Archambault et al., 2010), and 4 reference long haul network topologies (2000 km 

max. demand length), shown in Table 3.1. Traffic matrices with incremental number of 100 

random connections were used for the G7 and IT10 networks, while non-uniform traffic 

matrices representing realistic evolution scenarios for a time period of 5-10 years were used 

for the 4 reference networks. We analyzed the benefits of elastic versus fixed-grid 

deployment, as well as the influence of periodical spectrum defragmentation on the spectrum 

consumption.  
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In the elastic scenario, channel bandwidths B equal to 37.5/37.5/75 GHz with modulation 

formats M of DP-QPSK/DP-16QAM/DP-16QAM were assumed for line rates L of 

100/200/400 Gb/s, respectively, separated with guard bands G = 12.5 GHz added at the end 

of each channel. We also assumed that up to 400 FSUs (5 THz) are available on each fiber 

and that additional fibers can be deployed if the fiber capacity limit is reached. In addition to 

the three demand ordering policies considered in the SA sub-problem, a random ordering 

policy (Rand) has also been considered as a benchmark, and its results were averaged over 50 

simulation instances for each network. The wavelength consumption for the fixed-grid 

scenario was obtained by applying the RWA algorithm from (Archambault et al., 2010), 

where demands are accommodated using fixed 50-GHz wavelength channels of 100 Gb/s 

capacity.  

 

3.4.1 Elastic vs. Fixed-grid Filterless Solutions 

The simulation results are summarized in Table 3.1. The spectrum utilization improvement of 

the elastic solutions increases with the traffic load, as a result of always using channels with 

the highest spectral efficiency for demands shorter than 700 km. The elastic solutions exhibit 

a significant reduction of spectrum utilization (from 27 to 35%, depending on the network 

topology) at high traffic load, compared to the fixed-grid cases. However, the spectrum 

consumption advantage of elastic over fixed-grid reduces and even vanishes at low traffic 

levels, as a consequence of always favoring the line rate with the most spectrally-efficient 

modulation format, leaving unused capacity for future usage.  

 

Table 3.1 also shows the benefit of elastic spectrum assignment compared to the fixed-grid in 

filterless optical networks in terms of reduction of unfiltered spectrum, defined here as the 

ratio of the spectrum occupied by the unfiltered channels to the total utilized spectrum. As 

shown in the table, the percentage of unfiltered spectrum varies from 18 to 40%, depending 

on the network topology, in the elastic filterless solutions, compared to 23 to 46% in the 

fixed-grid filterless solutions. As can be expected, the percentage of unfiltered spectrum 

increases with the filterless network connectivity, defined in (Xu Zhenyu et al., 2014) as 
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2k/(n(n−1)), where k is equal to the number of fiber link interconnections and n to the 

number of nodes. On the other hand, the benefits of the proposed RSA-EF are particularly 

visible in the networks with relatively high connectivity. Additionally, the proposed demand 

ordering policies exhibit a moderate impact on spectrum utilization when compared to the 

random one.  

 

 

Figure 3.3   Spectrum utilization as a function of traffic load for two networks and two cases: 
“with defragmentation” vs. “without defragmentation” (a) 7-Node German network 
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Figure 3.4 Spectrum utilization as a function of traffic load for two networks and two 
cases: “with defragmentation” vs. “without defragmentation” (b) Reference network 4 

 

3.4.2 Impact of Periodical Spectrum Defragmentation  

We also evaluated the impact of spectrum defragmentation on the spectrum utilization for the 

elastic case (i.e., the algorithm starts at step 2.1 instead of 1 in Figure 3.2) for the G7 and 

reference 4 networks. In the first scenario, referred to as the “without defragmentation” case, 

the spectrum assigned in a certain traffic period does not get re-assigned in the following 

periods. The second scenario, referred to as the “with defragmentation” case, depicts an ideal 

situation in which all spectral resources can be reassigned in each traffic period. As can be 

seen from the results presented in Figure 3.4, periodical spectrum defragmentation allows for 

additional improvements (from 6 to 10%) in spectrum utilization. The benefits of spectrum 
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defragmentation are moderate in the studied cases because the optimization process in the 

“without defragmentation” case aims at minimizing the spectrum consumption over long-

term traffic evolution. It does so by selecting the most spectrally efficient line rate for each 

demand already in the starting period, leaving sufficient capacity free to accommodate the 

traffic growth in the subsequent periods without occupying additional spectrum.  

 

3.5 Conclusion 

In this paper, we have introduced the new concept of an elastic filterless optical network and 

defined the static RSA problem in such networks. We have proposed a tailored efficient 

RSA-EF algorithm for minimizing the spectrum consumption and tested it on 6 different 

network topologies under a multi-period traffic evolution scenario. Simulation results show a 

reduction in spectrum utilization (of up to 35%) at high traffic load, as well as in the 

percentage of unfiltered spectrum (of up to 6%), compared with the fixed-grid case. The 

improvement in spectrum utilization is the most remarkable in the networks with higher 

connectivity, although the percentage of unfiltered spectrum therein is the most significant. 

Moreover, moderate improvements in spectrum consumption of elastic filterless optical 

networks have been obtained through periodical spectrum defragmentation. Although the 

cost factor is out of the scope of the study, the spectrum utilization improvement of elastic 

filterless solutions can also be expected to be delivered with a moderate cost impact, given 

that the difference between fixed-rate and flexible transponders resides mainly in the 

functionality integrated in the digital signal processing (DSP) modules.  

 

The advantages and performance of elastic filterless networks can be further enhanced by 

formulating the RSA problem in elastic filterless networks using integer linear programming 

(ILP) to obtain optimal solutions with respect to different optimization criteria, or by 

designing more sophisticated heuristic RSA algorithms targeting the optimization of both 

cost and spectrum consumption in elastic filterless networks.  
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Abstract 

 

Elastic optical networking is considered a promising candidate to improve the spectral 

efficiency of optical networks. One of the most important planning challenges of elastic 

optical networks is the NP-hard routing and spectrum assignment (RSA) problem. In this 

paper, we investigate offline RSA in elastic filterless optical networks, which use a passive 
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broadcast-and-select architecture to offer network agility. Here elastic optical network is 

referred to as the optical network that can adapt the channel bandwidth, data rate, and 

transmission format for each traffic demand in order to offer maximum throughput. In elastic 

filterless networks, the presence of unfiltered signals resulting from the drop-and-continue 

node architecture must be considered as an additional constraint in the RSA problem. In this 

paper, first the RSA problem in elastic filterless networks is formulated by using integer 

linear program (ILP) to obtain optimal solutions for small networks. Due to the problem 

complexity, two efficient RSA heuristics are also proposed to achieve suboptimal solutions 

for larger networks in reasonable time. Simulation results show that significant bandwidth 

savings in elastic filterless networks can be achieved compared to the fixed-grid filterless 

solutions. The proposed approach is further tested in multi-period traffic scenarios and 

combined with periodical spectrum defragmentation, leading to additional improvement in 

spectrum utilization of elastic filterless optical networks. 

 

4.1 Introduction 

As a consequence of the wide deployment of broadband access networks and the increasing 

volume of cloud-based services, global network traffic is continuously growing at a high 

pace (Ericsson). However, the revenues of the network operators remain moderately flat. 

Consequently, the optical transport systems have to be upgraded to meet this imbalance by 

augmenting transmission capacity and efficiency, while minimizing both capital expenditures 

(CAPEX) and operational expenditures (OPEX). 

 

Under these challenging conditions, elastic optical networking (also referred to in the 

literature as flexible, flex-grid, or gridless networking, e.g., in (Gerstel et al., 2012; Jinno et 

al., 2009; Patel et al., 2012; Roberts et al., 2010)) shows the potential to improve spectrum 

efficiency. The migration from fixed-grid to flex-grid paradigm has opened a gate to bring 

new architectural options in optical network design. According to the International 

Telecommunication Union (ITU) dense wavelength division multiplexing (DWDM) 

frequency grid definition (ITU-T, 2012), channel bandwidth in elastic optical networks will 
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be tailored for traffic demands with different data rates to optimize spectrum efficiency of 

individual channels. In the resulting architecture, different channel bandwidths can be 

assigned to the traffic demands depending on the capacity and distance requirements and the 

network conditions. The corresponding bandwidth allocation problem is generally referred to 

as the routing and spectrum assignment (RSA) problem. Key enabling technologies for 

realizing elastic optical networks include multicarrier-based flexible transponders (Roberts et 

al., 2010) and flexible spectrum/wavelength selective switches (Gerstel et al., 2012).  

 

To address the CAPEX and OPEX concern, the filterless optical network concept (C. 

Tremblay et al., 2007) has been proposed as a reliable and cost-effective solution to offer 

network agility. The demonstration has been made on national and regional networks 

(Christine Tremblay et al., 2013). This concept is based on the premise that the need for 

agility and reconfigurability can be provided by using tunable transmitters and coherent 

receivers at the network edge terminals, similar to radio networks. In the resulting network, 

all active switches and colored components used for local signal add-drop are replaced by 

passive splitters/combiners. This broadcast-and-select network architecture is also considered 

as a promising approach for software defined networking (SDN) (Gringeri et al., 2013). 

Furthermore, the inherently passive gridless architecture of filterless networks makes them 

suitable for elastic optical networking, as the current fixed-grid DWDM line systems can be 

upgraded to elastic ones without the need to replace the switching and filtering devices at 

intermediate nodes. Therefore, elastic filterless optical networks, which combine the 

advantages of both filterless network architectures and flex-grid scheme, have been 

introduced in (Xu  Zhenyu et al., 2015). In this network architecture, each node is equipped 

with coherent transponders capable of adapting the line rate according to the capacity and 

distance requirements of the traffic (Gringeri et al., 2013). The modulation format, and the 

corresponding channel capacity and spectral width, can be selected between quadrature phase 

shift keying (QPSK) and 16-quadrature amplitude modulation (16QAM) through software 

control (Xu  Zhenyu et al., 2015).  
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In this paper, we are solving the offline RSA problem in elastic filterless optical networks 

and quantifying the improvement in spectrum utilization that can be achieved by using a flex-

grid approach instead of a conventional fixed-grid approach in these networks. An integer 

linear programming (ILP) formulation and two heuristic methods, based on a greedy 

approach and genetic algorithm, are devised to solve the offline RSA problem in elastic 

filterless optical networks considering realistic traffic scenarios. Two line rate selection 

methods are proposed. The first method’s objective is to optimize the spectral efficiency 

while the second method aims to reduce the transponder cost in the spectrum assignment 

process. Furthermore, the benefits of periodical spectrum defragmentation are also quantified 

through simulations. 

 

The remainder of this paper is organized as follows. Section 4.2 gives the background of 

filterless optical networking and an overview of the related work. Section 4.3 provides a 

formal definition of the offline RSA problem in elastic filterless optical networks. Section 4.4 

presents the ILP formulation for solving the RSA problem in a single traffic period and 

analyzes the size of the proposed formulation along the derivation of lower and upper bounds 

on spectrum usage. Due to the computational complexity of ILPs, in Section 4.5 we propose 

two heuristic algorithms for the RSA in large networks with long-term traffic growth. Section 

4.6 presents the numerical results and quantifies the improvement in spectrum utilization for 

different network topologies and traffic scenarios. Finally, Section 4.7 provides concluding 

remarks.  

 

4.2 Background and Related Work 

4.2.1 Filterless Optical Networks: Concept and Advantages 

The concept of filterless optical networks, first introduced in (C. Tremblay et al., 2007), 

leverages the breakthroughs of coherent transmission and electronic dispersion compensation 

technologies to offer network agility and cost-efficiency. Instead of deploying reconfigurable 

optical add-drop multiplexers (ROADMs) based on wavelength selective switches (WSSs) as 
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in conventional active photonic networks, link interconnections between network nodes and 

local add-drop are realized by passive splitters/combiners at intermediate nodes. 

Consequently, the filterless architecture relies on the wavelength tuning of tunable 

transmitters at the source nodes and the wavelength selection capability of the coherent 

receivers to achieve the selection function at the destination nodes.  

 

A two-step approach has been proposed for solving the filterless network design problem in a 

fixed-grid scenario (Archambault et al., 2010). In the first step, the physical interconnection 

problem, defined in (Christine Tremblay et al., 2013), had to be solved to ensure the 

network’s physical connectivity. Given the problem complexity, a genetic algorithm has been 

used to solve the fiber link interconnection problem by constructing sets of interconnected 

optical fibers referred to as fiber trees (Archambault et al., 2010). The problem was subject to 

the constraints of network connectivity, laser effect (Christine Tremblay et al., 2013) (i.e., 

accumulated amplified spontaneous (ASE) noise), and fiber tree length. An example filterless 

solution of an Italian 10-node (IT10) network topology with two fiber trees (i.e., black and 

gray) is illustrated in Fig. 1. The generated fiber trees must be edge-disjoint and span all 

nodes to ensure maximal physical topology connectivity. The resulting broadcast-and-select 

filterless architecture (as shown in Figure 4.1), and therefore the filterless network 

connectivity, is created by configuring splitters/combiners at each node.   

 

Based on the obtained fiber link interconnection solution, in the second step, static routing 

was performed by selecting the shortest path for each connection. Finally, the wavelength 

assignment (WA) problem was solved as a graph-coloring problem with a tabu search 

metaheuristic (O'Brien et al., 2008) with the objective of minimizing the total number of used 

wavelengths. Each wavelength channel in an actual fixed-grid solution (i.e., 50-GHz spectral 

granularity) was assumed to carry up to 100 Gb/s of traffic.  
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Figure 4.1 The Italian 10-node network topology (Archambault et al., 2010) (left) and a 
filterless solution (right) with two edge-disjoint fiber trees (in black and gray color 

respectively) obtained by solving the fiber link interconnection problem 

 

Filterless optical networks have the following advantages compared to the conventional 

photonic WDM networks based on active switching.  

 

1) Cost-effectiveness: Filterless optical networks reduce CAPEX and OPEX by eliminating 

active photonic switching elements in the optical line system and interconnecting fiber 

links with passive optical splitters/combiners.  

 

2) Robustness and energy efficiency: The passive nature of filterless optical networks does 

not only provide better network reliability, but also reduces energy consumption. 

 

3) Agility: Network agility is improved. Connection establishment in a filterless network is 

much simpler and faster than in active photonic networks, since only terminal nodes need 

to be configured.  

 

4) Enabled flex-grid, colorless ability: The passive gridless architecture of filterless 

networks makes them naturally suitable for elastic optical networking, as gridless 
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operation is an inherent attribute of the filterless networks. Moreover, the filterless design 

enables colorless node operation, as optical terminals are able to access all DWDM 

channels and send/receive the wavelength per request.  

 

5) Multicast capability: The fiber tree formed by a set of interconnected fibers in filterless 

optical networks inherently supports the light-tree concept proposed in (Sahasrabuddhe & 

Mukherjee, 1999) and is a particularly suitable feature for accommodating multicast 

traffic. 

 

6) Multilayer networking: The passive bypass and add-drop functionality at intermediate 

nodes are key enablers for multilayer networking (Gerstel et al., 2014), allowing the 

traffic from the Internet Protocol (IP) layer to be dynamically served in the optical layer 

without reconfiguring the intermediate nodes. 

 

However, filterless optical networks suffer from the drop-and-continue nature of filterless 

nodes (Mantelet, Tremblay, et al., 2013), where wavelength channels propagate beyond their 

destination nodes. The presence of unfiltered signals aggravates wavelength consumption, as 

the spectral resources occupied by these channels cannot be reused by any other lightpath. 

 

4.2.2 Related Work 

The architecture of filterless optical networks has been explored in recent years. In (C. 

Tremblay et al., 2007) and (Christine Tremblay et al., 2013), the authors presented an 

introduction of the concept. In (Archambault et al., 2010), a filterless network design and 

simulation (FNDS) tool for solving the physical link interconnection and a static routing and 

wavelength assignment (RWA) problem was presented, and cost-effective filterless solutions 

were compared to active photonic networks. In (Savoie et al., 2010), the authors validated the 

filterless physical layer by simulating the transmission performance of one fiber tree with the 

commercial software VPItransmissionMakerTM. In recent works (Mantelet, Cassidy, et al., 

2013; Mantelet, Tremblay, et al., 2013), the authors proposed path computation element 
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(PCE)-based control plane for filterless optical networks and studied the dynamic RWA 

problem. Resilience of filterless networks under link and/or node failures was studied in (Xu 

Zhenyu et al., 2014), where the authors proposed a 1+1 dedicated optical layer protection 

strategy and solved the static RWA problem for survivable filterless networks. 

 

However, all previous work on the filterless network remains in the context of standard fixed 

ITU frequency grid (i.e., 50-GHz channel spacing (ITU-T, 2012)). Facing the increasing 

interest in superchannels (Bosco et al., 2011), as well as the variations in capacity required by 

different applications, it is unlikely that long-haul transmission will keep using the 

conventional WDM systems with fixed channel spacing.  

 

An extensive survey of elastic core optical networking can be found in (Guoying et al., 2013) 

The RSA problem in elastic optical network has been widely studied by formulating the 

problem as ILP and solving it by heuristic algorithms, e.g., in (Jinno et al., 2009), (Patel et 

al., 2012), and (Christodoulopoulos et al., 2011). However, most of the related works study 

the problem in networks based on active switching, where flex-grid switching components 

(e.g., gridless WSS) are required at the intermediate nodes. In this paper, we focus on the 

RSA problem in elastic filterless optical networks and consider the following two traffic 

scenarios. The first one is referred to as a “with defragmentation” scenario, where all spectral 

resources can be reassigned in a traffic period under consideration or there is no previously 

existing traffic in optical networks. The second one is referred to as a “without 

defragmentation” scenario, which assumes that the spectrum assigned in a certain traffic 

period stays unchanged in the following periods. The second scenario is more realistic for 

operators scheduling multi-period traffic.  

 

The concept of elastic filterless optical networks has been first presented in (Xu  Zhenyu et 

al., 2015), where the physical layer structure of filterless network consisting of sets of edge-

disjoint fiber trees has been inherited to leverage the advantages of flex-grid enabled 

broadcast-and-select filterless architecture. Each node in the proposed elastic network is 

equipped with software-controlled tunable transceivers (Gringeri et al., 2013) capable of 



85 

selecting modulation format and channel capacity depending on the required bandwidth. A 

heuristic algorithm has been proposed for solving the RSA problem in elastic filterless 

optical networks with a spectral granularity of 12.5-GHz frequency slot units (FSUs). The 

preliminary study demonstrated improvement of spectrum utilization in elastic filterless 

networks compared to a fixed-grid case. To extend upon our previous work, in this paper we 

present a formal definition of RSA problem in elastic filterless networks, we formulate it as 

an integer linear program to find optimal solutions for smaller networks, and propose 

advanced RSA heuristics to improve the spectrum utilization in larger network instances. 

 

4.3 RSA Problem Definition in Elastic Filterless Optical Networks 

Given a physical network topology and a set of traffic demands for a certain time period, the 

objective of the RSA problem is to firstly decide proper routes in a fiber tree based filterless 

topology; secondly choose the most spectral-efficient or cost-efficient line rate (depending on 

the selection method) while always guaranteeing its maximum reach is not exceeded by the 

demand length; and finally allocate appropriate spectral resources (in terms of the number of 

FSUs) to each connection request, while minimizing the overall spectrum consumption, i.e., 

minimizing the maximum number of FSUs used in any fiber link. In this work we consider 

two RSA strategies. In the first approach, applied in the proposed ILP and genetic algorithm 

based RSA heuristic, the routing and the spectrum assignment subproblems in the RSA 

process are solved jointly. This can offer better insight into resource utilization and leads to 

lower resource consumption. However, solving the RSA problem in a compound manner 

might result in higher problem complexity in terms of the number of constraints/variables 

resulting in potentially excessive computation times. Therefore, the RSA problem is often 

decomposed into routing and spectrum assignment subproblems, solved sequentially, which 

is the approach used in our second scheme, applied in the greedy RSA heuristic. In this case, 

traffic demands are routed on shortest physical paths and a low-complexity greedy algorithm 

is employed for spectrum assignment.  

In both RSA strategies, the following four constraints must be satisfied. Firstly, each traffic 

demand must be carried by an optical channel (also referred to as a “superchannel” (Bosco et 
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al., 2011)) consisting of a set of consecutive FSUs on each link included in its physical route, 

referred to as the spectrum contiguity constraint. Secondly, the same part of the spectrum 

must be assigned to the demand throughout its physical path and there should be no spectrum 

overlapping between optical channels on any link, referred to as the spectrum continuity 

constraint, as we assume no spectrum converters are available. Thirdly, each traffic demand 

must be accommodated with sufficient spectrum resources including a guard band at the end 

of each optical channel to mitigate interference and crosstalk effects, referred to as the traffic 

accommodation constraint. Fourthly, only one optical channel can be selected among all 

candidate physical routes for each traffic demand, referred to as the optical channel routing 

constraint, assuming that the physical transmission distance of the optical channel is within 

the optical reach limit of desired date rate.  

 

As mentioned earlier, the existence of unfiltered channels represents a major concern in the 

filterless architecture. Different from the conventional RSA for the optical networks based on 

active switching, in filterless networks the spectrum continuity constraint must differentiate 

between the spectrum occupied by optical channels carrying useful traffic towards their 

destination from the spectrum occupied by the unfiltered channels propagating downstream 

beyond their destination nodes. There must be no spectrum overlapping among unfiltered 

channels and the useful channels.  

 

4.4 ILP Formulation of the RSA Problem in Elastic Filterless Optical Networks 

In this section, we mathematically formulate the RSA problem in elastic filterless networks 

as an ILP model, denoted as RSA-EF-ILP, with the objective of minimizing the overall 

spectrum consumption. Only one traffic period is treated in the model due to ILP’s 

computational complexity. In the proposed formulation, we assume that each physical link 

within the network consists of multiple bidirectional pairs of fibers. Given a set of pre-

calculated candidate physical routes for each source-destination (s-d) node pair in a pre-

determined fiber tree topology, only one route per node pair is selected by the RSA-EF-ILP 
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to accommodate the traffic demand. The RSA-EF-ILP uses the following notation and 

variables. 

 

Notation 

G(V, E): Physical network topology. 

V: Set of nodes [v1, v2, … , vn]. 

NV: Number of nodes. 

E: Set of fiber links [e1, e2, … , em]. 

NE: Number of fiber links. 

NT: Number of filterless fiber trees. 

U: Set of available FSUs [u1, u2, … , us], where the size of each FSU is set to 
12.5 GHz. 

NU: Number of available FSUs in each fiber link. 

L: Set of available line rates L with specific spectrum width B, modulation 
format M, reach R, and cost C, respectively. 

D: Set of traffic demands. According to the line rate selection method, each 
element d

ij
∈D  defines the number of requested FSUs Td from vi to vj in the 

topology and carries the traffic specified in the traffic matrix.  

ND: Number of demands.  

P: Set of physical routes. Each element Pd defines a set of available candidate 

physical routes for demand d, P
d

⊂ P.  

Ed: Set of links traversed by demand d, E
d

⊂ E .  

Ēd: Set of links passed by unfiltered channels accommodating demand d due to 

the drop-and-continue feature of filterless nodes, E
d

⊂ E .  

De: Set of traffic demands which are routed through link e∈E , D
e

⊂ D.  

GB: The number of FSUs placed at the end of each optical channel acting as a 
guard band.  

 

Variables 

xde
u : = 1, if FSU u ∈U  on link e is occupied by demand d; 0, otherwise.  

zde
u : = 1, if FSU u on link e occupied by demand d is the starting FSU of the 

channel; 0, otherwise.  
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yu : = 1, if FSU u is assigned to at least one demand on any link in the network; 0 
otherwise. 

kpd: = 1, if physical route p ∈P
d
 is selected for demand d; 0, otherwise.  

 

Objective 

Minimize yu

u  

The objective function minimizes the spectrum consumption over all links in the network, 

i.e., the maximum number of occupied FSUs in any fiber link.  

 

Constraints 

The objective function is subject to the following constraints:  

 

1) FSU contiguity constraints 

 
z

de
u ≤ x

de
u'

u'∈[u,u+Td +GB−1]
 / T

d
+ GB( )

d ∈D,  e∈E
d

∪ E
d
,  u ∈[1, N

U
− T

d
− GB]

  (4.1) 

 

 
z

de
u + T

d
+ GB −1≥ x

de
u'

u'∈[u,u+Td +GB−1]


d ∈D,  e∈E
d

∪ E
d
,  u ∈[1, N

U
− T

d
− GB]

  (4.2) 

 

Constraints (4.1) and (4.2) are the FSU contiguity constraints. They ensure consecutiveness 

of FSUs (including the guard band) assigned to traffic demand d on each fiber link e included 

in its physical route. In constraint (4.1), when u is the starting FSU of the bandwidth assigned 

to demand d on link e, then Td+GB-1 FSUs following u on e must also be assigned to d in 

order to keep the right-hand side of (4.1) greater than or equal to the value of variable, zde
u  

which is set to 1. If u is not the starting FSU, the left-hand side of (4.1) equals zero, and the 

inequality always holds. Constraint (4.2) is used to make the sum of variables xde
u  exactly 

equal to Td+GB in the case when zde
u  is set to one. 
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2) Spectrum continuity constraints 

 x
de
u

d∈De

 ≤ 1     e∈E,  u ∈U   (4.3) 

 

 x
de
u + x

d 'e
u

d '∈De

 ≤ 1     d ∈D,  e∈E
d
,  u ∈U   (4.4) 

 

 z
de
u = z

de'
u

e'∈Ed∪Ed

 / E
d

+ E
d( )      d ∈D,  e∈E,  u ∈U   (4.5) 

 

 z
de
u

u∈[1,NU −Td −GB]
 = k

pd
     d ∈D,  e∈E

d
∪ E

d
,  p ∈P

d
  (4.6) 

 

Constraints (4.3)–(4.6) are referred to as spectrum continuity constraints. Constraint (4.3) 

ensures that each FSU u on link e is assigned to at most one demand d. Constraint (4.4) 

ensures that each FSU u on link e occupied by an unfiltered channel accommodating demand 

d cannot be assigned to any other demand d’ passing through the same link. Constraint (4.5) 

ensures that each FSU u in link e’ included in the physical route accommodating demand d is 

the starting FSU of the channel only in the case when zde
u  in the left-hand side of (4.5) is set 

to one, i.e., when u in link e is the starting FSU of the channel assigned to the demand d, 

otherwise the sum of the right-hand side of (4.5) must equal to zero. Constraint (4.6) ensures 

that only one starting FSU belonging to a continuous bandwidth block is assigned to the 

traffic demand d in each link e along the selected physical route p, when kpd is set to 1, and 

no presence of the signal when kpd is set to zero. 

 

3) Traffic accommodation 

 
  

x
de
u

u
 = T

d
+ GB( )k

pd
     d ∈D,  e∈E

d
∪ E

d
,  p ∈P

d   (4.7) 

Constraint (4.7) ensures the assignment of a sufficient number of FSUs containing the 

requested bandwidth Td and the guard band GB along physical route p assigned to demand d, 



90 

in which case kpd is set to 1; and no assignment of bandwidth along the remaining candidate 

routes for demand d, in which case kpd is set to 0. 

 

4) Optical channel routing 

 k
pd

p
 = 1     d ∈D   (4.8) 

 

Constraint (4.8) ensures that only one physical route p among the pre-computed candidates 

Pd is assigned to each demand d.  

 

5) Spectrum utilization 

 yu ≥ x
de
u

e∈Ed∪Ed


d
 / N

D
N

E( )      u ∈U   (4.9) 

 

Constraint (4.9) verifies the maximal number of FSUs assigned to all demands, which is 

being minimized by the objective function and ensures that yu is set to 1 if the FSU u has 

been assigned to at least one demand d on any link e. 

 

4.4.1 Line Rate Selection 

For each demand d, the requested bandwidth in number of FSUs Td is the total bandwidth 

occupied by selected line rates. Two line rate selection schemes, for maximizing the 

spectrum efficiency (MaxSE) and minimizing the transponder cost (MinCS), respectively, 

are utilized to decide the Td prior to the ILP formulation.  

 

In the MaxSE scheme, the most spectrally efficient line rate whose reach meets the demand 

path length is selected for each demand with the purpose of minimizing the spectrum 

consumption. The spectral efficiency is defined as L/(B+GB).  
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On the other hand, in the MinCS scheme, for each demand we select the most cost-efficient 

line rate whose reach is greater or equal to the path length. The minimum cost of line rate 

provisioning demand d, can be obtained by solving the problem defined as follows. 

 

 minimize ciqi
i
   (4.10) 

 

 subject to l iqi
i
 ≥ λd      qi ∈Ζ∗,∀i : ri ≥ Λd   (4.11) 

 

where qi is the number of selected line rates li, each with reach ri and transponder cost ci. The 

total requested bandwidth for the given traffic and the length of demand d are λd and Λd, 

respectively. 

 

4.4.2 Size of the Proposed Formulation  

To quantify the size of the proposed RSA-EF-ILP formulation, we consider the number of 

variables Nvar_ILP and constraints Ncnstr_ILP as a function of the number of filterless fiber trees 

NT, number of nodes NV, number of fiber links NE and number of available FSUs NU, which 

can be calculated as follows. 

 

 
  
N

var_ILP
= 2N

U
N

E
+ N

T( ) N
V
2 − N

V( ) + N
U   (4.12) 

 

 
  
N

cnstr_ILP
= 4NT NENU + 2NT NE +1( ) NV

2 − NV( ) + NENU + NU   (4.13) 

 

Expressions (4.12) and (4.13) refer to the worst case scenario in which the virtual network 

topology is a full mesh so the number of demands is equals to N
D

= N
V
2 − N

V
, and each 

demand has NT available optical channels in a filterless network with NT fiber trees. Since NT 
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is a relatively small constant in a given filterless solution, it follows that N
var_ILP

≈ N
V
2 N

U
N

E  

and N
cnstr_ILP

≈ N
V
2 N

U
N

E . 

 

4.4.3 Lower and Upper Bounds on the Number of FSUs 

In this section, we derive lower and upper bounds on the maximum number of required FSUs 

in an elastic filterless network. We assume that there are ND traffic demands which need to be 

accommodated in a physical topology with NV nodes and NE links, and the optimal physical 

route p for each demand d within NT fiber trees has been determined. 

 

4.4.3.1 Lower bound 

A lower bound (LB) of the maximum number of used FSUs with known routing solution can 

be determined by the number of assigned FSUs on the most congested fiber link without 

considering the unfiltered channels in the filterless architecture, and can be calculated by 

(4.14). This expression also includes the guard band consisting of GB FSUs, which has to be 

added at the end of each spectrum allocated to optical channels. 

 

 

  

LB = max
∀e∈E

T
d

d∈De

 + GB × D
e

−1( )







   (4.14) 

 

4.4.3.2 Upper bound 

An upper bound (UB) on the maximum number of used FSUs with known routing solution 

can be obtained by using the existing sequential graph-coloring algorithm presented in 

(Mukherjee, 2006) for determining the minimum number of required wavelengths under the 

wavelength continuity constraint in conventional wavelength-routed networks. We apply this 

algorithm to filterless networks by taking unfiltered channels into consideration. To do so, 

we first need to create an auxiliary graph G(N, F), where each traffic demand d is represented 
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by a node n ∈N  in graph G. Two nodes in the graph are connected by an undirected link 

f ∈F  if their corresponding optical channels including unfiltered channels share a common 

physical fiber link. Graph G is then colored by assigning colors to nodes from N in 

descending order of their node degree such that no two adjacent nodes share the same color. 

Let N(G) = n1, n2, … , nk, where deg(ni) ≥ deg(ni+1) for i = 1, 2, … , k-1, and 

ω = max
1≤i≤k

min i,1+ deg ni( )  . The following formula calculates the upper bound of the 

spectrum consumption in terms of the number of FSUs.  

 

 UB = ω × max
∀d∈D

T
d

+ GB( ) − GB  (4.15) 

 

4.5 Heuristics for the RSA Problem in Elastic Filterless Optical Networks 

Due to the computational intensity of the ILP formulation, obtaining optimal RSA solutions 

for high traffic loads in large network topologies may be intractable. Therefore, we propose 

two computationally efficient heuristic algorithms, i.e., Greedy and genetic algorithm (GA), 

for solving the RSA problem with larger input instances to find suboptimal solutions in an 

acceptable computation time. Both algorithms are designed with the objective of minimizing 

the maximum number of used FSUs and devised to solve the problem in a multi-period 

scenario modeling long-term traffic growth.  

 

4.5.1 Multi-Period Greedy RSA Heuristic (MP-GR-RSA) 

The proposed Multi-period Greedy RSA algorithm, referred to as MP-GR-RSA, is a two-step 

RSA heuristic, in which the RSA problem is divided into routing (R) and spectrum 

assignment (SA) subproblems, solved sequentially. Algorithm 4.1 illustrates the procedures 

of the proposed MP-GR-RSA. 

 

The first step implies solving the routing subproblem in a filterless optical network. Given a 

physical network topology G(V, E) and a set of multi-period traffic demands D, a filterless 
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solution with NT sets of edge-disjoint fiber trees spanning all network nodes is obtained by 

using the genetic algorithm presented in (Archambault et al., 2010). The traffic demands are 

then routed over the resulting filterless topology using the shortest path algorithm. 

 

Algorithm 4.1 Heuristic MP-GR-RSA in Elastic Filterless Optical Networks 

 

Input: G(V, E) and D in P traffic periods 
Output: RSA result for all periods 
Routing (R) 

1 
generate a filterless topology with NT fiber trees by solving the fiber link 
interconnection problem 

2 route D in the NT fiber trees on shortest paths 
Spectrum Assignment (SA) 
3 let SP be a list of spare capacity in previously assigned FSUs 
4 SP = Ø 
5 for each traffic period p = 1 to P do 
6 if p > 1 then 
7 compute the incremental traffic for current period 
8 if SP ≠ Ø then 
9 accommodate current traffic with SP 
10 end if 
11 update SP list 
12 end if 

13 
choose a line rate selection method and construct an auxiliary traffic matrix 
containing the extra requested FSUs per demand based on the incremental 
traffic, update SP list 

14 select the ordering policy among Rand, LDF, HLF and MDF 
15 sort D in descending order with selected ordering policy 
16 for each demand d in D do 
17 assign first available continuous block of FSUs to d 
18 end for  
19 end for 
 

The second step is to perform the spectrum assignment. To model the expected traffic 

growth, we consider a multi-period “without defragmentation” scenario where the SA 

subproblem is solved for the incremental traffic in each period without re-assignment of the 

previously assigned spectrum. In the beginning of each traffic period, an auxiliary traffic 

matrix containing the extra requested FSUs per demand is generated to accommodate the 
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incremental traffic. The line rate selection method MaxSE or MinCS defined in Section IV.A 

is applied for each demand.  

 

The algorithm proceeds by ordering the traffic demands for the current period using an 

ordering policy, and sequentially assigning FSUs to each demand. Four policies have been 

considered for ordering the demands: random (Rand), the longest distance first (LDF), the 

highest line rate first (HLF), and the most demanding first (MDF) (Xu  Zhenyu et al., 2015). 

These ordering policies are described respectively as follows. 

 

Random (Rand): The order of demands in Rand policy is determined as a return of the 

random permutation from 1 to ND inclusively. 

 

Longest Distance First (LDF): In the LDF ordering policy, priority in spectrum assignment is 

given to demands routed over longer paths, as it is more difficult to find a set of continuously 

available FSUs along longer paths. 

 

Highest Line Rate First (HLF): In the HLF ordering policy, demands with higher traffic 

volume are prioritized, since such demands require a greater number of continuously 

available FSUs. 

 

Most Demanding First (MDF): MDF ordering policy is a hybrid choice of the LDF and HLF, 

in which the priority criteria is calculated as a product of the path length and requested line 

rate of each demand. 

 

The MP-GR-RSA algorithm first checks if part of the traffic can be accommodated by the 

already used FSUs and modulation format between the same s-d node pair (line 9 in 

Algorithm 4.1). If the previously assigned bandwidth is not sufficient, MP-GR-RSA assigns 

the first available continuous spectrum from the short wavelength side to the current demand. 

The MP-GR-RSA process is complete when all the demands in all periods have been 

accommodated. 
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Computational Complexity: In MP-GR-RSA, the routing of traffic demands is predetermined 

for each s-d node pair before performing the spectrum assignment phase, and a greedy 

algorithm is used to decide the ordering policy. This results in a low computational 

complexity of MP-GR-RSA, as its complexity for a single demand in a given period depends 

linearly on the size of the fiber tree accommodating the demand because the algorithm needs 

to check every branch of the fiber tree due to broadcast-and-select nature of filterless optical 

networks. Therefore, the worst-case computational complexity in a single period can be 

expressed as O(N
D
N

V
) . 

 

4.5.2 Multi-Period Genetic Algorithm Based RSA Heuristic (MP-GA-RSA) 

To further improve the performance of RSA heuristic in elastic filterless optical networks, we 

propose a multi-period RSA heuristic based on a genetic algorithm, referred to as MP-GA-

RSA, which solves the RSA problem in a combined manner in order to provide a more 

global view on the overall spectrum consumption. 

 

As an evolutionary optimization algorithm inspired by natural selection and genetics, GA 

starts with an initial set of individual solutions called population, where each individual is 

represented by a chromosome. In our case, each chromosome represents a routing solution. 

Each element in the chromosome is called a gene. The chromosomes evolve through 

sequential iterations called generations. In each generation, new chromosomes called 

offspring are created from two randomly selected parent chromosomes through a crossover 

or mutation operator to create diverse solutions. The fitness value of the chromosomes is then 

evaluated to select top-quality individuals who will be selected for the next generation, 

mimicking the process of natural selection. The process is run until a termination criterion is 

satisfied, such as reaching a certain number of generations. 

 

In MP-GA-RSA, a gene represents the selected physical route for one demand and the fitness 

value of individual solutions corresponds to the maximum number of required FSUs for the 

selected routing combined with the spectrum assignment for a random demand sorting 
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policy. The chromosomes with lower fitness values have higher probability to be selected to 

form the new generation. As a termination criterion, we use the maximum number of 

iterations without improvement of the objective function, i.e., the maximum number of 

occupied FSUs. Algorithm 4.2 illustrates the procedures of our proposed MP-GA-RSA.  

 

Routing Paths Computation: Given the physical network topology G(V, E), a set of traffic 

demands D in different time periods, and the GA parameter settings (i.e., the population size 

Npop, number of iterations Nite and mutation probability Pmut), we first generate the filterless 

topology containing NT fiber trees by the FNDS tool (Archambault et al., 2010) and search 

for all physical candidate routes for every traffic request from D in each filterless fiber tree 

using the shortest path algorithm.  

 

Initialization: For each traffic period, the heuristic accommodates the incremental traffic by 

first checking if a part of the traffic can be supported by the already used FSUs and 

modulation format between the same s-d node pair. If the previously assigned bandwidth is 

not sufficient, then the algorithm assigns the first available continuous spectrum from the 

short wavelength side for the remaining traffic in the current period during the GA process. 

  

Figure 4.2 illustrates the structure of the population used in the GA process. We initialize 

every chromosome in the population by randomly selecting one candidate physical route 

(represented with different colors as shown in Figure 4.2) for each demand d, which 

represents one gene in the chromosome. One chromosome represents exactly one possible 

routing solution for D. The number of chromosomes in the population can be tuned by the 

input parameter Npop. Larger population size augments the searching space allowing 

exploration of more diverse solutions, but also increases the computational time. 

 

After initializing the population, we evaluate the fitness value of every chromosome in the 

population using the fitness evaluation function (line 38 in Algorithm 4.2), which is a two-

step RSA heuristic with random demand ordering policy. The objective of this function is to 

assign the spectrum to the demands D with input routing solution (i.e., one chromosome), 
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and sequentially assign the first available continuous spectrum to each d in D according to 

the given order. One of two line rate selection methods (i.e., MaxSE or MinCS) is applied to 

decide the amount of the requested spectral resources (i.e., FSUs). The fitness value returned 

from the fitness evaluation function is evaluated as the maximum number of assigned FSUs. 

 

Algorithm 4.2 Heuristic MP-GA-RSA in Elastic Filterless Optical Networks 

 

Input: G(V, E) 
D in P traffic periods 
GA parameters:  
Npop //maximum number of chromosome in the population 
Nite //number of iterations (generations) 
Pmut //mutation probability 

Output: RSA result for all periods 
Routing Paths Computation 
1 generate a filterless topology with NT fiber trees by solving the fiber link 

interconnection problem 
2 compute all candidate physical routes for each d of D using k-Shortest Path 

algorithm in the NT fiber trees 
Genetic Algorithm (GA) 
3 let SP be a list of spare capacity in previously assigned FSUs 
4 SP = Ø 
5 for each traffic period p = 1 to P do 
6 if p > 1 then 
7 compute the incremental traffic for current period 
8 if SP ≠ Ø then 
9 accommodate current traffic with SP 
10 update SP list 
11 end if 
12 end if 
13 let Pop be a population with Npop chromosome x 
14 Initialize each x in Pop by randomly selecting one available physical route for 

each demand  
15 for i = 1 to Npop do 
16 Evaluate the fitness F(i) for Pop using the Fitness Evaluation Function  

//the fitness value is the maximum number of assigned FSUs for given 
routing instance 

17 end for 
18 while i ≤ Nite do 
19 Replace Pop with a new population generated by the binary tournament 

selection 
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20 for j = 1:2: Npop do 
21 Select a pair of parent chromosomes from Pop randomly� 
22 Crossover the parents and generate two offspring, c1 and c2  
23 Mutate the two offspring with the probability Pmut 
24 Evaluate the fitness of c1 and c2 
25 if F(c1) < F(j) then 
26 Replace chromosome j with c1 
27 end if 
28 if F(c2) < F(j+1) then 
29 Replace chromosome j+1 with c2 
30 end if 
31 if minimum F is decreased then 
32 reset i to 0 
33 end if 
34 end for 
35 i++ 
36 end while 
37 end for  
 
Fitness Evaluation Function (FitFnc) 
38 function FitFnc(x, D) 
39 output: maxF //maximum number of assigned FSUs 
40 route all traffic demands with input routing solution 
41 choose a line rate selection method and construct an auxiliary traffic matrix 

containing requested FSUs per demand 
42 sort D in descending order with random ordering policy 
43 for each demand d in D do 
44 assign first available continuous FSUs for d 
45 end for  
46 maxF = maximum index of FSU in all links 
47 end function 
 



100 

 

Figure 4.2 An illustration of the structure of the population used in the GA process with 
maximum three different physical candidate routes (represented by three different colors) per 

demand d 

 

Selection, Crossover and Mutation: Another factor that largely influences the practical 

execution time of the GA process is the number of iterations Nite, which determines the 
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number of reproductions of the population in a run. For each iteration, we first use the binary 

tournament selection method, in which two randomly selected individuals are compared to 

identify the one with better (i.e., lower) fitness value and this fittest one replaces an 

individual in the population. We then randomly select a pair of parent chromosomes from the 

resulting population of tournament winners, and perform 1-point crossover at a random 

location between them to produce two offspring (see the illustration in Figure 4.2). Each 

offspring undergoes a mutation by randomly altering the physical route of a single demand 

with mutation probability equal to Pmut. Finally, the best Npop individuals among the current 

population and newly created offspring are selected as survivors for the next generation. The 

crossover and mutation operations are repeated Npop/2 times in each iteration. If the value of 

the objective function is improved, the counter of iterations is reset to zero, allowing the 

algorithm to run for Nite more iterations.  

 

The MP-GA-RSA heuristic terminates and outputs the RSA multi-period solution when no 

further improvement of the fitness function, i.e., spectrum consumption, can be achieved 

after a given number of iterations Nite for all traffic periods. 

 

Computational Complexity: In MP-GA-RSA, the candidate physical routes for all s-d node 

pairs are computed by the k-shortest path algorithm in the filterless topology before the GA 

process, so the complexity of the heuristic is dominated by the GA process, where at least Nite 

generations of population have to be evaluated. The total number of generations of 

population in the GA process is bounded by the product of the number of iterations Nite and 

the number of available FSUs NU. In each generation, the value of the fitness function has to 

be computed for Npop chromosomes. The computational complexity of the fitness evaluation 

function is identical to MP-GR-RSA algorithm. Therefore, the worst-case computational 

complexity in a single period can be expressed as O(N
ite

N
U

N
pop

N
D
N

V
).  
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4.6 Simulation Results 

To evaluate the performance of the RSA-EF-ILP and proposed RSA heuristics in terms of 

spectrum utilization, we first validated the Greedy and GA RSA heuristics by comparing 

their simulation results of first traffic period to those obtained by the RSA-EF-ILP on a 

relatively small topology, i.e., 6-node network. As the ILP is not scalable for larger networks, 

we implemented the proposed multi-period RSA heuristics, namely MP-GR-RSA and MP-

GA-RSA, and compared the performance of elastic filterless solutions and their fixed-grid 

counterparts in terms of the spectrum utilization on a German 7-node (G7), IT10 and four 

reference networks. Furthermore, we analyzed the benefits of periodical spectrum 

defragmentation by comparing the results in the case “with defragmentation” to the “without 

defragmentation” scenario on the G7 and reference network 4. 

 

The heuristic algorithms were implemented in MATLAB and tested on an HP workstation 

equipped with eight Intel Xeon 2.67 gigahertz processors and 16 gigabyte RAM. The ILP 

was solved using IBM ILOG CPLEX solver v12.4 (IBM, 2014).  

 

In the simulation results of elastic filterless optical networks, we considered dual-polarization 

(DP) coherent transponders that operate at line rates L of 100, 200, and 400 Gb/s. Their main 

characteristics are described in Table 4.1. Soft-decision forward error correction (SD-FEC) 

with an overhead close to 20% was assumed in order to extend the maximum reach at the 

considered line rates. The guard band of 1 FSU was added between the optical channels. We 

also assumed that up to 400 FSUs (5 THz) are available on each fiber and that additional 

fibers are deployed if the bandwidth capacity limit is reached.  

 

4.6.1 ILP vs. Heuristic  

Table 4.2 shows the spectrum consumption results obtained by the RSA-EF-ILP, Greedy and 

GA RSA heuristics for two different line rate selection approaches, with the best results 

highlighted for each case. The parameters of the GA heuristic are tuned experimentally to 20, 
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50, 0.2 for the population size Npop, number of iterations Nite, and mutation probability Pmut, 

respectively. The best results in terms of spectrum consumption, obtained by the Greedy and 

GA RSA heuristics, are used as an initial value of NU (i.e., the maximum number of available 

FSUs in each fiber link) for RSA-EF-ILP. Such an approach is for the purpose of reducing 

ILP’s complexity, since the results obtained by the ILP should be at least as good as those 

obtained by the heuristics. All approaches were tested using uniform and random traffic 

matrices generated for the 6-node network. Lower (LB) and upper bounds (UB) on spectrum 

consumption were computed using (4.14) and (4.15) after obtaining the optimal routing by 

RSA-EF-ILP. The results show that, for small networks, different ordering policies of the 

Greedy heuristics have similar performances in terms of spectrum consumption for uniform 

and random traffic scenarios. Among these policies employed by the Greedy RSA algorithm, 

the Rand policy consumes slightly more spectrum than the other three policies. For both 

traffic scenarios, the results indicate that the GA-based RSA heuristic outperforms the 

Greedy RSA heuristic and can achieve optimal solutions, i.e., for small networks the results 

are equal to the ones obtained by RSA-EF-ILP. This can be explained by the fact that the GA 

approach optimizes jointly the routing and the spectrum assignment. 

 

Table 4.1 Characteristics of Transponders 

 

 
Line rate 

(Gb/s) 
Modulation 

format 

Channel 
bandwidth 

(GHz) 
Reach (km)a Cost (a.u.)a 

Conventional 100 DP-QPSK 50 2000 1.5 

Coherent 
transponder 

100 
DP-QPSK 
(Single-
carrier) 

37.5 2000 1.5 

200 
DP-16QAM 

(Single-
carrier) 

37.5 700 2 

400 
DP-16QAM 

(Dual-carrier)
75 500 3.7 

a. Ciena, private communication.  
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In the 6-node topology we notice that the theoretical lower bound of RSA-EF-ILP, calculated 

by the method presented in Section 4.4.3, cannot be achieved. This can be explained by the 

increase of spectrum consumption due to the presence of unfiltered channels and the 

spectrum continuity constraint within the elastic filterless networks. 

 

In Table 4.2, the total cost of deployed transponders is calculated. According to the results 

for single traffic period, the MinCS approach effectively reduces both the cost and the 

spectrum consumption when compared to the MaxSE case. However, the objective of the 

MaxSE approach is to improve the performance for long-term traffic growth. Hence, the 

most spectrally efficient line rates are used, leaving unused capacity reserved for future 

usage. 

 

Table 4.2 Comparison of Spectrum Consumption Performance of ILP Formulation to 
Heuristics in Elastic Filterless Optical Networks 

 

Network 
topology 

Traffic 
Spectrum consumption (FSU) 

Costd 
LB/UB ILP 

Greedy 
GA 

Randc/LDF/HLF/MDF 

 

MaxSE 
uniforma 19/42 33 38/37/37/37 33 43.1 
randomb 22/64 36 46/45/45/45 36 50.2 

MinCS 
uniform 16/28 24 28/28/28/28 24 22.5 
random 21/61 34 44/43/43/43 34 39.8 

a) Uniform traffic with entry of one 10 Gb/s per s-d node pair 
b) Randomly generated traffic of maximum 400-Gb/s per s-d node pair, the results are 

averaged over 15 simulation instances 
c) The results of Rand are averaged over 50 simulation instances 
d) The cost of deployed transponders is calculated based on the optimal ILP solution 

 

4.6.2 Flex- vs. Fixed-grid Filterless Solutions 

Table 4.3 shows the comparative results of the flex- and fixed-grid filterless solutions on 

larger network topologies applying the MaxSE and MinCS line rate selection methods. Non-
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uniform traffic demands representing realistic evolution scenarios for a time period of 5-10 

years have been used for four long-haul reference networks (2000 km max. demand length), 

while for the G7 and IT10 networks, we applied a randomly generated traffic matrix with 

incremental traffic load to simulate the multi-traffic-period scenario. The parameters of the 

GA heuristic are tuned accordingly to 60, 150, 0.1 for Npop, Nite, and Pmut, respectively. 

 

Wavelength consumption for the fixed-grid cases was obtained by using the routing and 

wavelength assignment algorithm presented in (Archambault et al., 2010). In order to make a 

fair comparison, we assume that one 50-GHz wavelength channel in a fixed grid can support 

a traffic demand of up to 100 Gb/s, and that additional wavelength channels are required to 

accommodate higher line rates. The characteristics of conventional transponder are described 

in Table 4.1.  

 

4.6.2.1 Spectrum Utilization Improvement 

The spectrum utilization improvement shown in Table 4.3 is defined as the ratio of the 

difference in spectrum utilization between the elastic and fixed-grid cases over the spectrum 

consumed in the fixed-grid case. The spectrum utilization improvement increases with the 

traffic load as a result of using the most spectrally efficient line rate (400G) for demands 

shorter than 700 km. The results show that elastic filterless solutions exhibit a significant 

reduction in terms of spectrum utilization (from 35 to 56%, depending on the network 

topology) at high traffic load, compared to the fixed-grid filterless solutions. In larger 

networks the proposed MP-GA-RSA heuristic exhibits an obvious advantage on spectrum 

utilization (from 6 to 32% on average, depending on the topology) compared to the MP-GR-

RSA. This result also reveals inherent benefits of the combined RSA algorithm over the two-

step R+SA algorithm.  
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Table 4.3 Results of the Heuristic MP-GR-RSA and MP-GA-RSA Algorithms for Six 
Elastic Filterless Optical Networks 

 

Network Topology 

Avg. 

demand 

length 

(km) 

Total 

traffic 

(Tb/s) 

Spectrum utilization (FSUs) Spectrum 

utilization 

improvem

ent (%) 

Percentage of 

unfiltered 

spectrum (%): 

Elastic/Fixed 

Fixed 

100G 

Elastic 

MP-GR-RSA MP-GA-

RSA Rand LDF HLF MDF 

G7 

 

371 

5.4 68 63a (48)b 60 (44) 67 (49) 60 (45) 50 (38) 26 (43) 

45/51 

16.2 172 107 (110) 102 (104) 103 (105) 106 (105) 86 (92) 50 (47) 

32.8 320 172 (188) 171 (187) 179 (176) 168 (187) 154 (166) 52 (48) 

55.0 504 274 (292) 273 (283) 268 (282) 268 (284) 244 (251) 52 (50) 

82.8 736 379 (410) 372 (402) 371 (407) 382 (389) 335 (352) 54 (52) 

IT10 

 

506 

5.3 104 110 (80) 104 (73) 131 (81) 104 (77) 90 (69) 13 (34) 

47/56 

16.3 260 186 (180) 178 (174) 199 (186) 178 (173) 160 (153) 38 (41) 

32.7 432 268 (296) 271 (289) 282 (301) 261 (282) 235 (257) 46 (41) 

54.1 716 403 (464) 400 (452) 415 (460) 394 (449) 343 (388) 52 (46) 

81.8 1024 573 (645) 569 (630) 584 (633) 565 (626) 494 (540) 52 (47) 

CRN1 
 

546 

7.8 112 157 (103) 159 (104) 155 (104) 159 (108) 141 (96) -26 (14) 

53/63 19.7 284 243 (253) 238 (251) 234 (255) 238 (255) 220 (235) 23 (17) 

56.7 728 509 (547) 501 (545) 497 (548) 501 (556) 458 (503) 37 (31) 

CRN2 

 

604 

8.3 140 217 (144) 199 (136) 223 (140) 199 (132) 195 (132) -39 (6) 

55/64 21.4 360 329 (350) 300 (332) 320 (344) 314 (329) 300 (326) 17 (9) 

63 940 670 (749) 620 (708) 668 (733) 627 (713) 604 (694) 36 (26) 

CRN3 
 

468 

6.8 112 169 (105) 164 (104) 167 (104) 164 (104) 150 (96) -34 (14) 

56/67 18.2 300 269 (268) 262 (265) 265 (262) 262 (265) 244 (242) 19 (19) 

54.1 812 507 (575) 496 (569) 496 (559) 500 (565) 468 (526) 42 (35) 

CRN4 
 

356 

13.2 216 335 (199) 325 (196) 332 (200) 325 (196) 254 (152) -18 (30) 

62/72 35.8 596 551 (523) 538 (518) 548 (522) 545 (518) 429 (401) 28 (33) 

106.3 1612 985 (1130) 963 (1101) 973 (1123) 970 (1115) 706 (823) 56 (49) 

a) The results on the outside of parentheses are obtained based on the MaxSE line rate 
selection method. 

b) The results within parentheses are obtained based on the MinCS line rate selection 
method. 

 

4.6.2.2 Unfiltered Channels 

Table 4.3 also shows the benefit of elastic spectrum assignment compared to the fixed-grid in 

filterless optical networks in terms of reduction of unfiltered spectrum. It is defined here as 



107 

the ratio of the spectrum occupied by the unfiltered channels to the total utilized spectrum. 

The percentage of unfiltered spectrum shown in Table 4.2 has been averaged over all traffic 

periods. As shown in Table 4.2, the percentage of unfiltered spectrum varies from 45 to 56%, 

depending on the network topology, in the elastic filterless solutions, compared to 51 to 67% 

in the fixed-grid filterless solutions. 
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(b) Ciena reference network 4 

Figure 4.3 Comparison of line rate selection method in terms of spectrum utilization 
improvement and cost as a function of traffic for (a) the German 7-node and (b) the Ciena 

reference network 4 

 

4.6.2.3 3) Impact of Line Rate Selection Method 

The impact of the line rate selection method on the spectrum utilization improvement and the 

cost is illustrated in Figure 4.3. In the MaxSE case, we observe that the spectrum 

consumption advantage of elastic over fixed-grid reduces and even vanishes for the reference 

network 4 topology at low traffic level. It is a consequence of always favoring the line rate 

with the most spectrally-efficient modulation format and leaving a significant amount of 

unused capacity for future usage. However, as the total traffic increases, the MaxSE scheme 

outperforms the MinCS in terms of the spectrum utilization. 
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The same tendency has been observed for the cost of deployed transponders. The MaxSE 

scheme tends to achieve lower cost in long-term traffic growth compared to the MinCS 

method, although the MinCS scheme can effectively reduce the short-term cost. Furthermore, 

Figure 4.3 shows that in contrast to the fixed one, the elastic filterless solution can achieve up 

to 33% and 26% cost saving in high traffic level for the G7 and Reference network 4 

respectively. 

 

4.6.2.4 Computational Complexity 

There is an obvious trade-off between computational complexity and the resulting spectrum 

efficiency. Table 4.4 evaluates the computational time of the MP-GR-RSA and MP-GA-RSA 

heuristic algorithms. As expected, the results clearly indicate that MP-GA-RSA is more time-

consuming than MP-GR-RSA because of its long evolutionary process to solve the routing 

and spectrum assignment subproblems jointly. On the other hand, MP-GA-RSA can achieve 

much better results on spectrum usage. 

 

Table 4.4 Comparison of Computational Time of MP-GR-RSA to MP-GA-RSA Heuristic 
in Elastic Filterless Optical Networks 

 

Network 
Computational time (in elapsed minutes)a 

MP-GR-RSA MP-GA-RSA 
7-node German 0.02 222 
10-node Italian 0.04 281 

Ciena reference network 1 0.03 288 
Ciena reference network 2 0.04 454 
Ciena reference network 3 0.03 197 
Ciena reference network 4 0.09 577 

a) The computational time is calculated based on the MaxSE line rate selection method 
for all traffic periods. 
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4.6.3 Benefits of Periodical Spectrum Defragmentation 

We also evaluated the impact of spectrum defragmentation on the spectrum utilization for 

both the fixed- and elastic filterless solutions. Herein, we compare two scenarios. In the first 

one, referred to as “without defragmentation” case, the spectrum assigned in previous traffic 

periods does not get re-assigned during any of the following periods. The second scenario, 

referred to as “with defragmentation” case, depicts an ideal situation in which all spectral 

resources can be reassigned in each traffic period, according to the optimal design for the 

total traffic demand in the considered period. In Figure 4.4, it can be seen that performing 

periodical spectral defragmentation more effectively improves spectrum utilization in the 

MinCS scenario (up to 21% and 31% for the G7 and reference network 4, respectively) 

compared to the MaxSE scenario (up to 11% and 4% for two aforementioned topologies, 

respectively). Therefore, it seems highly beneficial to perform defragmentation periodically, 

particularly if employing the MinCS scenario for the case with a large traffic load. 

 

4.7 Conclusion 

In this paper, we have investigated the offline RSA problem in elastic filterless optical 

networks. Two line rate selection methods (i.e., MaxSE and MinCS) have been proposed to 

take the transmission distance into consideration when solving the RSA problem. The 

problem was formulated as an ILP to obtain optimal solutions for smaller-sized networks. 

Due to the intractability of the ILPs, two efficient heuristic approaches were developed to 

obtain sub-optimal RSA solutions for larger networks in reasonable time. First, a greedy 

version of the heuristics performed routing and spectrum assignment in subsequent phases, 

and found feasible RSA solutions in short computational time. The second version of 

heuristics, based on a genetic algorithm, solved the routing and spectrum assignment 

problems jointly, and obtained solutions of superior quality at the expense of a longer 

computational time. Both heuristics were applied to realistic multi-period traffic scenarios 

modeling long-term growth of the network traffic. Different variants of multi-period network 
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planning were investigated, encompassing scenarios with and without traffic 

defragmentation. 
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(b) Ciena reference network 4 

Figure 4.4 Spectrum utilization as a function of traffic for (a) the German 7-node and (b) 
the Ciena reference network 4 and two cases: “with defragmentation” vs. “without 

defragmentation” (between two traffic periods) 

 

Simulation results show that for large size networks significant bandwidth savings can be 

achieved in flex-grid filterless solutions due to increased spectrum efficiency compared to the 

fixed-grid filterless networks studied in the prior work (Archambault et al., 2010). In the 

MaxSE case, the spectrum savings can reach up to 56% under high traffic loads. The results 

further demonstrate that more significant improvement in terms of spectrum utilization in 

elastic filterless optical networks can be achieved in the MinCS case when periodical 

spectrum defragmentation is performed. Compared to the “without defragmentation” 

scenario, the improvement can reach up to 31% for certain network scenarios. 
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GENERAL CONCLUSION 

 

In summary, the work in this thesis addressed the resilience and survivability issue in 

filterless optical networks, which are passive optical core networks based on the dense 

wavelength-division multiplexing (DWDM) and coherent optical transmission technologies. 

A dedicated protection strategy was proposed for the filterless networks and validated on a 

number of network topologies. The resulting 1+1 protection solutions showed significant 

cost advantage when compared to active photonic switching networks while using a 

comparable number of wavelengths. Moreover, we introduced the concept of an elastic 

filterless optical network for next generation long-haul optical networks and investigated the 

offline routing and spectrum assignment (RSA) problem in the resulting networks. Two line 

rate selection methods (i.e., MaxSE and MinCS) were proposed to take the transmission 

distance into account when solving the RSA problem. The RSA problem was formulated as 

an Integer Linear Programming (ILP) to obtain optimal solutions for small networks. Due to 

the complexity of ILPs, two efficient heuristic methods (i.e., greedy and genetic algorithms) 

were developed to obtain sub-optimal solutions for larger networks in reasonable time. Both 

heuristics were applied to realistic multi-period traffic scenarios modeling long-term growth 

of the network traffic. Simulation results showed that for large size networks huge bandwidth 

saving could be achieved in flex-grid filterless solutions owing to increased spectral 

efficiency compared to fixed-grid filterless networks studied previously. The results also 

demonstrated that further improvement in terms of spectrum utilization in elastic filterless 

optical networks could be achieved when periodical spectrum defragmentation is performed.  

 

1. Resilience reinforcement in filterless optical networks 

As regards the work related to the resilience reinforcement in filterless optical networks 

against network failures, Article I proposed a dedicated optical-layer protection strategy with 

the objective to enable the 1+1 link-disjoint protection for each end-to-end connection in a 

given filterless topology. Therefore, the protection ratio is guaranteed to be 100%, whereas it 

was not the case in previous work, where each filterless solution has solely an intrinsic 

protection ratio due to limited connectivity of network topology. In a fully protected filterless 
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solution, protection paths are set up by using the wavelength selective components (i.e., 

wavelength blocker (WB), colored passive filter (CPF)) placed at selected nodes for 

interconnecting fiber trees. The principle behind this protection strategy is as follows. By 

enabling the placement of WBs, referred to as inter-tree WBs, at some intersecting nodes 

between edge-disjoint fiber trees, it is possible to create extra protection paths passing 

through different fiber trees. Additionally, it is allowed to employ WBs, referred to as intra-

tree WBs, and CPFs within the fiber trees, thus enabling the elimination of the laser effect 

(i.e., accumulative amplified spontaneous emission (ASE) noise) as well as reducing the 

number of unfiltered channels resulting in improved performance in terms of the wavelength 

consumption. To reduce the wavelength consumption with minimum number of employed 

wavelength selective components, a heuristic algorithm was developed to efficiently solve 

the inter-tree WB placement and well-known routing and wavelength assignment (RWA) 

problems. Two novel protection schemes, i.e., WB-only and WB+CPF, were also proposed 

offering good wavelength consumption and lower cost when compared to the WSS-based 

solutions. Proposed protection solutions have been validated on German 7-node (G7), Italian 

10-node (IT10), and German 17-node (G17) networks. Solutions can always be found for a 

network topology by using the appropriate number of WBs in the proposed protection 

algorithm. Simulation results illustrated that significant cost advantage can be achieved by 

the proposed 1+1 protection solutions compared to active photonic switching solutions. The 

wavelength consumption of filterless network solutions with dedicated protection, where 

WBs and CPFs have been deployed, was in average slightly higher than that of their active 

counterpart.  

 

2. Introduction of elastic filterless optical networks 

All previous work on the filterless network remains in the context of standard ITU grid with 

fixed 50-GHz channel spacing. The adoption of the paradigm of flexible bandwidth 

allocation (also referred to as flex-grid/gridless) addressed the spectral efficiency and 

flexibility issues in filterless optical networks. Article II of this thesis introduced a novel 

concept, namely Elastic Filterless Optical Networks, where each node is equipped with 

coherent transponders that can adapt the channel bandwidth, data rate, and transmission 
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format for each traffic demand in order to offer maximum throughput. The proposed scheme 

leverages both the benefits of filterless architecture based on passive broadcast-and-select 

nodes and the spectral efficiency and flexibility of elastic networking, enabling an efficient 

usage of the spectrum resources. We have proposed a tailored efficient routing and spectrum 

assignment algorithm (RSA-EF) for minimizing the spectrum consumption and tested it on 

six different network topologies (i.e., G7, IT10, and Reference network 1-4) under a multi-

period traffic evolution scenario. Simulation results showed a reduction in spectrum 

utilization at high traffic load, as well as in the percentage of unfiltered spectrum, compared 

with fixed-grid filterless solutions. Moreover, the improvement in spectrum utilization is the 

most remarkable in the networks with higher connectivity, although the percentage of 

unfiltered spectrum therein is the most significant.  

 

3. Investigation of routing and spectrum assignment problem in elastic filterless optical 

networks 

In Article III, we investigated offline RSA in elastic filterless optical networks. An ILP 

model was developed to optimally solve the RSA problem on a 6-node network in a static 

traffic scenario. Due to the intractability of the ILPs, two efficient heuristic approaches, 

based on Greedy (MP-GR-RSA) and Genetic Algorithm (MP-GA-RSA), were devised for 

six larger network topologies (i.e., G7, IT10, and Reference network 1-4) in a long-term 

traffic scenario providing good performance in terms of spectrum utilization and 

computational time when compared to the ILP solution. First, a greedy version of the 

heuristics performed routing and spectrum assignment in subsequent phases, and found 

feasible RSA solutions in short computational time. The second version of heuristics, based 

on a genetic algorithm, solved the routing and spectrum assignment problems jointly, and 

obtained solutions of superior quality at the expense of a longer computational time. In both 

heuristics, the line-rate selection method can be controlled in the spectrum assignment 

process aiming to optimize particular performance objectives (i.e., maximize the spectral 

efficiency (MaxSE) and minimize the transponder cost (MinCS)). The simulation results 

showed that the GA-based RSA heuristic outperforms the Greedy RSA heuristic and can 

achieve optimal solutions for small networks, i.e., equal to the ones obtained by the ILP 
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approach. The results also indicated that elastic filterless solutions exhibit a significant 

reduction in terms of spectrum utilization at high traffic load, compared to the fixed-grid 

filterless solutions. In addition, elastic filterless solutions showed the benefit of reduction of 

unfiltered spectrum compared to the fixed-grid filterless solutions. Besides, the MaxSE 

scheme tended to achieve lower spectrum utilization and cost in long-term traffic growth 

compared to the MinCS scheme, although the MinCS scheme can effectively achieve the 

short-term advantages. Furthermore, the impact of spectrum defragmentation on the spectrum 

utilization for both the fixed- and elastic filterless solutions has been evaluated. The results 

showed that performing periodical spectral defragmentation more effectively improves 

spectrum utilization in the MinCS scenario compared to the MaxSE scenario, since the later 

scenario focuses on the long-term spectrum efficient. Therefore, it is highly beneficial to 

perform defragmentation periodically, especially for the case with a large traffic load.  

 

Future Work 

With respect to future work, we would like to point out some research topics that might be 

interesting to be considered to extend our work as follows.  

 

• Optimization of the placement of wavelength selective components 

Regarding the network survivability issue in the filterless optical networks, there are 

some studies that focus on solving the inter-tree WB placement problem. It might be 

beneficial to obtain the minimum wavelength consumption by placing a number of 

wavelength selective components at optimum network nodes for survivable filterless 

networks. It is also worth to explore the advantages of advanced algorithms when 

implemented to solve the resulting RWA problem, where a joint optimization of the 

wavelength consumption and the number of deployed wavelength selective components 

might result in improved performance.  

 

• Shared protection schemes 

In this thesis we proposed a dedicated protection strategy for the filterless optical 

networks. However, it might be beneficial to extend our work to support shared 
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protection approaches resulting in much lower redundant resource occupation and 

improved wavelength consumption performance.  

 

• Dynamic provisioning and spectrum assignment 

In the context of resource scheduling issue in elastic filterless optical network, it might be 

interesting to extend the proposed RSA algorithms to support dynamic traffic scenarios.  

 

• Management and control for elastic filterless optical networks 

An interesting future work for the elastic filterless optical networks is to design an 

efficient management and control mechanism based on the emerging SDN paradigm to 

optimize network resource usage and automate certain network reconfigurations under a 

specific network scenario.  
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