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 LA CONCEPTION D’UN MODÈLE AERO-PROPULSIF D’UN AVION 
COMMERCIAL EN REGIMES DE MONTÉE ET EN CROISIÈRE À PARTIR DES 

DONNÉES DE PERFORMANCE  
 
 

 Magdalena TUDOR  

 
 

RÉSUMÉ 
 
 

Les conséquences sur l’environnement de la demande croissante dans le transport aérien, qui 
ont été prises en compte dans le développement de l’industrie aéronautique, ont été estimées 
par IATA en 2012 à 2% des émissions mondiales de dioxyde de carbone. Les acquis 
historiques des progrès scientifiques et techniques dans le domaine de l'aviation commerciale 
ont contribué à cette estimation, et même la recherche d’aujourd'hui continue de faire des 
progrès pour aider à réduire les émissions de gaz à effet de serre. 
 
Les progrès, dans la conception et la technologie des modèles d'avions commerciaux et des 
moteurs, ont été destinés à améliorer, effectivement et efficacement, les performances de vol, 
mais aussi la planification de vol de ces types d'avions. Derrière ces progrès, des bases des 
données numériques d’un avion, qui vient d’être générées, en tant que sources de référence, 
la plupart du temps sont évaluées comme “confidentielles” par les constructeurs d’avions, et 
très rarement, elles sont traitées comme sources partagées avec ceux qui font la modélisation 
de l’avion et de son moteur. 
 
La littérature de spécialité présente plusieurs modèles aéro-propulsifs d’un avion, déjà mis en 
œuvre, mais aucun d’entre eux n’est conçu sans avoir accès à des données numériques du 
moteur, en plus, il faudrait être en mesure de générer, en montée et en croisière, une base de 
données numériques qui peut être appliquée directement dans un processus d’optimisation 
des profils de vol des aéronefs. 
 
Cette thèse a pour but d’apprendre à concevoir des modèles aéro-propulsifs pour la montée et 
de croisière, en utilisant des méthodes d'identification et de validation des systèmes, à travers 
lesquelles les performances d'avion sont calculées et stockées sous la forme la plus compacte 
et la plus facile d'accès à ces types de données, afin d’être utilisées dans les techniques 
d'optimisation du profil de vol. 
 
Les modèles aéro-propulsifs développés dans cette recherche ont été étudiés sur deux avions 
appartenant à la classe d’avions commerciale. Pour chaque avion, la méthodologie a fait 
preuve d’une très bonne précision. Les modèles étudiés, qui prouvent avoir une bonne 
précision, pourraient être adaptés à d’autres avions de la même classe, même s'il n'y a pas 
d’accès à des données de vol du moteur. Encore plus, les résultats de la recherche ont 
démontré, en quelque sorte, que ces modèles pourraient économiser de l'argent pour les 
compagnies aériennes, par le fait qu'un très grand nombre d'essais en vol pourrait être évité, 
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pour chacun des cas étudiés. En outre, l’équipe du laboratoire en commande active, 
avionique et aéroservoélasticité (LARCASE) de l’ÉTS gagne un accès direct à ces données 
des performances pour ces types d’avions, dans l'intérêt de créer de nouveaux algorithmes 
d'optimisation applicables à d’autres types d’avions. 
 
 
 
Mots-clés: aviation commerciale, modèles aéropropulsifs, des données numériques des 
performances, méthodes d'identification et de validation du système, processus 
d’optimisation des profils de vol 
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ABSTRACT 

 
 

IATA has estimated, in 2012, at about 2% of global carbon dioxide emissions, the 
environmental impact of the air transport, as a consequence caused by the rapidly growing of 
global movement demand of people and goods, and which was effectively taken into account 
in the development of the aviation industry. The historic achievements of scientific and 
technical progress in the field of commercial aviation were contributed to this estimate, and 
even today the research continues to make progress to help to reduce the emissions of 
greenhouse gases. 
 
Advances in commercial aircraft, and its engine design technology had the aim to improve 
flight performance. These improvements have enhanced the global flight planning of these 
types of aircrafts. Almost all of these advances rely on generated performance data as 
reference sources, the most of which are classified as “confidential” by the aircraft 
manufacturers. There are very few aero-propulsive models conceived for the climb regime in 
the literature, but none of them was designed without access to an engine database, and/or to 
performance data in climb and in cruise regimes with direct applicability for flight 
optimization. 
 
In this thesis, aero-propulsive models methodologies are proposed for climb and cruise 
regimes, using system identification and validation methods, through which airplane 
performance can be computed and stored in the most compact and easily accessible format 
for this kind of performance data. The acquiring of performance data in this format makes it 
possible to optimize flight profiles, used by on-board Flight Management Systems. 
 
The aero-propulsive models developed here were investigated on two aircrafts belonging to 
commercial class, and both of them had offered very good accuracy. One of their advantages 
is that they can be adapted to any other aircraft of the same class, even if there is no access to 
their corresponding engine flight data. In addition, these models could save airlines a 
considerable amount of money, given the fact that the number of flight tests could be 
drastically reduced. Lastly, academia, thus the laboratory of applied research in active 
control, avionics and aeroservoelasticity (LARCASE) team is gaining direct access to these 
aircraft performance data to obtain experience in novel optimization algorithms of flight 
profiles. 
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INTRODUCTION 

 
 

The transport of people and the goods across the globe has become a necessity and is no 

longer a luxury. Commercial aviation, as part of the air transportation industry, has 

significantly gained in popularity to meet global expectations. 

In April 2014, the Air Transport Action Group (ATAG) reported that close to three billion 

passengers boarded an aircraft somewhere on Earth (ATAG, 2014). This global mobility has 

had a positive impact on the global economy, opening new international markets and 

facilitating the globalization of production (Budd and Goetz, 2014). However, this global 

mobility of goods and people has a direct negative impact on the environment. Its 

contribution to climate change therefore requires global action to reduce global carbon 

emissions. 

In 2012, almost 2% of carbon dioxide (CO2) of the world’s total carbon emissions was due to 

airline operations (ATAG, 2014; IATA, 2013). Even if the aviation industry’s impact on the 

environment is relatively low compared to that of other sectors, the aerospace industry has 

undertaken to reduce net aviation CO2 emissions by 50%, with respect to those of 2005 by 

2050, despite of increasing its activity. In 2013, IATA investigations have predicted that to 

reduce the air transport's carbon footprint from commercial airline fuel burn by a number of 

3.2% until 2020 and of 2.9% by 2030, the air transport (AT) system have to safely improve 

their fuel efficiency based on the airline operational procedures (IATA, 2013). Even if the 

airlines are not the only contributors of this reduction process, according to the IATA' 

estimations, a 3.2% carbon emissions reduction could be safely accomplished with the help 

of an optimized air traffic management (ATM) system. Thanks to several cooperative efforts, 

the aircraft industry has already found some solutions to make this goal attainable.  

A decade ago, studies based on flight tests for airplanes flying in formation demonstrated that 

a 20% reduction in airplane drag leads to an 18% savings in fuel economy, as well as a 10% 

reduction in carbon dioxide emissions (Okamoto, Rhee and Mourtos, 2005). Commercial 
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aircraft manufactures have focused on fuel efficiency since as early as 1930 (Peeters, Middel 

and Hoolhorts, 2005). 

To improve fuel efficiency, and thereby to implicitly lower their carbon footprints, Airbus 

and Boeing have developed and applied advanced wing technologies on existing commercial 

airplanes. Airbus is a pioneer in the design of wingtip devices. These devices have been 

applied on the A300 and A310, reducing the spiral-shaped vortices formed during the flights 

at their wingtips. Airbus has continued to improve this type of research, applying large 

sharklets (i.e. blended winglets) wingtip devices on the A-320. These have allowed to the A-

320 savings up to 4% in fuel burn, as well as annual savings in CO2 emissions for each of 

their aircrafts (Airbus, 2015). It has been demonstrated that an aircraft equipped with 

winglets can climb more efficiently than an aircraft having no winglets. Also, these wingtip 

devices helps the aircraft to achieve cruise altitudes faster at lower thrust settings (Peeters, 

Middel and Hoolhorts, 2005). 

The statistics are also impressive for the other giant manufacturer, Boeing. The Federal 

Aviation Administration (FAA) published a report in January 2015 which noted that the 

Boeing-737N (the Max) was going to burn 14% less fuel than the Boeing-737-800NG (FAA, 

2015). According to Boeing, the Winglet Advanced Technology on the 737 MAX has 

optimized its wing performance, achieving a fuel efficiency of 1.8% (DTTL, 2014). On the 

B-747-400, the winglet design shown a 3.5% benefit in terms of cruise drag reduction 

(Blake, 2009).  

 

Aerodynamic studies and their applications have been made at a reduced scale, such as an 

airplane’s wing and with conventional materials. The use of advanced materials on the B-787 

and B-777X, such as carbon composites, have allowed improvements compared to using only 

conventional materials (DTTL, 2014). “Smart materials” have been used to morph the wings 

of an aircraft. Wing “morphing techniques” improve the aerodynamic characteristics and 

performance of a wing airfoil by changing its shape without using standard control surfaces. 

Several studies have shown that the design of a morphing aircraft wing may reduce an 

aircraft’s fuel consumption. An optimal (or sub-optimal) wing shape can be found for a 
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specific flight phase including take-off, climb, cruise, and descent (Gabor, Koreanschi and 

Botez, 2012; 2013; Gabor et al., 2014). 

 

To achieve the fuel reduction goal by 2050, also, the engine manufacturers must improve 

engine efficiency. In September 2014, Airbus evaluated the latest generation of power plants: 

PurePower PW1100G-JM from Pratt & Whitney and CFM International’s LEAP-1A, on the 

A320NEO “New Engine Option” of the Airbus A320 family. According to Airbus, the 

A320’s improvements have resulted in significant predictions such as 15% in fuel savings 

per aircraft, and by 2020, 20% fuel burn improvement per seat (Airbus, 2014). 

Another way to reduce CO2 emissions in aviation is the development of sustainable 

alternative fuels. One alternative to safely replace conventional kerosene jet fuel is to use 

“biofuel”. After an impressive number of tests, three different types of biofuel were approved 

in June 2014. Even though the high cost of biofuel was a barrier, 21 airlines used alternative 

fuels for commercial flights in 2014 (IATA, 2014). 

As mentioned in the ICAO 2010 Environmental Report, the design and manufacturing of an 

aircraft can take more than 10 years (ICAO, 2010). Implementing technological 

improvements into a fleet in service is a long and costly process. The airspace industry is 

therefore working in collaboration with academia to find alternative solutions, such as new 

aircraft trajectory optimizations methodologies for fuel cost reduction (Murrieta Mendoza, 

2013; Mendoza and Botez, 2014; Patron, Botez and Labour, 2013; Murrieta-Mendoza and 

Botez, 2014a; Murrieta-Mendoza and Botez, 2014b; Patrón and Botez, 2014; Patrón et al., 

2013a; Patrón et al., 2013b ; Patrón, Berrou and Botez, 2014 ; Dancila, Botez and Labour, 

2012). According to Jensen (Jensen et al., 2014; Jensen et al., 2013), most aircraft in the 

United States do not fly at their optimal trajectories in terms of altitudes and speeds. 

Therefore, to reduce fuel consumption, an optimization of the vertical profile would be a 

value-added, low-cost option (Patron, Botez and Labour, 2012; Patron, Botez and Labour, 

2013; Patrón et al., 2013; Dancila, Botez and Labour, 2012). Vertical flight profile trajectory 

optimization is considered as the pivotal function of the Flight Management System (FMS) 

due to its capacity for flight cost reduction (Sibin, Guixian and Junwei, 2010).  
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The FMS, as an airborne electronic device employed in most commercial aircraft manages 

each flight, computes the optimal flight profiles (i.e. the vertical and lateral profiles) to 

minimize the flight costs in terms of flight time, and also the total fuel burnt (Botez, 2006). 

To predict the optimal flight trajectory, the FMS needs an Aircraft Performance Model 

(APM) that estimates the horizontal distance traveled and the amount of fuel burnt (Murrieta-

Mendoza and Botez, 2014; Murrieta-Mendoza, Botez and Ford, 2014; Dancila, Botez and 

Labour, 2013; Dancila, Botez and Ford, 2013). Predicting the optimal flight trajectory also 

requires the input data of an associated aircraft performance model, along with the 

operational instructions corresponding to its trajectory as well as the weather data. This 

proves how important is to have a well investigated and advanced FMS, which rely otherwise 

on the most reliable aircraft performance model (Sibin, Guixian and Junwei, 2010). 

 

The behaviour of an aircraft in the classical way is described by a set of non-linear equations, 

called Equation of Motion (EoM), as proposed by Ghazi, G. (Ghazi, 2014) or by Vincent et 

al. (Vincent et al., 2012). As any electronic device, the FMS has a limited processing 

capacity. A simplified physical model must firstly be defined by a set of equations of motion, 

whose solutions are usually numerical. These solutions are then stored in so called the 

numerical database or look-up tables, easily adapted to the FMS architecture. 

 

The objective of this thesis is to provide a complete methodology to conceive an Aircraft 

Performance Model (APM) from flight tests in climb and cruise regimes by creating look-up 

tables from aero-propulsive models. These aero-propulsive models were designed to meet the 

need of the Laboratory of Applied Research in Active Control, Avionics and Aero-Servo-

Elasticity (LARCASE) team, of FMS manufacturers (CMC Electronics Esterline) and of the 

aircraft manufactures. 

 

The obtained performance data by applying these proposed aero-propulsive models can be 

used by researchers to create algorithms and or simulations for the flight trajectory 

optimization in the vertical plane, in the climb and cruise phases (Murrieta-Mendoza, Botez 

and Ford, 2014; Dancila, Botez and Labour, 2013; Dancila, Botez and Ford, 2013). These 
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models in climb and cruise regimes were created using the numerical database of a 

commercial aircraft. In the climb as well as cruise flight phase, the aircraft performance for 

the flight tests involves a combination of aircraft aerodynamics and engine attributes (i.e. 

parameters).  

It should be emphasized that the aircraft manufacturers are looking for the methodology that 

creates a numerical database using the measured flight parameters, and with a high reliability 

for a minimum number of flight tests (US, 1993). With these measurements collected from 

flight tests and stored in aircraft performance charts and tables, manufacturers can fulfill the 

aircraft specification compliances and utilities for a particular aircraft. Practice has revealed 

that the aircraft engines are not adequately equipped to collect the in-flight measurements 

(US, 1993). These measurements of the engine thrust are very important, as they are used to 

build an engine model, as part of the aero-propulsive model of any aircraft. Therefore, to 

create a complete aero-propulsive model, an aerodynamic model has to be developed. The 

aerodynamic model is also based on the measurements of the flight tests. Even with a 

minimum amount of information, i.e. the unknown engine performance data, this thesis 

proposes a complete methodology for identifying an Aero-Propulsive Model (APM) in climb 

and cruise regimes using numerical database of an Aircraft A. In a vertical plane (i.e. a plane 

perpendicular to the ground) the climb and the cruise regimes represent two essential 

segments of the commercial and military airplane flight profiles (Hull, 2007). The aircraft 

manufacturers goal is to build a reliable aero-propulsive model with a minimum access to 

aircraft information, and to a minimum number of flight tests. The proposed methodology to 

build these aero-propulsive models in the climb and cruise phases has showed a good 

prediction also for another numerical database of an Aircraft B belonging to the same aircraft 

commercial class. 

 

This thesis shows how to create flight numerical database, without any prior engine 

information, in climb and cruise regimes, with a minimum flight tests number while retaining 

a good level of accuracy. Comparing to the existing methodologies, the new proposed 

methodology is therefore less costly (more economical) in terms of time and money (i.e. 

based on the number of the flight tests saved) for a commercial aircraft manufacturer. 
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This thesis research is structured on three large chapters. A literature review and a summary 

of the theoretical concepts are presented in Chapter 1, followed by the proposed methodology 

and the research problem statement under its assumptions in Chapter 2. Once the objectives, 

limitations and the methodology have been described, the results and discussions are 

analyzed in details in Chapter 3. Finally, the conclusions followed by recommendations 

summarize the contribution of this research topic in the aerospace field. 

 

This research work was realized in collaboration with and was sponsored by CMC 

Electronics Esterline, partner of the LARCASE. The main objective was to create an aircraft 

performance model, in the climb and cruise regimes, using numerical database of a 

commercial aircraft as reference source.  

 

 

 

 

 

 

 

 

 



 

CHAPTER 1 
 
 

RESEARCH PROBLEM CONTEXT 

This chapter defines the main terms of the research topic, including the definitions, concepts, 

theories and methods utilized for modeling an airplane in the climb and cruise regimes. This 

chapter includes a detailed description of the research problem, along with the assumptions 

made to orient the approach. A thorough review of the literature related to this topic is 

incorporated throughout. 

 

1.1 General context  

Governments and the airspace industry are looking for new strategies to achieve air 

transportation savings in the best interest of the planet. To constraint, and thus to reduce 

worldwide aviation emissions, Europe and the United States (US) have worked together in 

the creating and interoperating these systems: Single European Sky ATM Research (SESAR) 

and Next Generation Air Transportation System (NexGen) latest (Murrieta-Mendoza et al., 

2015). The cooperation between Flight Management Systems (FMSs) and Air Traffic 

Management (ATMs) systems is possible made by use of navigation algorithms, utilized as 

simulation tools, and wherein future ATMs could generate modifications in flight plans to 

keep them (i.e. the flight plan) active (Flathers III, Allerton and Spence, 2010). Aviation 

applications have continually been designed to allow safe aircraft’ separation and to improve 

the communication infrastructure among airliners, aircraft pilots, and Air Traffic Controllers 

(Murrieta-Mendoza et al., 2015; Theunissen, Rademaker and Lambregts, 2011).  

 

The new aircraft/engine technologies and operational procedures also reflect the industries 

objective to reduce both fuel consumption and the emissions of carbon dioxide (CO2), carbon 

monoxide (CO), hydrocarbons (HC), nitrogen oxides (NOx), and sulphur oxides (SOx), 

computed as (SO2).  

To measure the efficiency of reducing global fuel burn and its environmental impact, the US 

Federal Aviation Administration (FAA) has developed simulation aircraft and engine models 
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at local/regional (dependent on weather) and at global levels (Fleming et al., 2006). The 

engine model has the particularity that it is assigned by default as being among the most 

popular ones of the airline fleet. Called the System for assessing Aviation’s Global Emissions 

(SAGE), this high fidelity computer model is helping the international aviation community to 

estimate aircraft fuel burn and emissions, as well as to make available databases and 

methodologies (Fleming et al., 2006). SAGE has also the ability to model variations in the 

parameters, as well as flight trajectories, aircraft performance (such as fuel flow) and aircraft 

motion data (as the operations database at the individual flight level), etc.  

 

Optimization techniques have been studied for flight trajectories in the Aviation Industry, 

especially via the required criteria of minimum flight time and/or fuel consumption. These 

techniques, implemented on a number of FMS generations, have allowed flight crew to 

achieve the desired trade-off between time and fuel costs. National and international 

aeronautical organisation policy makers have imposed ambitious goals, such as safety 

improvements, increased FMS efficiency, and, last but not least, environmental 

sustainability.  

 

In other words, to plan and to control the air traffic flow, in order to predict optimal flight 

trajectories, the ATC/ATM applications, as decision support tools, are using the most 

accurate Aero-Propulsive Models (APM(s)). Additionally, at that precise information on the 

main flight phases of a predictable flight, an APM can be employed to estimate the aircraft 

numerical databases, in order to obtain the exact trajectories estimates. However, the 

literature has few notable researches on the subject of APMs used for flight trajectory 

estimation. 

 

1.2 Literature review 

Sibin et al. in (Sibin, Guixian and Junwei, 2010) created a method to build an Aircraft 

Performance Model (APM) for FMS by using the performance data of a flight simulator 

prototype. As reported by Sibin’ team, the data structure requirements of the performance 



9 

database from their FMS flight simulator were dependent on the Object-oriented Technique, 

and the aerodynamic model. Meanwhile, their engine performance data has been known, as it 

was provided by the flight simulator prototype system. Most aircraft manufacturers hesitate 

to provide the aero-propulsive data to researchers, making access to aircraft performance data 

quite difficult. However, this research thesis comes out with the novelty through that an Aero 

Propulsive Model (APM) can be created without any access to engine performance data. 

 

Two years later, Sibin et al. in (Sibin, Li and Han, 2012), proved that their Particle Swarm 

Optimization (PSO) algorithm improved the trajectory optimization of the Boeing 737-800 

aircraft in its vertical flight profile. Their work relied on the mass point and rigid body 

dynamics theory (Lu, 2007; Sibin, Li and Han, 2012). This approach is used in trajectory 

optimization process in order to reduce the complexity of aircraft behaviour and to enhance 

the real-time system performance in the online computation for FMS system. Accordingly to 

the same authors (Sibin, Li and Han, 2012), there are other Aircraft Performance Models 

(APMs) constructed by Peng, under non-real-time circumstances in (Junyi and Rongzhen, 

1997), and by Wang in (Wang and Yang, 2008), both accordingly to the Aircraft Flight 

Manual (FM).  

 

Another Aircraft Performance Model (APM), called also Base of Aircraft DAta (BADA) is 

developed and maintained by Eurocontrol in collaboration with the aircraft manufacturers 

and operating airlines. It contains the aircraft model specifications and the datasets, and is 

created for needs in aircraft trajectory simulations, and for their predictions using air traffic 

modelling and simulations tools. 

 

Camilleri et al. (Camilleri et al., 2012) described the structure and the main features of an 

APM, developed to model the Airbus A320 performance in climb, cruise and descent 

regimes, over its entire operational flight envelope. They used the BADA information to 

validate their APM. 
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Gong and Chan in (Gong and Chan, 2002) presented a technique to obtain an Aero-

Propulsive Model (APM) from the available time-to-climb data, which can be found in any 

flight manual (pilot’s manual or operations manual). They performed two case studies, one 

study on a Boeing 737-400 for which the time-to-climb and the aero-propulsive data were 

known, and the other study on a Learjet 60. Boeing’s INFLT, as part of a NASA aircraft 

performance software package from a cooperative research project with Boeing, computed 

the aircraft performance of most Boeing aircraft types. The engine thrust force estimated 

from an available engine model helped them to build the propulsive model. This engine 

model was scaled so that it could optimize the trajectory predictions for a Learjet 60. Good 

results were obtained when the predicted trajectories were compared to those obtained from 

radar tracking. However, their methodology did not take into account the engine fuel 

consumption or the fuel burnt, and therefore their APM could not be used to solve the current 

optimization trajectory problems.  

 

Baklacioglu and Cavcar in (Baklacioglu and Cavcar, 2014) applied a genetic algorithm (GA) 

to obtain an aero-propulsive model (APM) from the flight manual data (Boeing 737-400 

Operations Manual) of a transport aircraft in order to determine the climb and descent 

trajectories. But, contrary to Gong and Chan (Gong and Chan, 2002), their propulsive model 

was based on a semi-empirical equation. Their work involved an identification process to 

establish the model coefficients for a Pratt & Whitney JT9D-7A engine at different altitudes 

and Mach numbers. The predicted time to climb resulted from the obtained model was 

compared with the predicted from the flight manual data. 

 

Eight years after Gong and Chan’s research, Vallone and Mcdonald in (Vallone, 2010; 

Vallone and McDonald, 2010) analysed the supersonic light fighter, the Northrop F-5, and 

the McDonnell Douglas DC-10, a three-engine jet performances. The information was 

gathered from the Aircraft Flight Manuals (AFM), the Standard Aircraft Characteristics 

(SAC) charts, and the Jane’s All the World’s Aircraft or even the Wikipedia website.  

According to the authors, the drag polar and engine deck models for these airplanes were 

created based on known aircraft data, using the inverse problem process. Based on the 
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engines’ characteristics, Vallone (Vallone, 2010) built some functions for the fitting of the 

drag polar and the engine deck (engine model) for the Northrop F-5 and the McDonnell 

Douglas DC-10.  

 

Ghazi et al. in (Ghazi, Botez and Tudor, 2015) developed a methodology to design an aero-

propulsive model (APM) from flight tests, and built a performance database (PDB) to predict 

the Cessna Citation X performance in the climb regime. A total of 70 flight tests were 

performed at the Research Laboratory in Active Controls, Avionics and Aeroservoelasticity 

(LARCASE) on a Research Aircraft Flight Simulator (RAFS) for the Cessna Citation X 

business aircraft. This is a level D aircraft research flight simulator, manufactured and 

designed by CAE Inc., for which 9 of the 70 flight tests were used in the model identification 

process, and the rest (61) of flight tests were used for the model validation process. The 

estimations of the model based on this methodology had a 100% success rate for both flight 

tests categories used for model identification and validation. The aero-propulsive model and 

the interpolation methods used by Ghazi et al. to create the PDB were sufficiently accurate 

(maximum deviation of less than 5%) and could be further adapted for their use on other 

aircrafts. 

 

The originality of this research thesis comes from the fact that an aero-propulsive model was 

set up, with no a priori propulsion model information. In previous studies, Gong (Gong and 

Chan, 2002), and Vallone (Vallone, 2010; Vallone and McDonald, 2010) had a priori 

propulsive model information available, which helped them to build their aero-propulsive 

models. Additionally, the new proposed methodology of this accurate aero-propulsive model 

studied in climb and cruise regimes, was created based only on the physical approach of the 

problem, and it was developed based on a minimum amount of flight test data required for 

the identification process. 
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1.3 Background 

1.3.1 Aero-Propulsive Model and Aircraft Performance Definitions 

An aircraft Aero-Propulsive Model is described with the help of two mathematical sub-

models. The first sub-model, called “aerodynamic model” is based on aerodynamic analysis, 

using the computation of aerodynamic forces (lift and drag) that are specific for each of the 

two configurations (climb and cruise) analyzed. The second sub-model, called “propulsive 

model” is related to the propulsion (power plant, propeller or engine), and estimates the 

driving thrust force and the engine performance.  

 

This “aero-propulsion model” is designed to improve the aircraft performance. Aircraft 

performance is characterized by the way in which an airplane performs under a specified set 

of conditions in order to achieve its intended purpose of flying from point A to point B. An 

airplane’s performance is measured by use of: 

• The physics of flight; 

• The lift, drag, and thrust coefficients; 

• Estimation methods; 

• Performance Data such as PDB, lookup tables, and flight test data for experimental 

data representation. 

 

An aircraft is a market product; therefore, it has to meet performance standards fixed by 

laws. Gudmundsson (Gudmundsson, 2013)) and Maris (Maris and Vandevivere, 2014) 

presented information on commercial aviation laws, as controlled in the USA, in Europe and 

in Canada, according to the different rules summarized in Table 1.1. 
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Table 1.1 Certification source for 
Commercial Aviation 

 
 Rules 

USA 14 CFR Part 25 

Europe CS-25 (EASA) 

Canada
CARs, Part V (Part 525),

TCCA (Part 521) 

 

The progress in the design and technology of aircraft models and in ATM-FMS systems has 

strengthened the role of ATC services. The ATM en-route system submits the pre-planned 

aircraft trajectories estimated by Flight Management Systems (FMSs) to other airplanes, and 

to the ground ATM processors (Suchkov, Swierstra and Nuic, 2003). In (Suchkov, Swierstra 

and Nuic, 2003), Suchkov mentioned that one of the problems that the ATC service faces 

today is that not all airplanes are equipped with onboard FMSs, even if all FMSs have the 

ability to plan efficiently flight profiles. 

 

An Aero-Propulsive Model (APM) was built to meet the need to optimize aircraft vertical 

profiles, mainly used by FMSs, in order to find the most economic flight paths in terms of 

time or fuel consumption.  

 

1.3.2 Numerical Database and Flight Management System 

The FMS is the key with which to responds to most of the airlines’ economic worries in 

terms of fuel and time costs (Creedon, 1983). In 1982, Boeing began to install FMSs on B-

757 and B-767 as standard equipment, and later Airbus installed FMSs on the A310. These 

FMSs became standard for most commercial airplanes: the Airbus A300-600, A320, A321, 

A330, A340, Boeing 737-300/400/500, B747-400, and B-777, the Fokker100, and the 

McDonnell Douglas MD-11 and MD-90) (Liden, 1995).  
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The industry was not prepared for this “revolutionary advance in the management of the 

flight” as mentioned by Liden in his paper (Liden, 1995). Therefore, in order to meet the 

aircraft manufacturers’ and the airlines’ requirements, different FMS versions were designed, 

and during the ensuing years, new features and improvements have been added in the FMS 

architecture. Customers’ requirements have been met thanks to the flexibility and 

functionality of the FMSs’ software architecture. Due to the anticipated air traffic growth, 

and to the FMSs inclusion in the ATM systems, an upgrading to hardware technology should 

give better ratings to FMS’s market (Liden, 1995). 

 

The airlines and the airplane manufacturers have decided to use FMSs as a long-term 

solution for automatized flight planning, and recording flight procedures. The 

computerization of the FMS has revealed remarkable advances, including pilot workload 

reduction, increased flight safety, the insertion of large route databases, and trajectory 

optimization tools (Igor and Atkins, 2001). As a very complex avionics system, an FMS has 

the capability to predict and optimize the flight plan based on the following parameters: 

weight or gross weight, aircraft type, engine and performance characteristics, winds, air 

temperature, etc. Other parameters include the airspeeds, Mach numbers, and altitudes 

needed to produce four-dimensional (4D) flight profiles (lateral and vertical), as explained by 

Collinson and Walter (Collinson, 2011; Walter, 2001).  

 

The FMS architecture includes functions for navigation, flight planning, trajectory 

prediction, performance computations, and guidance (Walter, 2001). These functions are 

supported by the Navigation Data Base (NDB), and the performance database (PDB) of the 

airplane. The NDB must be updated monthly, while the PDB should be updated whenever a 

change in an aircraft’s performance characteristics occurs (e.g. an engine retrofit). The PDB 

encloses aircraft/engine model performance data, which is composed of the drag, thrust, fuel 

burnt or fuel flow (depending on the flight regime), and the speed/altitude of aircraft flight 

envelope. The flight envelope is defined by Shin in (Shin et al., 2011) as the safe flying area 

of an aircraft,  as described by certain variables. 
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A vertical flight profile, calculated along a lateral path, is composed by the 3 regimes of 

climb, cruise and descent. 

 

Trajectory optimization problems usually have the following inputs: the center of gravity 

position (ݔ௖௚), the speed (ܸ), the weight (ܹ) or gross weight (ܹܩ), the ISA (International 

Standard Atmosphere) temperature deviation (∆ܣܵܫ), the altitude (ℎ). The output parameters 

of these problems are expressed in terms of the fuel burn (ܤܨ), the horizontal distance 

travelled (ܪ஽௜௦௧) or (݀) for the climb regime, and the fuel flow (ݓ௙ሶ ) for the cruise regime. 

 

1.3.3 System Identification Methods 

The behaviour of an aircraft, defined as a Dynamic System (DS), is the main concern of 

aeronautical engineers. They have to choose, from many features, those that are necessary 

and sufficient to accurately describe the DS’ objectives (Bosch and Klauw, 1994). The art of 

modeling firstly requires a thorough understanding of the basic problem in the real world by 

means of a “model”. For this reason, the real dynamic system behaviour is described by 

functions that are mathematical representations of the system properties.  

 

Aerospace literature reveals a range of approaches to achieve adequate models. Bosch and 

Klauw (Bosch and Klauw, 1994) emphasize that a model can be developed by considering 

prior knowledge of the process. For example, a mass is assumed to be a point mass, without a 

physical size. More, prior understanding of the process can enrich the structure of a model 

with supplementary information. The identification techniques are further introduced. These 

techniques help to find approximated values for the model parameters, dependent on to the 

inputs and the outputs of experimental observations and measurements. 

 

The following classification system supports a means to choosing a mathematical model to 

describe an aircraft as a dynamic system. Bosch and Klauw classified the models to describe 

a dynamical system as follows (Bosch and Klauw, 1994): 
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• “Mathematical models” used to study the dynamics of a system with the aid of non-

linear differential equations, and assumed to be very flexible; 

• “Scale models” for situations where mathematical models are not accurate enough or 

cannot be computed fast enough; these models are created by examining a physical 

process or system, and then building it on a reduced scale in order to survey their 

loads during wind tunnel tests at lower cost; 

• “Verbal models”, with examples in sociology and psychology, in which a system is 

too difficult to be mathematically modeled. There must be some understanding of the 

qualitative relations between the system variables. 

 

Once we understand that a mathematical model can be applied to determine an aircraft’s 

motions through the air, then, according to the same authors (Bosch and Klauw, 1994), the 

mathematical models may be subdivided into: 

• “Static or steady state model” that describes the relationship between the input ݑ and 

the output ݕ of a function, which can be linear or nonlinear. A static model with the 

output ݕ, parameters ܽ and ܾ of the function, and the input ݑ is depicted in 

Figure 1.1. 

 

 

Figure 1.1 Static model representation 

 

This type of model is described as a time independent computing system, and whose 

forces are balanced. It is also a means to view an airplane as a system, for example: an 

aircraft that is not intended to fly is called “static model”, and is also known as an aircraft 

used for the testing and/or development of new designs.  

a, b 
u y 
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• “Dynamic models”, which are mostly based on simulations, designed to understand 

the behaviours of a system by means of analysis. Typically, they are represented by 

differential equations, or presented as stochastic or matrix models such as black 

models or other such complex models. 

 

Both the static and the dynamic models described above are “deterministic” models. These 

deterministic models are all those in which the output parameters are accurately determined. 

The aircraft may thus be designed using static and dynamic models. 

 

The research problem analysis about the mathematical models of an airplane is continuing to 

be explored by means of the definitions regarding to the inputs and outputs of their 

parameters, and to investigate the most appropriate way to achieve their best approximation. 

 

1.3.3.1 White, gray and black models 

Starting from some basic physical laws and known parameters, we can create what is known 

as a ”white-box” model, that is a theoretical model. Therefore, this model could be described 

by some sets of equations. Under other circumstances, with no prior information, the model 

has to be developed from the measured data, and because lacking information about the 

system internal structure and its internal relations, the model is known as an empirical 

”opaque” (black-box) model.  

 

Our aero-propulsive model (i.e. an aircraft modeled after a DS concept) is a combination 

between these two models, and is known as a “grey” model or a “hybridization” of the above 

two models. Representative of a semi-empirical model class, the aero-propulsive model has 

unknown parameters which are computed from the experimental data, and they are also 

based on the theoretical (i.e. the numerical database) model built.  
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Mathematical modeling by means of parameter estimation is one of the techniques needed to 

determine a system’ characteristics (i.e. the aircraft performance parameters determined from 

aerodynamics and propulsion data). 

 

Aircraft parameter estimation is the most well-known example of system identification 

methodology, which helps to solve the engineering inverse problem of model determination 

and validation through a set of observations (i.e. the flight tests data) (Hamel and 

Jategaonkar, 1996). Hamel et al. (Hamel and Jategaonkar, 1996) also state that the system 

identification methods had become the most appropriate base for model validation in 

research and industry, by managing aircraft design and by improving risk and cost reduction 

in the ideal implementation of both existing and new-generation aircrafts.  

 

Parameter estimation is a method of using observations from a dynamic system (DS) (i.e., 

any aircraft as a physical system) to develop a mathematical model that represents the 

system’ features to an acceptable degree. This is a process of determining the unknown 

parameters of a mathematical model based on input–output data (flight data), and can be 

expressed graphically, as shown in Figure 1.2. 

 

Figure 1.2 Estimation of the parameters of 
a mathematical model 

 

 

 

Physical
System 

(Aircraft) 

Parameter
Estimator 

for 
Mathematical 

 Model 

Input u(t)  Output y(t)
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The estimation process is the crucial step in the model’s performance, which we are seeking 

to improve it, and which depends on the accuracy of its parameter estimates. The created 

model is described by a finite set of parameters, whose values are calculated by applying the 

estimation techniques. The problem of parameter estimation is based on an optimization of 

the error function that generates a set of equations that will estimate the dynamic system 

(DS) parameters. The objective is to obtain optimal estimates of the unknown parameters that 

best describe the behaviour of the DS. Basically, the path is found based on a least square 

error minimization between the model response (ݕ௠) and the actual system’ response (ݕ).  

 

With the arrival of the high-speed computers, experienced techniques like the innovative 

methods based on artificial neural networks have found increasing applications in parameter 

estimation problems (Raol, Girija and Singh, 2004). The black box model, used as a 

predictor, is a neural network that can approximate a function without seeing the structure of 

the approximated function. It is an efficient tool for computing models.  

 

System identification is simply a form of mathematical approximation of a real-life system. 

The idea is to derive a model of acceptable accuracy from the available flight data. This 

model is the best approximation of the real description of an aircraft (Ljung, 2010). In real-

life, practical systems or real-life objects (i.e. aircraft) are non-linear, and therefore the 

approximated model should be matched to the data of the system (i.e. the flight data or any 

AFM data). The parameters of the matched model need to be estimated. 

According to Zadeh, a system identification developed from system theory and accepted by 

the aerospace industry says: “System identification (determination, on the basis of 

observation of input and output, of a system within a specified class of systems to which the 

system under test is equivalent; determination of the initial or terminal state of the system 

under test)” (Zadeh, 1962) 

Based on Zadeh definition, the system identification process includes a model structure 

definition built on mathematical equations and the estimation of parameters defining the 

model. Schematically, Figure 1.3 describes the system identification concept. 
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Figure 1.3 System identification concepts 

 

The identification process described in Figure 1.3 could be achieved through the following 

three steps: 

• Measurements and experiments have to be performed to create the aircraft 

performance data, as a required information; 

• Mathematical model of the observed system (i.e., an aircraft) must be defined, using a 

set of equations, and 

• Procedure or estimation method that automatically feeds the model with the model 

parameters should be done in order to reduce the modelling errors between the real 

system and the observed model. 

 

As shown in Figure 1.3, the estimation algorithm from the identification concept is fed with 

the residuals or function errors ( ௘݂௥௥) (i.e. the model error). The residual is a function that 

depends of the output (ݖ) of the DS and the output of the mathematical model or model 

response (ݕ	ݎ݋	ݕ௠	) expressed as follows: 

 

 ௘݂௥௥ = ௘݂௥௥(ݖ, ௠) (1.1)ݕ
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Because of these residuals, the identification problem becomes an optimization problem. 

This means that the objective is to find a model (i.e. model error) for which the function error ௘݂௥௥ reaches a minimum; this process is also known as a minimization problem. However, 

following the model error optimization, the parameters defining the model are updated 

accordingly to the estimation methods and algorithms. 

 

1.3.4 Estimation Methods and algorithms 

Generally, the mathematical model of a Dynamic System (DS) has the following form: 

 

(ݐ)ݕ  = ݂ሾ(ݐ)ܝ, ሿ (1.2)ࣂ

 

where ݕ	is a vector that contains the outputs of the model, ܝ = ሾݑଵ(ݐ), ,(ݐ)ଶݑ … ,  ሿ் is a(ݐ)௡ݑ

vector of independent variables that has an impact on the model (e.g. gross weight, altitude, 

speed), ࣂ = ,ଵߠൣ ,ଶߠ … ,  ௣൧ is a vector of parameters describing the model, and ݂ is aߠ

nonlinear real-valued function (i.e. the functions of components of the parameter vector). The 

output is uniquely determined by the dependent variables (e.g. aerodynamic forces) at an 

instant time ݐ, as a vector of their measured/observed values. The finite number of arguments 

from vector ࣂ is known as the state of the black box, at time ݐ. These arguments or 

parameters of ࣂ are not directly measurable, and therefore they must be estimated from a set 

of measurements obtained from the real system. These measurements are expected from the 

outputs of the model plus an additional modeling error.  

 

The linear time-invariant model corrupted by the modeling error vector ߝ(݇) is presented in 

the following form: 

 

(݇)ݖ  = (݇)ݕ + (1.3) (݇)ߝ

 

where ݖ(݇) is a vector consisting of the measured/observed variables (i.e. the outputs of the 

dynamic system), ݇ is the discrete time index and ݕ(݇) is the vector composed of the outputs 
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of the mathematical model. These outputs are the parameters’ estimates obtained by use of 

the mathematical model. If the outputs estimated by the physical model become close enough 

to the outputs measured by the real system, the values of the error vector thus become much 

smaller. 

 

The objective of an estimation algorithm is to find the sets of parameters estimated (i.e. the 

vectors of the parameters) ߠ௜, ݅ = ሼ1,… ,  ሽ that minimize the differences between the݌

measured outputs ݖ(݇) and the predicted outputs ݕ(݇). An estimation algorithm that solves 

the minimization problem has a mathematical form (i.e. a numerical optimization) as follows: 

 

∗ࣂ  = argሾ݉݅݊‖ݖ − ଶሿ‖ݕ = arg ൥݉݅݊ ൭ 1ܰ − 1෍ߝଶ(݇, ே(ߠ
௞ୀ଴ ൱൩ (1.4)

 

where ܰ is the number of available input and output samples, and ߠ is the vector of the 

parameters to be estimated, at time instant ݇ (Tomita, Damen and Van Den Hof, 1992). It is 

known also as Least Squares (LS) error method equation with the property to be “quadratic-

in-the-parameters”. According to Tomita et al. (Tomita, Damen and Van Den Hof, 1992) the 

method provides a good prediction model. To estimate the parameters of a linear model, 

more exactly the airplane's aerodynamic parameters, there are different approaches. The 

parameter estimation methodology used in this research relies on the linearity and non-

linearity of the model under investigation. 

 

1.3.4.1 Least Squares (LS) Method 

The Least Squares (LS) method is used in the parameter estimation algorithm to find the best 

fit to a set of measured data (e.g. the flight data). Therefore, for a special case, when an 

output of the model ݕ(݇) is a linear polynomial as function of ࣂ (a matrix), which are the 

parameters to be estimated (multiple inputs), the model’s outputs are expressed as follows: 
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(݇)ݕ			  	= (݇)ଵݑଵߠ + (݇)ଶݑଶߠ + ⋯+ = (݇)௡ݑ௡ߠ  ࣂ(݇)்ܝ
(1.5)

 

According to Hamel (Hamel and Jategaonkar, 1996) equation (1.5) is a “direct approach” to 

airplane parameter estimation for data analysis, and is known as the “equation error method”. 

This linear estimation problem is solved using a deterministic method that is applied for ܰ 

discrete value points, those for which the measurements ݖ(݇) are accessible. Therefore, 

equation (1.3) can be written as follows: 

 

 

(1)ݖ = ࣂ(1)்ܝ + (2)ݖ (1)ߝ = ࣂ(2)்ܝ + (ܰ)ݖ ⋮ (2)ߝ = ࣂ(ܰ)்ܝ + (1.6) (ܰ)ߝ

 

either in matrix form: 

 

ܢ  = ࣂ௅ௌۻ + (1.7) ࢿ

 

where ܢ = ሾ(1)ݖ, … , ࢿ ,ሿ் is the fixed measurement vector	(ܰ)ݖ = ሾ(1)ߝ, … ,  :݊ matrix containing independent variables	x	௅ௌ is the ܰۻ 1 vectors, and	x	ሿ் are the ܰ	(ܰ)ߝ

 

௅ௌۻ  = ێێۏ
ଵ(1)ݑۍ ଶ(1)ݑ ⋯ ⋮ଵ(2)ݑ௡(1)ݑ ଶ(2)ݑ ⋯⋮ ⋯ (ܰ)ଵݑ⋮௡(2)ݑ (ܰ)ଶݑ ⋯ ۑۑے(ܰ)௡ݑ

ې
 (1.8)

 

By assuming that ൫ۻ௅ௌ்ۻ௅ௌ൯ is invertible, a unique solution of equation (1.4) is given by: 

 

∗ࣂ  = ܢ௅ௌ்ۻଵି(௅ௌۻ௅ௌ்ۻ) = றࡿࡸۻ ࢠ (1.9)

 



24 

where ࡿࡸۻற  is the Moore-Penrose pseudo-inverse of ۻ௅ௌ, and ࣂ∗	represents the Least Squares 

solution of the minimization problem expressed by equation (1.4), and which is equivalent to 

the set of modeling errors (Ghazi et al., 2016). The detailed information about this 

methodology is presented in Chapter 2. 

 

The Moore-Penrose inverse matrix was named after the two mathematicians who have 

participated to create this matrix. Moore E.H. developed the matrix for its mathematical 

research interest, in 1920. Then Penrose R. improved the Moore’s matrix in 1955, which has 

the form used today. These days, the mathematicians have opportunity to construct a unique 

matrix, as a pseudo-inverse matrix, which solves an inconsistent LS system, and that gives 

the minimum norm and the closest solution (Ross, 2014). For this reason, this method is a 

very good alternative, being used for parameter estimation purposes. 

 

The most impressive particularity of the Least Squares (LS) method is that it is a non-

iterative method, as it does not require any preliminary information about the investigated 

system. In addition, the matrix ۻ௅ௌ given by equation (1.8) is non-singular, and it guarantees 

that a solution is always possible (Ghazi et al., 2016). The popularity of using the LS method 

to solve inverse problems comes from the fact that the Least-Squares estimates are retrieved 

easier and with minimal computation. The accuracy of the estimated parameters is a required 

part of the parameter estimation method.  

 

1.3.4.2 Prediction-Error (PE) Method 

The Prediction-Error (PE) method allows the parameters estimation for the non-linear 

function (i.e. the model) ݂ that minimizes the sum of squared errors between the measured 

output and the predicted output. The choice of the optimization algorithm depends on the 

structure of the function ݂. 

 

The Matlab® Optimization Toolbox™ has many algorithms available, but the Nelder-Mead 

(NM) algorithm was the selected in this research thesis. This NM technique is a heuristic 
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search method proposed by John Nelder and Roger Mead in 1965 (Daamen, Buisson and 

Hoogendoorn, 2014). It is a gradient-free optimization method, and is used since 2004 in the 

car-following model calibration to develop the model parameter estimates. The NM method, 

as one of the most widely applied direct search method has the particularity to be used for 

“nonlinear unconstrained optimization“. This nonlinear unconstrained optimization algorithm 

the considered parameters do not have upper or lower bounds. By a nonlinear optimization 

we find the “optimal” model's parameters, which give the best fit to the sample data. Known 

as the “downhill simplex” algorithm (Daamen, Buisson and Hoogendoorn, 2014; Lagarias et 

al., 1998), this iterative method is based on a minimization routine. The aim of the method is 

to minimize a scalar-valued nonlinear function of n real variables (parameters) starting from 

an initial value, without any derivative information, but utilizing only the function values. 

Therefore, the methodology presented in Chapter 2 describes the way to find the initial 

parameters’ of vector ࣂ that defines the model. The algorithm is designed to converge to a 

local minimizer, as solution of a non-linear system of equations, and it can be applicable 

nearly from any crude approximations or starting points (Dennis Jr and Schnabel, 1996). To 

run this algorithm, we used the fminsearch routine, as a Matlab® optimization tool 

(MathWorks, 2013). This method has the particularity to be iterative, for this reason this 

initial values of the parameters are very important. 

 

1.3.5 Model Verification/Validation 

To verify the estimated model, we used a criterion called the “model predictive capability”. 

To verify the flight-estimated models, we fixed the model parameters to their estimated 

values, and then the model is run by inputs which are different from those used in the 

estimation process. The model’s responses are then compared with the flight data 

measurements in order to determine the predictive capabilities of the estimated model.  
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1.3.6 Physics and Parameters of Flight  

The physics of flight and its parameters are given by an atmospheric model, and used as a 

reference in the interest of creating an aircraft design or trajectory. The atmospheric 

parameters are used to control engine and aircraft performance, as well as for aircraft design.  

 

1.3.6.1 The International Standard Atmosphere (ISA) model 

In 1952, the International Civil Aviation Organization (ICAO) introduced the International 

Standard Atmospheric (ISA) model (ICAO Document 7488/2). This hypothetical model, 

viewed as an ideal atmosphere, consists of tables that indicate the parameters for the pressure (݌), density (ߩ), temperature (ܶ) and the speed of sound (ܽ). These parameters are changing 

over a range of altitudes during the flight, and these changes must be considered as stated in 

the literature by Talay (Talay, 1975), Cavcar (Cavcar, 2000), and Botez (Botez, 2006). In this 

ISA model, the atmosphere is assumed to be free from dust, moisture and water vapour, and 

in the absence of winds or turbulence, which is not the case in real-life (Talay, 1975). The 

altitude that needs to be considered is the Mean Sea Level (MSL). This is the reference 

altitude where the air is clean, dry, and acts as a perfect gas. 

 

The standard pressure (݌) at a given altitude is determined based on the following 

assumptions:  

• Temperature is standard; 

• Air is an ideal gas, whose pressure is obtained using the equation of state: 

 

݌  = (1.10) ܴܶߩ

 

where ܴ is the real gas constant estimated to 287 J/kg °K or 1716 ft. lbf/slug °R (Asselin, 

1997; Botez, 2006). The above-mentioned atmospheric parameters influence engine/aircraft 

performance and aircraft design. Their performances can be calculated and compared for 

various atmospheric conditions sets. 
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The altitude determined from the measured pressure, known as the pressure altitude (ܲܣ), is 

stated in m/ft or in.  

 

The flight level (ܮܨ) represents the altitude expressed in 100’s of ft, and is given in the next 

equation: 

 

ܮܨ  = (1.11) 100/ܣܲ

 

The troposphere, the most important layer to aeronautics, is the atmospheric layer considered 

from the mean sea level (MSL) to 11km or 36,089ft. In the troposphere, the temperature 

decreases linearly with the altitude, while in the next layer, between 11km to 21km or 

70,000ft, called the stratosphere, temperature is constant. Similarly, the speed of sound (ܽ) 
varies with the temperature. The density and pressure decrease rapidly with altitude.  

The variation of these parameters, for each of those atmospheric layers, is described by 

Asselin (Asselin, 1997) and Botez (Botez, 2006). 

In the troposphere, the temperature function of altitude ℎ has the expression given by Asselin 

in ((Asselin, 1997), page 312): 

 

 ௛ܶ = ெܶௌ௅ + ܽ௅ோℎ (1.12)

 

where ܽ௅ோ, the temperature variation coefficient, is a constant whose value is −0.0065°K/m 

or −0.0035°R/ft, and for which the indices ܴܮ denote the “lapse rate”. 

The pressure as function of altitude ℎ is described by Asselin in ((Asselin, 1997), page 312):  

 

௛݌  = ெௌ௅݌ ൬ ௛ܶெܶௌ௅൰(ି௚ ௔ಽೃோ⁄ )
 (1.13) 

 

where ݃ is the gravitational acceleration (9.8 m/s2 or 32.174 ft/s2). 

The density as function of altitude ℎ is expressed in the following form from Asselin’s book 

((Asselin, 1997), page 313). 
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௛ߩ  = ெௌ௅ߩ ൬ ௛ܶெܶௌ௅൰(ିଵି௚ ௔ಽೃோ⁄ )
 (1.14) 

 

As noted by Botez in (Botez, 2006), in the stratosphere, only the pressure and the density 

varying, as shown in the next equations: 

 

݌  = ଴௦௧௥௔௧݁ష೒∆೓ೞ೟ೝೌ೟ೃ೅ೞ೟ೝೌ೟݌  (1.15) 

 

ߩ  = ଴௦௧௥௔௧ߩ ݁ష೒∆೓ೞ೟ೝೌ೟ೃ೅ೞ೟ೝೌ೟  (1.16) 

 

where ݌଴௦௧௥௔௧ and ߩ଴௦௧௥௔௧ are the pressure and density, respectively, at the initial stratosphere 

altitude, ௦ܶ௧௥௔௧ is the stratosphere temperature that is equal to 216.66°K, or −56.5°C or 

390°R, and ∆ℎ௦௧௥௔௧ is the measured altitude (Dancila, 2011). 

The last parameter of the standard atmosphere model is the Local Speed of Sound (ܽ௛) or the 

LSS, as given in the following form (Asselin, 1997; Botez, 2006). 

 

 ܽ௛ = ඥ(1.17) ܴܶߛ

 

where ߛ, that is the adiabatic constant of an ideal gas, is equal to 1.4. 

 

The ISA model applied to the real atmospheric conditions, is known as (ܣܵܫ	ܣܵܫ∆–/+), and 

may compute the engine/aircraft performance at a particular Flight Level ܮܨ (AIRBUS, 

2002). 

The (+/−∆ܣܵܫ) is a parameter that gives the temperature difference with reference to the ܮܵܯ, that is the standard temperature deviation (∆ܣܵܫ), and is measured in ℃. 

The temperature is an important factor to provide a safe flight. It has a direct impact on 

aircraft and aircraft flight operations as it affects the engines, avionics, climbs (when does not 

climb at predicted rate of climb), True Air Speed (ܶܵܣ) and icing exposure. 
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1.3.6.2 IAS and TAS Airspeeds, and Mach number  

Since its introduction, computerization has become a dominant tendency in Aerospace due to 

its contribution to the reliability, the improved performances, and not least to reducing the 

costs of most aircraft installed avionics systems (i.e. FMSs) (Endsley, 1996). This reliance on 

computerization emphasizes the need to recognize the critical flight parameters that must be 

monitored, for example by each crew, in terms of airplane position of important reference 

points and terrain, by comparing its position with the position of other aircraft along with 

relevant flight parameters. Besides the crew, the operator of air traffic control systems 

(ATCs) on the ground, as human decision maker, should be experienced to react to a 

Situation Awareness (SA) level, and to know what needs should be monitored to reach the 

fastest response. Therefore, even if there are automated aircraft systems, the ATC systems 

still need to be well understood and supervised by responsible individuals. In his review of 

commercial aviation accidents, Ensley showed that 88% of these accidents were caused by 

problems provoked by SA (Endsley, 1996).  

 

The critical flight parameters include the Pressure Altitude (ܲܣ), the Vertical Speed (VS) or ܴܥ݋ (Rate of Climb), the Calibrated Air Speed (ܵܣܥ), the real speed or Indicated Air Speed 

 ,and the relative atmospheric ratios ,(ௌ݌) the Mach number (M), the static pressure ,(ܵܣܫ)

which consist of their temperatures ratio (ߠ): 

 

ߠ  = ௛ܶெܶௌ௅ (1.18) 

 

The pressure ratio (ߜ) is: 

 

ߜ  =  ெௌ௅ (1.19)݌௛݌

 

The density ratio (ߪ) is: 
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ߪ  =  ெௌ௅ (1.20)ߩ௛ߩ

 

as described by Botez in (Botez, 2006). The indices ℎ and ܮܵܯ represent the given flight 

altitude and the Mean Sea Level standard atmospheric condition.  

 

The air pressure and temperature data are the: 

• Total or Pitot pressure(்݌);  

• Total or indicated air temperature (TAT or IAT); and 

• The static pressure (݌ௌ). 

 

These data are supplied by redundant input sensors (Botez, 2006; Zimmerman and McIntyre, 

1991).  

 

The avionics systems in a commercial aircraft usually monitor navigation and flight 

conditions information by indicating the altitude ℎ, ܴܵܣܫ ,ܥ݋, and the ܯ. The electronic 

engine controls, by using the same redundant input sensors, manage the air/fuel ratio that 

affects the engine. 

 

Aiming to provide a powerful fail-safe system, in 1991 aircraft design engineers combined 

the airframe’s air data and the electronic engine system into a single integrated system. This 

system had several advantages, such as improved accuracy of the estimated thrust calculated 

by the FMS. The information received from the input sensors discussed above is displayed 

on the board of the aircraft. 

 

The total pressure is the pressure measured by a Pitot sensor mounted on the fuselage. It 

indicates the sum of the local static pressure (݌ௌ), and the impact pressure caused by the 

relative motion of the aircraft, called the dynamic pressure (ݍ௖), indicated as: 

 

௖ݍ  =  ଶ (1.21)ܸߩ12
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where ܸ is the aircraft velocity at an altitude ℎ. In our case, ܸ is expressed by the ܶܵܣ that is 

the True Air Speed of the airplane. 

 

When an aircraft changes its altitude or its ܮܨ, a difference in air pressure occurs. The rate of 

change in transition from one altitude to another in climb/descent, called the rate of 

climb/descent, is measured in feet per minute (fpm), and is displayed by an instrument called 

a Vertical Speed Indicator (VSI) or Vertical Velocity Indicator or Variometer. 

 

The ܵܣܫ abbreviated KIAS (Knots Indicated Airspeed) is the aircraft speed that appears on 

the Airspeed Indicator (AI). The ܵܣܫ measurements are not corrected from the instrument 

errors. This airspeed is determined by subtracting the measured total pressure by the Pitot 

sensor from the atmospheric static pressure measured at a static port. It can be measured in 

knots (kn) or in nautical miles per hour (nm or nmi). 

 

The ܵܣܥ (Calibrated Air Speed) abbreviated ܵܣܥܭ (Knots Calibrated Air Speed), represents 

the ܵܣܫ corrected from the instrument, the position of the static port and the installation 

errors.  

 

The input sensor used for the measurements of the total or indicated air temperature (TAT or 

IAT) is essential for the Air Data Computer (ADC) as a critical part of the air data airframe 

systems. The IAT is a kinetic temperature influenced by the ܶܵܣ, so that at a low ܶܵܣ, the 

IAT is considered to be equal to the local room temperature (Zimmerman and McIntyre, 

1991). 

 

By definition, the ܶܵܣ is the corrected ܵܣܥ for altitude ℎ and non-standard atmosphere 

(extreme conditions, i.e. hot/cold, tropical/polar temperature profiles). In other words, the ܶܵܣ also abbreviated KTAS (Knots True Air Speed), represents the airspeed of an aircraft 

relative to the air mass that is used in flight planning in the absence of wind effects. 
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Under standard atmospheric conditions, at MSL and low airspeeds, for incompressible air, the ܵܣܫ is approximated to the ܶܵܣ. For different air densities or temperature conditions, the ܶܵܣ is computed using the next equation: 

 

ܵܣܶ  = ඨ൬ ߛߛ2 − 1൰ ൬ߩ݌൰൭൥൬1 + ଴݌ − ݌݌ ൰(ംషభ)ം − 1൩൱ (1.22) 

 

which depends on the static pressure and dynamic pressures given by the Pitot Tube (Asselin, 

1997).  

 

The ܶܵܣ can be also expressed in terms of the pressure and density ratios, as seen in the 

following equation: 

 

ܵܣܶ  = ඨ൬ ߛߛ2 − 1൰ ൬݌ெௌ௅ߩெௌ௅൰ ൬ߪߜ൰ ൥൬1 + ெௌ௅൰(ംషభ)ം݌ߜ௖ݍ − 1൩ (1.23) 

 

Furthermore, the ܶܵܣ is the airspeed used in the computation of the aircraft performance in 

cruise regime. Compressibility errors occur due to changes in atmospheric conditions, so that 

the ܶܵܣ must be calculated based on the Mach speed or ܯ; otherwise it will not reflect the 

aircraft performance. The compressibility factor therefore needs to be incorporated into the 

expression of the Mach number ܯ (Eurocontrol, 2014). Thus, the ܶܵܣ at a given altitude ℎ is 

calculated by equation: 

 

௛ܵܣܶ  = ௛ (1.24)ܽܯ

 

given in (Botez, 2006) and (Asselin, 1997), where ܽ௛	is the sound speed corresponding to the ܶܵܣ௛, and ܯ is the Mach number. The Machmeter is a flight instrument used to indicate the 

Mach number (ܯ). The measurements are taken via an aircraft’s pitot-static system, also 

considered as the airspeed indicator sensor.  
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1.3.7 Aero-Propulsive Model Parameters 

The Aero-Propulsive Model (APM) was defined in the beginning of this chapter, together 

with the expectations from the research in this thesis. A short parameters description related 

to the aircraft geometry and of the forces acting on the airplane is explained in this section. 

More detailed information regarding these forces and parameters are presented and discussed 

in Chapter 2, along with the APM modeling methodology. 

 

Aerodynamics and propulsion are two main fields in Aerospace Engineering associated with 

a new conceptual aircraft design approach. These fields are also part of Aircraft Design 

discipline, as Corke mentioned in his book (Corke, 2003). The impact of each of these two 

fields on APM modeling is based on their optimum parameters that control the “size, shape, 

weight and performance of an aircraft”, as stated by Corke ((Corke, 2003), p6). 

 

The wing aspect ratio (ܴܣ) is a feature of the main lifting surface used to determine wing’s 

performance of an airplane. The ܴܣ is also a basic parameter of airplane wing design 

expressed as follows: 

 

ܴܣ  = ܾଶܵ
 (1.25) 

 

where ܾ is the wingspan and ܵ is the reference wing area. This characteristic of the wing 

design indicates how thin and long a wing can be made from tip to tip (NASA, 2015).  

 

The airfoil thickness ratio ቀ௧௖ቁ, a geometrical characteristic of the airfoil profile, is defined as 

the ratio between the wing thickness ݐ and the wing chord	ܿ (Cheng and Smith, 1982). 

 

The choice of a low or high wing aspect ratio depends on the flight profile or flight 

performances for which the aircraft is designed. In other words, an aircraft high ܴܣ is 
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equivalent to an airplane with long and thin wings, expensive from the manufacturing point 

of view, but that produces more lift. More lift allows for an efficient cruise, offers better 

stability but less manoeuvrability, and creates much less induced drag, leading to lower fuel 

consumption. A low ܴܣ is more appropriate to a commercial transport airplane because of its 

structural weight and fuel-carrying capabilities (Blake, 2009). A combat aircraft combines a 

low ܴܣ, with low wing loading to achieve a high degree of manoeuvrability, implying higher 

fuel consumption and costs. In order to fulfill the customer requirements, a compromise is 

needed to achieve a safely operating aircraft design. 

 

The leading edge sweep angle 	(Λ௅ா) is used to achieve the wing critical ܯ, before the 

aircraft reaches ܽ௛, with the aim to avoid the occurrence of shock waves. The	Λ௅ா, the ܴܣ, 

the airfoil thickness ratio ቀ௧௖ቁ,	and the wing weight, will all have an impact on the location of 

the fuel storage and landing gear retraction in terms of aerodynamical and structural 

considerations. To achieve an optimum design, trade-offs are required. Most commercial 

airliners, at transonic ܯ, are designed with sweep angles of approximately 30 degrees 

(Corke, 2003). 

 

As the principle of flight requires to keep the airplane to a certain height above the ground, 

some specific forces must sustain it in the air. Four major forces are involved in the airplane 

flight performances, such as the lift force (ܮ), the weight (ܹ) or the gross weight (ܹܩ), the 

thrust (ܶ), and the drag (ܦ) that is caused by friction with the air mass. In other words, 

because of these forces, an airplane is moving through the air mass. The engine (propeller or 

power plant) produces the thrust. In other words, it gives a propulsion force, which opposes 

to the drag force created by the air resistance. This friction force is influenced by the shape of 

airfoil, the density ߩ of the air mass, and by the ܶܵܣ of the aircraft. 
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1.4 The Numerical Database Concept and Research Problem Statement  

The concept of an aircraft numerical database will continue to be developed and adapted 

correspondingly to the research problem of this thesis. The objectives and assumptions of the 

problem statement are defined at the end of this subsection. 

The FMS, an airborne device, is designed to compute the optimal profile based on trajectory 

optimization function in order to minimize the flight cost, that is given in terms of flight time 

and/or total fuel burnt. One solution would be to solve the equations of motion. These 

equations of motion for an aircraft are non-linear. But, the FMS’s architecture is not able to 

solve a set of non-linear equations, due to its complexity, therefore a linearization it is 

imposed.  

 

Another way to solve this problem would be to build a numerical model, which has to 

describe the behaviour of an aircraft during a particular flight phase (e.g. climb, cruise). 

Therefore, this model must be simplified, such that to be able to be performed in the form of 

a numerical database as shown by Vincent et al. (Vincent et al., 2012), Murrietta (Murrieta 

Mendoza, 2013), and Ghazi et al. (Ghazi, Botez and Tudor, 2015). 

 

In order to create this numerical database, we need to have access to flight data of the 

airplane, which later will be used in the model validation process. The database used to build 

this aero-propulsive model for a commercial aircraft (including business jet) is provided in 

the form of “text” files (Murrieta Mendoza, 2013). These “. csv” (comma separated values) 

files are converted into “. mat” format, and adapted at the LARCASE by PhD student 

Dancila Bogdan, in order to be utilized them by MATLAB environment, highly used in 

trajectory optimization techniques. Therefore, using this flight data, aero-propulsive models 

were developed for the climb and cruise regime, in order to create a numerical database for a 

commercial airplane. In this research thesis, we assumed that all the flight data were 

accurately recorded.  
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In Figure 1.4, as a symbolic representation, an aero-propulsive model is compared to a black 

box, which has numerous inputs and outputs. The selection of the inputs and the outputs 

depends on the flight conditions or flight regimes (e.g. climb, cruise) given for an aircraft 

configuration. 

 

 

Figure 1.4 Aircraft Numerical Database and 
Aero - Propulsive Model (APM) Inputs and Outputs 

 
According to some studies in the flight trajectory optimization problems (Murrieta-Mendoza 

and Botez, 2014; Patrón et al., 2013), the aircraft’s behaviour is affected by the main 

parameters such as the center of gravity position, the speed, the weight or the gross weight, 
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the ܣܵܫ temperature deviation, and the altitude, as multiple inputs, while the outputs are 

basically the drag and thrust forces. 

 

Therefore, an aero-propulsive model (APM) can be expressed in a mathematical form by the 

next equation: 

,ܦൣ  ܶ, ௦ܶ௙௖൧ = ௖௚ݔ൫܎ , ,ܵܣܫ ,ܹܩ ,ܣܵܫ∆ ℎ൯ (1.26)

 

where ܦ represents the drag force, ܶ the engine thrust force, 	 ௦ܶ௙௖ the engine specific fuel 

consumption coefficient, as unknown parameters regarding propeller data, and ݔ௖௚ is the 

center of gravity position, ܵܣܫ is the indicated airspeed, ܹܩ is the gross weight, ∆ܣܵܫ is the 

ISA temperature deviation, ℎ is the geometric altitude, as inputs. The function ܎: ℝହ → ℝଷ is 

the mathematical representation of aircraft performance.  

 

In this thesis, an aero-propulsive model is built for a commercial aircraft, by creating a 

numerical database in order to improve its performance in both the climb and cruise regimes.  

 

The main objective can be summarized as: 

 

“Identifying an aero-propulsive model of a commercial aircraft from flight data, and building 

a numerical database to predict the performances in climb and cruise regimes.“ 

 

To solve this research problem, the following two sub-problems are imposed: 

1. “Identifying an aero-propulsive model from flight data in the climb and in the cruise 

regime” by applying system identification methods; and 

2. “Creating a numerical database for a commercial aircraft by employing the identified 

aero-propulsive model.”  

Additionally, to simplify the research model the following limitations are assumed: 

• Still air environment (wind-free); 

• Operational engines; and 
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• Climb and Cruise at a constant ܿܽܯ/ܵܣܫℎ. 

 

The target of this research is to find a methodology to obtain an aero-propulsive function ܎ 
for each flight’s regime. This target can be achieved by using system identification methods 

as presented in the next chapter. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

CHAPTER 2 
 
 

AIRCRAFT IDENTIFICATION AND METHODOLOGY 

The main purpose of this thesis is to give the most appropriate solution to research questions 

that concern a new identification procedure for two mathematical models that best predict a 

commercial airplane in climb and cruise phases. This new methodology based on the system 

identification theory, the aero-propulsive model concept and the parameter estimation 

techniques create the aero-propulsive model (APM) from Aircraft Flight Manual or the Flight 

Tests data without knowledge of prior propulsion data.  

 

2.1 Aircraft mathematical Climb Model – IAS/MACH constant 

Basically, the flight profile for a commercial aircraft consists of take-off, climb, cruise, 

descent and landing segments. This research thesis, as already mentioned, aims to build an 

aero-propulsive model only for climb and cruise regimes, which are essential for the vertical 

trajectory optimization of commercial airplanes (Air Traffic Management applications). 

 

The complexity and the difficulty of this research problem proposed compel us to restrict the 

studied domain by applying a set of assumptions. These assumptions are fundamental to 

simplify the approach to the problem, even if it must be solved with lack of data (e.g. no 

engine data). However, the solution of the problem in question is an approximation of the 

real system (i.e. the aircraft) under this research. The accuracy level relies on both the 

assumptions and the proposed methodology. Therefore, for an airplane, the coordinate frame, 

the assumptions, the acting forces and the other essential parameters in the climbing flight 

are presented in Figure 2.1 below: 
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Figure 2.1 The acting forces in the climb flight 

 
The (ݖݔ) plane is the vertical plane (plane perpendicular on the surface of the Earth or 

ground) with the ݔ axis oriented in the direction of motion and the ݖ axis pointing Earthward 

(Figure 2.1). The (ݔ௜, ,௦ݔ) ௜), andݖ  ௦) are the inertial and stability axes, ܶ is the propellerݖ

thrust force,	ܸ is the ܶܵܣ (aircraft true airspeed or velocity vector), ܮ is the lift force 

(perpendicular to the velocity vector ܸ), ܦ is the drag force (parallel to the velocity vector ܸ), ܹ is the aircraft weight or gross weight, ݃ is the acceleration due to gravity, ߙ is aircraft 

angle of attack and ߛ is the flight path angle. The airplane used in most of the figures is a 

Gulfstream G500 (Kaboldy, 2013). 

 

To keep an airplane flying in the air, three essential features must be guaranteed: the lift 

provided by the wings, its system of propulsion and stability. The aircraft is assumed to be a 

variable-mass rigid body (Hull, 2007). For an airplane motion, the Earth is an approximate 

inertial reference frame (in order to obtain small errors in the analyses), and for thus the 

Newton’s laws can be applied. Based on the Newton’s second law: 

 

 ܹ݃ ܉ =  (2.1) ࡲ∑
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where ܉ is the airplane acceleration relative to the inertial frame (Earth or ground) that is 

mathematically expressed in the form: 

 

܉  = ݀V݀ݐ  (2.2) 

 

and ∑ࡲ is the net force applied to the airplane. 

 

There are four main forces acting at the center of gravity of an airplane: lift, drag, thrust and 

weight (using point-mass considerations). In aircraft flight mechanics, the lift and drag 

forces, as aerodynamic forces, according to several references (Stevens and Lewis, 2003), 

and (Nelson, 1998), are expressed as: 

 

ܮ  = ௅ (2.3)ܥ௖ܵݍ

 

and 

 

ܦ  = ஽ (2.4)ܥ௖ܵݍ

 

where ܥ௅ and ܥ஽ represent the lift and drag coefficients. The wing lift coefficient ܥ௅ is 

expressed by the well-known formula: 

 

௅ܥ  = ௖ (2.5)ݍܵܮ

 

The aerodynamic drag coefficient ܥ஽ for the entire aircraft is also known as the drag polar, 

and is expressed as follows: 

 

஽ܥ  = ஽଴ܥ + (2.6) ܴ݁ܣߨ௅ଶܥ
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The dimensionless ܥ஽଴ is the zero-lift drag coefficient or the minimum drag coefficient ܥ஽௠௜௡. The second term of the right hand side equation (2.6) is the representation of the 

induced drag coefficient ܥ஽௜, in which ݁ is the aerodynamic efficiency or the airplane 

efficiency factor. This factor is also known as Oswald efficiency coefficient, and is usually 

less than 1. 

 

During climb, the motion of an airplane along its stability axes is described by the kinetic 

equations, as shown in Figure 2.1: 

 

 ܹ݃ ൤݀V݀ݐ൨ = ܶ cos ߙ − ܦ −ܹ sin  (2.7) ߛ

 

 ܹ݃ ൤݀γ݀ݐ൨ V = −ܶ sin ߙ − ܮ +ܹ cos  (2.8) ߛ

 

These two equations describe the complete longitudinal motion of the airplane. 

 

The parameter estimation algorithm must solve the set of equations (2.7) and (2.8). However, 

because their arrangement is non-linear, the parameter estimation algorithm encounters 

difficulties. In order to effectively describe a flight phase in the climb or cruise, the system 

has to be repositioned and adapted correspondingly. An aircraft mathematical model that is 

less complicated or much simpler must be developed instead of equations’ set (2.7) and (2.8). 

More assumptions must be added; therefore by considering that the angle of attack ߙ is 

small, thus approximately zero, the following statement can be made: 

 

ߙ  ≈ 0 ⇒ ቄsin ߙ ≈ 0cos ߙ ≈ 1 (2.9) 

 

and therefore ߙ from equation (2.9) is replaced in the equations (2.7) and (2.8). It should be 

mentioned that the angle of attack ߙ was not shown in Figure 2.1, as it was small. 
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One of the main aims of this research is that is directed towards climb performances 

improvement of a commercial aircraft. In the climb regime, the climb performance consists 

of the rate of climb (RoC), an unknown parameter, which thus should be part of the above 

motion equations. In the vertical plane, an aircraft in climb is described in scalar form by the 

next two equations through which the following performance parameters are expressed by 

equations (2.10) and (2.11): 

 

ሶݔ  = ܵܩ = ܸ cos (2.10) ߛ

 

where ݔሶ  is the ground speed (ܵܩ) or the horizontal velocity, ܸ is the local velocity (ܶܵܣ), 
and ߛ is the flight path angle. In equation (2.11) the vertical velocity is represented as: 

 

 ℎሶ = ܸ sin ถௗ௛ு೏೔ೞ೟ߛ
= ݀ℎ݀ݐ  

(2.11) 

 

where ℎሶ  is also known in the literature under the name of the rate of climb (ܴܥ݋), and (sin  represents the climb gradient. By definition, the climb gradient is the ratio between (ߛ

the vertical distance (݀ℎ) and horizontal distance (ܪ஽௜௦௧) traveled by an aircraft (Corke, 

2003). The vertical velocity and the climb gradient are illustrated in Figure 2.2, also known 

as the velocity triangle. 

 

 

Figure 2.2 Velocity triangle 
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To solve the first sub-problem of this research we study the climb performance, represented 

by the rate of climb of the DS (i.e. aircraft). The rate of climb is computed by means of some 

mathematical calculation steps as follows. In the first step, the assumptions of equation (2.9) 

are applied to equation (2.7) that becomes: 

 

 ܶ − ܹܦ = sin ฑ௛ሶ௏ߛ + 1݃ ൤݀V݀ݐ൨ถௗ୚ௗ௛ௗ௛ௗ௧  (2.12) 

 

Thereafter, employing the chain rule: 

 

 ݀V݀ݐ = ݀V݀ℎ ݀ℎ݀ݐ  (2.13) 

 

and by replacing also the climb gradient (sin  from equation (2.11) in equation (2.12), we (ߛ

finally obtain an expression of the climb performance. This form of the equation of motion 

describes the rate of climb ℎሶ , as follows: 

 

 ܶ − ܹܦ = ൬1 + ܸ݃ ݀V݀ℎ൰ ℎሶܸ  (2.14) 

 

and in which the term in the brackets: 

 

 ൬1 + ܸ݃ ݀V݀ℎ൰ =  (2.15) ܨܣ

 

is known as the acceleration factor (ܨܣ). The ܨܣ is a correction taken into consideration 

when climbing at constant ܶܵܣ, and it cannot be neglected at high altitudes (Blake, 2009). 

Therefore, by replacing equation (2.15) in equation (2.14), the rate of climb ℎሶ  formula is 

obtained: 
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 ℎሶ = ቀܶ − ܹܦ ቁܸܨܣ  (2.16) 

 

This equation (2.16) is very important, because is the expression that reveals the climb 

performance relative to aero-propulsive forces. As indicated in equation (2.16), for a specific 

airplane with known rate of climb (as the airplane’s climb performance), the difference (ܶ  ,can be calculated. The other way around ܦ between the two aero-propulsive forces ܶ and (ܦ−

by knowing the thrust ܶ and drag ܦ forces, their difference (ܶ −  can be calculated, and (ܦ

then the climb performance can be estimated as well. Therefore, the aerodynamic forces must 

be predicted using the estimation techniques as presented below.  

 

2.1.1 Aerodynamics: Lift and Drag Forces Estimation 

The lift force, as an aerodynamic parameter, can be described by applying equation (2.9) to 

the kinetic equation of motion presented in equation (2.8), so that: 

 

ܮ  = ܹ cos ߛ − ܹ݃ ൤݀γ݀ݐ൨ V ௗஓௗ௧→଴ሳልልሰ ܮ = ܹ cos  (2.17) ߛ

 

For a small flight path angle, the acceleration term ቀௗஓௗ௧ቁ = ሶߛ  is neglected for quasi-steady 

flight. However, the lift force ܮ is also represented as a function of the atmospheric factors as 

shown in equation (2.3). 

Therefore, by replacing equation (2.5) for the quasi-steady assumption into equation (2.17), 

the lift coefficient can be expressed in the next equation: 

 

௅ܥ  = ܹ cos ௖ݍܵߛ  (2.18) 

 

The drag force ܦ cannot be estimated exactly from the set of the equations of motion (2.7) 

and (2.8) because the thrust force ܶ is also an unknown variable of the parameter estimation 
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problem. In contrast to the computation of the lift force ܮ, which is using equation (2.8), the 

drag force ܦ will be estimated from equation (2.4). It is worth noticing that the drag polar 

equation (2.6) is usually only utilized for airplane wing. However, assuming that the lift and 

drag forces are predominantly performed by the airplane wing, this equation can be extended 

to the entire airplane. Also, equation (2.6) is given by Corke (Corke, 2003) as it shows the 

wing loading effect on climb rate. In the drag polar expression, another unknown parameter 

to our research problem, which has to be estimated, is the Oswald efficiency factor. The 

Oswald efficiency factor for an aircraft wing leading edge greater than 30 degrees is given by 

an empirical formula taken from Raymer (Raymer, 1992) or Brandt (Brandt, 2004). 

 

 ݁ = 4.61(1 − ଴.଺଼)ሾcos(Λ௅ா)ሿ଴.ଵହܴܣ0.045 − 3.1 (2.19)

 

According to Gudmundsson, the Oswald span efficiency ݁, as shown by the drag polar 

formula in equation (2.6), is a vital parameter for the lift-induced drag (drag due to lift) in the 

airplane identification process (Gudmundsson, 2013). It was named after W. Bailey Oswald, 

who labelled it the airplane efficiency factor in the NACA TR-408 report (1933) 

(Gudmundsson, 2013). Later, Raymer (Raymer, 1992) and Brandt (Brandt, 2004) 

recommended equation (2.19) as “݁” an empirical estimation formula for swept wings. Snorri 

G. has used this equation as a statistical expression to estimate the airplane efficiency factor 

(Gudmundsson, 2013). The empirical methods are used in the preliminary design phase of 

the aircraft design process. The two parameters, ܥ஽଴ and ݁, as unknown parameters, in the 

final evaluation phase of an aircraft‘s design must be optimized to better estimate the 

airplane’s performances using parameter estimation methods.  

The total drag, for subsonic climb, consists of the base drag, characterized by ܥ஽଴, and the 

lift-induced drag. By replacing ܥ஽ given by equation (2.6) into equation (2.4), the total drag ܦ is obtained: 

 

ܦ  = ஽଴ܥ௖ܵݍ + ௖ܵݍ ቆ  ቇ (2.20)ܴ݁ܣߨ௅ଶܥ
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This term ቀ ଵగ஺ோ௘ቁ describes the induced drag parameter or the drag due to lift factor ࢑. 

 

 ࢑ =  (2.21) ܴ݁ܣߨ1

 

where ܴܣ is known as the wing aspect ratio and ݁ is the Oswald efficiency factor. 

 

The aero-propulsive model must also be investigated from the aspect of propulsion 

performances. It should be recalled, that the airplane propulsion data are unavailable. 

 

2.1.2 Propulsion: Engine Thrust and Specific Fuel Consumption Estimation 

The second part of an aero-propulsive model involves the engine performance. The thrust 

force is expressed from the set of equations of motion. The drag force is calculated to obtain 

an initial value of it. This is also the starting point corresponding for the calculation of this 

unknown force that is a very important initial value in the parameter estimation algorithm 

realized. 

 

 ܶ = ܹ݃ ൤݀V݀ݐ൨ + ܦ +ܹ sin  (2.22) ߛ

 

Equation (2.22) is rearranged by applying further the chain rule to the acceleration term ቂௗ୚ௗ௧ቃ. 
 

 ݀V݀ݐ = ݀V݀ℎ ݀ℎ݀ݐ  (2.23) 

 

Then equation (2.23) is replaced into equation (2.22), which becomes: 

 

 ܶ = ܦ +ܹ 1݃ ൤݀V݀ℎ ݀ℎ݀ݐ൨ +ܹ sin  ߛ
(2.24)
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The thrust equation (2.24) can be written also under the following form: 

 

 ܶ = ܦ +ܹ ൬1 + ܸ݃ ൤݀V݀ℎ൨൰ᇣᇧᇧᇧᇤᇧᇧᇧᇥ஺ி sin  (2.25) ߛ

 

in which we recognize the acceleration factor ܨܣ	as presented in equation (2.15). 

The thrust formula can then be represented in a more compact form by use of equation (2.11) 

in equation (2.25) that becomes: 

 

 ܶ = ܦ (ܨܣ)ܹ+ ℎሶܸ  (2.26) 

 

Equation (2.26) is further used to obtain the first initialization of the engine thrust force. It 

should be recalled that we are building this mathematical model with no engine data 

provided. The thrust force and the thrust specific fuel coefficient are the two engine 

performance parameters. Both are unknown parameters and dependent functions of the 

altitude. The true airspeed ܸ as well as the altitude ℎ have an impact on the thrust ܶ as 

indicated below: 

 

 ܶ = ܶ(ℎ, ܸ ) (2.27)

 

By definition, the thrust specific fuel consumption (SFC or ௦ܶ௙௖) represents the effect of the 

altitude or of the pressure altitude (ft) on engine performance as estimated by: 

 

 ௦ܶ௙௖ = ௙ሶܶݓ
 (2.28) 

 

where ݓ௙ሶ  represents the weight of fuel consumed in kg or pound mass per hour for a given 

thrust force ܶ, or the engine fuel flow ൫ݓ௙ሶ ൯ in the cruise regime, formulated as: 
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௙ሶݓ  = ݐ݀ܤܨ݀ = ݐ∆ܤܨ∆  (2.29) 

 

in which ܤܨ is the fuel burnt. It should be also noted that the differentials could be 

approximated as algebraic quantities. 

The thrust force depends on the altitude, and therefore, the thrust specific fuel consumption 

can be expressed as follows: 

 

 ௦ܶ௙௖ = ௦ܶ௙௖(ℎ) (2.30)

 

The model’s parameters that were calculated based on the AFM data or the flight data 

represent the first estimates of the described physical model. They are the initial values (i.e. 

initial guesses or initial approximation) used by the parameter estimation algorithm. 

 

2.1.3 Estimation Methods and Algorithms 

CMC Electronics Esterline provided the flight data of two commercial aircrafts (Aircraft A 

and B) for this research thesis. The numerical database of an aircraft in climb has inputs and 

outputs that may differ for different aircraft. For this reason, the numerical database has been 

formatted from Table 2.2, according to the general structure presented in Table 2.1.  

 

Table 2.1 Sample data for a commercial aircraft ܹܩ = 90,000 ݇݃ ∥ ௖௚ݔ = 27% ∥ ܵܣܫ = 220 ݏݐ݇ ∥ ܵܣܫ∆ = ݈݁ݑܨ (	ݐ݂) ݁݀ݑݐ݅ݐ݈ܣ 0° ݃ܭ) ݊ݎݑܤ ݈ܽݐ݊݋ݖ݅ݎ݋ܪ (  0 0 0 − − − 1010 ⋮ 1075 1080 1094 (ℎ/	݃ܭ) ݓ݋݈ܨ	݈݁ݑܨ  (݅݉݊) ݁ܿ݊ܽݐݏ݅ܦ 

1,000 15.00 0.732,000 69.00 1.643,000 130.0 2.05⋮ ⋮ ⋮23,000 789.0 25.424,000 894.0 25.925,000 953.0 26.4
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The parameters values presented into Table 2.1 are not the real values of a commercial 

aircraft, due to confidentiality concerns. However, this representation of the aircraft 

performance is very similar to those found in any aircraft flight manual (AFM). The 

methodology developed in this thesis can therefore be extended and applied to any 

commercial aircraft. 

The available numerical database for the Aircrafts A and B can be observed in Table 2.2, 

which contains all the flight tests (e.g. 2184 flight tests of aircraft A). The number from the 

example represents the combination of all the flight data inputs for the climb phase that were 

formatted, when the aircraft flies with the airspeeds ܵܣܫ, as were presented by Table 2.1. 

 

Table 2.2 Inputs and Outputs Flight data of the Aircrafts A and B 
in the Climb phase 

 

Flight data 
of 

Phase 

Inputs 
Aircraft 

Outputs 
Aircraft 

A B A B 

Climb 

Center of gravity (3) 
 
Gross weight (8) 

IAS (7) 

ISA deviation (13) 
 
Altitude (N/A) 

Center of gravity (-) 
 
Gross weight (16) 

IAS (12) 

ISA deviation (13) 
 
Altitude (N/A) 

Fuel Burn  
 
Horizontal 
Distance 

Fuel Burn  
 
Horizontal 
Distance 

 

In this research, some of the flight tests provided are used to identify the physical model and 

the others to check or validate the resulting model. Therefore, the flight tests were divided 

into the following two categories: identification and validation. 

The first category was targeted to identify the aero-propulsive model, while the second 

category was used to validate the estimated model. It should be emphasized that even though 

one of the aims is to minimize the number of required flight tests, their selection 

corresponding of each flight category must be carefully done. 
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2.1.3.1 Model Identification Process 

The proposed methodology consists of a climb model identification process, which allows 

estimating of three parameters (ܦ, ܶ, 	 ௦ܶ௙௖) that define the aero-propulsive model. 

In order to estimate a combination of the aero-propulsive forces, which best predicts the rate 

of climb described by equation (2.16) for a specific flight configuration, we selected among 

optimization available algorithms in the Matlab® Optimization Toolbox™, the Nelder-Mead 

algorithm. This algorithm known also as the simplex search algorithm (or downhill simplex 

method) is an iterative method. For this reason, it is critical to know how to choose correctly 

the initial values of these parameters. Therefore, it is essential in order to start this algorithm 

to find a vector containing initial values for every parameter. The model identification 

process can be structured in the following steps: 

1. Flight parameters estimation, 

2. Propulsion initial approximations, 

3. The simplex search algorithm execution	(ܥ஽଴, ݁, ܶ)௠௜௡, 

4. The thrust specific fuel consumption coefficient estimation. 

 

The identification process begins with the flight parameters estimation, through which the 

aircraft aerodynamic and propulsion parameters are calculated first, based on the aircraft 

flight manual's data or the given flight data. In the flight data of an Aircraft A, which were 

presented in Table 2.1, by the discrete values, the altitude ℎ has been partitioned into ܰ sub-

segments at each ∆ℎ = 1000 ft, as illustrated in Figure 2.3. 
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Figure 2.3 The trajectory of an aircraft 

 
with ݅ ∈ ۤ1, ௜ is the flight path angle, തܸߛ and where ,ۥܰ  the average true airspeed (ܶܵܣതതതതത), ℎ௜ 
represent the altitude (ft), ܪ஽௜௦௧௜  the horizontal distance traveled ݀௜ (nmi), and ℎపሶ  is the rate of 

climb related to a position ݅. 
 

The estimation algorithm code was created and studied for two cases regarding the speed 

from the available flight data: in the first case, the speed is given as the Indicated Air Speed 

 .(ܯ) and in the other case, the speed is given as Mach number ,(ܵܣܫ)

The readings from the speed indicator are measured in knots indicated airspeed (KIAS) or 

nm/h. However, the true airspeed (ܶܵܣ) must be used in the algorithms, which is why the 

correction is needed. The ܶܵܣ can also be calculated by increasing the ܵܣܫ with 2% for each 

1000ft of altitude. It should be mentioned that all of the measurement units of the variables 

and parameters used in the estimation algorithm’s code are British and American 

Engineering (AE) units. Also, the mean true airspeed ܶܵܣതതതതത, measured in knots or nm/h or 

KTAS, refers to the mean speed used by the estimated algorithm’s codes. 

 

The estimation algorithm code starts by computing the aircraft true airspeed ܸ or ܶܵܣ, and 

the Mach number from the given indicated airspeed ܵܣܫ based on the speed conversion 

function IAS_to_TAS for each sub-segment. This function was created at LARCASE by 

Ghazi Georges PhD student, but was applied in the International System Units (SI). 
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Therefore, the function was adapted for the British units in order to work within the 

developed algorithms of this thesis. The conversion function consists of a parameterized 

lapse rate atmosphere model to compute the pressure and the speed of sound for a given 

altitude and temperature deviation. 

 

In order to compute the climb performance for one configuration of the aircraft, the 

estimation procedure first has to calculate the climb gradient 	(ܿ௚௥௔ௗ) or (sin  The flight .(ߛ

path angle ߛ௜ was estimated using Euler method for each sub-segment as shown in Figure 2.3 

and in the next equation: 

 

 γ୧ 	= arctan ቈ Δℎ௜∆ܪ஽௜௦௧௜ ቉ = arctan ൤ℎ௜ − ℎ௜ିଵ݀௜ − ݀௜ିଵ൨ (2.31) 

 

where Δℎ௜ is the difference between two consecutive altitudes, and ∆ܪ஽௜௦௧௜  is the distance 

travelled by the aircraft during the	݅௧௛ sub-segment. Thereafter, the time to climb	ݐ௖௜  between 

two consecutive altitudes can also be calculated using the Euler method as in the equation 

below. The ∆ݐ௖௜  is a function of the mean true airspeed (ܶܵܣതതതതത), as follows: 

 

 

௖௜ݐ = ௖௜ିଵݐ + ℎ௜ − ℎ௜ିଵܶܵܣതതതതതത × sin ௜ߛ ௖ݐ∆, = തതതതതതܵܣ஽௜௦௧௜ܶܪ∆ × sin ௜ߛ = ∆ℎܶܵܣതതതതത × sin ௜ߛ = ∆ℎܴܥ݋ 

(2.32) 

 

in which ܴܥ݋௜ is the rate of climb corresponding to the ∆ݐ௖௜ . The ∆ݐ௖௜  represents the time to 

climb for each sub-segment, and is measured in minutes (min). 

 

During a flight, an aircraft is also characterized by its fuel consumption, the last but not the 

least as importance of its flight performance. The average engine fuel flow ݓ௙ሶ , as shown in 

equation (2.29) is determined directly from the flight data, along each sub-segment, with 

respect to its time to climb.  
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The climb gradient	(ܿ௚௥௔ௗ) expression is thus presented below, as a dimensionless parameter. 

 

 ܿ௚௥௔ௗ 	= Δℎ௜∆ܪ஽௜௦௧௜ = ݊݅ݏ (ߛ) = ℎሶܶܵܣതതതതത (2.33) 

 

Now, all the information required to converge to the rate of climb (ܴܥ݋), measured in ft/min, 

is assembled. The ܴܥ݋ is a function of the ܶܵܣതതതതത and the ܿ௚௥௔ௗ, and can be expressed by: 

 

ௗ௔௧௔ܥ݋ܴ  	= ,തതതതതܵܣܶ)ௗ௔௧௔ܥ݋ܴ ܿ௚௥௔ௗ) (2.34)

 

or from Figure 2.3, and also from equation (2.33): 

 

 ℎሶ = ௗ௔௧௔ܥ݋ܴ = തതതതതܵܣܶ × ܿ௚௥௔ௗ  (2.35)

 

This method of computing the rate of climb is based on the aircraft flight manual (AFM) data 

or the given flight data. 

 

In order to reach the first approximation of rate of climb, the first estimates of the lift, the 

drag, and the thrust forces have to be firstly calculated. 

The dynamic pressure ݍ௖ of the compressible free stream air is therefore expressed as a 

function of the density altitude ߩ௛ and the true airspeed ܶܵܣതതതതത, and is expressed as: 

 

௖ݍ  = ,௛ߩ)௖ݍ തതതതത) (2.36)ܵܣܶ

 

The ݍ௖ is measured in lbf/ft2 or slug/(ft s2) in the American Engineering (AE) unit system. 

However, the ݍ௖ is calculated using equation (1.21). The dynamic pressure is the parameter 

used in computing the lift force, which is measured in lbf or slug ft/s2. 

The lift force is function of the given aircraft gross weight (ܹܩ), measured in kg, and the 

fuel burn (ܤܨ), measured in kg. It is expressed in the mathematical form: 
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ܮ  = ܮ ,ܹܩ) (2.37) (ܤܨ

 

and is computed within the estimated algorithm’s code, as follows  

 

ܮ  = ܹ cos ߛ ௦௠௔௟௟ (ఊ)ሱۛ ۛۛ ۛۛ ሮ ܮ = ݃ × ܹܩ) − ௗ௔௧௔) (2.38)ܤܨ

 

As described by the above equation (2.5), dimensionless lift coefficient ܥ௅ could also be 

expressed as function of the lift force ܮ, the dynamic pressure ݍ௖ and the aircraft wing area ܵ, 

as follows: 

 

௅ܥ  = ,ܮ)௅ܥ ,௖ݍ ܵ) (2.39)

 

Another dimensionless aerodynamic coefficient is ܥ஽. It is function of the ܥ௅ at low subsonic 

speeds (Torenbeek, 1995) and could be also expressed as follows: 

 

஽ܥ  = ஽ܥ (2.40) (௅ܥ)

 

The ܥ஽଴ is assumed to be within the range of (0.01, 0.05) (Brandt, 2004). In this study, ܥ஽଴ is 

treated as representative for the entire aircraft body even if it is only assigned to the wing 

area. However, the zero-lift drag coefficient ܥ஽଴ is initialized by the nominal value of 0.03, 

and the empirical Oswald efficiency factor ݁ is calculated based on equation (2.19). 

 

The induced drag parameter ࢑ is then calculated using equation (2.21). The drag-due-to lift 

factor is dimensionless. This parameter is necessary for the drag polar estimation as indicated 

in equation (2.6). The predicted drag force ܦ, measured in lbf or slug ft/s2, can now be 

computed by applying equation (2.20). The estimated thrust is computed with equation 

(2.26), in which the acceleration factor ܨܣ is computed with equation (2.15). The both 

variations of velocity ܸ݀, expressed as ∆ܶܵܣ, and of the ∆ℎ are used in the calculus of the 

acceleration factor ܨܣ, as well as of the thrust force ܶ. 
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The thrust force ܶ is approximated using equation (2.26) in which the rate of climb (ܴܥ݋ௗ௔௧௔) is computed by applying equation (2.35). The difference between the thrust and 

the drag (ܶ −  forces is finally calculated. In order to estimate the rate of climb was (ܦ

applied equation (2.16).  

 

An optimization routine was used to determine the unique local minima (i.e. the initial 

guesses) of the unknown parameters (ܥ஽଴, ݁, ܶ). It is always applied a step ahead of the pre-

estimation or the first prediction of the model’s parameters ൫	 ௦ܶ௙௖, (ܶ −  .൯(ܦ
 

The optimal rate of climb ܴܥ݋෢  depends on the following three unknown parameters ܥ஽଴, ݁, 

and ܶ as shown by equation (2.41): 

 

෢ܥ݋ܴ  ,஽଴ܥ) ݁, ܶ) = ൤ܶ − ,஽଴ܥ)ܦ ܹܩ(݁ ൨ܸܨܣ  
(2.41) 

 

In other words, the optimal of these parameters is computed using the Least Squares (LS) 

technique, by minimizing the sum of squared errors. Thus, the model’s error function 

between the rate of climb from the flight data (measured) and the predicted rate of climb is 

expressed as: 

 

 ௘݂௥௥ =෍൭ܴܥ݋ௗ௔௧௔ᇣᇧᇤᇧᇥ௠௘௔௦௨௥௘ௗ − ෢ถ௣௥௘ௗ௜௖௧௘ௗ൱ଶேܥ݋ܴ
ଵ  (2.42) 

 

The model error ௘݂௥௥, also known as the residuals, was illustrated in the block diagram of 

Figure 1.3 and expressed in general terms in equation (1.1). 

 

A minimization routine based on the Nelder-Mead (NM) simplex search algorithm (Lagarias 

et al., 1998) was used to adapt the minimum drag coefficient ܥ஽଴௠௜௡, the Oswald efficiency 

factor ݁௠௜௡, and the thrust ௠ܶ௜௡ in order to minimize the errors ௘݂௥௥	between the estimated 
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rate of climb ܴܥ݋෢  obtained with equation (2.16) and the computed rate of climb ܴܥ݋ௗ௔௧௔ 

from the AFM data with equation (2.35).  

 

The function fminsearch is applied to this optimization routine. This MATLAB function 

based on the NM method finds the solution to the problem of Least Squares (LS). It is 

designed to converge to a local minimizer, as the solution of a non-linear system of 

equations, and it can be applicable nearly from any crude approximations or starting points 

(Dennis Jr and Schnabel, 1996). The optimal values of the (ܥ஽଴, ݁, ܶ)௠௜௡ are helping to 

minimize the modelling errors. The proposed steps of the optimization routine are described 

in the flow chart of Figure 2.4. 
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Figure 2.4 The optimization routine 

 
Thereafter, the optimal of the drag force is also computed. The difference between the aero-

propulsive forces can now be calculated, in order to determine its optimal value. 

The engine specific fuel consumption ௦ܶ௙௖ is then computed using equations (2.28) and 

(2.29), such that:  

 

 ௦ܶ௙௖ = ൬݀ݐ݀ܤܨ ൰ × 1ܶ = ݐ∆ܤܨ∆ × 1ܶ = 1ܶ × ℎ∆ܤܨ∆ ∆ℎ∆ݐ = ℎ∆ܤܨ∆ × ℎሶܶ
 (2.43) 

 

Start the optimization
routine 

Initialize the aerodynamic 
parameters: C

D0
 and e 

Compute the estimated rate of 
climb using eq. (2.16) 

Compute the rate of climb error 
using eq. (2.42) 

 Error < 10
-3

? 

YES 

Adjust parameters 
with the 

Minimization routine 

NO

End the optimization 
routine 

Make an initial guess for the drag 
and thrust forces using equations 

(2.4), (2.26) 
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The optimal rate of climb ℎሶ ௢௣௧ is known, by applying the equations (2.35) and (2.32). The 

optimal specific fuel consumption can be expressed as: 

 

 ௦ܶ௙௖௢௣௧ = ℎ∆ܤܨ∆ ∙ ℎሶ ௢௣௧௢ܶ௣௧  (2.44) 

 

and where ∆ܤܨ represents the fuel burnt between two altitudes. 

A linear interpolation is performed within the aircraft flight data inputs structure, for the 

optimal values of the thrust	ܶ denoted by ௢ܶ௣௧, of the difference between the thrust and the 

drag (ܶ −  For this reason, a MATLAB .ܥܨܵ and of the specific fuel consumption ,(ܦ

function interpn is applied. Thereafter, the calculation of the model estimation process is 

reversed, so that the estimated rate of climb ܴܥ݋௘௦௧௜௠ is calculated based on equation (2.16) 

in which the airspeed ܸ is the ܶܵܣതതതതത along a sub-segment. The estimated climb gradient ܿ௚௥௔ௗ௘௦௧௜௠ 

is then determined by applying equation (2.33), where the rate of climb used is the ܴܥ݋௘௦௧௜௠. 

Next, the estimated horizontal distance traveled ܪ஽௜௦௧௘௦௧௜௠ at each altitude ݅ is found with 

equation (2.33): 

 

஽௜௦௧(௜)௘௦௧௜௠ܪ  = ஽௜௦௧(௜ିଵ)௘௦௧௜௠ܪ + ∆ℎܿ௚௥௔ௗ  (2.45) 

 

Ultimately, the estimated time to climb ∆ݐ௖௘௦௧௜௠ for each sub-segment, an important 

parameter utilized in executing the Required Time of Arrival (RTA) instructions in the FMS, 

is computed using following formula: 

 

௖௘௦௧௜௠ݐ∆  = ∆ℎܴܥ݋௘௦௧௜௠ (2.46) 

 

In order to reveal the other output parameter of the estimated model, called the estimated fuel 

burnt ܤܨ௘௦௧௜௠, the estimated fuel consumption rate ݓሶ௙	(௜)	௘௦௧௜௠ is calculated based on equation 



60 

(2.28) for each of the position ݅. Then, the estimated fuel burnt ܤܨ௜௘௦௧௜௠ is computed using 

equation (2.29), as follows: 

 

௜௘௦௧௜௠ܤܨ  = ௜ିଵ௘௦௧௜௠ܤܨ + ሶ௙ݓ (௜ )௘௦௧௜௠ × ௖௘௦௧௜௠ (2.47)ݐ∆

 

All the estimation process steps described thus far are summarized in the flow diagram in 

Figure 2.5. 

 

 

Figure 2.5 Flow chart of the model estimation process 

 
For a given flight test whose inputs include the altitude, the gross weight, the airspeed ܵܣܫ, 

and the temperature deviation ∆ܣܵܫ, and its outputs as a set of the thrust values ܶ, the 

difference between the thrust and drag forces (ܶ −  a look-up table structure equivalent to the black box model is created. The altitude is ,ܥܨܵ and the specific fuel consumption ,(ܦ

declared N/A, meaning not applicable for a particular case (Table 2.2). This strategy has been 

applied for a total of 27 flight tests and is shown in the flowchart of Figure (2.6).  

௢ܶ௣௧, (ܶ − ,௢௣௧(ܦ ௦ܶ௙௖

௙ሶݓ = ௙ሶݓ ( ௢ܶ௣௧, ௦ܶ௙௖)ܴܥ݋௘௦௧௜௠	

	ܿ௚௥௔ௗ		௖௘௦௧௜௠ݐ∆
,஽௜௦௧௘௦௧௜௠ܪ ௘௦௧௜௠ܤܨ
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Figure 2.6 Parameter estimation algorithm in the climb regime 

 
The results of the parameter estimation process were stored and formatted into 3D look-up 

tables (Figure 2.7) or expressed in the mathematical form by the following set of equations: 

Start identification
process

AFM structures 

For all flight test identification: 
select the AFM 

Determine the aircraft flight 
parameters (climb gradient,  
rate of climb, time to climb) 

Select the first altitude (h) 
i = 1 

Identify the aero-propulsive 
parameters 

Store temporarily the data 

Is i = N?

Store the results into 
look-up tables 

YES

 i = i + 1 

Select the next
flight configuration 

NO

End identification
process 
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 ቐ 					ሾܶሿ = ்݂ (ℎ, ,ܹܩ ,ܵܣܫ ሾܶ	(ܣܵܫ∆ − ሿܦ = ்݂ ି஽(ℎ, ,ܹܩ ,ܵܣܫ ൣ				(ܣܵܫ∆ ௦ܶ௙௖൧ = ௦݂௙௖(ℎ, ,ܹܩ ,ܵܣܫ (ܣܵܫ∆  (2.48) 

 

It must be noted that in order to respect the confidentiality of the subject, the parameter 

values from Figure. 2.7 are not the real values of the computed aircraft parameters. 

 

 

Figure 2.7 3D Look-up tables representation 

 
An estimation technique based on the prediction parameter errors was applied. We noted that 

the parameters prediction process is critical to achieve good optimization of the unknown 

parameters. The percentage errors (%௘௥௥)	or the relative errors are calculated for the fuel 

burnt as follows:  

 

 %௘௥௥ி஻ = ௗ௔௧௔ܤܨ‖ − ௘௦௧௜௠‖ᇩᇭᇭᇭᇭᇭᇪᇭᇭᇭᇭᇭᇫ௥௘௦௜ௗ௨௔௟ܤܨ
‖ௗ௔௧௔ܤܨ‖ × 100 

(2.49) 

 

and for the horizontal distance traveled: 

 

 %௘௥௥ு೏೔ೞ೟ = ฮܪ஽௜௦௧ௗ௔௧௔ − ஽௜௦௧௘௦௧௜௠ฮᇩᇭᇭᇭᇭᇪᇭᇭᇭᇭᇫ௥௘௦௜ௗ௨௔௟ܪ
ฮܪ஽௜௦௧ௗ௔௧௔ฮ × 100 

(2.50) 
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There is no specific criteria to validate or verify an aero-propulsive model, and therefore the 

proposed flight tests were considered a success if the maximum error between the two 

models (i.e. the numerical database (AFM) and the developed APM) were found to be within ± 5% for whole flights. Harada in (HARADA et al., 2013) quantitatively studied the 

accuracy of an aircraft performance model (i.e. the BADA model) in Air Transportation 

Systems (ATS).  

 

The aero-propulsive model for the cruise regime is also evaluated in the same viewpoint 

regarding the model's verification as well the one in the climb regime. An analysis of a 

commercial aircraft during the cruise phase is described in the following sections, as part of 

the aero-propulsive model design methodology. 

 

2.2 Aero-Propulsive Cruise Model 

The cruise regime is the longest phase in flight for an aircraft. Developing an aero-propulsive 

model for this flight phase will be useful to the airlines and aircraft manufacturers, especially 

from a cost perspective. The physics involved during this flight process are described via the 

aerodynamics and propulsion parameters, and by the specific steps applied to simplify the 

mathematical model to reduce its modeling errors. These steps as parts of a new approach, 

together with its input configuration are different than those described for the climb regime. 

 

2.2.1 Aerodynamics and Propulsion Estimation 

The cruise regime, a three-degree of freedom dynamic model is characterized by the point 

variable-mass (i.e. the aircraft), by preserving a steady flight; the forces and vectors are 

illustrated in Figure 2.8.  
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Figure 2.8 The acting forces in the cruise regime 

 

Where ܸ represents the true airspeed (ܶܵܣ) or Mach number ܮ ,ܯ the lift force, ܦ the drag 

force, ܹ the aircraft weight or gross weight, and ܶ indicates the engine thrust. Considering 

the flight as symmetric, all the forces act in the plane of the aircraft’s symmetry, and the 

effects of winds are not considered. 

 

Steady flight means that the flight path angle ߛ is considered as follows: 

 

ߛ  = 0 (2.51) 

 

and velocity ܸ, as the true airspeed (ܶܵܣ) or the Mach number ܯ remains constant.  

 

Level flight is characterized by constant speed segment, with no external force, but with four 

acting forces balancing each other, as shown in Figure. 2.8.  

The forces equation in the vertical plane consists of the lift force from aircraft’s wings that 

counteract the weight force. The flight path angle assumed in equation (2.51) and applied in 

equation (2.8) gives the resulting formula: 

 

ܮ  = ܹ (2.52)

 

This formula is determined also from Figure 2.8. 
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The engine thrust (ܶ) balances the total drag (ܦ) of the airplane in the horizontal plane, in the 

following mathematical form, as shown also in Figure 2.8. 

 

 ܶ = (2.53) ܦ

 

Examining equations (2.52) or (2.53), we can declare that based on the equalities between the 

acting forces, we cannot build an aero-propulsive model with the strategy applied to the 

climb regime; a new approach is required, that is described next. 

 

Equation (2.53) replaced in equation (2.28) lead to the following relation between the fuel 

flow ݓ௙ሶ , the thrust specific fuel consumption coefficient ௦ܶ௙௖ and the drag force ܦ. 

 

௙ሶݓ  = ܶ × ௦ܶ௙௖ ≈ ௦ܶ௙௖(2.54) ܦ 

 

Equation (2.54) reveals that the fuel flow ݓ௙ሶ  is proportional to the product of the thrust 

specific fuel consumption coefficient ௦ܶ௙௖ and the drag force ܦ. Thus, the new approach is 

based on the analysis of fuel flow ݓ௙ሶ  from equation (2.54). Instead of building a model for 

each of the parameters, which define the fuel flow ݓ௙ሶ , a parametric model identification of 

the fuel flow is proposed. This approach involves a minimum of modeling errors. In order to 

identify this parametric model, the fuel flow ݓ௙ሶ , according to equations (2.27) and (2.30), 

was analyzed with respect to the altitude ℎ and aircraft speed ܶܵܣ, assuming constant gross 

weight (ܹܩ) and ISA temperature deviations (∆ܣܵܫ). We should note that at high subsonic 

speeds, the effect of compressibility must be considered, and thus, the drag coefficient is also 

dependent upon the Mach number. The fuel flow varies also with respect to the Mach 

number ܯ, and is computed by applying equation (1.24). 

According to Torenbeek, the variations of center of gravity location ݔ௖௚ have an effect on the 

drag polar, but these are generally neglected in the preliminary design (Torenbeek, 1995).  
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Figure. 2.9 presents the variation of the fuel flow from the flight data with respect to the 

altitude and speed, for a flight configuration that is characterized by a constant gross weight 

and a temperature deviation.  

 

 

Figure 2.9 Aircraft configurations in cruise flight phase 

 
The following observations can be made from Figure 2.9: 

• Fuel flow at constant speed (iso-speed) seems to behave as a quadratic function of the 

altitude, and 

• Fuel flow at constant altitude (iso-altitude) seems to behave as a quadratic function of 

the speed. 

This fuel flow variation, which acts as a quadratic polynomial can be written in the following 

form: 

 

௙ሶݓ  ,ܵܣܫ) ℎ, (ࣂ = ଵߠ + ܵܣܫଶߠ + ଷℎߠ + ଶܵܣܫସߠ + ℎ(ܵܣܫ)ହߠ + ଺ℎଶ (2.55)ߠ

 

in which the coefficients ߠ௜, ݅ = ሼ1, . . . ,6ሽ are constant parameters that must be identified to 

approximate the sampled flight data. It must be noted that in equation (2.55) the coefficients ߠ௜ are computed for a given gross weight and a temperature deviation, as mentioned. To 

extend the aero-propulsive model of the cruise phase, this methodology should be repeated 

for other combinations of the gross weight and the temperature deviation. Each of those 
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combinations is characterized by a set of coefficients. As mentioned, these coefficients must 

be identified and their values must be then stored in the look-up tables, as the flight data in 

the AFM. The linear interpolation techniques are then applied to the look-up tables to predict 

the fuel flow within the aircraft flight envelope.  

 

2.2.2 Parameter Estimation Algorithm 

The identification process allows the main parameters associated with the aero-propulsive 

model in cruise to be approximated. The Least Squares (LS) method is used to identify the 

coefficients ߠ௜, ݅ = ሼ1, . . . ,6ሽ, as the best fuel flow estimates. The method is applied to 

equation (2.55) for the inputs that are composed of a specific gross weight and the 

temperature deviation. The procedure is a gradual process, as follows: 

1. Compute the information matrix, and then 

2. Compute the inverse of the information matrix. 

The development of each of the above steps is explained below. 

 

2.2.2.1 Information matrix computation 

Taking into account that aircraft performance in cruise is stated in discrete values, the fuel 

flow is shaped up as a function of altitude ℎ and airspeed ܵܣܫ, as shown in Figure. 2.10. 

 

 

Figure 2.10 Discrete cruise trajectory of an aircraft 
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Each point of the matrix illustrated in Figure. 2.10 describes a particular flight condition, as a 

set of altitude/airspeed for a recognized aircraft fuel flow (i.e. the AFM). The grid in Figure 

2.10 is not a square grid, as the number of altitudes ܰ may differ from the number of 

airspeeds (ܯ/ܵܣܫ). 
 

The algorithm of the identification process begins by computing the information matrix, 

regarding each flight configuration (i.e. the flight test) as a set of a gross weights (ܹܩ) and a 

temperature deviation (∆ܣܵܫ). This matrix consists of independent variables matching the 

structure of the polynomial ݓ௙ሶ ,ܵܣܫ)	 ℎ,  as shown in equation (2.56). For instance, the fuel ,(ࣂ

flow ݓ௙ሶ  is modelled by a bi-quadratic polynomial, as the one presented in equation (2.55). 

Therefore, by applying it to each grid point, the ܰ  :matrix will be shaped as follows ܯ×

 

 

ሶݓ				 ௙భ = ଵߠ + ܣܫଶߠ ଵܵ + ଷℎଵߠ + ܣܫ)ସߠ ଵܵ)ଶ + ܣܫ)ହߠ ଵܵ)ℎଵ + ሶݓ					଺(ℎଵ)ଶߠ ௙మ = ଵߠ + ଶܵܣܫଶߠ + ଷℎଶߠ + ଶ(ଶܵܣܫ)ସߠ + ℎଶ(ଶܵܣܫ)ହߠ + ሶݓ																																																																									⋮																																																		=					⋮															଺(ℎଶ)ଶߠ ௙ಿ = ଵߠ + ܣܫଶߠ ଵܵ + ଷℎேߠ + ܣܫ)ସߠ ଵܵ)ଶ + ܣܫ)ହߠ ଵܵ)ℎே + ሶݓ଺(ℎே)ଶߠ ௙ಿశభ = ଵߠ + ଶܵܣܫଶߠ + ଷℎଵߠ + ଶ(ଶܵܣܫ)ସߠ + ℎଵ(ଶܵܣܫ)ହߠ + 														=					⋮଺(ℎଵ)ଶߠ 																							 ሶݓ					⋮ ௙ಿ×ಾ = ଵߠ + ெܵܣܫଶߠ + ଷℎேߠ + ଶ(ெܵܣܫ)ସߠ + ℎே(ெܵܣܫ)ହߠ + ଺(ℎே)ଶߠ
 (2.56) 

 

The matrix data ۻ௅ௌ from equation (2.56) can then be presented in the next form: 

 

௅ௌۻ  =
ێێۏ
ێێێ
ۍێ 1 ܣܫ ଵܵ ℎଵ ܣܫ ଵܵଶ ܣܫ ଵܵℎଵ ℎଵଶ1 ܣܫ ଵܵ ℎଶ ܣܫ ଵܵଶ ܣܫ ଵܵℎଶ ℎଶଶ⋮							⋮										⋮												⋮														⋮															⋮	1 ܣܫ ଵܵ ℎே ܣܫ		 ଵܵଶ ܣܫ ଵܵℎே 	ℎேଶ1	 ଶܵܣܫ ℎଵ ଶଶܵܣܫ		 ଶℎଵܵܣܫ 	ℎଵଶ⋮									⋮							 ⋮ ⋮ ⋮ ⋮			1 ெܵܣܫ ℎே ெଶܵܣܫ ெℎேܵܣܫ ℎேଶ ۑۑے

ۑۑۑ
ېۑ
 (2.57)

 
where ܰ and ܯ are the number of altitudes and airspeeds, respectively, selected for the 

model identification process. According to equation (2.57), the computation of the matrix 
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 ௅ௌ is automatically executed by a Matlab code of the parameters estimation algorithm andۻ

illustrated in Figure. 2.11. The predicted parameters are stored into a structure containing the 

independent variables of equation (2.57). 

 

2.2.2.2 The inverse of the information matrix computation 

The information matrix shown in equation (2.57) is needed to compute the Moore-Penrose 

pseudo-inverse matrix, which solves the LS problem, in order to find the estimates of fuel 

flow parameters. The Moore-Penrose method is working as long as the matrix ۻ௅ௌ is non-

singular (Jategaonkar, 2006). In order to build this pseudo-inverse matrix ࡿࡸۻற  that returns 

the ۻ௅ௌ, the proposed cruise model estimation uses the function pinv of the Matlab® 

program. This Matlab function allows to compute, fast and accurate, the Moore-Penrose 

inverse matrix, as a solution of the Linear Least Squares (LS) problem, as mentioned in 

equation (1.9). 

 

To extend the model, the complete procedure of the estimation algorithm (i.e. Figure 2.11) 

was applied to all of the identification flight tests by identifying a polynomial for each set 

containing a gross weight and a temperature deviation. The coefficients of these polynomials 

were stored and formatted into 3-D lookup tables. By applying this aero-propulsive model a 

numerical performance data was created, which is necessary to be used in the trajectory 

optimization of a commercial airplane in vertical profile. The source information comes from 

shared reference sources, some of which have the proprietary rights. To protect these sources, 

this work must be presented only in partial formats. 
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Figure 2.11 Parameter estimation algorithm for the cruise phase 

 
The propulsion model is characterized by its specific fuel consumption, in other words, by 

the fuel flow rate consumed during the cruise phase.  
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2.2.3 Cruise performance prediction 

The last phase of the cruise process analysis involves the aircraft fuel flow prediction using 

the created APM for the cruise regime. The available flight data of the Aircrafts A and B are 

described in Table 2.3. The table contains, for example for the aircraft A, four inputs, among 

which the Gross Weights ܹܩ in number of 29, seven airspeeds (7) ܵܣܫ, ten ISA temperature 

deviations ∆(10) ܣܵܫ, and one output represented by the fuel flow. The proposed 

methodology was also applied to both aircrafts when flying to the ܿܽܯℎ	(ܯ) speeds, and is 

analyzed correspondingly of the ܵܣܫ speeds’ cases. 

 

Table 2.3 Inputs and Outputs Flight data 
of the Aircrafts A and B in the Cruise phase 

 

Flight data 
of 

Phase 

Inputs 
Aircraft 

Output 
Aircraft 

A B A B 

Cruise 

Gross Weight (29) 
 
IAS (7) 
 
ISA Deviation (10) 
 
Altitude (25)

Gross Weight (26) 
 
IAS (11) 
 
ISA Deviation (9) 
 
Altitude (20)

F
ue

l f
lo

w
 

F
ue

l f
lo

w
 

 

Because the built model parameters are given for discrete values of the gross weight and the 

temperature deviation, a 2-D linear interpolation was then performed for each of the 

polynomial coefficients belonging to every identification category, in order to compute their 

values within aircraft flight envelope.  

A polynomial was proposed to model the estimated fuel flow in the cruise regime with 

respect to the altitude and the airspeed. A new structure consisting of the predicted fuel flow 

values was created in the form of lookup tables.  

A validation of the model identification, for a number of 27 flight profiles or flight tests, was 

executed for the presented inputs/output in Table 2.3. The fuel flow of the flight data was 

then interpolated into the reduced structure created during the model identification process 



72 

using the Matlab function interpn. The interpolated fuel flow values ݓ௙௜௡௧௘௥௣ were used to 

compute the percentage error of the validation of model identification using equation (2.58) 

where the residual was represented by the difference between the fuels flow data ݓ௙ௗ௔௧௔ and 

the fuel flow validation of model identification ݓ௙௩௔௟௜ௗ. 

For the other flight tests, the fuel flow ݓ௙௩௔௟௜ௗ values were interpolated inside the AFM 

structure. The fuel flow percentage error was then computed by applying formula 

corresponding to validation of the aero-propulsive model in the cruise phase, as follows: 

 

 %௪೑	௩௔௟௜ௗ = ฮݓ௙ ௗ௔௧௔௩௔௟௜ௗ − ௙ݓ ௘௦௧௜௠௩௔௟௜ௗ ฮᇩᇭᇭᇭᇭᇭᇭᇪᇭᇭᇭᇭᇭᇭᇫ௥௘௦௜ௗ௨௔௟
ฮݓ௙ ௗ௔௧௔௩௔௟௜ௗฮ × 100 

(2.58) 

 

Thus, if the maximum error between the two numerical data is less than 5%, then the flight 

test is considered successful. The model's accuracy during the cruise phase will be analyzed 

in Chapter 3.  

 

 

 

 



 

CHAPTER 3 
 
 

RESULTS AND DISCUSSIONS 

The research findings are presented here, as well as the analyses of the developed aero-

propulsive model’s reliability and of the effectiveness of the generated numerical data. These 

analyses are based on the model identification and verification procedures. The 

methodologies validation proposed in the Chapter 2 consists of comparing the parameters of 

the AFM (i.e. the numerical flight data provided by CMC Electronics Esterline) with the 

predicted numerical data using the created aircraft aero-propulsive models. 

 

3.1 Results and Discussions 

The validation of models parameters for both climb and cruise regimes are presented in this 

chapter, along with the results and discussions thereof. The accuracy of the modelled 

numerical data was verified by comparing its performances. Therefore, a comparison 

between the provided flight data (or any AFM data) and the predicted parameters, which 

have been generated using the APM, was performed in climb and cruise for both aircrafts. 

The flight tests were assigned to the following two categories: the model identification and 

the model validation. The first category had the intention to build the aero-propulsive model, 

while the second category was used to validate the obtained model. As mentioned in the 

previous chapter, not all flight configurations (tests) were used to identify the model. The 

core idea was to minimize the number of flight tests. Therefore, to minimize this number, 

these flight tests were carefully chosen according to the following three assumptions: 

1. The center of gravity does not affect the aircraft performance in climb, 

2. The variation of the gross weight and of the speed can be expressed by a quadratic 

function. In consequence, only three gross weights and three speeds were used to 

identify the climb and the cruise models. The gross weights and the speeds were 

selected for a minimum value, a middle value and a maximum of the values range. 

3. The temperature deviation ∆ܣܵܫ is piecewise linear between +30°C and −30°C of 

Aircraft A and between +30°C and −35°C of Aircraft B. 
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There is one exception from the above assumptions, which was applied to Aircraft B related 

to using the three ܿܽܯℎ speeds in cruise regime corresponding other range than the one 

evaluated for the presented cases. 

 

3.1.1 Validation of the Aero-Propulsive Model in Climb Phase 

There are two sets of output parameters for the same input parameters, which were compared 

to verify the accuracy of the modelled APM during the climb phase. The model identification 

input/output parameters are described for each of Aircrafts A and B, in Table 2.2 of the 

Chapter 2. 

 

The model identification of Aircraft A during the climb phase was carried out for 27 flight 

tests, wherein the inputs (ݔ௖௚, ,ܹܩ ,ܯ/ܣܵܫ ,ܣܵܫ∆ ℎ) were based on the above mentioned 

assumptions, and the outputs were computed in terms of the fuel burnt and the horizontal 

distance traveled (ܪ,ܤܨௗ௜௦௧) from the available flight data or the AFM data. The model 

identification of Aircraft B contains the inputs (ܹܩ, ,ܯ/ܣܵܫ ,ܣܵܫ∆ ℎ). The outputs (ܤܨௗ௔௧௔, ܪ஽௜௦௧ௗ௔௧௔) belonging to the flight tests data were sorted from the lookup tables (AFMs). The 

other set of outputs (ܤܨ௘௦௧௜௠, ܪ஽௜௦௧௘௦௧௜௠) contains the estimates of the model parameters (an 

estimation using flight data). These (inputs/outputs) as predicted parameters’ values were 

tabulated into the lookup tables (i.e. in the model’s structure) corresponding to each of the 

given flight tests. A detailed presentation of the input parameters used by the parameter 

estimation algorithm is described below in order to present the models’ validation results.  

 

The flight envelope of the Aircraft A was used in order to fulfill and complete the APM 

study in climb, by choosing a number of 2157 flight tests, which represents 99% of the total 

of 2184. The flight envelope of the Aircraft B was used in order to fulfill and complete the 

APM study in climb, by choosing a number of 1728 flight tests with ܵܣܫ speeds and 1296 

flight tests with ܿܽܯℎ speeds. 
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A total of 27 flight tests were used to validate the model identification of Aircraft A in the 

climb phase, from a total number of 2184 flight tests, i.e. only 1% of the total. The other 

2157 flight tests were used to validate the identified model in the climb regime. As 2157 is a 

high number, the validation is performed for the aircraft flight envelope.  

The model’s efficiency in climb regime is illustrated in Figures 3.1 to 3.6 and in Figures 3.7 

to 3.12. These twelve sets of results show several examples of the successful investigations 

based on three different gross weights (i.e. ܩ ଵܹ < ܩ ଶܹ < ܩ ଷܹ) and three speeds (i.e. ܣܫ ଵܵ < ଶܵܣܫ < ଵܯ	;ଷܵܣܫ < ଶܯ <  ଷ) of the speed’s range of each of both aircrafts underܯ

study. Thus, an analysis example is based on a constant speed (ܯ/ܵܣܫ), one center of 

gravity position and one ISA temperature deviation ∆ܣܵܫ	of the Aircraft A as well as the 

Aircraft B, while the simulation is performed for the three gross weights of each of the 

aircrafts. The results shown in these figures were grouped in order to emphasize the accuracy 

of the aircraft performance under investigation.  

Figure 3.1 shows the variation of the horizontal distances that were predicted and their 

relative errors with respect to the altitude, which were simulated using the lowest ܵܣܫ. The 

errors were found to be higher at lower altitudes; the relative error was computed with 

respect to the total horizontal distance traveled that is dependent on the aircraft ܹܩ. In other 

words, the relative error decreases noticeably when the aircraft is climbing, so the estimated 

model becomes much more accurate when is applied to a heavier aircraft, for ܩ ଷܹ. The APM 

data shows a very good approximation with the given flight data because of the fact their 

errors are generally under 5%; in this case a flight test is considered a success.  

Figure 3.2 shows the variation of the estimated fuel burn and its relative error with the 

altitude. Figure 3.2 also shows that during the aircraft climbing, at the higher gross weights ܩ ଷܹ, the relative errors are higher; i.e. the higher fuel burnt occurs along with the distance 

traveled, that is evident, too. Consequently, from Figure 3.2, the maximum relative error 

between the measured fuel burnt and the estimated fuel burn was found to be less than 1%. 

Therefore, the resulting model that was analyzed for the same gross weights seems to be 

much more accurate for the estimated fuel burn than the estimated horizontal distance, but 

overall good approximations were obtained.  
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Figure 3.1 Estimated Horizontal Distance of Aircraft A in Climb 
at the lowest ܵܣܫ and for three ܹܩs 

 

 

Figure 3.2 Estimated Fuel Burn of Aircraft A in Climb 
at the lowest ܵܣܫ and for three ܹܩs 

 

0 5 10 15 20 25 30 35 40 45
0

5

10

15

20

Horizontal Distance [nmi]

A
lti

tu
de

 [ ×
1,

00
0 

ft]

 

 

Flight data
APM

0 2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

5

Altitude [×1,000 ft]

R
el

at
iv

e 
er

ro
r [

%
]

 

 
GW1

GW2

GW3

GW1 GW2 GW3 

GW1 < GW2 < GW3

GW2 

GW3 

0 2 4 6 8 10 12 14 16 18 20
0

500

1000

1500

2000

Fu
el

 B
ur

n 
[K

g]

Altitude [×1,000 ft]

 

 
Flight data
APM

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

Altitude [×1,000 ft]

R
el

at
iv

e 
er

ro
r [

%
]

 

 
GW1

GW2
GW3

GW1 < GW2 < GW3

GW1 

GW2

GW3 



77 

Figures 3.3 and 3.4 were illustrated in the case of the middle speed ܵܣܫ of its range. The 

aircraft performances under these circumstances were also visualized for the estimated 

horizontal distance and the estimated fuel burn, whose accuracies were quantified by their 

errors. Those examples based on the developed model have shown that the APM data 

matched the given flight data (AFM) for all three gross weights taken in consideration. The 

relative error of the horizontal distance is less than 5%, which means that the trajectory is 

well approximated by the numerical data derived from the APM.  

Figure 3.3 shows also that when the aircraft climbs at its maximum gross weight value ܩ ଷܹ, 

the relative error is the lowest of them with respect to the altitude reached.  

Figure 3.4 shows that the maximum relative error of the fuel burn estimation is less than 1% 

for all three gross weights tested and a better prediction could be observed to the gross 

weight ܩ ଵܹ of the range studied in terms of smallest error. 

 

The performances validation continues with another example of investigation on the Aircraft 

A in climb that is performed at the highest speed ܵܣܫ on the gross weights' range, and is 

illustrated in Figures 3.5 and 3.6. Both figures prove a good prediction between the given 

flight data and predicted data (i.e. the APM). The results of their relative errors of the 

estimated horizontal distances and the fuel burn predicted with respect to the altitude have 

also showed a good estimation of the model proposed, with an accuracy less than 5% for the 

horizontal distances (Figure 3.5), and less than 1% for the fuel burn (Figure 3.6). 
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Figure 3.3 Estimated Horizontal Distance of Aircraft A in Climb 
at a middle ܵܣܫ and for three ܹܩs 

 

 

Figure 3.4 Estimated Fuel Burn of Aircraft A in Climb 
at a middle ܵܣܫ and for three ܹܩs 
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Figure 3.5 Estimated Horizontal Distance of Aircraft A 
in Climb at the highest ܵܣܫ and for three ܹܩs 

 

 

Figure 3.6 Estimated Fuel Burn of Aircraft A in Climb 
at the highest ܵܣܫ and for three ܹܩs 
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A graphical validation of the identified model for the Aircraft B in climb regime is further 

illustrated in the same way as for the Aircraft A. The following Figures 3.7 to 3.12 illustrate 

the accuracy of its APM. Other several examples of three simulation’s cases were performed 

on its aircraft' gross weights (i.e. the minimum, the middle and the maximum of value) for 

each of the three ܵܣܫ speeds. 

 

A flight configuration which has to validate the APM data against the flight data (AFM) of 

the Aircraft B contains as the previous ones: the airspeed ܵܣܫ (i.e. taking the minimum 

medium and eventually maximum speed), the ISA temperature deviations ∆ܣܵܫ, the altitudes 

and is analyzed for the three gross weights as mentioned. The following six figures 

demonstrate how well the estimated model is fitting the flight data for the Aircraft B.  

 

Figure 3.7 illustrates that the horizontal distance' predictions with respect to the altitudes are 

matching very well the given experimental data. They are tested for three of the gross 

weights and at the speed that corresponds to the lowest value of the flight speed in climb. The 

relative error of the horizontal distance is higher at lower altitudes because is computed with 

respect to the total distance traveled. Generally, these relative errors are less than 2%, 

meaning the horizontal trajectory is well approximated by the derived numerical data of the 

Aircraft B. The highest error is 5% for the gross weight ܩ ଵܹ and occurs at 2000ft.  

 

Figure 3.8 shows that the maximum prediction errors between the estimated fuel burn and the 

fuel burnt belonging of the flight data are less than 1%. Therefore, we could declare that the 

numerical data obtained from this APM demonstrate a good fit with the experimental data for 

this research.  

 

 



81 

 

Figure 3.7 Estimated Horizontal Distance of Aircraft B in Climb 
at the lowest ܵܣܫ and for three ܹܩs 

 

 

Figure 3.8 Estimated Fuel Burn of Aircraft B in Climb 
at the lowest ܵܣܫ and for three ܹܩs 
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The validation analysis continues with the case when the speed (ܵܣܫ) is chosen at its middle 

value from the flight envelope. This case is described into Figure 3.9 where a validation of 

the horizontal distances estimated against the one from the flight data was performed. Indeed, 

as shown in Figure 3.9, there is a very good match between the predicted and the 

experimental data for the horizontal distance traveled with the altitude. 

 

For the simulation case at middle speed value, the horizontal distance was well estimated. 

The relative errors of the horizontal distance are less than 3%, and are almost all under 2% 

for the altitudes higher than 5000ft. Therefore, even if the aircraft travels more in terms of its 

horizontal distance, the predicted model, for this case, does not change too much in accuracy.  

 

Figure 3.10 describes the results obtained in terms of aircraft fuel burn estimation that was 

tested for a middle speed (ܵܣܫ) of the range. The estimated data for the three gross weights 

investigated demonstrate also that a good fit of the given flight data, with errors of less than 

1% is obtained. For the flight configuration chosen and illustrated in Figure 3.10, when the 

gross weight is at the middle ܩ ଶܹ of their range, it can be noted that their errors are 

decreasing with increasing in the altitude. And so, the model is more predictable than for the 

lowest ܩ ଵܹ, for example.  
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Figure 3.9 Estimated Horizontal Distance of Aircraft B in Climb 
at a middle ܵܣܫ and for three ܹܩs 

 

 

Figure 3.10 Estimated Fuel Burn of Aircraft B in Climb 
at a middle ܵܣܫ and for three ܹܩs 
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The results in the climb regime of the proposed methodology for the Aircraft B are shown 

next in two validation examples of the horizontal distance and of the fuel burnt when the 

aircraft flies at maximum ܵܣܫ, and for three aircraft’ gross weights. These results are 

illustrated in Figures 3.11 and 3.12 and demonstrate that the proposed methodology gives a 

good fit between the horizontal distances of the available flight data and the predicted 

horizontal distances traveled, as well as for the fuel burnt estimation. The relative error is less 

than 5% for the horizontal distance (Figure 3.11), and the relative errors remain almost under 

2% along the investigation for the fuel burnt (Figure 3.12).  

 

The fuel burnt prediction when the aircraft flies with their middle and maximum gross 

weights is better with increasing in altitude. That means that once the aircraft begins to reach 

higher altitudes (e.g. above 5000ft), the proposed model is much more efficient, especially 

for the highest gross weight of its range (where the relative errors are the lowest). 

 

 

Figure 3.11 Estimated Horizontal Distance of Aircraft B 
in Climb at the highest ܵܣܫ and for three ܹܩs 
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Figure 3.12 Estimated Fuel Burn of Aircraft B in Climb 
at the highest ܵܣܫ and for three ܹܩs 
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speeds, respectively. When the maximum error between the experimental numerical data and 

the predicted numerical data was less than 5%, then the flight test was considered to be goal 

reached. Figure 3.13 shows that the relative errors of the estimated fuel flow of the Aircraft A 

for all the examples performed at the three ܵܣܫ speeds are smaller than 2%. Figure 3.13 also 

demonstrates that the best prediction is for the case of minimum ܣܫ) ܵܣܫ ଵܵ) and the 

minimum ܩ) ܹܩ ଵܹ).  

 

Figure 3.14 shows that for the middle ܹܩ value chosen, the estimated fuel flow has relative 

errors smaller than 1.5% for all speeds.  

Figure 3.15 describes the case of the Aircraft A that flies with its maximum ܹܩ and for the 

smallest ܵܣܫ. For this configuration, and over 8000ft, there are no flight data for this region 

of airplane flight envelope. The relative errors are smaller than 1.5%. 

 

 

Figure 3.13 Estimated Fuel Flow of Aircraft A in Cruise 
at minimum ܹܩ and for three ܵܣܫs 
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Figure 3.14 Estimated Fuel Flow of Aircraft A in Cruise 
at a middle ܹܩ and for three ܵܣܫs 

 

 

Figure 3.15 Estimated Fuel Flow of Aircraft A in Cruise 
at maximum ܹܩ and for three ܵܣܫs 
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The estimated fuel flow model of the Aircraft A is further validated for three ܿܽܯℎ speeds, 

and to the minimum, medium and maximum values of gross weights. The results are 

illustrated in Figures 3.16 to 3.18. These figures show good approximation of the fuel flow 

between the flight data and the APM data, with the relative errors under 2%. For altitudes 

lower than 13,000ft, demonstrates that the flight test data are zeros, which means that the 

aircraft cannot fly at ܿܽܯℎ speeds under these circumstances. The developed APM in cruise 

is not a physical model as mentioned in Chapter 2, and there is no information about 

engine(s) for none of the aircrafts studied; therefore the speed curves are just fitting curves, 

reason for which they have the shapes shown in Figures 3.17 and 3.18. 

 

 

Figure 3.16 Estimated Fuel Flow of Aircraft A in Cruise 
at minimum ܹܩ and for three ܿܽܯℎ speeds 
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Figure 3.17 Estimation Fuel Flow of Aircraft A in Cruise 
at middle ܹܩ and for three ܿܽܯℎ speeds 

 

 

Figure 3.18 Estimation Fuel Flow of Aircraft A in Cruise 
at maximum ܹܩ and for three ܿܽܯℎ speeds 

 

0 5 10 15 20 25 30 35 40
3000

4000

5000

6000

7000

Altitude [×1,000 ft]

Fu
el

 fl
ow

 [K
g/

h]

 

 

Flight data
APM

5 10 15 20 25 30 35 40
0

0.5

1

1.5

2

Altitude [×1,000 ft]

R
el

at
iv

e 
E

rro
r [

%
]

 

 

IAS1

IAS2

IAS3

M1 M2 
M3 

M1 

M2 

M3 

M2

M3 

M1 < M2 < M3

0 5 10 15 20 25 30 35 40
5000

6000

7000

8000

Altitude [×1,000 ft]

Fu
el

 fl
ow

 [K
g/

h]

 

 

Flight data
APM

5 10 15 20 25 30 35 40
0

0.5

1

Altitude [×1,000 ft]

R
el

at
iv

e 
E

rro
r [

%
]

 

 

IAS1

IAS2

IAS3

M1 M2 

M3 

M1

M2 

M3 

M1 < M2 < M3 

M2 

M1 



90 

The validation of the created APM in cruise is sustained by several examples illustrated in 

Figures 3.19 to 3.21 for three ܵܣܫ speeds, and in Figures 3.22 to 3.24 for three ܿܽܯℎ speeds; 

each set of cases was analyzed for three gross weights (minimum, middle and maximum). 

The first example of the first case analyzes the estimated fuel flow in cruise regime at its 

minimum gross weight. 

Figure 3.19 illustrates that for each of three ܵܣܫ speeds, a good fit between the flight data and 

the APM data was obtained. The fuel flow relative errors are less than 0.5% when the aircraft 

flies at the minimum ܵܣܫ	and the middle ܵܣܫ, while when these errors are less than 3% at the 

maximum ܵܣܫ. The verification of the model continues with the example of the fuel flow 

prediction at middle gross weight, which is illustrated in Figure 3.20, and where the relative 

errors are smaller than 2.5%, and so demonstrating a good prediction, too. Another analysis 

in terms of gross weights at its maximum limit is represented in Figure 3.21. The fuel flow 

given by flight test data is better approximated by the proposed methodology in this case, 

when the aircraft performance in cruise has been predicted with errors that are lower of 2%.  

 

 

Figure 3.19 Estimated Fuel Flow of Aircraft B in Cruise 
at minimum ܹܩ and for three ܵܣܫs 
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Figure 3.20 Estimated Fuel Flow of Aircraft B in Cruise 
at middle ܹܩ and for three ܵܣܫs 

 

 

Figure 3.21 Estimated Fuel Flow of Aircraft B in Cruise 
at maximum ܹܩ and for three ܵܣܫs 
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The second case analyzes the estimated fuel flow of the Aircraft B in cruise regime for an 

evaluation at three specific ܿܽܯℎ speeds. The prediction of fuel flow is verified at minimum 

gross weight and is pictured in Figure 3.22, followed by the example when the predicted fuel 

flow is evaluated at middle gross weight and illustrated in Figure 3.23, and finally this 

estimation is validated at maximum gross weight and is shown in Figure 3.24. The relative 

errors are less than 1% for all three examples, which means that the model gives a good 

prediction to the available flight data. Also, these figures demonstrate that the aircraft cannot 

fly at the maximum ܿܽܯℎ speed ܯଷ for any of the gross weights at altitudes lower than 

14,000ft. 

 

 

Figure 3.22 Estimated Fuel Flow of Aircraft B in Cruise 
at minimum ܹܩ and for three ܿܽܯℎ speeds 
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Figure 3.23 Estimated Fuel Flow of Aircraft B in Cruise 
at middle ܹܩ and for three ܿܽܯℎ speeds 

 

 

Figure 3.24 Estimated Fuel Flow of Aircraft B in Cruise 
at maximum ܹܩ and for three ܿܽܯℎ speeds 
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A similar analysis to the examples illustrated in Figures 3.1 to 3.6 was extended for a total of 

2184/2107-flight tests of Aircraft A, in the climb regime. The success ratio and the number 

of flight tests performed for both identification and validation models in the climb regime for 

Aircraft A are presented in Table 3.1. Both the identification and the validation of the 

resulting model were executed for the ܿܽܯ/ܵܣܫℎ speeds (e.g. Table 2.2). The model 

identification in the climb procedure shown in Table 3.1 gives an excellent prediction of 

100% of the performances, for ܪ஽௜௦௧ and ܤܨ, for the ܵܣܫ speeds. A number of 27 flight tests 

were also performed for the ܿܽܯℎ speed in the model identification process and gave a 

success of 93% for both climb performances. For the rest of the flight tests (i.e. 2080 flight 

tests) that were used for the validation model process a success ratio of 86% for ܪ஽௜௦௧ and of 

74% for ܤܨ were obtained. 

 

Table 3.1 Success ratios and number of flight tests 
in the Climb regime for Aircraft A 

 

Flight Test 
Category 

Number 
of 

flight tests 

% 
 of 

total 
flight 
tests 

Climb 
Performances 

Aircraft A 

Success ratio 
(%) 

IAS Mach IAS Mach 

Identification 27 27 1.24 

Horizontal 
Distance (ܪ஽௜௦௧) 
Fuel Burn (ܤܨ) 100 

100 

92.86 

92.86 

Validation 2157 2080 98.76 

Horizontal 
Distance (ܪ஽௜௦௧) 
Fuel Burn (ܤܨ) 99.62 

99.86 

85.83 

74.07 

 

The verifications for the Aircraft B in the climb regime in terms of relative errors, as 

analyzed in Figures 3.7 to 3.12 were repeated for a total number of 1755 flight tests for the ܵܣܫ. These flight tests were divided, so that most of them were performed for the model 

validation. Both identification and validation processes were performed for the ܵܣܫ and ܿܽܯℎ speeds and their success ratios are summarized in Table 3.2. It should be noted that for 

the identification model process, for 1.24% of the total flight tests used, a success rate of 
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100% was reached for ܵܣܫ speeds, while a success rate of 96% was reached for ܿܽܯℎ 

speeds; 1.56% or 27 flight tests of the total flight tests was used, for both ܿܽܯ/ܵܣܫℎ speeds. 

The rest (98.44% of the total flight tests or 1728/1296 flight tests) of flight tests were used 

for the validation of the predicted model, and the results were not as good as those success 

ratios of the model identification because the experimental data contained plenty of zeros 

meaning that the airplane could not fly in those zones. This has a negatively influence on the 

horizontal distance results performance. In Table 3.2 a success rate of 78% was obtained for 

the horizontal distance and around 93% was obtained for the fuel burnt when the flight tests 

were performed at the ܵܣܫ speeds. For the case when the airplane flies with the ܿܽܯℎ speed, 

a total number of 1323 flight tests were used from which 27 flight tests took place for model 

identification, and 1296 flight tests (i.e. 98 % of the total flight tests) took place for the model 

validation. The success ratios of each of the flight test categories were obtained with a 

success of 96% for model identification and of 55%, and 59% respectively for model 

validation. 

 
Table 3.2 Success ratios and number of flight tests 

in the Climb regime for Aircraft B 
 

Flight Test 
Category	

Number 
of 

flight tests

% 
of 

total 
flight 
tests

Climb 
Performances 

Aircraft B

Success ratio  
(%)

IAS Mach IAS	 Mach

Identification	 27 27 1.56

HorizontalDistance Fuel	(஽௜௦௧ܪ) Burn (ܤܨ) 100	
100	 95.83

96.30

Validation	 1728 1296 98.44
HorizontalDistance Fuel (஽௜௦௧ܪ) Burn  77.94 (ܤܨ)

92.55 

55.43 

58.79 

 

Overall, these percentages are reasonable for both aircrafts under investigation. These 

positive results indicate that manufacturers could eliminate approximately 99% of flight tests 

in the climb regime, by making substantial financial savings, as seen on the 2nd row of Table 

3.1 and of Table 3.2, for the two aircrafts of commercial class. The model designed for this 
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flight phase has created the numerical data with an acceptable degree of accuracy, to the 

extent that it can now be adapted for its application to other commercial aircraft. 

 

The simulation for the Aircraft A model’ identification in the cruise regime was executed for 

a number of 675 flight tests. The success ratio for the aero-propulsive model in the cruise 

phase indicates that the designed model could bring significant economies to the aircraft 

manufacturers close to 99% of flight tests costs, as presented by the 2nd row of Table 3.3. 

 

Table 3.3 Success ratios and number of flight tests 
in Cruise regime of Aircraft A 

 

Flight Test 
Category	

Number 
of 

flight tests 

% 
of 

total 
flight 
tests

Cruise 
Performances 

Aircraft A

Success ratio  
(%)	

IAS Mach IAS Mach	
Identification	 675 675	 1.33 Fuel flow ൫ݓ௙ ൯ 100 96.30	

Validation	 50,750 79,750 98.67 Fuel flow ൫ݓ௙ ൯ 96.61 94.93 

 

The required performance for the Aircraft A is described in Table 3.3, and shows a very good 

conformity between the fuel flow flight data and the predicted fuel flow ൫ݓ௙൯. The estimated 

fuel flow was achieved, for the model identification and validation with respect to flight tests 

data with 100% and 96.61% accuracy for the ܵܣܫ speeds, and with 96% and 95% accuracy 

for the identification and validation processes due to investigations at ܿܽܯℎ speeds. 

Additionally, the model in cruise has been applied to the Aircraft B and the results are 

presented in Table 3.4, these results have also a good accuracy.  
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Table 3.4 Success ratios and number of flight tests 
in Cruise regime of Aircraft B 

 

Flight Test 
Category 

Number 
of 

flight tests

% 
of 

 total 
flight 
 tests 

Cruise 
Performances 

Aircraft B 

Success ratio  
(%) 

IAS Mach IAS Mach 

Identification 540 540 1.05 Fuel flow ൫ݓ௙ ൯ 100 92.59 

Validation 51,480 46,800 98.95 Fuel flow ൫ݓ௙ ൯ 100 86.75 

 

These positive results indicate the fact that this aero-propulsive model inserted into a FMS 

application could reduce almost 99% of the required number of flight tests needed to achieve 

accurate numerical data, during the cruise phase, thereby realizing significant savings, and 

therefore advantageous for commercial aircraft designers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 



 

CONCLUSION AND RECOMMENDATIONS 

 

Aerospace industries are still seeking to improve the solutions that have already been 

implemented in the commercial aviation sector to reduce the industry’s environmental 

impact. Advances in the design and technology of aircraft and engine models have improved 

the efficiency of Air Traffic Control (ATC) decisions, while remaining within airworthiness 

rules. The efficiency of those decisions is also dependent upon by the Air Traffic 

Management Systems (ATMs) and Flight Management systems (FMSs), whose reference 

source is a performance database accessed by both the aircraft manufacturers and by their 

collaborators or subcontractors. Usually, the aircraft manufacturer provides to his 

collaborators, in addition to aircraft flight manual, the software and/or the performance 

database, as tools with which the aircraft was designed and built. However, there are some 

obstacles that limit direct collaboration with the aircraft manufacturer; one such obstacle is 

that the performance database represents its Intellectual Property (IP). Another difficulty, in 

terms of the direct use of this product is linked to the limited capacity of the FMSs 

applications for processing information. It is known in the literature that an FMS application 

uses a set of look-up tables that contains an experimental database of a particular airplane. 

This database is playing an essential role in trajectory’ optimization algorithms. But, solving 

the flight’s trajectory problems allows better prediction of an aircraft’s flight plan in terms of 

safety, efficiency and environmental consequences. The performances of systems 

applications (i.e. ATMs and FMSs) are influenced by the accuracy of the created 

mathematical models for their operational needs. There are few aircraft performance models 

for ATM-FMS applications, and even fewer, that refer to an aero-propulsive model built for 

climb flight, by using the inverse engineering problem. 

In fact, there are no aero-propulsive models created, without access to engine(s) data, for 

commercial airplanes in the climb and cruise flight, and by their use, to solve flight trajectory 

optimization problems. This research aims to fill up this gap of the domain. The research 

problem concerns the generation of numerical databases, for a commercial airliner, that relies 

on the aero-propulsive models, which describe the airplane in the climb and cruise phases.  
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An aircraft is a complex dynamic system based on others systems. The performance of each 

system must be described through a mathematical model. Therefore, the traditional approach 

widely used in the aerospace industry was to apply the system identification theory, with the 

goal to find a crude approximation of each of studied systems performances. To solve this 

research problem, a new methodology to build an aero-propulsive model in accordance to 

each of two flight regimes (climb and cruise) has been done. 

 

Description of thesis chapters 

 
This research thesis was structured in three major chapters covering the background topic, a 

complete methodology, the results that have shown the degree of success of the argued 

methodology and recommendations needed for further work. An overview of each of these 

chapters is presented as follows.  

 

Chapter 1 has began with an introduction in which this research topic was explored in a 

global context regarding fuel reduction with implications in the control and management of 

the emissions, and the motivation besides the contribution of this research in solving this 

problem. The research problem has dealt serious and important environmental issues, since 

the distance traveled as well as the fuel consumption have been seen as potential time and 

money savings that could have positive implications for our ecosystem. The originality of the 

research is also supported by the fact that the models investigated and the numerical 

databases produced, to predict the optimal flight planning, were both accurately realized with 

the least possible flight data access and for a minimal number of flight tests; a unique and 

valuable addition is thus brought to the investigations improvement in the aerospace area. 

The chapter ends by presenting the research problem, which has been directed to two main 

objectives (i.e. identifying an APM and generating a numerical database derived from the 

identified APM), which have to answer this research question (i.e. identifying an APM of a 

commercial aircraft from available flight test data, that generates a numerical database which 

contains the estimated performances in climb and cruise regimes).  

By definition, an aero-propulsive model (APM) was represented by an aerodynamic 

performance model and an engine performance model, with multiple inputs and outputs. 
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The methodology developed in the Chapter 2 responds to both research questions by (a) the 

design of two mathematical models for climb and cruise regimes, utilizing the numerical 

databases of two commercial aircrafts, provided by our research partner, and (b) the 

conception of the numerical databases derived from the resulting models.  

To answer to the first research question, this methodology recommends the application of 

system identification theory to a dynamic system (i.e. the aircraft) within specific 

assumptions for climb and cruise regimes. These models were subjected to common 

assumptions, for each flight test, such as wind-free, operational engine(s), and the constant 

Indicated Air Speeds and Mach speeds.  

For an aircraft flight in the vertical plane, the assumptions are: 

1. An aircraft is considered as a rigid body in an inertial reference frame; 

2. A set of equations, which describes the aircraft longitudinal motion, is also subject to 

aerodynamic forces (i.e., the drag and lift), propulsive forces (i.e., the thrust) and 

gravitational forces (i.e., the weight); thus a physical model is expressed by its flight 

dynamics equations (e.g., in the climb regime). The physical model was modified to 

best present the aircraft motion corresponding to the climb phase. 

 

More exactly, the specific identification methods were applied to the linear (i.e. used for the 

cruise regime) and non-linear models (i.e. used for the climb regime), which are 

mathematically represented by several functions that describe the relationships between the 

aircraft's parameters under investigation. These mathematical functions of the airplane's 

behavior in the climb and cruise regimes were based on the inputs and outputs measurements 

of a “black box” model (i.e. the given numerical database or the AFM structures). The inputs 

of the given flight data (e.g. the measured parameters by the onboard aircraft instruments) 

consist of the parameters describing the behaviour of the aircraft in the climb such as the 

gross weights, the center of gravity positions (only in the climb phase), the speeds (i.e. ܵܣܫ 

and ܿܽܯℎ), the ISA temperature deviation and the altitudes, while the outputs of the given 

flight data correspond to the horizontal distance traveled and the fuel burned as the climb 

performances and to the fuel flow as the cruise performance. The inputs and outputs may 

differ for another aircraft, but their structure should remain similar to that found in any 
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aircraft flight manual (AFM). However, this methodology can be no doubt applied for the 

design of other aircraft performance models.  

This proposed aero-propulsive model relies on two estimation algorithms, corresponding to 

each flight regime studied, climb and cruise. According to the identification system principle, 

each estimation algorithm received the residuals (i.e. the model error), and produced an 

update on the parameters defining the mathematical model. The aim of each of these 

estimation algorithms was to find that set of parameters for which the difference between the 

outputs observed and predicted output was minimal. The prediction error (PE) method and 

the least square (LS) method were the two methods used in this study for the aircraft’ 

parameter estimation algorithms. 

 

The model identification procedure in the climb regime was performed in two steps. The first 

step has consisted in the computation of the rate of climb based on the available flight data or 

the AFM data. In the second step of the model identification few crude approximations of the 

parameters of the physical model have been chosen, and all the other necessary computations 

to it were emphasized through a parameter estimation algorithm. In the climb estimation 

algorithm, the prediction error (PE) method was applied, in order to estimate the output 

parameters of a non-linear function that minimize the sum of squared errors (i.e. the 

residuals) between the measured (i.e. the measured aircraft parameters) output and the 

predicted (i.e. the identified model parameters) output. The climb performance estimates 

were then optimized to find their local minima as unique solutions. An optimization routine 

based on the simplex search algorithm (Nelder-Mead method) was chosen to adjust a set of 

three variables (ܥ஽௠௜௡, ݁, ܶ) in order to minimize the sum of squared modeling errors. The 

climb estimation' error was expressed by the difference between the estimated rate of climb 

and the rate of climb computed. However, the mathematical model is automatically fed with 

these optimized parameters.  

The specific fuel consumption was then computed, based on the optimal values of the engine 

thrust and rate of climb, and the available fuel burnt for each of the altitude climb sub-

segments. 
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The obtained equation of the rate of climb ℎሶ  is essential for a specific flight condition, 

because it involves the aero-propulsive forces performance. The difference between the two 

aero-propulsive forces (i.e. the thrust ܶ and the drag ܦ forces) could then be calculated, in 

order to obtain the first estimate of the rate of climb. On the other hand, if each of these 

forces ܶ and ܦ is known, then the climb performance could be estimated.  

For each flight test corresponding to the model identification procedure, the thrust force ܶ, 

the specific fuel consumption ௦ܶ௙௖ and the difference (ܶ −  between the thrust and the (ܦ

drag forces were tabulated and formatted into different 4-D (i.e. the altitude, the speed, the 

gross weight, the temperature deviation) look-up tables (used by the FMS applications).  

The methodology used for climb ends with the aircraft trajectory prediction using the aero-

propulsive model (APM). The horizontal distance traveled and the fuel burn are the two 

needed parameters used to predict the aircraft trajectory and its performance for each specific 

flight configuration. Thereafter, the horizontal distance traveled and the fuel burn were 

determined using an “Euler integration technique”. 

 

For the cruise model, a new approach was proposed for the case, when the aircraft’ behaviour 

cannot be represented by a physical model. A parameterization of the fuel flow to identify its 

model has been used instead of finding approximate representations for each of its 

parameters (i.e. the thrust specific fuel consumption coefficient and the drag force) that are 

defining it. An engine fuel flow analysis with respect to the altitude and the speed revealed 

that the fuel flow behaves as a bi-quadratic function. These coefficients were identified to 

best approximate a flight test data.  

In the cruise estimation algorithm, the Least Squares (LS) method was also used to compute 

the residuals between the measured and the estimated parameters. 

The estimated parameters of the identified model for the climb or cruise were then tabulated 

into look-up tables in order to allow an interpolation within each flight envelope of each of 

the aircrafts. A 4-D linear interpolation was performed into the look-up tables for each of 

these parameters in order to extend the aircraft flight trajectory within its flight envelope. 
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The flight tests corresponding to one investigated flight phase (climb or cruise) were divided 

such that some of tests were used in the model identification process, and the most of them 

were assigned to the model validation process. 

 

Chapter 3 describes the research findings and assesses the reliability of the aero-propulsive 

models in climb and cruise regimes for two aircrafts of the commercial class. The results and 

the discussions were based on the validation of the proposed methodologies needed to 

develop the aero-propulsive models in the climb and cruise regimes, and show how well 

these models have approximated the available flight data. The model validation consisted on 

the analogy between the real flight data acquired and provided by our research partner, and 

the predicted numerical data based on our suggested methodology. Predicted performances of 

the aero-propulsive models were verified using different flight tests for the validation process 

than the ones used in the identification process. Therefore, a very small percentage (%) of the 

total flight tests number was attributed to the identification model compared to the validation 

model, in order to minimize the number of the flight tests, and thus their costs. The number 

of flight tests used in the identification process was chosen as around 1% of their total 

number of flight tests in the climb regime for Aircraft A, while the rest of these flight tests of 

99% of their total were used for validation purposes.  

Savings of almost 99% in flight tests, for Aircraft A, sustain the effectiveness of the model 

identification with 100% accuracy in climb phase, for the total distance traveled and fuel 

burn, at constant ܵܣܫ. The validation of the climb model has 99.62% for the total distance 

traveled and 99.86% success ratio for the fuel burnt when the aircraft flies at constant ܵܣܫ.  

For the simulation performed at a ܿܽܯℎ speed constant, a good accuracy was obtained for 

the model identification (i.e. 93%) for both climb performances analysed. While, 86% 

success ratio for the horizontal distance traveled and 74% success ratio for the fuel burnt 

were obtained for the validation of the identified model; the reason is that the supplied flight 

data contain flight regions to which the aircraft is not intended to fly.  

The methodology was also verified for the Aircraft B in the climb regime; an accuracy of 

100% was obtained for both performances (ܪ஽௜௦௧, ܤܨ) of the model identification case where 

1.56% of the total flight tests were performed at ܵܣܫ speeds. 
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For the validation, when 98.44% of the total of the flight tests were used, accuracy of 78% 

was obtained for the horizontal distance, and 93% for the fuel burnt. A success ratio of 96% 

was achieved for both climb performances (ܪ஽௜௦௧, ܤܨ) at ܿܽܯℎ speeds in the model 

identification process, while for the validation of the identified model, only 55% for the 

horizontal distance traveled and 59% for the fuel burnt consumption were obtained. 

In cruise regime for the Aircraft A were obtained the following accuracies for the model 

identification process performed with only 1.33% of the total of the flight tests: 100% fuel 

flow at constant ܵܣܫ and 96.30% at constant ܿܽܯℎ speeds. While, for the model validation 

process, the simulation results have shown also a good cruise performance (i.e. the fuel 

burnt) accuracy, which is of 96.61% at constant ܵܣܫ, and of 94.93% at constant ܿܽܯℎ. 

The model’s methodology in cruise was also verified for an Aircraft B and again a good 

accuracy of 100% was found at ܵܣܫ speeds for both identification and validation processes, 

and 92.59% and 86.75% were obtained as success ratios in model identification, respectively 

in the model validation at ܿܽܯℎ speeds.  

The cruise regime was considered to be the most efficient, economically speaking, thus these 

results have emphasized that this aero-propulsive model that was tested for two commercial 

aircrafts A and B, it can be seen as a valid and reliable economic alternative solution for any 

FMS providers. As already mentioned, the literature did not impose a special criterion 

regarding the accuracy degree of a numerical database generated using this type of model. 

However, in this research thesis, we considered that the model was reliably predicted within 

a maximum errors range of 5%. Additionally, its effectiveness is sustained by the fact that 

the numerical databases derived from these models can be used in the trajectory optimization 

of FMS applications. Consequently, this aero-propulsive model applied as the simulation 

(Matlab script) tool in ATM-FMS applications will improve the global efficiency of 

commercial aircraft. 

Therefore, the designed methodology responds very well to the addressed research questions 

by creating these models in the climb and cruise phases, whose numerical databases derived 

have experimentally have shown an excellent accuracy of 100% for both aircrafts A and B 

studied at the ܵܣܫ speeds. 
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Recommendations 

 
The flight trajectory prediction could further be improved, and thus an optimal and safer 

flight trajectory could be obtained by adding the wind effect and the weather data as a 

complement to this aero-propulsive model in the climb and cruise regimes.  

 

The methodologies suggested in this research thesis can be applied for the development of 

other numerical databases that correspond to the descent, acceleration and deceleration 

phases; the wind, thus the weather effects could also be taken in consideration.  

The numerical databases generated from these aero-propulsive models might be further used 

in the flight trajectory optimization of any commercial airplane. All of them are intended for 

the full characterization of a commercial aircraft flight (of all the flight regimes).  

 

An analysis between the aero-propulsive model and the BADA model can be also considered 

part of a future research. The results and recommendations of this study are addressed to the 

aeronautical research community, consisted of students and researchers, as well as of 

aeronautical engineers. 
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