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ABSTRACT 

 

Contribution 1: Initial design of a semantic metadata enrichment ecosystem (SMESE) for 
Digital Libraries 

The Semantic Metadata Enrichments Software Ecosystem (SMESE V1) for Digital Libraries 

(DLs) proposed in this paper implements a Software Product Line Engineering (SPLE) process 

using a metadata-based software architecture approach. It integrates a components-based 

ecosystem, including metadata harvesting, text and data mining and machine learning models. 

SMESE V1 is based on a generic model for standardizing meta-entity metadata and a mapping 

ontology to support the harvesting of various types of documents and their metadata from the 

web, databases and linked open data. SMESE V1 supports a dynamic metadata-based 

configuration model using multiple thesauri.  

The proposed model defines rules-based crosswalks that create pathways to different sources 

of data and metadata. Each pathway checks the metadata source structure and performs data 

and metadata harvesting. SMESE V1 proposes a metadata model in six categories of metadata 

instead of the four currently proposed in the literature for DLs; this makes it possible to 

describe content by defined entity, thus increasing usability. In addition, to tackle the issue of 

varying degrees of depth, the proposed metadata model describes the most elementary aspects 

of a harvested entity. A mapping ontology model has been prototyped in SMESE V1 to identify 

specific text segments based on thesauri in order to enrich content metadata with topics and 

emotions; this mapping ontology also allows interoperability between existing metadata 

models. 
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Contribution 2: Metadata enrichments ecosystem based on topics and interests  

The second contribution extends the original SMESE V1 proposed in Contribution 1. 

Contribution 2 proposes a set of topic- and interest-based content semantic enrichments. The 

improved prototype, SMESE V3 (see following figure), uses text analysis approaches for 

sentiment and emotion detection and provides machine learning models to create a 

semantically enriched repository, thus enabling topic- and interest-based search and discovery. 

SMESE V3 has been designed to find short descriptions in terms of topics, sentiments and 

emotions. It allows efficient processing of large collections while keeping the semantic and 

statistical relationships that are useful for tasks such as:  

1. topic detection,  

2. contents classification,  

3. novelty detection,  

4. text summarization, 

5. similarity detection. 

 

 
SMESE V3 – Semantic Metadata Enrichments Software Ecosystem for Digital Libraries 



IX 

Contribution 3: Metadata-based scientific assisted literature review  

The third contribution proposes an assisted literature review (ALR) prototype, STELLAR V1 

(Semantic Topics Ecosystem Learning-based Literature Assisted Review), based on machine 

learning models and a semantic metadata ecosystem. Its purpose is to identify, rank and 

recommend relevant papers for a literature review (LR). This third prototype can assist 

researchers, in an iterative process, in finding, evaluating and annotating relevant papers 

harvested from different sources and input into the SMESE V3 platform, available at any time. 

The key elements and concepts of this prototype are: 

1. text and data mining, 

2. machine learning models, 

3. classification models, 

4. researchers annotations, 

5. semantically enriched metadata. 

STELLAR V1 helps the researcher to build a list of relevant papers according to a selection of 

metadata related to the subject of the ALR. The following figure presents the model, the related 

machine learning models and the metadata ecosystem used to assist the researcher in the task 

of producing an ALR on a specific topic. 
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STELLAR V1 – Semantic Topics Ecosystem Learning-based Literature Assisted Review 
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RÉSUMÉ 

 

Contribution 1 : Un écosystème d’enrichissements sémantiques des métadonnées (SMESE) 
pour des bibliothèques digitales 

L'écosystème de logiciels d'enrichissements de métadonnées sémantiques (SMESE V1) 

proposé dans ce travail de recherche a implémenté une approche d’ingénierie de ligne de 

produits logiciels (SPLE) utilisant une architecture logicielle basée sur les métadonnées. Cet 

écosystème est basé sur le moissonnage de métadonnées, l'exploration de textes et de données 

et les modèles d'apprentissage automatique. SMESE V1 est basé sur un modèle générique de 

normalisation d'entités, de métadonnées et d'ontologies croisées capables de supporter le 

moissonnage de tout type de documents et de leurs métadonnées à partir du Web structuré et 

du Web non structuré ainsi que des données ouvertes et liées. Le design de SMESE V1 inclue 

un modèle de reconfiguration dynamique basé sur les métadonnées et sur plusieurs thésaurus 

par domaine d’application. 

Le modèle proposé définit des règles de traduction ou de moissonnage qui créent des interfaces 

vers différentes sources de données et métadonnées. Chaque interface vérifie la structure de la 

source de métadonnées, puis effectue le moissonnage des données et des métadonnées. SMESE 

V1 propose un modèle de métadonnées avec six catégories de métadonnées au lieu des quatre 

utilisées actuellement dans la littérature afférente aux bibliothèques digitales. Ce modèle 

permet de mieux décrire les contenus afin d’accroitre leur utilisabilité. En plus, afin de résoudre 

la question des degrés de profondeur des métadonnées, le modèle de métadonnées proposé 

décrit les aspects les plus élémentaires d'une entité moissonnée correspondant à une structure 

de données. SMESE V1 inclue un modèle de mise en correspondance ontologique qui permet 

d’identifier des segments de texte spécifiques en utilisant des thésaurus pour enrichir les 

contenus de nouvelles métadonnées reliées à l’identification des sujets et des émotions. Ce 
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modèle de mise en correspondance ontologique permet également l'interopérabilité entre les 

modèles de métadonnées existants. 

Contribution 2 : Un écosystème d’enrichissements métadonnées basé sur les sujets et intérêts 

La contribution 2 présente une mise en œuvre améliorée de la version originale de SMESE V1, 

proposé dans la contribution 1 ; en effet, la contribution 2 propose des enrichissements de 

contenu basés sur les sujets et les intérêts. Ce prototype amélioré SMESE V3 (voir figure 1) 

utilise des approches d'analyse de texte pour la détection des sentiments et des émotions. Il 

crée un référentiel sémantique enrichi de métadonnées qui permettent la recherche et la 

découverte basées sur les intérêts. Il a été conçu pour trouver de courtes descriptions, en termes 

de sujets, de sentiments et d'émotions. Il permet un traitement efficace de grandes collections 

de données tout en préservant les relations sémantiques et statistiques utiles pour des tâches 

telles que : 

1. détection de sujets, 

2. classification de contenus, 

3. détection de nouveautés, 

4. synthèse de textes, 

5. détection de similitude. 
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SMESE V3 – Écosystèmes logiciel d’enrichissements sémantiques des métadonnées pour 

bibliothèques 

Contribution 3 : Une revue de littérature scientifique assistée 

La contribution 3 propose un prototype (STELLAR V1- Semantic Topics Ecosystem Learning-

based Literature Assisted Review V1) qui permet d’assister les chercheurs dans leurs processus 

de préparation d’une revue de littérature. Ce prototype de revue de littérature assistée est basé 

sur un écosystème de métadonnées sémantiques. Il permet d’identifier, d’évaluer et de 

recommander les articles scientifiques pertinents pour une revue de littérature. Le troisième 

prototype, STELLAR V1, permet itérativement de trouver, d'évaluer et d'annoter les articles 

pertinents disponibles dans la plateforme SMESE à tout moment. Les éléments et concepts 

clés utilisés par le prototype STELLAR V1 sont : 

1. l’exploration de textes et des données, 

2. les modèles d'apprentissage automatique, 

3. les modèles de classification,  

4. les articles annotés des chercheurs, 

5. les métadonnées enrichies sémantiquement.  
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Ce prototype aide à identifier et à recommander les articles pertinents et leur classement lié à 

un sujet spécifique selon la sélection des chercheurs. La figure suivante présente le modèle, les 

processus associés et l'écosystème des métadonnées pour aider le chercheur dans la tâche de 

produire une revue de littérature reliée à un sujet spécifique. 

 
STELLAR V1 – Écosystème sémantique d’apprentissage et d’assistance à la création de 

revues de littérature 

Mot clés : Bibliothèque numérique, détection des émotions, revue de la littérature, 

enrichissement de la revue de la littérature, modèles d’apprentissage automatique, 

enrichissement des métadonnées, enrichissement des métadonnées sémantiques, analyse des 

sentiments, ingénierie des lignes de produits logiciels. 
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INTRODUCTION 

 

With more and more content, data and metadata available, understanding how users search, 

catalogue, rank, identify and summarize content relevant to their interests or emotions is 

challenging. To solve this puzzle, the semantic web approach has been explored. Indeed, there 

is growing research on interaction paradigms investigating how users—library users or 

researchers, for example—may benefit from the expressive power of the semantic web 

(Jeremić, Jovanović, & Gašević, 2013; Khriyenko & Nagy, 2011; Lécué et al., 2014; Ngan & 

Kanagasabai, 2013; Rettinger, Losch, Tresp, D'Amato, & Fanizzi, 2012). The semantic web 

may be defined as the transformation of the World Wide Web to a database of linked resources, 

where data is widely reused and shared (Lacasta, Nogueras-Iso, Falquet, Teller, & Zarazaga-

Soria, 2013). 

Notice that, in order to make information accessible, libraries perform several activities; one 

of the most fundamental is cataloguing. And in the new digital era, there is a common need, in 

particular for digital libraries (DLs), to be able to: 

1. automate the identification and aggregation of metadata, 

2. assist in the cataloguing and enrichment of content metadata. 

Currently, rich information within text can be utilized to reveal meaningful semantic metadata, 

such as topics, sentiments, emotions and semantic relationships. The human brain has an 

inherent ability to identify topics, emotions and sentiments in written or spoken language. 

However, the Internet, social media and content repositories have expanded the number of 

sources, the volume of information and the number of relationships so drastically that it has 

become difficult for people to process all this information.  It is therefore important to have 

high-speed computers with algorithms that can search the growing myriad of data and metadata 

available and extract, enrich, curate and recommend meaningful semantic metadata associated 

with content or events. 

While computer search engines struggle to understand the meaning of natural language, 

semantically enriching metadata may improve those capabilities. Although there may be no 

relationship between the individual words of a topic or sentiment, domain thesauri do express 
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associative relationships between words, ontologies, entities, metadata represented as triplets.  

Finding bibliographic references or semantic relationships in texts makes it possible to localize 

specific text segments using text data mining (TDM) and machine learning models (MLM) to 

enrich a set of semantic metadata. 

Today, semantic web technologies, for example in DLs, offer a new level of flexibility, 

interoperability and a way to enhance peer communications and knowledge sharing by 

expanding the usefulness of the DL for searching and discovering content. 

Unfortunately, to take advantage of the power of the semantic web, the poor quality of the 

metadata in many digital collections needs to be addressed. In the public domain there is a 

scarcity of search engines that follow a semantic approach to collection search and browse 

(Ngan & Kanagasabai, 2013).  

To address these research issues, this thesis proposes a multiplatform architecture, called 

Semantic Metadata Enrichment Software Ecosystem (SMESE), that defines a meta-entity 

model and a meta-metadata model for all library materials or events in North America or 

Europe. SMESE is also designed to be interoperable with existing tools that use standard and 

non-universal models such as MAchine Readable Cataloguing (MARC), Dublin Core (DC), 

UNIversal MARC (UNIMARC), MARC21, Resource Description Framework/Resource 

Description and Access (RDF/RDA) and Bibliographic Framework (BIBFRAME). 

In the meantime, the software industry has evolved to multiplatform development (including 

mobile phones, tablets, big screens, virtual reality (VR) and watches) based on a mix of 

proprietary and open-source components using heterogeneous metadata. These metadata are 

not always structured and organized, even though they are key to increasing the capabilities of 

search or discover engines. Metadata integration has emerged in software ecosystems through 

the software product line engineering (SPLE) process. However, metadata and enriched 

metadata are underused in the SPLE, as well as in systems interoperability, content 

enrichments and literature reviews. 

Even when the metadata are well structured and universal, finding relevant content remains a 
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major challenge in the context of DLs; the availability of millions of content items, and millions 

upon millions of relationships to linked content from a growing multitude of sources (e.g., 

online media, social media, serial publications), makes it difficult for users to find content with 

a specific feature not mentioned by the content's known metadata. For example, the growing 

availability of a multitude of documents makes it challenging for a user to find those that are 

relevant to a specific need, interest or emotion. To meet this need, it becomes necessary to 

extract hidden metadata and to find relationships to other content, persons or events; this 

process is called entity metadata enrichment (EME). Several EME approaches have been 

proposed, most of them making use of term frequency–inverse document frequency (TF-IDF) 

(Niu, Zhu, Pang, & El Saddik, 2016; Salton & Buckley, 1988). This thesis focuses on sentiment 

analysis (SA) and semantic topic detection (STD) as an EME sub-domain.  

Another research objective for the SMESE platform is to increase the findability of entities 

matching user interest using external references or relationships and internal (text-based) 

semantic metadata enrichment algorithms. 

EME is also relevant to the domain of scientific research content; for example, it can define 

the metadata about an author's research results measurement or the relevance of a journal or 

paper for a specific topic. Online access to research papers plays a primordial role in the 

dissemination of research results through conferences and journals or through new channels 

such as social media. This access, combined with the evolving nature of research, creates a 

need to facilitate and assist researchers in the iterative process of building a Literature Review 

(LR) using semantic metadata. An LR is an objective, organized summary of published 

research relevant to the topic or area under consideration. Boote and Beile (Boote & Beile, 

2005) wrote:   

"Doctoral students seeking advice on how to improve their literature 
reviews will find little published guidance worth heeding. Most 
graduate students receive little or no formal training in how to analyze 
and synthesize the research literature in their field, and they are unlikely 
to find it elsewhere"(Boote & Beile, 2005). 

The field of EME that allows the ranking of scientific documents (e.g., journal papers and 

conference papers) is referred to as scientometrics or bibliometrics (Beel et al., 2013; 
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Bornmann, Stefaner, Anegón, & Mutz, 2014, 2015; Cataldi, Di Caro, & Schifanella, 2016; 

Dong, Johnson, & Chawla, 2016; Franceschini, Maisano, & Mastrogiacomo, 2015; Hasson, 

Lu, & Hassoon, 2014; Madani & Weber, 2016; Marx & Bornmann, 2016; MASIC & BEGIC, 

2016; Packalen & Bhattacharya, 2015; Rúbio & Gulo, 2016; Wan & Liu, 2014; S. Wang et al., 

2014; M. Zhang, Zhang, & Hu, 2015).  

The literature in scientometrics also uses the following terms: 

1. Journal-level metrics for publisher classification, including: 

a. Impact Factor (IF), 

b. Eigenfactor, 

c. SCImago Journal Rank, 

d. h5 index. 

2. Author-level metrics for author productivity and impact measurement, including: 

a. H-index, 

b. I-10 index, 

c. G-index. 

A problem with manual LR production is that it is very labor-intensive; the time researchers 

spend searching for and analyzing relevant literature will vary according to the subject of their 

research. Gall et al. (Gall, Borg, & Gall, 1996) estimate that a decent literature review for a 

dissertation will take between three and six months to complete. Keyword-based search is not 

enough to address the ambiguities of an LR. Semantic metadata, which can be extracted using 

text mining algorithms, allow more accurate searching and may yield better results. 

The researcher has to stay aware of new related subjects and/or any relevant new articles to 

produce a valid LR. An LR is not simply a summary of what existing documents report about 

a particular topic. It has to provide an analytical overview of the significant literature published 

on the topic and all semantically related content. In ((Carlos & Thiago, 2015; Gulo, Rubio, 

Tabassum, & Prado, 2015), the authors mention that an ideal literature search would retrieve 

most or all relevant papers for inclusion and exclude all irrelevant papers. The sources and 

references have to be current and relevant, cited and formatted appropriately according to 

discipline and journal. 
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Overall, the existing research contributions in scientometrics have a number of limitations 

since they consider only publication count, citation count or their derivatives to measure the 

impact of a paper. 

EME may be performed manually; the human brain has an inherent ability to detect topics, 

emotions, relationships and sentiments in written or spoken language, and is able to summarize 

various types of texts, detect content relevant to a specific topic and produce an LR. However, 

the Internet, social media and repositories have expanded the volume of information and the 

number of relationships so fast that it has become difficult to process all this information 

manually (Appel, Chiclana, Carter, & Fujita, 2016); hence the emergence of research on text 

and data mining as a way to automatically extract hidden metadata from content.  

Considering these research issues in EME and the limitations of existing works, this thesis 

proposes new approaches that could contribute to the development of improved solutions. 

The thesis consists of three technical reports corresponding to each of the three contributions:  

1. A Semantic Metadata Enrichment Software Ecosystem (SMESE) Based on a 

Multiplatform Metadata Model for DLs; 

2. A Semantic Metadata Software Ecosystem Based on Sentiment and Emotion Analysis 

Enrichment; 

3. An Assisted Literature Review using Machine Learning Models to Build a Literature 

Corpus and to Recommend References using their Related Radius from this Corpus. 

This thesis presents complementary information that links the three technical reports and 

contributions along with their prototypes and algorithms, and that also facilitates an 

understanding of the research approach as a whole. 

The key contributions of this research have been documented in the following technical reports 

are presented in the Appendices I, II and III: 

1. Ronald Brisebois, Alain Abran and Apollinaire Nadembega. A Semantic Metadata 

Enrichment Software Ecosystem (SMESE) based on a Multiplatform Metadata Model 

for Digital Libraries, (Appendix I); 
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2. Ronald Brisebois, Alain Abran, Apollinaire Nadembega, and Philippe N’techobo. A 

Semantic Metadata Enrichment Software Ecosystem Based on Sentiment Analysis 

Enrichment (SMESE V3), (Appendix II); 

3. Ronald Brisebois, Alain Abran, Apollinaire Nadembega, and Philippe N’techobo. An 

Assisted Literature Review using Machine Learning Models to Build a Literature 

Corpus and to Recommend References using their Related Radius from this Corpus, 

(Appendix III); 

4. Ronald Brisebois, Apollinaire Nadembega and Alain Abran. Real Time Software 

Energy Consumption Measurement in the Context of Green Software, MeGSuS, 

Krakow, Poland, 05–07 October 2015. 

This thesis is organized as follows: 

1. CHAPTER 1 provides a literature review on the current challenges in semantic 

metadata enrichment in terms of DL software ecosystems, semantic topic detection, 

sentiment and emotion analysis, scientific document ranking, scientific document text 

summarization and assisted literature reviews; 

2. CHAPTER 2 provides an overview of the key findings and contributions of the thesis; 

3. The CONCLUSION summarizes the research conducted and the research findings, 

including the prototypes, and proposes new avenues for future work.  

The actual journal submissions are included as appendix. 



 

CHAPTER 1 
 
 

LITERATURE REVIEWS 

This chapter presents a literature review on the main topics of this thesis. First, it describes the 

modeling of software ecosystems for DLs.  Metadata enrichment approaches are then analyzed 

in terms of, first, text-based sentiment and emotion detection, and, secondly, Assisted 

Literature Reviews (ALRs) and Assisted Literature Review Objects (ALROs). 

1.1 Software ecosystem model for DLs 

With the proliferation of content and events in today’s DL, understanding how users search 

and discover content has become a challenge; to tackle this challenge, DL software providers 

make use of metadata as content selection filters. A definition of a software ecosystem (SECO) 

based on the semantic analysis of data has been proposed in the literature (Christensen, Hansen, 

Kyng, & Manikas, 2014; Manikas & Hansen, 2013; Shinozaki, Yamamoto, & Tsuruta, 2015). 

Another definition from (Christensen et al., 2014; Manikas & Hansen, 2013) is the interaction 

of a set of actors on top of a common technological platform providing a number of software 

solutions or services.  

There is growing agreement in the literature for the general characteristics of SECOs, 

including: 

1. common technological platform enabling outside contributions,  

2. variability-enabled architecture,  

3. tool support for product derivation, as well as development processes, 

4. business models involving internal and external actors (Gawer & Cusumano, 2014).  

(Lettner, Angerer, Prahofer, & Grunbacher, 2014) identified ten SECO characteristics that 

focus on technical processes for development and evolution – see Table 1.1. However, for DLs, 

some additional characteristics should be taken into account, such as: 

1. social network and Internet of Things integration, 
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2. semantic metadata internal enrichments, 

3. semantic metadata external enrichments, 

4. user interest-based gateways. 

However, to allow SECOs to provide system adaptation capabilities, it is recommended that 

such adaptive characteristics be included within software product lines (SPLs) (Capilla, Bosch, 

Trinidad, Ruiz-Cortés, & Hinchey, 2014; Harman et al., 2014; Metzger & Pohl, 2014; Olyai 

& Rezaei, 2015).  

The SPL approach has been recommended to organizations building applications based on a 

common architecture and core assets (Andrés, Camacho, & Llana, 2013; Metzger & Pohl, 

2014). It is therefore highly suited to DLs. 

Table 1.1 SECO characteristics 
Taken from (Lettner et al., 2014) 

 

The literature  proposes a number of approaches for semantic metadata enrichment (Bontcheva, 

Kieniewicz, Andrews, & Wallis, 2015; Fileto, Bogorny, May, & Klein, 2015; Fileto, May, et 

al., 2015; Krueger, Thom, & Ertl, 2015; Kunze & Hecht, 2015); however, most authors have 

not focused on the enrichment model applied in the present study (Fileto, Bogorny, et al., 2015; 

Fileto, May, et al., 2015; Krueger et al., 2015; Kunze & Hecht, 2015). 

In conclusion, the main drawbacks of SECOs based on SPL and Component-Based Software 

Development (CBSD) for DLs are as follows: 
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1. SECO-based DL software does not offer a standard and interoperable metadata 

model; 

2. Many of the proposed SECO models do not include autonomous mechanisms to 

guide the self-adaptation of service compositions according to changes in the 

computing infrastructure; 

3. There is no SECO architecture that simultaneously takes into account multiple 

semantic enrichment aspects; 

4. Current metadata and entity enrichment models are limited to only one domain for 

their semantic enrichment process and therefore do not include multiple enriched 

metadata and entity models; 

5. Current metadata and entity enrichment models link only terms and DBpedia URI. 

1.2 Semantic metadata enrichments: Topics, sentiments and emotions 

With the availability of millions of multiform content items and the millions upon millions of 

relationships that connect them, finding relevant content for a specific user interest is becoming 

quite difficult.  

To tackle this challenge, semantic information retrieval (SIR) has been proposed; SIR is the 

science of searching semantically for information within databases, documents, texts, 

multimedia files, catalogues and the web. The current SIR approaches reduce each content 

item in the corpus to a vector of real numbers where each vector represents ratios of counts. 

Most approaches make use of TF-IDF (Niu et al., 2016; Salton & Buckley, 1988). In the TF-

IDF scheme, a basic vocabulary of “words” or “terms” is chosen, then for each document in 

the corpus, a frequency count is calculated from the number of occurrences of each word. This 

yields a term-by-document matrix X whose columns contain the TF-IDF values for each of the 

documents in the corpus; in other words, the TF-IDF scheme reduces documents of arbitrary 

length to fixed-length lists of numbers. 

Table 1.2 compares the most common SIR text mining tools in terms of functions: keyword 

extraction, classification, sentiment and emotion analysis and concept extraction. 
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Table 1.2 SIR models and their characteristics 

 

The rest of this section presents the approaches of topic detection, sentiment and emotion 

analysis. 

1.2.1 Semantic topic detection 

Semantic topic detection (STD) within SIR helps users detect topics. It has attracted significant 

research in several communities in the last decade, including public opinion monitoring, 

decision support, emergency management and social media modeling (Hurtado, Agarwal, & 

Zhu, 2016; Sayyadi & Raschid, 2013).  

Some examples of these advances in STD are presented in (David M.  Blei, Ng, & Jordan, 

2003). A topic may be defined as a set of descriptive and collocated keywords/terms. 

Document clustering techniques have been adopted to cluster content-similar documents and 

extract keywords from clustered document sets as the representation of topics. The 

predominant method for topic detection is the latent Dirichlet allocation (LDA) (David M.  Blei 
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et al., 2003); LDA-based approaches assume a generating process for the documents. LDA has 

been proven powerful because of its ability to mine semantic information from text data.  

STD was designed for large and noisy data collections such as social media, and addresses 

both scalability and accuracy challenges. One challenge is to rapidly filter noisy and irrelevant 

documents, while at the same time accurately clustering and ordering a large collection. 

Several approaches are proposed in the literature for text-based topic detection:  

1. Short texts (Cigarrán, Castellanos, & García-Serrano, 2016; Cotelo, Cruz, Enríquez, & 

Troyano, 2016; Dang, Gao, & Zhou, 2016; Hashimoto, Kuboyama, & Chakraborty, 

2015) such as tweets or Facebook posts;  

2. Long texts (David M.  Blei et al., 2003; Bougiatiotis & Giannakopoulos, 2016; P. Chen, 

Zhang, Liu, Poon, & Chen, 2016; Salatino & Motta, 2016; Sayyadi & Raschid, 2013; 

C. Zhang, Wang, Cao, Wang, & Xu, 2016) such as books, papers or documents.  

In the context of this thesis, the focus is on long-text-based topic detection. (Bijalwan, Kumar, 

Kumari, & Pascual, 2014) conducted experiments on text and document mining; they 

concluded that k-nearest neighbors (KNN) provided better accuracy than naive Bayes and 

term-graph. The drawback of KNN is that it is quite slow. 

Recently, researchers have proposed topic detection approaches using a number of information 

extraction techniques (IETs), such as lexicon, sliding window and boundary. Many of these 

techniques (P. Chen et al., 2016; Salatino & Motta, 2016; Sayyadi & Raschid, 2013; C. Zhang 

et al., 2016) rely heavily on simple keyword extraction from text. 

One approach for topic detection, KeyGraph, was proposed in (Sayyadi & Raschid, 2013) and 

was inspired by the keyword co-occurrence graph and efficient graph analysis methods. 

KeyGraph is based on the similarity of keywords extracted from text. There are limitations to 

this approach, however, and it requires improvement in two respects:  

1. It underestimates the leverage of the semantic information derived from topic models;  
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2. It measures co-occurrence relations from an isolated term-term perspective: that is, the 

measurement is limited to the term itself and the information context is overlooked, 

which can make it impossible to measure latent co-occurrence relations. 

(Salatino & Motta, 2016) suggest that it is possible to forecast the emergence of novel research 

topics even at an early stage and to demonstrate that such an emergence can be anticipated by 

analyzing the dynamics of pre-existing topics. They present a method that integrates statistics 

and semantics for assessing the dynamics of a topic graph. Unfortunately, their approach is not 

fully semantic. 

(P. Chen et al., 2016) propose a novel method for hierarchical topic detection where topics are 

obtained by clustering documents in multiple ways. They use a class of graphical models called 

hierarchical latent tree models (HLTMs). However, their approach is not semantic and does 

not consider the domain knowledge of the analyzed text. 

(Hurtado et al., 2016) propose an approach that uses sentence-level association rule mining to 

discover topics from documents. Their method considers each sentence as a transaction and 

keywords within the sentence as items in the transaction. By exploring keywords (frequently 

co-occurring) as patterns, their method preserves contextual information in the topic mining 

process. Their approach is limited to keyword counting; the semantic aspect of these keywords 

is not taken into account. 

(C. Zhang et al., 2016) propose LDA-IG, an extension of KeyGraph (Sayyadi & Raschid, 

2013). It is a hybrid analysis approach integrating semantic relations and co-occurrence 

relations for topic detection. Specifically, their approach fuses multiple types of relations into 

a uniform term graph by combining idea discovery theory with a topic modeling method. These 

authors used a semantic relation extraction approach based on LDA that enriches the graph 

with semantic information. However, their approach does not include MLM, which would 

allow the framework itself to find new topics. 
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The Table 1.3 presents an overview of some recent and relevant studies on topic detection. It 

can be clearly observed that semantic aspect, topic correlation and machine learning techniques 

are not considered. 

Table 1.3 Overview of work on topic detection 

 

To sum up this literature review, the main drawbacks of existing approaches to topic detection 

are as follows: 

1. They are based on simple keyword extraction from text and lack semantic information 

that is important for understanding the document. To tackle this limitation, the present 

study has used semantic annotations to improve document comprehension time; 

2. Co-occurrence relations across the document are commonly neglected, which leads to 

incomplete detection of information. Current topic modeling methods do not explicitly 

consider word co-occurrences. Extending topic modeling to include co-occurrence can 

be a computational challenge. The graph analytical approach to this extension was only 

an approximation that merely took into account co-occurrence information while 

ignoring semantic information. How to combine semantic relations and co-occurrence 

relations to complement each other remains a challenge; 

3. Existing approaches focus on detecting prominent or distinct topics based on explicit 

semantic relations or frequent co-occurrence relations; as a result, they ignore latent 

co-occurrence relations. In other words, latent co-occurrence relations between two 

terms cannot be measured from an isolated term-term perspective. The context of the 

term needs to be taken into account; 

4. More importantly, even though existing approaches take into account semantic 

relations, they do not include machine learning to find new topics automatically; 
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5. The main conclusion is that most of the studies are limited to simulations using existing 

algorithms. None of them contribute improvements to help detect topics more 

accurately. 

1.2.2 Sentiment and emotion analysis 

Today, many websites offer reviews of items like books, events, music, or games. TV shows 

and movies where the products are described and evaluated as good/bad, liked/disliked. 

Unfortunately, such ratings do not help users make decisions according to their own interests. 

With the rapid spread of social media, it has become necessary to categorize these reviews in 

an automated way (Niu et al., 2016); that is the objective of sentiment and emotion analysis. 

These analyses establish the attitude of a given person with regard to sentences, paragraphs, 

chapters or documents.  

Note that sentiment and emotion analysis may be defined as a type of automatic classification 

represented by a facet. As such, there are different analysis techniques, such as keyword 

spotting, lexical affinity and statistical methods. However, the most commonly applied 

techniques belong either to the category of text classification supervised machine learning, 

which uses methods like naive Bayes, maximum entropy or support vector machine, or to the 

category of text classification unsupervised machine learning. 

In this section the concepts of emotion and sentiment are used together. Emotions are also 

associated with mood, temperament, personality, outlook and motivation (Li & Xu, 2014; 

Munezero, Montero, Sutinen, & Pajunen, 2014; Shivhare & Khethawat, 2012). Indeed, the 

concepts of emotion and sentiment have often been used interchangeably, mostly because both 

refer to experiences that result from combined biological, cognitive and social influences. 

According to (Balazs & Velásquez, 2016), the sentiment and emotion analysis process 

typically consists of a series of steps: 

1. corpus or data acquisition, 

2. text preprocessing, 
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3. opinion mining core process, 

4. aggregation and summarization of results, 

5. visualization. 

A number of algorithms or approaches are used in the literature to perform text mining in the 

sentiment and emotion analysis process based on the associated document’s classification:  

1. Latent Dirichlet allocation (LDA) (David M.  Blei et al., 2003),  

2. TF-IDF (Niu et al., 2016; Salton & Buckley, 1988),  

3. Latent Semantic Analysis (LSA) (Dumais, 2004),  

4. Formal concept analysis (FCA) (Cigarrán et al., 2016),  

5. Latent Tree Model (LTM) (P. Chen et al., 2016),  

6. Naive Bayes (NB) (Moraes, Valiati, & Gavião Neto, 2013),  

7. Support Vector Machine method (SVM) (Moraes et al., 2013),  

8. Artificial Neural Network (ANN) (Ghiassi, Skinner, & Zimbra, 2013).  

For example, Moraes et al. (Moraes et al., 2013) compare popular machine learning approaches 

(SVM and NB) with an ANN-based method for document-level sentiment classification. Their 

experimental results show that, for book datasets, SVM outperformed ANN when the number 

of terms exceeded 3,000. Although SVM required less training time, it needed more running 

time than ANN; indeed, for 3,000 terms, ANN required 15 sec training time (with negligible 

running time) while SVM training time was negligible (1.75 sec). As in (Moraes et al., 2013), 

S. Poria et al. (Poria, Cambria, Hussain, & Huang, 2015) experimented with existing 

approaches and showed that SVM is a better approach for text-based emotion detection. 

According to (Shivhare & Khethawat, 2012), there are three main techniques for sentiment 

analysis: 

1. Keyword spotting consists in developing a list of keywords—usually positive or 

negative adjectives—that relate to a certain sentiment. This technique classifies text by 

affect categories based on the presence of unambiguous affect words such as happy, 

sad, afraid and bored; 



16 

2. Lexical affinity assigns to arbitrary words a probabilistic ‘affinity’ for a particular 

emotion. The polarity of each word is determined using different unsupervised 

techniques. Next, it aggregates the word scores to obtain the polarity score of the text; 

3. Statistical/Learning based methods are supervised approaches, such as Bayesian 

inference and support vector machines, in which a labeled corpus is used to train a 

classification method that builds a classification model used for predicting the polarity 

of novel texts. By feeding a large training corpus of affectively annotated texts into a 

machine learning algorithm, it is possible for the system to not only learn the affective 

valence of affect keywords (as in the keyword spotting approach), but also to take into 

account the valence of other arbitrary keywords (like lexical affinity), punctuation and 

word co-occurrence frequencies. 

Sentiment and emotion analysis can be carried out at different levels of text granularity:  

1. document (Bosco, Patti, & Bolioli, 2013; Cho, Kim, Lee, & Lee, 2014; Kontopoulos, 

Berberidis, Dergiades, & Bassiliades, 2013; Lin, He, Everson, & Ruger, 2012; Moraes 

et al., 2013; Moreo, Romero, Castro, & Zurita, 2012),  

2. sentence (Abdul-Mageed, Diab, & Kübler, 2014; Appel et al., 2016; Desmet & Hoste, 

2013; Niu et al., 2016; Patel & Madia, 2016), 

3. phrase or clause (Tan, Na, Theng, & Chang, 2012),  

4. word (L. Chen, Qi, & Wang, 2012; Ghiassi et al., 2013; Quan & Ren, 2014). 

Most of the current text-based sentiment and emotion analysis approaches focus on 

‘optimistic’, ‘depressed’ and ‘irritated’, which are difficult to identify in the text due to the 

following challenges:  

1. ambiguity of keyword definitions, 

2. inability to recognize sentences without keyword, 

3. difficulty determining emotion indicators. 

A number of studies have proposed sentiment and emotion analysis techniques; for example, 

Cho et al. (Cho et al., 2014) propose a method to improve the positive vs. negative 

classification performance of product reviews by merging, removing and switching the entry 

words of the multiple sentiment dictionaries. However, their contribution is limited to 
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development of a novel method of removing and switching the content of the existing 

sentiment lexicons. 

Bao et al. (Bao et al., 2012) present an emotion-topic model, proposing to explore the 

connection between the evoked emotions of readers and news headlines by generating a word-

emotion mapping dictionary. For each word w in the corpus, it assigns a weight for each 

emotion e; i.e., P(e|w) is the averaged emotion score observed in each news headline H in 

which w appears. 

Lei et al. (Lei, Rao, Li, Quan, & Wenyin, 2014) adopt the lexicon-based approach in building 

the social emotion detection system for online news based on modules of document selection, 

part-of-speech (POS) tagging, and social emotion lexicon generation. Specifically, given the 

training set T and its feature set F, an emotion lexicon is generated as a V×E matrix where the 

(j,k) item in the matrix is the score (probability) of emotion ek conditioned on feature fj. 

Unfortunately, these authors do not explain how they extracted the features from the document. 

Anusha and Sandhya (Anusha & Sandhya, 2015) propose a system for text-based emotion 

detection which uses a combination of machine learning and natural language processing. 

Their approach recognizes affect in the form of six basic emotions proposed by Ekman; they 

made use of the Stanford CoreNLP toolkit to create the dependency tree based on word 

relationships. Next, they performed phrase selection using the rules on dependency 

relationships that gives priority to the semantic information for the classification of a 

sentence’s emotion. Their approach is based on the sentence. 

Cambria et al. (Cambria, Gastaldo, Bisio, & Zunino, 2015) explore how the high generalization 

performance, low computational complexity, and fast learning speed of extreme learning 

machines can be exploited to perform analogical reasoning in a vector space model of affective 

common-sense knowledge. After performing truncated singular value decomposition (TSVD) 

on AffectNet, they use the Frobenius norm to derive a new matrix. For the emotion 

categorization model, they use the Duchenne smile and the TSVD model. 



18 

Table 1.4 presents an overview of sentiment and emotion analysis studies organized by 

different approaches. 

Table 1.4 Overview of studies on sentiment and emotion analysis 

 

The work on sentiment and emotion analysis can be summarized as follows: 

1. Traditional SA methods mainly use terms along with their frequency and part of speech, 

as well as rules of opinions and sentiment shifters. Semantic information is ignored in 

term selection, and it is difficult to find complete rules; 

2. Most of the recent contributions are limited to SA elaborated in terms of positive or 

negative opinion and do not include analysis of emotion; 

3. Existing approaches do not allow human input, which would improve accuracy; 

4. Existing approaches do not combine sentiment and emotion analysis; 

5. Lexicon- and ontology-based approaches provide good accuracy for text-based 

sentiment and emotion analysis when applying SVM techniques. In the present 

approach, it is more interesting to take the entire collection into account when 

identifying the sentiment and emotion of a book. For example, assuming that book A 

has 90% fear and 80% sadness while book B has 40% fear as its predominant emotion, 

can it be said that fear is the emotion of book B as well as book A?  

6. Existing approaches do not take document collections into account. In terms of 

granularity, most approaches are sentence-based; 

7. Existing approaches do not take sentence context into account and consequently risk 

losing the real emotion. 

As a general conclusion to the literature review on topic detection, sentiment and emotion 

analysis, 95% of studies have focused on document features (e.g., sentence length, capitalized 
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words, document title, term frequency and sentence position) to perform text mining and have 

generally made use of existing algorithms or approaches (e.g., LDA, TF-IDF, LSA, TextRank, 

PageRank, LexRank, SVM, NB and ANN) based on features associated with the documents. 

1.3 Semantic metadata enrichments based on assisted literature review objects 
(ALROs) 

This sub-section presents several facets about assisted literature review that should be 

addressed: 

1. scientific paper ranking, 

2. text and data mining, and more specifically: 

a. automatic text summarization (ATS), 

b. scientific paper summarization, 

3. automatic multi-document summarization for a literature review. 

1.3.1 Scientific paper ranking 

Researchers and other users discover, analyze and maintain updated bibliographies for specific 

research fields; this is an important phase in the production of an LR.  

A number of ranking algorithms are proposed in the literature. Ranking algorithms are the 

procedure that search engines use to give priority and relevancy query results. Recent years 

have seen wider adoption of scientometric techniques for assessing the impact of publications, 

researchers, institutions and venues. To date, the field of scientometrics has focused on 

analyzing the quantitative aspects of the generation, propagation and utilization of scientific 

information.  

Two means of measuring scientific research output are discussed in the literature: peer-review 

and citation-based bibliometric indicators. The main limitation of peer-review-based 

approaches is the subjectivity of evaluators, while citation-based approaches have been 
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criticized for limiting their scope to academia and neglecting the broader societal impact of 

research (Marx & Bornmann, 2016).  

Marx and Bornmann (Marx & Bornmann, 2016) present an overview of methods based on 

cited references and examples of some empirical results from studies.  According to the 

authors, it is possible to measure the target-oriented impact in specific research areas (i.e. 

limited to those areas) of the citation. For the authors, cited reference analysis indicates the 

potential of the data source. They also mention a new method known as citing side 

normalization, where each individual citation receives a field-specific weighting computed by 

dividing thecitation  by the number of references in the citing work. 

The literature presents other approaches for ranking scientific articles and measuring their 

impact (Beel et al., 2013; Bornmann et al., 2014, 2015; Cataldi et al., 2016; Dong et al., 2016; 

Franceschini et al., 2015; Hasson et al., 2014; Madani & Weber, 2016; Marx & Bornmann, 

2016; MASIC & BEGIC, 2016; Packalen & Bhattacharya, 2015; Rúbio & Gulo, 2016; S. 

Wang et al., 2014; M. Zhang et al., 2015). Some approaches focus on journal ranking (Packalen 

& Bhattacharya, 2015), others on university and research institute ranking (Bornmann et al., 

2015). However, most of these approaches consider only publication count or focus on citation 

analysis (citation-based approaches); the aggregate citation statistics are used to come up with 

evaluative metrics for measuring scientific impact. They ignore the quality of articles in terms 

of new contribution and scientific impact, and limit the evaluation to the quantitative aspect.  

Despite several criticisms of citation-based impact measurements, it is still the subject of much 

scientometric research; a highly cited paper in a given scientific research field has influenced 

many other researchers. The main approach for scientific article ranking is citation analysis, 

which is essentially the number of times a paper has been cited; however, this traditional 

approach does not consider the publisher, conference or workshop relevance, or the possible 

societal impacts of a study. Furthermore, in measuring the quality of an article, peer reviews 

should be taken into account, as the opinion of the scientific community in that research field 

may help identify relevant articles. Most approaches reduce a citation to a single edge between 

the citing paper and the cited paper, and treat all edges equally. 
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Some works in scientific impact evaluation (Bornmann et al., 2014, 2015; Cataldi et al., 2016; 

M. Zhang et al., 2015) have focused on the ranking of universities, institutions and research 

teams. For instance, (M. Zhang et al., 2015) propose a comprehensive method to discover and 

rank collaborative research teams based on social network analysis along with traditional 

citation analysis and bibliometric. In their approach, research teams are ranked using indexes 

which include both scientific research outcomes and the closeness of co-author networks. 

Their evaluation system consists of three indexes with sub-levels: 

1. Team output, with four sub-levels:  

a. total quantity published, 

b. average quantity published, 

c. total quantity published in cooperation, 

d. average quantity published in cooperation. 

2. Team influence, with two sub-levels:  

a. total citations, 

b. average citations.  

3. Closeness of cooperation, with three sub-levels:  

a. density, 

b. network efficiency, 

c. clustering coefficient. 

And for each index, they assign a weight based on the scores of 30 experts. The main drawback 

of their approach is the manual contributions of the experts. 

Bornmann et al. (Bornmann et al., 2014, 2015) measure the performance of research institutes 

based on the best paper rate and the best journal rate. Best paper rate is the proportion of 

institutional publications that belong to the 10% most frequently cited publications in their 

subject area and publication year. Best journal rate is the proportion of publications that an 

institution publishes in the most influential journals worldwide. Unfortunately, ranking 

researchers, journals and institutions does not give any idea of a scientific paper’s relevancy. 

It may nonetheless be used to compute the paper’s relevancy index. 
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Wan and Liu (Wan & Liu, 2014) propose citation-based analysis to evaluate scientific impact 

of researchers expressed as an author-level Metric called the WL-index. They raise the issue 

of considering the number of times a cited paper is mentioned in a citing paper. According to 

the authors, counting based on binary citation relationships is not appropriate; indeed, in a 

given article, some cited references appear only once, but others appear more than once. In 

other words, the WL-index, a variant of the h-index, factors in the number of times a cited 

paper is mentioned. 

Hasson et al. (Hasson et al., 2014) propose an algorithm  called the Paper Time Ranking 

Algorithm (PTRA), which depends on three factors to rank its results: paper age, citation index 

and publication venue. Specifically, they give priority to each one of these parameters; for a 

given paper, they compute its weight as the sum of the conference or journal’s impact facto, 

the number of citations and the age of the paper. 

Rúbio and Gulo (Rúbio & Gulo, 2016) apply an MLM called ID3 to determine a paper’s 

relevancy classification based on specialist annotations. They combine text mining efforts and 

bibliometric measures to automatically classify relevant papers. They make use of metadata 

such as year of publication, citation number, reference number and type of publication. 

Madani and Weber (Madani & Weber, 2016) propose an approach that applies bibliometric 

analysis and keyword-based network analysis to recognize important papers. To find the most 

relevant papers, they apply ‘eigenvector centrality’. For the patent evaluation they extracted 

keywords from abstracts and created a keyword-based network that was analyzed by cluster 

analysis to find groups of keywords making use of the minimum spanning tree method. 

Wang et al (S. Wang et al., 2014) propose a unified ranking model, called MRFRank, that 

utilizes the mutual reinforcement relationships across networks of papers, authors and text 

features. More specifically, MRFRank incorporates the text features extracted and the 

weighted graphs constructed. For a given sentence, it extracts words and co-occurrences from 

the title and abstract. Next, it computes the TF-IDF of each word as the weight of this word. 

The main limitation of this approach is that only the abstract is used to compute the weight of 

a word.  
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Gulo et al. (Gulo et al., 2015) propose a solution that combines text mining and MLM to 

identify the most relevant scientific papers. Based on previous samples manually classified by 

domain experts, they apply a Naive Bayes Classifier to get predicted articles. 

Based on this analysis of existing approaches to scientific paper ranking, a number of 

limitations have been identified: 

1. Most existing approaches focus on the researcher’s or journal’s index to evaluate the 

impact of a research paper, ignoring the paper’s index; 

2. Most approaches that focus on the paper’s index use only the citations count; in 

addition, they do not consider the paper’s age, penalizing the recent papers; 

3. As for the few approaches focusing on the evaluation of the paper itself, they do not 

take into account the social-level metric, and they do not consider the category or 

polarity of citations; 

4. Some approaches make use of journal information to rank papers; while this is a step 

in the right direction, they do not consider other types of venues, such as conferences 

and workshops;  

5. Several approaches make use of machine learning; however, they require a large 

manual contribution by specialists or experts to train the learning model; 

6. Very few works focus on text-based analysis to identify relevant papers; those that do, 

limit the analysis to title and abstract. 

In summary, no approach currently takes into account all these aspects of scientific papers: 

1. venue age, 

2. venue type, 

3. venue impact, 

4. year of publication, 

5. number of citations, 

6. citation category, 

7. references, 

8. author’s impact, 

9. author’s institutes, 
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10. citing document of cited document. 

1.3.2 Text and data mining 

Text and data mining (TDM) can be defined as the automated processing of large amounts of 

structured digital textual content, for purposes of information retrieval, extraction, 

interpretation and analysis. When large amounts of data are accumulated, automated or semi-

automated analysis of their content reveals patterns that allow the establishment of fact patterns 

invisible to the naked eye (Okerson, 2013). 

There are many reasons researchers might want to utilize TDM in their research. Clark (Clark, 

2013) suggests that, given the enormous growth in the volume of literature produced, 

researchers should apply text mining techniques to enrich their content and perform systematic 

literature reviews. Mining should be deployed to enhance indexing, create relevant links and 

improve the reading experience. In the context of TDM, text mining is a subfield of data mining 

that seeks to extract valuable new information from unstructured (or semi-structured) sources. 

It then aggregates the extracted pieces over the entire collection of source documents to 

uncover or derive new information. This is the preferred view that allows one to distinguish 

text mining from natural language processing (NLP). 

ATS approaches need to produce a concise and fluent summary conveying the key information 

in the input (Saggion & Poibeau, 2013). Basic approaches of ATS first extract the topics 

discussed in the input document; then, based on these topics, sentences in the input document 

are scored for importance.  

There are two types of summarization, depending on the input: single document summarization 

and multi-document summarization (Saggion & Poibeau, 2013; D. Wang, Zhu, Li, & Gong, 

2013). In (D. Wang et al., 2013), Wang et al. discuss in detail the following extractive 

summarization methods are discussed in detail:  

1. centroid-based methods, 

2. graph-based methods, 
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3. Latent Semantic Analysis (LSA), 

4. Nonnegative Matrix Factorization (NMF). 

Within the context of scientific research, documents (such as journal articles, white papers, 

conference proceedings or research papers) have a specific organization and features that 

differentiate them from other types of documents such as narrative texts (R. Zhang, Li, Liu, & 

Gao, 2016), where the characters are very important, and factual texts, where the summarizer 

has to select the most important facts and present them in a sensible order while avoiding 

repetition (Carenini, Cheung, & Pauls, 2013). In addition, scientific papers contain certain 

stock expressions and sentences.  

Conventional text summarization approaches are therefore inadequate for scientific paper 

summarization; however, such approaches may be extended and adapted. For this reason, this 

sub-section of related works about TDM focuses on: 

1. automatic text summarization, 

2. scientific paper summarization. 

1.3.2.1 Automatic text summarization 

According to (Saggion & Poibeau, 2013), there are two main types of automatic text 

summarization (ATS): 

1. Extractive summarization selects the important sentences from the original input 

documents to form a summary; 

2. Abstractive summarization (Genest & Lapalme, 2012; Gerani, Mehdad, Carenini, Ng, 

& Neja, 2014) paraphrases the corpus using novel sentences; this usually involves 

information fusion, sentence compression and reformulation. Although an abstractive 

summary could be more concise, it requires deep NLP techniques. 

Extractive summaries are therefore more feasible and practical, and are hence the main focus 

in this related works section.  

For extractive summarization, three approaches are presented in the literature: 
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1. Word scoring, in which scores are assigned to the most important words; 

2. Sentence scoring, in which sentence features such as position in the document, 

similarity to the title, etc. are examined; 

3. Graph scoring, in which relationships between sentences are analyzed. 

According to (Ferreira et al., 2013), sentence scoring is the technique most widely used for 

extractive text summarization.  

Several works on ATS are reported in the literature. Hasan and Ng (Hasan & Ng, 2014) 

mention that in a structured document, there are certain locations where key sentences are most 

likely to appear; for instance, in the abstract and the introduction. These authors claim that the 

lack of structural consistency in other types of structured documents, such as books, may 

render structural information less useful.  

He et al. (Z. He et al., 2015) propose an unsupervised summarization framework from the 

perspective of data reconstruction. They argue that a good summary should consist of those 

sentences that can best reconstruct the original document. Specifically, after stemming and 

stop-word elimination, they break the document down into individual sentences and create a 

weighted term-frequency vector for every sentence; all the sentences in the document form the 

candidate set. Then, they find an optimal set of representative sentences to approximate the 

entire document, by minimizing the reconstruction error. In their approach, these authors make 

use of a set of summaries, obtained through a complex procedure, as input.  

Fang et al. (Fang et al., 2015) present an ATS approach based on topic factors. They define 

topic factors as various characteristics for the description of topics; for example, capitalized 

words are usually the entity (organization name) and long sentences are preferred for highly 

technical expert documents. Since it is unfeasible to explicitly define topic factors, they 

introduce a latent variable to capture the implicit topic factors. In other words, for a given topic, 

they identify a set of factors that characterize all documents on this topic. The drawback of 

their approach is that it is strongly linked to topic detection; however, the authors do not 

propose a topic detection mechanism to support their topic aspect-oriented approach.  
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Dokun and Celebi (CELEBI & DOKUN, 2015) propose two approaches based on Latent 

Semantic Analysis (LSA) for English documents. They convert the input document to a 

sentence–term matrix and process it through an algorithm called Singular Value 

Decomposition (SVD), designed to find and model the relationships between words and 

sentences while reducing noise. The authors do not propose a new contribution, but only apply 

an existing LSA approach.  

Premjith et al. (Premjith, John, & Wilscy, 2015) present an extractive summarization system 

that selects salient sentences from the input documents; they consider ATS as an optimization 

problem. First, these authors use a variant form of the Simple Matching Coefficient scheme to 

reduce the dimensionality of a set of sentences from input documents to be considered for 

summarization; next, they use the Vector Space Model (VSM) method and bag-of-words 

approach to represent sentences in the input documents matrix. After preprocessing the 

documents, they score the sentences based on features such as Term Frequency Inverse 

Sentence Frequency (TF-ISF) in order to aggregate cross-sentence similarity, title similarity 

and sentence length.  

For the optimization, they define two objective functions: function 1 checks only the similarity 

between the centroid concepts in both the summary and the document set, and diversity of 

sentences in the summary; function 2 introduces semantic coverage of the sentences in the 

candidate summaries based on the LSA approach. The main drawback is the complexity due 

to the repetition of the process of objective functions.  

Sankarasubramaniam et al. (Sankarasubramaniam, Ramanathan, & Ghosh, 2014) present an 

approach that makes use of Wikipedia and graph-based ranking. Specifically, these authors 

construct a bipartite sentence–concept graph, where the concepts represent Wikipedia article 

titles that are closest to the input sentences, and then rank the sentences for potential inclusion 

in a summary. Unfortunately, these authors do not explain how the mapping between sentences 

and Wikipedia titles is done. In addition, their approach is strongly linked to news articles 

because of the nature of Wikipedia titles. For books like novels that do not have their concepts 

in Wikipedia, their approach will provide bad summaries. Moreover, their method to compute 

sentence scores for ranking is not justified and the number of iterations is not defined.  
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Ledeneva et al. (Ledeneva, García-Hernández, & Gelbukh, 2014) present an extractive text 

summarization making use of graph-based ranking algorithms. Their proposal consists in 

detecting Maximal Frequent Sequences as nodes of a graph, and ranking them using a graph-

based algorithm such as TextRank or PageRank. In their contribution, these authors do not 

clearly show how they define a relation between two graph nodes (i.e., terms); they only 

mention the possibility of using lexical or semantic relations.  

Like (Premjith et al., 2015), Mendoza et al. (Mendoza, Bonilla, Noguera, Cobos, & León, 

2014) address the generation of extractive summaries from a single document as a binary 

optimization problem. They define their objective function based on the weighting of 

individual statistical features of each sentence, such as position, length and the relation between 

the summary and the title, combined with group features based on the similarity between 

sentences in each candidate summary and in the original document and between sentences in 

the summary, in order to obtain coverage of the summary and cohesion of summary sentences. 

For the optimization, they make use of a memetic algorithm that aims to maximize the 

objective function for each probable summary. The drawback of their approach is the 

predefinition of coefficients of the objective function. In addition, the number of iterations to 

find the best summary is costly. 

To sum up, various solutions for ATS are proposed in the literature (CELEBI & DOKUN, 

2015; Fang et al., 2015; Hasan & Ng, 2014; Z. He et al., 2015; Ledeneva et al., 2014; Mendoza 

et al., 2014; Premjith et al., 2015; Sankarasubramaniam et al., 2014); however, several 

drawbacks can be noted:  

1. Some solutions are greedy in processing time due to their optimization functions; 

2. Several assumptions are made, such as availability of document topic factors, to 

validate their approaches; 

3. Existing text summarization approaches cannot be applied to scientific papers; they 

need to be extended and adapted to take into account the specificities of scientific 

papers in terms of document organization and stock phrases. 

In summary, a number of ATS research issues still need to be tackled. 
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1.3.2.2 Scientific paper summarization 

Several models, techniques and algorithms for scientific paper summarization are proposed in 

the literature, mainly based on MLM and TDM approaches (Dyas-Correia & Alexopoulos, 

2014). 

Ronzano and Saggion (Ronzano & Saggion, 2016) investigated to what extent citations of a 

paper are useful to create an improved summary of its content. They analyze how the contents 

of different parts of a paper, including abstract, body and references, contribute to a widespread 

summary evaluation metric. In their approach, each citation in a citing paper is manually 

annotated by four annotators who were asked to identify:  

1. The citation context, consisting of one to three text spans in the reference paper and 

including the related in-line citation marker for the cited paper; 

2. The citing spans, consisting of one to three text spans in the other papers which indicate 

what the reference paper mentioned about the cited paper. 

Next, based on TF-IDF applied to the reference paper (first level of citing paper) and citing 

papers of the reference paper (second level of cited paper), they summarize the cited paper. 

The main drawback of this approach is that each citation of each citing paper has been manually 

annotated by four annotators. In addition, their approach is limited to single scientific paper 

summarization. 

Widyantoro and Amin (Widyantoro & Amin, 2014) propose an approach based on citation 

sentence identification and categorization for generating related-work summaries. Their 

approach extracts citation sentences and identifies important features for classification of 

citation sentences that belong to the Problem, Method and Conclusion rhetorical categories. 

The classification of rhetorical categories uses an MLM approach that requires a training 

dataset to create a classification model; this classification model is next used as the basis to 

predict a new sentence rhetorical category. Their classification model is based on the feature 

set for sentence representation and the specific learning algorithm. They represent a sentence 

as a feature vector that includes: 
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1. N-grams, 

2. sentence length, 

3. thematic word, 

4. cue phrase.  

For example, the unigram, bi-gram and tri-gram term frequencies are used as features; for each 

rhetorical category, the authors also use thematic word features selected from sentences in the 

training set belonging to that category, and the cue phrase feature is a Boolean value that 

indicates the presence or absence of a cue phrase for the Problem, Method or Conclusion 

rhetorical category. As in (Ronzano & Saggion, 2016), their approach is limited to single 

scientific paper summarization. In addition, they do not mention how they obtain the cue 

phrases for Problem, Method or Conclusion. 

Carlos and Thiago (Carlos & Thiago, 2015) present a solution for text mining scientific articles 

using the R language in the “Knowledge Extraction and Machine Learning” course based on 

social network analysis, topic models and bipartite graphs. They define a bipartite graph 

between documents and topics, built with the LDA topic model. In their abstract, these authors 

claim that they propose a solution for the summarization of abstracts; however, the rest of 

paper does not explain how the summarization is performed. 

Pedram and Omid (Pedram & Omid, 2015) propose a scientific document clustering based on 

text summarization. Their proposed algorithm consists of four main phases:  

1. preprocessing, 

2. word weighting and scoring, 

3. summarization, 

4. clustering. 

For the word weighting and scoring phase, TF-IDF is calculated for each word at the document 

level and okapi BM25 (Best Matching) is calculated at the sentence level. For the 

summarization phase, the objective of these authors is to remove non-important words; thus, 

they remove words with a computed BM25 of less than one. Scientific paper summarization 

cannot be performed in the same way as regular text. 
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Huang and Wan (Huang & Wan, 2013) propose a novel system, called Academic Knowledge 

Miner (AKMiner), that mines useful knowledge from articles in a specific domain. Their 

system extracts academic concepts and relations from academic literature based on a Markov 

Logic Network. In their approach, these authors focus on two kinds of academic concept: Task 

and Method. Task concepts are specific problems to be solved in academic literature, while 

Method concepts are defined as ways to solve specific tasks. They also define two types of 

relations:  

1. Method-Task relations, 

2. Method-Method or Task-Task relations.  

Method-Task relations refer to the application of a Method to a referred Task, while the second 

type of relations (between Methods or between Tasks) are formed by dependency, evolution 

and enhancements. Based on these definitions, the authors make use of Markov Logic Network 

to extract concepts and relations from academic literature. They apply the first-order 

knowledge base that is a set of formulae in first-order logic where the predicates and functions 

are used to describe properties and relations among objects. In their work, all the keywords are 

collected and summarized manually; they investigated by reading numerous articles and 

collected four lists of keywords. As in (Ronzano & Saggion, 2016; Widyantoro & Amin, 

2014), their approach is limited to single scientific paper summarization. 

Caragea et al. (Caragea, Bulgarov, Godea, & Das Gollapalli, 2014) present an approach, called 

citation enhanced keyphrase extraction (CeKE), that extracts keyphrases from research papers 

based on information contained in the paper itself and information from the paper’s local 

neighborhood, available in citation networks thanks to the learned models. First, to extract the 

keyphrases based on TF-IDF, the position of the first occurrence of a phrase is divided by the 

total number of tokens and the part-of-speech tag of the phrase. Then, they check if the 

extracted keyphrases occur in cited contexts (paper to summarize is cited by other papers) and 

citing contexts (paper to summarize is citing other papers) and compute the TF-IDF value of 

the phrase, computed from the aggregated citation contexts. Citing context is not necessary to 

summarize a scientific paper; only the text spans in cited context papers related to the paper to 

summarize are necessary. In addition, their approach requires manual annotation of keyphrases 
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for training.  As in (Huang & Wan, 2013; Ronzano & Saggion, 2016; Widyantoro & Amin, 

2014), their approach is limited to single scientific paper summarization. 

From this analysis of works about automatic scientific paper summarization (Caragea et al., 

2014; Carlos & Thiago, 2015; Huang & Wan, 2013; Pedram & Omid, 2015; Ronzano & 

Saggion, 2016; Widyantoro & Amin, 2014), it can be observed that:   

1. Single scientific paper summarization approaches cannot be used to produce an LR; 

2. Some of the approaches need manual contributions; 

3. Some works limit the summarization to the identification of keywords or key phrases 

and ignore the semantic particularities of scientific papers, applying only conventional 

text summarization techniques. 

In the context of this thesis, the focus is on multi-document summarization in order to assist in 

providing an Assisted Literature Review (ALR). 

1.3.3 Automatic multi-document summarization for literature review 

For an LR, numerous publications need to be analyzed and summarized; this is referred to as 

multi-document summarization. In the context of scientific research, given a set of scientific 

papers, multi-document summarization makes it possible to generate an ALR; however, 

different styles of LR may be required. According to (Jaidka, Khoo, & Na, 2010), LRs are 

written in two main styles:   

1. A descriptive LR presents critical summaries within a research domain, summarizing 

individual papers/studies and providing more information about each, such as research 

methods and results. It focuses on previous studies in terms of approach, results and 

evaluation. These reviews use sentence templates to perform rhetorical functions; 

2. An integrative LR focuses on the ideas and results extracted from a number of research 

papers and provides fewer details on individual papers/studies. 

For researchers with less experience, a descriptive LR with more details about individual 

studies is more useful. For those who prefer to understand the bigger picture and the main 
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themes of the research, an integrative LR is better suited. In the present study, the focus is on 

descriptive ALRs. 

Yeloglu et al. (Yeloglu, Milios, & Zincir-Heywood, 2011) investigated four approaches for 

scientific corpora summarization when only standard key terms are available: 

1. original MEAD with built-in default vocabulary, 

2. extended MEAD with corpus-specific vocabulary extracted by Keyphrase Extraction 

Algorithm (KEA), 

3. LexRank, a state-of-the-art summarization algorithm based on random walk, 

4. W3SS, a summarization algorithm based on keyword density. 

Their results show that adding a corpus-specific vocabulary to the MEAD summarization 

process slightly improves performance; they also determined that LexRank is proven to be 

impracticable for multi-document summarization of the full texts of scientific documents.  

The ALR literature consists of only a few studies. Zajic et al. (Zajic, Dorr, Lin, & Schwartz, 

2007) introduce the multi-candidate reduction (MCR) framework for multi-document 

summarization, in which many compressed candidates are generated for each source sentence; 

their strategy consists in transitioning from single-document summarization to multi-document 

summarization. The basic premise of their approach is the construction of a textual summary 

based on the selection of a subset of words. To do so, they use two algorithms: 

1. Trimmer, 

2. Hidden Markov Model HEaDline GEnerator (HMM Hedge).  

Trimmer selects sub-sequences of words using a linguistically motivated algorithm, while 

HMM Hedge finds the sub-sequence of words most likely to be a headline for a given story. 

In other words, sentence selection algorithms are applied to determine which compressed 

candidates provide the best combination of topic coverage and brevity.  

Dunne et al. (Dunne, Shneiderman, Gove, Klavans, & Dorr, 2012) present the results of their 

effort to integrate statistics, text analytics and visualization in a prototype interface for 

researchers and analysts. Their prototype system, called Action Science Explorer (ASE), 
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provides an environment for demonstrating principles of coordination and conducting iterative 

usability tests of them with interested and knowledgeable users. According to these authors, 

ASE is designed to support exploration of a collection of papers so as to rapidly provide a 

summary, while identifying key papers, topics and research groups. ASE uses:  

1. bibliometrics lexical link mining to create a citation network for a field and text for 

each citation, 

2. automatic summarization techniques to extract key points from papers using the 

approach proposed in (Zajic et al., 2007), 

3. network analysis and visualization tools to aid in the exploration of relationships. 

The first drawback of ASE is that it does not propose an algorithm or model to evaluate the 

relevancy of a scientific paper in its research field. It uses only bibliometrics for paper ranking. 

Nor do the authors explain how ASE extracts the sentences containing the citations and their 

locations from the full text of each paper. In addition, they do not propose a scientific paper 

summarization approach but simply use the existing algorithm in (Zajic et al., 2007). 

Jaidka et al. (Jaidka et al., 2010) present an overview of a project to develop an LR generation 

system that automatically summarizes a set of research papers using techniques drawn from 

human summarization behavior. With a view to developing a summarization system that 

mimics the characteristics of human LR, they try to understand how information is selected 

from source papers, structured, synthesized and expressed linguistically to support a research 

study. They analyze and identify: 

1. The typical discourse structures and rhetorical devices used in human-generated 

literature reviews, and the linguistic expressions used to link information in the text to 

form a cohesive and coherent review; 

2. How information is selected from source papers and organized and synthesized in an 

LR; this aspect is expanded upon in (Jaidka, Khoo, & Na, 2013b). 

The authors present only a high-level description of automatic LR. More importantly, they do 

not propose techniques or algorithms to select relevant scientific papers for a given research 
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domain or topic. Nevertheless, their study identifies the abstract, conclusion and methodology 

as the sections of scientific papers used by humans to produce an LR. They also claim that:  

1. For a descriptive LR, text from individual sources is copy-pasted or paraphrased; 

2. For an integrative LR, inferencing and generalization techniques are used to summarize 

information from several source papers into a higher-level overview. 

J. Chen and Zhuge (J. Chen & Zhuge, 2014) propose a citation-based method for summarizing 

multiple scientific papers. Their approach is based on the assumption that citation sentences 

usually talk about a common fact, which is usually represented as a set of noun phrases co-

occurring in citation texts and usually discussed from different aspects. Based on this 

assumption, they designed a multi-document summarization system based on common fact 

detection. Their main challenge was that citations may not use the same terms to refer to a 

common fact; to overcome this challenge, they use a term association discovery algorithm to 

expand terms based on a large set of scientific paper abstracts. Their process is as follows: 

1. First, they construct a term co-occurrence base based on the computation of frequently 

co-occurring terms in the abstracts, titles or even conclusions of a set of scientific 

papers; they parse the citation sentences to get the noun phrases, from which they 

generate term bigrams and trigrams and expand the terms based on the term co-

occurrence base; 

2. Second, they detect common facts in citations and then use them to cluster the citations; 

3. Third, they find a subset of the most relevant sentences and form a summary; they treat 

common facts as a saliency term set where each member term is weighted and is used 

to score sentences. Based on the Maximal Marginal Relevance (MMR) algorithm, they 

eliminate redundancy in the sentence set, and to compute the score of each sentence, 

they make use of a topic signature-based approach. This method first computes a set of 

terms that relate to a topic and then summarizes documents based on the computed term 

set.  

As in several other works, these authors applied existing algorithms to their architecture. 

Agarwal et al. (Agarwal, Gvr, Reddy, & Rose, 2011) present an interactive multi-document 

summarization system for scientific articles, called SciSumm, that summarizes a set of papers 
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cited together within the same source article, i.e., co-citation papers. The main idea of the 

approach is a topic-based clustering of fragments extracted from each cited paper. This analysis 

enables the generation of an overview of common themes from the co-cited papers. 

Unfortunately, SciSumm presents some limitations: 

1. To obtain the list of relevant articles, SciSumm uses standard retrieval from a Lucene 

index; 

2. The user can use the title, snippet summary and author information to find an article of 

interest;  

3. SciSumm summarizes only the set of cited papers of the citing paper; this 

summarization task is limited to extracting citation sentences from the citing paper.  

Patil and Mahajan (Patil & Mahajan, 2012) present the extension of their previous system for 

summarizing domain-specific scientific research articles. Based on abstracts and introductions 

from which any formulae, tables, figures LATEX markups and citations from text files have 

been removed, they identify the Research Relevant Novelty (RRN) terms—such as goal, 

method, outcome, contrast & like, continuation—for each category of research. Next, 

sentences containing the identified RRN terms are extracted and clustered by category. Finally, 

they use the MMR metric to compute the similarity between multiple sentences. In order to 

keep only one sentence per cluster of similar sentences, they compute the score of each of them 

based on the sum of the TF-IDF of the terms of the sentence. As in (Agarwal et al., 2011; J. 

Chen & Zhuge, 2014; Dunne et al., 2012), these authors make use of existing algorithms. 

Jaidka et al. (Jaidka, Khoo, & Na, 2013a) propose an LR framework that contains applications 

in automatic summarization of scientific papers. This proposal is the extension of their 

previous contribution (Jaidka et al., 2010). They carry out an analysis of the discourse structure 

of a sample of 30 literature review sections in research papers in terms of: 

1. Macro-level document structure, which makes it possible to identify the different 

sections of the document, the types of information they contain and their hierarchical 

organization; 

2. Sentence-level rhetorical structure, which reveals how sentences are framed according 

to the overall purpose of the literature review; 
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3. Summarization strategies, which show how information was selected and synthesized 

for the literature review. 

For the document structure and rhetorical structure, the authors manually annotate sentences 

with tags; for example, the topic description tags “Previous research focused on” or “Research 

in the area of” are used to present a broad overview of research or its context, while the study 

description tag “In a study by” is used to cite an author and “X identified…”, “Y has conducted 

an experiment to…” are used to describe research processes. The main drawback of their 

approach is that they do not apply MLM to reduce the manual contributions. 

From these related works, it can be seen that the main drawbacks of existing ALR approaches 

are as follows: 

1. Conventional text summarization techniques cannot be applied to scientific research 

documents; indeed, scientific research documents have a specific structural 

organization that is different from that of other documents such as narrative or 

biographical texts. Conventional techniques must be adapted to take into account the 

specificities of scientific papers in terms of document organization; 

2. Most existing approaches are designed for a single document; 

3. Certain approaches do not propose new techniques or algorithms, simply making use 

of existing MLM as well as text and data mining approaches; 

4. Even if they propose new algorithms or techniques, they ignore the need to identify 

scientific papers related to the Researcher Selection in terms of research domain, 

research specific topic, matching keywords and description of research subject. 

The following limitations of existing approaches (Agarwal et al., 2011; J. Chen & Zhuge, 2014; 

Dunne et al., 2012; Jaidka et al., 2010, 2013a, 2013b; Patil & Mahajan, 2012; Yeloglu et al., 

2011; Zajic et al., 2007) should be addressed in the proposed ecosystem: 

1. scientific paper ranking, 

2. scientific paper summarization, 

3. assisted literature review. 





 

CHAPTER 2 
 
 

MAJOR THEMES 

How users search, discover and rank contents and events is of crucial importance, especially 

with the rapidly increasing volume of data and metadata. This thesis presents the software 

ecosystem SMESE, which aggregates metadata and data from linked open data, structured data 

and the metadata authority to create a universal semantic metadata master catalogue using a 

SPLE model. In this thesis, the advanced versions of the first SMESE prototype are also 

presented: SMESE V3 and STELLAR V1. 

SMESE V1 is the first version of a prototype able to harvest and enrich metadata based on the 

proposed ecosystem. Its key contributions are: 

1. Design and prototyping of a master model that integrates several content types based 

on a universal metadata model; 

2. Definition and prototyping of a mapping ontology in order to allow interoperability 

between existing metadata models; 

3. Definition and prototyping of a software ecosystem architecture that configures an 

application with software and metadata aspects based on a SPLE model; 

4. The proposed SPLE model supports a dynamic metadata CBSD approach creating a 

harvesting ecosystem for DLs; 

5. Prototyping of different processes to increase the findability of related content through 

interest-based search and discovery engines. 

More specifically, the proposed SPLE approach is a combination of feature-oriented reuse 

method (FORM) and component-oriented platform architecting (COPA) approaches focusing 

on data and metadata enrichment. With respect to CBSD, SMESE V1 includes a method for 

selecting composer components for the design of an SPLE. This method can manage and 

control the complexities of the component selection problem in the creation of the defined 

product line.  
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A number of prototypes, experiments and simulations have been conducted to assess the 

performance of the proposed ecosystem by comparing it against existing enriched metadata 

techniques or manual LR. 

In this thesis, advanced versions of SMESE V1 are also presented: prototype 2 (SMESE V3) 

and prototype 3 (STELLAR V1). Test results show that SMESE V3 and STELLAR V1 allow 

greater iterative interpretation of content for purposes of interest-based or emotion-based 

search and discovery. 

SMESE V3, the extended version of SMESE V1, offers the following key contributions: 

1. Discovery of enriched sentiment and emotion metadata hidden within the text or linked 

to multimedia structure using the proposed BM-SSEA algorithm;  

2. Generation of semantic topics by text, and multimedia content analysis using the 

proposed BM-SATD algorithm; 

3. Integration of the emotion lexicon of the National Research Council of Canada; 

4. Integration and adaptation of a repository of 43 thesauri for semantical 

contextualization of concepts; 

5. Integration of extended LDA and KeyGraph approaches for topic modeling. 

STELLAR V1 is a research assistant for the iterative search of relevant papers and production 

of an Assisted Literature Review (ALR) for a specific subject or topic of research. The key 

contributions of STELLAR V1 are: 

1. The definition of new metadata for scientific content that allow topic-based ranking 

and relevant paper identification;  

2. Classification of metadata in the researcher selection (RS) and researcher annotation 

(RA) categories; 

3. The ability to semantically harvest the web to create a Universal Research Document 

Repository (URDR) according to RS and from the SMESE V3 ecosystem; 

4. The concept of Assisted Literature Review Object (ALRO), which is useful for 

managing all objects in the ALR. It is basically a component type that includes many 

types of information useful in producing an ALR; 
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5. The Literature Corpus Radius (LCR) process, which calculates the distance of each 

paper to the literature corpus centre for a specific topic, concept or area of research; 

6. Machine Learning Models (MLMs), which help researchers to discover, find, rank and 

refine the iterative list of relevant recommended papers for the creation and enrichment 

of a final ALR. 

This thesis is divided into three sections corresponding to the three technical reports in 

Appendix I to III: 

1. SMESE V1: A Semantic Metadata Enrichment Software Ecosystem is the first 

prototype; 

2. SMESE V3: An ecosystem for topics and emotions that is an extension of the original 

SMESE V1 is the second prototype; 

3. STELLAR V1: An Assisted Literature Review using MLMs to recommend relevant 

papers and help researchers to build an ALR. STELLAR V1 represents the third 

prototype and uses the SMESE V3 ecosystem. 

2.1 A Semantic Metadata Enrichment Software Ecosystem (SMESE) Based on a 
Multiplatform Metadata Model for DLs 

The first technical report (Appendix I) presents the multiplatform metadata model, an 

ecosystem for harvesting metadata (including often the data) and internally and externally 

metadata enrichment for DLs. Metadata are structured information that describes, explains, 

locates, accesses, retrieves, uses or manages an information resource of any kind. “Metadata” 

literally means data about data. Some use it to refer to machine understandable information, 

while others employ it only for records that describe electronic resources. In the library 

ecosystem, the term is commonly used for any formal scheme of resource description, applying 

to any type of object, digital or non-digital. 

The first prototype of the proposed SMESE V1 architecture is based on SPLE and CBSD 

approaches to support metadata and entity social and semantic enrichment for DLs. SMESE 

V1 is based on a mobile first design (MFD) approach for multiplatform user interface. Each 
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component of the SMESE V1 architecture is based on existing approaches (SPLE and CBSD) 

and a SME concept (proposed in this work) to generate, extract, discover and enrich metadata. 

The SME process of SMESE V1 is based on a proposed mapping ontology that makes use of 

content analysis (internal) and linked data analysis (external). 

The main focus of SMESE V1 is metadata meta-modeling, which makes it possible to design 

different type of content (i.e., metadata content definition) and harvest different source 

according to their metadata model. For the new generation of information and data 

management, metadata are a highly efficient material for data aggregation. For example, it is 

easier to find a specific set of user interests when metadata such as content topics or sentiments 

are available in the enriched model. Furthermore, it is possible to increase user satisfaction by 

reducing the user interest gap. To make this feasible, all content needs to be enriched. In other 

words, specific metadata must be available including semantic topics, sentiments and abstracts. 

However, at the present time, most content does not have these metadata.  

The SMESE V1 multiplatform prototype aggregates multiple world catalogues from libraries, 

universities, bookstores, #tag collections, museums, open catalogues, national catalogues and 

others. It harvests and processes metadata from full-text content (where possible).  

Central indexes typically include full text and citations from publishers, full text and metadata 

from open-source collections, full text, abstracting and indexing from aggregators and 

subscription databases, and different formats (such as MARC) from library catalogues, also 

called the base index, unified index, or foundation index.  

The SMESE V1 multiplatform framework try to link bibliographic records and semantic 

metadata enrichments (SEM) into a master metadata catalogue. This catalogue includes 

collections or novelties as: papers, books, DVDs, CDs, comics, games, pictures, videos, legacy 

collections, organizations, rewards, TV, radio, and museums.  

Figure 2.1 presents the four levels of the semantic collaborative gateway in SMESE V1:  

1. Meta-Entity (black), 

2. Entity (blue), 
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3. Semantic metadata enrichment and creation (grey), 

4. Contents & Events (white).  

 

Figure 2.1 Meta-model and metadata enrichment view 

Semantic relationships between content, persons, organizations, events and places are defined 

and curated in the master metadata catalogue. Topics, sentiments and emotions are extracted 

(where possible) from the content, its context and related objects. As semantic relationships 

between the content and users who are persons, the new metadata (interests, topics and 

emotions) are defined and may be extracted (where possible) from the content, its context and 

related objects. 

SMESE V1 allows users to find topically related content through an interest-based search and 

discovery engine. Transforming bibliographic records into semantic data is a complex problem 

that includes interpreting and enriching the information. Fortunately, many international 

organizations (e.g., Bibliothèque Nationale de France (BNF), Library of Congress and some 

others) have done some of this heavy work and already have much bibliographic metadata 

converted into triple-stores according to defined schemas. 
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Recent catalogues support the ability to publish and search collections of descriptive entities 

(described by a list of generic metadata) for data, content and related information objects. 

Metadata in catalogues represent resource characteristics that can be indexed, queried and 

displayed by both humans and machine. Catalogue metadata are needed to support the 

discovery and notification of information within an information community. Using 

information from specific SME interests and emotions, the ecosystem is able to provide the 

final user with better results that match his or her interest, emotion or mood. 

This new SMESE V1 semantic ecosystem harvest and enrich bibliographic records externally 

(from the web or databases) and internally (from text data or object). As shown in Figure 2.2, 

the main components of the SMESE V1 ecosystem are: 

1.  metadata initiatives & concordance rules, 

2.  harvesting of web metadata & data, 

3.  harvesting of authority metadata & data, 

4.  rule-based semantic metadata external enrichment, 

5.  rule-based semantic metadata internal enrichment, 

6.  semantic metadata external & internal enrichment synchronization, 

7.  user interest-based gateway, 

8.  semantic master catalogue, 

9.  semantic analytical engine. 
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Figure 2.2 Semantic Enriched Metadata Software Ecosystem (SMESE V1) – 1st prototype 

Many metadata schemas exist to describe various types of textual and non-textual objects 

including published books, electronic documents, archival documents, art objects, educational 

and training materials, scientific datasets and, obviously, the web. Large national and 

international DL projects, such as Europeana and the Digital Public Library of America, have 

highlighted the importance of sharing metadata across silos.  

Many aggregators harvest metadata that, in the process, may become inaccurate because they 

did not look at the semantic context. In practice, aggregators usually ignore the idiosyncratic 

use of metadata schemas and enforce the use of designated metadata fields. Connecting data 

across silos would help to improve the ability of users to browse and discover related entities 

(metadata) without having to do multiple searches in multiple portals. The proposed SMESE 

V1 ecosystem defines crosswalks that create metadata pathways to different sources; each 

pathway checks the structure of the metadata source and then performs data harvesting. Figure 

2.3 shows the semantic metadata meta-catalogue classification designed and implemented in 

the SMESE V1 prototype. 
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Figure 2.3 Semantic metadata meta-catalogue classification in the SMESE V1 first prototype 

Semantic searches over documents and other content need to use semantic metadata 

enrichment (SME) to find information based not just on the presence of words, but also on 

their meaning. Linked open data (LOD) based semantic annotation methods are good 

candidates to enrich the content with disambiguated domain terms and entities (e.g. events, 

emotions, interests, locations, organizations, persons), described through Unique Resource 

Identifiers (URIs) (Bontcheva et al., 2015). In addition, the International Standard Names 

Identifier (ISNI) has been proposed by national libraries to organize and catalogue semantic 

metadata relationships, see Figure 2.4, adapted from ISNI, For a Worldwide Identification 

Ecosystem (INHA – Institut National de l’histoire de l’art, 11 January 2016, Anila Angjeli, 

Bibliothèque nationale de France, ISNI 0000 0004 2755 4724). The symbol with three blue 

dots (RDF) represents a semantic repository using triple stores. The BNF is identifying 

workflows with publishers to provide them with ISNIs for new authors. The ISNI system is an 

opportunity to help enrich author metadata and the quality of the authority files. ISNI semantic 

relationships make it possible to connect many sources of information, including: 

1. BNF Catalog, 

2. Data.bnf.fr, 
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3. VIAF, 

4. IdRef, 

5. Union List of Artist Names, 

6. SNAC, 

7. AGORHA, 

8. Wikidata, 

9. Wikipedia, 

10. Data.banq.ca (in 2017 for Québec metadata). 

Figure 2.4 also shows the introduction of ISNI semantic relationships into the semantic 

metadata meta-catalogue of the SMESE V1 prototype. 

 

Figure 2.4 ISNI semantic relationships of metadata in the SMESE V1 prototype 

The original content should be enriched with relevant knowledge from the respective LOD 

resources (e.g. that Justin Trudeau is a Canadian politician). This is needed to answer queries 

that require common-sense knowledge, which is often not present in the original content. For 

example: following semantic enrichment, a semantic search for events that provide specific 
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emotions (e.g., happiness, joy, etc.) in Montreal according to individual interests this weekend 

would provide relevant metadata about events in Montreal, even though not explicitly 

mentioned in the original content metadata.  

The semantic annotation process of SMESE V1 creates relationships between semantic 

models, such as ontologies and persons. It may be characterized as the semantic enrichment of 

unstructured and semi-structured content with new knowledge and linking these to relevant 

domain ontologies and knowledge bases. This requires the use of ISNI, other authority files or 

other techniques. It typically requires annotating a potentially ambiguous entity mention (e.g. 

Justin Trudeau) with the canonical identifier of the correct unique entity (e.g. depending on the 

content, http://dbpedia.org/page/Justin_Trudeau). The benefit of social semantic enrichment is 

that by surfacing annotated terms derived from the full-text content, concepts buried within the 

body of the paper or report can be highlighted. The addition of terms also affects the relevance 

ranking in full-text searches. Moreover, users can be more specific by limiting the search 

criteria to the subject, interest or emotion metadata (e.g. through faceted search). 

These processes extract, analyze and catalogue metadata for topics and emotions involved in 

the SMESE ecosystem. As today, an amount of 5 millions content have been harvested over a 

target amount of close to 500 millions, see the Table 2.1 for an overview of the detail about 

harvested metadata and data (p.e. papers and events) in the prototype. For each content type 

many metadata and data have been extracted and enriched. These enrichment processes are 

based on information retrieval and knowledge extraction approaches. The text is analyzed by 

means of extensions of text mining algorithms such as latent Dirichlet allocation (LDA), latent 

semantic analysis (LSA), support vector machine (SVM) and k-Means.  

 

 

 

 



49 

Table 2.1 Harvesting statistic related to metadata and data – SMESE V1 

 

One of the contributions of SMESE V1 for DLs is that it is not specific to one software product 

but can be applied to many products dynamically. In addition, it includes a semantic metadata 

enrichment (SME) process to improve the quality of search and discovery engines. 

Note that metadata modeling and an universal metadata model is the main focus of SMESE 

V1. The proposed SECO of SMESE V1 uses an SPLE architecture that is a combination of 

FORM and COPA to catalogue semantically different contents.  

The SECO of SMESE V1 also proposes a decision support process called SPLE-DSP. SPLE-

DSP supports the activation and deactivation of software features related to metadata and takes 

into account automatic runtime reconfiguration according to different scenarios. In addition, 

SPLE-DSP rebinds to new services dynamically based on the description of the relationships 

and transitions between multiple binding times under an SPLE when the software adapts its 

system properties to a new context. To take context variability into account in modeling 
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context-aware properties, SPLE-DSP makes use of an autonomous process that exploits 

context information to adapt software behavior using a universal metadata model.  

Furthermore, SPLE-DSP integrates the adaptation of metadata and products dynamically. This 

helps products to evolve autonomously when the environment changes and provides self-

adaptive and optimized reconfiguration.  

This reconfiguration model, called dynamic and optimized metadata-based reconfiguration 

model (DOMRM), takes into account the preferences of several users who have different 

requirements in terms of desirable features and measurable criteria.  

When the user chooses preferences in terms of system behavior, the semantic weight of each 

feature is computed based on the software feature configuration model (FCM). FCM represents 

the semantic relationship between features where each feature is active or not. In addition, 

FCM defines the rules that control the activation status of each feature according to its links 

with other features. For example, a rule may be: feature Fi should never be activated when Fi-

1 is activated. Based on this rule, the FCM automatically activates or deactivates the feature.  

The rules are also used to predict the behavior of the application based on the activation status 

of features according to users’ selections. Note that individual users have their own weight per 

feature, defined on the basis of that user’s use of the feature. This weight quantifies the 

importance of the feature for the user. 

2.2 A Semantic Metadata Enrichment Software Ecosystem Based on Sentiment 
and Emotion Analysis Enrichment (SMESE V3) 

The second technical report (Appendix II) focuses on contributions designed and implemented 

in the SMESE V3 prototype in two research fields: semantic topic detection (STD) and 

sentiment analysis (SA). 
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2.2.1 Semantic topic detection 

Semantic topic detection (STD), a fundamental aspect of SIR, helps users efficiently detect 

meaningful topics. It has attracted significant research in several communities in the last 

decade, including public opinion monitoring, decision support, emergency management and 

social media modeling (Hurtado et al., 2016; Sayyadi & Raschid, 2013). STD is based on large 

and noisy data collections such as social media, and addresses both scalability and accuracy 

challenges. Initial methods for STD relied on clustering documents based on a core group of 

keywords representing a specific topic, where, based on a ratio such as TF-IDF, documents 

that contain these keywords are similar to each other (Niu et al., 2016; Salton & Buckley, 

1988). Next, variations of TF-IDF were used to compute keyword-based feature values, and 

cosine similarity was used as a similarity (or distance) measure to cluster documents. The 

following generation of STD approaches, including those based on latent Dirichlet allocation 

(LDA), shifted analysis from directly clustering documents to clustering keywords. Some 

examples of these advances in STD are presented in (David M.  Blei et al., 2003).  

However, social media collections differ along several lines, including the size distribution of 

documents and the distribution of words. One research challenge is to rapidly filter out noisy 

and irrelevant documents, while at the same time accurately clustering a large collection. 

Bijalwan et al. (Bijalwan et al., 2014), for example, experimented with machine learning 

approaches for text and document mining and concluded that k-nearest neighbors (KNN), for 

their data sets, showed the maximum accuracy as compared to naive Bayes and term-graph. 

The drawback of KNN is that time complexity (i.e., amount of time taken to run) is high but it 

demonstrates better accuracy than others. 

2.2.2 Sentiment analysis (SA) 

The main objective of sentiment analysis (SA) is to establish the attitude of a given person 

with regard to sentences, paragraphs, chapters or documents (Appel et al., 2016; Balazs & 

Velásquez, 2016; Fernández-Gavilanes, Álvarez-López, Juncal-Martínez, Costa-Montenegro, 
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& Javier González-Castaño, 2016; Niu et al., 2016; Patel & Madia, 2016; Ravi & Ravi, 2015; 

Serrano-Guerrero, Olivas, Romero, & Herrera-Viedma, 2015). Many websites offer reviews 

of items like books, cars, mobile devices, movies etc., where products are described in some 

detail and rated as good/bad, liked/disliked. With the rapid spread of social media, it has 

become necessary to categorize these reviews in an automated way (Niu et al., 2016).  

There are different ways to perform SA, such as keyword spotting, lexical affinity and 

statistical methods. However, the most commonly applied techniques belong either to the 

category of text classification supervised machine learning (SML), which uses methods like 

naive Bayes, maximum entropy or support vector machine (SVM), or to the category of text 

classification unsupervised machine learning (UML).  

One current limitation in the area of SA research is its focus on sentiment classification while 

ignoring the detection of emotions. For example, document emotion analysis may help to 

determine an emotional barometer and give the reader a clear indication of excitement, fear, 

anxiety, irritability, depression, anger and other such emotions.  For this reason, we focus on 

sentiment and emotion analysis (SEA) instead of SA. 

2.2.3 SMESE V3 approach to STD and SEA 

Our research has looked to improve the accuracy of topic detection and sentiment and emotion 

discovery by semantically enriching the metadata from linked open data and the bibliographic 

records existing in different formats. The second technical report presents the design, 

implementation and evaluation of the SMESE V3 ecosystem. More specifically, SMESE V3 

consists of prototypes implementing two rule-based algorithms to enrich metadata 

semantically: 

1. BM-SATD: generation of semantic topics by text analysis, relationships and 

multimedia content, 

2. BM-SSEA: discovery of sentiments and emotions hidden within the text or linked to a 

multimedia structure through an Artificial Intelligence (AI) computational approach. 
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Using simulation, the performance of SMESE V3 was evaluated in terms of accuracy of topic 

detection and sentiment and emotion discovery. Existing approaches to enriching metadata 

(e.g., topic detection or sentiment and emotion discovery) were used for comparison. 

Simulation results showed that the enhanced SMESE outperforms existing approaches.  

In Figure 2.5, improvements to the SMESE V3 platform (2nd prototype) stemming from this 

research work and its implementation are presented in blue. 

 

Figure 2.5 SMESE V3 – Semantic Metadata Enrichment Software Ecosystem– 2nd prototype 

For more understanding about SMESE V3 algorithms and processes to semantically enrich 

metadata, refer to Appendix II, which describes in detail this second prototype of SMESE. 
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2.3 An Assisted Literature Review using Machine Learning Models to Build a 
Literature Corpus and to Recommend References using their Related Radius 
from this Corpus 

The third technical report (Appendix III) presents another enhanced SMESE prototype that 

implements an Assisted Literature Review (ALR) design using Machine Learning Models 

(MLM) to build a literature corpus and to recommend references using their related radius from 

this corpus. This prototype, called STELLAR V1 (Semantic Topics Ecosystem Learning-based 

Literature Assisted Review), is more useful for electronic papers (ePapers).  

Electronic papers play a critical role in the dissemination of research results through 

conferences and journals or new channels such as social media. With the evolving and 

interdisciplinary nature of research, there is an increasing need to develop MLMs that can 

facilitate and assist researchers in the iterative creation of their LR (i.e., manual literature 

review). The goal of this third technical report is to define and prototype the automation of a 

process to assist students, teachers, librarians and other users in producing and maintaining an 

ALR. 

Researchers now acknowledge that ePapers are not sufficient to communicate and share 

information about research investigations. The volume of scientific publications available is 

becoming an issue for researchers (Mayr, Scharnhorst, Larsen, Schaer, & Mutschke, 2014). 

Given that so many literature reviews are incomplete, the lack of automation algorithms to 

assist in ALR creation and ongoing process is surprising. 

A literature review needs to be systematic and focused on user selections, incorporating only 

things that are relevant to the research topic. It has to be evaluative, assessing each citation to 

determine its ranking and if it is worth including in the ALR. One of the research goals of the 

STELLAR V1 prototype is to reduce reading load by helping researchers to read only an 

intelligent selection of documents. Using TDM, MLMs and a classification model that learns 

from paper’s metadata and user-annotated data, it detects metadata and identifies relevant 

papers for a literature review in a specific research field and on a specific topic. 
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Figure 2.6 presents a simplified view of the proposed STELLAR V1 model. Specifically, it 

shows the MLM processes associated with each step of STELLAR V1 (i.e., those above each 

step of the ALR). 

 

Figure 2.6 MLMs at all steps of an Assisted Literature Review 

It takes many steps to produce and deliver a quality LR manually. In the automation of this 

process, many tools and algorithms have been developed to assist and alert the researcher. 

Harvesting tools, search engines and MLMs have been used to execute many of the tasks in 

this process. Figure 2.6 shows the iterative process of creating an ALR using MLMs. This 

process helps the researcher to find, rank and tag the relevant papers, and to receive 

recommendations about how to improve the literature review on an ongoing basis. It also 

notifies the researcher when a new paper concerning his or her research topic is published or 

available. The MLMs could be used to learn and improve the process in two ways:  

1. For each step in the light blue processes, the MLM are used to refine the results (in 

Figure 2.6, there are 10 blue circles related to MLMs); 
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2. The entire process is iterative, so it could be enhanced by discovering dynamically a 

new relevant paper and notifying the user. 

The first step (i.e., Find Papers) does not require an MLM, but the next five do (from Discover 

relevant papers and metadata to Generate and visualise ALR). In the same figure, the blue 

circles represent MLM processes while the white and red circles represent a non-MLM 

process. 

One of the interesting and innovative aspects of this process is to be able to notify the 

researcher about new papers that meet the RS (Researcher Selection), which is made up of the 

different metadata describing the research topic or area. This process helps the researcher 

update the ALR after many months of work on a topic without doing intensive searching as 

would be required in a manual LR.  

The detail view of the proposed STELLAR V1 model is presented in Figure 2.7. 

 

Figure 2.7 STELLAR V1 – Semantic Topics Ecosystem Learning-based Literature Assisted 
Review – 3rd prototype 
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There are four main processes designed for STELLAR V1: 

1. Search & Refine ALR, 

2. Improve ALR by TDM & MLM, 

3. Discover ALR, 

4. Semantic Metadata Enrichments Software Ecosystem V3. 

And there is one outside process named Semantic Metadata Enrichments Software Ecosystem. 

This process refers to the two other articles defining the SMESE platform and some 

enrichments (Appendix I for SMESE V1 and II for SMESE V3). The proposed model is an 

iterative process where the user could Search & Refine the research topic or area by modifying 

the ALR selections. STELLAR V1 could be used by different types of users such as 

researchers, authors, publishers, students and librarians.  

One of the important aspects of STELLAR V1 is semantic metadata enrichment and ranking 

of papers. This function draws information from a paper in order to enrich its metadata. In our 

previous work (Brisebois, Abran, & Nadembega, 2016), two types of semantic enrichment 

were defined: internal and external. Semantic internal enrichment extracts citations from the 

document body and automatically produces the abstract (see Figure 2.8). 

 

Figure 2.8 STELLAR V1 semantic enrichments TDM 
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More specifically, the ALR-based MLM provides two types of learning model:  

1. A text-based model that may be applied to text according to its section in the document 

to extract relevant information; 

2. A citation-based model that focuses on the context of a citation to extract the citation 

itself, its polarity (positive or negative) and its category. 

Thus, two types of enrichment are considered: 

1. citation-based enrichments, 

2. abstract conformity-based enrichments. 

2.3.1 Citation-based enrichments 

The citation-based enrichments learning step identifies the citation sentences (e.g., sentences 

that contain a citation) and enriches them through a classification process identifying their 

category and polarity. Each sentence is extracted and analyzed using the citation-based 

learning model to identify citations in a paper. When a citation is identified, the citation polarity 

learning model is used to determine its polarity while the citation category learning model is 

used to categorize the citation. 

2.3.2 Abstract conformity-based enrichments 

In the STELLAR V1 prototype, the abstract conformity-based enrichment sub-step evaluates 

the similarity between the abstract and the rest of the document. The conformity evaluation 

allows a researcher to decide whether or not to read the rest of the document after reading the 

abstract. It may happen that the abstract claims a solution, new algorithm, new approach or 

best results not substantiated in the rest of document.  

To perform an abstract conformity evaluation, the text-based ALR learning model consists of: 

1. A cue phrase learning model that contains a list of cue phrases (CP); CP is used to 

identify and enrich the text category; 
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2. A thematic learning model that contains a list of rhetorical expressions of thematics 

(TR); TR is used to classify the text category. 

More specifically, the sub-step identifies, from the abstract and the rest of the document, the 

set of texts per category. For example: considering the abstract, a set of texts (i.e., category) is 

identified for Problem, Solution and Result. Next, the text category conformity is evaluated for 

each category based on the extracted thematic terms using the category rhetorical expression 

(i.e., P_TR, S_TR and R_TR) of the thematic learning model. 

2.3.3 Abstract of Abstracts (AoA) enrichments 

In the STELLAR V1 prototype, the enrichment step of the abstract of abstracts (AoA) presents 

the research topic’s evolution over time; here, the term "radius" is used to indicate that all time 

intervals are represented as a distance between two years, one of which is designated as the 

center of a circle. The radius expresses the relevancy of a paper according to the researcher 

selection. Taking the relevant documents published within the same years, their abstracts are 

extracted and summarized to provide an AoA. For a document, the AoA generation process is 

similar to the abstract conformity-based enrichment step, but it focuses on the abstract instead 

of the rest of the document. To produce an AoA, the text-based LR learning model is used. 

More specifically, the enrichment process identifies a set of abstracts per category and extracts, 

for each category, the thematic sentences using the category rhetorical expression (e.g., P_TR, 

S_TR and R_TR) of the thematic learning model. Thus, to obtain the AoA, the corpus of papers 

is: 

1. classified by its temporal radius, 

2. applied to each document of each class.  

These steps produce an AoA for the corpus of documents. Numerous simulations have been 

conducted to assess the performance of the prototypes and the results are presented in third 

technical report (see details in Appendix III). 





 

CONCLUSION 

 

This section presents a summary of the contributions, prototypes and results of this thesis.  

The three technical reports that make up the core of these research contributions, and that have 

been submitted to journals for peer review, are focused on the following research issues: 

1. data and metadata semantic harvesting ecosystem using a mapping ontology model for 

enhance DL’s capability, 

2. semantic metadata enrichments (SME) based on machine learning models (MLMs) 

especially for topics and emotions, 

3. assisted literature reviews based on MLMs to assist and alert the researcher in 

producing a literature review.  

It was observed that DL users do not have all the semantic metadata needed to make decisions 

when searching or looking to discover specific contents or a particular event.  It is very 

challenging to: 

1. Take advantage of the power of the semantic web, due to the poor quality of metadata 

in many library collections (i.e., content); 

2. Share, merge or search existing content or collections, due to the lack of a unified model 

for interoperability of metadata models such as Dublin Core, UNIMARC, MARC21, 

RDF/RDA and BIBFRAME; 

3. Identify relevant content, due to the lack of enriched metadata that is easy to 

understand; 

4. Manually enrich metadata, due to the exponential growth of content, the volume of 

metadata and the number of semantic relationships between content and metadata. 

To overcome these challenging issues, which limit the full utilization of content or event, this 

thesis has proposed a number of contributions that can be employed by users in metadata and 

data management to better catalogue and enrich content and event. This will allow users to 

make better decisions in the selection of content or event. For example, researchers will find it 

easier to identify and prioritize relevant scientific papers for their ALR. 
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The first technical report focuses on the definition of an interoperable metadata and meta-entity 

model, called semantic metadata enrichment software ecosystem (SMESE V1), to support 

digital multiplatform metadata harvesting applications, and more specifically DLs. It also 

proposes a software product line engineering process that uses a component-based software 

development approach for integrating content management with multi-applications catalogue. 

To take into account the interoperability of existing metadata models, SMESE V1 implements 

an ontology mapping model. SMESE V1 also includes an SPLE decision support process 

(SPLE-DSP), which is used to support dynamic metadata reconfiguration (see Appendix I).  

The main contributions of this first technical report are as follows: 

1. Definition of a software ecosystem model that configures the application production 

process including software aspects based on a proposed CBSD and metadata-based 

SPLE approach; 

2. Definition and partial implementation of semantic metadata enrichment using SPLE 

and a semantic master metadata catalogue; 

3. Definition and prototype of a SECO-based DL standard and interoperable metadata 

model able to: 

a. take into account interoperability mechanisms to guide the self-adaptation of 

product compositions according to changes in the client configuration, 

b. take into account several semantic enrichment aspects, 

c. include several enriched metadata and entity models. 

4. Design and implementation of a SMESE V1 prototype for a semantic digital library. 

The second and third technical reports extend the contributions of the first technical report by 

focusing on the research field of automatic entity metadata enrichments: semantic topic 

detection, sentiment and emotion analysis and metadata usage for literature-assisted review 

objects. 

Note that the prototype presented in the second technical report is called SMESE V3. More 

specifically, this second technical report contains four distinct new contributions: 

1. Adaptation of conventional text summarization approaches to take into account the 

specificities of scientific papers in terms of document organization; 
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2. Discovery of enriched sentiment and emotion metadata hidden within the text or linked 

to multimedia structure using the proposed BM-SSEA (BM-Semantic Sentiment and 

Emotion Analysis) algorithm; 

3. Implementation of rule-based semantic metadata internal enrichment (that includes 

algorithms BM-SATD (BM-Scalable Annotation-based Topic Detection) and BM-

SSEA); 

4. Generation of semantic topics by text, and multimedia content analysis using the 

proposed BM-SATD algorithm. 

The main research objective in this second technical report was to enhance the SMESE V1 

platform through text analysis approaches for topic, sentiment, emotion, and semantic 

relationship detection. More specifically, BM-SATD fuses multiple relations into a term graph 

and detects topics from the graph using a graph analytical method (see Appendix II for details). 

BM-SATD presents a hybrid relation analysis and machine learning approach that integrates 

semantic relations, semantic annotations and co-occurrence relations for topic detection; it 

combines semantic relations between terms and co-occurrence relations across the document 

making use of document annotation. BM-SATD not only detects topics more effectively by 

combing mutually complementary relations, but also mines important rare topics by leveraging 

latent co-occurrence relations.  

BM-SATD includes: 

1. A probabilistic topic detection approach that is an extension of LDA, called BM 

semantic topic model (BM-SemTopic); 

2. A clustering approach that is an extension of KeyGraph, called BM semantic graph 

(BM-SemGraph). 

BM-SSEA classifies the documents taking emotion into consideration; it determines which 

sentiment a document more likely belongs to (see more details about BM-SSEA in Appendix 

II). It is a hybrid approach that combines keyword-based and rule-based approaches. In order 

to take into account the semantic aspect of sentiment and emotion analysis, BM-SSEA uses 

several semantic lexical resources that create its knowledge. The evaluation of this TDM shows 

that BM-SATD provides an average accuracy of 79.50% per topic and BM-SSEA 
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demonstrates an average accuracy of 93.30% per emotion; the details of the simulation results 

can be seen in Appendix II. 

The third technical report proposes an Assisted Literature Review (ALR) prototype, 

STELLAR V1 (Semantic Topics Ecosystem Learning-based Literature Assisted Review), 

based on machine learning models and a semantic metadata enrichment ecosystem. It 

discovers, finds and recommends relevant papers for a literature review in a specific field of 

research. Using TDM, MLMs and a classification model that learns from researchers’ 

annotated data and semantic enriched metadata, STELLAR V1 identifies, ranks and 

recommends relevant papers according to the researcher selection, see Figure 2.9.  

In this figure, there is a conceptual representation of STELLAR V1. All the rectangles (in any 

color) represent papers available in a specific domain of knowledge (URDR). The black 

rectangle are irrelevant papers according to the researcher selection; the one in blue are relevant 

to the ALR; the one in yellow are part of the suggested selection outside the literature corpus 

radius (LCR is inside the white circle); the one in red are the researcher annotated papers, who 

could be inside the ALR Papers Corpus or inside the Literature Corpus. 

 

Figure 2.9 STELLAR V1 corpus representation 
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Specifically, STELLAR V1 computes two types of index to rank scientific papers, as shown 

in Appendix III: 

1. LCR for literature corpus identification according to researchers’ selection parameters 

and annotations, 

2. dynamic topic based index (DTb index) for relevant papers identification. 

First, a corpus of papers matching the researcher selection parameters is selected from the 

literature corpus. Next, based on specific researcher selection parameters, the LCR index of 

each paper in the previous corpus is computed and used to build a new corpus of papers. This 

new corpus is the set of papers whose LCR index is below a threshold defined by the 

researchers. STELLAR also proposes a DTb index to sort a corpus of papers or evaluate lists 

of references in existing literature reviews in terms of relevance for a specific research topic. 

For the DTb index, STELLAR considers more criteria than any other approach, such as venue 

age, citation category and polarity, author’s impact, etc. The STELLAR V1 prototype includes 

the following contributions: 

1. The prototype uses semantic annotations to improve document comprehension time; 

2. Word co-occurrence relations across the document are used to extend topic modeling 

with semantic information; 

3. The latent co-occurrence relations between two terms are measured from an isolated 

term-term perspective; 

4. The prototype uses MLM and semantic relations to detect new topics automatically in 

multiple documents; 

5. The STELLAR V1 prototype identifies and ranks relevant papers, uses citation count, 

and considers the age of papers, the social-level metric, as well as citation category and 

polarity to measure scientific research impact. It focuses on text-based analysis using 

metadata other than title and abstract to identify relevant papers using the researcher 

selection for research domain, research specific topic, matching keywords and 

description of research subject; 

6. Scientific research papers have a specific structural organization that differentiates 

them from other types of documents, such as narrative texts or biographies. STELLAR 
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V1 adapts conventional text summarization to take into account the specificities of 

scientific papers in terms of document organization and rhetorical devices; 

7. Finally, STELLAR V1 proposes to aggregate ALR associated objects to form a 

reusable Assisted Literature Research Object (ALRO). 

To assist and narrow down the search results, many innovative views of the ALR have also 

been designed and implemented: 

1. Timeline of Document-based Literature Corpus Radius, 

2. Document-based Literature Corpus Radius, 

3. Timeline of Author-based Literature Corpus Radius, 

4. Author-based Literature Corpus Radius. 

The performance of the STELLAR V1 prototype, which identifies and ranks relevant papers 

according to specific metadata such as topic, language, description and discipline, has been 

evaluated and compared to the set of documents from a baseline manual LR through a number 

of simulations. For this performance measurement, the volume of data was limited but is 

actually expanding because of the continuous harvesting of metadata from a growing number 

of sources in the SMESE research platform. In terms of accuracy, STELLAR V1 provides an 

average accuracy of 0.91 per scenario and an average precision of 0.96 per scenario; details of 

the simulations are shown in Appendix III. 

The main primary results of this thesis are the following: 

1. a rules-based harvesting and metadata-based decision support ecosystem,  

2. all related algorithms to enrich metadata with topics and emotions, 

3. two conceptual models and their three associated prototypes (SMESE V1 and V3 and 

STELLAR V1), 

4. a tool to assist researchers in the building of an ALR for a specific topic or area of 

research. 

Also, the results of this thesis included 7 published papers (as june 2nd 2017) and are described 

in the future works section. 



 

FUTURE WORKS 

 

The thesis opens up several new avenues for future research, including: 

1. Summarization of Abstract of Abstracts (AoA) – AoA for scientific papers will be an 

extension of the current STELLAR V1. Based on a proposed scientific paper 

summarization technique, abstracts will be used as inputs for our summarization 

technique to generate the AoA of the ALR; 

2. Digital Resources Metadata Enrichment (DRME) based on MLM and search engine – 

DRME will be a tool to aggregate metadata from content with no published metadata. 

It will use MLMs and a centralized search interface to discover and enrich the hidden 

semantic metadata related to different digital repositories of content; 

3. Multi-Devices Content Machine Learning-based Assisted Recommendations, or 

STELLAR V2– This is an evolution of the current SMESE V3 and STELLAR V1. 

STELLAR V2 will use SMESE V3 as a prerequisite ecosystem. Its goal will be to 

match different types of content with the user’s interest, emotion, availability and 

historical behavior. 

Of the nine papers written from this thesis, seven (7) have been already published, and two (2) 

papers are still in evaluation and being considered for publication.  

Here are the seven (7) published papers from this thesis: 

1. A Semantic Metadata Enrichment Software Ecosystem (SMESE) Based on a Multi-

Platform Metadata Model for Digital Libraries, 

 

2. A Semantic Metadata Enrichment Software Ecosystem based on Metadata and Affinity 

Models 

#
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3. A Semantic Metadata Enrichment Software Ecosystem base on Sentiment and Emotion 

Metadata Enrichments 

 

4. A Semantic Metadata Enrichment Software Ecosystem based on Topic Metadata 

Enrichments 

 

5. A Semantic Metadata Enrichment Software Ecosystem Based on Machine Learning to 

Analyse Topic, Sentiment and Emotions 

 

6. Efficient Scientific Research Literature Ranking Model based on Text and Data Mining 

Technique 

#2 

#3 

#4 

#5 
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7. Text and Data Mining & Machine Learning Models to Build and Assisted Literature 

Review with relevant papers 

  

Due to the large size of the three (3) technical reports proposed in this thesis, the journal editors 

recommended to shorten them; for this reason, nine (9) papers were prepared based on the 

three technical reports. Table 2.2 shows the distribution of the three technical reports into the 

nine papers. The full texts of each of the seven published papers are presented in annex. 

Table 2.2 Distribution of the three technical report into the nine (9) papers. 

 
        * Verified on June 19, 2017 

#6 

#7 
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In the Table 2.3, we can see the journals where the papers have been published and their 

respective impact factor. 

Table 2.3 Published papers and journal impact factors. 

 

The Figure 2.10 illustrates the STELLAR V2 future works using MLMs, K Graph and NPL, 

with its main components. 
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Figure 2.10 STELLAR V2 future works 

STELLAR V2 will enhance the SMESE V3 prototype by adding the ability to harvest semantic 

metadata from different sources such as TV guides, radio program schedules, books and event 

calendars, and to create triple stores to define relationships enriching the metadata content. A 

number of additional MLMs, algorithms and prototypes will have to be developed and refined 

(see Figure 2.11), including: 

1. An algorithm to identify the Recommended User Interest-based New Content of Events 

(RUINCE criteria) representing the user’s evolving interests and availability; 

2. An algorithm to develop analytical recommendations of subscriptions to content and 

events that will meet RUINCE criteria including the historical user behavior; 

3. An algorithm to recommend to content or events matching user interest and emotion 

according to the RUINCE affinity model; 

4. An algorithm to dynamically rank content or events according to the RUINCE criteria 

to create channels based on interests; 

5. An algorithm to identify and learn interests and emotions from a multitude of human 

interfaces such as touchscreens, gesture interfaces, voice recognition or VR interfaces 

supporting navigation in STELLAR V2. 
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Figure 2.11 User interest-RUINCE affinity model 

Furthermore, for a future version of STELLAR, we plan to work on MLM using learning 

process to enrich thesaurus as shown in Figure 2.12. 

 

Figure 2.12 STELLAR V2 MLM – Enriched Thesaurus
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Abstract 

Software industry has evolved to multi-product and multi-platform development based on a 

mix of proprietary and open source components. Such integration has occurred in software 

ecosystems (SECO) through a software product line engineering (SPLE) process. However, 

metadata are underused in the SPLE and interoperability challenge. 

The proposed method is first, a semantic metadata enrichment software ecosystem (SMESE) 

to support multi-platform metadata driven applications, and second, based on mapping 

ontologies SMESE aggregates and enriches metadata to create a semantic master metadata 

catalogue (SMMC).  

The proposed SPLE process uses a component-based software development (CBSD) approach 

for integrating distributed content management enterprise applications, such as digital libraries. 

To perform interoperability between existing metadata models (such as Dublin Core, 

UNIMARC, MARC21, RDF/RDA and BIBFRAME), SMESE implements an ontology 

mapping model. SMESE consists of nine sub-systems:  
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1. Metadata initiatives & concordance rules, 

2. Harvesting of web metadata & data, 

3. Harvesting of authority’s metadata & data, 

4. Rule-based semantic metadata external enrichment, 

5. Rule-based semantic metadata internal enrichment, 

6. Semantic metadata external & internal enrichment synchronization, 

7. User interest-based gateway, 

8. Semantic master catalogue, 

9. Semantic analytical. 

To conclude, this paper proposes a decision support process, called SPLE decision support 

process (SPLE-DSP) which is then used by SMESE to support dynamic reconfiguration. 

SPLE-DSP consists of a dynamic and optimized metadata-based reconfiguration model 

(DOMRM). SPLE-DSP takes into account runtime metadata-based variability functionalities, 

context-awareness and self-adaptation. It also presents the design and implementation of a 

working prototype of SMESE applied to a semantic digital library. 

 
 

Keywords: Digital library, metadata enrichment, semantic metadata enrichment, software 

ecosystem, software product line engineering. 

 

1. Introduction 

With more and more data available on the web, how users search and discover contents is of 

crucial importance. There is growing research on interaction paradigms investigating how 

users may benefit from the expressive power of semantic web standards.  

The semantic web may be defined as the transformation of the world wide web to a database 

of linked resources, where data may be widely reused and shared (Lacasta et al., 2013). Web 

services can be enhanced by drawing on semantically aware data made available by a variety 

of providers. In addition, as information discovery needs become more and more challenging 
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traditional keyword-based information retrieval methods are increasingly falling short in 

providing adequate support. This retrieval problem is compounded by the poor quality of the 

metadata content in some digital collections.  

SECO (Albert, Santos, & Werner, 2013; Amorim, Almeida, & McGregor, 2013; Christensen 

et al., 2014; Di Ruscio et al., 2014; dos Santos, Esteves, Freitas, & de Souza, 2014; Ghapanchi, 

Wohlin, & Aurum, 2014; Henderson-Sellers, Gonzalez-Perez, McBride, & Low, 2014; Jansen 

& Bloemendal, 2013; Lim, Bentley, Kanakam, Ishikawa, & Honiden, 2015; Manikas & 

Hansen, 2013; Mens, Claes, Grosjean, & Serebrenik, 2014; Musil, Musil, & Biffl, 2013; Park 

& Lee, 2014; Robillard & Walker, 2014; Shinozaki et al., 2015; Urli, Blay-Fornarino, Collet, 

Mosser, & Riveill, 2014) is defined as the interaction of a set of actors on top of a common 

technological platform providing a number of software solutions or services (Christensen et 

al., 2014; Manikas & Hansen, 2013). In SECO, internal and external actors create and compose 

relevant solutions together with a community of domain experts and users to satisfy customer 

needs within specific market segments. This poses new challenges since the software systems 

providing the technical basis of a SECO are being evolved by various distributed development 

teams, communities and technologies.  

There is growing agreement for the general characteristics of SECO, including a common 

technological platform enabling outside contributions, variability-enabled architectures, tool 

support for product derivation, as well as development processes and business models 

involving internal and external actors. At least ten SECO characteristics have been identified 

(Lettner et al., 2014) that focus on technical processes for development and evolution - see 

Table A 1.1. 
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Table A 1.1 SECO characteristics 
Taken from (Lettner et al., 2014) 

1 Internal and external developers 
2 Evaluative common technological platform 
3 Controlled central part 
4 Enable outside contributions and extensions 
5 Variability-enabled architecture 
6 Shared core assets 
7 Automated and tool-supported product derivation 
8 Outside contributions included in the main platform 
9 Tools, frameworks and patterns 
10 Distribution channel 

 

Gawer and Cusumano (Gawer & Cusumano, 2014) have analyzed a wide range of industry 

examples of SECO and identified two predominant types of platforms: 

1. Internal platforms (company or product): defined as a set of assets organized in a 

common structure from which a company can efficiently develop and produce a stream 

of derivative products; 

2. External platforms (industry): defined as products, services, or technologies that act as 

a foundation upon which external innovators, organized as an innovative business 

ecosystem, can develop their own complementary products, technologies, or services. 

Indeed, the new generation of SECO must be an integration of multi-platforms (internal and 

external) that allows the interaction of a set of internal and external actors.  

Concurrently modern software demands more and more adaptive features, many of which must 

be performed dynamically. In this context, a collaborative platform is important in order to 

coordinate collaborative and distributed environments for development of SECO platforms.  

Furthermore, as the requirement of SECO to support adaptation capabilities of systems  is 

increasing in importance (Andrés et al., 2013) it is recommended such adaptive features be 

included within software product lines (SPL) (Capilla et al., 2014; Harman et al., 2014; 

Metzger & Pohl, 2014; Olyai & Rezaei, 2015). The SPL concept is appealing to organizations 

dealing with software development that aims to provide a comprehensive model for an 
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organization building applications based on a common architecture and core assets (Andrés et 

al., 2013; Metzger & Pohl, 2014).  

SPLs have been used successfully in industry for building families of systems of related 

products, maximizing reuse, and exploiting their variable and configurable options (Harman 

et al., 2014).  

SPL development can be divided into three interrelated activities:  

1. Core assets development: may include architecture, reusable software components, 

domain models, requirement statements, documentation, schedules, budgets, test plans, 

test cases, process descriptions, modeling diagrams, and other relevant items used for 

product development; 

2. Product development: represents activities where products are physically developed 

from core assets, based on the production plan, in order to satisfy the requirements of 

the SPL (Krishnan, Strasburg, Lutz, Goseva-Popstojanova, & Dorman, 2013); 

3. Management: involves the essential processes carried out at technical and 

organizational levels to support the SPL process and ensures that the necessary 

resources are available and well-coordinated. 

To develop and implement SPL the literature proposes several SPL frameworks (Olyai & 

Rezaei, 2015) using a variety of CBSD approaches (Quadri & Abubakar, 2015; Singh, 

Sangwan, Singh, & Pratap, 2015; Yadav & Yadav, 2015):  

1. COPA (component-oriented platform architecting): an SPL framework that is 

component-oriented; 

2. FAST (family-oriented abstraction, specification and translation): a software 

development process that divides the process of a product line into three sections: 

domain qualification, domain engineering and application engineering; 

3. FORM (feature-oriented reuse method): a feature-oriented method that, by analyzing 

the features of the domain, uses these features to provide the SPL architecture. FORM 

focuses on capturing commonalities and differences of applications in a domain in 

terms of features and uses the analysis results to develop domain architectures and 

components; 
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4. Kobra: a component-oriented approach based on the UML features that integrate the 

two paradigms into a semantic, unified approach to software development and 

evolution; 

5. QADA (quality-driven architecture design and analysis): a product line architecture 

design method that provides traceability between the product quality and design time 

quality assessment.  

Semantic web (Jeremić et al., 2013; Khriyenko & Nagy, 2011; Lécué et al., 2014; Ngan & 

Kanagasabai, 2013; Rettinger et al., 2012) linked data is the most important concept to support 

Semantic Metadata Enrichment (SME) in a SECO architecture (Aleti, Buhnova, Grunske, 

Koziolek, & Meedeniya, 2013; Capilla, Jansen, Tang, Avgeriou, & Babar, 2016; Demir, 2015; 

Ginters, Schumann, Vishnyakov, & Orlov, 2015; Neves, Carvalho, & Ralha, 2014; Oussalah, 

Bhat, Challis, & Schnier, 2013; Yang, Liang, & Avgeriou, 2016).  

Today, semantic web technologies, for example in digital libraries, offer a new level of 

flexibility, interoperability and a way to enhance peer communication and knowledge sharing 

by expanding the usefulness of the digital libraries that in the future will contain the majority 

of data. Indeed, a semantic web TDM, based on semantic web technology, ensures more 

closely relevant results based on the ability to understand the definition and user-specific 

meaning of the word or term being searched for. Semantic search of semantic web engines are 

better able to understand the context in which the words are being used, resulting in relevant 

results with greater user satisfaction. Unfortunately, in the public domain there is a scarcity of 

search engines that follow a semantic-based approach to searching and browsing data (Ngan 

& Kanagasabai, 2013). Furthermore, the web is currently not contextually organized.  

Thus, to enrich web data by transforming it into knowledge accessible by users, we propose a 

multi-platform architecture, referred to as SMESE, which uses a CBSD approach to integrate 

distributed content management enterprise applications, such as libraries and the Software 

Product Line Engineering (SPLE) approach.  
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Our SMESE architecture includes mobile first design (MFD) and semantic metadata 

enrichment (SME) engines that consist of metadata and meta-entity enrichment based on 

mapping ontologies and a semantic master metadata catalogue (SMMC). 

More specifically, our SMESE implements a new decision support process in the context of 

SPLE, called the SPLE decision support process (SPLE-DSP), a meta entity model that 

represents all library materials and a meta metadata model. SPLE-DSP allows support for 

metadata-based reconfiguration. It consists of a dynamic and optimized metadata based 

reconfiguration model (DOMRM) where users select their preferences in the market place.  

The major contributions of this paper are: 

1. Definition of a software ecosystem model that configures the application production 

process including software aspects based on a proposed CBSD and metadata-based 

SPLE approach; 

2. Definition and partial implementation of semantic metadata enrichment using SPLE 

and a semantic master metadata catalogue (SMMC) to create a universal metadata 

knowledge gateway (UMKG); 

3. Design and implementation of a SMESE prototype for a semantic digital library 

(Libër). 

This paper proposes a semantic metadata enrichment software ecosystem (SMESE) to support 

multi-platform metadata driven applications, such as a semantic digital library. Based on 

mapping ontologies SMESE also integrates and enriches data and metadata to create a semantic 

master metadata catalogue (SMMC).  

The remainder of the paper is organized as follows. Section 2 is a literature review. Section 3 

presents the multi-platform architecture of the proposed SMESE, and Section 4, the related 

nine sub-systems. Section 5 presents the prototype of a SMESE implementation in an industry 

context. Section 6 presents a summary and ideas for future work. 
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2. Literature review 

A software product line (SPL) (Andrés et al., 2013; Ayala, Amor, Fuentes, & Troya, 2015; 

Capilla et al., 2014; Harman et al., 2014; Horcas, Pinto, & Fuentes, 2016; Krishnan et al., 2013; 

Metzger & Pohl, 2014; Olyai & Rezaei, 2015) is a set of software intensive systems that share 

a common and managed set of features satisfying the specific needs of a particular market 

segment developed from a common set of core assets in a prescribed way (Metzger & Pohl, 

2014; Olyai & Rezaei, 2015). SPL engineering aims at: effective utilization of software assets, 

reducing the time required to deliver a product, improving quality, and decreasing the cost of 

software products.  

The following sub-sections present the four research axes related to our research: 

1. Software product line engineering (SPLE), 

2. SECO architecture using component integration and component evolution, 

3. SECO architecture and SPLE, 

4. Semantic metadata enrichment (SME). 

The related works section is at the intersection of SPLE, service-oriented computing, cloud 

computing, semantic metadata and adaptive systems.  

2.1 Software product line engineering (SPLE) 

The development of software involves requirements analysis, design, construction, testing, 

configuration management, quality assurance and more, where stakeholders always look for 

high productivity, low cost and low maintenance. This has led to software product line 

engineering (SPLE) (Capilla et al., 2014) as a comprehensive model that helps software 

providers to build applications for organizations/clients based on a common architecture and 

core assets. SPLE deals with the assembly of products from current core assets, commonly 

known as components, within a component-based architecture (W. He & Xu, 2014; Mück & 

Fröhlich, 2014), and involves the continuous growth of the core assets as production proceeds.  
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Note that the following related works are organized according to two axes: organizational and 

technical. 

An overview of SPLE challenges is presented in (Capilla et al., 2014; Harman et al., 2014; 

Metzger & Pohl, 2014). Metzger and Pohl (Metzger & Pohl, 2014) suggest that the successful 

introduction of SPLE heavily depends on the implementation of adequate organizational 

structures and processes. They also identify three trends expected from SPLE research in the 

next decade:  

1. managing variability in non-product-line settings, 

2. leveraging instantaneous feedback from big data and cloud computing during SPLE, 

3. addressing the open world assumption in software product line settings. 

A survey of works on search based software engineering (SBSE) for SPLE is presented in 

Harman et al. (Capilla et al., 2014; Harman et al., 2014).  

Capilla et al. (Capilla et al., 2014) provide an overview of the state of the art of dynamic 

software product line architectures and identify current techniques that attempt to tackle some 

of the many challenges of runtime variability mechanisms. They also provide an integrated 

view of the challenges and solutions that are necessary to support runtime variability 

mechanisms in SPLE models and software architectures. According to them, the limitations of 

today’s SPLE models are related to their inability to change the structural variability at runtime, 

provide the dynamic selection of variants, or handle the activation and deactivation of system 

features dynamically and/or autonomously. SPLE is, therefore, the natural candidate within 

which to address these problems. Since it is impossible to predict all the expected variability 

in a product line, SPLE must be able to produce adaptable software where runtime variations 

can be managed in a controlled manner. Also, to ensure performance in systems that have 

strong real-time requirements, SPLE must be able to handle the necessary adaptations and 

current reconfiguration tasks after the original deployment due to the computational 

complexity during variants selection.  

Olyai and Rezaei (Olyai & Rezaei, 2015) describe the issues and challenges surrounding SPLs, 

introduce some SPLE ecosystems and compare them, based on the issues and challenges, with 
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a view to how each ecosystem might be improved. The issues and challenges are presented in 

terms of administrative and organizational aspects and technical aspects. The administrative 

and organizational comparison criteria include strategic plans of the organization while the 

technical comparison criteria include requirements, design, implementation, test and 

maintenance. According to them, there is not a single approach that takes into account all these 

criteria together. Also, no single approach takes into account metadata for implementation and 

testing. 

2.2 SECO architecture using components integration and components evolution 

Software ecosystems (SECO) (Aleti et al., 2013; Capilla et al., 2016; Christensen et al., 2014; 

Gawer & Cusumano, 2014; Manikas & Hansen, 2013; Mens et al., 2014; Shinozaki et al., 

2015) consist of multiple software projects, often interrelated to each other by means of 

dependency relationships. When one project undergoes changes and issues a new release, this 

may or may not lead other projects to upgrade their dependencies. Unfortunately, the upgrade 

of a component may create a series of issues. In their systematic literature review of SECO 

research, Manikas and Hansen (Manikas & Hansen, 2013) report that while research on SECO 

is increasing:  

1. There is little consensus on what constitutes a SECO; 

2. Few analytical models of SECO exist; 

3. Little research is done in the context of real-world SECO.   

They define a SECO as the interaction of a set of actors on top of a common technological 

platform that results in a number of software solutions or services where each actor is 

motivated by a set of interests or business models while connected to the rest of the actors. 

They also identify three main components of SECO architecture:  

1. SECO software engineering: focuses on technical issues related directly or indirectly 

to the technological platform of a SECO; 

2. SECO business and management: focuses on the business, organizational and 

management aspects of a SECO; 
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3. SECO relationships: represent the social aspect of SECO architecture since it is 

essential for SPLE actors to interact among themselves and with the platform.  

2.3 SECO architecture and SPLE 

This section focuses on SECO architecture related to SPLE, beginning with an industry 

perspective.  

Christensen et al. (Christensen et al., 2014) define the concept of SECO architecture as a set 

of structures comprised of actors and software elements, the relationships among them, and 

their properties. They present the Danish telemedicine SECO in terms of this concept, and 

discuss challenges that are relevant in areas beyond telemedicine. They also discuss how 

software engineering practice is affected by describing the creation and evolution of a central 

SECO architecture, namely Net4Care, that serves as a reference architecture and learning 

vehicle for telemedicine and for the actors within a single software organization.  

Demir (Demir, 2015) also proposes a software architecture that is strongly related to a defence 

system and limited to military personnel. Their multi-view SECO architecture design is 

described step by step. They begin by identifying the system context, requirements, constraints, 

and quality expectations, but do not describe the end products of the SECO architecture. They 

also introduce a novel architectural style, called “star-controller architectural style” (Demir, 

2015) where synchronization and control of the flow of information are handled by controllers. 

However, a major drawback of this style is that failure of one controller disables all the 

subcomponents attached to that controller.  

Neves et al. (Neves et al., 2014) propose an architectural solution based on ontology and the 

spreading algorithm that offers personalized and contextualized event recommendations in the 

university domain. They use an ontology to define the domain knowledge model and the 

spreading activation algorithm to learn user patterns through discovery of user interests. The 

main limitation of their architectural context-aware recommender system is that it is specific 

to university populations and does not present the actual model of the system that shows the 

interactions between the components and the data. 



84 

Alferez et al. (Alférez, Pelechano, Mazo, Salinesi, & Diaz, 2014) propose a framework that 

uses semantically rich variability models at runtime to support the dynamic adaptation of 

service compositions. They argue that should problematic events occur, functional pieces may 

be added, removed, replaced, split or merged from a service composition at runtime, hence 

delivering a new service composition configuration. Based on this argument, they propose that 

service compositions be abstracted as a set of features in a variability model. They define a 

feature as a logical unit of behavior specified by a set of functional and non-functional 

requirements. Thus, they propose adaptation policies that describe the dynamic adaptation of 

a service composition in terms of the activation or deactivation of features in the causally 

connected variability model. Unfortunately, this variability model is limited to activation and 

deactivation of services. Indeed, the model should allow adaptation of services or include a 

service interoperability protocol (SIP) rather than compositions only according to changes in 

the computing infrastructure.  

In component based software development (CBSD), the fuzzy logic approach (Singh et al., 

2015; Yadav & Yadav, 2015) is largely used to select components.  Singh et al. (Singh et al., 

2015) explored the various measures such as separation of concerns (SoC), coupling, cohesion, 

and size measure that affect the reusability of aspect oriented software. The main drawback of 

their contribution is that the fuzzy logic rules are static. They do not propose a way to improve 

the rules based on developer satisfaction of the fuzzy inference system (FIS) output. In 

addition, their fuzzy inference system is limited to reusability of software. 

2.4 Semantic metadata enrichment (SME) 

Bontcheva et al. (Bontcheva et al., 2015) investigate semantic metadata automatic enrichment 

and search methods. In particular, the benefits of enriching articles with knowledge from linked 

open data resources are investigated with a focus on the environmental science domain.  They 

also propose a form-based semantic search interface to facilitate environmental science 

researchers in carrying out better semantic searches. Their proposed model is limited to linking 

terms with DBpedia URI and does not take into account the semantic meaning of terms in 

order to detect the best DBpedia URI.  
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Some authors focus their enrichment model on person mobility trace data (Fileto, Bogorny, et 

al., 2015; Fileto, May, et al., 2015; Krueger et al., 2015; Kunze & Hecht, 2015). Krueger et al. 

(Krueger et al., 2015) show how semantic insights can be gained by enriching trajectory data 

with place of interest (POI) information using social media services. They handle semantic 

uncertainties in time and space, which result from noisy, imprecise, and missing data, by 

introducing a POI decision model in combination with highly interactive visualizations.  

However, this model is limited to POI detection.  

Kunze and Hecht (Kunze & Hecht, 2015) propose an approach to processing semantic 

information from user-generated OpenStreetMap (OSM) data that specifies non-residential use 

in residential buildings based on OSM attributes, so-called tags, which are used to define the 

extent of non-residential use. 

Our conclusions from these related works are:  

1. SPLE architecture needs to be flexible and meet administrative and organizational 

aspects such as the organization’s strategic plans and marketing strategies, as well as 

technical aspects such as requirements, design, implementation, test and maintenance; 

2. Researchers need to focus on real-world SECO; 

3. Several proposed SECO models do not take into account autonomic mechanisms to 

guide the self-adaptation of service compositions according to changes in the 

computing infrastructure; 

4. In CBSD fuzzy inference systems (FIS) have been employed to develop the 

components selection model, however, there is no FIS based model that proposes more 

than one software measure as FIS output; 

5. There is no SECO architecture that takes into account several semantic enrichment 

aspects; 

6. Current metadata and entity enrichment models are limited to only one domain for their 

semantic enrichment process and therefore do not involve several enriched metadata 

and entity models; 

7. Current metadata and entity enrichment models only link terms and DBpedia URI; 
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8. Current metadata and entity enrichment models do not take into account person 

mobility trace data gathering and analysis in the enrichment process of metadata. 

3. SMESE multi-platform architecture 

This section presents the proposed semantic enriched metadata software ecosystem (SMESE) 

architecture based on SPLE and CBSD approaches to support metadata and entity social and 

semantic enrichment for semantic digital libraries and based on an MFD approach for user 

interface design. Each component of the SMESE architecture is based on existing approaches 

(SPLE and CBSD) and an SME concept (proposed in this work) to generate, extract, discover 

and enrich metadata based on mapping ontologies and making use of contents and linked data 

analysis. 

This section first presents an overview of the proposed SMESE multi-platform architecture 

followed by detailed explanations. 

3.1 Overview of the proposed SMESE multi-platform model 

For the new generation of information and data management, metadata is a most efficient 

material for data aggregation. For example, it is easier to find a specific set of interests for 

users based on metadata such as content topics, or based on the sentiments expressed in a 

content. Furthermore, it is possible to increase user satisfaction by reducing the user interest 

gap. To make this feasible, all content needs to be enriched. In other words, specific metadata 

must be available including semantic topics, sentiments and abstracts. However, at the present 

time more than 85% of content does not have this metadata.  

The SMESE multiplatform prototype implemented at BiblioMondo, a supplier of software 

digital libraries, includes a process to aggregate multiple world catalogues from libraries, 

universities, Bbookstores, #tag collections, museums, and cities. The collection of pre-

harvested and processed metadata and full text comprises the searchable content.  
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Central indexes typically include: full text and citations from publishers, full text and metadata 

from open source collections, full text, abstracting, and indexing from aggregators and 

subscription databases, and different formats (such as MARC) from library catalogues, also 

called the base index, unified index, or foundation index.  

The SMESE multiplatform framework must link bibliographic records and semantic metadata 

enrichments into a digital world library catalogue. SMESE must search and discover actual 

collections or novelties, including: works, books, DVDs, CDs, comics, games, pictures, videos 

peoples, legacy collections, organizations, rewards, TVs, radios, and museums.  

Figure A 1.1 presents the five levels of the semantic collaborative gateway: 

1. MetaEntity (black), 

2. Entity (blue), 

3. Semantic metadata enrichment and creation (red), 

4. Free sources of metadata (yellow) and subscription-based metadata, 

5. Content (green). 

 

 

Figure A 1.1 Universal MetaModel and Metadata Enrichment 
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Figure A 1.2 presents the entity matrix.  The metadata are defined once and are related to each 

specific entity. 

 

Figure A 1.2 Entity Matrix 

Semantic relationships between the contents, persons, organization and places are defined and 

curated in the master metadata catalogue.  Topics, sentiments and emotions must be extracted 

automatically from the contents and their context:  

1. Libraries spend a lot of money buying books and electronic resources. Enrichment 

uncovers that information and makes it possible for people to discover the great 

resources available everywhere; 

2. The average library has hundreds of thousands of catalogue records waiting to be 

transformed into linked data, turning those thousands of records into millions of 

relationships; 

3. FRBR (functional requirements for bibliographic records) is a semantic representation 

of the bibliographic record. A work is a high-level description of a document, 

containing information such as author (person), title, descriptions, subjects, etc., 
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common to all expressions, format and copy of the work. (See Figure A 1.3 for an 

FRBR framework description). 

 

Figure A 1.3 FRBR framework description 

SMESE must allow users to find topically related content through an interest-based search and 

discovery engine. Transforming bibliographic records into semantic data is a complex problem 

that includes interpreting and transforming the information. Fortunately, many international 

organizations (e.g., BNF, Library of Congress and some others) have partly done this heavy 

work and already have much bibliographic metadata converted into triple-stores. 

Recent catalogues support the ability to publish and search collections of descriptive entities 

(described by a list of generic metadata) for data, content, and related information objects. 

Metadata in catalogues represent resource characteristics that can be indexed, queried and 

displayed by both humans and software. Catalogue metadata are required to support the 

discovery and notification of information within an information community. Using the 

information from these Semantic Metadata Enrichments, the search engine, discovery engine 

and notification engine are able to give to the final user better results in accord with his interest 

or mood. 
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SMESE must also include an automated approach for semantic metadata enrichment (SME) 

that allows users to perform interest-based semantic search or discovery more efficiently. To 

summarize, our SMESE makes the following contributions: 

• Definition and development of a proposed semantic metadata enrichment software 

ecosystem. (See Figure A 1.4 SMESE overview and Figure A 1.21 SMESE detailed. 

 

Figure A 1.4 Semantic Enriched Metadata Software Ecosystem (SMESE) Architecture 

This new semantic ecosystem will harvest and enrich bibliographic records externally (from 

the web) and internally (from text data). The main components of the ecosystem will be:  

1.  Metadata initiatives & concordance rules, 

2.  Harvesting web metadata & data, 

3.  Harvesting authority’s metadata & data, 

4.  Rule-based semantic metadata external enrichment, 

5.  Rule-based semantic metadata internal enrichment, 

6.  Semantic metadata external & internal enrichment synchronization, 

7.  User interest-based gateway, 
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8.  Semantic master catalogue, 

9.  Semantic analytical. 

• Topic detection/generation - A prototype was developed to automate the generation of 

topics from the text of a document using our algorithm BM-SATD (BiblioMondo-

Semantic Annotation-based Topic Detection). In this research prototype, the following 

issues were investigated:   

1. Semantic annotations can improve the processing time and comprehension of the 

document; 

2. Extending topic modeling into account co-occurrence to combine semantic relations 

and co-occurrence relations to complement each other; 

3. Since latent co-occurrence relations between two terms cannot be measured in an 

isolated term-term view, the context of the term must be taken into account; 

4. Use of machine learning techniques to allow the ecosystem SMESE to be able to find 

a new topic itself.  

• Sentiment and Emotion Analysis - The prototype developed has the following 

characteristics:  

1. Traditional sentiment analysis methods mainly use terms and their frequency, parts of 

speech, rules of opinion and sentiment shifters; but semantic information is ignored in 

term selection; 

2. Our contribution to sentiment analysis includes emotions; 

3. The human contribution to improve the accuracy of our approach is taken into account.  

4. Sentiment and emotion analysis are combined; 

5. It is important to identify the sentiment and emotion of a book taking into account all 

the books of the collection; 

6. The collection of documents and paragraphs are taken into account. In terms of 

granularity, most of the existing approaches are sentence-based; 

7. These approaches did not take into account the surrounding context of the sentence 

which may cause some misunderstanding with discovery of sentiment and emotion. In 

our approach, the surrounding context of the sentence is included. 
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The prototype makes use of the proposed algorithm BM-SSEA (BiblioMondo-Semantic 

Sentiment and Emotion Analysis). The SMEE algorithm fulfills all the attributes of Table A 

1.1. 

The SMESE extends the SECO characteristics presented in (Lettner et al., 2014) from 10 to 

12. See Table A 1.1 SECO characteristics versus Table A 1.2 SMESE characteristics. 

Table A 1.2 SMESE characteristics 

1 Internal and external developers 

2 Evaluative common technological platform 

3 Controlled central part 

4 Enable outside contributions and extensions 

5 Variability-enabled architecture 

6 Shared core assets 

7 Automated and tool-supported product derivation 

8 Outside contributions included in main platform 

9 Social network and IoT integration 

10 Semantic Metadata Internal Enrichments 

11 Semantic Metadata External Enrichments 

12 User Interest-based Gateway 

 

More specifically, the proposed SPLE approach is a combination of feature-oriented reuse 

method FORM and component-oriented platform architecting (COPA) approaches focusing 

on data and metadata enrichment. Through the combination of these two approaches, the 

following can be taken into account:  

1. Administrative and organizational aspects such as roles and responsibilities, intergroup 

communication capabilities, personnel training, adoption of new technologies, strategic 

plans of the organization and marketing strategies; 

2. Technical aspects such as requirements, design, implementation, test and maintenance.  
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With respect to CBSD, our SMESE includes a method for selecting composer components for 

design of an SPLE. This method can manage and control the complexities of the component 

selection problem in the creation of the declared product line. Also, the SMESE architecture 

supports runtime variability and multiple and dynamic binding times of products.  

4. Subsystems within the SMESE multi-platform architecture 

The following sub-sections present in more detail the nine subsystems designed for the 

prototype of this SMESE architecture. 

4.1 Metadata initiatives & concordance rules (MICR) 

This section presents the details of the metadata initiatives & concordance rules (MICR), 

specifically the semantic metadata meta-catalogue (SMMC) as shown in Figure A 1.2.  

Metadata is structured information that describes, explains, locates, accesses, retrieves, uses, 

or manages an information resource of any kind. Metadata refers to data about data. Some use 

it to refer to machine understandable information, while others employ it only for records that 

describe electronic resources. In the library ecosystem, metadata is commonly used for any 

formal scheme of resource description, applying to any type of object, digital or non-digital. 

Many metadata schemes exist to describe various types of textual and non-textual objects 

including published books, electronic documents, archival documents, art objects, educational 

and training materials, scientific datasets and, obviously, the web. 

Libraries and information centers are the intermediaries between the information, information 

sources and users. In order to make information accessible, libraries perform several activities, 

one of the most important and fundamental of which is cataloguing. The technological 

developments of the past 25 years have radically transformed both the process of cataloguing 

and access to information through catalogues.  

Several rules have been proposed to cover the description and provision of access points for 

all library materials (entities). These rules are based on an individual framework for the 
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description of library materials. There is no ecosystem that allows the creation of universal, 

understandable and readable, metadata, that would describe all entities used in a library.  

 The most popular metadata models are:  

1. Dublin Core (DC): primarily designed to provide a simple resource description format 

for networked resources. DC does not have any coding to provide the necessary details 

for the specification of a record that could be converted to any machine readable coding 

like UNIMARC, MARC21; 

2. UNIMARC: consists of data formulated by highly controlled cataloguing codes. This 

format is difficult to understand and unreadable for the end user. For this reason, 

MARC21 was proposed; 

3. MARC21: is both flexible and extensible and allows users to work with data in ways 

specific to individual library needs. MARC21 remains difficult to understand, however;  

4. RDF/RDA: mainly in Europe, is a new model that includes FRBRized Bibliographic 

Records; 

5. BIBFRAME: mainly in North America, is a new model that includes FRBRized 

Bibliographic Records. 

In addition, there is no mapping model among these that would make them interoperable. The 

overall challenge is to develop: (1) a modeling of partial international standardization of 

entities, (2) a modeling of partial international standardization of metadata, and (3) a modeling 

of partial international standardization of metadata mapping ontology.  

Unfortunately, the power of metadata is limited: indeed, large national and international 

projects of digital libraries, such as Europeana and the Digital Public Library of America, have 

highlighted the importance of sharing metadata across silos. While both of these projects have 

been successful in harvesting collections data, they have had problems with rationalizing the 

data and forming a coherent and semantic understanding of the aggregation.  

In addition, organizations create digital collections and generate metadata in repository silos. 

Generally such metadata does not:  

1. Connect the digitized items to their analogue sources, 
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2. Connect names to authority records (persons, organizations, places, etc.) nor subject 

descriptions to controlled vocabularies, 

3. Connect to related online items accessible elsewhere.  

Aggregators harvest this metadata that, in the process, generally becomes inaccurate. In fact, 

aggregators usually ignore idiosyncratic use of metadata schemas and enforce the use of 

designated metadata fields. 

Connecting data across silos would help improve the ability of users to browse and navigate 

related entities without having to do multiple searches in multiple portals. The proposed model 

defines crosswalks that create pathways to different sources; each pathway checks the structure 

of the metadata source and then performs data harvesting.  Figure A 1.5 shows the SMMC 

model that addresses this issue. 

 

Figure A 1.5 Semantic metadata meta-catalogue (SMMC) 
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In SMESE the metadata is classified into six categories:   

1. Descriptive metadata: describes and identifies information resources at the local 

(system) level to enable searching and retrieving (e.g., searching an image collection 

to find paintings of animals) at the web-level, and to enable users to discover resources 

(e.g., searching the web to find digitized collections of poetry). Such metadata includes 

unique identifiers, physical attributes (media, dimensions, conditions) and 

bibliographic attributes (title, author/creator, language, keywords); 

2. Structural metadata: facilitates navigation and presentation of electronic resources and 

provides information about the internal structure of resources (including page, section, 

chapter numbering, indexes, and table of contents) in order to describe relationships 

among materials (e.g., photograph B was included in manuscript A), and to bind the 

related files and scripts (e.g., File A is the JPEG format of the archival image File B); 

3. Administrative metadata: facilitates both short-term and long-term management and 

processing of digital collections and includes technical data on creation and quality 

control, rights management, access control and usage requirements; 

4. Dimension, longevity and identification metadata: are new classifications that aim to 

increase user satisfaction, in terms of expected interests and emotions. For example, 

dimension metadata regroups all metadata about space, time, emotions and interests. 

This metadata allows finding specific content. Another example: emotions may suggest 

specific content to a particular user at a specific time and place. Furthermore, the source 

metadata identifies the provenance and the rights relative to the creation of the 

metadata.  

4.2   Harvesting of web metadata & data (HWMD) 

The harvesting of web metadata & data (HWMD) sources such as (see Figure A 1.6):  

1. Semantic digital resources, 

2. Digital resources, 

3. Portal/websites events, 

4. Social networks & events, 
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5. Enrichment repositories, 

6. Discovery repositories, 

7. Collaborative MediaLab. 

The integration of these sources in SMESE allows users to aggregate and enrich metadata and 

data. 

 

Figure A 1.6 Harvesting of web metadata & data (HWMD) 

4.3 Harvesting authority’s metadata & data (HAMD) 

This sub-section presents the details of the Harvesting of Authority’s Metadata & Data 

(HAMD) as shown in Figure A 1.7. 
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Figure A 1.7 Harvesting of authority’s metadata & data (HAMD) 

The Semantic Multi-Platform Ecosystem consists of many authority sources, such as:  

1. BAnQ (Bibliothèque et Archives nationales du Québec, 

2. BAC (Bibliothèque et Archives du Canada, 

3. BNF (Bibliothèque Nationale de France), 

4. Library of Congress, 

5. British Library, 

6. Europeana, 

7. Spanish Library. 

The integration of these platforms in SMESE allows users to build an integrated authority’s 

knowledge base. 

4.4   Rules-based semantic metadata external enrichments (RSMEE) 

This sub-section presents the details of the rule-based semantic metadata external enrichment 

engine (RSMEEE), as shown in Figure A 1.8. 
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Figure A 1.8 Rules-based semantic metadata external enrichments (RSMEE) 

Semantic searches over documents and other content types needs to use semantic metadata 

enrichment (SME) to find information based not just on the presence of words, but also on 

their meaning. RSMEEE consists of: 

1. Rule-based semantic metadata external enrichment, 

2. Multilingual normalization, 

3. Rule-based data conversion, 

4. Harvesting metadata & data. 

Linked open data (LOD) (see Figure A 1.9) based semantic annotation methods are good 

candidates to enrich the content with disambiguated domain terms and entities (e.g. events, 

emotions, interests, locations, organizations, persons), described through Unique Resource 

Identifiers (URIs) (Bontcheva et al., 2015). In addition, the original contents should be 

enriched with relevant knowledge from the respective LOD resources (e.g. that Justin Trudeau 

is a Canadian politician). This is needed to answer queries that require common-sense 

knowledge, which is often not present in the original content. For example: following semantic 

enrichment, a semantic search for events that provides specific emotions (e.g., happiness, joy) 

in Montreal according to individual interests this weekend would indeed provide relevant 

metadata about events in Montreal, even though not explicitly mentioned in the original 

content metadata.  
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Figure A 1.9 Linked Open Data (LOD) 

The semantic annotation process of SMESE creates relationships between semantic models, 

such as ontologies and persons. It may be characterized as the semantic enrichment of 

unstructured and semi-structured contents with new knowledge and linking these to relevant 

domain ontologies/knowledge bases. It typically requires annotating a potentially ambiguous 

entity mention (e.g. Justin Trudeau) with the canonical identifier of the correct unique entity 

(e.g. depending on the content - http://dbpedia.org/page/Justin_Trudeau). The benefit of social 

semantic enrichment is that by surfacing annotated terms derived from the full-text content, 

concepts buried within the body of the paper/report can be highlighted. Also, the addition of 

terms affects the relevance ranking in full-text searches. Moreover, users can be more specific 

by limiting the search criteria to the subject or interest or emotion metadata (e.g. through 

faceted search). 

4.5 Rule-based semantic metadata internal enrichments (RSMIE) 

This sub-section presents the details of the rule-based semantic metadata internal enrichment 

(RSMIE) including software product line engineering (SPLE), as shown in Figure A 1.10. 

This sub-system includes:  

1. A rule-based semantic metadata internal enrichment, 



101 

2. A multilingual normalization process, 

3. Software Product Line Engineering (SPLE), 

4. A topic, sentiment, emotion, abstract analysis and an automatic literature review. 

These processes extract, analyze and catalogue metadata for topics and emotions involved in 

the SMESE ecosystem. These enrichment processes are based on information retrieval and 

knowledge extraction approaches. The text is analyzed making use of extension of text mining 

algorithms such as latent Dirichlet allocation (LDA), latent semantic analysis (LSA), support 

vector machine (SVM) and k-Means. 

 

Figure A 1.10 Rule-based semantic metadata internal enrichment (RSMIE) 

The different phases of the enrichment process by topics are:  

1. Relevant and less similar documents selection phase, 

2. Not annotated documents semantic term graph generation phase, 

3. Topics detection phase, 

4. Training phase, 

5. Topics refining phase. 

The different phases of the enrichment process by sentiments and emotions are:  

1. Sentiment and emotion lexicon generation phase, 

2. Sentiment and emotion discovery phase, 

3. Sentiment and emotion refining phase. 
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One of the contributions of the SMESE for digital libraries is that it is not specific to one 

software product but can be applied to many products dynamically. In addition, it includes a 

semantic metadata enrichment (SME) process to improve the quality of search and discovery 

engines. 

Indeed, our goal is to provide a SECO that offers a new way to share and learn knowledge. In 

practice, with the emergence of Big Data, knowledge is not easy to find at the right time and 

place. The proposed ecosystem uses an SPLE architecture that is a combination of FORM and 

COPA approaches to catalogue semantically different contents.  

Furthermore, we introduce an SPLE decision support process (SPLE-DSP) in order to meet 

the SPLE characterization such as:  

1. Runtime variability functionalities support, 

2. Multiple and dynamic binding, 

3. Context-awareness and self-adaptation.  

 SPLE-DSP supports the activation and deactivation of features and changes in the structural 

variability at runtime and takes into account automatic runtime reconfiguration according to 

different scenarios. In addition, SPLE-DSP rebinds to new services dynamically based on the 

description of the relationships and transitions between multiple binding times under an SPLE 

when the software adapts its system properties to a new context. To take into account context 

variability to model context-aware properties, SPLE-DSP makes use of an autonomous robot 

that exploits context information to adapt software behavior to varying conditions.  

Furthermore, SPLE-DSP integrates the adaptation of assets and products dynamically. This 

helps products to evolve autonomously when the environment changes and provides self-

adaptive and optimized reconfiguration. Additionally, SPLE-DSP exploits knowledge and 

context profiling as a learning capability for autonomic product evolution by enhancing self-

adaptation.  

The SPLE-DSP model is an optimized metadata based reconfiguration model where users 

select their preferences in terms of configuration of interests.  
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The dynamic and optimized metadata-based reconfiguration model (DOMRM) takes into 

account the preferences of several users who have distinct requirements in terms of desirable 

features and measurable criteria. For example: 

1. In terms of hardware criteria, the user can select preferences in terms of memory and 

power consumption or feature attributes such as internet bandwidth or screen 

resolution; 

2. In terms of software criteria, the user can select the entities and their properties, the 

property characteristics such as the displaying mode, and expected value type.  

Indeed, when user preferences change at runtime, the system must be reconfigured to satisfy 

as many preferences as possible. Since user preferences may be contradictory, only some will 

be partially satisfied and a relevant algorithm needed to compute the most suitable 

reconfiguration. To overcome this drawback, we developed the use of a new metadata-based 

feature model, referred to as the BiblioMondo semantic feature model (BMSFM), to represent 

user preferences in terms of semantic features and attributes. Our BMSFM constitutes an 

evolution of traditional stateful feature models (Trinidad, 2012) that includes the set of user 

metadata based configurations in the model itself, which allows the representation of user 

decisions with attributes and cardinalities. More specifically, we developed a metadata-based 

reconfiguration model that defines all possible metadata and all possible entities that users may 

need in a specific domain. When a user needs new metadata, he uses the metadata-based 

request creation tool. The DOMRM model analyses the request and checks whether the 

requested metadata is relevant and does not already exist. Thus when needed the model 

automatically creates the new metadata and reconfigures the ecosystem which then becomes 

available for all users. 

Figure A 1.11 illustrates the DOMRM model we designed that is an optimized metadata based 

configuration for multiple users.  
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Figure A 1.11 Optimized metadata based configuration for multiple users – DOMRM model 

When the user chooses preferences in terms of system behavior, the semantic weight of each 

feature is computed based on the feature configuration model (FCM). FCM represents the 

semantic relationship between features where each feature is active or not. In addition, FCM 

defines the rules that control the activation status of each feature according to its links with the 

other features. For example, a rule may be: feature Fi should never be activated when Fi-1 is 

activated. Based on this rule, the model automatically activates or deactivates the feature.  

The rules are also used to predict the behavior of the application based on the activation status 

of features according to user preferences. Notice that each user has his own weight per feature 

that is defined based on his use of the feature. This weight quantifies the importance of the 

feature for the user. (More details about the DOMRM algorithm appear in Appendix A). 

4.6 Semantic metadata external & internal enrichments synchronization (SMEIES) 

This sub-section presents the semantic metadata external & internal enrichment 

synchronization which represents which processes to synchronize and which enrichments to 

push outside the ecosystem. See Figure A 1.12.  
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Figure A 1.12 Semantic metadata external & internal enrichment synchronization (SMEIES) 

4.7 User interest-based gateway (UIG) 

This sub-section presents the user interest-based gateway (UIG) that represents the person 

(mobile or stationary) who interacts with the ecosystem. See Figure A 1.13. 

 

Figure A 1.13 User Interest-based Gateway (UIG) 

The users and contributors are categorized into five groups:  

1. Interest-based gateway (mobile-first), 

2. Semantic Search (SS), 

3. Discovery, 

4. Notifications, 

5. Metadata source selection. 
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4.8 Semantic master catalogue (SMC) 

This sub-section presents the semantic master catalogue (SMC) that represents the knowledge 

base of the SMESE ecosystem. See Figure A 1.14. 

 

Figure A 1.14 Semantic Master Catalogue (SMC) 

4.9 Semantic analytical (SA) 

This sub-section presents the semantic analytical (SA) that represents the analytical of the 

SMESE ecosystem. See Figure A 1.15. 

 

Figure A 1.15 Semantic Analytical (SA) 
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5. An implementation of SMESE for a large semantic digital library in industry 

The proposed SMESE architecture has been implemented for a large digital library. The 

product InMédia V5 was implemented with a global metadata model defined with all the 

known entities and constraints. The catalogue contains more than 2 million items, with 18 

entities and 132 defined metadata. SMMC identifies 1453 metadata and defines a metamodel 

that consists of a semantic classification of metadata into meta entities.  

In addition to semantic web technologies, the characteristics and challenges of SMESE for 

large digital libraries are: 

1. Automatic cataloguing with the least human intervention, 

2. Metadata enrichment, 

3. Discovery and definition of semantic relationships between metadata and records, 

4. Semi-automatic classification of bibliographic records, 

5. Semantic cataloging and validated metadata making use of a multilingual thesaurus. 

First, we defined a list of entities, called Meta Entity, which introduced 193 items. These items 

represent all library materials. In addition, the structure of the model allows addition of new 

entities as may be required. Figure A 1.16 shows the SMESE meta-entity model where for 

each entity there is: an ID, propertyName, description, labels in different languages, and the 

domain that represents the logic group of the entity.  The domain may be ‘user’ as response 

value for a metadata. In this implementation, all instances of the entities of the domain can be 

the response value. The ID allows the user to uniquely identify the entity whatever the 

language, the source of entities or the metadata model (DC, UNIMARC, MARC21, RDA, 

BIBFRAME). 
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Figure A 1.16 SMESE Meta Entity model 

Next, the list of metadata is defined. 1341 metadata are defined. Each metadata entry has the 

following additional metadata called Meta Metadata:ID, relatedContentType, is Enrichment, 

is Repeatable, thesaurus, type, and sourceOfSchema, which are defined as follows: 

1. “sourceOfSchema” represents the origin of the metadata; 

2. “id” allows unique identification of the entity; 

3. “propertyName” is a comprehensive term that defines this metadata; 

4. “UNIMARC”, “MARC21”, “propertyName” allow users to create a mapping between 

them to make them interoperable; 

5. “UNIMARC” and “MARC21” are codes such as 300$abcf; 

6. “Expected type” represents the type of value that may be assigned to the metadata as 

response; 

7. “isRelated” denotes that the response of the metadata is an entity where the identity is 

given by “relatedContentType”; 

8. “thesaurus” mentions the thesaurus name that is used to control the responses to assign 

to the metadata; 
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9. “type” allows classification of the metadata as “descriptive”, “structural”, 

“administrative”, “dimension”, “longevity” or “identification”.  

This classification allows users to do meta research. Figure A 1.17 shows an illustration of the 

Meta Metadata model. 

 

Figure A 1.17 SMESE metadata model 

The semantic matrix model is defined for each entity based on the metaentity and metadata 

model. This semantic matrix model allows users to define a metadata matrix for each entity 

where a metadata matrix denotes the logical subset of metadata of metadata model that 

describes a given entity. Figure A 1.18 illustrates an example of a semantic metadata matrix 

for a specific content. The objective behind the matrix is to allow the reuse of metadata for 

distinct entities. This extends the search range for entities, facilitates the search for users in 

terms of search criteria and increases the probability of achieving satisfying results. 



110 

 

Figure A 1.18 Example of a SMESE semantic matrix model 

After the definition of entities of collections and harvesting of metadata from the dispersed 

collections, a metadata crosswalk is carried out. This is a process in which relationships among 

the schema are specified, and a unified schema is developed for the selected collection. It is 

one of the important tasks for building “semantic interoperability” among collections and 

making the new digital library meaningful.  

The most frequent issues regarding mapping and crosswalks are: incorrect mappings, misuse 

of metadata elements, confusion in descriptive metadata and administrative metadata, and lost 

information. Indeed, due to the varying degrees of depth and complexity, the crosswalks 

among metadata schemas may not - necessarily be equally interchangeable. To solve the issue 

of varying degrees of depth, we developed atomic metadata: these metadata allow description 

of the most elementary aspects of an entity. It then becomes easy to map all metadata from any 

schema.  
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Figure A 1.19 illustrates a mapping ontology model where relationships are in red while simple 

descriptions are in black. 

 

Figure A 1.19 Ontology mapping model 

Figure A 1.20 shows that each entity has at a minimum one source of schema denoted by the 

relationship “hasSource” and a minimum of one metadata denoted by the relationship 

“hasMetadata”. The relationship “sameAs” is used to denote the mapping between distinct 

metadata or entity schema source. 
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Figure A 1.20 Ontology mapping implementation using Protégé 

The output of the ontology is an OWL file. This OWL file is used by a crosswalk to 

automatically assign metadata value that are harvested from distinct sources. In the proposed 

ecosystem two sources are harvested: Discogs (www.discogs.com) for music and 

ResearchGate (www.researchgate.net) for academic papers. 

A total of 94,015,090 metadata records were collected from these two sources:  

• From Discogs, we collected 7,983,288 entities: 2,621,435 music releases, 4,466,660 

artists and 895,193 labels; 

• From researchGate, we collected 86,031,802 entities: 77,031,802 publications and 

more than 9,000,000 researchers. 

In fact, SMESE contains more than 3.4 billions triplets and growing. 

6. Summary and future work 

In this paper, we proposed a design and implementation of a semantic enriched metadata 

software ecosystem (SMESE).  
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The SMESE prototype, which was implemented at BiblioMondo, integrates data and metadata 

enrichment to support specific applications for distributed content management. To perform 

this integration, SMESE makes use of the software product line engineering (SPLE) approach, 

a component-based software development (CBSD) approach and our proposed new concept, 

called semantic metadata enrichment (SME) with distributed contents and mobile first design 

(MFD). In this implementation, the SPLE architecture is a combination of FORM and COPA 

approaches. 

We also presented our implementation of SMESE for digital libraries. This included SPLE-

DSP, a new decision support process for SPLE. SPLE-DSP consists of a dynamic and 

optimized metadata based reconfiguration model (DOMRM) where users select their 

preferences in the market place. SPLE-DSP takes into account runtime variability 

functionalities, multiple and dynamic binding, context-awareness and self-adaptation.  

We also implemented the Meta Entity that represents all library materials and meta metadata. 

The ontology mapping model was then implemented to make our models interoperable with 

existing metadata models such as Dublin Core, UNIMARC, MARC21, RDF/RDA and 

BIBFRAME.  

The major contributions of this paper are as follows: 

1. Definition of a software ecosystem architecture (SMESE) that configures the 

application production process including software aspects based on CBSD and SPLE 

approaches; 

a. The use of a LOD-based semantic enrichment model for semantic annotation 

processes; 

b. The integration of National Research Council of Canada (NRC) emotion lexicon 

for emotion detection; 

c. A repository of 43 thesaurus included in RAMEAU for semantical 

contextualization of concepts; 

d. An extended latent Dirichlet allocation (LDA) algorithm for topic modelling; 
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2. Definition and partial implementation of semantic metadata enrichment using metadata 

SPLE and an SMMC (semantic master metadata catalogue) to create a universal 

metadata knowledge gateway (UMKG); 

3. The design and implementation of an SMESE prototype of for a semantic digital library 

(Libër). 

This paper proposed a semantic metadata enrichments software ecosystem (SMESE) to support 

multi-platform metadata driven applications, such as a semantic digital library. Our SMESE 

integrates data and metadata based on mapping ontologies in order to enrich them and create a 

semantic master metadata catalogue (SMMC).  

Within the SPLE context, SPLE-DSP is used by SMESE to support dynamic reconfiguration.  

This consists of a dynamic and optimized metadata based reconfiguration model (DOMRM) 

where users select their preferences within the market place. SPLE-DSP takes into account 

runtime metadata-based variability functionalities, multiple and dynamic binding, context-

awareness and self-adaptation. Our SMESE represents more than 200 million relationships 

(triplets). Figure A 1.21 represents, in blue, the - implemented SMESE platform. 

Future work will include: 

1. An enhanced ecosystem and rule-based algorithms to enrich metadata semantically, 

including topics, sentiments and emotions; 

2. Evaluation of the performance of an implementation of the SMESE ecosystem using 

different projects, comparing- results against existing techniques of metadata 

enrichments; 

3. Exploring text summarization and automatic literature review as metadata enrichment. 

The semantic annotations could be used to enrich metadata and provide new types of 

visualizations by chaining documents backward and forward inside automated 

literature reviews. 
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Figure A 1.21 Proposed SMESE architecture: semantic enriched metadata software 
ecosystem 

Appendix A: Dynamic and Optimized Metadata-based Reconfiguration Model 
(DOMRM) 

This Appendix presents the details of the DOMRM model. The main idea behind DOMRM is 

the more a user uses a specific feature, the more his weight for this feature increases. The 

weight UjFi of user j for feature i is given by: 

݅ܨ݆ܷ  = ݊(ܷ݆, ∑(݅ܨ ݊(ܷ݇, ௉௞ୀଵ(݅ܨ  
(A 1.1) 

where n(Uj,Fi) denotes the number of times user j used the feature i.  

Making use of user weight per feature and their preferences, the feature weight that determines 

its activation or not is computed. Considering that US is the set of users who have selected a 

feature Fi (activation of feature), and UR is the set of users who have removed that feature 

(deactivation of feature), the value 1 is assigned when a user actives the feature, and -1 when 
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he removes it. Let c(Uj,Fi) be the choice of user j for the activation status of feature Fi. The 

weight of feature Fi can be defined -using the following formula: 

(݅ܨ)ݓ  = {ିଵ										௪௛௘௧௛௘௥	଴	வ	∑ ሾ௖(௎௞,ி௜)×௎௞ி௜ሿೈ	∈	ೆೄ	∪	ೆೃ	ଵ													௪௛௘௧௛௘௥	଴	ழ	∑ ሾ௖(௎௞,ி௜)×௎௞ி௜ሿೈ	∈	ೆೄ	∪	ೆೃ	  (A 1.2) 

 

The computed weight of each feature allows one to define the weight FM that is used by the 

system optimal configurator with the FCM to generate the new configuration of the system for 

all users. When the feature weight is negative and the FIS rules allow de-activation, the feature 

is deactivated and when the feature weight is positive and the FIS rules allow activation the 

DOMRM model activates the feature. The activation status of the feature is not modified when 

the feature weight is null and the current activation status is conserved. 
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Abstract 

Semantic information retrieval is frequently used to extract meaningful information from the 

unstructured web and from long texts. As existing computer search engines struggle to 

understand the meaning of natural language, semantically enriching entities with meaningful 

metadata may improve search engine capabilities.  

In a previous paper, SMESE for semantic metadata enrichment software ecosystem based on 

a multi-platform metadata model has been proposed. This paper presents an enhanced version 

with interest-based enrichments named SMESE V3.  

This paper proposes to help users finding interest-based contents, through text analysis 

approaches for sentiments and emotions detection. SMESE V3 can be used (or: makes it 

possible) to create a semantic master catalogue with enriched metadata that enables interest-

based search and discovery. This paper presents the design, implementation and evaluation of 

a SMESE V3 platform using metadata and data from the web, linked open data, harvesting and 
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concordance rules, and bibliographic record authorities. It includes three distinct processes 

that: 

1. Discover enriched sentiment and emotion metadata hidden within the text or linked to 

multimedia structure using the proposed BM-SSEA (BM-Semantic Sentiment and 

Emotion Analysis) algorithm; 

2. Implement rule-based semantic metadata internal enrichment (RSMIEE includes 

algorithms BM-SATD and BM-SSEA); 

3. Generate semantic topics by text, and multimedia content analysis using the proposed 

BM-SATD (BM-Scalable Annotation-based Topic Detection) algorithm.  

The performance of the proposed ecosystem is evaluated using a number of prototype 

simulations by comparing them to existing enriched metadata techniques. The results show 

that the enhanced SMESE V3 and its algorithms enable greater understanding of content for 

purposes of interest-based search and discovery. 

 

Keywords: emotion detection, natural language processing, semantic topic detection, semantic 

metadata enrichment, sentiment analysis, text and data mining. 

 

1. Introduction 

The rapid development of search and discovery engines, the sudden availability of millions of 

documents, and the millions upon millions of relationships to linked documents from a 

growing multitude of sources (e.g., online media, social media and published documents) all 

make it challenging for a user to find documents relevant to his or her interests or emotions. 

Currently, rich information within text data can be utilized to reveal some meaningful semantic 

metadata, such as sentiments, emotions, and semantic relationships. Semantic information 

retrieval (SIR) is the science of searching semantically for information within databases, 

documents, texts, multimedia files, catalogues and the web. 
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The human brain has an inherent ability to detect topics, emotions, relationships or sentiments 

in written or spoken language. However, the internet, social media and repositories have 

expanded the number of sources, volume of information and number of relationships so fast 

that it has become difficult to process all this information (Appel et al., 2016).  

The goal is to increase the findability of entities matching user interest using external (outside 

documents) and internal (within documents) semantic metadata enrichment algorithms. While 

computer search engines struggle to understand the meaning of natural language, semantically 

enriching entities with meaningful metadata may improve those capabilities. Words 

themselves are often used inconsistently, having a wide variety of definitions and 

interpretations. Although there may be no relationship between individual words of a topic, 

sentiment or emotion, thesauri do express associative relationships between words, ontologies, 

entities and a multitude of relationships represented as triplets.  

Finding bibliographic references or semantic relationships in texts makes it possible to localize 

specific text segments using ontologies to enrich a set of semantic metadata related to topics, 

sentiments and emotions. This paper presents an enhanced implementation of SMESE using 

metadata and data from linked open data, structured data, metadata initiatives, concordance 

rules and authority’s metadata to create a semantic metadata master catalogue.  

The current methodology proposed by SIR researchers for text analysis within the context of 

entity metadata enrichment (EME) reduces each document in the corpus to a vector of real 

numbers where each vector represents ratios of counts. Several EME approaches have been 

proposed, most of them making use of term frequency–inverse document frequency (tf-idf) 

(Niu et al., 2016; Salton & Buckley, 1988). In the tf-idf scheme, a basic vocabulary of  “words” 

or “terms” is chosen, then for each document in the corpus, a frequency count is calculated 

from the number of occurrences of each word (Niu et al., 2016; Salton & Buckley, 1988). After 

suitable normalization, the frequency count is compared to an inverse document frequency 

count (e.g the inverse of the number of documents in the entire corpus where a given word 

occurs — generally on a log scale, and again suitably normalized). The end result is a term-

by-document matrix X whose columns contain the tf-idf values for each of the documents in 

the corpus. Thus the tf-idf scheme reduces documents of arbitrary length to fixed-length lists 
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of numbers. For non-textual content, tools are available to extract the text from multimedia 

entities. For example, Bougiatiotis and Giannakopoulos (Bougiatiotis & Giannakopoulos, 

2016) propose an approach that extracts topical representations of movies based on mining of 

subtitles. This paper focuses on contributions to mainly one EME research fields: sentiment 

analysis (SA).  

The main objective of sentiment analysis (SA) is to establish the attitude of a given person 

with regard to sentences, paragraphs, chapters or documents (Appel et al., 2016; Balazs & 

Velásquez, 2016; Kiritchenko, Zhu, & Mohammad, 2014; Niu et al., 2016; Patel & Madia, 

2016; Ravi & Ravi, 2015; Serrano-Guerrero et al., 2015; Taboada, Brooke, Tofiloski, Voll, & 

Stede, 2011; Vilares, Alonso, & GÓMez-RodrÍGuez, 2015). Indeed, many websites offer 

reviews of items like books, cars, mobiles, movies etc., where products are described in some 

detail and evaluated as good/bad, preferred/not preferred; unfortunately, these evaluations are 

insufficient for users in order to help them to make decision. In addition, with the rapid spread 

of social media, it has become necessary to categorize these reviews in an automated way (Niu 

et al., 2016).  

For this automatic classification, there are different methods to perform SA, such as keyword 

spotting, lexical affinity and statistical methods. However, the most commonly applied 

techniques to address the SA problem belong either to the category of text classification 

supervised machine learning (SML), which uses methods like naïve Bayes, maximum entropy 

or support vector machine (SVM), or to the category of text classification unsupervised 

machine learning (UML).  

Also, fuzzy sets appear to be well-equipped to model sentiment-related problems given their 

mathematical properties and ability to deal with vagueness and uncertainty —characteristics 

that are present in natural languages processing.  

Thus, a combination of techniques may be successful in addressing SA challenges by 

exploiting the best of each technique. In addition, the semantic web may be a good solution for 

searching relevant information from a huge repository of unstructured web data (Patel & 

Madia, 2016).  
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According to (Balazs & Velásquez, 2016), the SA process typically consists of a series of steps: 

1. Corpus or data acquisition, 

2. Text preprocessing, 

3. Opinion mining core process, 

4. Aggregation and summarization of results, 

5. Visualization. 

One current limitation in the area of SA research is its focus on sentiment classification while 

ignoring the detection of emotions. For example, document emotion analysis may help to 

determine an emotional barometer and give the reader a clear indication of excitement, fear, 

anxiety, irritability, depression, anger and other such emotions.  For this reason, we focus on 

sentiment and emotion analysis (SEA) instead of SA. 

A number of algorithms or approaches are used to perform text mining, including: latent 

Dirichlet allocation (LDA) (David M.  Blei et al., 2003), tf-idf (Niu et al., 2016; Salton & 

Buckley, 1988), latent semantic analysis (LSA) (Dumais, 2004), formal concept analysis 

(FCA) (Cigarrán et al., 2016), latent tree model (LTM) (P. Chen et al., 2016), naïve Bayes 

(NB) (Moraes et al., 2013), support vector machine method (SVM) (Moraes et al., 2013), 

artificial neural network (ANN) (Ghiassi et al., 2013)  based on the associated document’s 

features. 

Our approach improves the accuracy of topic detection, sentiment and emotion discovery by 

semantically enriching the metadata from the linked open data and the bibliographic records 

existing in different formats. This paper presents the design, implementation and evaluation of 

an enhanced ecosystem, called semantic metadata enrichment ecosystem or SMESE V3. It 

includes: 

1. An enhanced semantic metadata meta-catalogue, 

2. An enhanced harvesting of metadata & data, 

3. Metadata enrichment based on semantic topic detection, sentiment and emotion 

analysis.  
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More specifically, SMESE V3 consists of processes implementing two rule-based algorithms 

to enrich metadata semantically: 

1. BM-SATD: generation of semantic topics by text analysis, relationships and 

multimedia contents; 

2. BM-SSEA: discovery of sentiments and emotions hidden within the text or linked to a 

multimedia structure through an AI computational approach. 

Using simulation, the performance of SMESE V3 was evaluated in terms of accuracy of topic 

detection, sentiment and emotion discovery. Existing approaches to enriching metadata (e.g., 

topic detection, sentiment or emotion discovery) were used for comparison. Simulation results 

showed that SMESE V3 outperforms existing approaches. 

The remainder of the paper is organized as follows. Section 2 presents the related work. Section 

3 describes SMESE V3 and its various algorithms while Section 4 presents the prototype of 

the SMESE V3 multiplatform architecture developed. Section 5 presents the evaluation 

through a number of simulations. Section 6 presents a summary and some suggestions for 

future work. 

2. Related work 

In the past few years, a number of natural language processing (NLP) tasks have been 

configured for semantic web (SW) tasks including: ontology learning, linked open data, entity 

resolution, natural language querying to linked data, etc. (Gangemi, 2013). This improvement 

of metadata enrichment using SW involves obtaining hidden data, hence the concept of entity 

metadata extraction (EME).  

Interest in EME was initially limited to those in the SW community who preferred to 

concentrate on manual design of ontologies as a measure of quality.  Following linked data 

bootstrapping provided by DBpedia, many changes ensued with a consequent need for 

substantial population of knowledge bases, schema induction from data, natural language 

access to structured data, and in general all applications that make for joint exploitation of 

structured and unstructured content. In practice, NLP research started using SW resources as 
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background knowledge. Graph-based methods, meanwhile, were incrementally entering the 

toolbox of semantic technologies at large. 

In the related work section, two fields of entity metadata extraction research from text aspect 

are investigated: 

1. Sentiment and emotion analysis (SEA), 

2. Semantic topic detection (STD), see Appendix C – Semantic topic detection. 

2.1 Sentiment and emotion analysis 

2.1.1  Sentiment analysis 

The problem of sentiment analysis has been widely studied and different approaches applied, 

such as machine learning (ML), natural language processing (NLP) and semantic information 

retrieval (SIR).  

There are three main techniques for sentiment analysis (Shivhare & Khethawat, 2012):  

1. Keyword spotting, 

2. Lexical affinity, 

3. Statistical methods. 

Keyword spotting includes developing a list of keywords that relate to a certain sentiment. 

These words are usually positive or negative adjectives since such words can be strong 

indicators of sentiment. Keyword spotting classifies text by affect categories based on the 

presence of unambiguous affect words such as happy, sad, afraid, and bored.  

Lexical affinity is slightly more sophisticated than keyword spotting. Rather than simply 

detecting obvious affect words, it assigns to arbitrary words a probabilistic ‘affinity’ for a 

particular emotion. Lexical affinity determines the polarity of each word using different 

unsupervised techniques. Next it aggregates the word scores to obtain the polarity score of the 

text. For example, ‘accident’ might be assigned a 75% probability of indicating a negative 

effect, as in ‘car accident’ or ‘injured in an accident’.  
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Statistical methods, such as Bayesian inference and support vector machines, are supervised 

approaches in which a labeled corpus is used for training a classification method which builds 

a classification model used for predicting the polarity of novel texts. By feeding a large training 

corpus of affectively annotated texts to a machine learning algorithm, it is possible for the 

system to not only learn the affective valence of affect keywords (as in the keyword spotting 

approach), but also to take into account the valence of other arbitrary keywords (like lexical 

affinity), punctuation, and word co-occurrence frequencies. In addition, sophisticated NLP 

techniques have been developed to address the problems of syntax, negation and irony. 

Sentiment analysis can be carried out at different levels of text granularity: document (Bosco 

et al., 2013; Cho et al., 2014; Kontopoulos et al., 2013; Lin et al., 2012; Moraes et al., 2013; 

Moreo et al., 2012), sentence (Abdul-Mageed et al., 2014; Appel et al., 2016; Desmet & Hoste, 

2013; Niu et al., 2016; Patel & Madia, 2016), phrase (Tan et al., 2012), clause, and word (L. 

Chen et al., 2012; Ghiassi et al., 2013; Quan & Ren, 2014).  

Sentiment analysis may be at the sentence or phrase level (which has recently received quite a 

bit of research attention) or at the document level.  

From the perspective of this paper, our work may be seen as document-level sentiment 

analysis—that is, a document is regarded as an opinion on an entity or aspect of it. This level 

is associated with the task called document-level sentiment classification, i.e., determining 

whether a document expresses a positive or negative sentiment.  

In (Ravi & Ravi, 2015), the authors presented a survey of over one hundred articles published 

in the last decade on the tasks, approaches, and applications of sentiment analysis. With a major 

part of available worldwide data being unstructured (such as text, speech, audio, and video), 

this poses important research challenges. In recent years numerous research efforts have led to 

automated SEA, an extension of the NLP area of research. The authors identified seven broad 

classifications:  

1. Subjectivity classification, 

2. Sentiment classification, 

3. Review usefulness measurement, 

4. Lexicon creation, 
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5. Opinion word and product aspect extraction, 

6. Opinion spam detection, 

7. Various applications of opinion mining. 

The first five dimensions represent tasks to be performed in the broad area of SEA. For the 

first three dimensions (subjectivity classification, sentiment classification and review 

usefulness measurement), the authors note that the applied approaches are broadly classified 

into three categories:  

1. Machine learning, 

2. Lexicon based, 

3. Hybrid approaches. 

Since one of our research objectives was to extract sentiment and emotion metadata from 

documents, the rest of this section focuses on sentiment classification, lexicon creation, and 

opinion word and product aspect extraction. Sentiment classification is concerned with 

determining the polarity of a sentence; that is, whether a sentence is expressing positive, 

negative or neutral sentiment towards the subject. A lexicon is a vocabulary of sentiment words 

with respective sentiment polarity and strength value while opinion word and product aspect 

extraction is used to identify opinion on various parts of a product. As per our research 

objective the rest of the literature review was oriented to document-level sentiment analysis. 

For our purposes, we assume that a document expresses sentiments on a single content and is 

written by a single author. 

Cho et al. (Cho et al., 2014) proposed a method to improve the positive vs. negative 

classification performance of product reviews by merging, removing, and switching the entry 

words of the multiple sentiment dictionaries. They merge and revise the entry words of the 

multiple sentiment lexicons using labeled product reviews. Specifically, they selectively 

remove the sentiment words from the existing lexicon to prevent erroneous matching of the 

sentiment words during lexicon-based sentiment classification. Next, they selectively switch 

the polarity of the sentiment words to adjust the sentiment values to a specific domain. The 

remove and switch operations are performed using the target domain’s labeled data, i.e. online 

product reviews, by comparing the positive and negative distribution of the labeled reviews 
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with a positive and negative distribution of the sentiment words. They achieved 81.8% 

accuracy for book reviews. However, their contribution is limited to development of a novel 

method of removing and switching the content of the existing sentiment lexicons.  

Moraes et al. (Moraes et al., 2013) compared popular machine learning approaches (SVM and 

NB) with an ANN-based method for document-level sentiment classification. Naive Bayes 

(NB) is a probabilistic learning method that assumes terms occur independently while the 

support vector machine method (SVM) seeks to maximize the distance to the closest training 

point from either class in order to achieve better generalization/classification performance on 

test data. The authors reported that, despite the low computational cost of the NB technique, it 

was not competitive in terms of classification accuracy when compared to SVM. According to 

the authors, many researchers have reported that SVM is perhaps the most accurate method for 

text classification. Artificial neural network (ANN) derives features from linear combinations 

of the input data and then models the output as a nonlinear function of these features. 

Experimental results showed that, for book datasets, SVM outperformed ANN when the 

number of terms exceeded 3,000. Although SVM required less training time, it needed more 

running time than ANN. For 3,000 terms, ANN required 15 sec training time (with negligible 

running time) while SVM training time was negligible (1.75 sec). In addition, their 

contribution was limited to performing comparisons between existing approaches. As in 

(Moraes et al., 2013), Poria S. et al. (Poria et al., 2015) experimented with existing approaches 

and showed that SVM is a better approach for text-based emotion detection. 

2.1.2  Emotion analysis 

This section focuses on sentiment and emotion analysis. Emotions include the interpretation, 

perception and response to feelings related to the experience of any particular situation. 

Emotions are also associated with mood, temperament, personality, outlook and motivation 

(Li & Xu, 2014; Munezero et al., 2014; Shivhare & Khethawat, 2012); indeed, the concepts of 

emotion and sentiment have often been used interchangeably, mostly because both refer to 

experiences that result from combined biological, cognitive, and social influences. However, 

sentiments are differentiated from emotions by the duration in which they are experienced. 
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Emotions are brief episodes of brain, autonomic, and behavioral changes. Sentiments have 

been found to form and be held over a longer period and to be more stable and dispositional 

than emotions. Moreover, sentiments are formed and directed toward an object, whereas 

emotions are not always targeted toward an object.  

The emotion-topic model (ETM) (Bao et al., 2012), SWAT model and emotion-term model 

(ET) (Bao et al., 2012) are the state-of-the-art models. The SWAT model was proposed to 

explore the connection between the evoked emotions of readers and news headlines by 

generating a word-emotion mapping dictionary. For each word w in the corpus, it assigns a 

weight for each emotion e, i.e., P(e|w) is the averaged emotion score observed in each news 

headline H in which w appears. The emotion-term model is a variant of the NB classifier and 

was designed to model word-emotion associations. In this model, the probability of word wj 

conditioned on emotion ek is estimated based on the co-occurrence count between word wj 

and emotion ek for all documents. The emotion-topic model is combination of the emotion-

term model and LDA. In this model, the probability of word wj conditioned on emotion ek is 

estimated based on the probability of latent topic z conditioned on emotion ek and the 

probability of word wj conditioned on latent topic z.  

A number of techniques exist to detect emotions (Kedar, Bormane, Dhadwal, Alone, & 

Agarwal, 2015):  

1. Audio based emotion detection: information from the spectral elements in voice (e.g., 

speaking rate, pitch, energy of speech, intensity, rhythm regularity, tempo and stress 

distribution) is used to gather clues about emotions. The features extracted are 

compared with the training sets in the database using the classifiers; 

2. Blue eyes technology based on eye moment. In this technique, a picture of the person 

whose emotions are to be detected is taken and the portion showing his or her eyes is 

extracted. This extracted image is converted from RGB form to a binary image and 

compared with ideal eye images depicting various emotions stored in the database. 

Once the match between the extracted image and one in the database is found, the type 

of emotion (i.e. happiness, anger, sadness or surprise) is said to be detected; 
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3. Facial expression based emotion detection based on photos of the individual. The 

images are processed for skin segmentation and analyzed as follows. The image is 

contrasted, separating the brightest and darkest color in the image area and 

discriminating the pixels between skin and non-skin. The image is converted into 

binary form. This processed image is then compared with images forming the training 

sets in classifiers; 

4. Handwriting based emotion detection is based on various handwriting indicators or 

traits of writing (e.g., baseline, slant, pen-pressure, size, zone, strokes, spacing, 

margins, loops, ‘i’-dots, ‘t’-bar, etc.); 

5. Text based emotion detection where a computerized NLP approach is used to analyze 

written text to detect the emotions of the writer. The document is first preprocessed by 

normalizing the text, then keywords indicating emotional features are extracted. 

Corresponding emotions are identified through various approaches such as: 

a. Keyword spotting technique, 

b. Lexical affinity method, 

c. Learning based methods, 

d. Hybrid method, or by using an emotion ontology which stores a range of emotion 

classes, associated keywords and relationships. 

Text-based emotion detection approaches focus on ‘optimistic’, ‘depressed’ and ‘irritated.’ 

The limitations are:  

1. Ambiguity of keyword definitions, 

2. Inability to recognize sentences without keyword, 

3. Difficulty determining emotion indicators.  

Lei et al. (Lei et al., 2014) adopted the lexicon-based approach in building the social emotion 

detection system for online news based on modules of document selection, part-of-speech 

(POS) tagging, and social emotion lexicon generation. First, they constructed a lexicon in 

which each word is scored according to multiple emotion labels such as joy, anger, fear, 

surprise, etc. Next, a lexicon was used to detect social emotions of news headlines. 

Specifically, given the training set T and its feature set F, an emotion lexicon is generated as a 
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V×E matrix where the (j, k) item in the matrix is the score (probability) of emotion ek 

conditioned on feature fj. The authors do not explain how they extracted the features from the 

document.  

Anusha and Sandhya (Anusha & Sandhya, 2015) proposed a system for text-based emotion 

detection which uses a combination of machine learning and natural language processing 

techniques to recognize affect in the form of six basic emotions proposed by Ekman. They 

used the Stanford CoreNLP toolkit to create the dependency tree based on word relationships. 

Next, phrase selection is done using the rules on dependency relationships that gives priority 

to the semantic information for the classification of a sentence’s emotion. Based on the phrase 

selection, they used the Porter stemming algorithm for stemming, and stopwords removal and 

tf-idf to build the feature vectors. The authors do not propose a new approach but implement 

existing algorithms.  

Cambria et al. (Cambria et al., 2015) explored how the high generalization performance, low 

computational complexity, and fast learning speed of extreme learning machines can be 

exploited to perform analogical reasoning in a vector space model of affective common-sense 

knowledge. After performing TSVD on AffectNet, they used the Frobenius norm to derive a 

new matrix. For the emotion categorization model, they used the Duchenne smile and the Klaus 

Scherer model. As in (Anusha & Sandhya, 2015), the authors do not propose a new approach 

but implement existing algorithms.  

2.1.3  Conclusion 

Following is our conclusions on related work in sentiment and emotion analysis: 

1. Traditional sentiment analysis methods mainly use terms and their frequency, part of 

speech, rule of opinions and sentiment shifters. Semantic information is ignored in term 

selection, and it is difficult to find complete rules; 

2. Most of the recent contributions are limited to sentiment analysis elaborated in terms 

of positive or negative opinion and do not include analysis of emotion; 
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3. Existing approaches do not take into account the human contribution to improve 

accuracy; 

4. Existing approaches do not combine sentiment and emotion analysis; 

5. Lexicon and ontology based approaches provide good accuracy for text-based 

sentiment and emotion analysis when applying SVM techniques. In our work, it is more 

important to identify the sentiment and emotion of a book taking into account all the 

books of the collection. For example, assume that book A has 90% fear and 80% 

sadness while the emotion which has the best weight of book B is 40% fear; can it be 

said that fear is the emotion of book B as in book A? ; 

6. Existing approaches do not take into account document collections. In terms of 

granularity, most of the existing approaches are sentence-based; 

7. These approaches do not take into account the context around the sentence and in this 

way, it is possible to lose the real emotion. 

As a general conclusion to the literature review on topic detection, sentiment and emotion 

analysis, 95% of the work focused on features of the documents (e.g., sentence length, 

capitalized words, document title, term frequency, and sentences position) to perform text 

mining and generally make use of existing algorithms or approaches (e.g., LDA, tf-idf, VSM, 

SVD, LSA, TextRank, PageRank, LexRank, FCA, LTM, SVM, NB and ANN) based on their 

associated  features to documents. 

Table A 2.1 compares the most known text mining algorithms (e.g., AlchemyAPI, DBpedia, 

Wikimeta, open calais, Bitext, AIDA, TextRazor) with our proposed algorithms in SMESE V3 

by keyword extraction, classification, sentiment analysis, emotion analysis and concept 

extraction. 
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Table A 2.1 Summary of attribute comparison of existing and proposed SMESE V3 
algorithms 

Existing algorithms 
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AlchemyAPI (http://www.alchemyapi.com/) x  x x x 
DBpedia Spotlight (https://github.com/dbpedia-
spotlight)     x 
Wikimeta 
(https://www.w3.org/2001/sw/wiki/Wikimeta)     x 
Yahoo! Content Analysis API (out of date) 
(https://developer.yahoo.com/contentanalysis/ )   x   x 
Open Calais (http://www.opencalais.com/) x x   x 
Tone Analyzer (https://tone-analyzer-
demo.mybluemix.net/)   x x  
Zemanta (http://www.zemanta.com/) x 
Receptiviti (http://www.receptiviti.ai/) x x 
Apache Stanbol (https://stanbol.apache.org/)     x 
Bitext (https://www.bitext.com/)   x  x 
Mood patrol 
(https://market.mashape.com/soulhackerslabs/moodpatr
ol-emotion-detection-from-text)    x  
Aylien (http://aylien.com/) x x x   
AIDA (http://senseable.mit.edu/aida/)     x 
Wikifier (http://wikifier.org/)     x 
TextRazor (https://www.textrazor.com/)     x 
Synesketch (http://krcadinac.com/synesketch/)    x  
Toneapi (http://toneapi.com/)   x x  
SMESE V3 x x x x x 

 

3. Rule-based semantic metadata internal enrichment 

This section presents an overview and details of the proposed rule-based semantic metadata 

internal enrichment (RSMIE), including two algorithms (BM-SATD and BM-SSEA) used to 

process semantic metadata internal enrichment.  
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RSMIEE is part of the SMESE V3 platform architecture as shown in Figure A. 2.1. The main 

goal of this paper is to enhance the SMESE platform through text analysis approaches for 

topics, sentiment and emotion and semantic relationships detection. SMESE V3 allows one to 

create a semantic master catalogue with enriched metadata (e.g., topics, sentiments and 

emotions) that enables the search and discovery interest-based processes. To perform this task, 

the following tools are needed: 

1. Topics are a controlled set of terms designed to describe the subject of a document. 

While topics do not necessarily include relationships between terms, we include 

relationships as triplets (Entity – Relationship – Entity); for example, Entity “Ronald” 

- relationship:” likes “ - Entity “Le petit prince”; 

2. A multilingual thesauri and ontology to provide hierarchical relationships as well as 

semantic relationships between topics; 

3. An ontology to provide a representation of knowledge with rich semantic relationships 

between topics. By breaking content into pieces of data, and curating semantic 

relationships to external contents, metadata enrichments are created dynamically. 

In Figure A. 2.1, the improvements to the SMESE platform from this work and its 

implementation are presented in blue. 



133 

 

Figure A 2.1 SMESE V3 –Semantic Metadata Enrichment Software Ecosystem 

3.1 RSMIEE overview 

RSMIEE has been designed to find short descriptions, in terms of topics, sentiments and 

emotions of the members of a collection to enable efficient processing of large collections 

while preserving the semantic and statistical relationships that are useful for tasks such as: 

topic detection, classification, novelty detection, summarization, and similarity and relevance 

judgments. Figure A 2.2 shows an overview of the architecture of RSMIEE that consists of:  

1. User interest-based gateway, 

2. Metadata initiatives & concordance rules, 

3. Harvesting web metadata & data, 

4. User profiling system, 

5. Rule-based semantic metadata internal enrichment.  
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Figure A 2.2 Overview of the RSMIEE architecture 

The user interest-based gateway (UIG) is designed to push notifications to users based on the 

emotions and interests found using the user-profiling system (UPS). UIG is also a discovery 

tool that allows users to search and discover contents based on their interests and emotions.  

The user-profiling system (UPS) applies machine learning algorithms to user feedback in terms 

of appreciation, rating, comment and historical research in order to provide user profiles. When 

the contextual information of users is available, it is used to increase the accuracy of the 

profiling process.  

RSMIEE performs automated metadata internal enrichment based on the set of metadata 

initiatives & concordance rules (MICR), the process for harvesting web metadata & data 

(HWMD), the user profile and a thesaurus. RSMIEE implements BM-SATD for topic 

automated detection from documents and BM-SSEA is implemented for sentiment and 

emotion detection of documents.  
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BM-SATD and BM-SSEA tasks may be redefined as document classification issues as they 

contain methods for the classification of natural language text. That is, methods that will 

predict the query’s category, given a set of training documents with known categories and a 

new document, which is usually called the query.  

The following sub-sections present the terminology and assumptions, the necessary pre-

processing and details of the two algorithms implemented in RSMIEE. 

3.2 Terminology and assumptions 

In this section the following terms are defined: 

1. A word or term is the basic unit of discrete data, defined to be an item from a vocabulary 

indexed by {1, …,V}. Terms are presented using unit-basis vectors that have a single 

component equal to one and all other components equal to zero. Thus, using 

superscripts to denote components, the ith term in the vocabulary is represented by an 

I-vector w such that wi = 1 and wj = 0 for ݅ ≠ ݆. For example, let V= {book, image, 

video, cat, dog} be the vocabulary. The video term is represented by the vector (0, 0, 

1, 0, 0); 

2. A line is a sequence of N terms denoted by l. These terms are extracted from a real 

sentence; a sentence is a group of words, usually containing a verb, that expresses a 

thought in the form of a statement, question, instruction, or exclamation and when 

written begins with a capital letter; 

3. A document is a sequence of N lines denoted by D = (w1,w2; …,wN), where wi is the 

ith term in the sequence coming from the lines. D is represented by its lines as D = (l1, 

…li,…,lK); 

4. A corpus is a collection of M documents denoted by C = {D1, D2, …, DM}; 

5. An emotion word is a word with strong emotional tendency. An emotion word is a 

probabilistic distribution of emotions and represents a semantically coherent emotion 

analysis. For example, the word “excitement”, presenting a positive and pleased 

feeling, is assigned a high probability to emotion “joy”. 
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To implement the BM-SATD and BM-SSEA algorithms, an initial set of conditions must be 

established:  

1. A list of topics T = {t1, … , ti, … , tn} is readily available; 

2. Each existing document Dj is already annotated by topic. The annotated topics of 

document Dj are denoted as TDj = {tp …, ti , …, tq} where tp, ti, and  tq	∈	T; 

3. The corpus of documents is already classified by topics.  Cti={…,Dj,…} denotes the 

corpus of documents that have been annotated with topic ti. Note that the document Dj 

may be located in several corpuses; 

4. A list of emotions E = {e1, … , ei, … , eE} is readily available with the common 

instances of e being joy, anger, fear, surprise, touching, empathy, boredom, sadness, 

warmth; 

5. A set of ratings over E emotion labels denoted by RDj = {rd,e1 …, rd,ei , …, rd,eE}. The 

value of rd,ei is the number of users who have voted ith emotion label ei for document 

d. In other words, rd,ei is the number of users who claimed that emotion ei is found in 

document d; 

6. The corpus of documents are already classified by sentiment and emotion based on the 

user rating. Cei = {…,Dj,…} denotes the corpus of documents rated with emotion ei. 

Note that the document Dj may be located in several knowledge corpus; 

7. A list of sentiments S = {s1, … , si, … , sS} is readily available; 

8. A thesaurus is available and has a tree hierarchical structure. A thesaurus contains a list 

of words with synonyms and related concepts. This approach uses synonyms or glosses 

of lexical resources in order to determine the emotion or polarity of words, sentences 

and documents. 

3.3 Document pre-processing 

Before document analysis, RSMIEE performs a pre-processing. The objective of the pre-

processing is to filter noise and adjust the data format to be suitable for the analysis phases. It 

consists of stemming, phase extraction, part-of-speech filtering and removal of stop-words. 

The corpus of documents crawled from specific databases or the internet consists of many 
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documents. The documents are pre-processed into a basket dataset C, called document 

collection. C consists of lines representing the sentences of the documents. Each line consists 

of terms, i.e. words or phrases. An example of C follows: 

 

More specifically, to obtain Dj, the following preprocessing steps are performed:  

1. Language detection; 

2. Segmentation: a process of dividing a given document into sentences; 

3. Stop word: a process to remove the stop words from the text. Stop words are frequently 

occurring words such as ‘a’ an’, the’ that provide less meaning and generate noise. 

Stopwords are predefined and stored in an array; 

4. Tokenization: separates the input text into separate tokens; 

5. Punctuation marks: identifies and treats the spaces and word terminators as the word 

breaking characters; 

6. Word stemming: converts each word into its root form by removing its prefix and suffix 

for comparison with other words.  

More specifically, a standard preprocessing such as tokenization, lowercasing and stemming 

of all the terms using the Porter stemmer (Porter, 1980). Therefore, we also parse the texts 

using the Stanford parser (de Marneffe M-C, MacCartney B, & Manning CD, 2006) that is a 
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lexicalized probabilistic parser which provides various information such as the syntactic 

structure of text segments, dependencies and POS tags. 

‘Word’ and ‘term’ are used interchangeably in the rest of this paper. 

3.4  Scalable annotation-based topic detection: BM-SATD 

The aim of BM-SATD is to build a classifier that can learn from already annotated contents 

(e.g., documents and books) and infer the topics of new books. Traditional approaches are 

typically based on various topic models, such as latent Dirichlet allocation (LDA) where 

authors cluster terms into a topic by mining semantic relations between terms. However, co-

occurrence relations across the document are commonly neglected, which leads to detection of 

incomplete information. Furthermore, the inability to discover latent co-occurrence relations 

via the context or other bridge terms prevents important but rare topics from being detected. 

BM-SATD combines semantic relations between terms and co-occurrence relations across the 

document making use of document annotation. In addition, BM-SATD includes: 

1. A probabilistic topic detection approach that is an extension of LDA, called BM 

semantic topic model (BM-SemTopic); 

2. A clustering approach that is an extension of KeyGraph, called BM semantic graph 

(BM-SemGraph).  

BM-SATD is a hybrid relation analysis and machine learning approach that integrates semantic 

relations, semantic annotations and co-occurrence relations for topic detection. More 

specifically, BM-SATD fuses multiple relations into a term graph and detects topics from the 

graph using a graph analytical method. It can detect topics not only more effectively by 

combing mutually complementary relations, but also mine important rare topics by leveraging 

latent co-occurrence relations.  

BM-SATD is composed of five phases:  

1. Relevant and less similar documents selection process phase, 

2. Not annotated documents semantic term graph generation process phase, 

3. Topics detection process phase, 
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4. Training process phase, 

5. Topics refining process phase. 

The following sub-sections present the details of the five phases of the BM-SATD model. 

3.4.1  Relevant and less similar documents selection process phase 

For a given topic, a filtering process is performed to avoid using a large corpus of documents 

that are similar or not relevant. It is not necessary to compare a new document of a collection 

with two other documents of the collection that are similar in order to know whether this new 

document is similar to each of the other documents. This strategy merely increases 

computation time. For this reason, only relevant and less similar documents within a corpus 

are identified. Here, only documents that are already annotated by topic are considered.  

An overview of the architecture of the relevant and less similar document selection phase is 

presented in Figure A 2.3. This phase involves three algorithms:  

1. Algo 1 identifies the relevant documents for a given topic; 

2. Algo 2 detects less similar documents in the relevant set of documents; 

3. Algo 3 ascertains whether the new annotated document with a topic is relevant and less 

similar to a sub set of relevant and less similar documents of this topic. 

First, the most relevant documents of each topic ti are selected. For each document of a topic 

ti, Algo 1 checks whether its most important terms are the same as the most important terms 

of the topic ti. To identify the most important terms of a given document Dj, the tf-idf of each 

term Wi in the corpus Cti is computed using equation (A 2.1): 

 ݂൫ ௜ܹ, ,௝ܦ ௧௜൯ܥ = ܨܶ	 − ൫ܨܦܫ ௜ܹ, ,௝ܦ =௧௜൯ܥ ൫ܨܶ ௜ܹ, ௝൯ܦ ∗ log	( |௧௜ܥ| = )ܨܦܫ௜ܯ ௜ܹ,  ((௧௜ܥ
(A 2.1) 
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where ܶܨ൫ ௜ܹ, )ܨܦܫ ,௝൯ܦ ௜ܹ,  ௧௜) and Mi denote the number of occurrences of Wi inܥ

document Dj, the number of documents in the corpus Cti where Wi appears, and the number 

of documents in the corpus Cti, respectively. 

 

Figure A 2.3 Relevant and less similar document selection process phase – Architecture 
overview 

Equation (A 2.1) allows BM-SATD to find, for each document Dj, the vector VDj= { (Wa ,  

f(Wa,Dj,Cti)), …, (Wi ,  f(Wi,Dj,Cti)) ,…, (W|Dj| ,  f(W|Dj|,Dj,Cti))} where in the couple (Wi ,  

f(Wi,Dj,Cti)), Wi denotes a term and f(Wi,Dj,Cti)) its tf-idf in the whole corpus Cti.. 

To identify the most important terms of a given topic ti, the tf-itf of each term Wk that appears 

at least one time in at least one document of corpus Cti is computed with formula (A 2.2): 
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 ݃( ௞ܹ, (௜ݐ = ܨܶ	 − )ܨܶܫ ௞ܹ, (௜ݐ = )ܨܶ ௞ܹ, (௜ݐ ∗ log	( |ܶ| = )ܨܶܫ݊ ௞ܹ)) (A 2.2) 

where 	ܶܨ( ௞ܹ, )ܨܶܫ , (௜ݐ ௞ܹ) and |T| denote the number of occurrences of Wk in all the 

documents of corpus Cti, the number of topics where Wk appears, and the number of topic, 

respectively.  

Equation (A 2.2) allows BM-SATD to find, for each topic ti, the vector Vti= { (W1 ,  g(W1,ti)), 

…, (Wk,  g(Wk,ti)) ,…, (WNi ,  g(WNi,ti))} where in the couple (Wk ,  g(Wk,ti)), Wk  denotes a term 

and g(Wk,ti) its tf-itf in the whole corpus T.  

Let Ni be the number of terms of the vocabulary of Cti and NDj = |Dj| be the number of terms 

of the vocabulary of Dj. In this context, Ni is larger than NDj. To determine the number of terms 

to consider the document relevant, BM-SATD computes the standard deviation σ and the 

average avg of the number of distinct terms in the documents for the topics. BM-SATD uses 

the standard deviation because it gives a good indication of the dispersion of data from the 

average. The standard deviation σti of topic ti is given by equation (A 2.3): 

௧௜ߪ  = ඨ∑ ൫หܦ௝ห − ௧௜൯ଶ|஼೟೔|ୀெ೔௝ୀଵ݃ݒܽ |௧௜ܥ| = ௜ܯ  

(A 2.3) 

 

where the average number of terms avgti of topic ti is computed using equation (A 2.4). 

௧௜݃ݒܽ  = ∑ หܦ௝ห|஼೟೔|ୀெ೔௝ୀଵ|ܥ௧௜| = ௜ܯ  
(A 2.4) 

Next, to compute the number of distinct terms to consider, BM-SATD uses equation (A 2.5). 

 Eti = avgti – σti (A 2.5) 

The score for each document Dj in the topic ti is computed next: 

1.  BM-SATD sorts, for each document Dj of corpus Cti, the vector VDj by f(Wi,Dj,Cti) in 

descending order; 
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2.  BM-SATD computes the BMscore of Dj using equation (A 2.6): 

 

௝൯ܦ൫	݁ݎ݋ܿݏܯܤ  =෍ ݃( ௜ܹ, |௜)|ா೔ݐ  (A 2.6) 

 

where ∑|Ei| are the first |Ei| terms Wi of Dj with the highest value of f(Wi,Dj,Cti) in the whole 

corpus Cti . 

In order terms, BMscore is the summation of the tf-itf in the whole corpus C of the first |Ei| 

terms Wi  of Dj with the highest tf-idf in the whole corpus Cti.  

Finally, based on the BMscore of each document Dj of corpus Cti, BM-SATD selects the most 

relevant documents of corpus Cti. BM-SATD obtains the sub-corpus ܥ௧௜ᇱ  of the most relevant 

documents using equation (A 2.7): 

௧௜ܥ  = ൥ܥ௧௜ᇱ =ራ{ܦ௞}ఈ ൩ ∪ ቎ራ ൛ܦ௝ൟெ೔ିఈ ቏	 (A 2.7) 

where BMscore (Dk) > BMscore (Dj).  

Note that α is a threshold determined by empirical experimentation based on the particular 

document collection. ܥ௧௜ᇱ = ൛ܦ௞భ, … , ,௞೔ܦ … , ௜ܯ ௞ഀൟ is obtained whereܦ > ௜ᇱܯ =  Algorithm .ߙ

1 of appendix A explains, in detail, the selection process of relevant documents for a given 

topic. 

The less similar documents of sub-corpus ܥ௧௜ᇱ  for the topic ti are then selected.  BM-SATD 

defines a similarity threshold β by empirical experimentation based on the particular document 

collection where ܥ௧௜ᇱᇱ is the sub-corpus of ܥ௧௜ᇱ  that contains the less similar documents.  

1. BM-SATD sorts the documents of ܥ௧௜ᇱ  according to their BMscore. BM-SATD first puts 

the document with the largest BMscore in ܥ௧௜ᇱᇱ; then, based on the order of largest 

BMscore, BM-SATD compares the semantic similarity of each element of ܥ௧௜ᇱᇱ with the 

rest of element of ܥ௧௜ᇱ ௧௜ᇱܥ . If no document of ܥ௧௜ᇱᇱ is semantically similar to a given 
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document of ܥ௧௜ᇱ , this given document is added to ܥ௧௜ᇱᇱ. When the semantic similarity 

between two documents is less than or equal to β, BM-SATD assumes they are not 

similar. Algorithm 2 of appendix A gives more detail about the selection process of less 

similar documents for a given corpus that allows one to obtain the sub-corpus ܥ௧௜ᇱᇱ =ቄܦ௞భ, … , ,௞೗ܦ … , ߙ ௞ംቅ whereܦ ≥  ;ߛ

2. Finally, when a new document annotated with topic ti, is added to the corpus Cti, BM-

SATD computes its BMscore in order to ascertain whether this new document must be 

added to ܥ௧௜ᇱᇱ or not.  

For example, let ܨܦܫ௧௜௦  be the idf vector of the vocabulary of corpus Cti at state s and ܨܶܫ௦ be 

the itf vector of the vocabulary of corpus C at state s. The state is the situation of the collection 

before adding the new document:   ܨܦܫ௧௜௦ )ܨܦܫ)= ଵܹ, ,(௧௜ܥ … , )ܨܦܫ ௞ܹ, ,(௧௜ܥ … , )ܨܦܫ ேܹ௜, ௦ܨܶܫ and	௧௜))ܥ )ܨܶܫ)= ଵܹ), … , )ܨܶܫ ௞ܹ), … , )ܨܶܫ ேܹ௜)). Let ܶܨ௧௜௦  be the tf vector of the vocabulary of corpus 

Cti at the state s: ܶܨ௧௜௦ = )ܨܶ) ଵܹ, ,(௜ݐ … , )ܨܶ ௞ܹ, ,(௜ݐ … , )ܨܶ ேܹ௜,   .((௜ݐ
Based on vector ܨܦܫ௧௜௦ , BM-SATD computes the TF-IDF of each term W of d of each term w 

of d using equation (A 2.8): 

 ݂(ܹ, ݀, (௧௜ܥ = ܨܶ	 − ,ܹ)ܨܦܫ ݀, =(௧௜ܥ ,ܹ)ܨܶ ݀) ∗ log	( ,ܹ)ܨܦܫ|௧௜ܥ| (௧௜ܥ + 1) 
(A 2.8) 

Next, BM-SATD ranks the vocabulary of d according to their ݂(ܹ, ݀,  ௧௜) and selects the Etiܥ

terms W of d with highest ݂(ܹ, ݀, ௧௜௦ܨܶܫ	௧௜). Based on the vectorsܥ  and ܶܨ௧௜௦ , BM-SATD 

computes the TF-ITF of each selected term W of d using equation (A 2.9): 

 ݃(ܹ, (௜ݐ = ܨܶ − ,ܹ)ܨܶܫ =(௜ݐ ሾܶܨ(ܹ, (௜ݐ + ,ܹ)ܨܶ ݀)ሿ ∗ )	݃݋݈ )ܨܶܫ|ܶ| ௞ܹ)) 
(A 2.9) 
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BM-SATD obtains the BMscore(d) of new document d by summation of the g(W,ti) term. If 

BMscore(d) is greater than the smallest BMscore of  ܥ୲୧ᇱ  document, BM-SATD uses Algorithm 

2 to make a semantic similarity computation and then performs an update of ܥ௧௜ᇱᇱ if necessary. 

Algorithm 3 of appendix A presents the ܥ௧௜ᇱᇱ update process of a given corpus ti. 

3.4.2  Not annotated documents semantic term graph generation process phase 

The semantic term graph allows one to convert a set of lines of terms into a graph by extracting 

semantic and co-occurrence relations between terms. The semantic term graph is a basis for 

detecting topics automatically.  

To generate the semantic term graph BM-SemGraph: 

1. First the co-occurrence clusters are generated and then optimized; 

2. After cluster optimization, the keys terms and key links between the clusters are 

extracted; 

3. Finally, the semantic topic is generated and semantic term graph extracted.  

The BM-SemGraph has one node for each term in the vocabulary of the document. Edges in a 

BM-SemGraph represent the co-occurrence of the corresponding keywords and are weighted 

by the count of the co-occurrences.  

Note that, in contrast to existing graph-based approaches, the co-occurrence between A and B 

is different from the co-occurrence between B and A. This difference allows one to retain the 

semantic sense of co-occurrence terms. Figure A 2.4 presents an overview of the architecture 

of the semantic term graph generation process phase. Two sub processes (the term graph 

process and BM-SemTopic process) generate the semantic graph in order to enrich the term 

graph with semantic information; indeed, the terms graph and semantic graph are merged to 

provide Semantic term graph, called BM-SemGraph.  

The term graph process consists of three steps:  

1. Co-occurrence clusters generation, 

2. Clusters optimization, 
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3. Key terms extraction. 

The BM-SemTopic process consists of two steps:  

1. Semantic topic generation, 

2. Semantic graph extraction. 

Step 1: Co-occurrence clusters generation 

For the co-occurrence graph, the assumption is that terms that have a close relation to each 

other may be linked by the co-occurrence link. The relation between two terms Wi and Wj is 

measured by their conditional probability. Let D be a document and VD = (w1,w2; …,wN) be 

the terms of D and LD be the number of lines of D.  

 

Figure A 2.4 New document semantic term graph process phase - Architecture overview 

The conditional probability p( పܹ, ఫܹሬሬሬሬሬሬሬሬሬሬሬԦఌ) of పܹ, ఫܹሬሬሬሬሬሬሬሬሬሬሬԦఌ is computed using equation (A 2.10) where:  

1. ε denotes the minimum distance between Wi and Wj; 
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2. The distance between two terms is the number of terms that appear between them for a 

given line; 

3. ε is a parameter determined by experimentation.  

݌  ቀ పܹ, ఫܹሬሬሬሬሬሬሬሬሬሬሬԦఌቁ =෍ܰ௟௜௡௘	௟( పܹ, ఫܹሬሬሬሬሬሬሬሬሬሬሬԦఌ)඄ܰ(݈݅݊݁	݈)ߝ ඈ
௅ವ
௟ୀଵ  

(A 2.10) 

where	ܰ௟௜௡௘	௟ ቀ పܹ, ఫܹሬሬሬሬሬሬሬሬሬሬሬԦఌቁ denotes the number of times that Wi and Wj co-occur with a minimum 

distance ε and where Wi appears before Wj, and N(line l) denotes the number of terms of the 

line l. 

To formally define a relation between two terms Wi and Wj, their frequent co-occurrence 

measured by the conditional probability p( పܹ, ఫܹሬሬሬሬሬሬሬሬሬሬሬԦఌ), needs to exceed the co-occurrence 

threshold. The co-occurrence threshold is also determined by experimentation. Note that 

frequent co-occurrence is oriented. This allows one to retain the semantic orientation of the 

links between terms.  

Next, the oriented links are transformed into simple links without losing the semantic context. 

To perform this transformation, three rules are applied - see Figure A 2.5.  

 

Figure A 2.5 Link transformation rules 

In Figure A 2.5a, two nodes with two oriented links are transformed into one simple link. In 

this case, this type of link cannot be pruned and its weight is given by equation (A 2.11): 
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൫ݓ  ௜ܹ, ௝ܹ൯ = ݌ ቀ పܹ, ఫܹሬሬሬሬሬሬሬሬሬሬሬԦఌቁ + ݌	 ቀ ఫܹ, పܹሬሬሬሬሬሬሬሬሬሬሬԦఌቁ (A 2.11) 

In Figure A 2.5b, where several nodes are linked by oriented links and there is an oriented path 

to join each of them, only the nodes with a link to other nodes not in the oriented path are 

retained. This is the situation of the black node and blue node. The black node becomes the 

representative of the other nodes.  

In Figure A 2.5c, where one node A is linked to several nodes and the links are oriented from 

A towards the other nodes, node A becomes the representative of the other nodes and the other 

nodes are removed. This is the case for the red node where the link between the black node 

and blue node is removed and a new link is added between the red node and the blue node.  

Let G be a set of nodes where Wi is the representative node. Let G’ be the sub set of G which 

are linked to a node Wj not in G. Figure A 2.6 illustrates the representation of G and G’. 

The weight of the link between Wi and Wj is given by equation (A 2.12): 

൫ݓ  ௜ܹ, ௝ܹ൯ = ෍ ቀ݌ ௞ܹ, ఫܹሬሬሬሬሬሬሬሬሬሬሬሬԦఌቁௐೖ∈	ீᇲ + ݌ ቀ ఫܹ, ௞ܹሬሬሬሬሬሬሬሬሬሬሬሬԦఌቁ (A 2.12) 

Equation (A 2.12) is applied in the case of Figure A 2.4b and Figure A 2.4c to compute the 

weight of the link between a representative node and another node. Finally, the rest of the 

oriented links are transformed into simple links and their weights computed using equation (A 

2.11). 
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Figure A 2.6 Representation of the computation of weight after removing some nodes 

Step 2: Cluster optimization 

To enhance quality, clusters should be pruned, such as by removing weak links or partitioning 

sparse cluster into cohesive sub-clusters. Clusters are pruned according to their connectedness. 

The link e is pruned when no path connects the two ends of e after it is pruned. As shown in 

Figure A 2.7, the link between the black node and the green node should be pruned. 

 

Figure A 2.7 Clusters optimization 

Secondly, cliques are identified. In graph theory, a clique is a set of nodes which are adjacent 

pairs as shown in Figure A 2.8.  
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Figure A 2.8 Clique reduction 

Let C be the clique and Wi and Wj be the nodes of C that are linked to another node. The weight 

between Wi and Wj is given by equation (A 2.13): 

൫ݓ  ௜ܹ, ௝ܹ൯ = MAX	ௐೖ∈	஼		ௐೞ∈	஼ሾݓ( ௞ܹ, ௦ܹ)ሿ (A 2.13) 

Step 3: Key term extraction 

To extract key terms, the relation between a term and a cluster is measured. It is assumed that 

the weight of a term in a given cluster may be used to determine the importance of this term 

for the cluster. Let R be the set of nodes of the cluster C where the node Wi is inside. The weight 

of Wi in the cluster C is given by equation (A 2.14): 

 ݂( ௜ܹ) = ෍ ൫ݓ ௜ܹ, ௝ܹ൯ௐೕ	∈		ோ  (A 2.14) 

To identify a term as a key term, a sort of terms is performed based on their weights regardless 

of the clusters that they are in. Next, the NumKeyTerm terms that have the largest weights are 

selected as Key Terms. NumKeyTerm is a parameter. 

Step 4: Semantic topic generation 

Semantic topic generation combines a correlated topic model (CTM) (David M. Blei & 

Lafferty, 2005) and a domain knowledge model (DKM) (Andrzejewski, Zhu, & Craven, 2009), 

called BM semantic topic model  (BM-SemTopic), to build the real semantic topic model. In 

LDA, a topic is a probability distribution over a vocabulary. It describes the relative frequency 
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each word is used in a topic. Each document is regarded as a mixture of multiple topics and is 

characterized by a probability distribution over the topics.  

A limitation of LDA is its inability to model topic correlation. This stems from the use of the 

Dirichlet distribution to model the variability among topic proportions. In addition, standard 

LDA does not consider domain knowledge in topic modeling.  

To overcome these limitations, BM-SemTopic combines two models:  

1. A correlated topic model (CTM) (David M. Blei & Lafferty, 2005) that makes use of a 

logistic normal distribution; 

2. A domain knowledge model (DKM) (Andrzejewski et al., 2009) that makes use of the 

Dirichlet distribution.  

BM-SemTopic uses a weighted sum of CTM and DKM to compute the probability distribution 

of term Wi on the topic z. The sum is defined by equation (A 2.15): 

 ℎ( ௜ܹ|z) = )ܯܶܥ߱ ௜ܹ|z) + (1 − )ܯܭܦ	(߱ ௜ܹ|z) (A 2.15) 

where ω is used to give more influence to one model based on the term distribution of topics.  

When the majority of terms are located in a few topics, this means the domain knowledge is 

important and ω must be small. BM-SemTopic develops the CTM where the topic proportions 

exhibit a correlation with the logistic normal distribution and incorporates the DKM. A key 

advantage of BM-SemTopic is that it explicitly models the dependence and independence 

structure among topics and words, which is conducive to the discovery of meaningful topics 

and topic relations.  

CTM is based on a logistic normal distribution. The logistic normal is a distribution on the 

simplex that allows for a general pattern of variability between the components by 

transforming a multivariate normal random variable. This process is identical to the generative 

process of LDA except that the topic proportions are drawn from a logistic normal distribution 

rather than a Dirichlet distribution. The strong independence assumption imposed by the 

Dirichlet in LDA is not realistic when analyzing document collections where one may find 
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strong correlations between topics. To model such correlations, the covariance matrix of the 

logistic normal distribution in the BM-SemTopic correlated topic model is introduced.  

DKM is an approach to incorporation of such domain knowledge into LDA. To express 

knowledge in an ontology, BM-SemTopic uses two primitives on word pairs: Links and Not-

Links. BM-SemTopic replaces the Dirichlet prior by the Dirichlet Forest prior in the LDA 

model. Then, BM-SemTopic sorts the terms for every topic in descending order according to 

the probability distribution of the topic terms. Next it picks up the high-probability terms as 

the feature terms. For each topic, the terms with probabilities higher than half of the maximum 

probability distribution are picked up (experiment indicates it is non-sensitive on this 

parameter). 

Step 5: Semantic term graph extraction 

To enrich the term graph, the semantic topic needs to be converted into a semantic graph that 

consists of semantic relations between the semantic terms. To discover these relations, the 

semantic aspect is included making use of WordNet::Similarity (Pedersen, Patwardhan, & 

Michelizzi, 2004). Based on the structure and content of the lexical database WordNet, 

WordNet::Similarity implements six measures of similarity and three measures of relatedness. 

Measures of similarity use information found in a hierarchy of concepts (or synsets) that 

quantify how much concept A is like (or is similar to) concept B.  

First, each generated feature term at step 4 is the candidate for a semantic term where it is 

assumed the other terms represent the vocabulary associated with the semantic topic. In Figure 

A 2.9a, the blue node denotes the feature terms of each semantic topic.  

Next, duplicate terms from the candidates are removed. If there is more than one topic that has 

the same term Wj in the semantic term candidate, only the topic z with the highest term 

probability distribution h(Wj|z) is retained Wj as the semantic term candidate. It follows then 

that following this step the semantic term candidates of different topics are exclusive to each 

other. Figure A 2.9b shows the remaining candidates by semantic topic. 
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To remove similar terms, the measure path (one measure of similarity of WordNet::Similarity 

(Pedersen et al., 2004)) is used to evaluate similarity between two terms. The measure path of 

WordNet::Similarity is a baseline that is equal to the inverse of the shortest path between two 

concepts. When the semantic term candidates of different topics are identified, the semantic 

value of each topic’s candidates is computed. The semantic value of each term Wi, is given by 

equation (A 2.16): 

)ܯܧܵ  ௜ܹ|z) = ܶܲ − )ܲܶܫ ௞ܹ|z) = ℎ( ௜ܹ|z) ∗ log	ቆ |ܼ|∑ ℎ( ௜ܹ|t)௧	∈	௓ ቇ 
(A 2.16) 

where Z denotes the set of semantic topics. TP-ITP is inspired by the tf-idf formula, where TP 

is term probability and ITP inverse topic probability.  

 

Figure A 2.9 Candidates for semantic term identification (a and b) 

Semantic links between semantic terms for the term graph are constructed using the vector 

measure, one of the measures of relatedness of WordNet::Similarity (Pedersen et al., 2004). 

The vector measure creates a co–occurrence matrix for each word used in WordNet glosses 

from a given corpus, and then represents each gloss/concept with a vector that is the average 

of these co–occurrence vectors.  

Let Wi and Wj be semantic terms of the synsets A and B, respectively. Let ܣԦ = (ܽଵ, … , ܽ௤) and ܤሬԦ = (ܾଵ, … , ܾ௤) be the co–occurrence vectors of A and B, respectively. Let Vz be the set of 
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semantic terms of the semantic topic Z. The weight of the link between Wi and Wj is computed 

by equation (A 2.17): 

൫ݏ݅ܦ  ௜ܹ, ௝ܹ 	|z൯ = )ܯܧܵ ௜ܹ|z) + ൫ܯܧܵ ௝ܹ|z൯∑ )ܯܧܵ ௞ܹ|z)ௐೖ	∈	௏ೋ	 × ඩ෍(ܽ௟ − ܾ௟)ଶ௡
௟ୀଵ  

(A 2.17) 

To discover a semantic relation between two terms, the semantic distance is computed. The 

semantic distance between two terms is the shortest path between the terms using equation (A 

2.18): 

൫ݏ݅ܦܯܧܵ  ௜ܹ, ௝ܹ 	|z൯ = MIN௣௔	∈	௉ ቎ ෍ )ݏ݅ܦ ௜ܹ, ௞ܹ	|z)ௐೖ	∈	௣௔ ቏ (A 2.18) 

where pa, Wk, and P denote a path between Wi and Wj  in the thesaurus, a term on a path pa 

and the set of paths pa between Wi and Wj, respectively.  

To formally define a semantic relation between two terms Wi and Wj, the semantic distance ܵݏ݅ܦܯܧ൫ ௜ܹ, ௝ܹ 	|z൯ must not exceed the semantic threshold. The semantic threshold is 

determined by experimentation. 

The last process to generate the semantic term graph BM-SemGraph is a merging of the term 

graph and the semantic graph. The term graph and semantic graph are merged by coupling the 

co-occurrence relation and the semantic relation. New terms are added as semantic terms and 

new links are added as semantic links if they do not appear in the term graph. For each link 

between two nodes Wj and Wk of the merged graph, the weight, called the BM Weight (BMW), 

for a given topic ti is computed using equation (A 2.19):  

൫ܹܯܤ  ௝ܹ, ௞ܹ	|	ݐ௜൯ = ൫ݏ݅ܦܯܧܵߣ ௝ܹ, ௞ܹ	|ݐ௜	൯ +	(1 − (ߣ × ൫ݓ ௜ܹ, ௝ܹ൯ (A 2.19) 

where λ determined by experimentation.  
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In order to optimize the clusters of BM-SemGraph, the weak links or partitioning of sparse 

clusters are removed. At this step, each cluster is considered a topic and the terms of the cluster 

become the terms of the topic. 

3.4.3  Topic detection process phase 

Figure A 2.10 presents the process used by BM-SATD to assign topics to a document. Topics 

that may be associated with a new document are detected based on the BM-SemGraph. Note 

that the BM-SemGraph is obtained using a collection of documents. In this case, the likelihood 

of detecting topics among a collection of documents is high and must be computed. To 

accomplish this, the feature vector of each topic based on the clusters of BM-SemGraph is 

computed. The feature vector of a topic is calculated using the BMRank of each topic term. 

Let A be the set of nodes of BM-SemGraph directly linked to term Wj in the topic ti. The score 

for the term Wj is given by equation (A 2.20): 

)ܴ݇݊ܽܯܤ  ௝ܹ|ݐ௜) = ∑ ൫ܹܯܤ ௝ܹ, ௞ܹ	|	ݐ௜൯ௐೖ	∈	஺	 |ܣ|  
(A 2.20) 

The term with the largest BMRank is called the main term of the topic; other terms are 

secondary terms. The same processes are used to obtain the BM-SemGraph of an individual 

document d and the feature vectors of topics ݐ௝ௗ. Next, the similarity between each topic ti and 

the topics ݐ௝ௗ of document d is computed in order to detect document topics. Let:  

1. Wi be a master term of topics ݐ௝ௗ and a master or secondary term of ti; 

2. B be the intersection of the set of terms of BM-SemGraph directly linked to term Wj in 

the cluster of topic ti and the set of terms of BM-SemGraph of individual document d 

directly linked to term Wj in the cluster of topic ݐ௝ௗ; 

3. C be the union of the set of terms of BM-SemGraph directly linked to term Wj in the 

cluster of topic ti and the set of terms of BM-SemGraph of individual document d 

directly linked to term Wj in the cluster of topic ݐ௝ௗ.  

The similarity between ti and topic ݐ௝ௗ is computed with equation (A 2.21): 
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(௝ௗݐ|௜ݐ)݉݅ܵ  = ට∑ ቀܹܯܤ( ௜ܹ, ௞ܹ	|	ݐ௜) − ൫ܹܯܤ	 ௜ܹ, ௞ܹ	|	ݐ௝ௗ൯ቁଶௐೖ	∈	஻	ට∑ ቀܹܯܤ( ௜ܹ, ௛ܹ	|	ݐ௜) − ൫ܹܯܤ	 ௜ܹ, ௛ܹ	|	ݐ௝ௗ൯ቁଶௐ೓	∈	஼	  

(A 2.21) 

Here, ti and topic ݐ௝ௗ are considered to be similar when their similarity ܵ݅݉൫ݐ௜หݐ௝ௗ൯ does not 

exceed the vector similarity threshold.  

Finally, the document d is assigned to topics that are similar to its feature vectors. Algorithm 

4 of Appendix A gives more detail about the topics detection process for a new document. 

 

Figure A 2.10 Topic detection process phase - Architecture overview 

3.4.4  Training process phase 

The training process establishes a terms graph based on the relevant and less similar documents 

for a given topic ti. To form the terms graph for a given topic, preprocessing of its relevant and 
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less similar documents is first carried out, a set of lines is obtained where each line is a list of 

terms, and the co-occurrence of these terms is then computed. 

Let Doc be a document and VDoc = (w1,w2; …,wN) be the terms of Doc. The co-occurrence of ܿ݋ ቀ పܹ, ఫܹശሬሬሬሬሬሬሬሬሬሬԦఌቁ of Wi and Wj where ε denotes the minimum distance between Wi and Wj is 

computed using equation (A 2.22): 

݋ܿ  ቀ పܹ, ఫܹശሬሬሬሬሬሬሬሬሬሬԦఌቁ = ෍ ܰ௟௜௡௘	௟( పܹ, ఫܹശሬሬሬሬሬሬሬሬሬሬԦఌ)඄ܰ(݈݅݊݁	݈)ߝ ඈ
௅ವ೚೎
௟ୀଵ  

(A 2.22) 

where	ܰ௟௜௡௘	௟ ቀ పܹ, ఫܹശሬሬሬሬሬሬሬሬሬሬԦఌቁ denotes the number of times that Wi and Wj co-occur with a minimum 

distance ε, regardless of the order of appearance, and N(line l) denotes the number of terms of 

line l.  

A relation between two terms Wi and Wj is formally defined when the computed co-occurrence 

between them exceeds the co-occurrence threshold determined by experimentation. Figure A 

2.11 presents an overview of the architecture of the training process phase. 
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Figure A 2.11 Training process phase - Architecture overview 

3.4.5  Topics refining process phase 

Figure A 2.12 presents the process used by BM-SATD to refine the detected topics making use 

of relevant documents already annotated by humans based on existing or known topics. 

Following this process, three lists of topics are obtained: a list of new topics, a list of similar 

existing topics and a list of not similar existing topics. 
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Figure A 2.12 Topic refining process phase - Architecture overview	

The list of existing topics that match new document detected topics is identified based on the 

new document detected topics and annotated documents by topic (existing topics). Then, the 

clusters of terms by topic (existing topics) are identified based on the collection of relevant and 

less similar documents. Note that each topic is a cluster of terms graph. Therefore, in this case, 

a graph matching technique is a good candidate to perform topic similarity detection.  

Next, using our graph matching technique, the clusters of terms by topics of relevant and less 

similar collection of annotated documents which match with CTG are identified, for each 

cluster of terms graph by topic (CTG) of the new document. The matching score between two 

clusters is then computed. Let:  
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1. H be the new document terms graph and G be the terms graph obtained by a training 

process applied on the collection of relevant and less similar documents annotated by 

topics; 

 ;௜ݐ ௜ be a cluster of G associated with topicܥ ௝ௗ andݐ ௝ௗ be a cluster of H associated to topicܥ .2
3. Wi and Wj be two terms of cluster ܥ௝ௗ; the link matching function g( ௜ܹ ௝ܹ) between Wi 

and Wj is defined by equation (A 2.23): 

௝ௗܥ	:݃  ௝ௗܥ	× 	→	IR	݃൫ ௜ܹ ௝ܹ൯ = { ଵାெ௔௫ு௢௣஼௟௨௦௧௘௥ை௙௧௜																௜௙	௡௢௧	௣௔௧௛	௕௘௧௪௘௘௡	ௐ೔,ௐೕெ௜௡ு௢௣஼௟௨௦௧௘௥ை௙௧௜	൫ௐ೔,ௐೕ൯				௜௙	௣௔௧௛	௕௘௧௪௘௘௡	ௐ೔,ௐೕ  

(A 2.23) 

For a direct link ௜ܹ ௝ܹ (only one hop between Wi and Wj) of cluster ܥ௝ௗ, the process checks 

whether there is a path between Wi and Wj in the cluster ܥ௜, regardless of the number of hops:  

1. If paths exist between Wi and Wj in the cluster ܥ௜, ܏൫ ௜ܹ ௝ܹ൯ is the number of hops of 

the shortest path between Wi and Wj, in term of hops; 

2. Otherwise, ܏൫ ௜ܹ ௝ܹ൯ is the number of hops of the longest path that exists in the cluster ܥ௜ incremented by 1.  

Using the link matching function, the matching score between two clusters ܥ௜ௗ and Ci is given 

by equation (A 2.24): 

 o ∶ H	 × G	 → ሿ0; 1ሿ 
,௝ௗܥ൫݋ ௜൯ܥ = หܥ௝ௗห∑ 		݃( ௜ܹ ௝ܹ)ௐ೔	,ௐೕ	∈	஼ೕ೏  

(A 2.24) 

where หܥ௝ௗห is the number of links in clusters ܥ௜ௗ. 

For a better understanding, consider the term graphs in Figure A 2.13. 
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Figure A 2.13 Illustration of term graphs matching score computation	

According to Figure A 2.12, o(G1,G2) = 3/3 = 1 while o(G2,G1) = 5/9 and o(G1,G3) = 3/5 

while o(G3,G1) = 2/2 = 1. The graph matching technique to identify the existing topics of new 

document is described by algorithm 5 of appendix A.  

The clusters of H and G whose matching scores exceed a term cluster matching threshold are 

considered as matching and are assumed to be the same topics. Otherwise, the clusters of H 

that do not match any clusters of G, are assumed to be new topics.  

Note that the term cluster matching threshold is determined by experimentation. 

Based on the H and G clusters that match, the relevant and less similar documents per existing 

topic that may have the same topic as the new document are identified. Making use of this set 

of selected documents, the similarity between the new document and each relevant and less 

similar document of each existing topic i is measured. Let:  

1. D be the union of the new document d and a set of relevant and less similar documents 

of existing topics ti that are selected by documents selection process; 

2. W = {W1, . . . , Wm} the set of distinct terms occurring in D.  

The defined m-dimensional vector represents each document of D. For each term of W, its tf-

idf is computed using equation (A 2.1). This allows one to obtain the vector ݐௗሬሬሬԦ =(tfidf( ଵܹ, ݀, ,(௜ݐ … , tfidf( ௠ܹ, ݀,  ௜)). When documents are represented as term vectors, theݐ

similarity of two documents corresponds to the correlation between the vectors. Here, cosine 

similarity is applied to measure this similarity. The cosine similarity is defined as the cosine 
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of the angle between vectors. An important property of the cosine similarity is its independence 

of document length.  

Given two documents ݐௗଵሬሬሬሬሬԦ	and ݐௗଶሬሬሬሬሬԦ, their cosine similarity is computed using equation (A 2.25): 

,ௗଵሬሬሬሬሬԦݐ൫ݏ݋ܥ݉݅ܵ  ௗଶሬሬሬሬሬԦ൯ݐ = .	ௗଵሬሬሬሬሬԦݐ ௗଵሬሬሬሬሬԦหݐௗଶሬሬሬሬሬԦหݐ 	× 	 หݐௗଶሬሬሬሬሬԦห (A 2.25) 

Note that it is already assumed that when the similarity ܵ݅݉ݏ݋ܥ൫ݐௗଵሬሬሬሬሬԦ,  ௗଶሬሬሬሬሬԦ൯ of two documentsݐ

d1 and d2 is less than the similarity threshold β, the documents are not similar. The 

computation of document similarity allows BM-SATD to classify the existing topics of new 

documents into:  

1. Similar existing topics, 

2. Not similar existing topics.  

Details are given in Algorithm 6, Appendix A. 

3.5  Semantic sentiment and emotion analysis: BM-SSEA 

The aim of BM-SSEA is to classify the corpus of documents taking emotion into consideration, 

and to determine which sentiment it more likely belongs to.   

A document can be a distribution of emotion ݌(݁|݀)	݁	 ∈  and a distribution of ܧ

sentiment	(݀|ݏ)݌	ݏ	 ∈ ܵ. BM-SSEA is a hybrid approach that combines a keyword-based 

approach and a rule-based approach. BM-SSEA is applied at the basic word level and requires 

an emotional keyword dictionary that has keywords (emotion words) with corresponding 

emotion labels.  

Next, to refine the detection, BM-SSEA develops various rules to identify emotion. Rules are 

defined using an affective lexicon that contains a list of lexemes annotated with their affect.  

The emotional keyword dictionary and the affective lexicon are implemented in a thesaurus. 

BM-SSEA is a knowledge-based approach that uses an AI computational technique. The 
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purpose of BM-SSEA is to identify positive and negative opinions and emotions. Figure A 

2.14 presents an overview of the architecture of the sentiment and emotion detection process 

phase. 

 

Figure A 2.14 Sentiment and emotion detection process phase – Architecture overview 

For affective text evaluation, BM-SSEA uses the SS-Tagger (a part-of-speech tagger) 

(Tsuruoka & Tsujii, 2005) and the Stanford parser (de Marneffe M-C et al., 2006). The 

Stanford parser was selected because it is more tolerant of constructions that are not 

grammatically correct. This is useful for short sentences such as titles. BM-SSEA also uses 

several lexical resources that create the BM-SSEA knowledge base located in the thesaurus. 

The lexical resources used are:  

1. WordNet, 

2. WordNet-Affect, 

3. SentiWordNet, 
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4. NRC emotion lexicon.  

WordNet is a semantic lexicon where words are grouped into sets of synonyms, called synsets. 

In addition, various semantic relations exist between these synsets (for example: hypernymy 

and hyponymy, antonymy and derivation).  

WordNet-Affect is a hierarchy of affective domain labels that can further annotate the synsets 

representing affective concepts.  

SentiWordNet assigns to each synset of WordNet three sentiment scores: positivity, negativity, 

objectivity, the sum of which always equals 1.0.  

The NRC emotion lexicon is a list of English words and their association with eight basic 

emotions (anger, anticipation, disgust, fear, joy, sadness, surprise and trust) and two sentiments 

(negative and positive). The NRC emotion lexicon is a thesaurus that associates for a word, 

the value one or zero for each emotion. This association is made of binary vectors. The 

disadvantage of this thesaurus is that since the values are binary, all words belonging to an 

emotion have the same weight for that emotion. To address this problem, the NRC emotion 

lexicon thesaurus was combined with the WordNet, WordNet-Affect and SentiWordNet 

thesaurus. This associates a feelings score with each word-POS. POS1 are grammatical 

categories used to classify words in dimensions such as adjectives or verbs. SentiWordNet 

associates with each couple a valence score that can be either negative or positive with respect 

to the sense of the word in question. The word death, for example, is likely to have a negative 

score. BM-SSEA also relies on shifter valences. These are lexical expressions capable of 

changing the valence score of emotions in a text.  

For example, take the phrase "I am happy" with a score of 1 for the joy emotion. For the phrase 

"I am very happy", ‘very’ is a valence intensifier that will change the joy emotion score to 2. 

In the case, "I am not happy" the modifier ‘not’ will change the emotion joy to the contrary 

emotion sadness. 
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The main component of BM-SSEA is the thesaurus, called BM emotion word model 

(BMEmoWordMod). BMEmoWordMod is an emotion-topic model that provides the 

emotional score of each keyword by taking the topic into account.  

BMEmoWordMod introduces an additional layer (i.e., latent topic) into the emotion-term 

model such as SentiWordNet. BM-SSEA is composed of three phases:  

1. BMEmoWordMod generation process phase, 

2. Sentiment and emotion discovery process phase, 

3. Sentiment and emotion refining process phase. 

The following sub-sections describe the three phases of the BM-SSEA model used to discover 

sentiment and emotion. 

3.5.1  BMEmoWordMod generation process phase 

In the first step, a training set from the original corpus is created. The most relevant and 

discriminative documents are selected automatically. In the second step, each word is tagged 

with a POS and the combination of word and POS used as the essential feature. Finally, 

BMEmoWordMod is generated using the extracted features, which can then be used to 

discovery the sentiments and emotions of new documents. 

Basically, a BMEmoWordMod entry has the following fields 

<Word/POS/synsets_ID><Topics><Emotion_Probability><Sentiment_Probability> where:  

1. Emotion_Probability is a vector of ordered emotion label probability such as <anger 

probability, disgust probability, fear probability, joy probability, sadness probability, 

surprise probability>; 

2. Sentiment_ Probability is a vector of ordered sentiment category probability such as 

<positive score, negative score>.  

For example, the BMEmoWordMod entry for “kill” may look like: 

<kill/v/00829041><War><0.5, 0.1, 0.3, 0, 0.2, 0><0.1, 0.6>. 
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Step 1: Training set selection 

The objective of this step is to reduce the time for generating the emotion lexicon 

BMEmoWordMod, while obtaining a better quality lexicon. For each emotion ei, documents 

in the corpus are ranked by descending order of ratings over ei. Next, the emotions with the 

highest ratings among the documents are chosen. Then relevant documents for a given emotion 

ei are selected using the first phase of BM-SATD (see section 3.4.1 of BM-SATD). The 

training set selection process terminates when the first phase BM-SATD requirements are 

meet. The training set TS is produced by conducting this step on the entire corpus. 

Step 2: Intermediate lexicon generation 

Using WordNet-Affect, the WordNet entries are filtered in order to retain only those synsets 

where the A_labeb is “EMOTION”. Then, using SentiWordNet and the NRC emotion lexicon, 

the sentiment category and emotion value are associated with each selected emotional synset 

of WordNet. An intermediate lexicon is produced where each entry is 

<word/POS/synsets_ID><Emotion_value><Sentiment_Score>.  

BMEmoWordMod evaluates the probability of each emotion based on the topic and user 

rating. 

Step 3: Sentiment and emotion lexicon generation 

The assumption that words in a document are the first indicator of the evoked emotion is 

assumed to be valid. However, the same word in different contexts may reflect different 

emotions, and words that bear emotional ambiguity are difficult to recognize out of context. 

Thus, other strategies are necessary to associate a sentiment or emotion with a given word. The 

POS of each word is used to alleviate the problem of emotional ambiguity of words and the 

context dependence of sentiment orientations. The POS of a word is a linguistic category 

defined by its syntactic or morphological behaviour. Categories include: noun, verb, adjective, 

adverb, pronoun, preposition, conjunction and interjection.  
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For example, the word ‘‘bear’’ has completely different orientations, one positive and one 

negative, in the following two sentences:  

1. Teddy bear: a helping hand for disease sufferers; 

2. They have to bear living with a disease. 

The word ‘‘bear’’ is a noun in the first sentence and a verb in the second. A word feature fj is 

defined as the association of the word Wj and its POS, e.g., (Kill/Verb). After defining the word 

feature fj, its emotion probability is computed with equation (A 2.26): 

 EmoPro൫݁௜| ௝݂, =௞൯ݐ ܸ݈ܽ( ௝݂) × ∑ ൫݌ ௝݂, ,௞ݐ ݀൯ୢ	∈	஼೟ೖ	⊂	୒ୈ × ,௜݁)ܿ݋ ∑(௞ݐ ∑ ൫݌ ௝݂, ,௞ݐ ݀൯ୢ	∈	஼೟ೖ	⊂		୒ୈ × ,௟݁)ܿ݋ ா	∈	௞)௘೗ݐ  

(A 2.26) 

where ܸ݈ܽ( ௝݂) denotes the value (1 or 0) of word feature fj in the intermediate lexicon, and 

where: 

൫݌ .1 ௝݂, ,௞ݐ ݀൯ denotes the probability of feature fj conditioned on document of corpus Ctk 

(subset of documents with topic tk); 

൫݌ .2 ௝݂, ,௞ݐ ݀൯ is the number of occurrences of the feature fj in d divided by the total 

number of occurrences of all features in d; 

,௜݁)ܿ݋ .3   .௞) denotes the co-occurrence number of documents d of Ctk and emotion eiݐ

This strategy is used to eliminate emotions that are not associated with the same word in the 

NRC emotion lexicon. The sentiment probability of the word feature fj is given by equation (A 

2.27): 

 SenPro൫ݏ௜| ௝݂, =௞൯ݐ )݋ܿܵܵ ௝݂) × ∑ ൫݌ ௝݂, ,௞ݐ ݀൯ୢ	∈	஼೟ೖ	⊂	୒ୈ × ,௜ݏ)ܿ݋ ∑(௞ݐ ∑ ൫݌ ௝݂, ,௞ݐ ݀൯ୢ	∈	஼೟ೖ	⊂		୒ୈ × ,௟ݏ)ܿ݋ ௌ	∈	௞)௦೗ݐ  

(A 2.27) 

where: 

)݋ܿܵܵ .1 ௝݂) denotes the score of feature fj in the intermediate lexicon. 
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൫݌ .2 ௝݂, ,௞ݐ ݀൯ denotes the probability of feature fj conditioned on the document of corpus 

Ctk (sub set of documents with topic tk). 

,௜ݏ)ܿ݋ .3   .௞) denotes the co-occurrence number of documents d of Ctk and sentiment siݐ

Here, si may have two values, a positive sentiment SP and negative sentiment SN. Finally, to 

derive BMEmoWordMod, first the topic is added, then the emotion value is replaced by the 

computed emotion probability and the sentiment score with the computed sentiment 

probability. 

3.5.2  Sentiment and emotion discovery process phase 

This phase identifies the sentiments and emotions that are likely associated with a given new 

document by using the sentiment and emotion semantic lexicon BMEmoWordMod generated 

in the previous section.   After preprocessing, the term vector of the new document is defined 

using TF-IDF. 

Let ND be the new document and WND = {W1, . . . , Wz} the set of distinct terms occurring in 

the corpus of documents. To obtain the z-dimensional term vector that represents each 

document in the corpus, the tf-idf of each term of Wz is computed. The result of this 

computation establishes the term vector ݐே஽ሬሬሬሬሬሬԦ = (tfidf( ଵܹ, ,(ܦܰ … , tfidf( ௭ܹ,   .((ܦܰ
Using vector ݐே஽ሬሬሬሬሬሬԦ, TND={tp , …, tq} obtained using BM-SATD  and BMEmoWordMod, the 

sentiment and emotion vector of new document ܧ௙ണ,ே஽ሬሬሬሬሬሬሬሬሬሬሬԦ =(E൫ ௝݂, ND, ݁ଵ൯, … , E൫ ௝݂, ND, e୉൯, E൫ ௝݂, ND, ,୔൯ݏ E൫ ௝݂, ND,  :୒൯) is given by equation (A 2.28)ݏ

 E൫ ௝݂, ND, ݁௜൯ = tfidf൫ ௝ܹ, ∑൯ܦܰ tfidf( ௟ܹ, ௭௟ୀଵ(ܦܰ × ෍ BMEmoWord( ௝݂, ݁௜, t୩)୲ౡ	∈	୘ొీ  
(A 2.28) 

where BMEmoWord( ௝݂, e୧, t୩) denotes the emotion probability of emotion ei for the feature 

word fj giving the topic tk. 	BMEmoWord( ௝݂, e୧, t୩) is selected in BMEmoWordMod.  

The weight of emotion ei for document ND is computed with equation (A 2.29): 
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 W୉(ND, ݁௜) = ෍ E൫ ௝݂, ND, ݁௜൯)୛ౠ	∈	୛ొీ  (A 2.29) 

Equation (A 2.29) yields the emotional vector of new document ND. 

 ேܸ஽ሬሬሬሬሬሬሬԦ = ൫W୉(ND, ݁ଵ), … ,W୉(ND, ݁௜), … ,W୉(ND, ݁ா),W୉(ND, ,௉)൯,W୉(NDݏ   .(((ேݏ
 

Next, the new document ND emotion and sentiment is inferred using a fuzzy logic approach 

and the emotional vector ேܸ஽ሬሬሬሬሬሬሬԦ. The weight of emotion is transformed into five linguistic 

variables: very low, low, medium, high, and very high. Then, using these variables as input to 

the fuzzy inference system one obtains the final emotion for the new document. The fuzzy 

logic rules are predefined by experts.  

3.5.3  Sentiment and emotion refining process phase 

The refining process validates discovered sentiment and emotion after the document analysis. 

Similarity is computed between new documents and documents in the corpus rated over E 

emotions. First, the term vectors of each document are defined using the tf-itf of each term, tf-

itf is then computed using equation (A 2.1). Note that the terms extracted from the corpus of 

documents rated over E emotions are those employed by users. 

Next, to measure the similarity between two documents, the cosine similarity of their 

representative vectors is computed using equation (A 2.25) and algorithm 6.  Two documents 

d1 and d2 are similar when the similarity ܵ ,ௗଵሬሬሬሬሬԦݐ൫ݏ݋ܥ݉݅  ௗଶሬሬሬሬሬԦ൯ of these two documents is less thanݐ

the similarity threshold β. 

4. Evaluation using simulations 

This section presents an evaluation of BM-SATD and BM-SSEA performance using 

simulations. To perform these simulations, an experimental environment called Libër was 
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used. Libër was developed to provide a simulator to prototype the different algorithms of 

SMESE V3. 

4.1 Dataset and parameters 

To evaluate BM-SATD and BM-SSEA, real datasets from different projects that have digital 

and physical library catalogues were used. These datasets, consisting of 25,000 documents 

with a vocabulary of 375,000 words, were selected using average TF-IDF for the analysis. The 

documents covered 20 topics and 8 emotions. The number of documents per topic or emotion 

was approximately equal. The average number of topics per document was 7 while the average 

rating emotion number per document was 4. 15,000 documents of the dataset were used for 

the training phase and the remaining 100 used for the test. Note that the 10,000 documents 

used for the tests were those that had more annotated topics or a higher rating over emotions.  

To measure the performance of topic detection (sentiment and emotion discovery, 

respectively) approaches, comparison of detected topics (the discovered sentiment and 

emotion, respectively) with annotation topics of librarian experts (user ratings) were carried 

out. Table A 2.2 presents the values of the parameters used in the simulations. The server 

characteristics for the simulations were: Dell Inc. PowerEdge R630 with 96 Ghz (4 x Intel(R) 

Xeon(R) CPU E5-2640 v4 @ 2.40GHz, 10 core and 20 threads per CPU) and 256 GB memory 

running VMWare ESXi 6.0. 

Table A 2.2 Simulation parameters 

Parameter Value Parameter Value 

ε 3 α 100 

NumKeyTerm 8 co-occurrence threshold 0.75 

ω 0.5 semantic threshold 1 

β 0.7 term cluster matching 

threshold 

0.45 

λ 0.6   
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4.2 Performance criteria 

BM-SATD and BM-SSEA performance was measured in terms of running time (P. Chen et 

al., 2016) and accuracy (C. Zhang et al., 2016) (Sayyadi & Raschid, 2013). Note that in the 

library domain, the most important criteria was precision while resource consumption was 

important for the software providers.  

The running time, denoted by Rt, was computed as follows:  ܴݐ = ݐܧ −  ݐܤ
where Et and denotes the time when processing is completed and Bt the time when it started.  

To compute the accuracy, let Tannotated and Tdetected be the set of annotated topic and the 

set of detected topics by BM-SATD for a given document d. The accuracy of topics detection, 

denoted by ܣௗ௧ , was computed as follows: 

ௗ௧ܣ = 2. | ୟܶ୬୬୭୲ୟ୲ୣୢ 	∩ 	 ܶୢ ୣ୲ୣୡ୲ୣୢ|| ୟܶ୬୬୭୲ୟ୲ୣୢ| +	 |ܶୢ ୣ୲ୣୡ୲ୣୢ|  

 

The same formula was applied to compute the accuracy of the sentiment and emotion discovery 

measurement. Erating (resp. Ediscovered) that denotes the set of rating over emotion (resp. the 

set of discovered emotion by BM-SSEA) was used instead of Tannotated (resp. Tdetected). 

Simulation results were averaged over multiple runs with different pseudorandom number 

generator seeds. The average accuracy, Ave_acc, of multiple runs was given by: 

ܿܿܽ_݁ݒܣ = ∑ ൬∑ |ܦܶ|்஽	∈	ௗ௧ௗܣ ൰ூ௫ୀଵ ܫ  

 

where TD denotes the number of tests documents and I denotes the number of test iterations. 

The average running time, Ave_run_time, was given by: 
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݁݉݅ݐ_݊ݑݎ_݁ݒܣ = ∑ ܫூ௫ୀଵݐܴ  

4.3 Topic detection approaches performance evaluation 

BM-SATD performance was evaluated in terms of running time and accuracy. The dataset and 

parameters mentioned above were applied. BM-SATD performance was compared to the 

approaches described in (C. Zhang et al., 2016), (Sayyadi & Raschid, 2013), (David M.  Blei 

et al., 2003) and (P. Chen et al., 2016), referred to as LDA-IG (probabilistic and graph 

approach), KeyGraph (graph analytical approach), LDA (probabilistic approach) and HLTM 

(probabilistic and graph approach), respectively. LDA-IG, KeyGraph, LDA and HLTM were 

selected because they are text-based and long text approaches. 

 4.3.1 Comparison approaches 

Table A 2.3 presents the characteristics of the comparison approaches. Our approach BM-

SATD is the only one that is really semantic and takes into account the correlated topic and 

domain knowledge. The parameters for the comparison approaches used where those which 

provided the best performance. 

 

 

 

 

 

 

 



172 

Table A 2.3 Topic detection approaches for comparison 

 Approach Granu 

larity 

Description 

T
ra

in
in

g 

p
h

as
e 

R
ef

in
in

g 

S
em

an
ti

c 

T
op

ic
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or
re

-

la
ti

on
 

D
om

ai
n

  

k
n

ow
le

d
ge

 

LDA-IG (C. Zhang 

et al., 2016) 

Document Probabilistic 

and graph 

based 

Yes No No No No 

KeyGraph 

(Sayyadi & 

Raschid, 2013) 

Document Graph based Yes No No No No 

LDA  

(David M.  Blei et 

al., 2003) 

Document Probabilistic 

based 

No No No No No 

HLTM (P. Chen et 

al., 2016) 

Document Probabilistic 

and graph 

based 

Yes No No No No 

BM-SATD Configu- 

rable as 

desired 

Semantic, 

probabilistic 

and graph 

based 

Yes Yes Yes Yes Yes 

4.3.2  Results analysis 

Figure A 2.15 presents the average running time of the detection phase when the number of 

documents used for the tests were varied. Training times were excluded as this phase was 

performed only one time. However, the BM-SATD training phase required more time than the 

other approaches. This was justified by the fact that BM-SATD identifies the relevant and less 

similar documents used for training phase. Fortunately, the new generation of data center 

equipment offers sufficient resources to reduce significantly the training delay. Thus, only the 

time required to detect new document topics (subject) was measured.  
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Figure A 2.15 also shows that the average running time increased with the number of test 

documents. Indeed, the bigger the number of test documents, the longer the time to perform 

detection and, ultimately, the higher the average running time. 

 

Figure A 2.15 Topic detection - Average running time versus 
number of documents for test phase 

It was also observed that LDA outperforms the other approaches. LDA produced an average 

of 1.37 sec per document whereas BM-SATD produced an average of 2.62 sec per document.  

The average relative improvement (defined as [Aver._runtime of BM-SATD – Aver._runtime 

of LDA]) of LDA compared with BM-SATD was approximately 1.25 sec per document. The 

short run times of LDA were due to the fact that LDA did not perform a graph treatment. Graph 

processing algorithms are very time consuming. Other approaches also outperformed BM-

SATD on the running time criteria since BM-SATD performed topic refining in order to 

increase accuracy. 

Figure A 2.16 shows the average accuracy when varying the number of detected topics. For 

the five approaches, the average accuracy decreased with the number of detected topics. The 
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increase in the number of subjects to detect led to decreased accuracy. However, in terms of 

accuracy, BM-SATD outperformed the approaches used for comparison. BM-SATD produced 

an average accuracy of 79.50% per topic while LDA-IG, the best among the approaches used 

for comparison, produced an average of 61.01% per topic.  

The average relative improvement in accuracy (defined as [Ave_acc of BM-SATD – Ave_acc 

of LDA-IG]) of BM-SATD compared to LDA-IG was 18.49% per topic. The performance of 

BM-SATD is explained as follows:  

1. BM-SATD used the relevant documents for training phase; 

2. BM-SATD refined its detection topic results by measuring new document similarity 

with relevant and less similar annotated documents; 

3. BM-SATD combined correlated topic model and domain knowledge model instead of 

LDA. 

 

Figure A 2.16 Accuracy for number of detected topics for 5 
comparison approaches 

Figure A 2.16 also shows that BM-SATD produced an average accuracy of 90.32% for one 

detected topic and 61.27% for ten detected topics compared to 80.29% and 41.01% 
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respectively for LDA-IG. The gap between BM-SATD accuracy and LDA-IG accuracy was 

10.03% for one detected topic and 20.26% for ten detected topics. This meant that BM-SATD 

was by in large more accurate than LDA-IG in detecting several topics. 

The Figure A 2.17 presents the average accuracy when varying the number of training 

documents of the learning phase. LDA was not included in the scenario since no training phase 

was performed. Figure A 2.17 shows that the average accuracy increased with the number of 

training documents. The larger the number of training documents, the better the knowledge 

about word distribution and co-occurrence and, ultimately, the higher the detection accuracy. 

However, the accuracy remained largely stable for very high numbers of training documents. 

When the number of documents of a collection was larger, the number of vocabulary words 

remained constant, and the term graph did not change. It also shows that HLTM was the 

approach whose detection accuracy was the first to reach stability at 10,000 training 

documents. HLTM builds a tree instead of a graph as the other approaches and its tree has less 

internal roots to identify topics. However, BM-SATD and LDA-IG outperformed HLTM in 

terms of accuracy.  

Figure A 2.17 also shows that BM-SATD outperformed LDA-IG on the accuracy criteria. For 

example, BM-SATD demonstrated an average accuracy of 73.49% per 2,000 training 

documents while LDA-IG produced an average accuracy of 50.86% per 2,000 training 

documents. The average relative improvement of BM-SATD compared to LDA-IG was 

22.63% per 2,000 training documents. The better performance of BM-SATD followed from 

its use of a domain knowledge model. BM-SATD did not require a large number of documents 

for the training phase. 
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Figure A 2.17 Topic detection - accuracy for number of 

training documents 

In conclusion, the 1.25 sec running time per document increase was a small price to pay for 

the larger average accuracy of topic detection (18.49%). 

4.4 Sentiment and emotion analysis performance evaluation 

BM-SSEA performance was also evaluated in terms of accuracy and running time. Simulations 

used the dataset and parameters mentioned previously. The performance of BM-SSEA was 

compared to the approaches described in (Bao et al., 2012) and (Anusha & Sandhya, 2015), 

referred to as ETM-LDA and AP, respectively. ETM-LDA and AP were selected because they 

were document-based rather than phrase-based. 

4.4.1  Comparison of approaches with BM-SSEA 

Table A 2.4 shows the characteristics of the approaches used for comparison with BM-SSEA. 

BM-SSEA was the only entirely semantic approach taking into account the rules for inferring 

emotion. In addition, BM-SSEA used a semantic lexicon. Several approaches used semantic 
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lexicon, but these were limited to phrases rather than documents. The best performance 

approaches used were AP and ETM_LDA. 

Table A 2.4 Sentiment and emotion approaches for comparison 

Approach Granularity Approach 
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AP (Anusha & 

Sandhya, 2015) 

Document Learning based Yes No 5 No 8 

ETM-LDA (Bao 

et al., 2012) 

Document Keyword based Yes No 6 Yes 8 

BM-SSEA Configurable 

as desired 

Keyword and 

rule based  

Yes Ye

s 

1, 2, 

3, and 

4 

Yes 8 

1-WordNet; 2-WordNet-Affect; 3-SentiWordNet; 4-NRC Emotion Lexicon; 5- Stanford 

CoreNLP; 6-Gibbs sampling. 

4.4.2  Results analysis 

Figure A 2.18 presents the average running time when varying the number of detected 

emotions. As in Figure A 2.17, training times were excluded because this phase was performed 

only once.  
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Figure A 2.18 Emotion discovery - Average running time 
versus number of documents for test phase 

The BM-SSEA training phase took more time than the other approaches due to lexicon 

aggregation and enrichment by users. The average running time increased with the number of 

test documents. This is normal, as the larger the number of test documents the longer the 

average running time to perform the sentiment and emotion discovery. Figure A 2.18 shows 

that ETM-LDA and AP outperformed BM-SSEA on the running time criteria. ETM-LDA 

required an average of 1.53 sec per document whereas BM-SSEA required an average of 1.74 

sec per document. The average relative improvement of ETM-LDA compared with BM-SSEA 

was approximately 0.21 sec per document. The poorer performance of BM-SSEA resulted 

from refining sentiment and emotion to increase accuracy. 

Figure A 2.19 presents the average accuracy when varying the number of discovered emotions. 

Positive and negative sentiments were not considered in the accuracy measurement. Figure A 

2.19 also shows that the average accuracy decreased with the number of discovered emotions. 

However, BM-SSEA outperformed the other two approaches used for comparisons. BM-SSEA 

demonstrated an average accuracy of 93.30% per emotion while ETM-LDA, the best of the 

other two approaches used for comparison, produced 68.65% accuracy per emotion. The 
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average relative improvement in accuracy of BM-SSEA compared to ETM-LDA was 24.65% 

per emotion.  

In conclusion, the 0.21 sec running time per document increase was, again, a small price to 

pay for the larger average accuracy of emotion discovery (24.65%). 

 

Figure A 2.19 Average detection accuracy for the number of 
discovered emotions 

5. Summary and future work 

In this paper, the goal was to increase the findability (search, discover) of entities based on 

user interest using external and internal semantic metadata enrichment algorithms. As 

computers struggle to understand the meaning of natural language, enriching entities 

semantically with meaningful metadata can improve search engine capability. Words 

themselves have a wide variety of definitions and interpretations and are often utilized 

inconsistently. While topics, sentiments and emotions may have no relationship to individual 

words, thesauri express associative relationships between words, ontologies, entities and a 
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multitude of relationships represented as triplets. From these relationships and defined entities 

it was possible to dynamically build up a large semantic metadata master catalogue (SMMC). 

This paper presented an enhanced implementation of SMESE using metadata and data from 

the linked open data, structured data, metadata initiatives, concordance rules and authority’s 

metadata to create the SMMC. SMMC offers a foundation for an entire interest-based digital 

library of semantic mining activities, such as search, discovery and interest-based notifications. 

Finding bibliographic references or semantic relationships in texts makes it possible to localize 

specific text segments using ontologies to enrich a set of semantic metadata related to topic or 

sentiment and emotion.  

To help users find interest-based contents, this paper proposes to enhance the SMESE platform 

through text analysis approaches for sentiments and emotions detection. SMESE V3 can be 

used (or: makes it possible) to create a semantic master catalogue with enriched metadata that 

enables search and discovery interest-based processes. This paper presents the design, 

implementation and evaluation of a SMESE V3 platform using metadata and data from the 

web, linked open data, harvesting and concordance rules, and bibliographic record authorities. 

The SMESE includes three distinct processes that: 

1. Discover enriched sentiment and emotion metadata hidden within the text or linked to 

multimedia structure using the proposed BM-SSEA (BM-Semantic Sentiment and 

Emotion Analysis) algorithm; 

2. Implement rule-based semantic metadata internal enrichment (RSMIEE includes 

algorithms BM-SATD and BM-SSEA); 

3. Generate semantic topics by text, and multimedia content analysis using the proposed 

BM-SATD (BM-Scalable Annotation-based Topic Detection) algorithm.  

Furthermore, SMESE V3 provides: 

1. An enhanced semantic metadata meta-catalogue (SMM), 

2. An enhanced harvesting metadata & data and OpenURL. 
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The semantic aggregation of metadata content repository offers a foundation for an interest-

based digital library of semantic mining activities, such as search, discover and smart 

notifications. 

Table A 2.1 shows the comparison with most known text mining algorithms (e.g., 

AlchemyAPI, DBpedia, Wikimeta, Open Calais, Bitext, AIDA, TextRazor) and a new 

algorithm SMESE with many attributes including keyword extraction, classification, sentiment 

analysis, emotion analysis, and concept extraction. It was noted that SMESE algorithms 

support more attributes than any other algorithms. 

In future work, the focus will be to generate learning-based literature review enrichment and 

abstract of abstract. STELLAR (Semantic Topics Ecosystem Learning-based Literature 

Assisted Review) assess each citation to determine her ranking and her inclusion in the final 

literature assisted review (LAR). One goal of this ecosystem is to reduce reading load by 

helping researcher to read only the intelligent selection of documents. Using text data mining, 

machine learning, and a classification model that learn from users annotated data and detected 

metadata. 

Appendix A: BM-SATD Processes, Phases and Algorithms 

1. Relevant and less similar document selection phase 

This phase identifies the corpus of relevant and similar documents for a given topic. Three 

algorithms are defined and described in the following steps. 

Step 1: Selection of representative documents of a given corpus by topic 

In this step, the most relevant documents of each topic are selected. The objective is to reduce 

the number of documents that used to compute the similarity with a new document in order to 

detect its topics. Each document of a topic is checked as to whether or not its most important 

terms are the same as the most important terms of the topic. 
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Let Cti={D1,…,Dj,…, DMi} be the corpus of documents with ti as topic and Vti={W1,…,Wk,…, 

WNi} be the vocabulary of the topic ti where each element of Vti is in at least one document of 

corpus Cti.  

Let Dj={Wa…,Wi,…, W|Dj|} be the set of words of document Dj. To obtain Dj, the 

preprocessing phase is performed which consists of the following processes: 

1. Segmentation is a process of dividing a given document into sentences; 

2. Stop words are removed from the text. Stop words are frequently occurring words such 

as ‘a’, ’an’, ’the’ that provide less meaning and contain noise. Stop words are 

predefined and stored in an array; 

3. Tokenization separates the input text into separate tokens. Punctuation marks, spaces 

and word terminators are word breaking characters; 

4. Word stemming converts each word into its root form by removing its prefix and suffix 

for comparison with other words. 

The algorithm of step 1 is the following (Algorithm 1): 

1. For each topic ti of T 

a) For each Dj of Cti  

- For each Wi of Dj   

• Compute TF-IDF of Wi in the corpus of documents Cti with the following 

formula: 

݂൫ ௜ܹ, ,௝ܦ ௧௜൯ܥ = ܨܶ	 − ൫ܨܦܫ ௜ܹ, ,௝ܦ ௧௜൯ܥ = ൫ܨܶ ௜ܹ, ௝൯ܦ ∗ log	( |௧௜ܥ| = )ܨܦܫ௜ܯ ௜ܹ, 	((௧௜ܥ
where ܶܨ൫ ௜ܹ, )ܨܦܫ ,௝൯ܦ ௜ܹ,  ௧௜) and Mi denote the number of occurrences of Wi inܥ

document Dj, the number of documents in the corpus Cti where Wi appears, and the 

number of documents in the corpus Cti, respectively. 

At this level, for each document Dj of Cti, the set of vectors VDj= { (Wa ,  f(Wa,Dj,Cti)), …, (Wi ,  

f(Wi,Dj,Cti)) ,…, (W|Dj| ,  f(W|Dj|,Dj,Cti))} is obtained where in the couple (Wi ,  f(Wi,Dj,Cti)):  

1. Wi denotes a term, 

2. f(Wi,Dj,Cti)) is its tf-idf within the whole corpus Cti.  
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2. For each topic ti of T  

a) For each Wk of Vti 

- Compute TF-ITF of Wk for the whole corpus of documents with the following 

formula: ݃( ௞ܹ, (௜ݐ = ܨܶ	 − )ܨܶܫ ௞ܹ, (௜ݐ = )ܨܶ ௞ܹ, (௜ݐ ∗ log	( |ܶ| = )ܨܶܫ݊ ௞ܹ))	
where	ܶܨ( ௞ܹ, )ܨܶܫ , (௜ݐ ௞ܹ) and |T| denote the number of occurrences of Wk in 

all the documents of corpus Cti, the number of topics where Wk appears, and the 

number of topics, respectively. 

At this level, for each topic ti of T, the set of vectors Vti= { (W1 ,  g(W1,ti)), …, (Wk,  g(Wk,ti)) 

,…, (WNi ,  g(WNi,ti))} is obtained where in the couple (Wk , g(Wk,ti)), Wk  denotes a term and 

g(Wk,ti) is its tf-itf in the whole corpus T. 

At this stage, the standard deviation σ and the average avg number of distinct terms in the 

documents for the topic is computed in order to decide the number of terms to consider whether 

the document is relevant to the topic or not. Standard deviation gives a good indication of the 

dispersion of data to the average. 

3. For each topic ti of T  

a) Compute avg of ti as  avgti 

௧௜݃ݒܽ - = ∑ ห஽ೕหห಴೟೔หసಾ೔ೕసభ|஼೟೔|ୀெ೔  

b) Compute σ of ti as σti 

௧௜ߪ - = ඨ∑ ൫ห஽ೕหି௔௩௚೟೔൯మห಴೟೔หసಾ೔ೕసభ |஼೟೔|ୀெ೔  

c) Compute the number of distinct terms to consider with the following formula: 

Eti = avgti – σti 

Eti represents approximately 75% of term distribution number per document Dj of Cti. 

The score of each document Dj in the topic ti is then computed as follows: 
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4. For each topic ti of T  

a) For each Dj of Cti  

- Classify the terms of Dj using TF-IDF in descending order. 

௝൯ܦ൫	݁ݎ݋ܿݏܯܤ - = ∑ ݃( ௜ܹ, |௜)|ா೔ݐ   

where ∑|Ei| are the first |Ei| terms of Dj with the highest tf-idf in the whole corpus 

Cti.. 

b) The α documents with the highest BMscore that form the set of documents contained 

in the relevant documents of topic ti is selected. Note that α is a threshold to be 

defined. 

௧௜ܥ = ൥ܥ௧௜ᇱ =ራ{ܦ௞}ఈ ൩ ∪ ቎ራ ൛ܦ௝ൟெ೔ିఈ ቏	/			with	BMScore(ܦ௞) >  (௝ܦ)݁ݎ݋ܿܵܯܤ
௧௜ᇱܥ = ൛ܦ௞భ, … , ,௞೔ܦ … , ௜ܯ ௞ഀൟ whereܦ > ௜ᇱܯ =  .is obtained ߙ

Step 2: Selection of less similar documents of a given corpus by topic 

The objective of this step is to retain documents that are less similar among the relevant 

documents of a given topic ti ܥ௧௜ᇱ . This avoids having to consider too similar documents in the 

same topic set and increases the accuracy of detecting a topic in a new document. 

• Let ܥ௧௜ᇱ  be relevant documents of a given topic ti. Notice that the documents of ܥ௧௜ᇱ  are 

ordered based on their BMscore.  

• Let β be a similarity threshold. β is a threshold defined through empirical experimentation.  

• Let ܥ௧௜ᇱᇱ = ൛ܦ௞భൟ, where ܦ௞భ  is the document of ܥ௧௜ᇱ  with the highest BMscore. 

• The function of similarity SimCos() is given by equation (25). SimCos(ܦ௞೔, ܦ௞ೕ)  ≤  β 

means that ܦ௞೔ and ܦ௞భ are less similar. 

The algorithm is the following (Algorithm 2); 

1. For each ܦ௞೔  of ܥ௧௜ᇱ  started by ܦ௞మ 

a) j = 1 
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b) While [(SimCos(ܦ௞೔, ܦ௞ೕ)  ≤  β) and (j ≤ |ܥ௧௜ᇱᇱ|) ] 
- j++ 

c) If (j > |ܥ௧௜ᇱᇱ|))        
௧௜ᇱᇱܥ = ௧௜ᇱᇱܥ - ∪  {௞೔ܦ}

The result of Algorithm 2 is the subset of ܥ௧௜ᇱ  that contains the less similar, relevant and 

discriminant documents of topic ti.  ܥ௧௜ᇱᇱ = ቄܦ௞భ, … , ,௞೗ܦ … , ߙ ௞ംቅ whereܦ ≥  ߛ

 Step 3: Dynamic updating of model by novelty (addition of new annotated document) 

This step verifies whether the new annotated document is relevant to its annotated topics. 

Remember that vti={W1,…,Wk,…, WNi} denotes the vocabulary of the topic ti.  

Based on steps 1 and 2, note the vectors ܨܦܫ௧௜௦ ௧௜௦ܨܶ ௦, andܨܶܫ , : 

 ܨܦܫ௧௜௦ = )ܨܦܫ) ଵܹ, ,(௧௜ܥ … , )ܨܦܫ ௞ܹ, ,(௧௜ܥ … , )ܨܦܫ ேܹ௜,  ((௧௜ܥ
 where ܨܦܫ( ௞ܹ,  denotes the number of documents in the corpus Cti where the term Wk	௧௜)ܥ

appears at the state s. 

 ܨܶܫ௦ = )ܨܶܫ) ଵܹ), … , )ܨܶܫ ௞ܹ), … , )ܨܶܫ ேܹ௜)) 
where ܨܶܫ( ௞ܹ)	denotes the number of topics where Wk appears at the state s. 

 ܶܨ௧௜௦ = )ܨܶ) ଵܹ, ,(௜ݐ … , )ܨܶ ௞ܹ, ,(௜ݐ … , )ܨܶ ேܹ௜,  ((௜ݐ
Where ܶܨ( ௞ܹ,  ௜) denotes the number of occurrences of Wk in all the documents of corpus Ctiݐ

at the state s. 

The algorithm for the dynamic updating of the model by novelty (Algorithm 3) is defined as 

follows, where vectors ܨܦܫ௧௜௦ ௧௜௦ܨܶ ௦, andܨܶܫ ,  are used as inputs: 

1. For a new document d,  

a) For each topic ti of d 
- compute the TF-IDF of each term W of d based on ܨܦܫ௧௜௦ ;  ݂(ܹ, ݀, (௧௜ܥ = ܨܶ	 − ,ܹ)ܨܦܫ ݀, (௧௜ܥ = ,ܹ)ܨܶ ݀) ∗ log	( ,ܹ)ܨܦܫ|௧௜ܥ| (௧௜ܥ + 1) 
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- rank the terms W of d based on their TF-IDF 
- select the Eti terms W of d with highest TF-IDF 
- compute the TF-ITF of each selected term W of d based on ܨܶܫ௧௜௦  and ܶܨ௧௜௦  ݃(ܹ, (௜ݐ = ܨܶ	 − ,ܹ)ܨܶܫ (௜ݐ = ሾܶܨ(ܹ, (௜ݐ + ,ܹ)ܨܶ ݀)ሿ ∗ log	( )ܨܶܫ|ܶ| ௞ܹ)) 
- classify the term of d by TF-IDF in descending order 
- compute the BMscore of d ݁ݎ݋ܿݏܯܤ	(݀) = ∑ ݃(ܹ, |௜)|ா೔ݐ   

- If the BMscore (d) is higher than the smallest BMscore of  ܥ୲୧ᇱ  document  
୲୧ᇱܥ • = ௧௜ᇱܥ 	\	൛ܦ௞೔ൟ	  

where ܦ௞೔ denotes the document of ܥ୲୧ᇱ  with the smallest BMscore 

୲୧ᇱܥ • = ௧௜ᇱܥ 	 ∪ 	 {݀}	   
• Call Algorithm 2 to update ܥ୲୧ᇱᇱ 

- update vector ܨܦܫ௧௜௦  
,ܹ)ܨܦܫ • (௧௜ܥ = ,ܹ)ܨܦܫ (௧௜ܥ + 1 

- update vector ܶܨ௧௜௦  
,ܹ)ܨܶ • (௜ݐ = ,ܹ)ܨܶ (௜ݐ + ,ܹ)ܨܶ ݀) 

2. Topic detection phase 

• Let G be the BM-SemGraph of the entire collection; 

• Let Td be the list of topics of document d. 

The algorithm for the topic detection process phase (Algorithm 4) is the following: 

1. Td = {} 

2. For a new document d,  

a) Generate BM-SemGraph H of document  

b) For each feature vector of topic ݐ௝ௗ of BM-SemGraph H 

- Identify the main term Wi using: 

)ܴ݇݊ܽܯܤ • ௜ܹ|ݐ௝ௗ) = ∑ ஻ெௐቀௐ೔,ௐೖ	|	௧ೕ೏ቁೈೖ	∈	ಲ	 |஺|  

- For each feature vector of topic ti of BM-SemGraph G 
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o If Wi is a term of feature vector of topics ti 

o Compute the similarity between ti and topic ݐ௝ௗ as follows: 

(௝ௗݐ|௜ݐ)݉݅ܵ = ට∑ ቀܹܯܤ( ௜ܹ, ௞ܹ	|	ݐ௜) − ൫ܹܯܤ	 ௜ܹ, ௞ܹ	|	ݐ௝ௗ൯ቁଶௐೖ	∈	஻	ට∑ ቀܹܯܤ( ௜ܹ, ௛ܹ	|	ݐ௜) − ൫ܹܯܤ	 ௜ܹ, ௛ܹ	|	ݐ௝ௗ൯ቁଶௐ೓	∈	஼	  

 

o If ܵ݅݉൫ݐ௜หݐ௝ௗ൯ ≤ VectorSimilarityThreshold 

     Td = 	 ௗܶ ∪ 	 ൛(ݐ௜,  ௝ௗ)ൟݐ
3. Topic refining phase 

The algorithm for the topic refining process phase (Algorithm 5) is the following: 

• Let H be the new document d term clustering by topic; 

• Let G be clusters of terms by topic; 

• Let LMatch be the list of clusters of H and G which match ; 

• Let LNotMatch be the list of clusters of H and G which do not match. 

1. LMatch = {}  

2. LNotMatch = {} 

3. For each terms cluster ܥ௝ௗof topic ݐ௝ௗ of H 

a) For each term cluster Ci of topic ti of G 

- NotLinkG = 1 + maximum number of hops between two terms in term cluster 

Ci of topic ti of G 

- HopNumberH = 0 

- HopNumberG = 0 

- For each link (Wi; Wj) of terms cluster ܥ௝ௗ of topic	ݐ௝ௗ in H 

o HopNumberH = HopNumberH + 1 

o Hop = Find the shortest number of hops between Wi and Wj in terms 

cluster of topic ti of G 
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o If Hop = 0  

Hop  = NotLinkG  

o HopNumberG = HopNumberG + Hop 

b) Sim (ݐ௝ௗ, ti) = HopNumberH / HopNumberG 

c) If Sim (ݐ௝ௗ, ti) > Ω 

- LMatch = LMatch ∪ {(ݐ௜,  {(௝ௗݐ

    Else 

- LNotMatch = LM LNotMatch ∪ {(ݐ௜,  {(௝ௗݐ

 

Algorithm 6 is the following:  

• Let Dn be the new document; 

• Let TSDn be the list of similar topics associated to Dn; 

• Let TDDn be the list of distinct topics associated to Dn. 

1. For a new document Dn 

2. For each selected topic ti  of T 

a) l = 1 

b) TDDn = {} 

c) TSDn = {} 

d) While [(SimCos (Dn, ܦ௞೗) < β and (l ≤ |ܥ௧௜ᇱᇱ|)]         // ܦ௞೗ ߳ ܥ୲୧ᇱᇱ 
- l++ 

e) if (l ≤  |ܥ௧௜ᇱᇱ|) 
- TSDn = TSDn ∪ {ti} 

Else  

- TDDn = TDDn ∪ {ti} 
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Appendix B: BM-SSEA Processes, Phases and Algorithms  

1. BMEmoSenMod generation phase 

This step makes use of the corpus of documents rated over E emotions. However, it is feasible 

to perform this step periodically in order to update the sentiment and emotion lexicon (e.g., 

BMEmoSenMod). 

Algorithm 7 

Input: WordNet, WordNet-Affect, SentiWordNet and NRC emotion lexicon 

Output: BMEmoSenMod 

Emotions Topic Word 

feature 

Emotion 

probability of fj 

Sentiment 

probability of fj 

…  …   

ei  1   

 …   

tk fj EmoPro൫݁௜| ௝݂, |௜ݏ௞൯ SenPro൫ݐ ௝݂,  ௞൯ݐ
 …   

…  …   

EE  …   

 

1. For each emotion ei  BMEmoSenMod 

a. Identify the sample contents related to emotion ei 
b. Extract the keywords Wj from the documents {C1,… , Ch, …, Cq} 
c. Associate with each word-POS a feeling score to the keyword Wj to obtain the word 

feature fj 
d. Detect the topic tk of document d where Wj appears 
e. Compute the emotion probability of the obtained word feature fj of keyword Wj 

 

           EmoPro൫݁௜| ௝݂, ௞൯ݐ = ܸ݈ܽ( ௝݂) × ∑ ௣൫௙ೕ,௧ೖ,ௗ൯ౚ	∈	಴೟ೖ	⊂	ొీ ×௢௖(௘೔,௧ೖ)∑ ∑ ௣൫௙ೕ,௧ೖ,ௗ൯ౚ	∈	಴೟ೖ	⊂		ొీ ×௢௖(௘೗,௧ೖ)೐೗	∈	ಶ   
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f. Compute the sentiment probability of the obtained word feature fj of keyword Wj 
 

                           SenPro൫ݏ௜| ௝݂, ௞൯ݐ = )݋ܿܵܵ ௝݂) × ∑ ௣൫௙ೕ,௧ೖ,ௗ൯ౚ	∈	಴೟ೖ	⊂	ొీ ×௢௖(௦೔,௧ೖ)∑ ∑ ௣൫௙ೕ,௧ೖ,ௗ൯ౚ	∈	಴೟ೖ	⊂		ొీ ×௢௖(௦೗,௧ೖ)ೞ೗	∈	ೄ  

 
g. Add EmoPro൫݁௜| ௝݂, |௜ݏ௞൯ and SenPro൫ݐ ௝݂,  ௞൯ in the sentiment and emotion lexiconݐ

BMEmoSenMod 

2. Sentiment and emotion discovery 

This step is performed for a new document targeted to discover its sentiments and emotions. 

Algorithm 8 

Input: new document and BMEmoSenMod 

Output: emotional vector of new document 

• Let D be the given document  

• Extract the word feature fj of D 

1. For each word feature fj of D 

a. If fj is in the sentiment and emotion lexicon BMEmoSenMod, 
- For each associated emotion ei W୉(ND, ݁௜) = ∑ E൫ ௝݂, ND, ݁௜൯୛ౠ	∈	୛ొీ   

b. Else 
- Identify the synonyms fy of fj in the BMEmoSenMod 
- For each associated emotion ei  W୉(ND, ݁௜) = ∑ ୉൫௙೤,୒ୈ,௘೔൯౓౯	∈	ా౉ుౣ౥౏౛౤౉౥ౚ௠   

// m denotes the number of synonyms of fj 

 

2. Normalization of each W୉(ND, ݁௜) 
3. Return (W୉(ND, ݁ଵ), …,W୉(ND, ݁௜), …,W୉(ND, ݁ா),W୉(ND, ,௉),W୉(NDݏ  ((ேݏ



191 

Appendix C: Semantic topic detection  

Semantic topic detection, a fundamental aspect of SIR, helps users to efficiently detect 

meaningful topics. It has attracted significant research in several communities in the last 

decade, including public opinion monitoring, decision support, emergency management and 

social media modeling (Hurtado et al., 2016; Sayyadi & Raschid, 2013). STD is based on large 

and noisy data collections such as social media, and addresses both scalability and accuracy 

challenges. Initial methods for STD relied on clustering documents based on a core group of 

keywords representing a specific topic, where, based on a ratio such as tf-idf, documents that 

contain these keywords are similar to each other (Niu et al., 2016; Salton & Buckley, 1988). 

Next, variations of tf-idf were used to compute keyword-based feature values, and cosine 

similarity was used as a similarity (or distance) measure to cluster documents. The following 

generation of STD approaches, including those based on latent Dirichlet allocation (LDA), 

shifted analysis from directly clustering documents to clustering keywords. Some examples of 

these advances in STD are presented in (David M.  Blei et al., 2003).  

However, social media collections differ along several criteria, including the size distribution 

of documents and the distribution of words. One challenge is to rapidly filter noisy and 

irrelevant documents, while at the same time accurately clustering a large collection. Bijalwan 

et al. (Bijalwan et al., 2014), for example, experimented with machine learning approaches for 

text and document mining and concluded that k-nearest neighbors (KNN), for their data sets, 

showed the maximum accuracy as compared to naive Bayes and term-graph. The drawback 

for KNN is that time complexity (i.e., amount of time taken to run) is high but it demonstrates 

better accuracy than others.  

In the last decade, semantic topic detection has attracted significant research in several 

communities, including information retrieval. Generally, a topic is represented as a set of 

descriptive and collocated keywords/terms. Initially, document clustering techniques were 

adopted to cluster content-similar documents and extract keywords from clustered document 

sets as the representation of topics (subjects). The predominant method for topic detection is 

the latent Dirichlet allocation (LDA) (David M.  Blei et al., 2003), which assumes a generating 
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process for the documents. LDA has been proven a powerful algorithm because of its ability 

to mine semantic information from text data. Terms having semantic relations with each other 

are collected as a topic. LDA is a three-level hierarchical Bayesian model, in which each item 

of a collection is modeled as a finite mixture over an underlying set of topics. Each topic is, in 

turn, modeled as an infinite mixture over an underlying set of topic probabilities. In the context 

of text modeling, topic probabilities provide an explicit representation of a document. 

The literature presents two groups of text-based topic detection approaches based on the size 

of the text: short text (Cigarrán et al., 2016; Cotelo et al., 2016; Dang et al., 2016; Hashimoto 

et al., 2015) such as tweets or Facebook posts, and long text (David M.  Blei et al., 2003; 

Bougiatiotis & Giannakopoulos, 2016; P. Chen et al., 2016; Salatino & Motta, 2016; Sayyadi 

& Raschid, 2013; C. Zhang et al., 2016) such as a book.  

For example, Dang et al. (Dang et al., 2016) proposed an early detection method for emerging 

topics based on dynamic Bayesian networks in micro-blogging networks. They analyzed the 

topic diffusion process and identified two main characteristics of emerging topics, namely 

attractiveness and key-node. Next, based on this identification, they selected features from the 

topology properties of topic diffusion, and built a DBN-based model using the conditional 

dependencies between features to identify the emerging keywords. But to do so, they had to 

create a term list of emerging keyword candidates by term frequency in a given time interval.  

Cigarran et al. (Cigarrán et al., 2016) proposed an approach based on formal concept analysis 

(FCA). Formal concepts are conceptual representations based on the relationships between 

tweet terms and the tweets that have given rise to them. 

Cotelo et al. (Cotelo et al., 2016), when addressing the tweet categorization task, explored the 

idea of integrating two fundamental aspects of a tweet: the textual content itself, and its 

underlying structural information. This work focuses on long text topic detection.  

Recently, considerable research has gone into developing topic detection approaches using a 

number of information extraction techniques (IET), such as lexicon, sliding window, boundary 

techniques, etc. Many of these techniques (P. Chen et al., 2016; Salatino & Motta, 2016; 
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Sayyadi & Raschid, 2013; C. Zhang et al., 2016) rely heavily on simple keyword extraction 

from text.  

For example, Sayyadi and Raschid (Sayyadi & Raschid, 2013) proposed an approach for topic 

detection, based on keyword-based methods, called KeyGraph, that was inspired by the 

keyword co-occurrence graph and efficient graph analysis methods. The main steps in the 

KeyGraph approach are as follows: 

1. The first step is construction of a keyword co-occurrence graph, called a KeyGraph, 

which has one node for each keyword in the corpus and where edges represent the co-

occurrence of the corresponding keywords weighted by the count of the co-

occurrences; 

2. Secondly, making use of an off-the-shelf community detection algorithm, community 

detection is taken into account where each community forms a cluster of keywords that 

represent a topic. The weight of each keyword in the topic feature vector is computed 

using the tf-idf formula. The TF value is computed as the average co-occurrence of 

each keyword from the community with respect to the other keywords in that 

community; 

3. Then, to assign a topic to a document, the likelihood of each topic t with the vector of 

keyword ft is computed using the cosine similarity of the document; 

4. Finally, for each pair of topics, where multiple documents are assigned to both topics, 

it is assumed that these are subtopics of the same parent topic and are therefore merged.  

In other words, KeyGraph is based on the similarity of keyword extraction from text. We note 

two limitations to the approach, which requires improvement in two respects. Firstly, they 

failed to leverage the semantic information derived from topic model. Secondly, they measured 

co-occurrence relations from an isolated term-term perspective; that is, the measurement was 

limited to the term itself and the information context was overlooked, which can make it 

impossible to measure latent co-occurrence relations.  

Salatino and Motta (Salatino & Motta, 2016) suggested that it is possible to forecast the 

emergence of novel research topics even at an early stage and demonstrated that such an 
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emergence can be anticipated by analyzing the dynamics of pre-existing topics. They presented 

a method that integrates statistics and semantics for assessing the dynamics of a topic graph:  

1. First, they select and extract portions of the collaboration networks related to topics in 

the two groups a few years prior to the year of analysis. Based on these topics, they 

build a topics graph where nodes are the keywords while edges are the links 

representing co-occurrences between keywords; 

2. Next, they transform the graphs into sets of 3-cliques. For each node of a 3-clique, they 

compute the weight associated with each link between pairs of topics by using the 

harmonic mean of the conditional probabilities. While this is a satisfactory approach to 

find latent co-occurrence relations, the approach assumes that keywords are topics. 

Chen et al. (P. Chen et al., 2016) proposed a novel method for hierarchical topic detection 

where topics are obtained by clustering documents in multiple ways. They used a class of 

graphical models called hierarchical latent tree models (HLTMs). Latent tree models (LTMs) 

are tree-structured probabilistic graphical models where the variables at leaf nodes are 

observed and the variables at internal nodes are latent. It is a Markov random field over an 

undirected tree carried out as follows:  

1. First, the word variables are partitioned into clusters such that the words in each cluster 

tend to co-occur and the co-occurrences can be properly modeled using a single latent 

variable. The authors achieved this partition using the BUILDISLANDS subroutine, 

which is based on a statistical test called the uni-dimensionality test (UD-test); 

2. After the islands are created, they are linked up so as to obtain a model over all the 

word variables. This is carried out by the BRIDGEISLANDS subroutine, which 

estimates the mutual information between each pair of latent variables in the islands. 

This allows construction of a complete undirected graph with the mutual information 

values as edge weights, and finally the maximum spanning tree of the graph is 

determined (P. Chen et al., 2016).  

Hurtado et al. (Hurtado et al., 2016) proposed an approach that uses sentence-level association 

rule mining to discover topics from documents. Their method considers each sentence as a 

transaction and keywords within the sentence as items in the transaction. By exploring 
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keywords (frequently co-occurring) as patterns, their method preserves contextual information 

in the topic mining process. For example, whenever the terms: “machine”, “support” and 

“vector” are discovered as strongly correlated keywords, either as “support vector machine” 

or “support vector”, they assumed that these patterns were related to one topic, i.e., “SVM”. In 

order to discover a set of strongly correlated topics, they used the CPM-based community 

detection algorithm to find groups of topics with strong correlations. As in (P. Chen et al., 

2016), their contribution was limited to simulating existing algorithms.  

Zhang et al. (C. Zhang et al., 2016) proposed LDA-IG, an extension of KeyGraph (Sayyadi & 

Raschid, 2013). It is a hybrid relations analysis approach integrating semantic relations and co-

occurrence relations for topic detection. Specifically, their approach fuses multiple types of 

relations into a uniform term graph by incorporating idea discovery theory with a topic 

modeling method. 

1. Firstly, they defined an idea discovery algorithm called IdeaGraph that was adopted to 

mine latent co-occurrence relations in order to convert the corpus into a term graph.  

2. Next, they proposed a semantic relation extraction approach based on LDA that 

enriches the graph with semantic information.  

3. Lastly, they make use of a graph analytical method to exploit the graph for detecting 

topics. Their approach has four steps:  

a. Pre-processing to filter noise and adjust the data format suitable for the subsequent 

components; 

b. Term graph generation to convert the basket dataset into a term graph by extracting 

co-occurrence relations between terms using the Idea Discovery algorithm; 

c. Term graph refining with semantic information using LDA to build semantic topics 

and tp-izp, inspired by tf-idf, to measure the semantic value of any term in each 

topic; 

d. Topic extraction from the refined term graph by assuming that a topic is a filled 

polygon and measuring the likelihood of a document d being assigned to a topic 

using tf-idf. However, their approach does not include machine learning, which 

would allow the framework to find new topics itself.  
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From our review of related work, we conclude that the main drawbacks of existing approaches 

to topic detection are as follows: 

1. They are based on simple keyword extraction from text and lack semantic information 

that is important for understanding the document. To tackle this limitation, our work 

uses semantic annotations to improve document comprehension time; 

2. Co-occurrence relations across the document are commonly neglected, which leads to 

incomplete detection of information.  Current topic modeling methods do not explicitly 

consider word co-occurrences. Extending topic modeling to include co-occurrence can 

be a computational challenge. The graph analytical approach to this extension was only 

an approximation that merely took into account co-occurrence information alone while 

ignoring semantic information. How to combine semantic relations and co-occurrence 

relations to complement each other remains a challenge; 

3. Existing approaches focus on detecting prominent or distinct topics based on explicit 

semantic relations or frequent co-occurrence relations; as a result, they ignore latent 

co-occurrence relations. In other words, latent co-occurrence relations between two 

terms cannot be measured from an isolated term-term perspective. The context of the 

term needs to be taken into account; 

4. More importantly, even though existing approaches take into account semantic 

relations, they do not include machine learning to find new topics automatically. 

The main conclusion is that most of the existing related research is limited to simulations using 

existing algorithms. None contribute improvements to detect topics more accurately. 



 

APPENDIX III 

An Assisted Literature Review using Machine Learning Models to Build a Literature 
Corpus and Recommend References Based on Corpus Radius 

 
 

Ronald Brisebois1, Alain Abran2, Apollinaire Nadembega1, Philippe N’techobo1 
 

 
1 Bibliomondo, Montréal, Canada 

{ronald.brisebois,apollinaire.nadembega,philippe.ntechobo}@bibliomondo.com 
2 École de technologie supérieure, Université du Québec, Canada, 

alain.abran@etsmtl.ca 
 

 

Paper submitted for publication to Information Retrieval Journal, January 2017 

 
 
Abstract  

With the evolving of research and huge volume papers, there is a need to assist researchers in 

the manual process of building literature review (LR). This paper proposes an assisted 

literature review (ALR) prototype (STELLAR - Semantic Topics Ecosystem Learning-based 

Literature Assistant Review). Using text and data mining models (TDM), machine learning 

models (MLM) and classification model, all of which learn from researchers' annotated data 

and semantic enriched metadata (SMESE), STELLAR helps researchers discover, identify, 

rank and recommend relevant papers for an ALR according to the researcher selection. 

Considering more criteria (venue age and impact, citation category and polarity, researchers' 

annotated data, authors' impact and affiliation institute, etc.) than existing approaches, 

STELLAR evaluates papers and related bibliographic attributes in order to determine their 

relevancy and aggregates all relevant components into an assisted literature review object 

(ALRO). 

This paper presents the MLM and algorithms that: 

• Identify relevant papers based on key finding, citation and paper feature impact. 
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• Compute papers semantic similarity with the researcher selection parameters. 

• Assist the researcher in refining and recommending the list of papers relevant.  

• Aggregate all relevant components into an ALRO. 

STELLAR performance was compared to existing approaches using a number of simulations. 

 

Keywords: assisted literature review, literature review, machine learning, literature review 

enrichment, semantic topic detection, text and data mining. 

 

1. Introduction 

Electronic access to research papers plays a primordial role in the dissemination of research 

results published in conference proceedings, journals and new platforms such as researcher 

media. Literature reviews, in which publications are selected by relevancy and evaluated, are 

a fundamental component of scientific writing. But the huge volume of scientific publications 

available is becoming an issue for researchers (Boote & Beile, 2005; Mayr et al., 2014): given 

that their time is limited, it is becoming impossible for researchers to read and carefully 

evaluate every publication within their own specialized field. 

A manual literature review (LR) process is very labor intensive, and the time that researchers 

must dedicate to searching for literature will vary according to their research topic. For 

instance, Gall et al. (Gall et al., 1996) estimate that a decent LR for a dissertation takes three 

to six months to complete. In their academic process, postgraduate students in all disciplines 

need to be able to write an accurate LR. Whether a short review as an assignment in a Master’s 

program, or a full-length LR for a PhD thesis, students find it difficult to produce a LR with 

all of the relevant and up-to-date papers. Researchers also have to stay aware of newly 

published papers on related topics to produce a meaningful LR. 
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An LR is not simply a summary of what is published about a particular topic; it must address 

a research question and must identify primary sources and references. It should focus only on 

the relevant literature available from all literature, that is, on references collected from 

recognized experts on the topic or related topics. According to (Carlos & Thiago, 2015; Gulo 

et al., 2015), an LR process consists in locating, appraising and synthesizing the best available 

empirical evidence to answer specific research questions. An LR will look at as much existing 

research as is feasible and will review scholarly papers and theses in the relevant area. It is a 

state-of-the-art search and evaluation of the available literature on a given topic or concept. It 

is not a chronological description of what has been discovered; it has to provide an analytical 

overview of the significant and relevant literature published on the topic. An ideal LR should 

retrieve all relevant papers for inclusion and exclude all irrelevant papers (Carlos & Thiago, 

2015; Gulo et al., 2015). 

The researcher’s main tasks in producing a manual LR are as follows: 

1. Clearly identify the topic or field of research; 

2. Search, survey and evaluate the available literature; 

3. Identify and understand the keywords, vocabulary, definitions, concepts and terms 

using an appropriate specialized dictionary, i.e., one that pertains to the topic or field 

in question; 

4. Order the relevant works within the context of their contribution to the LR; 

5. Present the literature in an organized way; 

6. Identify the main methodologies and research techniques used in the works; 

7. Summarize, synthesize and integrate the relevant works by abstracting their content. 

The sources and references have to be relevant, as current as possible and cited in a format 

appropriate to the discipline and publication sources.  

The aim of the paper presented here is to help the researcher identify references relevant a 

Literature Corpus for the LR, that is, the first four of the seven tasks listed above. The 

remaining three tasks will be addressed in a future paper. 

The following questions are essential to building a good LR: 
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1. What are the origins, definitions and detailed description of the topic or concept? 

2. For each paper, what are the author’s credentials and relevancy in regard to the topic 

discussed (e.g., number of papers and citations related to the topic)? 

3. What are the proceedings or journal’s credentials and its relevancy to the topic? 

4. What is the reputation or ranking of the publisher? 

5. When the LR is spread over a number of years, it is important to decide which 

references to include. This means determining how many years from the current date 

the content will be retained in the analysis.  

6. If the researcher’s project is multi-year, how to ensure that the LR stays up to date for 

a specific topic over the duration of the project? 

7. What are the main conclusions from previous works on this topic?  

To manually find sources of content for the LR, the first step is to identify the relevant topics 

or concepts and prioritize them. A way to identify the relevant ones is to check the lists of 

references to see which are frequently cited and how often. This requires ranking the LR 

references according to the specific research topic or concept and other parameters such as 

publication date, sources, etc.  

With the massive increase in digital content and widespread use of search engines, the number 

of returned results can be tremendous—which then makes it challenging to select only the 

papers relevant to the LR topic. This has led to the emergence of result ranking algorithms 

defined as the procedure used by search engines to assign priorities to returned results.  

In the context of scientific content, the ranking algorithms for content evaluation are referred 

to as scientometrics or bibliometrics (Beel et al., 2013; Bornmann et al., 2014, 2015; Cataldi 

et al., 2016; Dong et al., 2016; Franceschini et al., 2015; Hasson et al., 2014; Madani & Weber, 

2016; Marx & Bornmann, 2016; MASIC & BEGIC, 2016; Packalen & Bhattacharya, 2015; 

Rúbio & Gulo, 2016; Wan & Liu, 2014; S. Wang et al., 2014; M. Zhang et al., 2015). 

With the interdisciplinary nature of research and electronic access to papers, there is a need to 

facilitate and assist researchers in the iterative creation of their LRs. Semantic metadata allow 

more accurate searching than keywords and may help to get better relevant results for an 
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assisted literature review (ALR). Semantic metadata can be extracted using text and data 

mining (TDM) algorithms. TDM, machine learning models (MLM) have been designed to 

learn from papers and researchers’ annotated papers and to identify relevant papers for a 

specific topic and research field.  

In this paper, we report on our work to define and build an assisted LR prototype designed to 

reduce reading load by pointing the researcher to a recommended selection of documents. This 

paper proposes an ALR prototype (referred to here as STELLAR), i.e., a set of TDM and MLM 

for searching, discovering, ranking and recommending papers for an ALR. For instance, 

STELLAR will assess citations and other bibliographic attributes in order to select and rank 

papers and include them (or not) in the list of recommended references for the researcher.  

A prototype of STELLAR has been implemented using a software ecosystem described in 

SMESE V1 (Brisebois, Abran, & Nadembega, Unpublished results) and SMESE V3 

(Brisebois, Abran, Nadembega, & N’techobo, Unpublished results). The remainder of the 

paper is organized as follows.  

1. Section 2 presents the related works; 

2. Section 3 describes the STELLAR multi-platform architectural model included in the 

SMESE prototype; 

3. Section 4 presents the MLM designed for the STELLAR prototype; 

4. Section 5 presents an evaluation of the prototype through a number of ALR simulations; 

5. Section 6 contains a summary and suggestions for future work. 

2. Related Works 

This section presents the related works in the following sequence: 

1. Ranking of scientific papers, 

2. Text and data mining, and more specifically: 

a. Machine learning models (MLM), 

b. Automatic text summarization (ATS), 

c. Automatic multi-documents summarization for ALRs. 
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3. Assisted literature review object (ALRO). 

2.1 Ranking of scientific papers 

The proliferation of scientific publications and the online availability of repositories make it 

challenging for researchers to produce and maintain an updated bibliography for specific 

research fields. Within this context, there is an increasing need to develop software tools that 

can facilitate and aid LR automation and optimization. Unfortunately, few works have 

explored how to assist researchers in building a LR. 

Two means of quantitatively evaluating scientific research output are discussed in the 

literature: peer-review and citation-based bibliometrics indicators. The main limitation of peer-

review-based approaches is the subjectivity of evaluators, while citations-based approaches 

have been criticized for having a scope limited to academia and neglecting the broader societal 

impact of research (Marx & Bornmann, 2016).  

According to the literature, citation analysis is widely used to measure scientific papers and 

their impact. Recently some iterative processes, such as PageRank, have been applied to 

citation networks to perform this function. Unfortunately, the PageRank algorithm also has 

some limitations: for example, recent papers not yet cited do not appear in the top level of 

results. Furthermore, the links between papers are oriented to a single direction: from a citing 

paper to cited papers. 

Scientific paper ranking should also depend on the venue, the location of publication, the year, 

the author and the citation index. Some works in the field of scientific impact evaluation 

(Bornmann et al., 2014, 2015; Cataldi et al., 2016; M. Zhang et al., 2015) address the ranking 

of universities, institutions and research teams. For instance, M. Zhang et al. (M. Zhang et al., 

2015) propose a method to discover and rank collaborative research teams based on social 

network analysis in combination with traditional citation analysis and bibliometrics. In this 

approach, the research teams are ranked using indexes including both scientific research 

outcomes and the close degree of co-author networks.  
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For this research, many existing approaches for scientific paper ranking have been evaluated 

(Bornmann et al., 2014, 2015; Gulo et al., 2015; Hasson et al., 2014; Madani & Weber, 2016; 

Marx & Bornmann, 2016; Rúbio & Gulo, 2016; Wan & Liu, 2014; S. Wang et al., 2014). They 

suffer from a number of limitations: 

1. Most existing approaches focus on the researcher index or journal index to evaluate 

scientific research impact, ignoring the papers index—the most important metric for 

measuring the impact of a paper; 

2. Of the approaches that do focus on the papers index, most only use the citations count; 

in addition, they do not consider the age of papers, penalizing the recent ones; 

3. The few approaches focusing on the evaluation of papers themselves do not take into 

account the Social Level Metric, and they do not consider the category or polarity of 

citations; 

4. Some approaches make use of journal information to rank papers; however, they do not 

consider the other types of venues, such as conference proceedings, workshops or 

unpublished documents such as technical reports; 

5. Several approaches make use of MLM; however, they require a large manual 

contribution from specialists or experts to train the learning model; 

6. Very few works focus on text-based analysis to identify relevant papers, and those that 

do are limited to titles and abstracts. 

A comparison of two approaches proposed in the literature for scientific paper ranking is 

presented in Table A 3.1: PTRA (Hasson et al., 2014) and ID3 (Rúbio & Gulo, 2016): 

1. PTRA: Hasson et al. (Hasson et al., 2014) propose a ranking algorithm, called Paper 

Time Ranking Algorithm (PTRA), that depends on three factors: paper age, citation 

index and publication venue with a different priority assigned to each one of them. For 

a given paper, they compute its weight as the sum of the age of the conference 

proceedings or the journal impact factors, the number of citations of the paper and the 

age of paper; 

2. ID3: Rúbio and Gulo (Rúbio & Gulo, 2016) propose recommending papers based on 

known classification models, including the paper’s content and bibliometric features. 

Indeed, they combine text mining, ML algorithms and bibliometric measures to 
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automatically classify the relevant papers. They make use of the paper’s metadata (such 

as year of publication, citation number, reference number and publication venue) to 

measure the paper’s relevancy to specific field. To apply the ML algorithm, they make 

use of specialist annotations. 

It can be seen from Table A 3.1 that in ranking and identifying relevant contributions, neither 

of these two approaches takes into account author impact, citation category, venue impact, 

authors’ institutes or citing documents (the six rightmost columns). 

Table A 3.1 The PTRA and ID3 approaches for ranking papers 
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PTRA (Hasson et al., 2014) X X   X             

ID3 (Rúbio & Gulo, 2016)  X X X X       

 

2.2 Text and data mining (TDM) 

In scientific research, documents (such as journal papers, conference proceedings or research 

reports) have a specific organization and relevant sections that are different from other types 

of documents such as narrative text (R. Zhang et al., 2016).  

The purpose of a text summarizer is to select the most important facts and present them in a 

sensible order while avoiding repetition (Carenini et al., 2013). However, scientific papers 

frequently contain repeated expressions and sentences. Consequently, narrative text 

summarization approaches are not adequate for summarizing scientific papers for an ALR; 
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however, the principles of automatic text summarization (ATS) may be extended to apply here. 

This sub-section therefore reports on work dealing with: 

1. MLM, 

2. ATS, 

3. Automatic multi-documents summarization for LR. 

2.2.1  Machine learning models (MLM) 

MLM is a subfield of computer science that evolved from the study of pattern recognition and 

computational learning theory in artificial intelligence. MLM explores the definition and study 

of algorithms that can learn from and make predictions on data. Tom Mitchell, in his 

book Machine Learning (Mitchell, 1997),  provides a definition in the opening line of the 

preface: “The field of machine learning is concerned with the question of how to construct 

computer programs that automatically improve with experience.” 

There are three different axes for MLM: 

1. Text and data mining: using historical data to improve decisions: 

a. Medical records  medical knowledge, 

b. Document notices  document knowledge. 

2. Software algorithms that are difficult to program by hand: 

a. Image recognition and classification, 

b. Filtering algorithms/news feeds, 

c. Sort the answers according to their relevancy to a dynamic query, 

d. Optical character recognition, 

e. Bibliographic classification. 

3. User modeling: 

a. Automatic recommender assistants, 
b. Personal assistants such as Google Now and Apple Siri. 
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In the context of TDM, MLM is used mainly for metadata enrichment and literature review 

refinement in the context of ALR. Indeed, for literature summarization, two main MLM trends 

are identified: 

1. Supervised systems that rely on ML algorithms trained on pre-existing document-

summary pairs, namely: 

a. Linear algorithms for classification and regression, 

b. Non-linear algorithms for decision tree, rule-based and neural networks. 

2. Unsupervised techniques based on properties and heuristics derived from the text. The 

unsupervised summarization methods (Z. He et al., 2015) are mainly based on the 

weight of words in sentences, as well as the sentence position in a document. 

For example, Carlos and Thiago (Carlos & Thiago, 2015) developed a supervised MLM-based 

solution for text mining scientific articles using the R language in “Knowledge Extraction and 

Machine Learning” based on social network analysis, topic models and bipartite graph 

approaches. Indeed, they defined a bipartite graph between documents and topics that makes 

use of the Latent Dirichlet Allocation topic model. 

In regards to the classification and ranking problem, there are different MLM. To determine 

which model performs best, the best way remains the use of prototypes.  

An MLM can also be dynamic, meaning that it can train itself on the analysis of new data. In 

the case of MLM’s K-means clustering algorithm, the data would be classified into clusters 

and any new metadata and data would clarify the cluster boundaries, thus improving the 

model’s ability to classify accurately. 

The next two sub-sections report on MLM for single or multi-document text summarization. 

2.2.2  Automatic text summarization (ATS) 

Document key phrases enable fast and accurate searching for a given document within a large 

collection, and have exhibited their potential for improving many natural language processing 
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and semantic information retrieval tasks, such as automatic text summarization (ATS) and 

ALR. ATS has received a lot more attention than ALR.  

According to (Saggion & Poibeau, 2013), there are two main types of ATS:  

1. Extractive summarization selects the important sentences from the original input 

documents to form a summary; 

2. Abstractive summarization (Genest & Lapalme, 2012; Gerani et al., 2014) paraphrases 

the corpus using novel sentences that usually involve information fusion, sentence 

compression and reformulation. Although an abstractive summary could be more 

concise, it requires deep natural language processing techniques.  

According to (Ferreira et al., 2013), sentence scoring is the technique most used for extractive 

text summarization. In general, there are three possible approaches:  

1. Word scoring, which assigns scores to the most important words; 

2. Sentence scoring, which examines the features of a sentence such as its position in the 

document, similarity to the title, etc; 

3. Graph scoring, which analyzes the relationships between sentences.  

Extractive summaries are therefore more feasible and practical, and so this sub-section focuses 

on that type of ATS. (Nenkova & McKeown, 2012) identified three relatively independent 

tasks performed by almost all extractive summarizers:  

1. Create an intermediate representation of the input which captures only the key aspects 

of the text; 

2. Score sentences based on that representation ; 

3. Select a summary consisting of several sentences. 

For the intermediate representation task, they identified the following approaches:  

1. Topic representation approaches convert the text to an intermediate representation 

capturing the topics discussed. Such approaches are based on term frequency–inverse 

document frequency (TF-IDF), topic words, lexical chains, latent semantic analysis, 

and Bayesian topic models. Each sentence receives a score determined by the extent to 

which it expresses key topics in the document; 
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2. Indicator representation approaches represent each sentence in the input according to a 

list of indicators of importance such as sentence length, location in the document, 

presence of certain phrases, etc. The sentence score is determined by combining the 

evidence from the different indicators; 

3. Graph models approaches such as LexRank represent the entire document as a network 

of inter-related sentences. In LexRank, the weight of each sentence is derived by 

applying stochastic techniques to the graph representation of the text. Finally, the 

summary is produced through the selection of important sentences. 

For the selection of sentences that may be candidates for summarization, the authors refer to 

three approaches:  

1. Best n, 

2. Maximal marginal relevancy, 

3. Global selection. 

In the literature, various solutions for ATS are proposed (CELEBI & DOKUN, 2015; Fang et 

al., 2015; Hasan & Ng, 2014; Z. He et al., 2015; Ledeneva et al., 2014; Mendoza et al., 2014; 

Premjith et al., 2015; Sankarasubramaniam et al., 2014); however, several drawbacks can be 

noticed:  

1. Some contributions are greedy in terms of processing time, due to their optimization 

processes; 

2. Some of them make assumptions, such as availability of document topic factors, to 

validate their approaches; 

3. Basic ATS approaches cannot be applied to scientific papers; they need to be adapted 

to take into account the specificities of scientific papers in terms of document 

organization and frequently recurring expressions. 

2.2.3  Automatic multi-document summarization for ALR 

Several approaches have been proposed for scientific paper summarization (Caragea et al., 

2014; Carlos & Thiago, 2015; J. Chen & Zhuge, 2014; Conroy & Davis, 2015; Dunne et al., 
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2012; Dyas-Correia & Alexopoulos, 2014; Huang & Wan, 2013; Mohammad et al., 2009; 

Pedram & Omid, 2015; Ronzano & Saggion, 2016; Widyantoro & Amin, 2014). For an ALR, 

numerous publications need to be analyzed and summarized: this is referred to as multi-

document summarization. In the context of scientific research, given a set of scientific papers, 

multi-document summarization can be used to generate an ALR; however, there are different 

styles of LR. According to (Jaidka et al., 2010), there are two main styles:   

1. A descriptive LR presents a critical summary of a research domain:  it summarizes 

individual papers/studies and provides more information about each one, such as its 

research methods and results. The descriptive LR focuses on previous studies in terms 

of approach, results and evaluation, and uses sentence templates to perform rhetorical 

functions; 

2. An integrative LR focuses on the ideas and results extracted from a number of research 

papers and provides fewer details about individual papers/studies.  

For researchers with less experience, a descriptive LR with more details about individual 

studies is more relevant. For those who prefer to understand the bigger picture and the main 

research themes, an integrative LR is more relevant. In this contribution, the focus is on 

recommending a list of relevant, descriptive and enriched papers to help researchers to build 

their ALRs. 

 2.3 Assisted literature review object (ALRO) 

We have coined the term “assisted literature review object” (ALRO) to refer to a component 

type that includes many types of metadata and content related to the researchers’ specific 

requests; for example, an ALRO may enrich an ALR with a video or speech that facilitates 

understanding of the topic of a paper. Indeed, an ALRO is built for a given research topic and 

differs according to the selection parameters, paper annotations and the time of the request. In 

other words, it is dynamic, and it aggregates data and enriches metadata about a given ALR to 

help researchers learn about their field more quickly. Very few works have examined ALRO 

as defined in this way. In one of these works, Dunn et al. (Dunne et al., 2012) present the 

results of their effort to integrate statistics, text analytics and visualization in a prototype 
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interface for researchers and analysts. Their prototype system, called Action Science Explorer 

(ASE), provides an environment for demonstrating principles of coordination and conducting 

iterative usability tests with interested and knowledgeable researchers. According to these 

authors, ASE is designed to support exploration of a collection of papers by rapidly providing 

a summary, while identifying key papers, topics and research groups. The first drawback of 

ASE is that it does not propose an algorithm or model for evaluating a scientific paper’s 

relevancy to its research field, but uses only the paper’s bibliometric ranking. Also, the authors 

do not explain how ASE extracts the sentences containing the citations and their locations from 

the full text of each paper. 

From the review of related works, the main drawbacks of existing approaches to ALR are as 

follows: 

1. Regular text summarization techniques cannot be applied to scientific research papers; 

indeed, such papers have a specific structural organization different from that of other 

types of documents such as narrative or biographical texts. Conventional TS 

approaches must therefore be adapted to take into account the specificities of scientific 

papers in terms of document organization and rhetorical devices; 

2. Most of the existing approaches focus only on single paper summarization; 

3. Existing works ignore the identification of scientific papers related to the researcher’s 

selection and annotation in terms of research domain, specific topic, matching 

keywords and subject of research; 

4. Finally, existing contributions do not propose an ALRO. 

In this research work, we address several limitations of existing approaches (Agarwal et al., 

2011; J. Chen & Zhuge, 2014; Dunne et al., 2012; Jaidka et al., 2010, 2013a, 2013b; Patil & 

Mahajan, 2012; Yeloglu et al., 2011; Zajic et al., 2007) for the design of a better ALR for 

researchers, including: 

1. Ranking of scientific papers, 

2. Reviewing of the recommended references for an ALR.  
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3. STELLAR Multi-platform Architectural Model 

This section first presents an overview of the STELLAR (Semantic Topics Ecosystem 

Learning-based Literature Assisted Review) multi-platform architectural model and a 

prototype of this architectural model based on SMESE (Semantic Metadata Enrichments 

Software Ecosystem). The various MLM designed for STELLAR will then be described, 

including: 

1. Discovery ALR, 

2. Search & Refine ALR, 

3. Assist & Recommend ALR. 

3.1 Workflows of manual and assisted literature reviews 

The workflow of a manual LR is presented in Figure A 3.1 and the architectural model for an 

ALR is presented in Figure A 3.2. Within these figures, the white boxes represent manual 

activities while the shaded ones represent automated activities. 
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Figure A 3.1 Workflow of a manual LR 

An assisted LR (ALR), as illustrated in Figure A 3.2, should allow the following functions:  

1. Searching and refining an ALR, 

2. Evaluating an LR, 

3. Discovering an ALR, 

4. Searching in an universal repository, which we will call the universal research 

document repository (URDR), 
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5. Searching within an existing ALR, which we will refer to as an ALRO, which is 

basically a component type with many types of information related to the ALR.  

In addition, it should alert the researchers about new papers of interest, related publications or 

new papers relevant to their ALR.  

 

Figure A 3.2 Workflow of an assisted LR (ALR) 
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In the rest of this section, the STELLAR multi-platform prototype of an ALR is described in 

more detail. 

3.2 Overview of the STELLAR prototype of an assisted LR (ALR) 

A literature search has to be systematic and evaluative: it should assess each paper to determine 

its ranking and whether or not it is worth including in the LR. One of the aims of an ALR is to 

reduce the reading load by enabling the researcher to read and exploit only a relevant selection 

of papers.  

The models and algorithms of the proposed prototype consist of: 

1. TDM models, 

2. MLM, 

3. A classification model. 

This STELLAR prototype (see Figure A 3.3) uses as inputs: 

1. A universal research document repository (URDR), 

2. The papers annotated by the researcher and previous researchers. 

It learns from researchers’ annotated papers and the URDR to recommend relevant papers for 

a specific research field and topic in order to facilitate the creation of a new ALR. 

The four main parts of version 1 (V1) of the proposed STELLAR prototype are presented in 

Figure A 3.3 and explained in the following four sub-sections: 

A. Search & Refine ALR (Block A in the middle), 

B. Assist & recommend ALR (Block B at the top-right), 

C. Discover ALR Knowledge (Block C at the bottom), 

D. Semantic Metadata Enrichments Software Ecosystem – SMESE V3; see (Brisebois, 

Abran, Nadembega, et al., Unpublished results). (top-left in Figure A 3.3 – see also 

Figure A 3.8). 
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Figure A 3.3 STELLAR – Semantic Topics Ecosystem Learning-based Literature Assisted 
Review 

3.3 SEARCH & REFINE ALR — Block A of the STELLAR prototype 

The Search & Refine ALR (block A in Figure A 3.3) consists of seven steps – see Figure A 

3.4: 

1. Identify, Refine & Notify ALR’s Selection  

This first step identifies and refines, in an interactive process, researcher selection (RS) 

metadata (i.e., documents selection parameters) in order to provide an ALR that meets 

researcher requirements; it also notifies the researcher when new paper which matches with 

its RS metadata is published. 
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Figure A 3.4 Search & Refine ALR (Block A in Figure A 3.3) 

A secondary objective of this step is to formulate the research questions. The metadata used 

to identify an RS are defined in two sections – see Table A 3.2:  

a. Document Common Metadata section (top part of Table A 3.2), 
b. Researcher Annotations section (bottom part of Table A 3.2). 

The researcher can iterate this first step as necessary to complete the ALR or when there is 

a new paper to be added. Note that the papers are harvested in a master catalogue of papers 

defined in SMESE V3. 

2. Discover Relevant Literature & Manage Personal Metadata 

From the growing cluster of papers in SMESE V3, – a literature corpus that meets the RS 

metadata is identified. Any papers tagged by the researcher as “Relevant for the ALR” will 

be included. The paper relevancy is measured thanks to dynamic topic based index (DTb 

index) that is computed making used of TDM and MLM approaches. 

3. Evaluate, Organize & Index the Relevant Literature 

A subset of relevant papers is created in order to define the ALR Corpus based on the 

literature corpus radius index (LCR index). In contrast to Literature Corpus which denotes 

all the papers of a specific research topic, the ALR Corpus denotes only the papers of a 

Literature Corpus which meets RS metadata for an ALR. In other words, ALR Corpus is a 

subset of Literature Corpus in the same specific research topic. 

4. Enrich & Summarize the Literature Review 

The ALRO is produced through text summarization and subject extraction. 
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Table A 3.2 Researcher selection (RS) metadata 

Number Metadata Description 

A. Document Common Metadata 

1 Discipline Selection of the discipline related to the ALR 

2 Main Topic 

 

The main topic is one of the most important metadata for building the 

ALR. It should be as specific as possible. 

3 Literature Corpus 

Radius 

 

The Literature Corpus Radius (LCR) is used to build other algorithms; it 

is the main concept that makes it possible to refine the selection of 

research documents to be included in the ALR. 

4 Keywords The researcher has to identify keywords representative of the ALR. 

5 Harvesting Date Date of document harvesting 

6 Creation Date Date of document creation 

7 Title Title of the ALR 

8 MLTC - Mix of 

the Literature 

Temporal 

Coverage (Yrs, 

%) 

 

The MLTC is very crucial to building and refining the ALR. It has two 

indicators:  

1 - Number of years covered by the search 

2 - Percentage of documents outside this time range to be included.  

Example: When a researcher selects 5 years and 10%, STELLAR will 

select relevant documents published in the past five years and will 

include only 10% of documents falling outside this range. 

9 Description A brief description of the research project of the ALR such as a paper 

abstract  

10 Languages 

 

The researcher has to choose the language of the documents to be 

included in the corpus of interest. 

11 Number of 

References 

The number of references that the ALR should consider. 

B. Researcher Annotations Metadata 

12 Key Findings 

 

The Key Findings are annotations regarding important findings in the 

document identified by the researcher. 

13 Free Tags 

 

The researcher may place tags on a document in order to remember some 

information about it. These tags can be used by STELLAR or the 

researcher to enhance the quality of the ALR. 

14 Personal Notes 

 

The researcher may attach notes to a document in order to remember 

some information about it. These notes can be used by STELLAR or the 

researcher to help specify the targeted ALR. Personal notes can be used 

a. to identify and understand the main points of a text 
b. to facilitate recall 
c. in later research and writing 
d. to make connections between different sources 
e. to facilitate rearranging the information for writing 

15 Pre-defined Tags 

 

These are predefined metadata to help the researcher and STELLAR track 

the status of the relevant document. Examples of pre-defined tags: 

a. Read 
b. To be read 
c. To be included in the ALR 
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5. Synthesize & Clusterize the ALR Structure & Citations 

All the relevant documents are synthesized and organized into clusters related to the LCR 

index. This is done by putting the enrichments together in the ALRO pre-defined structure. 

6. Generate & Visualize the ALR 

In this step, the recommended papers in the Literature Corpus are generated and visualized. 

Assisted generation of the recommended papers helps the researcher examine the 

coherence of the ALR and iterate the ALR process. At any moment, the researcher can add 

to the relevant papers list that will be part of the final ALR. 

7. Metadata-based Literature & Research Alerts 

New relevant papers or new metadata related to the ALR are detected in this last step. 

3.4 ASSIST & RECOMMEND ALR – Block B of the STELLAR prototype 

Assist & recommend ALR (Block B in Figure A 3.3) allows refining the ALR through two 

sets of steps (S1 and S2) – see Figure A 3.5. Numbers 1 to 5 in the bottom-right corner of many 

of the boxes in Figure A 3.5 denote the MLM designed to identify a specific corpus, evaluate 

document relevancy or define learning models that are required by STELLAR for obtaining 

the ALR objects. 

 

Figure A 3.5 Assist & recommend ALR (Block B in Figure A 3.3) 
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The ALR assistance and recommendation is done through TDM and MLM implemented in 

five algorithms. These algorithms refine the relevant literature candidates to build the final list 

of papers of the ALR: 

S1 set of steps: 

This set of steps identifies the papers that semantically matches the researcher selection (RS), 

taking the researcher annotations (RAs) into consideration as well. It includes: 

• ALR Radius Computation of the LCR based on the metadata of the RS. This allows 

computing the LCR index of each paper of Literature Corpus making used of certain RS 

metadata; 

• ALR Corpus Identification according to the RS: a semantic affinity match is applied 

considering LCR index to identify the ALR Corpus according to both the RSs and the RAs 

metadata. More details about this step are presented in Section 4; 

• Selection ALR Affinity Match: the papers within the URDR whose metadata match the RS 

and RA parameters are identified; for example, the language of paper should match the RS 

language metadata. 

 

S2 set of steps: 

This set of steps S2 introduces the MLM 2 to 5 of the STELLAR prototype (more details in 

Section 4). 

• ALR Radius Analytical - MLM 5 

All references related to the selected documents are identified and evaluated. 

• Multilevel-based Relevant LR Corpus - MLM 3 

Creation of a dynamic list of relevant documents for building the ALR according to the 

RS. This process is dynamic: any new relevant research document may change the list of 

papers for building the ALR.  

• ALR Semantic Enrichments TDM 

Enrichments are built from all the papers retained for the ALR. The enrichments are at 

different levels and are provided by the SMESE V3 platform: extraction of topics from the 
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documents, summarization of documents, and papers that refer to the papers retained for 

the ALR. 

• ALR Machine Learning - MLM 2 

This step feeds the multilevel-based relevant ALR Corpus making use of DTb index and 

LCR index, for example by defining and creating the learning models used in the 

subsequent steps. More details are given in Section 4.2.  

• ALR Refine & Recommendation - MLM 4 

This is the most important step for the researcher. It allows the researcher to refine all 

choices in terms of selections for building the ALR. The researcher is also presented with 

a number of recommendations for improving the ALR. 

The following sources are used to build the suggested list of ALR papers: 

1. The list of papers generated by the step ‘ALR Refine & Recommendation - MLM 4’ 

according to the RS; they are located in the centers of the circles in Figure A 3.6. This 

list includes the LCR threshold indicated by the gray circle (papers in blue); 

2. The annotated papers from the researcher (RAs) – papers in red; 

3. The papers identified by the Mix Literature Temporal Coverage (MLTC) from the RS 

– papers in yellow; 

4. The universal research document repository (URDR), in the bottom right corner of 

Figure A 3.6, extracted from SMESE V3 (Brisebois, Abran, Nadembega, et al., 

Unpublished results). 

Each corpus in Figure A 3.6 is shown as a circle whose horizontal axis represents the LCR 

line. Note that the origin of this axis is not explicitly visible. Indeed, the center of each circle 

denotes the origin of the horizontal axis going off toward the right or left, but the center is 

hidden by the type of metadata (RS or RA) used to select the corpus. However, here the 

direction (i.e., toward the right or the left) is not important. What is more important is to 

position a paper at the correct distance from the center according to its LCR index. The LCR 

index of a paper is defined as the similarity between the RS metadata and that paper’s metadata 

such as title, topics, abstract and keywords. It measures the semantic relevancy of a paper 
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according to the RS. Note that, a paper on the right side is equal, in terms of meeting the RS 

metadata, to another on the left side at the same distance from the center. 

The Literature Corpus contains all the papers regardless of their LCR index and the type of 

selection metadata (i.e., RSs or RAs). The papers within corpus radius are those located at the 

surface (forming a disc) of a circle with the specific corpus radius. We refer to the radius of 

this specific circle as the Corpus Radius (see Figure A 3.6). 

Based on the definitions above, the Corpus Radius may be defined as the delimiter of the 

Literature Corpus suggested to the researcher for the ALR on the basis of the researcher’s 

selections and annotations. The goal is to start from the entire Literature Corpus (i.e., the 

URDR) and use the selection process based on RSs and RAs to limit the number of papers to 

those that are relevant (recommended by MLM and tagged by the researcher). To facilitate 

understanding, both the RS and RA selection criteria are defined in the figure. The RS selection 

criteria are the researcher’s metadata parameters while the RA selection criteria consist of 

notes, tags and key findings mentioned by the researcher. 
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Figure A 3.6 Sources used to build the suggested list of ALR papers 

To illustrate, consider the papers in the corpus radius called “Papers relevant to ALR” (disk 

with blue dots at the top of Figure A 3.6): all the papers within the gray disc are URDR papers 

whose LCR index is less than or equal to 2; in this case, the LCR threshold is set at 2. 

3.5 Discover ALR Knowledge – Block C of the STELLAR prototype 

The ‘Discover ALR Knowledge’ (Block C in Figure A 3.3) unveils the content of the ALR and 

checks the relevance of papers used to build a manual LR– see Figure A 3.7. It enables the 

researcher to explore the ALR information generated by STELLAR. As shown in Figure A 

3.7, ‘Discover ALR Knowledge’ consists of two features: 
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1. Evaluation of manual LR that allows: 

a. Identifying the relevancy of manual LR references; 

b. Detecting missing references; in other words, the papers which should have been 

cited in the manual LR references. 

2. Discover ALR feature includes: 

c. Graphical views of documents LCR and timeline, 

d. Graphical views of authors LCR and timeline. 

 

Figure A 3.7 Discover ALR Knowledge 

More specifically, the first feature “Evaluate LR” consists in an assisted evaluation of an 

already published LR. This can be useful to researchers, students and teachers, helping them 

produce a better ALR related to their topic. To evaluate an existing LR, this feature compares 

the existing LR (done manually) to the one from STELLAR’s MLM to quantify their 

similarity. 

The second feature “Discovery ALR” consists in identifying the relative contribution of an 

author to a specific topic or area of interest. The contribution could be from different sources 

but the reputation of the journal has to be taken into account. Here are some examples of types 

of publications: 

1. Papers in refereed journals, 

2. Papers published online but subject to a rigorous review, 

3. Books incorporating original research and published by reputable presses. 
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Here, the computation of the weight of a journal is not based on the number of papers it has 

published but on the number of papers it has published in the Corpus of papers (i.e., a collection 

of papers) defined by the researcher selection (e.g. the ALR Corpus). 

The tags created by the researchers are used to enrich the ALR metadata. The process ‘Discover 

ALR Knowledge’ makes it possible to drill down through different types of visualization of 

the corpus, such as documents, authors and ALROs. 

3.6 Semantic Metadata Enrichments Software Ecosystem SMESE V3 of STELLAR 

The SMESE V3 platform presented in Figure A 3.8 (Brisebois, Abran, Nadembega, et al., 

Unpublished results) is a semantic metadata enrichment software ecosystem based on a multi-

platform universal metadata model. It aggregates and enriches metadata to create a semantic 

master metadata catalogue (SMMC). This ecosystem consists of nine sub-systems:  

1. Metadata initiatives & concordance rules, 

2. Harvesting of web metadata & data, 

3. Harvesting of authority’s metadata & data, 

4. Rule-based semantic metadata external enrichments, 

5. Rule-based semantic metadata internal enrichments, 

6. Semantic metadata external & internal enrichment synchronization, 

7. Researcher interest-based gateway, 

8. Semantic metadata master catalogue. 
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Figure A 3.8 SMESE V3 - Semantic Metadata Enrichments Software Ecosystem 

The SMESE V3 platform allows enrichment from different sources including linked open data. 

Linked data is about using the Web to enrich related data or metadata by connecting pieces 

of data, information and knowledge on the Semantic Web.  

SMESE V3 is essential to STELLAR for building its URDR (its base repository of harvested 

available papers at a given time t). This repository is growing every day and is required to 

notify the researcher of new relevant papers that may be used in the ALR. 

3.7 Assisted Literature Review Object (ALRO) 

The concept of the assisted literature review object (ALRO) is useful for managing ALRs. It 

is basically a component type that includes many types of information related to the LR. 

Indeed, many kinds of information can be useful in building the ALR, for example: 

1. Researcher annotations (RAs), 

2. Metadata sets, 

3. Datasets, 
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4. Slide presentations, 

5. Research reports, 

6. Hypotheses investigated during the research, 

7. Results produced from prototypes, 

8. Unique identifiers. 

In Figure A 3.9, the Entity Matrix has been modified with the addition of a new component 

type: ALRO (Bechhofer et al., 2013). An ALRO aggregates all objects and relationships 

related to the creation of an ALR. All this information can be re-used in subsequent research 

investigations. An ALRO can be also identified by a uniform resource identifier (URI) such as 

the digital object identifier (DOI). An ALRO can be shared by researchers or re-used to 

accelerate research findings.  

In addition, each type of text has its own specific structure. Scientific articles are often 

organized as follows: 

1. Abstract, 

2. Introduction, 

3. Problem description, 

4. Research questions, 

5. Literature Review or Related Literature or Related Work, 

6. Methodology, 

7. Key findings (results), 

8. Conclusions, 

9. References. 

The algorithms used to perform ATS for scientific papers need to take this text organization 

into account. To be able to generate an ALRO, STELLAR proposes an ALR template: 

1. Title, 

2. Abstract of Abstracts (AoA), 

3. Keywords, 

4. Literature Review Summary, 

5. References, 
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6. Researcher Selection. 

STELLAR proposes different types of ALRO index to evaluate the relevance and importance 

of am ALRO for a specific researcher; for example, the DTb index of an ALRO in STELLAR 

takes into account: 

1. Topic-based approach, 

2. Text-based approach, 

3. Reference-based approach, 

4. Author-level metrics, 

5. Co-author-level metrics, 

6. Venue-level metrics, 

7. Social-level metrics, 

8. Affiliation-level metrics. 

The ALRO metadata (see Figure A 3.9) are the basis for the identification and indexing of a 

specific ALRO. Typically, the metadata of an ALRO include: 

1. Venue, 

2. Title, 

3. Abstract, 

4. Authors, 

5. Issue of publication, 

6. Volume of publication, 

7. Publisher, 

8. Page numbers, 

9. Date of publication, 

10. ISBN, 

11. DOI, 

12. ISSN, 

13. Keywords, 

14. Annotations. 
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Figure A 3.9 Entity matrix of the SMESE V3 Platform Master Catalogue 

In STELLAR, additional metadata are included and classified into three categories (see Table 

A 3.3):  

1. Document metadata, 

2. Researcher metadata, 

3. Author metadata. 
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Table A 3.3 STELLAR additional metadata 

Document metadata Researcher metadata Author metadata 

Domain FreeTags SearchFields 

Language Notes Awards 

Citations with category KeyFindings Affiliated institution 

References Tags Co-authors 

Citing_documents  Courses 

Section  NumberOfPublication1stAuthor 

Figures  NumberOfPublication2ndAuthor 

Tables  NumberOfPublicationOther 

Rights  NumberOfGraduatedStudentPhD 

  NumberOfGraduatedStudentMaster 

 

Several supervised MLM-based metadata extraction methods are available for automatic 

integration of metadata into bibliographic manager tools such as Endnote. In this work, which 

takes a rules-based approach, a supervised MLM is used (Gulo et al., 2015). The metadata are 

extracted from databases such as www.opendoar.org, www.researchgate.net, 

www.academia.edu, and OAI-PMH sources. 

Additional metadata about authors and researchers need to be identified or computed. Author 

metadata is usually the basis of a search for document relevancy detection. They help to gain 

insights about author’ publications. 

4. STELLAR Processes Description 

This section presents the MLM of STELLAR. For an improved understanding of Steps 1 and 

2 of STELLAR (as indicated in Figure A 3.3), Figure A 3.10 presents an overview of the 

STELLAR processes, their inputs and outputs and their interoperability. Each one of these five 

STELLAR processes is described in more detail in the following sub-sections. 
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From now on in this paper, the following terms are used interchangeably: document, paper and 

scientific paper.  

 

Figure A 3.10 Interoperability of the STELLAR processes 

1. Using as inputs the URDR that contains existing ALROs, as well as papers, RAs and 

RS, the ALR radius computation engine computes the LCR index. The LCR index is 

then used by the ALR Corpus identification engine in addition to selection affinity 

match (see Figure A 3.3) to generate an ALR Corpus that meets the researcher’s 

requirements (i.e., RS and RAs); 

2. Next, using as inputs the ALR Corpus and the training models built by selected 

researchers, MLM provide the ALR learning model used by the Multilevel-based 

Relevant ALR Corpus. MLM also enrich the ALR Corpus to provide the ALRO; 
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3. The Multilevel-based Relevant ALR Corpus computes the DTb-index that measures 

the relevancy of each paper in the ALR corpus; 

4. Making use of the generated and enriched ALRO, the ALR Refine & Recommendation 

engine suggests the Paper References list to the researcher; 

5. The ALR Radius Analytical generates different analytical views of the ALR Corpus. 

4.1 ALR radius computation 

ALR radius computation is used to rank the relevancy of papers to be included in the ALR, 

according to the researcher selection (RS) and researcher annotations (RAs). Computation of 

the LCR index is defined as a sub-algorithm of the semantic ALR selection search that 

identifies the ALR corpus according to the RS and RAs defined in Figure A 3.3. Here, selection 

metadata and selection parameters may be used interchangeable. 

To identify an ALR corpus as shown in the Step 1 of Figure A 3.10, the selection parameters 

(RA and RS) are classified into three categories (see Table A 3.4):  

1. Evaluation-based, 

2. Selection-based, 

3. Sort-based. 

Table A 3.4 STELLAR classification of selection parameters 

Evaluation-based Selection-based Sort-based 

Main Topic (MaT) Discipline Literature Corpus Radius (LCR) 

Keywords (KeW) Languages Mix of the Literature Temporal 

Coverage (MLTC) 

Title (TiT) Document Researcher 

Annotations 

Number of References 

Description (DeC)   
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1. In evaluation-based selection, the LCR index is computed based on the TDM approach. 

This class of RS is mainly used in the ALR radius computation to evaluate the LCR 

index used by sort-based selections; 

2. In selection-based selection, documents are selected based on a specific value of the 

document metadata. As shown in Figure A 3.11, in this class of parameters, the 

document’s Researcher Annotations (RAs) are included and consist of: 

a. Key Findings, 

b. Free Tags, 

c. Personal Notes, 

d. Pre-defined Tags. 

3. In sort-based selection, a specified number of documents are sorted according to a 

particular order. For example, for an ALR in a given field, the researcher may need to 

keep:  

a. Z% of relevant documents that are X years old or less, and  

b. (100-Z)% that are more than X years old. 

Figure A 3.11 illustrates the interaction between the researcher selections. To allow researchers 

to combine the selection parameters themselves according to their experience in order to obtain 

a corpus that meets their requirements, an option for selection condition formatting is available 

through the "Researcher search experience" function – see leftmost box in Figure A 3.11. 
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Figure A 3.11 Researcher selection and annotations 

For example, Figure A 3.12 shows the steps (A to D) in a semantic ALR selection search for the 

more complex case of a selection condition based on RS and RA: “Discipline AND Language 

AND RA-(To be included in the ALR) AND LCR Threshold AND MLTC AND Number of 

references. 
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Figure A 3.12 Steps in a semantic ALR selection search 

In the following paragraphs, the TDM semantic topic search for the example of Figure A 3.12 

is explained in detail. 

A. Discipline and language researcher selections step 

In step A in Figure A 3.12, the volume of documents to be considered for the rest of the process 

may be reduced, based on: 
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1. Discipline selection: selecting all documents that are in the Meta Corpus of a given 

discipline, e.g., Biology and Computer Science; 

2. Language selection: limiting the documents to be considered for the ALR to a specific 

language; the default value is English.  

The selection query uses the document metadata in the URDR.  

Let DC be the chosen discipline, let LG be the given language, let DISCIPLINE be the 

metadata that records the discipline of the documents in URDR, let LANGUAGE be the 

metadata that records the language of the documents in URDR and let 

DiscLan_Corpus(DC,LG) be the set of documents in the language LG that are in the discipline 

DC.  

DiscLan_Corpus(DC,LG) is obtained as follows:  

 

DiscLan_Corpus(DC, LG) = [select in URDR the Documents where 
DISCIPLINE is “DC” 
and 
LANGUAGE is “LG”] 

 

This query to the URDR extracts only papers in the specified discipline and language. 

Let C1 be the corpus of papers obtained in step A. 

B. LCR index computation step 

Using the set of papers extracted in step A, the LCR index is computed next in step B based 

on the evaluation-based selections: main topic, keyword, title and description.  

The impact of each of these selections is computed to identify the papers that best match the 

researcher selections: 

1. First, the similarity matching of each evaluation-based selection with a predefined 

selection of papers is evaluated within the range [0,1]: 1 means the most similar while 

0 means the least similar; 
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2. Next, based on their predefined weight and the similarity matching value, the LCR 

index is computed. 

The LCR index computation step consists of five sub-steps, a to e. Appendix A presents the 

details of all the algorithms used. 

a. Similarity matching of researcher main topic with topics extracted from document 
abstracts 

The similarity matching of the researcher main topic with the topics extracted from the 

document abstracts is first computed using the topic detection ML model called BM-Scalable 

Annotation-based Topic Detection (BM-SATD) (Brisebois, Abran, Nadembega, et al., 

Unpublished results). More specifically, BM-SATD uses multiple relations within a term graph 

and detects topics from the graph using a graph analytical method. BM-SATD combines 

semantic relations between terms with co-occurrence relations across the document, by making 

use of the document annotations.  

Here, the similarity matching is based on the n-gram approach where the value n is used as the 

weight (Bertin, Atanassova, Sugimoto, & Lariviere, 2016): when the i-gram expression of the 

researcher main topic is found in the abstract, the weight i is associated with this expression 

(see equations A.1 to A.3 in Appendix A).  

b. Similarity matching of researcher keywords with document keywords  

The similarity matching of the researcher keywords is computed next by making use of the 

KEYWORDS sections of the documents. The impact value is the number of researcher 

selection keywords that are similar to the KEYWORDS section (see equations A.4 and A.5 in 

Appendix A). 

c. Similarity matching of researcher title with document titles 

Before this similarity matching computation, the researcher title and document titles are pre-

processed to filter noise. This consists in stemming, phrase extraction, part-of-speech filtering 

and removal of stop-words. Next, based on the terms obtained, the maximum n-gram of the 
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researcher title which is met in the document title is used as the title selection impact value 

(see equations A.6 and A.7 in Appendix A). 

d. Similarity matching of researcher research topic description with document abstracts 

The researcher research topic description is semantically compared with the document abstract 

in order to measure the semantic similarity level. This similarity matching makes use of 

WordNet::Similarity (Pedersen et al., 2004), which applies six measures of similarity and three 

measures of relatedness; thus, several terms may be semantically the same. To measure this 

similarity, the TF-IDF approach is extended to meet our objective by applying it to the 

vocabulary of the corpus instead of the document itself (see equations A.8 to A.10 in Appendix 

A).  

e. LCR index computation 

Finally, when the similarity matching of each evaluation-based selection has been completed 

through sub-steps a to d, the LCR index within the [0,1] range can be computed. Note that the 

LCR index is a weighted sum of the computed value of each evaluation-based selection.  

The difference in weight between two consecutive evaluation-based selections (i.e., selection 

i and selection i+1) is a predefined constant value (see equation A.11 in Appendix A). 

C. Literature Corpus Radius (LCR) threshold selection step 

In this step, a set of documents is sorted or selected according LCR index value. For example, 

a researcher may indicate that the LCR threshold is 0.7; the output will then be a subset of 

corpus C whose LCR index is greater than or equal to 0.7. When the researcher does not give 

this selection, the set of documents obtained in step A above (Discipline and language 

researcher selections) is used as the input of this step.  

Let C2 be the corpus of documents obtained in step C. 
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D. MLTC AND Number of references AND “To be included in the ALR” step 

MLTC is the Mix Literature Temporal Coverage. Let MLTC (x, y) with its number of 

selections equal N: this means the researcher expects to have at most N documents, with a 

maximum of (100-x)% (i.e., 
ேଵ଴଴ 	× (100 −  that are at most y years old, and including all ((ݔ

the documents tagged “To be included in the ALR”. Note that the latter documents have 

priority.  

First, a list (in descending order) is created based on the LCR index applied to corpus C1 where 

the documents tagged “To be included in the ALR” are at the top due to their priority.  

Let All_C1 be this list.  New_C1 is defined as a sub-list of C1 in which the document age is less 

than or equal to y, and Old_C1 contains documents older than y.  

Let ܣ = ேଵ଴଴ 	× ܤ be the length of New_C1 and ݔ = ேଵ଴଴ 	× (100 −  .be the length of Old_C1 (ݔ

To take into account the three selections made in sub-step D, a pseudo-code is proposed in 

Appendix B. 

Note that, when the number of documents in All_C1 is less than N, all the documents are 

considered affinity matches for the ALR; in that case, the MLTC selection is ignored.  

However, when there are not enough documents whose age is less than or equal to y to satisfy 

the MLTC selection, a new MLTC is provided in order to reach the number A. But if the 

researcher requires the MLTC selection to be met, some documents are removed from New_C1 

in order to meet the selected MLTC(x, y).  

If an “OR” has been placed between the researcher selections, the LR corpus will be defined 

as the union of the C2 subsets provided by the MLTC process, the Number of references 

process and the “To be included in the ALR” tags. 
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4.2 ALR Machine Learning (ALRML) 

ALR Machine Learning (ALRML) (Step 2 of Figure A 3.10) for semantic ALR selection is 

the core of STELLAR. It is the only process that interacts with all the algorithms of the other 

MLM, combining the TDM and MLM approaches to discover hidden information in papers. 

This information is used as internal semantic enriched metadata. 

ALRML is a supervised MLM that makes use of a training set in order to provide the learning 

model, called the ALR learning model, composed of three sub-models: 

1. Section recognition learning model, 

2. Citation-based learning model, 

3. Text-based learning model. 

For the rest of this sub-section, the following two expressions are used: 

1. Cited document: denotes the paper cited by another paper, 

2. Citing document: denotes the paper citing another paper. 

4.2.1  Section recognition learning model 

Unlike most other types of documents, scientific papers present similarities in terms of 

structural organization, with common sections as follows: 

1. Abstract, 

2. Introduction, 

3. Related work, 

4. Methodology, 

5. Results, 

6. Discussion, 

7. Conclusion, 

8. References, 

9. Appendices. 
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The section recognition learning model in STELLAR supports the assumption that knowing 

the section in which a sentence appears may change its context. For example, citations in the 

‘Related Work’ section do not carry the same weight as those in the ‘Discussion’ section in 

terms of identifying existing papers in a specific domain. In STELLAR, the following sections 

are considered: abstract, introduction, literature review, solution or methodology, results, and 

conclusion. 

To initialize the learning model, the section titles are classified on the basis of the training set. 

In addition, different scenarios of structural organization have been observed. For example:  

1. The main scenario is: (abstract, introduction, literature review, solution, results, and 

conclusion) or (abstract, introduction, solution, results, and conclusion); 

2. A second scenario is that the ALR is included in the ‘introduction’ section.  

In both scenarios, the abstract and introduction are first and the conclusion last. Table A 3.5 

provides an example for each section. To refine this learning model, the semantic similarities 

are computed based on a manual titles classification (i.e., titles found by humans) and the 

WordNet lexical database. For the manual classification, researchers are selected from the 

URDR are selected and asked to read and label the section headings of selected papers; this 

generates the section recognition training model incorporated into the “Training Model” 

mentioned in Figure A 3.10. To enrich the learning model, when a section heading is detected 

in a document but is not mentioned in the current section recognition learning model, it can be 

placed in the right category through the semantic similarity process. 
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Table A 3.5 Commonly used section headings in scientific papers 

Section 

label 

Section headings  

Manually detected Automatically detected 

Abstract Abstract - 

Introduction Introduction - 

Literature 

review 

Literature review, 

related work  

Background, previous work, 

related literature, existing 

approaches 

Solution  System model, 

proposal model 

Proposed system, design, the 

system, methodology 

Results  Results, 

experimentation, 

simulation, 

experimental, 

empirical 

Experimental results, 

implementation, evaluation, 

discussion, implementation 

details, experimental setup 

Conclusion  Conclusion, 

conclusion and 

future work 

- 

4.2.2  Citations-based learning model 

A citations-based learning model has been designed to identify and extract citations in 

documents. This learning model is divided as follows (see Table A 3.6): 

A. A citation style learning model based on citation style; 

B. A citation classification learning model based on citation rhetorical categories and cue 

phrases. 
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Table A 3.6 Citations-based learning model 

A. Citation style learning model 
Style marker Description 

Numerical 

marker 

The syntax of this citation style is the number between brackets; for 

example, [1 to N] where N is the total number of references. 

Textual marker There are two syntaxes for this citation style:  (<names of authors>, year) 

or < names of authors > (year). 

Personalization 

marker 

This style is based on the set of texts that refer to cited papers. After the 

numerical and textual markers, the cited document is referred to by the 

author’s name or a personal pronoun. The name of the proposed solution 

or algorithm may also be used to refer to a cited paper. 

B. Citation classification model 
Citation 

category 

Description 

Relevant According to the citing document, the cited document is relevant for the 

domain. 

Problem The cited document presents the issues that led to the research. 

Uses The cited document proposes a solution that is used in the citing document. 

Extension The cited document proposes a solution that is extended by the citing 

document. 

Comparison The cited document proposes a solution that is compared with the citing 

document solution in terms of performance. 

 

More specifically, the citation categories are identified based on rhetorical expressions 

detected through cue phrases. A cue phrase is the phrase that often occurs in a certain rhetorical 

category. In the case of citation classification, the verb plays the main role. For example, the 

verbs “proposed”, “presented”, “introduced” and “described” are used in rhetorical expressions 

in the Solution section. Researchers are asked to read and detect the cue phrases associated 

with each citation polarity (i.e., good opinion or bad opinion) and category; this makes it 

possible to build a training model of cue phrases and their classifications, which is integrated 
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into the “Training Model” mentioned in Figure A 3.10. This manual annotation is done before 

the STELLAR MLM process (see ALRML). 

Next, based on semantic similarities, any rhetorical category that was not detected manually is 

detected automatically and added to the model. In addition to categories, the polarity model is 

proposed in order to indicate whether the citation is positive or negative.  

The classification model consists of: 

1. The citation polarity learning model, which contains a list of rhetorical expression 

polarities (PR); 

2. The citation category learning model, which contains a list of rhetorical expression 

categories (CR). 

4.2.3  Text-based learning model 

To define the text-based learning model, text categories have been predefined as follows: 

1. Problem, 

2. Solution, 

3. Results. 

As in the citation-based learning model, rhetorical expressions are detected by means of cue 

phrases:  

1. First, cue phrases that often appear in certain rhetorical expressions are manually 

identified; 

2. Next, semantic similarity is applied automatically to these cue phrases in order to build 

the learning model. For example, “We”, “This paper”, “This article” and “In this paper” 

are often used with the verb “present”, “propose” or “introduce” to present the solution. 

Here is an example of a rhetorical expression that presents the problem: 

“Communication efficiency can be largely improved if the network anticipates the 

needs of its users on the move and, thus, performs reservation of radio resources at 

cells along the path to the destination.” The authors’ solution is presented in the next 

sentence: “In this vein, we propose a mobility prediction scheme for MNs; more 
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specifically, we first apply probability and Dempster–Shafer processes for predicting 

the likelihood of the next destination, for an arbitrary user in an MN, based on user 

habits (e.g., frequently visited locations).”  

The text-based learning model is organized as follows: 

1. The cue phrase learning model containing a list of cue phrases (CPs):  

a. Problem CP, 

b. Solution CP, 

c. Result CP. 

2. The thematic learning model, which contains a list of thematic rhetorical expressions 

(TRs): 

a. Problem learning model: list of problem rhetorical expressions (P_TR): 

- Context P_TR, 

- Limitation P_TR. 

b. Solution learning model: list of solution rhetorical expressions (S_TR): 

- Algorithm S_TR, 

- Concept S_TR, 

- Approach S_TR, 

- Technique S_TR. 

c. Result learning model: list of result rhetorical expressions (R_TR) 

- Outperformance R_TR, 

- Sub performance R_TR. 

4.3 Multilevel-based relevant ALR Corpus  

The multilevel-based relevant ALR Corpus (in Step 2 of Figure A 3.10) is presented here. It is 

used to evaluate the relevancy of a paper based on a number of scientometric measurements. 

Here, relevancy is not based on RAs and RS; instead, the input corpus used by the multilevel-

based relevant ALR Corpus is the ALR Corpus obtained through the ALR’s semantic search 

based on RAs and RS. The measurement of relevance is referred as the ALR Index.  
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Three types of ALR Index are defined in STELLAR:  

1. Personal, 

2. Collaborative, 

3. Dynamic topic-based (DTb).  

With the personal index, the ALR can be restricted to documents tagged by the researcher as 

“To be included in the ALR”. 

The collaborative index extends the personal index by including documents tagged “To be 

included in the ALR” by a specific community of researchers. 

The dynamic topic-based index (DTb index) selects documents for the ALR when the 

researcher has not requested a personal or collaborative index. The DTb index is a weighted 

sum of the values that denote the importance of the different inputs considered, classified as: 

1. Key findings and peer citations index, 

2. Venue index, 

3. Document references index, 

4. Authors and their affiliated institutes. 

Unlike existing approaches, the DTb index is not limited to journal-level metrics; it also 

considers conference proceedings and workshop metrics, and this makes it venue-level metric 

based.  

Appendix C presents the details of the algorithms used to compute the ALR Index.  

4.4 ALR Refine & Recommendation MLM  

The ALR Refine & Recommendation MLM (in Step 2 of Figure A 3.10) is presented here. The 

input is the ALR Corpus of relevant and enriched papers identified automatically by STELLAR 

to recommend selections parameters to a researcher (see previous sections). This MLM may 

next recommend three different aspects of the ALR selection (Figure A 3.13):  

1. The list of papers to be included in or removed from the ALR, 
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2. The number of references (i.e., papers) to be considered for the ALR, 

3. The % of Mix Literature Temporal Coverage (MTLC) to be included in the list of 

references. 

 

Figure A 3.13 Refinement & Recommendation MLM 

To help the researcher to choose the right combination of parameters (RS), the refinement 

function makes recommendations in the following three areas: 

1. Identification of documents to form the recommended list for the ALR: 

a. Launch the Multilevel-based Relevant ALR Corpus engine to actualize the 

proposed document list for the ALR with the default STELLAR options; 

b. Compare with the first list and recommend additions or removals. 

2. Identification of the optimal number of documents as references to include in the 

ALRO. This recommendation is related to the LCR and based on the most relevant 

documents closest to the selected topic; the highest number will be the proposed 

number of references. The sub-steps are: 
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a. Launch the Multilevel-based Relevant ALR Corpus engine to actualize the list of 

documents proposed for the ALR with the default STELLAR options and the 

ALRO selection; 

b. From the list of proposed documents, take the distribution of LCR and create a 

dataset; 

c. Identify the number of references in the optimized dataset (i.e., the most relevant 

documents closest to the selected topic); this then becomes the recommended 

number of references; 

d. The researcher is able to modify the number of references at any time to obtain a 

new recommendation. 

3. Identification of the % of MTLC to be part of the ALR.  

a. Launch the Multilevel-based Relevant ALR Corpus engine to actualize the 

proposed document list for the ALR with the default STELLAR options and the 

ALRO selection; 

b. Based on the proposed list of documents included through the % of MTLC, take 

the distribution of LCR and create a dataset; 

c. Identify the % of MTLC in the optimized dataset; this then becomes the 

recommended %; 

d. The researcher is able to modify the % of MTLC at any time to obtain a new 

recommended %. 

4.5 ALR Corpus Radius Analytics  

The ALR Corpus Radius Analytics (in Step 2 of Figure A 3..10) is presented in this section: it 

presents a number of ways of viewing the list of documents for drill-down purposes. This sub-

section describes the concepts used in producing an assisted ALR, including:  

1. The Timeline of a Document-based Literature Corpus Radius, 

2. The Literature Corpus Radius (LCR). 

Two classes of documents are defined:  
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1. Citing documents, 

2. Cited documents. 

For a better understanding, let d be a considered document; a citing document is a document 

that cites document d while a cited document is a document that is cited by document d. The 

Figure A 3.14 illustrates the two classes of documents in reference to the publishing date. 

 

Figure A 3.14 Two classes of documents in reference to the publishing date 

Figure A 3.15 shows a Timeline of a Document Corpus Radius, where the horizontal axis 

indicates the Literature Corpus Radius.  The horizontal timeline indicates the range of 

publishing dates—in this example, from 2007 to 2011 and from 2012 to 2016. 
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Figure A 3.15 Timeline of a Document-based Literature Corpus Radius 

The radius is the distance from the center of the circle to the cited paper (left side) or to the 

citing paper (right side). It is thus a measure of the relevancy of a paper according the 

researcher selection of parameters. 

Next, Figure A 3.16 presents the Document-based Literature Corpus Radius, with the 

horizontal axis indicating the LCR value (from 0 to 5). The closer a paper is to the center of 

the circle, the more relevant it is to the ALR. 
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Figure A 3.16 Document-based Literature Corpus Radius 

The radius denotes the temporal distance from the center document to the Cited Document’s 

Literature (left side) or to the Citing Document’s Literature (right side). 

5 STELLAR Performance Evaluation Through Simulations 

This section presents an evaluation of the performance of the STELLAR prototype through a 

number of simulations limited to the identification of relevant papers for an ALR. 

5.1 Datasets 

Two datasets were used for the simulations: 

1. A dataset harvested from databases, 

2. A baseline dataset. 
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5.1.1  Dataset harvested from databases 

For the simulations, 2,000 scientific papers were collected from databases such as 

ScienceDirect and Scopus. The papers dealt with various research topics in Computer Science. 

Two sub-domains were chosen, each with 1,000 papers: 

1. Artificial Intelligence, 

2. Information Systems. 

In the context of these simulations, the sub-domains are treated as domains. The other metadata 

were collected as bibliographic references.  

For each paper, the downloaded bibliographic files were parsed to extract the metadata and 

were input into the SMESE V3 platform with the paper itself. Here, a scenario was defined as 

a set of two simulator runs, one on each domain dataset. For the simulator run parameters, the 

metadata of one paper in the dataset (discipline, language, title, topic, keywords and abstract) 

were used as the RS and RA parameters.  

5.1.2  Baseline dataset 

For the present study, we had already produced a manual ALR that included all the papers 

listed in our References section. This manually assembled list was used as the baseline dataset 

to evaluate the performance of the STELLAR prototype. The baseline dataset consisted of 58 

papers dealing with both general and specific topics within the domain. Here, a scenario was 

defined as one simulator run where the 58 papers constituted the dataset. For the simulator run 

parameters, the metadata of the present study (discipline, language, title, topic, keywords and 

abstract) were used as the RS and RA parameters. 
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5.2 Performance criteria 

The STELLAR prototype was evaluated from the viewpoint of its users: researchers, students, 

authors, publishers and librarians. As in (Rúbio & Gulo, 2016), two performance criteria were 

used to assess the relevancy of the papers for the researchers:  

1. Accuracy: the percentage of true classifications, 

2. Precision: the percentage of the classified items that are relevant. 

Considering the sets of relevant papers (REL) and non-relevant papers, (NREL), true relevant 

(TR) denotes the papers classified as REL when they really are, while false relevant (FR) 

denote the papers classified as REL when they are not. Thus, with the same logic, the papers 

classified as NREL can be true non-relevant (TN) or false non-relevant (FN). For each type of 

dataset, the definition of a scenario is given in sections 5.1.1 and 5.1.2 according to the type of 

dataset. 

Accuracy (denoted by a) and precision (denoted by p) were computed as follows for each 

scenario: 

ܽ = ܴܶ + ܴܶܰܶ + ܴܨ + ܶܰ + ݌ ܰܨ = ܴܴܶܶ +  ܴܨ

 

To identify TR, FR, TN and FN for each scenario, a target paper was chosen for the domain; 

next, the metadata of this target paper were used as the researcher selection parameters and the 

references papers in the output set of the prototypes were compared to the cited papers of the 

target paper. Through this comparison, TR, FR, TN and FN were defined. 

Let ai,j be the accuracy of the scenario ith of the dataset j and pi,j be the precision of the scenario 

ith of the dataset j; the average accuracy (denoted by Avg_ai) and the average precision (denoted 

by Avg_pi)  are defined as follows: 

௜ܽ_݃ݒܣ = ∑ ܽ௜,௝஽௝ୀଵܦ ௜݌_݃ݒܣ  = ∑ ܦ௜,௝஽௝ୀଵ݌  

where D denotes the number of datasets. 
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5.3 Related ranking approaches for comparison purposes 

There are two other works on scientific paper ranking: 

1. PTRA (Hasson et al., 2014), 

2. ID3 (Rúbio & Gulo, 2016). 

PTRA and ID3 are described in section 2.1. Table A 3.7 presents a summary of the criteria 

taken into account by each ranking approach: the bottom line of Table A 3.7 lists all the criteria 

used in the STELLAR ranking approach. 

Table A 3.7 Criteria taken into account in three paper ranking approaches 

Approaches 
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PTRA (Hasson et al., 2014) X X   X             

ID3 (Rúbio & Gulo, 2016)  X X X X       

STELLAR X X X X X X X X X X 

 

The performance of the STELLAR approach was compared against the performance of PTRA 

(Hasson et al., 2014) and ID3 (Rúbio & Gulo, 2016) on the same datasets and scenarios. In 

Table A 3.7, it is observed that for ranking a cited document as relevant, STELLAR considers 

more criteria, such as venue age, citation category, authors’ impact, etc. 

5.4 Analysis of the simulation results 

This section presents the analysis of the simulation results in terms of papers’ relevancy for 

the two datasets. 
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5.4.1  Simulation using the dataset harvested from databases 

Figure A 3.17 shows the average accuracy for the three different simulations (STELLAR, ID3 

and PTRA). The horizontal axis represents the sequence number of the simulation scenarios 

and the vertical axis represents the average accuracy of the associated scenario.  

It is observed that STELLAR (in red) performs better than ID3 (in green) and PTRA (in blue): 

STELLAR has an average accuracy of 0.91 per scenario while ID3 has an average of 0.60 per 

scenario. The average relative improvement in accuracy (defined as [Avg_a of STELLAR – 

Avg_a of ID3]) of STELLAR in comparison to ID3 is 0.32 (32%) per scenario. 

 

Figure A 3.17 Average accuracy vs Scenario sequence number – 
Harvested from databases 

Figure A 3.18 shows the average precision for the same scenarios of Figure A 3.17. The x-axis 

represents the simulations scenario sequence number while the y-axis represents the average 

precision of the associated scenario.  
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STELLAR performed better than ID3 and PTRA: it produced an average precision of 0.96 per 

scenario while ID3, the better of the two approaches used for comparison, had an average of 

0.65 per scenario. The average relative improvement in precision (defined as [Avg_p of 

STELLAR – Avg_p of ID3]) of STELLAR in comparison to ID3 is 0.31 (31%) per scenario. 

 

Figure A 3.18 Average precision vs Scenario sequence number – 
Harvested from databases 

In both simulations and criteria, STELLAR outperformed ID3 and PTRA. This superior 

performance might be attributable to the use of additional bibliometric metadata to evaluate 

the relevancy of papers. 

5.4.2  Simulation using the baseline dataset 

Table A 3.8 presents the accuracy and precision when the list of papers in the baseline dataset 

(i.e., the references cited in this paper) is used as the dataset for simulations with the three 

ranking approaches.  
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Table A 3.8 Summary of performance criteria (accuracy and precision) using the baseline 
dataset 

Approaches Avg_a (%) Avg_p (%) 

PTRA (Hasson et al., 2014) 39.19 27.16 

ID3 (Rúbio & Gulo, 2016) 53.98 41.97 

STELLAR 76.09 68.73 

 

1. STELLAR produced an average accuracy (Avg_a) of 76.09% while ID3 produced an 

accuracy of 53.98%. The relative improvement in accuracy of STELLAR as compared 

to ID3 is 22.11%. 

2. STELLAR produced an average precision (Avg_p) of 68.73% while ID3 produced a 

precision of 41.97%. The relative improvement in precision of STELLAR as compared 

to ID3 is 26.76%. 

Note that all the simulations are based on limited datasets, and should be extended later to 

larger datasets. 

5.5 STELLAR prototype 

This section presents a number of STELLAR’s input screens. For example, Figure A.19 shows 

the input screen that allows researchers to enter their selections (RS) parameters.  
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Figure A 3.19 STELLAR input screen for researcher selection (RS) parameters 

Figure A 3.20 shows a list of papers according to the RS parameters and their Literature Corpus 

radius (LCR). The paper’s title is in the left column and its LCR is in the right column. Note 

that this list is ordered according to ascending LCR: the papers at the top are those that are 

closer to the RS parameters. 
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Figure A 3.20 List of papers according to LCR based on researcher selection (RS) parameters 

It can be seen that the radius of the paper at the top of the list is 0.0: indeed, this is the target 

paper. 

The rest of this section presents four specific ALR assistance tools, shown in the following 

diagrams:  

1. Timeline of a Document-based Literature Corpus Radius – Figure A 3.21, 

2. Document-based Literature Corpus Radius – Figure A 3.22, 

3. Timeline of an Author-based Literature Corpus Radius – Figure A 3.23, 

4. Author-based Literature Corpus Radius – Figure A 3.24. 

Figure A 3.21 represents the timeline of a Document-based Literature Corpus radius, with the 

horizontal axis indicating the year of publication (here, from 2011 to 2016). 
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Figure A 3.21 Timeline of a Document-based Literature Corpus Radius (LCR) 

In Figure A 3.21, the radius denotes the temporal distance from the document at center to the 

cited documents and to the citing documents. The yellow circles on the left side represent 

multiple documents—here, 20 to 35 documents. 

Figure A 3.22 represents the Document-based Literature Corpus Radius model. 
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Figure A 3.22 Document-based Literature Corpus Radius (LCR) 

The horizontal axis indicates the LCR: here, from 5 to 0 and from 0 to 5. The radius measures 

the distance from the center document to the cited document’s literature (left side) and to its 

citing document’s literature (right side). 

The STELLAR prototype (Figure A 3.23) allows the researcher to view, for a given author 

(center document), the backward references (in blue) used and referred to by the document, as 

well as forward references (in green) to the center author (i.e., all documents referencing the 

center author). 
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Figure A 3.23 Timeline of an Author-based Literature Corpus Radius - LCR 

When any blue or green author is selected, the corresponding document will be re-positioned 

to the center, with all of its backwards references on the left in blue and all of its forward 

references (the ones citing the center author) on the right in green.  

In this STELLAR prototype, the Author-based Literature Corpus Radius (Figure A 3.24) 

allows a researcher to view, for a given author (center author), the backward references (in 

blue) used and referred to by that author, and forward references (in green), i.e., all papers 

citing the center author. 
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Figure A 3.24 Author-based Literature Corpus Radius (LCR) 

6 Summary and Future Work 

With the evolving, interdisciplinary nature of research and online access to research papers, 

there is a need to facilitate the iterative process of building a corpus for an assisted literature 

review (ALR). The aim of the present study is to assist researchers in finding, evaluating and 

annotating relevant papers, and to make them available at any time in an iterative process.  

This paper has proposed an ALR prototype (STELLAR) based on machine learning model 

(MLM) and a semantic metadata ecosystem (SMESE) to identify, rank and recommend 

relevant papers for an ALR. Using text and data mining (TDM) models, MLM and a 

classification model that learns from researchers’ annotated data (RA) and semantic enriched 

metadata, STELLAR assists in identifying and recommending papers that meet a researcher 

selection (RS) of parameters, including specific ALR topic, ALR title,  ALR language, ALR 

discipline, ALR papers age, ALR number of references and other ALR metadata. The 
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STELLAR MLM produce an ALRO: they evaluate papers and related bibliographic attributes 

in order to determine their relevancy and ranking. Next, STELLAR aggregates all components 

related to the assisted creation of an ALR.  

The STELLAR prototype presented in this paper is based on the Semantic Metadata 

Enrichment Software Ecosystem (SMESE V3), described in (Brisebois, Abran, Nadembega, 

et al., Unpublished results). 

This paper has presented TDM models, related MLM and an enhanced metadata ecosystem 

that can help researchers produce ALRs. These include: 

1. MLM designed to semantically harvest a Universal Research Documents Repository 

(URDR) according to a researcher selection and from the SMESE V3 ecosystem; 

2. Literature Corpus Radius (LCR) MLM, which compute the distance from each paper 

to the center of the Literature Corpus defined by the researcher selection for a specific 

topic, concept or area of research; 

3. MLM that help the researcher discover, find and refine the list of papers recommended 

for inclusion. To assist and narrow down the search results, many views of the ALR 

are made available to the researcher: 

a. Timeline of the Document-based Literature Corpus Radius, 

b. Document-based Literature Corpus Radius, 

c. Timeline of the Author-based Literature Corpus Radius, 

d. Author-based Literature Corpus Radius. 

The performance of the STELLAR prototype has been evaluated through a comparison against 

a baseline manual LR using a number of simulations. In terms of accuracy, the STELLAR 

ALR provided an average accuracy of 0.91 per scenario while ID3 provided an average of 0.60 

per scenario. In terms of precision, STELLAR produced an average of 0.96 per scenario while 

ID3 had an average of 0.65 per scenario. In comparison to ID3, STELLAR yielded an average 

relative improvement in accuracy of 32% per scenario and an average relative improvement in 

precision of 31%. 
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Figure A 3.25 presents the three areas of future work on the STELLAR prototype, the SMESE 

V3 platform (highlighted in blue boxes at the bottom right of Figure A 3.25) and Multi-Devices 

Content Machine Learning-based Assisted Recommendations: 

1. Abstract of Abstracts summarization (AoA): AoA for scientific papers will be an 

extension of STELLAR; more specifically, abstracts will be used as input for our 

scientific paper summarization technique to generate the AoA. 

2. Digital Resources Metadata Enrichment (DRME): the next STELLAR prototype will 

implement a new semantic discovery tool called DRME to help aggregate metadata 

from papers that have not published their metadata. DRME will use MLM to discover 

the metadata related to digital repositories and thus enrich digital resources.  

3. Multi-Devices Content Machine Learning-based Assisted Recommendations. The 

purpose of this function will be to semantically match different types of content with 

the user’s interests, availability and historical behavior, and to make suitable 

recommendations.  

 

Figure A 3.25 Future contributions (in blue) to SMESE V3 platform 
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Furthermore, for a future version of STELLAR, we plan to work on MLM using learning 

process to enrich thesaurus as shown in Figure A 3.26.  

 

Figure A 3.26 STELLAR V2 future model 

 

This STELLAR V2 will allow enhancing the SMESE V3 prototype to harvest semantic 

metadata from different sources as TV guides, radio channel schedule, books, music and other 

events calendar and create triplets to define relationships enriching metadata’s content. A 

number of additional MLM, algorithms and prototypes will have to be developed and refined 

– see Figure A 3.27, including: 

1. An algorithm to identify the Recommended User Interest-based New Content of Events 

(RUINCE criteria) representing the evolving interests and experience of users; 

2. An algorithm to develop analytical recommendations of subscriptions about contents 

and events that will meet RUINCE criteria including the historical behaviour of the 

users; 

3. An algorithm to recommend to user contents or events matching their interest or 

emotion according to the RUINCE affinity model; 
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4. An algorithm to rank dynamically the contents or events according to the RUINCE 

criteria to create interest-based channel’s theme. 

 

Figure A 3.27 User interest-RUINCE affinity metadata mapping model 

 

Appendix A: Computation of the Literature Corpus Radius (LCR) 

The literature corpus radius (LCR) is computed based on the evaluation-based parameters: 

1. First, the value of each evaluation-based parameter is computed by determining the 

similarity of each evaluation-based selection with a predefined section of the document. 

The similarity matching value is in the range [0,1] where 1 means the most similar 

while 0 means the least similar.  

2. Next, based on the similarity matching value (e.g., the predefined weight of each of 

them), the LCR index is computed. 
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• Similarity matching of a researcher main topic with the topics extracted from 
documents abstracts 

The similarity matching with the researcher main topic is computed from the abstracts. The 

abstract of each document in the URDR is recorded in the “ABSTRACT” metadata provided 

by the publisher. The similarity matching computation makes use of this metadata as input to 

determine the document’s similarity with the researcher-defined main topic.  

Let d be the document and Ad the abstract of d. Next, based on the topic detection algorithm, 

called BM-Scalable Annotation-based Topic Detection (BM-SATD) (Brisebois, Abran, 

Nadembega, et al., Unpublished results), the topics of document d are detected from Ad. More 

specifically, BM-SATD uses multiple relations in a term graph and detects topics from the 

graph using a graph analytical method. Making use of document annotations, BM-SATD 

combines semantic relations between terms and co-occurrence relations across the document. 

Thus, using document abstracts as input, BM-SATD detects their topics. 

Let:  

1. Ta be the topic detected in the abstract of document d;  

2. MT be the main topic provided as the researcher selection parameters and n be the 

number of terms of MT = (w1, w2, …, wi, …, wn);  

3. SimMatch_MaT(MT,d) be the function that evaluates the similarity of  MT with the 

document d abstract; note that the terms of MT are ordered. 

First, the i-gram of MT is calculated in equation (A 3.1): 

 
 ݂(݅ − ,ܶܯ,݉ܽݎ݃ (݀ܣ =෍ ,௞ାଵݓ,௞ݓ)ܾ݊ … ,௡ି(௜ାଵ)௞ୀଵ  ௞ା௜ିଵ) (A 3.1)ݓ

where nb(wk, wk+1, …, wk+i-1) is the number of times that the i-gram (wk, wk+1, …, wk+i-1)  

appear in Ad (the abstract of document d).  

Next, the weight of the researcher’s main topic for document d is computed using (A 3.2): 
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,ܶܯ)ܶܽܯ_ݓ  ݀) =෍݅ × ݂(݅ − ,ܶܯ,݉ܽݎ݃ ௡(݀ܣ
௜ୀଵ  

(A 3.2) 

To obtain a similarity value between 0 and 1, normalization is applied. Let Max_MaT be the 

largest value of w_MaT(MT,d) among all the considered documents. SimMatch_MaT(MT,d) 

is computed using (A 3.3): 

,ܶܯ)ܶܽܯ_ℎܿݐܽܯ݉݅ܵ  ݀) = ,ܶܯ)ܶܽܯ_ݓ ܶܽܯ_ݔܽܯ(݀  
(A 3.3) 

Thus, for each document, equations (A.1) to (A.3) compute the similarity of document with 

the researcher’s main topic. 

• Similarity matching of researcher keywords with document keywords  

The similarity matching based on the researcher keywords is computed using the document 

keywords. The keywords of each document in the URDR are recorded in the “KEYWORDS” 

metadata provided by the publisher.  

Let:  

1. Kd be the set of keywords of document d;  

2. KW be the set of keywords provided in the researcher selection parameters;  

3. SimMatch_KeW(KW,Kd) be the function that computes the similarity matching of KW 

with Kd. 

First, the weight of KW according to document d keywords Kd is computed as follows: 

,ܹܭ)ܹ݁ܭ_ݓ  ݀) = ܹܭ| ∩  (A 3.4) |݀ܭ

To obtain a similarity value between 0 and 1, normalization is applied; the 

SimMatch_KeW(KW,d) is computed as: 

,ܹܭ)ܹ݁ܭ_ℎܿݐܽܯ݉݅ܵ  ݀) = ,ܹܭ)ܹ݁ܭ_ݓ |ܹܭ|(݀  
(A 3.5) 
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Equations (A 3.4) to (A 3.5) compute the similarity of each document with the RS parameters 

in terms of keywords. 

• Similarity matching of researcher title with document titles 

Before the similarity matching computation, the researcher title and document titles are pre-

processed. The objective of the pre-processing is to filter noise in order to obtain suitable text 

for performing the analysis. This consists in stemming, phrase extraction, part-of-speech 

filtering and removal of stop-words. More specifically, it includes the following operations:  

1. Segmentation: the process of dividing a given document into sentences; 

2. Stop-words removal: Stop-words are frequently occurring words (e.g., ‘a’ and ‘the’) 

that impart no meaning and generate noise. They are predefined and stored in an array. 

Note that the removal of stop-words follows specific rules. For example, in “prediction 

of mobility”, removal of the stop-word "of" changes the expression to "mobility 

prediction"; 

3. Tokenization: the input text is separated into tokens; 

4. Punctuation marks: the spaces and word terminators are identified and treated as word 

breaking characters; 

5. Word stemming: each word is converted into its root form by removing its prefix and 

suffix for comparison with other words.  

The output of the pre-processing is the set of terms.  

 

Let:  

1. Td be the set of terms of the title of document d;  

2. TT be the set of terms of the researcher selection title; 

3. SimMatch_TiT(TT,Td) be the function that evaluates the similarity matching of TT with 

Td. 

First, the weight of TT according to the document d title Td is computed as follows: 
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,ܶܶ)ܶ݅ܶ_ݓ  ݀) = max௝∈ሾଵ,௠ሿ(݆ − ,ܶܶ)݉ܽݎ݃ ܶ݀)) (A 3.6) 

where m denotes the number of terms of TT (m=|TT|). Indeed, w_TiT(TT,d) is the largest 

number of sequential terms of TT that appears in Td. To obtain a similarity value between 0 

and 1, normalization is applied. The SimMatch_TiT(TT,d) is computed as follows:  

,ܶܶ)ܶ݅ܶ_ℎܿݐܽܯ݉݅ܵ  ݀) = ,ܶܶ)ܶ݅ܶ_ݓ ݀)݉  
(A 3.7) 

Thus, equations (A 3.6) to (A 3.7) compute the similarity matching of each document with the 

RS parameters “Title”. 

• Similarity matching of the researcher description with document abstracts 

The similarity matching of the researcher research description is performed using the document 

abstract. To do this, the researcher description is semantically compared to the document 

abstract in order to measure the similarity level. This similarity matching of a researcher 

description makes use of WordNet::Similarity, described in (Pedersen et al., 2004), which 

implements six measures of similarity and three measures of relatedness. Several terms may 

be semantically the same.  

Let:  

1. DS be the researcher description of the research topic as the selection; 

2. s be the number of terms of DS = (t1, t2, …, ti, …, ts); 

3. C be the Literature Corpus where the documents are of the same discipline; 

4. SimMatch_DeC(DS,d) be the function that evaluates the similarity matching of  DS 

with a document abstract Ad.  

First, the semantic similarity of each term in DS with those in Ad is determined on the basis of 

the semantic TF-ICF (term frequency – inverse corpus frequency) as follows: 

,௜ݐ)ܶ_݉݅ܵ݉݁ܵ  ݀) = ,௜ݐ)ܨܶ ݀) 	× log ቆ ,௜ݐ)ܨܥܫ|ܥ| ቇ(ܥ 	 (A 3.8) 
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where ܶݐ)ܨ௜, ݀) and ݐ)ܨܥܫ௜, ݀) denote the number of occurrences of ti in document d and the 

number of documents in the corpus C where ti appears.  

Next, the semantic similarity of DS to the document abstract is computed as follows: 

,ܵܦ)ܥ݁ܦ_݉݅ܵ݉݁ܵ  ݀) =෍ܵ݁݉ܵ݅݉_ܶ(௦
௜ୀଵ ,௜ݐ ݀) (A 3.9) 

To obtain a similarity value between 0 and 1, normalization is applied. The 

SimMatch_DeC(DS,d) is computed as: 

,ܵܦ)ܥ݁ܦ_ℎܿݐܽܯ݉݅ܵ  ݀) = ,ܵܦ)ܥ݁ܦ_݉݅ܵ݉݁ܵ ܥ݁ܦ_ݔܽܯ(݀  
(A 3.10) 

where Max_DeC denotes the largest value of SemSim_DeC(DS,d) among all the documents 

in C. 

Equations (A 3.8) to (A 3.10) compute the similarity matching of each document with the RS 

parameters “Description”. 

• LCR index computation 

Once the similarity matching of each evaluation-based selection is done, the LCR index can 

be computed. An LCR index value is within the range [0,1] where 0 means the least similar 

while 1 is the most similar. Note that the LCR index is a weighted sum of the computed value 

of each selection.  

Let: 

1. W_init be an initial value, 

2. W_unit be the difference in weight between two consecutive types of RS parameters.  

The LCR index of a document d of literature corpus C is computed as follows: 

,ܵܦ)݈ܸܽ  ݀) = 	ݐ݅݊݅_ܹ × ,ܵܦ)ܥ݁ܦ_ℎܿݐܽܯ݉݅ܵ ݀)	 ܸ݈ܽ(ܶܶ, ݀) = ݐ݅݊݅_ܹ) + 	ݐ݅݊ݑ_ܹ) × 1)) × ,ܶܶ)ܶ݅ܶ_ℎܿݐܽܯ݉݅ܵ ݀)	 (A 3.11) 
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,ܹܭ)݈ܸܽ ݀) = ݐ݅݊݅_ܹ) + 	ݐ݅݊ݑ_ܹ) × 2)) × ,ܹܭ)ܹ݁ܭ_ℎܿݐܽܯ݉݅ܵ ,ܶܯ)݈ܸܽ (݀ ݀) = ݐ݅݊݅_ܹ) + 	ݐ݅݊ݑ_ܹ) × 3)) × ,ܶܯ)ܶܽܯ_ℎܿݐܽܯ݉݅ܵ ݀)	 
,ܶܯ,݀)ݔ݁݀݊ܫ	ܴܥܮ  ,ܹܭ ܶܶ, (ܵܦ = 1 − ቆܸ݈ܽ(ܵܦ, ݀) + ܸ݈ܽ(ܶܶ, ݀) + ,ܹܭ)݈ܸܽ ݀) + ,ܶܯ)݈ܸܽ ݀)∑ ݐ݅݊݅_ܹ) + 	ݐ݅݊ݑ_ܹ) × ݅))ଷ௜ୀ଴ ቇ 

Appendix B: MLTC AND Number of references AND “To be included in the ALR” 
Pseudo-code 

This appendix describes how STELLAR takes into account the researcher’s requirements in 

terms of MLTC (Mix of the Literature Temporal Coverage (Yrs, %), number of references and 

the specific annotation “To be included in the ALR”. The MLTC allows the researcher to 

include a certain percentage (%) of papers whose age is greater than a given age (Yrs). The 

idea here is to be able to include very relevant papers that are out of date. To take into account 

both the MLTC and the number of references without prioritizing either of them, a specific 

approach is needed, which is given by the following pseudo-code: 

 

 

 

 

 

 

New_C1 = ∅ 
Old_C1 = ∅ 

 
  If (N ≤	Lengtj of All_C1) 

     For the next  document in All_C1 

         If [(A ≠ 0) AND (B ≠ 0)] 
If  [ (next  document publication age ≤ y) ] 

   Add next  document to New_C1 

   A=A-1 
Else If [ (next  document publication age >y) ] 

Add next  document to Old_C1 
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   B=B-1 
         Else  
 If [(A = 0) AND (B ≠ 0)] 

Add next  document to Old_C1 

   B=B-1 
  Else 
   If [(A ≠ 0) AND (B = 0)] 

     If  [ (next  document publication age ≤ y) ] 
               Add next  document to New_C1 

               A=A-1 
    Else 
               New_C1 = All_ C1 
C2= New_C1   ∪   Old_C1 

 

Appendix C:  ALR Index Categories 

This appendix presents details on the three categories of indexes designed for the STELLAR 

prototypes: 

1. Personal index, 

2. Collaborative index, 

3. DTb index. 

a. Personal index 

The DTb index identifies relevant documents in terms of scientific contributions in a specific 

domain and for a specific topic in order to generate an ALR.  

However, the researcher may want only documents that he or she has tagged “To be included 

in the ALR”. In this case, the personal index is computed in addition to the DTb index.  

Let:  

1. C2 be the affinity match for ALR’s LCR documents, 

2. ݀ ∈  ,ଶܥ	

3. u be the researcher who requested the ALR.  

The personal index is computed as follows: 
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,ݑ)ݔ݁݀݊݅	݈ܽ݊݋ݏݎ݁ܲ  ݀) = {଴:	ௗ௢௖௨௠௘௡௧	ௗ	௜௦	௡௢௧	௧௔௚௚௘ௗ	௕௬	௨	ଵ:		ௗ௢௖௨௠௘௡௧	ௗ	௜௦	௧௔௚௚௘ௗ	௕௬	௨	  (A 3.12) 

Thus, for the personal index, all documents in C2 whose personal index is 1 are selected. 

b. Collaborative index 

The collaborative index is also defined based on the documents that are tagged “To be included 

in the ALR” by a specific community of researchers or preselected researchers.  

Let ui be a researcher within the specific community of researchers or preselected researchers.  

The collaborative index is computed as follows: 

,௜ݑ)ݔ݁݀݊݅	݁ݒ݅ݐܽݎ݋ܾ݈݈ܽ݋ܥ  ݀) = {଴:	ௗ௢௖௨௠௘௡௧	ௗ	௜௦	௡௢௧	௧௔௚௚௘ௗ	௕௬	௨೔	ଵ:	ௗ௢௖௨௠௘௡௧	ௗ	௜௦	௧௔௚௚௘ௗ	௕௬	௨೔	  (A 3.13) 

Thus, for the collaborative index, all the in C2 whose collaborative index is 1 are selected. 

c. Dynamic Topic based index 

When a researcher does not clearly request a personal or collaborative index, a Dynamic Topic 

based index (DTb index) is applied to select documents relevant for the ALR. Like the LCR, 

the DTb index is also computed as a weighted sum of the values that denote the importance of 

the different inputs considered. 

Note that paper topics are commonly used in the literature to compute the DTb index, and that 

publication dates and document ages are used regardless of their values. In STELLAR, 

therefore, the DTb index is computed using a number of additional concepts: 

1. Key findings and peer citations index, 

2. Venue index, 

3. Document references index, 

4. Authors and their affiliated institutes. 

• Document relevance according to researchers’ key findings and peer citations 

The Key Findings are annotations in regards to important findings in the document related to 

the ALR. Indeed, previous researchers who have already analyzed these documents have 
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provided annotations called key findings. These key findings are identified and analyzed by 

the TDM approach. The TDM analysis consists in classifying the key findings into three 

categories: 

1. Very relevant: indicates that the paper is very relevant and adequate for the LR, 

2. Adequate: indicates that the paper is not relevant, but may be the focus of attention, if 

possible. 

3. Not relevant: indicates that the paper is not relevant and not adequate for the search. 

Let:  

1. Cat_annot be the category of a key finding, 

2. Y be the age of a document d, 

3. X be the publication date of d. 

For example: for a document published in 2000, Y =16 and X=2000.  

The key findings index of document d is computed as follows: 

,݀)ݔ݁݀݊ܫݏ݃݊݅݀݊݅ܨݕ݁ܭ  ,ݐ݋݊݊ܣ_ݐܽܥ ܻ)= ∑ ሾ(ܻ − ݅) × ܾܰ(݀, ,ݐ݋݊݊ܣ_ݐܽܥ (ܺ + ܻ − ݅))ሿ௒ିଵ௜ୀ଴ ܻ!  

(A 3.14) 

where Nb(d, Cat_Annot, Z) denotes the number of times the key findings Cat_Annot= “very 

relevant” are detected in document d at year Z.  

The concept behind the computation of the key findings index is to give more importance to 

the more recent annotations instead of simply counting the number of considered key findings.  

This places more emphasis on recently published documents. 

• Document relevance according to venue 

The venue type is important in the ranking of scientific documents. The intent is to consider 

not only documents from academic journals, but also documents from other types of venues, 

such as conference proceedings and workshops, as well as unpublished documents such as 

research reports. In STELLAR, four types of venue are considered: 
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1. Journal, 

2. Conference proceedings, 

3. Workshop, 

4. Unpublished. 

Here, the venue types are ordered according to their importance in the researcher’s opinion. 

For example: a researcher may consider that a journal paper is more important than a 

conference proceedings paper; thus, journal is first and conference is second. To compute the 

venue impact, the similarity matching of the detected topic with the venue main topic (where 

document d is published or presented) is computed as follows: 

,݀ܶ)ܿ݅݌݋ݐ_݉݅ݏ  (ݒܶ = max௝∈ሾଵ,௠ሿ(݆ − ,݀ܶ)݉ܽݎ݃  (A 3.15) ((ݒܶ

where Td and Tv denote the detected topic of document d and the main topic of venue v, 

respectively.  

The similarity matching between document title and venue name (where document d is 

published or presented) is computed as follows: 

(ݒܰ,݀ܰ)݁݉ܽ݊_݉݅ݏ  = max௝∈ሾଵ,௠ሿ(݆ −  (A 3.16) ((ݒܰ,݀ܰ)݉ܽݎ݃

where Nd and Nv denote the title of document d and the name of venue v, respectively. 

Thus, the venue v impact for a specific document d is given by: 

,݀)ݐܿܽ݌݉ܫ݁ݑܸ݊݁  =(ݒ (ݒ)݁ݑ݊݁ݒ_݁݃ܽ + +(ݒ)ܾݑ݌_݉ݑ݊_݃ݒܽ (ݒ)݉ݑ݊_ݒ݁ݎ + ௔௖௖(௩)݃ݒܽ௦௨௕(௩)݃ݒܽ + +(ݒ)ݍ݁ݎ݂ ,݀ܶ)ܿ݅݌݋ݐ_݉݅ݏ (ݒܶ +  (ݒܰ,݀ܰ)݁݉ܽ݊_݉݅ݏ
(A 3.17) 

where  

- age_venue(v) denotes the age of venue v,  

- avg_num_pu(v) denotes the number of publications per year,  
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- rev_num(v) denotes the number of reviewers per submitted paper,  

- avg_sub(v) denotes the average number of submitted papers per year, 

- avg_acc(v) denotes the average number of accepted papers per year, 

- freq(v) denotes the frequency of publication per year. 

To take into account the type of venue, a weight is assigned to each of them according to its 

order and the couple (Vinit, Vunit), where:  

- Vinit is an initial value and 

- Vunit is the difference in weight between two consecutive types of venue.  

For example: a venue type with order i will have the weight: 

(ݒ)ݐℎܹ݃݅݁݁݌ݕݐܸ  = ݐܸ݅݊݅ + ((ܳ + 1 − ݅) ×  (A 3.18) (	ݐ݅݊ݑܸ

where Q is the number of types of venue. Here, Q is equal to 4.  

Finally, the venue-based index of document d is computed as follows: 

,݀)ݔ݁݀݊ܫ݁ݑܸ݊݁  (ݒ = (ݒ)ݐℎܹ݃݅݁݁݌ݕݐܸ × ,݀)ݐܿܽ݌݉ܫ݁ݑܸ݊݁  (A 3.19) (ݒ

 

• Document relevance according to authors and their affiliated institutes 

As was done for the venue index, the document relevance is computed on the basis of its 

authors and their affiliated institutes.  

Let:  

1. Td be the main topic of document d;  

2. ai be the author. 

The influence on the document d is computed as follows: 
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,݀)ݐܿܽ݌݉ܫݎ݋ℎݐݑܣ  ܽ௜)= (݀ܶ)ܾݑ݌_ܾ݊(݀ܶ)݀݁ݐ݅ܿ_ܾ݊ + +(݀ܶ)ܾݑ݌_ܾ݊(݀ܶ)ݎݑ݋݆_ܾ݊ ,݀ܶ)ݎܽݓܽ_ܾ݊ ܽ௜) + ,݀ܶ)ݎݑ݋݆_ܾ݊ +(௜ܫ ,݀ܶ)ݎܽݓܽ_ܾ݊  (௜ܫ
(A 3.20) 

where: 

- nb_cited(Td) denotes the number of publications of author ai cited on the topic Td, 

- nb_pub(Td) denotes the number of publications of ai on the topic Td,   

- nb_jour(Td) denotes the number of journal publications by ai on the topic Td, 

- nb_awar(Td,ai) denotes the number of awards of ai on the topic Td, 

- nb_jour(Td,Ii) denotes the number of publications which ai’s affiliated institute 

publishes in the most influential journals worldwide on the topic Td, 

- nb_awar(Td,Ii) denotes the number of awards of ai’s affiliated institute on the topic Td. 

The author index of document d is computed as follows: 

(݀)ݔ݁݀݊ܫݏݎ݋ℎݐݑܣ  = ∑ ܣ) + 1 − ݅) × ,݀)ݐܿܽ݌݉ܫݎ݋ℎݐݑܣ ܽ௜)஺௜ୀଵ !ܣ  
(A 3.21) 

where A denotes the number of authors of document d. The idea is to give more importance to 

top authors; the first author therefore has greater weight than the second author. 

 

• Document relevance according to document references 

The document’s interaction with other documents on the topic is measured. Two groups of documents are 

defined: 

1. Citing documents,  

2. Cited documents. 

For a better understanding, let d be a considered document; a citing document is a document 

that cited the document d, while a cited document is a document cited by the document d. Note 
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that the number of cited documents is static while the number of citing documents may increase 

with time. These two terms are important for the evaluation of document relevance. Figure A 

3.14 illustrates the two terms according to the publication date. 

The document’s relevance based on citations includes several operands: 

1.  Number of citing documents according to the age of document d; it is computed as 

follows: 

(݀)ݐܿܽ݌݉ܫ݃݊݅ݐ݅ܥ  = ∑ ሾ(ܻ − ݅) × ݅)݃݊݅ݐ݅ܿ_ܾ݊ + 1)ሿ௒ିଵ௜ୀ଴ ܻ!  
(A 3.22) 

where nb_citing(i) denote the number of citing documents with age i and Y denotes the age of 

the document d. Relevant documents are those that are frequently cited. In addition, 

CitingImpact (d) gives more importance to recent citations. 

2. Average number of times a document d is mentioned in citing documents; it is 

computed as follows: 

(݀)ݐܿܽ݌݉ܫ݃ݒܣ݃݊݅ݐ݅ܥ  = ∑ ,݀)݃݊݅ݐ݅ܿ_݁݉݅ݐ_ܾ݊ ௝)௉௝ୀଵܦ ܲ	 × ܻ  
(A 3.23) 

where nb_time_citing(d,Dj), denotes the number of times the document d is cited in the citing 

document Dj, P is the total number of documents citing d and Y is the age of the document d. 

(݀)ݐܿܽ݌݉ܫ݃ݒܣ݃݊݅ݐ݅ܥ݀݁ݐ݅ܥ  = ቮራ ൜ܾ݊_ܿ݅݃݊݅ݐ(ܦ௟)ܽ݃݁(ܦ௟) ≥ 5ൠ஽೗∈௅ ቮ (A 3.24) 

where L denotes the set of documents cited in d, age(Dl) denotes the age of document Dl and 

nb_citing(Dl) denotes the number of times document Dl is cited. Indeed, relevant documents 

very often cite existing relevant documents. 

Finally, the relevancy of document d based on references is computed as follows: 
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=(݀)ݔ݁݀݊ܫݏ݁ܿ݊݁ݎ݂ܴ݁݁  (݀)ݐܿܽ݌݉ܫ݃݊݅ݐ݅ܥ + +(݀)ݐܿܽ݌݉ܫ݃ݒܣ݃݊݅ݐ݅ܥ  (݀)ݐܿܽ݌݉ܫ݃ݒܣ݃݊݅ݐ݅ܥ݀݁ݐ݅ܥ
(A 3.25) 

• DTb index computation based on the previous computed index 

As mentioned above, the DTb index is a weighted sum of the computed values for different 

aspects that impact the relevancy of a document. 

Let the couple (Init, Unit) where:  

1. Init is an initial value, and  

2. Unit is the difference in weight between two consecutive aspects.  

The DTb index of document d is computed as follows: 

,ܨܴ)݈ܸܽ  ݀) = 	ݐ݅݊ܫ × ,ܸܰ)݈ܸܽ 	(݀)ݔ݁݀݊ܫݏ݁ܿ݊݁ݎ݂ܴ݁݁ ݀) = ݐ݅݊ܫ) + ݐܷ݅݊) × 1)) × ,݀)ݔ݁݀݊ܫ݁ݑܸ݊݁ ,ܣܣ)݈ܸܽ 	(ݒ ݀) = ݐ݅݊ܫ) + ݐܷ݅݊) × 2)) × ,ܨܭ)݈ܸܽ (݀)ݔ݁݀݊ܫݏݎ݋ℎݐݑܣ ݀) = ݐ݅݊ܫ) + ݐܷ݅݊) × 3))× ,݀)ݔ݁݀݊ܫݏ݃݊݅݀݊݅ܨݕ݁ܭ ,ݐ݋݊݊ܣ_ݐܽܥ ܻ)	 
,݀)ݔ݁݀݊݅	ܾܶܦ  ,ܨܴ ܸܰ, ,ܣܣ =(ܨܭ ,ܨܴ)݈ܸܽ ݀) + ܸ݈ܽ(ܸܰ, ݀) + ,ܣܣ)݈ܸܽ ݀) + ,ܨܭ)݈ܸܽ ݀)∑ ݐ݅݊ܫ) + ݐܷ݅݊) × ݇))ଷ௞ୀ଴  

(A 3.26) 
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