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ANALYSE DES COALITIONS DANS LES RÉSEAUX HÉTÉROGÈNES SANS FIL ET
LEURS ASPECTS ÉCONOMIQUES

Behdad Heidarpour

RÉSUMÉ

L’investissement massif qui est essentiel à la mise en œuvre d’un vaste réseau sans fil est l’un

des principaux obstacles qui empêche les fournisseurs de services d’offrir des services de don-

nées plus abordables. De plus, l’évolution rapide des technologies sans fil nécessite des mises à

jour fréquentes de matériels et de logiciels qui entraînent des dépenses d’investissement et des

coûts d’exploitation plus élevés pour le fournisseur et, par la suite, des plans de données plus

coûteux pour les utilisateurs finaux. L’application des stratégies de tarification sous-optimales

dans le marché sans fil actuel, qui ne tient pas compte des accords de niveau de service et oblige

les utilisateurs à payer pour la connectivité au réseau et le transfert de données est une autre

raison de diminuer la satisfaction globale des abonnés. Considérant les raisons mentionnées,

nos objectifs dans cette thèse sont d’étudier des méthodes de tarification appropriée basées

sur la réalité du marché actuel et d’envisager des options alternatives qui peuvent réduire les

coûts de service des fournisseurs des réseaux sans fil. Nous étudions la tarification basée sur le

volume qui est la méthode dominante dans les réseaux cellulaires de nos jours. Nous retirons

les paramètres optimaux du plan de données tels que le plafond de volume des données, le

prix et le débit de données. Considérant des possibilités de réduction des coûts, nous prou-

vons qu’une coalition de fournisseurs dans laquelle ils peuvent servir leurs utilisateurs mutuels

est une alternative valable pour réduire les coûts de mise en œuvre des réseaux en expansion.

Nous construisons notre analyse en appuyant sur la coopération entre fournisseurs hétérogènes

et considérons l’hétérogénéité tant dans les aspects technologiques que dans les services. Nous

évitons les modèles qui considèrent une coalition entre tous les prestataires qui constitue un

monopole et qui est interdite par les entités réglementaires. Par conséquent, nous étudions

les modèles de structures coalitionnelles qui incluent plusieurs ensembles de fournisseurs. De

cette façon, les utilisateurs ont la possibilité de choisir leur plan de données en fonction du ser-

vice offert par un ensemble de fournisseurs coalisés qui peuvent avoir différentes technologies

dans leur réseau d’accès. En ce qui concerne les réseaux hétérogènes axés sur le service, nous

suivons les directions des paiements des fournisseurs de contenus (FdC) vers les fournisseurs

de services (FdS) et finalement vers les utilisateurs finaux et essayons de le modifier en fonc-

tion de l’équité sociale. Pour ce faire, nous analysons plusieurs types de contenus basés sur les

modèles d’utilisation des abonnés et trouvons ceux qui peuvent être offerts avec une méthode

de tarification différente sans entraîner de perte de profit pour les FdC ou les FdS. Notre ob-

jectif est d’établir un cadre de coalition entre les FdC et les FdS qui mène à un accès illimité

et gratuit à certains types de contenus. Nous montrons que de tels accords, si correctement

établis, peuvent accroître le bénéfice des FdC et FdS. Tout au long de cette thèse, les modèles

analytiques sont vérifiés avec des exemples numériques qui sont conçus pour simuler les scé-

narios du monde réel.



X

Mots clés: Réseau sans fil, Coalition, Fournisseur de contenu, Neutralité du réseau, Four-

nisseur de service, Économie des réseaux, Théorie des jeux



ANALYZING COALITIONS IN WIRELESS HETEROGENEOUS NETWORKS AND
THEIR ECONOMIC ASPECTS

Behdad Heidarpour

ABSTRACT

The massive investment that is essential to implement a large area wireless network is one of the

significant roadblocks that stops service providers from offering more affordable data services.

The fact that the fast evolution of wireless technologies requires frequent updates of hardware

and software also leads to higher capital expenditure and operation costs for the providers and

subsequently to more expensive data plans for the end users. The implementation of sub-

optimal pricing schemes in today’s wireless market, which does not consider service level

agreements and forces users to pay for both network connectivity and data transfer, is another

reason to decrease the overall satisfaction of subscribers. In view of these issues our objective

in this thesis is to study the proper pricing methods based on the reality of current market as

well as to consider alternative options that can reduce the service costs of wireless providers are

our objectives. We study the volume-based pricing which is the dominant method in cellular

networks nowadays. We derive the optimal data plan parameters such as the data volume cap,

price, and data rate. Considering the cost-reduction possibilities, we prove that a coalition of

providers in which they can serve users of each other is a valid alternative that reduces the

implementation costs of network expansion. We build our analysis based on the cooperation

between heterogeneous providers and we consider the heterogeneity in both technology and

service aspects. We avoid the models which consider a coalition of all providers since it forms

a monopoly and is prohibited by regulatory entities. Hence, we study models of coalitional

structures that include several sets of providers. In this way, users have the option to select

their data plan based on the service offered by a coalitional set of providers that can have

different technologies in their access network. Concerning the service-oriented heterogeneous

networks, we track the directions of payments from the content providers (CP) to the service

providers (SP) and finally to the end users and try to modify it based on social fairness. To

do so, we analyze several content types based on subscriber usage patterns and we find the

ones that can be offered with a different pricing method without causing profit loss to CP

or SP. Our goal is to set a coalitional framework between CP and SP that can lead to a free

unlimited access to particular content types. We show that such agreements, if set correctly,

can increase the profit of CP and SP. Throughout this thesis, the analytical models are verified

with numerical examples that are designed to simulate the real world scenarios.

Keywords: Wireless networks, Coalitions, Content provider, Network neutrality, Service

provider, Network economics, Game theory
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INTRODUCTION

Fourth generation homogeneous wireless networks (4G) fast approach the theoretical limits of

radio link performance but still cannot provide the 4A paradigm (any rate, anytime, anywhere,

affordable) due to economic and technological barriers. Nevertheless, further significant gains

can be achieved by introducing advanced network topologies that also integrate heterogeneous

technologies such as LTE and WiFi. One way to achieve such heterogeneity in the offered

services is to form a coalition of providers. This approach, due to its unique characteristic of

cost reduction in the phase of network expansion as well as the embedded heterogeneity, can

reduce the overall price of the service and give the subscribers the choice to instantly change

their access technology based on the service price or data rate preferences. From another view-

point, the heterogeneity of service types in today’s Internet and the way in which content is

delivered define a bold line between the business model of content providers (CPs) and service

providers (SPs). In recent efforts, several major SPs in the US market tried to form a coalition

with CPs to deliver free content to the end users (AT&T Data, 2016; Verizon-Data, 2016; T-

Mobile, 2016). However, the interaction of providers in such coalitions should be controlled in

a careful way since they can violate the neutrality of the Internet. In all mentioned cases, the

economics of Internet, especially in wireless markets, and the pricing schemes play a major

role in forming any coalition. In this thesis we address these issues by studying first the current

pricing schemes in the wireless markets and then by analyzing possible coalitions in both net-

work and service domains. By doing so, we introduce new frameworks for inter-SP and SP-CP

coalitions. In our approach, we consider the end users and their usage behavior as the core of

analysis and try to improve their overall satisfaction from service while the profit of providers is

increasing due to cooperation. Namely, we believe that due to the competitive market and high

cost of implementing heterogeneous technologies by one operator, all operators will be driven

to form coalitions that can provide not only significant economic advantages but also can offer

a significantly better level of services with major improvements in coverage, throughput, reli-
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ability, and energy consumption. Nevertheless, to achieve that objective, three key issues have

to be addressed: a) the role of current pricing schemes on the profit of providers, b) the effect

of subscriber’s usage behavior on provider’s pricing strategy, c) the possible cooperations be-

tween major network providers based on the pricing methods and content usage trends. In the

following sections we describe in short the main problems, our objectives, the work originality,

the applied methodology, the thesis content, and the achieved results.

0.1 Problem statement

The wireless technologies have been under very fast development in the past decade. However,

the statistics show that the wireless services are still not available to many users around the

world or even if they were, the cost and quality of this services do not look reasonable to many

users. Also, there exist multiple technologies in the market and for using each of them a user

needs a separate contract with the related provider which can be quite tedious. Moreover, it is

difficult for a single provider to offer all types of services that would be globally accessible and

affordable for all users in the market. This issue brings the idea of forming the coalitions among

service providers to reach a win-win solution for both providers and users. To investigate coali-

tion formation, one should consider the heterogeneity of providers in the current market. To

the best of our knowledge, three general types of heterogeneous networks can be defined. The

first type is the topological HetNet which refers to a network that consists of equipment with

different coverage ranges like picocells, femtocells, microcells, and macrocells. The second

type is the technological HetNet which refers to a set of wireless access technologies with vari-

ous speeds and coverage ranges (like WiFi, LTE, and UMTS) that would be offered in the same

market by multiple providers. These two technologies can be accessed concurrently by multi-

interface devices similar to the most smartphones nowadays. A traditional view of the first two

HetNet types can be seen in Fig. 0.1 where there are two cellular and two WiFi providers that

are competing in the same area, and as a result, they have coverage overlapping. The third type
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HetNets is referred to as service-oriented HetNets that contains heterogeneity in the offered

services. Two major entities can be indicated in this category. Namely, the group of providers

that offer infrastructure and connectivity and the group of providers that provide content to the

end users. All providers from the first two types of HetNets fall into the first group of the third

HetNet type. Unlike the technological and service-oriented HetNets, the topological HetNets

are usually defined on a single provider’s network. Hence, we consider the technological and

service-oriented HetNets in our studies for coalition formation.

Figure 0.1 A heterogeneous network with two types of access

technologies and four providers

We consider the problem of coalition formation as a part of economics analysis of the wireless

market. Hence, the pricing strategies and their connection to the network parameters such as

data rate and coverage play a key role in our study. From the market viewpoint, there are many

internal and external parameters that force users to select a specific provider as their default SP

or to choose a particular data plan within a provider’s network. As with to any other analysis,
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one should focus on the key parameters and make a rational simplification of the real market

conditions to be able to derive an acceptable and accurate economic framework. To achieve

this goal, we start our analysis by focusing on the parameters that affect the decision behavior

of subscribers: provider’s coverage size, achievable data rate, and the pricing schemes.

0.1.1 The Case of Technological HetNets

For the case of technological HetNets we consider three main technologies in the current mar-

ket: WiFi, 3G, and 4G cellular networks. Let us consider the general difference between WiFi,

3G, and 4G from the user’s viewpoint as follows:

• Coverage. Among the mentioned three technologies, LTE and 3G have greater coverage

than WiFi. To cover a macrocell coverage area, a WiFi operator needs to implement hun-

dreds of access points. It should be noted that the current service coverage of LTE in the

real market is smaller than 3G.

• Data rate. New standards of WiFi like 802.11n support up to 300 Mb/s which is twice

LTE with 150 Mb/s speed, and it is much better than 3G which gives 15 Mb/s in the best

condition.

• Price. In a real market, operators charge the highest price for the LTE data usage and the

lowest price for the WiFi data usage.

Since users have different expectations of speed, price, and coverage, each user wants to select

a provider that offers the best option from the user viewpoint. Most of the times, it is clear

for the user how much traffic it is willing to use and how much it wants to pay for that. There

is also a general perception about the coverage of each provider when a user wants to buy a

service. Naturally, the most expanded coverage along with the highest speed and the lowest

price seems the optimum service to all users. But providers have some constraints that prevent
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them from offering such an ultimate service. For example, a WiFi provider may offer the best

speed and lowest price per unit of bandwidth in the current technologies. However, WiFi is

using free ISM band as well as limited coverage transceivers which pushes providers to invest

a vast amount of their financial resources to cover an area which can be served by just one

macrocell (in cellular technology). The cellular technologies also have their issues such as the

requirement for buying expensive dedicated spectrum and service equipment.

Since the profit of each provider is related to the number of users who are registered to its

network and the average data usage; a provider doesn’t have any choice except offering a

reasonable service compared to others to attract the preferred number of users and make an

incentive for them to utilize its network. Upgrading of services can be carried out in several

ways:

• Investment. As a straightforward solution, a provider can expand the coverage and make

its service better by implementing new equipment. This option may need massive financial

resources and comes up with some issues such as making a balance between the service

prices and costs generated by new investments. Many providers do not have enough mon-

etary resources to develop their power in the market.

• Serving users of other providers (roaming capability). The second choice for service

providers is serving users of each other in the area where the users’ primary provider does

not have enough resources. This option is one of our considerations for coalition formation

which needs the price and resource allocation strategies as well as side payment methods

to be defined by the involving entities through a negotiation mechanism that leads to the

coalition service agreement.

• Pooling resources with other providers. Another choice is turning a coalition into a

unified provider by resource pooling. This case is more complicated in technical term

because it needs a pricing strategy which is unique to all providers’ users and the network
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should be seamless even when the connected technology is changed through a vertical

handover. Since, in a coalition, the coverage of its members is the same, some users may

lose their preference in registering to one special provider’s network that is a member of

that coalition and this will be a roadblock to achieving an agreement with that provider.

In this case, the negotiation is more difficult and the used technology needs more complex

network protocols.

Concerning the technological HetNets, the main goal is finding a way for offering a better

service to the users and making more profit for the providers by focusing on collaboration

methods which can have a significant effect on upgrading network performance. Hence the

general problem of our research is finding the ways of forming the coalitions with respect to

network technologies, market types and users’ preferred services and then reaching a general

benchmark that shows provider’s position as the consequence of its actions in the market with

the existence of coalitions. Also, the stability of formed coalitions should be analyzed.

0.1.2 The Case of Service-oriented HetNets

In a service-oriented HetNet, the type of service can be the connectivity and infrastructure

that SP offers to the end users and CPs or a specific type of content that a CP delivers to the

end users through the SP’s network. In both cases, the profit of providers is highly related to

the network selection and content demand behavior of end users. Recently, several major SPs

in the US such as AT&T, Verizon, and T-Mobile implemented sponsored data plans in which

subscribers can see particular contents from selected CPs without being charged for their data

transfer. We consider such plans as a cooperation between CPs and SPs that is in its early stage.

However, such cooperation encountered several moral and legal issues regarding the neutrality

of Internet. According to the critics, such plans can put the powerful CPs in a position that the

smaller CPs cannot compete with. Also, the SPs would monitor the type of data that is being
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transferred which violates their neutral role based on the traditional philosophy of the Internet.

SPs, on the other hand, argue that such plans benefit their subscribers who are simultaneously

paying for their network connectivity as well as the content type that they demand. In this

thesis, we tackle this problem by finding particular types of contents such as mapping services

that can be delivered to the end users completely free of charge. Based on the gathered data

from the market, such contents have low-usage pattern, yet they are highly valuable to the end

users. This approach requires close cooperation between SPs and all the CPs who deliver the

contents. We address this type of cooperation in Chapter 3.

0.2 Objectives

The goal of this research is to develop models that can be used to create more profit for

providers by increasing the satisfaction of users. As already indicated, this goal will be pursued

by focusing on forming coalitions among existing providers in the wireless market. Investigat-

ing cooperation between providers requires a general model of wireless market and users’

preferences. This economic model should be developed with respect to all the parameters that

can affect the provider’s strategies for attracting users. Such a model should predict provider’s

profit and the number of users before and after forming coalitions. Furthermore, to analyze

coalitions, we should develop a game-theoretical approach that predicts the optimal coalition

for each provider and define the best strategies that it can choose to maximize its payoff in the

stable or unstable coalition structures. The general objectives can be classified as follows:

a. Defining a model for wireless market economics

The first objective is to define a model for wireless market economics. Since the charac-

teristics of current wireless technologies and the economic strategies of providers play a

crucial role in providers’ profits, analyzing the relation between the wireless technologies
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and what the users want (like maximum speed and coverage area) requires a model of the

market. This model should also cover the concepts of service types and pricing structures

so it can estimate the market state in response to any strategy which would be chosen by

each provider. In particular the general model of market economics should answer the

following questions:

• What are the general market forms and how they change the behavior of providers

when they are competing to attract users?

• What is the effect of providers heterogeneity in any specific type of the market?

• For a provider in a wireless market, what are the main decision factors that can affect

the a provider selection by users?

• How the interaction between the provider and users can be modeled?

• What approach should be chosen to model the equilibrium state of the market?

b. Defining a game theoretical model for coalition formation among the providers

Our research will address the above questions.

The second objective in our research is constructing a framework that defines the pro-

cess of coalition formation and describes the behavior of heterogeneous providers with

different levels of market power, when they want to collaborate. This model should con-

sider the competitive nature of the market and explain the best actions for each provider

when it wants to select a desired coalition or deviate from a specific coalition. This model

also should estimate the profit of the provider and consider the effect of contracts among

coalition members. To achieve such a model, the following questions should be answered:

• What approach is most efficient and practical to form coalitions?

• Are game theory based approaches easy to implement or some alternatives including

heuristics should be considered?
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• What are the performance and revenue gains that can be achieved by forming coali-

tions with parallel connections?

• What are the coalition formation processes that can be suitable considering the nature

of the wireless market?

• What are the formed coalitions in each defined process?

Our research will address the above questions.

0.3 Originality

The originality of our work relates to two aspects of market economics. The first aspect is

studying the practical volume-based pricing strategy that is used by many providers around the

world. In Chapter 1, we consider different access technologies to model the relation between

spectrum assignment mechanisms and the profit of providers. We propose a method to relate

the data usage pattern of subscribers to data rate and service availability. For the first time,

to the best of our knowledge, we consider the available budget of subscribers as a random

variable and introduce a mathematical framework for SLA-based volume-based data plans.

We also model providers with multiple data packages and investigate the package renovation

process for the subscribers during their monthly payment period.

The second aspect is the comprehensive study of coalitions in wireless markets in which we

consider technological and service-oriented HetNets. Our work in Chapter 2 studies the impact

of providers’ cost functions on their strategy of coalition formation. We propose multi-provider

utility functions for users to study their data usage behavior under cellular-cellular and cellular-

WiFi cooperative providers. Unlike many other studies in this field, we build our analysis based

the markets with negative externalities. In this way, the convergence of an existing coalition

formation process is proved for wireless market. We model the role of regulatory units in
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coalition formation and analyze their best strategy based on the status quo of the Wireless

HetNet market.

Considering the service-oriented HetNets, our work in Chapter 3 is the first work which consid-

ers a class of applications which can be offered free of charge to all users based on a cooperation

mechanism between CP and cellular SP. To the best of our knowledge, this is the first work that

considers an analysis of the payments’ directions to provide a completely free access for sev-

eral types of mobile services such as mapping applications and intelligent personal assistants.

Our work shows that the directions of payments in today’s cellular market can be altered to

increase the satisfaction of end users at no profit-loss for both SP and CP. We also found the

side-payment from CP to SP by using the concepts of the Nash bargaining solution as well

as the Shapely value that also proves the possibility of our proposed method for selective free

content delivery.

0.4 Methodology

This section describes the main methods used to develop and analyze the models of collabora-

tion among wireless providers. These methods belong to three major categories that are related

to the following issues: a) characteristics of wireless technologies, b) wireless market model,

c) coalition models. In the following subsections, the methods that are useful to solve these

issues and to achieve the objectives of this research are described.

0.4.1 Utility functions

Throughout this thesis, we use the logarithmic form of utility functions to model the data usage

pattern of subscribers (Chapters 2 and 3). The main reason for to use this type of utility is that

it follows the law of diminishing marginal utility that is, with extra usage, the slope of utility

function decreases. This behavior is highly significant in economic studies since in a long-
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period analysis, with high data usage, the satisfaction level that subscriber experiences at the

end of a period is not the same as it was at the beginning of the period. For the markets which

a cap on their data volume is applied, we use the linear form of the utility function (Chapter

1). The reason is that the amount of transferable data in volume-based pricing is not high

enough to diminish the marginal utility of the users. Hence, subscribers are always eager to

have more data usage. The main parameters in our utility functions are the data usage level,

price, coverage size and the given data rate in a service.

0.4.2 Wireless Market Models

Since the expected profit of each provider is affected by the form of its market, knowing the

network economics will help to reach a proper model of each market form. These models will

be used in the next stage to analyze coalition formation methods. Two major concepts in our

model are market forms and pricing strategies which are defined as follows:

0.4.2.1 Market forms

In economic analysis, markets can be categorized as follows:

• Monopoly. This form exists when there is just one dominant provider in the market. In

this market form, the competition is minimum and the monopolist has total power to set

the prices in the market.

• Duopoly. In this market form, there are two dominant providers who have the greatest

power in the market.



12

• Oligopoly. A small number of providers have the major power in this market form. Each

of these entities is willing to know about the strategies of other providers to maximize its

profit.

• Perfect competition. In this market form, there is no provider with enough power to set

the pricing strategies for wireless services. This market form is optimal for the users since

the service price is equal to the marginal cost which is equal to the marginal revenue. By

this definition, the provider can get no more revenue than its economic cost which means

there is no profit in a long run competition.

0.4.2.2 Pricing strategies

Another economic concept that has a significant role in profit calculation and provider’s decision-

making process is the pricing strategy for the services. Some of the major pricing methods in

wireless market are as follows:

• Flat fee pricing. This is a pricing structure where provider charges users with a fixed price

per data unit. We use this scheme to analyze the technological HetNets in Chapter 3.

• Dynamic pricing. In this strategy, the price is related to some other parameters like the

time of day (several tariffs for different hours) or the amount of data which is used so far.

We use a special case of this pricing scheme to model the volume-based data markets in

Chapter 2.

• Price discrimination. The aim of this strategy is setting different prices for each class of

users. These classes can be based on the users’ capability to purchase a service or regional

conditions.

• Congestion pricing. In this strategy, the users who have a usage higher than what they

agreed to with the provider are charged in higher rates. This type of pricing will help
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providers to control their network utilization by hindering the users that have the data usage

bigger than specified I the agreement.

Each of the above pricing strategies can lead to a different form of profit function for providers.

Figure 0.2 The user flow diagram in an unsaturated market

There are other market classifications that are important for this research. For example, the

saturation level of the market can be another factor in network analysis. In an unsaturated

market, there are a lot of newcomers to the market that should select their providers for the first

time (Fig. 0.2). This is in contrast with a saturated market where each provider offers some

incentives to attract users being currently with other provider. The saturated market requires

analysis of the lock-in effect in the wireless market. This effect binds the user to its current

service or provider and implies an extra cost to the user for abandoning its current service. For

example, in today’s market, many providers offer two-year contracts where the cell phone cost,

or its part, is waved. Nevertheless, if a user wants to change its default provider before ending

of the contract, there is a penalty fee imposed on the user.
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0.4.3 Cooperative game theory

A cooperative game, especially from an economic viewpoint, is using coalition among decision

makers to increase their profit. In a competitive market, forming coalitions changes the state

of the market from individual competition to coalition competitions. There are two general

forms of coalitional games. First, the canonical cooperative games (Saad et al.) where players

want to form a coalition that consists of all players i.e. grand coalition. In this form, the profit

division mechanisms that make the grand coalition stable are the main subject of study. The

main usage of canonical games’ concepts is in analyzing the profit division among the members

of a coalition mechanisms such as the core, Shapley value, and nucleolus mechanisms. Since

the grand coalition leads to a monopoly market, the regulatory entities do not allow formation

of such coalitions. Therefore, it is not practical to investigate such cooperations for inter-

provider cooperations. Hence, we exclude discussing such games in this thesis.

The second form of cooperative games is the coalition formation games where the structures

and processes that force the players to a particular set of coalitions and the stability of these

coalition structures are the research subjects.

While in the canonical coalition games the payoff is the most important factor, in coalition

formation games the network structure and cost of cooperation (Saad et al.) are the main

factors. A coalition formation game has the following characteristics:

• The game in not necessarily supperadditive, which means that the cooperation does not

always lead to higher overall profit for the coalition unit. Also, the utility function can be

in the form of transferable (TU) or non-transferable utilities (NTU).

• While the coalition forming can provide an additional profit for players, there is also a cost

of formation.
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• The grand coalition is not always the coalition with the maximum profit.

• Environmental changes like players’ strength variation can change the best coalition (Saad

et al.).

Coalition formation games can be divided into two major subcategories: static coalition for-

mation games and dynamic coalition formation games. The former analyzes the effect of an

external factor on the coalitional structure. The latter investigates the process of forming the

coalitional structure (Saad et al.). The coalitional game considered in this research is, by its

nature, a game with negative externalities, which means that players in the market with any

coalitional structure (CS) try to reduce other members’ profit and maximize their revenue. In

our model, the coalition formation process can be sequential or takes place in a parallel manner

for all negotiators.

0.5 Results

We achieved the following results in this thesis:

a. In Chapter 1, we modeled the markets with volume-based pricing and linked the data

usage and price to the offered service data rate based on the utility of users and the avail-

able bandwidth to the provider. We found the optimal service parameters for providers

with different access technologies such as OFDMA and CDMA. The relation between the

available spectrum bandwidth of the provider and the offerable data rate to the users is

investigated based on the data cap and price on a data plan. We considered the budget of

subscribers as a key parameter and modeled their package renovation procedure. A model

for service availability in the dynamic sub-carrier allocation method is proposed in which

provider guarantees a data rate and service availability level to the users regardless of their
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distance from a base station. In this way, we built a mathematical framework that connects

the cap of a data plan and its price to the optimal data rate and service availability.

The markets with multiple packages are analyzed in which the provider adjust the cap of

each package to address a particular group of users based on their monetary resources.

We considered the case of bandwidth splitting in which the provider can assign separated

spectrum bandwidths for its voice and data subscribers. We showed the efficiency of our

model in giving the optimal market parameters with the help of several realistic numerical

scenarios.

b. In Chapter 2, we analyzed technological HetNets. We modeled the markets with flat-rate

pricing and found the optimal values of data usage for subscribers based on the data rate,

data unit price and coverage of providers. We analyzed several market forms such as

monopoly, duopoly, and oligopoly and investigated the effect of competition on the ser-

vice parameters. We showed that the providers’ cost function affects their best strategy to

enter a coalition formation process. In particular, we proved that in the case of linear cost

functions, the providers are better off to expand their network without cooperating with

their competitors. In special forms of exponential costs, providers need to form a coali-

tion to increase their profit, otherwise, investing on network expansion is not profitable for

them. We proved the form of a multi-provider utility function which is used to model the

behavior of subscribers when they are under the coverage of a coalition of providers. We

modeled the multi-provider utility functions for cellular-cellular and cellular-WiFi coali-

tional models. The profit of the providers is analyzed based on the usage patterns in the

multi-provider model.

We used an existing coalition formation process which has a mathematical base for the

markets with negative externalities. We proved that in wireless markets in which users

consistently churn to newer technologies, a coalition formation process is always conver-

gent. We provided a model for the role of regulatory units in coalition formation processes
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and proposed a method that finds the best cooperation strategies for increasing the social

efficiency. The regulatory entity uses this method to allow or ban a coalition formation ac-

tion. Various scenarios for coalition formation are analyzed in which we showed that the

cooperation of small providers is an efficient way to compete with a monopolist. The ef-

ficiency is measured based on a social efficiency function that balances the overall payoff

of the users as well as the profit of the providers.

c. In Chapter 3, we analyzed service-oriented HetNets. We investigated the statistics of real

mobile markets provided by (Ericsson, 2016) and defined three categories of mobile ap-

plications based on the usage patterns of mobile subscribers. We found applications with

particular business models that can be offered free of charge to all subscribers without

being concerned about their data usage in those applications. We call this model a selec-

tive free content (SFC) program. Three categories of such applications are investigated:

the Mapping applications along with intelligent personal assistants, the cloud-based IoT

services, and the smart city and e-governance applications. We showed the difference be-

tween these categories by analyzing the direction of payments in each category that cause

different business models. We showed the possibility of an SFC program by modeling the

interaction between users, service and content providers in a wireless market.

A three-stage Stackelberg game is introduced and solved by backward induction. Each

stage of the game shows the best response strategy of one network entity. The side-

payment from CP to SP is found based on the Nash bargaining solution as well as the

concept of Shapely value. Our model showed that even with a linear profit model for

the CP, an SFC program is possible. We found the profit threshold of SP in which an

SFC program is possible. Several realistic numerical scenarios are analyzed, and the side-

payment from CP to SP is found based on different bargaining powers of SP over CP.
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0.6 Content

This thesis follows the paper-based format of ÉTS. Hence, each chapter represents one journal

paper as follows:

a. Chapter 1 analyses the wireless market with volume-based pricing. The related paper is

submitted to IEEE Transactions on Network and Service Management (TNSM).

b. Chapter 2 investigated the competition and cooperation in technological HetNets. The

related paper is submitted to the Elsevier Computer Networks journal.

c. Chapter 3 studies the selective free content program in wireless markets and considers the

coalition between a SP and a CP. The related paper is submitted to IEEE Transactions on

Mobile Computing (TMC).

d. Finally, in Conclusion and Recommendations, we summarize the results of this thesis and

proposed several directions as the possibilities of future studies.

0.7 Literature Review

Collaboration has emerged as a new paradigm that can have a significant effect on the net-

work performance in several layers. In particular, the concepts from game theory, such as

cooperative games and coalitions, are used to optimize and improve resource utilization while

providing a fair distribution of the gains among game participants. Considering the theoretical

works related to the concept of coalition formation, authors in (Hart & Kurz, 1983) created

an endogenous framework for coalition formation. However their method does not consider

the effects of externalities on CS. Another good example of coalition formation is (Yi, 1997)

which considers both externalities and endogenous nature of coalition formation. However,

they solely analyzed symmetric games. Since the wireless market is asymmetric, with negative
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externalities and different provided services, it seems that a method based on relative power

(e.g., Shapley value) of providers is the best way for profit division within a coalition. In

(Bloch, 1996), a sequential stationary game for coalition formation process is proposed. In this

model, players announce their desired coalition based on an exogenously defined order. The

players in the game can have asymmetric power. It seems that such model is the best option

for analyzing cooperations in the wireless market. Hence, in Chapter 2, we use this model to

investigate coalition formations in the wireless market.

In the context of wireless networks, the majority of the studies focused on cooperation among

the nodes or users and mainly address the physical and link layers, e.g., (Mathur et al., 2008),

(Zhang et al., 2013) and (Chan et al., 2013), and the works that consider network layer as well,

(Han & Liu, 2008). However, there is a scarcity of research in the area of network operators’

collaboration. The pioneering work for non-wireless network operator coalitions is presented

in (Gibbens et al., 1991) where coalitions of national operators are analyzed in a game theoretic

framework for international routing. The results show that capacity saving of the order of 20

percent is achievable by forming coalitions. Coalition of network operator is considered in

(Sarkar et al., 2008) and (Singh et al., 2012a). In (Sarkar et al., 2008) the spectrum pooling

in wireless data access networks is studied in a given geographical region and the outcome

shows that the grand coalition of all operators is stable and maximizes the profit. This work

is extended in (Singh et al., 2012a) to multi-hop networks with more relaxed assumptions

allowing variability of channel characteristics and mobile locations. In both mentioned bodies

of work, the main assumption is to form a grand coalition which simplifies the analysis, but it

is not practical. The impracticality of the grand coalition comes from the reality of markets; in

most countries the competition rules prohibit the formation of a grand coalition as it leads to a

virtual monopoly. Therefore what needed is a study of how to form coalitions under realistic

constraints where the optimal solution cannot be a grand coalition, but instead, it can be a set

of coalitions where neither of them is a grand coalition. As already indicated, such games can
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be named coalition formation games as opposed to canonical coalitional games dealing with

grand coalitions. To the best of our knowledge, there are no studies of coalition formation

games in the context of cooperation between heterogeneous wireless network operators.

Considering the service-oriented HetNets, the majority of literature focuses on sponsored data

in non-neutral networks which eventually leads to a type of CP-SP cooperation. (Lotfi et al.,

2016) investigates the profitability of non-neutral networks and shows that in certain scenar-

ios a non-neutral network is nonprofitable. Also, it shows that when the market power of an

SP is small, the end users can obtain a better overall payoff in a non-neutral regime. (El-

Delgawy & La, 2015) analyses the interaction between a CP and SP when SP agrees to offer

a better QoS to CP’s service. This can be seen as a coalition of the two providers which is

achieved by an agreement in a bargaining game. The effect of bargaining power on the QoS

and the social efficiency level are the two factors which are considered in this work. (Joe-Wong

et al., 2015) investigates the optimum amount of content that CP sponsors. It shows that with

sponsored data applied, the utility of users increases more than CPs. (Andrews et al., 2016)

considers a case in which an SP proposes a sponsored data service to several CPs. In this case,

SP aims to select one of the CPs for the offered service and to determine the service price

that maximizes its profit. One of the main issues that is addressed in this work is the truthful-

ness of CPs when they report their network parameters. In this thesis, similar to above works,

we consider the concept of non-neutral networks as a way to increase the profit of CPs and

SPs. However, we propose a method in which certain types of contents can be delivered to all

users free of charge without requiring SPs and CPs to limit the content usage of subscribers.

Our method is based on the nature of such contents which carry highly valuable information

with low usage pattern. We call this method a selective free content (SFC) program and will

introduce it in Chapter 3.
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Abstract

Over the past few years, many major wireless providers restricted their unlimited data plans and

replaced them with limited-size fixed-price data packages. While this could be perceived as a

disadvantage for customers, it helps the cellular wireless providers to reduce the traffic intensity

at their base stations. Then the lower traffic intensity leads to a better service quality and higher

rates for concurrently connected users. Hence, there is a trade-off between the data volume

and the data rates attributed to the users. Therefore, to avoid the adverse effect of service

inaccessibility, the cellular providers should carefully set the size and pricing of their data

packages. To do that, the providers need a model that, together with proper market information,

would allow to set the best prices for volume based data and estimate the acceptable quantity

of subscribers along with average data rate for them. In this paper, we propose such a model

that quantifies the relationship between pricing and various market/system parameters such

as data volume size, user budget, data rate and service blocking probability. In particular,

we formulate a set of profit optimization problems for different spectrum assignment criteria

like shared-carrier and dynamic sub-carrier allocation. Finally, several realistic scenarios are

investigated in which the optimal network parameters are computed.
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Introduction

With rapid growth of wireless markets in past twenty years, providers have been evaluating dif-

ferent pricing schemes to maximize their profit. In particular, the providers of packet-switching

networks have considered many ways regarding pricing criteria to achieve a higher amount of

net income. These schemes are highly diversified from simple flat-rate (Courcoubetis & We-

ber, 2003b) to dynamic pricing methods (Viterbo & Chiasserini, 2001). Schemes that consider

Service Level Agreement (SLA) are not common for the end-users in data networks, yet they

are essential in mid-level and high-level inter-provider contract based methods. Smart pricing

methods (Sen et al., 2013b), such as time-dependent pricing schemes (Ha et al., 2012a), in

which the provider sets the price based on congestion hours, or other network parameters, are

studied in several works but they are not widely accepted by the wireless providers. This is not

only due to the operational complexity of such dynamic pricing schemes but also due to the

difficulties in managing customer expectations and educating them on complicated interaction

between user behavior and pricing.

Before 2012, it was common among major players in the cellular wireless market (such as

Verizon, AT&T, and Sprint) to offer low-price unlimited data plans. However, nowadays their

pricing schemes are dominated by plans with a cap on data volume and calling minutes. In this

approach, instead of unrestricted access to the data service, the subscriber pays a certain price

to use up to a specified amount of data alongside the voice service for a particular duration. For

example, the subscribers pay for one, two or more Gigabytes of data at a particular price. The

available data in the package is being refilled mostly in monthly periods and the user-provider

contract usually stays unchanged for over one or two years. We refer the readers to (Verizon-

Data, 2016; AT&T Data, 2016; Sprint, 2016) for some examples of U.S wireless carriers and

(Telus, 2016; Bell, 2016; Rogers, 2016) for Canadian providers. The universal dominance of

this pricing scheme motivates us to investigate its characteristics and optimality under different

wireless technologies with shared, dedicated or dynamic spectrum allocation policies.
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Analytical framework

We aim to find a model that can predict the profit of providers with volume-based data plans.

The key elements of our model are the market and network parameters such as data-volume

size, price, data rate, service availability and user budget. The combination of these parameters

affects user’s subscription behavior. Similar to many real markets, the voice and data services

are assumed to be offered in separated packages. The set of data users is a subset of voice

users which means that if a user wants to have a data subscription, it needs to join the voice

network as well. In this way, we present the market in two stages; firstly, the voice users enter

the market out of a set of potential subscribers. Secondly, the newly joined users are offered

to have a data package which eventually forms a set of data users. From the user side, the

widely adopted utility theory (Duan et al., 2013c; Gajic et al., 2009; Acemoglu et al., 2004;

Niyato & Hossain, 2009) is used to model the behavior of users in package selection. The cap

of data-volume, price, data rate and service availability are the variables in the utility function.

We start developing our formulation by analyzing the optimal profit of a provider with a single

data package and shared-carrier system. For this case, we show the relation between optimal

data rate and the size of data volume. We then extend the framework to support a multi-

package provider model. In this part, the effect of users’ monetary resources and their budget

distribution on provider’s profit are investigated. The proposed analysis enters the next level

by defining a second method in which the provider dynamically assigns the bandwidth to the

users to guarantee a constant predefined data rate. Since the spectrum is limited in cellular

networks, the majority of analysis in this part is focused on calculating the blocking probability

of data flow requests originated by spectrum shortage. Then, we introduce the provider’s profit

optimization problem in which the optimal values of data-volume, price of data plan, as well

as the data rate, are calculated. Here, to have a precise structure, separated spectrum bands are

defined for voice and data. Hence, the bandwidth splitting ratio is an additional decision value

for the optimization problem. Lastly, several numerical studies related to the optimal values

of data cap, price, and data rate as well as service blocking probability are provided. These



24

scenarios present real world market situations with current 3G/4G technologies that support

shared-carrier and dynamic bandwidth allocation methods.

Contribution

In summary, the technical contribution of this paper include:

• We formulate a profit optimization problem to model and quantify the effect of the size of

data volume and its corresponding pricing on expected user data rate and provider profit.

• Our formulation covers two methods of spectrum allocation: shared-carrier method that

covers the TDM and CDMA schemes, and dynamic spectrum allocation method that covers

OFDMA systems.

• We consider user’s available budget as a random variable and use it to derive the number

of subscribing users. The optimization problem in this part covers multi-package markets.

Also, the case of data volume renovation in which users extend the data-cap under their

default plan is analyzed.

• We link the offered data volume size, price and service availability together with a utility

function and calculate the optimal service data rate that maximizes provider profit.

Structure

The rest of this paper is organized as follows: Section 1.1 is a brief review of related works in

wired and wireless network economics. The general system model is described in Section 1.2.

Single and multi-package wireless markets regarding the shared-carrier model are analyzed

in Section 1.3. Pricing in dynamic spectrum allocation method is the subject of Section 1.4.

Section 1.5 includes several numerical studies similar to real markets based on shared-carrier

and dynamic bandwidth allocation methods. Finally Section 1.6 concludes the paper.
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1.1 Related Works

Economics of data networks is a well-established branch of network analysis in both engineer-

ing and economic divisions. Considering the Internet as a new opportunity to make wealth and

capital, MacKie-Mason and Varian (MacKie-Mason & Varian, 1995) is one of the early works

in this field investigating the Internet pricing schemes. Considering the cellular networks,

(Wright, 2002) is an example of pure economic analysis of call pricing among competitive

network carriers; in particular, the class of pricing for calls from fixed-network to cellular sub-

scribers is analyzed. (Huang, 2008) is another work related to the pricing and call demands in

mobile networks; this work considers different plans, each having a non-linear pricing scheme

and the network demand is computed based on econometric models. The effect of cellular com-

petition and the entrance of new competitors on pricing tactics is the subject of (Seim & Vaiard,

2011). The analysis is based on the data of U.S cellular market in the late 90s, and its main

interest is the effect of market structure on pricing schemes and the optimality of diversified

pricing methods on overall consumer satisfaction. (Zhang et al., 2014) investigates the service

pricing in two-tier small cell networks. This work proposes a paying mechanism in which the

macro-cell providers incentivize the small cell owners to give access to macrocell users. The

pricing strategies are based on a leader-follower dynamic game. Dynamic pricing of call rates

is analyzed in (Dugar et al., 2015). This work concerns two models of game: provider vs.

provider and consumer vs. provider. Based on these models, the optimal strategies of network

entities are analyzed. The dynamic price of the system is calculated based on several factors

including the available bandwidth. However, the data service is not considered in this work.

With regards to the QoS of cellular networks, (Hou et al., 2002) focuses on congestion control

by combining pricing schemes and admission control algorithms. It considers an optimal call

arriving rate which maximizes the provider profit and user utility and uses an adjustable ser-

vice price based on network parameters. (Yilmaz & Chen, 2009) uses the admission control

tactics to maximize the profit of provider by setting the optimal prices while QoS is set for

each service class of the network. The main QoS parameter considered in this work is call

dropping probability. Different admission control algorithms are also analyzed in this work.
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For the current 3G/4G technologies, there are several pricing recommendations in literature,

e.g., (Wallenius & Hämäläinen, 2002) which suggests QoS based pricing methods which are

aware of service classes. For the further reading, we refer the readers to (Ezziane, 2005) and

(Gizelis & Vergados, 2011) which are surveys on 3G and wireless networks pricing.

This work is different with all above research efforts by considering voice and data packages

as separate options. It also formulates the relation between offered data size, its price, and

network parameters as well as the number of potential subscribers.

1.2 Notation and System model

Figure 1.1 The subscription flow of the potential users. They join the

voice cellular network and then would subscribe to data package

In this section, notation alongside the system model are introduced. We consider a cellular

provider’s network with several macrocells. The provider aims to offer a data plan in which a

certain level of QoS, defined in an SLA, is provided throughout its network. Namely, in the

busy hours of busiest macrocells, predefined levels of voice service availability and minimum

data transfer’s rate are provided. Based on the direct measurements of user distribution over

the time, the provider expects a maximum of NC voice users under the coverage of its busiest

macrocells in the busy hour. NC can be the maximum numbers measured or a threshold value

that is exceeded with a small probability; this probability can be easily integrated into the SLA.

The provider tries to attract a subset of voice users to purchase its data plan. We represent

the number of data users associated with NC as ND. The service prices for voice and data

plans are denoted as pc and pd , respectively. The cap of the data volume is represented by
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cd . The offered data rate is represented by γd . The main challenge is to model the behavior

of users to optimize the network parameters, such as the size of data-volume, price and the

offered data rate, to achieve the maximum profit. In particular, we want to maximize the

profit function π(cd,γd, pd) = ND(cd,γd, pd)× pd . We formulate this model of subscription

backwardly. First, the user response is modeled based on the network parameters. Then, after

finding ND as a function of NC, we find the final profit function of the provider. The perceptual

importance of data service is modeled by assigning a random user data valuation number ωd

to each user. This random value emphasizes the significance of having data access for each

user. For the sake of simplicity, it is assumed that ωd is uniformly distributed in interval [0,1],

ωd ∼ U(0,1). In general, a Beta distribution can be assumed for ωd . We will use Uniform

as well as Beta distributions in our numerical examples. Each macrocell’s coverage area is

assumed to be circular with radius RM and users are uniformly distributed in the cell area.

Hence, for each user the random distance from the base station has the following distribution:

f (r) =

⎧⎪⎨
⎪⎩

2r
R2

M
r ≤ RM,

0 r > RM.

(1.1)

In the rest of the paper, P(x) represents the probability of x and f (x) and F(x) operators repre-

sent the probability distribution function (PDF) and cumulative distribution function (CDF) of

the variable x respectively.

1.2.1 Data rate models based on channel access method

User satisfaction and preferences are playing a significant role in the package selection. To this

extent, we need to model the fundamental parameters involved in the selection process. One

of these parameters is the data rate (or the service speed) granted to the user. In this section we

present data rate models for two different channel access methods along with admission policy

behind them and their impact on user satisfaction. The analytical models for other channel ac-

cess methods can be extracted from these two. First, we consider shared single carrier methods

that covers schemes like CDMA and WCDMA. In this case, voice and data services can be
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offered by one carrier with time division or two separated carriers each having a fraction of

total bandwidth. Second, we consider dynamic sub-carrier allocation in which provider tries

to guarantee a predefined level of data rate to the users by allocating the proper portion of its

available bandwidth. Here the main concern for the provider is the value of guaranteed data

rate and also the blocking probability of data flows caused by spectrum shortage. Fig. 1.2

illustrates these two types of bandwidth assignment. Since the focus is on service pricing, we

consider the high-level models of access methods which can be extended to different scenarios.

Considering the data rate, our model relies on a general path-loss definition; supposing the

maximum achievable data rate by each user j in technology X in absence of other users is CM
X ,

then the distance related rate is represented by:

CX(r) =CM
X

⎧⎪⎨
⎪⎩

1 r ≤ Rm,(Rm
r

)α
Rm < r ≤ RM,

(1.2)

where Rm is the maximum radius in which the highest rate can be achieved and α ≥ 2 is the

attenuation factor. Generally, CM
X is the technology dependent rate which is related to the carrier

bandwidth QD by a spectral efficiency factor (ElNashar et al., 2014), CM
X = β ×QD. Using this

data rate definition, in the next two subsections the achievable data rate for these two spectrum

allocation methods are elaborated.

1.2.1.1 Shared single carrier

The first formulation is for shared single-carrier method where each user’s data rate originates

from code or time division multiplexing. In (Bonald & Proutière, 2003), a framework for

CDMA networks is proposed That is based on representing a single-carrier macro-cell by a

processor sharing model. In this model, if the arrival rate is λ and each user has a flow request
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Figure 1.2 Two types of bandwidth assignment. a) Shared

carrier model for voice and data. b) dynamically assigned

sub-carrier sets for cellular voice and data

of expected size η , then the average service time 1
μ for a user can be calculated as:

1

μ
=
∫ RM

0

η
CX(r)

f (r)dr =
η

CM
X

⎛
⎝Rm +

1

Rα
m(α +1)

(Rα+1
M −1)

⎞
⎠

︸ ︷︷ ︸
ζ1

=
η×ζ1

CM
X

=
η×ζ1

β ×QD
. (1.3)

In our model, we relate the arrival rate of data flows of each user (λd) to the offered data volume

cap by a scale factor λu: λd = λucd . This simplification is mainly due to the rational behavior

of users that try to utilize the network based on their package limits. It is proved ((Tijms,

2003) P.6) that the combination of ND users leads into a Poisson arrival rate of λD = ND×λd .

This distribution is generally called a merged Poisson process. The average load of processor

sharing system is ρ̄ = λD
μ = ND×λu×cd×η×ζ1

CM
X

. It is clear that ρ̄ < 1 is the condition of stability.

In the stationary state of the system, the data rate for a user which is located in distance r from
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Table 1.1 General notation

Parameter Description
NC Set of voice users

ND Set of data users

Nx size of the set Nx
QT Total available bandwidth

QC, QD Total available bandwidth to voice and data services

cd data volume cap

pd , pc price of data and voice services

γ general notation for data rate

γc,γd offered data rate to voice and data users

β Spectral efficiency

θd leveling factor for user’s utility

ωd valuation factor for the data plan

bg random variable of user budget for data service

η expected size of data flow

λc service request rate of each voice user

λu scale factor for the rate of incoming data flows

λd rate of flow requests for each user λd = λucd
λD overall service request rate of all voice data

1
μc

voice service time

Bc expected blocking probability of voice calls

Bd expected blocking probability of data flows

the macrocell is (Bonald & Proutière, 2003):

γ(r) =CX(r)(1− ρ̄), (1.4)

hence the expected data rate is,

γ̄ =
∫ RM

0
γ(r) f (r)dr =CM

X

⎛
⎝Rm +

1

1−α

⎛
⎝RM

(
Rm

RM

)α
−1

⎞
⎠
⎞
⎠(1− ρ̄). (1.5)

By setting ζ2 = Rm + 1
1−α

(
RM

(
Rm
RM

)α −1
)

,

γ̄ = ζ2×
(
CM

X −ND×λu× cd×η×ζ1

)
, (1.6)
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which is used as the equation for the data rate for the shared single carrier approach.

1.2.1.2 Dynamic Bandwidth Allocation

In the second model, we suppose that the provider can dynamically assign a fraction of its

available spectrum to each user’s data flow to guarantee a minimum level of data rate during

the busy hours. In this manner, the provider aggregates several sub-carriers based on channel

quality to guarantee the promised quality. Let have γd as the offered data rate to the user and

S(r) as the bandwidth required to achieve γd in distance r from the base station. Considering

the spectral efficiency factor which is technology-dependent we can map the maximum rate

to the bandwidth as γd = βSd , where Sd is the bandwidth of assigned spectrum. Using this

definition in (1.2) gives,

γ(r) = β ×Sd

⎧⎪⎨
⎪⎩

1 r ≤ Rm,(Rm
r

)α
Rm < r ≤ RM.

(1.7)

To achieve a constant value of γd , the provider needs to allocate the following bandwidth:

S(r) =
γd

β

⎧⎪⎨
⎪⎩

1 r ≤ Rm,(
r

Rm

)α
Rm < r ≤ RM.

(1.8)

The above equation is the basic model for the required spectrum size (in forms of grouped sub-

carriers or any dynamically allocated spectrum) for each user based on its distance. Regarding

the admission policy, the provider can make two separate groups for data and cellular voices,

each having different required data rate. Since the available spectrum is limited, in the busy-

hour a data flow transfer can be blocked or delayed. Thus, we need to define the blocking

probability of data flows and a suitable package selection mechanism based on guaranteed

data rate and blocking probability of data flows. We will go deeper into this particular case in

Section 1.4.



32

In the next two sections, we define the volume-based pricing framework. In Section IV we

develop our formulation based on shared carrier scheme. Then, we expand the concepts to

adopt the dynamic spectrum allocation and related blocking probabilities in Section 1.4.

1.3 Data package pricing

1.3.1 Single-package problem

The provider’s profit maximization problem can be divided into two stages. In the first stage

provider sets the data service parameters such as the data volume cap, its price and data rate and

offers the plan to the voice users. In the second stage, users decide whether to join the data plan

based on the service parameters. This model can be solved backwardly. Namely, the provider

anticipates the users’ subscription behavior and uses this information to set the optimum values

of service parameters. In the following subsection, we describe all the necessary equations to

model users’ decision criterion.

1.3.1.1 Users’ decision criterion

We start with the formulation of the one data package case and then extend it to the multi-

package counterpart. A volume-based data package is presented by a specific amount of data

cd with price pd that is valid for a predefined period, e.g., a month, that can be renewed at the

beginning of each period. In the package information the provider announces the following

network parameters:

• Average data rate that can be achieved by a user under network coverage area, which is the

expected data rate from (1.6).

• The size and price of data package.

Each user applies its own evaluation criterion on service parameters to assess the package

desirability. To model this decision behavior, we adopt the general practice of utility theory
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(Duan et al., 2013c; Gajic et al., 2009; Acemoglu et al., 2004; Niyato & Hossain, 2009). In

our case, the utility of user j is represented by:

U j = θd×ω j
d× γd× cd− pd. (1.9)

where γd is the promised average data rate to the user and θd is a leveling factor which de-

termines the combinations of [data volume size, price] that give zero utility for users with the

highest data valuation, ωd = 1, and the network with normalized access data rate of 1. Data

valuation is a random variable ωd ∼ U(0,1). In this decision process, if the value of U j is

bigger than a reserved utility εd , then the user j will subscribe to the data network. In this

manner, the set of data users ND can be defined as follows:

ND =

⎧⎨
⎩ j ∈ NC

∣∣∣∣∣∣ω j
d ∈ [0,1]∧ ω j

d ≥
εd + pd

γdθdcd

⎫⎬
⎭. (1.10)

Note that the applied linear form of user utility is considered in previous literature as well (e.g.

(Chen et al., 2015a)); we use it due to the nature of volume-based pricing in which the bigger

ratio of data to price the higher level of satisfaction.

1.3.1.2 Provider profit

The provider needs to optimize its profit function π = ND× pd . The optimization function has

two constraints. Having a stable system requires ρ̄ < 1 and also the average data rate should

be bigger than the offered value, γ̄ ≥ γd . We can rewrite γ̄ in (1.6) based on the value of ND:

γ̄ = ζ2×
(
CM

X −λD×η×ζ1

)
= ζ2×

⎛
⎝CM

X −NCλucdζ1η

⎛
⎝1− εd + pd

γdθdcd

⎞
⎠
⎞
⎠ . (1.11)

The profit function is strictly increasing with respect to γd which means if the provider can

achieve a data rate value like γ̄ > γd , then it is better off to announce γ̄ . Hence we can set
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γd = γ̄ and solve (1.11) for it:

γ̄ =
ζ2CM

X −σcd±
(
(ζ2CM

X −σcd)
2 +4 σ

θd
(εd + pd)

) 1
2

2
, (1.12)

σ = NCζ1ζ2ηλu.

Eq. (1.12) has two opposite sign values, where the positive value is the only acceptable solu-

tion. We can write the optimization problem of data profit as:

max
cd ,pd

π(cd, pd) = NC pd

⎛
⎝1−

εd + pd

γ̄(pd,cd)θdcd

⎞
⎠ (1.13)

γ̄(pd,cd) =

ζ2CM
X −σcd +

⎛
⎝(ζ2CM

X −σcd
)2

+4 σ
θd
(εd + pd)

⎞
⎠

1
2

2

subject to:

pd ≥ 0, (1.14)

cd ≥ dm, (1.15)

γ̄(pd,cd)≥ γm. (1.16)

The constraint εd + pd ≤ γ̄(cd, pd)θdcd , which assures the user set ND has a rational size and

also validates (max γ̄) ≤ ζ2CM
X , is not required since otherwise the objective function obtains

negative values. The maximum profit does not go to the negative side as pd = 0 is giving

a nonnegative maximum in the worst case. For the QoS conditions and also for regulator’s

minimum service obligations, we added the inequality γ̄(pd,cd)≥ γm as the constraint for the

lower-bound of data rate and cd ≥ dm for the minimum offered data. It can be proved that the

objective function is concave with respect to both pd and cd . We refer the readers to Appendix

I-1 for the proof.
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1.3.2 User monetary resources and budget

Until now we investigated a scenario in which there is no information on monetary resources

of potential subscribers, nor their budget, hence, each subscribed user purchases the package

according to its valuation. We distinguish between the financial capacity (or wealth) and the

budget. The former shows the user ability to purchase a package but does not necessarily

mean its service evaluation meets the ability to purchase. One example is a user who values

the high-speed data service and large data volume cap, yet it cannot afford the cost, or on the

contrary, another user who has enough funds to purchase any package but accessing the data

itself is not essential for him. Mathematically speaking, the correlation between valuation and

the available funds is not perfectly positive. The latter concept of budget defines the amount of

money each user is willing to pay if the package meets its minimum expectations. In particular,

since this type of information shows the usage willingness, data valuation ωd can be replaced

by the budget information if it is presented. We denote the wealth random variable by mr and

the budget by bg. In the next subsection, we extend our formulation to this type of information

in the multi-package market.

1.3.2.1 Multi-package data network with wealth information

In the previous subsection, the data network subscription is defined based on a uni-package

provider. Even though this is a fair way to investigate user behavior under different data sizes,

all users who have a data evaluation under a threshold limit are excluded from data user set

and this is not optimal for the provider. Therefore, it is a common practice for providers to

construct a multi-package service in which each set of [data volume size, price] addresses

a unique group of users. Suppose the provider has n data packages represented by the set
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υ =
{{c1

d, p1
d}, · · · ,{cn

d, pn
d}
}

where

p1
d < p2

d · · ·< pn
d, (1.17)

c1
d < c2

d · · ·< cn
d, (1.18)

εd + p1
d

c1
d

>
εd + p2

d

c2
d

> · · ·> εd + pn
d

cn
d

, (1.19)

are the rationality requirements for the package pricing. Comparing all packages, the highest

data volume attracts the potential subscribers with lowest data valuation and above; As a result,

user wealth has the main role in selecting between the preferred packages. Let define the joint-

PDF f (ωd,mr) based on market gathered information; then if we represent the subscribers of

package i with Ni
D, we have:

Ni
D = NC

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

P

⎛
⎝ωd ≥

εd + pi
d

γ̄θdci
d
, pi

d < mr ≤ pi+1
d

⎞
⎠ i �= n,

P

⎛
⎝ωd ≥

εd + pi
d

γ̄θdci
d
, pi

d < mr ≤MM
r

⎞
⎠ i = n.

where MM
r is the highest amount of money someone would pay for data access. We can repre-

sent the above equation in terms of cumulative distribution function; for i �= n we have:

Ni
D

i�=n
= NC

⎡
⎣
⎡
⎣
⎡
⎣FMr

(
pi+1

d

)
+FΩd ,Mr

⎛
⎝εd + pi

d

γ̄θdci
d
, pi

d

⎞
⎠−FΩd ,Mr

⎛
⎝εd + pi

d

γ̄θdci
d
, pi+1

d

⎞
⎠−FMr

⎛
⎝pi

d

⎞
⎠
⎤
⎦
⎤
⎦
⎤
⎦,

where the CDF parts come from the definition of joint probability as P(X1 < x≤ X2,Y1 < y≤
Y2) = FXY (X1,Y1)+FXY (X2,Y2)−FXY (X2,Y1)−FXY (X1,Y2) and P(x ≤ ∞,y ≤ Y1) = FY (Y1).
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The exact same concept can be used for Nn
D. Here the profit function and γ̄ are defined as:

π(υ) =
n

∑
i=1

Ni
D pi

d, (1.20)

ρ̄ i =
Ni

Dλuci
dηζ1

CM
X

, (1.21)

ρ̄
(((

υ , γ̄(υ)
)))
=

n

∑
i=1

ρ̄ i, (1.22)

γ̄(υ) =CM
X ·ζ2

⎛
⎝1− ρ̄

(((
υ , γ̄(υ)

)))⎞⎠. (1.23)

The notation of optimization problem is the same as previous sections.

Example 1 (perfect correlation between wealth and data valuation). If we have a perfect cor-

relation between data valuation ωd and user wealth mr, it means user with better monetary

resource always pays for the bigger data volume. Therefore we can combine the concept of

ωd with mr as a single random variable budget (bg ∼ f (bg)). Here budget is defined as the

maximum amount a user is willing to pay for data access. Thus, the utility for user j can be

rewritten as:

U j = b j
g×θd× γ̄× cd− pd, (1.24)

where θd is having the same role as (1.9). The minimum sufficient budget level to join the

network is εd+pd
γ̄θdcd

which should be equal or bigger than package price pd , hence,

pd ≤ εd

γ̄θdcd−1
·

Now, we can extend our formulation to a multi-package market with packages

υ = {{c1
d, p1

d}, · · · ,{cn
d, pn

d}} and rationality conditions of (1.17-1.19). For every package i
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with pi
d ≤ εd

γ̄θdci
d−1

, we have the following user quantities:

Ni
D = NC

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

P

⎛
⎝εd + pi

d

γ̄θdci
d
≤ bg <

εd + pi+1
d

γ̄θdci+1
d

⎞
⎠ i �= n,

P

⎛
⎝εd + pi

d

γ̄θdci
d
≤ bg ≤ bM

g

⎞
⎠ i = n,

(1.25)

where bM
g is the highest available budget. Converting (1.25) to the form of (1.20) is straightfor-

ward and we exclude it. For the analytical purposes, here we represent the network parameters

for uniformly distributed budget bg ∼U(0,bM
g ):

ND =
NC

bM
g

(
bM

g −
εd + p1

d

γ̄(υ)θdc1
d

)
, (1.26)

π(υ) =
NC

bM
g

⎡
⎢⎣
⎡
⎢⎣
⎡
⎢⎣pn

dbM
g −

1

γ̄(υ)θd

⎛
⎜⎝
⎛
⎜⎝
⎛
⎜⎝(εd + pn

d)pn
d

cn
d

−
n−1

∑
i=1

(
εd + pi+1

d

ci+1
d

− εd pi
d

ci
d

)
· pi

d

⎞
⎟⎠
⎞
⎟⎠
⎞
⎟⎠
⎤
⎥⎦
⎤
⎥⎦
⎤
⎥⎦.

The traffic intensity ρ̄ i generated by the users who purchased the package (pi
d,c

i
d) is:

ρ̄ i =
NCλuζ1η

CM
X bM

g

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ci
d

γ̄(υ)θd

⎛
⎝εd + pi+1

d

ci+1
d

−
εd + pi

d

ci
d

⎞
⎠ i �= n,

cn
d bM

g −
εd + pn

d

γ̄(υ)θd
i = n.

(1.27)

Total traffic intensity and expected data rate are calculated by (1.22) and (1.23) respectively. In

(1.23), γ̄(υ) is the expected data rate announced to the users and the following solution for it
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can be easily found:

γ̄ =
1

2

⎛
⎝Γ+(Γ2 +4σ1σ2)

1
2

⎞
⎠, (1.28)

Γ =CM
X ζ2−ζ1ηcn

d, (1.29)

σ1 =ζ1ζ2NCλu, (1.30)

σ2 =
η

θdbM
g

⎡
⎢⎣
⎡
⎢⎣
⎡
⎢⎣εd + pn

d +
n−1

∑
i=1

ci
d

⎛
⎝εd + pi+1

d

ci+1
d

−
εd + pi

d

ci
d

⎞
⎠
⎤
⎥⎦
⎤
⎥⎦
⎤
⎥⎦. (1.31)

Writing the objective function and KKT conditions of the new optimization problem is rela-

tively straightforward and the concept is not much different from the previous section. Now,

the optimization parameters are 2n values which form n data packages instead of single pair

(pd,cd) in (1.13).

1.3.3 Package Renovation

In many cases a higher valuation of data package by a user does not always mean that this

user has greater monetary resources; there would be many types of potential subscribers who

appreciate a good quality data package for its price, yet they cannot afford it. In such cases the

covariance of ωd and mr can be negative. For the uni-package offer υ = (cd, pd, γ̄), the number

of subscribing users is:

N0
D = NCP

⎛
⎝ωd ≥

εd + pd

γ̄ · cd
,mr ≥ pd

⎞
⎠= NC

∫ 1

εd + pd

γ̄ · cd

∫ MM
r

pd

f (ωd,mr) cdωd dmr

= NC

⎛
⎝1−Fωd ,mr

⎛
⎝εd + pd

γ̄ · cd
, pd

⎞
⎠
⎞
⎠ . (1.32)
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The quantity of users who can afford the package-recharge for nth time is

Nn
D = NC

⎛
⎝1−Fωd ,mr

⎛
⎝εd + pd

γ̄ · cd
,npd

⎞
⎠
⎞
⎠. If the wireless provider sets the recharge cost for

extra data as pr �= pd , we can modify the above equation by representing:

Nn
D = NC

⎛
⎝1−Fωd ,mr

⎛
⎝εd + pd

γ̄ · cd
, pd +(n−1)pr

⎞
⎠
⎞
⎠ . (1.33)

Our formulation will not be completed if we do not consider a recharging incentive factor

which indicates the expected probability of purchasing extra service if user has not already

reached the budget limit. We define a decreasing function
{

G(n)
∣∣∣G(0) = 1,G(∞) = 0,G(a)>

G(b) ⇐⇒ a < b : ∀a,b ∈ [0,1]
}

which shows this effect. This function has a major role in

package definition since it connects our formulation to the reality of markets by prohibiting the

provider to offer an irrationally small-sized package to utilize all the budget levels. Then, one

can define the provider profit as:

π(pd, pr,cd) = N0
D · pd + pr×

n=�MM
r −pd

pr �
∑
i=1

G(i)Ni
D. (1.34)

Where �·� indicates the floor function. Since some users are purchasing extra bandwidth, we

need to modify the expected arrival rate of flows λd . In the new formulation we have G(n)Nn
D

(n = �MM
r −pd

pr
�) users who generate flows with rate (n+ 1)λucd; (G(n− 1)Nn−1

D −G(n)Nn
D)

users who produce flows with rate nλucd and so on. If we indicate the users with i-fold package

renovation as a group i, the traffic intensity, ρ̄ i, generated by this group is:

ρ̄ i =
λuζ1

ζ2

⎧⎪⎨
⎪⎩
(G(i−1)Ni−1

D −G(i)Ni
D)iηcd i �= n,

G(i)Ni
D(i+1)ηcd i = n.

(1.35)

The total traffic intensity and expected data rate are calculated from (1.22) and (1.23). In the

optimization problem of Subsection 1.3.1.2, the objective function along with the γ̄ function

can be updated with the new equations. Here, γ̄ is calculated using a recursive function which



41

appears in both the objective function and the inequality constraint. Thus, even though we

reached a better framework to model volume-based data packages, the complexity of finding

optimal values is increased by adding an iterative loop inside the main optimization problem

to find the value of γ̄ . We can take a further step and combine the results of the two recent sub-

sections to achieve a framework for the multi-package market with data recharging, however,

the formulation is straightforward and to avoid redundancy in content and equations we leave

it to the readers.

1.4 Dynamic Bandwidth Allocation Model

In the previous section, we investigated the volume-based data package pricing for shared-

carrier networks. In this manner, provider tries to attract a subset of voice user set, NC, to

subscribe to its data package. We assumed the provider owns bandwidth QD which leads to a

maximum data rate CM
X = βQD. In this section, we expand our framework to model the pricing

with regard to another channel access method. In this approach as we described in section

1.2.1.2, the provider guarantees to grant a predefined access data rate to the connected users.

Here, in contrast to the previous method, data rate is not changing based on the distance from

the base station. However, the available bandwidth to the provider is limited and users may be

displeased by service unavailability. This unavailability occurs when the data flow requests are

blocked due to spectrum shortage. Hence one needs to add an extra variable to the utility in

(1.9) to reflect the dissatisfaction by service unavailability. Henceforth instead of γ̄ we use the

notation γd to clarify the invariability of data rate in current approach. Since the utility function

presents user’s gain, by defining BT
d as the expected blocking probability for data flow requests,
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we define the utility and user quantity as:

Uj = θd · cd ·ω j
d · γd · (1−BT

d )− pd, (1.36)

ND =

⎧⎨
⎩ j ∈ NC

∣∣∣∣∣∣ω j
d ∈ [0,1] ∧ ω j

d ≥
εd + pd

θd · cd · γd ·
(
1−BT

d

)
⎫⎬
⎭ , (1.37)

ND = NC

∫ 1

εd+pd
θd ·cd ·γd ·(1−BT

d )

fΩd(ωd)cdωd. (1.38)

Now, we need to find the expected blocking probability of data flows which is based on avail-

able bandwidth and carrier allocation in admission control process. Due to zero latency expe-

rience of 5G networks, we suppose any delay of data transfer has a similar effect to the flow

blocking on user utility. Based on (1.8) we have the following relation for spectrum bandwidth

and data rate:

S(r) =
γd

β

⎧⎪⎨
⎪⎩

1 r ≤ Rm,(
r

Rm

)α
Rm < r ≤ RM.

(1.39)

However, r which is the user distance form the macro-cell is a random variable and conse-

quently S(r) is also behaving as a random variable. With a little math work we have the CDF

and PDF of S(r) as:

FS(s) =

⎧⎪⎨
⎪⎩

0 s < γd
β ,(

Rm
RM

)2(β s
γd

) 2
α γd

β ≤ s≤ γd
β

(
RM
Rm

)α
.

(1.40)

fS(s) =

⎧⎪⎨
⎪⎩

0 s < γd
β ,

2
α

(
Rm
RM

)2( β
γd

) 2
α

s
2
α−1 CC

β ≤ s≤ γd
β

(
RM
Rm

)α
.

(1.41)
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Figure 1.3 M/M/K/K birth-death model with state dependent

arrival rates

μS = E[S] =
2

α +2
· γd

β
·
((

RM

Rm

)α
−
(

Rm

RM

)2
)
, (1.42)

E[S2] =
1

α +1
·
(

γd

β

)2

·
((

RM

Rm

)2α
−
(

Rm

RM

)2
)
, (1.43)

σ2
S = E[S2]−μ2

S . (1.44)

The above PDF shows the probability density of required spectrum size for each user in the

coverage area. If the overall available spectrum to the provider for the data network is QD,

then the quantity of concurrent active users Ad varies as k = QD·β
γd

( Rm
RM

)α� ≤ Ad ≤ �QD·β
γd
�= K,

where .� and �.� are the ceiling and floor functions respectively.

We can model the data network as a multi-server model with Poisson arrival λD = NDλu (λu is

the arrival rate for each user’s data requests) and expected service time 1
μD

= E[td] =
ηcd
γd

. td

is connection (data flow) duration with exponential distribution. This is a M/M/K/K system

with no queue and K = �QCβ
γd
� servers. In standard model of queue-less multi-server system

the service blocking occurs when the user request arrives in state K which means user observes

K other users are being served in that time. In our model, due to randomness of bandwidth (or

sub-carrier) allocation, a user service request would be blocked in a state j < K. Due to this

fact when the system is stationary, the arrival rate observed by an observer inside the system

is related to its state. This effect is depicted in Fig. 1.3 as follows: the arrival rate is λD in

all states in which the system definitely has enough resources to guarantee the promised data

rate, as soon as system reaches to the state j > k = QD·β
γd

( Rm
RM

)α�, due to request blocking, the
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average arrival rate observed by the viewer inside the system is (1−b( j−1))λD where b( j−1)

is the blocking probability of flows in state j− 1 due to resource shortage. The more precise

interpretation of blocking in the state j ≥ k, b( j), is that by having j users in the system, there

is not enough spectrum (in form of sub-carriers) to serve ( j + 1)th user, hence, in view of a

Markov process, assuming the system is already in state j, the probability of having enough

resources to go to the next state is 1− b( j) = P(QD−∑ j+1
i=1 S(ri) ≥ 0). As a result of above

discussion, the instant blocking probability of flows should be calculated for each system state.

With respect to this fact, the general definition for the expected blocking probability in the

steady state of the system is,

BT
d =

K=�QDβ
γd
�

∑
j=k=QDβ

γd
(Rm

RC
)α�

b( j)×P( j), (1.45)

where j represents the system state, P( j) is the probability of being in state j. In the following

two subsections, we explain a method to calculate P( j) and b( j).

1.4.1 Finding b( j)

Since the bandwidth random variables for all users are i.i.d, let define a new random variable

I( j) = ∑ j
i=1 S(ri), and we have the following definitions for it:

fI( j)(ι) = f j∗
S (ι), (1.46)

μI( j) = j ·μS, (1.47)

σ2
I( j) = j ·σ2

S , (1.48)

where f j∗(.) indicates the j-fold convolution of f (.). As we indicated earlier, the probability of

being blocked when the system is in state j is P(QD−∑ j+1
i=1 S(ri)< 0), which can be represented
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as:

b( j) = 1−FI( j+1)(QD). (1.49)

Since in today’s cellular networks the quantity of concurrent users is usually greater than 10,

with a good approximation, by using central limit theorem, a Gaussian distribution can be

assumed for fI( j)(ι) . Hence, we can represent:

fI( j)(ι)≈ G( jμS, jσ2
S ) =

1

(2π jσ2
S )

1
2

· e
−
(ι− jμS)

2

2 jσ2
S , (1.50)

and from (1.49):

b( j) = 1−Φ
(

QD− ( j+1)μS√
j+1σS

)
, (1.51)

where

Φ(x) = (2π)
−1
2

∫ x

−∞
e−x2

dx. (1.52)

1.4.2 Finding P( j)

The call admission scheme in our system is based on a queue-less multi-server model M/M/K/K

which has state-dependent arrival rates for service requests due to random resource shortage.

In this part, we elaborate this system which is depicted in Fig. 1.3. The stationary probabilities

of states in a standard M/M/K/K system is well-known: for a system with K servers and

traffic intensity ρd = λD
μD

= NDλu
μD

we have:

P(ρd, j) =
ρ j

d
j!

∑K
i=1

ρ i
d

i!

. (1.53)



46

However, since the shortage of spectrum can force the admission controller to reject some data

request in state j < K, then, from the viewpoint of an observer inside the system, the arrival

rate is different from state to state. Hence, we have to write the stationary equations to obtain

the probabilities of states in the system of Fig. 1.3. The stationary equations are as follows:

λDP(0) = μDP(1), (1.54a)

(λD +μD)P(1) = λDP(0)+2μDP(2), (1.54b)

...

(λD +(k−1)μD)P(k−1) = λDP(k−2)+ kμDP(k), (1.54c)

((1−b(k))λD + kμD)P(k) = λDP(k−1)+

(k+1)μDP(k+1), (1.54d)

...

((1−b(K−1))λD)P(K−1) = KμDP(K). (1.54e)

The above system of equations yields to the Markov chain stationary state probabilities as

follows:

P( j) =δ ×

⎧⎪⎨
⎪⎩

ρ j
d

j! j ≤ k = QDβ
γd

(Rm
RC
)α�,

(1−b( j−1))
ρ j

d
j! k < j ≤ K = �QDβ

γd
�,

(1.55)

δ =

⎛
⎝ k

∑
i=1

ρ i
d

i!
+

K

∑
i=k+1

(1−b( j−1))ρ i
d

i!

⎞
⎠−1

. (1.56)

By putting (1.51) and (1.55) into (1.45) (BT
d = ∑K

j=k b( j)P( j)), we achieve the final form of

expected blocking probability for data flows:

BT
d = δ ×

⎛
⎝b(k)

ρk
d

k!
+

K−1

∑
j=k+1

b( j)(1−b( j−1))
ρ j

d
j!
+(1−b(K−1))

ρK
d

K!

⎞
⎠. (1.57)
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1.4.3 Expected blocking with user utility applied

One of the main parameters of BT
d in (1.57) is the traffic intensity represented by ρd . The traffic

intensity can be represented by ρd = NDλu
μD

; ND directly comes from (1.36-1.38), and by using

those definitions we can formulate the traffic intensity as,

ρd =
NCλu

μD

(
1− εd + pd

cdθdγd(1−BT
d )

)
. (1.58)

In this representation, ρd is a function of the blocking probability itself and consequently we

can conclude that (1.57) is a recursive function having the form BT
d (QD,ρd(BT

d )).

1.4.4 Optimization problem

For the case of dynamically allocated spectrum, the provider profit optimization problem is,

max
γd ,cd ,pd

ND(γd,cd, pd)× pd, (1.59)

subject to

γd ≥ γm, (1.60a)

cd ≥ dm, (1.60b)

pd ≥ 0, (1.60c)

0≤ BT
d (QD,ρd)≤ BM. (1.60d)

We have the user quantity in data network, ND(γd,cd, pd), from (2.8) which includes the block-

ing probability as well. Here we added a constraint for maximum blocking probability BM as

a representation of regulator’s obligations. The complexity of this problem arises from the fact

that BT
d (QD,ρd) does not adopt a closed-form solution and the problem is needed to be solved

with numerical methods.
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1.4.5 Final profit

The cellular provider has two sources of profit income from data and voice users. We also

know that the data users are a subset of the voice service users. The total bandwidth available

to the provider is QT . To separately control the level of availability of each service, we can

define a bandwidth splitting ratio 0≤ ψ ≤ 1. In this manner QC = ψQT and QD = (1−ψ)QT .

Considering this decision value and using the profit model in the previous sections, we can

define a combined profit function to resolve all the network decision values:

max
ψ, pd ,cd ,γd

πc+d = NC× pc +ND× pd = NC

⎡
⎣pc + pd

⎛
⎝1−

εd + pd

γd(((1−BT
d ((1−ψ)QT ,ρd))))θdcd

⎞
⎠
⎤
⎦ ,

(1.61)

subject to,

cd ≥ dm, (1.62a)

pd ≥ 0, (1.62b)

ψ0 ≤ ψ ≤ 1, (1.62c)

γd ≥ γm, (1.62d)

BT
c (ψQT ,ρc)≤ BM

c , (1.62e)

BT
d ((1−ψ)QT ,ρd)≤ BM

d . (1.62f)

Where BT
c (ψQT ,ρc)≤ BM

c defines the upper limit for the probability of call blocking in voice

service. This model of profit optimization upon bandwidth splitting gives a more precise

calculation since it separates the voice and data satisfaction, and gives different perceptual

evaluation-tolerance of each service to the users.
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1.4.6 Multi-package market for dynamic allocation method

In the pricing approaches for the shared-carrier technology, we formulated the rationality con-

ditions for a multi-package market in (1.17)-(1.19). The same conditions are applied to the

case of dynamic allocation technologies. The arrival rate of data flow requests is directly re-

lated to the data volume cap, λd = λucd . Hence, multiple plans with different cap levels,

υ =
{{c1

d, p1
d}, · · · ,{cn

d, pn
d}
}

, affect the overall rate of flow requests. With the analogous nota-

tions to Subsection 1.3.2.1, we can write the following equations for the number of subscribers

in each plan,

Ni
D

i�=n
= NC

⎡
⎣
⎡
⎣
⎡
⎣FMr

(
pi+1

d

)
+FΩd ,Mr

⎛
⎝ εd + pi

d

(1−BT
d (ρ̄d(υ)))γdθdci

d
, pi

d

⎞
⎠

−FΩd ,Mr

⎛
⎝ εd + pi

d

(1−BT
d (ρ̄d(υ)))γdθdci

d
, pi+1

d

⎞
⎠−FMr

⎛
⎝pi

d

⎞
⎠,

⎤
⎦
⎤
⎦
⎤
⎦, (1.63)

ρ̄d(υ) =
n

∑
i=1

Ni
dλuci

dη
γd

. (1.64)

To obtain Nn
D from (1.63), MM

r is substituted for pi+1 in (1.63). Suppose the values {ci
d, pi

d} ∀i∈
n and γd are given. Then, (1.63) and (1.64) together define a system of nonlinear equations

with n variables. Writing the constraints for the objective function, π(υ) = ∑n
i=1 Ni

D(υ)pi, is

not much different from the previous cases. Since finding a closed-from solution for Ni
D is

hardly possible, we use numercial methods embedded in MATLAB to find the optimal values

in different realistic scenarios in the next section.

1.5 Numerical Results

In this section, we analyze four realistic scenarios. Firstly, the expected blocking probability

of (1.57) is analyzed. Then, we extend the analysis to the case in which the utility function of

users affects the blocking probability of data flows. In the third scenario, we consider providers
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with the shared carrier and dynamic allocation methods and derive the optimal values of cd ,

pd , and γd . Finally, a provider with multiple data plans is investigated, and optimal network

parameters are derived for different values of λu.

Scenario 1. To justify (1.57), we ran a series of numerical scenarios which are depicted in Fig.

1.4-1.9. Fig. 1.4 represents the value of BT
d for different available spectrum sizes (QD) while

traffic intensity ρd is the variable. We selected the guaranteed data rate as rational value 50

Mbps and RM = 4Rm. The spectral efficiency (β ) is set to 4 which represents LTE technology

with SISO system (Mogensen et al., 2007). As it is expected, the higher available bandwidth

offers lower blocking probability even though by increasing ρd (simple representation of ρd),

BP goes to 1 eventually. Fig. 1.5 is a close-up of previous setting in interval ρd = [0,1]. Net-

work parameters in Fig. 1.6 are different from the previous group by having a lower guaranteed

data rate γ = 10 Mbps which drastically decreases the blocking probability in lower values of

ρd . Fig. 1.7 represents the probability of the system being in each state when a new request

arrives. Here each curve is analogous to one value of set [5,10,15,20] for ρd . Since the ar-

rival rate is decreasing in state-dependent format, we observe the state probability goes to zero

as the system is in higher states. Fig. 1.8 has spectral efficiency β = 30 which is similar to

LTE-advanced with MIMO system. As a result of higher efficiency, the non-zero blocking

probabilities spread to a broader range of system states. Finally, Fig. 1.9 depicts the curves as-

sociated with blocking probability in each system state. Each curve represents a different value

of guaranteed data rate varying from 10 to 40 Mbps. Due to spectrum shortage, the blocking

probability eventually goes to 1 in higher state numbers while the lower guaranteed data rate

has better performance as it is expected.

Scenario 2. In the previous scenario, we justified the expected blocking probability by cases in

which no user utility is involved. In this example we use the same network settings

(Q=350MHz, Rc = 4Rm, α = 2, β = 4) and analyze the expected blocking probability when

the user utility is considered, which is formulated in (1.58). Considering (1.58), we use the

notation ρM
d = NCλucd

μD
as the upper limit of traffic intensity and use the ratio εd+pd

θd×γd×cd
(cost to

gain) as the variable for the provider. Fig. 1.10 depicts the blocking probability for different
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Figure 1.4 Expected blocking probability for ρd = [0,100]

Figure 1.5 Expected blocking probability for ρd = [0,1]

values of ρM
d while the guaranteed data rate is 50 Mbps. As it is shown in the figure, when

user’s cost to gain ratio increases, the expected blocking probability decreases due to fewer

network subscription. Fig. 1.11 shows the numerical results in which the guaranteed data rate

γd is constant in εd+pd
θd×γd×cd

. Five curves represent the offered rate from 10 to 50 Mbps. In this
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Figure 1.6 Expected blocking probability for γ = 10 Mbps

Figure 1.7 Markov chain State Probability (β = 4)

case, by increasing the cost to gain ratio, the provider needs to decrease the offered blocking

probability to maintain the data rate which is assumed to have a lower bound in the busy hour

indicated by γd .

Scenario 3. Here, we consider a realistic busy-hour scenario for each of the two bandwidth

allocation methods and find the optimum values with MATLAB. Table 1.2 represents the net-
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Figure 1.8 Markov chain State Probability (β = 30)

Figure 1.9 State blocking probability b( j)

work parameters. We assume that a macrocell has 6 sectors. Concerning the shared-carrier

method, a lower total available bandwidth of QT = 10 MHz and spectral efficiency of β = 0.5

are used, which are similar to WCDMA 3G networks. The available bandwidth in dynamic

allocation method is 50 MHz. We consider 150 and 1500 voice subscribers for shared-carrier

and dynamic allocation schemes respectively. In both scenarios, each voice user has an arrival
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Figure 1.10 Expected Blocking Probability (BT
d ) with

the ratio εd+pd
θd×γdγd

as variable. Curves represent different

values of ρC

Figure 1.11 Expected Blocking Probability (BT
d ) with

the ratio εd+pd
γd×cd×θd

as variable. Curves represent different

values of γd

rate of 10−4 and service time of 90 seconds with 150 Kbps of required data rate. The arrival

rate of each data request is taken as an independent variable in both scenarios, and the average
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flow size is η = 100 KB. While data service valuation ωd is assumed to be uniform, we con-

sider a beta distribution for user budget,
bg

100 ∼ Beta(2,6), which is depicted in Fig. 1.12. In

both scenarios, θd is set to 50 so, with a minimum acceptable data rate of 1 Mbps and data size

of 1 GB, the users with the highest service valuation are willing to pay no more than 50$ for

the data service.

Figs. 1.13-1.15 show the numerical results for the shared-carrier scenario. Fig. 1.13 depicts

the optimal values of data volume cap and service data rate. The scale factor for the arrival

rate of data flows, λu, is the independent variable in all curves. Note that the arrival rate of

each user’s data flow is λd = λucd . Fig. 1.14 depicts the optimal price for voice and data

services and finally Fig. 1.15 shows the subscribed users to each service. One important aspect

of the price and data rate curves is rather small amount of fluctuations in optimal values. By

increasing the data request rate, the offered data size should be decreased which yields to a drop

in subscriber quantity. This is due to the dependency of the overall number of subscribers to

the ratio of pd
γd×cd

. In this way, the provider adjusts the value of price and data rate respectively

to maximize the overall profit. This causes a small variation in optimal values. To eliminate

these fluctuations, one option is to fix price and data rate on their average value and having data

volume cap as the only variable in service parameters. For this scenario, the optimal value of

ψ is 0.1 for all values of λu.

For the dynamic allocation scenario, we expect a similar price and data rate adjustment as it is

depicted in Figs. 1.16-1.17. We obtained the results for two values of spectral efficiency factor,

β ∈ [4,16]. β = 4 indicates LTE SISO and β = 16 represents LTE MIMO (4× 4). Here the

data volume cap and subscriber quantity are also decreasing in response to the increase of λu.

Due to the availability of broader bandwidth and higher spectral efficiency, the provider can

attract more subscribers. The related curves are depicted in Fig. 1.18. The optimal value of

ψ , which is the bandwidth splitting ratio, is 0.5 for β = 4 and 0.1 for β = 16, which remains

constant for all values of λu. Fig. 1.19 shows the data rate for the case in which the provider

adjusts the power of signal to achieve the equation RM = 2Rm. For the both cases of β = 16 and
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β = 4, the data rate dramatically increases. Particularly, for β = 16, provider can guarantee a

data rate of γd = 27 Mbps in the busy hour.

Table 1.2 Network parameters

Parameter Shared carrier Dynamic allocation
NC 150 1500

QT 10 MHz 50 MHz

β 0.5 [4,16]
θd 50 50

ωd U(0,1) U(0,1)
bg

100 Beta(2,6) Beta(2,6)
η 100 KB 100 KB

λc 10−4 10−4

Data λu independent variable independent variable
1
μc

90 seconds 90 seconds

γc 150 Kbps 150 Kbps

Bd - 0.01

Bc - 0.001

RM 5Rm 5Rm
α 2 2

Figure 1.12 Distribution of user budget for data service
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Figure 1.13 Optimal data rate and data volume cap in shared

carrier network in shared carrier scenario

Figure 1.14 Optimal price the data service in shared carrier

scenario

Scenario 4. For the case of multi-package markets, we considered a provider that uses dynamic

allocation method, and its network parameters are the same as the values in Table 1.2. We used

the spectral efficiency β = 4 for LTE SISO. The optimal package parameters are derived for

three values of λu ∈ [0.01,0.05,0.1]. We assumed the price difference between each plan is

a multiple of 5$ and the data volume cap of each plan should be two times bigger than its

inferior plan. Table 1.3 (next page) shows the results. Similarly to the previous scenarios,
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Figure 1.15 Number of subscribed users to voice and data

services in shared carrier scenario

Figure 1.16 Optimal data volume cap in dynamic allocation

scenario

γd is the minimum data rate that each user would experience during the busy hours. As we

indicated before, the small variation in optimal values is due to the dependency of the overall

number of subscribers to the ratio of pd
γd×cd

. By increasing the value of λu provider decreases

the data volume size and increases the service price to adjust the number of subscribers and

their willingness to over-utilize the network.
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Figure 1.17 Optimal price and data rate for the data service in

dynamic allocation scenario

Figure 1.18 Number of subscribed users to voice and data

services in dynamic allocation scenario

Table 1.3 Three-plan market with guaranteed

minimum data rate γd

λu 0.01 0.05 0.1

(p1
d, c1

d, N1
D) (20, 2, 306) (25, 0.5, 198) (28, 0.5, 120)

(p2
d, c2

d, N2
D) (30, 4, 234) (35, 1, 150) (38, 1, 96)

(p3
d, c3

d, N3
D) (40, 8, 224) (45, 2, 138) (48, 2, 84)

γd (Mbps) 2 2.5 2
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Figure 1.19 The guaranteed data rate for RM = 2Rm

1.6 Conclusion

In this paper, an analytical study for pricing in cellular networks with volume-based data ser-

vices is presented. Our goal was finding the optimal values of data volume cap, its price and the

data rate in the busy hours. We considered two types of channel access methods, shared carrier

and dynamic sub-carrier allocation. We started by defining a model for average data rate in the

shared-carrier method which is linked to the offered data-volume. Then, we modeled the user

utility by considering the random valuation of data and guaranteed data rate. We applied bud-

get information to the model to reach a more realistic scenario. We expanded the framework by

bringing the concept of multi-package market and its effect on profit maximization. We studied

a model for data-renovation by users during a monthly period which is closely related to the

budget distribution. The blocking probability of data flows due to spectrum shortage when the

provider is offering consistent service quality is calculated. In this case, dynamic sub-carrier

allocation is considered. Finally, a profit maximization framework is proposed in which the

provider’s decision values are the prices, dedicated spectrum sizes and blocking probabilities

for voice and data respectively as well as the data volume cap for the data service. For the

future work, we will investigate the multi-provider network and the effects of competition and

cooperation on offered service quality and possible profit.
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Abstract

Mobile users demand better speed, coverage, and reliability. To fulfill these requirements in

a cost-effective manner, operators can form coalitions that can include heterogeneous tech-

nologies such as LTE and WiFi. In this paper, we propose a game-theoretic framework that

can help to create stable coalitions of heterogeneous wireless operators and enable wireless

regulatory bodies to determine acceptable coalitions which do not downgrade social welfare

standards. In particular, we derive a simple and efficient generic model that predicts the state

of the market before and after a coalition formation without focusing on short time-scale band-

width allocation problems. The model is based on finding a pure Nash equilibrium strategy

profile that defines service prices for each provider. The solution is based on experienced costs

of providers and user satisfaction metrics that are related to the offered speed and coverage.

The model features and usefulness are illustrated using some realistic and practical scenarios.

The results show that formation of coalitions can notably increase the profits of providers and

the integrated payoffs of users.

Introduction

Profit maximization is the main concern for all types of wireless service providers as their

business is based on making the profit out of subscribers by providing them a rational quality
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of service (QoS). The better service providers offer, the more subscribers they attract. To be

successful, providers need to expand their coverage areas and provide a better quality of ser-

vice in terms of higher connection speed, reliability, coverage size, etc. However, the monetary

resources of each provider are limited and the networks cannot be expanded or upgraded in-

stantly. This fact motivates us to study a cost-effective approach that can help the providers in a

market of heterogeneous networks (HetNets) to increase their revenue and improve the quality

of service while the incurred costs are minimized. One approach that has been considered in

several works, e.g., (Singh et al., 2011, 2012b), is to form coalitions in homogeneous wire-

less markets. These works try to utilize the concepts of game theory and increase the profit of

providers. This approach is also consistent with the free roaming plans that are offered by sev-

eral operators. For example, since June 2015, Indian operator BSNL offers free national wide

roaming plans in cooperation with MTNL (BSNL). Sprint offers a Global Roaming plan which

includes free unlimited data and text across its worldwide participating networks including the

ones from Canada, Mexico, and Latin America (Sprint, 2016). We aim to expand this idea to

the field of heterogeneous operators that offer complementary strengths in terms of coverage,

technologies, tiered service speeds, and pricing. Due to technological differences and imple-

mentation costs, it is critical for the operators to assess the potential gain before committing to

form a coalition. Our work is based on an analytical structure that covers both competitive and

cooperative states of HetNets market. Based on this structure, we derive coalition formation

models for heterogeneous wireless networks that define roles and interactions of the main deci-

sion makers in the market, namely, users, providers and regulator. It should be noted that we try

to avoid the formation of the grand coalition since it leads to a monopoly which is prohibited

by regulatory units. Thus, our goal is to maintain competition among providers in the form of

established coalitions.

Contribution

The contribution of this paper can be summarized as follows:
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a. The proposed analytical framework is based on user’s long-run preferences. In this man-

ner, user’s perspective of service speed and coverage size are the core decision values for

selection of user’s default provider.

b. We analyze provider’s profit in competitive and cooperative states of the market which

allows each provider to choose the best coalition unit.

c. We define a multi-provider payoff function for users which enables the wireless users to

instantly switch between the networks of a specific coalition. Since the provider selection

is instant and allowable inside the coalitions, it is an extra degree of freedom for the users.

Hence, coverage size, service speed, and multiple network choices are three long-run QoS

parameters in our work.

d. We propose an analytical framework in order to study a structure of coalitions and its

impact on both user and provider sides. In this manner we define a coalition formation

process and show that it leads to stable coalitions in wireless networks. While there are

some works in which the Core and Shapley value for the grand coalition are studied, we

avoid formation of a grand coalition since the regulatory units do not allow it (as it leads

to a monopoly).

e. We define the market fairness metric for the wireless regulator. This metric helps the

regulator unit to decide if forming a coalition a) improves the service experience for the

users; b) maintains a certain level of competition between providers.

Analytical framework

In Sections 2.3 and 2.5, we analyze HetNet markets without coalitions and propose models that

cover two types of interactions: user-provider and provider-provider. We first define metrics

to quantify the effect of user-provider interaction and then we model the procedure of provider

selection by users. This model also helps the providers to choose the best service parameters

and pricing strategies in order to maximize their profits. The model consists of three parts
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which are related to the user satisfaction (a function of link speed), the network/coverage ex-

pansion costs and the pricing strategy. To characterize the behavior of users, we follow the

widely adopted utility theory ((Duan et al., 2013c; Gajic et al., 2009; Acemoglu et al., 2004;

Niyato & Hossain, 2009)). The amount of data usage is the decision factor by each service

subscriber. In user utility, the market-related parameters are speed satisfaction, coverage size

and unit price of data. Among these values, speed satisfaction and the amount of data usage

are evaluated in a fairly long period like a month. In this manner, a short service downtime or

poor quality experience do not have a sudden effect on user payoff. This approach helps us to

solve the higher level decision-making problem since it is separated from short-run power or

bandwidth allocation problems. Accordingly, each user tries to maximize the total obtainable

payoff regarding the general service parameters. Then the optimal pricing strategy of each

provider is evaluated based on the actions of users. This formulation eventually leads to a

two-stage Stackelberg game.

Besides characterizing the interactions between the users and the provider, we also model

the provider-provider interactions as a competition among all providers in the market (which

obviously includes the first type of interaction, user-provider as well). At this step, computing

Nash equilibrium prices helps to understand the market state and paves the way to analyze

cooperative markets. We also analyze a numerical example that shows the effect of data usage

cost on the provider’s profit at equilibrium. Since the model is based on general perceptions

of speed satisfaction and the coverage size, one advantage of our approach is that no provider

needs to know the exact coverage and bandwidth details of other providers to formulate its

profit and payoff of users.

After constructing a model for the competitive state of the market, in Section 2.7, we use

this model to develop an analytical framework for cooperative markets which helps us to ana-

lyze possible coalitions. Towards this end, we redefine the uni-provider utility of the users to

accommodate a new concept of multi-provider network. The analytical approach that is con-

sidered in this part and the form of multi-provider payoff function is an important part of our

contribution. Here, the criterion for analyzing user-provider interaction remains the same but
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there are two new challenges: finding stable coalitional structures and determining allowable

coalitions from the regulatory viewpoint. The first problem is related to two characteristics of

the wireless market: 1) negative externalities which cause the profit of any coalition to depend

not only on its members but also on the reactions of other non-coalition members; 2) asym-

metrical nature of HetNets, which is caused by the existence of wireless providers with a broad

range of market powers. To address these issues, we modify the well-known method presented

in (Bloch, 1996) to enable us to develop a process of coalition formation (PCF) for wireless

markets. From the regulator’s viewpoint, the main issue is to define a weighted social welfare

function and to estimate its value under each coalitional structure. We present several examples

that illustrate the effect of pricing strategies and welfare standards on the cooperative behavior

of the providers.

Structure

The rest of this paper is organized as follows: Section 2.1 discusses the related works. Basic

notation is developed in Section 2.2 while operator selection criteria are analyzed in Section

2.3. Section 2.5 describes the models for evaluating the provider profits while the analysis

and modeling of coalitions are presented in Section 2.7. Finally Section 2.9 discusses the

conclusions and our future work.

2.1 Related Works

There are several research efforts that are focused on market models. The majority of literature

that is related to the cooperative games tries to find a solution for the grand coalition. The grand

coalition is formed with the participation of all entities. An example is the bandwidth allocation

mechanism by access points (APs) in 4G HetNets introduced in (Niyato & Hossain, 2006).

The bandwidth allocation and admission control are analyzed based on the model of N-person

cooperative game in which the allocated bandwidth to each connection is based on Shapley

value. In this type of sharing, coalition members benefit from the overall payoff based on their

power or importance in the coalition. Cooperation among providers in cellular networks is
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modeled in (Singh et al., 2011) and (Singh et al., 2012b). The object of (Singh et al., 2011)

is modeling the market when the payoff to the providers is non-transferable. In this model,

providers try to coordinate their actions and each of them obtains a payoff bigger than the one

achieved in the non-cooperative case. The goal is to form a grand coalition and to find the

Core of the game. The aim of (Singh et al., 2012b) is to investigate cooperations in multi-hop

networks where the optimal strategies for selecting the appropriate channels and base stations

are found by solving several optimization problems. Here, the payoff function is modeled by

transferable utility. The goal of this work is also to find the stable grand coalition. Our work,

on the other hand, denies the formation of grand coalition. We also propose the concept of

general speed satisfaction and by using it, we develop our market framework. (Anglano et al.,

2014) is a very interesting work which pursues a similar goal to our work. It investigates

the formation of coalition among wireless providers in green networks. Toward this end, an

algorithm for coalition formation is proposed and numerically analyzed. Our work has three

major differences with this work. Firstly, while (Anglano et al., 2014) is focusing on the

problems like resource allocation and base station assignment, we focus on long-run problems

like the overall consumed data by the users in monthly periods. Secondly, we define a multi-

provider payoff function which gives the choice to users to select among available providers.

Finally, in our work the formed coalitions are protected by long-run contracts and the providers

cannot leave their coalition during the contract period. This is based on the fact that forming

coalitions is a long process which needs co-investment in many technical aspects.

From the economic perspective, (Niyato & Hossain, 2009) investigates the competition among

users of wireless heterogeneous networks when the available bandwidth is limited. The com-

petition is modeled as an evolutionary game. Our model, on the other hand, investigates the

competitive and cooperative strategies of the providers by considering user’ long-run data con-

sumption model and their network selection behavior. The goal of (Duan et al., 2013c) is to

analyze the interaction between wireless providers while they aim to upgrade their networks.

In this manner, the best upgrade time along with the earned profit of the providers are investi-

gated. However, this interesting research effort does not focus on the coalition of the providers.
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The optimal pricing in the WiFi market has been studied in (Duan et al., 2013a) where the rev-

enue of a WiFi provider with flat rate and usage-based pricing has been analyzed. The market

model covers the interaction between users, local WiFi providers and Skype (that wants to co-

operate with local WiFi providers to build a global WiFi service). A duopoly wireless market

has been modeled in (Jia & Zhang, 2008) where the competition of two providers and their

interaction with users form a multi-stage game. Competition between providers for users with

different payoff functions is the subject of (Gajic et al., 2009). Here the market is considered

to be heterogeneous and the problem is solved as a two stage leader-follower game. However,

none of above works analyzes the cooperation among providers in the HetNets market.

Our work is distinguished from all above works with the fact that we consider the heterogeneity

of the market by modeling the behavior of the users when they have different perceptions of

satisfaction. Our work also considers both competitive and cooperative states of the market

based on the user satisfaction model.

2.2 Basic Notation and Assumptions

We consider an unsaturated market where there is an incoming flow of new users who need to

select their default provider. In each period of time (e.g., a day or month), the expected number

of incoming users is a constant represented by Nu which is the size of related user set Iu. Each

provider, from the set Pr = {1,2, ...n}, serves users by one of several access technologies,

e.g., WiFi, 4G or 3G. The new users sign a data service contract with a selected provider.

Provider i has a geographic coverage area (GCA) Ai with size |Ai|. Then we define normalized

size Gi =
|Ai|
|AT | , where AT is the GCA of the entire market. Note that we have | ∪n

1 Ai| = |AT |
and ∑n

1 |Ai| > |AT | due to the overlapping areas considered in our notation. Providers charge

users based on the data usage of users and provider i’s data unit price is shown by pi. The

price unit is defined for an agreed unit of data usage, e.g., 1 GB. The market price vector is

P̄ = {p1, ..., pn}. Provider i’s cost function, Ci, has two components. The first component, αi,

is related to the cost of one data unit used by a user and the second component, ci(Gi), is the

constant cost related to coverage area. If the user-set of provider i in one period of time is Ii
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and the data usage of j-th user is d j
i , j ∈ Ii, then the total cost experienced by provider i for all

of its registered users in that period is:

Ci = ci(Gi)+αi ∑
j∈Ii

d j
i · (2.1)

Note that the ability to expand the coverage area is related to the access technology of choice.

For example, a WiFi access point (AP) can serve an area of around 50-meter radius and a 3G

macrocell can cover an area with a radius of several kilometers. The satisfaction factor (SF)

s j
i for user j with provider i, is a number in [0,1] that reflects the user satisfaction from the

service speed. Base satisfaction factor, Si, for the access technology of provider i is defined

as the ratio of average speed (experienced by users of that technology) to the maximum speed

expected by the greediest user. For instance, if the average access speed for WiFi, 4G and 3G

cellular are 150, 50 and 15 Mbps respectively and the maximum expected speed is 300 Mbps,

the corresponding base satisfaction factors for these technologies are: SWiFi = 0.5, S4G = 0.166

and S3G = 0.05.

We assume for each provider, the user satisfaction factor is uniformly distributed from Si to 1

with probability density function:

fi(si) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

1−Si
si ∈ [Si,1],

0 else.

(2.2)

It is highly common to use a uniform valuation in economic analysis. We refer the readers

to (Duan et al., 2013b) and (Chen et al., 2015b) as two well-known examples. The above

assumption implies that users have different perceptions of the same technology, where the

greediest users are represented by Si which is the minimum satisfaction value and the ones with

least bandwidth requirements are shown by si = 1. By applying this assumption we consider

the heterogeneity of network applications. In fact, the subscribers who permanently use high-

demand applications such as HD-video may have less satisfaction comparing to the ones with
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applications such as voice or web browsing. We suppose if the speed satisfaction (SS) of a

specific user under a particular access technology is known then the SS can be computed for

other technologies, even though the SS is a random variable itself. A linear transformation can

be applied for this case: when user j’s satisfaction from the technology of provider i is known

(s j
i ) then this user’s satisfaction for technology of provider m can be calculated as:

s j
m = ai−ms j

i +bi−m =
1−Sm

1−Si
s j

i +
Sm−Si

1−Si
, (2.3)

where ai−m and bi−m are the transition constants with respect to the destination network m and

originating network i. If a network provider changes the quality of its service, then the speed

satisfaction of each user will be affected respectively.

2.3 Operator Selection

As mentioned in the previous section, in each long period, there is a fixed expected number

of users, Nu, who join the market. They select their desired provider based on the level of

achievable payoff. Users sign contracts with the selected providers and are charged based on

their data usage. Providers have enough long-run capacity to fulfill the total demand of their

corresponding users.

2.3.1 Payoff function for the users

The payoff function is the difference between the user utility (representing satisfaction from

the service) and the service cost. The utility of user j is proportional to the coverage of its

provider (Gi) and the user satisfaction from service speed (s j
i ). Moreover, it should follow the

law of diminishing marginal utility. Hence, the payoff function can be defined as:

U j
i (Gi, pi,s

j
i ,d

j
i ) = Gi s j

i ln(1+K d j
i )− pi d j

i . (2.4)
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Table 2.1 Notation

SYMBOL DEFINITION

NT Number of users in the stationary market

Nu Number of new users joining the market in each period

[ ]
j
i Attribute of provider i and user j

Ai Coverage area of provider i

Gi Normalized size of Ai

Si Normalized technology speed of provider i

Ii Set of new users joining provider i in each period

pi Current price of provider i

Pi Price strategy set of provider i

s j
i Satisfaction factor (SF) of user j with provider i

d j
i Amount of data used by user j with provider i

D j
i Maximum amount of data used by user j with provider i

fi(s) PDF of user satisfaction for provider i

αi Cost of providing one unit of data (Provider i)

ci(Gi) Constant cost for provider i

V j
i Maximum payoff of user j in the network of provider i

πi(k,m, .) Profit of provider i in each period with respect to the parameters k,m, etc

K Shape factor of payoff function

CS Coalition Structure

W Social Welfare

SWF Social Welfare Function

UWF WiFi Usage Willingness Factor

SWiFi Base satisfaction factor for WiFi

S3G Base satisfaction factor for 3G

S4G Base satisfaction factor for 4G

This payoff function is linear with regard to s j
i and Gi, and is concave with respect to d j

i .

Constant K is the shape factor related to the price elasticity of demand (Duan et al., 2013a) (We
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will study the value K in Subsection 2.4). The value of payoff function defines the user gain

in one period (e.g., a month) and it is used to select a provider for user j. Note that we adopt

the common practice (see e.g., (Başar & Srikant, 2002), (Sengupta et al., 2007) and (Duan

et al., 2013a)) of using a logarithmic utility function. Throughout this paper we frequently use

simpler notation for user payoff such as U j
i (d

j
i ). We also use the superscript j to indicate a

specific user’s satisfaction value and payoff.

Figure 2.1 Illustration of a three-provider

market where a new user selects the default

provider maximizing its payoff.

2.3.2 Provider selection mechanism

When user j enters the market, it compares its maximized payoffs for all providers and selects

the one maximizing its payoff, i.e.,

i j = argmax
m

V j
m,m ∈ Pr = {1, ...,n}, (2.5)
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where

V j
m = max{max

d j
m

U j
m(d

j
m),0}, (2.6)

argmax
d j

i

U j
i (d

j
i ) =

s j
i Gi

pi
− 1

K
, (2.7)

D j
m = max{0, s j

mGm

pm
− 1

K
} , (2.8)

maxU j
m(d

j
m)

d j
m

= s j
mGm ln(

s j
m Gm K

pm
)− (s j

mGm−
pm

K
). (2.9)

D j
m is the maximum data usage of user j and V j

m is the maximum obtainable payoff by j from

provider m.

2.4 Shape factor (K) and the price elasticity of demand (PED) in stationary markets

As we mentioned, K is related to the price elasticity which defines the usage response of sub-

scribers to a price change. For user j and provider i, PED is defined as:

E j
i =

pi

d j
i

∂ d j
i

∂ pi
· (2.10)

We argue that the rational users maximize their payoff, hence, substituting D j
i from (2.8) for

d j
i in (2.10) yields:

E j
i =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
− s j

i GiK

s j
i GiK− pi

if D j
i > 0,

0 else.

(2.11)

Note that for K� 1, PED is close to one for all users while for K = pi

s j
i Gi

, PED is equal to infinity

which corresponds to the case of perfect elasticity. Since in a network, users have different

perceptions of satisfaction, the average over (2.11) with respect to the range of satisfaction in

user set Ii, gives the average PED in the network of provider i. To calculate Ei, which is the
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true value of PED in regard to provider i, one computes the sum of all demands requested

by the users
(

henceforth also called aggregate demand DT
i (Gi, pi)

)
and substitutes it into the

following equation:

Ei =
pi

DT
i (Gi, pi)

∂ DT
i (Gi, pi)

∂ pi
· (2.12)

Let the demand of a generic user with satisfaction s be:

Di(s,Gi, pi) =
sGi

pi
− 1

K
, (2.13)

then, for a given number of users NT , the aggregate demand for users with satisfactions density

fi(s) is given by:

DT
i (Gi, pi) = NT

∫
s∈Ii(pi)

Di(s,Gi, pi) fi(s) ds· (2.14)

If Ii = [s1,s2] and fi(s) =
1

1−Si
∀s ∈ [Si,1], then:

DT
i =

NT

1−Si

⎛
⎝(s2− s1)

2Gi

2 pi
−

s2− s1

K

⎞
⎠· (2.15)

We further define the maximum and minimum usage among the user set for provider i to be:

Maxd =
s2 Gi

pi
−

1

K
, (2.16)

Mind =
s1 Gi

pi
−

1

K
· (2.17)
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Since in a stationary market, provider i knows the market related values DT
i , Maxd and Mind ,

(2.15 - 2.17) can be used to determine the values of s1, s2 and K. In particular:

K =
2NT pi(Maxd−Mind)

2GiDT
i (1−Si)−NT pi(Maxd−Mind)2

· (2.18)

If the user set Ii = [s1,s2] does not change under a small price variation, we can derive an

approximation for aggregate PED as:

Ei ≈−
⎛
⎝ GiK(s2− s1)

GiK(s2− s1)−2pi

⎞
⎠· (2.19)

Note that Ei is equal to the average PED over si thanks to the uniform satisfaction distribution.

2.5 Provider profit in different market forms

2.5.1 Monopoly

In a monopoly market, there is only one provider (indexed here by subscript 1) that serves the

market with a single type of access technology. Users adapt their usage based on the service

price and the monopolist wants to set the price that maximizes its profit. This type of market can

be analyzed as a leader-follower game or a two-stage Stackelberg game (Fudenberg & Tirole,

1991). In the first stage, the provider sets its price anticipating the reaction of the rational users.

This type of game can be solved by backward induction (Fudenberg & Tirole, 1991). Based on

the data usage of individual users derived from (2.8), all users with d > 0 are in I1 defined as:

I1 =

⎧⎨
⎩s j

1 ∈ [0,1]

∣∣∣∣∣∣ D j
1 =

s j
1G1

p1
−

1

K
> 0

⎫⎬
⎭ , (2.20)

s j
1 ∈ I1 → D j

1 =
s j

1G1

p1
−

1

K
> 0→

p1

G1 K
< s j

1 ≤ 1. (2.21)
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This equation implies that:

p1 < G1 K. (2.22)

Hence, the profit of provider due to the new users in one period is given by:

π1 = Nu

∫
s∈I1

D1(s)× (p1−α1)× f1(s)ds− c1(G1) =

Nu

∫ 1

p1
G1 K

(
sG1

p1
−

1

K
)× (p1−α1)× f1(s)ds− c1(G1). (2.23)

The concavity of profit in the region of p1 < G1K requires:

∂ 2π1

∂ p2
1

=
Nu

1−S1

⎛
⎝ 1

G1 K2
−

G1 α1

p3
1

⎞
⎠< 0. (2.24)

Then, since p1 ≥ α1, by substituting the minimum amount p1 = α1 we have:

1

G1 K2
−

G1 α1

α3
1

< 0→ α1 < G1 K. (2.25)

Note that Inequality (2.25) always holds as a result of Inequality (2.22). Hence, the profit func-

tion is concave and has a maximum value. Denote optimum value of p1 by:

p∗1 = min(max(max(pr
1),0),G1 K), where:

pr
1 =

⎧⎨
⎩p1 ∈ℜ : p3

1 +(
α1

2
− G1

K
) p2

1 +
α1 G2

1 K2

2
= 0

⎫⎬
⎭· (2.26)
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The set pr
1 contains the real roots of cubic equation and in order to find them, we need to define

Δ and Δ0 as follows:

Δ =−2(α1G2
1K2)×

⎛
⎝(α1K−2G1

2K

)3
+

27α1G2
1K2

8

⎞
⎠, (2.27)

Δ0 =
(α1K−2G1

2K

)2· (2.28)

For Δ < 0 there are three real roots. {Δ = 0 and Δ0 = 0 } leads to a multiple root. {Δ = 0

and Δ0 �= 0 } presents a double root as well as a simple root and finally, Δ > 0 causes one real

and two complex roots. Since G1 and K are both nonzero positive values, (2.27-2.28) show

that Δ and Δ0 cannot be 0 concurrently. Thus, we can define the following inequalities for root

conditions: ⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

α1 >
2G1
K −3(α1G2

1K2)
1
3 3 real roots,

α1 =
2G1
K −3(α1G2

1K2)
1
3 1 double and 1 simple root,

α1 <
2G1
K −3(α1G2

1K2)
1
3 1 real root.

Finding the roots of a cubic equation is well-documented and to avoid redundant content in this

paper, we refer the readers to (Neumark, 2014) for a comprehensive analysis.

2.6 Duopoly

In a duopoly market, two dominant providers exist and they may use the same or different

access technologies. Fig. 2.2 shows an example of the maximum-payoff curves, associated

with (2.9), for each network of the two providers as a function of the user satisfaction value si.

Note that in this case the two curves cross. Otherwise, since the maximum payoff offered by

one provider is always bigger than its competitor, there would be no competition. Let s∗1 be the

user satisfaction value corresponding to provider 1 at the crossing point of payoff functions.

Then, supposing that provider 1 offers slower maximum speed, s∗1 can be determined by solving

the following equation:
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Figure 2.2 The curves of maximum user payoff and their

intersection point in a duopoly. The curve related to provider 2 is

mapped to the satisfaction space of provider 1 based on the

Assumption 2

max
d

U1(s1,G1, p1) = max
d

U2(as1 +b,G2, p2), (2.29)

a =
1−S2

1−S1

,b =
S2−S1

1−S1

,

where max
d

Ui(si,Gi, pi) for the provider i is:

si Gi ln(
si Gi K

pi
)− (si Gi−

K

pi
)· (2.30)

Considering Assumption 2, we used s2 = as1 +b to match the satisfaction values of each user

in the two networks. Since the maximized payoff function is concave over si, there can be one

or two intersection points in the interval si = [S1,1]. Suppose that there is one intersection point

in the mentioned interval (the same approach can be applied for the case of two intersection



78

points), then, the profit functions related to new users (Nu) are as follows:

π1 = Nu

∫ ζ

γ
(
sG1

p1
−

1

K
)(p1−α1) f1(s)ds− c1(G1) , (2.31)

γ = max

⎧⎨
⎩S1,

p1

G1 K

⎫⎬
⎭, ζ = max

⎧⎨
⎩s∗1,

p2
G2 K −b

a

⎫⎬
⎭ , (2.32)

π2 = Nu

∫ 1

β
(
sG2

p2
−

1

K
)(p2−α2) f2(s) ds− c2(G2), (2.33)

β = max

⎧⎨
⎩as∗1 +b,

p2

G2 K

⎫⎬
⎭· (2.34)

In these profit formulations, we addressed the incoming users only. This is due to the fact that

providers are willing to adjust the service prices for the new users; previously subscribed users

are already bound by a contract. This implies that the new users can have different service

prices from the old users. Obviously, the total profit in each period is related to both of these

groups. If the price is changed for all users in the market, then Nu is substituted by NT . Now

it is important to find the best price and coverage size for each provider. This problem can be

tackled by finding the Nash equilibrium of the system, as explained in the next subsection.

2.6.1 Oligopoly

In an oligopoly market, a small group of dominant providers exists. We assume that these

providers may use different access technologies. In general, oligopoly market consists of few

market leaders and several followers. The difference between the two types of providers is

their market power where only the leaders have the power of price setting for the services. The

followers adjust their prices based on the price of leaders. The market power of leaders comes

from their monetary resources and the number of subscribed users. Hence, when we analyze

the oligopoly market, we assume that the majority of users tend to subscribe to the networks of

few oligopolist. Moreover, the only concern of users is maximizing their payoff and they do not

prioritize the oligopolist networks based on the decisions of other users. Hence, the interaction
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between the users and providers is considered as a strategic game. In contrast to the case of

monopoly market, the closed-form expression for providers’ profits under an oligopoly market

cannot be readily derived. Therefore, we resort to a numerical analysis (in Supplementary

Materials, an analytical approach for the case of duopoly is proposed). First, we define some

basic notions from game theory which are relevant to our analysis:

Definition 2.1. A provider full competition game

G(Pr,(Pi)i∈Pr,πi(Si,Gi,(pi,p−i))
) consists of:

a. A set of providers, Pr = {1, ...,n}.

b. An action (price) set Pi for each provider.

c. Actions pi ∈ Pi for provider i.

d. Profit functions πi(Si,Gi,(pi,p−i))
, P−→ R, where P = ∏n

i=1 Pi is the set of all actions (possible

prices) of providers and p−i is the actions vector of all providers except i.

e. Action profiles (pi, p−i).

Definition 2.2. A pure strategy Nash equilibrium (one action for each player) of game

G(Pr,(Pi)i∈Pr,πi(Si,Gi,(pi,p−i))
) is an action profile p∗ ∈ P such that:

πi(Si,Gi,(p∗i ,p∗−i))
≥ πi(Si,Gi,(pi,p

∗−i))
∀pi ∈ Pi. (2.35)

Debreu-Gilcksberg-Fan Theorem. A strategic game with a compact and convex set of strate-

gies, and continuous quasi-concave payoff function π(i,(pi, p−i),Gi) over pi which is also

continuous over p−i, has a pure Nash equilibrium (Fudenberg & Tirole, 1991).

Then we introduce the following theorem:

Theorem 1. The full competition game (no coalitions) always has a pure Nash equilibrium.

Proof. See Appendix II-1.
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In order to find the Nash equilibria of this game, we resort to a numerical approach by con-

structing an n-dimensional matrix of all possible payoffs in the game and using well-known

schemes such as Lemke-Howson’s algorithm or global Newton method. This approach is Al-

gorithm 2.1 in which we determine provider profits of the user set and use Gambit (McKelvey

et al., 2013) (a suite of software tools for noncooperative games) to find a Nash solution. The

algorithm first tries to find the pure strategies and uses discretized price and satisfaction sets.

If it does not find a pure strategy equilibrium, it will take a smaller discretization value and

will repeat the procedure. In our simulation experiments, with sufficiently small discretiza-

tion value, the NE is always unique. Note that the result of this procedure remains valid until

the general characteristics of the provider networks change. Besides prices, it is interesting to

know the coverage expansion behavior of the providers when they experience different cost

functions. The following two propositions consider two different forms of cost function:

Proposition 1. If the constant part of the price is of the form ci(Gi) = ζi× Gi and the provider

i already has πi > 0, then, if enough monetary resources are available, it is optimal for the

provider to set Gi = 1.

Proof. Suppose that users in interval [s1(Gi),s2(Gi)] are registered to provider i, then, provider

profit is given by:

πi = Nu fi(s)

⎛
⎜⎝
⎛
⎝

Gi

⎛
⎝(s2(Gi)

)2−
(

s1(Gi)
)2

⎞
⎠

2pi
−

s2(Gi)− s1(Gi)

k

⎞
⎠× (pi−αi)

⎞
⎟⎠−ζi Gi,

(2.36)

that can be rewritten as:

πi =(Gi (ν−ζi)− (Nu fi(s)
s2(Gi)− s1(Gi)

k
× (pi−αi)), (2.37)

ν = Nu fi(s)
Gi (s2(Gi)

2− s1(Gi)
2)

2 pi
(pi−αi)).
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Algorithm 2.1 Profit vector calculator

Input :
Provider set Pr = 1,2, ...,n.

Price interval Pi = [Pi
min,P

i
max] for each provider i ∈ Pr.

Default discretization value q.

Satisfaction pdf fi(s) for each provider i ∈ Pr.

Output:
Pure strategy equilibrium price and profit vector

1 for each i ∈ Pr do
2 compute Pq

i from Pi as the discretized price interval

based on discretization factor q ;

3 Find Smin = min{S1, ...,Sn};
4 Discretize the interval [Smin,1] by reasonable interval like 0.001;

5 Compute the strategy space Pq = Pq
1 ×Pq

2 ...×Pq
n ;

6 end
7 for each vector pq(1, ...,n) ∈ Pq do
8 for each s ∈ [Smin,1] do
9 selectedpr ← argmax

i
Vi Iselectedpr ← ai s+bi

10 end
11 for each i ∈ Pr do
12 Compute π(i, pq,Gi)
13 end
14 Π(pq)← [π(1, pq,G1), ...,π(n, pq,Gn)]

15 end
16 Compute Nash equilibrium and corresponding strategy set;

17 if There is no pure strategy set, then
18 q = q/2 ;

19 Go to 1 ;

20 end
21 else
22 Return current strategy set and equilibrium profit vector;

23 end

Based on the provider selection criteria, we know that by increasing the coverage size, the

interval [s1(Gi),s2(Gi)] can only grow. Hence, when Gi increases in (2.37), the profit also

increases.
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Note that even if the condition of this proposition was satisfied, many providers in real markets

would not have enough financial resources for network expansions. This motivates our study

presented in the next section where we conduct a game-theoretic analysis of the formation of

provider coalitions without network infrastructure investments.

Proposition 2. Let ci(Gi) = eβi Gi , if provider i already has a positive profit (πi > 0), then,

for known large values of βi, the optimum coverage size can be smaller than 1 (in contrast to

Proposition 1).

Proof. We prove this proposition for the case of monopoly since the providers in other market

forms are under the limits of monopolist. To clarify, in all other forms of market, providers

achieve lower levels of profit comparing to monopoly. Hence, if we prove that the optimum

normalized coverage size for the monopolist is smaller than 1, it is valid for all other forms as

well. One can write the following equation for a monopolist:

πi =
Nu

1−Si
(

Gi

2 pi
+

pi

2Gi k2
−

1

K
)(pi−αi)− eβi Gi −→

∂ 2π(i,Gi)

∂G2
i

=
pi

K2 G3
i
−β 2

i eβi Gi . (2.38)

Then, by using the second derivation test, it can be verified that πi is concave over Gi for large

values of βi. Therefore, there is a Gi < 1 that maximizes the profit for those values of βi.

The immediate consequence of Proposition 2 is that when the features of access technology

lead to an exponential growth of costs in case of coverage area expansion, it is not always

beneficial to make investments for achieving full network coverage.

2.7 Coalition formation

In the previous sections, we have derived economic models for the competitive state of HetNets

market by using user payoff functions and optimized data usage that is linear with respect to

the coverage and access speed of service. Thus, provider profit can be boosted via capital

investments that increase the network coverage and/or the adoption of new high-speed access
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technologies. Both approaches can be quite capital intensive and thus could reduce profits

significantly (at least in the short term). Another way to increase the offered speed and coverage

is to form coalitions among providers in a way that is beneficial to all coalition members. The

coalitions can be based on 1) resource sharing or 2) serving users of one another in limited

coverage areas without sharing resources. The approach presented in this section is valid for

both methods.

In this section, we propose a framework to analyze coalition formation. It is based on the

preferences of users and a provider selection mechanism. These methods are the extensions

of models that are presented for competitive markets in the previous sections. In particular,

we redefine the payoff function to take into account the existence of coalitions and extract its

general properties. Then, we use the new payoff function and generated profits (via Algorithm

1) to develop a coalition formation process which leads to stable coalitions. It should be also

noted that the market constraints (such as the existence of negative externalities, asymmetrical

nature, and coalition size restrictions) prevent providers from forming a grand or very powerful

coalition. The proposed coalition formation process considers these constraints. In the remain-

der of this section, we first define the user-payoffs under coalition followed by the presentation

of the coalition formation process .

2.7.1 Multi-provider payoff for single price networks

Since the utility model of users under coalitions is a foundation to construct a model for the

provider profits, we need to redefine the uni-provider payoff function defined in (2.4). The

multi-provider payoff function should have the following properties:

a. When users switch between different networks, MPP function must be compatible with

the law of diminishing marginal utility. Hence, consuming each extra unit of bandwidth

gives a lower level of satisfaction compared to the beginning of the usage. In other words,

the slope of the payoff decreases with respect to the usage and should be considered when

the provider is changed.
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b. The user payoff for a two-provider coalition having identical prices p1 = p2, and technol-

ogy speed satisfaction, s1 = s2, should be equal to the uni-provider payoff function of a

user with provider j that has coverage size G j =
|A1∪A2|
|AT | and the same price and speed. In

other words, the coverage overlap should not be assumed twice when we compute users’

usage and costs.

c. For each user, the MPP function is based on the coverage sizes of coalition providers.

This feature is consistent with the form of uni-provider utility that is linear with respect

to coverage size.

Theorem 2. For a coalition C = {1,2, ...,n}, where each i ∈C corresponds to a provider with

price pi, coverage size Gi =
|Ai|
|AT | and technology speed Si, if Ai ∩Ak = /0 ∀i,k ∈ C, then the

three properties of a multi-provider payoff function holds if and only if the payoff function of

a user j follows the form:

U j
C(d) = (

|C|
∑
i=1

Gi s j
i ) ln(1+K d)− ∑|C|i=1 pi Gi

∑|C|i=1 Gi

d. (2.39)

Proof. See Appendix II-2.

Corollary 1. If coalition C satisfies the conditions of Theorem 2, then the coalition can be

represented as a single provider with the following price and cost equations:

pC =
∑i∈C Gi pi

∑i∈C Gi
, (2.40)

αC =
∑i∈C Giαi

∑i∈C Gi
, (2.41)

fC(sC) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

1−SC
sC ∈ [SC,1],

0 else .

(2.42)
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SC =

⎧⎨
⎩Si , i ∈C | Si ≤ S j∀ j ∈C and j �= i

⎫⎬
⎭· (2.43)

Proof. Firstly, since the unique price and costs do not change the form of payoff function for

each user, neither would the overall profit output for the provider, the only part that needs an

explanation is the distribution function of satisfaction in the coalition. Since in the considered

coalition we can have users with different satisfaction levels, the distribution function of sat-

isfaction should cover all satisfaction levels as it is given by fC(s) in (2.42). Note that for the

uniform distribution, a wider range of satisfaction yields a lower level of the probability density

1
1−Si

.

Lemma 1. Usage Rationality Lemma: Suppose that some providers of a coalition C =

{1, ...,n} have coverage overlap and each user j has possibly different speed satisfactions de-

noted by {s j
1,s

j
2, ...,s

j
n} for each of the n providers in C. Then even if the user is served with

expected speed by the default provider, there are some price conditions which drive a user to

switch between operators in the overlapping area to maximize its payoff.

This lemma states that if a user has a better marginal payoff in a specific network at the be-

ginning of the usage period, it could change the default network afterward to increase the user

payoff. In what follows, we describe and prove the case of a two-provider coalition mathemat-

ically.

Let the coverage area, price and user’s speed-satisfaction of provider i be Gi =
|Ai|
|AT | , pi and s j

i

respectively. We have the following conditions:

C(1). The first condition states that at the beginning, user j gets a better payoff from one of

the networks, say 1. Hence, in the overlapping area where the total coverage difference is not
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U j
C(d)=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
(G1s j

1 +Gl2s j
2) ln(1+Kd)− G1 p1 +Gl2 p2

G1 +G2−Gi
d d < dT

(G1s j
1 +Gl2s j

2) ln(1+KdT )+(G2s j
2 +Gl1s j

1)(ln(1+Kd)− ln(1+KdT )) d > dT

−G1 p1 +Gl2 p2

G1 +G2−Gi
dT −

Gl1 p1 +G2 p2

G1 +G2−Gi
(d−dT ),

(2.47)

where Gi = |A1∩A2|, Gl1 = G1−Gi and Gl2 = G2−Gi.

U j
C(d) = (G1s j

1 +Gl2s j
2) ln(1+Kd)− G1 p1 +Gl2 p2

G1 +G2−Gi
d. (2.48)

considered 1, we have:

lim
d→0

∂U j
1 (d)

∂d
> lim

d→0

∂U j
2 (d)

∂d
=⇒ lim

d→0

s1K

1+Kd
− p1 > lim

d→0

s2K

1+Kd
− p2 =⇒

K(s1− s2)> p1− p2. (2.44)

C(2). The second condition is that, at a specific level of usage, user j has the same preference

for using either one of the provider networks. At this usage level, denoted by dT , the slopes of

payoff functions, regarding the network of both providers, are the same. Note that dT is smaller

than dmax(2) = argmax
d

U j
2 (d):

dT < dmax(2)→
s1− s2

p1− p2
<

s2

p2
· (2.45)

C(3). Switching between providers means that user obtains a larger payoff:

max
d

U j
2 (d)> max

d
U j

1 (d)· (2.46)

1 Here the coverage factor is eliminated because the user is already in the overlap area and wants to

choose one of the networks to use and hence, it senses the same coverage at this point
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Proof. Based on three above conditions, Lemma 1 can be proven by constructing an example

which fulfills all three conditions and in which the user payoff is greater when the user uses a

mix of two networks compared to the payoff from a single network. Fig. 2.3 illustrates such

an example with p1 = 0.08, p2 = 0.025, s1 = 0.76, s2 = 0.53 and K = 0.7. Observe from the

figure that this setting satisfies the 3 conditions and the mixed payoff of the user is given by:

maxU{1,2}(d) =U1(dT )+U2(dmax(2))−U2(dT ) = 1.0475

>U2(dmax(2)) = 0.9624

>U1(dmax(1)) = 0.7942.

Figure 2.3 The payoff experienced by the user under two

different networks

Lemma 1 shows an important characteristic of logarithmic utility functions: users at the be-

ginning of their usage cycle are more sensitive to the speed and at the end they are concerned

more about the cost than speed.

Theorem 3. The payoff for user j, with a 2-provider coalition C = {1,2} that has coverage

overlap, is as follows:
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a. If conditions C(1), C(2) and C(3) all hold for the single provider payoff experienced by

user j, then the payoff function is given by (2.47).

b. If any of C(1) to C(3) does not hold, then the payoff function for the user j is given by

(2.48).

Proof. For the case where at least one of C(1) to C(3) does not hold, the marginal payoff

obtained from Provider 1 is always better and the user prefers to utilize the first provider solely.

However if all the three conditions hold, then the user begins to utilize the first provider (even

in the overlap areas where both providers have coverage) until the usage reaches dT . From this

usage level, the user prefers to utilize the second provider. The proof for the form of the payoff

is the same as Theorem 2 which states the function for the multi-provider payoff function

(MPP) should follow the three main properties of the uni-provider payoff function.

2.7.2 The multi-provider payoff function for dual price scheme networks

Note that the flat rate pricing scheme is commonly adopted by most WiFi providers. In this

scheme, users pay a fixed price for a specific usage duration, e.g., an hour or a day. Since the

wireless providers incur a cost for the amount of bandwidth that they provide, this method of

pricing that offers an unlimited amount of data usage is useful for the cases where the provider

has limited coverage (e.g., inside the airports and hotels) so that the registered users are not

utilizing the bandwidth all the time.

To define the MPP function under a dual-pricing network, e.g., one which offers both 4G and

WiFi services but charging differently for each technology (4G and WiFi), we need to define

the average utilization level by the users when they have free access to the WiFi provider.

Based on our assumptions, the network has stable speed and mobile users appear in all points

of the coverage area in a long-run analysis. Thus, for the greediest users, the WiFi usage is
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given by:

DW =Period time (Sec)×Usage per second ×Coverage size of WiFi. (2.49)

We can also extend our definition to the average data usage of each user by multiplying DW

with a usage willingness factor (θ ) between 0 and 1 which indicates the expectation level of

willingness (considering all the users) to fully utilize the WiFi network when users have free

access to it, thus we have average data usage of: δ = DW ×θ .

Example 2. By setting the WiFi speed at 150 Mb/s, the usage unit as one GB and the usage

period as a month (which is a billing cycle), we have:

δ = 24×30×3600× (
150

8×1024
)×GWiFi×θ

= 47461×GWiFi×θ . (2.50)

The MPP function for a dual-price network, defined by coalition C = {1,2} where Provider 1

is a 4G and 2 is WiFi and the coverage area of WiFi is a subset of 4G area, is given by:

U j
C(d1,δ ) =

⎛
⎝((G1−G2)s

j
1 +G2s j

2

)
× ln

(
1+K(d1 +δ )

)⎞⎠
− p2− p1d1. (2.51)

This MPP is based on the idea that the WiFi coverage area is usually a subset of the coverage

area of 4G cellular services. We also know that users switch from 4G to WiFi connections as

soon as they are under the coverage of the latter due to its flat-rate pricing. Under this infor-

mation, if subscript “1" and “2" refers to the 4G and WiFi provider respectively, the maximum
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cellular usage can be expressed as:

D j
1 = max

⎧⎨
⎩(G1−G2)s

j
1 +G2s j

2

p1
−δ −

1

K
, 0

⎫⎬
⎭· (2.52)

This equation defines the amount of cellular data usage in a WiFi-cellular utility function. Since

we already defined a metric for the WiFi data usage, the cellular data usage is the amount of

data beside the WiFi usage that can be consumed to maximize the utility. The reason behind

fixing the WiFi usage (in the utility) is due to the nature of package pricing in the WiFi networks

that is time-based. Hence, the user tends to utilize the WiFi network as soon as it is under the

WiFi network coverage. However, the amount of WiFi data consumption is related to the WiFi

coverage size and user’s data consumption greediness which is considered in UWF (θ ) of WiFi.

To sum up, the value of marginal utility is getting lower by consuming more data which means

that if a user has better access to the cheap WiFi data, it is less motivated to use the cellular

data service.

2.7.3 Coalition formation

There are several models for coalition formation, each of them covering a specific type of game.

(Hart & Kurz, 1983) proposed the γ-stable and δ -stable models where players announce their

desired coalitions to join. In ((Yi, 1997)), a coalitional formation process has been studied

that considers the externalities, but the model only applies to symmetric games. One of the

most relevant models, that can be fitted to our framework, has been developed in (Bloch, 1996)

where the externalities are considered and coalitions are constructed in a sequential manner.

To consider this model, our definitions in the wireless market and the formation process are set

as follows:

• A random provider starts the game and announces a desired coalition.
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πC{IC ,p1,p2}
=πC{I1

C ,p1,p2}
+πC{I2

C ,p1,p2}
=

Nu

(∫
s1∈I1

C

D1(s1)× (p1−α1)+(p2−α2×δ )× f1(s)ds1

+
∫

s1∈I2
C

(
s1 G1

p1
− 1

K
)(p1−α1) f1(s) ds1

)
− c1(G1)− c2(G2), (2.53)

where:

IC = I1
C∪ I2

C and

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

I1
C = All s j

1 ∈ [max{(δ + 1
K )P1−bG2

G1 +(a−1)G2
,S1},1]

that max
d1

U j
C(d1,δ )≥max{max

d1

U j
1 (d1),0} ,

I2
C = All s j

1 ∈ [max{ p1
G1K ,S1},1]

that max
d1

U j
1 (d1)> max{max

d1

U j
C(d1,δ ),0}·

(2.54)

s j
2 = as j

1 +b
[.]1 = 4G parameter[.]2 = WiFi parameterC = coalition of {1,2} (2.55)

• The expected profit of provider i ∈C is calculated based on the following equation:

πi = φi×πCi ∈C , C ∈CS, (2.56)

∑
i∈C

φi = 1.

where CS is a coalitional structure of which C is a member. The profit of provider i is

a portion of the expected payoff, gained by the coalition that includes provider i. φi is a

division factor agreed between coalition members (e.g., the Shapley value). This profit

is calculated under the equilibrium price P∗ (computed by Algorithm 1) while providers

compete under the coalition structure CS.

• All providers who are included in the proposed coalition can agree or disagree. If all

members agree, a coalition C forms and the game is continued with Pr\C players (Pr is

the set of all providers). If a member disagrees, then it proposes its desired coalition in the
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next step. The size of coalitions is restricted by the maximum Size-Limit, defined by the

regulator.

• Once a coalition with size Size-Limit has been formed its members cannot deviate and

leave it. This is reasonable in today’s market where implementing the infrastructure of

cooperation requires a joint investment and is supported by long time contracts between

providers.

Fig. 2.4 (page 14) depicts the coalition formation process which is proposed in Section VI-B

of main paper.

Remark. The proposed coalition formation process leads to a coalition structure which does

not include the grand coalition. Hence, the solution concepts for a grand coalition like Core

and Shapley value are not applicable to all members of the structure concurrently.

Proposition 3. For the wireless markets in which with a known churn rate users leave the

current providers for the newer technologies, the sub-game perfect equilibrium (SPE) of the

coalition game always can be found.

Proof. See Appendix II-3.

Example 3. In this example, we show the coalition structures and their existence conditions in

a market of 3 providers (1,2 and 3). The same process can be applied to bigger networks. In

the following we assume that the formation of grand-coalition, {1,2,3}, is not allowed due to

monopoly avoidance rules. Then the set of all allowable coalition structures is:

{
{{{{1},{2},{3}}}},{{{{1,2},{3}}}},{{{{1},{2,3}}}},{{{{2},{1,3}}}}

}
.



93

Let us start with {{{{1},{2},{3}}}} case that represents the full competition. This structure is

preferable if the following condition is true:

πi
i∈{k,m}
∀k,m∈{k,m,l}

CS={{{{k},{m},{l}}}}

≥ πi
i∈{k,m}
∀k,m∈{k,m,l}

CS={{{{k,m},{l}}}}

, (2.57)

that means there is no coalition in which both providers can get bigger profit than their full

competition state. This occurs when the providers cannot provide a higher payoff to the users,

hence, all providers have the same technology and 100% coverage overlap. The second case is

when a coalition of two providers can be formed and it gives a higher profit to both of them.

Here, the worst-case scenario is that provider 1 prefers a coalition with 2, 2 prefers 3 and 3’s

choice is 1, which leads to a loop. In our analysis, the coalition profits are the outcome of

extra data consumption and the maximum data consumption is related to the maximum payoff

offered to the users. Thus, in regard to (2.6-2.9) one can write the maximum data and payoff

preferences as:

D j
{1,2} > D j

{1,3} →V j
{1,2} >V j

{1,3}∀ j ∈ Iu,

D j
{2,3} > D j

{1,2} →V j
{2,3} >V j

{1,2}∀ j ∈ Iu,

D j
{1,3} > D j

{2,3} →V j
{1,3} >V j

{2,3}∀ j ∈ Iu,

which leads to a paradox:

V j
{1,2} >V j

{1,3}∀ j ∈ Iu,

V j
{1,3} >V j

{1,2}∀ j ∈ Iu.

Hence, no loop exists in providers’ preferences and one dominant coalition will be formed

eventually. The last possibility is {V j
{1,2} =V j

{1,3} =V j
{2,3}, p1 = p2 = p3,∀ j ∈ Nu}. This con-

dition is due to the existence of identical providers (in terms of size and technology ) which
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have 0% coverage overlap. In this case, the first proposer forms the coalition with its preferred

provider.

2.7.3.1 Regulatory unit policies on coalition formation

From the viewpoint of a wireless market regulator, the market should meet certain levels of

fairness or at least wealth. To evaluate the market fairness, several concepts and corresponding

metrics are developed in economics, each of them addressing a specific aspect of the mar-

ket. For example, by one definition, the social welfare (SW) function measures the cumulative

payoffs experienced by all entities in the market (Nisan et al., 2007) and the Gini coefficient

(Garetto et al., 2008) shows the fairness level of wealth distribution which can be called justice.

Note that a lower value of the Gini coefficient yields more uniformity of income (payoff and

profit) distribution. In this paper, we use the social welfare function as our metric although the

same approach could be applied to the Gini coefficient. We indicate the SW function by W

and define it as follows:

W (CS,W) = W U(CS,W)+W P(CS,W) = ∑
i∈CS

⎛
⎝

User part︷ ︸︸ ︷
wu Nu

∫
s∈Ii

max Ui(d(s))
di(s)

ds+
provider︷︸︸︷
wp πi

⎞
⎠,

(2.58)

W= {wp,wu}, (2.59)

wp +wu = 1. (2.60)

Members of CS are coalitions and W is a weighting set.

Definition 2.3. Suppose that the current coalition structure (status quo) is CS. If some providers

decide to join other coalitions or form a new one (we call it a move), then under the new coali-

tion structure CSN, the move social efficiency factor, M , for the new price equilibrium is
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defined as:

M (CSN ,WN ,CS,W) =

⎛
⎝W U(CSN ,WN)−W U(CS,W)

⎞
⎠W P(CS,W)

⎛
⎝W P(CSN ,WN)−W P(CS,W)

⎞
⎠W U(CS,W)

· (2.61)

Definition 2.4. From regulatory unit’s viewpoint, a move is feasible if the conditions

M (CSN ,WN ,CS,W)≥ 0 and W (CSN ,WN)−W (CS,W)> 0 are both true.

The above two definitions specify the evaluation criteria for the possible moves in each coali-

tion structure. Being aware of this information can be timesaving for the providers when they

engage in negotiations. In particular, it shows the maximum coalition size and the possible

coalitions that obey the regulator’s criteria. Moreover, it indicates which coalition can maxi-

mize the profit.

2.8 Numerical Analysis

Scenario 1. In this example, we study the coalition of one cellular and one WiFi provider.

As defined before, when a cellular service provider forms a coalition with a WiFi provider,

the user payoff function can be represented by (2.51). By integrating the format of cellular

maximum data usage in (2.52) and WiFi flat pricing model, we obtain Equation (2.53) as the

profit function of the coalition C = {4G,WiFi}. For the sake of simplicity, we indicate all the

parameters related to 4G with subscript 1 and for WiFi we use parameters with subscript 2.

In this equation, the profit is separated into two parts associated with two different user sets,

denoted by I1
C and I2

C. These two sets are defined in (2.54). I1
C indicates the set of the users who

utilize both WiFi and 4G network. The MPP of these users has a higher maximum level than

their single provider payoff function. This set of users still pay for both WiFi and 4G, however,

in the next example we show that under a coalition the cost incurred is less. I2
C represents the



96

set of the users who do not pay for coalition service and for which the single provider payoff

function has a higher maximum level than MPP.

Table 2.2 Network settings for

"one WiFi-one 4G" coalition

Property Value
G4G 0.5

GWiFi Variable

α4G 0.2G4G
αWiFi [0.001,0.01,0.1]

UWF(θ) [0.01,0.05,0.1,1]
S4G 50/300

SWiFi 150/300

Ki ∀i ∈C = {4G,WiFi} 10

Scenario 2. To analyze a coalition of “WiFi-4G", let us consider the network settings presented

in Table 2.2. Figures 2.5 and 2.6 show the coalition profit and aggregate payoff of the users as a

function of the size of WiFi coverage area for three different WiFi bandwidth costs (per unit of

consumed bandwidth) αWiFi = [0.001,0.01,0.1]. As seen in these figures, by increasing WiFi

coverage size the profit of the coalition and the integrated user payoff initially increase and

then coalition profit smoothly decreases to the no coalition level. At this point, the coalition

is not profitable and should be terminated so that prices are reset to their non-coalition values

(as shown in the no coalition zone in Fig. 2.6). This leads to an immediate drop in the user

aggregate payoffs as shown in Fig. 2.5 (dropping points of two upper curves). At the maximum

level, the coalition profit is 12% higher than the no-coalition profit and the aggregate user

payoff improves by 10%. Also, in Fig. 2.6 we can observe that the pricing under the coalition

can be a two-part tariff with equilibrium prices. For example, the cost of coalition C is given

by:

Cost for user j in Coalition C = pC2 + pC1×d j
C1.
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Where pC1 is the price of 4G service under the coalition and pC2 is the price of WiFi under the

coalition. Hence, there are three types of users in the market: 4G only, WiFi only and coalition

users. However, as a result of the coalition, the price is dropped for all three groups (Fig. 2.6).

Thus, two levels of long-run QoS are improved in this coalition; firstly, the coalition users have

access to high-speed WiFi with cheaper price and secondly by transferring a part of traffic to

the WiFi network, the price and network utilization of 4G provider are decreased which means

a better 4G throughput overall.

Fig. 2.7 shows the coalition profit as a function of the size of WiFi coverage area for three

levels of the usage willingness factor (UWF), θ = [0.01,0.05,0.1]. As we discussed earlier,

θ is an indicator for the usage greediness when users have free access to the network. The

results indicate that with lower levels of θ , a WiFi provider with a larger coverage area can

be accepted as a coalition member and with higher levels of θ , users have more incentive to

utilize the WiFi network. Therefore, with bigger WiFi coverage sizes, the usage and profit of

4G service dramatically decreases since WiFi service is charged based on time and not data

consumption. Hence, as θ increases the coalition is unprofitable under bigger sizes of WiFi

coverage.

Table 2.3 Asymmetric 3-provider

network settings

Property Value
G3G 0.5

G4G1(Bigger provider) 0.3
G4G2 (Smaller provider) 0.1

S3G
15
300

S4G for both 50
300

αi ∀i ∈ {4G1,4G2,3G} 0.2Gi
K 10

Scenario 3. This example considers an asymmetric market where two 4G operators are domi-

nated by a 3G monopolist (4G operators gain much less profit than 3G provider). The context

is realistic in wireless markets where it takes time for newer technologies to expand their cover-



98

age and at the same time their service area is only a proper subset of the older technology. The

settings are given in Table 2.3. Concerning the total cost Ci (Equation (2.1)) of the providers,

we used the linear form of αi(Gi) = 0.2Gi in this numerical model and eliminated ci(Gi) for

simplicity. Hence, the cost model is given by: Ci = ∑ j∈Ii d j
i ×0.2Gi.

Fig. 2.8 shows the simulation results as a function of the coverage overlap of 4G providers.

It contains three sets of data. The first set of curves shows the profit of each provider in full

competition state. The second set of curves gives the profits of the 4G-4G coalition and the 3G

provider. The last curve represents the accumulated payoff of all users in the market.

The results in Fig. 2.8 show that the profits of smaller providers are negligible in full competi-

tion mode. This is due to the fact that they are overpowered by the bigger 3G provider. When

4G operators form a coalition, their profit increases while, at the same time, the 3G monopolist

experiences profit loss. It can be also noted that when the coverage overlap of 4G operators

is small, the coalition enjoys its maximum profit and 3G profit is at its minimum level. By

increasing the overlap size, the profit of coalition decreases until it reaches the non-coalition

level at 100% overlap. Thanks to the formation of the coalition, the competitiveness of 4G-4G

coalition is increased, the market is more balanced and the users are enjoying an extra payoff.

Also, it can be noticed that the user accumulated payoff is at its maximum level when the cov-

erage overlap is small. This is due to the extra competitiveness of 4G-4G coalition powered

by small coverage overlap. One hidden advantage of this type of coalition is the creation of an

incentive for the market to upgrade to new technologies. This cooperation is also allowable by

the regulatory unit since it gives better SW value. In contrast, the coalition of 3G and either one

of the 4G providers would lead to a strong monopolist that blocks the profit of other provider.

Therefore, such coalition would not be allowed by the regulator.

Scenario 4. To analyze a simple coalition formation game, we consider the settings presented

in Table 2.4 where there are four symmetric providers that have coverage overlap. In this ex-

ample, we assume 80% coverage overlap that is rational in the case of cellular providers. This

is justified by the fact that cellular providers usually start to develop their new network in ur-
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Table 2.4 Symmetric 4-provider network

settings

Property Value
Gi ∀i ∈C = {1,2,3,4} 0.5

|Ai∩A j|
|AT | ∀i ∈C = {1,2,3,4} 0.4

|A j∩Ai∩Ak|
|AT | ∀i, j,k ∈C = {1,2,3,4} 0.35

|∩4
i=1Ai|
|AT | 0.3

Si ∀i ∈C = {1,2,3,4} 50/300

αi ∀i ∈C = {1,2,3,4} 0.2Gi
Ki ∀i ∈C = {1,2,3,4} 10

Table 2.5 Coalition structures and associated profits of Scenario 4

Coalition Provider Aggregate W /Nu W /Nu
structure (CS) profit /Nu user (wp = 0, (wu = 5wp)

payoff /Nu wu = 1)

{1,2,3,4} {0.3079} 0.4464 0.4464 0.4233

{{i,j,k},m} {{0.077},0.0052} 0.75 0.75 0.6387

{{i,j},{k,m}} {{0},{0}} 0.76 0.76 0.6333

{{i,j},{k},{m}} {{0.022},0.0025,0.0025} 0.72 0.72 0.6045

{{1},{2},{3},{4}} {0,0,0,0} 0.70 0.70 0.5833

ban areas and then they expand the coverage area in the remaining years of that technology

life-cycle. Hence, most of their coverage area is the same during the early stages of network

build-up. Table 2.5 shows the market equilibrium profits for different coalition structures along

with cumulated user payoff in the market. The symmetric structures like {{i, j}{k,m}} lead to

zero profit for the providers due to price wars. It is interesting that even in unbalanced struc-

tures, the integrated user payoff can increase due to coverage expansion. As it is depicted in

Fig. 2.9, different weighting values lead to divergent feasible coalition structures. User friendly

values like {wp = 0,wu = 1} can cause more balanced coalitions like {{i, j},{k,m}}. By in-

creasing the weight of providers in social welfare function i.e. in this example {wp = 5wu},
an imbalanced coalition structure like {{i, j,k},{m}} can form. Note that parts a and b of

Fig. 2.9 show the feasible transitions between different coalitional structures from regulator’s
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viewpoint. These transitional diagrams are the tools used by the regulatory unit to define the

market state based on different social welfare standards.

2.9 Conclusion and future work

In this paper, we proposed a game-theoretic framework that can help to set up stable coalitions

of heterogeneous wireless operators and enable wireless regulatory bodies to determine ac-

ceptable coalitions which do not downgrade social welfare standards. We derived a simple and

efficient generic model that predicts the state of the market before and after coalition formation

without focusing on short time-scale bandwidth allocation problems. The model is based on

finding a pure Nash equilibrium strategy profile that defines service prices for each provider.

Our method is also based on the behavior of users and their satisfaction perceptions which are

represented by the random utility. We showed that with specific types of cost functions, it is

not beneficial for providers to expand their coverage above a certain size. In some other cases,

if the financial resources are available, the provider is better off with full coverage on the mar-

ket. We proved the form of multi-provider payoff (MPP) function for the coalitions. Based

on such MPP functions, we constructed a modified version of the coalition formation process.

Based on the proposed Lemma, we showed that in some cases it is beneficial for the users to

switch between different networks to maximize their payoffs. Finally, the cost and coalition

models are illustrated with several numerical examples. The results show that formation of

coalition can notably increase the profits of providers while increasing the integrated payoffs

of users. In the tested scenarios the profits and the integrated payoffs were increased by up to

12% and 10%, respectively. As future work, we plan to investigate different pricing schemes

and provider selection mechanisms to further enhance and generalize our coalition formation

process.
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Figure 2.4 The coalition process
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Figure 2.5 Coalition profit and cumulative payoff of all users for

αWiFi = [0.001,0.01,0.1]. Note that the three lower curves are

coalition profit and the other three are their associated user payoffs
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Figure 2.6 Optimum price for WiFi and 4G in the coalition for

αWiFi = [0.001,0.01,0.1]. As WiFi coverage size increases, the

WiFi price goes higher and the 4G price decreases. At the

no-coalition zone, the coalition takes apart and prices stand on

their default values

Figure 2.7 Profit of 4G-WiFi coalition when the WiFi coverage

size varies. Three levels of UWF (θ ) are considered
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Figure 2.8 Profit of providers and integrated payoffs of all users

in 3-provider structure (Scenario 3)

Figure 2.9 Feasible moves allowed by regulator for two

weighting rules a) wp = 0,wu = 1 and b) 5wp = wu. Each of these

diagrams shows the possible and allowed moves from any status

quo coalition structure
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Abstract

Over the past several years, sponsored mobile data and the payment directions on the Internet

have been two major subjects in network economics. Several tier-1 service providers (SP) such

as AT&T and Verizon created their frameworks for sponsored mobile data by cooperating with

content providers (CP). Based on these frameworks, users can have free data transfer if they

accomplish a predefined task such as buying an offered product, watching advertised videos

or completing a survey. In this paper, we investigate particular types of data content which

could be delivered to all cellular users free, even those without a data plan. Our approach does

not force users to click on advertised content to obtain free data access. These applications if

offered free of charge, can naturally generate a level of profit for the CP that make it able to

compensate the profit loss of SP by using side-payments. We call this approach a selective free

content (SFC) program that defines the specific types of contents eligible for such treatment.

We consider a multi-stage game consisting of cellular users, SP, and CP. We solve this game

by backward induction. In this way, we define the thresholds of price and data usage and

maximum preferred usage that makes an application suitable for an SFC program. Finally, we

verify our method by several numerical examples.
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Introduction

Since the establishment of first telephone companies, network connectivity has been sold as

a product for over a century. The circuit-switched networks have no knowledge about infor-

mation or its worth. Hence, the dominant type of pricing for these networks is based on the

duration of each connection. With the introduction of packet-switched networks in the 60s,

providers were able to resolve the second type of network products which is the size of trans-

ferable data. This service is defined mainly by data amount, transfer rate, and quality. Still,

with pricing based on this definition, there is no resolution among different types of data and

their value to the end-users during the billing process. Providers do not set the price based on

the content itself but its volume only.

To customize and to improve the current pricing policies, there are several issues to be ad-

dressed. Firstly, putting information-awareness aside, today’s access networks are not content-

aware in the first place. Secondly, in each wireless market, the worth of different content

types to the end users are not statistically and economically defined. Concerning the first is-

sue, the content-aware networks (CAN) have been the subject of many recent studies e.g., (Yin

et al., 2013) and (Subbiah & Uzmi, 2001). It is expected to have a wide implementation of

such networks in near future Internet. The vast implementation of content delivery networks

(CDN) (Spagna et al., 2013) and edge-computing is the preliminary step toward the future

CAN. Hence, by recent advancement in this field, the economic aspects of CAN and the appro-

priate process for revenue making and service billing should be studied. This new opportunity

that comes with a better understanding of the value of each data flow motivates us to study

new types of pricing schemes that have an eye on fairness and user satisfaction. In particular,

we focus on providing mechanisms in which specific types of data transfer have no cost to the

end users. In this methods, SPs and CPs cooperate to leverage the natural behavior of users

such as on-line shopping to generate profit. Also, providers do not force users to click on ad-

vertised contents to obtain free data transfer. Apparently, such mechanisms do not work for

all content types, and only special kinds of contents can be treated in such way. For example,

video contents with high demand cannot be offered free for all users without experiencing profit
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loss. The applications such as mapping services with embedded advertising capability for local

businesses are the best candidates for our method. Hence, we call our method a selective free

content (SFC) program.

To have a deeper understanding about an SFC program, we first explain several industrial and

academic endeavors toward partially free data access. One of the first introduced mechanisms

is sponsored data by (AT&T, 2016). In this method, users can have free data access beside

their regular data plan for sponsored content. One example is sponsored videos that are pro-

vided by AT&T approved CPs. If users watch such videos, there is no impact on the usage of

their regular data plan. T-Mobile and Verizon also introduced Binge On (T-Mobile, 2016) and

FreeBee (Verizon, 2016) respectively. They both follow a similar philosophy to AT&T’s plan

with several differences in detail. The key to all of these plans is the presence of CP’s who

are eager to sponsor free data transfer. Due to this reason, the offered free content is restricted

to specific CPs and moreover, to the selected content that CP sponsors. Also, these plans are

offered to the users who already have a data plan which is a major drawback regarding fairness

and social welfare. Another concern about sponsored data program is the violation of network

neutrality. Since the major SPs can attract powerful CPs by charging them for their access to

the end users, the smaller CP’s and SP’s cannot compete in this field; that is in contradiction to

widely accepted practice which suggests an equal and neutral policy on all data over Internet.

For further explanation, we consider the concepts of one- and two-sided payments which are

proposed in (Musacchio et al., 2011). As it is depicted in Fig. 3.1-a, in a neutral network, the

payment for data transfer is from the user side. However, in a non-neutral network, CP should

pay for the contents being transferred to the users as well (Fig. 3.1-b). It is clear that weaker

CP that cannot pay such fees to SP are vulnerable in non-neutral networks.

Challenges mentioned above motivate us to study alternative pricing methods for specific high-

value/low-usage contents that shift the burden of all the data transfer costs from the end users

to the related CPs. Since we focus on the type of content and not the CPs itself, any applica-

tion that meets the eligibility condition can be offered in an SFC program. Hence, it does not

affect the CPs that are competing and provide similar content types. This approach mitigates
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the adverse effects of an entirely non-neutral network. One example of eligible applications is

mapping services that have small data usages and generate their profit from local businesses.

These businesses can be hotels, shopping centers and any market relying on the on-line ad-

vertisement. The second example of eligible applications is real-time IoT services like health

monitoring wearable devices connected to cloud-based applications. These applications usu-

ally use small amounts of data transfer, yet carry highly valuable information which is pro-

cessed and billed by third-party cloud-based services. We show the major difference between

different types of eligible contents. In all of them, the payment direction of SFC program is

similar to Fig. 3.2, in which user do not pay for the data transfer associated with the eligible

content.

Figure 3.1 The payment directions for a) neutral networks b)

non-neutral networks. U represents users

There are several academic endeavors to study the economics of sponsored data, e.g., (Joe-

Wong et al., 2015) and (Lotfi et al., 2015) that analyze the optimal values of sponsored data for

CPs, (ElDelgawy & La, 2015) which analyses the interaction between CP and SP for improving

the delivered QoS, (Andrews et al., 2014) that considers selecting the best CP locations for

offering sponsored data promotions, and (Andrews et al., 2016) which studies the optimal profit

of SP in a sponsored content program. These works consider the same philosophy introduced

by service providers, such as AT&T, for sponsored data and try to optimize several network

and market parameters. They do not discriminate different types of contents based on their
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importance and user traffic pattern. Also, no work considers an entirely free data access for

vital cellular applications like mapping services and this is one of the issues that we aim to

address in this paper.

Figure 3.2 The payment directions for SFC program

The rest of this paper is organized as follows. In Section 3.1 we introduce three categories of

applications that are candidates for the SFC program. These applications are mapping services,

IoT related services and finally, smart city and e-governance applications. We demonstrate the

eligibility of such applications by analyzing several statistical reports from Ericsson (Ericsson,

2016) and comScore (ComScore, 2016). In this part, the current traffic trends and behavior of

cellular users are also provided. In Section 3.2, the sequential game for the first category of

applications is developed and analyzed (we selected for analyzing the first category due to its

higher complexity). Section 3.3 includes numerical examples. Finally Section 3.4 concludes

the paper.

3.1 On the possibility of selective free access

In this section we focus on those types of applications that can be offered free of charge to

the end users. For such applications, SP can allow a free of charge data transfer without being

concerned about its profit loss or the extra load of traffic that would be generated. This comes

from the fact that while, under an SFC program, SP loses a part of its profit from the end users,

it can be compensated by CP. To find content types that work well with the SFC program we

analyze characteristics of types of content to select the ones that can add value under the SFC
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program. First we define three categories of the eligible applications. Then, the characteristics

of such applications are extracted from Internet statistics.

3.1.1 Category 1: mapping and other business related applications

First we consider the low data usage applications that are highly valuable to the end users. To

be more precise, consider Fig. 3.3 that shows the most reached mobile applications in U.S.

The data is acquired from comScore’s 2016 report (ComScore, 2016). On top of the list is

Facebook having 80% of the audience. The Facebook application is known for its moderate to

high data usage. In fact, it can consume up to three Megabytes per minute even if the user does

not play any video in it. The second rank is Facebook Messenger which is less traffic greedy.

However, its overall consumption can be very high since it can be used repeatedly during

a short time period as a messaging service. The third most reached application is YouTube

which generates the most traffic when compared with other services in the list. In fact, based

on the YouTube’s statistics, the average viewing session for mobiles is 40 minutes as of 2016

(Youtube, 2016). This means for 480P videos, having 2.5 Mbps data rate, YouTube consumes

750 MB per average session. For 1080P, the required bandwidth is 2.4 GB. With the current

trend in video sharing and the new capability of 4K video recording on smartphones, one can

expect an exponential growth of traffic in this section in the next coming years.

The fourth most reached application is Google Maps with around 55% of reachability in the

U.S market. From SFC viewpoint, Google Map has three interesting features comparing to the

top three services. First, it’s not a social media application or entertainment service. Hence, ev-

ery time a user opens this application, it is due to the importance of information that is required.

Second, while the first three applications in the list have moderate to high traffic demand, the

amount of required data transfer for Google Maps is negligible per request; as of today, based

on our measurements, it uses 300-500 KB to process each location request. The final aspect is

the new feature of Promoted Pins that lets local businesses to offer different kinds of promo-

tions to their customers. The advertisements appear as pins on the map when a user searches

for a related location. For example, when a user requests for nearby restaurants, the special
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offers would appear. Google Maps also supports the bidding mechanisms for hotels. In all

of these cases, Google highly relies on its reachability to the users which is directly related to

the quantity of data subscribers in local cellular networks. However, as the data acquired from

Table 3.1 Subscriber and traffic shares in advance mobile markets

Taken from Ericsson mobility report

< 100 MB 100 MB−1 GB 1−10 GB 10−100 GB > 100 GB

Subscriber share ≈ 35% 28.8% 32% ≈ 3.5% ≈ 0.7%

Traffic share ≈ 0.7% ≈ 11.5% ≈ 48.2% ≈ 35.2% ≈ 3.5%

Ericsson Mobility report (Ericsson, 2016) in Table 3.1 shows, over 35% of wireless users in

advance markets have a data cap of less than 100 MB. The total traffic generated by this group

is 0.7% of total traffic. The traffic share for the group of 100 MB- 1 GB plans is about 11.5%

while this group includes 29% of all subscribers. Thus, while Google requires high connec-

tivity of users for its business model, near 64% of subscribers do not have the necessary data

connection to use Google Maps freely. The features mentioned above indicate that the mapping

applications such as Google Maps have the potential to be offered under SFC program. The

traditional payment directions for Google Maps are depicted in Fig. 3.4. Where here the end

users pay for their data connectivity, local businesses pay Google for advertisement, and finally

the end users may pay local businesses for their offers on the mapping application. Under the

SFC program, the payment direction would be defined as in Fig. 3.5. In this case, the end users

do not pay for their usage of Google Maps. Instead, the content-aware cellular network allows

them to use this application free of charge. To compensate for the SP’s lost revenue from the

end users, Google would share part of its extra profit with SP. The extra profit comes from the

increased advertisement clicks which is due to the higher service access by SP’s users. Note

that this alternative scenario is feasible due to unique characteristics of Google Maps. One

could argue that the free access may overload the cellular network. However, the Ericsson’s

data in Table. 3.2 shows that users are not becoming greedy for certain kinds of applications

when the available data volume is increasing. To be more precise, their volume share is di-

minishing unlike, for example, the share of video services that is growing with the amount of
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accessible data. The greediness and other relevant characteristics of potential free services are

defined in more details in Subsection 3.1.4.

3.1.1.1 Other candidates in this category

While Google Maps is one of the best candidates for the SFC program in this category, there

are several other potential services as well. One is Apple Maps which is #12 in comScore’s

list (ComScore, 2016). Aside from mapping applications, two popular intelligent personal

assistants, Siri by Apple and Microsoft’s Cortana are other candidates. They can distribute

offers from local businesses and add value to the cellular operator’s network without putting the

burden on end users; similar to mapping services, the information delivered by these services

has a high value to the users as well.

Figure 3.3 U.S audience reach for mobile applications based on

comScore’s statistics

Taken from comScore (2016)

3.1.2 Category 2: real-time cloud-based IoT services

The second category of applications eligible for SFC program is related to rapid development of

wearable devices, IoT services, and edge-computing. In contrast to the first category in which
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Figure 3.4 Traditional payment

direction for Google Maps

Figure 3.5 Alternative payment

direction model for Google Maps

based on free content-aware

connectivity for users

the end users would not directly pay for the services of Google or Apple, in the second category

users pay for the cloud-based services. In the current market model, end user pays for both

data connectivity and cloud-based services that collect event-triggers from sensors and react.

However, there are some scenarios in which the current market model can be inefficient or even

dangerous. For example, consider the health monitoring system which loses its connection to

cloud-based service since the data plan reached its cap. In such scenario, while the user already
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Table 3.2 Application volume shares of different

subscriber groups adopted. Taken from Ericsson

Mobility report

Application < 0.1 GB 0.1−1 GB 1−10 GB 10−100 GB > 100 GB All users

Video 4% 16% 39.5% 67% 67.7% 46.7%

Social 13.7% 17.7% 17.7% 6.5% 1.2% 13.7%

Networking
Web 20% 18.5% 12% 5.6% 2.4% 10.4%

Browsing
Comm. 12% 8.8% 4% 2.4% 0.8% 3.2%

Services
Software 16.1% 15.3% 6.4% 2.4% 1.6% 6.4%

Download
Audio 0.8% 3.2% 3.2% 1.6% 0.8% 3.2%

System 0.2% 1.6% ≈ 0% ≈ 0% ≈ 0% ≈ 0%

File Sharing ≈ 0% ≈ 0% ≈ 0.5% ≈ 1.6% ≈ 16% 1.6%

Other ≈ 33.2% ≈ 18.9% ≈ 16.7% ≈ 15.3% ≈ 9.5% ≈ 14.8%

paid for a critical service, the service cannot save its life. Thus this service could benefit greatly

from the SFC program as well as a broad range of IoT services based on low date usage sensors

that provide valuable information.

The traditional payment model requires the end users to pay both network provider and cloud-

based services located on the edge of provider’s network. This model of payment directions is

depicted in Fig. 3.6-a. The alternative SFC model removes the data transfer and connectivity

cost from the end user. In this model, the cost of data transfer is being paid by cloud-based

service owner. In many markets, similar scenarios have been implemented. For example, the

majority of laptops in the today’s market come with a version of MS Windows and a free

subscription to MS Office for a defined period. For several years Samsung offered free 48

GB Dropbox storage with their smartphones. Wacom tablets come with a free license for

Photoshop or Corel applications. The examples in this category are countless and it proves

the effectiveness of such business model. Hence, the SFC program for the second category of

applications can be implemented using experience from the already existing models in different

markets.
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Figure 3.6 a) Current payment directions for cloud-cellular IoT

services b) alternative SFC model

3.1.3 Category 3: Smart cities and the social right to access the Internet

In the previous two categories, the final goal of content providers, whether they are single pur-

pose cloud-based companies or giant multi-role corporations like Google, is generating profit

out of users. The third category, on the other hand, is dedicated to those entities whose aim

is leveraging the quality of life by providing ICT services to a broad range of people. These

entities would be governmental or municipal bodies that intend to implement and develop the

concept of smart cities. To achieve a densely interconnected structure, such as smart cities,

it is required to implement several related technologies such as IoT for transport and traffic

monitoring, energy consumption metering and health care systems. This type of services can

also cover electronic governance (e-governance) and on-line voting concepts in which the in-

teraction between governments and citizens takes place via ICT services. Since having access

to the Internet is playing a primary role in future smart cities, public networks are being im-

plemented around the globe. These networks are primarily based on WiFi technology. The

service access is given via paid plans or in some cases freely. The free WiFi access is mainly

provided in governmental facilities or touristic sites. For example, the Old Port neighborhood

of Montreal is offering free Internet access to the public; this is a part of a long-run plan for

city-wide free WiFi access (Montreal, 2016). There are numerous examples of free and paid

urban WiFi. We refer the reader to (Kong, 2016; York, 2016; Toronto, 2016; Liverpool, 2016)
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for several examples. The WiFi service has the advantage of high-speed access to the network

via free license spectrum. However, implementing a city-wide network requires a vast amount

of financial resources; this is due to small coverage range of WiFi access points (AP) com-

paring to the cellular counterparts. Deploying hundreds or thousands of APs also increases

the maintenance and managing cost. As of today, the cost of such networks is being paid by

municipal entities or via community support in free service methods or by private companies

for paid or advertised services.

Due to the limited coverage size of current municipal networks based on WiFi, one can consider

an alternative or additional option of selective free cellular access in the urban area. This

option would be mainly useful for the case of free or advertised services that are funded via

predefined budgets dedicated to municipal network plans. For the previous two application

categories proposed for the SFC program, the primary question was how to make selective

free access profitable; in the third category, the major challenge is how to develop the ICT

applications to make them accessible free of charge on cellular networks. This challenge is

mainly related to service type definition and traffic shaping. In particular, since the cellular data

is traditionally more expensive than the land-line services, the smart city application should

transfer the minimum traffic with the most valuable data. In the next subsection, we define

general characteristics of all eligible applications for the SFC program.

3.1.4 Characteristics of eligible applications for the SFC program

Until now we defined three categories of applications, shown in Fig. 3.7, that are good candi-

dates for an SFC model. In this paper, our goal is building a mathematical framework in which

the estimated profit values of associated entities are resolved. Hence, to have a precise formu-

lation, we need to find the common characteristics of mentioned application. In this section we

define some general characteristics of the eligible applications while the mathematical defini-

tion of each characteristic is presented in the next section. As discussed until now, a candidate

application for the SFC program has the following characteristics:
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a. Let define the content unit as the result of a predefined information request such as ob-

taining a map location. Then, in the eligible applications, the required data transfer of a

content unit is relatively small, and its perceptual value to the user is high. On the other

hand, for the content types such as video, the expected size of each video is respectively

high and the data does not have the same importance or time criticality. In other words,

in most cases when a user requires a map location data or health-care service, the request

cannot be postponed till another time. Let us represent the content size with θ and the

perceptual importance to a user with random variable α . Then, the importance to size

ratio is ρ = α
θ . Since the two variables are generally independent, the average ratio is

E[ρ] = E[α]
E[θ ] . We expect this ratio to be highest for the eligible contents among all content

types in the network. This definition lacks two pieces of important information. First,

there is no metric for the perceptual importance. Thus, we need to use a utility function

to model the user behavior. Second, ρ does not carry any information about the user

greediness for the application usage which forces us to define the second property.

b. The second characteristic of eligible applications is that the user should not be greedy

for the application usage. We define the overall size of content transferred in time t by

application a and user j as Θa
j,t(d). Where d is the cap of user’s data plan. Then, the

Application Usage Index (AUI) among all users can be defined as,

Ia
j (d) = lim

t→∞

1

t

Θa
j,t(d)

∑A
a=1 Θa

j,t(d)
· (3.1)

For the eligible applications, the global application usage index should decrease with

increasing d, that is:

Greediness condition:
1

NT

NT

∑
j=1

∂ Ia
j (d)

∂d
≤ 0, (3.2)

where NT is the total number of users in the market. This condition is supported by the

data provided by Ericsson in (Ericsson, 2016). Namely, based on Table 3.2, the mobile

application can be categorized in three groups regarding I j(d). Fig. 3.7 depicts the general
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shape of the usage index for each category as a function the cap of user’s data plan. Fig.

3.7-a shows the usage index shape for Type I applications for which users have the highest

usage greediness; this type includes the video applications. Fig. 3.7-b illustrates the usage

index shape for Type II applications. A user considers utilizing these applications if it has

enough bandwidth available. However, these applications are not important enough to

be used in plans with a small data cap. Audio services belong to this category. Finally,

3.7-c depicts the usage index shape for the critical applications that user requires under

any data plan. A user may utilize only these applications when the data cap is limited to a

small value, e.g., one- or two-gigabytes. Also, users are not greedy for these applications

so condition (3.2) is satisfied in this case. Web browsing and mapping services belong

to this application type. Being a Type III application is a necessity to be eligible for

SFC program. However, it is not sufficient; the business model should also support the

SFC program. Hence, a third characteristic should be defined to resolve necessity and

sufficiency conditions for eligible applications.

c. Until now we considered the usage characteristics of eligible applications. The third char-

acteristic is related to the market condition. For any service to be considered as SFC

eligible, there should be a business or social entity that can compensate the profit loss

of cellular provider. This characteristic may look trivial, but when we compare a map-

ping service with web browsing applications, one can notice a structural difference in the

business model. Namely, for the mapping applications such as Google Map, there is an

explicit financial loop from local businesses to Google to SP to users and again local busi-

nesses. On the other hand, there is no such loop for the browsing applications since the

potential gainers are distributed throughout the Internet. The only exception would be in-

jecting direct advertisement from cellular provider to the web browsing data and making

a payment loop similar to Google Map’s business model in 3.4.

Among the three categories of eligible application for SFC program, the first category has

the most complicated structure. It includes users, SP and CP that directly affect each other’s

behavior. The SFC feasibility models for category 2 and 3 applications are simpler and can
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Figure 3.7 Three categories of candidate applications for

selective free access

(a) Type I (b) Type II (c) Type III

Figure 3.8 Three types of mobile applications based on

subscriber’s usage behavior defined by Iu(d)

be derived by some modification of the first category model. Hence, in the reminder of the

paper we propose and analyze a detailed analytical model for SFC feasibility of the Category

1 applications.
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3.2 The Game for Category 1 applications

In this section, we consider a three-stage game which defines the best strategies of SP and CP

to whether join to or refuse an SFC program for an eligible Category 1 application. The game

consists of three entities; namely, cellular users, SP and CP. Users adjust their subscription and

data usage behavior based on the offered price from SP. CP generates its profit based on the

number of subscribed users and the amount of content requests they generate. Similar to any

market, since the volume of content requests is in close relation to the unit data price offered by

SP, CP earns an extra profit if SP applies the minimum possible price. Our goal is to investigate

and define the conditions in which an entirely free access gives the sufficient amount of extra

revenue to CP to compensate the profit loss of SP. We model this scenario as a Stackelberg

game and solve it by backward induction. The three stages of our game are defined as follows:

a. Each user observes the offered data unit price from SP and decides the amount of data

consumption for each application. In this stage, the amount of content requests for the

target Category 1 application is resolved.

b. In the next stage, SP calculates its profit for two scenarios. The first scenario is a standard

pricing strategy and the second scenario considers the presence of an SFC program for

specific content. In this part, an SP-CP cooperation means SP provide SFC to all users

and demands from CP the compensation from its profit loss. If CP cannot compensate the

profit loss of SP, then SP does not participate in the SFC program.

c. In the last stage, CP should decide whether to take part in the SFC program or not and if

it participates, what share of profit should be proposed and transferred to SP.

In what follows, we demonstrate the details of each stage of the game.

3.2.1 Stage III: user’s utility and best response

Since the user behavior analysis is the foundation of this framework, we need to define the

proper metric to find the amount of data consumption. Similar to many related works, we use
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the concepts from utility theory to formulate this part. With the help of the data provided by

Ericsson (Ericsson, 2016) in Tables 3.1 and 3.2, we know that 70% of current users have a lim-

ited data plan with less than 2 GB; the primary concern of these users is choosing between high

priority services like mapping applications and other less critical application such as video. For

these users, the utilization percentage of high demanding applications such as video is negligi-

ble. For the rest of users who share almost 80% of overall traffic, the decision concern is mainly

about the amount of traffic they need to buy for their video streaming applications. For these

users, the traffic ratio of high-value applications to the rest of services is under 10% (Type-III

applications in Fig. 3.7). Hence, we can define a two-part utility function which considers the

importance of eligible application in one part and the high demand services in the other part.

For each part, we use the familiar form of logarithmic utility function due to its conformity to

the law of diminishing marginal utility (Hall & Lieberman, 2012). The adaptation of this law is

essential in studying the cases of data consumption. Also, the logarithmic utility is a common

practice in related works e.g. (Başar & Srikant, 2002), (Sengupta et al., 2007), (Duan et al.,

2013a) and (Lotfi et al., 2015). The utility for a specific user j has the form of:

u j(p) =
α j

e βelog(1+d j
e)− pd j

e

Ue
+

α j
r βrlog(1+d j

r )− pd j
r

Ur
· (3.3)

The first part of the above function defines the gained normalized payoff from using an SFC

eligible application. This application is indicated by subscript e. The second part belongs to

the rest of applications with lower importance and higher traffic demand indicated by index r.

α j
i i ∈ {e,r} is a random variable which shows the importance of the application i to user j.

This importance is coupled with the amount of money that user is willing to pay for a specific

type of content. For the sake of simplicity in analysis, we assume that α j
e and α j

r are i.i.d

having a uniform PDF of U(0,1). βi is a user-independent variable which controls the amount

of data consumption for a given price. d j
i is the amount of preferred data usage for each content

type. We also define constant Di which indicates the maximum amount of data consumption

users tend to achieve. Based on the definition, we expect De to be negligible comparing to Dr.

p ∈ℜ+ is the unit price for data implied by SP. Finally, Ue and Ur are the normalizing factors
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which control the peak of utility for each content. These two constants are essential since the

two parts of utility have different peaks, yet they may represent the same amount of satisfaction

to each user. By this definition, Ui = βilog(1+Di) and the maximum of u j(p) for the most

demanding user can be 2. For the rest of users the maximum utility is u j
M(p) = α j

e +α j
r < 2

which shows that the maximum value of satisfaction is related to the perceptual importance of

the services to the user. it is clear that u j(p) is concave with respect to d j
e and d j

r . The first

derivative of u j(p) with respect to d j
i is:

∂u j(p)

∂d j
i

=
1

Ui

(
α j

i βi

1+d j
i

− p

)
, (3.4)

d j′
i =

α j
i βi

p
−1, (3.5)

where d j′
i is the global maximum of u j(p). By considering the positivity and the maximum

level of usage, we have the optimum value as:

d jo
i = min

(
max

(
α j

i βi

p
−1,0

)
,Di

)
. (3.6)

The above equation indicates that p ≥ α j
i βi leads to zero usage for the content of type i, and

p≤ α j
i βi

1+Di
gives the user the opportunity to reach the maximum demand for the content of type

i. To have the analysis of user’s best responses, we need to categorize the users based on usage

threshold orders. These orders can be represented by two main sets:

Order set I-

⎧⎪⎨
⎪⎩

1)α j
e βe ≥ α j

r βr >
α j

e βe
1+De

> α j
r βr

1+Dr
,

2)α j
e βe >

α j
e βe

1+De
> α j

r βr >
α j

r βr
1+Dr

.

(3.7)

Order set II-

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

3)α j
r βr > α j

e βe >
α j

e βe
1+De

> α j
r βr

1+Dr
,

4)α j
r βr > α j

e βe >
α j

r βr
1+Dr

> α j
e βe

1+De
,

5)α j
r βr >

α j
r βr

1+Dr
> α j

e βe >
α j

e βe
1+De

.

(3.8)
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The main difference between the two sets is the user’s content prioritizing behavior. The first

set represents the users who prioritize the Type e contents and the second set is for those who

favor the Type r applications. To have a better understanding of the user behavior, let us define

the best response function as follows:

Proposition 4. The best response data values for the users in the first order (set I-1) are as

follows:

BR/I-1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d jo
ed jo
ed jo
e = 0, d jo

rd jo
rd jo
r = 0 p > α j

e βe,

d jo
ed jo
ed jo
e = α j

e βe
p −1, d jo

rd jo
rd jo
r = 0 α j

r βr < p≤ α j
e βe,

d jo
ed jo
ed jo
e = α j

e βe
p −1, d jo

rd jo
rd jo
r = α j

r βr
p −1

α j
e βe

1+De
< p≤ α j

r βr,

d jo
ed jo
ed jo
e = De, d jo

rd jo
rd jo
r = α j

r βr
p −1

α j
r βr

1+Dr
< p≤ α j

e βe
1+De

,

d jo
ed jo
ed jo
e = De, d jo

rd jo
rd jo
r = Dr p≤ α j

r βr
1+Dr

.

(3.9)

Proof. The thresholds come directly from (3.7) and the optimum values follow (3.6).

Table 3.3 General notation

Parameter Description
NT Set of all users of SP

NT Size of NT
I(d) Application Usage Index (AUI)

u j(p) utility of user j when the data unit price is p
α j

e ,α j
r Random variables indicating the perceptual importance

of service e and r respectively for user j
αe,αr The general form of above.

βe,βr Traffic shaping factors

De,Dr maximum preferred usage for content types e and r
d j

e ,d
j
r The overall usage of content Type e and r for user j

p price of data service

po optimal price strategy of SP

pCP Side-payment unit price, from CP to SP

πCP, πSP profit of CP and SP respectively

η profit factor of CP for content utilization

ζ Bargaining power of SP over CP
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The best response for the rest of the threshold orders can be easily defined based on the above

definition. We omit their presentation to simplify the presentation. Instead, we show the typical

curves of best responses for the threshold orders in Fig. 3.9. As depicted in Fig. 3.9(a)-(e), the

main difference between the best response curves is the usage behavior when the price is high.

Sub-figures 3.9-(a) and (b) represent the users who prioritize the eligible contents over the

rest of applications. Hence, when the price is high, they use only the eligible application. This

makes a significant difference in the AUI curve. The single-user AUI of the eligible application,

Ie(p) = de(p)
de(p)+dr(p) , for the first two orders is similar to the one of the Type-III applications (a

horizontally flipped version of the curve in Fig. 3.7, having d inversely related to p). Order

II-1 shows a pattern similar to the Type-II applications for the presumably eligible applications.

Orders II-2 and II-3 represent our eligible applications similar to Type-I applications. Based

on the three characteristics of the eligible applications for the SFC program, we know that only

Orders I-1 and I-2 are a realistic representation. This assertion does not imply that all users act

based on the first two orders. However, since the marketwide AUI (Eq. (3.1)) represents the

aggregated usage of an application in the entire market, when it comes to an eligible application

the majority of users behave based on Orders I-1 and I-2. Hence we can propose the following

proposition:

Proposition 5. For an eligible Category 1 application, βe > βr always holds.

Proof. See Appendix III-1.

3.2.2 Stage II: The best strategy for SP

In Stage II, after the analysis of users’ best responses, SP should resolve its best strategy. As

discussed earlier, SP decides whether it wants to participate in the SFC program or not and

also, sets the data price that maximizes its profit. Thus, the SP’s strategy is defined by triple

(p,γSP, pCP) where γSP ∈ {0,1} defines the participation strategy and pCP is the data unit price

for the Type e content when SP participates in the SFC program, γSP = 1. pCP is the base for
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(a) Order I-1 (b) Order I-2

(c) Order II-1 (d) Order II-2

(e) Order II-3

Figure 3.9 Best response of users base on threshold orders

any payment from CP to SP to compensate the SP’s profit loss. In the following, we derive the

optimum profit values for each strategy triple.

The profit of SP when it does not participate in SFC program is directly related to the overall

data consumed by the subscribed users. When SP agrees to join the SFC program, it loses a

part of its profit which comes from the eligible application’s traffic. However, in this scenario,

CP may compensate the profit loss of SP by making a side-payment. Thus, having NT as the

total number of users in the SP’s network, we can define the profit function of SP as:
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πSP(γSP = 0, p) = NT ×
⎡
⎣∫ 1

αe=1
de(αe, p)dαe +

∫ 1

αr=1
dr(αr, p)dαr

⎤
⎦, (3.10)

πSP(γSP = 1, p, pCP) = NT ×
⎡
⎣∫ 1

αr=1
dr(αr, p)dαr +De ∗ pCP

⎤
⎦. (3.11)

Eq. (3.10) represents the non-SFC profit and (3.11) is the profit of SP under the SFC program.

In (3.11) the side-payment from CP to SP it is defined as NT De pCP that implies that under the

SFC program, in which users are not charged for transferring Type e contents, all users reach

maximum usage De. Based on the above profit equations, we define a detailed profit structure

of SP based on its pricing and participation strategies in the following two subsections.

3.2.3 The profit of SP in non-cooperative strategy (γSP = 0)

When SP is not engaged in the SFC program, its only source of profit are the direct payments

from the users for their data usage. In this case, SP should set the price value that maximizes

its profit. Based on (3.6), the price threshold above which user j does not demand any content

i is p = α j
i βi. Hence, if SP sets the price p > βi, no user would demand content type i. We

have two thresholds p = βe and p = βr representing the upper limit of price for each content

type. Also, for the same user j, p <=
α i

jβi

1+Di
leads to maximum data usage. We can take the

thresholds p = βi
1+Di

and p = βr
1+Dr

as the price values for which greediest users start to enjoy

full data usage for the respective content. Based on above definitions and Proposition 5, there

are two orders of thresholds:

SP’s price threshold orders:

⎧⎪⎨
⎪⎩

1) βe > βr ≥ βe
1+De >

βr
1+Dr ,

2) βe >
βe

1+De ≥ βr >
βr

1+Dr .

(3.12)
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The above definitions can also be derived from order set I in (3.7). Since the above orders are

related to the nature of applications and general user behavior, we select the first order as the

base for the further analysis. The same framework can be applied to the wireless markets with

the second order. We define the SP’s best response price and the associated profit under each

threshold regime as follows:

3.2.3.1 Ultra-high price regime: βr < p < βe

When SP applies an ultra-high price regime, no user reach its maximum usage regarding con-

tent Type e. However, as it is depicted in Fig. 3.10, all the users with αe ≥ p
βe

can enjoy a

partial usage of de =
αeβe

p −1. Considering the Type r applications, since p is above the mini-

mal usage threshold, no user will utilize these applications and hence dr = 0 for all the users.

The overall profit of SP is:

πSP
uh (γ

SP = 0, p) = NT p
∫ 1

αe=
p

βe

αeβe

p
−1 dαe = NT

(
p2

2βe
− p+

βe

2

)
.

The first derivative of above profit function is NT (
p

βe
− 1) and the second derivative is NT

βe
.

Hence, the profit function in ultra-high price regime is convex and its maximum occurs at the

boundary price p = βr:

max
p

πSP
uh (γ

SP = 0, p) = NT

(
β 2

r
2βe

−βr +
βe

2

)
. (3.13)

3.2.3.2 High price regime: βe
1+De

< p < βr

Considering the user’s best responses, the difference between the ultra-high and high price

regimes is that in the latter, a part of users with αr ≥ p
βr

utilize the r type applications. The best
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Figure 3.10 Optimal content usage with respect to αe and αr in

ultra-high price regime βr < p < βe

Figure 3.11 Optimal content usage with respect to αe and αr in

high price regime
βe

1+De
< p < βr

response for e type application remains the same. This behavior is depicted in Fig. 3.11.

πSP
h (γSP = 0, p) = NT p

⎡
⎣∫ 1

αe=
p

βe

αeβe

p
−1 dαe +

∫ 1

αr=
p

βr

αrβr

p
−1 dαr

⎤
⎦

= NT

(
p2(βe +βr)

2βeβr
−2p+

βe +βr

2

)
. (3.14)
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The profit function of (3.14) is convex and similar to (3.13) the maximum value is in lower

boundary of price p = βe
1+De

:

max
p

πSP
h (γSP = 0, p) = NT

⎛
⎜⎝
⎛
⎜⎝
⎛
⎜⎝βe +βr

2

(
βe

βr(1+De)2
+1

)
−2

βe

1+De

⎞
⎟⎠
⎞
⎟⎠
⎞
⎟⎠. (3.15)

3.2.3.3 Moderate price regime: βr
1+Dr

< p≤ βe
1+De

Figure 3.12 Optimal content usage with respect to αe and αr in

moderate price regime
βr

1+Dr
< p≤ βe

1+De

In the moderate price regime, SP allows a part of users with αe ≥ p(1+De)
βe

reach their maximal

usage for content e. However, with such price regime no user is willing to achieve a maximum

usage for content r. These conditions are shown in Fig. 3.12. The profit of SP in moderate

price regime is defined as shown in Eq. (3.16).

Proposition 6. The profit function in moderate price regime has a maximum at

p = βeβr(De−1)
βr((1+De)2−1)−βe

, if De > 1 and Dr >
De(βr(De+2)−βe)

βe(De−1) , otherwise, the maximum occurs

at lower boundary price p = βr
1+Dr

.

Proof. See Appendix III-2.
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πSP
m (γSP = 0, p) = NT p

[∫ p(1+De)
βe

αe=
p

βe

αeβe

p
−1 dαe +

∫ 1

αe=
p(1+De)

βe

De dαe +
∫ 1

αr=
p

βr

αrβr

p
−1 dαr

]

= NT

(
p2

2

(
1

βr
− 1

βe

(
(1+De)

2−1
))

+(De−1)p+
βr

2

)
(3.16)

3.2.3.4 low price regime: p≤ βr
1+Dr

Figure 3.13 Optimal content usage with respect to αe and αr

in low price regime p≤ βr
1+Dr

When the low price regime is applied, a part of users achieve the maximum usage for content

types e or r or both, as depicted in Fig. 3.13. The profit of SP is given by (3.18) that is placed

on the next page. The quadratic profit function of (3.18) is concave and the optimal price is

given by:

pl =
βeβr(De +Dr)

βe ((1+Dr)2−1)+βr ((1+De)2−1)
· (3.17)

Since Dr >> 1, it can be easily proved that pl <
βr

1+Dr
and the maximum value of concave

profit function is the optimal value within the price boundary.
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πSP
l (γSP = 0, p) = NT × p×

[∫ p(1+De)
βe

αe=
p

βe

αeβe

p
−1 dαe +

∫ 1

αe=
p(1+De)

βe

De dαe

+
∫ p(1+Dr)

βr

αr=
p

βr

αrβr

p
−1 dαr +

∫ 1

αr=
p(1+Dr)

βr

Dr dαr

]

= NT

(
− p2

2

(
1

βr

(
(1+Dr)

2−1
)
+

1

βe

(
(1+De)

2−1
))

+(De +Dr)p

)
(3.18)

The optimal value of p is the one which maximizes the profit of SP. Since we derived the

optimal value for each pricing regime, the final value can be defined as:

πSP
o (γSP = 0, p) = max

⎛
⎝max

p
πSP

uh (γ
SP = 0, p),max

p
πSP

h (γSP = 0, p),

max
p

πSP
m (γSP = 0, p),max

p
πSP

l (γSP = 0, p)

⎞
⎠, (3.19)

po = argmax
p

πSP
o (γSP = 0, p). (3.20)

3.2.4 The profit of SP in cooperative strategy (γSP = 1)

In the previous subsection, we analyzed the profit of SP under non-cooperative strategy, γSP =

0. We categorized the best price responses of SP into four regimes which yield different usage

patterns for both content-types e and r. Consequently, the profit values for these regimes vary.

If SP decides not to cooperate, then it selects the price regime that maximizes its profit. Since

the profit in all price regimes is related to four market parameters βe, βr, De and Dr, we must

adopt a parametric solution for the cooperative strategy of SP as well. In this manner, by

assuming that each price regime is applied to the SP’s network, one can derive the cooperative
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profit counterpart. We start our analysis by defining user behavior when SP participates in the

SFC program.

When SP aims to implement the SFC program, users are not charged for demanding content

Type e. The worst scenario for SP is that all users utilize content e to its maximum level

De and, simultaneously, no user is willing to raise its content r demand. Since the very first

condition in the SFC program is the price invariance, SP loses all the profit from the content e

without obtaining extra value transfer of content e. This condition is previously formulated in

(3.11). One can apply this equation to different price regimes to obtain the profit of SP in the

cooperative state. For example:

3.2.4.1 Ultra high price regime: βr < p < βe

In the ultra-high price regime, the entire data traffic belongs to content Type e. Hence, by

participating in the SFC program, the profit of SP solely comes from CP as follows:

πSP(p,γSP = 1, pCP) = NT ×De× pCP. (3.21)

It is clear that SP agrees to participate in the SFC program if and only if πSP(p,γSP = 1, pCP)≥
πSP(γSP = 0, p). Based on (3.13) and (3.21), pCP > 1

De

(
β 2

r
2βe
−βr +

βe
2

)
is the sufficient condi-

tion for this case. Deriving the profit function for the other three price regimes is straightfor-

ward so it is omitted to simplify the presentation.

3.2.5 Stage I: The strategies of CP

In Stage I, CP decides if the SFC program is profitable to itself and if yes, which data unit price

should be offered to SP for its profit loss. Hence, one can define the strategy pair (γCP, pCP)

for CP in which γCP ∈ {0,1} represents the SFC participation of CP and pCP ∈ℜ+ is the data

unit price as a base for payment to SP. As we discussed in the previous section, a Category 1

application is offered free of charge to the users and the central part of CP’s profit comes from

advertisements. The ad price is related to the number of clicks, and it is accepted in related
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studies to connect the click frequency to the number of content requests from users. While it

is common to consider a logarithmic payoff function for CP (e.g., see (Lotfi et al., 2015)), we

aim to consider a worst-case scenario in which the profit of CP is linearly related to the content

requests. The benefit of such consideration is that by proving the possibility of SFC program

under a linear profit model of CP, the logarithmic profit model also holds valid. The reason

for the validity is the direction of payment which is from CP to SP. Thus, the more profit CP

makes, the bigger chance of SFC possibility. Since the type of profit for the CP and SP is

defined based on actually gained money, their utility is transferable by a side-payment. We

define the profit function of CP as follows:

πCP(γCP = 0) = NT η
∫ 1

αe=0
de(αe, p)dαe, (3.22)

πCP(γCP = 1, pCP) = NT De

(
η− pCP

)
, (3.23)

where η is the CP’s profit ratio for overall usage of content Type e. When γCP = 0, CP does not

make a side-payment to SP and hence, pCP = 0. The overall data usage for γCP = 1 is NT De

which is considered along with a side-payment to SP in (3.23). To make a cooperation feasible,

CP’s profit after cooperation should be greater than the sum of its profit before implementing

SFC program and the profit loss of SP, that is:

NT Deη > NT (η + po)
∫ 1

αe=0
de(αe, po)dαe →

η >
po ∫ 1

αe=0 de(αe, po)dαe

De−
∫ 1

αe=0 de(αe, po)dαe
, (3.24)

where po is the optimal price of SP in Stage II.
∫ 1

αe=0 de(αe, po)dαe is the overall usage of

content e in the non-cooperative form of the game. If the above feasibility condition holds, CP

can consider the SFC program. Otherwise, the best response of CP is γCP = 0. In the case

of possible cooperation, the only remaining decision value for CP is pCP or in general, the

amount of side-payment to SP. Several options can be considered in such case. One can find

this game as a bargaining game and compute pCP as the solution of a Nash bargaining game
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(Rubinstein & Osborne, 1990). Another option is considering the game as a cooperative type.

In this case, the solution concepts such as Core and Shapley value (Fudenberg & Tirole, 1991)

can be applied. In this paper, we consider both the bargaining solution and Shapley value.

3.2.6 Nash bargaining solution (NBS)

In this part, we find pCP as a solution to the Nash bargaining game (NBS). Nash firstly intro-

duced the NBS in (Nash Jr, 1950) and described a bargaining situation in which players try to

reach an agreement. The agreement can be a price definition or a contract between bargainers.

Nash built his solution based on four axioms. Namely, Invariance to Equivalent Utility Repre-

sentations, Symmetry, Independence of Irrelevant Alternatives, and Pareto efficiency. We refer

the reader to (Rubinstein & Osborne, 1990) for more information on these axioms. In what

follows we give a general definition of two-player NBS.

Definition 3.1. Consider two players 1 and 2 who try to reach an agreement in a bargain-

ing game. Set A contains the agreement alternatives. If they cannot reach the agreement, a

disagreement event D occurs. Players have a preference ordering on set A∪D. We define

Ui : A∪D→ℜ as the utility of player i. The union of all payoff pairs (U1(a),U2(a)) a ∈ A is

indicated by S. The disagreement utility point is defined by the pair d = (U1(D),U2(D)).

Definition 3.2 ((Rubinstein & Osborne, 1990)). The unique solution to Nash’s four axioms of

bargaining in a two player game is a pair f 2 ∈ℜ2 given by:

f 2(S,d) = argmax
(d1,d2)<(s1,s2)∈S)

(s1−d1)(s2−d2). (3.25)

If player 1 has a relative bargaining power ζ ∈ [0,1] over its opponent, NBS is given by:

f 2(S,d) = argmax
(d1,d2)<(s1,s2)∈S)

(s1−d1)
ζ (s2−d2)

1−ζ . (3.26)

Based on the above definition, we can define the following solution for our problem:
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Proposition 7. In a CP-SP game in which SP has a bargaining power ζ ∈ [0,1] over CP, if

ζ ≥ po(De−
∫ 1

αe=0 de(αe,po)dαe)

ηDe−(η+po)
∫ 1

αe=0 de(αe,po)dαe
and feasibility condition in (3.24) is satisfied, then the NBS

price pCP
b is given by:

pCP
b = ζ η− (ζ (η + po)− po)

∫ 1
αe=0 de(αe, po)dαe

De
, (3.27)

otherwise, a disagreement occurs.

A proof is given in Appendix III-3. Nonnegative NBS price in (3.27) is supported by the SFC

feasibility condition in (3.24). In other words, NBS price (3.27) is not a solution for a SFC

program if feasibility condition of (3.24) does not hold. NBS price pCP should be calculated

for each pricing regime of SP and its associated overall usage of content e. In Stage II of

the game, since we already derived a closed-form representation of the parameters mentioned

above under each pricing regime in Stage II of the game, we omit redundant equations that are

created by straightforward parameter substitution.

3.2.7 Shapley value

The multi-stage game is considered as a strategic type and should be solved by the related so-

lution concepts as we did in the previous subsection. However, in the game that we consider,

increasing the profit of CP does not decrease the profit of SP. To be more precise, CP and SP

are not direct competitors. Thus, one can consider the CP-SP game as a cooperative form.

There are several options to solve a coalitional game. As an option, we consider Shapley value

which defines the profit of each player by its relative power in the market. As previously men-

tioned, we know that the direction of payment is from CP to SP. Also, the utility of providers is

represented by a monetary unit which is transferable. For such case, the definition of Shapley

value is as follows:

Definition 3.3. Consider an n-player game which the set of players N. The function v(S) de-

fines the utility of coalition S ⊂ N. The Shapley value to player i ∈ N is defined by a unique
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function Φ that satisfies Shapley’s three main axioms. Namely, Symmetry, Carrier and Linear-

ity (see (Myerson, 1991)) and is given by:

Φi = ∑
S⊆N\{i}

|S|!(|N|− |S|−1)!

|N|! (v(S∪ i)− v(S)) . (3.28)

For a two person game, the above equation gives:

Φ1 =
1

2
(v(12)+ v(1)− v(2)) , (3.29)

Φ2 =
1

2
(v(12)+ v(2)− v(1)) , (3.30)

where v(12) is the profit of cooperation.

Proposition 8. In the CP-SP game, the Shapley value of SP, ΦSP, is given by De× pCP
b|ζ= 1

2

,

where pCP
b|ζ= 1

2

is the NBS price with ζ = 1
2 . Hence,

ΦSP =
NT

2

(
ηDe− (po +η)

∫ 1

αe=0
de(αe, po)dαe

)
. (3.31)

For the proof, see Appendix III-4. In the next section, we show the feasibility of SFC program

and the value of shared profit for several numerical scenarios.

3.3 numerical results

To have a visual representation of the feasibility of SFC program, we consider several examples

which differ in user and provider parameters such as De, βe, η and bargaining power ζ . Similar

to real markets and characteristics of Type e and r applications, we set βe > βr and Dr >> 10De.

These settings assure us that the numerical examples exactly follow the real behavior of cellular

users covered in Ericsson’s statistics. Hence, throughout this analysis the only constants are

Dr = 100, βr = 5. The main parameters that we like to analyze are the profit values of SP and

CP, side-payment price pCP, and the minimum required bargaining power of SP, ζ , that makes
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the SFC program feasible. We take De which is the maximum desired usage of the eligible

application as the primary independent variable in the x-axis. However, in each example, there

is an additional variable whose effect is shown by introducing several curves in each figure. For

example, Figs. 3.14 and 3.15 represent the profit of SP and CP for 2≤De≤ 5 and βe ∈ {6,10}.
As indicated in Fig. 3.14, when SP has the equal bargaining power, ζ = 0.5, the desired SFC

area starts from De � 2.1 when βe = 6. Increasing βe to 10, leads to higher profit for non-SFC

program for SP and it requires a value of De > 3.9 to make SFC feasible. The same analysis

can be applied to the profit of CP in Fig. 3.15. In Figs. 3.16 and 3.17 we decided to freeze

βe at 10 and change η as the profit factor of CP. As it is expected, increasing the value of η ,

decreases the required value of De for SFC feasibility, that is, for η = 2 the minimum value for

De should be 3.9 while for η = 4, De can be 1.5 or higher. Fig. 3.18 shows the unit price for

side-payment and the minimum bargaining power, ζMin, for the feasibility of SFC. For βe > βr,

ζMin acquires a lower value comparing to βe = 10. The main reason can be found in Fig. 3.14

where a lower βe gives a higher profit value to SP which contrasts with what happens to CP in

Fig. 3.15. Hence, SP needs less bargaining power to dictate the SFC program.

Figure 3.14 Profit of SP with and without SFC program for

different values of De and βe

Finally, in Fig. 3.19 we take the bargaining power of SP, ζ , as the independent variable in the

x-axis. Here we can observe two effects considering De and ζ . Firstly, by having a higher
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Figure 3.15 Profit of CP with and without SFC program for

different values of De and βe

Figure 3.16 Profit of SP with and without SFC program for

different values of De and η

value of De, the overall profit of both CP and SP increases. Secondly, by increasing ζ , SP can

force CP to pay it a bigger chunk of profit in SFC program. Also, a bargaining power of 1

leaves no additional profit for CP in SFC program. In summary, the presented results show the

possibility of SFC program for the eligible applications, even if CP’s profit is linearly related

to the size of transferred content.
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Figure 3.17 Profit of CP with and without SFC program for

different values of De and η

Figure 3.18 Minimum bargaining power, ζ , for SFC program

and related pCP

3.4 Conclusion

In this paper, we analyzed the recent statistics of user behavior in cellular markets and identified

three types of services. Type I that requires a vast amount of data transfer, yet has low priority

to the users. Type II where the services require high data transfer, but users are not greedy to

utilize them constantly. Type III contains important applications that require low bandwidth

but carry sensitive information for the users. We showed that there are several examples of
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Figure 3.19 Profit of SP and CP with and without SFC program

for different values of De and ζ

the Type III services that can be candidates for a selective free content (SFC) program for the

users. This program should be implemented by cooperation between SP and CP. Three cate-

gories of such services are introduced. Namely, mapping and personal assistant applications,

real-time cloud-based services and non-profit e-governance applications. Then, we analyzed

the Category 1 services which are the most complicated group for analysis among the three

categories. A mathematical framework for the feasibility of SFC program is introduced. We

built the framework by modeling the game as a Stackelberg game with three stages. In each

stage, one group of market entities is involved; namely, users, SP and CP. The game is solved

by backward induction. Finally, several numerical examples are demonstrated. These cases are

constructed based on the real behavior of users that were acquired from recent Internet statis-

tics. With these examples, we visually explained the conditions in which an SFC program is

feasible.



CONCLUSION AND RECOMMENDATIONS

In this thesis, we investigated several types of pricing schemes in the heterogeneous wireless

networks and used them to build a framework for coalition analysis. In the first part of this

thesis, we started by analyzing the volume-based pricing plan which is the dominant type

of pricing in today’s market. We used a utility function to model the plan selection process

of users. The main parameters in the user’s utility are the price and cap on data plan along

with the data rate and service availability. To model the access methods and subsequently the

guaranteed data rate we considered two spectrum allocation methods in the access networks:

the shared carrier scheme and the dynamic spectrum allocation. The service availability is

modeled based on the number of users who subscribed to the plans and their usage pattern

based on the size of data plan. A multi-package market in which user’s budget defines its

plan selection mechanism is studied in the next stage. The final objective was to maximize the

profit of the provider based on the price of data plan and the number of users. The analysis is

supported by several numerical examples which simulate the real world market and network

conditions. The outcome of numerical scenarios showed that our analytical framework is a

suitable benchmark to build volume-based plans with SLA included.

In the second part of the thesis, we analyzed the flat pricing method in which users pay for their

data usage based on a fixed data unit price. Concerning the potential users entering the market,

we used a form of the utility function that has the parameters of price, data, and speed. We

used a speed satisfaction random variable in the utility function which shows the perceptual

importance of service speed to each user. Several market forms including monopoly, duopoly,

and oligopoly are studied. The analysis of oligopoly market is the foundation to define the

competitive state of a real wireless market. We proved that when the providers experience a

linear cost increment with respect to their coverage size, they are better off to expand their net-

work without forming any coalition. However, in certain forms of exponential costs, providers

would gain higher profit under cooperation. Then, we defined a multi-provider payoff function



142

for the users which is used to analyze their usage behavior when they subscribed to a multi-

provider coalition. We also defined a utility function designed specifically for the coalition of

cellular and WiFi providers. In this function, the fixed-price fixed-time pricing scheme is con-

sidered which is popular in WiFi markets such as the ones in hotels and airports. Finally, we

used a coalition formation process and modified it based on the profit of heterogeneous wire-

less providers. We proved that in wireless markets, in which there is a churn rate for the newer

technologies, the coalition formation process is always led to stable coalitions. We investigated

several scenarios such as WiFi-Cellular, WiFi-3G-4G, and multi-cellular markets and showed

that forming coalitions can increase the profit of the providers.

In the third part of this thesis, we focused on service-oriented HetNets in which content

providers, service providers, and users are the main entities. We studied the usage patterns

on cellular subscribers based on the type of content such as video, voice, web browsing, etc.

We showed that for certain types of data content such as the ones associated with mapping ap-

plications, users are not greedy to utilize them regularly, yet the information delivered by such

applications is highly valuable to the users. We used this fact, derived from real market infor-

mation, to build a type of coalition between CPs and SPs in which the candidate content types

are delivered to the end users free of charge. In this case, the SP profit loss is compensated

from the CP increased profit associated with advertisement sources. In such way, users pay

only for their data connectivity and not the data transfer. We showed that such treatment is not

applicable to the video contents since users are extremely motivated to utilize such applications

continuously.

For the future work, we see many research opportunities in this field. For example, the multi-

provider market for the volume-based pricing is one of the potential areas. Since the majority of

wireless providers set their primary data plans based on the data volume cap, a comprehensive

analysis of their competition strategies is required. Another research opportunity is analyzing
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the usage pattern of the subscribers based on a given data rate and price. Since the utility func-

tion is playing the fundamental role in game theory based analysis, we need to define the value

of main network parameters in a way that represents the real user’s behavior. This analysis can

be based on regional interests and can cover multiple wireless technologies as well. Finally,

we believe that a pilot implementation of the SFC program can be a perfect complement to the

results of this thesis and can help us to estimate the required network parameters for the further

analysis.





APPENDIX I

PROOFS OF THE PROPOSITIONS IN CHAPTER 1

1. Concavity of objective function in Eq. (1.13)

The objective function in Eq. (1.13) has the form:

max
cd ,pd

π(cd, pd) = NC× pd

⎛
⎝1−

εd + pd

γ̄(pd,cd)θdcd

⎞
⎠ , (A I-1)

γ̄(pd,cd) =

ζ2CM
X −σcd +

⎛
⎝(ζ2CM

X −σcd)
2 +4 σ

θd
(εd + pd)

⎞
⎠

1
2

2
. (A I-2)

1.1 Concavity with respect to cd

Set X = ζ2CM
X −σcd and Y =

(
(ζ2CM

X −σcd)
2 +4 σ

θd
(εd + pd)

)
. Hence γ̄ =

1

2
(X +Y

1
2 ) and:

∂π
∂cd

=
2NC(εd + p)

θd
× (X +Y

1
2 )− cd(σ +σXY

−1
2 )⎛

⎝cd(X +Y
1
2 )

⎞
⎠2

, (A I-3)

∂ 2π
∂c2

d
=

2NC(εd + p)

θd((X +Y
1
2 )cd)3

×
⎡
⎣(−σcd−σcdXY

−1
2 − (σ +σXY

−1
2 )− (σX)2Y

−1
3

)
×

((X +Y
1
2 )cd)−

(
(X +Y

1
2 )− cdσ(1+XY

−1
2 )
)
×

2
(

X +Y
1
2 − cdσ(1+XY

−1
2 )
)⎤⎦. (A I-4)
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The only positive term in the numerator of above equation is 2σcd(2X +X2Y
−1
2 +Y

1
2 ) which

is smaller than negative parts. Hence the objective function is always concave for all cd > 0.

1.2 Concavity with respect to pd

Set X and Y the same amount of above equations, we have:

∂π
∂ pd

= NC

⎛
⎝1− 2

cd

(εd +2pd)(X +Y
1
2 )− 2σ pd(εd+pd)

θd
Y
−1
2

(X +Y
1
2 )2

⎞
⎠ , (A I-5)

∂ 2π
∂ p2

d
=

2NC

cd(X +Y
1
2 )2
×
⎡
⎣−2(X +Y

1
2 )−4

σ
θd

pd(εd + pd)Y
−3
2

−
(

2σ
θd

)2
pd(εd + pd)Y−1

X +Y
1
2

+
σ
θd

(εd +2pd)Y
−1
2

⎤
⎦. (A I-6)

The positive part σ
θd
(εd +2pd)Y

−1
2 can be written as the sum of 2σ

θd
(εd + pd)Y

−1
2 and a negative

excess. Setting the equivalent 2σ
θd
(εd + pd) =

1
2(Y −X2) we have:

∂ 2π
∂ p2

d
=

2NC

cd(X +Y
1
2 )2
×
⎡
⎣−2(X +Y

1
2 )+

1

2
(Y −X2)Y

−1
2 − . . .

⎤
⎦. (A I-7)

Considering the values of X and Y , the above equation is clearly negative for all values of pd

and concavity is proved.
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PROOFS OF THE PROPOSITIONS IN CHAPTER 2

1. Proof of Theorem 1

Since the possible actions, Pi, for each provider form a compact and convex set and the profit

function is continuous over pi, all we need is proving the quasi-concavity of the profit function

over pi. If pi = αi, then the profit will be −ci(Gi). For the large value of pi = Gi K the usage

will be zero (based on (2.8)) and again the profit goes toward −ci(Gi). Hence, there are two

possible types of providers when pi ∈ [αi,Gi K]:

Type 1) Providers that cannot attract any user. Hence, their only strategy in a competitive

market is choosing pi = αi and their profit is always −ci(Gi).

Type 2) The providers for which pi ∈ [αi,Gi K] leads to a positive number of new registered

users, e.g., Ii = [s1i,s2i], and pi = αi + ε , ε → 0, leads to an increase in the provider profit

that becomes greater than−ci(Gi). Now with increasing price pi, the user set remains constant

or reduced, but the profit is increased until a price level (denoted by pM
i ) in which increasing

the price by the provider, causes no change or a reduction in the provider profit. Price levels

higher than pM
i lead to continuous decrease on provider profit (due to smaller user-set and

lower maximum usage level). With the help of the πi continuity, we can conclude that the

profit functions of these providers are concave or quasi-concave. Hence, for the providers who

are involved in the game and their actions can make a change in their profit, the profit functions

are concave or quasi-concave and the game has a pure strategy Nash equilibrium.

2. Proof of Theorem 2

We first prove the sufficiency.
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a. The first derivative of the payoff with respect to the usage d leads to :

∂U j
C(d)

∂d
=

K (∑|C|i=1 Gi s j
i )

1+K d
− ∑|C|i=1 pi Gi

∑|C|i=1 Gi

, (A II-1)

which is a decreasing function of d and confirms the first property.

b. The second property can be readily achieved by using the same price and speed for all

providers.

c. The payment to the Provider k in MPP is pk Gk

∑|C|i=1 Gi
d which is the proportion of the coverage

area of provider k to the sum of all coverage area sizes of all the providers in the coalition

and this is consistent with Property 3.

To complete the proof, it must be shown that the three properties also lead to the same

payoff function. In what follows, we prove the case for coalitions with 2 providers. The

proof for coalitions of 3 or more providers can be constructed by following the same.

When a user selects the service powered by a two-provider coalition, the probability of

utilizing Network 1 is G1 and respectively G2 for Network 2. If the user is under the

coverage of Network 1, then by consuming a relatively small amount such as Δd, it gets

the utility amount s1
KΔd

1+KΔd and pays p1Δd for it. However, the payment has a conditional

probability, that means the user is charged under price p1 if it uses network 1 rather than

network 2 and vice versa. Hence, the probability of being charged under price p1 (if user

already consumed the amount Δd) is G1
G1+G2

. Combining the three properties, we have the

following expected payoff:

UC(Δd) =G1 (s1

KΔd

1+KΔd
)+G2 (s2

KΔd

1+KΔd
)−

G1

G1 +G2
p1Δd−

G2

G1 +G2
p2Δd.

(A II-2)

Now, suppose that the same user wants to consume an additional amount of Δd, here

every element of (A II-2) remains the same except for the gained utility. Based on the

first property which is the law of diminishing marginal utility, the marginal utility of user
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decreases by more consumption, which means the subscriber is most satisfied with the

first amount of data usage and so forth. Hence, the user gains si
KΔd

1+2KΔd instead of si
KΔd

1+KΔd

and we have the conditional payoff:

UC(2Δd|Δd) =G1(s1

KΔd

1+2KΔd
)+G2(s2

KΔd

1+2KΔd
)−

G1

G1 +G2
p1Δd−

G2

G1 +G2
p2Δd.

The overall payoff is the accumulation of all small payoffs. By setting the desired overall

usage d as the final consuming amount and letting Δd→ 0, the summation ∑
[ d

Δd ]
i=1 UC(iΔd|(i−

1)Δd) becomes an integral which leads to (2.39).

3. Proof of proposition 3

The proof is similar to the one that is given for Proposition 2.4 in (Bloch, 1996). Let the

profit of provider i in each period be multiplied by a period discount factor, 0 < σ < 1, which

is inversely proportional to the churn rate (lower churn rates lead to the higher values of σ ).

Hence, the profit of the provider i in the period n is: πn
i = σn πi, where πi is the profit at the first

period. Let indicate the sequential coalition game by Seq and the new game (with the discount

factor) be Seqσ . The game Seqσ is an infinite horizon game with continuity at infinity, which

means with infinite repetition of coalition offers (negotiation sequences), the gained payoff in

the higher periods becomes less important (due to the discount factor of profits). For such a

game the one stage deviation principle always holds, that is, if γ is a sub-game perfect strategy

and hn is the history of game until period n, then there is no other sequential strategy like γ̂i and

history hn̄ in which γ̂i has the same actions as γi except in one period, and γ̂i is a better response

to γ−i conditional reaching the same history hn̄. Hence, by applying this principle, the SPE can

be found. We refer the readers to the Theorem 4.2 of (Fudenberg & Tirole, 1991) for the proof

of “one stage deviation principle".





APPENDIX III

PROOFS OF THE PROPOSITIONS IN CHAPTER 3

1. Proof of Proposition 5

Comparing types e and r contents, if Type e content belongs to Type III category of applica-

tions, we have limd→0 Ie(d) > Ir(d). For d → 0 ( p < max(βe,βr)), the data usage for each

content type i and user j is indicated by
α j

i βi
p − 1. With this condition, there are two types of

users; firstly, the group of users with αeβe > αrβr who prefer the application Type e over r

and the group with αeβe < αrβr. As stated above, to have content e as a Type III application,

when d→ 0, the overall usage of the first group should be greater than the second group, which

means at near zero usage, the number of users in favor of content e should be greater than the

other group, that is:

∫ 1

αe=0

∫ βeαe
βr

αr=0
f (αr) f (αe)dαrdαe >

∫ 1

αr=0

∫ βrαr
βe

αe=0
f (αe) f (αr)dαedαr →

βe

βr
>

βr

βe
→ β 2

e > β 2
r , (A III-1)

since both values are positive, the above inequality gives βe > βr.

2. Proof of Proposition 6

We must prove the concavity of the profit function for De ≥ 1. The profit of SP in moderate

price regime has a quadratic form with first and second derivatives as follows:

πSP
m (γSP = 0, p) = NT

⎛
⎜⎝ p2

2

⎛
⎝ 1

βr
− 1

βe

(
(1+De)

2−1
)⎞⎠+(De−1)p+

βr

2

⎞
⎟⎠,
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∂πSP
m (γSP = 0, p)

∂ p
= NT

⎛
⎜⎝p

⎛
⎝ 1

βr
− 1

βe

(
(1+De)

2−1
)⎞⎠+(De−1)

⎞
⎟⎠, (A III-2)

∂ 2πSP
m (γSP = 0, p)

∂ p2
= NT

⎛
⎜⎝
⎛
⎝ 1

βr
− 1

βe

(
De(De +2)

)⎞⎟⎠. (A III-3)

The first derivative has one extreme point at p = βeβr(De−1)
βr((1+De)2−1)−βe

. To have this point as a global

maximum, we can prove that for De ≥ 1, the extreme point is always positive and the second

derivative in (A III-3) is always negative:

NT

⎛
⎜⎝
⎛
⎝ 1

βr
− 1

βe

(
De(De +2)

)⎞⎟⎠< 0→

βr >
βe

De(De +2)
(A III-4)

which is always true, since the threshold order is βr >
βe

De+1 . The above inequality also proves

that the denominator of extreme point is always positive. Since De ≥ 1, we have a positive

extreme point with negative second derivative. Hence the extreme point is a global maximum

for all De ≥ 1, otherwise, for all De < 1 the extreme point is negative and the maximum of

profit function occurs at the lower limit of price
βr

Dr+1 ·

3. Proof of Proposition 7

First we show the optimum value of pCP and then prove the boundary value of ζ . By tak-

ing the equations πSP(γSP = 0) from (3.10), πSP(γSP = 1) from (3.11), πCP(γCP = 0) from

(3.22), πCP(γCP = 0) from (3.23), and putting into the NBS objective function (3.26), we

achieve (A III-5). Based on the feasibility condition of (3.24) both parts of (A III-5) are al-

ways positive. The first derivative of objective function in (A III-6) has one extreme point in

pCP
b = ζ η− (ζ (η+po)−po)

∫ 1
αe=0 de(αe,po)dαe
De

. The second derivative of objective function with re-
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spect to pCP is given by (A III-7) and is always negative. Hence the extreme point is a global

maximum. For the lower and upper limits of ζ , we just check the given global maximum

pCP
b with ε1(pCP

b ) > 0 and ε2(pCP
b ) > 0 in (A III-5). This gives us the boundary condition

po(De−
∫ 1

αe=0 de(αe,po)dαe)

ηDe−(η+po)
∫ 1

αe=0 de(αe,po)dαe
≤ ζ ≤ 1 for the relative bargaining power of SP.

f (pCP) = N2
T

(
πCP(γCP = 1, pCP)−πCP(γCP = 0)

)ζ

×
(

πSP(γSP = 1, po)−πSP(γSP = 0, po)
)1−ζ

= N2
T

(
De(η− pCP)−η

∫ 1

αe=0
de(αe, po)dαe)

)ζ

︸ ︷︷ ︸
ε1(pCP)ζ

×
(

De pCP− po
∫ 1

αe=0
de(αe, po)dαe

)1−ζ

︸ ︷︷ ︸
ε2(pCP)1−ζ

, (A III-5)

∂ f (pCP)

∂ pCP = N2
T Deεζ

1 × ε−ζ
2 × (−ζ ε−1

1 ε2 +1−ζ
)
, (A III-6)

∂ 2 f (pCP)

∂ (pCP)2
=−N2

T D2
eζ (1−ζ )εζ

1 × ε−ζ
2 × (ε−2

1 ε2 +2ε−1
1 + ε−1

2

)
. (A III-7)

4. Proof of Proposition 8

Considering the content Type e, we have the total profit of SFC program as v(12) = v(SPCP) =

ηDe. Taking Shapely value of (3.29) and substituting the profit of content Type e from πSP(γSP =

0) (3.10) for v(1) and πCP(γCP = 0) of (3.22) for v(2), we have the following profit share for
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CP and SP:

ΦSP =
NT

2

⎛
⎜⎝η
(

De +
∫ 1

αe=0
de(αe, po)dαe

)
− po

∫ 1

αe=0
de(αe, po)dαe

⎞
⎟⎠, (A III-8)

ΦCP =
NT

2

⎛
⎜⎝η
(

De−
∫ 1

αe=0
de(αe, po)dαe

)
+ po

∫ 1

αe=0
de(αe, po)dαe

⎞
⎟⎠, (A III-9)

since ΦSP is defined as the side-payment from CP to SP, we can achieve pCP as:

pCP =
ΦSP

NT De
=

1

2

⎛
⎜⎝η +

(η− po)
(∫ 1

αe=0 de(αe, po)dαe

)
De

⎞
⎟⎠, (A III-10)

which is the NBS price in (3.27) with ζ = 1
2
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