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OPTIMISATION DES PROPRIÉTÉS MÉCANIQUES ET DE RÉSISTANCE À 
L’HUMIDITÉ DE COMPOSITES BOIS-PLASTIQUE À BASE DE 

POLYÉTHYLÈNE ET DE NANOCRISTAUX DE CELLULOSE 
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 RÉSUMÉ  
 
L'ajout de nanoparticules dans les polymères thermoplastiques renforcés par des fibres de 
bois a été considéré comme l’un des moyens les plus efficaces pour améliorer les propriétés 
mécaniques et physiques des composites bois-plastiques. Dans ce contexte, l'objectif de ce 
travail est d'étudier l'effet d’incorporation des nanocristaux de cellulose (NCC) sur les 
propriétés mécaniques et l'absorption d'eau du composite bois-plastique à base de 
polyéthylène haute densité (HDPE) et de farine de bois.  

La première phase a consisté d’étudier la faisabilité d’obtention du nanocomposite 
HDPE/NCC en utilisant un mélangeur. L’effet des paramètres de mise en forme, de 
concentrations de NCC (0%, 3% et 10% en poids) et d’agent de compatibilité sur les 
propriétés mécaniques, le taux d’absorption d’eau et de la dispersion des NCC a été analysé. 
Dans la deuxième phase, les conditions de préparation et de la formulation de 
nanocomposites HDPE/NCC obtenues à la première phase, sont utilisés pour la fabrication 
du composite hybride HDPE/NCC/farine de bois. Des tests de propriétés mécaniques (flexion 
et traction) et d’absorption d’eau ont été réalisés pour évaluer la performance du composite.  

Les résultats ont montré qu’une augmentation de la teneur en NCC jusqu'à 10% conduit à 
une amélioration significative des propriétés en flexion et en traction de nanocomposites 
HDPE/NCC. Toutefois, l’analyse de la dispersion des NCC avec le microscope électronique 
à balayage (MEB) a montré la présence de grosses agglomérations quelques soit la 
concentration d’agent de compatibilité. Le remplacement partiel de farine de bois avec 10% 
de NCC n’a pas montré aucune amélioration de la résistance en flexion et en traction du 
composite hybride bois-plastique. Cela est peut-être dû aux problèmes de compatibilité entre 
les NCC et la matrice HDPE, et aussi à la mauvaise dispersion des NCC en présence d’une 
haute concentration. En revanche, une légère baisse du taux absorption d'eau a été détectée 
dans le cas du composite hybride qui peut être causé par la différence de caractère hydrophile 
entre la farine de bois et les NCC.  
Plus de tests avec la modification de surface et du dosage liquide des NCC devrait être fait 
pour améliorer la performance des nanocomposites hybrides HDPE/bois/NCC. En outre, 
l'effet de la concentration NCC peut être étudié pour identifier le seuil de percolation dans le 
composite. 
 
 
Mots clés: Composite bois plastique, nanocristaux de cellulose, hybride, dispersion, HDPE. 
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ABSTRACT 
 
The addition of nanoparticles in polymers reinforced with wood fiber has been considered as 
one of the most effective way to improve the mechanical and physical properties of wood-
plastic composites. In this framework, the objective of this study was to investigate the effect 
of incorporation of nanocrystalline cellulose (NCC) on the mechanical properties and water 
absorption of wood-plastic composite made from high density polyethylene (HDPE) and 
wood flour. 

The first phase of this project involved the reinforcement of HDPE matrix with NCC using 
internal mixer. The effect of processing conditions, NCC content (0%, 3% and 10% wt.) and 
compatibilizing agent on the mechanical properties, water absorption rate and dispersion of 
NCC was analyzed. In the second phase, the best compounding conditions of HDPE/NCC 
nanocomposite, obtained from the first step, was used for the preparation of hybrid wood 
plastic composite. Mechanical properties (flexural and tensile) and water uptake were carried 
out to evaluate the performance of the composite. 

Mechanical results showed that the increase of NCC content until 10wt. % lead to the 
increase of flexural and tensile properties of HDPE/NCC nanocomposite. However, the SEM 
analysis of NCC dispersion showed the presence of big agglomerations. For Hybrid 
HDPE/NCC/WF composite, a partial replacement of wood flour with 10% NCC did not 
show any improvement in the flexural and tensile properties. This is due to the poor 
dispersion of NCC. In contrast a slight decrease of water absorption was detected in hybrid 
composite which can be caused by differences of hydrophilicity between wood flour and 
NCC. In further work, more tests with surface modification and liquid feeding of NCC 
should be done for successful development of hybrid wood nanocomposite. Also, the effect 
of different NCC concentration can be realized to identify the percolation threshold of 
composite reinforcement. 
 
 
Key words: Wood plastic composite, nanocrystalline cellulose, hybrid, dispersion, HDPE. 
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INTRODUCTION 

 

 Background and problematic of research 

During the last decade, wood-plastic composites (WPC) have emerged as an important 

family of engineering materials. Compounding polymers with wood flour and wood fibers is 

a common practice and has been done in industry and studied by academics, to reduce cost 

and attain desired properties. Wood fibers can provide weight savings, higher specific tensile 

strength and modulus, good processing and low impact against the environment. These 

properties allow wood fibers to replace the conventional inorganic reinforcements as glass 

and carbon fibers. However, despite these attractive properties, the potential for use WPC in 

many industries including construction, automotive and decking has been limited for their 

high moisture absorption, high brittleness, low impact resistance, lower bending stiffness and 

mainly high density compared to the neat plastic. Poor mechanical properties are mainly due 

to the poor interfacial interactions between hydrophilic fibers and hydrophobic polymer. 

Therefore, most studies in the area of WPC focus on improving the physical and mechanical 

properties of the composites by the improvement of interfacial adhesion between wood fibers 

and hydrophobic thermoplastics. 

To supplement this deficiency in compatibility, several approaches have been used in the 

literature including the introduction of coupling agents or various other chemical and 

physical surface modifications. 

Another promising approach to improve the mechanical properties such as interfacial 

strength is producing hybrid composites with the combination of wood fibers and several 

nano-sized particles like carbon nanotube, nanoclay, and cellulose nanocrystals. Indeed, 

nanoparticle exhibit high aspect ratio and high surface area, which can be beneficial to 

improve the interfacial interaction between fiber and polymer by increasing the contact 

surface with polymer and present into minor zone where the fibers cannot reach. Moreover, 

the abundance of functional groups at the surface of nanoparticles can offer new possibilities 

to the development of multifunctional materials (antibacterial and electrical conductivity) 

with the grafting of new groups. In the literature, many studies have found that a synergistic 

effect can occur between the wood fibers and nanoparticles like nanoclay (Zhao, Wang et al. 
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2006, Faruk and Matuana 2008, Hemmasi, Khademi-Eslam et al. 2010, Deka and Maji 

2013), carbon nanotube (Fu, Song et al. 2010, Kordkheili, Farsi et al. 2013, Farsi and Sani 

2014, Kushwaha, Pandey et al. 2014, Nourbakhsh, Ashori et al. 2015), nano-SiO2(Deka and 

Maji 2013, Deka, Baishya et al. 2014) and TiO2(Deka and Maji 2011). However, to exploit 

this real positive effect of nanoparticles, an improvement in their dispersion in polymer 

matrix is required. 

In this regards, cellulose nanocrystals (NCC), obtained by hydrolysis of native cellulose acid, 

present a high potential source of innovation for the reinforcement of composite materials in 

various engineering applications. These nanoparticles are characterized by a high 

crystallinity and nano rods section with a very high specific surface area (a length of 5 to 10 

nanometers and a width of 100 to 500 nanometers). Although much research has been done 

in the field of NCC based nanocomposite, only a few papers have reported the effect of 

combination of cellulose nanocrystal and wood fibers to improve interfacial adhesion and 

mechanical properties of hybrid nanocomposite (Ashori and Nourbakhsh 2010, Nourbakhsh, 

Ashori et al. 2010). 

High density polyethylene (HDPE) has long been used in a variety of applications due to its 

versatile properties such as good mechanical properties, good chemical resistance and good 

processability when using conventional manufacturing process. However, to expand its field 

of application and increasing its mechanical properties, a variety of methods such as filling or 

blending were adopted. For this purpose, during the last decade, glass fibers and wood flour 

have been the two common materials mainly used for reinforcement of HDPE. However, the 

problem of adhesion between the hydrophilic fibers and hydrophobic HDPE matrix and the 

difficulty of filler dispersion in the polymer are the main challenges to be solved. In order to 

overcome interfacial incompatibility issues in wood flour reinforced HDPE the use of a NCC 

and coupling agent such as maleic anhydride can be one of the best solution of this problem.  

 Research hypothesis 

Improving the mechanical and physical properties of composites depends not only on the 

characteristics of each component but also the interactions at the interface between the matrix 

and the reinforcements. For this reason, achieving a good adhesion between the polymer 

matrix and the fibers as well as a good dispersion of fibers within the polymer matrix is 
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critical to obtain a good composite. Increasing the contact surface area by adding a small 

amount of nano sized particles in WPC could be a solution for that purpose. Moreover, the 

abundance of functional groups at the surface of nanoparticles can offer new possibilities to 

the development of multifunctional materials (antibacterial and electrical conductivity) 

through the grafting of different chemical groups. Therefore, in this work, the possibility of 

adding NCC as improve the interfacial adhesion between fiber and polymer by increasing the 

contact surface between the polymer and the wood fibers was investigated.  

The present work was based on the following hypothesis: 

Adding nanoparticles, in particular NCC to WPC could allow: 

- An increase of the compatibility between polymer matrix and wood fibers 

- An increase of the interaction between polymer and fibers due to the large surface 

area of NCC 

- An increase of the interaction between maleic anhydride which can be grafted to the 

polymer matrix and the hydroxyl groups at the surface of NCC 

- A filling the cavities between the fibers and the polymer which is beneficial for water 

uptake resistance. 

 Objective of study 

As mentioned earlier, incorporation of nanoparticles in the wood plastic composite is among 

the proposed approaches for improving mechanical properties and water absorption. In 

particular, nanocrystalline cellulose (NCC) has presented a growing interest as promising 

reinforcement in polymer systems because of its interesting mechanical properties and the 

abundant and renewable sources of cellulose. 

For this purpose, the main objective of this research was to investigate the effect of adding 

nanocrystalline cellulose (NCC) on the mechanical properties and water absorption of 

HDPE/wood flour composite. This information can help to find out the reinforcement 

potential of NCC in HDPE composites.  

Therefore, the specific objectives of the present study were: 

 To establish an effective experimental methodology for incorporation of NCC 

in HDPE/wood flour composite; 
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 To compare the effect of two maleic anhydride types with various concentration 

on mechanical properties and moisture resistance of HDPE/NCC composite; 

 To study the effect of adding NCC on mechanical properties and water 

absorption of HDPE/wood flour composite. 

In this framework, different approaches were examined to identify the best compounding 

conditions and the appropriate nanoparticles concentration to be added into molten polymer. 

For a successful obtention of HDPE/NCC nanocomposites, two coupling agents developed 

by Dupont were tested to improve the dispersion of NCC in HDPE. Tensile and flexural 

properties, water absorption and morphology of the nanocomposites HDPE/NCC and hybrid 

composite HDPE/wood flour/NCC were examined to identify the best compounding 

conditions for obtaining the composite.  

 Structure of the dissertation 

The dissertation will be presented in five chapters:  

Introduction deals with the presentation of the background and problematic of the proposed 

research and the different targeted objectives.  

Chapter 1 is devoted to providing an overview of wood plastic composite, their advantages, 

principal drawbacks and the conventional methods adopted for their improvement. Then, the 

research progress on HDPE nanocomposites, NCC reinforced composites and the 

hybridization effect on mechanical properties and water absorption of wood plastic 

composite by incorporation of nanoparticles was presented. The various surfaces 

modification methods and processing techniques for improving nanoparticles dispersion are 

detailed in this part 

Chapter 2 presents the materials and methods used in this project to prepare the different 

composites formulations and characterization techniques adapted to evaluate the 

morphology, mechanical and physical properties of composites. 

Chapter 3 consists of a discussion and analysis of principal results obtained in this work. 

Chapter 4 is dedicated to presenting the different conclusions drawn from our project and the 

main recommendations for further work.  

 



 

CHAPTER 1 
 
 

LITERATURE REVIEW  

This chapter presents a review of literature on the effect of nanoparticles (NCC) on the 

mechanical properties and water uptake of NCC nanocomposites and an evaluation of their 

reinforcing potential in nanocomposite manufacturing. In addition, a review of the 

synergistic effect by combining wood fibers and nanoparticles to improve the interfacial 

interactions between fibers and matrix was discussed.  

1.1 Wood plastic composite (WPC) 

1.1.1 Interest of WPC 

 Wood plastic composite (WPC) is a composite material made by the combination of wood, 

in various forms (flour, fibers, dice), and plastic polymer such as polyethylene, 

polypropylene and PVC. These materials exhibit the appearance and rigidity of wood and 

surface smooth and weathering resistance of plastic. Using wood fibers in polymer composite 

has become a new common practice to replace traditional composite made of glass fibers. In 

the last few decades, WPC are starting to get a considerable popularity in various 

applications fields. The most important application for WPC are building (decking, floor, 

walls, windows and fencing) (Moffit 2012, Brunette 2013, Industry 2013), automotive 

interior parts and many other applications such as furniture, sports and some electronic 

devices(Brief 2011, Carus 2011, Brunette 2013). Figure 1.1 shows the different application 

fields of WPC produced in Europe. Decking is the main application of WPC with 67% of 

total production. Between 2014 and 2019, the wood plastic composite is expected to grow 

from $2579.90 million to $4,601.7million (Kulkarni and Mahanwar 2013, Tiwari 2015).  
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Figure 1.1  Application fields of WPC in Europe in 2012  
(Kulkarni and Mahanwar 2013, Tiwari 2015) 

 

1.1.2 Failure of WPC 

During the last decades, several studies on wood plastic composites (WPC) have been 

reported in the literature (Woodhams, Thomas et al. 1984, Jayaraman and Bhattacharyya 

2004, Jiang and Kamdem 2004, Ashori 2008, Jördens, Wietzke et al. 2010, Kumar, Tyagi et 

al. 2011, La Mantia and Morreale 2011). Polyolefins such as high-density polyethylene 

(HDPE), low-density polyethylene (LDPE), and polypropylene have long been the most 

popular polymers used as a matrix of WPC. Adding wood fibers as inexpensive fillers 

provides, in general case, a great ability to improve mechanical properties of polyolefins 

(Julson, Subbarao et al. 2004, SLAMA 2008, Petinakis, Yu et al. 2009, Altun, Doğan et al. 

2013). However, despite the recent success of WPC, their applications are still limited in 

industrial practice due to their hydrophilic nature, thickness swelling and defective interfacial 

stress transfer between fibres and matrix(Sretenovic, Müller et al. 2006).Tensile modulus and 

flexural modulus, generally, increase gradually when fibres concentration increases (SLAMA 

2008, Petinakis, Yu et al. 2009, Altun, Doğan et al. 2013). Nevertheless, at very high filler 

loading, the mechanical properties of composite start to decline due to poor dispersion and 
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fibres damage during processing by the increase of shear stress and fibre-fibre friction  

(Beg 2007). Soucy et al. (SOUCY 2007) and Li et al (Li 2012), reported that a maximum of 

60 w% of wood fibres should be respected to avoid a decrease of the mechanical properties 

of WPC. In contrast, tensile strength (Englund 1999, Balasuriya, Ye et al. 2001, Karmarkar, 

Chauhan et al. 2007, Adhikary, Pang et al. 2008) and flexural strength (Balasuriya, Ye et al. 

2001, Adhikary, Pang et al. 2008) have, generally, remained stable or sustained a slight 

decrease due to the poor dispersion. The effect of wood fibre on tensile and flexural 

properties of HDPE and PS composites obtained by Michael P.Wolcott et al. (Englund 1999) 

and P.W Balasuriya et al. (Balasuriya, Ye et al. 2001) is shown in Figure 1.2 and Figure 1.3. 

 

 

Figure 1.2  Effect of wood fiber content on tensile strength and modulus  
of WPC (Englund 1999) 

 

 

Figure 1.3  Effect of wood fiber content on flexural strength and modulus  
of WPC composites based on different HDPE and processing  

techniques (Balasuriya, Ye et al. 2001) 
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To overcome the decrease of mechanical propriety of WPC, good stress transfer from the 

matrix to the reinforced fibers must be achieved. Improving compatibility and dispersion of 

wood fiber is the main key for increasing the mechanical properties of composite. Low 

ductility, low impact strength and water absorption resistance are also a challenge for the 

implementation of WPC in many application fields. As in case of tensile strength, impact 

resistance of wood plastic composite decreases with increasing fillers concentration 

(Balasuriya, Ye et al. 2001, Karmarkar, Chauhan et al. 2007, Yang, Wolcott et al. 2007). 

Balasuriya et al. (Balasuriya, Ye et al. 2001) investigated the mechanical properties of HDPE 

reinforced wood flake composite prepared by twin extruder. They reported that impact 

strength of WPC, prepared using different processing conditions, decrease with an increase in 

wood flake content (shown in Figure 1.4). This trend was explained by the poor interfacial 

adhesion between wood flake and HDPE. 

 

 

Figure 1.4  Effect of wood fiber content on Izod impact strength of WPC  
composites based on different HDPE(LMFI: low melt flow index and  

MMFI : medium melt flow index) and processing  
techniques (Balasuriya, Ye et al. 2001) 

 

In addition to the failure of mechanical properties of WPC, higher water absorption and 

thickness swell can also be found as a negative effect of using wood fibers in polymer 

composites(Tajvidi and Ebrahimi 2003, Adhikary, Pang et al. 2008, Soury, Behravesh et al. 

2013). The high polarity of wood fibers results in increase of water absorption and low 

dimension stability (swelling) of WPC. Therefore, poor compatibility and interfacial 

adhesion between wood and polymer results in decrease of mechanical and physical 
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properties of wood plastic composite. One way to supplement this deficiency of WPC 

consists of adding coupling agents or various other chemical and physical surface 

modifications. 

1.1.3 Traditional strategies for composite improvement 

A strong fiber-matrix interface interaction is a challenge to improve adhesion and provide 

high mechanical properties of composites (Mohanty, Misra et al. 2001). Wood fibers are 

hydrophilic in nature which reduce their compatibility with hydrophobic polymer and 

increase water absorption of composite. To overcome this drawback of wood fibers and 

strengthening interfacial adhesion, the surface of the fibers can be modified by physical or 

chemical means (Mohanty, Misra et al. 2001, Kalia, Kaith et al. 2009, Mukhopadhyay and 

Fangueiro 2009). Several modification methods have been proposed in the literature such as 

alkaline treatment (Ichazo, Albano et al. 2001, Altun, Doğan et al. 2013), isocyanate 

treatment (Karmarkar, Chauhan et al. 2007, Petinakis, Yu et al. 2009), corona (Ragoubi, 

Bienaimé et al. 2010, Ragoubi, George et al. 2012) and plasma(Acda, Devera et al. 2012, 

Gibeop, Lee et al. 2013) discharge and chemical coupling with silanes (Pickering, Abdalla et 

al. 2003, Abdelmouleh, Boufi et al. 2007, Yanling Wang 2011) or maleic anhydride coupling 

agent (Kazayawoko, Balatinecz et al. 1999, Lai, Yeh et al. 2003, Sombatsompop, 

Yotinwattanakumtorn et al. 2005, Kim, Lee et al. 2007, Majeed, Hassan et al. 2014). The 

main objective of all these modifications is to increase hydrophobicity by substitution of 

hydroxyl groups at the surface of wood fibers and make better interfacial adhesion with 

polymer matrix. Using polyolefin to which maleic anhydride is grafted is the most popular 

method today to obtain WPC due to its relatively cheap price, and success in showing good 

compatibility to the wood fibers. However, despite the considerable success of those surface 

modification techniques, they suffer from several limitations such as for example: a risk of 

structure modification or degradation of fibers during chemical treatment with alkaline and a 

non-environmentally friendly and uneconomical process. On the other hand, the 

improvement achieved with using coupling agent is limited by the concentration of maleic 

anhydride and its tendency to migrate at the interface during processing. Some research 

examined the effect of adding coupling agent to the mechanical properties of wood 
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composite. They reported that compatibilized wood fibers presented much better mechanical 

strength and stiffness enhancement than incompatibilized fibers (Karmarkar, Chauhan et al. 

2007, Kord 2011, Ou Rongxiana 2011). However, the properties of composite were 

deteriorated with excess of coupling agent due to the increase of polymer/coupling agent 

immiscibility and its entanglements and slippages (N/A , Kato, Usuki et al. 1997).  

1.2 Hybrid wood nanocomposite 

Recently, a new way to improve mechanical properties of WPC can be represented by the 

addition of small amounts of nano-sized fillers such as nanoclay (Zhao, Wang et al. 2006, 

Faruk and Matuana 2008, Hemmasi, Khademi-Eslam et al. 2010, Deka and Maji 2013), 

carbon nanotubes (Fu, Song et al. 2010, Kordkheili, Farsi et al. 2013, Farsi and Sani 2014, 

Kushwaha, Pandey et al. 2014, Nourbakhsh, Ashori et al. 2015) and nanocrystalline cellulose 

(Nourbakhsh, Ashori et al. 2010, Yang, Peng et al. 2015). This type of composite is a so 

called hybrid nanocomposite. An increased interest of scientists and researchers has been 

granted for the investigation and understanding the mechanical and physical behavior of 

hybrid nanocomposite. Figure 1.5 gives an overview of articles published in the literature on 

the development of these materials.  

 

 

Figure 1.5  Trends in the number of articles published on hybridization of wood 
plastic composite with nanofillers between 2007 and 2015. Key words used are 

"wood plastic"; and "nanocrystalline cellulose" or "nanoclay" or "carbon nanotubes"  
(source Compendex & INSPEC ETS library accessed 07/08/2015 
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When added to WPC, the inclusion of nanofillers may result in a new possibility to improve 

adhesion and result in better performances that cannot be obtained with traditional surface 

modifications. In fact, due to their small size, nanofillers have extremely high specific 

surface area which makes a larger interface and a strong interaction between the fillers and 

the matrix. Using a combination of two kinds of fillers not only can improve mechanical 

properties and wood fiber dispersion, but also add a new functionality to WPC such as 

electrical conductivity (Faruk and Matuana 2008), flame retardancy (Guo, Park et al. 2007, 

Lee, Kuboki et al. 2010), water resistance (Gu, Kokta et al. 2010, Yeh and Gupta 2010) and 

barrier property (Turku and Kärki 2013). Nevertheless, good dispersion and agglomeration 

phenomena of nanoparticles still a critical challenge to have a synergistic effect between 

wood fibers and nanofillers. In fact, successful use of nanofillers in wood hybrid composite 

required a decrease of particle-particle interactions by increasing the interfacial adhesion 

with polymer matrix.  

Therefore, an overview of the progress in this research area will be presented in the next part 

to investigate the effect of adding nanocrystalline cellulose in HDPE wood plastic composite. 

The dispersion techniques approach will be also discussed.  

1.2.1 Nanocomposites based NCC 

1.2.1.1 Polymer nanocomposites  

Nanocomposites are composites in which one or more of these components have a dimension 

in the nanometre range (1-100 nm). In the last few decades, these materials have attracted 

much academic and industrial attention in various application areas such as automotive, 

aerospace, electronics, pharmaceutical and biotechnology.  

Growth of industrial interest in nanocomposites is reflected by the increasing of global 

consumption of these products in recent years. Between the years 2014 and 2019, the market 

was expected to increase from nearly 225,060 metric tons in 2014 to nearly 584,984 metric 

tons in 2019 (Reddy 2010, BCC 2014) as seen in Figure 1.6. 
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Figure 1.6  Global consumption of nanocomposites from  
2013-2019 (Reddy 2010, BCC 2014) 

 

Addition of nanoparticles as fillers in the polymer matrix appears as a high-potential for the 

improvement of mechanical properties as strength, rigidity and flexibility and physical 

properties as barrier properties, thermal resistance and electrical conductivity of polymer 

composite. Compared to conventional micro-fillers, nanoparticles have a very high surface 

area to volume ratio (shown in Figure 1.7) and high surface energy which allows them to 

have more chemical interactions with polymer surface and therefore enhance the interfacial 

adhesion of materials. As shown in Figure 1.7, the decrease of particle size (cube) from 27 

mm in length to 5 nm results in a significant increase in the number of small cubes in the 

same volume, which going from 1 to 1.6 x 1023 cubes and an increase of surface area that 

reaches 2 Km2 (Hanemann and Szabó 2010, Reddy 2010). The high surface area of 

nanoparticles makes it possible to use only a small amount of nanofillers to have the same 

mechanical results of conventional composite (using high fibres content). 
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Figure 1.7  Increase of the specific surface area depending on the  
particles size (adopted from (Reddy 2010) and  

(Hanemann and Szabó 2010)) 
 

This abundance of functional groups on the surface of nanoparticles can, also, make easier 

their compatibilization with different coupling agents. However, despite these attractive 

advantages, increasing surface area leads to an increase of particle- particle interactions and 

their agglomeration which hence to a decrease of the mechanicals properties. Suttiponparnit 

et al.(Suttiponparnit, Jiang et al. 2011) and Vahid Khoshkava (Khoshkava 2013) were 

reported that an increase of surface area of nanoparticle cannot give a good results except if a 

good dispersion was reached. For this reason, good dispersion and distribution of 

nanoparticles must be achieved to exploit all the real strength of nanocomposites which 

usually not easy to get. 

1.2.1.2 Nanocrystalline cellulose (NCC) 

 Origin 

Nanocrystalline cellulose (NCC) is a crystalline structural polysaccharide obtained from acid 

hydrolysis of native cellulose as described by Revol et al (Revol, Bradford et al. 1992). 

Compared to natural fibers and wood fibers, NCC presents several key features as a 

reinforcing agent in nanocomposites materials: such as nano-scaled dimensions with a very 

high aspect ratio and surface area (100 to 500 nanometers in length and 5 to 10 nanometers in 
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width) (Gilberto, Julien et al. 2010), high strength and modulus (Goetz, Mathew et al. 2009, 

Siqueira, Bras et al. 2010) and a good optical properties(inc , BIDEAU 2012). Those 

numerous advantages of NCC were combined with the abundance of biomass resources and 

their renewability to make of them as new bio-based fillers on polymer nanocomposites.  

The isolation of NCC from cellulose resource materials can be done using a mechanical 

separation process of nanofibrils (amorphous regions and crystalline regions) followed by a 

chemical treatment, generally hydrolysis, to remove the amorphous regions and obtain the 

pure crystalline structure of cellulose (Brinchi, Cotana et al. 2013) (shown in Figure 1.8). 

This high crystallinity (between 54 and 88% (Moon, Martini et al. 2011, Brinchi, Cotana et 

al. 2013)) was the main cause of mechanical strength and chemical resistance of NCC. 

 

 

Figure 1.8  Schematic representation of the hierarchy structure 
 of cellulose (W. N. HAWORTH 1930) 

 

 Chemical structure and morphology  

Microscopic analysis of NCC morphology shows that NCC is a rigid nanowhisker crystal 

with a dimension of 100 to 500 nanometers in length and 5 to 10 nanometers in width. The 

shape and size of nanoparticles are depending on plant source and acid hydrolysis conditions 

(shown in Figure 1.9).  
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Sugar beets (Saïd Azizi 
Samir, Alloin et al. 2004) 

Length : 210-5 42nm 
Width : 5 nm 

Cotton nanocellulose 
(Araki, Wada et al. 2000) 

Length : 100-150 nm 
Width : 5-10 nm 

Tunicin nanocellulose 
(Kimura, Kimura et al. 2005) 

Length : 1000-3000 
Width : 15-30 

Figure 1.9  Several cellulose particle types according to their origin 
 

Regardless of their source or size, at the macromolecular scale, the chemical structure of 

NCC is composed of two anhydroglucose units forming cellobiose [39] (see Figure 1.10). 

Each entity of cellobiose has 3 hydroxyl groups of which 2 secondary alcohol functions were 

in positions C2 and C3 and one primary alcohol function in position C6. These hydroxyl 

groups are responsible for the formation of intramolecular and intermolecular hydrogen 

bonds in cellulose. The abundance of these hydrogen bonds is the responsible for the linear 

structure of cellulose, mechanical strength, chemical resistance and thermal resistance 

(Mazza 2009) . 

 

 

Figure 1.10  Chemical structure of cellulose 
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1.2.1.3 Challenge of nanocomposite dispersion  

A better dispersion of nanoparticles is a key challenge to achieve desired performances of 

polymer nanocomposites. Therefore, it has been proven in many researches that mechanical 

and physical properties of nanocomposites were mainly governed by the degree of 

nanoparticles dispersion in polymer matrices (Pukánszky and Fekete 1999).  

To explain the interfacial adhesion mechanism between the fibres and polymer matrix, 

several theoretical approaches have been proposed in the literature(ROCHE, #160 et al. 

1991, Ragoubi 2010) such as mechanical theory(McBain and Hopkins 1924) (based on 

surface roughness), thermodynamic theory(Khoshkava and Kamal 2013) (based on wetting 

parameter and surface energy), diffusion theory(Voyutskii and Voiutskii 1963) (based on the 

affinity between fillers and polymer) and chemical theory(Peng, Dhar et al. 2011) (based on 

the formation of chemical bonding with or without using coupling agent). In our study, we 

have limited in chemical approach to understanding the effect of dispersion in interfacial 

adhesion between fillers and matrix. 

In this regard, the interfacial interactions between filler and polymer leads to a good stress 

transfer between the matrix and nanofillers and the formation of strongly interphase with 

properties different from those of both components (Pukánszky and Fekete 1999, Fu, Feng et 

al. 2008). These interactions are controlled by the chemical bonding between the polymer 

and the fillers. However, in most of the cases the polymers are incompatible with nanofillers 

and a uniform dispersion is difficult to achieve. This lack of adhesion can cause the 

formation of strongly bonded nanoparticles agglomerations during the processing 

compounding of nanocomposites, which may further result in a failure of physical and 

mechanical properties of the final composite. In addition, the high surface area and the low 

particle size of nanofillers increases the tendency of nanoparticles agglomeration by 

increasing the particle-particle interactions. When these interactions are greater, they can 

result in a weak interphase and, consequentially, deteriorate the mechanical properties of 

nanocomposites (Móczó and Pukánszky 2008). 
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Figure 1.11  Dispersion of nanofibers in the plastic matrix 

 

Therefore, to avoid this problem and reach a good dispersion, some preparation methods of 

nanoparticles were proposed. One of those attempts was focused on the surface modification 

by chemical substitution of new functional groups on the surface of nanoparticles to improve 

their compatibility with polymer matrix and reduce the particle-particle interactions.  

1.2.1.4 Dispersion of NCC in plastic matrix 

Because of the abundance of hydroxyl groups (–OH groups) on the surface of nanocrystalline 

cellulose, their dispersion in a polar polymers has become a critical challenge. In fact, each 

OH groups on the surface has a tendency to form a weak hydrogen bonding with its adjacent 

(Deng, Zhang et al. 2012). As it was explained in the previous section, the formation of these 

intermolecular chains results in a poor dispersion and agglomeration of NCC inside the 

polymeric matrix. This lack of dispersion conditions, limits the mechanical properties of the 

prepared nanocomposite. To overcome these problems and improve the dispersibility of 

NCC, different surface modifications of NCC have been conducted to introduce new 

functional groups. These chemical groups may allow reducing the particle-particle 

interactions and, consequently, promote the NCC-polymer interactions. Such modifications 

can be obtained by (1) coating with surfactants, (2) NCC surface oxidation, and (3) grafting 

the polymer chain on the surface of the fibres (Salajková 2012).  

Good dispersionAgglomeration
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 Surface chemical modification  

The main goal of the NCC surface modification is to improve their compatibility with 

hydrophobic polymer.That can be obtained by the introduction of new negative or positive 

electrostatic charges on the surface of nanocellulose. Those charges increase the particle-

particle repulsive forces and, consequently, improve the dispersibility of NCC in polymer 

matrix. Different surface modification methods, such as non-covalent surface modifications 

via adsorption of surfactants (Heux, Chauve et al. 2000, Bondeson and Oksman 2007, 

Salajkova, Berglund et al. 2012), TEMPO ((2,2,6,6-tetramethylpiperidin-1-yl)oxyl) oxidation 

(de Nooy, Besemer et al. 1994, Hirota, Tamura et al. 2009, Fujisawa, Okita et al. 2011, 

Johnson, Zink-Sharp et al. 2011, Yang, Peng et al. 2015), silylation (Look 1968), 

fluorescently labeled (Dong and Roman 2007) and grafting the polymer chain on the surface 

of NCC(Habibi, Goffin et al. 2008, Dadkhah Tehrani and Neysi 2013, Peltzer, Pei et al. 

2014) have been used(see Figure 1.12). 

 

 

 

Figure 1.12  Common chemical modifications of nanocrystalline cellulose (NCC)  
(adopted from Peng et al.(Gousse, Chanzy et al. 2002, Habibi, Chanzy et al. 2006,  

Dong and Roman 2007, Hasani, Cranston et al. 2008, Braun and Dorgan 2009,  
Morandi, Heath et al. 2009, Peng, Dhar et al. 2011)) 
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The increased interest for the chemical modification of NCC is explained by the increasing 

potential applications of modified NCC in polymer nanocomposites. In most cases of those 

surface treatments, an organic solvent is used, which is not environmentally friendly and is 

not preferred by industry. Therefore, to solve this problem, some research has been proposed 

to take advantage of good dispersibility of NCC in water and adding, directly, an aqueous 

suspension of NCC in melt compounding through liquid feeder (Aji, Ayan et al. 2006, 

Oksman, Mathew et al. 2006, Herrera, Mathew et al. 2015). This method requires a good 

stability to hydrolysis of the polymer matrix in the presence of water and high temperature. 

Another advantageous method is also used, particularly in case of polyolefins, involves the 

compatibilization of NCC nanocomposite by melt compounding with polyolefin grafted 

maleic anhydride or any other coupling agent.  

 Dispersion/Coupling agents  

Coupling agents are successfully used in wood plastic composites to improve adhesion, 

dispersion and compatibility between wood fibres and polyolefins (N/A , Yeh 2003, Li 

2012). Different coupling agents, such as glycidyl methacrylate and maleic anhydride have 

been commonly used in polymer composites. Maleic anhydride grafted polyolefins is now a 

well-known compatibilizer agent used to promote strong interaction between polymer matrix 

and fillers. The possible hypothetical reaction chemistry of this coupling agent and cellulosic 

fibres is presented in the Figure 1.13.  
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Figure 1.13  A possible mechanism of reaction between coupling agent, cellulosic  
fibers and HDPE (reproduced from Li, Qingxiu et al (Li and Matuana 2003)) 

 

The molecular weight and maleic anhydride content are the principal parameters affecting the 

effectiveness of maleic anhydride grafted polyolefin (N/A , Yeh 2003, Kulkarni and 

Mahanwar 2013). In fact, it has been found that increasing maleic anhydride content (or high 

loading of compatibilizer agent) generally improves the fiber dispersion and reduces particle-

particle interaction. However, using a high level of maleic anhydride content can be 

detrimental to the mechanical properties of composite due to the increasing of their 

immiscibility with polymer matrix (N/A , Kato, Usuki et al. 1997). The same effect has been 

observed for maleic anhydride molecular weight. When a coupling agent with low molecular 

weight is used, it can result in better dispersion. Nevertheless, increasing molecular weight 

can provide much better improvement in mechanical properties (Kulkarni and Mahanwar 

2013). Thus, it is quite important to make a good choice of coupling agent and its adding 

content to have an optimal compatibilizing efficiency of polymer composite. 

Similar to wood fibres, maleic anhydride grafted polyolefin has been also used to improve 

dispersion of NCC in polymer nanocomposites. Elif Bahar et al. (Bahar, Ucar et al. 2012) 

examined the effects of coupling agents on the tensile properties of PP/cellulose 

nanowhiskers nanocomposites. They found that increasing maleated polypropylene (MAPP) 
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content leads to a decrease of tensile strength and increase of tensile modulus of 

nanocomposite. This was explained by the stronger interfacial interactions rigidity and 

reduced molecular mobility in the structure, which leads to an increase of fragility and 

decrease of strength. The same trend was observed by Matheus Poletto et al.(Poletto, Zeni et 

al. 2012) and Rana et al. (Rana, Mandal et al. 1998), they attributed the decrease of the 

mechanical properties of polypropylene/ wood composite using a high content of the 

compatibilizer agent to the migration of coupling agent excess around the fibre surfaces, that 

causes slippage of the polymer matrix. Maija Pöllänen et al.(Pöllänen, Suvanto et al. 2013) 

and Velmurugan Palaniyandi et al.(Palaniyandi and Simonsen 2007) also investigated the 

mechanical properties and morphology of HDPE/Microcrystalline cellulose composites 

modified with a maleic anhydride grafted polyethylene. They showed that the incorporation 

of compatibilizer enhanced mechanical properties of the resulting composites.  

1.2.1.5 Processing of polymer nanocomposites 

In the manufacturing of polymer nanocomposites, the final properties are governed by the 

compounding technique used to mix fibres and matrix, which will affect the orientation, 

dispersion and morphology of nanocomposite. Different methods have been proposed for 

processing of polymer/NCC nanocomposites, including melt-mixing of a dried NCC with 

polymer in extrusion or internal mixer, solution casting of polymer solution and NCC 

dispersed in an organic solvent, aqueous dispersion of NCC with a water-soluble polymer 

and in-situ polymerization by dispersion NCC in a monomer solution. Choosing 

compounding processing method depends on the polymer type, the volume of composite that 

we want to produce and the economic and environmental aspects.  

 Solution blending 

Solution blending (solvent casting) is the most common method used in the literature to 

achieve a good dispersion level of NCC in polymer matrix. In this method, NCC 

nanoparticles are mixed with a polymer solution involving organic solvent. Two main 

approaches can be adopted, solvent mixture (Long Jiang, Morelius et al. 2008, Fortunati, 
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Puglia et al. 2013, Corrêa, de Morais Teixeira et al. 2014) by mixing of NCC aqueous 

suspension with miscible water-solvent polymer solution and solvent exchange approach 

(Ljungberg, Bonini et al. 2005, Siqueira, Mathew et al. 2011, Bahar, Ucar et al. 2012, 

Espino-Pérez, Bras et al. 2013, Abdulkhani, Hosseinzadeh et al. 2014, Fortunati, Rinaldi et 

al. 2014, Fortunati, Luzi et al. 2015), mostly used, by surface modification of NCC in water 

suspension followed by solvent exchange procedure from water to non-polar polymer 

solution. In the latter, the exchange of NCC suspension between water and organic solvent 

can be done using centrifugation process or by drying surface modified NCC before mixing 

with polymer solution. After solvent evaporation, nanocomposite NCC/ Polymer film can be 

collected. In contrast to melt blending, solution blending resulted in a better dispersion of 

NCC in polymer matrix. Long Jiang et al. (Long Jiang, Morelius et al. 2008) investigated the 

effect of melt blending and solution casting technique in the dispersion and mechanical 

properties of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) / NCC ((PHBV)/NCC) 

nanocomposite. They reported that solution casting of PHBV/NCC in N, N-

dimethylformamide (DMF) resulted in a good dispersion and increase of tensile properties. 

On the other hand, melt blending in extruder resulted in agglomeration of NCC, measuring 

up to 30 um, on the surfaces of the composites. These agglomerations have negative effects 

by the decrease of tensile strength and modulus of polymer nanocomposites. SEM 

observations of PHBV/NCC surface prepared by techniques, solvent blending and melt 

blending, are presented in the Figure 1.14. 
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Figure 1.14  Fracture surfaces of (A) : solution-casted of neat PHBV (a), 

 PHBV/2% CNW (b), and PHBV/5% CNW (c) composites and (B): 
 extrusion/injection molding of neat PHBV (a), PHBV/2% CNW (b), 

 and PHBV/5% CNW (c) (Long Jiang, Morelius et al. 2008) 
 

Nevertheless, the use of solvent technique is confined is not preferable for industry. In fact, it 

has several drawbacks limiting their use for industrial scale such as: the use of 

environmentally unfriendly organic solvent, high cost processing (additional cost of solvent), 

need specific chemical devices and it can only produces in a small quantity. In addition, 

some polymer matrixes such as polyolefins (Ljungberg, Cavaillé et al. 2006, Bahar, Ucar et 

al. 2012, Peng, Gallegos et al. 2014) and polyamides(Panaitescu, Gabor et al. 2015) with 

high molecular weight make difficult their mixing with NCC using solution blending method 

due to their high resistance to most of organic solvents.  

 

(A) 

(B) 
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 Melt mixing in internal mixer  

Melt compounding of polymer nanocomposites using internal mixer is one of the most 

advantageous methods widely used in the industrial scale. It is simple and doesn’t need any 

prior specific knowledge to be used, no organic solvents are required (very advantageous in 

case of polyolefins which are difficult to dissolve) and able to produce a sufficient quantity 

for industrial applications. However, in case of polymer/NCC nanocomposite the dispersion 

of NCC by melt mixing is more difficult compared to solution casting methods due to the 

tendency of NCC to form a big agglomeration at high viscosities of the composite melt 

during processing. In literature the melt-mixing process has not been widely used for the 

compounding of polymer/NCC because of not very successful dispersion results (Oksman, 

Mathew et al. 2006, Bondeson and Oksman 2007, Sapkota, Kumar et al. 2015). To overcome 

this disadvantage, a combination of pre-mixing by solution casting and melt mixing was 

reported. However, this approach may lose all the advantages of melt-mixing method and 

draw it back to the solution casting.  

The challenge of dispersion state can be strongly affected by the processing conditions and 

the mixing protocol. The principal parameters affecting dispersion in polymer 

nanocomposites are rotor speed (shear stress), mixing time and barrel temperature. In 

addition, the compounding steps (one-step and two-step process) may also affect the 

interaction between fibers and polymer if a surface modification by coupling agent was 

performed. 

 

 Influence of rotor speed 

The rotor speeds or shear rate of internal mixer have a significant effect in processing 

compounding of polymer nanocomposite. Indeed, the separation of NCC aggregates is 

mainly carried with shear stress provided by rotor screws. At high rotor speed, the shear 

stress increases resulting in an improvement of NCC dispersion. However, at an extremely 

high rotor speed value (very high shear stress); the degradation of NCC could result in a 

reduction of NCC length by mechanical damage. Janak Sapkota et al. (Sapkota, Kumar et al. 
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2015) investigated the influence of shear rate in the reduction of the NCC length upon melt 

processing. Transmission electron microscopy (TEM) images of neat NCC and NCC 

extracted from PVA/NCC (Polyvinyl acetate/NCC) nanocomposites made by internal mixer 

and twin-screw extruder was used to quantify the possible reduction of NCC length. They 

reported that high shear rates caused a slight reduction in length of NCC extracted from 

composite in comparing to neat NCC. This microscopic observation was confirmed by the 

decrease in mechanical properties due to NCC reduction length. Figure 1.15 shows the effect 

of shear rate on the storage modulus of PVA/NCC nanocomposites. 

 

 

Figure 1.15  Effect of shear melt-mixing stress in storage modulus of 
 poly(vinyl acetate) (PVAc)/Nanocrystalline cellulose (NCC)  

nanocomposite (Sapkota, Kumar et al. 2015) 
 

A similar outcome was reported by R. Andrews et al. (Andrews, Jacques et al. 2002) for 

melt-mixing of carbon multiwall nanotube/ polymer nanocomposites. On the other hand, 

using low shear rate can lead to the agglomeration of NCC and difficulties in achieving the 

desired dispersion(Sapkota, Jorfi et al. 2014). The optimum rotor speed in an internal mixer 

reported in the literature for cellulose nanocomposite was around 50 to 60 rpm depending on 

polymer molecular weight, processing temperature and the mixer chamber 
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volume(Ljungberg, Cavaillé et al. 2006, Peng, Gallegos et al. 2014, Kamal and Khoshkava 

2015).  

 Influence of mixing time 

In internal mixer, mixing time of polymer nanocomposites was regarded, in addition of rotor 

speed, as a very important parameter to improve dispersion of fillers. Longer mixing time 

increases the diffusion mechanism of nanofillers in molten polymer chains and provides 

sufficient time for breaking nanoparticle aggregations(Moghri, Shahabadi et al. 2013). 

However, at very long mixing time thermal oxidation contributes to the degradation of 

nanofillers and polymer and result in a negative effect on mechanical properties of 

composite. This degradation effect is more critical in the case of natural fibres such as NCC 

(degradation above 200°C) (E.Jakab, O.Faix et al. 1997, RINGUETTE 2011)) and some 

polymers which are sensitive to thermal degradation. Mixing time and rotor speed should be 

combined together to have better dispersion improvement without much degradation of 

polymer and filler reinforcement effect. In fact, to avoid this degradation increase rotor speed 

must be accompanied by the reduction of mixing time, as well as at long mixing time, the 

rotor speed (shear stress) must be lower (O. Ujianto 2015). Choosing residence times should 

be based also on observation of the torque in the mixer. Stabilized torque gives a precise 

indication if the homogenous dispersion was reached(El-Shekeil, Sapuan et al. 2013).  

 Influence of set temperature 

The processing temperature to melt compounding of nanocomposites based NCC is a critical 

parameter. At a high set temperature the viscosity of polymer is much lower which should 

make the diffusion and dispersion of NCC in the polymer chains easier. However, on the 

other hand, increasing temperature can result in a decrease of shear stress level applied 

during mixing, thermal degradation of NCC (degradation above 200°C) (E.Jakab, O.Faix et 

al. 1997, RINGUETTE 2011) and decrease of mechanical properties of nanocomposite(El-

Shekeil, Salit et al. 2011, El-Shekeil, Sapuan et al. 2013). In order to reduce the effect of 

temperature on the natural fiber thermal degradation a general trend is to avoid the 

synergistic effect of moisture and temperature by fiber drying step before processing. 
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However, this is not possible in the case of NCC due to their agglomeration tendency by 

forming very strong hydrogen bonding between the hydroxyl groups (Nakamura, 

Hatakeyama et al. 1981, Peng, Gardner et al. 2012). In addition, during the extraction stage 

of NCC by sulfuric acid hydrolysis treatments the formation of sulfate groups at the surface 

lead to a decrease thermal stability (from 250 to 125 ° C) (Cho, Park et al. 2013, Lin and 

Dufresne 2014). 

 Influence of processing steps 

The compounding process of natural fibers with polymer composite can be performed in one 

step or two step process (master-batch).In one-step process the aim is typically to produce a 

homogeneous mixture without giving importance to the dispersion such as pre-mixing step 

prior to extrusion or injection. Contrariwise the master-batch method is widely used in the 

polymer processing industry, with internal mixer, as a comprehensive step for preparing the 

composite. In the latter, a high content of fillers is firstly compounded with coupling agent 

(master-batch) to improve their compatibility, followed by dilution of master-batch with neat 

polymer in a second mixing step. The two step method using master-batch method resulted in 

better dispersion and better mechanical properties than direct mixing (Krzysik and 

Youngquist 1991, Lu, Wu et al. 2004, Peng, Gallegos et al. 2014, Ma, Zhang et al. 2015). For 

NCC nanocomposites the master-batch step is typically prepared in solution blending or a 

prior step by melt blending in an internal mixer before extrusion (Gong, Pyo et al. 2011, 

Arrieta, Fortunati et al. 2014, Ma, Zhang et al. 2015). This can be explained by the low 

thermal stability of NCC and the difficult of dispersion in mixer. To our knowledge, there are 

no studies in the literature that has investigated the effect of both master-batch and direct 

mixing of polymer /NCC in internal mixer. 

1.2.1.5.1 Liquid feeding  

Nanocrystalline cellulose derived from acid hydrolysis presents a very good dispersion in 

water and some medium solvents suspension due to abundance of negative charges in their 

surfaces (anionic sulfate ester groups)(Dufresne 2013). Taking advantage of this property, 

melt compounding of NCC nanocomposites can be produced using liquid feeding method. 
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Prior to the extrusion, NCC suspension (water or ethanol) is prepared and pumping directly 

on the molten polymer during processing. Lowest quantity of appropriated liquid and 

atmospheric venting pump must be used to make easier the evaporation of liquid and do not 

deteriorate the polymer matrix properties. Giovanni Roggio(Roggio 2014) studied the 

compounding of PLA/NCC nanocomposites using liquid feeding in extrusion. Freeze dried 

NCC and wet NCC was dispersed in triethyl citrate (TEC) plasticizer and ethanol, then the 

suspension is pumping in melt PLA using liquid feeder. They reported that the use of water 

in the feeding suspensions improves the dispersion of NCC in the PLA matrix and resulted in 

better mechanical properties of nanocomposite compared to freeze dried NCC. At 5 wt. % of 

NCC suspension content the tensile modulus and tensile strength of PLA/NCC 

nanocomposite increased by 68% and 35% respectively compared to neat PLA. However, a 

decrease of tensile strength and modulus was observed when 5 wt. % of freeze dried NCC 

was used. 

 

 

Figure 1.16   Mechanical properties of PLA/NCC nanocomposites 
 using different processing methods and NCC content (Roggio 2014) 
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A similar result was reported by D. Bondeson et al.(Bondeson, Syre et al. 2007) using 

cellulose acetate butyrate (CAB) as a matrix. Upon addition of 5 wt. % NCC in TEC 

suspension, the tensile modulus and tensile strength increased by 300% and 100%, 

respectively, compared to neat CAB. However, a decrease of mechanical properties 

compared to neat PLA was shown by K. Oksman et al.(Oksman, Mathew et al. 2006) using a 

suspension of NCC with N,N- Dimethylacetamide (DMAc) and Lithium chloride (LiCl) as 

swelling agent and Polyethylene glycol (PEG) as a plasticizer. This negative effect has been 

explained by the degradation of PLA properties with additives using in NCC suspension. So 

a successful process requires a good choice of NCC suspension liquid not only to improve 

the dispersion of NCC in a molten polymer but also to avoid the degradation of polymer 

properties.  

Recently, the demonstrated success with the liquid feeding process of NCC suspension 

encouraged Natalia Herrera et al.(Herrera, Mathew et al. 2015) to prepare, for the first time, 

PLA nanocomposite based cellulose nanofibers (NFC) suspension with glycerol triacetate 

(GTA). They reported the same results with a good dispersion of NFC and increase of 

mechanical properties of PLA/NFC nanocomposite. 

1.2.2 Potentiality of using nanofillers in HDPE nanocomposites 

Reinforcement of nanocomposite with organic and inorganic nanoparticles has been reported 

in the literature by many researchers. Indeed, a good improvement of polymer properties can 

be achieved with typically 3 to 10 wt.% nanoparticles such as clays, carbon nanotubes and 

nanocrystalline cellulose (Wang 2008, Islam, Masoodi et al. 2013). Therefore, many 

investigation studies have been carried to understand the effect of addition of nanoparticles 

on the mechanical and physical properties of polymers.  

Regardless of their size and shape, the addition of nano or microfillers in a polymer matrix 

has, in general, a positive effect on increasing tensile modulus and strength of composite. 

This enhancement is governed by the interfacial interaction between polymer and fillers, 

dispersion, concentration, aspect ratio and orientation of fillers (Chevigny, Jouault et al. 

2011, Islam, Masoodi et al. 2013, Pedrazzoli, Pegoretti et al. 2015). In fact, it was reported in 

many works that, when a good dispersion was achieved, increasing the volume fraction of 
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nanoparticles can increase the Young modulus and flexural modulus of neat matrix (Utracki , 

Aït Hocine 2010). However, on the other side, the tensile strength, flexural strength and 

impact resistance remain constant or in some cases decrease as weight fraction of NCC 

increases. These results can be explained by the most critical effect of agglomeration when a 

high nonlinear deformation stress is applied during the test. These stress tension forces are 

lower at the beginning of the test, where the modulus is measured, that is why the stress-

transfer across the filler–matrix interface doesn’t have the same effect between modulus and 

strength resistance (Aït Hocine 2010, Panaitescu, Radovici et al. 2011). 

 For HDPE nanocomposites, such behaviour of mechanical properties was observed by using 

various nanofillers such as nanoclay (A. Pegoretti 2007, Tjong and Bao 2007, Carrera, #xed 

et al. 2013, Hamid, Akhbar et al. 2013), carbon nanotubes (Kim, Hong et al. 2009, Vega, 

Martínez-Salazar et al. 2009), TiO2 (Panaitescu, Radovici et al. 2011), nano-SiO2 (Zhang, 

Rong et al. 2003) or nanocrystalline cellulose (Palaniyandi 2004, Li, Song et al. 2014, Nihat 

Sami ÇETİN 2015). In these studies, it was assisted that the values of Young’s modulus and 

tensile strength can increase by 10% to 50% and 10% to 26%, respectively, compared to neat 

polymer. It was also shown that there exists a critical concentration of nanoparticles in which 

there is a decrease of modulus due to agglomeration phenomena. 

Cheng Zhu Liao et al. (Liao and Tjong 2012) reported an increase in tensile stress and 

Young’s modulus of HDPE with the increase of alumina nanoparticles content up to 6%. 

However, the improvement obtained is inconsiderable and does not exceed 10% compared to 

the neat polymer. M. Trujillo et al. (Vega, Martínez-Salazar et al. 2009) found that the 

addition of only 0.52 wt.% MWNT improve tensile modulus of HDPE by almost 100% 

without decreasing their ductility.  

According to our literature review, the effect of nanoparticles on flexural properties of 

polymer nanocomposites was not very discussed in the literature (Sinha Ray 2013). Omar 

Faruk et al. (Faruk and Matuana 2008) report the effect on flexural strength and modulus of 

injection molded HDPE reinforced with five different types of nanoclays (5% content). Table 

1.1 summarizes their results for flexural strength and modulus. The results show an increase 

of flexural modulus for all types of cloisite with more than 41% in case of Cloisite 10A. 
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However, except for Cloisite 10A (increasing by 25%) no significant effect was observed for 

all other nanoclay.  

 

Table 1.1  Influence of nanoclay types on the flexural properties of nanoclay/HDPE 
nanocomposites (Faruk and Matuana 2008) 

 

Types of nanoclay 
in HDPE matrix 

Chemical structure of the 
nanoclays 

Flexural properties 

Strength (MPa) Modulus (MPa) 

None (control) - 25.3 ± 1.4 667 ± 61 

Cloisite 10A 31.7 ± 1.8 947 ± 76 

Cloisite 15A 24.7 ± 0.8 693 ± 40 

Cloisite 20A 26.4 ± 0.5 757 ± 35 

Cloisite 25A 26.8 ± 0.6 759 ± 21 

Cloisite 30B 25.7 ± 0.3 ± 19 

 

1.2.3 Hybridization effect of nanoparticles on WPC 

Wood fibers have long been used in thermoplastic polymers to make composites with good 

mechanical and physical properties. However, generally, the characteristic properties, such as 

flexural, tensile, impact and water absorption properties of WPC are affected by the poor 

interfacial adhesion between hydrophilic fibers and hydrophobic polymer. This makes it 

difficult to have a good stress transfer between the two components and deteriorate, 

consequently, the composite performances. Several efforts have been made to find some 
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solutions to overcome the limitations of WPC. One way is to do surface modification of 

fibers or adding coupling agent to reduce their surface tension. Another solution, also 

reported in the literature consists of adding small amounts of nanofillers to increase the 

interphase volume and interfacial interaction between fibers and matrix. In particular, NCC 

have a good mechanical properties, high surface area and high aspect ratio (L/d>30) what 

makes them a good candidate for hybrid WPC. In this section we will summarize the 

progress research in the use of nanofillers for WPC manufacturing, and the effect of adding 

nanofillers (in particular NCC) on the mechanical and physical properties of wood plastic 

composites. 

1.2.3.1 Mechanical properties 

The major defect of WPC is their lower flexural and tensile strength resulting from poor 

interfacial adhesion between matrix and wood fillers. Enhancing mechanical properties of 

WPC can be performed by the incorporation of nanofillers into hybrid nanocomposite to 

improve interfacial interactions. The hybridization of WPC with some nanofillers such as 

carbon nanotubes, nanoclay and nanocrystalline cellulose have shown various mechanical 

behaviors. Some studies reported encouraging mechanical results when nanofillers are added, 

although, many other researchers found a decrease of mechanical properties when studying 

hybrid nanocomposites. This can be mainly explained by the degree of nanoparticles 

dispersion, nanofillers loading and polymer matrix type.  

To our knowledge, there are no studies that examined the effect of hybridization of WPC by 

nanocrystalline (NCC) cellulose. However, some limited studies in the literature reported the 

effect of combining microcrystalline cellulose (MCC) (sizes greater than 500 nanometers) 

and wood flour in polymer composite. Alireza Ashori et al (Ashori and Nourbakhsh 2010) 

investigated the effect of adding microcrystalline cellulose (MCC) on flexural and tensile 

strength on PP/wood composite. They reported that partial replacement of wood flour by 8 % 

MCC can significantly improve the mechanical properties compared to composite without 

MCC. A. Nourbakhsh et al. (Nourbakhsh, Ashori et al. 2010) reported an increase of tensile 

and flexural properties of PP/wood flour composite when 4 wt.% of microcrystalline 
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cellulose (MCC) was used. They also reported a better effect of MCC in WPC performances 

compared to nanoclay at the same nanoparticles loading. The maximum improvement was 

obtained when 8 wt. % MCC and 3 wt. % of nanoclay was incorporated in WPC composite. 

Compared to control sample (PP/wood/MAPP), tensile strength and modulus were increased 

by 12% and 55%, respectively. Also, flexural strength and modulus were presented a 

significant enhancement by 25 % and 20 %. 

In the literature review, nanoclay was mostly studied as reinforcement nanofillers for hybrid 

WPC. This may be due to lower cost and easier control of its surface chemistry compared to 

other nanoparticles.  

Hasan Ziaei Tabari et al. (Tabari, Nourbakhsh et al. 2011) have examined the effect of 

adding 3 w% nanoclay (Cloisite Na+) on the mechanical properties of PP/ wood flour 

composites. Maleic anhydride was also added to the composite to improve adhesion between 

fillers and PP. An improved tensile and flexural strength and modulus were observed (see in 

Table 1.2). 

 
Table 1.2  Effect of addition maleic anhydride and clay concentration on the mechanical 

properties of polypropylene /wood flour composite (Tabari, Nourbakhsh et al. 2011) 
 

 Tensile 

strength 

(MPa) 

Tensile 

Modulus

(GPa) 

Flexural 

strength 

(MPa) 

Flexural 

modulus 

(GPa) 

PP+40w% wood 
flour + 2,5% MA 

0% nanoclay 32,9 2,5 40,3 2,4 

3% nanoclay 38,7 3,3 48,8 2,7 

PP+40w% wood 
flour + 5% MA 

0% nanoclay 36,7 3,1 47,7 2,6 

3% nanoclay 39,6 3,9 50,6 2,9 

 

The same enhancement result of mechanical properties was reported by Yang Zhong et al 

(Zhong, Poloso et al. 2007), Yong Lei et al (Lei, Wu et al. 2007) and Ishagh Babaeia et al 

(Babaei, Madanipour et al. 2014) when a small amount of nanoclay (less than 3 %) was 

added to HDPE/wood plastic composite. In all these studies, a good dispersion of nanoclay is 
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required to have the synergistic effect between the different fillers incorporated in polymer 

matrix. Therefore, a maleic anhydride is usually used to improve nanoclay exfoliation and 

compatibility with hydrophobic polymer.  

The morphology and type of nanoparticles present also a significant effect on the hybrid 

wood plastic composite. For example, Omar Faruk et al. (Faruk and Matuana 2008) studied 

the effect of five different organically modified nanoclays for the improvement of 

mechanical properties of HDPE/wood/nanoclay nanocomposite. First, the nanoclays were 

used with neat HDPE to increase their stiffness and identify the most effective nanoclay type 

on wood-plastic composites. Then, HDPE/cloisite10A nanocomposite was used as a matrix 

in the compounding of wood composite. Cloisite 10A has proven the best enhancing of both 

flexural and tensile properties. This is due to the good dispersion of Cloisite 10A compared 

to other nanoclay types. Figure 1.17 showed the TEM image of different cloisite dispersion. 

It can be clearly seen that the good dispersion of Cloisite 10A compared to other nanoclay 

resulted in a significant increase of mechanical properties. 

 

 

 

 

Figure 1.17  TEM of HDPE/nanoclay composites: (a) Cloisite 10A nanoclay 
 and (b) Cloisite 15A nanoclay (Faruk and Matuana 2008) 

 

Trying to reach better optimization of hybrid wood plastic composite performance, many 

researchers have examined the effect of high nanoclay content on the mechanical properties 

of wood composite. They reported that increasing the amount of nanoparticles above a 

critical value could reduce their dispersion in a polymer matrix and deteriorate the 

mechanical properties of composite.  
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Behzad Kord et al. (Kord 2011) suggested that adding up to 2 phc nanoclay can improve the 

tensile modulus and strength of HDPE/rice husk flour composite. However, when the 

concentration of nanoclay exceeds 4 phc, a decline of mechanical properties can be observed. 

This result was attributed to the formation of nanoclay agglomeration. 

 Ishagh Babaei et al (Babaei, Madanipour et al. 2014) reported an increase of tensile modulus 

and strength of HDPE/wheat straw flour by adding up to 2% of exfoliated nanoclay. 

Nevertheless, the lack of dispersion when 5% of nanoclay loading was used, leads to a 

significant decrease of the mechanical properties of composite. Many other researchers using 

polypropylene as a matrix also confirmed this negative effect of adding a large quantity of 

nanoparticles and they are all returned the deterioration of mechanical properties to the lack 

of nanoparticles dispersion(Nourbakhsh and Ashori 2009, Hemmasi, Khademi-Eslam et al. 

2010, Yeh and Gupta 2010, Kord 2012).  

Carbon nanotube was also used to improve mechanical properties of wood plastic composite. 

Hamed Younesi Kordkheili et al.(Kordkheili, Farsi et al. 2013) was using carbon nanotubes 

compounding in an internal mixer with low density polyethylene and wood flour. High 

aspect ratio and large surface area of carbon nanotube caused an increase of mechanical 

properties of the composites. Flexural modulus and strength were increased by increasing 

carbon nanotube content (0, 1, 2, 3 phc) while the highest impact resistance was obtained at 2 

phc due to the agglomeration of nanoparticles at high concentration level. The mechanical 

results were explained by morphological study using SEM micrographs of fractured samples. 

It has been proved that adding carbon nanofillers increase interfacial adhesion between wood 

and PP(Kordkheili, Farsi et al. 2013).  

Zhang et al.(Zhang, Zhang et al. 2009) reported a decrease by 5% of flexural modulus when 

1 wt. % of carbon nanofibers was introduced in PP/ wood fibers. The SEM observation 

indicates that this reduction of mechanical properties is attributed to the poor dispersion of 

carbon nanofibers.  

From the results presented above, it can be concluded that a synergism between the addition 

of nanofillers and wood fibers can be obtained only when a good dispersion was achieved. 

Otherwise, a decline of mechanical properties can be observed, particularly, when higher 

nanoparticles loading is used. 
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1.2.3.2 Physical properties 

In addition, of mechanical properties enhancement, incorporating nanoparticles in wood 

plastic composite was provided a good ability to reduce swelling and water absorption of 

composite. This presents a promising opportunity to overcome limited moisture resistance of 

wood composite. Thermal stability, fire retarding properties and electrical conductivity of 

WPC can be also improved when an appropriate amount of nanoparticles is introduced. 

Hasan Ziaei Tabar et al (Tabari, Nourbakhsh et al. 2011) report improved hygroscopic 

properties of a PP/wood flour composite with 3% nanoclay loading. This result was 

attributed to the ability of nanoclay to block the void spaces in WPC composite and prevent, 

consequently, water penetration. Another observation was reported by Ismaeil Ghasemi and 

Behzad Kord (Kord 2009) suggested that the reduction of water absorption is mainly due to 

the hydrophilic nature of nanoclay which prevent water migration to the polymer matrix. 

However, the agglomeration of nanoparticules by increasing nanoclay concentration caused 

the increase of water absorption (Supri AJ 2008, Gu, Kokta et al. 2010). Some other authors 

such as Behzad Kord (Kord 2012) observed that adding nanoclay leads to decrease of water 

absorption and thickness swellings. 

 

 

Figure 1.18   Effect of nanoclay loading on water absorption and thickness  
swelling of PP/ hemp fibers composites(Kord 2012) 
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This can be explained by the good exfoliation of nanoclay obtained in composite. So such 

improvement of moisture resistance of hybrid composite requires good nanoparticles 

dispersion state. 

Although, carbon nanotube is used to improve mechanical properties and electrical 

conductivity of polymer composite, their effect on the water absorption behavior of hybrid 

wood composite was investigated. Hamed Younesi Kordkheili et al. (Kordkheili, Farsi et al. 

2013) showed a decrease of water absorption and thickness swelling of LDPE/ wood flour 

when the concentration of carbon nanotube increase up to 3wt.%.  

As has been observed for mechanical properties, enhancing moisture resistance of hybrid 

nanocomposite can be achieved only when a homogeneous dispersion is obtained. 

1.3 Conclusion 

In chapter 1, we presented an overview of nanocomposites reinforced cellulose 

nanocrystalline (NCC) and the potential of using nanoparticles on mechanical properties of 

composite. It has been observed that adding a small amount of nanoparticles, having a large 

surface area and high strength, can improve significantly the mechanical and physical 

properties of nanocomposite. However, at high nanoparticles loading, obtaining a proper 

dispersion by melt mixing still remains a challenge as polyolefins are hydrophobic and NCC 

are hydrophilic. So, we focused on the key challenges of NCC dispersion and the main 

strategies adopted to overcome this problem. Using compatibilizer agent such as maleic 

anhydride to improve nanoparticles dispersion showed encouraging results in various studies. 

In addition, several studies investigated the incorporation of nanoparticles such as nanoclay 

and carbon nanotube in wood plastic composite. They provided that a successful effect on the 

enhancement of mechanical and physical can be obtained. But, to our knowledge, there are 

no study examined the effect of NCC in wood plastic composite. 

In this framework, the objective of our study is to investigate the effect of adding NCC as 

compatibiliser on mechanical properties and water uptake of hybrid wood plastic composite 

based HDPE. This hybrid composite could be used in similar applications than the WPC, i.e 

in construction, automotive and sport. 

The following table presents the role of each component in the hybrid composite.  
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Table 1.3   The main role of each composite component 
 

Component Role 

HDPE Matrix of composite 

Wood flour 
Reinforcement to increase mechanical and 

physical properties of composite 

NCC 

Help to improve the compatibility between wood 

flour and HDPE (increase the interface 

interactions) 

Compatibilizer agent 
Improve the compatibility between wood flour 

and HDPE and the dispersion of NCC 

 

 . 



 

CHAPTER 2 
 

MATERIALS AND EXPERIMENTAL METHODS 

This chapter presents the materials and experimental methods used in this project. 

First the polymer, the fillers and the compatibilizers used are presented. The processing 

methods are then described and characterization explained. 

2.1  Technical data of the materials  

This section presents the different materials that were used to manufacture the composites 

obtained in the project.  

2.1.1 High-density polyethylene (HDPE) 

High-density polyethylene (HDPE) with a melt flow index rate of 4.9 g/10 min (190°C/2.16 

kg) and density of 0.960 g/cm³ was supplied by NOVA Chemicals Company in Canada as a 

commercial grade SCLAIR® 2907. 

 

 

Figure 2.1  HDPE SCLAIR® 2907 
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2.1.2 Fillers 

2.1.2.1 Nanocrystalline cellulose (NCC) 

The nanocrystalline cellulose (NCC) was purchased at the Process Development Center of 

the University of Maine (Orono, Maine, USA)(University of Maine). It was used as a filler of 

nanocomposite, without any modification. The samples of NCC are in a freeze-dried form 

and manufactured at the U.S. Forest Products Laboratory (FPL). The dimensions and 

specifications of NCC source are not available. 

 

 

Figure 2.2  Freeze-drying NCC 
 

2.1.2.2 Wood flour and sisal 

For composite and hybrid nanocomposites, we used the wood flour (WF) supplied by P.W.I. 

Industries Inc. The particle size of wood was 70 microns. The Wood flour was extracted 

from maple trees of Canada. Sisal short fibers were received from Brazil but, unfortunately, 

no data were as found or could be obtained for the Sisal. 

 

 

 

 

 

 

Figure 2.3  Sisal fiber and wood flour 

Wood flour
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2.1.3 Compatibilizer  

The problem of adhesion between the hydrophilic fibers and hydrophobic polymers and the 

difficulty of filler dispersion in the polymer are the main challenges to be solved. In this 

regard, two grades of polyethylene-graft-maleic anhydride (PE-g-MAH) were used as 

coupling agent to improve the compatibility between the HDPE matrix and NCC. This 

compatibilizer was supplied by DuPont here called (CA1) with melt flow rate 

(190°C/2.16kg) 25 g/10 min  and (CA2) with melt flow rate (190°C/2.16kg) 12 g/10 min. 

 

 

Figure 2.4  Compatibilizer agents CA1 and CA2 
 

2.2  Methods of preparation and characterization of samples 

In this section we will present the different pieces of equipments and processes that have 

been used to prepare and characterize the composites based on HDPE and cellulosic fillers 

(NCC, wood flour and Sisal). First, the different samples were compounded in internal mixer 

using appropriate conditions. Then, the mixture was reduced into smaller and irregular 

granules using a mechanical grinder machine. Finally, the various specimens for mechanical 

tests were prepared according to the standardized dimensions using an injection molding 

machine. To evaluate the performance of different materials obtained, we studied the 

mechanical properties in bending, tensile and impact using a MTS machine and impact 

pendulum. The morphology of the samples was evaluated using scanning electron 

microscopy (SEM) to understand the mechanical properties of the samples. The mechanical 

properties were then explained in light of the morphology of the samples.  
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2.2.1 Compounding processes for the HDPE composites  

NCC, wood flour and sisal were compounded with HDPE in a Thermo Scientific™ 

HAAKE™ Rheomix Lab Mixers OS 3000. The internal mixer is shown in Figure 2.5.The 

technical specification of the apparatus for the Haake Rheomix 3000 OS are presented in 

Table 2.1. Mixing conditions could be programmed through the PolyLab OS software system 

by setting the duration of mixing (min), temperature of mixing chamber (°C) and speed of 

rotors (rpm). 

 

   

Figure 2.5  Haake Rheomix OS 3000 
 

Table 2.1 Haake Rheomix 3000 OS technical data (Altun, Doğan et al. 2013) 
 

Item Technical Specifications 

Total chamber volume 625 cm³ 

Net chamber volume w/ rotors 310 cm³ 

Max. rotor speed 250 rpm 

Max. temperature: 400°C (opt. 500°C) 

Max. torque: 300 Nm 

Electric heating zones: 3 

Air cooling zones: 3 

Gear ratio 3:2 

Mixer setup Un-mounted chamber  of 
the mixer 

Mounted chamber of the 
mixer 
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Before mixing the materials, we had to determine the quantity in grams to be fed into the 

Haake Rheomix 3000 OS. Equation 1 was used to determine that quantity: 

 																																																															݉௖ = .		௖ߩ	 ௡ܸ.  (2.1) 																																																																			ܨ
 

Where, ݉௖	is the mass of the composite compound in grams,	࣋ࢉ	is the density of the 

composite compound in g/cm³, ௡ܸ	is the net chamber volume w/rotors was equal to 310 cm³ 

and F is the fraction of the net chamber volume w/ rotors, which was set to be 0.65. 

The melt-molding processes used for manufacturing the HDPE/NCC nanocomposites and 

composites based wood flour and sisal were one-step and two-step following what is shown 

Figure 2.6. 

 

Figure 2.6   Melt-molding processes used for manufacturing HDPE composites 
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For the one step process, NCC was compounded with HDPE in internal mixer at 160 °C for 

15 mins. The rotor speed was set at 50 rpm and the maximum temperature reached during 

compounding was 170 °C. In order to ensure complete blending, the mixing chamber was 

preheated to 160°C. HDPE was inserted first inserted in the mixing chamber. NCC was 

added after 4 minutes once HDPE was already molten. The same procedure was used to 

prepare all the nanocomposites. The compatibilizers, CA1 and CA2 were mixed together 

with HDPE in the case of one-step process and separately (under nitrogen atmosphere) with 

NCC (a masterbatch) prior to compounding in the batch mixer with HDPE. Table 2.2 

summarizes the different processing parameters used for obtaining 

HDPE/NCC/Compatibilizer mixtures. 

 

Table 2.2 Experimental design for compounding conditions HDPE/NCC 
 

Test Code/composition 
HDPE 
(wt.%) 

NCC 
(wt.%) 

CA1 
(wt.%) 

CA2 
(wt.%) 

Processing 
conditions 

1 HDPE 100 0 0 0 

One step 

2 HDPE-CA1_3 97 0 3 0 

3 HDPE-CA2_3 97 0 0 3 

4 HDPE-NCC10 90 10 0 0 

5 HDPE-NCC10-CA1_1 89 10 1 0 

6 HDPE-NCC10-CA2_1 89 10 0 1 

7 HDPE-NCC10-CA1_3 87 10 3 0 

8 HDPE-NCC10-CA2_3 87 10 0 3 

9 HDPE-NCC3-CA1_3_one 
step 

94 3 3 0 

10 HDPE-NCC3-CA1_3_two 
step 

94 3 3 0 
Two steps 

11 HDPE-NCC10-CA1_10 80 10 10 0 

 

Other composites containing wood flour or sisal were also obtained for the sake 

of comparison. Table 2.3 summarizes the experimental conditions used for the obtention 

of these composites. 



45 

Table 2.3  Experimental design for compounding conditions of composite and hybrid 
nanocomposite HDPE/NCC /wood flour or sisal 

 

Test Code/composition 
HDPE 
(wt.%)

NCC 
(wt.%)

Wood 
flour 

(wt.%)

Sisal 
fiber 

(wt.%) 

CA2 
(wt.%) 

Processing 
conditions 

1 HDPE 100 0 0 0 0 

One step 

3 HDPE-CA2_3 97 0 0 0 3 

8 HDPE-NCC_10-
CA2_3 

87 10 0 0 3 

12 HDPE- WF_30 70 0 30 0 0 

13 HDPE- WF_30-
CA2_3 

67 0 30 0 3 

14 HDPE-WF_20-
NCC_10 

70 10 20 0 0 

15 HDPE-WF_20-
NCC_10-CA2_3 

67 10 20 0 3 

16 HDPE-Sisal_30 70 0 0 30 0 

17 HDPE-Sisal_30-
CA2_3 

67 0 0 30 3 

 

At the end of mixing process the material obtained presented the form of rigid balls  

(air cooling) and had to be grinded into smaller and irregular granules using a mechanical 

crusher machine to facilitate the injection molding process of the composite. The grinder 

used for that purpose was a Granu-Grinder batch granulator for laboratory supplied by 

Brabender CWB (shown Figure 2.7).  
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Figure 2.7   Granu-Grinder Granulator 
 

The technical specifications of grinder are summarized in the Table 2. 4. 

 

Table 2.4  Granu-Grinder technical data(Julson, Subbarao et al. 2004) 

 

Item Technical Specifications 

Power 1.8kW 

Motor Speed 1720 RPM 

Feed Opening (Wx L) 127mm x 247.7mm (5" x 9.75") 

Power Requirements 230 V, 60 Hz, 7.8 Amp, 3-Phase 

 

2.2.2 Manufacture of the HDPE composites 

The crushed composite compound was then injection molded using two types of injection 

molding machines: Arburg 370A (600 kN) for samples 2,3,5,6 and 8 and SE280HDZ 

machine for samples 1, 4, 7,9,10 and 11 to17 (shown in Figure 2.8). The injection molding 
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process conditions for every machine are summarized in Table 2.5 and 2.6. The different 

composites were injection molded into tensile specimens Type I according to ASTM D638-

10, flexural specimens according to ASTM D790-10 and impact specimens according to 

ASTM D256-12.  

 

 

Figure 2.8  Injection molding machines: (A) SE280HDZ 
and (B) Arburg 370A  
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Table 2.5  Experimental conditions for SE280HDZ injection molding machine 
 

Item Experimental Conditions 

Barrel temperature (°C) 160-165-170-180 

Mold temperature (°C) 30 

Injection speed (rpm) 100 

Cooling time (s) 25 

Back pressure (MPa) 50 

Injection pressure (MPa) 110 

 

 

Table 2.6  Experimental conditions for Arburg 370A injection molding machine 
 

Item Experimental Conditions 

Barrel temperature (°C) 200-200-200-200 

Mold temperature (°C) 15 

Injection speed (rpm) 200 

Cooling time (s) 17 

Back pressure (MPa) 55 

Injection pressure (MPa) 90 

 

 
 



49 

2.2.3 Characterization of Composite 

2.2.3.1 Mechanical properties  

2.2.3.1.1 Tensile test 

For the mechanical tests, notably tensile and flexion, a MTS Alliance RF/200 was used 

(shown in Figure 2.9). For tensile tests, the specimens were prepared by injection molding 

according to ASTM D638-10-Type I measuring 190 x 19 x 3.1 mm (see Figure 2.10).  

The initial distance between the grips was 115 mm. The tensile modulus, strength, and strain 

were evaluated at a crosshead speed of 5 mm/min and load cell of 1 KN. At least five tests 

were used to calculate an average value for each material tested. The measurements were 

done using an extensometer. 

 

  

Figure 2.9  MTS Alliance RF/200 w/ tensile mechanical grips 
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Figure 2.10  Tensile specimen dimensions according to 
 ASTM D638-10-Type I  

 

2.2.3.1.2 Flexure test 

A three point bending flexural setup was used to carry out the flexural tests. Specimen 

dimensions were 127 x 12.7 x 3.1 mm according to the ASTM D790-10. The flexural test 

was stopped if the specimen deflection reached 5% or if the sample completely broke before 

the deflection limit. The load cell was 1000 N and the rate of crosshead motion can be 

calculated by the equations used for L, R and D as follows:  

 																																																																							ܴ = 	 ௓௅మ଺	ௗ 																																																																											(2.2) 

 

Where 

R   =  rate of crosshead motion, mm (in.)/min, 

L   =  support span, mm (in.), 

d   =  depth of beam, mm (in.), and 

Z   =  rate of straining of the outer fiber, mm/mm/min (in./in./min). Z shall be equal to 0.01.

So:  L = 16 x depth = 16 x 3.1 = 49.6 mm 

 Then: 		R = 	 ଴.଴ଵ(ସଽ.଺)మ଺	୶	ଷ.ଵ = 1.32	mm/min	 

190 mm 

19 mm 

3.1 mm 

62 mm 
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Five specimens were tested with a crosshead speed of 1.3 mm/min and the test was stopped if 

the specimen deflection reached 5% or if it completely broke before that deflection limit 																																																D = 	 rLଶ6	d																																																																																																	(2.3) 

 

Where:  

D   =  midspan deflection, mm (in.),

r   =  Strain, mm/mm (in. /in.), 

L   =  support span, mm (in.), and 

d   =  depth of beam, mm (in) 

So:		ܦ = 	 ଴.଴ହ௅మ଺	ௗ 	= 	 ଴.଴ହ(ସଽ.଺)మ଺	௫	ଷ.ଵ = 6.61	݉݉																																															  

 

 

Figure 2.11  Flexural specimen dimensions according to ASTM D790-10 
 

2.2.3.2 Microscopy 

Scanning electron microscopy (SEM) Hitachi 3600N SEM operated at 20 kV was used to 

analyze the microstructure and morphology of the samples obtained by injection molding. 

Before observation the samples surfaces of composite were cryo-microtomed with a diamond 

knife at–150°C under nitrogen. Then, it was coated, using the Quorum Q150T, with gold 

vapor deposition for 120 s and a thickness of 20 nm under vacuum conditions. 

127 mm 

12.7 

3.1 
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Figure 2.12  Hitachi 3600N SEM 
 

2.2.3.3 Water Absorption uptake 

The water absorption of various composites was measured according to ASTM D-570-

98.Three specimens for every composite with dimensions of 127 x 12.7 x 3.1 mm, were dried 

in an oven for 24 h at 50°C and then cooled at room temperature under vacuum. The initial 

mass for each sample was evaluated and then the specimens were immerged in a container of 

distilled water maintained at room temperature. To measure the water resistance of different 

composites, the specimens were removed from water, wiped with paper, weighed the mass 

gain and then immerged again in water. These steps were repeated for different measurement 

during 2h, 24h, 1week and 2 weeks. All mass measurement was done using an instrumental 

balance with a precision of 0.0001 g. The equation used to calculate percent water absorption 

was as the following:  

 

                      Percent Water Absorption (%) = 
୛ୣ୲	୵ୣ୧୥୦୲ିୈ୰୷	୵ୣ୧୥୦୲	ୈ୰୷	୵ୣ୧୥୦୲ 	ܺ	100																								 (2.4)  



 

CHAPTER 3 
 
 

RESULTS AND DISCUSSION 

This chapter presents the experimental results. These results are then analyzed and compared 

with similar works in the literature review. 

3.1 HDPE/NCC nanocomposites 

3.1.1 Optimization of processing parameters for preparation of HDPE/NCC/ CA1 
blends 

3.1.1.1 Effect of processing temperature 

The compounding process can significantly affect the quality of the HDPE based 

nanocomposite and the dispersion of NCC in the polymer matrix. One of the purposes of this 

study was to investigate the effect of compounding conditions on the mechanical properties 

of HDPE/NCC nanocomposite.  

In particular, the processing temperature for melt compounding of nanocomposite based 

natural nanofillers is a critical parameter. On one hand, at too low temperatures, it is not 

possible to obtain good composites because diffusion is too slow. On the other hand, a too 

high processing temperature could result in a thermal degradation and decrease of 

mechanical properties of fillers (200°C) (E.Jakab, O.Faix et al. 1997, RINGUETTE 2011).  

In order to optimize the processing temperature, composites were processed at temperatures 

ranging from 150°C to 190°C in a 10°C interval. The materials obtained were caracterized 

visually. Also, the curves of torque obtained during processing were analyzed to check for 

thermal degradation. Table 3.1 presents the physical aspect of the blends obtained and Figure 

3.1 the torque curves. 

Looking at Table 3.1, it can be seen that when the temperature was raised, the color of the 

samples changed. The samples became more yellow as the temperature was raised. 
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According to the results presented in Table 3.1 and Figure 3.1 a temperature of 160°C was 

chosen for processing the samples. This temperature was selected for the rest of the project. 

 

    

Ts= 160° Ts= 160°C Ts= 170°C Ts= 190°C 

Tp= 170°C Tp= 169°C Tp= 179°C Tp= 197°C 

Neat HDPE HDPE-NCC3-CA1_3_one step 

 
Figure 3.1  Effect of processing temperature on the degradation of HDPE/NCC  

compounding (mixed balls) where  Ts is Setting temperature and Tp is  
Maximum processing temperature 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For more scientific analysis of processing conditions of HDPE nanocomposite, the effect 

of temperature on melt torque curve was evaluated. Figure 3.1 shows the different curves 

of torque variation as a function of time for every setting tempreture. At the beginning of the 

compounding, for all processing temperature, the torque of composite was increased rapidly 

due to the decrease of mixer chamber temperature by adding cold HDPE and compatibilizer. 

However, after polymer was melted, the melt torque was decreased and leveled off to around 

24–35 Nm, depending on the setting temperature, being lower at high temperatures as 

expected.  

When the torque was stabilized (after 4 min of adding HDPE/compatibilizer), the 

nanocelluloses were added to the mixture. As shown in Figure 3.1., adding nanocellulose, in 

any case did not seem to have an effect on the torque values proving that the viscosity of the 

mixture was not changed upon addition of NCC A lot of studies have been reported in the 

litterature (Panaitescu, Radovici et al. 2011, Sajjadi Jazi, Nasr Esfahany et al. 2012, M. 

Ceraulo 2014, Mohammed H. Al-Saleha 2013) showing that the incorporation of 
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nanoparticles in polymer matrix with good dispersion increase their viscosity and torque due 

to interactions and friction that can occur between the polymer chains and nanoparticles 

limiting their movement. However, this variation becomes negligible in the case of small 

amount of filler (Sahoo, Maiti et al. 2007, Panaitescu, Radovici et al. 2011, M. Ceraulo 2014, 

Mohammed H. Al-Saleha 2013). 

 

 

Figure 3.2  Compounding characterization of the melt torque of the pure HDPE  
and HDPE-NCC3-CA1_3 at different processing temperatures 

 

In the case of the present work, adding 3 % NCC into HDPE matrix did not result in a 

significant effect on torque values. This result indicates a poor dispersion of NCC or even 

that the amount of added NCC was very low to create a change of torque values. Figure 3.2 

presents the influence of % of NCC on the torque curves. Two different NCC content were 

evaluated 3 and 10 wt.%, It can be seen that upon addition of 10 wt.% NCC the torque 

increased indicating that 3 wt.% NCC did not result in an increase of torque due to the low 

content of NCC added.  
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Figure 3.3  Effect of NCC loading on melt torque of HDPE nanocomposite 
 

3.1.1.2 Comparison of one-step (direct mixing) and two-step (masterbatch) 
procedures. 

The compounding of HDPE/NCC/CA1 was carried using two different methods as reported 

in the experimental procedures: 1) in one step method, all compounding ingredients were 

directly mixed, together, using an internal mixer (as has been previously described in first 

2.2.1) in two step processes, a masterbatch of NCC diluted in compatibilizing agent (CA1) 

was obtained and then mixed to HDPE. For this second method, the masterbatch (50% 

NCC/50% CA1) was obtained using a small internal mixer (30 cm3) at a temperature of 

140°C and rotor speed 50 rpm for 10 min under nitrogen atmosphere (shown in Figure 3.3). 

The aim of using masterbatch was to improve the compatibility and dispersion of NCC 

within HDPE matrix by chemical modification with maleic anhydride grafted on CA1. At the 

same composition, the torque curves, presented in Figure 3.4, show that there is no 

differences between similar samples prepared by the two methods (the same result was 
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obtained by Denis Mihaela Panaitescu (Panaitescu, Radovici et al. 2011) with 

TiO2/LLDPE).This result confirms that upon addition of 3% NCC, there is no effect of the 

preparation method chosen on the value of torque. However, their effect on the dispersion of 

NCC will be discussed later through flexural tests and SEM observations. 

 

 

Figure 3.4  Two steps melt compounding of HDPE/NCC/ CA1 in the internal mixer 
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Figure 3.5  Effect of processing conditions, one step and two steps compounding,  
on melt torque of HDPE nanocomposite 

 

3.1.1.3 Injection molding processing temperature optimization of the HDPE/NCC 

Knowing that NCC degradation has a negative effect on the mechanical properties of 

nanocomposites, the optimization of processing temperature for each compounding steps 

must be done. As it was done in the case of mixer chamber temperature, several injection 

processing temperatures were tested (barrel temperature) to find the best conditions to avoid 

the degradation of NCC (see in Table 3.2). Our analysis is always based only on the visual 

appearance of the samples. Table 3.2 presents the physical aspect of the injected samples. It 

can be seen from the pictures presented in Table 3.2, the color of samples range from clear 

yellow to deep yellow with increasing the injection temperature. This variation can be an 

indication of increased degradation of NCC. Therefore, the best temperature to be chosen for 
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our project will be 180°C. At this temperature, the degradation is insignificant and the color 

change is due mainly to the compounding mixer. 

 

Pure HDPE 

 

HDPE/NCC/ CA1 

 

Figure 3.6  Effect of injection molding processing temperature on the  
HDPE/NCC nanocomposite aspect (degradation of NCC) 

3.1.2 Flexural properties 

Table 3.3 presents the results of flexural modulus and strength measurements of different 

nanocomposites HDPE with the addition of NCC and the presence of compatibilizing agent 

(CA1 and CA2).  

 



60 

Table 3.1  Flexural test results for HDPE/NCC/compatibizer composites 
 

Code/composition 
Peak Load 

(N) 

Ult. flexural 
strength 

(MPa) 

Flexural 
modulus 

(MPa) 

Strain 
(mm/m

m) 

HDPE 31.15 +/-0.12 19.03 +/- 0.08 1074 +/- 43 5% 

HDPE-CA1_3 29.73+/-0.05 18.44 +/- 0.05 948 +/- 25 5% 

HDPE-CA2_3 30.18+/-0.18 18.73 +/- 0.12 983 +/- 25 5% 

HDPE-NCC10 38.62 +/-1.41 23.78 +/- 0.88 1239 +/- 40 5% 

HDPE-NCC10-CA1_1 37.28 +/-0.06 23.24 +/- 0.05 1229 +/- 30 5% 

HDPE-NCC10-CA2_1 38.61 +/-0.16 24.06 +/- 0,09 1322 +/- 37 5% 

HDPE-NCC10-CA1_3 37.63 +/-0.16 23.16 +/- 0.1 1315 +/- 42 5% 

HDPE-NCC10-CA2_3 38.23 +/-0.10 23.83 +/- 0.05 1305 +/- 49 5% 

HDPE-NCC3-CA1_3 
one step 

31.71 +/- 0.12 19.6+/-0.10 1146 +/- 31 5% 

HDPE-NCC3-
CA1_3_two step 

33.83 +/-0,14 20.8 +/- 0,08 1183 +/- 29 5% 

HDPE-NCC10-CA1_10 35.36 +/-0,23 21.77 +/- 0.13 1217 +/- 22 5% 

 

The comparison of flexural results of stress-strain curves between the different 

nanocomposites is shown Figure 3.5. It can be seen from Figure 3.5, that the flexural 

modulus and strength increased upon increasing NCC content and upon addition of either 

compatibilizing agent. The best results of flexural tests were obtained upon addition of 10% 

of NCC and 1% of CA2 (HDPE-NCC10-CA2_1). Compared to pure HDPE, the flexural 

strength was increased by more than 26 % and the flexural modulus by more than 23 %. 

However, there is no significant difference between this result and the results obtained for 

HDPE-NCC10 (without compatibilizer) and HDPE-NCC10-CA1_3 (with 3% CA2). To 
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identify the best compositions of composite with optimized mechanical properties the effect 

of each single parameter alone was evaluated separately. 

 

 

Figure 3.7  Flexural stress-strain curve for pure HDPE and its composites based NCC 
 

3.1.2.1  Effect of processing methods 

The compounding of nanocomposite with masterbatch is mainly used to improve the 

compatibility between the fillers and the polymer matrix. Indeed, this additional step can be 

used as a surface chemical modification of the NCC to improve their dispersion into the 

polymer and help to have more evenly distributed compatibizer at the interface between the 

NCC and polymer. In this step we will try to investigate the effect of compounding procedure 

on the flexural strength and flexural modulus of HDPE/NCC/CA1 composite. As seen in 
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Figure 3.6, it is clear that the two-step process generates better flexural strength and flexural 

modulus than processing in a single step. However, upon addition of 3 % NCC, the use of 

masterbatch did not have a very significant effect in comparison with the pure polymer or 

one step process. So, this result shows that the use of masterbatch process does not improve 

the dispersion of NCC. Moreover this additional step could be detrimental to the quality of 

the material. A verification of the efficacy of CA1 to disperse NCC in HDPE was examined 

by SEM observations of microtomed flexural samples surfaces (look at Figure 3.11). Big 

agglomerations of NCC are observed in both cases of compounding techniques which 

indicate a poor dispersion.  

 

 

Figure 3.8  Effect of mixing method: one step and two step mixing on the (a) flexural 
modulus and (b) strength of HDPE composites at 3% NCC and 3% CA1 

(a) 
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3.1.2.2 Effect of NCC content 

Figure 3.7 presents the effect of NCC content on the flexural properties. It can be seen that 

both, the flexural strength and modulus increased upon increase of NCC content. At a load of 

3% of NCC, the improvement of flexural properties is not significant but with increasing the 

NCC content to 10% the flexural modulus and flexural strength increased by 38.7% and 

25.6%, respectively, compared to HDPE/CA1. Similar results with different reinforced 

materials were reported in previous researches (Devi, Shashidhara et al. 2010, Niranjana 

Prabhu and Demappa 2014, Tong, Royan et al. 2014, Bravo, Toubal et al. 2015). 

 

 

Figure 3.9  Effect of NCC content (0%;3% and 10%) on flexural modulus and  
strength of HDP/NCC/CA1 composite in the presence of 3%  

CA1 
 

3.1.2.3 Effect of type and concentration of compatibilizing agent 

Two types of compatibilizing agent, CA1and CA2, have been used to improve the adhesion 

between NCC and HDPE. Figures 3.8 and 3.9 show a comparison of flexural strength and 

modulus between the composites based on compatibilized and uncompatibilized NCC as well 

as the effect of compatibilizer type and concentration. Adding compatibilizing agent to 

HDPE resulted in a decrease of the mechanical properties of the pure resins most likely due 
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to the poor mechanical properties of MAgPE (see Figure 3.8). This decrease is more 

significant in the case of CA1because its viscosity is lower than CA2 (ηCA1 = 1/2 ηCA2).  

In the case of composite HDPE / NCC, it is clearly observed in Figure 4.8 that adding 

compatibilizing agent results in an improvement of the flexural strength and modulus of 

nanocomposite for both types of compatibilizer. This improvement was optimal in the case of 

CA2 with 1% concentration. Indeed, flexural strength was increased by 26 % and the flexural 

modulus by 23 % in comparison to pure HDPE. However, increasing the concentration of 

compatibilizing agent from 1% to 3% then 10% led to a slight decrease of mechanical 

propriety. This can be explained by the decrease of HDPE properties with adding 

compatibilizer. Also, it is well observed that the CA2 shows better results than CA1. 

 

 

Figure 3.10  Effect of compatibilizing agent type on the (a) flexural strength  
and (b) modulus of HDPE 

(a) 
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Figure 3.11  Effect of compatibilizing agent type and loading on the (a) flexural  
strength and (b)  mdulus of HDPE/NCC composite at 10% of NCC content 

 

3.1.3 Tensile properties 

Tensile properties of the samples that presented the best flexural properties were evaluated 

using the MTS Alliance RF/200 according to ASTM D638.The results for ultimate tensile 

strength; Young modulus and elongation at break are presented in Table 3.4 and Figure 3.10. 

 

 

 

(a) 
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Table 3.2  Tensile test results for HDPE/NCC/compatibizer composites 
 

Code/composition 
Ult. tensile 

strength 
(MPa)

Tensile 
modulus 

(MPa)

Strain at 
break 

(mm/mm)  
HDPE 19.22 +/- 0.26 816 +/- 63 >400% 

HDPE-NCC10 19.53 +/- 0.12 766 +/- 21 >400% 

HDPE-NCC10-CA1_1 19.85 +/- 0.06 1035 +/- 16 >400% 

HDPE-NCC10-CA2_1 21 +/- 0,22 1164 +/- 63 >400% 

HDPE-NCC10-CA1_3 19.75 +/- 0.13 1107 +/- 31 >400% 

HDPE-NCC10-CA2_3 20.80 +/- 0.14 1179 +/- 52 >400% 

 

 

(a) 
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Figure 3.12  Effect of compatibilizing agent type and loading on the (a) tensile strength and 
(b) modulus of HDPE/NCC composite at 10% of NCC content 

 

Figure 3.10 shows that adding 10% NCC in HDPE nanocomposites has no effect on ultimate 

tensile strength but that a reduction of the modulus was observed. This result can be 

explained by the agglomeration of NCC which causes an insufficient stress transfer between 

NCC and HDPE matrix. To improve the dispersion of NCC as well as tensile properties of 

HDPE/NCC nanocomposites, we tested the effect of two types of compatibilizer agents. It 

can be seen from the results presented Table 3.4 and Figure 3.10 that, the tensile modulus 

shows an improvement of approximately 44% compared to neat polymer by addition of 1% 

CA2. However, a slighter increase was observed for ultimate tensile strength. It can also be 

seen from the results presented Table 3.4 and Figure 3.10 that the addition of CA2 resulted in 

better results and that the optimal concentration was 1wt%. In fact, increasing the 

compatibiliser concentration from 1% to 3% did not improve the tensile properties of 

nanocomposites. This is can be due to the low mechanical properties of compatibilizer 

compared to neat HDPE. 

3.1.4 Scanning electron microscopy analysis 

It is well known that, the morphology of polymer composites and the dispersion of 

nanoparticles is a very important characteristic because they explain the results obtained for 

mechanical properties. Figure 3.11 shows the images of a microtomed surface of metalized 

specimens obtained using SEM.  
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HDPE (x1.2 K) 

 

HDPE-NCC10 (x1.2K) HDPE-NCC10 (x60) 

  

HDPE-NCC3-CA1_3 one step (x1.2K) HDPE-NCC3-CA1_3 one step (x180) 
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HDPE-NCC3-CA1_3_two step (x1.2k) HDPE-NCC3-CA1_3_two step (x200) 

 
 

HDPE-NCC10-CA1_3 (x1k) HDPE-NCC10-CA1_3 (x250) 

 

HDPE-NCC10-CA1_10 ( x 1.2 K) HDPE-NCC10-CA1_10 ( x 90) 

 
Figure 3.13  SEM images of microtomed surfaces for composites at different magnifications: 
pure HDPE, HDPE-NCC10, HDPE-NCC3-CA1_3 one step, HDPE-NCC3-CA1_3_two step, 

HDPE-NCC10-CA1_3 and HDPE-NCC10-CA1_10 (red arrows show the NCC 
agglomerations) 
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It can be seen that big agglomerates of NCC were formed particularly when 10 % NCC was 

added to the blend. This result shows that the dispersion of NCC was poor. The results also 

seem to indicate the addition of CA1 did not seem to have a significant effect to improve the 

dispersion. This may be due to the low concentration of compatibilizer which was 

insufficient to cover the large surface area of NCC. However, the deformation observed on 

the surface of HDPE where they have the agglomerations of NCC may indicate that the 

adhesion between NCC and HDPE was good and this deformation was caused by the 

shearing forces during the cutting of the sample with the diamond knife. Also, at high 

magnification images we can see that the distribution of NCC was very good. These two last 

observations can prove that the compatibility of NCC with HDPE was better but remains 

insufficient to have a good dispersion because of a high surface area of NCC and its tendency 

to agglomerate. For this purpose, in order to improve the dispersion we tried subsequently to 

use another technique to incorporate NCC in polymer matrix (aqueous NCC suspensions). 

3.1.5 Effect of NCC dispersion technique: water suspension and dry mixing 

As seen in the previous section, HDPE / NCC composites with or without compatibilizer 

presented a poor dispersion. For this reason, we tried to use another technique to improve the 

dispersion of NCC. This technique consisted of dispersing NCC in water before feeding into 

the polymer matrix. In this step, the samples were prepared using a co-rotating twin-screws 

micro- extruder to avoid the wasting of materials (see Figure 3.12). A sample of 4g was fed 

in the extruder at 170°C and a screw speed was 100 rpm to have a torque value of 94 Nm. 

The time of mixing was fixed to 13 min to approach mixer value without degradation NCC. 

For the first method (dry mixing), the HDPE and compatibilizer were fed in the extruder. 

Further the NCC was added to the HDPE/compatibilizer mixture when the polymer was 

melted (the torque is stabilized). The samples obtained were in the form of fiber which can 

be characterized later by SEM. The second technique was preparing an aqueous suspension 

of NCC to have good dispersion then the suspension was fed very slowly in the melted 

polymer. Figure 3.13 presents the different stages of preparation of the composites       

HDPE-NCC10 and HDPE-NCC10-CA2_3 using the two methods of dispersion. The 
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comparison between the two techniques will be based on SEM observation shown                

in Figure 3.14. 

 

 

Figure 3.14   Co-rotating twin-screws micro-extruder 

 

 

Figure 3.15  Schematic representation of the two techniques, dry mixing (dried  
NCC) and water suspension mixing (Aqueous NCC suspensions), used for  

preparation of HDPE/NCC/CA2 composite by micro extruder 
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It can be seen from the results presented Figure 3.14 that the use of the microextruder did not 

result in a better NCC dispersion unless a water suspension of NCC was used. These results 

are promising and further tests could be carried out to test this method on a larger scale. 

 

 

HDPE-NCC10 (dry mixing) (x 1K) HDPE-NCC10 (dry mixing) (x 100) 

 

HDPE-NCC10-CA2_3(dry mixing) (x 1K) HDPE-NCC10-CA2_3(dry mixing) (x 70) 

 

HDPE-NCC10-CA2_3 (water 
suspension)(x 1K) 

HDPE-NCC10-CA2_3 (water suspension)(x 
450) 

 
Figure 3.16  SEM images of fracture surfaces for composites at different magnifications: 
HDPE-NCC10 and, HDPE-NCC10-CA2_3 with two different techniques of mixing (red 

arrows show the NCC agglomerations and green arrows the good NCC dispersion) 
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3.1.6 Water Absorption uptake 

The water absorption curves of HDPE/NCC nanocomposites are shown in Figure 3.15. The 

water absorption of various composites increase with increasing of immersion time in water. 

As a general trend, the water absorption of nanocomposite increase with increasing 

nanoparticules content from 0% to 10%. The maximum weight gain was obtained with 10% 

NCC with 0.46% compared to initial mass. When a 3% of compatibizer agent was added the 

moisture absorption resistance of HDPE/NCC10 % nanocomposite was improved and the 

water uptake was reduced to 0.35%. This result is mainly due to the improvement of 

nanoparticules dispersion. Indeed, a good interfacial adhesion can reduce interactions 

between hydroxyls groups in the surface of nanoparticules and water, as well as embedding 

of fibers by polymer. Two processing conditions of HDPE/NCC compounding (direct mixing 

and two step mixing) was also tested, the results showed that prior mixing of NCC with 

compatibilizer agent can increase the water absorption resistance of nanocomposite by 

increasing chemical interactions between NCC and compatibilizer. 

 

 

Figure 3.17  Water absorption of different nanocomposites HDPE/NCC 
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3.2 Hybrid nanocomposites  

In the previous section we have studied the mechanical properties and moisture resistance of 

HDPE/NCC nanocomposites. The effect of nanoparticles content, surface modification with 

two types of compatibilizer agent and processing condition in internal mixer was also 

examined to have a good dispersion of NCC on HDPE nanocomposites. In the present 

section, we tried to compare the mechanical and physical properties of the best condition for 

HDPE/NCC to some conventional composites based wood flour and sisal, and also to see the 

effect of adding NCC as a second filler on wood flour composite to have hybrid 

nanocomposites. 

3.2.1 Mechanical properties 

Figure 3.16 and Figure 3.17 show the results obtained for tensile and flexural tests of various 

composites using different fibers as fillers (wood flour, sisal and NCC). The flexural 

modulus and flexural strength were increased by 105 % and 106% respectively with addition 

of 30% wood flour and 3% of CA2. This result is much higher than the one obtained for the 

HDPE/NCC nanocomposite. This can be due to the agglomeration of NCC but also to have a 

good comparison the some content of filler should be studied using 10 % of wood flour for 

example. 
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Figure 3.18  Effect of fiber types on the (a) flexural strength and (b)   
modulus of HDPE composite 
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flexural properties of different composites. Indeed, upon addition of 3 % of compatibilizer 
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improvement of dispersion and interfacial fillers-matrix adhesion. For hybrid nanocomposite, 

adding of NCC had no significant effect to improve flexural properties of wood 

nanocomposite, contrariwise a small decrease of modulus and strength has been observed. So 
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agglomeration of NCC. One solution for improving the dispersion of NCC is to provide a 

prior chemical surface modification before adding NCC on hybrid nanocomposite.  

For tensile properties, the composite based an 30% wood flour presented a higher tensile 

properties with an increase of tensile modulus by 225% and tensile strength by 58% 

compared to neat polymer (see Figure 3.17). The decrease of tensile modulus by adding 

compatibilizer agent can be explained by the low effect of fiber matrix interaction at the 

beginning of tensile test where the nonlinear tensile stresses were lowest. 

 

 

 

Figure 3.19  Effect of fiber types on the (a) tensile strength and (b) modulus of HDPE 
composite 

0
5

10
15
20
25
30
35

U
lt

.t
en

si
le

 s
tr

en
gt

h
 (

M
P

a)

Composite

0
500

1000
1500
2000
2500
3000
3500

T
en

si
le

 m
od

u
lu

s 
(M

P
a)

 

Composite

(a) 

(b) 



77 

3.2.2 Water Absorption uptake 

The water absorption curves of various composites are shown in Figure 3.18. A comparison 

between the different fillers with or without the addition of compatibilizer has been 

investigated. 

 

 

Figure 3.20   Effect of fiber types on water absorption of composites based HDPE 
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CONCLUSION 

 

In this work, a successful experimental protocol to obtain NCC/HDPE nanocomposites was 

developed. Optimum temperature and processing condition were obtained with mixer 

processing temperature of 160◦ C, one step processing method and injection processing 

temperature of about 180◦C. The results showed that adding up to 10% of NCC has no 

significant effect of torque values and the viscosity of polymer matrix which is beneficial to 

maintain the viscosity and melt behaviour of polymer. 

Flexural tests were carried out to study the effect of adding NCC on the flexural strength and 

modulus of HDPE. Upon addition of 10 wt. % NCC there was an increase in about 26% of 

flexural strength and about 23% in flexural modulus were observed for composite containing 

1% of CA2. The composition having high molecular weight compatibilizer (CA2) presented 

better results than that in the case of other compositions having low molecular weight 

compatibilizer (CA1). The same result was obtained by S. H. Kameshwari Devi (Devi, 

Shashidhara et al. 2010) for HDPE/nanoclay nanocomposite using different compatibilizer 

agents. 

To improve the dispersion of NCC a different feeding technique based on the dispersion of 

NCC within water was tried. The microscopic observations indicated that this technique 

could be efficient to disperse the NCC within the HDPE. This method could be scaled up to 

test the mechanical properties of the samples.  

Tensile characterization of the samples which presented the best flexural properties was 

carried out. Different concentrations of CA2 and CA1were evaluated. Indeed, compared to 

pure HDPE, adding 1% compatibilizer agentCA2 proved resulted in an increase of tensile 

modulus of about 42% but no significant increase was observed for tensile strength. 

However, increasing the concentration of CA2 did not result in significant improvement of 

tensile properties.  

The results of water absorption resistance indicated that the addition of compatibilizer was 

beneficial. For HDPE/NCC nanocomposite the water absorption is much lower when 3% of 
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CA2 was added. In fact, the water absorption uptake of nanocomposite with compatibilizer 

was reduced by 41%. In case of composite, the water uptake was larger for the samples 

presenting larger cellulosic particles such as wood flour and sisal.  

Composites based on HDPE/Sisal and HDPE/wood flour to which NCC was added or not 

were also tested for the sake of comparison. The best mechanical properties (flexion and 

tensile) were obtained for wood flour composite by using of 3 % CA2. In fact, compared to 

neat HDPE, the flexural modulus and flexural strength were increased by 105% and 106 % 

respectively and the tensile modulus and tensile strength were enhanced by 225 % and 58 % 

respectively. These results proved that a good dispersion and interfacial interaction was 

obtained by addition of compatibilizer agent 

  

 



 

RECOMMENDATIONS  

 

Our study presents an initiation work to the development of hybrid composite materials 

based on wood fibers and nanocrystalline cellulose. As has been described, HDPE/NCC 

nanocomposite was successfully obtained with slight improvements of mechanical 

properties. However, the addition of NCC does not show any synergistic effect on 

HDPE/wood plastic composite.  

So, additional research work is essential to explore more methods to improve NCC 

dispersion.  

- Reduce the concentration of the NCC to add in the hybrid composite based on wood flour 

to have a better dispersion of NCC and see if synergistic effect can occur. 

- Surface modification of NCC by ammonium quaternary salt to improve their dispersion and 

compatibility with HDPE.  

-Introducing NCC suspension by liquid feeding directly in internal mixer. 

- Trying different formulation of wood flour, NCC and maleic anhydride. 
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