
 

ÉCOLE DE TECHNOLOGIE SUPÉRIEURE 
UNIVERSITÉ DU QUÉBEC 

 
 
 
 
 

INTELLIGENT DISTRIBUTION VOLTAGE CONTROL WITH DISTRIBUTED 
GENERATION 

 
 
 
 
 

BY 
 Jose CASTRO MENDIETA  

 
 
 
 
 

MANUSCRIPT – BASED THESIS PRESENTED TO 
ÉCOLE DE TECHNOLOGIE SUPÉRIEURE 

IN PARTIAL FULFILLMENT FOR 
THE DEGREE OF DOCTOR OF PHILOSOPHY 

Ph.D. 
 
 
 
  
 

MONTREAL, OCTOBER 17, 2016  
 
 

© Copyright  Jose CASTRO MENDIETA, 2016  All rights reserved  
 
   



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© Copyright  

Reproduction, saving or sharing of the content of this document, in whole or in part, is prohibited.  A reader 

who wishes to print this document or save it on any medium must first obtain the author’s permission. 

 

 

 
 
 
 



 

BOARD OF EXAMINERS (THESIS PH.D.) 
 

THIS THESIS HAS BEEN EVALUATED 
 

BY THE FOLLOWING BOARD OF EXAMINERS 
 
 
 
 
 
 
 Mr. Maarouf Saad, Thesis Supervisor 
 Department of Electrical Engineering, École de technologie supérieure 
 
 
Mr. Serge Lefebvre, Thesis Co-supervisor 
Hydro-Quebec research institute IREQ 
 
 
Ms. Sylvie Ratté, Chair, Board of Examiners 
Department of Mechanical Engineering, École de technologie supérieure 
 
 
Mr. Pierre-Jean Lagacé, Member of the jury 
Department of Electrical Engineering, École de technologie supérieure 
 
 
Ms. Dalal Asber, External jury 
Research Institute of Hydro-Québec (IREQ)  
 
 
Mr. Innocent Kamwa, Independent external jury 
Research Institute of Hydro-Québec (IREQ) 
 
 
 
 

THIS THESIS WAS PRENSENTED AND DEFENDED 
 

IN THE PRESENCE OF A BOARD OF EXAMINERS AND THE PUBLIC 
 

ON  SEPTEMBER 9, 2016  
 

AT ÉCOLE DE TECHNOLOGIE SUPÉRIEURE 





 

ACKNOWLEDGMENTS  

 

I would like to express deepest appreciation to my advisor Professor Maarouf Saad for 

trusting me to come up with this project and to be an outstanding role model. I am very 

grateful for having had an opportunity to work with Dr. Serge Lefebvre, Dr. Dalal Asber and 

Dr. Laurent Lenoir. Thank for allowing me to be part of GREPCI and teaching me the 

importance of collaborative work. 

 

I also want to thank all the members of the committee to take the time to read and evaluated 

this thesis, many thanks to the president Professor Sylvie Ratté, to Professor Pierre-Jean 

Lagacé and the external member Dr. Innocent Kamwa. 

 

I would have not been able to complete my work if it had not been for the constant support of 

my wife Betty. She has always inspired me to be optimist and encouraged me to excel and 

achieve beyond what I think I am capable of. Finally, I want to thank my kids Josue, Mariela, 

and Isabela.  

 

 

 

 

 





 

 INTELLIGENT DISTRIBUTION VOLTAGE CONTROL WITH DISTRIBUTED 
GENERATION  

 

 Jose CASTRO MENDIETA 

 
ABSTRACT 

 
In this thesis, three methods for the optimal participation of the reactive power of distributed 
generations (DGs) in unbalanced distributed network have been proposed, developed, and 
tested. These new methods were developed with the objectives of maintain voltage within 
permissible limits and reduce losses. 
 
The first method proposes an optimal participation of reactive power of all devices available 
in the network. The propose approach is validated by comparing the results with other 
methods reported in the literature. The proposed method was implemented using Simulink of 
Matlab and OpenDSS. Optimization techniques and the presentation of results are from 
Matlab. The co-simulation of Electric Power Research Institute’s (EPRI) OpenDSS program 
solves a three-phase optimal power flow problem in the unbalanced IEEE 13 and 34-node 
test feeders. The results from this work showed a better loss reduction compared to the 
Coordinated Voltage Control (CVC) method. 
 
The second method aims to minimize the voltage variation on the pilot bus on distribution 
network using DGs. It uses Pareto and Fuzzy-PID logic to reduce the voltage variation. 
Results indicate that the proposed method reduces the voltage variation more than the other 
methods. Simulink of Matlab and OpenDSS is used in the development of the proposed 
approach. The performance of the method is evaluated on IEEE 13-node test feeder with one 
and three DGs. Variables and unbalanced loads are used, based on real consumption data, 
over a time window of 48 hours.  
 
The third method aims to minimize the reactive losses using DGs on distribution networks. 
This method analyzes the problem using the IEEE 13-node test feeder with three different 
loads and the IEEE 123-node test feeder with four DGs. The DGs can be fixed or variables. 
Results indicate that integration of DGs to optimize the reactive power of the network helps 
to maintain the voltage within the allowed limits and to reduce the reactive power losses.  
 
The thesis is presented in the form of the three articles. The first article is published in the 
journal Electrical Power and Energy System, the second is published in the international 
journal Energies and the third was submitted to the journal Electrical Power and Energy 
System. Two other articles have been published in conferences with reviewing committee. 
This work is based on six chapters, which are detailed in the various sections of the thesis. 
 
Keywords: Distribution network; coordinated voltage control; distributed generation; multi-
objective optimization. 
 





 

 CONTRÔLE DE TENSION INTELLIGENT DES RÉSEAUX DE DISTRIBUTION 
AVEC GÉNÉRATION DISTRIBUÉE 

 
 Jose CASTRO MENDIETA 

 
RÉSUMÉ 

 
Dans cette thèse, trois méthodes pour la participation optimale de la puissance réactive de la 
génération distribuée (DG) des réseaux de distribution déséquilibrés ont été proposées, 
développées et testées. Ces nouvelles méthodes ont été développées avec les objectifs de 
maintenir la tension dans les limites admissibles et de réduire les pertes. 
 
La première méthode propose une participation optimale de la puissance réactive de tous les 
dispositifs disponibles sur le réseau. La méthode proposée est validée en comparant les 
résultats obtenus avec d'autres méthodes décrites dans la littérature. Les méthodes ont été 
simulées dans Simulink de Matlab et OpenDSS. Les techniques d'optimisation et la 
présentation des résultats sont faites dans Matlab. Le logiciel développé par Electric Power 
Research Institute’s (EPRI) résout le problème d'écoulement de puissance triphasé 
déséquilibré dans les réseaux tests utilisés, IEEE 13 et 34 barres. Les résultats de cette étude 
montrent une meilleure réduction des pertes en comparaison avec la méthode de contrôle 
coordonnée de tension (CVC). 
 
La deuxième méthode minimise la variation de tension dans la barre pilote sur le réseau de 
distribution en utilisant la génération distribuée (DG). Cette méthode utilise la technique de 
Pareto et la logique floue (Fuzzy-PID) pour réduire la variation de tension. Les résultats 
indiquent que la méthode proposée permet de réduire la variation de la tension plus que les 
autres méthodes. Simulink de Matlab et OpenDSS sont utilisées dans le développement de la 
méthode proposée. La performance de cette méthode est évaluée sur le réseau IEEE 13 barres 
avec une et trois DGs. Des charges variables et déséquilibrée sont utilisées en se basant, sur 
la consommation réelle d’une période de 48 heures.  
 
La troisième méthode minimise les pertes de puissance réactive en utilisant les DGs dans les 
réseaux de distribution. Cette méthode analyse le problème en utilisant le réseau IEEE 13 
barres avec trois différentes charges variables et le réseau IEEE 123 barres avec quatre DGs. 
Les DGs peuvent être fixes ou variables. Les résultats indiquent que l'intégration des DGs 
optimise la puissance réactive du réseau et aide à maintenir la tension dans les limites 
permises et de réduire les pertes de puissance réactive. 
 
La thèse est présentée sous la forme de trois articles. Le premier article est publié dans la 
revue Electrical Power and Energy System, le second est publié dans International Journal 
Energies et le troisième a été soumis à la revue Electrical Power and Energy System. Deux 
autres articles ont été publiés dans des conférences avec comité de lecture.  
 
Mots clés : Réseau de distribution; contrôle de la tension coordonnée; génération distribuée; 
optimisation multi-objectifs. 
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INTRODUCTION 

 

Background 

 

The electric power industry is continually growing due to increased demand. Previously, 

most power systems were operated with large centers of generation and transmission systems 

of energy. In these power systems, the voltage is stepped up to high voltage (HV) levels to be 

transmitted over long distances.  

 

Many countries are building their economies based on renewable energy. Power Research 

Institute (EPRI) estimates that DG will be about 25% of the new generation by 2020. 

National Gas Foundation shows that this estimate could be even higher, account for nearly 

30% (Duong et al., 2010) (Ahmidi et al., 2012).  

 

Technological development, evolving energy policies, constraints on the construction, 

increasing demand on highly reliable electricity supply, the changes in power market, 

regulatory mandates and reduction of the usage of fossil fuel resources are influencing in the 

use of small-scale generation, and many of them will be directly connected to the distribution 

network, which is commonly called Distributed Generation (DG) (Ochoa et al., 2010; Zidan 

et El-Saadany, 2012). DG can come from renewable (solar photovoltaic, wind power, 

biomass, small geothermal plants, etc.) or non-renewable (internal combustion engines, 

combustion turbines and full cells) energy resources (Gao et al., 2014). As these DGs 

become increasingly integrated with the grid, they will impact the distribution network 

operation and control (Gong et al., 2016). Many studies have been performed to determine 

the optimal size and location of the DGs (Rios et Rubio, 2007; Sedighi et al., 2010; Shaaban 

et al., 2013). Therefore the impact of the DG in distribution networks must be studied (Kaabi 

et al., 2014). 
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Problem Statement 

 

Normally, voltage control devices in distribution networks are operated with the criterion that 

the voltage decreases along the feeder. The presence of the DGs makes this feature no longer 

valid and the DG has not been designed to control voltage (Song et al., 2013). These are 

some questions that may arise in distribution networks with the presence of DGs. Some 

impacts of the DGs in the network and several questions arise (Richardot et al., 2006) (Liu et 

al., 2016; Viawan et Karlsson, 2008): 

 

•     impact on protection: The change of power transits and short-circuit currents; 

•   impact on the voltage and the operation of on-load tap-changers (OLTC); 

•   impact on network stability and elimination of faults; 

•   How to include the DGs in the distribution network in order to ensure adequate 

voltage regulation? 

•   How to design a control algorithm to find a voltage and reactive power optimal using 

DGs? 

 

Due to these impacts and questions, it is necessary to perform an adaptation of the system 

supervision and control of the network to improve the quality and reliability with the help of 

the DGs.  

 

Authors in (Anwar et Pota, 2011; Kolenc et al., 2012; Ochoa et al., 2011; Ochoa et Harrison, 

2011; Viawan et Karlsson, 2008) have demonstrated the reduction of power loss by optimally 

sizing and placing DGs in distribution networks. However, most of the studies have been 

performed on balanced distribution network. 

 

Many researchers (Ahmidi et al., 2012; Barin et al., 2008; Calderaro et al., 2005; Duong et 

al., 2010; Gao et al., 2014; Maciel et Padilha-Feltrin, 2009; Masters, 2002) have studied the 

impact of DG in distribution networks, but there are no studies that calculate the reactive 

power values of DG in distribution networks with variable and unbalanced loads. 
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During the planning phase of DG integration in distribution networks, the goals that allow a 

reliable, secure and lower cost energy supply must be considered. To obtain this optimal 

situation, it is necessary to consider the creation of a model that includes the identified goals. 

These goals may include reduction in distribution loss, the reduction of the voltage variation 

and improvement in the reliability (Muttaqi et al., 2014; Tomoiaga et al., 2013). 

 

Authors in (Kang et al., 2015; Richardot et al., 2006; Soroudi et al., 2011) use Coordinated 

Voltage Control (CVC) to analyze the impact of DG on distribution network. CVC needs the 

multi-objective (MO) function to minimize the voltage variation at the pilot bus located in 

the controlled area. Several methods have been proposed to solve the MO optimization 

voltage control problem (Griffin et al., 2000; Khalesi et Haghifam, 2009; Nara et al., 2001; 

Ngatchou et al., 2005).   

 

This research provides the framework for planning and solves the problems of the DGs in 

distribution networks. 

 

Research Objectives 

 

The main contribution of this thesis is to propose new methods capable of coordinating 

optimally the reactive power of the different areas of the distribution network to maintain the 

voltage within the limits and reducing losses using DGs. In addition, these new techniques 

were conducted in distribution networks with unbalanced and variable loads.  

 

The primary objective of this work is the optimal participation of reactive power of a DG at 

variable and unbalanced distribution network.  

 

The optimal reactive power of a DG that would result in: 

 

• minimum of the losses; 

• improvement in feeder voltage profile; 
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• optimal injection of active and reactive power of a DG. 

 

To accomplish the primary objective, the following secondary objectives are necessary: 

 

1) investigate the impact of DG on losses and voltage profile; 

2) improve and minimize the voltage variation in distribution network using DGs; 

3) investigate the impact of variable and fixed DGs in distribution network. 

 

Methodology 

 

Objective 1 has been accomplished by developing a technique based on Pareto optimization 

to compute the different objectives of the MO function separately (Richardot et al., 2006). 

The proposed technique has been tested on the IEEE 13 and 34-node test feeders with 

unbalanced load and the results are compared using Coordinate Voltage Control (CVC) and 

OLTC method. Some disturbances are investigated and the results show the effectiveness of 

the proposed technique.  

 

Objective 2 has been accomplished through the implementation of two techniques (Pareto 

optimization and Fuzzy-PID Logic) to find the optimal value of the reactive power of the DG 

that minimizes voltage variation on the buses. The first part uses Pareto optimization for 

solving the MO voltage control problem while the second part uses the reactive power of DG 

as a control variable to minimize the voltage variation. The effectiveness of the proposed 

technique is verified by testing on IEEE 13-node test feeder using variables and unbalanced 

loads. The results are compared using CVC and OLTC technique. 

 

Objective 3 has been accomplished through the implementation of MO control problems with 

2 objective functions. The first objective function represents the control of voltage deviation 

at the pilot buses and the second objective function is the management of the loss reduction. 

This new technique analyzes the problem from three perspectives: 1) the adoption of a fixed 

DG with variable power factor in real time and variable loads, 2) the implementation of a 
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variable DG with variable power factor in real time and variable loads, and 3) analysis of 

losses and voltage using only OLTC (On-Load Tap Changer). The new technique is tested on 

the IEEE 13 and 123-node test feeders using variables and unbalanced loads. The results 

show that optimal integration of the DGs in distribution network helps to maintain stable 

voltage and to reduce the reactive power loss. 

 

The programs used in Objectives 1, 2 and d 3 are: OpenDSS program to solve three phase 

power flow (Dugan et McDermott, 2011) and Matlab program is used for optimization. 

 

This thesis includes six chapters. Chapters 3 through 5 are based on papers that have been 

written by the author and have been published or submitted for publication. Chapter 1 

analyzes the DGs and their impact on voltage profile and distribution power losses in 

distribution network. 

 

Chapter 2 discusses the techniques optimization techniques used in this thesis. The program 

OPenDSS used in this thesis is analyzed. In this chapter, we analyze its performance and 

demonstrate the advantages of the program with an example. 

 

Chapter 3 presents the first paper: “Optimal Voltage Control in Distribution Network in the 

presence of DGs”. This paper published in the “International Journal of Electrical Power and 

Energy Systems” (Elsevier) describes the methodology to find the optimal value of the 

voltage at pilot bus with optimal participation of the reactive power of all devices available in 

the network. The integration of DGs is analyzed in two different distribution networks and 

some disturbances are analyzed. The proposed method is compared with the classical method 

of Coordinated Voltage Control and the typical method of OLTC for distribution network 

(Castro et al., 2016a).   

 

Chapter 4 presents the second paper: “Coordinated Voltage Control in Distribution Network 

with the presence of DGs and Variable Loads using Pareto and Fuzzy Logic”. This paper 

was published in the International Journal Energies. This paper proposes a new approach for 
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finding the optimal reactive power of the DG, which minimizes the voltage variation. This 

work is formulated using Pareto optimization and Fuzzy-PID logic. This paper is tested on 

the IEEE 13-node test feeder with one and three DGs (Castro et al., 2016b).  

 

Chapter 5 presents the third paper: “Power factor computation of distributed generation 

using multi-objective optimization”. It is submitted to the International Journal of Electrical 

Power and Energy Systems. This paper demonstrates the benefits of the reactive power of the 

DGs. The problem is formulated as the minimization of the reactive power losses and the 

minimization of the voltage deviation at the pilot bus. Three case studies with different 

variables and unbalanced loads are presented in this chapter.  

 

Chapter 6 is a summary and conclusions of the main results obtained in this thesis.  Also, this 

chapter presents the recommendations a future research direction. 

 

 

 



 

CHAPTER 1 
 
 

LITERATURE REVIEW 
1.1 Introduction 

 The typical power system design is radial with large centers of generation and the consumers 

are usually located several hundred kilometers. However, this typical power system is slowly 

changing. The transmission and distribution network will be bolstered to transmit power 

generated from wind farm, geothermal and solar generations, etc. These are called distributed 

generators (DGs). DGs will increase substantially over the next few decades and their 

integration disturbs the radial nature of power flow through feeders. 

 

1.2 Impacts of Distributed Generators  

Traditionally, the distribution networks were designed for a unidirectional power in which 

the primary substation was the only source of power. Then, voltage decreases towards the 

end of the radial feeder, and the load provokes a voltage drop. The integration of the DGs 

into the distribution network creates a reverse power flow which can degrade the protection 

system and cause problems with the voltage drop specifically on a network equipment used 

to control voltage  (Dahal et Salehfar, 2013; Ren et al., 2010). Thus, despite the fact that the 

DGs were not intended for inclusion, the distribution network can still handle some amount 

of DGs as long as the appropriate protection functions are used. Some researchers (Castro et 

al., 2016a; Duong et al., 2010; Esmaili, 2013; Ochoa et Harrison, 2011) have shown that 

when DGs are added in appropriate quantities and operated at the right time and locations, 

they can actually improve the performance of the distribution network. Authors in (Song et 

al., 2013) proposed that the penetration level of DGs for a particular voltage level  should be 

limited to maintain admissible power quality and reliability. The following sections examine 

the significant impacts of the DGs on the distribution network. 
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1.2.1 Voltage Stability 

The voltage stability at the buses of the network is heavily dependent on the stability of the 

power system in the distribution network. The connection of DG can cause significant 

voltage rise in the network unless it absorbs reactive power. The change of reactive power 

may cause problems in voltage profile of the network requiring a review of voltage control. 

According to American national standard institute (ANSI) standard C84.1, the range of 

acceptable customer service voltage at distribution network is ± 5% of the nominal level. 

Moreover, if the capacity of the DGs is small compared to the total system capacity, the 

voltage at the connection point will change and will not affect the frequency (Dahal et 

Salehfar, 2013).  

 

Many studies have been performed to better understand the impact of the DGs on voltage 

variation. Authors in (Barin et al., 2008; Dahal et Salehfar, 2013) have investigated the 

impact of the location and size of DGs on the voltage profile of a distribution network. 

Effects of the DGs on distribution losses and voltage variation have been presented in 

(Anwar et Pota, 2011; Ochoa et Harrison, 2011; Poornazaryan et al., 2016).  

  

(Gao et Redfern, 2011; Gao et al., 2014) have proposed a method to control and improve the 

voltage profile by integrating DGs and daily load sequences into the distribution network. In 

(Hong et al., 2015) proposed the investment cost (installation, unit and maintenance cost) of 

the DG to improve the voltage profile. Three alternative analytical expressions to determine 

the best location and adequate power factor of the DG units whose active and reactive power 

were constrained by the voltage profile and reduced losses is present in (Hung. et al., 2013). 

The authors of (Babu et al., 2015; Kolenc et al., 2012) proposed the development of the 

control strategy to minimize the distribution line losses with respect to the voltage profile. A 

coordinated voltage control (CVC) scheme using fuzzy logic based power factor controller 

with multiple DGs for the voltage regulation of the distribution network is presented in 

(Gaonkar et Pillai, 2010).  
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Table 1.1 Summary of the reviewed studies on the impact on voltage stability 

Reference Objective 

(Barin et al., 2008) Develop a MO problem with a Bellman-Zadeh algorithm and 

fuzzy logic to identify the optimal site of a DG to minimize 

voltage variation. 

(Dahal et Salehfar, 2013) Combination of the particle swarm optimization technique and 

the Newton-Raphson load flow method is used to determine the 

optimal size of DGs to reduce the active power losses and 

minimize voltage variation. 

(Anwar et Pota, 2011) Optimum location and size of DG to decrease total system 

power loss and minimize voltage variation using repeated load 

flow. 

(Ochoa et Harrison, 

2011) 

Optimal power flow is used to determine the optimal DG for 

reduce energy losses and voltage variation. 

(Gao et Redfern, 2011) New voltage control strategy that maximizes the power output of 

DG. 

(Gao et al., 2014) An adaptive Genetic algorithm is proposed to obtain the optimal 

DG. 

(Hong et al., 2015) Genetic algorithm was used to determine the optimal size of DG. 

(Hung. et al., 2013) The optimal sizes of DG considering the optimal power factor of 

DG for minimize losses and voltage variation.   

(Kolenc et al., 2012) The load-flow algorithm for minimize the voltage drop. 

(Gaonkar et Pillai, 2010) CVC using fuzzy logic based power factor controller. 

 

1.2.2 Reactive Power 

The main objective in the proposed methods is to coordinate the reactive power of the DG at 

the network. So, voltage and reactive power implies a proper coordination between the 

available voltage and reactive power control equipment. Traditionally, distribution network 

operators operate such equipment locally to maintain voltage within permissible limits and 
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minimize reactive power losses (Ahmidi et al., 2012). In the operation stage, the distribution 

network operators have different methods to coordinate the voltage and reactive power 

control. Properly location and sizing shunt capacitors will decrease losses; the capacitor is 

based on the load size (Vu et al., 1996). Voltage and reactive power control has been used to 

evaluate the impact of DG inclusion in a distribution network (Duong et al., 2010; Ochoa et 

Harrison, 2011). These indices play a critical role on renewable energy, power quality, 

system stability and security. Authors in (Zhang. et al., 2015) have investigated the problem 

of voltage and reactive power control as the economics operations, the roles of DGs in the 

future retail electricity market.  

 

To achieve a better voltage-VAr in distribution network an uncoordinated and coordinated 

voltage control have been presented in (Viawan et Karlsson, 2008). The voltage and reactive 

power control are operating locally in uncoordinated voltage control. The coordinated 

voltage control (CVC) means that the voltage and reactive power control equipment will be 

adjusted remotely and locally, based on wide area coordination, in order to obtain an 

optimum voltage profile and reactive power with the presence of DGs. Similarly, (Richardot 

et al., 2006) have demonstrated that DGs reduce the losses, the number of OLTC operations 

and the voltage fluctuation in distribution network. The contribution of DGs as ancillary 

services is significant with local control variable such as voltage regulation or power 

reduction is presented in (Thong et al., 2007). In system contingencies (Chi et al., 2014; 

Kojovic, 2002; Sheng et al., 2009a), the CVC in distribution network with DGs is presented 

for enhancing the ability of fast and coordinated voltage and reactive power control.  

 

Numerous studies use different objectives functions and operating constraints in voltage and 

reactive power control. Authors in (Dehghani-Arani et Maddahi, 2013; Gao et al., 2014) still 

consider losses minimization and keeping the voltages within permissible limits as the main 

objectives and constraints in the voltage and reactive power control. Another objective is the 

flattering the voltage on the pilot bus (Richardot et al., 2006). Other references, such as 

(Anwar et Pota, 2011) consider the minimization of the reactive power losses as the main 

objective.  
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Table 1.2 Summary of the reviewed studies on the impact on Reactive Power 

Reference Method Used DGs 

(Ahmidi et al., 2012) Probabilistic method Multiple 

(Duong et al., 2010) Improving the analytical (IA) Four types 

(Ochoa et Harrison, 2011) Optimal power flow Multiple 

(Zhang. et al., 2015) Game theoretic Multiple 

(Viawan et Karlsson, 2008) Coordinated voltage control Single 

(Richardot et al., 2006) Genetic algorithm Multiple 

(Kojovic, 2002) Alternative Transient Program Single 

(Chi et al., 2014) Control strategy in DIgSILENT Single 

(Dehghani-Arani et 

Maddahi, 2013) 

Pareto optimization Single 

(Gao et al., 2014) Genetic algorithm Multi-type 

(Anwar et Pota, 2011) Repeated load flow Single 

 

1.2.3 Distribution Losses 

The transmission and distribution networks have an estimated 8-10 percent total loss and 

almost 70% of these losses occur in distribution network (Federico, Gonzalez et Lyra, 2005). 

The optimal location and size of DGs can significantly reduce the losses in distribution 

network. The DGs must be located at correct points on the network operated at the optimal 

output real and reactive power levels (Abu-Mouti et El-Hawary, 2011). Authors in (Anwar et 

Pota, 2011; Dahal et Salehfar, 2013; Hung et Mithulananthan, 2014; Sattarpour et al., 2015) 

have demonstrated the reduction in power losses by optimally sizing and placing DGs in 

distribution networks. A multi-objective function that includes minimizing the number of 

DGs and power losses as well as maximizing voltage stability is presented in (Esmaili, 2013).  

(Fu et al., 2015), the optimal allocation is formulated as a multi-objective function with 

support vector machines to find the Pareto front consisting of a set of possible solutions for 

loss reductions.  
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Introducing multi-objective function for minimizing voltage unbalanced factor and real 

power loss, improving of voltage profile and increasing of economical profit is presented in 

(Dehghani-Arani et Maddahi, 2013). (Hung et Mithulananthan, 2014) presents a new multi-

objective index to determine the optimal size and power factor of DG for reducing power 

losses and enhancing loadability. The influence of DG on distribution line losses with respect 

to voltage profile is presented in (Kolenc et al., 2012). The proposed model by (Li et al., 

2013) integrates costs, losses, and voltage index to achieve optimal size and site of DG in 

distribution networks.  

 

The problem of minimizing losses in distribution networks using fixed and variable DGs, and 

the trade-off between energy losses and more generation is presented in (Ochoa et Harrison, 

2011). (Young-Jin et al., 2013) proposes a method to decrease the number of switching 

devices operations, as well as to reduce the power losses in distribution networks, while 

maintaining the grid voltage within the allowed ranges.  

 

Table 1.3 Summary of the reviewed studies on the impact on losses 

Reference Method Used DGs 

(Abu-Mouti et El-Hawary, 2011) Artificial bee colony Single 

(Dahal et Salehfar, 2013) Particle Swarm Optimization and 

Newton-Raphson 

Single 

(Hung et Mithulananthan, 2014) Exhaustive load flow Multiple 

(Esmaili, 2013) Fuzzy logic Different type 

(Fu et al., 2015) Adaptive reactive control Photovoltaic 

(Dehghani-Arani et Maddahi, 

2013) 

Pareto optimization Single 

(Kolenc et al., 2012) Load flow algorithm Multiple 

(Li et al., 2013) Game theory Single 

(Ochoa et Harrison, 2011) Optimal power flow Multiple 

(Young-Jin et al., 2013) Dynamic programming algorithm Single 
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1.3 Optimization techniques 

Several optimization techniques are used by researchers for an optimal integration of DGs in 

distribution network. (Abu-Mouti et El-Hawary, 2011) presents an optimization approach 

that employs an artificial bee colony algorithm to determine the optimal DG size, power 

factor and location in order to minimize the real power loss. The appropriate selection and 

the optimal DG location are determined using the fuzzy logic and the Bellman-Zadeh 

algorithm in (Barin et al., 2008). (Ahmidi et al., 2012) use a multilevel control system, and a 

probabilistic method is used to predict the available reactive power reserve. A repeated load 

flow is used to find an appropriate size and location of DG to reduce significantly the total 

power loss in distribution network (Anwar et Pota, 2011). A novel algorithm combining the 

MO particle swarm optimization (MOPSO) with support vector machine is proposed to find 

the optimal allocation of DG in distribution network  (Fu et al., 2015). (Kiprakis et Wallace, 

2004) analyze the implications of the DGs in distribution networks, they use a deterministic 

system and fuzzy logic to adjust the power factor in response to the terminal voltage. (Li et 

al., 2013; Zhang. et al., 2015) work with Game Theory and MO optimization problems that 

allow minimizing total system power losses and maximizing voltage improvement. DGs can 

reduce distribution losses if they are placed appropriately in distribution network with the 

implementation method of tabu search as demonstrated in (Nara et al., 2001). In (Ochoa et 

Harrison, 2011) a multi-period AC optimal power flow (OPF) is used to determine the 

optimal accommodation of DGs in a way that minimizes the system energy losses. 

 

All of the reviewed works have shown that with proper allocation of DGs, the reliability of 

distribution system can be enhanced significantly while reducing the distribution network 

losses and maintains voltage within permissible limits. 

 





 

CHAPTER 2 
 
 

BACKGROUND CONCEPTS 
2.1 Introduction 

This chapter presents the basic theoretical concepts used in this thesis. First, we present the 

optimization techniques. Then, a brief description of Pareto and fuzzy logic is given. 

Secondly, the OpenDSS program is analyzed. At this point, we explained how a distribution 

network can be included in OpenDSS. Finally, we show how Simulink of Matlab and 

OpenDSS work together. 

 

2.2 Optimization Techniques 

Optimization techniques play an important role in the success of DG integration activities. 

Multi-Objective problems on distribution networks are usually handled in two ways. A 

simple method is to convert the MO problem into a Single-objective (SO) problem by 

constraint, weighting, or membership (Li et Qiu, 2015; Moradi et al., 2014).  Although this 

method has proven its effectiveness, it is difficult to describe or obtain precisely the weights 

of different objectives. Another disadvantage is that the calculation procedure has to be 

restarted when the weights are changed (Wu et al., 2011).  Pareto optimization uses the 

concept of non-dominated solutions. MO problem can be optimized simultaneously and a set 

of optimum solutions is obtained using a decision maker. The MO problem can be 

formulated as a non-linear model (Kumar, Samantaray et Kamwa, 2015). In this thesis, we 

use Pareto optimization to resolve the MO problem.  

 

2.2.1 Pareto Optimization 

MO problem is different than single-objective (SO) problem as there is a vector of objective 

functions (two or more), which must be optimized simultaneously and subject to a set of 

equality and inequality constraints. To compare candidate solutions to the Multi-Objective 

(MO) problem, the concepts of Pareto front and Pareto solutions are commonly used and can 
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be viewed as a simple baseline technique for MO optimization (Gatter et al., 2016). This 

allows us to calculate a set of optimal solutions from the Pareto frontier. Thus, the set of 

optimal solutions constitute an interesting trade-off (Ke-yan et al., 2015; Muller-Hannemann 

et al., 2001).  

 

2.2.1.1 Pareto Frontier 

A multi-objective (MO) problem involves multiple objective functions. In mathematical 

terms, a MO problem can be formulated as: 

 

 min	(ܨଵ(ݔ), ,(ݔ)ଶܨ … , (2.1) ((ݔ)௞ܨ

 

where k ≥ 2 is the number of objectives and x is the feasible set of decision vectors with 

some constraint functions. 

 

Figure 2.1 illustrates a simple case of minimizing two objectives simultaneously (F1, F2), 

with the solid line indicating the Pareto frontier. Each point of the frontier represents a 

unique model parameterization, so Pareto identifies multiple Pareto optimal solutions and all 

solutions in a Pareto set are equally optimal. Point C is not on the Pareto Frontier because it 

is dominated by both point A and point B. So, point C is a Dominated solution and the point 

A and point B are Non-dominated solutions. 

 

In this thesis, Matlab function (gamultiobj) finds the Pareto frontier of the objectives defined 

subject to the linear inequalities constraints using genetic algorithm (MathWorks, 2014). 

Genetic Algorithm is an evolutionary computing that emulates the biological process. A 

population of individuals representing different solutions is evolving to find the optimal 

solutions. The fittest individuals are chosen, mutation and crossover operations applied, thus 

yielding a new generation (Ngatchou et al., 2005).  
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The gamultiobj uses a controller elitist genetic algorithm (NSGA-II) for favors individuals 

with better fitness values (rank). A controlled elitist (GA) also favors individual that can help 

increase the diversity of the population.  We use the default values for the Genetic algorithm. 

Table 2.1 shows the defaults values for Genetic Algorithm’s parameters. 

 

 

Figure 2.1 Illustration of Pareto frontier for two objectives 

 

Table 2.1 Genetic Algorithm (Default values) 

PopulationType: 'doubleVector' 

PopInitRange: [-10, 10] 

PopulationSize: '50' 

EliteCount: '0.05*PopulationSize' 

CrossoverFraction: 0.8000 

ParetoFraction: [0.35] 
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MigrationDirection: 'forward' 

MigrationInterval: 20 

MigrationFraction: 0.2000 

Generations: '100*numberOfVariables' 

TimeLimit: Inf 

FitnessLimit: -Inf 

StallGenLimit: 50 

StallTest: 'averageChange' 

StallTimeLimit: Inf 

TolFun: 1.0000e-06 

TolCon: 1.0000e-06 

InitialPopulation: [default] 

InitialScores: [defaul] 

NonlinConAlgorithm: 'auglag' 

InitialPenalty: 10 

PenaltyFactor: 100 

PlotInterval: 1 

CreationFcn: gacreationdependent 

FitnessScalingFcn: fitscalingrank 

SelectionFcn: selectionstochunif 

CrossoverFcn: crossoverscattered 

MutationFcn: [mutationconstraintdependent]  [1]  [1] 

DistanceMeasureFcn: [default] 

HybridFcn: [default] 

Display: 'final' 

PlotFcns: [1] 

OutputFcns: [default] 

Vectorized: 'off' 

UseParallel: 0 
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In terms of speed, Pareto seems to perform consistently well, despite being essentially a 

simple algorithm. The primary reason for this is its ability to find multiple Pareto-optimal 

solutions in one single simulation run (Knowles et Corne, 1999). Some researchers (Habibi et 

al., 2013; Maciel et Padilha-Feltrin, 2009; Richardot et al., 2006; Soroudi et al., 2011) use 

Pareto to minimize the MO problem and determine the optimal DGs size and location 

minimizing the power losses. Many researchers use Pareto distribution networks to solve 

optimization problems. 

 

2.2.1.2 Decision Maker (DM) 

The set of non-dominated solutions representing the Pareto frontier are optimal solutions. 

DM finds the only optimal solution to this optimization problem. Hence, some additional 

constraints are required to single out a solution. In this thesis, the objective is to minimize 

losses and to maintain voltage within permissible limits. So, mathematically it can be 

formulated as: 

 

ܯܦ  = ݊݅ܯ ෍ߣ௝ܨ௝ே
௝ୀଵ  

(2.2)

 

ܯܦ  = ݊݅ܯ ෍ ௜௤௜∈஽ீߣ ൬ ݈ܳ௜ଵ − ݈ܳ௜ଶܽ( ஽ܲீ௜ଵ − ஽ܲீ௜ଶ)൰ 
(2.3)

 

Equations (2.2 and 2.3) represent the DM used in the thesis. The set of solutions that 

minimizes losses is chosen using Equation (2.2). Equation (2.3) chooses the set of optimal 

solutions that minimizes a single objective of MO problem. In addition, the set of solutions 

may be chosen developing equations to new DMs by applying different settings at the 

decision stage, according to specific circumstances. 
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2.2.2 Fuzzy Logic 

In recent years, the number and variety of applications of fuzzy logic have increased 

significantly. Fuzzy logic is not a control strategy in itself, this is a method of combining 

several control rules which may have conflicting objectives and arriving at a decision. Fuzzy 

logic may be viewed as a methodology for computing with words rather than numbers. 

Furthermore, computing with words exploits the tolerance for imprecision and thereby 

lowers the cost of solutions (MathWorks, 2014). Fuzzy logic is a generalization in which the 

true values of variables may be any real number between 0 and 1. Fuzzy logic is useful for 

dealing with vagueness and ambiguity; this is based on the fuzzy sets theory,  where 

uncertainties are handled in a direct way without many realizations (Ni et al., 2016). In 

distribution networks problems, the membership grades of fuzzy logic sets are uncertain 

(Figueroa-Garcia et al., 2012). Advantages of the fuzzy logic are: 

 

1. Rules can be described in natural language and easily translated into fuzzy logic 

2. Many rules can be combined to produce complex behaviour. 

 

In fuzzy logic, the calculus of fuzzy rules provides this mechanism. The inputs and outputs 

parameters of the system are “somehow” related (Loetamonphong et al., 2002; Takagi et 

Sugeno, 1985). The authors (Esmaili, 2013; Gaonkar et Pillai, 2010; Ghatee et Hashemi, 

2009) propose Fuzzy logic for optimal placement and sizing of DGs. 

 

 

Figure 2.2 Input fuzzy membership functions  
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Figure 2.2 shows the expressions Low, Normal and High that represent the values on the 

scale of voltage error. A point on that scale has three values. The vertical line represents a 

particular value of Voltage error that the three arrows measure. This measure could be 

interpreted as “not High”, may describe it as “slightly Normal” and “fairly Low”. 

 

Fuzzy operators for the voltage error (∆V) that uses a control Power Factor might look like 

this: 

 

ܨܫ  (∆ܸ = (ݓ݋ܮ ܰܧܪܶ ଵݑ = ܸ∆)	ܨܫ ௠௜௡ܨܲ = ଶݑ	ܰܧܪܶ	(݈ܽ݉ݎ݋ܰ = ܨܫ ௡௢௠ܨܲ (∆ܸ = (ℎ݃݅ܪ ܰܧܪܶ ଷݑ =  ௠௔௫ܨܲ

(2.4)

 

Using these fuzzy operators (equation 2.4) and Figure (2.2), the output will be a combination 

of ܲܨ௠௜௡	and	ܲܨ௡௢௠. The determinism is very important to use in control and decision 

systems using fuzzy logic. 

 

Two of the most important types of Fuzzy Inference System (FIS) are: Mamdani and Sugeno 

models. In this thesis, we use the Sugeno model. This model simplifies the calculations of the 

output and can be either linear or constant. The final output is a weighted average of each 

rule’s output (Bijwe et Raju, 2006).  

 

2.2.3 Fuzzy-PI Controller 

A proportional integral derivate controller (PID controller) continuously calculates an error 

value as the difference between a measured process and a desired set point. Some researchers 

(Dutta et al., 2014; Loetamonphong et al., 2002) present PID and Fuzzy logic working 

together. Fuzzy logic can help to compensate for the lack of information, adding the 

experience from personnel related to the process using IF-THEN rules.  

 



22 

A proportional integral (PI) is a special case of the classical PID controller. A PI controller is 

a controller that produces proportional plus integral control action. A fuzzy-PI controller is a 

generalization of the conventional PI controller that uses an error signal and its derivative as 

input signals. So, Fuzzy-PI controllers have two inputs and one output. Figure 2.3 shows the 

error voltage (ΔV) and its derivative as inputs (National Instruments, 2006) (Instruments, 

2012).   

 

The benefit of the fuzzy-PI controller is that does not have a special operating point. Also, 

fuzzy-PI controller can implement nonlinear control strategies and this one uses linguistic 

rules (National Instruments, 2006).  

 

 

Figure 2.3 Fuzzy-PI controller 

 

(DeJesus et al., 2006) use Pareto and Fuzzy logic for an optimal participation of reactive 

power of all devices available in the network. A set of solutions is obtained from Pareto, 

which optimizes the maximum possible number of solutions and fuzzy logic determines the 

optimal power injections of DGs. 

 

2.3 OpenDSS program 

OpenDss is a simulation software for distribution networks. It is developed by EPRI (Electric 

Power Research Institute) since more than 12 years (Dugan et McDermott, 2011). The 

program was originally supposed as a tool for the analysis of the interconnections of 
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distributed generation, but its continued evolution has led to the development of the other 

features as the studies of efficiency in the provision of energy and harmonic studies. 

 

2.3.1 OPenDSS structure  

OpenDSS software has been used to: 

 

• planning and analysis of distribution networks; 

• poly-phase AC circuit analysis; 

• analysis of interconnection of distributed generation; 

• simulations windmills plant; 

• improving distribution network efficiency; 

• studies of harmonics and inter harmonics. 

 

The program includes several modes of solutions, such as: 

 

• power flow (snapshot mode, time mode); 

• harmonic Analysis; 

• dynamic Analysis; 

• calculation shorted. 

 

OpenDss is designed to receive instructions in text form allowing greater flexibility for users. 

Figure 2.4 (Dugan et McDermott, 2011) shows how the various modules interact within 

OpenDSS structure. 
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Figure 2.4 OpenDSS structure   

 

OpenDSS represents distribution circuit through nodal admittance equations. Each system’s 

element is represented by a primitive nodal admittance matrix. Each primitive matrix is 

attached to the admittance matrix of the system, so the system of equations representing the 

electric network is solved with the assistance of sparse matrices algorithms.  

 

2.3.2 Modeling in OpenDSS on distribution networks 

Many researchers have worked on distribution networks using OpenDSS program (Martinez 

et Guerra, 2014; Nagarajan et Ayyanar, 2015; Song et al., 2012; Venkatesan, Solanki et 

Solanki, 2012). OpenDSS represents the distribution network with a great accuracy; that is, 

the system is three-phase and run under unbalanced conditions and the load is voltage-

dependent (Martinez-Velasco et Guerra, 2014). OpenDSS can include generation and new 

loads perform calculations over variable time step size.  

 

In this thesis, the program is driven from Matlab (Figure 2.4), which is used to calculate the 

input data and the control of the procedure. The distribution network IEEE 13-node test 

feeder is used. The values used in this calculation are in Appendix I. 

 



25 

 

Figure 2.5 Block diagram of the implemented procedure 

 

IEEE 13-node test feeder is relatively small. Appendix II shows the code of OpenDSS for 

this network. 

 

2.3.3 OpenDSS access from Matlab 

Matlab uses the built-in ActiveX server to communicate with the COM Server of the 

OpenDSS, so the server of the OpenDSS, will be the interface between the two programs 

(Figure 2.4). 

 

In this thesis, Matlab is changing the loads and incorporating DGs. We attached some lines 

set of the interface between Matlab and OpenDSS most used in this dissertation (table 2.2). 

 

(Dugan et McDermott, 2011) has other interfaces needed for different applications. 
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Table 2.2 Interface between Matlab and OpenDSS  program 

Interface Comments 

[DSSStartOK, DSSObj, DSSText] = DSSStartup %OpenDSS run 

DSSText.command='Compile (C:\Users\jrcastro\Dropbox\2015 

UTPL\ETS\Trabajo2\Carga variable\IEEE13MasterT2.dss)' 

% Runs the main file 

DSSText.Command=['New Load.1 Bus1=634.1 Phases=1 

Conn=Wye  Model=1 kV=0.277 kW=' num2str(Wv(1)) ' kvar=' 

num2str(Vv(1))] 

% Add a new load on 

the bus 634 

DSSText.command = ['new generator.Gen1 Bus1= 675 phases=3 

kV=4.16 kw=' num2str(MyDG) ' pf=' num2str(MyNextFP) ' 

enabled=true'] 

% Add a new 

generator on the bus 

675 

DSSText.Command = ['Transformer.Reg1.Taps=[1.0 ' 

num2str(MyNextTap)] 

% Regulation of taps 

DSSText.Command='New EnergyMeter.Main Line.650632 1' % Add an Energy 
Meter object  
 

DSSSolution.Solve % Solves executes the 

solution 

DSSText.Command='Buscoords IEEE13Node_BusXY.csv   ! load 

in bus coordinates' 

% The bus 

coordinates 
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Abstract 

 

Nowadays, integration of new devices like Distributed Generation, small energy storage and 

smart meter, to distribution networks introduced new challenges that require more 

sophisticated control strategies. This paper proposes a new technique called Optimal 

Coordinated Voltage Control (OCVC) to solve a multi-objective optimization problem with 

the objective to minimize the voltage error at pilot buses, the reactive power deviation and 

the voltage error at the generators. OCVC uses Pareto optimization to find the optimal values 

of voltage of the generators and OLTC. It proposes an optimal participation of reactive 

power of all devices available in the network.  

 

OCVC is compared with the classical method of Coordinated Voltage Control and is tested 

on the IEEE 13 and 34 Node test feeders with unbalanced load. Some disturbances are 

investigated and the results show the effectiveness of the proposed technique. 
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Keywords: distribution network; Coordinated Voltage Control (CVC); Distributed 

Generation (DG); Multi-Objective Optimization; Power Loss; On Load Tap Changer 

(OLTC).  

 

3.1 Introduction 

The climate changes and the new technologies have led to major changes in electricity 

generation and consumption patterns. The equipment connected to the distribution network is 

becoming more diversified including renewable energy that is known as Distributed 

Generation (DG), small energy storage, and smart meter. It consequently requires more 

advanced algorithms for voltage and VAR control. 

 

The DGs may trigger variation of voltage and change the direction of power flow in the 

distribution network. The voltage rise depends on the amount of active and reactive power 

injected by the DGs. Some researches (Ahmidi et al., 2012; Anwar et Pota, 2011; Habibi et 

al., 2013) have studied the impact on the voltage, the reduction of losses, and the 

determination the optimum size and location of the DGs. Also, improper DG size and 

inappropriate location may cause high power loss and problems in the voltage profile (Anwar 

et Pota, 2011; Kiprakis et Wallace, 2004; Maciel et Padilha-Feltrin, 2009).  

 

Other researches (Sheng et al., 2009a; Vu et al., 1996)  represent the variation voltage in each 

control area by the variations at some selected buses called “pilot buses”. Then, the aim is to 

keep the voltages at pilot buses within a fixed range around set point values. 

 

On the other hand, it is common to use the on-load tap-changer (OLTC) and switch shunt 

capacitors to control voltage in distributed network (Larsson et Karlsson, 2003). In some 

networks, these devices are operated locally without wide coordination with the others. In 

(Biserica et al., 2011; Richardot et al., 2006), the authors presents an approach using the DGs 

and OLTCs for voltage regulation and losses reduction. 
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Coordinated Voltage Control (CVC) in distribution network adjusts the voltage in pilot 

buses. CVC uses the multi-objective (MO) function to minimize the voltage variation at the 

pilot buses(Richardot et al., 2006). CVC in distribution networks adjusts the voltage on pilot 

buses located in the controlled area. To do so, it minimizes the MO optimization problem 

using a deterministic method. So, the problem to solve is to minimize the following 

objectives (Biserica et al., 2011; Richardot et al., 2006): Objective 1: voltage deviation at 

pilot buses; Objective 2: reactive power production ratio deviation; and Objective 3: 

generators voltage deviation (OLTC + DGs).  

 

In (Viawan et Karlsson, 2008), the authors have made a comparison in distribution networks, 

between uncoordinated and coordinated voltage control, without and with DGs involved in 

the voltage control. The result indicates that using DG in the voltage control will reduce the 

losses, the number of OLTC operations and will decrease the voltage fluctuation in 

distribution network.  

 

The authors in (Ngatchou et al., 2005; Richardot et al., 2006; Soroudi et al., 2011) solve the 

MO function converting the objectives into a single objective (SO) function; in this case, the 

objective is to find the solution that minimizes the single objective. The optimization solution 

results in a single value that represents a compromise among all the objectives. 

 

Previous researches adequately solved the problem of MO function using DG in distribution 

network. There is no research that is able to adequately coordinate the different areas of the 

distribution network and focus on the benefits that a better use of reactive power of DG can 

provide to the distribution systems with unbalanced load. 

 

To overcome the problem cited above, this paper proposes a new technique called optimal 

coordinated voltage control (OCVC). OCVC is capable of coordinating different areas of the 

distribution network including all sources of active and reactive power present in the 

distribution network. OCVC uses Pareto optimization to solve all the different objectives of 

the Multi-Objective function separately and finds the optimal values so that the network gets 
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lower losses. OCVC will also have a good performance with various disturbances that occur 

in the distribution network.  

 

The original contributions of this paper are described as follows: 

 

a) disturbances in distribution network are investigated; 
 

b) optimal participation of reactive power of a DG at unbalanced distribution network; 
 
c) the minimization of the losses; 

 
d) the objectives of the MO function are resolved separately. 
 

This paper is organized as follows. Section 3.2 presents the coordinated voltage control in 

distribution network. The Pareto Multi-Objective optimization is explained in section 3.3. 

The proposed approach on optimal coordinated voltage control is explained in section 3.4. 

Section 3.5 presents a case study and some results using the proposed approach. Finally, a 

conclusion is given in section 3.6.  

 

3.2 Coordinated Voltage Control in Distribution Network 

Nowadays, a hierarchical voltage regulation strategy with three levels has been developed by 

some electric utilities to prevent voltage deterioration and to allow a better use of existing 

reactive power resources. Each level acts with a different time constant: Primary voltage 

control (PVC) is locally performed by automatic voltage regulators (AVR), secondary 

voltage control (SVC) makes reactive power production-consumption balance and tertiary 

voltage control (TVC) is based on optimization methods taking into account economical and 

technical aspects of power system operation (Richardot et al., 2006). 

 

SVC is an important level for improving power-system voltage dynamic performance, where 

voltage deviation at pilot buses is minimized. This problem can be generalized to integrate 

voltage deviation at generators and reactive power generation. In this case, we talk about 

Coordinated Voltage Control (CVC) (Richardot et al., 2006).  
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3.2.1 Problem formulation 

The voltage in a distribution network at some selected buses (pilot buses), the reactive power 

production and the generator’s voltage deviation are tied together. Any increase or decrease 

in voltage at pilot buses will increase or decrease the reactive power production and 

generator voltage respectively. Therefore, this problem can be formulated as an optimization 

problem as explained below:  

 

3.2.1.1 Voltage at pilot bus 

CVC in distribution networks adjust the voltage at pilot buses. In a mathematical form, the 

problem can be written as follows: 

 

 Fଵ =෍λ୧୧∈୔ ൥κ ൫V୧୰ୣ୤ − V୧൯ −෍C୧,୩୚ · ∆V୩୩∈ୋ ൩ଶ 
(3.1)

 

Where: P and G are the sets of pilot and generator buses indices; V୧୰ୣ୤, V୧ and ∆V୩ are set-

point voltage, actual voltage and voltage deviation at bus i, i.e. the difference of voltage 

values between two computing steps; C୧,୩୚  is the sensitivity matrix coefficient linking the 

voltage variation at bus i and bus k respectively; λ୧	and ߢ are weighting factor and regulator 

gain respectively. 

 

3.2.1.2 Reactive power production 

The second objective is the reactive power production ratio deviation. In OCVC, it represents 

the management of the reactive power of DG in the regulated area. This objective is 

modelled as follows: 
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 Fଶ =෍λ୧୯ ൥κ ቆq୰ୣ୤ − Q୧Q୧୑୅ଡ଼ቇ −෍C୧,୩୕ · ∆V୩୩∈ୋ ൩ଶ୧஫ୋ  
(3.2)

 

Where: is the set of generator buses indices; Q୧ and Q୧୑୅ଡ଼  are actual and maximum reactive 

power generations at bus i;   q୰ୣ୤ = ∑ Q୧/∑ Q୧୑୅ଡ଼୧∈ୋ୧∈ୋ 				is the uniform set-point reactive 

power value within the regulated area; C୧,୩୕		is sensitivity matrix coefficients linking 

respectively voltage variation at bus i and bus k; 	λ୧୯	and	κ	 are weighting factor and regulator 

gain respectively. 

 

3.2.1.3 Voltage at generators 

CVC in distribution networks adjust the voltage at the generators. The mathematical model 

for the third objective is as follows: 

 

 Fଷ =෍λ୧୴ൣ κ ൫V୧୰ୣ୤ − V୧൯ − ΔV୧൧ଶ୧∈ୋ  (3.3)

 

where: G is the set of generator buses indices; V୧୰ୣ୤, V୧	 and 	∆V୧	are the set-point voltage, 

actual voltage and voltage deviation respectively at the bus i, i.e. the difference of voltage 

values between two computing steps; λ୧୴	and ߢ are weighting factor and regulator gain 

respectively. 

  

3.2.2 Optimization constraints 

The constraints above considered the technical and economic issue of the distribution 

network. The voltage limits, voltage drop, reactive power and the weights are the main 

constraints (Martins et al., 2001; Richardot et al., 2006; Sheng et al., 2009b). 
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3.2.2.1 Voltage Constraints 

The constraints of voltage on the pilot and generator buses are used to determine the safe 

operation values. In distribution networks an acceptable steady voltage range is considered 

within ± 5% of the operating voltage at DG (Masters, 2002). 

 

 V୧ ∈ ൣV୧୫୧୬; V୧୑୅ଡ଼൧ for i ∈ P ∪ G |∆V୧| ≤ ∆V୧୑୅ଡ଼ for i ∈ G 

(3.4)

 

3.2.2.2 Reactive power constraint 

In this work, the control and efficient management of the reactive power are the main 

objectives. Therefore, the control of the production of the reactive power of the DG is very 

important. In (Ahmidi et al., 2012) an acceptable power factor for the DG is of ± 0.91. 

 

 q୰ୣ୤ =෍Q୧/෍Q୧୑୅ଡ଼୧∈ୋ୧∈ୋ  (3.5)

 

Where:   |Q୧| ≤ Q୧୫ୟ୶ 

 

3.2.2.3 Weights constraints 

The weights of the objectives are important because they give priority to an objective that 

depends on the conditions of operation. These weights are related as described in relation 

(3.6). 

 

 λ୧ + λ୧୯ + λ୧୴ = 1 (3.6)

 

Where: λ୧, λ୧୯, λ୧୴ are weighting factors for bus i. 
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The optimization problem (3.1) to (3.6) ensures an optimal voltage profile of the distribution 

network. The optimization solution results in a single value that reflects a compromise in all 

objectives (Abido, 2004). 

 

The weighting factors are managed in real time using fixed values depending on the voltage 

value at the pilot bus. They coordinate the different areas of the distribution network to 

obtain the optimal values of the voltage and reactive power. 

 

3.2.3 Pilot Bus 

Monitoring and the control of the voltage level at the pilot bus allow the control of the 

voltage in that area. Then, the voltage at the pilot bus must reflect the voltage profile of the 

entire control area (Conejo et al., 1994; Erbasu et al., 2005). 

 

A simple method called barycentre to find the pilot bus is illustrated below. This method 

requires the following three steps. 

 

Step1:  Compute       Vୠୟ୰ = 	∑ V୧୒୨ୀଵ  

Step2:  Find                ∆V୧ = Vୠୟ୰ − V୧ 
Step3: Choose the bus number with min   |∆V୧|   as the pilot bus. 

 

In this paper, this method is used. The networks (IEEE 13 and 34 Nodes) used in this work, 

have loads in some buses. If we put out sequentially these loads, we will produce N 

variations of the voltage at the buses. If we sum up these N variations of the voltage, we will 

get Vbar. The next step is to obtain ΔVi. Finally, we choose the minimum value of the pilot 

bus has the corresponding index i. Table 3.1 shows the pilot bus selected. 
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Table 3.1 Pilot bus for IEEE 13 and IEEE 34 buses 

IEEE 13 IEEE 34 

Pilot bus Bus 671 Bus 888 

 

 

3.2.4 The On-load taps Changer (OLTC) 

OLTC are normally located in the transformer between transmission and distribution network 

and they are quite common to maintain the voltage in medium voltage network (Leisse et al., 

2010). Normally, the highest voltage point of the network is the sending-end bus bar and the 

voltage is decreased along the feeder due to line impedance and loads. The typical 

mathematical model of the voltage drop is as follows (Gao et Redfern, 2011): 

 

 ∆ܸ = ଵܸ − ଶܸ ൎ ܴ௅ ௅ܲ + ܺ௅ ܳ௅ଶܸ  
(3.7)

 

Where ௅ܲ , ܳ௅ are the active and reactive power of load; ܴ௅	, ܺ௅ are respectively the line 

resistance and reactance; ଵܸ	, ଶܸ are the sending-end voltage and load bus voltage 

respectively. 

 

Due to the structure and properties of the distribution networks the most effective way of 

regulating the voltage is OLTC. The OLTC changes the voltage by alternating the turns ratio 

of the primary side and secondary transformers. When a DG is connected to the distribution 

network, the voltage drop is approximated as follows (Gao et Redfern, 2011): 

 

 ∆ܸ = 	 ଵܸ − ଶܸ ൎ ܴ௅ ( ௅ܲ − ஽ܲீ) + ܺ௅ (ܳ௅ − (േܳ஽ீ))ଶܸ  
(3.8)

 

 

Where ஽ܲீ and ܳ஽ீ are the active and reactive power of DG. 
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The extent of voltage regulation (ΔV) is limited by the number of positions and the step size 

between positions. In (Kersting, 2001) the characteristics of our OLTCs are displayed. 

 

3.3 Pareto Optimization 

Conversion of the multi-objective function into a single-objective function has several 

limitations (Abido, 2004; Ngatchou et al., 2005):  

 

1) it takes a priori knowledge of the objectives; 
 

2) single-objective function leads to only one solution;  
 

3) trade-offs between objectives cannot be easily evaluated;  
 
4) the solution may not be obtained unless the search space is convex. 
 

Pareto optimization solves the problem of multi-objective functions separately. It aims to 

find and to compare the set of acceptable solutions and present them to the decision maker 

(DM) who will choose among them the final solution (Figure 3.1).  Nowadays and due to the 

computational advances, it is possible to use techniques based on metaheuristic algorithms to 

determine the Pareto frontier by optimizing all the objectives separately(Smith, 2002). These 

methods include genetic algorithms (GA), evolutionary algorithms (EA) and evolutionary 

strategies (ES) which only differ in the way the fitness selection, mutation and crossover 

operations are performed.  

 

In this work, we use Matlab (gamultiobj function) to find minimum of multiple functions 

using genetic algorithm and obtain the Pareto frontier. For each set of solutions, Decision 

Maker (DM) calculates the minimum of the sum of the three objectives (minimum of losses); 

the set of solutions that have the minimum is selected (Dehghani-Arani et Maddahi, 2013).  

 

ܨ  = ݊݅ܯ ෍ߣ௝ ௝݂ே
௝ୀଵ  

(3.9)
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Where: ܨ is the minimum sum of the objectives of the set of solutions; N is the number of 

objectives; ߣ௝ is the weight of the objective j; ௝݂ is the objective j of the MO function. 

 

OCVC includes the use of DM; in this study the fitness solution was used but various options 

are possible. The use of OCVC could be advantageous in relation to the development of a 

flexible system for network operator, by applying different settings at the decision stage, 

according to specific circumstances. Further research is needed on this topic. 

 

 

Figure 3.1 Pareto Optimization scheme for multi-objective function 
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3.4 Optimal Coordinated Voltage Control (OCVC) 

3.4.1 Flowchart programming of OCVC 

The priority for OCVC is to maintain the voltage within a specific range around the set point 

using all available resources in the network. From equations 3.1 to 3.3, we see the three 

objectives on voltages on the pilot buses ܨଵ and on reactive power ܨଶ and voltages on the 

generation buses ܨଷ. Furthermore, equation (3.6) is responsible for maintaining an optimal 

relationship in the objectives.  

 

Figure 3.2, shows the steps of the sequence of operations necessary for OCVC: 

 

Step 1: Distribution Network 

 

Define input variables; the algorithm acquires the network values. The network will have two 

disturbances. The first (t=100s) is the input of the DG to the network. The second disturbance 

is the input of the large load on the pilot bus. 

 

Step 2: Analyze and complete the objective functions 

 

The objective functions are calculated from equations (3.1) to (3.3) and the constraints (3.4) 

to (3.6). OCVC calculates the three weights corresponding to F1, F2 and F3. 

 

The results of the distribution power flow namely bus voltages, line currents, real and 

reactive power are those which form the three objectives of the optimization problem. 

OpenDSS software performs this task (OpenDSS manual and reference guide). 

 

Step 3: Pareto Optimization 
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When the voltage in the pilot bus is not around the set point, Pareto optimization finds a set 

of solutions (Pareto frontier) of the voltages at the pilot bus ( ௉ܸ_௢௣௧௜௠௔௟), the reactive powers (ݍ௥௘௙_௢௣௧௜௠௔௟), and the voltages in the generator ( ௚ܸ_௢௣௧௜௠௔௟).  
 

Decision Maker (DM) calculates the fitness solution using equation (3.9). 

 

Step 4: Control 

 

According to the voltage at the pilot bus, the optimal reactive power and the voltage in the 

generator, the control action is executed. For this, a dynamic control of OLTC ensures 

compliance with the upper and lower voltages. In each time using equation (3.8), the voltage 

in the OLTC is calculated. 

 

Figure 3.2 Flow chart of the proposed algorithm 

 

Step 5: With the data from step 4, OCVC calculates new values for the distribution network 

using the OpenDSS software (OpenDSS manual and reference guide). 
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Step 6: If the voltage values at the pilot bus is within the limits go to 7, if not, return to step1. 

 

Step 7: If the time reaches the limit of simulation go to 8, if not, return to step 2. 

 

Step 8: End. 

 

In OCVC, the three objectives are always competing. When the voltage in pilot bus is within 

the fixed range, the objective 1 decreases its value. Therefore, the objective 2 (reactive 

power) becomes more important. The weights are related to the optimization process and will 

be responsible to maintain this priority. 

 

Conversely, when the voltage in pilot bus is outside the acceptable range, objective 1 and 

objective 3 increase the value and become the most important objectives. In this case, OCVC 

optimizes the voltage of the generators and OLTC available on the network.  

 

When the voltage begins to be within the limits defined, OCVC changes the priority. The 

new objective is to reduce the losses. OCVC has the advantage of using all the available 

sources of reactive power in the network and calculates the optimum value and reduce the 

losses, so λ୧୯ increases its value in MO function.  

 

The difference between the methods (CVC) proposed by (Biserica et al., 2011; Richardot et 

al., 2006) and the proposed method is that OCVC solves all the different objectives of the 

optimization problem separately and that OCVC changes the weights all the time to achieve 

the objectives of the minimization of losses and maximization of all the reactive power 

sources. 

 

3.5 Case study 

Our analysis method has been implemented on two IEEE distribution test systems with 

unbalanced load. These are IEEE 13 node test feeder and 34 node test feeder. The first one, 
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IEEE 13 node test feeder is small but good for test case. The second one, IEEE 34 node test 

feeder is an actual feeder located in Arizona (IEEE.org). 

 

3.5.1 Implementation 

OCVC was coded in Simulink of Matlab (R2014a) and OpenDSS (64 bits) software. 

Simulations carried out on a PC (Intel Core i7 2.9 GHz, 8 GB RAM) were delivered in 

around 30 s for the IEEE 13 Node, 50 to 60 s for the IEEE 34 Node Test Feeder. 

 

The OpenDSS is an electrical power Distribution System Simulator (DSS) for supporting 

distributed resource integration and grid modernization efforts (OpenDSS manual and 

reference guide). It can solve a very large distribution system in a very small CPU time. In 

addition, it is freely distributed by EPRI. 

 

3.5.2 IEEE 13 Node Test Feeder 

The diagram of the IEEE 13 node test feeder used as a test system is given in figure 3.3. It 

corresponds to a simple primary distribution system. The values obtained for the voltages, 

currents, and power flows are very accurate compared with the values reported by the IEEE 

Distribution system analysis subcommittee (IEEE.org). The network has an OLTC. 

 

The work performed by Anwar (Anwar et Pota, 2011)  determines the appropriate size and 

proper allocation of  the DG to reduce electric power losses. Then, one DG of 1200 kW in 

the 675 bus has been added in the network. 
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Figure 3.3 Case study distribution network IEEE 13 Node Test Feeder 

 

Ahmidi proposed a multilevel approach for the optimal participation in reactive power 

balancing of wind farms connected to the network (Ahmidi et al., 2012). The PQ-diagram 

proposed by Ahmidi calculates the limits of reactive power of the DG, using the various 

European regulations. In this study, the standards from France are used which allow to use a 

power factor of ±0.91 and the variation of the operating voltage at DG is ±5% of its 

contractual voltage. 

 

The simulation started with the initial loads of the distribution network. The total load in the 

distribution network is for phase 1: 1158 kW and 606 kVAr; for phase 2: 973 kW and 627 

kVAr; and for phase 3: 1135 kW and 753 kVAr. Then a DG is added to the system (DG of 

1290 kW, ± 0.91 pf) at the 675 bus (t= 100s). Finally, at t=350s, a new load is added to 
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simulate a disturbance (New three phase balanced load in the 671 bus of 1200 kW and 800 

kVAr). The simulation lasts 500 seconds. 

 

3.5.2.1 OLTC: reference case 

In this case, the only equipment used for the voltage control is the OLTC. This is the typical 

case of a distribution network currently. The DG and the new load in the network may appear 

like an overvoltage which OLTC will correct. The reactive power injected from the DG is 

zero in this case. Furthermore, the DG does not participate in the regulation of the voltage. 

 

3.5.2.2 Coordination Voltage Control (Fixed weight) 

The OLTC and DG are considered to control the voltage. In CVC, the weights factor of the 

MO function response to voltage deviation at the pilot bus.  

 

When the pilot bus voltage is within the limits, the reactive power control is the priority. So, 

the weight factors are: λ୧ = 0.3;		λ୧୯ = 0.6		λ୧୴ = 0.1 . If the voltage in pilot bus is close to 

the limits, the reactive power is managed globally. The weight factors in this case are: λ୧ =0.5;		λ୧୯ = 0.4		λ୧୴ = 0.1.   Finally, when the voltage in pilot bus has exceeded the limits, the 

priority of CVC is to bring the voltage within the allowable limits. The weight factors are: λ୧ = 0.8;		λ୧୯ = 0.1		λ୧୴ = 0.1 (Richardot et al., 2006). 

 

3.5.2.3 Optimal Coordination Voltage Control (OCVC) 

OCVC proposes a multilevel approach for optimal participation in reactive power balancing 

of DG connected to the distribution network. The weighting factors vary dynamically 

depending on: 1) the value of the voltage at the pilot bus, 2) the value of the voltage at the 

generator bus and 3) the value of reactive power available. 
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Table 3.2 Weight variation: Comparison between CVC and OCVC  

CVC OCVC 
Time (s) ૃܑ ૃܑܞܑૃ ܙܑૃ ܑૃ ܞܑૃ ܙ 

0-100 
0.5 0.4 0.1 

0.1009 0.5828 0.3169 
0.3 0.6 0.1 

110-340 
0.5 0.4 0.1 

0.1009 0.2967 0.6023 
0.3 0.6 0.1 

350-500 
0.5 0.4 0.1 

0.8 0.1 0.1 0.5 0.4 0.1 
0.3 0.6 0.1 

 

In Table 3.2, the variation of the weights is shown. When the voltage at the pilot bus is 

outside of the acceptable range, CVC usually gives the highest value to weight (λ୧). When the 

voltage is within the range around the set point, CVC gives higher priority to reactive power 

(λ୧୯). On the other hand, in OCVC, the weights vary according to availability of resources in 

the network. The optimal values of OCVC maintain the voltage at optimal values with lower 

losses.  

 

   The introduction of DG in distribution networks creates voltage quality problems 

(time=100s). Figure 3.4 shows the variation of the voltage (first disturbance). 

 

 

Figure 3.4 Voltage profile of the IEEE 13 Node Test Feeder on the pilot bus 
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At time t=350s, the second disturbance occurs in the network (new load). Figure 3.4 shows 

the voltage variation in the three methods used. 

 

 

Figure 3.5 Active power losses in the IEEE 13 Node Test Feeder 

 

The Joule losses are higher in the OLTC case due to the non-coordinated control of the DG 

and so, there are higher reactive power flows in the network (Figure 3.5). CVC has more 

losses than OLTC because the reactive power in the network is coordinated. The Joule losses 

are smaller in OCVC due to the optimal management of reactive power in the network. In 

this case, OCVC optimally coordinates the delivery of reactive power to obtain low losses. 

 

 The solution obtained of the three objectives in the multi objective function is the one that 

produces the smallest possible losses (Figure 3.6). 

 

 

Figure 3.6 Reactive power losses in the IEEE 13 Node Test Feeder 
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3.5.3 IEEE 34 Node Test Feeder 

 

Figure 3.7 Case study distribution network. IEEE 34 Node Test Feeder 

 

In Figure 3.7, we observe the diagram of the IEEE 34 node test feeder. The simulation started 

with the initial loads of the distribution network. The total spot loads for phase are: for phase 

1: 344 kW and 224 kVAr; for phase 2: 344 kW and 224 kVAr; and for phase 3: 359 kW and 

227 kVAr. The total distributed loads for phase are: for phase 1: 262 kW and 133 kVAr; for 

phase 2: 240 kW and 120 kVAr; and for phase 3: 220 kW and 114 kVAr (IEEE.org). 
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Figure 3.8 Voltage profile of the IEEE 34 Node Test Feeder on the pilot bus 

 

At time t=100 s, one DG is added to the system (DG of 1150 kW, ± 0.91 pf) at the 844 bus, 

according to the work of (Anwar et Pota, 2011) to reduce losses in the network. The network 

absorbs 50% of the energy of the DG at t=100 s. At t=140 s, the DG will deliver full 

capacity. Finally, at t=350 s, a new load is added to simulate a disturbance (New three phase 

balanced load in the 832 bus of 1000 kW and 666 kVAr). The results are also compared with 

other techniques using CVC and OLTC. 

 

 

Figure 3.9 Active power losses in the IEEE 34 Node Test Feeder 

 

In IEEE 34 Node Test Feeder, the impact of DG and the impact of a new load on the voltage 

variation in the pilot bus can be analyzed in Figure 3.8. In OCVC, the variation voltage can 

be controlled by the DG reactive power output. The impact of DG on losses is also dependent 
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of the DG size and location. In Figure 3.9 and Figure 3.10, it can be seen that when the 

reactive power available is sufficient to compensate the reactive power demand, the DG 

operation does not have a significant effect on the distribution system losses. 

 

 

Figure 3.10 Reactive power losses in the IEEE 34 Node Test Feeder 

 

3.6 Conclusions 

 In this paper, a new technique based on the Pareto frontier has been presented and applied to 

Multi-Objective optimization voltage problem. It has been proposed as multilevel 

optimization with the participation of active and reactive power of the DG connected to the 

distribution network. For this purpose, we used the Pareto frontier to solve all the different 

objectives of the Multi-Objective problem separately with dynamic weights. 

 

 The modern power system requires the generation of a set of optimal solutions (instead of a 

single solution) that would allow the operator (Decision Maker) to choose. Then, this new 

technique may be adapted to particular strategies, operating points, objectives and 

constraints. 

 

 OCVC performances are better than those of OLTC and CVC techniques. OCVC eliminates 

the entire voltage problem, including the DG’s over-voltages. The voltage problem has been 
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solved; the distribution network voltage profile stays in a fixed range around the set point 

values.  

 

OCVC could be an interesting way to reduce or eliminate future investments in classical 

voltage and reactive power regulation. 

 

This paper shows that the optimal integration of DG in distribution network can help to 

maintain the voltage within the limits and reduce losses. 
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Abstract 

 

This paper presents an efficient algorithm to solve the multi-objective (MO) voltage control 

problem in distribution networks. The proposed algorithm minimizes the following three 

objectives: voltage variation on pilot buses, reactive power production ratio deviation, and 

generator voltage deviation. This work leverages two optimization techniques: fuzzy logic to 

find the optimum value of the reactive power of the distributed generation (DG) and Pareto 

optimization to find the optimal value of the pilot bus voltage so that this produces lower 

losses under the constraints that the voltage remains within established limits. Variable loads 

and DGs are taken into account in this paper. The algorithm is tested on an IEEE 13-node test 

feeder and the results show the effectiveness of the proposed model. 

 

Keywords: coordinated voltage control; distributed generation; on load tap changer; multi-

objective voltage control; fuzzy logic 
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4.1 Introduction 

Due to rapid industrialization and growth of residential and commercial sectors, the electrical 

energy requirements have increased significantly over the last decades. In this situation, 

renewable energy becomes a very important factor in the electrical distribution system. This 

type of generating unit is known as distributed generation (DG), and these generators will 

supply a large portion of demand and many of them will be directly connected to the 

distribution network. The DGs may trigger variations in voltage and can cause a change of 

direction in the power flow. The voltage rise depends on the amount of energy injected by 

the DG and, therefore, it is a limiting factor for the DG capacity. Many researchers have 

studied DGs and their impact on the voltage, the reduction of the losses in the active and 

reactive power, and the maximization of the DG capacity (Ahmidi et al., 2012; DeJesus et al., 

2006; Habibi et al., 2013). In (Anwar et Pota, 2011) a minimization of loss was used to 

determine the optimum size and location of DG. 

 

On the other hand, a review of the literature shows that many works have been done 

assuming that the loads in the electrical network are fixed. There are only a few works that 

use variable loads (Dehghani-Arani et Maddahi, 2013; Hong et al., 2015; Lopez et al., 2004; 

Queiroz et Lyra, 2009; Zidan et El-Saadany, 2012). In this paper, all the loads of the 

analyzed networks are varying in time to better reflect system operation. Three different 

models of load variation are utilized. Each model represents the measurements of the change 

in consumption of customers for 48 h (data provided by Hydro-Québec). 

 

Coordinated voltage control (CVC) in distribution network adjusts the voltage in pilot buses. 

CVC uses the multi-objective problem to minimize the voltage variation at the pilot buses 

(Richardot et al., 2006). Several methods have been proposed to solve the optimization of the 

multi-objective (MO) voltage control problem. In (Richardot et al., 2006) a genetic algorithm 

(GA) was used to determine an optimal weighted solution of the MO problem. In (Knowles 

et Corne, 1999) a simpler evolution scheme for MO problems is proposed; this algorithm 

uses the local search for the generation of new candidate solutions. 
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Some researchers (Ngatchou et al., 2005; Richardot et al., 2006; Soroudi et al., 2011) solve 

the MO voltage control problem converting the objectives into a single objective (SO) 

function; in this case, the objective is to find the solution that minimizes or maximizes this 

single objective. The optimization solution results in a single value that represents a 

compromise among all the objectives (Ngatchou et al., 2005). 

 

Other researchers (Deb et al., 2002; Ngatchou et al., 2005; Xiyi et al., 2013) work with the 

objectives of the MO problem separately, resulting in a set of solutions called the Pareto 

frontier. This causes the difficulty to find an optimal solution since there is no a single 

solution. Therefore, a decision-maker (DM) is necessary to choose the most appropriate 

solution. This feature is useful because it provides a better understanding of the system 

because all the objectives are explored. This method leads to find the weighted minimum of 

the objectives. Thus, the constraints and criteria specified of each objective are important to 

find the Pareto frontier. 

 

Electrical power systems are very difficult to control with traditional methods due to highly 

complex and nonlinear behaviors. Fuzzy logic can overcome these difficulties. In (Barin et 

al., 2008; Loetamonphong et al., 2002) a fuzzy logic technique was introduced to solve the 

optimal values of MO voltage control problem. The solution set is usually not a singleton set. 

The problem requires the objectives functions to be linear and it also requires the value of the 

minimal solutions of the system. To solve this problem, fuzzy logic can be used closely with 

other optimization technique (Gao et al., 2014). 

 

Previous methods adequately solved the problem of MO voltage control problem using DGs 

in distribution networks obtaining optimum values of voltage and reactive power (Ahmidi et 

al., 2012; Anwar et Pota, 2011; Barin et al., 2008; Gaonkar et Pillai, 2010; Ghatee et 

Hashemi, 2009; Kiprakis et Wallace, 2004; Maciel et Padilha-Feltrin, 2009; Richardot et al., 

2006; Viawan et Karlsson, 2008). There is no research that calculates the value of the 

reactive power of the DG using the optimal values of the MO voltage control problem in 

distribution network with variable and unbalanced loads. 
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To overcome the problems cited above, this paper proposes a new method called coordinated 

voltage control using Pareto and fuzzy logic (CVCPF). This technique finds the optimal 

values of the MO voltage control problem and finds the optimal value of reactive power of 

the DG. CVCPF maintains the voltage of the buses into the established limits, minimize the 

losses of the network, and minimizes the voltage variation in the pilot bus. This new method 

is tested on an IEEE 13-node test feeder using variables and unbalanced loads. 

 

CVCPF uses Pareto optimization for solving the MO voltage control problem; the objectives 

of the MO problem are resolved separately. This paper uses fuzzy logic to find the optimal 

reactive power of DG to inject in distribution system. Fuzzy logic analyzes the voltage 

difference (ΔV) between the reference voltage (Vpref) and the optimal voltage of pilot bus 

(VpOptimo) to find the reactive power of DG that minimizes voltage error. 

 

The original contributions of this paper consist basically in combining the following:  

 

1) variables and unbalanced loads with DGs in distribution network are investigated; 
 

2) CVCPF uses two optimization techniques. Pareto Optimization to find the optimal 
voltage and fuzzy logic to calculate the optimal value of reactive power of DG; 
 

3) CVCPF uses the reactive power of DG as a control variable to minimize the voltage 
variation; 
 

4) the objectives of the MO voltage control problem are resolved separately. 
 

The rest of this paper is organized as follows: Section 4.2 presents the classical CVC. Section 

4.3 presents coordinated voltage control using Pareto and fuzzy approach (CVCPF). 

Simulation results are presented in Section 4.4 and, finally, in Section 4.5 the conclusions are 

given. 
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4.2 Coordinated Voltage Control (CVC) 

Richardot et al. in (Richardot et al., 2006) demonstrated that CVC for transmission networks 

can be successfully applied to a distribution network. Based on this work, it is presented in 

the following subsections the optimization model considered in this paper. 

 

4.2.1 Objectives Function 

The voltage variation at the pilot buses, the reactive power production, and the generator’s 

voltage deviations are coupled variables and are tied together. Any increase or decrease in 

voltage at pilot buses will increase or decrease the reactive power production and generator 

voltage respectively. These objectives are modelled as follows: 

 

4.2.1.1 Voltage at Pilot Bus 

The first objective is to minimize the variation in voltage at the pilot buses. In a mathematical 

form, the objective can be written as follows: 

 

 Fଵ =෍λ୧୧∈୔ ൥κ ൫V୧୰ୣ୤ − V୧൯ −෍C୧,୩୚ · ∆V୩୩∈ୋ ൩ଶ 
(4.1)

 

where: P and Q are the sets of pilot and generator buses indices; V୧୰ୣ୤, V୧		 and ∆V୩	are set-

point voltage, actual voltage and voltage deviation at bus i, i.e., the difference of voltage 

values between two computing steps; C୧,୩୚ 	 is the sensitivity matrix coefficient linking the 

voltage variation at bus i and bus k, respectively, λ୧ and ߢ weighting factor and regulator 

gain, respectively. 
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4.2.1.2 Reactive Power 

The second objective is the management of the reactive power. This objective is modelled  

as follows: 

 

ଶܨ  =෍ߣ௜௤ ൥ߢ ቆݍ௥௘௙ − ܳ௜ܳ௜ெ஺௑ቇ −෍ܥ௜,௞ொ · ∆ ௞ܸ௞∈ீ ൩ଶ௜ఢீ  
(4.2)

 

where: G is the set of generator buses indices; Q୧		and Q୧୑୅ଡ଼	are actual and maximum reactive 

power generations at bus i; q୰ୣ୤ = ∑ Q୧/∑ Q୧୑୅ଡ଼୧∈ୋ୧∈ୋ 	 is the uniform set-point reactive 

power value within the regulated area; C୧,୩୕	 is sensitivity matrix coefficients linking, 

respectively, voltage variation at bus i and bus k. 	λ୧୯	 and ߢ are weighting factor and 

regulator gain, respectively. 

 

4.2.1.3 Voltage at Generators 

The third objective is the minimization of the generator’s voltage deviations. The 

mathematical model is as follows: 

 

ଷܨ  =෍ߣ௜௩ൣ ൫ߢ ௜ܸ௥௘௙ − ௜ܸ൯ − ߂ ௜ܸ൧ଶ௜∈ீ  (4.3)

 

where: G is the set of generator buses indices; V୧୰ୣ୤, V୧		and ∆V୧	are the set-point voltage, 

actual voltage and voltage deviation, respectively, at the bus i, i.e., the difference of voltage 

values between two computing steps. λ୧୴	 and ߢ are weighting factor and regulator gain, 

respectively. 
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4.2.2 Constraints 

The constraints are presented as follows: 

 

4.2.2.1 Reactive Power Constraint 

In this work, one of the main objectives is to control the production of the reactive power of 

the DG. In (Ahmidi et al., 2012) an acceptable power factor is of ±0.91. 

 

௥௘௙ݍ  =෍ܳ௜/෍ܳ௜ெ஺௑௜∈ீ௜∈ீ  (4.4)

 

where: |Q୧| ≤ Q୧୫ୟ୶. 

 

4.2.2.2 Technical Compliance Voltage 

The compliance of constraints of voltage on the pilot and generator buses is used to 

determine the safe operation values. In distribution networks an acceptable steady voltage 

range is considered within ±3% of the operating voltage at DG (Masters, 2002): 

 

 ௜ܸ ∈ ൣ ௜ܸ௠௜௡; ௜ܸெ஺௑൧ ݎ݋݂ ݅ ∈ ܲ ∪ ∆| ܩ ௜ܸ| ≤ ∆ ௜ܸெ஺௑ ݎ݋݂ ݅ ∈  ܩ

(4.5)

 

4.2.2.3 Weights Constraints 

The weights of the objectives are important because they give priority to an objective that 

depends on the conditions of operation. For example, if the voltage on the pilot bus is outside 

of the limits, the weight for this objective will be higher than the other two; however, these 

weights are related as described in relation Equation (4.6): 
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௜ߣ	  + ௜௤ߣ + ௜௩ߣ = 1 (4.6)

 λ୧, λ୧୯, λ୧୴ are weighting factors for bus i. 

 

4.3 Coordinated Voltage Control Using Pareto and Fuzzy Logic (CVCPF) 

This section presents the Pareto optimization to find the optimal voltage on the pilot bus and 

the determination of reactive power of DG using a fuzzy approach. 

 

4.3.1 Pareto Optimization 

The classical methods consist of converting the MO problem into a single objective (SO) 

problem. The solution of this SO problem yield a single result that depend of the selection of 

the weights. On the other hand, Pareto optimization optimizes all objectives separately. 

 

Figure 4.1 shows that Pareto optimization calculates a set of solutions called the Pareto 

frontier, which can optimize the maximum possible number of objectives. In this work, we 

use Matlab to find the minimum of multiple functions using a genetic algorithm and obtain 

the Pareto frontier subject to the linear equalities Aeq		 × 	x = beq. All objectives and 

constraints are changing in the real-time set considering the actual needs and capabilities. 

This Pareto frontier is obtained by using the dominance relationship among different 

solutions. 
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Figure 4.1 Pareto optimization scheme for a multi-objective problem 

 

The algorithm needs to choose only one solution to this set of solutions using a new 

condition decision-maker (DM) (Dehghani-Arani et Maddahi, 2013). 

 

For each set of solutions, the decision-maker (DM) calculates the minimum of the sum of the 

three objectives; the set of solutions that have the minimum is selected: 

 

 ݂ = ݊݅ܯ ෍ߣ௝ܨ௝ே
௝ୀଵ  

(4.7)

 

where: ݂ is the minimum sum of the objectives of the set of solutions. N is the number of 

objectives. ߣ௝ is the weight of the objective j.  ܨ௝ is the objective j of the MO voltage control 

problem. 

 

4.3.2 Fuzzy Logic 

Fuzzy logic is an extension of traditional Boolean relations where the system is not 

characterized by simple binary values but a range of truths from 0 to 1. The input and output 
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of the system are “somehow” related (Ghatee et Hashemi, 2009). Fuzzy logic is increasingly 

utilized in distribution networks. 

 

Two of the most important types of fuzzy control are: the Mamdani and Sugeno models. The 

Mamdani model allows expressing the available prior knowledge of the system, whereas the 

Sugeno model simplifies the calculations of the output. The Sugeno output can be either 

linear or constant and the final output is a weighted average of each rule’s output; so, its 

process does not require defuzzification. It works well with optimization and adaptive 

techniques and has a guaranteed continuity of output surface. Finally, the Sugeno model is 

well suited to mathematical analysis (Takagi et Sugeno, 1985). 

 

In this work, the Sugeno model will be used and its mathematical model has the following 

form: 

1	ݐݑ݌݊݅	݂ܫ  = ,	ݔ ℎ݁݊ݐ ℎ݁ݐ ݐݑ݌ݐݑܱ ݏ݅ ݖ = ܿ (4.8)

 

 

In a zero-order model, the output level z is a constant (a=0).  Each output zi  of each rule has 

a weight wi (Soroudi et al., 2011): 

௜ݓ  = ݉݅݊ (4.9) (ݔ)ଵܨ

 

Where F1(x) are the membership functions for input 1 (Takagi et Sugeno, 1985). The average 

estimate is then given by the equation: 

ݐݑ݌ݐݑ݋	݈ܽ݊݅ܨ  = ∑ ∑௜ே௜ୀଵݖ௜ݓ ௜ே௜ୀଵݓ  
(4.10)
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CVCPF uses fuzzy logic to calculate the optimal reactive power of DG. Figure 4.2 shows the 

fuzzy logic reactive power controller. The input signal is the error (ΔV). This error (ΔV) is 

varying over the range ሾ∆V୫୧୬, Zero	and	∆V୫ୟ୶ሿ where 

 ∆V୫୧୬ = -0.05 (p.u.) and  ∆V௠௔௫ = +0.05 (p.u.) 

 

The output of the fuzzy logic is the variation of the reactive power. The output of the 

controller is the voltage variation. The PID generates an output based on the difference 

between the power factor calculated by fuzzy logic and output power factor of the network. 

The three linguistic labels define voltage: Low, Normal, and High. The input membership 

(Gaussian) functions are shown in Figure 4.3. 

 

 

Figure 4.2 Fuzzy logic reactive power factor controller 

 

 

Figure 4.3 Input fuzzy membership functions 
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4.3.3 Design of Reactive Power of DG 

In this work, this model is a single-input and single output (SISO) controller (Figure 4.2). 

Using relation Equation (4.8): 

1	ݐݑ݌݊݅	݂ܫ  = ∆ܸ, ℎ݁݊ݐ ݐݑ݌ݐݑܱ ݏ݅ ݖ = ܿ (4.11)

 

The set of fuzzy rules are as follows: 

 

ܸ∆)	ܨܫ  = (ݓ݋ܮ ܰܧܪܶ ଵݑ = ܸ∆)	ܨܫ ௠௜௡ܨܲ = ଶݑ	ܰܧܪܶ	(݈ܽ݉ݎ݋ܰ = ܸ∆)	ܨܫ ௡௢௠ܨܲ = (ℎ݃݅ܪ ܰܧܪܶ ଷݑ =  ௠௔௫ܨܲ

(4.12)

 

The advantage of the Sugeno model is that the output can be found using the average 

estimate formula (Takagi et Sugeno, 1985). 

 

௥௘௙ܨܲ  = ∑ ∑௜ଷ௜ୀଵݑ௜ݓ ௜ଷ௜ୀଵݓ  
(4.13)

 

where: ݑଵ, ,ଶݑ ௜ݓ  .ଷ are the outputs of the respective fuzzy rulesݑ = minܨଵ(ݔ)  when ܨଵ(ݔ)	is the membership function for input 1. 

 

4.3.4 Solution Algorithm 

The algorithm flow chart is illustrated in Figure 4.4. The steps followed to solve the MO 

voltage control problem are as follows: 

 

Step 1: System Data: Define input variables; the algorithm acquires the network values. 
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Step 2: Analyze and complete the objective functions. The objective functions are calculated 

from Equations (4.1) to (4.3) and the constraints Equations (4.4) to (4.6). CVCPF calculates 

the three weights corresponding to F1, F2, and F3 and finds a set of solutions (Pareto 

frontier). 

 

Step 3: Decision-maker (DM) calculates the fitness solution. 

 

Step 4: Fuzzy logic 

 

Figure 4 shows the step 4. The error (ΔV) is calculated: 

 

 ∆ܸ = ௥௘௙݌ܸ − ௢௣௧௜௠௢ (4.14)݌ܸ

 

Determination of the rules: Equation (4.12) shows the rules. 

 

Determination of the output stage: The final output is computed according to Equation 

(4.13). Finally, the reactive power of DG is: 

 

݃݊ܣ  = acos(ܲܨ) ܳ஽ீ = ݁ݒ݅ݐܿܣ) ݎ݁ݓ݋݌ ݂݋ (ܩܦ × tan(݃݊ܣ) (4.15)

 

Determination of the optimal reactive power reference: The reactive power is computed 

using Equation (4.4): 

 

௥௘௙ݍ  =෍ܳ஽ீ௜/෍ܳ௜ெ஺௑୧∈ୋ୧∈ୋ  (4.16)

 

Finally, the PID removes the error of the power factor. 
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Step 5: Control: According to the voltage at the pilot bus and the optimal reactive power 

reference, the control action is calculated on the OLTC and the PF of the DG. 

 

Step 6: With the data from step 5, CVCPF calculates new values for the distribution network 

using the OpenDSS program (OpenDSS manual and reference guide). 

 

Step 7: If voltage values at the pilot buses, reactive power reference, and voltage at 

generators are within the limits go to step 8; if not, return to step 1. 

 

Step 8: End. 

 

 

Figure 4.4 Flow chart of the proposed algorithm 
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4.3.5 Case Study 

The proposed method is tested on IEEE13 Node Test Feeder shown in Figure 4.5, 4.16 kV 

distribution network. The technical data of the network is given in (Kersting, 2001). In this 

work, for Case 1, 2, and 3 only a DG with 1.290 kW connected at the 675 bus is considered 

(Anwar et Pota, 2011). For Case 4, this work uses three DGs. 

 

 

Figure 4.5 IEEE 13 Node Test Feeder  

 

Table 4.1 shows the default unbalanced loads values for the network IEEE 13 (fixed values). 

In the second column of the Table 4.1, the three basic loads are displayed. (1) Constant 

Impedance Load Model (Constant Z); (2) Constant Current Load Model (Constant I); and (3) 

Constant Power Load Model (Constant PQ). In this study, three different cases are analyzed 

where variable loads are added to the fixed network loads; each case represents the 

measurements of typical change in consumption of customers in a 48 h horizon (data 

provided by Hydro-Québec). Table 4.2 shows the cable line configuration for an IEEE 13 

node test feeder. Figure 4.6 shows these three cases on the pilot bus in active power (bus 

671). 
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Table 4.1 Spot Load Data for IEEE 13  

Node Load Ph-1 Ph-1 Ph-2 Ph-2 Ph-3 Ph-3 
 Model kW kVAr kW kVAr kW kVAr 

634 Y-PQ 160 110 120 90 120 90 
645 Y-PQ 0 0 170 125 0 0 
646 D-Z 0 0 230 132 0 0 
652 Y-Z 128 86 0 0 0 0 
671 D-PQ 385 220 385 220 385 220 
675 Y-PQ 485 190 68 60 290 212 
692 D-I 0 0 0 0 170 151 
611 Y-I 0 0 0 0 170 80 

 TOTAL 1158 606 973 627 1135 753 
 

Table 4.2 Cable line configuration for IEEE 13 node test feeder 

Node R (Mile) X (Mile) Distance Config. X/R Ratio 
650–632 0.3465 1.0179 0.378 601 2.9376 
632–633 0.7526 1.1814 0.094 602 1.5697 
632–645 1.3294 1.3471 0.094 603 1.0133 
632–671 0.3465 1.0179 0.378 601 2.9376 
645–646 1.3294 1.3471 0.056 603 1.0133 
671–684 1.3238 1.3569 0.056 604 1.0250 
671–680 0.3465 1.0179 0.189 601 2.9376 
692–675 0.7982 0.4463 0.094 606 0.5591 
684–611 1.3292 1.3475 0.056 605 1.0137 
684–652 1.3425 0.5124 0.151 607 0.3816 
671–692    Switch  
633–634 1.10% 2%  XFM-1  

 

 

Figure 4.6 Variation of the load in kW at bus 671 
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In Figure 4.6 and in the Table 4.3, we can see the maximum load variations. Case 1 is 16.27 

and 16.49 kW at hours 42 to 43 and 43 to 44, respectively; Case 2 is 34.28 and 37.38 kW at 

hours 2 to 3 and 43 to 44, respectively; and Case 3 is 39.66 and 37.73 kW at hours 25 to 26 

and 26 to 27, respectively. 

Table 4.3 Maximum load variation in Case 1, 2 and 3 

Case 1 (kW) Case 2 (kW) Case 3 (kW) 
Hour Bus 671 Variation Hour Bus 671 Variation Hour Bus 671 Variation
43 68.69 16.27 3 86.38 34.28 26 85.59 39.66 
44 52.20 16.49 44 58.62 37.38 27 47.86 37.73 

 

 

4.4 Simulation Results 

The proposed method (CVCPF) is compared with two other methods (OLTC and OCVC). 

In the method OLTC, the only equipment used for the voltage control is the OLTC. This is 

the typical case of a distribution network nowadays. The connection of DG and the variable 

load will fundamentally alter the feeder voltage profile then the OLTC performs control 

voltage. The reactive power injected from the DG is zero in this method; furthermore, the 

DG does not participate in the regulation of the voltage. 

 

Optimal Coordinated Voltage Control (OCVC) proposes a solution for the MO voltage 

control problem using only Pareto optimization. This method proposes a balanced 

participation in the reactive power of DG connected to the distribution network. In OCVC, 

the weighting factors vary dynamically depending on: (1) the value of the voltage at the pilot 

bus, (2) the value of the voltage at the bus generator, and (3) the value of the reactive power 

available (Richardot et al., 2006). 

 

The difference between CVCPF and OCVC is that CVCPF uses two techniques to calculate 

the optimum values. OCVC uses only Pareto to get the optimum values whereas CVCPF 

uses Pareto and fuzzy logic. To calculate the reactive power given by DG, CVCPF uses 

fuzzy logic according to the optimum values given by Pareto. The effect of reactive power of 
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DG on the voltage profile and the variable load in the network is shown in Figures 4.7–4.9. 

In all three cases, the reactive power input of CVCPF and OCVC are almost equal. The 

difference is the voltage variation; in the CVCPF method it is lower than in the other 

methods (Table 4.3). 

 

 

Figure 4.7 Voltage at bus 671 (phase a) with respect to reactive                                          
power input. Case 1 

 

 

Figure 4.8 Voltage at bus 671 (phase a) with respect to reactive                                       
power input. Case 2 
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Figure 4.9 Voltage at bus 671(phase a) with respect to reactive                                        
power input. Case 3 

 

For the case study, the constraints of Equations (4.4) and (4.5) will be: 

 

 |ܳ௜| ≤ ܩܦ (ܹ݇) × (േ0.91) (4.17)

 

 ௜ܸ ∈ ሾ0.97; 1.03ሿ ݎ݋݂ ݅ ∈ ܲ ∪ (4.18) ܩ

 

In the method “without”, the network does not perform any voltage control. The DG and 

variable loads cause voltage variations. 

 

Case 1: 

 

In Figure 4.7, we can see that when the voltage reaches the upper limit allowed, the 

Objective 1 of the MO voltage control problem is the priority (Equation (4.1)). The voltage at 

hour 20 (OCVC line) reaches the maximum allowed value; OCVC maintains the voltage 

close to the reference value. Objective 2 of the MO voltage control problem is not the 
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priority (Equation (4.2)), so the reactive power of the DG decreases and the reactive power 

input increases. 

 

From hour 21, the profile voltages are similar. However, in CVCPF the voltage is close to 

one (1 p.u.). Reactive power input is similar in these two methods. In the hours 43 and 44 

(maximum load variations), the variation of voltage in reactive power is similar in the 

CVCPF and OCVC methods. 

 

Case 2: 

 

At hours 3 and 44 (maximum load variations) of Figure 4.8 and Table 4.4, the voltage 

variation in CVCPF is smaller than in the other methods. At hour 3, OLTC has a lower 

variation than CVCPF but the voltage on the bus 671 is not within the limits (Figure 4.8). In 

the hours 3, 22, 39, and 44, we can see that each time that the CVCPF line crosses the OCVC 

line; the voltage variation in CVCPF is smaller than the other methods. Additionally, at this 

time, the reactive power input between CVCPF and OCVC is almost similar. So, CVCPF 

used DG reactive power to reduce the voltage variation. 
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Table 4.4 Maximum load variation in Case 1, 2 and 3 

Case 2 
 

Hour 
Variation (V p.u.) 

 CVCPF OCVC OLTC
Maximum load 

variation 
3 0.065 0.081 0.033 
44 0.016 0.026 0.033 

Line crosses 

3 0.065 0.081 0.033 
22 0.026 0.053 0.033 
39 0.021 0.032 0.038 
44 0.016 0.026 0.033 

OCVC 
variation is 
higher than 

0,025 V 

3 0.065 0.081 0.033 
4 0.023 0.039 0.024 
10 0.028 0.029 0.036 
11 0.028 0.029 0.036 
22 0.026 0.053 0.033 
35 0.028 0.029 0.029 
39 0.021 0.032 0.038 
44 0.016 0.026 0.033 

 

When the voltage variation on the method OCVC is higher than 0.025 p.u. (Table 4.4), the 

voltage in CVCPF is lower. This can be observed at the hours 3, 4, 10, 11, 22, 35, 39, and 44. 

At these hours, there is a small difference between the reactive power input of CVCPF and 

OCVC. Fuzzy logic is better suited to voltage changes caused by the variation of the load. 

Therefore, fuzzy logic achieves a more efficient management of reactive power. 

 

Case 3: 

 

At hours 26 and 27 (maximum load variations) of Figure 4.9, the voltage variation in CVCPF 

is similar than in the other methods. In all the time, voltage variations in CVCPF and OCVC 

have not exceeded the value of 0.025 p.u. Similarly, the reactive power input for CVCPF and 

OCVC are similar. 

 

The losses of active and reactive power for CVCPF and OCVC are always lower than other 

proposed methods (Figure 4.10). 
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Figure 4.10 Losses. Active and reactive power for Case 2 

 

Figure 4.11 shows the reactive power delivered by the DG for Case 3 using CVCPF and 

OCVC methods. The reactive power varies according to the needs of the network. Then, the 

reactive power of the DG helps the distribution network to maintain a stable voltage and 

reduce loss. 

 

 

Figure 4.11 Reactive power generated by the DG for Case 3                                                
with CVCPF and OCVC methods 
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For the simulation, the OpenDSS and Matlab programs are used. We have used OpenDSS for 

unbalanced load flow. The method uses an OpenDSS server to communicate with Matlab; 

thus, OpenDSS data and Matlab can work together. 

 

Case 4. 

 

The IEEE 13 Node Test Feeder has three DGs. The DG1 is located on the bus 675 and has a 

capacity of 360 kW. The DG2 is located on the bus 671 and has a capacity of 630 kW. 

Finally, The DG3 is located on the bus 632 and has a capacity of 300 kW (Khushalani et 

Schulz, 2006). Variable load 1 is used in this case. 

 

The Figure 4.12 shows that the voltage at the pilot bus is always within the limits. However, 

in CVCPF the voltage variation is less. 

 

 

Figure 4.12 Voltage at pilot bus with respect to reactive power                                          
input. Case 4 

 



74 

4.5 Conclusions 

A new algorithm, called CVCPF, for resolving the MO voltage control problem in 

distribution networks is presented. The three objectives considered in this paper are: voltage 

at pilot bus, management of the reactive power and voltage in generators. CVCPF uses a 

combination of optimization techniques (Pareto optimization and fuzzy logic) to find the 

optimal values for the MO voltage control problem. 

 

The performance of the CVCPF is evaluated on an IEEE 13 node test feeder. Variables and 

unbalanced loads are used, based on real consumption data, over a time window of 48 h. 

Three such profiles are used in the study, varying in the amount of the load. The results are 

compared with those obtained from the methods OCVC and OLTC as well as from the case 

of no voltage control. 

 

This work demonstrates that CVCPF reduces the voltage variation more than the other 

methods. 

 

This work shows also that optimal integration of the DGs in the distribution network helps to 

maintain stable voltage and to reduce loss. 

 

CVCPF includes the use of decision-maker; in this study the fitness solution was used but 

various options are possible. The use of CVCPF could be advantageous with respect to the 

development of a flexible system for network operators, by applying different settings at the 

decision stage, according to specific circumstances. Further research is needed on this topic. 

 

Acknowledgments 

 

Thanks to Ecole de technologie supérieure and Hydro Québec for the support given in  

this work. 

 



 

CHAPTER 5 
 
 

POWER FACTOR COMPUTATION OF  DISTRIBUTED GENERATION USING 
MULTI-OBJECTIVE OPTIMIZATION 

 
 

Jose Raul Castro 1, 2, Maarouf Saad 2, Serge Lefebvre 3, Dalal Asber 3, Laurent Lenoir 3 
 
 

 1 Universidad Técnica Particular de Loja, Loja, Ecuador   
2 Department of Electrical Engineering, École de Technologie Supériure,                          

1100 Notre-Dame St. West, Montreal, Quebec, Canada H3C1K3 
3 Hydro-Québec’s Research Institute, Varennes, Québec, Canada J3X1S3 

 
 

This paper has been submitted for publication in Electrical Power and Energy System                         
 

 
Abstract 

 

Increased Distributed Generation (DG) conventional distribution networks with unbalanced 

loads require new control strategies to optimize the use of available resource assets. This 

paper presents a new technique to demonstrate the benefits of using the reactive power of the 

DGs in distribution networks with variable and unbalanced loads. The problem is formulated 

as a multi-objective optimization model that minimizes reactive power losses with the 

minimization of the variations of the voltage on the pilot bus using : Pareto Optimality, used 

to find the optimal value of the pilot bus voltage, and Fuzzy-PI controller, used to find the 

optimal power factor of the DGs. The proposed technique is applied to the IEEE 13 and 123-

node test feeders with different and real cases of variable loads. The results demonstrate the 

efficiency of the proposed approach and its significant impact on loss minimization. 

 

Keywords: Distributed generation (DG); Multi-objective optimization; distribution network; 

energy loss; optimal power factor; optimal size. 
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5.1 Introduction 

Demand for electricity is growing rapidly. To satisfy this demand, the electrical networks has 

become highly complex due to the large number of buses present, as well as the large variety 

of production systems in use; these include those related to renewable energy in general, 

which today, play a very important role in electrical distribution systems. 

 

The generating units connected to the distribution network are known as Distributed 

Generations (DGs), and they can meet a large proportion of demand. However, DGs may 

trigger voltage deviation and changes in the power flow direction. Voltage deviation is 

function of the energy injected by the DGs, and therefore constitutes a limiting factor for 

their capacity. Traditionally, DGs have been integrated into the distribution network as 

passive circuits; their power factor (PF) depends on technical decisions made at certain given 

times, and may lead to undesirable levels of absorption of reactive power from the 

transmission network, as well as to voltage problems (Ochoa et al., 2011). Knowledge of the 

characteristics of the distribution network, of load variation and of the DG type is required to 

specify the capacity of the reactive power (or voltage support) (Kolenc et al., 2012; Li et al., 

2013). In most European countries, the permissible power factor (PF) range for DGs is ±0.95. 

However, countries such as Spain allow the reactive power of DGs to be delivered according 

to network requirements (Grid, 2010). Moreover, DGs can yield several additional benefits, 

such as loss reduction, voltage enhancement, reliability improvement and network upgrade 

deferral. The DGs are integrated into the network, act as spinning reserves, and provide 

reactive power support, loss compensation, frequency control, and other rapid response 

services (Anwar et Pota, 2011; Barin et al., 2008; Dehghani-Arani et Maddahi, 2013; Hung et 

Mithulananthan, 2014; Hung. et al., 2013; Kiprakis et Wallace, 2004; Maciel et Padilha-

Feltrin, 2009).  

 

As the volumes of DGs increases, however, so do some associated problems. One of these is 

the disequilibrium between energy supply and demand. Generally, in a distribution network, 

loads usually change with time, while the network uses available resources to attempt to 
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maintain the voltage within permissible limits (Hung et Mithulananthan, 2014; Ren et al., 

2010; Zhang. et al., 2015). The direct and indirect cost of power supply quality, reliability, 

and energy losses of the DGs is presented by (Muttaqi et al., 2016). Many researchers 

(Aghaei et al., 2014; Esmaili, 2013; Griffin et al., 2000; Khalesi et Haghifam, 2009; Li et al., 

2013; Nara et al., 2001; Ren et al., 2010; Richardot et al., 2006) usually employ a multi-

objective optimization problem (MOP) in dealing with the latter problem. (Niknam et al., 

2011) presents an efficient new MO fuzzy self-adaptive particle swarm optimization 

(MNFSAPSO) to solve the MOP, considering the minimization of power loss and voltage 

deviations. In (Richardot et al., 2006), the three objectives of the MOP are: 1) minimization 

of the voltage deviation on pilot buses; 2) minimization of reactive power production ratio 

deviation; and 3) minimization of generators’ voltage deviation. The authors convert MOP 

models into a simple objective problem (SOP). The optimal solution gives a single value, 

which represents a compromise between all objectives, and requires a priori knowledge about 

the relative importance of the objectives and the limits of the constraints under consideration. 

The MOP allows precise reactive power management to maintain the voltage within 

permissible limits. 

 

The importance of working with DGs that are capable of delivering both active and reactive 

power in a distribution network is illustrated in (Ahmidi et al., 2012; Duong et al., 2010; 

Moghimi et al., 2013; Thong et al., 2007). In (Ahmidi et al., 2012; Thong et al., 2007), the 

DGs are considered as negative loads that play an active role in the power system’s control 

and operation. 

 

Previous methods adequately solved the problem of finding an optimum location and size for 

DGs in a distribution network. However, the majority of existing works convert the MOP 

into SOPs. Furthermore, there is no solution that considers reactive power losses as an 

objective of the MOP. 

 

To overcome the above problems, our paper proposes a new technique called “DG with 

optimal variable power factor” (VPF). In our previous works (Castro et al., 2016a; Castro et 
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al., 2016b), the MOP had three objectives; in the first work, we proposed Pareto optimization 

for solving the MOP separately, and in the second paper, we proposed Pareto optimization 

and Fuzzy-PID for solving the MOP. In this paper, and based on these previous works, we 

consider the MOP with only two objectives, where the reactive power of the DGs minimizes 

the voltage deviation on the pilot bus and the losses in the network. Three cases are 

evaluated: 1) the adoption of fixed values of the DGs with a variable power factor in real 

time and variable loads, 2) the implementation of variable values of the DGs with a variable 

power factor in real time and variable loads, and 3) analysis of losses and voltage using only 

OLTC (On-Load Tap Changer). The VPF is tested on 1) the IEEE 13-node test feeder using a 

DG with variable and unbalanced loads, and 2) the IEEE 123-node test feeder using four 

DGs with variable and unbalanced loads. 

 

Pareto Optimality and Fuzzy-PI are used in VPF for solving the MOP problem and for 

defining the optimal active and reactive powers values of the DGs. The two objectives of the 

multi-objective optimization problem are solved separately. The original contributions of this 

paper consist essentially in combining the following: 

 

1) it presents a new MO function, where the reactive power losses and voltage regulation 
have been incorporated as objective functions considering DGs; 
 

2) it proposes a new multi-objective algorithm based on Pareto optimality and Fuzzy-PI; 
 
3) it applies real and variable loads and illustrates the impact of variable and fixed DGs on 

distribution networks. 
 

The rest of this paper is organized as follows: Section 5.2 presents the mathematical 

formulation of the problem using MOP and Optimization techniques. Section 5.3 presents the 

proposed solution approach. In section 5.4, the case studies used are given and simulation 

results are presented. Finally, in section 5.5, the conclusions are presented. 
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5.2 Problem formulation and optimization 

In this work, different variable loads are analyzed. The variable loads are added to the fixed 

network loads of the IEEE 13 and 123-node test feeders, and load represents a typical change 

in consumption by customers in a 48-hour horizon (Data provided by Hydro-Québec).  

 

In order to investigate the impact of the DGs on the voltage on a pilot bus and the losses in 

distribution networks with variable and unbalanced loads, three cases are evaluated: 

 

Case 1: Variable Demand and Variable DGs (VDGs+VL): The active and reactive powers of 

the DG need to be optimized. 

 

Case 2: Variable Demand (DGs+VL): The reactive power of the fixed DG is optimized. 

 

Case 3: OLTC: Analysis of losses and voltage using only OLTC (On-Load Tap Changer). 

 

Conventional (passive) networks operate DGs with fixed PF values over all load conditions. 

Conversely, VPF may vary the OLTC or the PF of the DGs (active network). To facilitate 

understanding of how the control system reduces losses, a number of variables and 

constraints are incorporated into the VPF. Here, the Coordinated Voltage Control (CVC) and 

the minimization of reactive power losses are implemented with the main objective of 

finding the optimal size of the DGs allowing loss reduction while maintaining the voltage 

within acceptable limits.  

 

5.2.1 Multi-Objective Problem (MOP) 

The MOP model aims to support the decisions of planners respecting the selection of the 

levels of operation of the DGs throughout the planning period (Ren et al., 2010).  The 

objectives are modelled as follows: 
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5.2.1.1 Coordinated Voltage Control (CVC) 

The first objective is to minimize the variation in voltage on the pilot buses. In mathematical 

form, the objective can be written as follows (Richardot et al., 2006): 

 

ଵܨ  =෍ߣ௜௜∈௉ ൥ߢ	൫ ௜ܸ௥௘௙ − ௜ܸ൯ −෍ܥ௜,௞௏ · ∆ ௞ܸ௞∈ீ ൩ଶ 
(5.1)

 

Where P and Q are the sets of pilot and generator bus indices; V୧୰ୣ୤, V୧	are the set point 

voltage, and the measured voltage on bus i respectively, and ∆ ௞ܸ, is the voltage deviation on 

generator bus k, i.e., the difference in voltage values between two iterations;  C୧,୩୚ 			is the 

sensitivity matrix coefficient linking the voltage deviation on buses i and k, respectively, and ߣ௜ is a desired weighting coefficient. 

 

5.2.1.2 Active and reactive power of the DGs 

The second objective is loss reduction management. (Abu-Mouti et El-Hawary, 2011; Anwar 

et Pota, 2011; Esmaili, 2013; Young-Jin et al., 2013) present an optimized algorithm using 

sensitivity factors. If the DG size varies from QDGi1 to QDGi2 to then the reactive power loss 

varies from Qli1 to Qli2, respectively. The sensitivity factor is stated as follows: 

 

ଶܨ  = ஽ீ௜ܳ݀ݏݏ݋݈ܳ݀	 = ෍ ௜௤௜∈஽ீߣ ൬ ݈ܳ௜ଵ − ݈ܳ௜ଶܳ஽ீ௜ଵ − ܳ஽ீ௜ଶ൰ 
(5.2)

 

where ݈ܳ௜ଵ − ݈ܳ௜ଶ  corresponds to the change in reactive power loss; ܳ஽ீ௜ଵ − ܳ஽ீ௜ଶ is the 

change in DG reactive power from time 1 to 2; and  λ୧୯ is a weighting coefficient. 

 

The power factor (PF) of the DGs is given by (5.3) 
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஽ீ௜ܨܲ  = ஽ܲீ௜ට ஽ܲீ௜ଶ + ܳ஽ீ௜ଶ  
(5.3)

 

where ஽ܲீ௜ and ܳ஽ீ௜ are the active and reactive power of ܩܦ௜, and ܲܨ஽ீ is the power factor 

of DG. 

 

Assuming 

 

 ܽ = (݊݃݅ݏ) tan( (5.4) ((஽ீܨܲ)ଵିݏ݋ܿ

 

The reactive power output of the DGs is expressed by (5.5) 

 

 ܳ஽ீ௜ = ܽ ஽ܲீ௜ (5.5)

 

in which  sign = 	+1			DG injecting reactive power; sign = 	−1		 DG consuming reactive power; 

 

From (5.2), (5.3), (5.4), and (5.5), the reactive power loss can be rewritten as: 

 

ଶܨ  = ஽ீ௜ܳ݀ݏݏ݋݈ܳ݀ = ෍ ௜௤௜∈஽ீߣ ൬ ݈ܳ௜ଵ − ݈ܳ௜ଶܽ( ஽ܲீ௜ଵ − ஽ܲீ௜ଶ)൰ 
(5.6)

 

where  Pୈୋ୧ 	≤ 	 Pୈୋ୧୑୅ଡ଼		and ஽ܲீ௜ଵ − ஽ܲீ௜ଶ is the variation of the DG size. 
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5.2.2 Main Constraints 

Three categories of constraints are observed, and they relate to: 1) the power factor of the 

DGs, 2) the constraints of the voltage on the pilot bus, and 3) the weights of the objectives. 

 

5.2.2.1 Power factor constraints 

One of the main objectives of this work is to control the production of reactive power in the 

presence of DGs. To obtain the power factor of the DGs that minimizes (5.6), the former  

becomes a variable of the optimization problem, and  is constrained by the reactive powers 

corresponding to the limits (Ochoa et al., 2011):  

 

 |݈ܳ௜| ≤ ݈ܳ௜ெ஺௑ (5.7)

 

5.2.2.2 Voltage constraints 

Compliance with voltage constraints on the pilot bus is used to determine the safe operation 

values. In distribution networks, an acceptable steady state voltage range is considered to be 

within ±3% of the nominal voltage (Masters, 2002). 

 

 ௜ܸ ∈ ൣ ௜ܸ௠௜௡; ௜ܸெ஺௑൧ ݎ݋݂ ݅ ∈ ܲ ∪ ܩ  		|∆ ௜ܸ| ≤ ∆ ௜ܸெ஺௑ ݎ݋݂ ݅ ∈  ܩ

(5.8)

 

5.2.2.3 Weight constraints 

The weights of the objectives are important because they give priority to an objective that 

depends on the operating conditions. For example, if the voltage on the pilot bus falls outside 

the limits, the weight for this objective becomes much greater than for the other. These 

weights are related, as shown in relation (5.9): 
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 λ୧ + λ୧୯ = 1 (5.9)

 

where λ୧, λ୧୯  are weighting coefficients for bus i. 

 

5.2.3 Optimization techniques 

This section presents the Pareto optimization and Fuzzy-PI approach used to find the optimal 

size and power factor of the DGs. 

 

5.2.3.1 Pareto optimization 

The Pareto optimization finds a set of solutions constituting what is known as the Pareto 

frontier, which can optimize the two objectives (figure 5.1). The Genetic algorithm (GA), a 

global optimization technique, is used to find the optimal solution. 

 

GA emulates the biological evolution process. An initial population of individuals 

representing different solutions is evolving to find optimal solutions. The fittest individuals 

are evaluated and selected from the current population. These are the values that solve the 

optimization problem of the objective function. Each individual is mutated to form a new 

generation using  crossover operations  (Ouyang et Pano, 2015). It is important to maintain 

population diversity to ensure convergence to an optimal Pareto frontier (Deb et al., 2002).  

The Pareto frontier is obtained by using the dominance relationship between different 

solutions (Fu et al., 2015).  

 

The algorithm needs to choose only one solution among the set of solutions, using a Decision 

Maker (DM) (Dehghani-Arani et Maddahi, 2013; Ngatchou et al., 2005). For each set of 

solutions, the DM calculates the minimum of the reactive power losses. The set of solutions 

having the minimum DM is selected: 
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ܯܦ  = 	݊݅ܯ ෍ ௜௤௜∈஽ீߣ ൬ ݈ܳ௜ଵ − ݈ܳ௜ଶܽ( ஽ܲீ௜ଵ − ஽ܲீ௜ଶ)൰ 
(5.10)

 

where ܯܦ is the minimum of the second objective of the set of solutions; ݈ܳ௜ଵ − ݈ܳ௜ଶ  

corresponds to the change in reactive power loss; ஽ܲீ௜ଵ − ஽ܲீ௜ଶ is the change in active power 

of DG from time 1 to time 2; and  λ୧୯ is a weighting factor.  

 

5.2.3.2 Fuzzy-PI controller 

The Fuzzy-PI controller uses the Pareto optimal values to find the appropriate reactive power 

values that can deliver the DGs. 

 

The controller, as shown in Figure 5.2, has two inputs and one single output. The voltage 

deviation (ΔV) and its derivate are the inputs. The input membership functions are Low, 

Normal, and High (Figure 5.3) (Pitalúa-Díaz et al., 2015). The output signal Fuzzy-PI 

controller is the optimal reactive power of the DGs. 

 

The Fuzzy-PI controller has the advantage of not having a specific operating point. The rules 

evaluate the tendency of the error signals to determine whether to increase or decrease the 

control variable.  
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Figure 5.1 Pareto optimization scheme for MOP 

 

There are two different types of fuzzy control available, namely, Mamdani and Sugeno, and 

they differ mainly in the fuzzy control rule application. The Sugeno type is used in this work 

because, the final output is the weighted average of each rule output, and as a result, it does 

not therefore require a defuzzification process (Gaonkar et Pillai, 2010) (Takagi et Sugeno, 

1985).  

 

Figure 5.2 Scheme of a Fuzzy-PI controller 

 

Based on the input and output membership functions, nine linguistic labels are possible. 

Equation (5.11) shows the set of IF-THEN rules used in the rule-based system.  
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 IF	൫ ௣ܸ	௕௨௦	௜ଵ − ௣ܸ	௕௨௦	௜ଶ = Low൯	and	 Vvc is low THEN uଵ = PF୫୧୬IF	൫ ௣ܸ௕௨௦	௜ଵ − ௣ܸ	௕௨௦	௜ଶ = Low൯	and		 Vvc is normal THEN uଶ = PF୬୭୫IF	൫ ௣ܸ௕௨௦	௜ଵ − ௣ܸ	௕௨௦	௜ଶ = Low൯		and	Vvc			is	high								THEN		uଷ = PF௠௔௫	IF	൫ ௣ܸ௕௨௦	௜ଵ − ௣ܸ	௕௨௦	௜ଶ = Normal൯	and		Vvc	is	low					THEN	uସ = PF୬୭୫	IF	൫ ௣ܸ௕௨௦	௜ଵ − ௣ܸ	௕௨௦	௜ଶ = Normal൯and	Vvc	is	normal	THEN	uହ = PF୬୭୫	IF	൫ ௣ܸ௕௨௦	௜ଵ − ௣ܸ	௕௨௦	௜ଶ = Normal൯	and	Vvc	is	high						THEN	u଺ = PF௠௔௫	IF	൫ ௣ܸ௕௨௦	௜ଵ − ௣ܸ	௕௨௦	௜ଶ = High൯	and	Vvc	is	low												THEN	u଻ = PF௠௔௫	IF	൫ ௣ܸ௕௨௦	௜ଵ − ௣ܸ	௕௨௦	௜ଶ = High൯	and	Vvc	is	normal					THEN	u଼ = PF௠௔௫	IF	൫ ௣ܸ௕௨௦	௜ଵ − ௣ܸ	௕௨௦	௜ଶ = High൯	and	Vvc is high THEN uଽ = PF௠௔௫ 

(5.11)

 

The output can be found using the weighted average formula (Takagi et Sugeno, 1985): 

 

 PF୰ୣ୤ = ∑ w୧u୧ଽ୧ୀଵ∑ w୧ଽ୧ୀଵ  
(5.12)

 

where u୧ is the value of the output member for the ݅ −  ℎ rule; and w୧ is the outputݐ

membership value for the ݅ −  .ℎ ruleݐ

 

From Equations (5.4) and (5.5), the reactive power of the DGs can be rewritten as: 

 

ߠ  = ௥௘௙൯ ܳ஽ீ௜ܨଵ൫ܲିݏ݋ܿ = ( ஽ܲீ௜) ∗ tan(ߠ) ିீߠ ≤ ௜,ீߠ ≤  ାீߠ

(5.13)
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Figure 5.3 a) Fuzzy set for input voltage deviation;                                                     
b) Fuzzy set for input voltage deviation change 

 

Figure 5.2 depicts the Fuzzy-PI controller block, in which a closed-loop control system is 

embedded. The process (Electrical Distribution Network) output (Voltage on pilot bus) is 

denoted by ௉ܸ	௕௨௦; its inputs are denoted by the optimal voltage on the pilot bus ௉ܸ	௢௣௧௜௠௢ and 

the reference input of the fuzzy controller is denoted by the Reactive power of the DGs (ܳ஽ீ௜). 
 

5.3 Proposed Solution 

Figure 5.4 presents the steps of the sequence of operations necessary for VPF to find the 

optimal voltage on the pilot bus and power factor of the DGs using the proposed approach: 
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Step 1: Input Data: The input of the variables to Equations (5.1) and (5.6) of the optimization 

problem are defined.  The data network is provided using OpenDSS software (OpenDSS 

manual and reference guide). 

 

Step 2: Pareto optimization: Matlab is used to solve Equations (5.1) and (5.6) with 

constraints (5.7) to (5.9). The algorithm calculates the two weights (	λ୧	and	λ୧୯) 

corresponding to the functions F1 and F2, and finds a set of solutions (Pareto frontier). 

(Figure 5.1) 

 

Step 3: The Decision Maker (DM) finds the solution set that minimizes the second function.  

The set of solutions selected gives the optimal values of the two functions. So, the optimal 

voltage for the pilot bus is selected. While the variation of the load has an impact on the pilot 

bus voltage, the reactive powers of the DGs can however help reduce this voltage deviation. 

 

Step 4: Fuzzy-PI Controller: Equation (5.11) determines the rules. The final output is 

computed according to Equation (5.12). Finally, the reactive powers of the DGs are 

calculated using Equation (5.13) 

 

Step 5: Control: The control action is executed according to the voltage on the pilot bus and 

the optimal reactive and active powers of the DGs.  

 

OLTC should adjust its tap to reach the optimal voltage value found in Step 3. At each time 

step, the voltage in the OLTC is treated as a variable. The upper and lower voltages and the 

maximum and minimum variations of active and reactive power are respected.  

 

Step 6: With the data from Step 5 and the new values of the load (variable load), the 

OpenDSS program  calculates the power flow of the distribution network (OpenDSS manual 

and reference guide). 
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Figure 5.4 Flow chart of the proposed algorithm 

 

Step 7: If the voltage values on the pilot buses and the reactive and active power of the DGs 

are within acceptable limits, the program ends; otherwise, using the voltage values on the 

pilot bus and the reactive power of DG, GOTO Step 1. 
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5.4 Case Study 

5.4.1 IEEE 13-node test feeder 

In the IEEE 13-node test feeder, only a DG connected on bus 675 is considered (Anwar et 

Pota, 2011). The DG size is calculated for a network with variable and unbalanced loads. To 

demonstrate the new technique, a simplified version of the network was studied with only a 

single DG unit connected (Figure 5.5).  

 

Table 5.1 shows the spot load data for the IEEE 13-node test feeder. In the second column, 

the three basic loads are displayed: (1) Constant Impedance Load Model (Constant Z), (2) 

Constant Current Load Model (Constant I), and (3) Constant Power Load Model (Constant 

PQ) 

Table 5.1 Spot Load Data for IEEE 13  

Node Load Ph-1 Ph-1 Ph-2 Ph-2 Ph-3 Ph-3 
 Model kW kVAr kW kVAr kW kVAr 

634 Y-PQ 160 110 120 90 120 90 
645 Y-PQ 0 0 170 125 0 0 
646 D-Z 0 0 230 132 0 0 
652 Y-Z 128 86 0 0 0 0 
671 D-PQ 385 220 385 220 385 220 
675 Y-PQ 485 190 68 60 290 212 
692 D-I 0 0 0 0 170 151 
611 Y-I 0 0 0 0 170 80 

 TOTAL 1158 606 973 627 1135 753 

 

Table 5.2 displays the cable line configuration for an IEEE 13-node test feeder, while Table 

5.3 shows the test feeder’s Transformer data.  Furthermore, the frequency is 60 Hz and the 

base voltage is 115kV. 
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Figure 5.5 IEEE 13-node test feeder with variable and unbalanced load  

 

5.4.1.1 Simulations results 

Figure 5.5 shows that the variation of the load is different in each bus. The network’s 

technical data are given in (Kersting, 2001). In this study, three variable loads (VL1, VL2 

and VL3) are added to the fixed load of the study network (Figure 5.6). 

 

5.4.1.2 Variable load 1 

Figure 5.6 shows the first total variable load (VL1), and Figure 5.7b shows a decrease in 

losses that are achieved using an optimal DG, without exceeding the voltage limits. It can be 

seen that the losses are almost similar between case 1 and case 2. In both cases, the voltage is 
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within acceptable limits because the VPF method uses the abilities of the MOP, which 

controls the voltage on the pilot bus. 

 

In Figure 5.7a, with the presence of DG, the reactive power input from the transmission 

network (negative sign) is lower in cases 1 and 2. In Case 2 using fixed a DG, the variation in 

reactive power input is less than the variation in Case 1. 

 

Table 5.2 Cable lines configuration for IEEE 13-node test feeder  

Node R (mile) X (mile) Distance Config. X/R ratio 

650-632 0.3465 1.0179 0.378 601 1.11043636 
632-633 0.7526 1.1814 0.094 602 0.14755727 
632-645 1.3294 1.3471 0.094 603 0.09525154 
632-671 0.3465 1.0179 0.378 601 1.11043636 
645-646 1.3294 1.3471 0.056 603 0.0567456 
671-684 1.3238 1.3569 0.056 604 0.05740021 
671-680 0.3465 1.0179 0.189 601 0.55521818 
692-675 0.7982 0.4463 0.094 606 0.05255851 
684-611 1.3292 1.3475 0.056 605 0.05677099 
684-652 1.3425 0.5124 0.151 607 0.05763307 
671-692    Switch  
633-634 1.10% 2%  XFM-1  

 

Table 5.3 Transformer data for IEEE 13-node test feeder  

 KVA kV-high kV-low 
Substation 5000 115 - Delta 4.16 Wye 

XFM-1 500 4.16 - Wye 0.48 Wye 
 

 

VPF and OLTC maintain the voltage within acceptable limits (Figure 8b), with the difference 

being in the voltage deviation, which is lower in VPF. Figure 8a shows an increased 

production of reactive power of the DG in Case 2 (DG +VL). This is because the control 

variable is the PF of the DG. However, in case 1, VPF can control the active power and PF of 

the DG. 
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Figure 5.6 Total variable load (VL1, VL2, VL3)  

 

 

Figure 5.7 a) Active power input;                                                                  
b) Reactive power losses. Variable load 1 
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Figure 5.8 a) Reactive power of DG;  
b) Voltage on pilot bus 671 with VL1 

 

5.4.1.3 Variable load 2 

Figure 5.6 shows the second variable load 2 (VL2). Figures 5.8b and 5.9b show that the 

voltage deviation on the pilot bus with VL2 is higher than with VL1. However, the 3 

methods are able to maintain the voltage within acceptable limits. 
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Figure 5.9 a) Reactive power of the DG;                                                             
b) Voltage on pilot bus 671 with VL2 

 

To reduce losses and maintain the voltage within the desired limits, VPF in case 1 controls 

the active and reactive powers of the DG. On the other hand, VPF in case 2 only controls the 

reactive power of the DG by reducing the losses and maintaining the voltage within 

acceptable limits. 

 

Large load variations (VL2) cause variations in reactive power generation. In Figure 5.9a, the 

reactive power generated by a variable and a fixed DG is shown. VPF maintains the voltage 

of the pilot bus within permissible limits using an optimal injection of the reactive power of 

DG. 

 

5.4.1.4 Comparison of results 

In our previous first work, we proposed a new technique called Optimal Coordinated Voltage 

Control (OCVC) (Castro et al., 2016a). OCVC is capable of coordinating different areas of 
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the distribution network, including all sources of active and reactive power. OCVC uses 

Pareto optimization to solve the MOP.  

 

In our second work (Castro et al., 2016b), Pareto optimization and Fuzzy-PID find the 

optimal values of the reactive power of DG to minimize losses and reduce voltage deviation. 

This technique, called the Coordinated Voltage Control using Pareto and Fuzzy (CVCPF) 

approach, is tested on an IEEE 13-node test feeder using variables and unbalanced loads. 

 

When the voltage deviation on the method OCVC is higher than 0.025 p.u. (Table 4), the 

voltage in CVCPF is lower. Similarly, the voltage in VPF (VDG+VL and DG+VL) is lower, 

except at hour 39, when VPF requires a more reactive power of DG (Figure 5.9a) due to a 

strong decrease in load (Figure 5.6). 

 

Table 5.4 Voltage deviation. OCVC, CVCPF, and VPF methods 

Variable Load 2
    VPF

Hour OCVC CVCPF VDG+VL (Case 1) DG+VL (Case 2) 
3 0.081 0.065 0.028 0.028
4 0.039 0.023 0.023 0.020 
10 0.029 0.028 0.026 0.032 
11 0.029 0.028 0.017 0.032 
22 0.053 0.026 0.031 0.028 
35 0.029 0.028 0.034 0.025 
39 0.032 0.021 0.039 0.029 
44 0.026 0.016 0.016 0.024 

 

5.4.1.5 Variable load 3 

Figure 5.6 shows the third total variable load (VL3), and Figure 5.11b shows voltage 

deviation on pilot bus 671. Similar to cases 1 case 2 and case 3 is able to maintain the voltage 

within the desired limits. The reactive power input and the reactive power loss are almost 

similar (Figures 5.10a and 5.10 b) for cases 1 and 2. A side benefit of minimizing the reactive 

power input of the network using VPF is the reduction of losses it entails, as compared to 

OLTC (Figure 10b). 
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VPF minimizes the reactive power losses, optimizes the reactive power of DG, and maintains 

the voltage on the pilot bus within limits. 

 

 

Figure 5.10  a) Active power input;                                                                 
b) Reactive power losses. Variable load 3 

 

 

Figure 5.11 a) Reactive power of the DG;                                                            
b) Voltage on pilot bus 671 with VL3  
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Figure 5.12 Size of the active power of the DG (Variable loads VL1, VL2 and VL3) 

 

Figure 5.12 shows the sizes of the DGs (fixed and variable) for each variable load. 

 

5.4.2 IEEE 123-node test feeder 

In the IEEE 123-node test feeder, four DGs are connected at buses 76, 67, 57 and 98 (Dahal 

et Salehfar, 2013). The DGs’ sizes are calculated using VPF for a network with variable and 

unbalanced loads. Figure 5.13 shows the location of the four DGs.  

 

Figure 5.14a shows the total variation load (VL) added to the fixed load of the network. 

Figure 5.14b shows the variation load on the pilot bus (bus 99). The variation load is on the 

91 spot loads of the IEEE 123-node test feeder. 

 



99 

 

 

Figure 5.13 IEEE 123-node test feeder with variable and unbalanced load  

 

Figure 5.15a shows the graphs of the reactive power input (negative sign) needed by the 

network. VPF optimizes the reactive power supplied by the DGs, which reduces the reactive 

power input. When the active powers of the DGs are fixed, the variation of power factor (PF) 

is the only control element. This is observed in the variation curves of the reactive power 

input using variable and fixed DGs. When VPF optimizes the reactive power supplied by 

variable DGs, the reactive power input has a lower variation. Reactive power losses are lower 

when VPF optimizes the DGs (Figure 5.15b). 

 

Figure 5.16c shows the voltage deviation on the pilot bus. The three methods are able to 

maintain the voltage within acceptable limits.  In Figure 5.16a, VPF optimizes the delivery of 

the reactive power of the four variable DGs. Figure 5.16b shows the delivery of reactive 
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power with four fixed DGs. Figure 5.16a shows that the variation of the reactive power 

supply is lower when the active power of DGs is variable. 

 

Figure 5.14 a) Total variable load;                                                                                   
b) Variable load on bus 99 

 

 

Figure 5.15  a) Active power input;                                                                                  
b) Reactive power losses for IEEE 123 
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Figure 5.16 a) Reactive power of the DGs;                                                           
b) Reactive power of the fixed DG;                                                                

c) Voltage on pilot bus 

 

5.4.3 Implementation 

VPF was coded in Matlab (R2014a) and OpenDSS (64-bit) software. For the IEEE 13-node 

test feeder, simulations were carried out on a PC (Intel Core i7 2.90 GHz, 8 GB RAM). Case 

1 (Variable demand and Variable DG) needs about 90 to 120 s of CPU time, Case 2 

(Variable Demand) needs about 55 s of CPU time, and Case 3 (only OLTC) needs about 35 s 

of CPU time.  For the IEEE 123-node test feeder and four DGs, about 180 to 200 s of CPU 

time is required. 
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Table 5.5 Computation Performance; OCVC, CVCPF, and VPF methods 

  VPF 
OCVC CVCPF VDG+VL DG+VL
50-60s 280-300s 90-100s 55s 

 

Table 5 shows the times required to perform the simulations 

 

5.4.4 Analysis of Results and Discussions 

Case 1 and Case 2 in the IEEE 13 and 123-node test feeders are analyzed using the proposed 

VPF technique. When variable DGs are used, VPF determines the optimal size and optimal 

power factor of each DG in each time period. Similarly, VPF constantly calculates the PF of 

the DG when using fixed DGs. In VPF, relation (9) varies dynamically, depending on: 1) the 

value of the voltage on the pilot bus, and 2) the optimal value of the power factor of the DGs. 

 

VPF demonstrates the benefits of an active network by constantly analyzing the reactive 

power losses. The main advantage of the proposed technique is its capacity to respond not 

only to different states of demand, but also to the variability of the DGs and of the voltage. 

 

Finally, in the OLTC method, the only equipment used for voltage control is the OLTC.  

 

5.5 Conclusions 

A new technique called VPF is presented. The technique illustrates the benefits of the 

optimal use of the reactive power of DGs in distribution networks. VPF was employed to 

analyze the problem using: 1) an IEEE 13-node test feeder with three different load demands, 

and 2) an IEEE 123-node test feeder with four DGs. 

 

VPF uses optimization techniques to find optimal voltage values on pilot buses and the 

power factor of DG. An active control of the power factor capabilities of the DGs and the 

real-time control of on-load tap changers (OLTC) are used by VPF. 
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CHAPTER 6 
 
 

SUMMARY AND CONCLUSIONS 
6.1 Summary 

In the coming years, distributed generation (DG) will be a challenge in the distribution 

network. In this problematic, our interest in this thesis is related to: the voltage on the buses, 

the reactive power injection and power losses. This dissertation proposes through new 

techniques the optimal coordination of the reactive power in the different areas of the 

distribution network to improve voltage regulation, and reduce losses using DGs on 

distribution networks with variable and unbalanced loads.  

 

In this thesis, the primary objective of this work is the intelligent distribution voltage control 

using the optimal participation of reactive power of a DG at variable and unbalanced 

distribution network.  The secondary objectives are as follows: 

 

1) Investigate the impact of DG on losses and voltage profile 

 

This objective was accomplished using a new technique called Optimal Coordinated Voltage 

Control (OCVC). OCVC uses Pareto optimization to find an optimal participation of reactive 

power of all devices available in the network. After validating effectiveness of the proposed 

method on IEEE 13-node test feeder and IEEE 34-node test feeder with the initial loads, it 

was then validated adding a DG in the network. Finally, the proposed method was also 

validated adding a new load to simulate a disturbance. Pareto optimization was implemented 

in simulink of Matlab and the distribution power flow was simulated using open source 

software called OpenDSS. Results from the proposed method shows that the optimal 

integration of DG in distribution networks can help to maintain the voltage within the limits 

and reduce losses.  
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2) Improve and minimize the voltage variation in distribution network using DGs 

 

This objective was accomplished by two optimization techniques: PID-Fuzzy Logic to find 

the optimum value of the reactive power of the DG and Pareto optimization to find the 

optimal value of the pilot bus voltage so that minimize the voltage variation in distribution 

network.  Coordinated Voltage Control using Pareto and Fuzzy logic (CVCPF) was proposed 

by combining the optimization techniques. The proposed method was validated on IEEE 13-

node test feeder. Variables and unbalanced are used, based on real consumption, over a time 

window of 48 hours. The results are compared with those obtained from the methods OCVC 

and OLTC as well as from the case of no voltage control. The robustness of the proposed 

method was demonstrated using three DGs simultaneously. Results from the proposed 

method show that the optimal integration of DG in distribution network can help to minimize 

the voltage variation and reduce losses.  

 

3) Investigate the impact of variable and fixed DGs in distribution network 

 

This objective was accomplished by implementation a new multi-objective model that 

minimizes reactive power losses with the minimization of the variation of the voltage on the 

pilot bus. DG with variable power factor (VPF) uses Fuzzy-PI controller according to the 

optimal values given by Pareto, and calculates the power factor of the DGs. The proposed 

method (VPF) was validated on IEEE 13 and 123-node test feeder with different and real 

cases of variables loads and four DGs. These networks were analyzed from two perspectives; 

the first with variable DGs, changing according to demand variations, and the second with 

fixed DGs. The results are compared with those obtained from the method OLTC as well as 

from the case of fixed and variable DGs. Result from the proposed method shows that VPF 

allows to optimize the DGs of the distribution network to maintain the voltage within 

permissible limits and reduce reactive power losses. 
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6.2 Conclusions 

The work of this thesis is to study the impact of DGs in distribution networks. The new 

methods, a MO problem focusing on voltage profile improvement, power loss reduction and 

voltage stability was formulated to find the optimal participation of DG. 

 

Firstly, the methodology used is a comparative analysis. We have proposed a new method for 

solving the MO problem. The results of this method have been verified with others two 

methods used in distribution networks.  

 

The results have resulted in the following conclusions: 

 

• The optimal participation of active and reactive power of DGs connected to the 

distribution network. 

• Solve all the different objectives of the multi-objective problem separately with dynamic 

weights. 

• Eliminate the entire voltage problem, including the DG’s over-voltages. 

• The method OCVC could be interesting way to reduce or eliminate future investments in 

voltage control and reactive power regulation. 

 

Secondly, an efficient algorithm to solve the multi-objective voltage control problem is 

presented. Fuzzy logic to calculate the optimal reactive power of DG and the PID generates a 

solution based on the difference between the power factor calculated by fuzzy logic and the 

output power factor of the network.  The results of Pareto and PID-Fuzzy Logic with DGs 

have resulted in the following conclusions: 

 

• The reduction of the voltage variation more than other methods is demonstrated. 

• The optimal integration of DGs in distribution networks helps to maintain stable voltage 

and to reduce losses. 
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•  CVCPF could be advantageous for network operators by the development of flexible 

systems. 

 

Thirdly, an experimental design methodology was used to demonstrate the benefits of using 

the reactive power of the variables and fixed DGs in distribution network. The problem was 

formulated as multi-objective problem with two objectives. The first objective was to 

minimize the variation voltage and the second objective was the management of the loss 

reduction. The results of Pareto and Fuzzy-PI controller have resulted in the following 

conclusions: 

 

• The reduction of the voltage variation and the losses on distribution networks using DGs 

is demonstrated. 

• The benefits that the better use of reactive power of DGs on distribution network. 

• The advantages of optimizing the multi-objective problem with Pareto and Fuzzy-PI 

controller. 

• The use of fixed and variable DGs on distribution network. 

 

6.3 Recommendations for future work 

Although the work presented in this thesis provides methods and results for DGs integration 

on distribution network, it can be extended in the following research directions. 

 

• Variable Decision Maker (DM) to choose a set of solutions according to distribution 

network conditions. 

• The impact of DGs on economic resources. One objective of the multi-objective problem 

should be the cost of implementation, the maintenance costs and the cost of connection.  

• The impact of DGs on the frequency, voltage stabilization and reactive power regulations 

should be addressed carefully. 

• Reactive power compensation in single-phase. 
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• To use the methods proposed to determine the best location of the DG in distribution 

network. 

 





 

APPENDIX I 
 
 

 IEEE 13-node Test Feeder 

Table-A I-1 Line Segment Data  

Node A Node B Length(ft.) Config. 

632 645 500 603 

632 633 500 602 

633 634 0 XFM-1 

645 646 300 603 

650 632 2000 601 

684 652 800 607 

632 671 2000 601 

671 684 300 604 

671 680 1000 601 

671 692 0 Switch 

684 611 300 605 

692 675 500 606 
 

Table-A I-2 Transformer Data  

  kVA kV-high kV-low R - % X - % 

Substation: 5 115 - D 4.16 Gr. Y 1 8 

XFM -1 500 4.16 – Gr.W 0.48 – Gr.W 1.1 2 

 

Table-A I-3 Capacitor Data  

Node Ph-A Ph-B Ph-C 
  kVAr kVAr kVAr 

675 200 200 200 

611     100 

Total 200 200 300 
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Table-A I-4 Regulator Data  

Regulator ID: 1     

Line Segment: 650 - 632     

Location: 50     

Phases: A - B -C     

Connection: 3-Ph,LG     

Monitoring Phase: A-B-C     

Bandwidth: 2.0 volts     

PT Ratio: 20     

Primary CT Rating: 700     

Compensator Settings: Ph-A Ph-B Ph-C

R - Setting: 3 3 3 

X - Setting: 9 9 9 

Voltage Level: 122 122 122 

 

Table-A I-5 Spot Load Data  

Node Load Ph-1 Ph-1 Ph-2 Ph-2 Ph-3 Ph-3 
  Model kW kVAr kW kVAr kW kVAr

634 Y-PQ 160 110 120 90 120 90 
645 Y-PQ 0 0 170 125 0 0 
646 D-Z 0 0 230 132 0 0 
652 Y-Z 128 86 0 0 0 0 
671 D-PQ 385 220 385 220 385 220 
675 Y-PQ 485 190 68 60 290 212 
692 D-I 0 0 0 0 170 151 
611 Y-I 0 0 0 0 170 80 

  TOTAL 1158 606 973 627 1135 753 
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IEEE 34-node Test Feeder 

 

Table-A I-6 Overhead line Configurations  

Config. Phasing Phase Neutral Spacing ID 
    ACSR ACSR   

300 B A C N  1/0  1/0 500 
301 B A C N #2  6/1 #2  6/1 500 
302 A N #4  6/1 #4  6/1 510 
303 B N #4  6/1 #4  6/1 510 
304 B N #2  6/1 #2  6/1 510 

 

Table-A I-7 Overhead line Configurations  

  kVA kV-high kV-low R - % X - % 
Substation: 2500 69 - D 24.9 -Gr. W 1 8 
XFM -1 500 24.9 - Gr.W 4.16 - Gr. W 1,9 4,08 

 

Table-A I-8 Spot Loads  

Node Load Ph-1 Ph-1 Ph-2 Ph-2 Ph-3 Ph-4 
  Model kW kVAr kW kVAr kW kVAr 

860 Y-PQ 20 16 20 16 20 16 
840 Y-I 9 7 9 7 9 7 
844 Y-Z 135 105 135 105 135 105 
848 D-PQ 20 16 20 16 20 16 
890 D-I 150 75 150 75 150 75 
830 D-Z 10 5 10 5 25 10 

Total   344 224 344 224 359 229 
 

Table-A I-9 Shunt Capacitors  

Node Ph-A Ph-B Ph-C 
  kVAr kVAr kVAr 

844 100 100 100 
848 150 150 150 

Total 250 250 250 

 

Table-A I-10 Regulator Data  
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Regulator ID: 1     
Line Segment: 814 - 850     
Location: 814     
Phases: A - B -C     
Connection: 3-Ph,LG     
Monitoring Phase: A-B-C     
Bandwidth: 2.0 volts     
PT Ratio: 120     
Primary CT Rating: 100     
Compensator Settings: Ph-A Ph-B Ph-C
R - Setting: 2,7 2,7 2,7 
X - Setting: 1,6 1,6 1,6 
Volltage Level: 122 122 122 
        
Regulator ID: 2     
Line Segment: 852 - 832     
Location: 852     
Phases: A - B -C     
Connection: 3-Ph,LG     
Monitoring Phase: A-B-C     
Bandwidth: 2.0 volts     
PT Ratio: 120     
Primary CT Rating: 100     
Compensator Settings: Ph-A Ph-B Ph-C
R - Setting: 2,5 2,5 2,5 
X - Setting: 1,5 1,5 1,5 
Volltage Level: 124 124 124 
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IEEE 123-node Test Feeder 

 

Table A I-11 Overhead Line Configurations (Config.) 

Config. Phasing Phase Cond. Neutral Cond.  Spacing 

   ACSR ACSR ID 

1 A B C N 336,400 26/7 4/0 6/1 500 

2 C A B N 336,400 26/7 4/0 6/1 500 

3 B C A N 336,400 26/7 4/0 6/1 500 

4 C B A N 336,400 26/7 4/0 6/1 500 

5 B A C N 336,400 26/7 4/0 6/1 500 

6 A C B N 336,400 26/7 4/0 6/1 500 

7 A C N 336,400 26/7 4/0 6/1 505 

8 A B N 336,400 26/7 4/0 6/1 505 

9 A N 1/0 1/0 510 

10 B N 1/0 1/0 510 

11 C N 1/0 1/0 510 

  

Table A I-12 Underground Line Configuration (Config.)  

Config. Phasing Cable Spacing ID 

12 A B C 1/0 AA, CN 515 

 

TableA I-13 Transformer Data  

  kVA kV-high kV-low R - % X - % 

Substation 5.000 115 - D 4.16 Gr-W 1 8 

XFM - 1 150 4.16 - D .480 - D 1,27 2,72 
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Table A I-14 Line Segment Data  

Node A Node B Length (ft.) Config. Node A Node B Length (ft.) Config. 
1 2 175 10 42 43 500 10 
1 3 250 11 42 44 200 1 
1 7 300 1 44 45 200 9 
3 4 200 11 44 47 250 1 
3 5 325 11 45 46 300 9 
5 6 250 11 47 48 150 4 
7 8 200 1 47 49 250 4 
8 12 225 10 49 50 250 4 
8 9 225 9 50 51 250 4 
8 13 300 1 52 53 200 1 
9 14 425 9 53 54 125 1 
13 34 150 11 54 55 275 1 
13 18 825 2 54 57 350 3 
14 11 250 9 55 56 275 1 
14 10 250 9 57 58 250 10 
15 16 375 11 57 60 750 3 
15 17 350 11 58 59 250 10 
18 19 250 9 60 61 550 5 
18 21 300 2 60 62 250 12 
19 20 325 9 62 63 175 12 
21 22 525 10 63 64 350 12 
21 23 250 2 64 65 425 12 
23 24 550 11 65 66 325 12 
23 25 275 2 67 68 200 9 
25 26 350 7 67 72 275 3 
25 28 200 2 67 97 250 3 
26 27 275 7 68 69 275 9 
26 31 225 11 69 70 325 9 
27 33 500 9 70 71 275 9 
28 29 300 2 72 73 275 11 
29 30 350 2 72 76 200 3 
30 250 200 2 73 74 350 11 
31 32 300 11 74 75 400 11 
34 15 100 11 76 77 400 6 
35 36 650 8 76 86 700 3 
35 40 250 1 77 78 100 6 
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Table A I-15 Line Segment Data (continued from Table 14) 

Node A Node B Length (ft.) Config. Node A Node B Length (ft.) Config.
36 37 300 9 78 79 225 6 
36 38 250 10 78 80 475 6 
38 39 325 10 80 81 475 6 
40 41 325 11 81 82 250 6 
40 42 250 1 81 84 675 11 
82 83 250 6 102 103 325 11 
84 85 475 11 103 104 700 11 
86 87 450 6 105 106 225 10 
87 88 175 9 105 108 325 3 
87 89 275 6 106 107 575 10 
89 90 225 10 108 109 450 9 
89 91 225 6 108 300 1000 3 
91 92 300 11 109 110 300 9 
91 93 225 6 110 111 575 9 
93 94 275 9 110 112 125 9 
93 95 300 6 112 113 525 9 
95 96 200 10 113 114 325 9 
97 98 275 3 135 35 375 4 
98 99 550 3 149 1 400 1 
99 100 300 3 152 52 400 1 
100 450 800 3 160 67 350 6 
101 102 225 11 197 101 250 3 
101 105 275 3 

 

Table A I-16 Shunt Capacitor Data 

Node Ph-A Ph-B Ph-C 
kVAr kVAr kVAr 

83 200 200 200 
88 50 
90 50 
92 50 

Total 250 250 250 
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Table A I-17 Three Phase Switch Data  

Node A Node B Normal Node A Node B Normal 
13 152 closed 250 251 open 
18 135 closed 450 451 open 
60 160 closed 54 94 open 
61 610 closed 151 300 open 
97 197 closed 300 350 open 

150 149 closed       
 

Table A I-18 Regulator Data 

Regulator ID:  1 Regulator ID:  3     
Line Segment:  150 - 149 Line Segment:  25 - 26     
Location: 150 Location: 25     
Phases:  A-B-C Phases: A-C     
Connection: 3-Ph, Wye Connection: 2-Ph,L-G     
Monitoring Phase: A Monitoring Phase: A & C     
Bandwidth: 2.0 volts Bandwidth: 1     
PT Ratio: 20 PT Ratio: 20     
Primary CT Rating: 700 Primary CT Rating: 50     
Compensator: Ph-A Compenator: Ph-A Ph-C   

R - Setting: 3 R - Setting: 0,4 0,4   

X - Setting: 7,5 X - Setting: 0,4 0,4   

Voltage Level: 120 Voltage Level: 120 120   

            

Regulator ID:  2 Regulator ID:  4     

Line Segment:   9 - 14 Line Segment:  160 - 67     

Location: 9 Location: 160     

Phases: A Phases: A-B-C     

Connection: 1-Ph, L-G Connection: 3-Ph, LG     

Monitoring Phase:  A Monitoring Phase: A-B-C     

Bandwidth: 2.0 volts Bandwidth: 2     

PT Ratio: 20 PT Ratio: 20     

Primary CT Rating: 50 Primary CT Rating: 300     

Compensator: Ph-A Compensator: Ph-A Ph-B Ph-C 

R - Setting: 0,4 R - Setting: 0,6 1,4 0,2 

X - Setting: 0,4 X - Setting: 1,3 2,6 1,4 

Voltage Level: 120 Voltage Level: 124 124 124 
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Table A I-19 Spot Load Data 

Node Load Ph-1 Ph-1 Ph-2 Ph-2 Ph-3 Ph-4 
  Model kW kVAr kW kVAr kW kVAr 
1 Y-PQ 40 20 0 0 0 0 
2 Y-PQ 0 0 20 10 0 0 
4 Y-PQ 0 0 0 0 40 20 
5 Y-I 0 0 0 0 20 10 
6 Y-Z 0 0 0 0 40 20 
7 Y-PQ 20 10 0 0 0 0 
9 Y-PQ 40 20 0 0 0 0 
10 Y-I 20 10 0 0 0 0 
11 Y-Z 40 20 0 0 0 0 
12 Y-PQ 0 0 20 10 0 0 
16 Y-PQ 0 0 0 0 40 20 
17 Y-PQ 0 0 0 0 20 10 
19 Y-PQ 40 20 0 0 0 0 
20 Y-I 40 20 0 0 0 0 
22 Y-Z 0 0 40 20 0 0 
24 Y-PQ 0 0 0 0 40 20 
28 Y-I 40 20 0 0 0 0 
29 Y-Z 40 20 0 0 0 0 
30 Y-PQ 0 0 0 0 40 20 
31 Y-PQ 0 0 0 0 20 10 
32 Y-PQ 0 0 0 0 20 10 
33 Y-I 40 20 0 0 0 0 
34 Y-Z 0 0 0 0 40 20 
35 D-PQ 40 20 0 0 0 0 
37 Y-Z 40 20 0 0 0 0 
38 Y-I 0 0 20 10 0 0 
39 Y-PQ 0 0 20 10 0 0 
41 Y-PQ 0 0 0 0 20 10 
42 Y-PQ 20 10 0 0 0 0 
43 Y-Z 0 0 40 20 0 0 
45 Y-I 20 10 0 0 0 0 
46 Y-PQ 20 10 0 0 0 0 
47 Y-I 35 25 35 25 35 25 
48 Y-Z 70 50 70 50 70 50 
49 Y-PQ 35 25 70 50 35 25 
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Table A I-20 Spot Load Data (Continued from Table 19) 

Node Load Ph-1 Ph-1 Ph-2 Ph-2 Ph-3 Ph-4
  Model kW kVAr kW kVAr kW kVAr

50 Y-PQ 0 0 0 0 40 20 
51 Y-PQ 20 10 0 0 0 0 
52 Y-PQ 40 20 0 0 0 0 
53 Y-PQ 40 20 0 0 0 0 
55 Y-Z 20 10 0 0 0 0 
56 Y-PQ 0 0 20 10 0 0 
58 Y-I 0 0 20 10 0 0 
59 Y-PQ 0 0 20 10 0 0 
60 Y-PQ 20 10 0 0 0 0 
62 Y-Z 0 0 0 0 40 20 
63 Y-PQ 40 20 0 0 0 0 
64 Y-I 0 0 75 35 0 0 
65 D-Z 35 25 35 25 70 50 
66 Y-PQ 0 0 0 0 75 35 
68 Y-PQ 20 10 0 0 0 0 
69 Y-PQ 40 20 0 0 0 0 
70 Y-PQ 20 10 0 0 0 0 
71 Y-PQ 40 20 0 0 0 0 
73 Y-PQ 0 0 0 0 40 20 
74 Y-Z 0 0 0 0 40 20 
75 Y-PQ 0 0 0 0 40 20 
76 D-I 105 80 70 50 70 50 
77 Y-PQ 0 0 40 20 0 0 
79 Y-Z 40 20 0 0 0 0 
80 Y-PQ 0 0 40 20 0 0 
82 Y-PQ 40 20 0 0 0 0 
83 Y-PQ 0 0 0 0 20 10 
84 Y-PQ 0 0 0 0 20 10 
85 Y-PQ 0 0 0 0 40 20 
86 Y-PQ 0 0 20 10 0 0 
87 Y-PQ 0 0 40 20 0 0 
88 Y-PQ 40 20 0 0 0 0 
90 Y-I 0 0 40 20 0 0 
92 Y-PQ 0 0 0 0 40 20 
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Table A I-21 Spot Load Data (Continued from Table 20) 

Node Load Ph-1 Ph-1 Ph-2 Ph-2 Ph-3 Ph-4 
  Model kW kVAr kW kVAr kW kVAr 

94 Y-PQ 40 20 0 0 0 0 
95 Y-PQ 0 0 20 10 0 0 
96 Y-PQ 0 0 20 10 0 0 
98 Y-PQ 40 20 0 0 0 0 
99 Y-PQ 0 0 40 20 0 0 
100 Y-Z 0 0 0 0 40 20 
102 Y-PQ 0 0 0 0 20 10 
103 Y-PQ 0 0 0 0 40 20 
104 Y-PQ 0 0 0 0 40 20 
106 Y-PQ 0 0 40 20 0 0 
107 Y-PQ 0 0 40 20 0 0 
109 Y-PQ 40 20 0 0 0 0 
111 Y-PQ 20 10 0 0 0 0 
112 Y-I 20 10 0 0 0 0 
113 Y-Z 40 20 0 0 0 0 
114 Y-PQ 20 10 0 0 0 0 

Total   1420 775 915 515 1155 635 
 

 

 

 

 

 

 





 

APPENDIX II 

OpenDSS codes 

!Lines of code for IEEE-node test feeder 

Clear  
 
!File name 
new circuit.IEEE13 
 
!Base voltage 
~ basekv=115 pu=1.0001 phases=3 bus1=SourceBus   
~ Angle=30                                                          
~ MVAsc3=20000 MVASC1=21000     
 
!SUB TRANSFORMER DEFINITION  
New Transformer.Sub Phases=3 Windings=2   XHL=(8 1000 /) 
~ wdg=1 bus=SourceBus   conn=delta  kv=115  kva=5000   %r=(.5 1000 /)  XHT=4 
~ wdg=2 bus=650             conn=wye    kv=4.16  kva=5000   %r=(.5 1000 /)   XLT=4 
 
! FEEDER 1-PHASE VOLTAGE REGULATORS 
! Define low-impedance 2-wdg transformer 
 
New Transformer.Reg1 phases=1 XHL=0.01 kVAs=[1666 1666] 
~ Buses=[650.1 RG60.1] kVs=[2.4  2.4] %LoadLoss=0.01 
new regcontrol.Reg1  transformer=Reg1 winding=2  vreg=122  band=2  ptratio=20 
ctprim=700  R=3   X=9  
 
New Transformer.Reg2 phases=1 XHL=0.01 kVAs=[1666 1666] 
~ Buses=[650.2 RG60.2] kVs=[2.4  2.4] %LoadLoss=0.01 
new regcontrol.Reg2  transformer=Reg2 winding=2  vreg=122  band=2  ptratio=20 
ctprim=700  R=3   X=9  
 
New Transformer.Reg3 phases=1 XHL=0.01 kVAs=[1666 1666] 
~ Buses=[650.3 RG60.3] kVs=[2.4  2.4] %LoadLoss=0.01 
new regcontrol.Reg3  transformer=Reg3 winding=2  vreg=122  band=2  ptratio=20 
ctprim=700  R=3   X=9  
 
 
!TRANSFORMER DEFINITION  
New Transformer.XFM1  Phases=3   Windings=2  XHL=2 
~ wdg=1 bus=633       conn=Wye kv=4.16    kva=500    %r=.55     XHT=1 
~ wdg=2 bus=634       conn=Wye kv=0.480    kva=500    %r=.55   XLT=1 
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!LINE CODES 
!File with data network lines 
redirect IEEELineCodes.dss 
 
New linecode.mtx601 nphases=3 BaseFreq=60  
~ rmatrix = (0.3465 | 0.1560 0.3375 | 0.1580 0.1535 0.3414 )  
~ xmatrix = (1.0179 | 0.5017 1.0478 | 0.4236 0.3849 1.0348 )  
~ units=mi  
New linecode.mtx602 nphases=3 BaseFreq=60  
~ rmatrix = (0.7526 | 0.1580 0.7475 | 0.1560 0.1535 0.7436 )  
~ xmatrix = (1.1814 | 0.4236 1.1983 | 0.5017 0.3849 1.2112 )  
~ units=mi  
New linecode.mtx603 nphases=2 BaseFreq=60  
~ rmatrix = (1.3238 | 0.2066 1.3294 )  
~ xmatrix = (1.3569 | 0.4591 1.3471 )  
~ units=mi  
New linecode.mtx604 nphases=2 BaseFreq=60  
~ rmatrix = (1.3238 | 0.2066 1.3294 )  
~ xmatrix = (1.3569 | 0.4591 1.3471 )  
~ units=mi  
New linecode.mtx605 nphases=1 BaseFreq=60  
~ rmatrix = (1.3292 )  
~ xmatrix = (1.3475 )  
~ units=mi  
New linecode.mtx606 nphases=3 BaseFreq=60  
~ rmatrix = (0.7982 | 0.3192 0.7891 | 0.2849 0.3192 0.7982 )  
~ xmatrix = (0.4463 | 0.0328 0.4041 | -0.0143 0.0328 0.4463 )  
~ Cmatrix = [257 | 0 257 | 0 0 257] 
~ units=mi  
New linecode.mtx607 nphases=1 BaseFreq=60  
~ rmatrix = (1.3425 )  
~ xmatrix = (0.5124 ) 
~ cmatrix = [236]  
~ units=mi  
 
 
!LOAD DEFINITIONS  
 
New Load.671 Bus1=671.1.2.3  Phases=3 Conn=Delta Model=1 kV=4.16   kW=1155 
kvar=660  
New Load.634a Bus1=634.1     Phases=1 Conn=Wye  Model=1 kV=0.277  kW=160   
kvar=110  
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New Load.634b Bus1=634.2     Phases=1 Conn=Wye  Model=1 kV=0.277  kW=120   
kvar=90  
New Load.634c Bus1=634.3     Phases=1 Conn=Wye  Model=1 kV=0.277  kW=120   
kvar=90  
New Load.645 Bus1=645.2       Phases=1 Conn=Wye  Model=1 kV=2.4      kW=170   
kvar=125  
New Load.646 Bus1=646.2.3    Phases=1 Conn=Delta Model=2 kV=4.16    kW=230   
kvar=132  
New Load.692 Bus1=692.3.1    Phases=1 Conn=Delta Model=5 kV=4.16    kW=170   
kvar=151  
New Load.675a Bus1=675.1    Phases=1 Conn=Wye  Model=1 kV=2.4  kW=485   kvar=190  
New Load.675b Bus1=675.2    Phases=1 Conn=Wye  Model=1 kV=2.4  kW=68   kvar=60  
New Load.675c Bus1=675.3    Phases=1 Conn=Wye  Model=1 kV=2.4  kW=290   kvar=212  
New Load.611 Bus1=611.3      Phases=1 Conn=Wye  Model=5 kV=2.4  kW=170   kvar=80  
New Load.652 Bus1=652.1      Phases=1 Conn=Wye  Model=2 kV=2.4  kW=128   kvar=86  
New Load.670a Bus1=670.1    Phases=1 Conn=Wye  Model=1 kV=2.4  kW=17    kvar=10  
New Load.670b Bus1=670.2    Phases=1 Conn=Wye  Model=1 kV=2.4  kW=66    kvar=38  
New Load.670c Bus1=670.3    Phases=1 Conn=Wye  Model=1 kV=2.4  kW=117  kvar=68  
 
 
!CAPACITOR DEFINITIONS 
New Capacitor.Cap1 Bus1=675 phases=3 kVAR=600 kV=4.16  
New Capacitor.Cap2 Bus1=611.3 phases=1 kVAR=100 kV=2.4  
 
!Bus 670 is the concentrated point load of the distributed load on line 632 to 671 located at 
1/3 the distance from node 632 
 
!LINE DEFINITIONS  
New Line.650632    Phases=3 Bus1=RG60.1.2.3   Bus2=632.1.2.3  LineCode=mtx601 
Length=2000 units=ft  
New Line.632670    Phases=3 Bus1=632.1.2.3    Bus2=670.1.2.3  LineCode=mtx601 
Length=667  units=ft     
New Line.670671    Phases=3 Bus1=670.1.2.3    Bus2=671.1.2.3  LineCode=mtx601 
Length=1333 units=ft  
New Line.671680    Phases=3 Bus1=671.1.2.3    Bus2=680.1.2.3  LineCode=mtx601 
Length=1000 units=ft  
New Line.632633    Phases=3 Bus1=632.1.2.3    Bus2=633.1.2.3  LineCode=mtx602 
Length=500  units=ft  
New Line.632645    Phases=2 Bus1=632.3.2      Bus2=645.3.2    LineCode=mtx603 
Length=500  units=ft  
New Line.645646    Phases=2 Bus1=645.3.2      Bus2=646.3.2    LineCode=mtx603 
Length=300  units=ft  
New Line.692675    Phases=3 Bus1=692.1.2.3    Bus2=675.1.2.3  LineCode=mtx606 
Length=500  units=ft  
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New Line.671684    Phases=2 Bus1=671.1.3      Bus2=684.1.3    LineCode=mtx604 
Length=300  units=ft  
New Line.684611    Phases=1 Bus1=684.3        Bus2=611.3      LineCode=mtx605 
Length=300  units=ft  
New Line.684652    Phases=1 Bus1=684.1        Bus2=652.1      LineCode=mtx607 
Length=800  units=ft  
 
!SWITCH DEFINITIONS  
New Line.671692    Phases=3 Bus1=671   Bus2=692  Switch=y  r1=1e-4 r0=1e-4 x1=0.000 
x0=0.000 c1=0.000 c0=0.000 
 
Set Voltagebases=[115, 4.16, .48] 
 
!Transformer.Reg1.Taps=[1.0 1.0625] 
!Transformer.Reg2.Taps=[1.0 1.0500] 
!Transformer.Reg3.Taps=[1.0 1.06875] 
Set Controlmode=ON                             
 
! Instruction to calculate the flow 
calcv 
 
! File with distance of lines 
BusCoords IEEE13Node_BusXY.csv 
 
//Show Voltages LN Nodes    ! Instruction for display bus Voltage 
// Show Currents Elem ! Instruction for display bus Currents 
// Show Powers kVA Elem ! Instruction for display kVA for elements 
// Show Losses  ! Instruction for display power losses 
//Show Taps   ! Instruction for display the data of taps of OLTC 
 
Solve    ! Instruction to solve the power flow of the network. 
End 

 

Generally, the code that represents the case study is saved to file as: “master.dss”. The master 

file needs the following two files: 

 

1)  IEEELineCodes.dss 

 
! These are for the IEEE 13-node test feeder. The file contains the characteristic of the 
network lines. 
 
New linecode.601 nphases=3 BaseFreq=60 
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~ rmatrix = [0.065625    | 0.029545455  0.063920455  | 0.029924242  0.02907197  
0.064659091] 
~ xmatrix = [0.192784091 | 0.095018939  0.19844697   | 0.080227273  0.072897727  
0.195984848] 
~ cmatrix = [3.164838036 | -1.002632425  2.993981593 | -0.632736516  -0.372608713  
2.832670203] 
 
New linecode.602 nphases=3 BaseFreq=60 
~ rmatrix = [0.142537879 | 0.029924242  0.14157197   | 0.029545455  0.02907197  
0.140833333] 
~ xmatrix = [0.22375     | 0.080227273  0.226950758  | 0.095018939  0.072897727  
0.229393939] 
~ cmatrix = [2.863013423 | -0.543414918  2.602031589 | -0.8492585  -0.330962141  
2.725162768] 
 
New linecode.603 nphases=2 BaseFreq=60 
~ rmatrix = [0.251780303 | 0.039128788  0.250719697] 
~ xmatrix = [0.255132576 | 0.086950758  0.256988636] 
~ cmatrix = [2.366017603 | -0.452083836  2.343963508] 
 
New linecode.604 nphases=2 BaseFreq=60 
~ rmatrix = [0.250719697 | 0.039128788   0.251780303] 
~ xmatrix = [0.256988636  | 0.086950758  0.255132576] 
~ cmatrix = [2.343963508 | -0.452083836 2.366017603] 
New linecode.605 nphases=1 BaseFreq=60 
~ rmatrix = [0.251742424] 
~ xmatrix = [0.255208333] 
~ cmatrix = [2.270366128] 
 
New linecode.606 nphases=3 BaseFreq=60 
~ rmatrix = [0.151174242 | 0.060454545  0.149450758 | 0.053958333  0.060454545  
0.151174242] 
~ xmatrix = [0.084526515 | 0.006212121  0.076534091 | -0.002708333  0.006212121  
0.084526515] 
~ cmatrix = [48.67459408 | 0  48.67459408 | 0  0  48.67459408] 
 
New linecode.607 nphases=1 BaseFreq=60 
~ rmatrix = [0.254261364] 
~ xmatrix = [0.097045455] 
~ cmatrix = [44.70661522] 
 
 

2) BusCoords IEEE13Node_BusXY.csv 
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! These are for the IEEE 13-node test feeder. The file contains the distance of the lines. 

SourceBus, 200, 400 
650, 200, 350 
RG60, 200, 300 
646, 0, 250 
645, 100,250 
632, 200, 250 
633, 350, 250 
634, 400, 250 
670, 200, 200 
611, 0, 100 
684, 100, 100 
671, 200, 100 
692, 250, 100 
675, 400, 100 
652, 100, 0 
680, 200, 0 
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