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OPTIMISATION DE LA CONCEPTION DU SYSTÈME MANUFACTURIER 
FLEXIBLE 

 
Hassan MROUE 

 
Résumé 

 

La conception des systèmes manufacturiers flexibles est étudiée dans cette thèse. Dans le 
contexte de la compétition industrielle, les systèmes de fabrication doivent être flexibles pour 
pouvoir fabriquer, sur la même ligne ou plateforme, plusieurs types de produits avec des 
quantités variables dans le temps. En plus, la modification de la conception de la ligne de 
fabrication dans certains secteurs est en train de devenir de plus en plus importante à cause 
du changement constant du marché en termes de types et de volumes des produits à 
fabriquer. La performance et la fiabilité d’un système de fabrication ont un impact important 
sur le coût opérationnel du système donc sur le profit et la compétitivité d’une entreprise. 
Face à ce contexte / dilemme, les industriels ont besoin d’outils pratiques et performants pour 
répondre rapidement aux besoins des clients. Dans le contexte de la globalisation, les 
entreprises doivent être compétitives pour rester sur le marché. La performance du système 
de fabrication est l’un des éléments essentiels permettant aux entreprises de réduire les coûts 
et d’être compétitives. 
 
En effet, un système manufacturier flexible est une combinaison d’un atelier et des cellules 
manufacturières. Chaque cellule contient toutes les ressources requises pour traiter des pièces 
qui ont des caractéristiques de fabrication semblables. Ces ressources s’agissent des 
machines, travailleurs, outils, équipements, etc. Les cellules peuvent être conçues de 
plusieurs façons. Afin de diminuer les coûts et les durées de la fabrication ainsi que d’éviter 
les conflits, il est très important d’acheminer les pièces d’une façon optimale et d’optimiser 
par la suite la formation des cellules. 
 
Cette étude vise à améliorer la conception des systèmes manufacturiers flexibles tout en 
prenant le côté économique en considération à travers le développement de trois nouveaux 
algorithmes. Le premier a comme but d’optimiser la formation des cellules manufacturières 
et fractionnelles tout en introduisant une nouvelle trousse à outils théorique. Cette trousse 
accélère énormément la découverte de la solution finale parmi un nombre énorme des 
solutions candidates. Le deuxième algorithme concentre sur l’optimisation de 
l’acheminement des pièces à travers un modèle heuristique qui minimise à la fois les coûts et 
les durées de la fabrication. Le dernier algorithme introduit une méthodologie qui maximise 
les profits des entreprises à travers l’investissement sur des nouvelles machines ou bien la 
mise à jour des machines existantes dans le contexte de la fabrication flexible. L’importance 
industrielle de ce travail provient du fait qu’une entreprise peut utiliser les trois algorithmes 
d’une façon interdépendante afin d’optimiser son système. 
 
Mots-clés : Système manufacturier flexible; cellule manufacturière; cellule fractionnelle; 
acheminement des pièces; maximisation des profits; sélection des machines 





 

OPTIMIZATION OF THE DESIGN OF THE FLEXIBLE MANUFACTURING 
SYSTEM 

 
Hassan MROUE 

 
Summary 

 
The design of flexible manufacturing systems is studied in this thesis. In the context of the 
industrial competition, the manufacturing system must be flexible in order to be able to 
produce, on the same line or platform, several types of products with varying amounts over 
time. In addition, the change of the design of the production line in some areas is becoming 
increasingly important due to the constant changes in the market in terms of the types and 
volumes of products to manufacture. The performance and reliability of a production system 
have a significant impact on the operational costs of the system and therefore, on the profits 
and the competitiveness of the enterprise. According to this context / dilemma, the 
manufacturers need practical and efficient tools to effectively design their flexible 
manufacturing systems in order to become able to respond quickly to their customers’ needs. 
 
Indeed, a flexible manufacturing system is a combination of a job shop and manufacturing 
cells. Each cell contains all the resources required to treat the parts that have similar 
production characteristics. These resources consist of machines, labor, tools, equipment, etc. 
The cells may be designed in many ways. In order to reduce the cost and the duration of the 
fabrication and to avoid the conflicts, it is very important to optimally route the 
manufacturing parts and to optimize thereafter the formation of the cells. 
 
Hence, this study aims to improve the design of flexible manufacturing systems while taking 
into account the economic aspect through the development of three new algorithms. The first 
work aims to optimize the formation of the manufacturing and fractional cells, while 
introducing a new theoretical toolkit. This kit greatly accelerates the discovery of the final 
solution from a large number of candidate solutions. The second one focuses on the 
optimization of the part routing through a heuristic model that minimizes the costs and the 
durations of the production. The last algorithm presents a new method that maximizes the 
profits of the manufacturing enterprises through the investment on new machines or through 
the upgrade of the existing ones in the context of the flexible fabrication. The industrial 
importance of this work comes from the fact that an enterprise can use all of the three 
algorithms in an interdependent manner in order to optimize its system. 
 
 
Keywords: Flexible manufacturing system; Manufacturing cell; Fractional cell; Part routing; 
Profit maximization; Machine selection 
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INTRODUCTION 

 

A manufacturing system is composed of labor, machines and equipment as well as a flow of 

information. Such a system is called flexible when it has a certain degree of ability to 

respond to changes. In fact, a flexible manufacturing system is a combination of a job shop 

and manufacturing cells (Chryssolouris, 2006). Each cell contains all the resources required 

to treat parts that have similar production characteristics (Marghalany et al., 2004). These 

resources may consist of machinery, labor, tools, equipment, etc. (Luggen, 1991). The 

manufacturing cells may be designed in many ways. In order to reduce the cost and the 

duration of the production, the first step consists of optimally routing the parts and of 

optimizing thereafter the formation of the cells. This step constitutes a serious problematic 

since there is an undetermined number of possibilities for routing the parts and designing the 

cells. In other words, there is no a precise mathematical formula that can solve such a 

problem which is classified as non-deterministic polynomial-time hard (NP-hard). The term 

NP-hard means that for any technical optimization, increasing the size of the problem will 

cause an exponential increase in the computational time (Ben Mosbah and Dao, 2013). That 

is why; there is a need to develop algorithms which are able to give optimal or near-optimal 

solutions. The economic aspect constitutes as well a vital factor for the enterprises which use 

such systems. Hence, the present work focused on three subjects. The first one is how to 

optimally design the manufacturing cells, the second one is how to find the optimal routing 

of the manufacturing parts, and the third concentrates on the maximization of the profits for 

the enterprises which are looking to buy new machines in order to establish a new FMS or to 

upgrade an existing one. 
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Organization of the thesis 

 

This manuscript-based thesis is divided into four chapters. 

 

The first chapter defines the design of the flexible manufacturing system. In addition, it 

describes the manufacturing cell and mentions some advantages and disadvantages of the 

FMS with respect to a non-flexible system. Furthermore, it presents a review of the related 

subjects from the literature. Finally, it lists some industrial benefits which result from 

applying the algorithms presented in the last three chapters. 

 

The second chapter presents a journal article. It introduces a new algorithm which aims to 

search for the optimal manufacturing and fractional cell formation procedure within a 

flexible manufacturing system. In addition, the article includes a new set of logical 

operations in order to greatly accelerate the procedure of finding final solutions among a 

huge number of possibilities. 

 

The third chapter provides a new algorithm which describes how to route the manufacturing 

parts within a flexible manufacturing system. The algorithm takes into consideration both the 

manufacturing durations and costs in order to find optimal solutions. In addition, it 

establishes a direct relation between the routing of the parts on one hand and the design of 

the cells on the other hand in order to make sure that the routing is not necessarily optimal by 

itself, but it leads to an optimal cell design. The algorithm constitutes as well an advisor for 

the enterprises which are fully busy with processing customers’ commands whether to accept 

or to refuse a new fabrication demand. 

 

The last chapter describes a new algorithm for maximizing the manufacturing profits through 

a machine selection procedure within a flexible manufacturing system. The algorithm links 

the routing of the parts and the formation of the cells to the machine selection and it is mainly 

useful for the profit maximization of the enterprises which are looking to buy new machines 

in order to establish a new FMS or to upgrade an existing one. In addition, the whole 
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procedure tends to eliminate the exceptional elements within the system. The article 

combines together the engineering and the economic aspects in order to end up with final 

results. 

 

It is important to note that the logical order of the last three chapters can also be considered 

the inverse of their sequential order in the thesis. Namely, the reader can begin by the last 

chapter followed by the third and lastly by the second. 

 

Finally, the thesis ends up with a conclusion as well as some recommendations. 
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CHAPTER 1 
 
 

REVIEW OF THE LITERATURE 

 

1.1 Introduction  

A manufacturing system is known as flexible when it has a certain degree of ability to 

respond to changes. According to (Das, 1996), there are five kinds of flexibilities. The first 

one is the machine flexibility which means that the machine is able to shift from one task to 

another without major difficulties. The second is the routing flexibility which refers to the 

possibility of having various routes for the fabrication of a certain product within the system.   

The third one is the process flexibility which is related to the diversity of the products that 

the system can produce without the need of important setups. The fourth is the product 

flexibility which is a measure for the easiness to add new products or to remove existing ones 

from the production line of the system. The last one is the volume flexibility which refers to 

the possibility of changing economically the production rate of the system. The degrees of 

these flexibilities depend on the layout of the system, the specifications of the machines, the 

products’ processing requirements, etc. The generic layout of the system together with its 

components are discussed in this chapter and the consideration is mainly accorded to the 

subjects treated in the next three chapters of this thesis. 

 

1.2 Flexible Manufacturing System (FMS) design 

There are lots of types of flexible manufacturing systems around the world. In other words, a 

FMS can be designed in different ways depending on the production types. A generic layout 

of the system is shown in Figure 1.  
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Figure 1    Generic layout of the FMS (Buzacott and Yao, 1986) 

 

Yang et al. (2005) presented four main layouts for a flexible manufacturing system. These 

layouts are the spine, the circular, the ladder, and finally the open-field as shown in Figure 2. 
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Figure 2    Layout types in a FMS (Yang et al., 2005) 

 

Thus, a flexible manufacturing system consists mainly of a flow path surrounded by a set of 

cells. The system includes machine centers as well as buffer stations. "The buffer storage in a 

manufacturing system serves to decouple the unbalance of processing time and the variability 

of breakdowns among different machines, and allows for flexible operations under fluctuated 

production requirements" (Lee and Ho, 2002). In addition, the load/unload stations of the 

system play a role in queuing the work pieces whereas the transportation of the 

manufacturing parts occurs through automatic guided vehicles (Cubberly and Bakerjian, 

1996). Finally, the FMS involves other components such as a central material handling 

equipment, electronic controllers (Buzacott and Yao, 1986), etc. On the other hand, a linked-

cell assembly can be found in the majority of the flexible manufacturing systems. The 

manufacturing and the assembly cells are interconnected through the Kanban links (Black 

and Hunter, 2003). Figure 3 shows a configuration of a system containing both 

manufacturing and assembly cells.  
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Figure 3    Linked manufacturing and assembly cells (Black and Hunter, 2003) 

 

The Kanban links play the role of controllers by pulling only the required quantity of the 

parts and subassembly to the final assembly (Black and Hunter, 2003). Each manufacturing 

cell contains all the resources which are required in order to fabricate a certain type of parts. 

A general layout of the cell is shown in Figure 4. 
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Figure 4    Manufacturing cell layout. (Yang et al., 2005) 

 

There are various types of manufacturing cells such as the virtual cell, dynamic cell etc. For 

instance, a virtual cell is composed of machines which are located in different departments in 

order to fabricate a part family. In other words, the machines are not adjacent to each other as 

they are in a regular manufacturing cell (Nomden et al., 2006). In a dynamic cellular 

environment, the machines and equipment can be moved whenever the mix of parts to 

fabricate gets changed. Namely, the system can be reconfigured when necessary (Chen, 

1998). The layout of the system and of the contained cells depend on many factors such as 

the shop floor dimensions, the number and the nature of the machines to be installed, the 

parts and the products to be fabricated, etc. The design of the manufacturing cells and the 

routing of the parts occur according to a manufacturing philosophy that aims to ameliorate 

the productivity and which is known as group technology. This philosophy consists of 

grouping into families the parts that have resembling production requirements and grouping 

the machines that have different processing characteristics into production cells (Edwards, 

1971). The importance of such a philosophy comes from the fact that the absence of an 

efficient way of routing the parts and designing the cells may lead to some disorders into the 

system which may cause major problems such as production conflicts, waste of time, 

increase in the level of inventories, etc. (Luggen, 1991). In fact, the configuration of the FMS 

can be presented through what is so called incidence matrix like the one presented in Table 

1-1. 
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Table 1-1    An incidence matrix 

 

Machine / Part Part 1 Part 2 Part 3 Part 4
Machine 1 1 0 1 1 
Machine 2 1 0 0 0 
Machine 3 0 1 0 1 

 

 

The matrix contains only two characters such as ones and zeros. The non-zero entry (i.e. the 

one digit) in the incidence matrix means an operation. If we take as for example the non-zero 

entry in the first row and third column, it means that the part number three has to be 

processed by the machine number one; whereas, a zero entry means the opposite. The entries 

in the incidence matrix have been obtained after routing the parts. The routing will be 

discussed in details in the third chapter. It is to note that the configuration of the matrix and 

consequently the system can be changed by swapping either any two rows or any two 

columns. In other words, two different machines can interchange their locations within the 

system as well as any two different parts. Surely, a row and a column cannot be swapped 

since a machine cannot replace a part and vice-versa. The main goal of the swapping 

procedure is to obtain an optimal configuration of the system in order to design efficiently 

the manufacturing cells. If we swap, as for example, the parts number two and three, we get 

the matrix shown in Table 1-2. 

 

 Table 1-2    A new configuration for the incidence matrix 

 

Machine / Part Part 1 Part 3 Part 2 Part 4
Machine 1 1 1 0 1 
Machine 2 1 0 0 0 
Machine 3 0 0 1 1 
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By this way, two manufacturing cells highlighted in light blue can be formed within the 

system as shown in Table 1-3. 

Table 1-3    Manufacturing cells 

 

Machine / Part Part 1 Part 3 Part 2 Part 4 
Machine 1 1 1 0 1
Machine 2 1 0 0 0
Machine 3 0 0 1 1

 

 

Indeed, the cells have to contain all the machines and the parts of the system and each 

machine or part cannot be contained in more than one cell. The zero entry located in the 

second column and second row in Table 1-3 is called a void element because it means that 

the part number three will get into the first cell but it will not be processed by the machine 

number two. The non-zero entry located in the first row and fourth column in Table 1-3 is not 

contained in any cell and hence, it is called an exceptional element. This nomenclature comes 

from the fact that the part number four, which belongs to the second cell, needs to be 

processed by the first machine which belongs to the first cell. Both the void and the 

exceptional elements are undesirable since they will cause additional processing costs 

(Luggen, 1991) as will be explained in more details in a later paragraph. A perfect cell 

configuration means that all the non-zero entries are included within the cells which do not 

contain any zero entry on one hand; and that there are no non-zero entries outside the cells. 

By this way, the terms of the concept of group technology will be fulfilled perfectly. In 

addition to the routing of the parts and the formation of the cells, the design has to take into 

consideration the minimization of the costs of fabrication. Since the scope of study of the 

design of these systems is very wide, the current research does not focus on all the aspects 

but only on the ones which were described in the paragraph entitled "organization of the 

thesis" in the introduction of the thesis. In addition, the scheduling of the FMS, the 

production planning, the electric and electronic components, etc. are not addressed as well. 
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1.3 Advantages and disadvantages of using FMS 

There are lots of advantages for using a flexible manufacturing system with respect to a non-

flexible one such as the reduction of the setup time and production time, the diversity of the 

production types, the amelioration of the quality of the products, etc. On the other hand, these 

systems suffer as well from some disadvantages since they have sophisticated designs, they 

are relatively expensive etc. (Luggen, 1991).  

 

1.4 Problematics 

When establishing a new flexible manufacturing system or upgrading an existing one, an 

enterprise has to take into account the machines to select for this purpose. Such a selection is 

directly related to the nature of the products to manufacture as well as to the production 

volumes and costs. In addition, the configuration of the system has to be studied together 

with the estimated revenues and expenses in order to know whether the system is profitable 

or not. On the other hand, the manufacturing enterprises which are manufacturing high 

volume customers’ demands need a decisional tool to help them decide whether they are able 

to accept a new fabrication request and whether such an acceptation is profitable. This is 

because the implementation of the new command may require a partial reconfiguration of the 

system. As can be obviously seen, all of these subjects directly influence and are directly 

influenced by the design of the system. In fact, the design of the FMS is a critical step since a 

random machine-part cell arrangement may cause production conflicts as well as higher costs 

and processing durations. On the other hand, the number of machines and parts which may 

be found in a FMS is not fix and consequently, we have an unlimited number of different 

sizes of the system (hence of the incidence matrix). Furthermore, the number of non-zero and 

that of zero entries within the incidence matrix are not constant and their distributions are 

various since each matrix represents a different system. In other words, we are dealing with 

an infinite number of possibilities and there is no a precise mathematical formula which can 

provide optimal solutions for all of these possibilities. In addition, the limitations of the 

processors’ speeds of the computers constitute a major obstacle for finding all the possible 

configurations within a single incidence matrix. For instance, a matrix consisting of only 
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twenty rows and forty columns contains a huge number of possible configurations which is 

equivalent to factorial (20) multiplied by factorial (40). This is because every swapping of 

any two rows or any two columns results in a new configuration. A recent computer with 

high computational capabilities may need billions of years in order to provide all the 

configurations for such a matrix. On the other hand, any methodology that will be developed 

in order to optimize the design of these systems has also to take the processing costs into 

consideration in order to avoid the wastes. 

 

1.5 Hypotheses and objectives 

In order to become able to optimize the design of the manufacturing system, new 

methodologies/algorithms have to be developed while taking into account that: 

• The processing needs for each work piece are known (i.e. we know if a certain part needs 

grinding and/or boring and/or welding etc.) 

• A machine and/or a part can be assigned to a single flexible manufacturing cell 

• The processing duration and cost for each of the parts on each of the machines can be 

determined 

 

The new algorithms aim to: 

 

• Provide optimal configurations that lead to an efficient design for the flexible 

manufacturing and fractional cells and to the elimination of the exceptional elements as 

much as possible 

• Optimally route the parts while taking into consideration the economic aspects of the 

system 

• Decrease the wastes and consequently increase the profits through a machine selection 

procedure for the enterprises which aim to implant a new FMS or to upgrade an existing 

one. What is mainly meant by the upgrade of an existing one is the replacement the actual 

machines by new ones due to the increase of the customers’ demands 
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1.6 Review of the literature 

The design of the flexible manufacturing systems has been addressed by some authors such 

as (Spano et al., 1993) who focused on the design of the facilities, the material handling 

system, the control system as well as on the scheduling. Lau and Mak (2004) presented the 

design of the FMS through a framework with an associated graphical development 

environment. There are some authors who already addressed the manufacturing and 

fractional cell formation in the literature. For instance, Mak et al. (2000) proposed an 

adaptive genetic algorithm in order to solve the cell formation problem. Liang and Zolfaghari 

(1999) provided a new neural network approach to solve the comprehensive grouping 

problem. Solimanpur et al. (2010) approached this problem through an ant colony 

optimization (ACO) method whereas, Lei and Wu (2006) applied a tabu search method for 

the same purpose, etc. Concerning the problematic of the formation of the additional 

fractional cell, the authors who addressed it are very few; Venkumar and Noorul Haq (2006) 

applied a modified ART1 neural networks algorithm in order to treat it whereas Murthy and 

Srinivasan (1995) used a simulated annealing approach for the same purpose. The relative 

importance of the work presented in the second chapter comes from three facts. The first one 

is that it presents a new algorithm instead of applying an existing methodology. The second 

advantage is that it contains a new theoretical toolkit for quickly finding the final solution. 

Finally, it succeeded to give better results when compared to a well-known approach 

(simulated annealing) through the same numerical example. Concerning the routing of the 

manufacturing parts, a genetic algorithm approach can be used to determine the best 

processing plan for each of them. This solution allows the factory to select the appropriate 

machines for every operation according to the determined plan. In addition, it leads to finding 

the solution that minimizes the total average flow times for all parts (Geyik and Dosdogru, 

2013). Another approach based on a heuristic algorithm was proposed. The purpose is to 

solve the machine loading problem of a random type flexible manufacturing system by 

determining the part type sequence and the operation machine allocation that guarantees the 

optimal solution to the problem (Tiwari and Vidyarthi, 2000). A third approach was 

presented as an artificial intelligence. Indeed, it is an integrated concept for the automatic 
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design of flexible manufacturing system which uses simulation and multi-criteria decision-

making techniques. Through this approach, intelligent tools (such as expert systems, fuzzy 

systems and neural networks) were developed for supporting the flexible manufacturing 

system design process (Chan et al., 2000). All of these works did not provide a direct 

feedback that influences the first step (part routing) according to the results obtained in the 

last step (manufacturing cells) as in the case of the algorithm presented in the third chapter. 

The importance of such a feedback is that it ensures that the routing of the parts is not 

necessarily optimal by itself, but it is able to lead at the end to an optimal formation of the 

cells. Regarding the maximization of the profits, the selection of the machines, and the 

treatment of the exceptional elements in the context of the flexible fabrication, there are some 

authors who addressed them as well. For instance, Shishir Bhat (2008) used a heuristic 

algorithm in order to maximize the profits by optimizing the manufacturing system design. 

Almutawa et al. (2005) developed a methodology that searches for the optimal number of 

machines to purchase for each stage in a multistage manufacturing system. Myint and 

Tabucanon (1994) presented a framework that can be used for the pre-investment period in a 

flexible manufacturing system in order to help managers evaluate various possibilities for a 

certain number of configurations each of which consists of different machine types and 

degrees of flexibility. Wang et al. (2000) used a fuzzy approach in order to select the 

machines for each manufacturing cell. Regarding the treatment of exceptional elements, 

Xiangyong et al. (2010) noted that one possible way is to duplicate some machines in a 

flexible manufacturing system, another way consists of transferring the operations on the 

exceptional elements to one of the cells as mentioned in (Pachayappan and Panneerselvam, 

2015). A third possibility is to subcontract these elements to another manufacturer as 

described in (Mansouri et al., 2003). The main difference/advantage between these works 

and the research presented in the last chapter is that it links multiple concepts (profit 

maximization, routing of the parts, manufacturing cell formation, elimination of the 

exceptional elements) in a single algorithm in order to end up with a final solution.  
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1.7 Conclusion 

A flexible manufacturing system has certain degree of ability to respond to changes. It is 

composed mainly of manufacturing cells, material handling equipment, buffer stations and a 

transport system. Since the domain of the design of such a system is a very wide subject, the 

next chapters concentrate only on three main features which are the design of the cells, the 

routing of the parts and the maximization of the profits through a selection procedure of the 

machines. In addition, some algorithmic methodologies will be implemented due to the 

limitations of the available computational capabilities. The durations as well as the costs of 

the fabrication constitute main aspects which will be considered in the last two chapters in 

order to increase the manufacturing profits and decrease the wastes. 
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CHAPTER 2 
 
 

 MANUFACTURING AND FRACTIONAL CELL FORMATION USING A NEW 
BINARY DIGIT GROUPING ALGORITHM WITH A PWAVROID SOLUTION 

EXPLORER TOOLKIT 

Hassan Mroue, Thien-My Dao 

Mechanical Engineering Department, École de technologie supérieure (ÉTS)  

1100 Notre-Dame Street West, Montreal (Quebec) Canada H3C 1K3 

This chapter has been published in the Advanced Materials Research  

vol. 933 pp. 97-105, 2014 

 

2.1 Abstract  

A new algorithm is presented in order to search for the optimal solution of the manufacturing 

and fractional cell formation problem. In addition, this paper introduces a new toolkit, which 

is used to search for the various candidate solutions in a periodic and a waving (diversified) 

manner. The toolkit consists of 15 tools that play a major role in speeding up the obtainment 

of the final solution as well as in increasing its efficiency. The application of the binary digit 

grouping algorithm leads to the creation of manufacturing cells according to the concept of 

group technology. The nonzero entries, which remain outside the manufacturing cells, are 

called exceptional elements. When a lot of such elements are obtained, an additional cell 

called fractional (or remainder) cell may be formed; the aim of which is to reduce their 

number. This algorithm was tested by using illustrative examples taken from the literature 

and succeeded to give better or at least similar results when compared to those of other well-

known algorithms. 

Keywords: Binary digit grouping algorithm, pwavroid toolkit solution explorer, cell 

formation, manufacturing cell, fractional cell, exceptional elements. 
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2.2 Introduction 

This paper presents the binary digit grouping algorithm, which is a completely new algorithm 

in the literature. It treats the formation of manufacturing cells problematic according to the 

concept of group technology. In addition, a toolkit which involves new candidate solutions’ 

searching tools is introduced. These tools are used in order to search for the candidate 

solutions in a periodic and a waving (diversified) manner; wherefore, the toolkit is entitled 

Pwavroid. After testing it through numerical examples, the binary digit grouping algorithm 

succeeded to demonstrate its capabilities to form not only manufacturing cells, but also an 

additional fractional cell when applicable. The Pwavroid toolkit plays a major role in 

reducing the time needed for reaching the final solution. Indeed, the cellular manufacturing 

system (CMS) results from applying the concept of group technology (GT) (Asokan et al., 

2001).  This concept is an industrial philosophy which aims to group the machines having 

common production capabilities into manufacturing cells, as well as the parts having 

common geometric shapes or processing requirements into part families in order to benefit 

from these similarities (Xiaodan et al., 2007).  The manufacturing cell formation problematic 

is considered as a non-deterministic polynomial-time hard (NP-hard) problem and it was 

classified for a long time as being the most challenging one because the processing time 

required to solve it increases exponentially with the size of the problem (Ben Mosbah and 

Dao., 2013).  On the other hand, the inter-cell movement occurs when a part is treated by the 

relevant machine outside the manufacturing cells. In such cases, the concerned elements will 

be called exceptional elements. In the problems where we find that a lot of exceptional 

elements, a fractional cell (also called remainder cell) may be formed. The remainder cell 

must contain all of the machines of the system as well as the greatest possible number of 

exceptional elements. By this way, the elements which are included not only in the 

manufacturing cells, but also in the remainder cell will be no longer exceptional (Murthy and 

Srinivasan, 1995). Numerous researchers worked on this problem and provided 

methodologies which succeeded to give optimal or near-optimal solutions. Mak et al. (2000) 

proposed an adaptive genetic algorithm in order to solve the cell formation problem. Liang 

and Zolfaghari (1999) provided a new neural network approach to solve the comprehensive 
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grouping problem. Solimanpur et al. (2010) approached this problem through an ant colony 

optimization (ACO) method whereas; Lei and Wu (2006) applied a tabu search method for 

the same purpose, etc. Concerning the problematic of the formation of the additional 

fractional cell, the authors who addressed it are very few; Venkumar and Noorul Haq (2006) 

applied a modified ART1 neural networks algorithm in order to treat it whereas Murthy and 

Srinivasan (1995) used a simulated annealing approach for the same purpose. 

 

2.3 The binary digit grouping algorithm 

The first step of forming manufacturing cells consists of using a matrix which is called 

incidence matrix. The size of an incidence matrix is M × N  where M represents the machines 

and N the parts. The matrix can be presented in the following form: A = [amn] where amn is 

the workload (production volume multiplied by the unit processing time) of the part number 

n when being processed on the machine number m (Mak et al., 2000). Let us take as an 

example the 5 × 5  incidence matrix which is shown in Table 2-1.  

  

Table 2-1    A 5 x 5 incidence matrix 

 

m \ n 1 2 3 4 5 

1 1 0 1 0 0 

2 0 0 0 1 0 

3 0 0 1 0 0 

4 0 0 0 1 1 

5 0 1 0 0 0 

 

 

A nonzero entry (i.e. a 1 digit) means that the relevant part will be processed by the 

concerned machine. If we take the nonzero entry in the upper left corner as an example, it 

means that the part number 1 will be processed by the machine number 1; whereas, a zero 
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entry means the inverse. We can divide the elements of the incidence matrix into 3 

categories: 

 

• Elements in the corner of the matrix (the 4 elements highlighted in pink in table 1.1). 

• Elements in the borders (but not the corners) of the matrix (highlighted in bright green). 

• Finally, elements in the heart of the matrix (highlighted in yellow). 

 

Thereafter, we calculate the nonzero entry neighboring factor (Nf) for each non-zero entry. If 

we take as an example the element located in the 4th row and 4th column and we isolate it 

with its surrounding elements as shown in Table 2-2. 

 

Table 2-2    A nonzero entry with its surrounding elements 

 

 
 

 

Its neighboring factor (Nf) is the sum of the values resulting from the following operations: 

 

• If the surrounding element is located in the same row or in the same column, it will be 

multiplied by a factor of 2. 

• Otherwise, it will be multiplied by 1. 

• After completing the first 2 steps for all the surrounding elements, the results will be 

summed up all together. 

m \ n 1 2 3 4 5
1 1 0 1 0 0
2 0 0 0 1 0
3 0 0 1 0 0
4 0 0 0 1 1
5 0 1 0 0 0

1 0 0
0 1 1
0 0 0
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Accordingly, we begin the calculations by considering at first the element located in the 

upper left corner of the elements surrounding the isolated non-zero entry, and we proceed in 

the counterclockwise direction in order to get the results shown in equation 1.1. 

 ݂ܰ	 = 	 (1	ݔ	1) (0	ݔ	2)	+	 	+ (1 ݔ 0) + (2 ݔ 0) + (1 ݔ 0) + (1	ݔ	2) ݔ	1)	+	 (0	ݔ	2)	+(0 	= 3 
(1.1)

 

After calculating the individual neighboring factor (Nf) of all the nonzero entries of the 

incidence matrix, we sum up them all together in order to get the nonzero entries 

neighborhood factor of the whole matrix (NM). As a next step, we swap randomly 2 or more 

rows and/or columns by using a new solution explorer toolkit (which will be explained later) 

in order to get a new configuration of the incidence matrix called M*. Thereafter, the 

algorithm re-calculates everything from the beginning for the new configuration in order to 

get the new value of (NM) called (NM
*). If (NM

*) is greater than (NM), the new matrix will be 

considered as the new solution for the problem; otherwise, the previous configuration will be 

kept. The computational process continues in this manner until testing all, or at least a great 

number, of the possible configurations. In the latter case, the user ends manually the 

simulation after noticing that the value of (NM) remains constant for a long time. As a last 

step, the matrix with the greatest value of (NM
*) will be selected as the final solution. The 

binary digit grouping algorithm can be illustrated in Figure 5. 
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Figure 5    The binary digit grouping algorithm 

 

As can be easily deduced, the binary digit grouping algorithm aims to group the nonzero 

entries as close to each other as possible within the incidence matrix. The main goal is to 

come up with manufacturing cells which have to include the greatest possible numbers of 

nonzero entries. The effectiveness of the resulting solution can be evaluated through some 

formulas which were used for evaluating other algorithms such as the genetic algorithm 

proposed by Mak et al. (2000).  

 

If we let: 

 

• K be the number of manufacturing cells which will be formed within the incidence matrix 

• n1 represents the number of nonzero entries existing in the manufacturing cells 
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• Mk and Nk where k = (1,2,…,K) be consecutively the numbers of machines and parts 

which are assigned to the manufacturing cell number k; we can get the equation 1.2. 

 ݁ଵ = ݊ଵ∑ ௞ܯ ௞ܰ௄௞ୀଵ        (1.2)

 

Where (eଵ) is a measure of the cell density. On the other hand, if we let (n2) be the number 

of the exceptional elements (which are the nonzero entries that are not located within the 

manufacturing cells), we get the equation 1.3. 

 ݁ଶ = 1 − ݊ଵ݊ଵ + ݊ଶ (1.3)

 

Where (eଶ) is a measure of the intercellular material flow as it increases with the increase in 

the number of exceptional elements and vice-versa. Finally, the grouping efficiency (e) can 

be calculated as shown in equation 1.4. 

 

 ݁ = ݁1 – ݁2 (1.4)

 

The numerical value of (e) always belongs to the interval [-1, 1]. 

 

2.4 The New Pwavroid Solution Explorer Toolkit 

A toolkit which is used for exploring candidate solutions is introduced in this paper. It 

contains 15 searching tools the majority of which are completely new (only the first 2 are 

taken from the literature). They behave in a diversified and periodic manner. These tools 

consist of interchanging 2 or more rows and/or columns.  
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The algorithm uses only one of them per iteration and after applying the 15th tool, it returns 

back to use the first one and so on. The main advantages of this toolkit are: 

 

• It helps explore very quickly and efficiently the candidate solutions of the incidence 

matrix.  

• It reduces greatly the time needed for finding the final solution. In a later section, a 

scatter chart is presented in order to shed the light on the importance of this toolkit. 

• It can be bundled with any other algorithm that uses the swapping procedure in order to 

search for candidate solutions within the incidence matrix in the domain of flexible 

manufacturing systems. 

 

The tools are explained as follows: 

 

1- Swapping randomly 2 rows. 

2- Swapping randomly 2 columns. 

3- A combination of the first 2 tools (swapping randomly 2 rows and 2 columns). 

4- If we have m rows, the 4th tool consists of swapping 2 rows per iteration in the following 

manner: at first, the 1st and the 2nd rows; thereafter, the 1st and the 3rd ones, and so forth 

until reaching the mth row. Afterward, the swapping procedure re-begins again but now 

with the 2nd row on one hand and the remaining rows on the other hand. 

5- The same procedure of the 4th searching tool but, by using the columns instead of the 

rows. 

6- A combination of the 4th and 5th tools. 

7- Selecting randomly any 2 rows and swapping them inversely; thereafter, increasing the 

number of the selected rows by 1 and so forth. If we take as an example the selection of 4 

rows such as the rows number 3, 4, 7 and 13; they will be inversely swapped in order to 

become arranged successively as follows: 13, 7, 4 and 3. 

8- The same procedure of the 7th searching tool but, by using the columns instead of the 

rows. 

9- A combination of the 7th and 8th tools. 
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10- Selecting 2 distinct sets of an increasing number of rows (i.e. 2 sets of 1 row each; 

thereafter, 2 sets of 2 rows … 2 sets of the floor of (m/2) rows) and swapping them. This 

tool is the most advanced as it involves a number of possibilities. It is important to note 

that these 2 sets cannot have any row in common and that they will be swapped in a 

direct manner. If we take as an example any incidence matrix containing 9 rows and a 

selection of 2 sets each of which consists of 3 rows: 

a. If the first set contains the rows 3, 4 and 5 and the second one consists of the rows 

number 6, 7 and 8; the 2 sets will be swapped in order to replace each other in a 

direct manner. 

b. If the first set contains the rows 3, 4 and 5 and the second set begins with the row 

number 2, then the other 2 rows must be 6 and 7 which means that the second set 

must surpass the first one and continue with the row location which is indexed 

directly after the last one in the first set. 

c. If the first set contains the rows 5, 6 and 7 and the second set begins with the row 

number 8, the other 2 rows must be 9 and 1 because the highest possible row 

number cannot exceed m (where m is equal to 9 in this example) and 

consequently; the third row of the second set will be assigned back to the first row 

index (which is equal to 1). 

d. By following the combination of the logical rules adopted in b. and c., if the first 

set consists of the rows 6, 7 and 8 and the second set begins with the row number 

5, then the other 2 rows must be 9 and 1. 

11- The same procedure of the 10th searching tool but, by using the columns instead of the 

rows. 

12- A combination of the 10th and 11th tools. 

13- Generating randomly a new configuration of all of the rows. 

14- Generating randomly a new configuration of all of the columns. 

15- A combination of the 13th and 14th tools. 
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2.5 Cell Formation 

After applying the algorithm, a final configuration of the incidence matrix will be obtained in 

which, the nonzero entries are expected to get as close to each other as possible. The next 

step consists of creating only manufacturing cells by keeping in mind three rules:  

 

• The greatest possible number of nonzero entries must be contained in the formed cells.  

• Every machine and every part must be involved in a cell. 

• A machine or a part cannot be assigned to more than one cell. 

In the cases where we obtain many exceptional elements in the final matrix configuration, a 

re-distribution of the cells may take place according to what follows: 

• Creating manufacturing cells, each of which contains a certain number of machines and 

parts. 

• Not all of the machines but all of the parts must be assigned to the manufacturing cells. 

• A machine and/or a part cannot be assigned to more than one manufacturing cell. 

• Creating one additional fractional cell that contains all of the parts in addition to only the 

machines which are not assigned to the manufacturing cells. 

The nonzero entries, which are included in the manufacturing cells or in the fractional cell, 

are not considered as exceptional elements. That is why; the addition of the fractional cell 

may play a major role in reducing the number of these elements. The following section 

provides a better understanding of this process through two illustrative examples. 

 

2.6 Illustrative Examples  

We are going in what follows to test this algorithm through two illustrative examples taken 

from the literature. The first one leads to the formation of only manufacturing cells; whereas, 

the second one shows the formation of manufacturing cells as well as an additional fractional 

cell. Let us consider the following incidence matrix which is taken from (Srinlvasan et al., 

1990) and which is shown in Table 2-3. 
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Table 2-3    The incidence matrix for the first illustrative example 

 

 

 

After running the MATLAB code of the binary digit grouping algorithm, the solution 

provided by the Table 2-4 was obtained in a few seconds. 

 

Table 2-4    The cell design for the first illustrative example 

 

 

 

In this example, 4 manufacturing cells were created; the number of nonzero entries existing 

in the manufacturing cells (n1) is equal to 49, the number of exceptional elements (n2) is 

equal to 0 which means that there is no intercellular material flow. The calculations led to a 

value equal to 1 for the cell density measure (e1) and to a value of 0 for the intercellular 

material flow (e2). The value of the grouping efficiency is e = e1 – e2 = 1. There is no need 

for a fractional cell in this example since there are no resulting exceptional elements.   

m \ n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

2 0 1 1 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0

3 0 1 1 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0

4 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 0 1

6 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

7 0 0 0 0 0 1 0 0 1 0 1 1 0 0 0 1 0 0 1 0

8 0 0 0 0 0 1 0 0 1 0 1 1 0 0 0 1 0 0 1 0

9 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 0 1

10 0 0 0 0 0 1 0 0 1 0 1 1 0 0 0 1 0 0 1 0

m\n 2 5 3 10 8 11 6 16 9 12 19 17 15 13 14 20 18 1 7 4
2 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0

10 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0
5 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1
4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1
6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1
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Let us now consider the second illustrative example which is represented by the incidence 

matrix in Table 2-5 and which is taken from (Chandrasekharan and Rajagopalan, 1989). 

 

Table 2-5    The incidence matrix for the second illustrative example 

 

 

 

After applying the binary digit grouping algorithm; the solution in the Table 2-6, which 

includes only manufacturing cells, was obtained with a value of (Nm) equal to 650 and with 

29 exceptional elements. 

 

Table 2-6    The design of the manufacturing cells for the second illustrative example 

 

 

 

As a result, many exceptional elements were gotten (which is not good). In such cases, the 

problem may be solved by constructing one additional fractional (remainder) cell. The 

reformation of the cells gives the solution in Table 2-7 with zero exceptional elements. 

m \ n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
1 1 1
2 1 1 1 1 1 1 1 1
3 1 1 1 1 1
4 1 1 1 1 1 1 1
5 1 1 1 1 1 1 1 1 1 1 1 1 1
6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
7 1 1 1
8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
9 1 1 1 1 1 1 1 1 1 1

10 1 1 1 1 1 1 1
11 1 1 1 1 1 1
12 1 1 1 1 1
13 1 1
14 1 1 1 1
15 1 1 1 1 1 1 1
16 1 1 1 1 1 1 1 1

m\n 16 29 5 14 21 41 33 43 19 23 9 15 8 12 1 13 25 26 31 39 7 34 36 35 17 6 40 28 38 2 37 32 42 10 18 4 22 30 27 24 3 20 11
7 1 1 1

10 1 1 1 1 1 1 1
3 1 1 1 1 1

14 1 1 1 1
2 1 1 1 1 1 1 1 1
9 1 1 1 1 1 1 1 1 1 1

16 1 1 1 1 1 1 1 1
6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
5 1 1 1 1 1 1 1 1 1 1 1 1 1
4 1 1 1 1 1 1 1

15 1 1 1 1 1 1 1
1 1 1

13 1 1
11 1 1 1 1 1 1
12 1 1 1 1 1
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Table 2-7    The design of the manufacturing cells in addition to one fractional cell  
for the second illustrative example 

 

 

 

This solution demonstrates that the problem of the existence of exceptional elements may be 

completely solved by introducing a remainder cell. In addition, it demonstrates that the 

binary digit grouping algorithm may be able to solve not only the manufacturing cell 

formation problems, but also to form a fractional (remainder) cell as well. Table 2-8 shows a 

comparison between the results coming from the application of the binary digit grouping 

algorithm and those obtained after applying the simulated annealing (SA) approach in 

(Srinlvasan et al., 1990.). 

 

Table 2-8    Comparison between the results coming from the application of the  
binary digit grouping algorithm and those coming from the application  
of the simulated annealing approach for the second illustrative example 

 

 
Binary digit grouping 

algorithm 

Simulated annealing 

(SA) 

Number of exceptional 

elements 
0 2 

Number of machines in 

the remainder cell 
4 6 

m\n 16 29 5 14 21 41 33 43 19 23 9 15 8 12 1 13 25 26 31 39 7 34 36 35 17 6 40 28 38 2 37 32 42 10 18 4 22 30 27 24 3 20 11
7 1 1 1

10 1 1 1 1 1 1 1
3 1 1 1 1 1

14 1 1 1 1
2 1 1 1 1 1 1 1 1
9 1 1 1 1 1 1 1 1 1 1

16 1 1 1 1 1 1 1 1
6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
5 1 1 1 1 1 1 1 1 1 1 1 1 1
4 1 1 1 1 1 1 1

15 1 1 1 1 1 1 1
1 1 1

13 1 1
11 1 1 1 1 1 1
12 1 1 1 1 1
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2.7 The advantages resulting from the application of the Pwavroid toolkit  

In what follows, we are going to apply the binary digit grouping algorithm in order to solve 

the cell formation problem of the first data set, which consists of a 24 x 40 incidence matrix 

taken from (Chandrasekharan and Rajagopalan, 1989). At first, we are going to use the first 2 

tools which are the only ones taken from the literature. Thereafter, we are going to use the 

whole toolkit. The MATLAB code, which is dedicated for the simulation of this algorithm, 

was set to output one solution every almost one second. The results obtained can be 

illustrated through the scatter plot in Figure 6. 

 

 

Figure 6    The results coming from the usage of only the first 2 tools versus  
those coming from the usage of the whole toolkit 
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Consequently, the benefits of using the whole toolkit with respect to the use of only the first 

2 tools are summarized in Table 2-9. 

 

Table 2-9    Benefits of using the new Pwavroid solution explorer toolkit 

 

Criterion 
Using only the first 2 

tools 
Using the whole toolkit 

Final solution 

A steady state solution 
(considered as the final 
solution) was reached at 
the iteration number 30 

A steady state solution was 
reached at the iteration 
number 17 (much more 

quickly) 

Neighborhood factor 

The neighborhood factor 
was always smaller for the 

successive candidate 
solutions 

The neighborhood factor 
was always greater 

Convergence towards the 
final solution 

Slower Quicker 

 

2.8 Conclusion 

A new algorithm entitled the binary digit grouping algorithm together with the new Pwavroid 

solution explorer toolkit were presented and explained in order to solve the manufacturing 

and fractional cell formation problems within the flexible manufacturing systems. The simple 

and intelligent steps makes them particularly powerful in creating and conserving the 

improving matrix configurations which a quick convergence towards the final solution for 

both small and big size problems. The advantages of using this algorithm together with the 

toolkit have been demonstrated through 2 illustrative examples. 
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CHAPTER 3 
 
 

A TIME-COST HEURISTIC ALGORITHM FOR ROUTING THE PARTS IN A 
FLEXIBLE MANUFACTURING SYSTEM 

 

Hassan Mroue, Thien-My Dao 

Mechanical Engineering Department, École de technologie supérieure (ÉTS)  

1100 Notre-Dame Street West, Montreal (Quebec) Canada H3C 1K3 

This chapter has been published in The International Journal of Applied Engineering 

Research, vol. 11 (6), pp 4053-4058, 2016 

 

 

3.1 Abstract 

 

A new algorithm is presented in this paper in order to route the parts in a flexible 

manufacturing system. The algorithm takes into consideration for the first time in the 

literature both the time and cost in order to accomplish the routing procedure. It helps the 

factories that are already fully busy with processing customers’ commands take a fast 

decision whether to accept or refuse a new fabrication demand. The reason is that the 

admittance of the new demand means that the factory has to reorganize its ongoing woks. 

This may lead to some lags on the existing commands and may cause in turn some harm to 

the reputation of the factory as well as possible penalties. After each part-routing procedure, 

another relevant algorithm can be used to form manufacturing cells. This paper presents also 

for the first time the possibility to re-route the parts according to the feedback coming from 

the resulting industrial cells. It was tested through two numerical examples and proved its 

capability to give the favourable final results. 

 

Keywords: Flexible manufacturing system, part routing, cost, time, fabrication, customer 

demand. 
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3.2 Introduction 

A flexible manufacturing system is a one which has a high capability to adapt to the changes 

(Gupta and Goyal, 1992). The manufacturing flexibility at the system’s level can be a crucial 

factor in the process of strategic change (Lloréns et al., 2005). For instance, it becomes 

critical for a narrow fabrication time interval. This happens in some cases such as the one 

when a factory receives a new fabrication request while it is fully occupied treating other 

customers’ demands. It needs to use an efficient algorithm in order to decide whether to 

accept or refuse the new demand. Doing so may cause delays or rescheduling of other 

projects in order to implement the new one. As a result, these delays may result in damages 

on the reputation of the factory as well as some financial penalties. In addition to the 

manufacturing costs, the required configuration changes within the factory’s flexible 

manufacturing system will cause additional charges. In order to ensure that the acceptation of 

the new demand will not cause side problems, the factory has to specify upper limitations for 

the duration and the cost of treating the new command. In order to treat these kinds of 

problematics, an intelligent part routing system that leads to an optimal manufacturing cell 

formation is needed.  

 

Many authors addressed the part routing issue within the context of flexible fabrication. For 

example a genetic algorithm approach can be used to determine the best processing plan for 

each part. This solution allows the factory to select the appropriate machines for each 

operation according to the determined plan. In addition, it leads to finding the solution that 

minimizes the total average flow times for all parts (Geyik and Dosdogru, 2013). Another 

approach based on a heuristic algorithm was proposed. The purpose is to solve the machine 

loading problem of a random type flexible manufacturing system by determining the part 

type sequence and the operation machine allocation that guarantees the optimal solution to 

the problem (Tiwari and Vidyarthi, 2000). A third approach, was presented as an artificial 

intelligence. Indeed, it’s an integrated concept for the automatic design of flexible 

manufacturing system which uses simulation and multi-criteria decision-making techniques. 

Through this approach, intelligent tools (such as expert systems, fuzzy systems and neural 
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networks) were developed for supporting the flexible manufacturing system design process 

(Chan et al., 2000). All of these solutions didn’t provide a direct feedback that influences the 

first step (part routing) according to the results obtained in the last step (manufacturing cells).  

 

This paper presents a new methodology that finds an optimal solution for the balanced 

reduction of both, production time and cost. It consists of a new algorithm which inputs the 

number of operations required onto each part of a fabrication command as well as the 

relevant costs and durations. Thereafter, it searches for the optimal parts routing which is 

able to respect the maximum allowable overall cost and time for the fabrication of the new 

demand. Afterwards, it uses another algorithm for designing the manufacturing cells. The 

resulting exceptional elements, if there are any, will cause in turn the increase of the values 

of both the cost and the time. The new algorithm will then provide a re-routing of the parts 

only if the maximum allowable cost or duration has been surpassed. The procedure continues 

in this manner until the algorithm tells whether the situation is or not realizable and the best 

found solution will be considered as the final one. 

 

3.3 The new algorithm  

The first step consists of constructing a matrix which contains the information about the 

processing cost and time for each part. Let on be the number of operations required on the 

part number n, cnm and dnm are consecutively the cost and the duration required for 

processing the part number n on the machine number m. The factory specifies C as the 

maximum allowable cost for treating all of the parts and D as the maximum acceptable 

duration. The total processing cost and duration must be re-calculated after designing the 

manufacturing cells because some exceptional elements may result and increase them. Unlike 

some other algorithms that treat the groups of elements such as the genetic algorithm 

presented in (Geyik and Dosdogru, 2013); the efficiency of this one is that it applies 

mathematical and logical operations on the elements separately. For a better understanding, 

we are going to describe the algorithm step by step in parallel with the application of a 

numerical example. 
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A factory receives a fabrication request of 5 parts. It needs 4 different machines in order to 

complete the request. Each machine can treat all the parts but the first, second and third 

machines have to be assigned 3 operations, whereas 2 operations are given to the machine 

number 5. Besides the direct fabrication costs such as those of direct materials, other ones 

such as those related to the labor in addition to some manufacturing overhead depend on the 

duration of the fabrication. For instance when the run time gets bigger, the factory needs to 

work for longer durations or to hire more employees which in turn increases the labors’ as 

well as other relevant costs. That is why; the fabrication run time can be expressed in terms 

of dollars. In this case, each part costs the amount of money which is equivalent to the sum of 

the direct costs on one hand, and all the other costs that depend on the run time on the other 

hand. The matrix illustrated in Table 3-1 specifies the fabrication cost and duration of each 

part on each of the 4 machines. 

 

Table 3-1    Fabrication costs and durations of the first numerical example 

 

m/n 1 2 3 4 5 

1 
(c11,d11) = 

(2,5) 

(c12,d12) = 

(5,3) 

(c13,d13) = 

(5,3) 

(c14,d14) = 

(9,8) 

(c15,d15) = 

(6,8) 

2 
(c21,d21) = 

(5,9) 

(c22,d22) = 

(6,4) 

(c23,d23) = 

(4,2) 

(c24,d24) = 

(8,2) 

(c25,d25) = 

(4,7) 

3 
(c31,d31) = 

(4,9) 

(c32,d32) = 

(4,6) 

(c33,d33) = 

(7,4) 

(c34,d34) = 

(7,2) 

(c35,d35) = 

(4,6) 

4 
(c41,d41) = 

(6,8) 

(c42,d42) = 

(2,3) 

(c43,d43) = 

(7,9) 

(c44,d44) = 

(2,2) 

(c45,d45) = 

(8,2) 

 

 

The parts number 1, 2, 3 and 4 require 2 operations whereas 3 operations are needed for the 

part number 5. After making a case study, the factory decides that the maximum allowable 

cost for accepting this command is 50 and the maximum duration is 55. 
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1. Let O be the total number of required operations i.e. ܱ = ∑ ௜ܱ௜ୀ௡௜ୀଵ   

 

In this example, O = 11 

 

2. Let x1 be the weight of the processing cost with respect to the duration. Where 0 <= x1 <= 

1 

 

This factor determines the relation between the 2 parameters. For example if x1 = 0.5, this 

means that the factory has to route the parts in a manner to get equal values of the fabrication 

costs and the conversion to the terms of dollars of the run-time. This equality can be achieved 

as for example by hiring more employees in order to accelerate the fabrication procedure if 

the final results show that there is a need to speed up the fabrication in order to make the run-

tie to cost conversion equal to the direct costs. 

 

In the numeric example, let us begin with x1 = 0.65 

 

3. Let x2 be the weight of the processing duration with respect to the cost where x1 + x2 = 1 

 

Thus, x2 = 0.35 

 

4. c2nm = x1 ×  cnm is the weighed cost 

5. d2nm = x2 ×  dnm is the weighed duration 

 

After applying the steps 3 and 4 on the numerical example, we obtain the matrix shown in  

 

Table 3-2. 
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Table 3-2    Weighed costs and durations in the first numerical example 

 

m/n 1 2 3 4 5 

1 (1.3,1.75) (3.25,1.05) (3.25,1.05) (5.85,2.8) (3.9,2.8) 

2 (3.25,3.15) (3.9,1.4) (2.6,0.7) (5.2,0.7) (2.6,2.45) 

3 (2.6,3.15) (2.6,2.1) (4.55,1.4) (4.55,0.7) (2.6,2.1) 

4 (3.9,2.8) (1.3,1.05) (4.55,3.15) (1.3,0.7) (5.2,0.7) 

 

6. Assign a single value vnm for each operation where vnm = c2nm + d2nm 

 

7. Build a new matrix MN which contains the vnm values as shown in Table 3-3. 

 

Table 3-3    The total cost for each element in the first numerical example 

 

m/n 1 2 3 4 5 

1 3.05 4.3 4.3 8.65 6.7 

2 6.4 5.3 3.3 5.9 5.05 

3 5.75 4.7 5.95 5.25 4.7 

4 6.7 2.35 7.7 2 5.9 

 

8. Select the lowest O values of vnm (colored in cyan in Table 3-4) 

 

Table 3-4    The lowest selected values in the first numerical example 

 

m/n 1 2 3 4 5 

1 3.05 4.3 4.3 8.65 6.7 

2 6.4 5.3 3.3 5.9 5.05 

3 5.75 4.7 5.95 5.25 4.7 

4 6.7 2.35 7.7 2 5.9 
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9. Begin with the first column, if the number of selected operations is not greater than the 

required number, do nothing and go to the next column 

 

10. If the number of selected operations is greater than the required number, do the 

following: 

 

a. Make a one by one subtraction between each selected element and all of the 

unselected elements in the same row 

 

In this example, the subtraction procedure gives the results which are coloured in green in 

Table 3-5. 

 

Table 3-5    Resulting values for the subtraction operations 

 

m/n 1 2 3 4 5 

1 3.05 4.3 4.3 -4.35 -2.4 

2 -1.1 5.3 3.3 -0.6 5.05 

3 -1.05 4.7 -1.25 5.25 4.7 

4 -4.35 2.35 -5.35 2 -3.55 

 

 

b. Begin with the greatest resulting value from the previous step, check the 

number of selections in the relevant column: 

i. If it is greater than or equal to the required number, do nothing 

ii. Otherwise, swap the selection between the new and the selected 

element 

iii. Repeat the steps b.i, and b.ii with the next element until decreasing 

the number of the selected operations in the column to the required 

number which is on 
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Thus, the new selection is shown in Table 3-6. 

 

Table 3-6    The new selection in the first numerical example 

 

m/n 1 2 3 4 5 

1 3.05 4.3 4.3 8.65 6.7 

2 6.4 5.3 3.3 5.9 5.05 

3 5.75 4.7 5.95 5.25 4.7 

4 6.7 2.35 7.7 2 5.9 

 

 

11. Repeat the steps 9 and 10 until completing the treatment of all the columns 

 

12. Revert the matrix to its original form and include the elements in the form of ones and 

zeros in order to obtain the incidence matrix shown in Table 3-7. 

 

Table 3-7    The incidence matrix of the first iteration 

 

m/n 1 2 3 4 5 

1 1 0 1 0 1 

2 0 1 1 0 1 

3 1 0 0 1 1 

4 0 1 0 1 0 

 

 

13. At this stage, the routing of the parts is completed; we make the sum of the costs as well 

as of the durations of the selected operations in order to obtain the total resulting cost Cti 

and Duration Dti where i is the iteration number. 
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The calculations give Ct1 = 49 and Dt1 = 51 

 

14. Use another relevant algorithm such as the binary digit grouping algorithm proposed by 

Mroue and Dao (2014) in order to form the manufacturing cells 

 

We obtain the 2 cells which are shown in Table 3-8. 

 

Table 3-8    The manufacturing cells of the first iteration 

 

m/n 4 2 1 3 5 

1 0 0 1 1 1 

2 0 1 0 1 1 

3 1 0 1 0 1 

4 1 1 0 0 0 

 

 

15. If there are resulting exceptional elements, we calculate the sum of the additional 

processing cost Cai and time Dai. Let us assume that the 2 exceptional elements located at 

(3,4) and at (2,2) cause successively additional costs of 2 and 1 as well additional 

durations of 2 and 2. Thus, Ca1 = 4 and Da1 = 3 

 

16. Let Cfi and Dfi and be successively the final operational cost and time for the iteration 

number i where Cfi = Cti + Cai and Dfi = Dti + Dai. So Cf1 = 49 + 4 = 53 and Df1 = 51 + 3 = 

54 

a. If Cfi <= C and Dfi <= D; stop and consider the resulting solution as the final 

one 

b. If Cfi <= C and Dfi > D; increase x1 by a small value Δx1 and decrease x2 by 

the same amount and go to step 4 in order to begin the next iteration 

c. If Cfi > C and Dfi <= D; decrease x1 by a small value Δx1 and increase x2 by 

the same amount and go to step 4 in order to begin the next iteration 
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d. Else, stop and announce that no solution can be found 

 

17. In our example, Cf1 = 53 > C = 50 and Df1 = 54 < 55; that is why, we decrease x1 by 0.05 

and we increase x2 by the same value. We repeat the steps 4 to 12 for the second iteration 

and we obtain a new routing for the elements as shown in Table 3-9. 

 

Table 3-9    The incidence matrix of the second iteration 

 

m/n 1 2 3 4 5 

1 1 0 1 0 1 

2 1 0 1 0 1 

3 0 1 0 1 1 

4 0 1 0 1 0 

 

 

We make the relevant calculations for the second iteration in order to obtain Ct2 = 45 and Dt2 

= 53. Thereafter, we repeat the step 14 in order to form the manufacturing cells that are 

shown in Table 3-10.  

 

Table 3-10    The manufacturing cells of the second iteration 

 

m/n 1 3 5 4 2 

1 1 1 1 0 0 

2 1 1 1 0 0 

3 0 0 1 1 1 

4 0 0 0 1 1 

 

A single exceptional element was obtained at (3,5). It causes an additional cost of 1, and an 

additional processing time of 2. Cf2 = 45 + 1 = 46 < C = 50 and Df2 = 53 + 2 = 55 which is 

equal to D. That is why, this solution is acceptable, there is no need for additional iterations 
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and the factory admits accordingly the new command. The algorithm is illustrated in  

Figure 7. 
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Figure 7    The Algorithm 
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3.4 The innovation and the industrial importance provided by the new algorithm 

The importance of the approach introduced in this paper comes from the fact that it is: 

 

• The only algorithm in the literature which reduces in a balanced manner both the 

production cost and duration.  

 

• Other methodologies that are based on heuristic solutions such as the one presented in 

(Shmilovici and Maimon, 1992), as well as the model designed by Lamar and Lee (1999) 

focused only on the production costs while neglecting the time factor. We can also find 

others which focused on the production duration such as the fuzzy rule presented by 

(Mahdavi et al., 2009) and the heuristic based on multi-stage programming approach that 

is proposed by (Mahesh et al., 2006). However, the inclusion of the two parameters 

makes this algorithm more useful, efficient, and reliable 

 

• The only algorithm in the literature which introduces a re-routing procedure that links the 

last step (the formation of the manufacturing cells) to the first step (the routing of parts). 

In other words, if the routing of parts is efficient by itself but it doesn’t lead to an 

acceptable formation of manufacturing cells, the algorithm re-routes the parts again and 

again in order to guarantee an acceptable cell design at the end 

 

• The only algorithm in the literature that takes into consideration the additional costs and 

durations resulting from the appearance of exceptional elements after the formation of 

manufacturing cells. Thereafter it re-routes the parts if needed in order to decrease these 

additional costs and durations. In other words, it tries to reduce the number of exceptional 

elements. Then, the algorithm helps the factories reduce the overall production charge 

and time and provides a smoother part flow and facilitates the production scheduling. 
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3.5 A second numerical example 

The example illustrated in Table 3-11 and Table 3-12 is a 15 ×  30 matrix which shows the 

processing cost and duration for each operation. For a better illustration, we are going to 

divide the matrix into two parts. The first one shows all of the rows as well as the columns 1 

to 15; whereas, the second shows the rows again but with only the remaining columns. 

 

Table 3-11    Fabrication costs and durations of the second numerical example  
(columns 1 to 15) 

 

 

 

 

m/n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 (14,25) (27,30) (29,34) (12,17) (25,28) (15,23) (15,18) (28,33) (24,35) (17,21) (23,31) (18,17) (21,21) (28,31) (24,30)

2 (26,29) (17,18) (28,30) (30,27) (15,25) (13,11) (26,33) (24,32) (18,19) (27,28) (30,28) (23,30) (22,29) (21,15) (24,35)

3 (13,18) (27,33) (13,19) (16,24) (29,28) (12,26) (19,19) (22,27) (14,12) (17,16) (22,29) (20,21) (15,20) (24,33) (22,35)

4 (28,29) (17,12) (27,27) (28,34) (19,12) (19,21) (24,27) (25,32) (14,20) (23,31) (20,23) (27,27) (24,27) (13,24) (22,27)

5 (29,33) (23,33) (28,33) (22,28) (29,32) (27,31) (11,13) (13,20) (25,33) (25,35) (29,32) (29,32) (24,31) (24,32) (15,22)

6 (11,18) (28,30) (14,25) (30,34) (25,30) (18,15) (18,22) (22,34) (20,26) (19,17) (22,30) (19,23) (18,23) (25,33) (23,33)

7 (25,32) (20,16) (30,33) (23,32) (16,14) (22,29) (29,29) (28,31) (19,23) (27,27) (18,21) (28,31) (26,31) (30,34) (24,32)

8 (13,25) (22,30) (13,23) (14,15) (27,31) (21,14) (16,18) (27,30) (24,28) (20,11) (29,28) (19,18) (15,22) (28,35) (25,34)

9 (30,27) (16,17) (30,30) (24,33) (16,13) (23,32) (21,24) (29,29) (19,17) (22,34) (19,24) (20,23) (26,33) (29,28_ (27,35)

10 (29,35) (12,10) (24,31) (29,27) (23,32) (23,30) (24,31) (12,26) (20,24) (23,33) (28,28) (27,34) (30,30) (26,30) (21,11)

11 (19,16) (23,29) (11,15) (18,23) (23,31) (19,12) (15,14) (22,35) (22,33) (21,17) (28,28) (12,20) (21,17) (25,30) (23,35)

12 (22,34) (24,29) (27,31) (29,28) (10,16) (26,31) (25,33) (19,22) (27,28) (22,31) (26,30) (26,32) (27,32) (27,31) (11,23)

13 (29,33) (17,26) (25,28) (28,31) (18,16) (23,28) (26,33) (29,30) (15,18) (23,29) (21,15) (25,31) (30,30) (28,32) (25,27)

14 (17,25) (18,22) (16,20) (19,19) (19,19) (11,21) (21,25) (28,30) (13,11) (11,18) (28,29) (15,22) (16,11) (30,28) (28,35)

15 (29,32) (28,34) (28,30) (28,33) (30,31) (24,34) (26,29) (16,24) (23,28) (28,31) (26,27) (13,12) (26,29) (28,29) (29,33)



47 

Table 3-12    Fabrication costs and durations of the second numerical example  
(columns 16 to 30) 

 

 

 
 
Table 3-13 and Table 3-14 show the number of operations required on each part. 

 

Table 3-13    Number of operations required on each part  
(columns 1 to 15) 

 

Part number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Number of operations 6 5 6 6 5 6 6 4 5 6 5 6 6 5 4 

 

 

m/n 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

1 (10,15) (15,11) (27,33) (11,20) (13,19) (23,30) (24,29) (17,17) (27,32) (25,27) (25,32) (18,14) (25,27) (25,29) (21,12)

2 (17,12) (30,31) (17,26) (19,24) (27,32) (12,11) (25,35) (26,32) (25,35) (15,18) (23,30) (25,31) (20,14) (18,20) (29,33)

3 (17,26) (17,12) (27,30) (20,15) (14,13) (27,29) (26,28) (16,12) (29,32) (25,30) (24,29) (13,11) (24,35) (29,33) (28,28)

4 (17,13) (26,31) (29,32) (25,35) (30,27) (19,11) (27,28) (30,32) (29,33) (13,16) (10,12) (29,27) (17,14) (11,12) (23,32)

5 (28,35) (25,29) (27,33) (23,31) (22,32) (24,30) (28,33) (24,28) (20,12) (29,31) (15,17) (25,33) (23,28) (28,35) (29,33)

6 (11,10) (18,14) (22,27) (11,19) (12,18) (24,30) (22,31) (21,18) (28,35) (27,29) (24,31) (16,21) (23,31) (29,27) (11,26)

7 (16,25) (27,31) (21,16) (14,12) (24,30) (13,19) (24,28) (25,27) (25,34) (19,16) (21,26) (26,34) (12,11) (17,15) (28,30)

8 (18,25) (19,26) (30,30) (11,19) (13,14) (24,33) (30,29) (11,18) (22,35) (28,33) (25,27) (16,16) (25,30) (30,31) (15,14)

9 (18,19) (25,29) (14,12) (27,30) (25,28) (17,17) (25,33) (24,33) (23,33) (17,16) (13,11) (24,33) (15,26) (19,22) (24,27)

10 (27,35) (25,35) (30,31) (23,34) (23,29) (30,27) (11,17) (29,32) (30,33) (22,31) (19,17) (24,34) (28,30) (22,31) (28,30)

11 (24,31) (17,12) (27,33) (13,14) (15,11) (24,33) (22,32) (18,12) (30,33) (24,34) (26,32) (12,18) (28,34) (27,29) (16,13)

12 (26,29) (30,33) (24,33) (25,30) (27,33) (22,29) (29,35) (23,27) (13,15) (22,29) (21,12) (25,33) (23,35) (30,32) (23,35)

13 (17,13) (24,33) (16,15) (17,16) (30,27) (17,25) (26,29) (25,28) (26,32) (18,18) (21,24) (22,33) (13,17) (20,21) (27,29)

14 (29,27) (14,11) (25,28) (15,14) (20,15) (28,28) (27,27) (16,24) (24,29) (22,27) (25,32) (29,30) (22,35) (22,27) (18,16)

15 (25,30) (25,33) (25,34) (20,23) (23,31) (30,33) (13,11) (24,30) (16,19) (27,32) (14,13) (27,27) (28,30) (24,35) (23,35)
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Table 3-14    Number of operations required on each part (columns 16 to 30) 

 

Part number 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 

Number of operations 5 6 5 6 6 5 4 6 4 5 4 6 5 5 6 

 
 

So, the total number of operations required is calculated in equation 3.1. 

 

30

n
n=1

O = o  = 159  (3.1)

 

After completing a case study, the factory decides that the maximum allowable cost is C = 

3000 and the maximum allowable duration is D = 3500. We begin by assigning a value to x1 

which is equal to 0.65 and 0.35 for x2. After calculating the weighed relative cost and 

processing time for each operation, we add them in order to obtain the vnm values. 

Accordingly, the matrix MN for the first iteration is illustrated in Table 3-15 and Table 3-16. 
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Table 3-15    The total cost for each element in the second numerical example  
(columns 1 to 15) 

 

 
 

 

 

 

 

 

 

 

 

 

m/n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 17.85 28.05 30.75 13.75 26.05 17.8 16.05 29.75 27.85 18.4 25.8 17.65 21 29.05 26.1

2 27.05 17.35 28.7 28.95 18.5 12.3 28.45 26.8 18.35 27.35 29.3 25.45 24.45 18.9 27.85

3 14.75 29.1 15.1 18.8 28.65 16.9 19 23.75 13.3 16.65 24.45 20.35 16.75 27.15 26.55

4 28.35 15.25 27 30.1 16.55 19.7 25.05 27.45 16.1 25.8 21.05 27 25.05 16.85 23.75

5 30.4 26.5 29.75 24.1 30.05 28.4 11.7 15.45 27.8 28.5 30.05 30.05 26.45 26.8 17.45

6 13.45 28.7 17.85 31.4 26.75 16.95 19.4 26.2 22.1 18.3 24.8 20.4 19.75 27.8 26.5

7 27.45 18.6 31.05 26.15 15.3 24.45 29 29.05 20.4 27 19.05 29.05 27.75 31.4 26.8

8 17.2 24.8 16.5 14.35 28.4 18.55 16.7 28.05 25.4 16.85 28.65 18.65 17.45 30.45 28.15

9 28.95 16.35 30 27.15 14.95 26.15 22.05 29 18.3 26.2 20.75 21.05 28.45 28.65 29.8

10 31.1 11.3 26.45 28.3 26.15 25.45 26.45 16.9 21.4 26.5 28 29.45 30 27.4 17.5

11 17.95 25.1 12.4 19.75 25.8 16.55 14.65 26.55 25.85 19.6 28 14.8 19.6 26.75 27.2

12 26.2 25.75 28.4 28.65 12.1 27.75 27.8 20.05 27.35 25.15 27.4 28.1 28.75 28.4 15.2

13 30.4 20.15 26.05 29.05 17.3 24.75 28.45 29.35 16.05 25.1 18.9 27.1 30 29.4 25.7

14 19.8 19.4 17.4 19 19 14.5 22.4 28.7 12.3 13.45 28.35 17.45 14.25 29.3 30.45

15 30.05 30.1 28.7 29.75 30.35 27.5 27.05 18.8 24.75 29.05 26.35 12.65 27.05 28.35 30.4
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Table 3-16    The total cost for each element in the second numerical example  
(columns 16 to 30) 

 

 
 
 
 

Now we select the lowest 159 vnm values in the matrix MN (coloured in blue in Table 3-17 

and Table 3-18). 

 
 
 
 
 
 
 
 

m/n 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

1 11.75 13.6 29.1 14.15 15.1 25.45 25.75 17 28.75 25.7 27.45 16.6 25.7 26.4 17.85

2 15.25 30.35 20.15 20.75 28.75 11.65 28.5 28.1 28.5 16.05 25.45 27.1 17.9 18.7 30.4

3 20.15 15.25 28.05 18.25 13.65 27.7 26.7 14.6 30.05 26.75 25.75 12.3 27.85 30.4 28

4 15.6 27.75 30.05 28.5 28.95 16.2 27.35 30.7 30.4 14.05 10.7 28.3 15.95 11.35 26.15

5 30.45 26.4 29.1 25.8 25.5 26.1 29.75 25.4 17.2 29.7 15.7 27.8 24.75 30.45 30.4

6 10.65 16.6 23.75 13.8 14.1 26.1 25.15 19.95 30.45 27.7 26.45 17.75 25.8 28.3 16.25

7 19.15 28.4 19.25 13.3 26.1 15.1 25.4 25.7 28.15 17.95 22.75 28.8 11.65 16.3 28.7

8 20.45 21.45 30 13.8 13.35 27.15 29.65 13.45 26.55 29.75 25.7 16 26.75 30.35 14.65

9 18.35 26.4 13.3 28.05 26.05 17 27.8 27.15 26.5 16.65 12.3 27.15 18.85 20.05 25.05

10 29.8 28.5 30.35 26.85 25.1 28.95 13.1 30.05 31.05 25.15 18.3 27.5 28.7 25.15 28.7

11 26.45 15.25 29.1 13.35 13.6 27.15 25.5 15.9 31.05 27.5 28.1 14.1 30.1 27.7 14.95

12 27.05 31.05 27.15 26.75 29.1 24.45 31.1 24.4 13.7 24.45 17.85 27.8 27.2 30.7 27.2

13 15.6 27.15 15.65 16.65 28.95 19.8 27.05 26.05 28.1 18 22.05 25.85 14.4 20.35 27.7

14 28.3 12.95 26.05 14.65 18.25 28 27 18.8 25.75 23.75 27.45 29.35 26.55 23.75 17.3

15 26.75 27.8 28.15 21.05 25.8 31.05 12.3 26.1 17.05 28.75 13.65 27 28.7 27.85 27.2
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Table 3-17    The lowest selected values in the second numerical example  
(columns 1 to 15) 

 

 
 
 

Table 3-18    The lowest selected values in the second numerical example  
(columns 16 to 30) 

 

 

 

m/n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 17.85 28.05 30.75 13.75 26.05 17.8 16.05 29.75 27.85 18.4 25.8 17.65 21 29.05 26.1
2 27.05 17.35 28.7 28.95 18.5 12.3 28.45 26.8 18.35 27.35 29.3 25.45 24.45 18.9 27.85
3 14.75 29.1 15.1 18.8 28.65 16.9 19 23.75 13.3 16.65 24.45 20.35 16.75 27.15 26.55
4 28.35 15.25 27 30.1 16.55 19.7 25.05 27.45 16.1 25.8 21.05 27 25.05 16.85 23.75
5 30.4 26.5 29.75 24.1 30.05 28.4 11.7 15.45 27.8 28.5 30.05 30.05 26.45 26.8 17.45
6 13.45 28.7 17.85 31.4 26.75 16.95 19.4 26.2 22.1 18.3 24.8 20.4 19.75 27.8 26.5
7 27.45 18.6 31.05 26.15 15.3 24.45 29 29.05 20.4 27 19.05 29.05 27.75 31.4 26.8
8 17.2 24.8 16.5 14.35 28.4 18.55 16.7 28.05 25.4 16.85 28.65 18.65 17.45 30.45 28.15
9 28.95 16.35 30 27.15 14.95 26.15 22.05 29 18.3 26.2 20.75 21.05 28.45 28.65 29.8
10 31.1 11.3 26.45 28.3 26.15 25.45 26.45 16.9 21.4 26.5 28 29.45 30 27.4 17.5
11 17.95 25.1 12.4 19.75 25.8 16.55 14.65 26.55 25.85 19.6 28 14.8 19.6 26.75 27.2
12 26.2 25.75 28.4 28.65 12.1 27.75 27.8 20.05 27.35 25.15 27.4 28.1 28.75 28.4 15.2
13 30.4 20.15 26.05 29.05 17.3 24.75 28.45 29.35 16.05 25.1 18.9 27.1 30 29.4 25.7
14 19.8 19.4 17.4 19 19 14.5 22.4 28.7 12.3 13.45 28.35 17.45 14.25 29.3 30.45
15 30.05 30.1 28.7 29.75 30.35 27.5 27.05 18.8 24.75 29.05 26.35 12.65 27.05 28.35 30.4

m/n 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
1 11.75 13.6 29.1 14.15 15.1 25.45 25.75 17 28.75 25.7 27.45 16.6 25.7 26.4 17.85
2 15.25 30.35 20.15 20.75 28.75 11.65 28.5 28.1 28.5 16.05 25.45 27.1 17.9 18.7 30.4
3 20.15 15.25 28.05 18.25 13.65 27.7 26.7 14.6 30.05 26.75 25.75 12.3 27.85 30.4 28
4 15.6 27.75 30.05 28.5 28.95 16.2 27.35 30.7 30.4 14.05 10.7 28.3 15.95 11.35 26.15
5 30.45 26.4 29.1 25.8 25.5 26.1 29.75 25.4 17.2 29.7 15.7 27.8 24.75 30.45 30.4
6 10.65 16.6 23.75 13.8 14.1 26.1 25.15 19.95 30.45 27.7 26.45 17.75 25.8 28.3 16.25
7 19.15 28.4 19.25 13.3 26.1 15.1 25.4 25.7 28.15 17.95 22.75 28.8 11.65 16.3 28.7
8 20.45 21.45 30 13.8 13.35 27.15 29.65 13.45 26.55 29.75 25.7 16 26.75 30.35 14.65
9 18.35 26.4 13.3 28.05 26.05 17 27.8 27.15 26.5 16.65 12.3 27.15 18.85 20.05 25.05
10 29.8 28.5 30.35 26.85 25.1 28.95 13.1 30.05 31.05 25.15 18.3 27.5 28.7 25.15 28.7
11 26.45 15.25 29.1 13.35 13.6 27.15 25.5 15.9 31.05 27.5 28.1 14.1 30.1 27.7 14.95
12 27.05 31.05 27.15 26.75 29.1 24.45 31.1 24.4 13.7 24.45 17.85 27.8 27.2 30.7 27.2
13 15.6 27.15 15.65 16.65 28.95 19.8 27.05 26.05 28.1 18 22.05 25.85 14.4 20.35 27.7
14 28.3 12.95 26.05 14.65 18.25 28 27 18.8 25.75 23.75 27.45 29.35 26.55 23.75 17.3
15 26.75 27.8 28.15 21.05 25.8 31.05 12.3 26.1 17.05 28.75 13.65 27 28.7 27.85 27.2
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After completing the steps 9, 10 and 11 of the algorithm, the new selection becomes as 

shown in Table 3-19 and Table 3-20. 

 

Table 3-19    The new selections in the second numerical example (columns 1 to 15) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

m/n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 (14,25)(27,30)(29,34)(12,17)(25,28)(15,23)(15,18)(28,33)(24,35)(17,21)(23,31)(18,17)(21,21)(28,31)(24,30)
2 (26,29)(17,18)(28,30)(30,27)(15,25)(13,11)(26,33)(24,32)(18,19)(27,28)(30,28)(23,30)(22,29)(21,15)(24,35)
3 (13,18)(27,33)(13,19)(16,24)(29,28)(12,26)(19,19)(22,27)(14,12)(17,16)(22,29)(20,21)(15,20)(24,33)(22,35)
4 (28,29)(17,12)(27,27)(28,34)(19,12)(19,21)(24,27)(25,32)(14,20)(23,31)(20,23)(27,27)(24,27)(13,24)(22,27)
5 (29,33)(23,33)(28,33)(22,28)(29,32)(27,31)(11,13)(13,20)(25,33)(25,35)(29,32)(29,32)(24,31)(24,32)(15,22)
6 (11,18)(28,30)(14,25)(30,34)(25,30)(18,15)(18,22)(22,34)(20,26)(19,17)(22,30)(19,23)(18,23)(25,33)(23,33)
7 (25,32)(20,16)(30,33)(23,32)(16,14)(22,29)(29,29)(28,31)(19,23)(27,27)(18,21)(28,31)(26,31)(30,34)(24,32)
8 (13,25)(22,30)(13,23)(14,15)(27,31)(21,14)(16,18)(27,30)(24,28)(20,11)(29,28)(19,18)(15,22)(28,35)(25,34)
9 (30,27)(16,17)(30,30)(24,33)(16,13)(23,32)(21,24)(29,29)(19,17)(22,34)(19,24)(20,23)(26,33)(29,28_(27,35)
10 (29,35)(12,10)(24,31)(29,27)(23,32)(23,30)(24,31)(12,26)(20,24)(23,33)(28,28)(27,34)(30,30)(26,30)(21,11)
11 (19,16)(23,29)(11,15)(18,23)(23,31)(19,12)(15,14)(22,35)(22,33)(21,17)(28,28)(12,20)(21,17)(25,30)(23,35)
12 (22,34)(24,29)(27,31)(29,28)(10,16)(26,31)(25,33)(19,22)(27,28)(22,31)(26,30)(26,32)(27,32)(27,31)(11,23)
13 (29,33)(17,26)(25,28)(28,31)(18,16)(23,28)(26,33)(29,30)(15,18)(23,29)(21,15)(25,31)(30,30)(28,32)(25,27)
14 (17,25)(18,22)(16,20)(19,19)(19,19)(11,21)(21,25)(28,30)(13,11)(11,18)(28,29)(15,22)(16,11)(30,28)(28,35)
15 (29,32)(28,34)(28,30)(28,33)(30,31)(24,34)(26,29)(16,24)(23,28)(28,31)(26,27)(13,12)(26,29)(28,29)(29,33)
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Table 3-20    The new selections in the second numerical example (columns 16 to 30) 

 

 
 
 

After reverting the matrix to its original form which consists of ones and zeros, the routing of 

the parts, which is shown in Table 3-21, was obtained. 

 

Table 3-21    The incidence matrix of the second numerical example 

 

 
 
 

 

m/n 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
1 (10,15)(15,11)(27,33)(11,20)(13,19)(23,30)(24,29)(17,17)(27,32)(25,27)(25,32)(18,14)(25,27)(25,29)(21,12)
2 (17,12)(30,31)(17,26)(19,24)(27,32)(12,11)(25,35)(26,32)(25,35)(15,18)(23,30)(25,31)(20,14)(18,20)(29,33)
3 (17,26)(17,12)(27,30)(20,15)(14,13)(27,29)(26,28)(16,12)(29,32)(25,30)(24,29)(13,11)(24,35)(29,33)(28,28)
4 (17,13)(26,31)(29,32)(25,35)(30,27)(19,11)(27,28)(30,32)(29,33)(13,16)(10,12)(29,27)(17,14)(11,12)(23,32)
5 (28,35)(25,29)(27,33)(23,31)(22,32)(24,30)(28,33)(24,28)(20,12)(29,31)(15,17)(25,33)(23,28)(28,35)(29,33)
6 (11,10)(18,14)(22,27)(11,19)(12,18)(24,30)(22,31)(21,18)(28,35)(27,29)(24,31)(16,21)(23,31)(29,27)(11,26)
7 (16,25)(27,31)(21,16)(14,12)(24,30)(13,19)(24,28)(25,27)(25,34)(19,16)(21,26)(26,34)(12,11)(17,15)(28,30)
8 (18,25)(19,26)(30,30)(11,19)(13,14)(24,33)(30,29)(11,18)(22,35)(28,33)(25,27)(16,16)(25,30)(30,31)(15,14)
9 (18,19)(25,29)(14,12)(27,30)(25,28)(17,17)(25,33)(24,33)(23,33)(17,16)(13,11)(24,33)(15,26)(19,22)(24,27)
10 (27,35)(25,35)(30,31)(23,34)(23,29)(30,27)(11,17)(29,32)(30,33)(22,31)(19,17)(24,34)(28,30)(22,31)(28,30)
11 (24,31)(17,12)(27,33)(13,14)(15,11)(24,33)(22,32)(18,12)(30,33)(24,34)(26,32)(12,18)(28,34)(27,29)(16,13)
12 (26,29)(30,33)(24,33)(25,30)(27,33)(22,29)(29,35)(23,27)(13,15)(22,29)(21,12)(25,33)(23,35)(30,32)(23,35)
13 (17,13)(24,33)(16,15)(17,16)(30,27)(17,25)(26,29)(25,28)(26,32)(18,18)(21,24)(22,33)(13,17)(20,21)(27,29)
14 (29,27)(14,11)(25,28)(15,14)(20,15)(28,28)(27,27)(16,24)(24,29)(22,27)(25,32)(29,30)(22,35)(22,27)(18,16)
15 (25,30)(25,33)(25,34)(20,23)(23,31)(30,33)(13,11)(24,30)(16,19)(27,32)(14,13)(27,27)(28,30)(24,35)(23,35)

m/n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1 1 1 1 1
3 1 1 1 1 1 1 1 1 1 1 1 1 1 1
4 1 1 1 1 1 1 1 1 1 1 1
5 1 1 1 1 1
6 1 1 1 1 1 1 1 1 1 1 1 1 1 1
7 1 1 1 1 1 1 1 1 1 1 1
8 1 1 1 1 1 1 1 1 1 1 1 1 1 1
9 1 1 1 1 1 1 1 1 1 1 1
10 1 1 1 1 1
11 1 1 1 1 1 1 1 1 1 1 1 1 1 1
12 1 1 1 1 1
13 1 1 1 1 1 1 1 1 1 1 1
14 1 1 1 1 1 1 1 1 1 1 1 1 1 1
15 1 1 1 1 1
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After making the sum of costs of the selected elements, we obtain a total cost of Ct1 = 2740 

and a total duration of Dt1 = 3001. At this stage, we can apply another algorithm such as the 

binary digit grouping algorithm presented by Mroue and Dao (2014) in order to construct the 

manufacturing cells. As a result, we obtain the following matrix presented in Table 3-22. 

 

Table 3-22    The manufacturing cells of the second numerical example 

 

 
 
 

Since there are no exceptional elements, Ca1 as well as Da1 are equal to zero. Hence,  

Cf1 = Ct1 + Ca1 = 2740 < C = 3000, and Df1 = Dt1 + Da1 = 3001 < 3500. That is why, no more 

iterations are needed, and the obtained solution is the final one and the factory should accept 

the command. 

 

3.6 A review of the obtained results 

The 2 numerical examples demonstrated in this paper prove that the algorithm is able to 

provide efficient final solutions for both small and big size problems. In fact, it takes into 

considerations the constraints of costs and production times imposed by the factory; 

thereafter, it searches for an acceptable part routing. Afterwards, it uses another algorithm in 

order to form manufacturing cells. At this stage, it verifies the quality of these cells with 

respect to the aforementioned constraints. This evaluation takes also into consideration the 

resulting additional charges and production durations coming from the exceptional elements 

m/n 9 21 11 25 18 29 5 16 28 2 14 20 3 6 7 17 13 12 1 30 4 10 19 23 27 24 15 8 26 22
2 1 1 1 1 1 1 1 1 1 1 1
4 1 1 1 1 1 1 1 1 1 1 1
13 1 1 1 1 1 1 1 1 1 1 1
9 1 1 1 1 1 1 1 1 1 1 1
7 1 1 1 1 1 1 1 1 1 1 1
11 1 1 1 1 1 1 1 1 1 1 1 1 1 1
6 1 1 1 1 1 1 1 1 1 1 1 1 1 1
14 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
8 1 1 1 1 1 1 1 1 1 1 1 1 1 1
3 1 1 1 1 1 1 1 1 1 1 1 1 1 1
12 1 1 1 1 1
15 1 1 1 1 1
10 1 1 1 1 1
5 1 1 1 1 1
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(if there are any). If the results are okay, it considers the obtained solution as a final one (as 

happened in the second numerical example); otherwise, it returns to the first step and re-

routes the parts again and again until getting an efficient final solution (as occurred in the 

first numerical example). It is important to note also that the algorithm has proven its ability 

to decrease the number of exceptional elements through the re-routing procedure. For 

instance, it succeeded to decrease the number of exceptional elements from 2 to 1 in the first 

numerical example. 

 

3.7 Conclusion 

A new part routing algorithm that aims to reduce the fabrication time and cost was developed 

and presented in this paper. It uses thereafter another algorithm in order to construct 

manufacturing cells. The quality of the obtained solution is used to determine if more 

iterations are needed. The procedure continues in this manner until the obtainment of an 

acceptable solution. The algorithm presents 3 important innovations in the literature which 

have industrial reflections. The first one is providing a balanced production time and cost 

reductions. The second consists of feed backing to the part routing the quality of the formed 

manufacturing cells. The last one consists of calculating and considering the additional 

charges and production times resulting from the appearance of exceptional elements. In 

addition, it can be used as a decisional fabrication tool (accept or reject) for a factory that 

receives new customers’ requests while it is fully occupied treating other demands. It was 

tested through two numerical examples and succeeded to give satisfactory results. As a future 

work this algorithm can be developed further by linking it to the production scheduling that 

can provide another feedback for the previous routing of the parts. 
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4.1 Abstract 

This paper provides a new mathematical algorithm that constitutes a tool for maximizing the 

profits through a machine selection procedure in a new or an upgrading flexible manufacturing 

system. The technological advances and the diversity of the machines in the market increases the 

need of the managers of the factories for such a tool. The algorithm tends to increase the net 

profits of the factory while considering the elimination of the exceptional elements through a 

cost-time model based on the part routing and on the manufacturing cell formation procedure. 

Although the concepts of machine selection, the increase of the net profits, the exceptional 

elements and the routing of parts have been addressed in the literature, this paper presents for the 

first time an algorithm that is able to join them in an inter-related manner. The algorithm was 

tested with numerical examples and proved its ability to provide optimal or near optimal final 

solutions. 

 

Keywords: profit maximization, machine selection, flexible manufacturing system, part 

routing, manufacturing cell 
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4.2 Introduction 

The flexible manufacturing systems are allowing firms to take advantage of diversified, low 

volume production of products with short life-cycles and improve the ability of a system to 

respond to a change (Gupta and Goyal, 1992). The basic step of setting up a new system or 

upgrading an existing one consists of effecting a feasibility study that involves on one hand 

the selection of the machines which are suitable with the expected production, and the 

planning of the whole system on the other hand. In other words, the flexible manufacturing 

system should contain the machines that can answer all the expected customers’ demands at 

reasonable prices and within acceptable durations of fabrication. With the recent 

technological advances, the manufacturing machines are getting more and more diversified in 

a wide pricing ranges and with various operational modes and speeds. That is why, the 

selection procedure of the right machines is becoming more and more confusing which 

increases the need for an algorithm that helps the managers of the enterprises make 

convenient decisions. The problematic gets further branched when taking into consideration 

that the types of products and the quantities that need to be fabricated vary between one 

factory and another. On the other hand, a flexible manufacturing factory has the option to 

make machine substitutions and consequently redesigning the system in a much easier 

manner than a non-flexible one (hence the word flexible). That is why, an efficient approach 

for the selection procedure consists of effecting a case study according to the expected 

customers’ demands through a set of traditional machines. According to the results, the 

managers identify the deficiencies in order to know what the machines that need to be 

replaced are and with which alternatives. In fact, the fabrication of any set of parts requires 

certain durations as well as costs. In order to linearize the problem, an index can be 

associated to the duration of the fabrication of each part on each machine. This index allows 

according to a precise logic to convert the duration to the terms of costs. Thereafter, the parts 

are routed in order to end up with a solution that minimizes the costs while respecting the 

number of required operations on each part. This routing leads to the formation of an 

incidence matrix. The next step consists of applying the concept of group technology. This 

concept leads to the formation of manufacturing cells (Asokan et al., 2001). In some cases, 
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this formation causes to the appearance of exceptional elements. The exceptional elements 

are defined as the parts that are left outside the cells as they are assigned to bottleneck 

machines. Consequently, these elements have to pass across two or more cells in order to be 

treated, which results in additional manufacturing costs and delays (Shafer et al., 1992). 

Since a flexible manufacturing system already requires high investments, the mathematical 

algorithm presented in this paper re-routes the parts again and again which may lead to the 

elimination of these elements. After testing a predefined number of conventional customers’ 

demands, the algorithm stops and selects the optimal set of machine specifications according 

to the highest resulting net profits. The increase of the profits within the context of flexible 

fabrication, the search for a solution for the machine selection, the treatment of the 

exceptional elements as well as the routing of the parts are not new concepts in the literature. 

Although some authors addressed these subjects separately, the relative innovation and the 

industrial importance of the algorithm presented in this paper is that it links them all together. 

Shishir Bhat (2008) used a heuristic algorithm in order to maximize the profits by optimizing 

the manufacturing system design. Almutawa et al. (2005) developed a methodology that 

searches for the optimal number of machines to purchase for each stage in a multistage 

manufacturing system. Myint and Tabucanon (1994) presented a framework that can be used 

for the pre-investment period in a flexible manufacturing system in order to help managers 

evaluate various possibilities for a certain number of configurations each of which consists of 

different machine types and degrees of flexibility. Wang et al. (2000) used a fuzzy approach 

in order to select the machines for a manufacturing cell. Regarding the treatment of 

exceptional elements, Xiangyong et al. (2010) noted that one possible way is to duplicate 

some machines in a flexible manufacturing system, another one consists of transferring the 

operations on the exceptional elements to one of the cells as mentioned in (Pachayappan and 

Panneerselvam, 2015).  A third approach is to subcontract these elements to another 

manufacturer as described in (Mansouri et al., 2003). On the other hand, the routing of the 

parts has been also addressed by some authors. A genetic algorithm approach can be used to 

determine the best processing plan for each part. This solution allows the factory to select the 

appropriate machines for each operation according to the determined plan. In addition, it 

leads to finding the solution that minimizes the total average flow times for all parts (Geyik 
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et al., 2013). Another approach based on a heuristic algorithm was proposed by Tiwari et al. 

(2000); the purpose of which is to solve the machine loading problem of a random type 

flexible manufacturing system by determining the part type sequence and the machine 

allocation that guarantees the optimal solution to the problem. Finally, Chen et al. (1992) 

proposed a part routing procedure which depends on a customer demand that is varying with 

time. 

 

4.3 The new algorithm 

Each factory is specialized in a set of productions. When it wants to establish a new 

manufacturing system or to upgrade an existing one, it needs to decide which machines to 

choose and how to plan the system. If it consists of upgrading an existing system, the 

algorithm presented in this paper uses an efficient compare/contrast technique by making such 

a study on the existing machines in order to decide if there is a need to upgrade them and how. 

In the same manner, if it consists of establishing a new system, the study will take place on a 

set of traditional well-known machines in order to decide if there is a need to buy more 

efficient ones. In both cases, the managers of the factory can have a clear idea according to the 

results about what and how to buy and/or to upgrade. In fact, the processing of any part on any 

machine requires a certain run time in addition to some costs. Besides the direct costs such as 

those of direct materials, other ones such as those related to the labor in addition to some 

manufacturing overhead depend on the duration of the fabrication. For instance, when the run 

time gets bigger, the factory needs to work for longer durations or to hire more employees 

which in turn increases the labors’ as well as other relevant costs. That is why, the run time 

can be expressed in terms of dollars. In this case, each part costs the amount of money which 

is equivalent to the sum of the direct costs on one hand, and all the other costs that depend on 

the run time on the other hand.  
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Thus, let: 

• dcnm be the direct costs of processing the part number n on the machine m 

• rtnm be the required run time for processing the part n on the machine m 

• x1 be the average index of conversion into costs of the run-time for a certain factory 

• x2 is the indicator for the required machines’ processing speeds. In other words, it is the 

average inverse optimization index for the processing duration of the parts on the new 

machines with respect to the traditional ones. If the calculations lead at the end to a value of x2 

which is equal to 0.8 this means that each of the new machines to buy has to be at least 1 / 0.8 

= 1.25 times faster than the one to replace 

• mrtnm be the maximum allowable run-time for each operation 

• crtnm is the resulting run-time to cost conversion value 

• tcnm is the total cost that is defined as the sum of the direct costs and the resulting run-time 

to cost conversion values 

௡௠ݐݎ݉  = ଶݔ × ௡௠ (4.1)ݐݎ

௡௠ݐݎܿ = ଵݔ × ଶݔ × ௡௠ݐݎ = ଵݔ × ௡௠ (4.2)ݐݎ݉

௡௠ܿݐ = ݀ܿ௡௠ + ௡௠ݐݎܿ  (4.3)

 

The first step consists of constructing a matrix which contains the information about the 

direct costs and the run time for each part. For a better understanding, the theoretical aspects 

are explained step by step in parallel with the application of a numerical example. 

Suppose that a factory wants to make a study about the machines to buy according to the expected 

customers’ demands. This factory is specialized in the production of 4 types of tables such as the 

parsons, altar, drop-leaf and eglantine tables. Each of these types is composed of 5 parts and the 

factory contains 4 multitask machines where each machine can process any of these parts. We 

begin the study with the parsons tables by constructing the matrix in Table 4-1 that specifies the 

direct cost (dcnm) and the required run time (rtnm) for each part. 
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Table 4-1    Direct costs and run times for the first type of products in the  
first iteration of the numeric example 

 

n 
m 

1 2 3 4 5 

1 
(dc11,rt11) = 

(89,31) 
(dc21,rt21) = 

(92,24) 
(dc31,rt31) = 

(96,93) 
(dc41,rt41) = 

(87,56) 
(dc51,rt51) = 

(77,57) 

2 
(dc12,rt12) = 

(72,96) 
(dc22,rt22) = 

(52,27) 
(dc32,rt32) = 

(64,17) 
(dc42,rt42) = 

(53,59) 
(dc52,rt52) = 

(59,60) 

3 
(dc13,rt13) = 

(65,47) 
(dc23,rt23) = 

(95,39) 
(dc33,rt33) = 

(36,61) 
(dc43,rt43) = 

(79,58) 
(dc53,rt53) = 

(32,94) 

4 
(dc14,rt14) = 

(38,90) 
(dc24,rt24) = 

(74,32) 
(dc34,rt34) = 

(91,41) 
(dc44,rt44) = 

(74,83) 
(dc54,rt54) = 

(96,67) 
 

 

The numbers included in the matrix are unit less since they are presented for explanation and 

demonstration purposes. Surely, the unit of direct costs can be the American dollar or any 

other currency and that of the run time can be hour, minute, etc. Supposing that the parts 

number 1, 2, 3 and 5 require 2 operations whereas 3 operations are needed on the part 

number 4. After making an internal case study that includes the number of required 

employees, the electric bills, etc. the factory gets a value of x1 equal to 1.5. The objective 

function is to determine the optimal value of x2 which leads to the highest final profits 

through a machine set selection procedure. The problematic can be treated by beginning with 

an original value of x2 equal to 1 in order to route accordingly the parts and construct 

thereafter the manufacturing cells. Afterwards, the value of x2 will be decreased by a certain 

amount such as 0.1 for the next iteration and the parts will be re-routed in order to obtain new 

manufacturing cells and so forth. For each manufacturing cell design, the associated costs 

will be deducted from the revenues in order to end up with the net profits. 
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Thus, we begin by x2 = 1: 

1. Replace the values of rtnm by crtnm in order to obtain the matrix in Table 4-2. 

Table 4-2    Direct costs and the resulting run time to cost conversion values  
for the first type of products in the first iteration of the numeric example 

 

m/n 1 2 3 4 5 

1 (89,46.5) (92,36) (96,139.5) (87,84) (77,85.5) 

2 (72,144) (52,40.5) (64,25.5) (53,88.5) (59,90) 

3 (65,70.5) (95,58.5) (36,91.5) (79,87) (32,141) 

4 (38,135) (74,48) (91,61.5) (74,124.5) (96,100.5) 

 

 

2. Let O be the total number of required operations on all the parts. In this example,  ܱ	 = 	2	 + 	2	 + 	2	 + 	3	 + 	2	 = 	11 

3. For each element, calculate the tcnm and we obtain the matrix in Table 4-3. 

 

Table 4-3    Total costs for the first type of products in the first iteration  
of the numeric example 

 

m/n 1 2 3 4 5 

1 135.5 128 235.5 171 162.5 

2 216 92.5 89.5 141.5 149 

3 135.5 153.5 127.5 166 173 

4 173 122 152.5 198.5 196.5 

 

 

4. Select the lowest O values (in this example, O = 11) in the matrix (highlighted in 

gray in Table 4-4) 
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Table 4-4    First selection of the smallest elements for the first type of  
products in the first iteration of the numeric example 

 

m/n 1 2 3 4 5 

1 135.5 128 235.5 171 162.5 

2 216 92.5 89.5 141.5 149 

3 135.5 153.5 127.5 166 173 

4 173 122 152.5 198.5 196.5 

 

 

5. Locate the columns that have either a surplus or a shortage in the selected with respect to 

the required number of operations. In the current example, the second column has a 

surplus of 2 elements, the third one has a surplus of a single element, the fourth has a 

shortage of 2 and the fifth column has a shortage of 1 element. 

 

6. Begin with the biggest surplus element and subtract it from all the unselected elements 

in the columns that have shortages. In the current example, 153.5 is the biggest surplus 

element whereas 171, 166, 198.5, 162.5, 173 and 196.5 are the unselected elements in 

the columns that have shortages. The subtraction procedure gives the results which 

highlighted in turquoise in Table 4-5. 

 

Table 4-5    Mathematical operations on the elements of the first type of  
products in the first iteration of the numeric example 

 

m/n 1 2 3 4 5 

1 135.5 128 235.5 153.5 – 171 = – 17.5 153.5 – 162.5 = – 9 

2 216 92.5 89.5 141.5 149 

3 135.5 153.5 127.5 153.5 – 166 = – 12.5 153.5 – 173 = – 15.5 

4 173 122 152.5 153.5 – 198.5 = – 45 153.5 – 196.5 = – 43 
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7. Substitute the selection between the biggest surplus element in consideration and the 

element from which the subtraction has given the greatest value in the last step. The 

substitution in the current example will then be made between 153.5 and 162.5. 

 

8. Repeat the steps 6 and 7 until completing all the required substitutions (i.e. until getting 

equal numbers of selected and required operations in each column). In our example, the 

other 2 substitutions will be made between 152.5 and 166 on one hand and 128 and 171 

on the other hand. The main goal of these substitutions is to select for each column (part) 

exactly the required number of operations at the lowest possible costs. The new selection 

is highlighted in grey in Table 4-6. 

 

Table 4-6    Final selection of the elements for the first type of products  
in the first iteration of the numeric example 

 

m/n 1 2 3 4 5 

1 135.5 128 235.5 171 162.5 

2 216 92.5 89.5 141.5 149 

3 135.5 153.5 127.5 166 173 

4 173 122 152.5 198.5 196.5 

 

 

9. The next step consists of reverting the matrix to its original form and to include the 

elements in the form of ones instead of the selected elements in the last step and zeros 

instead of the unselected elements as shown in Table 4-7. 
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Table 4-7    Incidence matrix of the first type of products in the first  
iteration of the numeric example 

 

m/n 1 2 3 4 5 

1 1 0 0 1 1 

2 0 1 1 1 1 

3 1 0 1 1 0 

4 0 1 0 0 0 

 

 

10. At this stage, the routing of the parts is completed, we use another relevant algorithm 

such as the genetic algorithm for manufacturing cell formation presented by Mak et al. 

(2000) in order to form the manufacturing cells (highlighted in blue) as shown in Table 

4-8. 

 

Table 4-8    Manufacturing cell design for the first type of products in the  
first iteration of the numeric example 

 

m/n 2 1 3 5 4 

2 1 0 1 1 1 

1 0 1 0 1 1 

3 0 1 1 0 1 

4 1 0 0 0 0 

 

 

11. At this stage, the first iteration is completed. If there are exceptional elements, this 

means that there will be additional required costs in order to treat them. In our example, 

we suppose that these costs are the double. 

 

12. Begin the next iterations after decreasing x2 by a certain value and repeat the steps 1 till 

11. The values of x2 should stay within a reasonable range according to the available 
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operational speeds of the machines in the market. In this example, we are going to 

decrease the value of x2 by 0.1 per iteration until getting a value of x2 which is equal to 

0.1. After repeating the relevant steps, we obtain the following final results for the next 9 

iterations as shown consequently in Table 4-9 to Table 4-17. 

 

• For x2 = 0.9 
 

Table 4-9    Manufacturing cell design for the first type of products in  
the second iteration of the numeric example 

 

m/n 2 1 3 5 4 

1 0 1 0 1 1 

2 1 0 1 1 1 

3 0 1 1 0 1 

4 1 0 0 0 0 

 

• For x2 = 0.8 
 

Table 4-10    Manufacturing cell design for the first type of products in  
the third iteration of the numeric example 

 

m/n 2 1 3 5 4 

1 0 1 0 0 1 

2 1 0 1 1 1 

3 0 1 1 1 1 

4 1 0 0 0 0 
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• For x2 = 0.7 
 

Table 4-11    Manufacturing cell design for the first type of products in  
the fourth iteration of the numeric example 

 

m/n 2 1 3 5 4 

1 0 1 0 0 1 

2 1 0 1 1 1 

3 0 1 1 1 1 

4 1 0 0 0 0 

 
 
• For x2 = 0.6 

 

Table 4-12    Manufacturing cell design for the first type of products in  
the fifth iteration of the numeric example 

 

m/n 1 2 3 5 4 

4 1 1 0 0 0 

1 0 0 0 0 1 

2 0 1 1 1 1 

3 1 0 1 1 1 

 

• For x2 = 0.5 
 

Table 4-13    Manufacturing cell design for the first type of products in  
the sixth iteration of the numeric example 

 

m/n 1 2 3 4 5 

1 0 0 0 1 0 

2 0 1 1 1 1 

3 1 0 1 1 1 

4 1 1 0 0 0 
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• For x2 = 0.4 
 

Table 4-14    Manufacturing cell design for the first type of products in  
the seventh iteration of the numeric example 

 

m/n 1 2 3 4 5 

1 0 0 0 1 0 

2 0 1 1 1 1 

3 1 0 1 1 1 

4 1 1 0 0 0 

 

• For x2 = 0.3 
 

Table 4-15     Manufacturing cell design for the first type of products in  
the eighth iteration of the numeric example 

 

m/n 1 2 3 4 5 

4 1 1 0 1 0 

1 0 0 0 0 0 

2 0 1 1 1 1 

3 1 0 1 1 1 

 

• For x2 = 0.2 
 

Table 4-16    Manufacturing cell design for the first type of products in  
the ninth iteration of the numeric example 

 

m/n 1 2 3 4 5 

4 1 1 0 1 0 

1 0 0 0 0 0 

2 0 1 1 1 1 

3 1 0 1 1 1 
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• For x2 = 0.1 
 

Table 4-17    Manufacturing cell design for the first type of products in  
the tenth iteration of the numeric example 

 

m/n 1 2 3 4 5 

4 1 1 0 1 0 

1 0 0 0 0 0 

2 0 1 1 1 1 

3 1 0 1 1 1 

 

 

It is to note that for x2 = 0.3, 0.2 and 0.1, we have exceptionally gotten zero values for the 

machine number 1. This means that this machine is not needed for these x2 values for the first 

type of products but it cannot be eliminated since it is needed for the other types according to 

the later calculations and results. 

 

13. Analyze the results and select the best value(s) of x2.  

In the current example, the parameters of the analysis over a certain period of time are: 

 

• The manufacturing costs designated by Mc 

• The costs of buying new machines or upgrading the existing ones Cm 

• The estimated revenues R 

• The net profits P 

 

               c mP R M C= − −                                                            (4.4) 

 

 

 

 



71 

We begin by calculating the manufacturing costs and we define the following parameters: 

 

• ne is the number of exceptional elements obtained for a solution that is gotten at a certain value 

of x2 

• nne is the number of non-exceptional elements at the same value of x2 

• c is the total cost of processing a part on a machine. It is to note that the significance of c here 

is the same as that of tcnm presented earlier 

 

 =	ܿܯ                         
1 1

e en nn

i j

i j

c c
= =

+                                                              (4.5) 

 

Since we have assumed that the cost of fabricating an exceptional element is the double of its 

initial price, the manufacturing costs Mc for x2 = 1 will be Mc = (135.5 + 135.5 + 122 + 89.5 + 

127.5 + 171 + 141.5 + 166 + 162.5 + 149) + (2 ×  92.5) = 1585 

 

The costs of buying new machines or upgrading the existing ones depend to a certain extent on the 

value of x2. The lower is the value of x2 the greater is the required operational speeds of the 

machines and consequently, the greater are generally these costs. On the other hand, the estimated 

revenues depend strongly on the value of x2. In other words, these revenues increase with the 

increase of the operational speeds of the machines and vice versa. In the current numerical 

example, we are going to suppose that each value of x2 requires the buying of a certain set of 

machines at a certain price or to change the operational speeds of one or more of these machines if 

such an option is available. Hence, without going into the technical details of each machine, we 

are going to assign a unique price for all the machines at a certain value of x2.  

 

Table 4-18 summarizes the final results in order to obtain the following expected net profits for the 

first type of products (i.e. for the fabrication of the parsons’ tables). 
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Table 4-18    Net profits for the first type of products in the numeric example 

 

x2 
Manufacturing 

costs 

Costs of buying 
new machines 

or of upgrading 
the existing ones

Estimated 
revenues 

Net profits 

1 1585 2854 6762 2323 

0.9 1505.2 2975 7513.33 3033.13 

0.8 1424.8 3223 8452.5 3804.7 

0.7 1339.45 4090 9660 4230.55 

0.6 1363.5 5353 11270 4553.5 

0.5 1262.25 7698 13524 4563.75 

0.4 1161 12952 16905 2792 

0.3 1170.25 20520 22540 849.75 

0.2 1052.5 30325 33810 2432.5 

0.1 934.75 65523 67620 1162.25 

 

 

We can see that the value for x2 that gives the highest profits for the production of the first 

type of tables is 0.5. The plot shown in Figure 8 illustrates the results for the net profits 

versus the indicator for the required machines’ processing speeds.  
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Figure 8    Net profits vs the indicator for the machines' processing  
speeds for the first type of products in the numeric example 

 

Until now, all the study was made only on the first type of products. The factory has to 

continue this study in order to involve the other types. After repeating the steps 1 till 13 the 

results and plots shown in Table 4-19 to Table 4-21 and Figure 9 to Figure 11 were obtained 

for the next types of products which are consequently the altar, drop-leaf and eglantine 

tables. 
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Table 4-19    Net profits for the second type of products in the numeric example 

 

x2 
Manufacturing 

costs 

Costs of buying 
new machines 

or of upgrading 
the existing ones

Estimated 
revenues 

Net profits 

1 15236 2854 18654 564 

0.9 13546 2975 20064 3543 

0.8 11966 3223 21365 6176 

0.7 11024 4090 22635 7521 

0.6 10863 5353 23679 7463 

0.5 9654 7698 24132 6780 

0.4 9176 12952 26135 4007 

0.3 8765 20520 29647 362 

0.2 6795 30325 43651 6531 

0.1 5436 65523 76543 5584 
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Figure 9    Net profits vs the indicator for the machines' processing speeds  
for the second type of products in the numeric example 
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Table 4-20    Net profits for the third type of products in the numeric example 

 

x2 
Manufacturing 

costs 

Costs of buying 
new machines 

or of upgrading 
the existing ones

Estimated 
revenues 

Net profits 

1 15486 2854 18798 458 

0.9 13574 2975 21256 4707 

0.8 12036 3223 22014 6755 

0.7 11412 4090 22752 7250 

0.6 10564 5353 23968 8051 

0.5 9562 7698 24852 7592 

0.4 9541 12952 26577 4084 

0.3 8631 20520 29854 703 

0.2 6498 30325 42965 6142 

0.1 5321 65523 76856 6012 
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Figure 10    Net profits vs the indicator for the machines' processing  
speeds for the third type of products in the numeric example 
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Table 4-21    Net profits for the fourth type of products in the numeric example 

 

x2 
Manufacturing 

costs 

Costs of buying 

new machines 

or of upgrading 

the existing ones

Estimated 

revenues 
Net profits 

1 1652 2854 6762 2256 

0.9 1535 2975 7523 3013 

0.8 1402 3223 8563 3938 

0.7 1336 4090 9745 4319 

0.6 1352 5353 11598 4893 

0.5 1198 7698 14632 5736 

0.4 1153 12952 16901 2796 

0.3 1090 20520 22536 926 

0.2 1049 30325 33621 2247 

0.1 929 65523 67524 1072 
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Figure 11    Net profits vs the indicator for the machines' processing speeds  
for the fourth type of products in the numeric example 

 

In order to get more obvious results, all of the 4 plots are shown together in Figure 12. 
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Figure 12    Net profits vs the indicator for the machines' processing speeds for  
the four types of products in the numeric example 

 

According to the results, the values of the indicator for the required machines’ processing 

speeds that generate the highest profits for each of the 4 types of products are shown in Table 

4-22. 
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Table 4-22    Best indicators for the required machines’ processing  
speeds in the numeric example 

 

Type of product 
Indicator for the required machines’ 

processing speeds 

1 0.5 

2 0.7 

3 0.6 

4 0.5 

 

 

Since a single value of x2 has to be obtained at the end, all the resulting net profits must be 

added together for each value of x2 as follows: 

 

• Let Fp designates the final net profits at a certain value of x2 

• Let t designates the number of types of products (which is equal to 4 in the numeric 

example) 

 

௣ܨ =෍݌௧௧
ଵ        (4.6)

                                                                               

The final net profits for each indicator of the machines’ required processing speeds are 

shown in Table 4-23. 
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Table 4-23    Final net profits for each indicator for the required machines’  
processing speeds in the numeric example 

 

Indicator for the machines’ required 
processing speeds 

Final net profits 

1 5601 

0.9 14296.13333 

0.8 20673.7 

0.7 23320.55 

0.6 24960.5 

0.5 24671.75 

0.4 13679 

0.3 2840.75 

0.2 17352.5 

0.1 13830.25 

 

 

The greatest final net profit is equal to 24960.5 and it was obtained at x2 = 0.6. That is why, 

the factory has to buy a set of machines the processing speed of each of which must be 

greater than that of the equivalent traditional one by at least (1 0.6⁄ − 1) × 100% = 67% . 

As stated earlier, this paper has provided a general study that involves only five parameters 

which are common between the industries. Usually, each industry has much more parameters 

and it can implement them in the same study by following the same logic and procedures. On 

the other hand, the values of x2 that were used do not represent always the case because a 

decrement of 0.1 (i.e. 10%) was considered for theoretical and demonstration purposes. Each 

factory has its own required types of machines. The availability and the characteristics of the 

existing machines in the market decide which values of x2 to consider. If the study will 

succeed to take into consideration all the parameters that have influences (which is never 

usually the case due to the unexpected events), the obtained final results will be considered as 

the optimal ones. Otherwise, they are near-optimal. It is to also to note that a special attention 

has to be held when performing such a study because as shown in the obtained results, there 

exists some cases where the net profits change a lot between two consecutive values of x2. 
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This is mainly because even a small change in the value of x2 may increase or decrease 

considerably the expenses as well as the revenues. For instance, a certain machine may be 

able to process the parts at a certain speed. A small increment in the value of x2 may require 

to buy another one at a little higher processing speed but at a much higher price. In addition, 

a small increment in the value of x2 may also lead to an important change in the 

configuration of the factory and as well as to a need of more or less employees resulting in a 

much higher or lower expenses. The algorithm presented in this chapter is illustrated in 

Figure 13. 
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Figure 13    The algorithm 
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Make all the required calculations and construct 
accordingly the matrix that contains the total 

cost for each part 

Make the corresponding calculations and the 
elements’ selections procedure in order to route 

the parts 

Use another algorithm in order to form the 
manufacturing cells 

Begin by the first 
type of products 

Assign a value of 1 to the indicator 
for the required machines’ 

processing speeds (x2) 

Make all the relevant calculations in order 
to obtain the net profits 

Decrease the indicator for 
the required machines’ 

processing speeds by Δx2 

Are all the 
concerned values 

of x2 tested?  

Are all the types of 
products considered? 

Calculate the total net profits for each value of x2 
and consider the found solution that gives the 

highest net profits as the final one 

Consider the next 
type of products 

END 
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4.4 Conclusion 

A new algorithm that deals with the machine selection procedure through a mathematical 

model in the context of flexible fabrication is presented in this paper. The industrial need for 

such an algorithm comes from the diversity of the machines that are available in the market 

at various processing speeds and huge ranges of different prices. Each factory has its specific 

types of products and it needs such an algorithm in order to decide what machines to buy 

and/or to upgrade according to its customers’ demands. The methodology presented linked 

the processing costs and run times through the part routing procedure and the manufacturing 

cells to the overall costs and revenues in order to calculate the final net profits resulting from 

the selection of each set of machines. Only the parameters that are common between all the 

industries were considered in this paper through a numeric example and the obtained final 

results can be considered as optimal or near optimal. The detailed consideration of additional 

parameters that are related to each specific industry such as the lifetimes of the machines and 

the number of the required employees together with their salaries for each selection of a set 

of machines, etc. can constitute the subject of a futuristic supplementary research activity.
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CONCLUSION 

 

A flexible manufacturing system consists mainly of a flow path surrounded by cells and it is 

a combination of a job shop and manufacturing cells. The system is composed mainly of 

machine centers, buffer station(s), controllers, automatic guided vehicles and material 

handling equipment. There are many types of flexible manufacturing systems depending on 

each industry. A manufacturing system is known as flexible when it is able to sufficiently 

respond to the changes. There are many kinds of flexibilities such as the machine, the routing 

and the process flexibility. The efficient design of such systems and the efficient routing of 

parts are critical issues on the industrial level because the opposite cases lead to production 

conflicts as well as to losses in both time and money. In this thesis, four chapters which 

introduced three new algorithms were presented for these purposes. The second chapter 

presented a new algorithm in the literature which aims to optimally design the manufacturing 

and fractional cells. The algorithm involves a set of theoretical tools which accelerates the 

procedure of the search for candidate solutions and consequently, it leads to a quick 

obtainment of a final solution. In addition, it succeeded to prove its ability to give results 

which are better than those of well-known algorithms in the literature. The third chapter 

introduced a second new algorithm in order to efficiently route the parts while taking into 

consideration the production durations and costs as parameters. The algorithm links the 

routing of the parts to the design of the cells in order to ensure the obtainment of an efficient 

results that lead at the end to an optimal cell formation. The main goal is to find the optimal 

ways for the parts which have to be processed into the system according to the best possible 

allocations of these parts to the machines in the cells. This algorithm is useful as well for the 

enterprises which are fully busy processing customers’ commands to decide whether to 

accept or to refuse a new fabrication request. The last chapter presented a third new 

algorithm which constitutes a tool that can be used in order to maximize the profits of the 

enterprises which are looking to select new machines or to upgrade the existing ones for their 

flexible manufacturing systems. It establishes direct relations between the machine selection 

and the routing of the parts and combines engineering to economic aspects in order to end up 

with multidimensional final solutions. The three algorithms presented in the last three 
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chapters may have great industrial benefits when used together. For instance, an enterprise 

which wants to implant its own flexible manufacturing system can benefit consequently from 

the fourth, third and second chapters in order to select its convenient machines, route the 

parts that need to be processed within the system, and design the cells in an optimal manner. 
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RECOMENDATIONS 

 

The current thesis did not treat all the aspects of the flexible manufacturing system design 

since it is a wide domain which involves and needs the implication of the mechanical, 

industrial, manufacturing, electric, electronic… engineering fields. Further researches can be 

done in order to combine the external layout, the transport system and the scheduling of the 

FMS to the part routing, cell design and machine selection procedures in a dynamic manner. 

In other words, there is a possibility to develop an integral algorithm which inputs the shop 

floor dimensions, the nature and the volume of the products to fabricate, the machines to be 

used, while considering as well the economic, electric and electronic aspects of the system in 

order to end up with a final design. In addition, the algorithm presented in the third chapter 

can be further developed in a standalone manner by considering the production scheduling. 

Finally, an additional research can be done on the algorithm presented in the last chapter in 

order to make it more compatible with a specific industry by involving all the economic and 

technical aspects which are related to that industry. 
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