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ENSEMBLES DE CLASSIFICATEURS ADAPTATIFS POUR LA
RECONNAISSANCE DE VISAGE EN VIDEO-SURVEILLANCE

CHRISTOPHE PAGANO

RESUME

Lors de I’'implémentation de systemes de sécurité tels que la vidéo-surveillance intelligente,
I’utilisation d’images de visages présente de nombreux avantages par rapport a d’autres traits
biométriques. En particulier, cela permet de détecter d’éventuels individus d’intérét de maniere
discrete et non intrusive, ce qui peut €tre particulierement avantageux dans des situations
comme la détection d’individus sur liste noire, la recherche dans des données archivées ou
la ré-identification de visages.

Malgré cela, la reconnaissance de visages reste confrontée a de nombreuses difficultés propres
a la vidéo-surveillance. Entre autres, le manque de contrdle sur I’environnement observé im-
plique de nombreuses variations dans les conditions d’éclairage, la résolution de 1’image, le
flou de mouvement, I’orientation et I’expression des visages. Pour reconnaitre des individus,
des modeles de visages sont habituellement générés a I’aide d’un nombre limité d’images ou
de vidéos de référence collectées lors de sessions d’inscription. Cependant, ces acquisitions
ne se déroulant pas nécessairement dans les mémes conditions d’observation, les données de
référence représentent pas toujours la complexité du probleme réel. D’ autre part, bien qu’il soit
possible d’adapter les modeles de visage lorsque de nouvelles données de référence deviennent
disponibles, un apprentissage incrémental basé sur des données significativement différentes
expose le systeme a un risque de corruption de connaissances. Enfin, seule une partie de ces
connaissances est effectivement pertinente pour la classification d’une image donnée.

Dans cette these, un nouveau systeme est proposé pour la détection automatique d’individus
d’intérét en vidéo-surveillance. Plus particulierement, celle-ci se concentre sur un scénario
centré sur I’utilisateur, ol un systeme de reconnaissance de visages est intégré a un outil d’aide
a la décision pour alerter un opérateur lorsqu’un individu d’intérét est détecté sur des flux vidéo.
Un tel systeme se doit d’€tre capable d’ajouter ou supprimer des individus d’intérét durant son
fonctionnement, ainsi que de mettre a jour leurs modeles de visage dans le temps avec des
nouvelles données de référence. Pour cela, le systeme proposé se base sur de la détection de
changement de concepts pour guider une stratégie d’apprentissage impliquant des ensembles
de classificateurs. Chaque individu inscrit dans le systéme est représenté par un ensemble de
classificateurs a deux classes, chacun étant spécialisé dans des conditions d’observation dif-
férentes, détectées dans les données de référence. De plus, une nouvelle regle pour la fusion
dynamique d’ensembles de classificateurs est proposée, utilisant des modeles de concepts pour
estimer la pertinence des classificateurs vis-a-vis de chaque image a classifier. Enfin, les vis-
ages sont suivis d’une image a I’autre dans le but de les regrouper en trajectoires, et accumuler
les décisions dans le temps.
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Au Chapitre 2, la détection de changement de concept est dans un premier temps utilisée pour
limiter I’augmentation de complexité d’un systeme d’appariement de modeles adoptant une
stratégie de mise a jour automatique de ses galeries. Une nouvelle approche sensible au con-
texte est proposée, dans laquelle seules les images de haute confiance capturées dans des con-
ditions d’observation différentes sont utilisées pour mettre a jour les modeles de visage. Des
expérimentations ont été conduites avec trois bases de données de visages publiques. Un sys-
teme d’appariement de modeles standard a été utilisé, combiné avec un module de détection
de changement dans les conditions d’illumination. Les résultats montrent que 1’approche pro-
posée permet de diminuer la complexité de ces systemes, tout en maintenant la performance
dans le temps.

Au Chapitre 3, un nouveau systéme adaptatif basé des ensembles de classificateurs est proposé
pour la reconnaissance de visages en vidéo-surveillance. Il est composé d’un ensemble de clas-
sificateurs incrémentaux pour chaque individu inscrit, et se base sur la détection de changement
de concepts pour affiner les modeles de visage lorsque de nouvelles données sont disponibles.
Une stratégie hybride est proposée, dans laquelle des classificateurs ne sont ajoutés aux en-
sembles que lorsqu’un changement abrupt est détecté dans les données de référence. Lors
d’un changement graduel, les classificateurs associés sont mis a jour, ce qui permet d’affiner
les connaissances propres au concept correspondant. Une implémentation particuliere de ce
systeme est proposée, utilisant des ensembles de classificateurs de type Fuzzy-ARTMAP prob-
abilistes, générés et mis a jour a ’aide d’une stratégie basée sur une optimisation par essaims
de particules dynamiques, et utilisant la distance de Hellinger entre histogrammes pour dé-
tecter des changements. Les simulations réalisées sur la base de donnée de vidéo-surveillance
Faces in Action (FIA) montrent que le systeme proposé permet de maintenir un haut niveau de
performance dans le temps, tout en limitant la corruption de connaissance. Il montre des per-
formances de classification supérieure a un systeme similaire passif (sans détection de change-
ment), ainsi qu’a des systemes de référence de type kNN probabiliste, et TCM-kNN.

Au Chapitre 4, une évolution du systeme présenté au Chapitre 3 est proposée, intégrant des
mécanismes permettant d’adapter dynamiquement le comportement du systeme aux conditions
d’observation changeantes en mode opérationnel. Une nouvelle regle de fusion basée sur de la
pondération dynamique est proposée, assignant a chaque classificateur un poids proportionnel
a son niveau de compétence estimé vis-a-vis de chaque image a classifier. De plus, ces compé-
tences sont estimées a 1’aide des modeles de concepts utilisés en apprentissage pour la détection
de changement, ce qui permet un allegement des ressources nécessaires en mode opérationnel.
Une évolution de I'implémentation proposée au Chapitre 3 est présentée, dans laquelle les con-
cepts sont modélisés a I’aide de 1’algorithme de partitionnement Fuzzy C-Means, et la fusion
de classificateurs réalisée avec une moyenne pondérée. Les simulation expérimentales avec les
bases de données de vidéo-surveillance FIA et Chokepoint montrent que la méthode de fusion
proposée permet d’obtenir des résultats supérieurs a la méthode de sélection dynamique DS-
OLA, tout en utilisant considérablement moins de ressources de calcul. De plus, la méthode
proposée montre des performances de classification supérieures aux systemes de référence de
type kNN probabiliste, TCM-kNN et Adaptive Sparse Coding.



IX

Mots clés:  Systemes multi-classificateurs, apprentissage incrémental, détection de change-
ment, sélection et fusion dynamique.






ADAPTIVE CLASSIFIER ENSEMBLES FOR FACE RECOGNITION IN
VIDEO-SURVEILLANCE

CHRISTOPHE PAGANO

ABSTRACT

In the past decades, face recognition (FR) has received a growing attention in security appli-
cations such as intelligent video surveillance (VS). Embedded in decision support tools, FR
allows to detect the presence of individuals of interest in video streams in a discrete and non-
intrusive way, which is of a particular interest for applications such as watchlist screening,
search and retrieval or face re-identification. However, recognizing faces corresponding to tar-
get individuals remains a challenging problem in VS. FR systems are usually presented with
videos exhibiting a wide range of variations caused by uncontrolled observation conditions,
most notably in illumination condition, image resolution, motion blur, facial pose and expres-
sion. To perform recognition, facial models of target individuals are typically designed with a
limited number of reference stills or videos captured during an enrollment process, and these
variations contribute to a growing divergence between these models and the underlying data
distribution. Although facial models can be adapted when new reference videos that may be-
come available over time, incremental learning with faces captured under different conditions
remains challenging, as it may lead to knowledge corruption. Furthermore, only a subset of
this knowledge may be relevant to classify a given facial capture, and relying on information
related to different capture conditions may even deteriorate system performance.

In this thesis, a new framework is proposed for the automatic detection of individuals of interest
for VS applications. A human-centric scenario is considered, where a FR system is embedded
in a decision support tool that alerts an analyst to the presence of individuals of interest in
multiple video feeds. Individuals can be added or removed from the system by the analyst, and
their facial models can be refined over time with new reference sequences. In this framework,
the use of concept change detection is proposed to guide an ensemble learning strategy. Each
enrolled individual is modeled by a dedicated ensemble of two-class classifiers, each one spe-
cialized in a different conditions detected in reference sequences. In addition, this framework
allows for a dynamic adaptation of its behavior to changing capture conditions during opera-
tions. A dynamic ensemble fusion rule is proposed, relying on concept models to estimate the
relevance of each classifier w.r.t. each operational input. Finally, system decisions are accumu-
lated over tracks following faces across consecutive frames, to provide robust spatio-temporal
recognition.

In Chapter 2, concept change detection is first investigated to reduce the growth in complexity
of a self-updating template-matching system for FR in video. A context-sensitive approach is
proposed for self-updating, where galleries of reference images are only updated with highly-
confident captures exhibiting significant changes in capture conditions. Proof of concept ex-
periments have been conducted with a standard template matching system detecting changes
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in illumination conditions, using thee publicly-available face databases. Simulation results in-
dicate that the proposed approach allows to maintain system performance while mitigating the
growth in system complexity. It exhibits the level of performance than a regular self-updating
template matching system, with gallery sizes reduced by half.

In Chapter 3, a new framework for an adaptive multi-classifier system is proposed for FR in
VS. It is comprised of an ensemble of incremental learning classifiers per enrolled individ-
ual, and relies on concept change detection to refine facial models with new reference data
available over time while mitigating knowledge corruption. An hybrid strategy is proposed,
where individual-specific ensembles are only augmented with new classifiers when an abrupt
change is detected in reference data. When a gradual change is detected, knowledge about
corresponding concepts is refined through incremental update of corresponding classifiers. For
proof of concept experiments, a particular implementation is proposed, using ensembles of
probabilistic Fuzzy-ARTMAP classifiers generated and updated with dynamic Particle Swarm
Optimization, and the Hellinger Drift Detection Method for change detection. Experimental
results with the FIA video surveillance database indicate that the proposed framework allows to
maintain system performance over time, effectively mitigating the effects of knowledge corrup-
tion. It exhibits higher classification performance than a similar passive system, and reference
probabilistic KNN and TCM-kNN systems.

In Chapter 4, an evolution of the framework presented in Chapter 3 is presented, that allows
to adapt system behavior to changing operating conditions. A new dynamic weighting fusing
rule is proposed for ensembles of classifiers, where each classifier is weighted by its compe-
tence to classify each operational input. Furthermore, to provide a lightweight competence
estimation that doesn’t interfere with live operations, classifier competence is estimated from
the concept models used for change detection during training. An evolution of the particu-
lar implementation presented in Chapter 3 is proposed, where concept models are estimated
with the Fuzzy C-Means clustering algorithm, and ensemble fusion is performed through dy-
namic weighted score-average. Experimental simulations with the FIA and ChokePoint video-
surveillance datasets shows that the proposed dynamic fusion method provides a higher clas-
sification performance than the DS-OLA dynamic selection method, for a significantly lower
computational complexity. In addition, the proposed system exhibits higher performance than
reference probabilistic KNN, TCM-kNN and Adaptive Sparse Coding systems.

Keywords: Multi-classifier systems, adaptive face recognition, incremental learning, change
detection, dynamic selection and decision fusion.
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INTRODUCTION

Biometric authentication of individuals provides several advantages in terms of security over
more traditional alternatives, such as password and identification card, that can be easily stolen
or forged. Its various applications can be separated intro three main categories: (1) verification,
to confirm the identify claim of a subject by only comparing his/her features to a dedicated
facial model stored in the system, (2) identification, to retrieve a subject’s identity from a set
of known individuals, and (3), screening, to compare individuals of a potentially large crowd
to a limited watchlist of individuals of interest. Among the different types of biometrics, face
recognition (FR) has received a growing attention during the past decades due to its limited

interaction as opposed to systems based on other biometrics such as fingerprint or iris.

A FR system aims to detect the presence of individuals of interest in images presented during
operations, using facial models generated with reference data (e.g. pictures of individuals of
interest). Depending on the classification algorithm, facial models can be defined in different
ways. For example, with template matching systems, facial models are usually a set of one
or more reference captures, to which faces captured during operations are compared. With
neural networks or statistical classifiers, facial models are represented by the classifiers’ inter-
nal parameters (neural network weights or distribution parameters) that are estimated during
training. Other methods rely on dimensionality reduction to minimize intra-class variability,
and estimate facial models as linear or non-linear manifolds of lower dimensions that embed
reference data. Finally, with methods relying on sparse representations, facial models can be

represented by dictionaries learned through the decomposition of the reference images.

FR systems can be divided intro three families with respect to the nature of reference and
operational data (Zhou et al., 2003). In still-to-still FR, reference data are regions of interest
(ROIs) extracted from still images of individuals of interest, and the system is provided with

still pictures to perform recognition during operations. In still-to-video FR, models are also



generated with ROIs from still images, but the system processes frames from video streams to
perform recognition. Finally, video-to-video FR systems process frames from video streams
as both reference and operational data. Continual advances in terms of processing power,
video processing algorithm and the growing availability of low cost cameras motivated the
development of intelligent video surveillance (VS) systems based on still-to-video or video-to-

video FR algorithms.

VS networks are usually comprised of a growing number of cameras, and transmit or archive
massive quantities of data for reliable decision support. In this context, where individuals of
interest (criminals, terrorists, etc.) in a watchlist have to be recognized in a dense crowd of
unknown people at major events or airports, the ability to perform recognition in a discrete
and non-obtrusive way can be crucial. This task is presently conducted semi-automatically by
analysts responsible for monitoring several camera streams, and these systems are designed as
tools to assist their decision making process. For example, in watch-list screening applications,
facial models are designed using ROIs extracted from reference still images or mugshots of a
watchlist. Still-to-video FR is then performed on live video feeds, to alert the analyst to the
possible presence of individuals of interest. Another example is person re-identification for
search and retrieval applications, where facial models are designed using ROIs extracted from
reference videos and tagged by the analyst, to perform video-to-video FR in either live or

archived (post-event analysis) videos.

Problem Statement

This thesis focuses on video-to-video FR systems, as required in person re-identification appli-
cations, where soft biometrics can be used to track individuals over video streams or perform
recognition when faces are not visible. A general human-centric scenario is considered, where
an analyst has the ability to enroll specific individuals from a video feed into a watchlist to fol-

low and monitor their whereabouts over a set of IP cameras, and then remove their models from



the system when surveillance is no longer required. The use of VS in public security organiza-
tion is currently limited to human recognition capabilities, as the application of state-of-the art
FR to video surveillance often yields poor performance. As a matter of fact, VS is performed
under semi-controlled (e.g., in an inspection lane, portal or checkpoint entry) and uncontrolled
(e.g., in cluttered free-flow scene at an airport or casino) capture conditions, which generate
multiple sources of variations in the ROIs extracted from video feeds (pose orientation, scale,
expression, illumination, motion blur, occlusion, etc.). Furthermore, facial models are usually
designed a priori, using a limited number of high quality reference captures, and the accuracy

of FR is highly dependent on the representativeness of these captures.

Several authors proposed to compensate for a lack of knowledge in facial features by using the
temporal dimension of video sequences. To perform spatio-temporal recognition, these sys-
tems usually process ROIs regrouped along trajectories, that correspond to a same high quality
track of an individual across consecutive frames. These methods either consider motion infor-
mation as additional features (Matta and Dugelay, 2007; Liu and Cheng, 2003), or accumulate
classifiers outputs over several frames to produce a more accurate prediction, based on sev-
eral observations instead of one specific condition (Stallkamp et al., 2007; Barry and Granger,

2007; Gorodnichy, 2005b).

Dedicated video-surveillance systems are however not very numerous in the scientific litera-
ture. This problem usually considered as open-set, where it is assumed that most individuals
observed during operations are not enrolled to the system (Li and Wechsler, 2005). To address
this problem, Li et al. proposed a TCM-kNN classifier with a dedicated reject option for the

unknown individuals (Li and Wechsler, 2005).

Other contributions have been made by Ekenel, Stallkamp et al. (Ekenel ez al., 2009; Stallkamp
et al., 2007), with the use of a class-modular architecture, comprised of a specific 2-class clas-

sifier per individual (individual vs. the rest of the world). The advantages of class-modular



architectures in face recognition in video surveillance (FRiVS) (and biometrics in general) in-
clude the ease with which facial models (or individuals) may be added, updated and removed
from the systems, and the possibility of specializing feature subsets and decision thresholds
to each specific individual. This separation of a N-class recognition problem into N 2-class
problems has already been proven beneficial in other complex applications, such as handwrit-
ing recognition (Oh and Suen, 2002; Kapp et al., 2007; Tax and Duin, 2008). Moreover, it
has been argued that biometric recognition is in essence a multi-classifier problem, and that
biometric systems should co-jointly solve several classification tasks in order to achieve state-
of-the-art performance (Bengio and Mariethoz, 2007), for example using a common universal

and cohort model.

While a limited amount of reference captures is usually available for the initial design of fa-
cial models, new reference videos may become available over time, either during operations or
through some re-enrollment process. These new reference captures can be used to refine facial
models, possibility adding new information relevant to previously-unknown capture condi-
tions. Different types of approaches have been proposed to address the update of biometric
models over time, which can either involve supervised or semi-supervised learning, depending
on the labeling process. While supervised learning involves a manual labeling of the reference
captures (for example by the analyst), semi-supervised approaches rely on automatic labeling
by the system. For example, De la Torre et al. (De-la Torre et al., 2015) proposed a multi-
classifier system learning from facial trajectories in VS, in which an ensemble of classifiers is
dedicated to each enrolled individual. During operations, system predictions are accumulated
along trajectories defined by a face tracker, leading to a positive recognition when their accu-
mulation surpass a detection threshold. To update facial models, highly-confident trajectories
are selected with a higher updating threshold, and then assimilated in a learn-and-combine

fashion.



To adapt an individual’s facial model in response to these new ROIs, the parameters of an
individual-specific classifier can be re-estimated through incremental learning. For example,
ARTMAP neural networks (Carpenter et al., 1992) and extended Support Vector Machines
(Ruping, 2001) have been designed or modified to perform incremental learning by adapting
their internal parameters to new reference data. These classifiers are typically designed under
the assumption that data is sampled from a static environment, where class distributions re-
main unchanged over time (Granger et al., 2008). However, newly available data can exhibit
possible changes in the underlying data distribution, for example videos captured under differ-
ent observation conditions. More precisely, ROIs extracted from these video may incorporate
various patterns of change that reflect varying concepts. In pattern recognition, a concept can
be defined as the underlying class distribution of data captured under specific condition, in a
VS context due to different pose angle, illumination, scale, etc. (Narasimhamurthy and Kun-
cheva, 2007). While gradual patterns of change in operational conditions are often observed
(due to, e.g., ageing over sessions), abrupt and recurring patterns (caused by, e.g., new pose
angle versus camera) also occur in VS. A key issue in these environments is the adaptation of
facial models to assimilate captures from new concepts without corrupting previously-learned
knowledge, which raises the plasticity-stability dilemma (Grossberg, 1988). Although updat-
ing a single classifier may translate to low system complexity, incremental learning of ROIs
extracted from videos that reflect significantly different concepts can corrupt the previously

acquired knowledge (Connolly et al., 2012; Polikar et al., 2001).

In addition to monolithic incremental classifiers, adaptive methods involving ensembles of
classifiers (EoC) have also been proposed for incremental learning. They allow to exploit mul-
tiple and diverse points of view of a FR problem, and have been successfully applied in cases
where concepts change in time. As a matter of fact, EoCs are well suited for adaptation in
changing environments since they can manage the plasticity-stability dilemma at the classifier

level. When new reference data are significantly different than previous ones, previously ac-



quired knowledge can be preserved by initiating and training a new classifier on the new data
(Kuncheva, 2004a). For example, with methods such as Learn++ (Polikar et al., 2001) and
other Boosting variants (Oza, 2001), a classifier is trained independently using new samples,
and weighted such that accuracy is maximized. Other approaches discard classifiers when they
become inaccurate or concept change is detected, while maintaining a pool with these classi-

fiers allows to handle recurrent change (Minku and Yao, 2012).

However, while adaptive EoCs can mitigate the effects of knowledge corruption, this gain is
obtained at the expense of a growing system complexity. In addition, a diversified pool of
classifiers may require an additional level of adaptation during operations for a FR system in
VS. More precisely, although temporally related, a same video sequence may not contain face
captures representative of the same concept (e.g. due to head movement during capture), which
means that only a subset of the classifiers from a EoC would be competent for each capture
condition. In some cases, classifiers specialized in significantly different capture conditions
may even degrade system performance by adding incorrect predictions in the decision process.
While numerous adaptive ensemble methods propose to update classifier subsets or weights de-
pending on the observed concepts (Ortiz Diaz et al., 2015; Ramamurthy and Bhatnagar, 2007),
EoCs are usually updated depending their performance over a recent window of samples, only

considering possible drifts toward a single concept in the input stream.

Several methods have been proposed that rely on a dynamic region evaluation using validation
data, and different ways to evaluate classifier competence (Britto et al., 2014). While this
can improve system accuracy by preventing unrelated classifier to affect the final decision,
using these methods in an adaptive ensemble that integrates newly acquired reference data, and
in a changing environment, would significantly increase system computational and memory

complexity. They usually require a re-evaluation of the classifiers’ competence for every new



batch of reference data, as well as a costly neighbour evaluation for each input facial capture,

within in a growing set of validation data stored in memory.

Objectives and Contributions

In this thesis, a new framework for video-to-video FR is proposed, designed to update facial
models of individuals of interest using reference videos over time in a VS environment. To
maintain representative and up-to-date facial models, concept change detection is used to guide
the updating process of individual-specific ensembles of incremental classifiers. In addition,
to adapt the system’s operational architecture to the variability of VS sequences and only rely
on relevant information during operations, a dynamic adaptation of ensembles’ fusion rules is

performed for each facial capture, using lightweight concept representations.

The main contributions of this thesis rely on the usage of concept change detection in:

a. A new self-updating technique, that exploits image quality measures to mitigate the growth

in system complexity due to the addition of redundant information.

b. A new adaptive multi-classifier framework, that exploits change detection to guide an
hybrid incremental learning strategy, relying on both incremental learning and ensemble

techniques.

c. A new dynamic multi-concept ensemble framework, that models multi-modal concept
densities from reference trajectories to detect abrupt changes, and dynamically adapt en-

semble fusion rules to the observation conditions of each input capture.

Organization of the Thesis

This manuscript-based thesis is organized into four chapters. In Chapter 1, an overview of the

literature is presented, starting with face recognition in video surveillance, and followed by



concept change detection and adaptive biometrics in general, to end with methods for incre-

mental learning of classifiers and adaptive ensembles.

In Chapter 2, concept change detection is first considered to mitigate the growth in complexity
of a self-updating template-matching FR system over time. A context-sensitive self-updating
technique is proposed, that combines a standard self-updating procedure with a concept change
detection module. In this system, the addition of a new capture into the galleries depends on
two conditions: 1) its matching score is above the self-updating threshold (highly confident
capture), and 2), the capture contains new information w.r.t. captures already present in the
gallery (i.e. different concept). With this technique, one can avoid frequent uses of costly
template management schemes, while still enhancing intra-class variation in facial models with
relevant captures exhibiting different concepts. A particular implementation of this context-
sensitive self-updating technique is presented for a basic template matching system, where
changes are detected in illumination conditions. Proof-of concept experimental simulations
using thee publicly-available face databases (DIEE (Rattani et al., 2013), FIA (Goh et al.,
2005) and FRGC (Phillips et al., 2005)) show that this technique enables to maintain the same
level of performance than a regular self-updating template matching system, while reducing the
size of template galleries by half, effectively mitigating the computational complexity of the
recognition process over time. The contents of this Chapter have been submitted as a chapter

to the book "Adaptive Biometric Systems: Recent Advances and Issues", by Springer.

In Chapter 3, a concept change detection module is embedded in a new framework for an adap-
tive multi-classifier system (AMCS) for video-to-video FRiVS. In this framework, in addition
to reduce the growth in complexity when assimilating new reference data from previously-
observed concept, concept change detection allows to assimilate different concepts while mit-
igating knowledge corruption. It is comprised of an ensemble of incremental 2-class classifier

for each enrolled individual that allows to adapt their facial models in response to new ref-



erence videos, through an hybrid strategy involving either incremental learning or ensemble
generation. When a new video sequence is available for update, a change detection mechanism
is used to compromise between plasticity and stability. If the new data incorporates an abrupt
pattern of change w.r.t. previously-learned knowledge (representative of a new concept), a new
classifier is trained on the data and combined to an ensemble. Otherwise, previously-trained
classifiers are incrementally updated, to refine the system’s knowledge on previously-observed
concepts. During operations, faces of each different individual are tracked and grouped over
time, allowing to accumulate positive predictions for robust spatio-temporal recognition. A
particular implementation of this framework has been proposed for validation, involving en-
sembles of 2-class PFAM classifiers for each individual, where each ensemble is generated and
evolved using an incremental training strategy based on a dynamic PSO, and the hellinger drift
detection method to detect concept changes. Experimental simulations with the FIA dataset
(Goh et al., 2005) indicate that the proposed framework exhibits higher classification per-
formance than a probabilistic kNN based system adapted to video-to-video FR, as well as
a reference open-set TCM-kNN system, with a significantly lower complexity. In addition,
when compared to a passive AMCS where the change detection process is bypassed, the pro-
posed active methodology allows to increase the overall performance and mitigate the effects
of knowledge corruption when presented with reference data exhibiting abrupt changes, yet
controlling the system’s complexity as the addition of new classifiers only triggered when a
significantly abrupt change is detected. The contents of this Chapter have been published in

the 286th volume of "Information Sciences" (Pagano et al., 2014).

In Chapter 4, an evolution of the framework presented in Chapter 3 is proposed, called Dynamic
Multi-Concept Ensembles (DMCE). In addition to relying on concept change to guide the up-
dating process of individual-specific EoCs with newly-available reference data, the proposed
system also allows for a dynamic adaptation of EoCs’ fusion rules during operations. A new

dynamic weighting fusing rule is proposed, estimating, for each input, the competence of each
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classifier using density models of associated concepts. To account for intra-class variations in
reference trajectories and overlapping competence regions of classifiers, concepts are modeled
as sets of clusters in the feature space. A particular implementation of this system has been pro-
posed for validation, with ensemble of 2-class Probabilistic Fuzzy-ARTMAP classifiers gener-
ated and updated though a dynamic PSO strategy, and concept density representation based on
Fuzzy C-means centers. Experimental simulations with two video-surveillance datasets (FIA
(Goh et al., 2005) and ChokePoint (Wong et al., 2011)) indicate that DMCE provided a higher
classification performance than dynamic selection methods, for a significantly lower computa-
tional complexity. In addition, DMCE exhibits a higher performance than a probabilistic KNN
based system adapted to video-to-video FR, a reference open-set TCM-kNN system as well as
an Adaptive Sparse Representation face recognition system. The contents of this Chapter have

been submitted to "Transactions on Neural Networks and Learning Systems", by IEEE.



CHAPTER 1

ADAPTATION OF FACE RECOGNITION SYSTEMS FOR VIDEO-SURVEILLANCE

This thesis considers a video-to-video FR system embedded in a human-centric decision sup-
port tool for intelligent VS. In surveillance applications such as real-time monitoring or person
re-identification, it aims to detect the presence of individuals of interest enrolled to the system
by an analyst, through the analysis of one or multiple video feeds. Facial models used for de-
tection are designed with initial reference video sequences, and may be refined over time using
new sequences, either manually selected by the analyst (supervised learning) or automatically
by the system (semi-supervised learning). During operations, faces detected in video feeds are
matched against the facial models of the individuals enrolled to the system. For each close

resemblance determined by the system, the analyst is alerted and asked for confirmation.

1.1 Face Recognition in Video-Surveillance

Face recognition system
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Figure 1.1 General video-to-video face recognition system.

Figure 1.1 presents the operational architecture of a video-to-video FR system. Each camera
captures streams of 2D images or frames containing faces to be identified, which are first pro-
cessed by a segmentation module to isolate ROIs corresponding to the actual facial regions.

Then, discriminant features are extracted to generate ROI patterns (e.g. feature vectors). These
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are are provided to the classification module, in which they are compared to facial models of in-

dividuals of interest stored into a biometric database. In parallel, tracking features are extracted

to follow the position of ROIs over several frames. Tracking and classification information are

then combined to generate final decisions.

The main modules are detailed in the following list:

Segmentation: The segmentation task is to isolate ROIs of the raw pictures collected by the
cameras, which are, in this case, the position and pixels of faces to be identified. In general,
appearance-base methods have yielded higher performance in face detection applications
(Yang et al., 2002). These methods rely on learning strategies to build a general facial
model from reference images, which can then be used to detect whether an input frame
contains a face. For example, the popular Viola-Jones algorithm (Viola and Jones, 2004)
relies on AdaBoost to generate classifiers selecting discriminating haar features in facial

captures, which are combined through cascading during detection.

Feature extraction: Once the facial regions are detected, discriminating features may be ex-
tracted to build feature vectors (ROI patterns). These are specific characteristics that help
classifiers identify and differentiate the individuals to be detected, by mitigating possible
sources of variability between captures from the same individual (intra-class variability),
while enhancing variability between images from different individuals (inter-class vari-
ability). Various methods have been proposed to extract features from 2-dimensional (2D)
image pixels. For example, the local binary patterns method (Ahonen et al., 2006) mitigates
illumination variations by labeling each pixel of an image with its difference between each
neighborhood pixel, combined into a binary number only representing relative differences
in intensity. 3D methods have also been considered to retain information relative to face
geometry. These methods are either based on a depth representation with gray scale values
in 2D images (called 2.5D image), or shape models such as polygonal meshes consisting
of lists of points and edges. For example, active appearance models (Cootes et al., 2001)

combine both shape and texture information, representing faces with key points statisti-
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cal distributions and grey-level appearance extracted from wrapped images. Morphable
models can also be used to augment the training set with synthetic captures simulating
variations in pose, generated by fitting a single 2D frontal capture on a 3D morphable face
model (Blanz and Vetter, 2003). Usually, feature extraction is followed by a feature selec-
tion task, to choose subset excluding redundant and non-discriminative features that may
generate noise and thus decrease the performance of the system. For instance, eigenfaces
(Turk and Pentland, 1991) uses principal component analysis to reduce the dimentionality
of the feature space by combining the original axes into new ones, called eigenfaces. Im-
ages can then be expressed as a linear combination of a reduced number of these new axes,

only selecting the ones exhibiting highest variability.

Classification: Facial models stored in the biometric database are usually designed a priori,
using one or several reference ROI patterns, and their nature depend on the classifica-
tion algorithm. For example, with a template matcher, facial models may be galleries of
one or several reference ROI patterns, in which case matching scores for each operational
ROI pattern would be computed from distance measures to these galleries. Classification
may also be performed using neural networks (e.g multi-layer perceptrons (Riedmiller,
1994) or ARTMAP neural networks (Carpenter et al., 1991)) or statistical classifiers (e.g.
naive Bayes classification (Duda and Hart, 1973)), in which case facial models would con-
sist of parameters estimated during training using reference ROI patterns (neural networks
weights, statistical distribution parameters, etc.). In addition, specific classification meth-
ods have been proposed for 3D face models. For example, matching scores can be com-
puted from distances between sets of facial feature points fitted on a 3D morphable face
model (Ansari et al., 2003). Finally, depending on the nature of the classifier, its output can
either be a binary decision (e.g. "yes, the observed individual closely resembles the facial
model") or a matching score (e.g. percentage of resemblance) for each enrolled individual.
In the latter case, binary decisions can be produced with application-dependent heuristics.
For example, an identification system for surveillance may predict the identity of the ob-

served individual with a maximum rule, selecting the enrolled individual with the highest
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matching score, while a verification system for access control usually confirms the claimed

identity by comparing the corresponding matching score to a decision threshold.

e Tracking and spatio-temporal prediction: Video-to-video FR systems usually produce their
final decision based on video streams, from which a trajectory of ROIs can be extracted.
More precisely, using information extracted during segmentation such as faces’ positions
in the scene and basic appearance characteristics, the presence of individuals can be tracked
over several frames. This allows for a more robust prediction, basing the decision on
a whole sequence instead of a single capture (Matta and Dugelay, 2007). With track-
and-recognition systems, recognition (classifier outputs) and kinematic information are
combined. For example, spacial distribution in feature space and temporal dynamics can
be learned by a Hidden Markov Model classifier (Liu and Cheng, 2003), or combined
within the same multi-modal distribution using Gaussian Mixture Models (Matta and Duge-
lay, 2007). On the other hand tracking-then-recognition methods have been proposed to
track ROIs over consecutive frames, and combine individual predictions for each track to
provide the final result. These methods allow to improve classification by reducing the
impact of outlier captures. For example, in the what-and-where fusion neural network
(Barry and Granger, 2007), faces are tracked using Kalman-filter banks to gradually accu-

mulate Fuzzy-ARTMAP responses along individual trajectories.

1.1.1 Specialized Face Recognition System for Video-Surveillance

FRiVS remains a challenging task, since faces captured in video frames are typically of a lower
quality than still images. Furthermore, their appearance may vary considerably due to lim-
ited control over capture conditions (e.g., illumination, pose, expression, resolution, occlusion,
etc.), and changes in individuals’ physiology (e.g., facial hair, aging, etc.) (Matta and Dugelay,
2009). Given these difficulties, more powerful front end processing (face capture and rep-
resentation) and back-end processing (fusion or responses from cameras, templates, frames)
are required for robust performance. While numerous 3D FR methods have been proposed to

address such variations in facial appearance, they remain computationally intensive, and their
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performance is usually dependent on the availability of high resolution ROIs, which can’t be

guaranteed in VS environments (Barr ef al., 2012).

In addition, FRiVS is usually referred to as an open-set problem, where it is assumed that most
faces captures during operations do not correspond to an individual of interest enrolled to the
system (Li and Wechsler, 2005). To address this specificity, the FRVT2002 performance test
(Phillips et al., 2003) proposed to add a reject option to a classification system, comparing
matching scores to a detection threshold, in order to differentiate individuals of interest from

unknown ones (which matching scores are usually lower).

For example, Li et al. proposed (Li and Wechsler, 2005) a face recognition system based
on a modification of the kNN algorithm, the TCM-kNN classifier (transduction confidence
machine kNN) developed by Proedrou et al. (Proedrou et al., 2002). For each enrolled in-
dividual, a specific threshold is computed from the peak-to-side ratio of the matching scores,
to identify patterns from unknown individuals from the analysis of the whole response of the
classifier. Further per-individual specializations have been proposed with multi-verification
systems (Stallkamp et al., 2007; Ekenel et al., 2009; Tax and Duin, 2008), comprised of ded-
icated classifiers and detection thresholds for each individual enrolled to the system. Also
called class-modular architectures, these systems allow to enroll or remove individuals with-
out requiring a complete re-initialization (in particular, re-initiating the training process for
other individuals), as only one or several independent modules would be added or removed.
This facilitates quick on-the-fly monitoring of the whereabouts of particular individuals in the
human-centric scenario considered in this thesis. In addition, the separation of N-class into N
simpler 2-class recognition problems may also improve the overall performance of the system,
adopting the "divide and conquer" approach, as observed in character recognition applications

using multiple multi-layer perceptrons (Oh and Suen, 2002; Kapp et al., 2007).

Additional biometric applications such as speech recognition can also be related to VS, as
they may also be applied in open-set environments. To improve system performance, open-

set speaker identification systems (Brew and Cunningham, 2009) propose to compare target-
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individual models to a Universal Background Model (UBM), a negative class generated from
samples of other unknown sounds, as well as a Cohort Model (CM), a negative class represent-
ing voices from other peoples. The use of UBM and CM may be critical with class-modular
architecture, as it enables to share information between classifiers, which have been shown to
increase performance in multi-classifier systems (Bengio and Mariethoz, 2007). In addition,
discriminative classifiers (in this case, 2-class classifiers discriminating individuals of interest
v.s. the rest of the world) have been shown to outperform generative classifiers (in this case,
1-class classifiers for each individual) when a limited amount of reference data is available

(Drummond, 2006).

1.1.2 Challenges

Systems for FRiVS encounter several challenges in practice, mostly related to a lack of control
over the observation environment (Committee et al., 2010). As opposed to many still-to-still
applications where observation conditions of the individuals are usually normalized, VS in-
volves significant variations in facial appearance in video streams, which can be organized in

two categories:

e Variations in interactions between individuals and cameras, such as camera angle, distance
between individuals and camera, direction and intensity of movement. These can generate
ROIs with multiple resolutions, intensities or directions of motion blur, and facial pose

orientations.

e Variations in capture conditions, such as scene illumination or partial occlusion due to
foreground objects. These can directly affect facial appearance in the 2D frames provided

by the camera, by hiding or modifying facial features.

As facial models for FR systems are typically designed during an a priori enrollment phase
using limited number of reference ROI patterns, they often poor representatives of faces to be

recognized during operations (Rattani, 2010). For example, an individual may be observed in
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operational video streams under a significantly different camera angle from those used to col-
lect reference captures, and thus exhibit a facial appearance non-represented in its facial model.
While class-modular architectures with reject option and UBM may increase the system’s dis-
criminative power, they still rely on incomplete representations of the recognition problem

provided by initial reference data.

Although initially limited in number and representativeness, new reference video sequences
may become available over time in a human-centric VS scenario. For example, in a live moni-
toring application, new footage of individuals of interest observed with different cameras may
become available to the analyst after initial enrollment. These can be used to refine individual
facial models, either through semi-supervised (operational sequences validated by the system)
or supervised (sequences provided by another agency) learning, and increase their intra-class
variability. While pattern recognition techniques for incremental learning may be applied to
assimilate newly available data over time, a particular care must be taken when updating the
system with captures from different conditions. For a FR system to remain reliable over time,
key issue is the adaptation of facial models to assimilate information relative to newly-available
observation conditions, but without corrupting the previously-acquired knowledge. In other
words, updating a FR system with reference captures from a new camera angle shouldn’t over-
ride its past knowledge about other angles, as it may still be relevant should individuals be
observed under similar conditions in future video steams. This issue is called the plasticity-
stability dilemma (Carpenter and Grossberg, 1987), i.e. the trade-off between the ability to

adapt to new data and the preservation of previous knowledge.

Finally, a FRiVS system comprised of facial models representative of multiple capture con-
ditions should be able to adapt its behaviour dynamically during operations. More precisely,
ROIs extracted from a same video stream may exhibit significant and abrupt changes in facial
appearance, for example due to rapid head movement of an observed individuals. In such con-
ditions, only a subset of the system’s knowledge would be relevant to each ROI, and the remain

could even be harmful to a correct decision.
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1.2 Concept Change and Face Recognition

Video sequences captured in a VS environment are subject to a wide range of variations, from
minor fluctuations due to camera noise to significant changes in observation conditions. As
a consequence, the facial appearance of detected individuals is likely to exhibit significant
changes from one reference sequence to another. In pattern recognition, a concept is defined
by the underlying data distribution of a problem at some point in time in the feature space
(Narasimhamurthy and Kuncheva, 2007). ROI patterns extracted from facial images captured
under similar conditions can thus be considered as representing similar concepts. This section

presents an overview of the study of concept change for FRiVS applications.

1.2.1 Nature of a Concept Change

In pattern recognition, and more specifically FR, a statistical classification problem may change
due to variations in prior, class-conditional or posterior probabilities, as a result of an evolution
of the underlying data distribution of the different classes in the feature space (Kuncheva,
2004a). The main assumption is the uncertainty about the future, the data distribution from
which the future instance is sampled is unknown. More precisely, concept change encompasses
various types of noise, trends and substitutions in the underlying data distribution associated
with a class (individual) or concept. A categorization has been proposed by Minku et al.
(Minku et al., 2010), based on severity, speed, predictability and number of re-occurrences,
but four categories are mainly considered in the literature: noise, abrupt, gradual and recurring

changes (Kuncheva, 2008).

Table 1.1 provides a summary of the different types of changes that can occur in a FRiVS en-
vironment, related to variations in observation conditions and individuals’ physiology. From
a perspective of any biometric system, changes may originate from phenomena that are ei-
ther static or dynamic in nature. While a dynamic environment may generate changes through
the evolution of observation conditions or individuals’ physiology, changes can also be ob-

served in a static environment with hidden contexts, where concepts already present in the
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Table 1.1 Types of change occurring in face recognition for video surveillance
environments.
’ Type of change Examples in face recognition

— random noise
— hidden contexts

Static environment with:

— inherent noise of system (camera, matcher, etc.)
— different known view points from a camera or of a face (e.g. illumination

of images, new face pose or orientation) (Figure 1.2 (a))

Dynamic environment w
— gradual changes
— sudden abrupt changes

— recurring contexts

ith:
—aging of user (Figure 1.2 (b))

—new unknown view points on traits; change of camera (Figure 1.2 (a))
— unpredictable but recurring changes in capture conditions (e.g. lighting

changes due to the weather) (Figure 1.2 (c))

observed scene are yet to be modeled in the system because of the limited representativeness
of previously-observed reference captures. Figure 1.2 illustrates these types of change as they
may be observed over time for a concept in a 2 dimensional space, assuming that it is observed
at discrete time steps. It also shows the progression of a corresponding change detection mea-
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Figure 1.2 Illustration of (a) abrupt, (b) gradual and (c) recurring changes occurring to a
single concept over time, as defined in (Kuncheva, 2008). The first column presents an
example of the evolution of values of a change detection measure, corresponding to
variations to the 2-D data distribution to the right.
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In the VS scenario considered in this thesis, concept changes can be observed in reference
ROI patterns extracted from newly available sequences, either caused by hidden contexts or
the natural evolution of the observed environment. More precisely, for an individual of interest
already enrolled to the system, new reference sequences with faces captured under different
illumination conditions or a different pose angles correspond to abrupt changes (Fig. 1.2 (a)),
and thus the addition of new concepts. On the other hand, reference sequences with faces
captured under previously-encountered conditions may correspond to gradual changes (Fig.
1.2 (b)), and thus be used to refine knowledge about previously-observed concepts. Finally, a
recurring change may occur when specific observation conditions may be re-encountered in the
future (Fig. 1.2 (¢)), which can be considered as gradual change w.r.t. a previously-encountered

concept.

1.2.2 Measuring Changes

To detect possible occurrences of concept change, several families of measures have been
proposed in the literature. They can be organized into three categories: signal processing,

classification performance and density estimation in feature space.

Prior to feature extraction, signal quality measures have been used to accept, reject, or reac-
quire biometric samples, as well as to select a biometric modality, algorithm, and/or system
parameters (Sellahewa et al., 2010). In FRiVS, change detection can be performed by mon-
itoring the values of an image-based quality over time. For example, several standards have
been proposed to evaluate facial quality, such as ICAO 9303 (Doc, 2005), which cover im-
age and face specific qualities. Other face quality measures compare input ROIs against facial

references to assess image variations or distortions.

Change detection mechanisms using classifier performance indicators have also been consid-
ered for supervised learning applications (Kuncheva, 2004b). For instance, changes can be
detected in system performance using accuracy, recall or precision measures on the input data

(Gama et al., 2004), or in the performance of a separate classifier dedicated to change detection,
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trained with the data corresponding to the last known change (Alippi et al., 2011). However,
while directly monitoring system performance is a straightforward way to measure concept
changes, it can also have several drawbacks. Relying on classifier performance for change
detection may require a considerable amount of representative training data, especially when a

classifier must be updated (Alippi et al., 2011).

Although it may provide the most insight, detecting changes in the underlying distribution is
very complex in the feature space. To reduce the computational complexity of change detection
in the input feature space, several authors proposed to estimate and monitor densities of data
distribution. These techniques rely on fitting a statistical model to the previously-observed
data, which distribution in the feature space is unknown, and then applying statistical inference
tests to evaluate whether the recently-observed data belong to the same model. For example,
clustering methods such as k-means or Gaussian mixture models (GMMs) may provide a com-
pact representation of input data distributions in the feature space (Kuncheva, 2009). Non para-
metric models have also been considered, such as histogram representations (Dries and Riick-
ert, 2009; Ditzler and Polikar, 2011), which enables to avoid assumptions regarding the nature
of underlying distributions. From these models, changes can then be quantified as variations
in: 1) likelihood measures of new data w.r.t. stored models (Kuncheva, 2009), 2) model param-
eters such as cluster centers and covariance matrices of k-means models or GMMs (Kuncheva,
2009) or polynomial regression parameters (Alippi et al., 2011, 2013), or 3), density distance
measures, such as hellinger (Ditzler and Polikar, 2011) or binary distances (Dries and Riickert,

2009) between histogram models.

Density estimation methods provide a lower level information than classifier performance in-
dicators, and and will be considered for concept change detection in this thesis. As a matter of
fact, performance indicators of classifiers trained over previously-encountered data are merely
a consequence of possible changes in the underlying data distribution, and may be subject to a
bias caused by their training procedure. On the other hand, density estimation methods directly

reflect the structure of underlying distributions.
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1.3 Adaptive Biometrics

As presented in Section 1.1.2, the lack of representative reference captures during the initial
enrollment of a FRiVS system may be addressed by the ability to update facial models over
time. Such adaptation can either be supervised or semi-supervised, depending on the labeling
process of the reference data (Zhu, 2005). A supervised learning scenario for FRiVS involves
updating facial models of enrolled individuals with reference sequences of the same individu-
als, which identity have been manually confirmed (for example by an analyst). On the other
hand, a semi-supervised learning system would automatically update its facial models with

operational sequences labeled by its own decision mechanism.

While supervised adaptation may represent an ideal scenario with an error-free labeling pro-
cess, human intervention is often costly or not feasible (Rattani et al., 2009). Depending on
the application, the ability to perform semi-supervised adaptation may be the only viable solu-
tion, which has lead to the development of various strategies to increase the robustness of such
systems, such as self-update (Jiang and Ser, 2002; Ryu et al., 2006) and co-update techniques
(Rattani et al., 2009, 2008).

1.3.1 Semi-Supervised Learning

As semi-supervised learning relies on system decision to label reference data, the stability of
its performance over time strongly relies on its initial classification performance. Updating
the system with mislabeled captures could have dramatic consequences, as the corruption of
facial models would affect the accuracy for the corresponding individuals, leading to even more

mislabeled reference captures, and so on (Rattani et al., 2009, 2013).

To prevent this behaviour, self-update methods (Jiang and Ser, 2002; Ryu et al., 2006; Rattani
et al., 2011) propose to update facial models with only highly-confident operational captures.
For example, consider a FR system based on template matching, with galleries ¥; of refer-
ence ROI patterns for each enrolled individual 7 as facial models. During operations, each RO/

pattern q extracted from the video stream is compared to these galleries, to compute its match-
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ing score s;(q) for each individual of interest. These scores are then compared to a decision
threshold ¥, to determine whether to label q as belonging to individual i (s;(q) > ¥¢) or not
(si(q) < 79). In self-update systems, an additional stricter updating threshold y* is considered
(usually 7 > %), to only select captures with high degree of confidence for updating, i.e. for
which s;(q) > 7*.

1.3.2 Challenges

While self-update methods have been shown to improve system accuracy over time, it has been
argued that updating with only highly confident captures may result in the addition of redun-
dant information in the galleries, and thus a marginal gain in performance at the expense of a
considerable increase in system complexity (Rattani ez al., 2009). In addition, operational sam-
ples with more drastic changes are less likely to generate classification scores surpassing the
updating threshold, preventing the classification system to assimilate this new information. To
address this limitation, co-updating methods have been proposed to benefit from complemen-
tary biometric systems (Rattani et al., 2009, 2008). Each system is initialized with reference
patterns from a different source (or different features extracted from the same source), and
performs classification of operational input data. In the same way as self-updating techniques,
each system selects highly-confident samples based on an updating threshold, but this infor-
mation is also shared with other systems. If the classification score of one system surpasses
its updating threshold, the others will also consider the corresponding samples as highly con-
fident, and perform adaptation. While co-updating is usually applied with multiple biometric
traits, it could also be applied in, for example, a FRiVS scenario involving multiple cameras.
In this situation, relying on multiple point of views could mitigate the effect of disruptions such

as motion blur that would be less likely to affect every camera at the same time.

1.4 Incremental Learning of Classifiers

In either supervised or semi-supervised learning applications, the refinement of classifiers’ fa-

cial models over time fall within the category of incremental learning. A critical property of
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incremental classifiers is the ability to learn new information without corrupting previously ac-
quired knowledge (catastrophic forgetting). This issue is referred to as the stability-plasticity
dilemma (Carpenter and Grossberg, 1987), the trade-off between the ability to adapt to new
data and the preservation of previous knowledge. According to Polikar (Polikar et al., 2001),
an incremental algorithm must fulfill four conditions: 1) allow to learn additional information
from new data, 2) do not require access to the previous training data to perform the update, 3)
preserve previously acquired knowledge, and 4), accommodate to new classes possibly intro-

duced by new data.

These requirements are directly related to the VS problem considered in this thesis. First of
all, facial models of individuals of interest should be refined over time with newly available
reference data, but without forgetting previously-encountered concepts as they may still be rel-
evant for future operations (e.g., learning knowledge about a new facial pose shouldn’t mean
that others will never be observer again in the future). In addition, controlling system computa-
tional and memory complexity is critical to maintain its ability to perform live detection, hence
the necessity to avoid the accumulation of past reference data. Finally, the analyst should be

able to add or remove individuals of interest without requiring a re-initialization of the system

In pattern recognition, the different approaches to perform incremental learning can be sepa-

rated in the following three categories:

a. Adaptations of popular pattern classifiers, such as support vector machine (SVM) (Rup-
ing, 2001), multi-layer perceptron (MLP) (Chakraborty and Pal, 2003) and radial basis

function (RBF) (Okamato et al., 2003) network, to incremental learning.

b. Classifiers designed to perform incremental learning, such as ARTMAP neural networks
(Carpenter and Grossberg, 1987) and Growing Self-Organizing (Fritzke, 1996) families

of neural networks.

c. Architectures based on Ensembles of Classifiers (EoCs).
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A key feature of these methods is their ability to pursue the adaptation of their parameters
without requiring access to previous data, as stated in (Polikar ef al., 2001). For example, in-
cremental learning with SVMs (Ruping, 2001) is achieved through data compression. Previous
batches of data are only represented by the support vectors of the SVMs, a lighter representa-
tion that can be combined with newly available data to update system knowledge by training
new SVMs. This method also ensures that previously-acquired knowledge is preserved, by in-
creasing the cost of miss-classification of previous support vectors during training. Similarly,
growing self-organizing networks (Fritzke, 1996) rely on unsupervised clustering, to represent
reference data as categories in the feature space. When new reference data become available,
these categories can be adapted, or new ones created, effectively increasing classifiers intra-

class variability while preserving previously-acquired knowledge.

While architectures for EoCs are detailed in Section 1.5, the remaining of this section focuses
on the particular case of ARTMAP neural networks. ARTMAP reefers to a family of neural
network architectures based on Adaptive Resonance Theory (ART) that is capable of fast,
stable, on-line, unsupervised and supervised, incremental learning, classification and prediction
(Carpenter and Grossberg, 1987). They combine an ART unsupervised neural network with
a map field. In this thesis, ARTMAP networks, and more specifically the fuzzy-ARTMAP
and probability fuzzy-ARTMAP variants have been considered for their unique solution to the
stability-plasticity dilemma. ART networks adjust previously-learned categories in response to
familiar inputs, and creates new ones to accommodate to inputs different enough from those

previously categorized.

1.4.1 Fuzzy-ARTMAP Networks

Several ARTMAP networks have been proposed to improve the performance of these architec-
tures. Among them, the fuzzy-ARTMAP (FAM) (Carpenter et al., 1992) integrates the fuzzy
ART to process both analog and binary input patterns with the original ARTMAP architecture.
This popular neural network has been designed to perform supervised incremental learning,

and respects the conditions from (Polikar et al., 2001). In learning mode, the sequential learn-
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ing process grows the number of recognition categories according to a problem’s complexity.
The vigilance and match tracking process provide the mechanisms to control the local impact

of new data on the existing knowledge structure.

y’

input

Figure 1.3  Architecture of a FAM network.

A FAM network, presented in Figure 1.3, is composed by three layers: (1) an input layer Fi,
composed by 2M nodes (M being the dimension of the feature space), (2) an activation layer,
F,, where each node (N being the number of F;’s nodes) is associated to a category in the
feature space, and (3) a mapping field, F¢?, of L nodes (for L classes), linking the categories
of F> to the real world’s classes. Connections between F; and F;, are represented by a set
of real weights W = {w;; € [0,1] : i =1,2,....M;j = 1,2,...,N}, each category j adjusting
a prototype vector w; = (wy,w2j,...,wum;). The F> layer is also connected to the F @ Jayer
through the binary weight set W% = {w‘;,l(’ €0,1:j=1,2,..,N;k=1,2,...,L}, the vector

ab | ab

ab — IS ...,w‘;lL’) representing the link between the node (or category) j of F> and one

we = (w

of the L classes.
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During training, a FAM network behavior relies on four hyper-parameters: (1) o > 0, the
choice parameter, (2) B € [0, 1], the learning rate, (3) p € [0, 1], the baseline vigilance pa-
rameter, and (4) € = 07, the match-tracking parameter. A categorization of the feature space
is realized in the first time, the amount N of categories being determined on-line. To do so,
the input vector a is first normalized such as a; € [0,1], (i = 1...M), while the internal vigi-
lance parameter p is initialized to the value of the baseline p. Then, the F; layer compute the
complementary A of a such as A = (a,a“), where af = (1 — g;), which enables the compu-
tation of the activation of each node j of the F, layer, following the Weber-choice function:

Ti(A) = [AAw,|/(a+w,]).

The node with the highest activation J = argmax{T; : j = 1,...,N} is then chosen, and the
similarity between A and w;y is verified with the vigilance test |A Awy|/2M > p. If the test
is not satisfied, the node J is deactivated (activation put to 0), and the network tries with the
second best node of F,. When a suitable node J is found, a prediction test is realized from the
vector w?b to determine the predicted class K = k(J). If the prediction is wrong, the Match-
Tracking procedure deactivates the node J and changes the value of p = (|A Awy|/2M) + €.
If the node passes the prediction test, its category is updated though the prototype vector ', =
B(AAwy)+ (1—B)w;. On the other hand, if no suitable node is found in F>, a new node is

created and connected to the class K by putting wﬁ,’? to 1 is k = K, and 0 otherwise.

Once the internal parameters (or weights) have been determined, the prediction of the class of
a new input is realised by computing the activations of the F; layer in order to find the winning

node J, and then obtain the class K = k(J) linked tough the F* layer.

While FAM networks only generate binary decisions, a higher level of detail can be obtained
with Probabilistic Fuzzy ARTMAP (PFAM) networks (Lim and Harrison, 1995). These are
probabilistic adaptations of FAM networks that generate Gaussian distributions from the cate-
gories created though standard FAM training, thus allowing to benefit from the advantages of
FAM networks while generating probabilistic outputs. More precisely, PFAM implements the

following modification over the original FAM algorithm:
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a. [Estimation of the prior probabilities of the classes: the categories are linked with several
classes, through the W* weights. They are incremented at each assignation, making
possible, at the end of the training, the computation of the assignation frequency of each

class k Sy = ]Jy:l w?,’? , as well as they prior probabilities p(k) = S;/ Y\, ;.

b. Estimation of the categories’ centres: the center w?c of each category j is the center of

sac

gravity of all the samples it contains. It’s updated through w;

_ b
= (a—w9")/|w}’| when
a new sample is attributed to the category. When a new category is created, it’s center is

initialized at the position of the input sample a.

c. Estimation of the categories’ variances: when the training is over, the covariance matrices
S of the categories’ distributions are estimated. To limit the model complexity, they are
considered as diagonal and uniform (for example, for the category j, S; = 0;.I). For each
category, only one variance value has to be computed, and is approximated with a new
hyper-parameter, r, the smoothing parameter, following ¢; = minj<;<y ;+/ | \w‘}c —wi||/r.

It’s an approximation which preserves the neighbourhood of each category.

On the other hand, Probabilistic FAM’s prediction process is completely different than FAM’s:
for an input a, the activation of each category j is computed as a Gaussian density, following

Equation 1.1.
gia) =e V@R oy o (1.1)

The conditional probabilities of each class k are then determined with the "Parzen-Windows"
theory, following p(alk) = ¥ jcc, gj(a)/ |w;?b |, Cx being the set of categories associated to the
class k. The posterior probability, which will be the likelihood scores, are finally estimated

using the Bayes’ formula: p(k|a) = p(k).p(alk).

1.4.2 Challenges

While incremental learning classifiers may allow to update facial models over time, the incre-

mental learning of significantly different and noisy data has been shown to degrade previously-
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acquired knowledge (Polikar et al., 2001). For example, in ARTMAP networks, this can lead
to a proliferation of category neurons on the hidden layer, causing a reduction in discrimination

for older concepts and an increased computational complexity.

1.5 Adaptive Ensemble of Classifiers

EoC methods rely on the combination of several classifiers to improve overall system accuracy.
Their design usually involve three steps: (1) generation of a pool of base classifiers, (2) selec-
tion of classifiers from this pool, and (3), design of the ensemble fusion rule to output a single
decision (either through the selection of a single most relevant classifier or the combination of
individual responses) (Kuncheva, 2004a; Britto et al., 2014). EoCs methods have numerous
advantages, that are of a definite interest for FRiVS applications. First of all, relying on a
diversified pool of classifiers have been shown to improve overall system accuracy (Rokach,
2010), especially in complex environments with ill-defined problems. Furthermore, numerous
ensemble methods proposed to perform incremental learning in changing environments have
been shown to preserve previously-acquired knowledge, and yet remain adaptable to new in-
formation (Ortiz Diaz et al., 2015; Polikar et al., 2001; Ramamurthy and Bhatnagar, 2007). For
example, instead of updating a single incremental classifier with newly-available data, training
and adding new ones to an ensemble may allow to mitigate knowledge corruption, as knowl-
edge about previously-encountered concepts would remain intact in the other classifiers of the

ensembles.

1.5.1 Generation and Update of Classifier Pools

1.5.1.1 Diversity Generation

To improve system performance, a certain level of diversity is required among the combined
classifiers (Brown et al., 2005). In this context, a diverse EoC usually means that is its com-
prised of classifiers with different perceptions of the recognition problem, and multiple meth-

ods have been proposed o generate diverse ensembles. For example, classifiers can be trained
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using different subsets of data, generated with k-fold data split, boostrapping or bagging tech-
niques (Kuncheva, 2004b). Diversity can also be generated through variation of feature rep-
resentations. In the random subspace approach (Ho, 1998), each classifier is trained with the
same dataset, but projected into a different subspaces. Furthermore, heterogeneous ensembles
can be generated by combining different types of classifiers, or similar classifiers initialized

with different hyper-parameters.

In this thesis, population-based evolutionary algorithms such as Particle Swarm Optimization
(PSO) and its derivatives have been considered to generate performing ensembles of classifiers.
Considering a PFAM classifier which relies on 6 hyper-parameters, the optimization of these
parameters through evolutionary algorithm promotes diversity inside the solution space. As
the hyper-parameter (or solution) space defines the architecture of classifiers, this leads to
an explicit generation of diversity in classifiers hypotheses. Empirical results from Connolly
(Connolly et al., 2010a) with incremental learning of PFAM classifiers for face recognition
using dynamic PSOs have pointed out the correlation between diversity among the solutions in

the hyper-parameter space and diversity of ensemble classifiers.

PSO is a stochastic optimization method based on the evolution of a population of solutions
developed by Eberhart and Kennedy (Eberhart and Kennedy, 1995), inspired by the social
behaviour of a bird’s flock. Each individual (or particle) of the population (or swarm) is a
possible solution (a set of parameters), and the algorithm determine their trajectory in order
to maximize one or several objectives fixed by the user. In the context of the optimization of
classifiers’ hyper-parameters, the objective can be the classification rate of a validation database

by classifiers trained with the parameters of the particles.

More precisely, let p be a particle in the optimization space, and thus a vector of classifier
hyper-parameters. For each iteration of the optimization algorithm, until a user-defined stop-
ping criterion (for example a maximum amount of iteraions I,,y), the trajectory of p for the

next iteration is governed by the speed equation:

V:W'v+r1'cl'(p_pbes1)+r2'c2'(p_gbest) (1.2)
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The general idea is for it to evolve towards the best particle (in terms of the objective function)
of the swarm g, determined at each iteration, its best known position py,; (or particle mem-
ory), as well as its previous speed to maintain inertia. The parameters W, c¢; and c; are fixed by
the user, and can influence the general behaviour of the swarm, while the random parameters r;
and ry prevent premature convergence toward a possibly sub-optimal position trough a random

weighing which ensures that all the particles are not headed toward the same general direction.

To generate ensembles of diverse classifiers, sub-swarm variants of PSO are of a particular
interest, as they rely on the formation, explicit or not, of subsets of particles evolving sepa-
rately (Connolly ef al., 2010b). This modification leads to two main consequences regarding
the evolution of the swarm: (1) leader selection only considers particles inside the subset of
each particles, which prevents particles from trying to get closer to leader located too far from
their position (usually resulting in as useless flight), and (2), each subset evolve in a different
region of the solution space, which explicitly encourages diversity in particle’s parameters, thus
preventing early convergence toward a local optima. For example, the Dynamic Niching PSO
(Nickabadi et al., 2008b) has been proposed to generate sub-swarms automatically, using a
niching strategy. In this method, each particle is fist linked to an initial leader in its neighbour-
hood (best performing particle in a fixed-size raduis). This leader is then replaced by a new
one, better than the old one in its neighbourhood, and this process is repeated until a particle
which is it’s own leader is found (no particle is better in its neighbourhood). All the particles of
the swarm are then regrouped with the ones sharing the same leader, thus forming dynamic the
sub-swarms. This processed is repeated for each iteration to avoid using the same sub-swarm
topology for the entire process. Finally, particles without any sub-swarm (self-leaders only) are
considered as free particles, participating to the generation of diversity among solution due to
the lack of constraints, as they can still generate new sub-swarms in the following iterations. By
explicitly promoting parameter diversity among local best (best particles of each subswarm),
this method allows for the generation of diverse ensembles, comprised of optimal classifiers

for different regions of the hyper-parameter space.
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1.5.1.2 Adaptation to Concept Change

In this thesis, EoC methods are considered to adapt facial models with newly-available data.

Ensemble adaptation strategies can be divided into three general categories (Kuncheva, 2004a):

a. horse racing methods, which train monolithic classifiers beforehand, and only adapt the

combination rule dynamically (Blum, 1997; Zhu et al., 2004).

b. methods using new data to update the parameters of EoCs classifiers in incremental learn-

ing (Gama et al., 2004; Connolly et al., 2013).

c. hybrid approaches, adding new base classifiers as well as adapting the fusion rule, such
as the Learn++ algorithm family (Muhlbaier and Polikar, 2007; Muhlbaier et al., 2009;
Polikar et al., 2001).

However, horse racing and incremental learning EoC approaches cannot accommodate to sig-
nificantly different data. With the former, classifiers cannot update their problem representation
to represent new concepts, and with the latter, they are subject to knowledge corruption. On the
other hand, hybrid approaches provide a compromise between stability and plasticity to new
data. Classifiers trained on previously acquired data remain intact, while new classifiers are
trained for new reference data. For example, in the Learn++ algorithm (Polikar et al., 2001),
an ensemble is incrementally grown using, at each iteration, a weight distribution giving more
importance to reference samples previously mis-classified, thus generating new classifiers spe-

cialized on the most difficult samples.

Following the definition of Gama et al. (Gama et al., 2004) and Ditzler et al. (Ditzler and Po-
likar, 2011), ensemble methods can also be differentiated by the way they handle concept
change. On one hand, passive methods are designed to continuously adapt to new data without
monitoring possible changes, that are handled through automatic adaptation mechanisms. For
example, when a new batch of data become available, boosting methods from the Learn++

family (Muhlbaier and Polikar, 2007; Muhlbaier et al., 2009; Polikar et al., 2001) propose to
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generate one or several new classifiers, and combine them with previous ones through weighted
majority voting. To adapt the system to current concepts, the voting weights are regularly
adapted depending on the ensemble performance on the previous data batches. On the other
hand, active methods monitor data streams to detect concept drifts, in which case specific adap-
tation mechanisms are activated. For example, Minku et al. (Minku and Yao, 2012) proposed
the Diversity for Dealing with Drifts algorithm, which maintains two ensembles with different
diversity levels, one low and one high, in order to assimilate a new concept emerging in the
observed data. When a significant change is detected though the monitoring of the system’s
error rate, the high diversity ensemble is used to assimilate new data and converge to a low
diversity ensemble, and a new high diversity one is generated and maintained through bagging.
Alippi et al. (Alippi et al., 2013) also proposed a Just-in-Time classification algorithm, using a
density-based change detection to regroup reference samples per detected concept, and update
a on-line classifier using this knowledge when the observed data drift toward a known concept.
Other methods such as proposed by Ramamurthy et al. (Ramamurthy and Bhatnagar, 2007)
and Diaz et al. (Ortiz Diaz et al., 2015) rely on concept change detection to decide whether
to train a new classifier on recent data, or leave the ensemble unchanged. A new classifier is
added only if a new concept is detected in the observed data, which limits unnecessary system

growth with redundant information.

1.5.2 Classifier Selection and the Fusion Rule

The fusion of classifiers outputs is an example of single biometric multiple classifiers fusion, as
presented by Ross (Ross and Jain, 2003). Such fusions are usually performed at the score, rank
or decision levels. For example, the fusion in score level can be static considering several fixed
rules, such as the median, the product, the minimum or the maximum score (Ulas et al., 2009).
These rules can also be updated at regular intervals. In horse racing ensemble algorithms
(Blum, 1997; Zhu et al., 2004), a static ensemble of L classifiers are associated with weights
that are updated over time depending on their performance over past data. These are used

to perform fusion through weighted majority, or to perform selection by using the prediction
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of the classifier with the highest weight as the ensemble decision (Hedge 8 method). Another
example is the Winnow algorithm (Littlestone, 1988), that only updates a classifier weight when

it gives a correct prediction despite the ensemble decision being wrong (promotion step).

Other methods combine strategies to update both the pool of base classifiers and the fusion
rule. For example, the Learn++.NSE variant (Muhlbaier and Polikar, 2007) relies on weighted
majority voting for fusion, and keeps track of the performance of each classifier of the ensemble
w.r.t. past batches of operational data. These measurements are used as voting weights, and
are updated to integrate new batches of data, giving more weight to recent measurements.
When a recurring concept is re-encountered, historical measures enable to detect the presence
of a known concept, and increase the weights of related classifiers. Similarly the Fast Adapting
Ensemble method (Ortiz Diaz et al., 2015) implements heuristics to either activate or deactivate
classifiers depending on the detected concept, as only activated classifiers participate in the final
decision. When the presence of a previously encountered concept is detected in the operational

data, classifiers associated to this concept re-activated, and their weights are adjusted.

Despite their regular update, the methods described above still apply a static selection or fusion
rule (Britto et al., 2014). The parameters are updated a posteriori after an observation over
a window of past data, and remain static until the next update. Other methods have been
proposed to provide a dynamic adaptation of the fusion rule, such the Mixture of Experts
system (Jacobs et al., 1991). It is comprised of an ensemble of neural network classifiers, as
well as an additional gating network. For each input, the gating network is trained to compute
the probabilities that each neural network of the ensemble is the most competent to classify it.
These probabilities are then used to compute the ensemble final output, as the weighted average
of the network outputs. While they provide a dynamic adaptation for each input pattern, the
architecture of such methods remain static, as the gating network has to be updated with new
reference data to remain relevant. It may also require the storage of previous data, for example

to adapt its structure to the addition of a new classifier in the ensemble.
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To address this limitation, dynamic selection methods have been proposed in the literature
(Britto et al., 2014). These involve, for each input to classify, the computation of a region
Y defined as its k nearest neighbors in a set of validation data of known labels. Numerous
methods have been proposed to compute classifier competence from the region . For exam-
ple, in (Woods et al., 1996), the accuracy of each classifier is computed as the percentage of
correctly classified samples from W, and the classifier with the highest accuracy is selected for
classification. Other methods propose to select optimal ensemble subset instead of a single
best classifier, such as the DS-KNN method (Santana et al., 2006). It considers both accuracy
and ensemble diversity measures. The N’ most accurate classifiers in P are first selected to
generate an intermediate ensemble. Then, only the N” most diverse classifiers of this ensemble

are selected for classification, using double-fault diversity measures.

1.5.3 Challenges

In a VS environment, a FR system should be able to provide two levels of adaptation:

a. Adaptation of its training strategy. To adapt to newly available reference data, and refine

its facial models by assimilating new concepts without corrupting past knowledge.

b. Adaptation of its operational behavior. In a video sequence, multiple concepts can be
represented as the capture conditions evolve (e.g. movement of the individual). The
system should be able to dynamically adapt its prediction behavior to always benefit from
the most relevant knowledge to each capture, and avoid corrupting the prediction process

with irrelevant knowledge.

Adaptive EoC methods can be used in a VS environment to fulfill these requirements. The first
level may be achieved by training new classifiers for significantly different reference data, and
the second should be addressed with a dynamic fusion rule, that only selects relevant classifiers

among a diverse pool.
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However, the compromise between accuracy and complexity must be addressed for the system
to remain able to perform live recognition. While growing an EoC for each newly available
batch of reference data will increase system complexity over time, only adding a new classifier
when an abrupt change is detected might result in incomplete concept representations. In a
VS environment, newly available data may also be used to refine knowledge about previously

observed-concepts.

In the same way, the performance of dynamic selection methods depends heavily on the storage
of a representative set of validation data, that is likely to grow over time as new concepts are
detected in reference data. The estimation of competence regions involve a nearest neighbor es-
timation for each input capture, which computational complexity grows with the validation set.
In addition, although a dynamic computation of competence regions enables to benefit from the
most relevant information to each input ROI, these methods remain sensitive to the presence of
unknown concepts in the operational streams. When presented with captures originating from
concepts not represented in facial models nor validation data, incorrect competence prediction
is likely to occur, either because of ill-defined competence regions (comprised of data from
unrelated concepts), or poor classifier performance. In FRiVS, a dynamic adaptation of the
fusion rule shouldn’t interfere with the ability to perform live recognition, and corrupt system

performance when unknown concepts are observed during operations.

In this thesis, an hybrid strategy involving both incremental learning and ensemble techniques
is considered to address the plasticity-stability dilemma. On one hand, classifiers are updated
through incremental learning to update facial models when gradual changes are observed, to
refine knowledge about previously-observed concept. On the other hand, to assimilate new
concepts without corrupting past knowledge, new classifiers are added to the ensembles when
changes are detected. In addition, to provide a dynamic adaptation of the ensembles’ fusion
rules, classifier competence is estimated from concepts models used for concept change de-
tection in reference videos, with represents a lower computational complexity than standard

dynamic selection methods involving neighbor estimation.



CHAPTER 2

CONTEXT-SENSITIVE SELF-UPDATING FOR ADAPTIVE FACE RECOGNITION

Christophe Pagano!, Eric Granger!, Robert Sabourin!, Pierluigi Tuveri’, Gian Luca
Marcialis?, Fabio Roli?
! Laboratoire d’Imagerie, de Vision et d’Intelligence Artificielle, Ecole de Technologie
Supérieure, Université du Québec, Montréal, Canada
2 Patter Recognition and Applications Group, Department of Electrical and Electronic
Engineering, University of Cagliary, Italy
Book Chapter published in « Adaptive Biometric Systems: Recent Advances and Issues » by

Springer, in 2015.

Abstract

Performance of state-of-the-art face recognition (FR) systems is known to be significantly af-
fected by variations in facial appearance, caused mainly by changes in capture conditions and
physiology. While individuals are often enrolled to a FR system using a limited number of ref-
erence face captures, adapting facial models through re-enrollment, or through self-updating
with highly confident operational captures, has been shown to maintain or improve perfor-
mance. However, frequent re-enrollment and updating can become very costly, and facial
models may be corrupted if misclassified face captures are used for self-updating. This chap-
ter presents an overview of adaptive FR systems that perform self-updating of facial mod-
els using operational (unlabelled) data. Adaptive template matching systems are first revised,
with a particular focus on system complexity control using template management techniques.
A new context-sensitive self-updating approach is proposed to self-update only when highly-
confident operational data depict new capture conditions. This allows to enhance the modelling
of intra-class variations while mitigating the growth of the system by filtering out redundant
information, thus reducing the need to use costly template management techniques during op-

erations. A particular implementation is proposed, where highly-confident templates are added
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according to variations in illumination conditions detected using a global luminance distor-
tion measures. Experimental results using three publicly-available FR databases indicate that
this approach enables to maintain a level of classification performance comparable to stan-
dard self-updating template matching systems, while significantly reducing the memory and

computational complexity over time.

2.1 Introduction

Automated face recognition (FR) has become an important function in a wide range of se-
curity and surveillance applications, involving computer networks, smart-phones, tablets, IP
cameras, etc. Capturing faces in still images or videos allows to perform non-intrusive authen-
tication in applications where the user’s cooperation is either impossible (video-surveillance in
crowded environments) or to be limited (continuous authentication). For example, in the con-
text of controlled access to critical information on computer network systems, the face modality
may allow for a continuous, non-intrusive authentication (Niinuma et al., 2010). After initial
log-in, a FR system may enroll the authenticated user using facial images captured from the
computer’s built-in camera, and design a facial model!. The user’s identity may then be peri-
odically validated using facial images captured over time without requiring active co-operation

(i.e. password prompt).

However, limited user co-operation as well as uncontrolled observation environments often
make FR a challenging task. It is well known that the performance of state-of-the-art FR sys-
tems may be severely affected by changes in capture conditions (e.g., variation in illumination,
pose and scale), as well as individual physiology (Pagano et al., 2014; De-la Torre et al., 2014).
Moreover, such systems are usually initialized with a limited number of high-quality reference
face captures, which may generate non-representative facial models (not modelling all possible

variations) (Pagano et al., 2012).

' Depending on the classification system, a facial model may be defined as either a set of one or more

reference face captures (template matching), or a statistical model estimated from reference captures
(statistical classification).
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To account for such intra-class variations, several solutions have been investigated in the liter-

ature over the past decade. They can be organized into the following two categories:

a. Development of discriminative features that are robust to environmental changes (De Mar-
sico et al., 2012; Wright et al., 2009). These techniques usually aim to develop facial
descriptors insensitive to changes in capture conditions, to mitigate their effects on the

recognition process.

b. Storage (or synthetic generation) of multiple reference images to cover the different cap-
ture conditions that could be encountered during operations (Jafri and Arabnia, 2009;

Li and Jain, 2011).

However, these approaches assume that FR is a stationary process, as they only rely on in-
formation available during enrolment sessions. In addition, depending on the application, a
single enrolment session is often considered as multiple ones are not always possible (Rattani,
2010). This prevents to integrate new concepts” that may emerge during operations as capture
conditions and individuals physiology evolve over time (for example due to natural lighting

conditions and ageing).

To address this limitation, adaptive biometric systems have been proposed in the literature (Roli
et al., 2008), inspired by semi-supervised learning techniques for pattern recognition (Nagy,
2004). These systems are able to adapt facial models (sets of templates or classifier parame-
ters) by exploiting (either on-line or off-line) faces captured during system operations. Com-
mon approaches in adaptive biometrics fall under self-updating and co-updating, depending on
whether they rely on a single or multiple modalities. They usually either: 1) add novel cap-
tures to individual specific galleries (Roli and Marcialis, 2006), or 2), fuse new input data into
common templates referred to as super-templates, containing all information (Jiang and Ser,
2002; Ryu et al., 2006) for each modality (for example, virtual facial captures constructed with

patches from operational data).

2 A concept can be defined as the underlying data distribution of the problem under specific operating
conditions (Narasimhamurthy and Kuncheva, 2007).
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This chapter focuses on self-updating techniques with template matching systems for FR.
These methods update template galleries using faces captured during operations that are con-
sidered highly-confident, i.e. that produce very high matching scores (surpassing a self-updating
threshold) (Rattani ez al., 2009). Advantages and drawbacks of self-updating have been widely
investigated (Marcialis et al., 2008; Rattani et al., 2009). While these methods have been show
to significantly improve the performance of biometric systems over time, an updating strategy
only relying on matching score values may add redundant template to the galleries. This can
significantly increase system complexity over time with information that do not necessarily im-
prove performance, and also eventually reduce its response time during operations. To bound
this complexity, template management methods (e.g. pruning) have been proposed in literature
(Freni et al., 2008; Marcialis et al., 2008; Rattani et al., 2009). While clustering-based methods
showed the most promising results, they remain computationally complex and thus not suited

for seamless operations, if self-updating is performed frequently.

In this chapter, a survey of state-of-the-art techniques for adaptive FR using self-updating is
presented, along with the key challenges facing these systems. An experimental protocol in-
volving three real-life facial datasets (DIEE (Rattani et al., 2013), FIA (Goh et al., 2005) and
FRGC (Phillips et al., 2005)) is proposed to evaluate the benefits and drawbacks of a self-
updating methodology applied to a template matching system, with a particular focus on the
management of system complexity. To address this challenge, a context-sensitive self-updating
technique is proposed for template matching systems, combining a standard self-updating pro-
cedure and a change detection module. With this technique, only operational faces that were
captured under different capture conditions are added to an individual’s template gallery. More
precisely, the addition of a new capture into the galleries depends on two conditions: 1) it’s
matching score is above the self-updating threshold (highly confident capture), and 2), the cap-
ture contains new information w.r.t. the samples already present in the gallery (i.e. captured
under different conditions). This strategy allows to benefit from contextual information avail-
able in operational captures to limit the growth in system complexity. With this technique,

one can avoid frequent uses of costly template management schemes, while still enhancing
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intra-class variation in facial models with relevant templates. A particular implementation of
this proposed technique is considered for a basic template matching system, where changes are

detected in illumination conditions.

The rest of this chapter is organized as follows. Section 2 provides a general survey of self-
updating algorithms in the context of adaptive biometric systems. Then, section 3 introduces
the new context-sensitive self-updating technique based on the detection of changes in capture
conditions, and Section 4 presents the proposed experimental methodology. Finally, experi-

mental results are presented and discussed in Section 5.

2.2 Self-Updating for Face Recognition

2.2.1 A General System

Facial
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Figure 2.1 General FR system trained for N individuals.

Figure 2.1 presents a generic system for the recognition of faces in images (stills or video
frames) captured from a camera. It is composed by four modules: segmentation, feature ex-
traction, classification and decision. In addition, facial models of the N enrolled individuals
are stored into the system, to be used by the classification module to produce matching scores

for each individual.

During operations, faces are isolated in the image using the segmentation module, which pro-
duces the regions of interest (ROIs). Then, discriminant features are extracted from each ROI

(e.g. eigenfaces (Turk and Pentland, 1991) of local binary patterns (Ahonen et al., 2006)) to



42

produce the corresponding pattern d = (d[1],...,d[F]) (with F the dimensionality of the feature
space). This pattern is then compared to the facial model of each enrolled individual i by the

classifier, which produces the corresponding matching scores s;(d), (i = 1,...,N).

The facial models are usually designed a priori using one or several reference patterns, from
which the same features have been extracted, and their nature depends on the type of classifier
used in the system. For example, with a template matcher, a facial model of an individual i
can be a gallery of one or several reference patterns r; ; (j = 1,...,J), in which case matching
scores for each operational pattern d would be computed from distance measures to these pat-
terns. Classification may also be performed using neural networks (e.g multi-layer perceptrons
(Riedmiller, 1994) and ARTMAP neural networks (Carpenter et al., 1991)) or statistical clas-
sifiers (e.g. naive Bayes classification (Duda and Hart, 1973)), in which case the facial models
would consist of parameters estimated during their training using the reference patterns r; ;

(e.g. neural networks weights, statistical distribution parameters, etc.).

Finally, the decision module produces a final response according to the application. For exam-
ple, an identification system for surveillance may predict the identity of the observed individual
with a maximum rule, selecting the enrolled individual with the highest matching score, while
a verification system for access control usually confirms the claimed identity by comparing the

corresponding matching score to a decision threshold

2.2.2 Adaptive Biometrics

As mentioned earlier, the performance of FR systems can be severely affected by changes in
capture conditions. Intra-class variations can be observed in the input data, as a consequence
of changes in capture conditions (scene illumination, facial pose angle w.r.t. the camera, etc.)
or individuals physiology (facial hair, ageing, etc.). Such diversity is difficult to represent
using the limited amount of reference captures used for initial facial model design. To address

this limitation, adaptive biometric systems have been proposed in the literature, providing the
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option for continuous adaptation of the facial models using the operational data (Rattani, 2010;

Rattani et al., 2009).

Adaptation can be either supervised or unsupervised, depending on the labelling process of the
operational data. In semi-supervised learning (Zhu, 2005), the facial model of each individual
enrolled to the system is updated using operational data labelled as the same individual by the
classification system. For example, a gallery %; of reference patterns may be augmented with
highly-confident operational input patterns d matched to the facial model of individual i. While
this enables to refine facial models, the performance of such systems is strongly dependent on
their initial classification performance. In addition, the integration of mislabelled captures
could corrupt facial models, thus affecting the accuracy of the system for the corresponding

individuals (Rattani et al., 2009, 2013)

An adaptive biometric system can also perform supervised adaptation, where the operating
samples used to update the system are manually labelled, or obtained through some re-enrolment
process (Rattani et al., 2009). While supervised adaptation may represent an ideal scenario
with an error-free labelling process, human intervention is often costly or not feasible. De-
pending on the application, the ability to perform semi-supervised adaptation may be the only
viable solution, which has lead to the development of various strategies to increase the robust-

ness of such systems.

These techniques can be categorized as self-update (Jiang and Ser, 2002; Ryu et al., 2006) and
co-update techniques (Rattani et al., 2009, 2008), depending on whether a single or multiple
modalities are considered for the update of facial models with highly-confident patterns. This
chapter focuses on self-updating methods for FR, where facial models are defined by galleries

of reference patterns.
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2.2.3 Self-Updating Methods

In the context of FR systems, self-updating methods update the facial models using only highly-
confident operational captures, i.e. with matching scores surpassing a very high threshold, to

prevent possible corruptions due to misclassification.

2.2.3.1 General Presentation
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Figure 2.2 A FR system based on template matching that allows for self-update.

Sample selection
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To illustrate this principle, it is applied to a template matching system, presented in Figure
2.2. In this system, inspired by (Rattani et al., 2011), the facial model of each individ-
ual i is designed by storing initial reference patterns from a labelled dataset into a gallery
«; = {ri1,ri2,...} (in this case, the terms pattern and template are used indiscriminately). To
simplify the notation, the remaining of this section will omit the subscript i and only consider
one individual, as this methodology can be extended to many with individual specific galleries

and thresholds.

Alg. 2.1 presents a generic algorithm for self-updating a template gallery ¢ with several ref-
erence patterns r; (j = 1,...,J). During operations, the system is presented with an unlabelled
data set Z of L facial captures. For each sample d;, similarity measures to each reference r; in
the galley are used to compute the set of matching scores s;(d;) (j = 1,...,J). Then, the final
score S(d;) is computed as a combination of s;(d;) (e.g. the maximum fusion rule), and posi-

tive prediction is output if it surpasses the decision threshold 7. Finally, the sample selection
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Input: Gallery with initial templates 9 = {ry,...,r;}, unlabeled adaptation set
9 = {dl,...,dL};
Output: Updated Gallery 9’ ={ry,....rp}, J' >,
- Estimate updating threshold y* > ¥¢ from ¥;
-9« %', //Initialization with previous state
for all samplesd; € ¥ (1=1,...,L) do

//Prediction score for each reference

for all referencesri € 9 (j=1,...,J) do

‘ - 5j(d;) < similarity_measure(d;,r);

end
end
-S(d)) + Errl[?)§]{sj(d1)}; //Maximum fusion of scores

Jell,

if S(d;) > v, then

- Output positive prediction ;

gallery

if S(d;) > 7" then
‘ -9 «—9'udp;

end

end

//Add the sample which similarity surpasses %" to the

module relies on a stricter updating threshold 7 (usually ¥ > %), updating the gallery ¢ with

d; if S(d;) > ¥*, i.e. if the prediction has a high degree of confidence.

2.2.3.2 Challenges

While self-updating methods have been shown to improve system accuracy over time, the

adaptation of the facial models using operational data might be detrimental, and the selection

of the updating threshold is critical (Rattani ez al., 2009). To prevent a decline in classification

performance, the use of a strict updating threshold may enable to reduce the probability of

updating the facial models with misclassified patterns (Liu et al., 2003; Roli and Marcialis,

2006; Ryu et al., 2006). However, it has been argued that updating with only highly confident

patterns may result in the addition of redundant information in the galleries, and thus a marginal



46

gain in performance at the expense of a considerable increase in system complexity (Rattani

et al., 2009).

In addition, operational samples with more drastic changes are less likely to generate classifica-
tion scores surpassing the updating threshold, preventing the classification system to assimilate
this new information. To address this limitation, co-updating methods have been proposed to
benefit from complementary biometric systems (Rattani et al., 2009, 2008). Each system is ini-
tialized with reference templates from a different source (or different features extracted from
the same source), and performs classification of operational input data. In the same way as
self-updating techniques, each system selects highly-confident samples based on an updating
threshold, but this information is also shared with other systems. If the classification score of
one system surpasses its updating threshold, the others will also consider the corresponding
samples as highly confident, and perform adaptation. This enables to increase to probability
of updating with different but genuine operational data, by relying on the supposition that a
drastic change on one source is not necessarily observed on others. A recent model has been
proposed to estimate optimal amounts of samples and iterations to improve system’s perfor-
mance under specific updating constraints (Didaci et al., 2014). This model has shown to be
effective under the stringent hypothesis of 0% false alarm rate for the updating threshold of
both systems. While co-updating is usually applied with multiple biometric traits, it could also
be applied in, for example, a FR scenario involving multiple cameras. In this situation, relying
on multiple point of views could mitigate the effect of disruptions such as motion blur that

would be less likely to affect every camera at the same time.

Finally, system complexity is a critical issue for template matching systems in live FR. The
ability to operate seamlessly depends on the computational complexity of the recognition oper-
ation, which is usually directly related to gallery sizes. Several template management strategies
have been proposed to limit complexity in self-updating systems. In (Freni et al., 2008), tem-
plate replacement strategies have been experimented to perform self-update in a constrained
environment, where the maximum number of templates in a gallery is fixed by the user. When

the maximum size is reached, several criteria have been experimented to determine which ob-
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solete template can be replaced, such as FIFO, LFU and clustering algorithms. Among them,
the clustering algorithm MDIST showed the most promising results, reducing the number of
impostors samples by maintaining a gallery with very close samples. While these methods
enable to compromise between system performance and complexity, they remain computation-
ally costly, and may interfere with seamless long-term operations. Once the maximum gallery
size is reached, such process would have to be performed for each new highly-confident tem-
plate, thus increasing system response time. To reduce these occurrences, operational data
containing redundant information should be filtered out during operations. This would limit
the self-updating process to only operational templates with relevant information, i.e. tem-

plates improving intra-class variability in facial models.

2.3 Self-Updating Driven by Capture Conditions

This chapter introduces a new self-updating method that efficiently self-updates facial models
based on capture conditions. This methodology is illustrated using a template matching system
performing self-updating, as presented in (Rattani ef al., 2011). As discussed in the previous
sections, such methodology can significantly improve the overall classification performance
through a better modelling of intra-class variations, specifically in applications exhibiting sig-
nificant variations in capture conditions (e.g. continuous authentication using webcams). How-
ever, updating the galleries with only highly-confident inputs may not always provide new and
beneficial information, as those samples are usually well-classified by the system, which could
lead to an unnecessary increase in system complexity (e.g. the number of reference patterns
stored in the galleries) (Rattani et al., 2009). While this complexity can be mitigated with
template-management techniques (Freni et al., 2008), frequent gallery filtering may interfere

with seamless operations over time.

To address this limitation, this section proposes a context-sensitive self-updating technique
that integrates a template filtering process during operations. It is designed to ensure that
only highly-confident data captured under novel conditions are added to template galleries,

thus limiting the growth in memory complexity with redundant samples. In fact, in FR, intra-
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class variations in facial appearance are often related to changes in capture conditions (e.g.
environmental illumination, facial pose, etc.) (Pagano et al., 2014; De-la Torre et al., 2014),
and such information can be detected during operations. Following this intuition, when a highly
confident ROI pattern surpasses the updating threshold, non-discriminative information related
to capture conditions are extracted to evaluate whether it has been captured under different
conditions that of the reference templates already stored in the gallery. If not, the pattern is

discarded, and the gallery is not augmented.

2.3.1 Framework For Context-Sensitive Self-Update

input input ROI matching
attern scores — .
Segmentation ROI Feature P «| Template Decision —» reject
(face detection) D, extraction d, ~ | matching s5,,(d) s(d) = y¢ accept

reference
patterns

reference

ROIs r;
Detection of Ri; .
> Changes in Template Sample selection
Capture Conditions . > gallery Sid) = y*

Figure 2.3 A template matching system that integrates context-sensitive self-updating.

The diagram of a general template-matching system that employs the new context-sensitive
technique is presented in Figure 2.3. It augments the system presented in Figure 2.2 with an

additional decision module to detect changes in capture conditions.

In the same way than standard self-updating systems, when presented with a unlabelled data
set 7 = {d,...,dr}, this system first selects highly-confident samples to perform adaptation
of the template gallery ¢,, i.e. the set 2’ = {d,|S;(d;) > ¥*}. Then, an additional test is per-
formed on these samples, only to select a final subset captured under novel capture conditions.
To extract additional non-discriminative information, the individual galleries are augmented
with the input ROIs R; ; from which the reference patterns r; ; are extracted. The augmented

galleries are stored as &, = {{R; 1,ri1},{R;2,ri2},...}. This additional measurement enables
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to maximize the intra-class variation of the galleries while mitigating their growth by rejecting
redundant information. For example, contextual information such as environmental illumina-
tion or facial pose w.r.t. the camera can be measured on ROIs, to be compared with ROIs in

the galleries.

2.3.2 A Specific Implementation

As a basic example of the framework presented in Figure 2.3, a particular implementation is

proposed. It relies on the detection of changes in illumination conditions.

2.3.2.1 A Template Matching System

For classification, a standard template matching system is considered. For each individual i,
a dedicated facial model is stored as a template gallery ¢; = {{R; 1,ri1},{Ri2,Ti2},....{Ri,

,Tis }}. as well as user-specific decision }fld and updating ;' thresholds.

For each input ROI isolated through segmentation, the corresponding pattern d; is extracted
using a Multi-Bloc Local Binary Pattern (LBP) (Ahonen et al., 2006) algorithm. Features for
block sizes of 3x3, 5x5 and 9x9 pixels are computed and concatenated with the grayscale pixel
intensity values, and PCA is used to reduce the dimensionality to F = 323. The matching score
for each individual i is then computed following:

Ji F—d uc d7 i,j
Zsz,dz = Z VF Eﬁ’( 1)) @1

where dgy.;(d;,r; j) is the Euclidean distance between input pattern d; and template r; ; (with
j=1,...,J;) and J; the total number of templates in %;. The matching scores s; ;(d;) are here
computed as the normalized opposite to the distance dg,;(d;,r; ;) (a score of 1 is achieved
for a null distance). The final matching score S;(d;) is obtained from the combination of these

scores using the average fusion rule.

3 This value has been determined experimentally as an optimal trade-off between accuracy and com-

putational complexity using a nearest-neighbour classifier with Euclidean distance.
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Finally, the system outputs a positive prediction for individual i if S;(d;) > %d , and selects d;

as a highly confident face capture for individual 7 if S;(d;) > 7.

2.3.2.2 Detecting Changes in Capture Conditions

In Figure 2.3, for each individual i, the input ROIs D; corresponding to highly-confident oper-
ational captures are compared to the reference ROIs R; ; (j = 1,...,J;) stored in the galleries,
to asses whether the capture conditions are novel enough to justify an increase in complex-
ity. The universal image quality index Q (Wang and Bovik, 2002) is considered to measure
the distortion between D; and each reference ROI R; ;. This measure is a particular case of
the Structural Similarity Index Measure (SSIM) presented in (Wang et al., 2004). It can be
written as a product of the three factors — loss of correlation, luminance distortion and contrast

distortion:
OR,;.D, ZR” Dl 2GR - Op;,

O(R;;,Dy) =
v Or;;*Op, R;;+D] Og,, +<’D,

(2.2)

where l_{,-7 jand D, are the average images, OR; and op, their variances, and OR; D, the covari-

ance.

To accommodate spatial variations in image distortion, statistical features for Eq. 2.2 may be
measured locally. A local quality index Q(R; j[k],D;[k]) is thereby calculated, where D;[k]
(R j[k]) corresponds to window of D; (R; ;) sliding from the top-left corner to the bottom right
corner for a total of K steps. These local measurements can then be combined into the global

quality index GQ following:

K
GO(R; ;,D;) = Z i[K]) (2.3)

In this chapter, the proposed template filtering strategy is implemented through a detection

of changes in ROI illumination conditions only. For that intent, the second term of the quality
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index Q (see Eq. 2.2) is considered, to compute the global luminance quality (GLQ) following:

1 D

K/

jIK]

GLO(D;,R; ;) = 2

L (2.4)
R :

UIN

K
La&[ Z

™=

where the local luminance quality measurements LQ measure the proximity of the average
luminance between each window. Highly confident captures D; are then used to update the
gallery ¢; if and only if

1 ¢

—Zagm,ﬁ ¥ 2.5)

L=
with ¥ the capture condition threshold, computed as the average GLQ between all the refer-

ences captures in ;.

2.4 Simulation Methodology

This section presents several experimental scenarios involving three real-world FR databases.
The proposed simulations emulate realistic FR applications of different orders of complexity,
with variations in capture conditions. The objective is to observe and compare the performance
of new and reference self-updating techniques under different operation conditions, and within

a basic template matching system described in Section 2.3.2.

2.4.1 Face Recognition Databases

Three publicly-available FR databases are considered for simulation. To standardize the exper-
imental protocol, each database is separated into 6 different batches for all individuals. These

scenarios are summarized at the end of Section 2.4.1, in Table 2.1.

2.4.1.1 Multi-Modal Dipartimento di Ingegneria Elettrica ed Elettronica

The multi-modal Dipartimento di Ingegneria Elettrica ed Elettronica* (DIEE) dataset (Rattani

et al., 2013) regroups face and fingerprint captures of 49 individuals. In this study, only facial

4 Department of Electrical and Electronic Engineering.
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captures are considered. For each individual, 60 facial captures have been acquired over 6
sessions at least three weeks apart, with 10 captures per session. The collection process spaned

over a period of 1.5 years.

For simulations, the facial captures or each individuals are separated into 6 batches correspond-
ing to the capture sessions. ROIs have been extracted with a semi-manual process (Marcialis
et al., 2014): an operator first selected the eyes in each frame, and the cropped region was then
determined as the square of size 2d x 2d (d being the distance between the eyes), with the eyes
located at the position (d/2,d/4) and (3-d/2,d/4). In this process, faces have been rotated to
align the eyes to minimize intra-class variations (Gorodnichy, 2005a), and then normalized to

a size of 70x70 pixels.

Figure 2.4 DIEE dataset. An example of randomly chosen facial captures for two
individuals.

This dataset was explicitly collected to evaluate the performance of self-update and co-training
algorithms. Over the 6 sessions, gradual changes can be observed in facial pose, orientation,
and illumination (see examples in Fig. 2.4). While these changes generate visible differences
in facial captures, the position of the individuals and their distance to the camera are con-
trolled. For this reason, this dataset represents the easiest problem in this study, simulating an

application of continuous authentication of individuals over a computer network.
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2.4.1.2 CMU Faces in Action

The Carnegie Mellon University Faces In Action (FIA) dataset (Goh et al., 2005) contains a
set of 20-second videos for 221 participants, mimicking a passport checking scenario in both
indoor and outdoor environments. Videos have been captured in three separate sessions of
20 seconds at least one month apart, with 6 Dragonfly Sony ICX424 cameras (640x480 pixel
resolution, 30 images per second). Cameras were positioned at 0.83m of the subjects, mounted
on carts at three different horizontal angles (0° and 4+72.6°), with two focal lengths (4 and

8mm) each.

E B EE B

Figure 2.5 FIA dataset. An example of randomly chosen facial captures for two
individuals.

In this chapter, only ROIs captured during the indoor sessions, and using the frontal camera
with 8mm focal length are considered. ROIs have been extracted using the OpenCV imple-
mentation of Viola-Jones face and eye detection algorithm (Viola and Jones, 2004). In the
same way than with DIEE, faces have been rotated to align the eyes (Gorodnichy, 2005a), and
normalized to a size of 70x70 pixels. For simulations, sequences from each session have been

divided into two sub-sequences, in order to organize the facial captures into 6 batches.

This dataset simulates an open-set surveillance scenario as found in face re-identification appli-
cations. A restrained subset of 10 individuals of interest are monitored, but in an environment

where a majority of ROIs are capture from non-target individuals. The 10 individuals of interest
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enrolled to the systems have been chosen with two experimental constraints: 1) the individuals
must be present in all capture sessions, and 2), at least 30 ROIs per session have been extracted

by the face detection algorithm.

Faces in this data set have been captured in semi-controlled capture conditions, where the
individuals entered the scene and walked to stop at the same distance from the cameras, and
talked while moving their head with natural movements until the end of the session. In addition
to variations in illumination and facial expressions, ROIs also incorporate variations in pose,

resolution (scaling), motion blur and ageing.

2.4.1.3 Face Recognition Grand Challenge

The Face Recognition Grand Challenge (FRGC) dataset as been collected at University Notre
Dame (Phillips ez al., 2005). In this chapter, the still face images of this dataset are considered.
They were captured over an average of 16 sessions for 222 individuals for the training subset,
and up to 22 sessions for the validation one, using a 4 Megapixels Canon camera. Each session

contains four controlled and two uncontrolled captures, with significantly different illumination
and expression.

AEEEHES
! k
= &

Figure 2.6 FRGC dataset. An example of randomly chosen facial captures for two
individuals
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Overall, 187 individuals have been selected for experiments, for which more than 100 ROIs
are available (around 133 in average). In the same way than with the other datasets, 6 batches
of the the sane size have been created for each individual, respecting the temporal relation
between the capture sessions. ROIs have been extracted in the same way than with the DIEE
dataset (Marcialis et al., 2014), using the position of the eyes already available in the FRGC

dataset.

This dataset simulates a wide-range identification application, with multiple re-enrolment ses-
sions where a very limited amount of reference templates are captured. Recurring and unpre-
dictable changes in illumination and facial expression emerge in the operational environment

in every capture session.

Table 2.1 Summary of the three experimental scenarios.

. # enrolled # enrolment # ROIs per Sources of
Dataset Scenario o . e
individuals sessions batch variation
DIEE contm.uogs 49 6 10 111ummat.10n,
authentication expression
illumination,
FIA v1§eo— 10 3 69 expression, pose,
surveillance resolution, ageing,
scaling, blur
FRGC . w1d§-range 187 16 ” 111un?1nat10n,.
identification expression, ageing

2.4.2 Protocol

The following three template matching systems are experimentally compared in this chapter:

a. baseline system, performing template matching in the same way as in Figure 2.3, but
without any adaptation of the template galleries ¢;. User-specific decision thresholds }fld

are stored for decision.
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b. standard self-updating system, updating the template galleries ¢; with highly confident
ROI patterns, which scores surpass user-specific updating thresholds ¥, and decision

thresholds ¥¢.

c. proposed context-sensitive self-updating system, only updating the template galleries ¥;
with highly confident samples that also passed the concept change test (Eq. 2.5), using

user-specific updating ¥}, capture condition ¥/ and decision thresholds %d

2.4.2.1 Simulation Scenario

The scenario descried below is considered for each database. At each time step r = 1,...,6,
and for each individual i = 1, ..., N, the performance of the baseline and the two self-updating
systems updated with batch b;[r — 1] is evaluated on batch b;[t]. The self-updating systems
are updated, and then tested with batch b;[t 4 1], and so on. A pseudo-code of the simulation

process is presented in Alg. 2.2.

For each system, the individual galleries ¢; are initialized with the two first samples of the
corresponding initial batches b;[1]. For context-sensitive self-updating, corresponding ROIs
are also stored to compute GLQ measures during operations (see Eq. 2.4). Then, the initial
values of the decision thresholds %d are computed using negative distribution estimation: each
gallery ¥%; is compared to every other gallery to generate negative scores, and a threshold }fl
is chosen as the highest possible value respecting an operational false alarm constraint. For
the self-updating variants, the updating threshold ¥} is initialized in the same way, and for the
context-sensitive self-updating system, ¥ is computed as the average GLQ measure between

each ROl in %..

Then, for each system, performance is evaluated using the remaining patterns from b;[t] to
compute genuine scores, and a random selection of impostor patterns for the impostor scores.
For the DIEE and FRGC datasets, impostor patterns for each individual are randomly selected

among batches from other individuals. In the case of the FIA dataset, impostor patterns are
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Algorithm 2.2: Protocol for simulations.

1 fori=1,...,Ndo

2 //Initialization of the galleries ¥ for each individual
3 - ¢; < first 2 patterns of b;[1];

4 end

sfori=1,....Ndo

6 //Initialization of thresholds for each individual

7 - Evaluate update and decision thresholds y;* and yld using negative distribution

estimation;

8 - Initialize change detection threshold ¥/ as the average GLQ measure between each
ROl in ¥;;

9 end

10 fori=1,....Ndo

1 //Processing of remaining samples from b;[l]

12 - Estimate genuine scores using remaining samples from b;[1];

13 - Estimate impostor samples using a random selection of impostor samples;

14 - Update gallery;

15 - Update thresholds;

16 end

17 fort=2,...,6 do

18 // Remaining data blocks

19 fori=1,....Ndo

20 - Estimate genuine scores using remaining samples from b;t];

21 - Estimate impostor samples using a random selection of impostor samples;

22 - Update gallery;

23 - Update thresholds ;

24 end

25 end

selected from the non-target dataset individuals during the same session. To avoid any bias in

performance evaluation, the same amount of impostor and genuine patterns are considered.

Finally, using genuine and impostor patterns, the self-updating systems galleries are updated
according to their updating strategies, and the thresholds are re-estimated using the same

methodology. This scenario is then reproduced for the remaining 5 batches.
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2.4.2.2 Performance Measures

For each system, performance is measured with average true positive rate (tpr) and false pos-
itive rate (fpr) for each individual. These are respectively the proportion of genuine patterns
correctly classified over the total number of genuine patterns (tpr), and the proportion of im-
postor patterns classified as genuine over the total number of negative patterns (fpr). These
measures depend on the decision thresholds yld , computed during update to respect a given fpr

constraint.

System complexity is also presented, as the average number of templates in the galleries. In
addition, facial model corruption due to the addition of misclassified templates in the galleries
is presented as the ratio of impostor over genuine templates. Following Doddington’s classifi-
cation (Doddington et al., 1998), only the 10 galleries with the highest ratio are presented, to

focus on lamb-type individuals which are easy to imitate.

Finally, a constraint of fpr = 5% has been chosen to compute the decision thresholds yld In
addition, for each scenario, the updating thresholds ¥ correspond to an ideal fpr = 0% and
a laxer fpr = 1%. For each performance measure, results are presented as the average and
standard deviation values for every enrolled individual, computed using a Student distribution

and a confidence interval of 10%.
2.5 Simulation Results

2.5.1 Continuous User Authentication with DIEE Data

Figure 2.7 presents the average performance results of the baseline, self-updating and context-
sensitive self-updating techniques within the template matching system described in Section
2.3.2. Results are presented for the ideal fpr = 0% updating thresholds for the self-updating

techniques.
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Figure 2.7 Simulation results with DIEE dataset where the updating threshold is
selected for fpr = 0%.

While all 3 systems present similar fpr (between 7 — 17%) in Fig. 2.7 (a), a significant differ-
entiation can be observed in the tpr with batches 5 and 6 (Fig. 2.7 (b)). In fact, the introduction
of batch 5 generates a decline in tpr performance for the baseline system (from 43.5+5.7%
down to 33.0 4+ 6.5%), that ends at tpr = 39.3 4+ 6.6% at batch 6. On the other hand, the self-
updating and context-sensitive self-updating systems exhibit a moderate decline (respectively

from 47.5+£6.1% to 41.3£6.7%), and end at a higher performance of tpr = 46.3 +=7.3%.

Even with a fpr = 0% updating threshold, it can be observed that this FR scenario benefits from
a self-updating strategy, as the addition of up to an average 13.7 4-2.4 templates in the galleries
(see Fig. 2.7 (c)) enabled to increase the system’s performance. In addition, despite the limited
amount of captures (10 per session), the filtering of the context-sensitive self-updating system
enabled to maintain a comparable level of performance with a significantly lower amount of

templates in the gallery, ending at an average of 6.1 0.9 templates.
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Despite the relative simplicity of this scenario and the restrictive updating threshold, impostor
templates have been incorrectly added to the galleries during the updating process. Following
Doddington’s analysis, the ratio of impostor over genuine templates in the galleries of the top
10 lamb individuals (i.e. the individuals with the highest ratio) are presented in Fig. 2.7 (d).
While 95% of the galleries contain under 10% of impostor samples, two lamb-like individuals

(ID 17 and 22) stand out with over 10% and 20% impostor samples in their galleries.
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Figure 2.8 Simulation results with DIEE dataset where the updating threshold is
selected for fpr = 1%.

Figure 2.8 presents the average performance results for the fpr = 1% updating thresholds for
the self-updating techniques. An overall performance increase is shown for the self-updating
methods. A higher tpr is observed throughout the entire simulation, ending at tpr = 55.0+-7.7%

for self-updating, and tpr = 50.8 £ 7.0 for context-sensitive self-updating (see Fig. 2.8 (b)).
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While results with self-updating are higher in this application, it is important to note that im-
provements come at the expense of a doubled average gallery size (see Fig. 2.8 (c)), as well as
an increase in the impostor ratio (see Fig. 2.8 (d), 20% of the galleries are composed by more
than 10% impostor templates). Comparing these ratios with the the previous ones (in Fig. 2.7),
it is apparent that this increase is not connected to specific lamb-type individuals, but to all
the enrolled individuals. This underlines the importance of updating thresholds, specifically
for long-term operations where the impostor ratio would be likely to grow exponentially as the

facial models become corrupted.

2.5.2 Video Surveillance with FIA Data
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Figure 2.9 Simulation results with FIA dataset where the updating threshold is
selected for fpr = 0%.



62

Figure 2.9 presents the average performance results for the fpr = 0% updating thresholds for
the self-updating techniques. In this scenario involving more sources of variations in capture
conditions than the DIEE dataset (see Table 2.1), the benefits of a self-updating strategy are
more significant, as the self-updating systems exhibit a significantly higher tpr during the entire
simulation (see Fig. 2.9 (b)). From batch 2 to 6, the self-updating systems are stable close to
tpr = 60% (both ending at 53 £20%), while the baseline system remains close to tpr = 40%
(ending at 38.1 +17.2%).

As a consequence of the more complex nature of a semi-controlled surveillance environment as
well as the higher number of facial captures, performance improvements come at the expanse of
significantly larger galleries than with the DIEE dataset (see Fig. 2.9 (¢)), ending at an average
of 188 + 83 templates for self-update, and 97 - 35 templates for context-sensitive self-update.
It can still be noted that the filtering strategy of the context-sensitive self-update technique
enables to maintain a comparable level of performance, for gallery sizes approximately two

times smaller.

Among the 10 individuals of interest, 2 lamb-like individuals (ID 4 and 8) can be identified,
with an impostor ratio over 20% (see Fig. 2.9 (d)). Despite the added complexity of a semi-
constrained environment, the higher number of faces captured in video streams enables a better
definition of facial models of target individuals during the first batch. This explains that im-
postor templates have only be added to two difficult lamb-type individuals, and not all the

galleries.

In Figure 2.10 (b), it can be observed that a more relaxed fpr = 1% constraint for the updat-
ing threshold didn’t have a significant impact on the performance of self-updating systems.
However, the average gallery size of the self-updating technique increased to end at 268 4-71
templates, while the context-sensitive self-updating technique enabled to remain at a lower size
of 109 4 38 templates (see Fig. 2.10 (c)), comparable to the fpr = 0% threshold results (see
Fig. 2.9 (¢)). This observation reveals that a majority of the new templates added with the

fpr = 1% thresholds contained redundant information, that was already present in the galleries.
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Figure 2.10  Simulation results with FIA dataset where the updating threshold is
selected for fpr = 1%.

This underscores the benefits of the context-sensitive self-updating technique when operating
with videos, where higher quantities of templates may be selected for self-updating. By re-
ducing the number of updates, this technique enables to mitigate the growth in computational
complexity of the prediction process as well as the need to use a costly template-management

system, without impacting system performance.

Impostor ratios in Fig. 2.10 (d) show a significant increase for individual ID 8, which ends
at 80%. This confirms the rapid addition of impostor templates to the galleries in long term
operations. In this video-surveillance scenario where more facial captures are presented to the
system (compared to the DIEEE scenario), the gallery of lamb-like individual 4 is updated
with a larger amount of impostor templates at the beginning of the simulation. This gallery
then keeps attracting impostor templates over time, which reduces the pertinence of the facial

model.



64

2.5.3 Unconstrained Face Recognition with FRGC Data
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Figure 2.11 Simulation results with FRGC dataset where the updating threshold is
selected for fpr = 0%.

Figure 2.11 presents the average performance results for the fpr = 0% updating thresholds for
the self-updating techniques. It can be observed in Fig. 2.11 (b) that this scenario represents a
significantly harder FR problem, as all three systems perform below tpr = 23% during the entire
simulation. In addition, despite the increase in average gallery size up to respectively 18.8 +2.7
and 10.8 £ 1.5 templates for the self-update and context-sensitive self-update techniques (see
Fig. 2.11 (c)), only a marginal performance gain can be observed. The two self-updating
systems end at tpr = 22.1 £ 1.4% and tpr = 21.9 + 1.4%, while the baseline case exhibits a
tpr =21.5+1.4%.

A bigger impact can be observed in Fig. 2.12 (b), presenting tpr performance of the three

systems for the fpr = 1% updating threshold. From batch 2 to 6, the two self-updating cases
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Figure 2.12 Simulation results with FRGC dataset where the updating threshold is
selected for fpr = 1%.

present significantly higher tpr performance, both ending at tpr = 25.6 &= 1.5%. However, as
in the previous scenarios, this performance gain comes at the expense of a significantly higher
system complexity. Both systems with self-update end with respectively 82.4 4+5.2 and 41.6 £
2.0 templates in the galleries (see Fig. 2.12 (c)). The average impostor ratio also increased
significantly, as 18% of the galleries contain more than 10% impostor templates (see Fig. 2.12

(d)), while only 1% of the galleries were in this situation with the fpr = 0% updating threshold.

Results are related to the nature of the scenario presented in Section 2.4.1.3. The multiple en-
rolment sessions (up to 16), where small numbers of ROI were captured (6 ROIs), favour the
presence of genuine captures that are different enough to fail the updating threshold test. Fewer
than 20 templates per individuals have been added to self-updating galleries with far = 0%
self-updating threshold (see Fig. 2.11 (¢)), despite the presence of more than 100 genuine sam-

ples in batches. In addition, the systems are initialized with the first capture session, where
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only 4 controlled stills are available to build the facial model before processing uncontrolled
captures in future sessions. This prevents the generation of representative facial models, that
either reject a majority of genuine templates, or accept a significant amount of impostor tem-

plates depending on the updating threshold (see Fig. 2.12 (d)).

Despite the improved performance achieved using self-updating techniques, this dataset raises
the limitations of using a self-updating system relying on a two-threshold update strategy in
complex environments, with limited reference data and uncontrolled variations in capture con-

ditions.

2.5.4 Summary and Discussions

In all experimental results, the following general observations have emerged:

a. Both self-updating techniques generate a significant and stable performance boost over

time.

b. The template filtering strategy of the proposed context-sensitive self-updating technique
significantly reduces system complexity. The galleries are approximately 2 times smaller

than a standard self-updating system, without impacting performance.

c. Using a less stringent constraint of fpr = 1% for the updating threshold does not always
have an impact on the performance boost, but always increases system complexity as well

as the number of impostor templates in the galleries.

While these observations remain valid for each scenario, a more precise analysis reveals po-

tential limitations of these approaches depending on the represented application.

In a semi-controlled FR application with limited changes mainly caused by illumination and
expression (DIEE dataset), benefits of a self-updating techniques are quite clear. In fact, despite
the increase in the number of impostor samples in the gallery, a significant performance boost

can be observed when a more relaxed updating-threshold is selected.
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In the case of a video-surveillance scenario involving a higher amount of impostor individu-
als not modelled by the system (FIA dataset), a more relaxed updating threshold didn’t show
any performance improvement, despite a doubled average gallery size for the self-updating
technique (while the context-sensitive self-update technique prevented any increase in average
gallery size). While the overall performance wasn’t lowered, the gallery of one specific indi-
vidual was severely affected, ending with around 80% of impostor samples. In such scenario,
involving multiple causes of variation (face angle, resolution, motion blur, etc.) as well as a
greater amount of impostor individuals, manual intervention may be necessary at regular inter-
vals, to ensure that the gallery of some specific individuals (lambs) are not getting corrupted

over time.

Finally, in the more complex scenario represented by the FRGC dataset, the performance gain
observed with the self-updating techniques was considerably lower, even with the less stringent
updating threshold of far = 1%. In this scenario, systems are presented with significantly
different samples in early operations (after the 4th image), as opposed to the DIEE and FIA
scenarios (with respectively 10 and around 30 samples for a first session). In such application,
a manual intervention may be required at the early stages of operations, to ensure that the facial
models are initialized with enough representative templates to be able to keep updating over

time.

2.6 Conclusion

Despite the advances in feature extraction and classification techniques, face recognition in
changing environments remains a challenging pattern recognition problem. Changes in cap-
ture condition or individuals physiology can have a significant impact on a system performance,
where initial facial models are often designed with a limited amount of reference templates, and
frequent re-enrolment sessions are not always possible. Adaptive classification techniques have
been proposed in the past decade to address this challenge, relying on operational data to adapt
the system over time. Among them, self-updating techniques have been proposed for auto-

matic adaptation using highly-confident captures labelled by the system. While this enables to
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automatically benefit from a considerable source of new information without requiring a costly
manual updating process, these systems are particularity sensitive to their internal parameters.
A trade-off between assimilation of new information and protection against the corruption of
facial models with impostor templates has to be considered, as well as a limitation of system
complexity over time. While template management techniques can be used to limit system

complexity, they remain costly and may interfere with seamless operations.

In this chapter, self-updating methods have been surveyed in the context of a face recogni-
tion application with template matching. A context-sensitive self-update technique has been
presented to limit the growth in system complexity over time, by relying on additional in-
formation related to the capture conditions. With this technique, only highly-confident faces
captured under new conditions are selected to update individual facial models, effectively fil-
tering out redundant information. A specific implementation of a template matching system
with context-sensitive self-update has been proposed, where changes are detected in illumina-
tion conditions. Proof-of concept experimental simulations using thee publicly-available face
databases showed that this technique enables to maintain the same level of performance than
a regular self-updating template matching system, with a significant gain in terms of memory
complexity. By using additional information available in the face captures during operations,
this technique allows to reduce the size of template galleries by half, effectively mitigating the
computational complexity of the recognition process over time. In applications where memory
footprint has to be restricted, this strategy would also limit the need to use costly template

management techniques during operations.

However, application-specific limitations have been observed during simulations. When faced
with recognition environments with significant variations, and a limited pool of reference pat-
terns for initial enrolment, self-updating systems can be very sensitive to the initialization of
their template galleries, as well as the updating threshold. A stricter updating rule may be re-
quired to prevent updating with impostor samples, which can significantly reduce the benefits
of a self-updating strategy that would never detect any highly confident samples. In addition,

while the proposed context-sensitive self-updating techniques enabled to significantly reduce
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system complexity, it relies on the storage of input ROIs in addition to reference patterns in the

galleries, as well as an additional measurement during operations.

While self-updating techniques can significantly improve the recognition performance of face
recognition systems, their implementation should always be tailored to the specificities of the
application as well as the recognition environment. While human intervention can be reduced
with automatic strategies, it will still plays a significant role in certain applications, especially
when dealing with significant variations in capture conditions. In those cases, occasional man-
ual confirmation should be considered, in order to maintain the system’s performance by adapt-

ing to abrupt changes.
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Abstract

Recognizing faces corresponding to target individuals remains a challenging problem in video
surveillance. Face recognition (FR) systems are exposed to videos captured under various op-
erating conditions, and, since data distributions change over time, face captures diverge w.r.t.
stored facial models. Although these models may be adapted when new reference videos be-
come available, incremental learning with faces captured under different conditions may lead
to knowledge corruption. This paper presents an adaptive multi-classifier system (AMCS) for
video-to-video FR in changing surveillance environments. During enrolment, faces captured
in reference videos are employed to design an individual-specific classifier. During operations,
a tracker allows to regroup facial captures for individuals in the scene, and accumulate the pre-
dictions per track for robust spatiotemporal FR. Given a new reference video, the correspond-
ing facial model is adapted according to the type of concept change. If a gradual pattern of
change is detected, the individual-specific classifier(s) are adapted through incremental learn-
ing. To preserve knowledge, another classifier is learned and combined with the individual’s
previously-trained classifier(s) if an abrupt change is detected. For proof-of-concept, the per-
formance of a particular implementation of this AMCS is assessed using videos from the Faces

in Action dataset. By adapting facial models according to changes detected in new reference
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videos, this AMCS allows to sustain a high level of accuracy comparable to the same system
that is always updated using a learn-and-combine approach, while reducing time and memory
complexity. It also provides higher accuracy than incremental learning classifiers that suffer

the effects of knowledge corruption.

3.1 Introduction

The global market for video surveillance (VS) technologies has reached revenues in the billions
of $US as traditional analogue technologies are replaced by IP-based digital ones. VS networks
are comprised of a growing number of cameras, and transmit or archive massive quantities of
data for reliable decision support. The ability to automatically recognize and track individuals
of interest across these networks, and under a wide variety of operating conditions, may provide

enhanced screening and situation analysis.

In decision support systems for VS, face recognition (FR) has become an important function
in two types of applications. In watch-list screening applications, facial models' used for
classification are designed using regions of interest (ROIs) extracted from the reference still
images or mugshots of a watch-list. Then, still-to-video FR seeks to determine if faces captured
in video feeds correspond to an individual of interest. In person re-identification for search and
retrieval applications, facial models are designed using ROIs extracted from reference videos
and tagged by a human operator. Then, video-to-video FR seeks to alert the operator when
these individuals appear in either live (real-time monitoring) or archived (post-event analysis)

videos.

This paper focuses on the design of robust classification systems for video-to-video FR in
changing surveillance environments, as required in person re-identification. In this context,
public security organizations have deployed many CCTV and IP surveillance cameras in recent

years, but FR performance is limited by human recognition abilities. Indeed, accurate and

U A facial model is defined as either a set of one or more reference captures (used in template matching

systems), or a statistical model estimated through training with reference captures (used in neural or
statistical classification systems) corresponding to a target individual.
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timely recognition of ROIs is challenging under semi-controlled (e.g., in an inspection lane,
portal or checkpoint entry) and uncontrolled (e.g., in cluttered free-flow scene at an airport
or casino) capture conditions. Given the limited control during capture, the performance of
state-of-the-art systems are affected by the variations of pose, scale, orientation, expression,
illumination, blur, occlusion and ageing. Moreover, FRiVS is an open set problem, where only
a small proportion of the faces captured during operations correspond to individuals of interest.
Finally, ROIs captured in videos are matched against facial models designed a priori, using a
limited number of high quality reference samples captured during enrolment. Accuracy of
face classification is highly dependent on the representativeness of models, and thus number,

relevance and diversity of these samples.

Some specialized classification architectures have been proposed for FRiVS. For instance,
the open-set Transduction Confidence Machine-kNN (TCM-kNN) is comprised of a global
multi-class classifier with a rejection option tailored for unknown individuals (Li and Wech-
sler, 2005). Classification systems for FRiVS should however be modeled as independent
individual-specific detection problems, each one implemented using one- or two-class classi-
fiers (i.e., detectors), with specialized thresholds applied to their output scores (Pagano et al.,
2012). The advantages of class-modular architectures in FRiVS (and biometrics in general)
include the ease with which facial models (or classes) may be added, updated and removed
from the systems, and the possibility of specializing feature subsets and decision thresholds to
each specific individual. Individual-specific detectors have been shown to outperform global
classifiers in applications where the reference design data is limited w.r.t. the complexity of
underlying class distributions and to the number of features and classes (Oh and Suen, 2002;
Tax and Duin, 2008). Moreover, some authors have argued that biometric recognition is in
essence a multi-classifier problem, and that biometric systems should co-jointly solve several
classification tasks in order to achieve state-of-the-art performance (Bengio and Mariethoz,

2007).

Modular architectures for FRiVS have been proposed by Ekenel et al. (Ekenel ez al., 2009),

where 2-class individual-specific Support Vector Machines are trained on a mixture of target
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and non-target samples. Given the limited amount of reference samples and the complexity of
environments, modular approaches have been extended by assigning a classifier ensemble to
each individual. For example, Pagano et al. (Pagano et al., 2012) proposed a system comprised
of an ensemble of 2-class ARTMAP classifiers per individual, each one designed using target
and non-target samples. A pool of diversified classifiers is generated using an incremental
learning strategy based on Dynamic PSO, and combined in the ROC space using a Boolean

fusion function.

In person re-identification, new reference video become available during operations or through
some re-enrolment process, and an operator can extract a set of facial ROIs belonging to a target
individual. In order to adapt an individual’s facial model in response to these new ROI sam-
ples, the parameters of a individual-specific classifier can be re-estimated through supervised
incremental learning. For example, ARTMAP neural networks (Carpenter et al., 1992) and
extended Support Vector Machines (Ruping, 2001) have been designed or modified to perform
incremental learning. However, these classifiers are typically designed under the assumption
that data is sampled from a static environment, where class distributions remain unchanged

over time (Granger et al., 2008).

Under semi- and uncontrolled capture conditions, ROI samples that are extracted from new ref-
erence videos may incorporate various patterns of change that reflect varying concepts”. While
gradual patterns of change in operational conditions are often observed (due to, e.g., ageing
over sessions), abrupt and recurring patterns (caused by, e.g., new pose angle versus camera)
also occur in FRiVS. A key issue in changing VS environments is adapting facial models to as-
similate samples from new concepts without corrupting previously-learned knowledge, which
raises the plasticity-stability dilemma (Grossberg, 1988). Although updating a single classi-
fier may translate to low system complexity, incremental learning of ROI samples extracted
from videos that reflect significantly different concepts can corrupt the previously acquired

knowledge (Connolly et al., 2012; Polikar et al., 2001). Incomplete design data and changing

2 A concept can be defined as the underlying class distribution of data captured under s specific condi-
tion, in our context due to different pose angle, illumination, scale, etc. (Narasimhamurthy and Kun-
cheva, 2007).
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distributions contribute to a growing divergence between the facial model and the underlying

class distribution of an individual.

Adaptive ensemble methods allow to exploit multiple and diverse views of an environment, and
have been successfully applied in cases where concepts change in time. By assigning an adap-
tive ensemble to each individual, it is possible to adapt a facial model by updating the pool of
classifiers and/or the fusion function (Kuncheva, 2004b). For example, with iques like Learn++
(Polikar et al., 2001) and other Boosting variants (Oza, 2001), a classifier is trained indepen-
dently using new samples, and weighted such that accuracy is maximized. Other approaches
discard classifiers when they become inaccurate or concept change is detected, while main-
taining a pool with these classifiers allows to handle recurrent change. Classifier ensembles
are well suited for adaptation in changing environments since they can manage the plasticity-
stability dilemma at the classifier level — when samples are significantly different, previously
acquired knowledge can be preserved by initiating and training a new classifier on the new
data. However, since the number of classifiers grows, benefits (accuracy and robustness) are

achieved at the expense of system complexity.

In this paper, an adaptive multi-classifier system (AMCS) for video-to-video FR is proposed
to maintain a high level of performance in changing surveillance environments. It is initially
comprised of a single two-class incremental learning classifier (or detector) per individual, and
a change detection mechanism. During enrolment of an individual, ROI samples are extracted
from a reference video sequence, and employed to initiate and train the detector. Then, during
operations, a face tracker is used to regroup ROIs for different people in the scene according to
trajectory>. For robust spatio-temporal FR, the prediction of each individual-specific detector
is accumulated over along different trajectories. The proposed system allows to update the
facial model (detectors) of an individual in response to a new reference video. The change
detection mechanisms determines the extent to which ROI samples of a trajectory extracted

from new videos correspond to previously-learned concepts. To limit system complexity, if

3 A facial trajectory is defined as a set of ROIs (isolated through face detection) that correspond to a

same high quality track of an individual across consecutive frames.
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ROI samples incorporate a gradual pattern of change w.r.t. existing concepts, the corresponding
pool of classifiers (and, if needed, fusion function) are updated through incremental learning.
In contrast, to avoid issues related to knowledge corruption, the AMCS employs a learn-and-
combine approach if ROI samples exhibit an abrupt pattern of change w.r.t. existing concepts.
Another dedicated classifier is initiated and trained on the new data, and then combined with

the individual’s previously-trained classifiers.

Some approaches in literatures also exploit change detection to drive adaptation or online-
learning of classification systems, such as the Diversity for Dealing with Drifts algorithm
(Minku and Yao, 2012), the incremental learning strategies based on dynamic PSO (Connolly
et al., 2012), and a Just-in-Time architecture that regroups reference templates per concept
(Alippi et al., 2013). However these approaches adapt to changing environments by focus-
ing on the more recent concepts, though weighing or by discarding of previously-learned
concepts. In the proposed system, change detection allows to compromise between stabil-
ity (adapting classifiers to known concepts) and plasticity (generation of classifiers for new
concepts), thereby preserving knowledge (and the ability to recognize) for previously-learned

and recurring concepts.

For validation, a particular implementation of the AMCS was considered. During the enrol-
ment of an individual, an histogram representation of the ROI sample distribution is stored,
and an incremental learning strategy based on Dynamic Particle Swarm Optimization (DPSO)
(Connolly et al., 2012) is employed to generate and evolve a diversified pool of 2-class ART-
MAP classifiers (Carpenter et al., 1992) using a mixture of target (individual) and non-target
(universal and cohort model) samples. Then, when a new reference video (trajectory) becomes
available, the change detection process evaluates whether its ROI samples exhibit gradual or
abrupt changes w.r.t. to all previously stored histogram distributions using the Hellinger Drift
Detection Method (Ditzler and Polikar, 2011). If the new reference samples exhibit a grad-
ual change, the classifier trained with similar data is updated and re-optimized through the
DPSO-based learning strategy. If the new reference samples present a significant change, a

new histogram distribution is stored, and a new pool of classifiers is generated and optimized.
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For each pool, the best classifier is then selected to represent its corresponding concept in the
AMCS. Each target individual is associated with a single classifier or an ensemble of classifiers,
where outputs are combined using a weighted-average score fusion rule. The accuracy and re-
source requirements of this system is assessed using facial trajectories extracted from video
surveillance streams of the Face in Action database (Goh et al., 2005). It us comprised of over
200 individuals captured over several months, exhibiting gradual (e.g. expression, ageing) and

abrupt (e.g. orientation, illumination) changes.

The rest of this paper is structured as follows. The next section briefly reviews the techniques
and challenges of FRiVS. Then, an overview of the literature on change detection and adaptive
biometrics is presented in Section 3.3. In Section 4, the adaptive MCS proposed for video-to-
video FR is presented. The experimental methodology (video data, protocol and performance
measures) used for validation is presented in Section 5. Finally, simulation results are presented

and discussed in Section 6.

3.2 Background — Face Recognition in Video Surveillance

Face recognition system

Only for a new ROI
(at a different location) Tracking

A system
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Figure 3.1 A human centric system face video-to-video face recognition.

ROI patterns extracted
_________ from new reference videos
(provided by an operator)

The problem addressed in this paper is the design of accurate and robust systems for video-
to-video FR under semi- and uncontrolled capture conditions. Assume that FR is embedded

as software executing inside some human-centric decision support system for intelligent video
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surveillance. In person re-identification applications, an operator may enroll an individual of
interest appearing in a video sequence, and gradually design and update their facial models over
time by analyzing one or more reference video feeds captured from the particular scene or other
sources. Then, individuals of interest must be detected over a network of digital surveillance

cameras by matching facial captures against their facial models.

3.2.1 A generic system for video face recognition

Figure 3.1 presents a generic system for video-to-video FR. Each camera captures streams of
2D images or frames, and provides the system with a particular view of individuals populating
the scene. This system first performs segmentation to isolate ROIs corresponding to the faces
in a frame, from which invariant and discriminant features are extracted and selected for classi-
fication (matching) and tracking functions. Some features are assembled into an input pattern,

q=(qi,..-,qp) for classification, and pattern b = (by, ..., b, ) for tracking.

During enrolment, a sot of one or more reference patterns a‘[t] corresponding to an individual
i are extracted from captured ROIs on one or more reference video streams provided by the
operator at time z. These are employed to design the user’s specific facial model to be stored in
a biometric database, as a template or a statistical model. Recognition is typically implemented
using a template matcher or using a neural or statistical classifier trained a priori to map the
reference patterns to one of the predefined classes, each one corresponding to an individual en-
rolled to the system. Although each facial model may consist of a set of one or more templates
(reference ROI patterns) for template matching, this paper assumes that a model consists of

parameters estimated by training a classifier on the reference ROI patterns.

During operations, ROI patterns extracted for unknown individuals in the scene are matched
against the model of individuals enrolled to the system. The resulting classification score s;(q)
indicates the likelihood that pattern q corresponds to the individual i, fori = 1,...,I. Each score
is compared against the user-specific decision thresholds, ', and the system outputs a list of

all possible matching identities. To reduce ambiguities during the decision process, the face



79

tracker may follow the motion and appearance of faces in the scene over successive frames.
This allows to regroup ROIs of different individuals and accumulate their matching scores over

time.

3.2.2 State-of-the-art in video surveillance

A common approach to recognizing faces in video consists in only exploiting spatial infor-
mation, and applying techniques for still-to-still FR (like Eigenfaces or Elastic Bunch Graph
Matching) only on high quality ROIs isolated during segmentation (Zhao et al., 2003). FRiVS
remains a difficult task since the faces captured in video frames are typically lower quality and
generally smaller than still images. Furthermore, faces captured from individuals in a semi-
or unconstrained environment may vary considerably due to limited control over capture con-
ditions (e.g., illumination, pose, expression, resolution and occlusion), and due to changes in
an individual’s physiology (e.g., aging) (Matta and Dugelay, 2009). Given these difficulties,
high quality faces may never be captured or recognized. More powerful front end processing
(face capture and representation) and back-end processing (fusion or responses from cameras,

templates, frames) is required for robust performance.

Despite these challenges of video-based FR, it is possible to exploit spatio-temporal informa-
tion extracted from video sequences to improve performance (see Fig. 3.1). As mentioned,
using face tracking, evidence in individual frames can be integrated over video streams, poten-
tially leading to improved robustness and accuracy. For example, track-and-classify approaches
combine information from the motion and appearance faces in a scene to reduce ambiguity

(e.g., partial occlusion) (Barry and Granger, 2007).

Beyond spatio-temporal approaches, specialized classification architectures have also been pro-
posed for accurate FRiVS. In this case, open-set or open-world FR operates under the assump-
tion that most faces captured during operations do not correspond to an individual of interest
(L1 and Wechsler, 2005). The probability of detecting the presence of a restrained group of

individuals of interest in scenes may be quite low, and facial models may incorporate a signif-
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icant amount of uncertainty w.r.t. operational environments (Committee et al., 2010; Rattani,

2010).

The Transduction Confidence Machine k-Nearest Neighbour (TCM-k-NN) has been proposed
for open-set FR using a multi-class architecture and a specialized rejection option for indi-
viduals not enrolled to the system (Li and Wechsler, 2005). Kamgar-Parsi et al. propose a
face space projection technique where a feed-forward network is designed for each individ-
val (Kamgar-Parsi et al., 2011). In addition, some multi-verification architectures based on
with an individual-specific reject option have been proposed by Stallkamp et al. (Ekenel et al.,
2009) and by Tax and Duin (Tax and Duin, 2008), where a specific one- or two-class classifier
is assigned to each individual enrolled to the system. These systems allow to add and remove
an individual without requiring a complete re-design of the system, and to select individual spe-
cific thresholds and feature sets (Tax and Duin, 2008). This ability is particularly favourable
in person re-identification, where new individuals are enrolled and monitored on-the-fly by the
operator. In addition, separating a multi-class classification problem into more treatable one or
two-class problems has been shown to improve the overall performance of the system, adopting
the "divide and conquer" approach. For example, in a comparison of classification architec-
tures for FRiVS based on ARTMAP neural networks, class-modular architectures exhibited
significant performance improvements (Pagano et al., 2012). Similarly, in other biometric ap-
plications such as character recognition, the performance of a Multi-Layer Perceptron have
been significantly improved by the introduction of a class-modular architecture (Oh and Suen,

2002) (Kapp et al., 2007).

Finally, several other biometric applications, such as speech recognition, operate in open-set
environments, and exploit a universal background model (UBM) — a non-target population to
generate samples from unknown persons from which the target individual can be discriminated
— as well as cohort models (CMs) — a non-target population of other people enrolled in the
system (Brew and Cunningham, 2009). The use of such CM is of interest in class-modular
architectures such as (Tax and Duin, 2008; Ekenel ez al., 2009). Sharing information among the

different target persons in a class-modular architecture is necessary in order to achieve a high
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level of performance (Bengio and Mariethoz, 2007). Indeed, using some common reference
samples (target and non-target samples from a same CM) to design classifiers can be considered

as information sharing between classifiers, and may improve the overall system performance.

3.2.3 Challenges

Systems for FRiVS encounter several challenges in practice. In particular, the facial mod-
els are often poor representatives of faces to be recognized during operations (Rattani, 2010).
They are typically designed during an a priori enrolment phase, using limited number of refer-
ence ROI patterns a’[t] from new sets of samples, linked to unknown probability distributions
p(a[t]|i). The underlying data distribution corresponding to individuals enrolled to the system
is complex mainly due to: (1) inter- and intra-class variability, (2) variations in capture condi-
tions (interactions between individual and camera), (3) the large number of input features and
individuals, and (4) limitations of cameras and signal processing techniques used for segmen-
tation, scaling, filtering, feature extraction and selection, and classification (Committee et al.,
2010). The performance of FR systems may decline considerably because state-of-the-art neu-
ral and statistical classifiers depend heavily on the availability of representative reference data
for design and update of facial models. In addition, the probability distribution may change
gradually or abruptly over time. All these factors contribute to a growing divergence between

the facial model of an individual and its underlying class distribution.

Although limited reference data is initially available to design facial models, new reference
video sequences may become available over time in a person re-identification application. The
systems proposed in the literature for FRiVS usually focus on the matching accuracy, facial
quality and the open-set context, but not on the update of the facial models with ROIs from

new and diverse reference videos.

In semi- or uncontrolled environments, faces captured for an individual can correspond to
several concepts in the input feature space, which can all be relevant for different capture

conditions during system operation. Reference video sequences may incorporate samples cor-
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responding to different capture conditions, such as pose angles, illumination, and even ageing.
While updating the facial models with new videos from known concepts can reinforce the
system’s knowledge, incremental learning of new reference videos that incorporate different
concepts can be a challenge. For example, updating a system with ROI patterns with a specific
pose angle can corrupt previously-learned knowledge, learned from samples with other angles.
A robust system for FRiVS should detect the presence of various types of changes in the under-
lying data distribution of individuals. When a new concept emerges, a suitable update strategy

should be triggered to preserve pre-existing concepts.

3.3 Concept Change and Face Recognition

In this paper, a mechanism is considered to detect changes in the underlying data distribution
from new reference videos. This mechanism will then trigger different updating strategies.
Concept change has been defined by several authors in statistical pattern recognition literature
(Kuncheva, 2004a). A concept can be defined as the underlying data distribution in R” of the
problem at some point in time (Narasimhamurthy and Kuncheva, 2007). Given a set of ref-
erence ROIs {a’[t]} captured from target individual i at time ¢ (sampled from the underlying
class distribution), a class-conditional distribution of data p(a[t]|/) may be defined. A concept
change encompasses various types of noise, trends and substitutions in the underlying data dis-
tribution associated with a class or concept. The main assumption is the uncertainty about the
future: the data distribution from which the future instance is sampled, p(a;|i) is unknown.
To simplify the notation, the time ¢ will be omitted for the remaining of this section, but all the

data distribution will be assumed to be time dependent.

A statistical pattern recognition problem can incorporate change due to class priors, p(i),
class-conditional distributions p(ali) and posterior distributions p(i|a) (Kuncheva, 2004a). A
categorization of changes has been proposed by Minku et al. (Minku et al., 2010), based
on severity, speed, predictability and number of re-occurrences, but the following four cate-
gories are mainly considered in the literature: noise and abrupt, gradual and recurring changes

(Kuncheva, 2008).
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Table 3.1 Types of changes occurring in FRiVS environments.

Type of change Examples in face recognition

Static environment with:
— random noise — inherent noise of system (camera, matcher, etc.)
— hidden contexts — different known view points from a camera or of a face (e.g. illumination

of images, new face pose or orientation) (Figure 3.2 (a))

Dynamic environment with:

— gradual changes — aging of user (Figure 3.2 (b))
— sudden abrupt changes —new unknown view points on traits; change of camera (Figure 3.2 (a))
— recurring contexts — unpredictable but recurring changes in capture conditions (e.g. lighting

changes due to the weather) (Figure 3.2 (c))

Concept changes in pattern recognition may be viewed in the context of FRiVS, where changes
can originate from variations in an individual’s physiology, as well as in observation condi-
tions (see Table 3.1). They may range from minor random fluctuations or noise, to sudden
abrupt changes of the underlying data distribution, and are not mutually exclusive in real-word
environments. From a perspective of any biometric system, changes may originate from phe-
nomena that are either static or dynamic in nature. In addition, those changes can originate
from hidden contexts, like variations of illumination conditions or pose of the individual which
haven’t been modeled in the system because of the limited representativeness of previously-

observed reference samples.

This paper will focus on abrupt, gradual and recurring changes. Figure 3.2 illustrates these
types of change (Kuncheva, 2008) as they may be observed over time for a concept in a 2
dimensional space (in this example, a = (a1,ay)), assuming that it is observed at discrete time

steps. It also shows the progression of a corresponding change detection measure.

In this paper, FRiVS is performed under semi- and uncontrolled capture conditions, and con-
cept changes are observed in new reference ROI patterns that are sampled from the underlying
data distribution. The refinement of previously-observed concepts (e.g., new ROIs are cap-
tured for a known face angle), corresponds to gradual changes (see Fig. 3.2(a)), and data
corresponding to newly-observed concepts (e.g., new ROIs are captured under new illumina-

tion conditions), corresponds to abrupt changes (see Fig. 3.2(b)). In addition, a new concept
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Figure 3.2 Illustration of (a) abrupt, (b) gradual and (c) recurring changes occurring to a

single concept over time. The first column presents an example of the evolution of values

of a change detection measure, corresponding to variations to the 2-D data distribution to
the right.

(e.g., faces captured under natural vs. artificial lighting, or over a different face angle) can also
correspond to a recurring change as specific observation conditions may be re-encountered in
the future (see Fig. 3.2(c)). The rest of this section presents an overview of the different mea-
sures proposed in literature to detect changes, in order too choose the most adapted method for
the proposed system. Then, specialized techniques that adapt classification systems to concept
changes are reviewed, to introduce the proposed update strategies. Finally, a synthetic test case
shows the benefit of using a change detection mechanism to guide the adaptation strategy used

by the classification system according to the types of changes.

3.3.1 Detecting changes

In order to observe the occurrences of changes in the underlying data distribution, several fam-
ilies of measures have been proposed in the literature, which can be organised into techniques
based on signal processing and pattern recognition. Prior to feature extraction, signal quality
measures have been used to accept, reject, or reacquire biometric samples, as well as to se-

lect a biometric modality, algorithm, and/or system parameters (Sellahewa et al., 2010). In an
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FRiVS application, change detection can be performed by monitoring the values of an image-
based quality over time. For example, several standards have been proposed to evaluate facial
quality, such as ICAO 9303 (Doc, 2005), which cover image and face specific qualities. Other
face quality measures compare input ROIs against facial references to assess image variations

or distortions.

Change can also be measured after the feature extraction process of a biometric recognition
system, and this paper focuses on pattern recognition techniques that rely on the feature distri-
bution space, since the change detection process is designed to adapt the learning strategy of
the classification module. These techniques fall into two categories: those that exploit classifier
performance, and density estimation. Note that the accuracy of these measures depends heavily
on the feature extraction and selection methods. Change detection mechanisms using classifier
performance indicators have been considered for supervised learning applications (Kuncheva,
2004b). For instance, changes can be detected in system performance using accuracy, recall or
precision measures on the input data (Gama et al., 2004), or in the performance of a separate
classifier dedicated to change detection, trained with the data corresponding to the last known
change (Alippi et al., 2011). However, while directly monitoring the system’s performance is a
straightforward way to measure concept changes, it can also have several drawbacks. Relying
on a classifier’s performance for change detection may require a considerable amount of repre-
sentative training data, especially when a classifier must be updated (Alippi et al., 2011). For
this reason, the rest of this subsection will focus on density estimation measures and threshold-

ing.

3.3.1.1 Density estimation measures

Although it may provide the most insight, detecting changes in the underlying distribution
is very complex in the new data space. To reduce the computational complexity of change
detection in the input feature space, several authors proposed to estimate the density of the data

distribution. These techniques rely on fitting a statistical model to the previously-observed
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data, which distribution in the input feature space is unknown, and then applying statistical

inference tests to evaluate whether the recently-observed data belong to the same model.

As presented by Kuncheva (Kuncheva, 2009), clustering methods such as k-means or Gaussian
Mixture Models (GMMs) may provide a compact representation of input data distributions
in R?. In addition, Ditzler and Polikar (Ditzler and Polikar, 2011) and Dries and Ruckert
(Dries and Riickert, 2009) proposed a non-parametric method that reduces the dimensionality
of the incoming data blocks by representing them with feature histograms, with a fixed amount

of bins. The following approaches have been proposed:

e Compute the Likelihood of the new data w.r.t. previously-generated model in order to
quantify the probability that previous data blocks were sampled from the same concept.
Kuncheva (Kuncheva, 2009) proposed to detect changes monitoring the likelihood of new

data, using GMM or k-means to model the previous concepts.

e Monitor the model parameters, such as mean vectors and covariance matrixes of k-means
and GMM models, in order to evaluate their relative evolution (Kuncheva, 2009), or poly-
nomial regression parameters using the intersection of confidence interval rule, as proposed

by Alippi et al. (Alippi et al., 2011, 2013).

e Compare the estimated densities using measures like the Hellinger distances between con-
secutive histogram representation of data blocks (Ditzler and Polikar, 2011), or a binary
distance, assigning a binary feature to each histogram bin and evaluating their respective

coverage (Dries and Riickert, 2009).

Density estimation methods provide a lower level information than classifier performance in-
dicators, and can therefore be more accurate for change detection. The performance indicators
of classifiers trained over previously-encountered data are merely a consequence of possible
changes in the underlying data distribution, while density estimation methods directly reflect
the structure of underlying distributions. However, using a parametric estimation of density

(e.g. GMM) makes strong assumptions concerning the underlying distribution of the input
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data (Chandola et al., 2009), and the amount of representative data and the selection of the
method parameters are critical factors in accurate estimation of densities. For these reasons,
non-parametric density methods based on histogram representation will be considered in the

proposed system.

3.3.1.2 Thresholding

The detection of changes for a one-dimensional data has been extensively studied in the area
of quality control for monitoring process quality (Kuncheva, 2009). Assuming a stream of
objects with a known probability p of being defective (given from product specifications) sev-
eral control chart schemes have been proposed. According to the basic Shewhart control chart
scheme, a batch or window of samples of V objects are inspected at regular intervals. The
number of defective objects is counted, and an estimate p is plotted on the chart. Using a
threshold of fo, where 6 = \/p(1 — p)/V and the typical value of f = 3, a change is detected
if p > p+ fo. Among the numerous control chart approaches, the popular CUmulative Sum
(CUSUM) proposed to monitor the cumulative sum of classification errors at time ¢. Similarly,
change detection in pattern recognition usually monitor one or several classifier performance
indicators over time, to observe various patterns of change in a stream of input patterns, pro-
ducing the decision through thesholding. For example, in (Klingenberg and Renz, 1998), the
authors proposed a drift detection method to determine the optimal window size V contain-
ing the reference scores, which will be compared to the decision threshold. In the same way,
the Hellinger Distance Drift Detection Method (HDDDM) method (Ditzler and Polikar, 2011)
proposes to reset the data distribution using density estimation of the current data block if the
change is detected. As with Klinkenberg and Renz (Klingenberg and Renz, 1998) and Gama et
al. (Gama et al., 2004), this method considers a growing window of samples (or data blocks),
which reduces itself to the current data when a change is detected. In addition, decision is
based on an adaptive threshold set on the previous values, adapting the final decision to the

specific problem.
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Given the changes that can occur in a FRiVS environment (and be observed from a set of
ROI patterns extracted from a reference video), the system proposed in this paper will con-
sider adaptive thresholding methods. In this case, decisions are based on the current capture

conditions.

3.3.2 Adaptive classification for changing concepts

In the context of FRiVS, learning new reference ROI samples over time can raise the issue
of preserving past knowledge, especially when new reference samples corresponding to new
unknown concepts become available. Two categories of approaches have been proposed for

supervised incremental learning of new concept in pattern recognition (Kuncheva, 2004b):

a. updating a single incremental classifier, where new reference data are assimilated after

their initial training;

b. adding or updating one or more classifiers to an ensemble trained with the new data.

Several monolithic classifiers have been proposed for supervised incremental learning of new
labeled data, providing mechanisms to maintain an accurate and up-to-date class model (Con-
nolly et al., 2008). For example, the ARTMAP (Carpenter et al., 1992) and Growing Self-
Organizing (Fritzke, 1996) families of neural network classifiers have been designed with the
inherent ability to perform incremental learning. Other popular classifiers such as the Support
Vector Machine (Ruping, 2001), the Multi-Layer Perceptron (Chakraborty and Pal, 2003) and
Radial Basis Function neural networks (Okamato et al., 2003) have been adapted to perform
incremental learning. However, these classifiers are typically designed under the assumption
that data is sampled from a static environment, where class distributions remain unchanged

over time.

Recently, Connolly et al. (Connolly et al., 2012) proposed a Dynamic Particle Swarm Opti-
mization (DPSO) based incremental learning strategy allowing to optimize and evolve all pa-

rameters of an ARTMAP neural network classifier, performing incremental learning an pursu-
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ing the optimization process to adapt to newly available data. However knowledge corruption is
an issue with monolithic classifiers (Polikar ef al., 2001). Incremental learning of significantly
different and noisy data can degrade the previously-acquired knowledge. For example, with
ARTMAP networks, learning such data can lead to a proliferation of category neurons on the
hidden layer, causing a reduction in discrimination for older concepts and an increased com-
putational complexity. As highlighted by the plasticity-stability dilemma (Grossberg, 1988),
a classifier should remain stable w.r.t. previously-learned concepts, yet allow for adaptation

w.r.t. relevant new concepts that emerge in new reference data.

In contrast, adaptive ensemble methods have been proposed, combining diversified classifiers
into an ensemble to improve the system’s overall performance and plasticity to new reference

data. They can be divided into three general categories (Kuncheva, 2004a):

a. horse racing methods, which train monolithic classifiers beforehand, and only adapt the

combination rule dynamically (Blum, 1997; Zhu et al., 2004);

b. methods using new data to update the parameters of ensemble’s classifiers, in an online-
learning fashion, like in (Gama et al., 2004). In addition, Connolly et al. (Connolly et al.,
2013) proposed a DPSO-based incremental learning strategy to maintain an ensemble of

optimized ARTMAP (Carpenter et al., 1992) classifiers.

c. hybrid approaches, adding new base classifiers as well as adapting the fusion rule, such
as the Learn++ algorithm (Polikar et al., 2001), based on the popular Adaboost (Fre-
und and Schapire, 1996), incrementally generates new classifiers for every new block of
reference samples, and combines classifiers using weighted majority voting, the weights

depending on the average normalized error computed during the generation process.

First of all, horse racing approaches cannot accommodate to new reference data since the clas-
sifiers in the ensemble are fixed, only the fusion rule changes. In addition, ensembles formed
by online learners suffers from the same knowledge corruption issues than monolithic incre-

mental classifiers. For example, in (Connolly et al., 2013), the ARTMAP classifiers of the
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MCS updated with new reference data over time are subject to knowledge corruption, as with
the monolithic architectures using such classifiers. However, hybrid approaches provide a com-
promise between stability and plasticity to new data. Classifiers trained on previously acquired
data, remains intact, while new classifiers are trained for the new reference data. For example,
using the Learn++ algorithm (Polikar et al., 2001), an ensemble is incrementally grown using,
at each iteration, a weight distribution giving more importance to reference samples previously
mis-classified, thus generating new classifiers specialized on the most difficult samples. Those
systems may avoid knowledge corruption, but at the expense of growing system complexity,
as new classifiers or reference samples are added to the ensemble for every new block of data.
In addition, the update of the fusion rule tends to favor more recent concepts, as the weights of

previously learned classifiers tend to decline.

More recently, approaches using a change detection mechanism to drive ensemble or incre-
mental based adaptation strategies have been proposed. Minku et al. (Minku and Yao, 2012)
proposed the Diversity for Dealing with Drifts algorithm, which maintains two ensembles with
different diversity levels, one low and one high, in order to assimilate a new concept emerging
in the observed data. When a significant change is detected though the monitoring of the sys-
tem’s error rate, the high diversity ensemble is used to assimilate new data and converge to a
low diversity ensemble, and a new high diversity one is generated and maintained through bag-
ging. Alippi et al. (Alippi et al., 2013) also proposed a Just-in-Time classification algorithm,
using a density-based change detection to regroup reference samples per detected concept, and
update a on-line classifier using this knowledge when the observed data drift toward a known

concept.

While these methods effectively rely on change detection and ensemble or incremental learning
to adapt in changing environments, they emphasize newer concepts, through weighing or by
discarding of the classifiers trained on previously-learned concepts. This can corrupt a FRiVS
system’s performance where every newer, and older and recurring concepts, are equally impor-

tant.
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In section 3.4, a new approach is proposed to adapt ensembles to new ROI reference patterns
in a video-surveillance environment. It relies on the hypothesis that, when new reference data
become available to adapt a facial models, and that the data incorporate an abrupt pattern of
change w.r.t. to previously-learned concepts, previously-learned knowledge is better preserved
with a learn-and combine strategy, instead of updating the previously-trained ones. As opposed
to in literature, the resulting ensemble is specialized in every detected concept. The complexity
of the system is controlled by the change detection mechanism, where a classifier is only added
if significantly different reference data is presented, and knowledge of different concepts is

updated over time when similar reference data are presented.

3.3.3 Synthetic test case: influence of changing concepts

A synthetic test case is now presented, to validate the intuition that, when new reference data
incorporating abrupt changes w.r.t. previously-learned ones is presented to the system, it is
more beneficial to employ a learn-and-combine strategy than updating previously-trained clas-
sifiers. This test case simulates a video person re-identification scenario: the FRiVS system
operates in an environment where face captures may be sampled from different concepts (such
as face orientation angle). This test case seeks to illustrate that when two significantly different
sequences of data (abrupt change) are presented to a FRiVS system by the operator for update,

training dedicated classifiers for each different concept provides better performance.

Consider a system designed to detect ROI samples from a target individual, among ROI sam-
ples from unknown non-taget individual. Two tagged data blocs, Vs[1] and Vs[2], are
presented to the system, at time # = 1 (initial training) and the other at t = 2 (update during
later operations), by the operator. Those blocks are comprised of reference patterns from the
target and the non-target class, generated from two synthetic 2-dimensional sources, inspired
from the rotating checkerboard classification problem (Kuncheva, 2004b) (Fig. 3.3), which
provides samples distributed along a 2x2 checkerboard. In order to simulate the arrival of a
new concept, Vs[1] is composed of patterns from the initial checkerboard (Fig. 3.3(a)), and

Vs[2] from the checkerboard rotated by an angle of /4 (Fig. 3.3(b)). Att = 2, the introduc-
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Figure 3.3 Reference and operational video sequences for the synthetic test case
(Kuncheva, 2004b). Target class samples are represented in gray, and non-target ones in
black.

tion of Vs[2] represents an abrupt change w.r.t. to the patterns from Vs[1]. These are sampled

from a different concept than the one modeled by the system at¢ = 1.

The operational mode is simulated by a combination of test blocks Vs;.s, composed by tar-
get and non-target patterns originating from both concepts (Fig. 3.3(c)). As Vs[1] and Vs[2]
incorporate data corresponding to two different concepts present in Vs;., the update of the
system with Vs[2] should not corrupt previously-acquired knowledge, as it also corresponds to
relevant information about Vs;,.. This simulates a FRiVS scenario, where the operator gradu-
ally present the systems with tagged reference video sequences containing data from different
concepts, e.g. different observation conditions such as camera angle, that are equally important
in the system’s operation, as future input patterns (ROIs) the system will capture in operations

can correspond to any of those concept (face angle).

Two different training strategies are compared. With the incremental strategy, Vs[1] and then
Vs[2] are learned incrementally by a Probabilistic Fuzzy ARTMAP (PFAM) (Lim and Har-
rison, 1995) classifier. With the learn and combine strategy, Vs[1]| and Vs[2] are learned by
two different PFAM classifiers, forming an ensemble which output is combined by the aver-

age score fusion rule. The learn and combine strategy is an implementation of the proposed
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approach, by assuming a perfect mechanism to detect an abrupt change (a new concept) with

the sequence V's[2] att =2 w.r.t. to Vs[1].

Each PFAM classifier is trained with standard hyper-parameters values h = (o = 0.001, 8 =
l,e =0.001,p = 0,r =2). Vs[l] and Vs[2] are composed of 50 target and 50 non-target
patterns, and Vs of 2000 target and 2000 non-target patterns originating from both concepts
(1000 patterns for each concept). In addition, two validation blocks Vv[1] and Vv[2] of 25
target and 25 non-target patterns each are considered to select a threshold that respects the
operational constraint of far < 5%. The operating point is selected based on ROC curve
produced by systems adapted using the incremental and learn and combine strategy over the
two validation datasets, and the performance is measured in terms of partial AUC (pAUC)
for fpr € [0,00.05], fpr, tpr and F; measures for selected operating points. In addition, the
complexity of the systems are evaluated by counting the sum of F, layer neurons (category
prototypes) of the PFAM classifiers. As the dataset is randomly generated from the sources,
the simulations have been repeated for 100 replications. Results presented in Table 3.2 are
the average values and the standard deviation, computed using a Student distribution and a

confidence interval of 10%.

Table 3.2 Performance for the rotating checkerboard data of a PFAM-based
system updated through incremental learning and trhough the learn and
combine strategy. In the latter case, the classifiers are fused using the average
score-level rule. Arrow 1 ({) represents a measure that should be maximised
(minimized). Performance measures are defined in section 3.5.4.

Performance || Enrolment with data from Vs[1] || Update with data from Vs[2] with
measures with a single classifier incremental L&C
PAUC(5%)(T) 7.2%+0.4 6.2% +0.6 8.2%+0.6
fpr(}) 17.07% +1.06 9.85% +0.96 14.94% +1.02
tpr(1) 37.72% +2.17 16.19% £ 1.61 32.5% +£2.27
Fi(1) 46.41% +1.94 23.63% +2.01 41.35% +2.21
Complexity(|) 6.14+0.23 13.1+0.3 17.0£0.42

As shown in Table 3.2, after updating classifiers with data from the second concept of V2],

the pAUC(5%) of the incremental PFAM strategy declines slightly, which is a consequence of




94

knowledge corruption (due to the learning of new data exhibiting significant concept change).
While the increase of complexity is lower for the incremental strategy, it can be noted that
the number of prototypes doubles when the system is presented with data from Vs[2]. This
proliferation is a consequence of the incremental learning of two significantly different blocks

of data.

Both systems start with the same performance level (after training with Vs[1]), but the train-
ing for the second concept with the learn and combine strategy generates significant increase
in performance in terms of pAUC, tpr and Fj. Although the fpr decreases more with the in-
cremental strategy, the decline in tpr and F] is considerably lower compared to the learn and
combine strategy. Overall, this synthetic test case shows the benefit of training new classifiers
to learn from new reference data that exhibit significant (abrupt changes). When presented with
data from V's[2], the learn-and-combine strategy enabled to increase the system’s performance,

while the incremenal strategy is unable to preserve previously acquired knowledge.

3.4 An Adaptive Multi-Classifier System with Change Detection

Figure 3.4 presents an Adaptive Multi-Classifier System with Change Detection (AMCScp)
specialized for video-to-video FR, with a novel updating strategy based on change detection.
The main intuition at the origin of this contribution is that, when new reference samples become
available to adapt a facial model, and that the data incorporate an abrupt change compared to
existing concepts in the system, it is more beneficial to design a new dedicated classifier on
the data and combine it to previously-learned classifiers in an ensemble (learn-and combine

strategy), instead of updating the previously-trained ones (incremental learning strategy).
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This enables to maintain an up-to-date representation of every concept encountered in the ref-
erence data, and avoid knowledge corruption when presented with new reference video encom-

passing new concepts in the feature space (e.g. face poses, illumination conditions,...).

For each individual i = 1,...,1 enrolled to the system, this modular system is composed by an
ensemble of K incremental two-class classifiers EoC! = {ICi , ...,IC;(i}, where K’ > 1 is the
number of concepts detected in the individual’s reference videos, and a user specific threshold
0'. The supervised learning of new reference sequences by the incremental classifiers is han-
dled by a design and adaptation module, guided by change detection. For each individual, this
module relies on long-term memory LT M’ to store the concept representations {%7, ..., CKIQI,},
and a short term memory STM' to store reference data for design or adaptation and for valida-

tion.

Overall training/update process: The class-modular architecture for the proposed AMCS al-
lows to design and update facial models independently for each individual of interest (see Alg.
18 and Fig. 3.4(a)). When a new reference video sequence Vs'[¢] is provided by the operator
at time ¢, relevant features are first extracted and selected from each ROI in order to produce
the set of input patterns Ai[t] (Alg. 18, line 1). STM' temporarily stores validation data used
for classifier design and threshold selection ((Alg. 18, line 4). The change detection process
assess whether the underlying data distribution of A’[f] exhibits significant changes compared
to previously-learned data. For this purpose, the previously-observed concepts {‘51’ , 7(51’(,}
stored in LTM' are compared to a histogram representation of A’[f] (Alg. 18, lines 6-7). If
a significant (abrupt) change (Fig. 1.2 and Table 3.1) is detected w.r.t. all the stored concept
models, or if Vs'[t] is the first reference sequence for the individual (no previous concept has
been stored), a new concept is assumed (Alg. 18, line 8). In this case, K' is incremented, and
a new incremental classifier IC;'(,- is designed for the concept (ICli if the first concept) and the
user-specific threshold 6’ is updated (or created) using the training and adaptation module with
the data from STM" (Alg. 18, line 10 to 13). Note that the training of the classifier is done
using non-target reference patterns (from other individuals) mixed to target reference patterns

from A’[f]. When a moderate (gradual) change is detected, the classifier IC., corresponding
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Algorithm 3.1: Strategy to design and update the facial model of individual i.

1 Input: Sequence of reference ROIs for individual i Vs'[t], provided by the operator at
timet.;

2 Output: Updated ensemble EoC';

3 - Compute A[t], the set of reference ROI patterns obtained after feature extraction and
selection of ROIs of Vs'[t] ;

4 - STM' < Allt];

5 for each concept k <+ 1 to K do

6 - Measure §/[¢] the distance between A’[f] and the concept representation 67;

7 - Compare 6} r] to the change detection threshold f3/[¢] of the concept k;

8 end

9 if 8{[t] > Bi[t] for each concept k = 1,...,K;, or K; = 0 then

10 //An abrupt change is detected or no concepts are stored
-K' <K'+ 1;

1 - Set index of the chosen concept k* < K';

12 - Generate the concept representation %, from A’[t] and store in LT M';

13 - Initiate and train new classifier IC;'G- and the user-specific threshold 6 using (target

and non-target) data from ST M i

4 | -Update EoC' < {EoC',IC};};

15 else

16 //A moderate change has been detected - Determine the index of the
closest concept k* «— min{§;[t] : k= 1,...,K'};

17 - Update the corresponding incremental classifier ICy+ of EoC' and the user-specific
threshold 6’ using data from STM";

18 end

to the closest concept representation %”k’* is updated and evolved through incremental learning,
and the user-specific threshold 6’ is updated as well (Alg. 18, lines 17 and 18). Finally, if
several concepts are stored in the system, the EoC' is updated to combine the most accurate
classifiers of the known concepts: if a new concept has been detected, a new classifier IC;(,-
is added to EoC' (Alg. 18, line 14), and if a known concept k* is updated, the corresponding
classifier IC,i* is updated (Alg. 18, line 18). If only one concept has been detected, a single

classifier is assigned to the individual, E oC! = IC’i.

Overall operational process: During operations, the AMCS functions according to Alg. 3.2

and Fig. 3.4(b). When a ROI is detected in a new area of the input scene, a face tracker is
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Algorithm 3.2: Operational strategy for one individual i.

1 Input: Stream of input ROIs of the observed individuals, ensemble of classifiers EoC'
for individual i,

2 Output: Accumulated decisions {acci1 , ...,accﬂ} for the J tracks detected in the set of
input ROIs.;

3 for each ROIr=1,2,... do

4 - Perform feature extraction and selection to obtain input pattern q,;

5 - Determine the track ID r(q,.);

6 for each concept k + 1 to K’ do

7 - Compute the positive matching score for g, with the k' classifier si(q,);

8 end

9 - Perform fusion of the K’ scores and apply user specific thresholds 6’ to obtain the

ensemble decision d'(q,);

10 end

11 for each detected track j < 1 to J do

12 for each ROl r=1,2,... do

13 if 7r(q,) = j then

14 | - acc’ « accl +d'(q,);
15 end

16 end

17 end

initiated with the ROI, assigning it a track ID number j = 1,...,J. Then, the tracker produces
the same track ID number for that face in subsequent frames. An input stream is thus a mixture
of ROIs from different people, each one is associated with a track ID number j =1,...,J. In
parallel, the system extracts and selects input ROI patterns q in the same way than the update
process (Alg. 3.2, line 3). Each input q, is associated with its track number tr(q,) € (1,...J).
For each individual i enrolled to the system, the final decision from the EoC’ d’(q, ) is computed
from the independent scores st(q,) (k = 1,...,K") of the classifiers (Alg. 3.2, line 7), fusing
them in the score or decision level (Alg. 3.2, line 8) and applying user-specific thresholds 6'.
Finally, the identity predictions are generated through the accumulation of decisions per track

using the track IDs: for each track j = 1,...,J, the decisions based on ROI patterns associated
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with this ID are accumulated to output the final decision (Alg. 3.2, line 12) according to:

acci={ Yy d(q)tr(q,) =} (3.1)

q,Sinputstream

The rest of this section provides more details on the different modules inside the AMCS. For
each module, a particular implementation is also described, in order to build a fully-functional

system.

3.4.1 C(lassification architecture

In operational mode (Alg. 3.2), the classification system seeks to produce a binary decision
d'(q,) in response to each input pattern q, submitted to the system for each module i. If
d'(q,) = 1, the system has matched the facial capture q, to the enrolled individual i. Module i is
comprised of a single 2-class incremental classifier /C ’1 or an ensemble EoC! = {IC i ...,IC;(,»}
per enrolled individual i, as well as a user-specific decision threshold 8'. Usually, q, is a pattern

generated from an ROI sample extracted from a continuous video stream.

A specific implementation: The classification architecture is composed of IC,i that are 2-
class Probabilistic Fuzzy ARTMAP (PFAM) (Lim and Harrison, 1995) incremental classifiers,
where each one is trained using a balanced sets of references samples from the target individual
(from trajectories) against a random selection of non-target data from an universal and cohort
model (UM and CM). PFAM classifier is a versatile classifier that is known to provide a high
level of accuracy with moderate time and memory complexity (Lim and Harrison, 1995). It is
promising for face matching due to its ability to perform fast, stable, on-line, unsupervised or
supervised, and incremental learning from limited amount of training data. Although trained
for different concepts, the classifiers of every ensemble are designed using ROIs of the same
individual, and can thus be considered as correlated. For this reason, following the recommen-
dations in (Kittler and Alkoot, 2003), the score-level average fusion rule rule is used to combine
the decisions in operational mode, producing the final ensemble’s decision through the averag-

ing of the classifier’s scores. Finally, the authors have previously compared three classification
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architectures for a FRiVS system (Pagano et al., 2012): (1) a global or monolithic architecture
composed of a single multi-class PFAM classifier, trained to detect the presence of all individ-
uals of interest, (2) a class-modular architecture composed of a 2-class PFAM classifier per
individual, and (3), a class-modular architecture with ensembles of classifiers composed of an
ensemble of 2-class PFAM classifiers per individual. The latter was known to outperform other

architectures when working with real video-based data.

The original fuzzy-ARTMAP classifier (Carpenter et al., 1992) is composed by three lay-
ers: (1) the input layer F'1 of 2D neurons (D being the dimensionality of the feature space),
(2) a competitive layer F2 in which each of the N neuron corresponds to a category hyper-
rectangle in the feature space, and (3), a map field of L output neurons (the number of classes,
in that case L = 2). Connections between F; and F, are represented by a set of real-valued
weights W = {wy, € [0,1] : d = 1,2,....D;n = 1,2,...,N}, and a category n is defined by a
prototype vector w, = (W1, Wap,...,Wpn). The F» layer is also connected to the F ab layer
through the binary-valued weight set W% = {Wf’f €0,1:n=1,2,...,N;I=1,2,...,L}. Vector

ab _ (y,ab . ab

wi? = (W w

p P e SR wzg) represents the link between the F> category node n and one of the L

F class nodes. In supervised training mode, the synaptic weights are adjusted to the training
patterns by (1) learning category hyper-rectangles in the feature space, and (2), associating
them to the corresponding output classes. PFAM classifier (Lim and Harrison, 1995) relies on
the fuzzy ART clustering and MAP field in order to approximate to the underlying data distri-
bution as a mixture of Gaussian distributions in the feature space, and generates of prediction
scores instead of binary decisions. In addition to FAM category hyper-rectangles and F> — F¢
connexions, PFAM also learns prior probabilities p(i) for each class i, categories center wc
and covariance matrices X, for each category n. PFAM dynamics are governed by a vector of
five hyper-parameters h = (&, ,€,p,r): the choice parameter o > 0, the learning parameter
B € [0, 1], the match-tracking parameter € € [—1, 1], the vigilance parameter p € [0, 1], and the

smoothing parameter r > 0.

As FAM or PFAM classifiers categorize the feature space into hyper-rectangles or Gaussian dis-

tributions (priors, centers and covariance matrices) during training, their memory complexity
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and processing time in operations depend on the number of categories, or prototypes (Gaussian
centers). The operational memory complexity of classification systems using PFAM classifiers

can thus be compared based on the number of prototypes.

3.4.2 Change detection
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Figure 3.5 Architecture of the CD module i.

A change detection (CD) module (see Fig. 3.5) is proposed to distinguish abrupt from gradual
changes that have emerged from the underlying distribution. It allows to trigger one of the
strategies to adapt facial models in the AMCS. For each individual i, this module relies on a
set of concept representations {67, ..., %}, } and an history of distance measures { %], ..., 7}, }
between all the previously-learned sequences of reference ROI patterns for individual i, and
each concept representation. When a new reference pattern set A’[f] (extracted from a se-
quence Vs'[t]) is presented to the system, the CD module detects if it differs significantly from
previously-learned concepts. The input distribution .7 is extracted, and change is measured
w.r.t. all stored concept representations {‘51’ yeees ‘51’{,} For each stored concept &, the measure
8/[t] is compared to an adaptive threshold f[t], computed from the measure history of the
concept %’jj . The most appropriate concept k* is then selected and provided to the adaptation

module.
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A specific implementation: Changes are detected using the HDDM presented in (Ditzler and Po-
likar, 2011), and the concepts are represented as histograms %”k’ . This method provides a non-
parametric low complexity detection measure though discetization of the feature space, which
is a compromise between the precision of low level change detection of the density methods
and the low complexity of the performance-based ones. In addition detections are based on the

current contextual environment thanks to the adaptive threshold computation.

The HDDM-based (Ditzler and Polikar, 2011) CD process for each individual i is presented in
Alg. 3.3. The reference sequence’s histogram o7 is first computed from the patterns Ai[t], after
feature extraction and selection (Alg. 3.3, line 3). Then, for each saved concept k = 1, ...,Ki,
the Hellinger distance 6,£ [t] is computed between histogram .7 and the concept representation

%, (Alg. 3.3, line 8), following:

2
1R o (b,d) \/ ilb,d) )
s L _ . 3.2
i=5X% Z.l<\/ B a.d) \ YL €. (3.2)

where D is the dimensionality of the feature space, B the number of bins in .7 and ¢/, <7 (b,d)

and %k’ (b,d) the frequency count in bin b of feature d. An abrupt change between the histogram
%, of concept k and &7 is detected if &;[t] > B/[t], where f3[t] an adaptive threshold computed

from the previous distance measures according to (Ditzler and Polikar, 2011):

A

i o
Bilt] = 7 ‘|’toc/2-\/A—l (3.3)

where « is the confidence interval of the t-statistic test, A; the total amount of past distance
measures stored in ,%’j(", and ,%A’jj and & the average and variance of those measures. If an
abrupt change is detected for all the concepts (Alg. 3.3, line 13), or if A’[¢] is the first sequence
of reference ROI patterns provided for the individual i (Alg. 3.3, line 5), a new concept is
added to the system. The number of concepts K' for the individual i is incremented, and .7 is

memorized into LT M’ as histogram €., (Alg. 3.3, line 15).
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Algorithm 3.3: Specific implementation of HDDM based CD for individual i.

1 Input: Set of ROI patterns for individual i provided by the operator at time t,
A'll] ={a1,a2,...};

2 Output: Index k* of the selected concept,
3 - Generate histogram .7 of A'[t];
4 if K; = 0 then
5 ‘ - newConcept < true;
6 else
7 | fork+« 1toK'do
8 - 8{[t] + Hellinger distance between <7 and ¢}’;
9 - Update threshold B} [1];
10 if 5/[t]) < B{[t] then
11 ‘ - newConcept = newConcept& false;
12 end
13 end
14 end
15 if newConcept == true then
16 -Kie— K41
17 | -Store 6}, < < into LTM',;
18 //Initialization of the measure history J
19 for r < nRep do
20 - Separate %", into two sub-blocks ¢; and ¢, using the k-means algorithm;
21 - Compute J,,(r), the Hellinger distance between ¢; and ¢;;
22 end
23 - Re-organize measures {5, (1), ..., 5u(nRep)} in descending order;
24 | - Initialize 7, < {8, (1),6,(2)};
25 else
26 | - Select the index of the concept to update k* = min{§} [t]; 6{[¢] < B/[t],k = 1..K'} ;
27 - Update the concept model €7, « %k’* + .
28 | - Update the measure history . « {5, 8..[1]};
29 end

The measure history 7/, is initialized by: (1) separating of .27 into two sub-blocks ¢; and ¢,
using the k-means algorithm (Alg. 3.3, line 18), and (2), computing the Hellinger distance &,
between the 2 sub-blocks (Alg. 3.3, line 19). As the initialization of the k-means algorithm is
random, this process is repeated for several replications nRep, and the 2 longest distances are

stored in the concept’s memory .77, (Alg. 3.3, line 20 and 21). The choice of the longest dis-
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tances enables to generate a more permissive threshold for the subsequent reference sequences.
It is considered as an estimation of the longest tolerable distance between reference sequences
from the same concept. In addition, at least 2 measures must be selected in order to compute a

proper variance for the next change detection.

If at least one comparison does not trigger CD, the closest reference histogram %7. (Alg. 3.3,
line 23) is selected, and updated using < following 6}, < ¢}, + o/ (Alg. 3.3, line 41). The

distance &/, [t] is added into the concept’s measure history 7. (Alg. 3.3, line 25).

This CD mechanism allows for selective windowing over the training data, as several refer-
ence distributions {‘51’ , ,‘5,’(1} are stored. In addition, each histogram representations of a
distribution 4} is paired with an adaptive threshold f/[r] in order to adapt the decision for
specific reference samples. Finally, this strategy can handle recurring concept changes if A’[t]
is composed of data similar to a previously encountered concept k*. In this case, only the

corresponding classifier will be updated.

3.4.3 Design and adaptation of facial models

This module is dedicated to the design and update of incremental-learning classifiers / C,i lim-
ited to individual i. It relies on the last state (internal and hyper-parameters) of the previously-
learned classifiers, reference target and non-target ROI patterns from STM' as well as the output
k* of the CD module. If k¥* = K’, i.e. a new concept is detected, a new incremental-learning
classifier IC}, is initiated and trained on A’[z]. Otherwise, the classifier IC}. is updated incre-

mentally with A%[t].

A specific implementation: A Dynamic Particle Swarm Optimization (DPSO) training strategy
is employed to train and optimize the PFAM classifiers. This incremental learning strategy
that evolves pools of incremental learning classifiers in the hyper-parameter space has been

described and applied to adaptive FR systems in (Connolly et al., 2012).
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For each individual i, this module relies on a pool of PFAM classifiers 9{‘ per concept k
(k =1,...K"). Each pool consists of classifiers trained with reference ROI samples from con-
cept k,to produce the best (global best) classifier IC,i. It may be combined in EoC’ with best
classifiers from other concepts. This DPSO incremental-learning strategy allows to co-jointly
optimize PFAM parameters (internal weights W, W, W% and X , hyper-parameters h, and
architecture) of the classifiers in @,’( such that the fitness function (classification accuracy) is
maximized. The DPSO algorithm has been chosen for its convergence speed, and the DPSO
training strategy has already been successfully applied in state-of-the art adaptive face recog-

nition systems in video (Connolly ef al., 2012).

More precisely, PSO is a population based stochastic optimization technique inspired by the
behaviour of a flock of birds (Eberhart and Kennedy, 1995). In this implementation, each
particle of a swarm moving in the optimization space is defined by the five hyper-parameters
h=(a,B,¢e,p,r) of a PFAM classifier. The particles move in the optimization space according
to two factors: (1) their cognitive influence (previous search experience), and (2), the social in-
fluence ( other particles’ experience,in a neighbourhood). At a discreet iteration 7, the position
(hyper parameters) of each particle (classifier) h(7) changes according to its inertia and the
cognitive and social influences following Eq. 3.4, with wg, w; and w, the inertia, cognitive and

social weights, and ry, r; and r, random parameters.
h(7) =ro.wo(h(7) —h(t—1))+ri.wy (hwg —h(7)) 4+ r2.wa(hge —h(7)) (3.4

During optimization, each particle thus begins at its current location, then continues moving in
the same direction it was going according to the inertia weight while being attracted by each

source of influence:

e Its best known position h.,,, the cognitive influence, also known as its memory.

e The best position of the swarm hg,, the social influence.
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The best position is defined using a fitness function, which is, in this case, the classification
performance over validation data stored in STM" of the classifiers trained with training data,
with the hyper-parameters corresponding to the positions of the particles. When new reference
data become available, or if an abrupt change is detected, a new pool of classifiers 2%, is initi-
ated: the positions of the particles (the hyper-parameters of the PFAM classifiers) are randomly
initialized in the optimization space, and the classifiers (their internal weigths W, W<, W
and X) are empty. On the other hand, if a gradual change is detected, previously-trained classi-
fiers of pool Z., are updated through supervised incremental learning: their starting position
(hyper-parameters) and internal weights are the final state of the previous optimization, when

a similar concept had been encountered and learned.

Finally, in order to adapt to the optimization space according to gradual changes, and pursue
the training of the classifiers after a previous optimization, the adaptation and training module
is implemented with a dynamic variant of the PSO algorithm. The PSO algorithm has been
adapted for dynamic optimization problems though 2 types of mechanisms to: (1) maintain
the diversity in the optimization space through a modification of the social influence (such as
(Nickabadi et al., 2008a)), (2) increase the diversity in the optimization space after convergence
when a change is detected in the objective function (using the memory of the particles) (such
as (Blackwell et al., 2004)). For this specific implementation, the DNPSO variant presented
in (Nickabadi et al., 2008a) is used. DNPSO maintains diversity within a pool 9}{ in the
optimization space by: (1) relying on a local neighbourhood topology to generate sub-swarms
of particles around local bests (which are the best particles in a local neighbourhood), (2)
allowing the evolution of free particles (not in any subswarms) to explore the optimization
space independently, and (3), reinitializing the free particles with low velocities. The social
source of influence is determined within each sub-swarm. The choice of the DNPSO variant
is motivated by the greater exploration of the optimization space through the generation of
sub-swarms. This enables to consider all optima during the optimization process, instead of
restarting at the convergence area when new reference data used for adaptation that exhibit a

gradual change.
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3.4.4 Short and long term memories

The long term memory LT M’ stores the different parameters and models necessary to pursue
system training and detect changes when new reference samples become available for an indi-
vidual i. On the other hand, the short term memory STM' is not memorized from one training

session to another, and serves as a temporary storage for reference validation samples.

A specific implementation: For each detected concept k = 1,...,K', LTM' stores:

a. A pool of 2-class PFAM classifiers f@,’{ The hyper-parameter vector h as well as the
PFAM’s internal parameters (W, W, W4 and X). This pool is evolved and updated

using the DNPSO incremental learning strategy (see section 3.4.3).

b. An histogram concept representation ¢/, with the frequency of bins defined by the refer-

ence patterns corresponding to the concept.

c. The history of past change detection measures %ii , which stores the Hellinger distances
computed between the histogram representation of the previously-acquired reference data

and the concept k, in order to be able to compute the adaptive change detection threshold.

The data stored in STM' is used to perform the optimization of the classifiers in the different
pools {3”{,..., 4@;{[}, and choose the user specific threshold 0!, for the classifier IC’i or the

ensemble EoC’ (after average score-level fusion), according to false alarm specifications.

3.4.5 Spatio-temporal recognition — accumulation of responses

As shown in Fig. 3.1, systems for FRiVS typically rely on face detection tracking and classifi-
cation. Fig. 3.4 is an example of a system that combines spatial and temporal computations into
separate, but mutually interacting processing streams that cooperate for enhanced detection of
individuals of interest. The general track-and-classify strategy has been shown to provide a
high level of performance in video-based FR (Matta and Dugelay, 2009). Since classification

and tracking co-occur in parallel, they can collaborate to improve overall face recognition.
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During operations, face tracking follows the position and motion of different faces appearing
in the scene. The objective of the tracker is to regroup ROIs that belong to a same person, and
is defined by a high quality track, in order to provide a robust decision for each track through

evidence accumulation.

A specific implementation: Fusion of responses from the ensembles and the tracker is ac-
complished via evidence accumulation, which emulates the brain process of working memory
(Barry and Granger, 2007). For each initiated track j, for each individual i enrolled in the
AMCS, and for each consecutive ROI q, associated with this track, the dedicated ensemble
EoC' generates a binary decision d’(q, ) (true, the individual is recognized, or false). The accu-
mulated response is computed with a moving overlapping window of size V ROls, following:

' r+V/2
accl(r) = Z dq,) (3.5)

u=r—V/2
Then, the presence of the individual 7 in the track j can be confirmed if the accumulated re-

sponse goes over a user-defined threshold I'" of a consecutive number of activations.

3.5 Experimental Methodology

The performance of the proposed AMCS is evaluated for the detection of individuals of in-
terest with video captured in person re-identification applications. In particular, experiments
focus the impact of employing a change detection mechanism (see Section 3.4.2) within the
AMCS to drive the adaptation of facial models from new reference videos exhibiting various
forms of concepts change. The objective of the experimental methodology is to validate our
main hypothesis: it is beneficial to incorporate new data from different and abruptly changing

concepts with a learn-and-combine strategy than with an incremental one.
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3.5.1 Video-surveillance data

The Carnegie Mellon University Face In Action (FIA) face database (Goh et al., 2005) is com-
posed by 20-second videos capturing the faces of 221 participants in both indoor and outdoor
scenario, each video mimicking a passport checking scenario. Videos have been captured with
6 Dragonfly Sony ICX424 cameras at a distance of 0.83m from the subjects, mounted on carts
at three different horizontal angles (0° and +72.6°), and with two different focal length (4 and
8mm) for each. Cameras have a VGA resolution of 640x480 pixels and capture 30 images per
second. Data have been captured in three separate sessions of 20 seconds, at least one month
apart. During the first session, 221 participants were present, 180 of whom returned for the

second session, and 153 for the third. Only indoor sequences were considered in this paper.

3.5.1.1 Pre-processing

-]

Sequence Fz; Sequence Fz, Sequence Fz; Sequence Lz, Sequence Lz, Sequence Lz;

Individual with ID: 21

Individual with ID: 110

Sequence Fz; Sequence Fz, Sequence Fz; Sequence Lz, Sequence Lz, Sequence Lz;

Figure 3.6 Examples of ROIs captured by the segmentation algorithm from the cameras
array of 6 during the different sessions, for individuals with ID 21 and 110.

To extract the ROIs, segmentation has been performed using the OpenCV v2.0 implementation
of the Viola-Jones face and eye detection algorithm (Viola and Jones, 2004), and the faces have

been rotated to align the eyes in order to minimize intra-class variations (Gorodnichy, 2005a).
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Then ROIs have been scaled to a common size of 70x70 pixels. Examples of ROIs captured
for two individuals are shown in Fig. 3.6. Features have finally been extracted from ROIs with
the Multi-Bloc Local Binary Pattern (LBP) (Ahonen et al., 2006) algorithm for block sizes of
3x3, 5x5 and 9x9 pixels, concatenated with the grayscale pixel intensity values, and reduced to

ROI patterns of D = 32 features using Principal Component Analysis.

For each one of the 3 sessions, and for each individual, the FIA dataset have been separated
into 6 video subsets, according to the different cameras (left, right and frontal view, with 2

different focal length, 4 and 8 mm), resulting into the following sequences with notation:

o I (I3, F3), Ly (L, L3) and R (R, R3): respectively the sequences composed by the
samples from the Frontal, Left (—72.6°) and Right (72.6°) view of Session 1 (2,3), with a

4-mm focal length.

o Fz1 (Fzo, Fz3), Lz1 (Lzo, Lz3) and Rz (Rzp, Rz3): the sequences composed by the same

samples from the cameras with zoom, 8-mm focal length.

The average number of detected ROIs per individual is presented in Table 3.3. It can be noted
that there are fewer ROIs for the right orientation than for other poses. This can be explained
by the fact that the OpenCV Viola & Jones algorithm has only been trained for frontal and left
orientations. Therefore, sequences for the the right facial orientation subset are not considered

for experimental evaluation.

The individuals of interests have been selected among individuals appearing in all 3 sessions,
as those with at least 30 ROIs for every frontal and left sequences. Of those, 10 individuals
fulfil this requirement, individuals with IDs: 2, 21, 69, 72, 110, 147, 179, 190, 198 and 201.
The remaining samples are mixed and separated into two Universal Model (UM) subsets: one
half are used to generate the training UM, while the remaining consists in unknown UM classes

appearing in test.
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Table 3.3 Average number of ROI captured per person over
3 indoor sessions (s = 1,2,3) of the FIA database.

ROISs per camera

Orientations F, FZ; Ry RZ, L, LZ,
Session 1 814+4 | 131£5 | 11£1 | 23+£2 | 3342 | 40+£2
Session 2 885 | 1437 | 11£1 | 20£2 | 34+3 | 36£3
Session 3 85+6 | 141+£9 | 10£1 | 20£2 | 424+4 | 3943

3.5.1.2 Simulation scenario

The following scenario is proposed to simulate video-to-video FR as seen in person re identi-

fication applications.

Table 3.4 Correspondence between the 9 reference video sequences used to adapt
proposed AMCSs and the original F'/A video sequences.

Time step ¢ 1 2 3 4 5 6 7 S 9
Reference
sequences Vs(l] | Vs[2] | Vs[3] | Vsl4] | Vs[S] | Vsl6] | Vis[7] V(8] Vs[9]
C di
F(}l:esiz?ltnlig Fz (S1) Fz ($2) Fz3 (S3) Lzy (S1) | Lz2 (S2) | Lz3 (S3)

Design and update of the face models: To simulate the role of the FRiVS operator providing
the system with new reference sequences over time to update its facial models, the reference
sequences of ROI patterns Vs[t] are presented, after pre-processing, for every discrete time
step t = 1,2,...,9. To avoid a possible bias due to the more numerous ROI detected from
the frontal sessions, the original F/A frontal sequences have been separated into two sub-

sequences, forming a total of 9 sequences, presented in Table 3.4.

Video sequences used for design are populated using the samples from the cameras with 8-mm
focal length (sequences F'zy, Fzp, Fz3, Lz, Lzp and Lz3) in order to provide better face capture
quality for learning samples. ROIs captured during 3 different sessions and orientations may be
sampled from different concepts. The transition from sequence 6 to 7 represents most abrupt

concept change in the reference samples, as it involves a change of camera angle. Changes
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observed from one session to another, such as from sequences 2 to 3, 4 to 5, 7 to 8 and 8
to 9 depends on the individual. As faces are captured over intervals of several months, some
abrupt changes can be detected, such as changes in hairstyle, make-up or facial hair. Finally,
intra-session changes, from sequences 1 to 2, 3 to 4 and 5 to 6 represent more gradual changes

since all sequences were captured with frontal cameras from the same sessions.

Operational evaluation: In order to present different facial captures that the one used for
adaptation, only the cameras with 4-mm focal length (sequences Fy, F>, F3, Ly, Ly, L3) are
considered for operational evaluation. While the scaling normalizes every facial capture to a
same size, the short focal length adds additional noise (lower quality ROIs), thus accounting
for reference samples that do not necessarily originate from the observation environment in a

real-life surveillance scenario.

For each time step t = 1,2, ...,9, the systems are evaluated after adaptation, simulating the ar-
rival of different individuals one by one, at a security checkpoint at the airport. For each of
the 3 sessions and 2 considered camera angles, they are presented with the ROI patterns of the
corresponding sequences for each individual, one after the other. Evaluation is performed with
input data from every session and camera angle for every time step. This simulates a FRiVS
scenario where different concepts may be observed during operations, but where the reference
videos are not available at the same time. Instead, they are gradually tagged and submitted
to the system for adaptation. Every possible concept (face orientation, facial expression, il-
lumination condition, etc.) present in the operational data, is presented to the systems over

time.

3.5.2 Reference systems

For validation of the proposed proposed AMCS with change detection (called AMCScp), its

performance is compared to the following systems that do not exploit change detection:
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e Incremental AMCS, AMCS;,.,: Instead of detecting a changes in concepts as AMCS¢p, a
unique concept is considered. This simulates an AMCScp which never detects any changes,
and systematically adapts one single classifier. The system is only composed by a single
classifier per individual of interest, and its parameters are updated incrementally when new
reference sequences become available. This approach is an implementation of the adaptive

classification system presented in (Connolly et al., 2012).

e Learn and combine AMCS, AMCS;: This system doesn’t include a change detection
mechanism either, simulating an AMCS¢cp which always detect a change. For every new
reference sequence, it systematically triggers the generation of a new concept in the system.
It is composed of an ensemble of classifiers per individual, each classifier designed with a

different reference sequence.

The comparison between AMCScp and these two variants enable to evaluate the benefits of
using change detection to govern the adaptation strategy. In addition, the proposed AMCScp
is compared the reference open-set TCM-kNN (Li and Wechsler, 2005) presented in Section
3.2.2. As the TCM-kNN is a global (non class-modular) classifier, AMCS¢p 1s also compared
to a reference class-modular system using probabilistic class-modular k-NN classifier, adapted
to the FRiVS application, VSKNN. A separate k-NN classifier using Euclidean distance is
considered for each individual of interest i, trained using positive reference samples from video
sequences of target individual i, and a mixture of negative reference samples from the UM and
CM, as with the other AMCS. A score is then computed through the probabilistic kNN approach
(Holmes and Adams, 2002): the probability of the presence of the individual i is the proportion,
among the k nearest neighbours, of reference samples from the same individual. The value of
k is also validated through (2x5 folds) cross validation, along with the final decision threshold
0"

To improve the scalar performance of the proposed AMCS¢p for the selected operating point
in validation, a variant called AMCS,, is also tested, where fusion of ensembles is performed at

score level. It uses a weighted average to favour scores that are highest w.r.t. their threshold,
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and filter out possible ambiguities. For an individual i with a concept-specific threshold Gli
(determined with validation data for concept k), and for each score sj'c(q), the weight w,i is
defined by the confidence measure @] = max(0, (s}(q) — 6}). This weight reflects the quality
of the input pattern q in reference to concept k. The output score is then the result of the

weighted average ZkK; (o,i.s;c.

3.5.3 Experimental protocol

For each system, simulations follow a (2x5 fold) cross-validation process for 10 independent
replications for each experiment, with pattern order randomization at the 5th replication. The
full protocol is presented in Alg. 3.4. For each time step t = 1,...,9, and each individual
i =1,...,1, the design or update of the system is first performed. Change is first detected (Alg.
3.4 line 3), in order to determine the index of the concept k* closest to the patterns in A’[t].
In the case of AMCS;,., (AMCS; ), change detection is bypassed, and k* is automatically set
to 1 (K 4+ 1). Dataset dbLearn' is then generated (Alg. 3.4 line 4), it is used to perform
training and optimization of the PFAM networks. It remains unchanged for the two sets of
five replications for the results to remain comparable, and is composed of reference patterns
from A’[t], as well as twice the same amount of non target patterns equally selected from the
UM dataset and CM". More precisely, selection of non-target patterns is achieved using the
Condensed Nearest Neighbor (CNN) algorithm (Hart, 1968). The same amount of target and
non-target patterns is selected using CNN, and combined with the same amount (picked at
random) of patterns not selected by the algorithm. This enables to select non-target patterns
that are close to the decision boundaries, as well as patterns that represent the center of mass of
the non-target population. For each independent replication rep = 1,..., 10, dbLearn' is divided

into the following subsets (Alg. 3.4 line 8), based on the 2x5 cross-validation methodology:

e dbTrain' (2 folds): the training dataset used to design and update the parameters of PFAM

networks.
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dbVal, pi (1 fold): the first validation dataset, used to validate the number of PFAM training
epochs (the amount of presentations of patterns from dbTrain' to the networks) during the

PSO optimization.

STM' (2 folds): the second validation dataset.

Algorithm 3.4: Experimental protocol for performance evaluation.

e X N & wn

10
11

12
13

14
15

16
17
18
19
20

for Each time step, t < 1 to 9 do
for Each individual, i < 1 to 10 do
- Perform change detection using A’[t] to the stored concept representations
{%7, ,CKI’(,} to determine the closest concept index k*. If a new concept is
detected, following Alg. 3.3, k* = K' + 1;
- Generate dbLearn' dataset. Positive or target samples are selected from the
pattern reference sequence A[t], and relevant negative or non-target samples
from UM’ and CM' (from sequences corresponding to the same time stamp) are
selected with the CNN method (Hart, 1968) ;
for each independent replication, rep <— 1 to 10 do
if rep =5 then
‘ - Randomize samples order in dbLearn';
end
- Separate dbLearn' into dbTrain', dbVal’ . STM';
- Randomly separate STM' into dbValPS 0"1 and dbValPS 05;
- Adapt the PFAM network pool corresponding to concept k*, t@,i*, with the
DNPSO training strategy, with deal(’;p for the stopping criterion of the
training epochs of the PFAM classifiers, dbVal PSO!, to compute particles’
fitness and dbValPSO}, to select the global best classifier /C.;
- Assemble EoC' = {IC}, ..., IC; } with the updated (or new) ICy.;
- Select the threshold 6 (operating point) corresponding to a far of 5% in
validation from the ROC curve produced by EoC' presented with data from
STM',
for each operational pattern sequence do
- Computation of the independent, frame by frame, decisions
(transnational analysis);
- Accumulation of the decisions of the sequence (time analysis);
end
end
end
end
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STM' is randomly divided into two PSO validation datasets dbValPS O’i and dbValPS 03 (Alg.
3.4 line 9). Then, the pool of classifiers 3212* corresponding to the selected concept k* are
trained through the DNPSO learning strategy (Connolly et al., 2012) (Alg. 3.4 line 10), using
the following parameters: 60 particles per swarm; max of 30 iterations; neighborhoods of 6
particles; max of 40 sub-swarms; max of 5 particles per sub-swam; early stopping if the best
solution ever encountered remains fixed for 5 iterations. The bounds for PFAM parameters
during optimization are: 0 < p < 1;0<a<1;0<B <1; -1 <e<1;0.0001 <r<200.
The fitness computation follows three steps: (1) the training dataset dbTrain' is presented to
the PFAM network, and its performance is evaluated with dbVall’ — to avoid over-training,
this step is repeated for several epochs until the performance converges or decreases, and the
stopping criterion is that performance does not increase for two consecutive epochs, (2) the
fitness function is evaluated using dbValPSO', and (3), the best particles are determined us-
ing the second validation dataset, dbValPSO:, and are stored in a archive for each iteration of
the optimization. This methodology has been proposed in (Dos Santos et al., 2009) in order
to overcome over-fitting through the selection of particles with the best generalization perfor-

mance.

When an previously-learned concept is updated, an existing pool &, is be evolved through
this DNPSO incremental-learning strategy. The optimization resumes from the last state — each
classifier of the pool keeps its previous state (network parameters), and incrementally learns
the new data. On the other hand, when a significant change is detected, the proposed AMCScp
generates a new pool that is optimized for the new concept €,. The classifiers from each con-
cept are then combined into EoC' = {IC’i, ...,IC}'{,}, and a validation ROC curve is generated,
characterizing the performance of EoC’ over all the samples of STM' (Alg. 3.4 lines 11 and
12). The threshold 6’ corresponding to a fpr < 5% is stored for the evaluation of the operational
performances of the system. Finally, patterns from the operational sequences (sequences from
Fi, F5, F3, Ly, Ly, L3, and for every individual in the dataset, see section 3.5.1.2) are presented
to the systems one sequence at a time. Individual predictions are generated to evaluate the

transaction (ROI match) level performance of EoC’ (Alg. 3.4 line 14). Then, EoC' predictions
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are accumulated over time according to a trajectory of individuals appearing in a scene. This

time analysis allows to evaluate the complete system performance (Alg. 3.4 line 15).

3.5.4 Performance measures

Transaction-level performance: Given the responses of a detector (or the final decision of
an EoC) for a set of test samples, the true positive rate (tpr) is the proportion of positives
correctly classified over the total number of positive samples. The false positive rate (fpr) is the
proportion of negatives incorrectly classified (as positives) over the total number of negative
samples. A ROC curve is a parametric curve in which the tpr is plotted against the fpr. In
practice, an empirical ROC curve is obtained by connecting the observed (tpr, fpr) pairs of
a soft detector at each threshold. The area under the ROC curve (AUC) or the partial AUC
(for a range of fpr values) has been largely suggested as a robust scalar summary of 1- or 2-
class classification performance. The AUC assesses ranking in terms of class separation — the
fraction of positive—negative pairs that are ranked correctly. For instance, with an AUC = 1, all
positives are ranked higher than negatives indicating a perfect discrimination between classes.
A random classifier has an AUC = 0.5, and both classes are ranked at random. To focus on
a specific part of the ROC curve, the partial AUC pAUC can also be computed, as the partial

area for a fpr less or equal to a specified value.

In a video-surveillance application, non-target individuals are often much greater than the tar-
get ones. ROC measure may be inadequate as it becomes biased towards the negative class
(Weiss, 2003). For this reason, the precision-recall space has been proposed to remain sensi-
tive to this bias. Indeed, the precision is defined as the ratio TP/(TP + FP) (with TP and FP
the number of true and false positives), and the recall is an another denomination of the tpr.
Precision allows to assess the accuracy for target patterns. The precision and recall measures
can be summarized by the F; scalar measure, which can be interpreted as the harmonic mean
of precision and recall. Finally, a classifier can also be characterized by its precision-recall
operating characteristics (P-ROC) curve, and the area under the P-ROC curve (AU PROC) can

be considered as a robust performance measure.
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Therefore, considering each ROI match independently, the systems’ transaction-level perfor-

mance will be assessed using:

e Local measures: tpr, fpr, precision and F;. Those measures are specific to the operating

point (threshold ®'), determined during system design.

e Global measures: AUC, pAUC and AU PROC. Those measures are a more general evalua-

tion of the systems performance over the entire range of the possible operating points.

Performance of the full system over time: To evaluate the performance of the entire system
proposed in this paper, individual-specific predictions of each ensemble are accumulated over
a trajectory for robust decisions. More precisely, for each individual, the predictions are ac-
cumulated with a moving window of V = 30 ROIs in a trajectory. The individual is detected

when the accumulated activations go past a defined threshold I™.
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Figure 3.7 As an example, assume that individual 21 is enrolled to the AMCScp. After
training sequence 9 (Lz3), the number of positive predictions accumulated over a
fixed-size time window in presented in (a). Three sequences of 600 frames, from 3
different individuals, have been concatenated, with first a sequence from an impostor (in
black), then from the genuine individual (21, in gray), and then from another impostor (in
black). In (b), the overall accumulation ROC curve characterizing the AMCScp
performance for individual 21 over all the test sequences.

An example is presented in Fig. 3.7 (a), where 3 sequences of 600 frames have been con-

catenated. The first and the last one correspond to unknown individuals in the UM, while the
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second one correspond to target individual 21. The predictions are generated by AMCScp after
the 9th training sequence (session Lz3), dedicated to the individual 21. It can be observed that

genuine predictions go significantly higher than the impostor’s.

To assess the overall performance of the different systems for every individual i, an overall
accumulation ROC curve is generated, with threshold I going from 0 to 30 (the size of the
moving window). For each target sequence, a true positive occurs when the maximum value
of the accumulated predictions goes over I'". In the same way, a false positive occurs when
the maximum value of the accumulated predictions for non-target sequences goes over the
threshold. An example is presented in Fig. 3.7 (b). To summarize the system performances,

the AUC of the overall accumulated ROC curves is used as with the transaction-level measures.

3.5.5 Memory complexity measures

The systems complexity is evaluated in operational mode, in order to compare resources re-

quired to predict the identity associated to an input ROI pattern.

As mentioned in Section 3.4.1, a PFAM network operational behaviour is one of a GMM,
where cluster centres are the prototypes in the F2 layer. For each input ROI pattern, the final
score is computed from the likelihoods of the different clusters. As a consequence, the mem-
ory and time complexity required to classify a facial ROI in operations is proportional to the
number of prototypes in PFAM networks. For this reason, the operational memory complexity
of AMCS systems will be compared based on the sum of the number of F2 layer neurons for

all the PFAM classifiers in the ensembles.

Similarly, TCM-kNN and VSKNN both rely on a kNN classifier. For each input ROI pattern,
an euclidean distance is computed for each reference pattern stored for kNN classifier. In
VSKNN, those distances are then ordered to compute probabilistic scores as presented in Sec-
tion 3.5.2. TCM-kNN adds more computational complexity, as the score computation relies on

strangeness measures for each input ROI, requiring additional re-orderings. The operational
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memory complexity of the identity prediction from an input ROI is thus also proportional to

the number of reference patterns stored in the system, which will be used for comparison.

3.6 Results and Discussion

3.6.1 Change detection performance

Table 3.5 Changes detected per individual of interest (marked as a X) for
each update sequence.

Update Sequences (time step t)

(23 ]4fs5]6][7]8]9
X X
X

Individual ID Total per individual

2
21
69
72

110
147
179
190
198
201
Total per sequence

X

XL R R K| R

X R XXX

DR DR R DR R R R R || =
(U2 IRUCH [RUCH [N N (N [V (S (S (6

00 | DA DX DA M| M| X4
o0 | M| M| M

S
-
)}
o

For each individual of interest, Table 3.5 presents the update sequences for which changes have
been detected, as well as the total number of detections. The first sequence corresponds to the
initialization of the first concepts of each individual. The maximum number of detection for a
sequence of 10, meaning that a change is detected for every individual. The 3 highest detection
counts occur for the sequences 3, 5 and 7, and for 6, 8 and 8 of the individuals, respectively.
These changes correspond to the introduction of training samples from the 2nd frontal session,
the 3rd, and the Ist left session. Although the apparition of changes depends on the specific
individuals (haircut change, hat, glasses, etc.), this result is expected since those 3 sessions

are the most likely to exhibit significant abrupt changes: the two former occurred at least 2
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and 3 months after the first update sequence, and the latter is the first introduction of samples

captured from a different angle.

For a more detailed analysis, individuals 21 and 110 were considered. Changes detected in
these cases can be correlated with ROIs shown in Fig. 3.6. For the individual 21, abrupt
changes have been detected for update sequences 5 (introduction of patterns Fz3), 7 (Lzy)
and 9 (Lz3). As shown in Fig 3.6, the changes detected with the introduction of sequences
5 and 9 correspond to a change in make-up and hair style, while the change detected with
sequence 7 is the introduction of left oriented samples. Similarly, as shown in Fig. 3.6, changes
for individual 110 have been detected with sequence 3 (F'zp), corresponding to hair-style and
skin tone change, 5 (F'z3), also corresponding to skin tone change and 7 (Lz;), which is the

introduction of the samples with left camera angle.

Feature 1 Feature 2 Feature 3 Feature 4 Feature 5 Feature 6 Feature 7 Feature 8

__JSeas 60 60 60
40
40
I seq 6 40 40 40 40 40 40
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20 20 20 20 20 20 20
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0 50 5 0 50 50 50 5 0 50 5
Feature 9 Feature 10 Feature 11 Feature 12 Feature 13 Feature 14 Feature 15 Feature 16
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%0 40 40 40 40 40 0
20
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Figure 3.8 Histograms representation of the 5th, 6th and 7th sequence of patterns for the
individual 21, in the feature space of input ROI patterns (D = 32 dimensions). The
Hellinger distances between the sequence 5 and 6, and between 6 and 7 are respectively
0.0253 and 0.1119.

The abrupt change detected with sequence 7 can also be observed in the feature space, as

illustrated by the significant differences in histogram representations of the sequences 5, 6
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and 7 (see Fig. 3.8). Sequence 7 is visibly different for most features from sequences 5 and
6 (which belong to the same enrolment session, Fz3). This difference is also shown in the
Hellinger distance between the sequences 6 and 7, which is significantly higher than between

the sequences 5 and 6.

Results confirm that the change detection module proposed for AMCScp (Fig 3.4) can effi-
ciently detect abrupt concept changes in sequences of facial captures of the FIA dataset. In
response to new reference video sequences, this module allows AMCS¢p to adapt facial mod-

els according to different strategies, either incremental learning or learn-and-combine.

3.6.2 Transaction-level performance

Average results: Fig. 3.9 presents the average overall transaction-level performance of pro-
posed and reference systems, for the 10 individuals of interest according to fpr, tpr and F}
measures (Fig. 3.9 (a), (b) and (c)) at an operating point selected (during validation) to re-
spect the constraint fpr < 5%, and the global AUPROC measure over all fpr values (Fig. 3.9
(d)). Performance is assessed on predictions for each ROI captured in test sequences, after the

systems are updated on each adaptation sequence.

In Fig. 3.9 (d), AMCScp , AMCS;,.r and AMCS;¢ exhibit a significantly higher level of
AU PROC performance than VSKNN and TCM-kNN. After learning the 9th update sequence,
VSKNN and TCM-kNN have an average AU PROC of 0.57 £0.04, while AMCS;;,cr, AMCScp
and AMCSy¢ are respectively at 0.82 +0.03, 0.89 £0.02 and 0.91 +0.01. Performing a
Kruskal-Wallis test for those three measures using a p-value of 0.1, indicates that AMCS.,
performance is significantly lower than AMCScp and AMCSy ¢, which are comparable. In ad-
dition, while these 3 AMCS yield similar performance after the first 2 sequences, AMCScp and
AMCS; ¢ improve their performance more significantly than AMCSj,.» when samples from ses-
sion F'z; are integrated into the systems. Average AU PROC performance goes from 0.75+0.03
and 0.79 £ 0.02 to 0.81 £ 0.02 and 0.83 £0.02 for AMCScp and AMCS|c, while it only goes
from 0.76 +0.02 to 0.78 +0.02 for AMCS;,.r. Sequence Fz3 represents the most abrupt
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Figure 3.9 Average overall transaction-level performance of proposed and reference
systems, after the integration of the 9 adaptation sequences. The average value of
performance measures and confidence interval over 10 replications are averaged for the
10 individuals of interest.

changes for the frontal faces, captured several months later, along left pose, Lz, Lz and Lz3.
The AMCScp and AMCS ¢ benefit the most from learning this new data as their AUPROC

performance continues to diverge w.r.t. that of AMCS;,., until the last update sequence.

In terms fpr performance (Fig. 3.9 (b)) it can be first observed that all systems except TCM-
kNN remain under the constraint of fpr < 5%, with AMCS; ¢ and AMCS¢p significantly lower
than AMCS,., and VSKNN. It can be noted that AMCScp provides a lower fpr on test se-
quences. After learning update sequence 9, the average fpr for AMCScp is at 1.97% £ 0.70.
On the other hand, the fpr of the AMCS,, variant is more affected by the introduction of the
new orientation after sequence 7, at it increases, after sequence 9, to 4.0% + 1.13. A closer

reveals that false positives are mainly a consequence of an increase of score values for negative
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samples for one of the classifiers in each ensemble. In most of the cases, when a change is
detected and the fpr increases, most of the false positives are triggered by classifiers that corre-
spond to newly-added concepts, not specialized to differentiate positive from negative samples
of the other concepts. This produces a positive prediction for a non-target ROI from a different
concept than the one of its training patterns. An increase of fpr can indeed be observed after
learning from Lz; as the majority of changes (and thus the classifier addition) are detected at
those transitions. Although always below the 5% constraint imposed in validation, AMCS,, has
the tendency to increase the false positives of different ensembles, as those scores are increased

by the normalizations which set to zero other lower scores.

The F; measure (Fig. 3.9 (c)) gives a condensed view of the precision and recall (tpr) for the
selected operating point, and it allows to observe the performance on target samples. The Fj
performances all systems except TCM-kNN are comparable until the update sequence 5. Up-
dating on reference sequences from session Fz3 enables AMCS,, and AMCS| to differentiate
themselves, at respectively 0.69 +0.03 and 0.70 4+ 0.03. However, the most significant decline
in F; performance occurs for update sequence 7 (Lz; sessions), where AMCS;,., performance
decreases from 0.63 £0.05 to 0.53 +0.08, and the system requires two more sequences of
left oriented captures to recover. The decrease of the F; performance is a consequence of
a decrease in tpr, from 50.46% 4 5.9 to 40.73% + 7.7 after learning sequence 7. This is a
manifestation of the knowledge corruption that can occur in an incremental system, as the in-
troduction of significantly different training patterns decreased its ability to effectively detect
positive ones. AMCS¢cp, AMCS,,, AMCS;c and VSKNN, on the other hand, do not suffer from
the same effects, and their performance continues to improve over the last 3 update sequences.
After learning the 9th update sequence, AMCS,, and AMCS;¢ exhibit the highest level of F}
performance at respectively 0.76 £0.04 and 0.75 +0.03. AMCScp and VSKNN both end at
about 0.70. The tpr boost induced by the fusion function of AMCS,, provides the best F;
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performance, despite the higher fpr values. Finally, the performance of TCM-kNN remains

significantly lower throughout the experiments.

Focus on individuals 21 and 110: Figure 3.10 presents average transaction-level F; perfor-
mance obtained for individuals 21 and 110. They provide a bad (individual 21) and a good
(individual 110) case for the proposed AMCScp. The F performance of individual 110 leads
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Figure 3.10 Average transaction-level performance after learning the 9 update
sequences. Significant (abrupt) changes are indicated as vertical lines.

to similar observations as with the average overall evaluations: the performance declines in Fj
of AMCSjy, at the 7th sequence while AMCScp and AMCS; ¢ continue to improve, and TCM-
kNN performance remains below all the others. However, for individual 21, while the 7th
sequence triggers a change detection, all systems exhibit similar performances and behaviour,
without any decline in F| for AMCSj,.,. With a closer examination of the videos, about 92% of
the ROIs in the Lz; , Lzp and Lzz sequence for individual 110 are profile orientation, while the
remainder are mostly 3/4 frontal views captured during a movement of the individual’s head.
In contrast only 51% of the ROIs of individual 21 correspond to a profile orientation, with a
majority in the Lzz session (9th sequence), at the end of the simulation. Individual 21 can be
considered as a case where the change detection process may be too sensitive - the new refer-

ence patterns provided in the sequences 7, 8 and 9 are not different enough for new classifiers
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to have a considerable impact on transaction-level performance. Results for individual 110
shows that learning significantly diversified samples can be more effective with the proposed

AMCScp. Finally, in both cases, AMCS,, still exhibits similar F| performance to AMCSyc.
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Figure 3.11 Average memory complexity. Amount of F'2
prototypes for the AMCS systems, and amount of reference
patterns for VSKNN and TCM-kNN, after learning of adaptation
sequences. AMCScp and AMCS,, have the same amount of
prototypes, as well as VSKNN and TCM-kNN.

Although the AMCS¢p and VSKNN exhibits similar transaction-level performance, Fig. 3.11
shows that the amount of prototypes (sum of the number of F'2 layer neurons for all the PFAM
classifiers in an ensemble) needed by the the 3 AMCS is significantly lower than the number of
reference patterns needed by VSKNN and TCM-kNN. The memory complexity of VSKNN and
TCM-KNN grows to about 900 prototypes after the 9 adaptation sequences. The complexity
of AMCScp (AMCS,,), AMCS;,,.r and AMCS ¢ remain comparable until the update sequence
5. Their sizes continue to grow until the last sequence, with AMCS;,., the smaller system
(200.84 £28.2), and AMCS;c the bigger one (322 £ 16.8). AMCScp ends with 250 +13.7
prototypes. Considering that a prototype or reference sample weights 128 bytes (a vector
of 32 floats of 32 bits), the reference sample stored by VSKNN and TCM-kNN after the 9
adaptation sequences use up to 115 kB, while the prototypes of AMCScp (AMCS,,), AMCSycr
and AMCS|c respectively use around 32, 25.6 and 42.2 kB.
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Overall, the proposed AMCScp provides a compromise between the AMCS;,. (low complexity
but lower performance) and AMCSy ¢ (significantly greater complexity but comparable perfor-
mance). In this simulation, the AMCS;j,., exhibits the knowledge corruption problem, while
the reference AMCScp and VSKNN are prone to a increase in the system complexity. Those
two problems have been presented in Section 3.3.2 as the main issues of the adaptive clas-
sification system in the literature. The proposed AMCScp can achieve transaction-level per-
formance comparable to the reference AMCS;c and VSKNN systems, but with a significantly
lower computational complexity. In addition, AMCScp’s performance is significantly higher
than the open-set TCM-kNN. By virtue of the change detection mechanism, it can also avoid
the decline in performance due to knowledge corruption (seen with AMCSj,.-) when learning
significantly different adaptation sequences. Finally, although exhibiting higher fpr (but below
the validation constraint) the AMCS,, achieve significantly better performance in terms of tpr
and similar F; than AMCS¢p, without being negatively affected by the introduction of different

adaptation sequences as AMCS¢p.

3.6.3 Performance of the full system over time

In the proposed architecture (see Fig. 3.4), the face tracker groups ROIs corresponding to tack-
ing trajectories initiated in each video sequence. Classification prediction for each ROI in each
trajectory are accumulated over time. Considering that the transaction-level performance of the
open-set TCM-kNN was consistently lower than the other systems, and that the system hasn’t
originally been designed to be used with an accumulation strategy, TCM-kNN’s accumulation

performance has not been evaluated.

Average results: The average accumulation performance are presented in Fig. 3.12. The ac-
cumulation performance of AMCScp, AMCS;¢c and AMCS;j;,., are similar from sequence 1 to
6. VSKNN provides the best performance level for the two first sequences (0.84 +0.02 and
0.85+£0.02), and AMCS,, exhibits similar performance to VSKNN from sequences 3 to 6.
At sequence 6, AMCS;c, AMCS,,, VSKNN exhibit accumulation performance comparable to

AMCScp, AMCSjycr and AMCSyc. Then, it can be seen that the accumulation process filters
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Figure 3.12  Average accumulation AUC performance after
learning the 9 update sequences.

out the irregularities, and their accumulation performance increases after the introduction of se-
quences from Lz;. The increase is however more important for VSKNN, AMCS,, and AMCS¢p,
which respectively go to 0.97 £0.01, 0.954+0.01 and 0.95 £0.01. AMCSj;c, shows less im-
provement, up to 0.92 £ 0.03, and requires two more sequences (8 and 9) to reach a level
comparable to the others. After 9 sequences, VSKNN exhibits the better accumulation per-
formance, (0.99 4-0.003) closely followed by AMCS¢cp, AMCS,, and AMCS;¢ (0.97 £0.01).
AMCS;y.» exhibits the lowest performance, at 0.95 4-0.03.

As with the transactional-level results, the proposed AMCScp is capable of exhibiting similar
accumulation performance than VSKNN and AMCS; ¢ variant, but with a significantly lower
level of complexity, while outperforming the AMCS;,., classifier, which requires more data to

accommodate to significantly different concepts.

Focus on individuals 21 and 110: The accumulation performances of the five systems for
individual 21 and 110 is presented in Fig. 3.13, and reveals the same observations. With
individual 21, which data exhibit less abrupt changes (because only half of the ROIs from Lz,
Lz and Lzz have a profile orientation) all systems perform comparably, as confirmed by a

Kruskall-Wallis test (with a p-value of 0.1). However, for individual 110, the presentation of
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Figure 3.13 Accumulation AUC performance after learning the 9 update sequences.

update sequence 5 (Fz3 session) decreases AMCS;,., accumulation performance from 0.98 4
0.02 to 0.95 £0.02 while the AMCScp performance remains more stable around 0.99. The
significance of this decrease is also confirmed by the Kruskall-Wallis test, which confirms
that those two system performances are significantly different after the Sth sequence. Similar

behaviour can be observed after the presentation of sequence 7 (session Lzy).

As with the transactional-level analysis, time analysis of the full system reveals the benefits of
the proposed change detection strategy. The proposed AMSCcp and AMCS,, are less negatively
affected by the introduction of update sequences that incorporate significant concept changes
than AMCS;,.r. Yet they achieved comparable performance to VSKNN and AMCS; ¢ with a

significantly reduced computational complexity.

3.7 Conclusion

In this paper, a new adaptive multi-classifier system is proposed for video-to-video face recog-
nition in changing environments, as found in person re-identification applications. This mod-
ular system is comprised of a classifier ensemble per individual that allows to adapt the facial
model of target individuals in response to new reference videos, through either incremental
learning or ensemble generation. When a new video trajectory is provided by the operator, a

change detection mechanism is used to compromise between plasticity and stability. If the new
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data incorporates an abrupt pattern of change w.r.t. previously-learned knowledge (represen-
tative of a new concept), a new classifier is trained on the data and combined to an ensemble.
Otherwise, previously-trained classifiers are incrementally updated. During operations, faces
of each different individual are tracked and grouped over time, allowing to accumulate positive

predictions for robust spatio-temporal recognition.

A particular implementation of this framework has been proposed for validation. It consists of
an ensemble of 2-class Probabilistic Fuzzy-ARTMAP classifiers for each enrolled individual,
where each ensemble is generated and evolved using an incremental training strategy based on
a dynamic Particle Swarm Optimization, and the Hellinger Drift Detection Method to detect
concept changes. Simulation results indicate that the proposed AMCScp is able to maintain
a high level of performance when significantly different reference videos are learned for an
individual. It exhibits higher classification performance than a probabilistic KNN based system
adapted to video-to-video FR, as well as a reference open-set TCM-kNN system, with a signif-
icantly lower complexity. The scalable architecture employs the change detection mechanism

to mitigate the effects of knowledge corruption while bounding its computational complexity.

A key assumption of the adaptive multi-classifier system proposed in this paper is that each
trajectory only contains ROI patterns that have been sampled from one concept. In future
work, this framework should be extended in order to detect possible sub-concepts in the same
trajectory (i.e. changes in facial pose and expression), using for example some windowing
strategy. In addition, the particular implementation used for validation has been tested on a
large-scaled data set where reference videos have a limited length. Performance should be
assessed on other data sets that are representative of person-re-identification (or search and
retrieval) applications. Finally, a practical implementation of this framework would require
a strategy to purge irrelevant concepts and validation data over time, and bound the system’s

memory consumption.
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Abstract

Face Recognition (FR) remains a challenging problem in video surveillance. Facial models
of target individuals are typically designed with limited numbers of reference stills or videos
captured for an enrollment process. Furthermore, variations in capture conditions contribute to
growing divergence between these models and faces captured during operations. Adaptive sys-
tems have been proposed for the update of facial models with new facial trajectories that may
have been captured under different conditions, and representative of different concepts. Al-
though these systems seek to maintain up-to-date facial models, incremental updating on vari-
ous concepts may corrupt knowledge. Furthermore, only a subset of this knowledge is typically
relevant to classify a given facial capture, and knowledge about completely different concepts
may degrade system performance. This paper presents a new framework for adaptive ensem-
bles called Dynamic Multi-Concept Ensemble (DMCE) that is specialized for video-to-video
FR. A DMCE is formed with a pool of incremental learning classifiers that is dedicated to an
individual enrolled to the system, where each classifier represents different concepts detected
in reference trajectories. During enrollment and update phases, multi-modal concept densities
are gradually estimated through on-line clustering of reference facial trajectories. Given an

input video stream, these densities allow to evaluate the competence of each classifier for faces
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captured during operations. The ensemble fusion function is thereby adapted to each facial
capture by dynamically weighting classifiers according their relevance for capture conditions.
For proof-of-concept, the performance of a particular implementation of DMCE is assessed
using videos from the Faces in Action and Chokepoint datasets. Results indicate that the pro-
posed approach provides a higher level of accuracy than reference systems for video-to-video

FR and for dynamic selection, while significantly reducing time and memory complexity.

4.1 Introduction

Face recognition (FR) has become a valuable function for several video surveillance (VS)
applications, most notably for the detection of individuals of interest over networked video
cameras. Some common applications are watch-list screening (Bashbaghi et al., 2014) (using
still-to-video FR), and person re-identification (Pagano et al., 2014) (using video-to-video FR).
While each application has its constraints, they all rely on the design of robust face models for
matching. A face model of a target individual can be for example a set of template extracted
from one or more reference images (galleries of a template matcher), a manifold or statisti-
cal model estimated by training with reference images (parameters of a neural network or a
statistical classifier), a dictionary learned from reference images (for a sparse representation

classifier), a face manifold, etc.

This paper focuses on the design of accurate and robust face classification systems for video-
to-video FR in changing surveillance environments, as found in many person re-identification
applications. Given faces and sometimes soft biometrics captured in video, these systems pro-
vide decision support to operators by recognizing individuals appearing over several live or
archived video feeds. To design a face model, Regions of Interest (ROIs) are captured for a
same person in reference videos by an operator to enroll individuals of interest appearing on
a camera viewpoint. Then, during operations, ROIs captured in live or pre-recorded video
streams are matched against face models of target individuals previously enrolled into the sys-
tem. In this context, the performance of state-of-the-art commercial and academic systems

is limited by the difficulty in capturing high quality ROIs from video captured under semi-
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controlled (e.g. at inspection lanes, portals and other security checkpoints) and uncontrolled
(e.g. in cluttered free-flow scenes at airports or casinos) conditions. Performance is degraded
by variations in facial appearance due to changes in pose, scale, orientation, expression, illu-

mination, blur, occlusion and aging.

In VS, many state-of-the-art FR systems process information in terms of face streams or tra-
jectories' formed by a person tracker (using faces or soft biometrics). Fusion of system pre-
dictions over a trajectory can lead to robust spatio-temporal recognition (Zhou et al., 2006;
Barry and Granger, 2007; Matta and Dugelay, 2009). The various conditions under which a
face has been captured with video cameras may be represented in a face model for classifica-
tion as different concepts, i.e. the intra-class data distribution in the input feature space. Given
a new reference face trajectory extracted from a video sequence, new concepts can emerge
because of variations in camera capture conditions (lighting, occlusion, scale, sharpness, reso-

lution, etc.) and in individual behavior (motion blur facial pose, facial expression, etc.).

An extensive collection of reference ROIs representing all possible capture conditions and
camera viewpoint is rarely available for the initial design of facial models in VS applications.
While this limits system performance when matching against faces captured under unknown
conditions (concepts), new reference trajectories may become available over time for a target
individual. This can be used to update and improve the robustness of facial models to intra-class
variability. In fact, facial trajectories that are representative of previously-unknown concepts
may become available after initial enrollment through some re-enrollment process, self-update,
or other sources. Video-to-video FR systems should efficiently adapt face models to integrate
these new trajectories without corrupting previously-learned knowledge of the system (other

concepts represented in face models) to remain responsive to all possible conditions.

The update of face models over time with new reference trajectories falls within the area of
adaptive pattern recognition. Adaptation can either be supervised or semi-supervised, de-

pending on whether reference trajectories are labeled manually by an analyst or automatically

' A trajectory is defined as a set of ROIs corresponding to a same high quality track of an individual

across consecutive video frames.
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according to some confidence function. Moreover, several methods have been proposed for
adaptation using either a single incremental learning classifier, or adaptive ensembles of classi-
fiers (Kuncheva, 2004b). In order to preserve previously-acquired knowledge, and yet remain
responsive to new information, numerous promising ensemble-based methods have been pro-
posed for adaptation in dynamically changing environments with concept drift (Ortiz Diaz
et al., 2015; Polikar et al., 2001; Ramamurthy and Bhatnagar, 2007), some of which are spe-
cialized FR systems for VS (Pagano et al., 2014). In this case, adaptation is usually performed
by augmenting the pool generated to construct ensembles, either by training new classifiers on
newly available data, updating existing classifiers and/or the ensemble fusion function. While
the addition of new classifiers can mitigate the effects of knowledge corruption (Pagano et al.,
2014; Polikar et al., 2001), a FR system for VS may also benefit from a dynamic adaptation of

ensemble fusion rules during operations.

Although temporally related, a trajectory may contain ROIs representative of one or more con-
cepts. It can be typically represented as a multi-modal distribution, modeling these different
concepts in the feature space. When operating with a pool of diverse classifiers, each spe-
cialized in different concepts, only a subset would therefore be competent for each capture
condition. Numerous adaptive ensemble methods propose to update classifier subsets or fusion
functions based on the observed concepts (Ortiz Diaz et al., 2015; Ramamurthy and Bhatna-
gar, 2007), but they are usually designed for concept-drift applications, where the presence of
a single concept is considered in the input stream. In addition, these methods only employ a
static fusion function that is periodically updated based on the ensemble performance over a

recent window of samples (e.g. for a weighted majority vote (Ortiz Diaz et al., 2015)).

Dynamic adaptation (per input ROI) of the ensemble fusion functions may be achieved during
operations using dynamic ensemble selection methods. Several dynamic selection methods
have been proposed in the literature that evaluate a dynamic region using validation data to
assess classifier competence (Britto et al., 2014). For each input ROI captured during oper-
ations, a neighborhood may be evaluated within a representative validation data set stored in

the system. Then, this neighborhood may be used to evaluate classifier competence w.r.t. to
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the inputROI, for example by measuring their classification performance on this labeled data

(Woods et al., 1996).

While these methods can improve system accuracy by preventing unrelated classifiers from
affecting output predictions, they may interfere with the ability to perform real-time recognition
in VS environments. For each input ROI extracted from an operational trajectory, dynamic
selection relies on a costly neighborhood evaluation. Time and memory complexity depends
on the size of validation data stored in memory, and the size of this validation set would grow
over time to represent new concepts. In addition, these methods are limited by the level of intra-
class variability represented in facial models (classifier parameters) and validation data. Given
a probe ROIs from an unknown concept, incorrect classifier competence estimation is likely
to occur because to estimated neighborhood are comprised of data from unrelated concepts,

leading to incorrect classifier prediction.

This paper presents a new framework for adaptive ensembles specialized in video-to-video
FR, called Dynamic Multi-Concept Ensemble (DMCE). It allows to update facial models with
new reference facial trajectories made available after initial enrollment, and to dynamically
adapt ensemble fusion functions to changing operating conditions. DMCE has evolved from
the framework presented in (Pagano et al., 2014), that relies on a change detection mechanism
to guide the adaptation of a pool of incremental learning classifiers when new data become
available. A DMCE is designed for each target individual enrolled to the system using a pool
of incremental learning classifiers, where each one represents different concepts detected in
reference trajectories, and performs adaptation at three different levels: 1) ensemble structure,

2) classifier parameters, and 3) fusion function.

During enrollment and update phases, multi-modal concept densities are gradually estimated
through on-line clustering of reference trajectories to represent the observation conditions rep-
resented by the classifiers. These allow to perform a dynamic adaptation of ensemble fusion
functions for each input ROI during operations. Given a ROI extracted from an operational

trajectory, the competence of each classifier is estimated from the ROI’s degree of belong-
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ing to concept regions, which is then used to weight its fusion function. This method for
competence estimation has lower computational complexity than dynamic selection methods
involving neighborhood estimation in validation datasets, as well as a more robust compe-
tence estimation for input ROIs from unknown concepts, free from classifier-induced biases.
Finally, ensemble output responses are accumulated along trajectories formed by a person or

face tracker, for robust spatio-temporal prediction.

For validation, a particular implementation of DMCE is proposed. On-line Fuzzy C-Means
(Bezdek et al., 1984) is used to cluster facial ROIs, and uncover multi-modal concept mod-
els. Individual-specific ensembles of 2-class ARTMAP classifiers (Carpenter et al., 1992) are
trained with an incremental learning strategy based on Dynamic Particle Swarm Optimization
(Connolly et al., 2012). During operations, a dynamic weighted average fusion rule exploits
the Fuzzy C-Means degree of belonging to the closest cluster of each concept to dynami-
cally weight classifiers. The accuracy and resource requirements of this system is assessed
using facial trajectories extracted from videos of the Face in Action (Goh et al., 2005) and the
Chokepoint (Wong et al., 2011) databases. They are representative of real-world VS applica-
tions, and exhibit both gradual and abrupt changes. The performance of the video-to-video
FR system implemented with DMCE is compared to the same implemented using three dif-
ferent fusion rules: (1) average score-level fusion, (2) dynamic-selection DS-LA OLA (Woods
et al., 1996), and (3), dynamic score-level weighted average using DS-LA OLA accuracy as
weights. For references, it is also compared to dynamic adaptations of a probabilistic KNN
(Holmes and Adams, 2002), TCM-kNN (Li and Wechsler, 2005), and the adaptive sparse cod-
ing FR system (Mery and Bowyer, 2014).

The next section of this paper presents an overview of the literature on FR in VS, followed
by adaptive ensemble strategies in Section 3. In Section 4, the new DMCE framework is
presented, along with the specific implementation considered for validation. In Section 5,
the experimental methodology (video data, protocol and performance measures) is described.

Simulation results are then presented and discussed in Section 6.
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4.2 Face Recognition in Video Surveillance
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Figure 4.1 General video-to-video face recognition system.

scores

This paper focuses on the design of accurate video-to-video FR systems, embedded as decision
support tools for intelligent VS. Individuals of interest are enrolled to the system by an analyst,
and their facial models may be refined over time as new reference face trajectories become
available. During operations, facial captures from streams provided by a network of digital
cameras are matched against these facial models, to alert the analyst to the possible presence

of individuals of interest.

Figure 4.1 presents a general system for video-to-video FR. During operations, each camera
captures streams of 2D images from a particular viewpoint, which are first processed by a
segmentation module to isolate ROIs corresponding to the actual facial regions. Discriminant
features are then extracted to generate ROI patterns q. These are then matched against the fa-
cial model of each individual i stored into the biometric database by the classification module,
to produce matching scores s;(q). In parallel, tracking features b are extracted to follow the
position of ROIs over several frames, regrouping them per track (or trajectory). Tracking infor-
mation are finally combined with matching scores, to provide robust identity prediction. During
enrollment, facial models of each individual i are design a priori using one or more reference
ROI patterns a’, extracted from a video sequence or trajectory. For example, when classifica-
tion is performed using neural networks (e.g multi-layer perceptrons (Riedmiller, 1994) and

ARTMAP neural networks (Carpenter et al., 1991)) or statistical classifiers (e.g. naive Bayes
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classification (Duda and Hart, 1973)), facial models consist of parameters estimated during

their training with reference ROI patterns.

Numerous techniques have been proposed for video-to-video FR, combining still FR tech-
niques with spatial and temporal information (Zhou et al., 2006; Barry and Granger, 2007;
Matta and Dugelay, 2009). For example, classifier scores may be accumulated over trajecto-
ries of correlated ROIs, to increase the reliability of final predictions and reduce ambiguity.
However, dedicated systems for VS are not numerous (Pagano et al., 2014). FR in VS is con-
sidered as an open-set problem, where it is assumed that a majority of faces observed during
operations do not belong to individuals of interest. Some specialized architectures have been
presented to address this specificity, such as the open-set TCM-kNN, a global multi-class clas-
sifier employed with a specialized rejection option for unknown individuals (Li and Wechsler,
2005). In addition, further specialization have been proposed with modular systems designed
with individual-specific detectors (one or two-class classifiers). Such class-modular architec-
ture have been shown to outperform global classifiers in applications where the design data is
limited w.r.t. the complexity of underlying class distributions and to the number of features

and classes (Oh and Suen, 2002; Tax and Duin, 2008).

In addition to increasing classification performance in complex and ill-defined recognition en-
vironment, class-modular architectures exhibit multiple advantages for FR in VS applications.
They allow to specialize feature subset and decision threshold for each individual, in addition

to provide a higher flexibility when adding, updating or removing individuals of interest.

4.3 Adaptive Ensemble Strategies for Video to Video Face Recognition

This paper focuses on the adaptation of facial models given new blocks of reference data (ROI
patterns in reference trajectories) becoming available over time. Two families of adaptive meth-
ods have been proposed in the literature, either involving the incremental update of a single
classifier, or in an ensemble of classifiers (EoCs). On one hand, incremental learning classi-

fiers (such as the ARTMAP (Carpenter et al., 1992) and Growing Self-Organizing (Fritzke,
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1996) families of neural networks) are designed to adapt their parameters in response to a new
block of data. On the other hand, EoC techniques adapt the ensemble structure (adding/remov-
ing classifiers to a pool base), and the selection of classifiers and/or fusion function (Kuncheva,
2004b). The parameters of the classifiers in an ensemble can also be adapted, when ensembles

of incremental learning classifiers are considered (Pagano et al., 2014).

As highlighted by the plasticity-stability dilemma (Grossberg, 1988), an incremental classifier
should remain stable w.r.t. previously-learned concepts, yet allow for adaptation w.r.t. relevant
new concepts that emerge in new reference data. While updating a single classifier can translate
to low system complexity, it has been observed that the incremental learning of significantly
different reference data can corrupt the previously acquired knowledge (Connolly et al., 2012;
Pagano et al., 2014; Polikar et al., 2001). This can be detrimental to FR performance in VS
environments where different concepts are learned over time, as reference data become avail-
able. To address this limitation, adaptive EoC strategies have been successfully applied to FR
in VS applications to combine diversified classifiers into an ensemble to improve the system’s

overall performance and plasticity to new reference data (Pagano et al., 2014).

4.3.1 Generation and Update of Base Classifiers

Numerous techniques have been proposed in literature to adapt classifier ensembles to streams
of data with changing underlying distributions. Following the definition of Gama et al. (Gama
et al., 2004) and Ditzler et al. (Ditzler and Polikar, 2011), these methods can be differentiated

by the way they handle concept drift, either using passive or active approaches.

Passive methods are designed to continuously adapt to new data without monitoring possi-
ble concept drifts, that are handled through automatic adaptation mechanisms. For exam-
ple, when a new batch of data become available, Boosting methods from the Learn++ family
(Mubhlbaier and Polikar, 2007; Muhlbaier et al., 2009; Polikar et al., 2001) propose to generate
one or several new classifiers, and combine them with previous ones through weighted majority

voting.
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In contrast active methods monitor data streams to detect concept drifts, in which case specific
adaptation mechanisms are triggered. For example, in the Just-in-Time classification algo-
rithm for recurring concepts (Alippi et al., 2013), a density-based change detection is used to
regroup reference samples per detected concept, and update classifiers using this knowledge
when the observed data drift toward a known concept. Similarly, with the Diversity for Deal-
ing with Drifts algorithm (Minku and Yao, 2012), two ensembles with different diversity levels
are maintained over time. When a significant discrepancy is detected though the monitoring
of the system’s error rate during operations, the high diversity ensemble is used to assimilate
new data and converge to a low diversity ensemble, and a new high diversity one is generated
through bagging. Other methods rely on concept change detection to decide whether to train a
new classifier on recent data, or leave the ensemble unchanged (Ramamurthy and Bhatnagar,
2007; Ortiz Diaz et al., 2015). A new classifier is added only if a new concept is detected in the
observed data, which limits unnecessary system growth with redundant information. Follow-
ing the same rationale, Pagano et al. (Pagano et al., 2014) proposed an active EoC approach for
FR in VS, with a dedicated ensemble of 2-class incremental classifiers for each enrolled indi-
viduals. Changes are detected in the reference data using the Hellinger drift detection method
(Ditzler and Polikar, 2011), to only update the ensembles with a new classifier when an abrupt
change is detected. In addition, as the ensembles are comprised of incremental Probabilistic
Fuzzy-ARTMAP classifiers (Lim and Harrison, 1995), they can be updated when gradual drifts

are detected.

In the VS environment considered in this paper, facial models must be updated to integrate
knowledge about new concepts and yet preserve previously-observed ones, as they may still be
relevant in future operations. In (Pagano et al., 2014), this compromise is addressed through
an active strategy, mixing ensemble and incremental learning techniques. However, while this
method enables to maintain a diverse ensemble with classifiers specialized on the different
concepts observed in reference data, a dynamic adaptation should also be considered for op-
erations. Depending on the nature of any ROI pattern extracted from operational streams (i.e.

the concept it represents), only a fraction of the classifiers is relevant, and classification perfor-
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mance may be increased by preventing unrelated classifiers to affect the final decision. Such
adaptation occur on the decision level of an ensemble, either at the selection and/or the fusion

stage.

4.3.2 Classifier Selection and Update of Fusion Rule

In addition to updating the pool of base classifiers, adaptive ensembles techniques for con-
cept drift also incorporate strategies to adapt selection and fusion functions. For example, with
horse racing ensemble algorithms (Blum, 1997; Zhu et al., 2004), a static ensemble of L classi-
fiers is associated with weights that are updated over time depending on their performance over
past data. These weights can then be used to perform fusion through weighted majority, or to
perform selection by using the prediction of the classifier with the highest weight as the ensem-
ble decision (Hedge B method). Another example is the Winnow algorithm (Littlestone, 1988),
that only updates a classifier weight when it gives a correct prediction despite the ensemble

decision being wrong (promotion step).

Other methods combine strategies to update the pool of base classifiers in addition to the fusion
rule. For example, the Learn++.NSE variant (Muhlbaier and Polikar, 2007) relies on weighted
majority voting for fusion, and proposes to keep track of the performance of each classifier of
the ensemble w.r.t. past batches of operational data. These measurements are used as voting
weights, and are updated to integrate new batches of data, giving more weight to recent mea-
surements. When a recurring concept is re-encountered, historical measures enable to detect
the presence of a known concept, and increase the weights of related classifiers. In the same
way, the Fast Adapting Ensemble method (Ortiz Diaz et al., 2015) implements heuristics to
either activate or deactivate classifiers depending on the detected concept, as only activated
classifiers participate in the final decision. When the presence of a previously encountered
concept is detected in the operational data, classifiers associated to this concept re-activated,

and their weights are adjusted.
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However, the methods described above only apply a static selection or fusion rule (Britto et al.,
2014). The fusion parameters are updated a posteriori after an observation over a window of
past data, and remain the same for every ROI pattern until the next update. In addition, they are
designed for concept drift applications, where the stream of operational data is monitored for
possible drifts toward new concepts. Concept evaluation, and thus adaptation, only assumes the
presence of a single concept in the input stream. This assumption is not always valid in FR in
VS applications. In a trajectory of an individual’s face, multiple concepts can be observed, for

example corresponding to changes in facial pose w.r.t. the camera during the same sequence.

A dynamic adaptation of the fusion rule has been proposed by Jacobs et al. with the Mixture
of Experts system (Jacobs et al., 1991). It is comprised of an ensemble of neural network clas-
sifiers, as well as an additional gating network. For each input, the gating network computes
the probabilities that each neural network of the ensemble is the most competent to classify it.
These probabilities are then used to compute the fusion function, as the weighted average of
the network outputs. Although providing dynamic weighting, the architecture of this method
remain static, as the gating network has to be re-initiated from the start with previous and new
reference data to remain relevant. It may also require the storage of previous data, for example
to adapt its structure to the addition of a new classifier in the ensemble. Dynamic selection
methods have also been proposed in the literature to provide a dynamic competence estimation
of the most relevant base classifiers per input pattern (Britto et al., 2014). For each input to
classify, these methods involve the computation of a region of competence W defined as its k
nearest neighbours in a set of validation data of known labels. Numerous methods have been
proposed to compute classifier competence from the region ¥. For example, in (Woods et al.,
1996), the accuracy of each classifier is computed as the percentage of correctly classified sam-
ples from Y, and the classifier with the highest accuracy is selected for classification. Another
example is the DS-KNN method (Santana et al., 2006), that proposes to determine an optimal
ensemble subset instead of a single best classifier, considering both accuracy and ensemble

diversity measures. The N’ most accurate classifiers in ¥ are first selected to generate an inter-
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mediate ensemble. Then, only the N” most diverse classifiers of this ensemble are selected for

classification, using double-fault diversity measures.

However, the performance of dynamic selection methods depends heavily on the storage of a
representative set of validation data to estimate classifier competence. To increase the robust-
ness of this representation of intra-class variability, the validation set is likely to grow over
time as new concepts are observed in reference trajectories. In addition, the estimation of com-
petence regions W involve a computationally intensive nearest neighbor estimation for each
input capture, where computational complexity grows with the size of the validation set. This
can which significantly reduce system response time, and its ability to rapidly detect individu-
als. Finally, although the dynamic computation of competence regions enables to benefit from
the most relevant information, these methods remain sensitive to the presence of unknown
concepts in the operational streams. When presented with ROIs captured under conditions
not represented in facial models nor validation data used to estimate competence, incorrect
competence prediction is likely to occur, either because of ill-defined competence regions W
(comprised of data from unrelated concepts), or poor classifier performance. In FR in VS, the
dynamic adaptation of ensemble fusion function should not interfere with the ability to per-
form rapid recognition, nor corrupt system performance when unknown concepts are observed

during operations.

4.4 Dynamic Multi-Concept Ensembles of Classifiers

In this paper, a new adaptive ensemble framework, called Dynamic Multi-Concept Ensemble
(DMCE), is proposed for video-to-video FR (see Fig. 4.2). The DMCE framework is designed
to update facial models with newly available reference trajectories over time, and dynami-
cally adapt its behavior during operations based on changing face capture conditions in video

streams.

A DMCE is comprised of a pool of incremental classifiers P = {ICi yi Ci, ...,ICioi} per enrolled

individual i, where O' is the number of changes detected in reference trajectories. It relies on a
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Figure 4.2  Architecture of a system for video-to-video FR based on the proposed
DMCE framework.

change detection mechanism to guide the updating strategy for each reference trajectory T[]
available at time . To account for intra-class variations in trajectories, a concept detection
module estimates concept densities Q! (o = 1,...0") representing overlapping regions of com-
petence of the ensemble classifiers. During operation, these densities are used to evaluate the

competence of each classifier for a given input ROI pattern q, such that the ensemble fusion

functions are dynamically adapted.

4.4.1 General Framework

4.4.1.1 Design and Update Architecture

For each target individual i enrolled to the system, the design and update architecture is com-

posed of modules for:
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Long Term Memory, to store the classifier pools Pl = {ICi ,ICQ, ...,ICioi} and the concept

models Q! (o = 1,...0") for future updates and system operations.

Concept change detection, to detect abrupt changes between reference trajectories Tt

and concept densities Qﬁ, (0=1,...0Y.

EoC training/update, to update or train new incremental classifiers IC', with new refer-

ence trajectories.

DMCE framework can be implemented with multiple types of classifier and change detection

method, as long as classifiers can perform incremental learning (to be updated with new tra-

jectories from similar concepts), and concepts densities are modeled on-line as multi-modal

distributions in the feature space (to represent intra-class variability in trajectories).

Algorithm 4.1: Design and update procedure for individual i.

DR I -

10
11
12
13
14
15
16

Input: Reference trajectory for individual i T'[t], provided at time t;

Output: Updated Long Term Memory LT M,

- Compute A[t], the set of reference ROI patterns obtained after feature extraction and
selection of ROIs from T'[¢] ;

- Compute .o7[t], the concept density of A'[t];

- Perform change detection to determine the index o* of the closest concept density to
[t];

if concept change detected then

- Create a new concept density Qioi R it

- Update O' < O' + 1;

- Train a new classifier IC ioi with A[f];

- Update the pool P' = P'UIC,;
else

//Gradual change detected

- Update the concept densities Q! = Q! . U.o/'[t];

- Update IC!. with A'[t];

end

- Store concept densities Q (0 = 1,...,0') and updated pool P’ into LT M,
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A general enrollment and update procedure is presented in Alg. 4.1. Once the set of ROI
patterns A’[f] has been extracted from T'[¢], their corresponding concept density .7[t] is esti-
mated. Change detection is then performed between .7'[t] and the stored concept densities to
select the index o* of the closest density Qf)*. If a gradual change is detected, Ai[t] is combined
with selected non-target ROI patterns to update the corresponding classifier ICé*. On the other
is stored, and a new classifier ICf)i +1
is trained with A'[t] combined with selected non-target ROI patterns, and added to P'. Finally,

hand, if an abrupt change is detect, a new density Qgi +1

the updated set of concept densities Q/ (0 = 1,...,0") and the new pool P' are stored into LT M’

for future update and operations.

4.4.1.2 Operational Architecture

For each individual i, the operational architecture is composed by modules for:

Classification, using the pool P’ = {ICi,IC}, ...,ICé),»} to compute matching scores s (q)
(o=1,...,0.

e Classifier competence evaluation, to measure the competence of each classifier 7/ (q)

(0 = 1,...0") w.r.t. each input pattern q.

e Dynamic decision fusion, to compute predictions p’(q), combining classifier scores s (q)

and competence measures 7.(q) (0 = 1,...0").

e Tracking, to follow the different individuals across camera view points, and regroup ROIs

of a person intro a trajectory.

e Evidence accumulation, to accumulate predictions of each pool according to trajectories.
This general track-and-classify strategy has been shown to provide a high level of perfor-

mance in video-based FR Matta and Dugelay (2009).

A general operational procedure is presented in Alg. 4.2, for each individual of interest 7, con-

sidering a track T captured by a surveillance camera. For each frame, an ROI is first extracted,
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Algorithm 4.2: Operational procedure for individual i over a trajectory 7.

Input: Stream of input frames from T, pool P' and Long Term Memory LT M';
Output: Final decision d' for track T’
for each frame do
- Detect ROI and compute pattern q;
for each concept density o =1,...,0" do
‘ - Compute 7' (q) the competence of classifier IC, w.r.t. q;
end
for each classifier IC!, 0 =1,...,0' do
‘ - Compute s',(q), the classification score for individual i;
end
- Compute the prediction p’(q) through dynamic weighting or selection of
classifiers;
12 - Accumulate p'(q) into the final decision d' for track T
13 end

o X AN R W N -

—
L

and the corresponding pattern q computed. Competence measures 7 (q) and classification
scores s'(q;) (0 = 1,...,0") related to input q are then computed for every classifier in P'.
These are combined through dynamic weighting or selection to obtain the prediction pi(q).
The predictions for each input ROI in the trajectory T are finally accumulated into the final

decision d'.

4.4.2 Concept Densities and Dynamic Weighting

Variations in capture conditions, camera properties and individuals’ behavior tend to generate
complex multi-concept facial models in VS applications. While an active ensemble methodol-
ogy that trains new classifiers when a concept change is detected in reference trajectories may
allow to gradually represent this intra-class variability in facial models, an additional level of
adaptation may be required during operations, as abrupt changes may also be observed within
facial trajectories. For example, when a trajectory captured by a specific camera viewpoint is
likely to be comprised of a majority of profile face poses, frontal poses can occasionally be
captured when the individual’s head moved towards the camera’s direction. These facial poses

could be related to the same concept as the majority of ROIs captured by a different camera.
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Similarly, a small fraction of ROIs belonging to two different reference trajectories which com-
parison would trigger an abrupt change could also be related to the same concept. The active
updating methodology presented in Algorithm 4.1 may thus generate overlaps in the regions of

competence of the classifiers.

Accordingly, DMCE proposes to perform concept change detection using multi-modal concept
densities. This enables to implement an active ensemble strategy that has been shown to im-
prove system performance (Pagano et al., 2014), as well as provide a more accurate concept
representation accounting for possible overlaps in classifiers’ regions of competence. While
an abrupt concept change would be detected between trajectories comprised of a majority of
samples from different concepts, possible overlaps may be represented by common density
modes in the feature space. These densities allow to provide DMCE with an additional level of
adaptation during operations. A dynamic ensemble fusion rule is proposed for weighting the
influence of each classifier according to their competence, estimated as the closeness of each

probe ROI to the corresponding concept densities.

For a specific implementation, densities should be estimated with a method that allows for
soft associations, to account for overlap and dispersion in regions of competence. In addition,
a suitable method would allow to model multi-modal distributions from a limited amount of
ROI patterns, as their amount in reference trajectory may be less that the dimensionality of the
density feature space. Finally, densities should be updated on-line over time as new reference

trajectories become available, without requiring access to previously-captured data.

An illustration is provided in Figure 4.3. The DMCE training methodology applied to individ-
ual 201 of the FIA dataset (Goh et al., 2005) detects 5 abrupt changes. In this figure, only two
concepts densities are represented, respectively Q%Ol and Qﬁm, with 3 clusters each. Reference
patterns used to generate these models have been projected into a 2D space using Sammon
mapping, and associated to their respective clusters by color. In addition, the closest ROI pat-
tern to each cluster is presented, to illustrate the relation between clusters and real operating

conditions. In this example, a multi-modal concept representation enables to model an over-
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Figure 4.3 2D projection of 2 of the 5 concept densities (1 and 4) generated by the
change detection module of DMCE for individual 201 of the FIA dataset Goh et al.
(2005), following the protocol presented in Section 4.5. For each concept density,
reference patterns used for its generation have been projected into a 2D space using
Sammon mapping. Each cluster is presented in a different color, along with the ROI
associated to the closest pattern to its center.

lapping competence region between classifier IC%O1 and IC%OI. While model Qim has been
generated with a majority of profile views (2 clusters out of 3), it can be observed that the
bottom left cluster is comprised of semi-frontal views, located in an area close to the frontal

view clusters of model Q%m.

For each input ROI pattern q captured during operations, this information is then exploited
by DMCE to dynamically adapt the ensemble fusion function to q. In DMCE, competence
measures 7. (q) are computed as functions of the distances between q and the closest cluster
of each concept density. Figure 4.3, with an input pattern q corresponding to a profile view,
201
1

competence T}Ol(q) would then necessarily be higher than 7;"'(q). However, for an input

pattern corresponding to a frontal view close to the lower left corner of the Sammon space
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of Figure 4.3, the two classifiers would have closer competence measures, and thus similar

influence in the final decision.

4.4.3 Specific Implementation

A specific implementation of DMCE is proposed for the experiments of this paper. This sec-
tion only presents the details related to the main contributions of DMCE: (1) concept density
models, (2) change detection procedure, and (3), dynamic competence evaluation and decision

fusion. Further implementation details are presented in the next section on methodology.

4.4.3.1 Concept Densities

Each classifier /C}, is associated to a concept density ), = {1} 1}, } (I = 1,...,L;), with L],
the number of clusters, “271 the center of cluster / in the feature space and nfﬂ the number
of reference patterns associated to it during training. Clusters may overlap and be dispersed
in the feature space, and the ROIs captured during operations may not exactly fit the concept
regions detected during training. For these reasons, clustering methods that allow for soft clus-
ter associations to model concept overlap are considered to estimate densities from reference
trajectories. In addition, on-line methods are considered to avoid storing previous data and

re-start clustering from scratch when a concept density is updated.

Incremental clustering methods using Gaussian Mixtures Models (GMMs) have been proposed
to update densities with new batches of data (Song and Wang, 2005). However, in the VS
scenario considered in this paper, the limited amount of ROI patterns in reference trajectory
v.s. the dimentionality of the feature space would generate ill-defined distributions. For this
reason, an incremental approach for clustering with Fuzzy C-means (FCM) (Bezdek et al.,
1984) using the incremental methodology of (Song and Wang, 2005) is considered in this
paper. FCM has been selected for the low computational and memory complexity of the cluster
belonging function. In this method, clustering is first performed on the ROI patterns from the

new trajectory, and the resulting density is combined with the old concept density that has to be
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updated. More precisely, if a gradual change is detected between .7'[t] and a concept density

Q.. /'[t] is considered to be comprised of a majority of clusters similar to Q. In this case,

the two densities are merged, and the classifier associated to Q! _ is updated using Al [1].

Algorithm 4.3: Merging of concept densities <7*[f] and Q! ..

e X &

10

11
12
13
14

15
16

18
19

20

21
22
23
24
25

Input: Trajectory density </"[t], concept density to update Qi .;
Output: Updated concept density &' 2*;
- Initialize Q. <0 ;
- Compute 5} and c;]’;, the average and standard deviation of the distances between each
center of Q.;
- Compute the fusion threshold }/j)* = 5} — oi’};
for each center p, [t] e’ [t] do
for each center 1. . € Q). do
- Compute 5}(1,1’) = dEucl(I«lé*J»NfLy t]) s
end
- Find I* = argmin{8}(1,l') : 1 = 1,..., L], } the index of the closest center . ,. from
Q. to py t];
if 5/(1*,/') < 7., then
| - p)e poand py (1] are close;
else |
| - Update @y = Q0 U{ud [, 7, [1]}5
end
end
for each center ,u;% € Qi. do
for each center py ,[t] € </"[1] do
if p. , and iy 1] are close then |
Moge g+ Myge g1 [t 1 1]
Mo 1 [ ’

- Update nj,. ; = . ;+ny yt];

- Update [,L(’;* ;=

end
end

- Update Q. = Q" . U {ué*’,,né*l};

end
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The density merging process is presented in algorithm 4.3. First of all, the fusion threshold
is computed following ¥, = 5’ f, with 6’ and G respectively the average and standard
deviation of the distances between each center of Q!.. This ensures that the updated clustering
structure remains similar after fusion. The distances 5}(1 YA =1,..,L,1I'=1,.,L) are
then computed between each centers of the two densities, to find, for each center “,fx, st e it
the closest center ué*’l* € Q!.. If the distance 5]’}(1*, I') is lower than ¥/., the two clusters are
considered close. Then, every center ,uth pltled /[t] not close to any center from Qi is added to

the final updated density Q"' .. Finally, each center w,, e ! isalsoaddedto Q"

0%

depending
on its nature:
o If ,u(")* ; 18 not close to any center: u(’;* ; 1s added as-is.

o If ué* ; 18 close to at least one center: ,ué* ; is merged with every close, center as a center of

mass weighted by the number of associated samples, and added to the model.

4.4.3.2 Change Detection

For each new reference trajectory with ROI patterns A’ [t], changes are detected between the
corresponding concept density .<7'[t] and each stored density Q! by monitoring the following

distance measure:

al(o t L, Z Z Eucl .uol uA l’[ ]) 4.1)
=1l'=

with dgyer (1), 1t »[1]) the Euclidean distance between ! ; and g} ,[t]. This distance is then

compared to a dynamic threshold defined by:

I =6i—gci (4.2)
where SC’ and C;C’ are respectively the average and standard deviation of past &/(0,¢) measures.
This measure allows to detect if an abrupt change occurred between the concepts represented

by <7![t] and the other concept densities stored in memory. If .7[t] is comprised of a majority
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of new clusters (abrupt change), a new classifier is trained with the corresponding data, and a
new concept density added to the system as Q] | = ./"[r].

4.4.3.3 Dynamic Competence Evaluation and Decision Fusion

In the proposed system, each classifier IC (0 = 1,...,0") is associated to a concept density
Q! representing the reference data used for its training. For each input pattern q, the closer
q is to Q, the more competent IC!, is considered for classification. For each concept density,

the competence measure is computed from the Fuzzy C-means (Bezdek et al., 1984) degree of

belonging to closest cluster, following:

1
N dEucl (qa u(l;,[*)m

() = wi(q)”

4.3)

with Ix = argmax{w;(q)" : | = 1,...,L'} the index of the closest cluster of Q/, and m the

0’

fuzziness parameter of Fuzzy C-means.

The competence measures 75(q) (0 = 1,...,0"), as well as the classification scores s! (q) are
combined to obtain the final score S'(q) following:
_ X t(a)-sh(a)

S'(q) :
2:1 Toi (q)

4.4)

A score-level dynamic weighted average is considered for decision fusion since it provides a

reliable dynamic adaptation in the following three cases:

a. when q is close to a known concept region: the influence of competent classifiers is in-

creased through higher weights.

b. when q is close to a concept region that’s been observed in the reference data of several
classifiers: competence overlap is accounted for by providing similar weights for related

classifiers.
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c. when q is sampled from an unknown concept: every classifier contribute to the final
decision in a similar way, to rely on the diversity of the full ensemble to classify samples

related to previously-unknown concepts.

4.5 Experimental Protocol

4.5.1 The Faces in Action Dataset

4.5.1.1 Dataset presentation

The Carnegie Mellon University Faces In Action (FIA) face database (Goh et al., 2005) is the
first dataset considered for experimental validation of DMCE. It is composed of 20-second
videos capturing the faces of 221 participants in both indoor and outdoor scenario, each video
mimicking a passport checking scenario. Videos have been captured at three different horizon-
tal pose angles (0° and £72.6°), each one with two different focal length (4 and 8mm). For the
experiments of this paper, all ROIs have been segmented from each frame, using the OpenCV
v2.0 implementation of the Viola-Jones algorithm (Viola and Jones, 2004), and the faces have
been rotated to align the eyes (to minimize intra-class variations (Gorodnichy, 2005a)). ROIs
have been scaled to a common size of 70x70 pixels, which was the smallest detected ROI,
before fetaure extraction. The FIA videos have been separated into 6 subsets, according to the
different cameras (left, right and frontal face angle, with 2 different focal length, 4 and 8 mm)
for each one of the 3 sessions, and for each individual. Only indoors videos for the the frontal

angle (0°) and left angle (£72.6°) are considered for experiments in this paper.

4.5.1.2 Simulation scenario

The same simulation scenario is considered than in (Pagano et al., 2014). Ten (10) individuals
of interests have been selected as target individuals, subject to two experimental constraints: 1)
they appear in all 3 sessions, and 2), at least 30 ROIs for every frontal and left videos have been

detected by the OpenCV segmentation. The ROIs of the remaining 200 individuals are mixed
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into a Universal Model (UM), to provide classifiers with non-target samples. Only 100 of
those individuals have been randomly selected for the training UM, to ensure that the scenario
contains unknown individuals in testing (i.e.the remaining 100 whose samples have never been
presented to the system during training). To avoid bias due to the more numerous ROI samples
detected from the frontal sessions, the original FIA frontal sets have been separated into two
sub-trajectories, forming a total of 9 reference trajectories for design and update (see Table 4.1).
Simulations emulate the actions of a security analyst in a decision support system, that provides
the systems with new reference trajectories T'[t] to update the face models of individuals i =

1,..,10 at a discrete time t = 1,2,....9.

Table 4.1 Correspondence between the 9 reference trajectories of the experimental
scenario and the original FIA video sequences.

| Timestepr |1 |2 |3 [4 [5 |6 |7 E E |
Reference T[1] T[2] T[3] T[4] T[5] T[6] T[7] T[8] T19]
Trajectory
Corresponding | Frontal cam. Frontal cam. Frontal cam. Left cam. | Left cam. | Left cam.
FIA sequence | session 1 session 2 session 3 session 1 | session2 | session 3

Reference trajectories are selected from the cameras with 8-mm focal length in order to provide
ROIs with better quality for training. ROIs captured during 3 different sessions and 2 different
pose angles may be sampled from different concepts, and the transition from sequence 6 to 7
(change of camera angle) represents most abrupt concept change in the reference ROI patterns.
Changes observed from one session to another, such as from trajectory 2to 3,4 to 5, 7 to 8 and
8 to 9 depends on the individual. As faces are captured over intervals of several months, both

gradual and abrupt changes may be detected.

For each time step t = 1,2,...,9, the systems are evaluated after adaptation on the same test
dataset, emulating a practical security checkpoint station where different individuals arrive
one after the other. The test dataset is composed by trajectories from every session and pose
angle to simulate face re-identification applications where different concepts may be observed

during operations, but where the analyst gradually tags and submits new trajectories to the
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system to adapt face models. Every different concept (face capture condition) for which the
system can adapt is present in the test data, and thus should be preserved over time. In order to
present different facial captures than the ones used for training, only the cameras with 4-mm
focal length are considered for testing. While every facial capture is scaled to a same size,
the shorter focal length adds additional noise (lower quality ROIs), which simulates a real-life
scenario where reference and operational ROI patterns are not necessarily related to the same

capture conditions.

4.5.2 The ChokePoint Dataset

4.5.2.1 Dataset presentation

The Chokeoint Dataset (Wong et al., 2011) has been designed for person identification and
verification scenarios under real-world video-surveillance conditions. Videos from respec-
tively 25 and 29 individuals have been captured as they walked naturally through two portals
comprised of three cameras each, placed at natural choke points. For each portal, 4 capture
sessions have been performed, each time recording the individuals entering and leaving the
portal. Due to unconstrained observation conditions, variations in illumination, pose, sharp-
ness and partial occlusion can be observed in these captures. The dataset contains a total of 48
video sequences, from which 64,204 face images have been extracted by the dataset authors
using manually labelled eye position. These ROIs have been scaled to a common size of 96x96
pixels. For the experiments of this paper, the two groups G1 and G2 proposed by the dataset
authors for video-to-video verification are considered. Each group is comprised of 8 video se-
quences for all available individuals, only selecting sequences with the post frontal pose views.
The contents of each group are presented in Table 4.2. In this paper, group G1 is considered

for training, and G2 for testing.



Table 4.2 Chokepoint verification protocol, presented in (Wong
etal.,2011). Sequences are named according to their capture
conditions, with P,S and C respectively standing for portal, session
and camera, and E and L indicating if the subjects are entering or

leaving the portals.

Gl PIE_S1_C1 P1E_S2_C2 P2E_S2_C2 P2E_S1_C3
PIL_S1_C1 PIL_S2_C2 P2L_S2_C2 P2L_S1_C1
G PIE_S3_C3 P1E_S4 Cl1 P2E_S4_C2 P2E _S3_C1
PIL_S3_C3 P1L_S4 _Cl1 P2L_S4_C2 P2L_S3_C3

4.5.2.2 Simulation scenario
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A similar simulation scenario than proposed for the FIA dataset is considered. Individuals of

interest have been selected with the same constraints, i.e. present in each training and testing

session, with at least 30 ROIs in each training session. 23 individuals fulfill these constraints,

and only the first 10 are considered as individuals of interest, leaving the remaining 19 of the

dataset as non-targets. For each time step ¢t = 1, ..., 8, the compared systems are updated with

reference images from trajectory number # of G1. In the same way than with the FIA dataset,

performances are evaluated at each time step on all sequences of the G2 group.

4.5.3 Reference systems

The performance of the proposed implementation of DMCE is compared to three variants of

the same system, using different fusion rules:

a. AMCS system, presented in (Pagano et al., 2014), which can be considered as a imple-

mentation of DMCE with score-level average fusion.

b. DMCE with DS-LA OLA selection, using the local accuracy (LA) dynamic selection

method presented in (Woods et al., 1996). For each input pattern ¢, competence mea-

sures Té (q) (0=1,..., O') are computed as overall local accuracy (OLA) of the classifiers

within a neighborhood in a validation dataset, as described in Algorithm 4.4. The com-
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bined score S'(q) is determined as the score of classifier ICé*, associated to the highest

competence measure T..(q).

c. DMCE with DS-LA OLA weighting, competence measures computed following Algorithm

4.4 are used as dynamic weights for score-level weighted average fusion.

In addition, 3 reference systems are considered:

a. An adaptive and class-modular version of the open-set TCM-kNN (Li and Wechsler,
2005), previously been applied to video-to-video FR. To adapt its whole architecture,
its parameters are also updated at every time step, as well as the value of k (for the kNN)
which is validated through (2x5 folds) cross validation. Finally, a final decision threshold

@' is validated for each individual of interest using the same methodology than DMCE.

b. VSKNN, a probabilistic class-modular k-NN classifier, adapted to VS. A separate k-NN
classifier using Euclidean distance is considered for each individual of interest 7, trained
using positive reference samples from video sequences of target individual i, and a mix-
ture of negative reference samples from the UM and CM, as with DMCE. A score is then
computed through the probabilistic kNN approach (Holmes and Adams, 2002): the proba-
bility of the presence of the individual i is the proportion, among the k nearest neighbours,
of reference samples from the same individual. The value of k is also validated through

(2x5 folds) cross validation, along with the final decision threshold C

c. A FR system using Adaptive Sparse Representations (ASR) of random patches, presented
in (Mery and Bowyer, 2014). Batch learning is considered to adapt to new reference data,
and standard parameters are used, except for the number of patches that is reduced to 100

due to memory constraints.
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Algorithm 4.4: Competence computation for DMCE DS-LA OLA variants.

Input: Input pattern q;

Input: Pool EoC' and Long Term Memory LT M;

Input: Competence validation dataset dbVal,

Output: Competence measures T.(q) (0 = 1,...,0');

- Estimate the competence region W <— K nearest neighbors of q from dbVal,

for each concept model 0 = 1,...,0" do
- Compute 7' (q), the percentage of correctly classified samples from W by classifier
ICZ;

s end

N A A W

4.5.4 Specific DMCE Implementation Parameters

4.5.4.1 Feature Extraction and Selection

For each dataset, to generate the sets of reference ROI patterns A’[¢] from the reference tra-
jectories T[t] during training, as well as the input patterns q during operations, features are
extracted using the Local Binary Pattern (LBP) (Ahonen et al., 2006) algorithm, only consid-
ering the 59 uniform patterns. Each one of these D = 59 features is normalized between 0 and

1 using min-max scaling.

4.5.4.2 Classifier Training and Ensemble Prediction

In the same way than the system presented in (Pagano et al., 2014), the proposed DMCE is
implemented using Probabilistic Fuzzy-ARTMAP (PFAM) (Lim and Harrison, 1995) classi-
fiers, trained and optimized with the Dynamic Particle Swarm Optimization training strategy
presented in (Connolly et al., 2012) and (Pagano et al., 2014), using the Dynamic Niching PSO
(DNPSO) variant (Nickabadi et al., 2008a). The learning strategy is initialized with a swarm of
50 particles, 6 sub-swarms of maximum 5 particles, a maximum of 30 iterations and an early
stopping criterion of no fitness improvement for 5 consecutive iterations. After convergence,
the global best particle along with the 6 local bests associated to each sub-swarm are added to

the final pool, each one associated with the corresponding concept. For each pool EoC' and
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each input pattern q, the prediction p’(q) is produced using individual specific thresholds on
the combined scores, following p'(q) = S'(q) >= @', with @' the individual-specific decision

threshold selected during validation for a false alarm rate under 5%.

4.5.4.3 Concept Densities

Fuzzy C-Means clustering is implemented with a standard fuzziness parameter of m = 2. When
a new set of reference ROI patterns A'[f] is available, FCM clustering is performed to compute
the concept model .«'[t] = {w} ,[¢],n} ,[r]}, using the internal Calinski-Harabasz validation
measure to determine the optional number of cluster L. Clustering is validated for L' = 1
to a maximum of L' = 20 clusters, with an early stopping criterion of no improvement for 5
consecutive iterations. The weights ”f;t,l/ [t] (' =1,...,L") are determined by associating each

sample to the closest center.

4.5.4.4 Tracking and Accumulation of Predictions

Fusion of predictions from the individual’s ensemble of classifier is accomplished via evidence
accumulation, emulating the brain process of working memory (Barry and Granger, 2007).
For each initiated track » = {1,...,R} and for each consecutive ROI q U= 1,...,J) associated
with this track, EoC' generates a binary prediction p’(q j) (true, the individual is recognized,
or false). The accumulated decision is computed with a moving overlapping window of size
W = 30 ROIs (1 second in a 30 frames per second video), following d’ = Zj:’:j—W P'(q ) The
presence of the individual i in the track r can be confirmed if the accumulated response goes

over a user-defined maximum number of consecutive activations.

4.5.5 Protocol for Validation

The same protocol is considered than in (Pagano et al., 2014) and (Pagano et al., 2015). For
each time step ¢, and each individual i = 1,..., 10, a temporary dataset dbLearn' is generated,

and used to perform training and optimization of the classifiers. It is composed of ROI pat-
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terns (after feature extraction and selection) from T[t], as well as twice the same amount of
non target patterns equally selected from the UM dataset and the Cohort Model (CM) of the
individual (patterns from the other individuals of interest). Selection of non target pattern is
performed using the Condensed Nearest Neighbor (CNN) algorithm (Hart, 1968). About the
same amount of target and non-target patterns is generated using CNN, as well as the same
amount of patterns not selected by the CNN algorithm, in order to have patterns close to the
decision boundaries between target and non-target, as well as some patterns corresponding to

the center of mass of the non target population.

The experimental protocol follows the (2x5 fold) cross-validation process to produce 10 in-
dependent replications, with pattern order randomization at the 5th replication. For each in-
dependent replication, dbLearn' is divided into the following subsets based on the 2x5 cross-
validation methodology (with the same target and non-target proportions): (1) dbTrain' (2
folds): the training dataset used to design and update the parameters of the PFAM classifiers
ICI (0=1,...,L),(2) dealepi (1 fold): the first validation dataset used to select the number of
PFAM training epochs (the amount of presentations of patterns from dbTrain' to the networks)
during the DNPSO optimization, and (3), STM' (2 folds): the second validation dataset, used,
to perform the DNPSO optimization. Using recommended parameters in (Connolly et al.,
2012), an incremental learning strategy based on DNPSO is then employed to conjointly opti-
mize all parameters of these classifiers (weights, architecture and hyper-parameters) such that

the area under the ROC curve is maximized.

When a gradual change is detected, and a previously-learned concept is updated, an existing
swarm of classifiers is re-optimized using the DNPSO training strategy. The optimization
resumes from the last state — the parameters of each classifier of the swarm. On the other
hand, when an abrupt change is detected, a completely new swarm is generated and optimized
for the new concept Q’b,-. The classifiers from each concept are then combined into EoC' =
{IC i, ...,ICiO,}, and a validation ROC curve is produced from validation data from all concepts,
from which the class specific threshold ©' is selected satisfying the constraint fpr < 5% for the

highest tpr value.
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For the DMCE system using DS-LA dynamic selection, data in STM' are saved and used as
a validation dataset for dynamic selection. With the reference VSKNN system, STM' is used
to validate the k parameter. In the same way, the k parameter of TCM-kNN is validated using
STM?, along with the system’s internal thresholds. Finally, the ASR system is trained in batch
mode, with dbLearn’ accumulating at each time step. For every system, the class specific
threshold @' is validated in the same way than the proposed DMCE, with the exception of the

ASR system that directly produces decisions.

4.5.6 Performance Evaluation

System performance is evaluated at two levels:

a. Transaction level, where the testing dataset is presented one ROI at a time, and individual

predictions considered for performance evaluation.

b. Trajectory level, where the testing dataset is presented one sequence at a time, for each
individual in the database. A perfect tracker is considered, where each session of each
individual represents a different track on which predictions are accumulated for perfor-

mance evaluation.

4.5.6.1 Transaction-level performance

To measure system performance, the classifiers are characterized by their true positive rate
(tpr) and false positive rate (fpr), respectively the proportion of positives correctly classified
over the total number of positive samples, and the proportion of negatives incorrectly classified
(as positives) over the total number of negative samples. While these measurements are related
to the operating point represented by the selected thresholds @', global performance is also
represented with a ROC curve, a parametric plotting tpr against fpr for all possible threshold
values. More precisely, the area under the ROC curve (AUC) or the partial AUC (for a range of

fpr values) have been largely suggested as a robust scalar summary of 1- or 2-class classification
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performance. To focus on a specific part of the ROC curve, the partial AUC pAUC for fpr < 5%
is considered for global performance estimation. In a video-surveillance application, non-target
individuals are often much greater than the target ones. ROC measure may be inadequate as it
becomes biased towards the negative class (Weiss, 2003). For this reason, the precision-recall
space has been proposed to remain sensitive to this bias. Indeed, the precision is defined as the
ratio TP/(TP + FP) (with TP and F P the number of true and false positives), and the recall is
an another denomination of the tpr. Precision allows to assess the accuracy for target patterns.
The precision and recall measures can be summarized by the F; scalar measure, which can be

interpreted as the harmonic mean of precision and recall.

4.5.6.2 Trajectory-level performance

For each individual, the predictions are accumulated with a moving window of W = 30 ROlIs
in a trajectory. The individual is detected when the accumulated activation go past a defined
threshold. To assess the overall performance of the different systems for every individual i,
an overall accumulation ROC curve is generated, with accumulation threshold going from 0
to 30 (the size of the moving window). For each target sequence, a true positive occurs when
the maximum value of the accumulated predictions goes over the threshold In the same way, a
false positive occurs when the maximum value of the accumulated predictions for non-target
sequences goes over the threshold. To summarize the system performances, the pAUC of the
overall accumulated ROC curves is used as with the transaction-level measures. tpr and fpr
measures are also presented, for an accumulation threshold of half the size of the accumulation

window, 15 samples.

4.6 Results and Discussion

4.6.1 Transaction-level Performance

Average transaction-level performance for the the 10 individuals of interest are presented in

Figure 4.4(a) and (b) for the FIA dataset scenario, and Figure 4.4(c) and (d) for the ChokePoint
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Figure 4.4 Average transaction-level classification performance for the 10 individuals of
interest.

dataset scenario, with fpr and global pAUC (for fpr < 5%) measures. First of all, it can be
observed that TCM-kNN and ASR systems’ fpr remains above the 5% validation constraint
during the majority of the simulation for both datasets. For TCM-kNN with ChokePoint, the
fpr increase starts at t = 5, which correspond to the introduction of reference samples from
portal 2 that triggered an abrupt change detection for 8 individuals of interest out of 10. To
simplify the figures, only the performance of the other 5 systems that respected the fpr < 5%
constraint are presented for pAUC (Fig. 4.4(b)-(d)).
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4.6.1.1 FIA Dataset

In Figure 4.4 (b), it can be observed that VSKNN’s pAUC performance remains below AMCS,
DMCE and DMCE with DS-LA OLA weighting for the entire simulation, at comparable level
to DMCE with DS-LA OLA selection fromt =3 to ¢t = 9. t = 3 corresponds to the introduc-
tion of reference captures from the second FIA enrollment session, which triggered an abrupt
change detection for 8 out of 10 target individuals, and thus the addition of new classifiers
to the ensembles. In this scenario, system performance is tested with images captured with
a different focal length than reference captures, simulating a real-life VS scenario with vari-
ability in image resolution (e.g. due to subjects distance from the camera) and thus observed
concepts. In this context, only selecting a single best classifier based on validation data repre-
senting different concepts provided a lower performance than relying on entire ensembles, as

their internal diversity enables a higher flexibility w.r.t. changing concepts.

While other systems exhibit comparable performance from r = 3 to = 6, a general increase can
be observed at = 7, which corresponds to the introduction of reference captures with different
facial poses, and triggered an abrupt change detection for all target individuals. AMCS, DMCE
with DS-LA OLA weighting and DMCE then show a performance increase from¢ =7tot =9,

In this scenario, the last 3 sequences that introduced significantly different concepts for ev-
ery individual put an emphasis on the benefits of the proposed dynamic score-level fusion.
Weighting each classifier’s contribution by its estimated competence using DMCE’s frame-
work provides a higher performance boost than other ensemble-based systems. In addition to
exhibiting higher performance than the DS-LA OLA weighting, DMCE’s fusion fusion only
requires an average of 20 distance measures per prediction (average amount of cluster cen-
ters for each individual) at r = 9, as opposed to DS-LA OLA that requires an average of 292

(average amount of reference sample in validation datasets).
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4.6.1.2 ChokePoint Dataset

First of all, lower pAUC performance measures for every system (Fig. 4.4 (d)) indicate that
the ChokePoint scenario represents a significantly harder FR problem than FIA, which can
be explained by a higher variability in capture sessions (natural walking, different portals,

entering/leaving sequences, etc.).

A similar behavior than with the FIA dataset can be observed with pAUC measures of DMCE
with DS-LA OLA selection, that remain below every other system for the entire simulation.
In addition, although VSKNN starts at a lower pAUC, DMCE with DS-LA OLA weighting,
VSKNN and AMCS exhibit similar pAUC performance from ¢ = 3 to = 8. Finally, DMCE
exhibits significantly higher pAUC performance than every other system from ¢ = 2, where
new classifiers are introduced due to abrupt change detection for 9 individuals out of 10, until

t = 8, where it ends at 0.20 +0.02.

In the same way than the FIA scenario, the ChokePoint scenario puts an emphasis on the bene-
fits of DMCE’s dynamic score-level fusion. As soon as new classifiers are added to the system,
it provides a higher performance boost that is maintained for the remaining of the simulation.
In addition, it provides significantly higher performance than DS-LA OLA weighting, that

remains at a similar level than AMCS relying on average score-level fusion.

As opposed to the FIA scenario, the systems are tested with captures from different enrollment
sessions than reference captures, which favors the presence of unknown concepts during test-
ing, not represented in the validation set of the DS-LA OLA methods nor in classifier parame-
ters. In such cases, classifiers are likely to exhibit similar behavior, which generates equivalent
fusion weights, and thus mimics the behavior of a standard average fusion. On the other hand,
cluster-based concept representations allow DMCE to rely on an additional source of infor-
mation to fuse classifiers’ outputs, without the bias introduced by their training. This higher
level of specialization enables to produce higher performance as soon as different classifiers

are added to ensembles.
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4.6.2 Trajectory-level Performance
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Figure 4.5 Average trajectory-level classification performance for the 10 individuals of
interest.

4.6.2.1 FIA Dataset

Average trajectory-level performance for the the 10 individuals of the FIA dataset scenario are
presented in Figure 4.5(a) and (b). While a similar trend than with the transaction-level can
be observed, with DMCE and DMCE with DS-LA OLA weighting providing a higher perfor-
mance level than every other system from session 7 to 9, the temporal accumulation mechanism

enables DMCE with DS-LA OLA selection to exhibit similar classification performance than
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AMCS for every performance measure. It can also be noted that accumulation increases the

performance of every system, with DMCE ending at a pAUC of 0.93 £0.01.

An additional DMCE variant is also presented in Figure 4.5, called DMCE video. A similar
dynamic score-level fusion is considered, but instead of computing fusion weights for each
capture, a unique set of weights is computed for each sequence, using the sequence-to-model
distance presented in Equation 4.1 of Section 4.4.3. It can be observed that DMCE video
produces a lower performance than DMCE, ending at a pAUC of 0.90+0.02, closer to AMCS’
performances. This behavior confirms that, in VS, concept variations can be observed within
facial trajectories as observation conditions evolve. For this reason, a dynamic decision fusion
mechanism that adapts to each capture provides a higher precision for competence evaluation,

and thus overall system performance.

4.6.2.2 ChokePoint Dataset

Average trajectory-level performance for the the 10 individuals of the ChokePoint dataset sce-
nario are presented in Figure 4.5(c) and (d). In the same way than with the FIA dataset, a sim-
ilar trend than with the transaction-level performance can be observed. DMCE shows higher
pAUC performance for the entire simulation, ending at 0.36 4 0.06 (v.s 0.20 4+ 0.02 without

accumulation).

In addition, DMCE video also produces a lower pAUC performance than DMCE.

4.7 Conclusion

This paper presents a new framework for video-to-video face recognition using adaptive en-
sembles of classifiers. Called Dynamic Multi-Concept Ensemble (DMCE), it is comprised of a
pool of incremental learning classifiers for each individual registered to the system, where each
classifier is specialized in different capture conditions detected in reference trajectories. During
enrollment and update phases, these capture conditions are gradually modeled as multi-modal

concept densities, through on-line clustering of reference trajectories. During operations, these
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densities are used to evaluate the competence of each classifier for any given facial capture.
This allows for a dynamic adaptation of the ensembles’ fusion functions, weighting each clas-

sifier according to its relevance for the observed capture condition.

A particular implementation of DMCE is proposed for proof-of-concept experiments. For each
enrolled individual, it is comprised of a pool of 2-class Probabilistic Fuzzy-ARTMAP classi-
fiers, generated and updated using an incremental training strategy based on a dynamic Particle
Swarm Optimization. Concept densities are represented as Fuzzy C-means centers, and classi-
fier competence is estimated from Fuzzy C-means degrees of belonging. These measures are
then used for weighted average score-level fusion. Simulation results indicate that the DMCE
framework allows to maintain a high level of performance when facial models are gradually
generated using significantly different reference trajectories. DMCE’s dynamic decision fusion
produces a higher classification performance than reference dynamic selection methods, for a
significantly lower computational complexity. In addition, the proposed implementation pro-
vides a higher performance than a probabilistic KNN based system adapted to video-to-video
FR, a reference open-set TCM-kKNN system as well as an Adaptive Sparse Representation face

recognition system.

In this paper, a key assumption for DMCE is that facial models of individuals are comprised of
multiple concepts that can be learned from different reference trajectories. However, in real-
life surveillance applications, facial models are likely to evolve and change over time, with
concepts becoming irrelevant as the individuals age or change their appearance. For future
work, a practical implementation of DMCE would require a bounding of its computational
complexity, for example through the development of purging strategies to remove concepts

becoming irrelevant over time.






CONCLUSION AND RECOMMENDATIONS

Face recognition is becoming increasingly popular in security applications such as in intelligent
video surveillance, as it provides significant advantages over other biometric modalities (e.g.
iris or fingerprint). Specifically, the ability to capture faces in a dense crowd without requiring
any cooperation from observed individuals may be critical in many scenarios, such as watch
list screening, person re-identification and search and retrieval in archived videos. However,
face recognition in video surveillance still faces many challenges, as the faces captured during
operations exhibit significant variations due to the lack of control over observation conditions.
As face recognition system are typically designed a priori using a limited amount of reference
captures, the facial models used for detection and often poor representatives of the complexity
of the recognition problem. Furthermore, these systems are operated in changing environments,

in which they need to quickly adapt to these changes to remain accurate.

In this thesis, a new framework for a dynamic face recognition system for video surveillance
is proposed. It allows to continuously update facial models of individuals of interest as new
reference videos become available, as well as dynamically adapt its behaviour to changing
observation conditions in operations. The key component is the representation of different
observation conditions encountered in reference videos, which allows to improve system per-
formance through the adaptation of both learning and operational strategies to the nature of the
observed environment. Concept models are used during training and update of facial models,
to ensure that new concepts are assimilated without corrupting previously-acquired knowledge
by guiding an hybrid ensemble updating strategy. In addition, these models are used during
operations, to estimate each classifier’s relevant w.r.t. each operational capture, dynamically

adapting ensembles’ fusion rule to changing observation conditions.

In Chapter 2, concept change detection was first considered to mitigate the growth in com-

plexity of a self-updating face recognition system over time. A context-sensitive self-updating
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technique has been proposed for template matching systems, in which galleries or reference
ROI patterns are only updated with highly-confident captures exhibiting significant changes
in capture conditions. Proof of concept experiments have been conducted with a standard
template matching system detecting changes in illumination conditions, using thee publicly-
available face databases. This technique enabled to maintain the same level of performance
than a regular self-updating template matching system, while reducing the size of template

galleries by half.

In Chapter 3, an adaptive multi-classifier system was proposed for face recognition in video
surveillance. It is comprised of an ensemble of incremental classifiers per enrolled individuals,
and allows to refine facial models with new reference data available over time. To assimilate
new concepts while preserving previously-acquired knowledge, this system relies on concept
change detection to guide an hybrid learning strategy, mixing incremental learning with ensem-
ble generation. For each individual, new classifiers are only added to their specific ensembles
when an abrupt change is detected in reference data. On the other hand, when a gradual change
is detected, knowledge about corresponding concepts is refined through incremental learning of
classifiers. A particular implementation has been proposed, using ensembles of probabilistic
Fuzzy-ARTMAP classifiers generated and updated with dynamic Particle Swarm Optimiza-
tion, and the Hellinger Drift Detection Method for change detection. Experimental simulations
with the FIA video surveillance database indicated that the proposed active methodology al-
lowed to mitigate the effects of knowledge corruption, exhibiting higher classification perfor-

mance than a similar passive system, and reference probabilistic KNN and TCM-kNN systems.

Finally, in Chapter 4, an evolution of the framework presented in Chapter 3 was proposed,
adding the ability to adapt system behaviour to changing operating conditions. A new dynamic
weighting fusing rule was proposed for ensembles of classifiers, where classifier competences

are estimated from multi-modal concept densities used for concept change detection during
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training. An evolution of the particular implementation presented in Chapter 3 has been pre-
sented, where concept densities are estimated with the Fuzzy C-Means clustering algorithm,
and ensemble fusion is performed through dynamic weighted score-average. Experimental
simulations with the FIA and ChokePoint video-surveillance datasets showed that the pro-
posed dynamic fusion method enabled to provide a higher classification performance than the
DS-OLA dynamic selection method, for a significantly lower computational complexity. In
addition, the proposed system exhibited higher performance than reference probabilistic KNN,

TCM-kNN and Adaptive Sparse Coding systems.

Future Work

The final iteration of the proposed framework allows to increase face recognition performance
in video surveillance by refining facial models over time and dynamically adapt its behaviour
during operations, but its mechanisms involve an increase of computational and memory com-
plexity over time. Although the addition of new classifiers is controlled by concept change
detection, a real-life implementation would require to develop additional strategies to maintain
system complexity at acceptable levels (e.g. for live detection to remain possible). For exam-
ple, pruning strategies may be investigated to regularly remove concepts that become obsolete

over time due to the aging of individuals, or other permanent changes in facial appearance.

In addition, this thesis only considered the use of faces to perform recognition, but other bio-
metric modalities such as gait can be analyzed from video sequences. Following the same prin-
ciples than co-updating techniques for semi-supervised learning, system performance could be
increased by combining multiple modalities in ensembles of classifiers, and sharing informa-

tion about changes in the environment.

Finally, the lack of representative reference data may be addressed through sample generation

and information sharing among individuals. When specific concepts are lacking in certain indi-
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viduals’ reference data (e.g. a specific facial pose), synthetic ROI patterns could be generated

from concept models of other individuals, for example with virtual pose generation techniques.



APPENDIX I

SUPPLEMENTARY RESULTS FOR DMCE IMPLEMENTATION (CHAPTER 4)

1. Detailed Performance Analysis for Two Specific Individuals

The cases of individuals 69 and 110 of the FIA dataset is of a particular interest for a deeper

analysis of system performance, as they respectively represent good and bad cases for DMCE.

1.1 Transaction-level Performance

pAU C performance measures for these two individuals are presented in Figure I-1, with vertical

black bars indicating changes detected in reference data.
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Figure-A I-1 Transaction-level pAUC performance for individuals 69 and 110 of the
FIA dataset, respectively representing a good and a bad case.

As a matter of fact, individual 69 can be considered as a good case, where dynamic weighting
(through either DMCE’s dynamic weighting or DS-LA OLA) produces a significant perfor-
mance boost from ¢ = 6, where change is detected, and new classifiers added to the ensemble

to integrate knowledge about additional frontal and profile captures. A deeper understanding
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of these different behaviors can be provided by the analysis of the concept models detected for

these two individuals, represented in 2D in Figure I-2.
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Figure-A I-2 2D projections of the 5 concept densities generated by the change
detection module of DMCE for individual 69 and 110 of the FIA dataset Goh et al.
(2005), using Sammon mapping.

As a matter of fact, with individual 69, clusters generated for concept models corresponding
to frontal (models 1 to 3) and profile (models 4 and 5) remain close in the Sammon space, as
opposed to models of individual 110 that are visibly distinct. The latter case is significantly
easier, as shown by the performance mesures in Figure I-1, as the visible distance between
each concept is more likely to generate classifiers with distinct decision boundaries, thus react-
ing differently to each concept. The competence measure would then only echo this behavior,
assigning lower weights to classifiers that produce lower scores, and vice-versa. In such case,
DMCE’s fusion behavior becomes similar to a standard average, as can be observed in Figure

I-1. On the other hand, with individual 69, concept models provide a more precise represen-
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tation of the intra-class variability of the underlying data distribution than classifiers decision

boundaries, and this additional source of information allows the refine the fusion process.

1.2 Trajectory-level Performance
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Figure-A I-3  Accumulated activations of classification modules for
individual 69 ((a)) and 110 ((b)) of the FIA dataset. A custom scenario is
considered, where ten sequences of non-target individuals (in red) are

concatenated with one sequence of the target individual (in green), extracted

from the first FIA enrollment session. Each sequence is 600 frames long,
and is delimited by vertical black bars.

Figure I-3 presents accumulated activations for the trajectory-level analysis of the performance

for both individuals. In each cases, a custom scenario is designed, concatenating ten sequences

of non target individuals (picked at random) with one sequence of the target individual from the

first FIA session (600 frames each). As the sequences usually end abruptly with the individual

still present in the scene, abrupt drops in accumulation activation can be observed when a a

new accumulation is initiated for the following trajectory. Figure I-3 (a) illustrate a good case
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with individual 69, where non-target accumulations do not go over 12 activations, and target
accumulation quickly reach the maximum of 30 (size of the window). On the other hand, 1-3
(b) illustrate false positives, where two sequences of a non-target individual managed to reach

30 accumulated activations.

2. Additional Performance Measures

Figure 1-4 presents additional transaction-level performance measures for both datasets (F7,
area under the p-roc curve and tpr), and Figure I-5 additional trajectory-level performances

measures (F1, area under the p-roc curve and tpr).
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Figure-A I-5 Additional trajectory-level performance classification performance
measures for the 10 individuals of interest.
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