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FOREWORD

This Ph.D. dissertation presents my research work carried out between 2013 and 2017 at École

de technologie supérieure, under the supervision of professor Christian Desrosiers. The ob-

jective of this research is to address various common but pivotal image restoration problems,

such as image denoising, super-resolution, image completion and compressive sensing. The

proposed solutions for these problems are based on properties of sparse feature representation,

nonlocal patch similarity and low-rank patch regularization.

This work resulted in a total of 4 journal papers and 8 conference papers, published or under

peer review, for which I am the first author. This dissertation focuses on the content of three of

these journal papers, presented in Chapters 2, 3 and 4. Other publications are listed in Appendix

II. The Introduction section presents background information on image reconstruction, as well

as the main problem statement, motivations and objectives of this research. A review of relevant

literature on image reconstruction follows in Chapter 1. After presenting the three journal

papers (Chapters 2 to 4), Chapter 5 draws a brief summary of contributions and highlights

some recommendations for further research.
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SPARSE AND LOW-RANK TECHNIQUES FOR THE EFFICIENT RESTORATION
OF IMAGES

Mingli ZHANG

RÉSUMÉ

La reconstruction d’images est un problème clé dans de nombreuses applications de la vi-

sion par ordinateur et l’imagerie médicale. En supprimant le bruit et les artefacts d’images

corrompues, ou en améliorant la qualité des images à basse résolution, les méthodes de re-

construction permettent de fournir des images de haute qualité pour ces applications. Au fil

des ans, d’importants efforts de recherche ont été investis dans le développement d’approches

précises et efficaces pour ce problème.

Récemment, des améliorations considérables ont été réalisées en exploitant les principes de la

représentation éparse et de l’auto-similarité non locale. Cependant, les techniques basées sur

ces principes souffrent souvent de limitations importantes qui entravent leur utilisation dans

des applications de grande qualité et à grande échelle. Ainsi, les approches par représentation

éparse considèrent les parcelles locales de pixels pendant la reconstruction, mais ignorent la

structure globale de l’image. De même, en combinant des groupes de parcelles similaires, les

méthodes d’auto-similarité non locales ont tendance à sur-lisser les images. De telles méthodes

peuvent également être coûteuses en termes de calcul, nécessitant une heure ou plus pour re-

construire une seule image. En outre, les approches de reconstruction existantes envisagent soit

la régularisation locale basée sur les parcelles ou la régularisation de la structure globale, en

raison de la complexité de combiner ces deux stratégies de régularisation dans un seul modèle.

Pourtant, un tel modèle combiné pourrait améliorer les techniques existantes en supprimant

les artefacts de bruit ou de reconstruction, tout en préservant les détails locaux et la structure

globale de l’image. De même, les approches actuelles emploient rarement des informations ex-

ternes pendant le processus de reconstruction. Lorsque la structure à reconstruire est connue,

les informations externes, comme les atlas statistiques ou les a priori géométriques, pourraient

améliorer les performances en guidant la reconstruction.

Cette thèse traite les limites des approches existantes à travers trois contributions distinctes.

La première contribution étudie l’histogramme des gradients d’image comme un puissant a

priori pour la reconstruction. En raison du compromis entre l’élimination du bruit et le lissage,

les techniques de reconstruction d’image basées sur la régularisation globale ou locale ont

tendance à sur-lisser l’image, ce qui entraîne la perte de contours et de textures. Dans le but

d’atténuer ce problème, nous proposons un novel a priori pour conserver la distribution de

gradients de l’image, modélisée à l’aide d’un histogramme. Cet a priori est combiné avec la

régularisation faible-rang de parcelles dans un seul modèle efficace, ce qui permet d’améliorer

la précision de la reconstruction dans les problèmes de débruitage et de déflouage.

La deuxième contribution explore la régularisation de la structure locale et globale dans les

problèmes de restauration d’image. Dans ce but, des groupes de parcelles similaires sont re-
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construits simultanément en utilisant une technique de régularisation adaptative basée sur la

norme nucléaire pondérée. Une stratégie innovante, qui décompose l’image en un composant

homogène et un résidu éparse, est proposée pour préserver la structure globale de l’image.

Cette stratégie exploite mieux la propriété éparse de la structure que les techniques standard

comme la variation totale. Le modèle proposé est évalué sur les problèmes de complétion et de

super-résolution, surpassant les approches de pointe pour ces tâches.

Enfin, la troisième contribution de cette thèse propose un a priori basé sur les atlas pour la

reconstruction efficace des données IRM. Bien que populaire, les apriori d’image basés sur la

variation totale et la similitude de parcelles non locales sur-lissent souvent les countours et les

textures de l’image en raison de la régularisation uniforme des gradients. Contrairement aux

images naturelles, les caractéristiques spatiales des images médicales sont souvent limitées par

la structure anatomique ciblée et la modalité d’imagerie employée. Sur la base de ce principe,

nous proposons une nouvelle méthode de reconstruction IRM qui tire parti des informations

externes sous la forme d’un atlas probabiliste. Cet atlas contrôle le niveau de régularisation

des gradients à chaque emplacement de l’image, par un a priori utilisant la variation totale

pondérée. La méthode proposée exploite également la redondance de parcelles non locales au

moyen d’un modèle de représentation éparse. Des expériences sur un large ensemble d’images

T1 montrent que cette méthode est très concurrentielle avec l’état de l’art.

Mots clés: Approche de bas niveau, sparsité structurée, préservation de l’histogramme,

minimisation de la norme nucléaire pondérée, variation totale pondérée, recon-

struction d’image, ADMM



SPARSE AND LOW-RANK TECHNIQUES FOR THE EFFICIENT RESTORATION
OF IMAGES

Mingli ZHANG

ABSTRACT

Image reconstruction is a key problem in numerous applications of computer vision and med-

ical imaging. By removing noise and artifacts from corrupted images, or by enhancing the

quality of low-resolution images, reconstruction methods are essential to provide high-quality

images for these applications. Over the years, extensive research efforts have been invested

toward the development of accurate and efficient approaches for this problem.

Recently, considerable improvements have been achieved by exploiting the principles of sparse

representation and nonlocal self-similarity. However, techniques based on these principles of-

ten suffer from important limitations that impede their use in high-quality and large-scale appli-

cations. Thus, sparse representation approaches consider local patches during reconstruction,

but ignore the global structure of the image. Likewise, because they average over groups of

similar patches, nonlocal self-similarity methods tend to over-smooth images. Such methods

can also be computationally expensive, requiring a hour or more to reconstruct a single image.

Furthermore, existing reconstruction approaches consider either local patch-based regulariza-

tion or global structure regularization, due to the complexity of combining both regularization

strategies in a single model. Yet, such combined model could improve upon existing tech-

niques by removing noise or reconstruction artifacts, while preserving both local details and

global structure in the image. Similarly, current approaches rarely consider external informa-

tion during the reconstruction process. When the structure to reconstruct is known, external

information like statistical atlases or geometrical priors could also improve performance by

guiding the reconstruction.

This thesis addresses limitations of the prior art through three distinct contributions. The first

contribution investigates the histogram of image gradients as a powerful prior for image recon-

struction. Due to the trade-off between noise removal and smoothing, image reconstruction

techniques based on global or local regularization often over-smooth the image, leading to the

loss of edges and textures. To alleviate this problem, we propose a novel prior for preserving the

distribution of image gradients modeled as a histogram. This prior is combined with low-rank

patch regularization in a single efficient model, which is then shown to improve reconstruction

accuracy for the problems of denoising and deblurring.

The second contribution explores the joint modeling of local and global structure regularization

for image restoration. Toward this goal, groups of similar patches are reconstructed simulta-

neously using an adaptive regularization technique based on the weighted nuclear norm. An

innovative strategy, which decomposes the image into a smooth component and a sparse resid-

ual, is proposed to preserve global image structure. This strategy is shown to better exploit the

property of structure sparsity than standard techniques like total variation. The proposed model
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is evaluated on the problems of completion and super-resolution, outperforming state-of-the-art

approaches for these tasks.

Lastly, the third contribution of this thesis proposes an atlas-based prior for the efficient recon-

struction of MR data. Although popular, image priors based on total variation and nonlocal

patch similarity often over-smooth edges and textures in the image due to the uniform regular-

ization of gradients. Unlike natural images, the spatial characteristics of medical images are

often restricted by the target anatomical structure and imaging modality. Based on this princi-

ple, we propose a novel MRI reconstruction method that leverages external information in the

form of an probabilistic atlas. This atlas controls the level of gradient regularization at each

image location, via a weighted total-variation prior. The proposed method also exploits the

redundancy of nonlocal similar patches through a sparse representation model. Experiments

on a large scale dataset of T1-weighted images show this method to be highly competitive with

the state-of-the-art.

Keywords: Low rank approach, Structured sparsity, Histogram preservation, Weighted

nuclear norm minimization, Weighted total variation, Image reconstruction,

ADMM
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INTRODUCTION

Images play a vital role in daily life. According to InfoTrend’s worldwide image capture

forecast, over 1.2 trillion photos will be taken worldwide in 2017 only, for an estimated total

of 4.7 trillion photos stored in digital format. Many of these images will be shared across

social media networking platforms like Facebook, Instagram and Snapchat, requiring efficient

techniques for compression and editing. Images also have a fundamental impact in every aspect

of medicine. With high-quality medical images (e.g., magnetic resonance imaging – MRI,

computed tomography – CT, ultrasound, etc.), practitioners can visualize various structures in

the body, allowing them to accurately diagnose conditions and select optimal treatments.

In visual media applications, high-quality images are often needed for visualization and analy-

sis. High-resolution and noise-free images improve human interpretation of their content, but

also facilitates various tasks of automated image processing and pattern recognition that are key

to many computer vision and biomedical imaging applications. However, image quality de-

pends on the acquisition device, which may be affected by poor capture conditions, movement,

low-resolution, etc. A possible way of dealing with these problems is to upgrade the acquisition

device, for instance using better optical components, or higher-resolution/sensitivity sensors.

Such approach can however be expensive and is sometimes impractical in real applications,

such as satellite imagery. Alternatively, image quality can be addressed via post-processing

techniques for image restoration at the cost of additional computations. These techniques tar-

get specific types of image enhancement, including denoising, completion, super-resolution,

compressive sensing and deblurring.

Image restoration is of particular interest in medicine. Imaging modalities based on X-rays

such as CT or 2D radiography expose subjects to potentially harmful radiations. Limiting

exposure time reduces the chances of inducing cancer or other types of genetic illness. How-

ever, reducing the X-ray dose also degrades image quality. Likewise, obtaining high-resolution

MR images requires prolonged acquisition times, leading to subject discomfort. As with CT,
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limiting the number of scanner measurements (i.e., k-space samples) can degrade image qual-

ity. Devices like CT or MRI scanners can also lead to images with various types of noise

or artifacts. For example, images obtained using a gamma camera or single photon emission

CT (SPECT) can be severely degraded by Poisson noise inherent to the photon emission and

counting processes. Moreover, even small movements of subjects during acquisition may cre-

ate motion artifacts, in both CT and MRI. Overall, the fundamental trade-off between image

resolution and signal to noise ratio (SNR), as well as between physiological/clinical constraints

and acquisition speed, often translate to spurious artifacts such as noise, partial volume, and

bias field (Fillard et al., 2007; Bankman, 2008).

0.1 Problem statement and motivation

In the past decades, extensive research efforts have been invested toward the development of

accurate and efficient methods for image reconstruction. Due to the ill-posed nature of this

task, most of these efforts have focused on modeling image priors using various regularization

techniques. Traditional spatial regularization (i.e., smoothness) models, such as Laplacian

filtering (Kovásznay and Joseph, 1955), anisotropic filtering (Perona and Malik, 1990) and

Total Variation (Kovásznay and Joseph, 1955; Zhang et al., 2016b; Zhang and Desrosiers,

2016) are effective in removing noise, however tend to over-smooth images. This results in the

loss of details like textures, which may be important to the application (e.g., detecting small

lesions in organs like the brain).

Recently, considerable improvements have been achieved by exploiting the principles of sparse

representation modeling and nonlocal self-similarity. Sparse representation modeling methods

represent a signal as a linear combination of a few elementary signals (i.e., atoms) from a over-

complete dictionary (Chen et al., 2001). In image restoration tasks, atoms in the dictionary

often correspond to small image regions known as patches. Unlike fixed bases like wavelets

and curvelets, sparse representation approaches learn the dictionary from actual training data,

thereby providing a more task-specific model of sparsity. On the other hand, nonlocal self
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similarity leverages the redundancy of small patches of pixels in an image, that may be distant

from one another. These similar patches can be due to repeating patterns (e.g., bricks on a wall)

or edges along the boundary of objects. The nonlocal similarity of patches is typically used

within reconstruction methods to constrain or regularize regions of the image containing these

patches. A powerful technique based on this principle is low-rank patch regularization, which

reconstructs groups of similar patches simultaneously, imposing that the matrices containing

such patches are low-rank.

Various studies have shown the advantages of sparse representation modeling and nonlocal

self-similarity over traditional reconstruction models. Yet, these techniques still suffer from

important limitations, impeding their use in high-quality applications. For instance, sparse rep-

resentation approaches guide the reconstruction at a local level, but ignore the global structure

of the image. This may lead to images having considerable reconstruction artifacts. Like-

wise, because they constrain groups of patches to be similar, nonlocal self-similarity methods

tend to over-smooth images due to an averaging effect. Moreover, such methods are typically

computationally expensive and may require an hour or more to reconstruct a single image.

So far, most existing works on image reconstruction have focused on defining either local (e.g.,

patch-based methods) or global (e.g., total variation, wavelet, etc.) regularization schemes.

Combining both types of regularization is challenging due to the complexity of the result-

ing optimization problem. Yet, such a combined approach could improve the performance

by removing noise or reconstruction artifacts, while preserving both local details and global

structure in the image. Similarly, current approaches for image reconstruction typically use

internal cues (e.g., nonlocal self-similarity), without considering external information. In cases

where the object to reconstruct is known beforehand, for instance specific anatomical struc-

tures in MRI or CT scans, external information in the form of an atlas (i.e., statistical prior of

the structure’s geometry) can help guide the reconstruction process. Hence, combining inter-

nal information like the similarity of nonlocal patches with an external atlas could improve the

performance when reconstructing known structures.
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0.2 Research objectives and contributions

Following the challenges and limitations highlighted above, the objective of this research is

to develop novel image reconstruction methods that can improve the performance of existing

approaches by 1) combining local and global regularization techniques into a single efficient

model, and 2) using both internal and external information for the reconstruction of known

structures. Three main contributions are made toward this goal:

1) Improved reconstruction using histogram preservation priors: Due to the trade-off

between noise removal and smoothing, image reconstruction techniques based on global

(e.g., TV, wavelets, etc.) or local (e.g., sparse representation modeling) regularization

often over-smooth the image, resulting in the loss of details like texture. In various im-

age processing applications, histograms of gradients have shown to be an effective way

to represent textures. Based on this idea, we propose a novel prior for preserving the

distribution of image gradients, modeled as a histogram. This prior is combined with

patch-based regularization techniques, using low-rank regularization and histograms of

gradients, in a single efficient model. The proposed framework is shown to improve

reconstruction accuracy, for the problems of denoising and deblurring. This first contri-

bution resulted in the following two papers:

• Mingli Zhang, Christian Desrosiers. “Structure preserving image denoising based

on low rank reconstruction and gradient histograms”. Computer Vision and Image

Understanding (CVIU), Elsevier. Under review.

• Mingli Zhang, Christian Desrosiers, Caiming Zhang, Mohamed Cheriet. “Effec-

tive document image deblurring via gradient histogram preservation”. IEEE Inter-

national Conference on Image Processing (ICIP), pp. 779-783, 2015.

2) Joint local and global structure regularization for high-quality image restoration:

The repetitiveness of image patches has shown to be a powerful prior in many image

reconstruction problems. Reconstruction accuracy can also be improved by enforcing
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the global consistency of image structure, for instance using wavelet sparsity. Up to

now, most reconstruction approaches have investigated either local (i.e., patch-based) or

global regularization, but not both. As second contribution of this thesis, we explore

the usefulness of combining local and global regularization is a single model. In the

proposed method, groups of similar patches are reconstructed simultaneously, via an

adaptive regularization technique based on the weighted nuclear norm. Global structure

is also preserved using an innovative strategy that decomposes the image into a smooth

component and a sparse residual. This strategy is shown to have advantages over standard

techniques likes wavelet sparsity. The proposed method is evaluated on the tasks of

image completion and super-resolution, outperforming state-of-the-art approaches for

these tasks. The results related to this contribution are presented in the following two

papers:

• Mingli Zhang, Christian Desrosiers. “High-quality image restoration using low

rank regularization and global structure sparsity”. IEEE Transactions on Image

Processing (TIP). Under review.

• Mingli Zhang, Christian Desrosiers. “Image completion with global structure and

weighted nuclear norm regularization”. IEEE International Joint Conference on

Neural Networks (IJCNN), pp. 4187-4193, 2017.

3) Atlas-based prior for reconstruction of MR data: Image priors based on total variation

and nonlocal patch similarity have shown to be powerful techniques for the reconstruc-

tion of magnetic resonance (MR) images from undersampled k-space measurements.

However, due to the uniform regularization of gradients, standard TV approaches often

over-smooth edges and textures in the image. Unlike natural images, the spatial char-

acteristics of medical images are often restricted by the target anatomical structure and

imaging modality. If data of a large subject group is available, the variability of image

characteristics in a population can be modeled effectively using probabilistic atlases. The

third contribution of this thesis proposes a compressed sensing method which combines
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both external and internal information for the efficient reconstruction of MRI data. A

probabilistic atlas is used to model the spatial distribution of gradients in anatomical

structures. This atlas serves as prior to control the level of gradient regularization at

each image location, within a weighted TV regularization prior. The proposed method

also leverages the redundancy of nonlocal similar patches through a sparse representa-

tion model. Experiments on T1-weighted images from a large-scale dataset show this

method to outperform state-of-the-art approaches. This contribution is described in the

following two papers:

• Mingli Zhang, Christian Desrosiers, Caiming Zhang. “Atlas-based reconstruction

of high performance brain MR data”. Pattern Recognition, Elsevier. Minor revision

• Mingli Zhang, Kuldeep Kumar, Christian Desrosiers. “A weighted total variation

approach for the atlas-based reconstrution of brain MR data. IEEE International

Conference on Image Processing (ICIP), pp. 4329-4333, 2016.

The full list of publications that resulted from this research can be found in Appendix II.

0.3 Thesis outline

The work presented in this thesis is organized as follows. In Chapter 1, we present impor-

tant concepts of image reconstructions and give a review of relevant works on image denois-

ing, image completion, super-resolution and compressed sensing. Chapter 2 then introduces

the proposed image denoising approach, based on low-rank patch regularization and gradient

histogram preservation. The work presented in this chapter corresponds to the paper “Struc-

ture preserving image denoising based on low rank reconstruction and gradient histograms”,

which was submitted to the Computer Vision and Image Understanding journal. Following

this, Chapter 3 presents our image restoration framework that combines a novel technique

for recovering the global structure of images with a low-rank patch regularization technique.

This chapter corresponds to the paper entitled “High-quality image restoration using low rank
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regularization and global structure sparsity”, submitted to the IEEE Transactions on Image

Processing journal. In Chapter 4, we introduce our atlas-based compressive sensing approach

applied to reconstructing brain MR data. The content of this Chapter corresponds to the pa-

per “Atlas-based reconstruction of high performance brain MR data”, submitted to the Pattern

Recognition journal. Chapter 5 summarizes the main contributions of this dissertation and dis-

cusses its limitations as well as possible extensions. Finally, Appendix II provides a complete

list of papers resulting from this Ph.D. study.





CHAPTER 1

LITERATURE REVIEW

1.1 Key concepts

Image reconstruction (recovery or restoration) is a challenging problem that plays a fundamen-

tal role in every aspect of low-level computer vision. Over the years, this problem has attracted

vast amounts of interest from researchers worldwide. Mathematically, image reconstruction

can be defined using the following image formation model:

y = φ(x) + n, (1.1)

where x is the original image to reconstruct, φ is a sampling and/or degradation operator, n is

some additive noise (e.g., Gaussian, Rice, Poisson, etc.), and y is the observed undersampled

and/or degraded observation. For many reconstruction problems like denoising, deblurring,

super-resolution and compressive sensing, φ can be modeled as a linear operation (i.e., matrix)

Φ, giving the following generative model:

y = Φx + n. (1.2)

Given y, and for a known Φ, recovering the original image x corresponds to the well-known

category of inverse problems.

A general approach for solving such inverse problems is to find x maximizing the a posteriori

probability:

argmax
x

P (x |y). (1.3)
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Using Bayes’ rule and the monotonicity of the logarithm function, this problem is equivalent

to

argmax
x

logP (y |x) + logP (x). (1.4)

The first term of this formulation is often referred to as data fidelity and is modeled as

logP (y −Φx) = logP (n). (1.5)

Hence, data fidelity is directly related to the noise distribution. For Gaussian (white) noise with

variance σ2, this term becomes

logP (y |x) = − 1

σ
√
2π

‖y −Φx‖22. (1.6)

Likewise, sparse noise based on the Laplace distribution with parameter b gives a data fidelity

term corresponding to

logP (y |x) = −1

b
‖y −Φx‖1. (1.7)

The second term of Eq. (1.4), known as image prior, models domain-specific knowledge or

constraints on the image to recover. In the literature, the image prior is often defined as a

regularization function R such that R(x) ∝ − logP (x). Generalizing the data fidelity term

using the lp norm (e.g., p = 2 corresponds to Gaussian noise and p = 1 to Laplace noise), the

image recovery problem can be expressed as

argmin
x

‖y −Φx‖p + λR(x). (1.8)

Here, λ is a model parameter that controls the trade-off between data fidelity and regular-

ization. Its value is proportional to the amount of noise, with noisier images requiring more

regularization.
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Over the years, most research on image reconstruction has focused on defining powerful image

priors that allow the accurate reconstruction of images, and proposing efficient optimization

methods to solve the inverse problem of Eq. (4.2). The following subsections present important

work related to these two lines of research.

1.2 Image priors

1.2.1 Structure-based priors

Structure-based image priors stem from the theory of compressive sensing (Candes and Tao,

2006; Donoho, 2006), which states the most signals are sparse when expressed using a suitable

basis. In the case of images, it has been observed that structure (e.g., contour of objects in the

image) can be often encoded using a small amount of information. Formally, this implies that

an image is sparse under a transform extracting its structure. Let Ψ be the sparsty transform,

the regularization term can then be defined as

R(x) = ‖Ψ(x)‖0, (1.9)

where ‖·‖0 is the l0 norm which counts the number of non-zero entries in a vector. A significant

problem with this measure of sparsity is its non-convexity, making the image recovery problem

difficult. In practice, the l1 norm is often used as alternative, having been shown to be the best

convex approximation of the l0 norm. More generally, sparsity can be measured with the lp

norm, with 0 ≤ p ≤ 1:

R(x) = ‖Ψ(x)‖p. (1.10)

A well-known type of sparsifying transforms are wavelets (Luisier et al., 2007; Pizurica et al.,

2006; Chan et al., 2006; Ji and Fermüller, 2009). Unlike the Fourier transform, which only

has frequency resolution, the wavelet transform (WT) can represent a signal in both the time

and frequency domain using a fully scalable modulated window. The signal’s spectrum is
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computed for each position of the window, shifted along the signal. Repeating this process

with shorter (or longer) windows gives a collection of time-frequency representations of the

signal, all with different resolutions. The sparsity of images encoded with wavelets is at the

core of modern compression standards (e.g., JPEG 2000). In recent years, various variants of

wavelets have been proposed, including curvelets (Candes and Donoho, 2000), contourlets (Do

and Vetterli, 2005) and shearlets (Guo and Labate, 2007). Another popular extension to WT is

the dual-tree complex wavelet transform (DTCWT), which computes the complex transform of

a signal using two separate decompositions (i.e., filter banks). Compared to WT, this transform

provides approximate shift-invariance in signal magnitude.

Total variation (TV) (Lian, 2006; Wang et al., 2008; Athavale et al., 2015; Xu et al., 2015b)

is another commonly used sparsfying transform, which measures the integral of absolute gra-

dients in the image. The key idea of TV is that most images have only few pixels with high

gradient values and, thus, the gradient image is sparse. Let X be a 2D image in matrix for-

mat, i.e. x = vec(X), and denote as ∇dX the gradient of X along dimension d ∈ {1 =

horizontal, 2 = vertical}. TV is defined as

TV(X) =
∑
i,j

√∑
d

∣∣∇dXi,j

∣∣2. (1.11)

This model, known as isotropic TV, consider the gradient’s magnitude but not its orientation.

A model overcoming this limitation is weighted anisotropic TV (WTV) (Candes et al., 2008;

Gnahm and Nagel, 2015):

WTV(X) =
∑
i,j

∑
d

ωd
i,j

∣∣∇dXi,j

∣∣. (1.12)

Here, ωd
i,j ≥ 0 is a weight penalizing a gradient along direction d at position (i, j). In Chapter

4, we show how an anatomical atlas can be used to define optimal values for these weights.
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1.2.2 Histogram priors

In many cases, gradient regularization techniques like TV can lead to an over-smoothing of the

image (Dalal and Triggs, 2005). Thus, if the regularization trade-off parameter is not properly

set, TV can give near uniform regions separated by sharp edges (i.e., texture-less regions).

Likewise, wavelet regularization can lead to reconstruction artifacts (e.g., ringing or staircase)

when applied too aggressively. One possible way of avoiding such problems is to derive global

image statistics (e.g., histogram) and define an image prior using these statistics. In various

image processing problems, such as denoising (Olshausen et al., 1996; ?; Zuo et al., 2014),

deblurring (Zhang et al., 2015a; Cho et al., 2012), segmentation (Karnyaczki and Desrosiers,

2015), super-resolution (Zhang et al., 2015c; Yang et al., 2016b) and contrast enhancement

(Arici et al., 2009), histograms have shown to be an effective way to represent textures and fine

details in the image. In (Zuo et al., 2014), the gradient histogram of x is approximated via a

deconvolution operation and used to constrain the reconstruction process. Although it may help

preserve textures, such method can also generate false textures in homogeneous regions, due

to the over-estimation of image gradients. In Chapter 2, we propose an efficient reconstruction

approach that combines gradient histogram preservation with low-rank patch regularization.

1.2.3 Sparse representation priors

Standard regularization techniques based on wavelet or Fourier sparsity use a fixed basis to

represent the signal. A more adaptive approach, known as dictionary learning (Wang and

Ying, 2014; Dong et al., 2011a; Xu et al., 2012), is to learn the representation basis (i.e., the

dictionary D) in a data-driven manner. Target signals can then be modeled as a sparse linear

combination of dictionary columns (i.e., the atoms). Let {xi}Ni=1 be a set of training signals,

sparse dictionary learning can be defined as the following optimization problem:

argmin
D, {αi}

1

2

N∑
i=1

‖xi − Dαi‖22 + λ

N∑
i=1

‖αi‖1. (1.13)
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In the case of image reconstruction, signals typically correspond to image patches. The idea

is thus to learn a patch dictionary such that small regions in the image can be expressed as

a sparse combination of dictionary atoms. Suppose the dictionary D has been learned from

training images in an offline step, and let xk be the k-th patch of image x. Patch xk can be

obtained from x as xk = Rkx, where Rk is a selection matrix. Reconstructing x is typically

done in a two step process. Starting from an initial estimate x(0) of x (e.g., using wavelet

reconstruction), the first step is to compute the sparse code α
(t)
k of each image patch x

(t)
k :

α
(t)
k = argmin

αk

1

2
‖x(t)

k −Dαk‖22 + λ‖αk‖1. (1.14)

Once the sparse codes have been computed for all patches, using l2 norm for data fidelity,

image x(t+1) can be recovered by solving the following regression problem:

x(t+1) = argmin
x

1

2
‖y −Φx‖22 +

μ

2

K∑
k=1

‖Rkx−Dα
(t)
k ‖22. (1.15)

The optimal solution of this problem is given by

x =
(
Φ�Φ + μ

K∑
k=1

R�
k Rk

)−1(
Φ�y + μ

K∑
k=1

R�
k Dα

(t)
k

)
. (1.16)

In this type of prior, patches are typically defined so as to overlap one another in the image.

Having overlapping patches provides redundancy in the representation and reduces boundary

artifacts during reconstruction. However, the main drawback of this approach is to smooth the

reconstructed image, a problem caused by averaging several patches over the same pixel.

1.2.4 Nonlocal self-similarity priors

Early reconstruction methods, like those based on Markov Random Fields (Rajan and Chaud-

huri, 2001), achieved local consistency by applying a local spatial regularization. In such

methods, nearby pixels in image x are encouraged to have similar intensity via a pairwise or
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higher-order energy functional. While this leads to spatially regular images, it does not con-

sider the recurrent patterns which may occur in different regions of the image. Such patterns

are common in natural or medical images, for instance, repeating patches along an edge or

textured region.

One of the first approaches to exploit this principle of nonlocal self-similarity is Non Local

Means (NLM) (Manjón et al., 2008; Brox et al., 2008; Mahmoudi and Sapiro, 2005). In its

simplest form, NLM imposes each pixel in x to be a weighted average of its K most similar

pixels (i.e., nearest neighbors) in the image. Formally, let yi be the patch corresponding to

pixel i of the observed image y. The similarity wij between patches i and j in the image is

measured using a patch kernel, for instance the Gaussian kernel

wij = e−‖yi−yj‖2/ 2σ2

, (1.17)

where σ ≥ 0 is the kernel width parameter. Define as Si the set of K pixels most similar to i

in y, the reconstructed image x is computed pixel-wise as

xi =
1

|Si|
∑
j ∈Si

wij yj. (1.18)

The principle of this technique is that, in the presence of zero-mean random noise, averaging

pixels will cancel out the noise.

Another popular reconstruction approach that leverages nonlocal self-similarity is based on

low-rank matrix approximation. Low-rank approximation methods are based on the idea that

the structure to represent lies in a low-dimensional subspace, know as manifold. These struc-

tures can thereby be reconstructed more accurately by constraining their dimensionality via a

low-rank prior. Low-rank approaches can be roughly divided in two broad categories (Zhou

et al., 2015): factorization methods (Eriksson and van den Hengel, 2012) and nuclear norm

minimization methods (Candès et al., 2011). Factorization-based methods typically approxi-
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mate a given data matrix X as a product of two low-rank matrices. Because the decomposition

of a matrix may not be uniquely defined, regularization terms or constraints are typically added

to the model. However, most low-rank methods based on factorization lead to a non-convex

optimization problem, and heuristic algorithms (Wang et al., 2008; Kurucz et al., 2007) are

usually required to solve this problem. On the other hand, nuclear norm minimization methods

seek an approximation of X with the lowest possible rank:

argmin
X̂

rank(X̂), s.t. ‖X̂−X‖2F ≤ ε. (1.19)

Because the rank is a non-convex function, is approximated using the nuclear (or trace) norm

‖X̂‖∗ =
∑

i σi(X̂), i.e. the sum of singular values of X (Ma et al., 2011). The problem of Eq.

(1.19) can then be reformulated as

X̂∗ = argmin
X̂

1

2
‖X̂−X‖2F + λ‖X̂‖∗, (1.20)

where λ plays the same role as in Eq. (4.2). Let UΣV� be the singular value decomposition

of X̂. The optimal solution to this problem is obtained analytically with the singular value

thresholding (SVT) operator:

X̂∗ = SVTλ(X̂) = U
(
Σ − λI

)
+
V�, (1.21)

with (x)+ = max{x, 0}. Low-rank matrix approximation has shown outstanding potential for

a wide range of applications, including modeling face images under various pose and illumi-

nation conditions (De La Torre and Black, 2003; Liu et al., 2010), recommending items to

customers (Srebro and Salakhutdinov, 2010), and background substraction in videos (Wright

et al., 2009; Mu et al., 2011). Likewise, a flurry of algorithms have been proposed for the effi-

cient computation of low-rank representations (Buchanan and Fitzgibbon, 2005; Srebro et al.,

2003; Eriksson and Van Den Hengel, 2010; Fazel, 2002; Candes and Recht, 2012; Cai et al.,

2010; Candès et al., 2011; Lin et al., 2011; Gross, 2011).
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For image reconstruction, low-rank approximation methods exploit the principle that groups of

similar patches lie in a low-dimensional manifold. Hence, matrices containing these patches as

columns (or rows) have a low rank. In (Dong et al., 2014d), this idea is used to impose a low-

rank regularization on groups of similar patches. Let Pi = [x1
i · · ·xK

i ] be the matrix containing

the K patches most similar to the patch of a pixel i. Using Eq. (1.21), patches in P can be

reconstructed simultaneously via the SVT operator. The value of a pixel in the reconstructed

image x is then obtained by averaging the corresponding values in patches containing this

pixel.

In the SVT operator of Eq. (1.21), singular values are shrunk uniformly. However, because

components with higher singular values typically encode more important information, they

require less shrinkage. Based on this idea, Dong et al. use a weighted nuclear norm as low-

rank prior for the matrices of similar patches, i.e. ‖P‖∗,ω =
∑

i ωi σi(P), where ωi is inversely

proportional to the value of σi(P). The singular value thresholding (WSVT) operator, defined

as

WSVT(P) = U
(
Σ − λDiag(ω)

)
+
V�. (1.22)

An overview of the reconstruction scheme proposed by Dong et al. is given in Figure 1.1.

Figure 1.1 Overview of the approach proposed by Dong et al. for the low-regularization

of nonlocal similar patch groups. Taken from (Dong et al., 2014d).
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1.3 Reconstruction problems

The previous section introduced general principles for image reconstruction. In this section, we

present a summary of literature on methods using these principles for various reconstruction

applications. For convenience, our presentation is organized by reconstruction task, i.e. image

denoising, completion, super-resolution and compressed sensing.

1.3.1 Image denoising

Removing noise from images is an essential pre-processing step to many image analysis ap-

plications. The problem of image denoising can be defined formally as recovering the original

image x from its noisy observation y = x + n, where n is a zero-mean additive noise vector

(e.g., Gaussian, Laplacian, Rician, etc.). Approaches for this problem can be roughly divided

in three categories: spatial domain, transform domain and learning-based methods (Katkovnik

et al., 2010).

Spatial domain methods leverage the correlations between local patches of pixels in an image.

In such methods, pixel values in the denoised image are obtained by applying a spatial filter,

which combines the values of candidate pixels or patches. A spatial filter is considered local

if its support for a pixel is a distance-limited neighborhood of this pixel. Numerous local fil-

tering algorithms have been proposed in the literature, including Gaussian filter, Wiener filters,

least mean squares filter, trained filter, bilateral filter, anisotropic filtering and steering kernel

regression (SKR) (Szeliski, 2010). Although computationally effective, local filtering methods

do not perform well in the case of structured noise due to the correlations between neighboring

pixels. On the other hand, nonlocal filters like nonlocal means (NLM) (Buades et al., 2005a;

Mahmoudi and Sapiro, 2005; Coupé et al., 2008; Wang et al., 2006) consider the information

of possibly distant pixels in the image. Various works have shown the advantage of nonlo-

cal filtering methods over local approaches in terms of denoising performance (Zimmer et al.,
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2008; Dabov et al., 2007; Mairal et al., 2009), in particular for high noise levels. However,

nonlocal spatial filters may still lead to artifacts like over-smoothing.

Unlike spatial filtering approaches, transform domain methods represent the image or its patches

in a different space, typically using an orthonormal basis like wavelets (Luisier et al., 2007),

curvelets (Starck et al., 2002) or contourlets (Do and Vetterli, 2005). In this transform space,

small coefficients correspond to high frequency components of the image which are related

to image details and noise. By thresholding these coefficients, noise can be removed from

the reconstructed image (Donoho, 1995). Compared to spatial domain approaches, transform

domain methods like wavelets better exploit the properties of sparsity and multi-resolution

(Pizurica et al., 2006). However, these methods employ a fixed basis which may not be opti-

mal for a given type of images. Recent research has focused on defining the transform basis in

a data-driven manner, using dictionary learning (Elad and Aharon, 2006; Mairal et al., 2009;

Dong et al., 2011a). Although many denoising approaches based on dictionary learning are

now considered state-of-the-art, these approaches are often computationally expensive.

Finally, denoising methods based on statistical learning model noisy images as a set of inde-

pendent samples following a mixture of probabilistic distributions such as Gaussians (Awate

and Whitaker, 2006). Mixture parameters are typically inferred from data using an iterative

technique like the expectation maximization algorithm. However, these methods are sensi-

tive to outliers (i.e., pixels with high noise values), which affect the parameter inference step.

Various techniques have been proposed to deal with this problem. In (Portilla et al., 2003),

scale mixtures of Gaussians are applied in the wavelet domain for greater robustness. More-

over, a Bayesian framework is presented in (Dong et al., 2014b), which extends Gaussian scale

mixtures using simultaneous sparse coding (SSC).

1.3.2 Image completion

Image completion or inpating is another important problem in image processing and low level

computer vision, which consists in recovering missing pixels or regions in an image. Let Ω
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be the set of observed pixels (i.e., the mask) in image y, the goal is to recover the full image

x under the constraint that PΩ(x) = PΩ(y), where PΩ denotes the operator projecting over

elements in Ω. In the generative model of Eq. (1.2), the degradation operator Φ corresponds

to a diagonal matrix such that Φii = 1 if pixel i ∈ Ω, else Φii = 0.

Over the years, a flurry of studies have aimed at solving the problem of image completion

(Chierchia et al., 2014; He and Wang, 2014; Heide et al., 2015; Ji et al., 2010; Zhang et al.,

2012, 2014a; Li et al., 2016; Kwok et al., 2010). Approaches for this task can be classified

as structure-based, texture-based or low-rank approximation-based methods. Structure-based

methods focus on the continuity of geometrical structures in the image, and attempt to fill-in

missing structures in a way that is consistent with the rest of the image. Approaches in this

category include partial differential equation (PDE) or variational-based methods (Masnou,

2002), convolutions (Richard and Chang, 2001), and wavelets (Chan et al., 2006; He and Wang,

2014). Because they focus on structure, however, such approaches are usually unable to recover

large regions or regions with complex textures.

In contrast, texture-based regions address the image completion task via a process of texture

synthesis. Statistical texture synthesis approaches extract features from pixels surrounding the

missing region to build a statistical model of texture (Levin et al., 2003; Portilla and Simon-

celli, 2000). This model is then used to generate a texture for the missing region that has the

same visual appearance as the available textures. Methods based on textures can operate at the

pixel or patch level. Pixel-based textural inpainting techniques generate missing pixels one-by-

one, using techniques like Markov Random Fields (MRF) to ensure consistency with neighbor

pixels (Efros and Leung, 1999; Tang, 2004). Patch-based or examplar-based techniques (Crim-

inisi et al., 2004; Drori et al., 2003; Kwok et al., 2010) preserve the consistency of the missing

region by reconstructing it patch by patch, as opposed to pixel by pixel. The key idea of such

techniques is to find candidate patches from the image and combine them to fill-in the missing

region. This process is typically applied iteratively, until the filled region is consistent inter-

nally and with surrounding pixels (Criminisi et al., 2004). In general, the quality of results
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depends on various factors such as patch size, patch matching algorithm, patch filling priority,

etc. However, unlike pixel-based approaches, image completion methods using patches can

leverage nonlocal patterns in the image to obtain a higher performance.

The last category of image completion methods are based on low-rank approximation. The

methods stem from recent advances in the fields of matrix completion (Zhang et al., 2012;

Wright et al., 2009; Eriksson and van den Hengel, 2012; Buchanan and Fitzgibbon, 2005;

Eriksson and Van Den Hengel, 2010; Candes and Recht, 2012; Cai et al., 2010) and tensor

completion (Romera-Paredes and Pontil, 2013; Tomioka et al., 2010; Weiland and Van Belzen,

2010; Liu et al., 2013b). The general principle of these approaches is to divide the image into

even-size sub-regions (i.e., patches), in such way that some patches contain both observed and

missing pixels. Patches are then stacked into a matrix/tensor, and those with missing pixels are

recovered by solving a matrix/tensor completion problem. For instance, in (Li et al., 2016), a

low-rank matrix approximation technique is combined with a nonlocal autoregressive model

to reconstruct image patches efficiently. Moreover, a truncated nuclear norm regularization

technique is proposed in (Zhang et al., 2012), which can reconstruct patches with a higher

accuracy by considering only a small number components (i.e., singular vectors).

1.3.3 Super-resolution

In super-resolution (SR), the degradation operator Φ corresponds to a down-sampling matrix

and the problem is to recover the high-resolution image x from its low-resolution version y.

Hence, this task is often considered as interpolation. Image super-resolution is essential to

enhance the quality of images captured with low-resolution devices, and has become a popular

research area since the preliminary work of Tsai and Huang (Tsai and Huang, 1984).

Numerous techniques have been proposed for this task over the last years, stemming from sig-

nal processing and machine learning. Based on the number of observed low-resolution images,

these techniques can be separated into single-frame or multi-frame methods. Single-frame

methods (Glasner et al., 2009; Yang et al., 2010a; Bevilacqua et al., 2012; Zeyde et al., 2010)
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typically employ a learning algorithm to reconstruct the missing information of super-resolved

images based on the relationship between low- and high-resolution images in a training dataset.

In contrast, multiple-image SR algorithms (Capel and Zisserman, 2001; Li et al., 2010) usu-

ally suppose some geometric relationship between the different views, which is then used to

reconstruct the super-resolved image.

SR methods can also be grouped based on whether they work in the spatial domain or a trans-

form domain (e.g., Fourier (Gunturk et al., 2004; Champagnat and Le Besnerais, 2005) or

wavelets (Zhao et al., 2003; Ji and Fermüller, 2009)). SR methods in the spatial domain are

numerous and include techniques based on iterative back projection (Zomet et al., 2001; Far-

siu et al., 2003), non-local means (Protter et al., 2009), MRFs (Rajan and Chaudhuri, 2001;

Katartzis and Petrou, 2007), and total variation (Farsiu et al., 2004; Lian, 2006).

Patch-based SR methods address the problem by learning a redundant dictionary for high-

resolution patches, and aggregating the reconstructed high-resolution patches into a super-

resolved image (Freeman et al., 2000; Chang et al., 2004; Yang et al., 2010a; Bevilacqua

et al., 2012; Zeyde et al., 2010; Timofte et al., 2013). Recently, deep-learning SR techniques

like convolutional neural networks (CNN) (Dong et al., 2016; Kim et al., 2016) have gained a

tremendous amount of popularity. Such techniques learn an end-to-end mapping between low

resolution and high-resolution images, composed of sequential layers of non-linear operations

(e.g., convolution, spatial pooling, rectification, etc.). The main drawback of such techniques

is their requirement for large volumes of training data, and their tendency to overfit the training

dataset.

1.3.4 Compressed sensing

An effective way of accelerating the acquisition of high-resolution medical images (e.g. 3D

MRI or CT) is to reduce the number of acquisition samples. Compressed sensing (CS) theory

shows that a high resolution image can be recovered with fewer samples than the Nyquist

sampling rate, if the signal is sparse under a given transform (Donoho, 2006; Candès et al.,
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2006). Formally, the process of acquiring a vector of samples y ∈ C
N from a scanned image

or volume x ∈ R
M can be formulated as

y = STx+ n, (1.23)

where T is a transform to the acquisition space (e.g., Fourier, or k-space in the case of MRI)

and S is a known undersampling mask, and n is noise. Compressed sensing corresponds to

recovering x from y by solving the following problem:

argmin
x

1

2
‖STx− y‖22 + λ‖Ψ(x)‖p, (1.24)

where Ψ is a sparsifying transform.

Recent research in compressed sensing has focused on enhancing the standard model of Eq.

(1.24) by adding different types of priors (Chen and Huang, 2014; Wang and Ying, 2014;

Gnahm and Nagel, 2015; Haldar et al., 2008; Lauzier et al., 2012; Liu et al., 2012c; Zhang

et al., 2016b). Research efforts have also been dedicated to developing more efficient opti-

mization methods for computing the solution (Huang et al., 2011b; Xu et al., 2015b; Huang

et al., 2014b; Hu et al., 2012; Candes et al., 2008). An example of prior for CS is joint total

variation (JTV), which improves the reconstruction of multi-channel or multi-contrast images

based on the principle that these images have a common sparsity structure (Xu et al., 2015b;

Li et al., 2015; Huang et al., 2014b; Chen and Huang, 2014). Various techniques have also

been proposed for reconstructing image sequences from dynamic MRI, for instance, using dic-

tionaries of spatio-temporal patches (Wang and Ying, 2014) or low-rank approximation (Hu

et al., 2012).

Spatial constraints have also been used to improve CS methods. In (Liu et al., 2012c), an adap-

tive reweighting scheme is proposed for isotropic TV, where edges in the image reconstructed

at the previous iteration receive a smaller weight for the next reconstruction. This approach was
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shown to better preserve edges in the image than standard TV. In (Lauzier et al., 2012), a term

is added to the cost function, imposing the difference between the reconstructed image and a

reference image (e.g., an image of different contrast) to be sparse under a given transform. A

similar approach is presented in (Haldar et al., 2008), where a quadratic penalty proportional

to the gradient of a reference image is added between neighbor voxels to impose smoothness

in the reconstructed image. In (Gnahm and Nagel, 2015), a spatially weighted second-order

TV model is proposed to constrain the reconstruction of sodium MR images.

The reconstruction of images can also be improved by exploiting the redundancy of local pat-

terns (Manjón et al., 2010; Lai et al., 2016; Dong et al., 2014d; Wang and Ying, 2014; Qu

et al., 2014; Zhang et al., 2016a). In (Lai et al., 2016) and (Qu et al., 2014), similar nonlocal

images patches are grouped before applying a sparsifying wavelet transform. A related method

is presented in (Dong et al., 2014d), where a low-rank regularization prior is applied on groups

of nonlocal patches to enhance the reconstruction of MRI data.

1.4 Summary

Our review of literature presented a vast array of techniques and applications of image recon-

struction. Most of the covered approaches tackle this problem by modeling image priors, for

instance, based on structure (e.g., total variation, wavelets), image statistics (e.g., histogram of

gradients), sparse modeling (e.g., patch dictionary learning) and nonlocal self-similarity (e.g.,

nonlocal means, low-rank approximation of patch matrices). In particular, considerable im-

provements in accuracy have been achieved via sparse representation modeling and nonlocal

self-similarity. However, these techniques still suffer from important limitations, which impede

their use in large-scale and high-quality applications. Hence, sparse modeling approaches fo-

cus on the reconstruction of local patches and ignore the global structure of images. In many

cases, this can result in images with important reconstruction artifacts. Likewise, methods

based on nonlocal self-similarity often over-smooth images by an average over several similar

patches. Such methods also suffer from a high computational complexity.
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Due to complexity of combining local (e.g., patch-based methods) and global (e.g., total varia-

tion, wavelet) regularization in a single model, reconstruction techniques presented in our liter-

ature survey typically consider a single one of these regularization schemes. However, combin-

ing local and global regularization could help remove noise or reconstruction artifacts, while

preserving local details and global structure in the image. Moreover, few approaches have con-

sidered external information for improving the reconstruction process. In various applications,

such information is readily available (e.g., anatomical atlas in medial image reconstruction).

Combining this external information with internal cues like nonlocal patch similarity could

also improve reconstruction performance.

The following three chapters of this thesis present image reconstruction approaches proposed

to address these limitations.
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2.1 Abstract

One of the main challenges of denoising approaches is preserving images details, like textures

and edges, while suppressing noise. The preservation of such details is essential to ensure good

quality, especially in high-resolution images. This paper presents a novel denoising method

that combines a low-rank regularization of similar non-local patches with a texture preserving

prior based on the histogram of gradients. A dynamic thresholding operator, deriving from

the weighted nuclear norm, is also used to reconstruct groups of similar patches more accu-

rately, by applying less shrinkage to the larger singular values. Moreover, an efficient iterative

approach based on the ADMM algorithm is proposed to compute the denoised image, under

low-rank and histogram preservation constraints. Experiments on two benchmark datasets of

high-resolution images show the proposed method to outperform state-of-the-art approaches,

for all noise levels.

Keyword: Image denoising, Low-rank reconstruction (LRR), Gradient histograms, Dynamic

thresholding, ADMM.
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2.2 Introduction

Image denoising is a well studied problem of image processing, having a broad range of appli-

cations in computer graphics and vision. This problem can be formally defined as recovering

an image x from its degraded observed version y. In most cases, the image degradation process

is defined as additive noise y = x + υ, where the noise component υ can be modeled using

different distributions (e.g., zero mean Gaussian, Laplace, etc.) depending on the application.

Over the years, a flurry of methods have been proposed for the task of image denoising. Many

of these methods exploit the idea that small patches of pixels in an image are similar to other,

possibly distant patches of the same image (Bertalmio et al., 2003). Approaches based on this

idea, such as BM3D (Dabov et al., 2007), LSSC (Mairal et al., 2009) and NCSR (Dong et al.,

2013b), are known as non-local self-similarity (NSS) methods. Recently, it has been shown

that groups of non-local similar patches lie in a low-dimensional subspace (i.e., manifold), and

that matrices containing these patches as columns or rows have low rank. By exploiting this

property, groups of similar patches can be reconstructed simultaneously with a higher accuracy

than in traditional NSS methods (Dong et al., 2013a; Gu et al., 2014; Wang et al., 2013; Zhang

and Ma, 2014; Guo et al., 2016; Zhang et al., 2016c; Xie et al., 2015).

As image resolution increases each year, preserving fine structures and textures in images

becomes essential to ensure good image quality. While NSS methods have led to significant

improvements in terms of denoising accuracy, such methods can also over-smooth images,

resulting in the loss of textures and fine details. In (Zuo et al., 2014), an attempt to overcome

this problem was made by approximating the gradient histogram of the original image and

using this histogram to guide the denoising process. The proposed method was shown to

preserve textures better than competing approaches, leading to sharper images. However, this

method also tends to generate false texture noise in homogeneous regions.

In this paper, we propose a novel denoising method based on low-rank patch reconstruction

and texture preservation using the histogram of gradients. As shown in our experiments, this
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method can preserve fine details in the image while limiting the occurrence of reconstruction

artifacts. The main contributions of this work are as follows:

a. To our knowledge, the proposed method is the first to combine histogram preservation

with low-rank patch reconstruction. By combining these two components in a single

model, it can obtain more accurate denoising results than existing low-rank techniques,

such as (Gu et al., 2014), and outperform the recent histogram preservation approach of

(Zuo et al., 2014).

b. An efficient optimization approach, based on the alternating direction method of mul-

tipliers (ADMM) algorithm (Afonso et al., 2010; Karnyaczki and Desrosiers, 2015), is

proposed to recover the original image. This approach shows a high convergence rate

and can recover the image faster than competing denoising methods.

c. An extensive experimental evaluation, comparing the proposed method to five state-of-

the-art denoising approaches on several high-resolution benchmark images, is presented.

These experiments illustrate the advantages of our method in terms of accuracy and

speed.

The rest of the paper is structured as follows. We first present a review of related works on

image denoising. Section 2.4 then gives a detailed presentation of our proposed low-rank

and gradient histogram preservation method. In Section 4.4, the performance of this method

is evaluated on several benchmark images and compared to five state-of-the-art approaches.

Finally, we conclude the paper by summarizing the main contributions and results of this work,

and proposing potential extensions.

2.3 Related work

Although denoising approaches based on machine learning techniques like neural networks

have recently shown promising results (Burger et al., 2012), model-based methods remain

most popular due to their high performance and flexibility (Mairal et al., 2009; Dong et al.,
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2013b; Gu et al., 2014; Zuo et al., 2014). Methods in this category model the degradation

process as a specific transformation, typically a simple additive noise, and recover the original

image by exploiting priors on the image and noise. Under the assumption that the noise is zero

mean Gaussian with isotropic variance, i.e. υ ∼ N (0, σ2), the task of recovering the original

image x from its noisy observation y, is generally expressed as an optimization problem,

argmin
x

1

2
‖y − x‖22 + λR(x), (2.1)

where R(x) is the image prior. RR Most research efforts on model-based denoising have

focused on finding suitable image priors that can capture intrinsic characteristics of the target

images. One of the most common types of priors is based on the principle that the image is

sparse under some transform Ψ, such as wavelets (Chang et al., 2000) or curvelets (Starck

et al., 2002). Due to its convexity, the l1-norm is typically used to model sparsity, i.e. R(x) =

‖Ψ(x)‖1. Total variation (TV) (Rudin et al., 1992) is another popular prior using the fact that

most images have a heavy-tailed distribution of gradients, which can be modeled as a Laplace

distribution. In isotropic TV, the image of gradient magnitudes |∇x| is regularized via the

l1-norm.

While initial model-based approaches used global image priors like TV, more recent methods

have also considered local properties of images, as described by small regions of pixels called

patches. Such methods rely on the assumption that patches can be encoded as a sparse combina-

tion of atoms in an over-complete dictionary, obtained via clustering (Chatterjee and Milanfar,

2009) or dictionary learning (Elad and Aharon, 2006). The main drawback of these methods

is that patches are reconstructed independently from each other. However, patches in an image

are often similar to several other, possibly distant patches of the same image (Bertalmio et al.,

2003). This principle, known as non-local self-similarity (NSS), has been exploited by various

denoising approaches (Liu et al., 2015a; Dabov et al., 2007; Mairal et al., 2009; Zoran and

Weiss, 2011; Dong et al., 2013b) to achieve state-of-the-art results.



31

Also using patch similarity, low-rank approaches (Dong et al., 2014d; Zhang et al., 2015d; Gu

et al., 2014; Wang et al., 2013; Dong et al., 2013a; Zhang and Ma, 2014) are based on the

property that groups of similar patches lie in a low-dimensional subspace and that matrices

containing these patches have a low rank. Using this property, such methods can recover

groups of similar patches simultaneously, with a higher accuracy. In (Guo et al., 2016), a two-

stage model is proposed for denoising, where groups of similar patches are first regularized

using singular value decomposition (SVD) and then back-projected to reconstruct the denoised

image. Likewise, (Zhang et al., 2016c) presents a low-rank regularization approach which

adapts the amount of regularization applied to each group of similar patches.

Although approaches based on non-local self-similarity and low-rank have led to significant

improvements in accuracy, such methods tend to over-smooth images, resulting in the loss of

textures and fine structures (Zuo et al., 2014). Over the years, histograms of gradients have

shown to be an effective way to represent textures in various image processing problems, such

as denoising (Zuo et al., 2014), deblurring (Zhang et al., 2015a; Cho et al., 2012), segmen-

tation (Karnyaczki and Desrosiers, 2015), image super-resolution (Zhang et al., 2015c; Yang

et al., 2016b) and contrast enhancement (Arici et al., 2009). In (Zuo et al., 2014), the gradi-

ent histogram of the original image is approximated via a deconvolution operation and used

to constrain the denoising process. While this method was shown to preserve textures better

than other approaches, it can also generate reconstruction artifacts by inserting false textures

in homogeneous regions, due to the over-estimation of image gradients.

Considering the respective advantages and limitations of NSS approaches and methods based

on constraining image gradients, we propose an efficient denoising framework, which com-

bines priors for low-rank patch regularization and gradient histogram preservation. To our

knowledge, our proposed framework is the first to combine both types of denoising prior into

a single, consistent model. These two priors offer complementary information, the first one

modeling repetitive patterns in the image and the other encoding textured regions and sharp

gradients, and work in a synergic manner to recover noise-free and highly-detailed images.
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2.4 The proposed method

We start by giving preliminary concepts on low-rank patch regularization using the weighted

nuclear norm. Then, we describe how this prior can be combined with histogram preservation

constraints in a single model. Finally, we present the proposed optimization approach based

on the ADMM algorithm.

2.4.1 Low-rank reconstruction

Low rank approaches for the reconstruction of noisy data can be grouped in two separate cat-

egories: methods based on low rank matrix factorization (Eriksson and van den Hengel, 2012;

Liu et al., 2012b) and those based on nuclear norm minimization (Liu et al., 2013a; Wright

et al., 2009). Methods in the first category typically approximate a given data matrix as a

product of two matrices of fixed low rank. The main limitation of these methods is that the

rank must be provided as input, and that a too low or high value will result, respectively, in the

loss of details or the preservation of noise. On the other hand, methods based on nuclear norm

minimization aim at finding the lowest rank approximation x of an observed matrix y. This

can be formulated as the following optimization problem:

argmin
X

1

2
‖Y −X‖2F + λ rank(X), (2.2)

‖ · ‖F denoting the Frobenius matrix norm. Since the rank of a matrix X is a non-convex

function, it is often approximated using the nuclear (or trace) norm ‖X‖∗ =
∑

j σj(X), where

σj(X) ≥ 0 are the singular values of X. The nuclear norm of a matrix is known as the tightest

convex approximation of its rank (Ma et al., 2011). Using this norm, the low-rank approxi-

mation X of Y can be computed analytically using a simple SVD decomposition. Denote as

UΣV� the SVD decomposition of Y, and let
(·)+ = max{·, 0}. We obtain X using the
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singular value thresholding (SVT) operator (Cai et al., 2010):

Sλ(Y) = U
(
Σ− λI

)
+
V�. (2.3)

Because larger singular values typically encode more meaningful information than smaller

ones, using a uniform shrinkage threshold λ, as in Eq. (2.3), can result in a poor reconstruction

(Xu et al., 2015a). To improve reconstruction accuracy, the weighted nuclear norm can be

used as rank approximation (Gu et al., 2014). Suppose Y is of size N × M and let T =

min{M,N}. Given a weight vector ω such that 0 ≤ ω1 ≤ ... ≤ ωT , the weighted nuclear norm

proximal problem consists in finding an approximation X of Y that minimizes the following

cost function:

argmin
X

1

2
‖Y −X‖2F + λ‖X‖∗,ω, (2.4)

where ‖X‖∗,ω =
∑

j ωjσj(X) is the weighted nuclear norm of X. The optimal solution to this

problem is given by the weighted singular value thresholding (W-SVT) operator:

Sω,λ(Y) = U
(
Σ− λDiag(ω)

)
+
V�. (2.5)

2.4.2 Low-rank and gradient histogram preserving model

Given a noisy observed image y of N pixels, we wish to recover the original image x from y,

under the assumption that x was corrupted by some additive noise υ of known distribution. As

in non-local patch-based approaches, we suppose that groups of similar patches can be found

in image x. Let pi ∈ R
M be the patch of size

√
M×√

M centered on a pixel i of x. While

a clustering approach could be used to find the groups of similar patches, in this work, we

consider for each pixel i a matrix Pi containing the K most similar patches to pi in terms

of Euclidean distance. We denote as pk
i ∈ R

M the k-th similar patch (column) in Pi, and

connect this patch to x via a selection matrix Rk
i such that pk

i = Rk
i x. As illustrated by our
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experiments, the number of similar patches K should be selected based on the noise level: the

greater the noise, the more similar patches are required to properly reconstruct the image.

A low-rank approach is proposed to model the dependencies between similar patches and re-

construct them simultaneously. To avoid losing fine details in the reconstruction process, we

approximate the rank of similar patch matrices Pi using the weighted nuclear norm (Gu et al.,

2014), and express the reconstruction of x as the following optimization problem:

argmin
x

Φ(y − x) + λ

N∑
i=1

‖Pi‖∗,ω

s.t. pk
i = Rk

i x, i = 1 . . . , N, k = 1, . . . , K. (2.6)

Here, Φ(y − x) ∝ − logP (y |x) models data fidelity and depends on the distribution of

the noise υ = y − x. In this work, we suppose that the noise is zero-mean Gaussian, i.e.,

υ ∼ N (0, σ2), giving the following problem:

argmin
x

1

2
‖y − x‖22 + λ

N∑
i=1

‖Pi‖∗,ω

s.t. pk
i = Rk

i x, i = 1 . . . , N, k = 1, . . . , K. (2.7)

Note that the noise variance parameter σ2 is absorbed in parameter λ. This model could be

easily modified to accommodate other types of noise. For instance, sparse Laplace noise could

be modeled using the l1 norm for the data fidelity term: Φ(y−x) = ‖y−x‖1. Details on how

ω is defined are given in Section 2.5.1.

We preserve textures in the image by enforcing the gradient histogram of x to be similar to a

target histogram modeling these textures. Denote as ∇d ∈ R
N×N the gradient operator applied

along direction d ∈ {1=horizontal, 2=vertical} of the image, and let ∇d x ∈ R
N be the gradient

image of x along d. To simplify the notation we may combine both gradient directions in a

single vector ∇x = [∇1
�∇2

�]
�
x. Moreover, define as h(∇d x) the normalized histogram
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of gradients corresponding to ∇d x, and let ĥd be the corresponding target histogram. Using

these definitions, our low-rank denoising model with histogram preservation constraints can be

defined as

argmin
x

1

2
‖y − x‖22 + λ

N∑
i=1

‖Pi‖∗,ω

s.t. pk
i = Rk

i x, i = 1 . . . , N, k = 1, . . . , K

h(∇d x) = ĥd, d = 1, 2. (2.8)

We use the approach proposed in (Zuo et al., 2014) to obtain the reference histograms. In this

approach, the pixels in ∇d x are assumed to be independent and identically distributed (i.i.d.),

and h(∇d x) is used as discrete approximation of the probability density function (PDF) of

∇d x. Likewise, the PDF of gradients in the additive noise component υ is approximated

with histogram h(∇d υ). Since the gradient operator is linear, we have that ∇d y = ∇d x +

∇d υ. Moreover, the PDF of ∇d y can be estimated in the discrete domain using a convolution

operator ⊗:

h(∇d y) = h(∇d x) ⊗ h(∇d υ). (2.9)

In practice, the reference histogram is obtained by solving the following regularized deconvo-

lution problem:

argmin
hd

1

2

∥∥h(∇d y) − hd ⊗ h(∇d υ)
∥∥2

2
+ R(hd), (2.10)

where R(hd) is regularization prior enforcing the PDF of ∇d x to follow a hyper-Laplacian dis-

tribution. Note that the solution to this problem can be computed efficiently using the discrete

Fourier transform. The reader can refer to (Zuo et al., 2014) for additional information.
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2.4.3 Optimization method for recovering the image

To recover the denoised image x in Eq. (2.8), we use an iterative strategy based on the Al-

ternating Direction Method of Multipliers (ADMM) algorithm (Afonso et al., 2010; Wang

et al., 2008). This algorithm solves a complex problem by decomposing it into easier to solve

sub-problems. To obtain such formulation, we first introduce auxiliary variables gd ∈ R
N ,

d ∈ {1, 2} and then reformulate the problem as

argmin
x, {Pi},g

1

2
‖y − x‖22 + λ

N∑
i=1

‖Pi‖∗,ω

s.t. pk
i = Rk

i x, i = 1, . . . , N, k = 1, . . . , K

h(gd) = ĥd, d = 1, 2

g = ∇x. (2.11)

In the objective function, {Pi} denotes the set of similar patch groups Pi for i = 1, . . . , N .

While connected to x via constraints, these variables are added in the objective to facilitate the

optimization process.

Next, the constraints are moved to the cost function via augmented Lagrangian terms with

multipliers ak
i ∈ R

M , i = 1, . . . , N , k = 1, . . . , K, and b ∈ R
2N :

argmin
x, {Pi},g

1

2
‖y − x‖22 + λ

N∑
i=1

‖Pi‖∗,ω

+
μA

2

N∑
i=1

K∑
k=1

‖pk
i −Rk

i x+ ak
i ‖22 +

μB

2
‖g −∇x+ b‖22

s.t. h(gd) = ĥd, d = 1, 2. (2.12)

In this formulation, μA and μB control the importance of each constraint in the solution. As

described in (Boyd et al., 2011), ADMM methods are not very sensitive to the choice of these

meta-parameters, which mostly affect convergence time. In practice, these meta-parameters
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are typically initialized using a small value and then increased by a given factor (e.g., 5%) at

each iteration, thereby guaranteeing the method’s convergence.

This new problem is convex with respect to each parameter1, and can be solved by optimizing

each of these parameters alternatively, until convergence. In the next sub-sections, we describe

how each parameter can be updated.

Updating x

To update x, we solve the following optimization problem:

argmin
x

1

2
‖y − x‖22 +

μA

2

N∑
i=1

K∑
k=1

‖Rk
i x− (pk

i + ak
i )‖22

+
μB

2
‖∇x− (g + b)‖22. (2.13)

Let Q̃ =
∑

i

∑
k (R

k
i )

�
Rk

i and p̃ =
∑

i

∑
k (R

k
i )

�
(pk

i + ak
i ). This corresponds to an uncon-

strained least-square problem, the solution of which is given by

x =
(
I+ μAQ̃+ μB∇�∇

)−1(
y + μAp̃+ μB∇�(g + b)

)
. (2.14)

Since the matrix to invert is block tridiagonal (i.e., five non-zero diagonals) and diagonally

dominant, the solution can be obtained in O(N) time using a generalized Thomas algorithm

(Datta, 2010).

Updating Pi

Let P̃i = [(R1
ix − a1

i ) . . . (R
K
i x − aK

i )]. The task of updating Pi, i = 1, . . . , N , consists in

solving the following problem:

argmin
Pi

λ‖Pi‖∗,ω +
μA

2
‖Pi − P̃i‖2F . (2.15)

1The model is nonconvex.
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As described in Section 2.4.1, this corresponds to a weighted nuclear norm proximal problem,

which can be solved using the weighted singular value thresholding (W-SVT) operator. Let

UΣV� be the SVD decomposition of P̃i, matrix Pi can be computed as

Pi = U ·
(
Σ − λ

μA

Diag(ω)
)
+
·V�. (2.16)

Updating g

To update the gradient auxiliary variable g, under histogram preservation constraints, we con-

sider each direction d separately:

argmin
gd

‖gd − (∇d x− bd)‖22

s.t. h(gd) = ĥd, d = 1, 2. (2.17)

Here, g1 (resp. g2) corresponds to the first (resp. last) N entries of vector g.

The solution to this problem can be estimated by a histogram specification transform (Zuo

et al., 2014; Gonzalez et al., 2008), which computes the cumulative probability distribution of

each level in the input and target histograms, and then maps each level of the input image to the

level having the closest cumulative probability in the target histogram. Let H be the cumulative

frequency histogram of a histogram h, i.e. Hk =
∑k

j=1 hj . For a given target histogram ĥ, the

histogram specification operator F
̂h is a mapping which can be defined element-wise as

F
̂h(k) = argmin

k′

∣∣Hk − Ĥk′
∣∣. (2.18)

The histogram specification operator is used to obtain the gradient auxiliary variables as fol-

lows:

[gd]i = F
̂hd

(
[∇d x− bd]i

)
. (2.19)
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Updating the Lagrange multipliers

Finally, the Lagrange multipliers are updated as in standard ADMM algorithms:

ak
i := ak

i + (pk
i −Rk

i x), i = 1, . . . , N, k = 1, . . . , K

b := b + (g −∇x). (2.20)

Summary of the denoising method

The proposed denoising method is summarized in Algorithm 2.1. The algorithm receives as

input the noisy image y, the target horizontal and vertical gradient histograms ĥ1, ĥ2, and the

method’s parameters: regularization parameter λ, patch size M and number of similar patches

K. The denoised image x is updated iteratively until convergence, which is detected based on

the relative change of x from one iteration to the next.

In terms of computational complexity, the proposed method has three main steps: similar patch

computation (S1-SPC), SVD decomposition of patch group matrices (S2-SVD) and gradient

histogram estimation (S3-GHE). The time complexity of these three components, for each

iteration, is listed in Table 2.1. For the S1-SPC step, we assumed that a K-D tree is used

to find the nearest-neighbors of each patch efficiently. However, an approximation method

like locality-sensitive hashing (LSH) (Pan and Manocha, 2011) could be employed to further

accelerate this step.

Table 2.1 Time complexity of our method’s three main steps: similar patch computation

(S1-SPC), SVD decomposition of patch group matrices (S2-SVD) and gradient histogram

estimation (S3-GHE).

Step S1-SPC S2-SVD S3-GHE

Complexity O(MN logN) O(N ·min{KM2,K2M}) O(N logN)
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The computational bottleneck of our method lies in updating the similar patch matrices and

computing their SVD decomposition, at each iteration. This complexity could however be

reduced by clustering similar patches into Ncluster � N groups, instead of having a group

for each pixel. Moreover, since the changes in x get smaller every iteration, one could stop

updating the groups of similar patches once a certain number of iterations is reached (e.g., 2

or 3). Finally, because patches matrices can be updated independently, these steps could be

further accelerated via parallel computing.

Algorithm 2.1 Histogram Preserved Low-rank Denoising

Input: The noisy image y;

Input: The reference gradient histograms ĥ1 and ĥ2;

Input: Parameters λ, K and M ;

Output: The denoised image x;

Initialization:

Set x := y;

Set aki := 0, i = 1, . . . , N , k = 1, . . . ,K, and b := 0;

while not converged do
Find groups of similar patches for each pixel i;
Update Pi, i = 1, . . . , N , using Eq. (2.16);

Update gd, d ∈ {1, 2}, by solving Eq. (2.19);

Update image x using Eq. (2.13);

Update Lagrange multipliers using Eq. (2.20);

end

return x

2.5 Experiments

In this section, we evaluate the effectiveness of our proposed method on the task on denoising

high-resolution images, and compare it to five state-of-the-art approaches: Image denoising by

sparse 3-D transform-domain collaborative filtering (BM3D) (Dabov et al., 2007), Non-local

sparse models for image restoration (LSSC) (Mairal et al., 2009), Nonlocally centralized sparse

representation for image restoration (NCSR) (Dong et al., 2013b), Gradient Histogram Estima-
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tion and Preservation for Texture Enhanced Image Denoising (SGHP) (Zuo et al., 2014) and

Weighted nuclear norm minimization with application to image denoising (WNNM) (Gu et al.,

2014). Among these approaches, WNNM also uses the weighted nuclear norm to regularize

groups of similar patches, but does not enforce gradient histogram preservation. Conversely,

the denoising model of SGHP has a gradient histogram prior but does not apply patch group

low-rank regularization. The performance of the tested methods is measured in terms of peak

signal-to-noise ratio (PSNR) and structural similarity (SSIM) (Wang et al., 2004). Since it is

based on the mean squared error between the original and denoised images, PSNR is slightly

biased towards over smoothed results. In contrast, SSIM also takes into account edge similari-

ties, thereby evaluating the preservation of texture and fine structures in the image.

We first discuss the parameter setting used for our method. Results obtained on two different

sets of high-resolution images, shown in Figure 2.1 and 2.5, are then presented. Finally, we

measure the impact of the weighted nuclear norm and gradient histogram preservation compo-

nents of our method, in two separate experiments.

2.5.1 Parameter setting

The parameters of our method were selected based on prior experiments involving a different

set of images. Regularization parameter λ, the number K of similar patches in each group,

and patch size M were set depending on the noise level σ. The detailed setting used for these

parameters is given in Table 2.2. It can be seen that the method required more regularization

and a greater number of larger patches for higher noise levels. Finally, the following setting

was used for the ADMM algorithm parameters: μA = 10 and = μB = 10 and μc = 1.

As mentioned in Section 2.4.3, these parameters affect mostly the convergence time of the

algorithm. Following (Gu et al., 2014), we defined the weights ω of the weighted SVT operator

as ωj =
√
M/

(
σj+ε

)
, where σj is the corresponding singular value and ε = 10−16 is a constant

used to avoid division by zero.
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Table 2.2 Parameter setting used for our method.

Noise level (σ) 5 - 10 10 – 15 20 – 30 40 – 50 100

Lambda (λ) .15 .15 .15 .20 .20

Patch number (K) 60 65 70 110 130

Patch size (M ) 6 × 6 7 × 7 7 × 7 7 × 7 8 × 8

2.5.2 Evaluation on benchmark images

Figure 2.1 From left to right and top to bottom, the high-resolution test images labeled

from 1 to 10. Original images have a resolution of at least 512× 512.

We compared our method and competing approaches on the 10 high-resolution images of Fig-

ure 2.1. These images were used in a previous study evaluating a denoising approach with

gradient histogram preservation (Zuo et al., 2014), and selected based on their resolution and

rich texture content.

Table 2.3 gives the PSNR and SSIM values obtained by the tested methods on the 10 bench-

mark images, for nine noise levels: σ = 5, 10, 15, 20, 30, 40, 50, 100. Mean performance val-

ues, for each noise level, are reported at the bottom of the table. A pairwise Wilcoxon signed

rank test (Gibbons and Chakraborti, 2011) was used to determine the statistical significance

of the results. In this test, we compared the PSNR and SSIM values obtained by our method

to those of each competing approach, and measured the p-value under the H1 hypothesis that
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our method has a smaller mean rank. A significance level of 0.05 was used in the test. To fur-

ther summarize these results, Figure 2.2 shows the percentage of best PSNR and SSIM values

obtained by the methods at each noise level. Tied results were split equally among winning

methods (e.g., a tie between two methods gave each method 1
2

win).



44

Table 2.3 PSNR (dB) and SSIM obtained by the tested methods on the 10

high-resolution images of Fig. 2.1, for various noise levels σ.

σ = 5

BM3D LSSC NCSR WNNM SGHP Ours

1
38.74 38.69 38.59 38.91 38.34 38.83

0.969 0.967 0.967 0.969 0.966 0.970

2
36.38 36.26 36.24 36.41 36.24 36.42
0.966 0.964 0.964 0.965 0.964 0.967

3
35.59 35.45 35.52 35.47 35.42 35.54
0.941 0.938 0.939 0.937 0.939 0.943

4
35.38 35.28 35.24 35.38 35.20 35.38
0.961 0.960 0.956 0.959 0.959 0.962

5
37.34 37.22 37.21 37.27 37.25 37.36
0.946 0.944 0.944 0.944 0.945 0.947

6
37.46 37.35 37.36 37.57 36.99 37.58
0.976 0.975 0.974 0.976 0.974 0.976

7
37.98 37.84 37.92 38.10 37.86 38.12
0.967 0.965 0.965 0.966 0.963 0.967

8
39.50 39.34 39.33 39.58 39.13 39.59
0.974 0.972 0.972 0.974 0.971 0.975

9
36.40 36.34 36.20 36.44 36.09 36.40

0.962 0.962 0.957 0.962 0.960 0.963

10
38.26 38.18 38.05 38.30 38.06 38.38
0.957 0.956 0.954 0.957 0.954 0.957

Avg.
37.30 37.20 37.17 37.34 37.36 37.36
0.962 0.960 0.959 0.961 0.960 0.963

SR-test
+ + + ∼ + N/A

+ + + + + N/A

σ = 10

BM3D LSSC NCSR WNNM SGHP Ours

34.63 34.52 34.45 34.70 34.32 34.72
0.936 0.933 0.933 0.936 0.925 0.937

31.91 31.75 31.79 31.84 31.75 31.94
0.916 0.913 0.912 0.913 0.906 0.917

31.59 31.51 31.43 31.44 31.50 31.55

0.857 0.858 0.852 0.847 0.863 0.868

30.81 30.66 30.60 30.76 30.65 30.77

0.904 0.902 0.892 0.899 0.903 0.906

33.88 33.72 33.74 33.81 33.64 33.84

0.891 0.888 0.887 0.887 0.884 0.892

32.82 32.66 32.69 32.88 32.57 32.88
0.948 0.946 0.945 0.947 0.936 0.948

33.84 33.70 33.79 33.90 33.61 33.91
0.923 0.921 0.920 0.920 0.905 0.923

35.34 35.12 35.15 35.30 34.95 35.30

0.948 0.944 0.945 0.946 0.934 0.949

31.74 31.67 31.57 31.73 31.53 31.73

0.914 0.913 0.907 0.911 0.908 0.916

34.50 34.33 34.26 34.41 34.10 34.43

0.906 0.902 0.900 0.901 0.893 0.906

33.11 32.96 32.95 33.08 32.86 33.11
0.914 0.912 0.909 0.911 0.906 0.917

∼ + + + + N/A

+ + + + + N/A

σ = 15

BM3D LSSC NCSR WNNM SGHP Ours

32.35 32.22 32.16 32.38 32.10 32.43
0.905 0.901 0.900 0.904 0.896 0.906

29.57 29.45 29.46 29.47 29.45 29.58
0.865 0.861 0.859 0.858 0.857 0.867

29.68 29.68 29.48 29.61 29.53 29.63
0.798 0.803 0.790 0.792 0.803 0.810

28.45 28.29 28.24 28.37 28.26 28.39
0.852 0.849 0.838 0.845 0.850 0.858

32.09 31.95 31.92 32.03 31.86 32.05

0.847 0.844 0.842 0.842 0.841 0.848

30.30 30.12 30.18 30.30 30.15 30.31
0.918 0.914 0.915 0.916 0.912 0.918

31.65 31.59 31.61 31.69 31.57 31.77
0.880 0.879 0.876 0.876 0.877 0.882

33.09 32.87 32.93 33.09 32.83 33.09
0.923 0.917 0.919 0.921 0.916 0.922

29.25 29.19 29.07 29.20 29.08 29.26
0.866 0.866 0.858 0.862 0.863 0.870

32.50 32.34 32.25 32.37 32.19 32.44

0.860 0.856 0.852 0.852 0.852 0.858

30.89 30.77 30.73 30.85 30.70 30.90
0.871 0.869 0.865 0.867 0.867 0.875

∼ + + + + N/A

+ + + + + N/A

σ = 20

BM3D LSSC NCSR WNNM SGHP Ours

30.83 30.69 30.59 30.81 30.60 30.86
0.876 0.872 0.869 0.873 0.869 0.885

28.07 27.98 27.91 27.96 27.97 28.12
0.817 0.815 0.807 0.807 0.814 0.824

28.39 28.46 28.11 28.37 28.17 28.38

0.755 0.762 0.736 0.751 0.753 0.765

26.86 26.75 26.65 26.80 26.72 26.90
0.803 0.803 0.782 0.796 0.801 0.814

30.88 30.75 30.64 30.83 30.65 30.84

0.812 0.809 0.802 0.805 0.807 0.812

28.59 28.47 28.49 28.59 28.46 28.70
0.888 0.883 0.882 0.884 0.883 0.892

30.17 30.18 30.13 30.25 30.22 30.27
0.839 0.840 0.833 0.834 0.843 0.849

31.58 31.38 31.41 31.52 31.34 31.62
0.900 0.894 0.897 0.894 0.895 0.902

27.58 27.58 27.34 27.54 27.40 27.61
0.821 0.822 0.804 0.815 0.818 0.828

31.23 31.04 30.98 31.03 30.98 31.16

0.823 0.818 0.813 0.811 0.815 0.823

29.42 29.33 29.23 29.37 29.25 29.44
0.833 0.832 0.823 0.827 0.830 0.839

∼ + + + + N/A

+ + + + + N/A

σ = 30

BM3D LSSC NCSR WNNM SGHP Ours

1
28.75 28.62 28.58 28.81 28.60 28.85
0.825 0.820 0.820 0.826 0.818 0.831

2
26.18 26.14 26.08 26.14 26.07 26.28
0.734 0.734 0.727 0.724 0.734 0.745

3
26.66 26.66 26.39 26.65 26.43 26.64

0.692 0.696 0.675 0.691 0.688 0.698

4
24.79 24.76 24.64 24.81 24.67 24.95
0.715 0.717 0.697 0.712 0.718 0.733

5
29.21 29.04 28.91 29.27 28.99 29.25
0.754 0.744 0.742 0.752 0.751 0.756

6
26.35 26.33 26.30 26.38 26.26 26.50
0.824 0.825 0.820 0.822 0.820 0.832

7
28.35 28.40 28.38 28.50 28.39 28.58
0.771 0.775 0.770 0.770 0.780 0.785

8
29.64 29.54 29.52 29.65 29.43 29.74
0.861 0.858 0.860 0.855 0.853 0.867

9
25.44 25.48 25.31 25.46 25.31 25.60
0.740 0.748 0.729 0.738 0.744 0.754

10
29.53 29.36 29.30 29.43 29.15 29.42

0.763 0.755 0.755 0.755 0.754 0.765

Avg.
27.49 27.43 27.34 27.51 27.33 27.57
0.768 0.767 0.759 0.764 0.766 0.777

SR-test
+ + + + + N/A

+ + + + + N/A

σ = 40

BM3D LSSC NCSR WNNM SGHP Ours

27.41 27.32 27.19 27.49 27.22 27.54
0.784 0.781 0.776 0.782 0.781 0.791

25.02 24.98 24.87 24.98 24.87 25.14
0.668 0.670 0.651 0.654 0.666 0.682

25.46 25.47 25.10 25.46 25.21 25.48
0.647 0.647 0.621 0.645 0.636 0.650

23.50 23.48 23.26 23.54 23.34 23.69
0.641 0.643 0.604 0.636 0.639 0.664

28.06 27.90 27.76 28.14 27.88 28.15
0.709 0.696 0.690 0.709 0.704 0.713

24.97 24.98 24.90 25.01 24.96 25.12
0.765 0.769 0.761 0.761 0.775 0.775

27.18 27.32 27.22 27.35 27.30 27.45
0.721 0.729 0.717 0.717 0.730 0.736

28.37 28.32 28.24 28.41 28.21 28.53
0.828 0.826 0.827 0.819 0.829 0.830

24.15 24.19 23.92 24.19 24.05 24.32
0.677 0.687 0.655 0.675 0.684 0.694

28.42 28.24 28.28 28.32 28.15 28.36
0.721 0.712 0.710 0.712 0.711 0.724

26.25 26.22 26.07 26.29 26.12 26.38
0.716 0.716 0.701 0.711 0.716 0.726

+ + + + + N/A

+ + + + + N/A

σ = 50

BM3D LSSC NCSR WNNM SGHP Ours

26.40 26.33 26.24 26.51 26.00 26.59
0.749 0.747 0.746 0.751 0.746 0.756

24.21 24.19 24.10 24.22 24.11 24.34
0.615 0.612 0.585 0.608 0.606 0.627

24.54 24.58 24.21 24.50 24.24 24.52
0.609 0.610 0.585 0.609 0.595 0.616

22.64 22.60 22.43 22.71 22.38 22.73
0.579 0.581 0.548 0.582 0.568 0.609

27.23 27.16 27.01 27.36 27.05 27.37
0.678 0.670 0.664 0.679 0.669 0.679

24.00 24.00 23.97 24.10 23.89 24.15
0.710 0.717 0.713 0.720 0.707 0.721

26.33 26.50 26.44 26.63 26.46 26.63
0.681 0.695 0.683 0.688 0.687 0.694

27.44 27.44 27.38 27.57 27.32 27.63
0.798 0.803 0.802 0.799 0.798 0.811

23.28 23.29 23.04 23.30 23.04 23.39
0.628 0.635 0.609 0.631 0.609 0.641

27.63 27.46 27.50 27.63 27.50 27.55
0.690 0.681 0.681 0.687 0.681 0.691

25.37 25.35 25.23 25.45 25.20 25.49
0.674 0.675 0.662 0.675 0.667 0.684

+ + + + + N/A

+ + + + + N/A

σ = 100

BM3D LSSC NCSR WNNM SGHP Ours

23.37 23.71 23.66 23.93 23.36 23.96
0.600 0.647 0.652 0.648 0.637 0.669

22.00 22.05 21.99 22.16 21.86 22.22
0.464 0.463 0.460 0.466 0.469 0.480

21.69 21.75 21.50 21.87 21.08 21.88
0.492 0.497 0.484 0.501 0.481 0.504

20.31 20.36 20.23 20.46 20.04 20.56
0.381 0.384 0.367 0.385 0.397 0.428

24.29 24.49 24.38 24.78 24.17 24.79
0.549 0.553 0.562 0.575 0.549 0.578

21.52 21.65 21.55 21.86 21.35 21.82
0.530 0.567 0.560 0.566 0.563 0.567

23.71 24.24 24.20 24.52 24.08 24.56
0.538 0.576 0.584 0.588 0.580 0.602

24.35 25.00 24.89 25.12 24.53 25.20
0.650 0.728 0.724 0.710 0.703 0.741

20.94 21.02 20.89 21.15 20.55 21.11
0.481 0.498 0.487 0.498 0.495 0.502

24.79 24.97 25.00 25.21 24.57 25.35
0.576 0.576 0.600 0.600 0.579 0.609

22.70 22.92 22.83 23.11 22.56 23.15
0.526 0.549 0.548 0.554 0.545 0.568

+ + + + + N/A

+ + + + + N/A
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Figure 2.2 Percentage of best PSNR and SSIM values obtained by the tested methods

on the images of Fig. 2.1. Ties were evenly distributed to winning methods.

We see that our proposed method achieves the highest mean PSNR and SSIM for all noise

levels. Correspondingly, our method obtains the highest SSIM value more frequently than all

other approaches combined, for all noise levels. The same is observed with PSNR values,

for σ ≥ 20. Moreover, based on the Wilcoxon signed rank test, our method is statistically

superior to all other approaches in terms of SSIM, for all noise levels, and in terms of PSNR

for σ ≥ 30. Since SSIM measures the structure similarity between the denoised image and the

original textured image, these results demonstrate the effectiveness of the proposed method in

preserving details in the image. With respect to denoising accuracy (i.e., PSNR), our method

offers a performance similar to state-of-the-art approaches BM3D and WNNM for low noise

levels, and superior to these two approaches at higher noise levels.

Examples of denoising results are shown in Figure 2.3 and Figure 2.4. It can be observed that

approaches based purely on non-local patch similarity, such as WNNM, offer a good denoising

accuracy in terms of PSNR, with few artifacts and a good reconstruction of uniform regions.

For instance, in the zoomed portion of Figure 2.4, we see that WNNM obtains a smoother

reconstruction than SGHP, which introduces noise corresponding to false textures. In contrast,

these approaches may lose textural information, such as shown in the zoomed portion of Figure

2.3. Overall, the proposed method offers a good compromise between denoising, via the low-



46

(a) Image 2 (b) Noisy image (c) BM3D (d) LSSC

(e) NCSR (f) WNNM (g) SGHP (h) Ours

Figure 2.3 Denoising results on Image 2 (noise level σ = 40). (b) PSNR = 16.09 dB,

SSIM = 0.302; (c) PSNR = 25.02 dB, SSIM = 0.668; (d) PSNR = 24.98 dB, SSIM =

0.670; (e) PSNR = 24.87 dB, SSIM = 0.651; (f) PSNR = 24.98 dB, SSIM = 0.654; (g)

PSNR = 24.87 dB, SSIM = 0.666; (h) PSNR = 25.14 dB, SSIM = 0.682.

rank regularization of patch groups, and the preservation of textures, based on the gradient

histogram prior.

2.5.3 Evaluation on texture images

A similar evaluation protocol was applied on six texture images from the Prague Texture Seg-

mentation Benchmark dataset2, shown in Figure 2.5. As in the previous experiment, we mea-

sured the PSNR and SSIM obtained by the tested approaches on these images, for noise levels

of σ = 5, 10, 15, 20, 30, 40, 50, 100. The results of this experiment are summarized in Table

2.4.

2http://mosaic.utia.cas.cz.
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(a) Image 6 (b) Noisy image (c) BM3D (d) LSSC

(e) NCSR (f) WNNM (g) SGHP (h) Ours

Figure 2.4 Denoising results on Image 6 (noise level σ = 30). (b) PSNR = 18.59 dB,

SSIM = 0.368; (c) PSNR = 26.35 dB, SSIM = 0.824; (d) PSNR = 26.33 dB, SSIM =

0.825; (e) PSNR = 26.30 dB, SSIM = 0.820; (f) PSNR = 26.38 dB, SSIM = 0.822; (g)

PSNR = 26.26 dB, SSIM = 0.820; (h) PSNR = 26.50 dB, SSIM = 0.831.

Figure 2.5 From left to right and top to bottom, the test texture images

labeled from 1 to 6. Original images have a resolution of 512× 512.
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Table 2.4 PSNR (dB) and SSIM obtained by the tested methods on the 6 high-resolution

images of Fig. 2.5, for various noise levels σ. SR-test gives the results of a pairwise

Wilcoxon signed rank test between our method and each compared approach. Notation:

(+) our method is statistically better; (−) our method is statistically worse; (∼) both

methods are equal.

σ = 5

BM3D LSSC NCSR WNNM SGHP Ours

1
39.18 39.06 39.16 39.19 39.10 39.24

0.961 0.956 0.957 0.958 0.957 0.961

2
38.06 38.19 38.17 38.39 38.09 38.33

0.966 0.970 0.969 0.971 0.970 0.972

3
38.43 38.76 38.58 38.93 38.57 38.94

0.971 0.974 0.972 0.974 0.972 0.975

4
38.30 38.76 38.56 39.17 38.51 38.98

0.956 0.976 0.975 0.978 0.975 0.979

5
38.91 38.98 38.96 39.12 38.89 39.02

0.942 0.963 0.963 0.964 0.963 0.965

6
38.82 38.96 39.01 39.23 38.86 39.06

0.970 0.976 0.976 0.977 0.974 0.977

Avg.
38.62 38.79 38.74 39.01 38.67 38.94

0.961 0.969 0.969 0.970 0.969 0.972

SR-test
+ + + ∼ + N/A

+ + + + + N/A

σ = 10

BM3D LSSC NCSR WNNM SGHP Ours

35.89 35.76 35.75 35.95 35.36 35.96

0.931 0.920 0.920 0.923 0.908 0.924

34.55 34.84 34.09 34.38 33.89 34.40

0.940 0.948 0.936 0.939 0.930 0.940

34.40 34.80 34.64 35.05 34.42 35.05

0.951 0.954 0.945 0.949 0.937 0.956

35.25 35.25 34.69 35.25 34.44 35.30

0.924 0.925 0.954 0.958 0.942 0.960

35.25 35.25 35.26 35.44 35.02 35.47

0.927 0.926 0.927 0.929 0.921 0.931

35.06 35.26 35.22 35.55 34.83 35.55

0.940 0.956 0.955 0.958 0.941 0.958

35.07 35.19 34.94 35.27 34.66 35.29

0.936 0.938 0.940 0.943 0.930 0.945

∼ ∼ + + + N/A

+ + + + + N/A

σ = 15

BM3D LSSC NCSR WNNM SGHP Ours

34.05 33.83 33.77 34.04 33.60 34.11

0.902 0.887 0.887 0.892 0.881 0.896

31.80 31.79 31.87 32.08 31.79 32.16

0.900 0.900 0.904 0.907 0.902 0.909

32.24 32.56 32.36 32.76 32.31 32.79

0.921 0.924 0.918 0.924 0.914 0.925

33.25 33.23 32.56 32.96 32.51 32.97

0.892 0.896 0.935 0.938 0.931 0.938

32.09 31.95 33.23 33.42 33.19 33.49

0.847 0.844 0.898 0.899 0.896 0.902

32.77 33.02 32.97 33.31 32.84 33.34

0.938 0.933 0.931 0.936 0.926 0.939

32.70 32.73 32.79 33.10 32.71 33.14

0.902 0.899 0.912 0.916 0.908 0.918

+ + + + + N/A

+ + + + + N/A

σ = 20

BM3D LSSC NCSR WNNM SGHP Ours

32.68 32.52 32.46 32.63 32.40 32.81

0.859 0.856 0.859 0.860 0.858 0.869

30.30 30.34 30.33 30.47 30.29 30.53

0.870 0.875 0.875 0.876 0.874 0.881

30.66 30.81 30.73 31.10 30.72 30.98

0.881 0.896 0.893 0.900 0.890 0.898

30.68 30.92 30.96 31.36 31.03 31.15

0.910 0.914 0.914 0.919 0.915 0.918

31.90 31.94 31.95 32.00 31.91 32.16

0.872 0.873 0.875 0.873 0.875 0.880

31.12 31.43 31.33 31.66 31.33 31.78

0.901 0.909 0.905 0.911 0.904 0.917

31.22 31.33 31.29 31.54 31.28 31.57

0.882 0.887 0.887 0.890 0.886 0.894

+ + + ∼ + N/A

+ + + + + N/A

σ = 30

BM3D LSSC NCSR WNNM SGHP Ours

1
30.72 30.43 30.44 30.85 30.42 30.88

0.810 0.800 0.808 0.816 0.807 0.819

2
28.28 28.22 28.09 28.36 28.07 28.42

0.812 0.818 0.818 0.823 0.816 0.828

3
28.51 28.62 28.35 28.76 28.36 29.02

0.830 0.849 0.840 0.853 0.836 0.860

4
28.64 28.74 28.73 29.01 28.74 29.07

0.870 0.887 0.877 0.884 0.875 0.885

5
29.21 29.04 30.02 28.91 29.01 30.27

0.754 0.744 0.836 0.742 0.742 0.840

6
28.78 28.98 28.89 29.49 28.89 29.56

0.829 0.846 0.845 0.861 0.844 0.868

Avg.
29.02 29.01 29.09 29.23 28.92 29.54

0.818 0.824 0.837 0.830 0.820 0.850

SR-test
+ + + + + N/A

+ + + + + N/A

σ = 40

BM3D LSSC NCSR WNNM SGHP Ours

29.28 29.09 29.24 29.48 29.25 29.50

0.774 0.765 0.774 0.776 0.776 0.779

26.73 26.85 26.68 26.90 26.69 26.97

0.770 0.775 0.770 0.775 0.771 0.781

26.83 26.97 26.70 27.17 26.81 27.28

0.797 0.806 0.795 0.809 0.796 0.813

26.94 27.24 27.04 27.73 27.19 27.70

0.840 0.843 0.835 0.851 0.839 0.854

28.54 28.80 28.69 28.83 28.75 28.96

0.801 0.803 0.803 0.798 0.805 0.807

27.19 27.27 27.35 27.83 27.43 27.88

0.769 0.782 0.789 0.800 0.792 0.808

27.59 27.70 27.62 27.99 27.69 28.04

0.794 0.796 0.794 0.802 0.797 0.807

+ + + + + N/A

+ + + + + N/A

σ = 50

BM3D LSSC NCSR WNNM SGHP Ours

28.53 28.25 28.27 28.57 28.18 28.59

0.759 0.729 0.748 0.752 0.744 0.756

25.78 25.71 25.60 25.90 25.55 25.92

0.715 0.730 0.732 0.739 0.729 0.745

25.65 25.75 25.49 25.96 25.58 26.05

0.755 0.761 0.756 0.771 0.756 0.773

25.89 26.07 25.81 26.55 25.84 26.55

0.801 0.806 0.799 0.822 0.789 0.830

27.66 27.70 27.61 27.94 27.68 27.92

0.765 0.771 0.773 0.774 0.776 0.780

26.12 25.77 26.13 26.78 26.20 26.78

0.710 0.699 0.728 0.757 0.733 0.760

26.61 26.54 26.49 26.95 26.51 26.97

0.751 0.749 0.756 0.769 0.755 0.774

+ + + ∼ + N/A

+ + + + + N/A

σ = 100

BM3D LSSC NCSR WNNM SGHP Ours

25.40 25.26 25.01 25.49 24.92 25.60

0.661 0.658 0.660 0.656 0.643 0.667

22.76 22.75 22.37 22.75 22.26 22.74

0.580 0.583 0.574 0.600 0.572 0.600

22.46 22.36 22.18 22.60 22.11 22.60

0.625 0.620 0.623 0.630 0.609 0.631

22.51 22.38 22.19 23.06 22.05 22.70

0.651 0.644 0.651 0.661 0.642 0.669

24.28 24.22 24.10 24.89 24.13 24.90

0.660 0.656 0.661 0.675 0.651 0.677

23.24 22.79 23.21 23.45 23.39 23.75

0.530 0.468 0.516 0.542 0.539 0.577

23.44 23.29 23.18 23.71 23.14 23.72

0.618 0.605 0.614 0.631 0.609 0.636

+ + + ∼ + N/A

+ + + ∼ + N/A
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Once again, the proposed method shows a good performance, obtaining the highest mean

PSNR and SSIM for all noise levels. Furthermore, our method is statistically superior to

all other approaches in terms of PSNR for σ = 15, 30, 40, and in terms of SSIM for σ =

5, 30, 40, 50. Note that the significance in this experiment is reduced by the smaller number of

test images (i.e., 6 instead of 10 in the previous experiment). Figure 2.6 shows an example of

denoising results for a medium noise level (σ = 40). Visually, the denoised image obtained

by the proposed method is similar to that of WNNM, although our method has higher PSNR

and SSIM values. Compared to SGHP, which also has a gradient histogram prior, our method

generates less reconstruction artifacts. To illustrate our method’s ability to recover fine details,

we also provide denoising results obtained for a high noise level (σ = 100). As shown in Fig-

ure 2.7, approaches based only on non-local patch similarity like WNNM are unable to fully

recover edge structures (e.g., lower portion of the tile region). In comparison, SGHP and our

method preserve more texture details.

2.5.4 Impact of weighted nuclear norm

To evaluate the effect of the weighted nuclear norm component of our model, we compared

it to an unweighted version in which all weights ωj are set to 1 (see Eq. (2.4)). Table 2.5

gives the PSNR and SSIM values obtained by the weighted and non-weighted models on the

10 high-resolution images of Figure 2.1, for noise levels of σ = 5, 10, 15, 20, 30, 40, 50, 100.

Denoising results obtained by these two models, for images 4 and 5 and noise level σ = 20,

are shown in Figure 2.8 and 2.9.

These results show that the weighted nuclear norm leads to significantly higher PSNR and

SSIM values (over 1 dB improvement for PSNR and 0.1 for SSIM), for all images and noise

levels. Qualitatively, images obtained using the non-weighted model appear over-smoothed

and show a loss of texture. In contrast, by applying less shrinkage to higher singular values,

the weighted model can better preserve textures and fine structures in the image.
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(a) Texture Image 3 (b) Noisy image (c) BM3D (d) LSSC

(d) NCSR (e) WNNM (f) SGHP (g) Ours

Figure 2.6 Denoising results on Texture image 3 (noise level σ = 40). (b) PSNR =

16.09 dB, SSIM = 0.251; (c) PSNR = 26.83 dB, SSIM = 0.797; (d) PSNR = 26.97 dB,

SSIM = 0.806; (e) PSNR = 26.70 dB, SSIM = 0.795; (f) PSNR = 27.17 dB, SSIM =

0.809; (g) PSNR = 26.81 dB, SSIM = 0.796; (h) PSNR = 27.28 dB, SSIM = 0.813.

2.5.5 Impact of gradient histogram preservation

The experiments presented in Section 2.5.2 and 2.5.3 have shown the usefulness of preserving

textures via the histogram of gradients. To illustrate the impact of this component on denoising

results, Figure 2.10 gives the distribution of horizontal and gradients in the original image and

denoised images obtained by our method with and without the gradient histogram preservation.

The latter version, denoted as NGH in the figure, is implemented simply by setting μBC to zero

(see Eq. (2.12) for details).

It can be seen that approaches with a prior on the histogram of gradients (i.e., our method and

SGHP) lead to denoised images having a distribution closer to that of the original image. In

practice, differences observed for smaller gradient magnitudes (e.g., 20 or less) have a more

significant impact on image quality, since such gradient values are more frequent in the image.
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(a) Texture image 6 (b) Noisy image (c) BM3D (c) LSSC

(d) NCSR (e) WNNM (f) SGHP (g) Ours

Figure 2.7 Denoising results on Texture image 6 (noise level σ = 100). (b) PSNR =

8.135 dB, SSIM = 0.052; (c) PSNR = 23.24 dB, SSIM = 0.530; (d) PSNR = 22.79 dB,

SSIM = 0.468; (e) PSNR = 23.21 dB, SSIM = 0.516; (f) PSNR = 23.45 dB, SSIM =

0.542; (g) PSNR = 23.39 dB, SSIM = 0.539; (h) PSNR = 23.75 dB, SSIM = 0.576.

(a) Image 4 (b) Noisy image (c) Non-weighted (d) Weighted

Figure 2.8 Denoising results on Image 4 (noise level σ = 20). (b) PSNR = 22.09 dB,

SSIM = 0.617; (c) PSNR = 24.88 dB, SSIM = 0.714; (d) PSNR = 26.90 dB, SSIM =

0.814.

We also observe that, except for our method, denoising approaches over-estimate the frequency

of near-zero gradients, resulting in the loss of edges.
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Table 2.5 PSNR (dB) and SSIM obtained by the weighted nuclear norm and

non-weighted nuclear norm models on the 10 high-resolution images of Fig. 2.1.

σ = 5

NN WNN

1 37.75 38.74
0.962 0.970

2 35.65 36.39
0.947 0.966

3 35.36 35.48
0.942 0.943

4 35.02 35.36
0.956 0.962

5 36.94 37.31
0.942 0.946

6 36.21 37.39
0.945 0.977

7 37.16 38.05
0.958 0.967

8 38.42 39.50
0.967 0.975

9 35.62 36.37
0.946 0.963

10 37.51 38.31
0.948 0.958

Avg. 36.56 37.29
0.951 0.963

σ = 20

NN WNN

29.02 30.84
0.829 0.879

26.36 28.12
0.730 0.824

26.72 27.97
0.714 0.763

24.88 26.90
0.714 0.814

29.74 30.82
0.775 0.814

26.30 28.61
0.806 0.889

28.78 30.37
0.777 0.849

29.79 31.59
0.847 0.902

25.44 27.65
0.740 0.829

30.06 31.16
0.781 0.824

27.71 29.40
0.771 0.839

σ = 30

NN WNN

26.73 28.85
0.750 0.831

24.53 26.28
0.626 0.745

24.33 26.59
0.636 0.697

22.45 24.95
0.561 0.734

27.97 29.18
0.712 0.756

23.80 26.50
0.678 0.831

27.04 28.58
0.698 0.786

27.69 29.74
0.771 0.866

23.03 25.60
0.620 0.755

28.44 29.48
0.722 0.765

25.60 27.57
0.677 0.777

σ = 40

NN WNN

25.75 27.52
0.697 0.791

23.90 25.13
0.584 0.680

23.19 25.41
0.591 0.650

21.85 23.69
0.513 0.663

26.99 28.04
0.667 0.712

23.09 25.12
0.624 0.775

26.22 27.43
0.649 0.736

26.75 28.53
0.716 0.836

22.30 24.30
0.573 0.693

27.51 28.36
0.681 0.723

24.75 26.35
0.629 0.726

σ = 50

NN WNN

25.14 26.56
0.649 0.758

23.47 24.32
0.550 0.627

22.62 24.51
0.560 0.613

21.52 22.61
0.482 0.608

26.23 27.16
0.625 0.678

22.68 24.15
0.581 0.722

25.63 26.60
0.604 0.700

26.13 27.65
0.663 0.811

21.96 23.38
0.540 0.641

26.73 27.55
0.640 0.690

24.21 25.45
0.589 0.685

σ = 100

NN WNN

22.67 23.91
0.531 0.663

21.48 22.18
0.416 0.483

20.26 21.78
0.435 0.499

19.92 20.56
0.341 0.429

23.47 24.79
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(a) Image 5 (b) Noisy image (c) Non-weighted (d) Weighted

Figure 2.9 Denoising results on Image 5 (noise level σ = 20). (b) PSNR = 22.11 dB,

SSIM = 0.410; (c) PSNR = 29.74 dB, SSIM = 0.775; (d) PSNR = 30.82 dB, SSIM =

0.814.

While these results show the impact of using gradient histogram priors, we note that the distri-

bution of gradients in denoised images still differs from the distribution of the original image.

This can be explained by the fact that the target histogram is not obtained directly from the

original image, but rather estimated from the noisy image through a deconvolution process.
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Figure 2.10 Gradient histograms of the original Image 2 and denoised images obtained

by the top 3 methods (noise level σ = 40).

Thus, developing a more accurate approach for estimating the histogram of gradients could

potentially lead to improved denoising results.

2.5.6 Computational efficiency

We evaluate the computational efficiency and convergence of the proposed method by mea-

suring the PSNR of the denoised image (i.e., x in Alg. 2.1) obtained at each iteration. We

compare our method to WNNM and SGHP, using their authors’ original implementation. All

experiments were carried out on a AMD Phenom 9600B Quad-Core 2.30 GHz CPU with 8 GB

RAM.
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Figure 2.11 PSNR obtained at each iteration by top

three denoising methods on Image 2 (noise level σ = 40).

From Figure 2.11, we see that our method converges faster than both WNNM and SGHP,

achieving a peak PSNR after only four iterations. Since both WNNM and our method require

to recompute groups of similar patches and their SVD decomposition at each iteration, their

mean CPU time per iteration is almost the same (up to several minutes for large images). In

comparison, SGHP requires more time per iteration in order to update its dictionary of patches

(see (Zuo et al., 2014) for details). The average runtime of competing methods on test images

of size of 512×512 is presented in Figure 2.12. Unlike other methods, which are implemented

in Matlab, BM3D uses optimized C++ code and parallelization. Consequently, it is much faster

than these methods, with an average runtime near 3 seconds for all noise levels. Nevertheless,

our method compares favorably to more advanced denoising approaches like LSSC, NCSR,

WNNM and SGHP.



55

Figure 2.12 Average runtime of competing methods on images

with size of 512×512, for different noise levels σ.

2.6 Conclusion

A new method was proposed for the problem of image denoising, which combines a low-rank

regularization of similar non-local patches with an image prior based on the histogram of gra-

dients. By combining these two priors in a single model, the proposed method can effectively

remove the noise in images, while preserving image details corresponding to textures and fine

structures. Moreover, a dynamic singular value thresholding operator, based on the weighted

nuclear norm, is used to reconstruct groups of similar patches with a higher accuracy. This

work also presented an efficient iterative approach based on the ADMM algorithm to recover

the original image, under low-rank and gradient histogram preservation constraints.

Numerical experiments on two benchmark datasets have shown the ability of our method to

suppress various levels of noise, while preserving image textures and edges. In comparison

to five state-of-the-art denoising approaches, our method achieves the highest mean SSIM,

for almost all images and noise levels, and the best overall PSNR. These experiments also

demonstrated the advantage of preserving information using a dynamic thresholding operator
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and constraints on the gradient histogram, as well as the fast convergence of the proposed

ADMM algorithm. In future work, we will consider other types of structure preserving priors,

based on different texture features.
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3.1 Abstract

In recent years, approaches based on nonlocal self similarity and global structure regularization have

led to significant improvements in image restoration. Nonlocal self similarity exploits the repetitiveness

of small image patches as a powerful prior in the reconstruction process. Likewise, global structure

regularization is based on the principle that the structure of objects in the image is represented by a

relatively small portion of pixels. Enforcing this structural information to be sparse can thus reduce the

occurrence of reconstruction artifacts. So far, most image restoration approaches have considered one of

these two strategies, but not both. This paper presents a novel image restoration method that combines

nonlocal self similarity and global structure sparsity in a single efficient model. Group of similar patches

are reconstructed simultaneously, via an adaptive regularization technique based on the weighted nuclear

norm. Moreover, global structure is preserved using an innovative strategy, which decomposes the image

into a smooth component and a sparse residual, the latter regularized using l1 norm. An optimization

technique, based on the Alternating Direction Method of Multipliers (ADMM) algorithm, is used to

recover corrupted images efficiently. The performance of the proposed method is evaluated on two

important image restoration tasks: image completion and super-resolution. Experimental results show

our method to outperform state-of-the-art approaches for these tasks, for various types and levels of

image corruption.
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3.2 Introduction

Image restoration is a key problem of image processing, having a wide range of applications in fields

like graphic design, computer vision, medical imaging and remote sensing. The goal of this problem

is to recover a high-quality image x ∈ R
N from its degraded observation y ∈ R

M . The degradation

process is generally defined as a linear transformation

y = Φx + ν, (3.1)

where Φ ∈ R
M×N is a known degradation matrix and ν is additive noise (e.g., Gaussian white noise).

By choosing specific values for Φ and ν, one can model different image restoration tasks. For instance,

when Φ is the identity matrix, this corresponds to a simple denoising problem (Gu et al., 2014; Dong

et al., 2013a; Chierchia et al., 2014; Zhang et al., 2014b; Gu et al., 2016; Zhou et al., 2012). Likewise,

the task of recovering missing pixels in the image, a problem known as image inpainting (Dong et al.,

2013a; He and Wang, 2014; Heide et al., 2015; Zhang et al., 2014a; He and Sun, 2014; Zhou et al., 2012;

Liu et al., 2015b), can be modeled using a projection operator for Φ, i.e., a diagonal matrix whose

diagonal entries are 1 for known pixels, and 0 otherwise. Another well-studied restoration problem

is image super-resolution (Zhang et al., 2016a; Dong et al., 2013b; Kim and Kwon, 2010; Gu et al.,

2015; Yang et al., 2010a; Glasner et al., 2009; Dong et al., 2014a; Huang et al., 2015), which aims at

recovering a high-resolution image from a low-resolution and sometimes noisy version. In this case, the

degradation matrix can be defined as Φ = QH, where H ∈ R
N×N is a blurring filter and Q ∈ R

M×N ,

M < N , is a downsampling operator.

In most image restoration methods, the task of recovering x from y is modeled as an inverse problem

x̂ = argmin
x

D(y −Φx) + λR(x). (3.2)

In this formulation, D is a term modeling data fidelity, R is a regularization prior on the image to

recover, and λ is a parameter controlling the trade-off between these two terms. The data fidelity term

is often defined using the negative log-likelihood, i.e., D(y − Φx) = − logP (y |Φx), and depends

on the distribution of the noise component. In the standard case where ν is Gaussian white noise, D
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corresponds to a simple l2 norm. The inverse problem then becomes

x̂ = argmin
x

1

2
‖y −Φx‖22 + λR(x). (3.3)

Developing effective image regularization priors has been the topic of much research over the years.

Using concepts of compressive sensing (Candes and Plan, 2010; Cai et al., 2010), such priors are often

based on the principle that most images are sparse under a suitable transform Ψ. This can be modeled

as R(x) = ‖Ψ(x)‖p, where ‖ · ‖p denotes the lp norm. One of the most common choices for Φ are

wavelets (He and Wang, 2014; Zhang et al., 2014a), well-known for their signal-compression ability.

Another popular regularization approach is Total Variation (TV) (Zhang et al., 2016b; Ji et al., 2016;

Guo and Ma, 2015; Liu et al., 2015b; Beck and Teboulle, 2009; Rudin et al., 1992), which assumes that

the image of gradients magnitudes is sparse under the l1 norm:

TV(x) =

N∑
i=1

√
(∇1xi)2 + (∇2xi)2. (3.4)

Recently, considerable improvements in performance have been achieved by exploiting the similarity

of nonlocal patches of pixels (Zhang et al., 2016a; Dong et al., 2013a,b; Chierchia et al., 2014; He and

Sun, 2014; Buades et al., 2005b; Köppel et al., 2015) and the regularization of global structure (Huang

et al., 2014a; Yang et al., 2016a; Chen et al., 2016). Nonlocal self-similarity (NSS) methods are based

on the principle that small patches in an image are similar to other, possibly distant patches in the same

image. On the other hand, global structure regularization techniques leverage the idea that the structure

of objects in an image is captured by a relatively small number of pixels. Enforcing the sparsity of

structural information can thus reduce the occurrence of artifacts in the reconstruction process.

Until now, image restoration methods have exploited either NSS or global structure regularization, but

not both these principles. In this paper, we present a novel image completion approach that exploits

the repetitiveness of local patches, via a low-rank NSS strategy, while preserving global structure in the

image. The main contributions of our work are as follows:



60

a. The proposed method is, to our knowledge, the first one to combine low-rank patch reconstruc-

tion with global structure regularization in a single, efficient model. To avoid losing information

while reconstructing similar patches, the proposed method uses an adaptive regularization strat-

egy based on the weighted nuclear norm. As demonstrated by our experiments, our method

provides a more accurate reconstruction than state-of-the-art image restoration approaches;

b. This work also introduces an innovative global structure regularization strategy that decomposes

the image into a smooth component and a residual encoding structure. By enforcing the residual

to be as sparse as possible, this strategy can obtain images having less reconstruction artifacts;

c. An optimization technique, based on the Alternating Direction Method of Multipliers (ADMM)

algorithm, is also proposed to solve our image reconstruction model efficiently.

d. Finally, we present an extensive experimental evaluation, where the proposed method is com-

pared against ten state-of-the-art approaches on two different reconstruction problems: image

completion and super-resolution. Results of these experiments demonstrate the advantages of

our method in terms of accuracy and efficiency.

3.3 Related work

In the last years, a flurry of methods have been proposed for image restoration problems like denoising

(Gu et al., 2014; Dong et al., 2013a; Chierchia et al., 2014; Zhang et al., 2014b; Gu et al., 2016; Zhou

et al., 2012), image completion (or inpainting) (Dong et al., 2013a; He and Wang, 2014; Heide et al.,

2015; Zhang et al., 2014a; He and Sun, 2014; Zhou et al., 2012; Liu et al., 2015b) and super-resolution

(Zhang et al., 2016a; Dong et al., 2013b; Kim and Kwon, 2010; Gu et al., 2015; Yang et al., 2010a;

Glasner et al., 2009; Dong et al., 2014a; Huang et al., 2015). These methods exploit a wide range of

techniques, including nonlocal means (Buades et al., 2005b), wavelets/curvelets (He and Wang, 2014;

Zhang et al., 2014a), total variation (Zhang et al., 2016b; Ji et al., 2016; Guo and Ma, 2015; Liu et al.,

2015b; Beck and Teboulle, 2009; Rudin et al., 1992) or related models of local gradient (Zhang et al.,

2014a), and sparse patch modeling (Köppel et al., 2015; Heide et al., 2015).
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The nonlocal self-similarity (NSS) of patches in an image has been used with great success in various

image restoration tasks (Zhang et al., 2016a; Dong et al., 2013a,b; He and Sun, 2014; Buades et al.,

2005b). The basic idea behind NSS methods is to identify patches of similar appearance in the degraded

image, and use the relationship between these similar patches to constrain the reconstruction process.

For instance, the method presented in (Dong et al., 2013b) learns a sparse patch representation via

dictionary learning and imposes similar patches to be near each other in the representation space. This

method, called Nonlocally Centralized Sparse Representation (NCSR), is applied to the problems of

image denoising, deblurring and super-resolution. Low-rank regularization approaches (Gu et al., 2014;

Dong et al., 2013a; Guo et al., 2016; Zhang et al., 2016c) also exploit the redundancy of patches to

guide the reconstruction. Such approaches are based the fact that groups of similar patches lie in a

low-dimensional subspace and that matrices (or tensors (Chierchia et al., 2014; Zhang et al., 2014b;

Liu et al., 2013b; Ji et al., 2016; Guo and Ma, 2015)) containing these patches have a low rank. In

(Guo et al., 2016), a two-stage denoising model is introduced, where groups of similar patches are

regularized via singular value decomposition (SVD) and then back-projected to reconstruct the image.

Moreover, (Zhang et al., 2016c) presents a low-rank regularization technique that adapts the amount of

regularization applied to each similar patch group.

Considering the fact that human vision is highly sensitive to structure coherence (Sun et al., 2005),

performance can also be improved by enforcing the preservation of global structure in the image re-

construction process. In (Yang et al., 2016a), a Markov Random Field (MRF) model is used to encode

repeating structures in the image, which are then preserved during the reconstruction. A similar idea is

proposed in (Baek et al., 2016), where structure propagation and structure-guided completion is used to

preserve structure consistency across multiple views.

Nonlocal patch similarity and global structure consistency provide complimentary information on im-

ages, the first one encoding fine-grained patterns and the other higher-level patterns in the image. So

far, image restoration methods have focused on a single one of these properties, not exploiting the full

range of information available for the reconstruction process. To the best of our knowledge, this work

is the first to combine these complimentary properties in a single, efficient model.
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3.4 The proposed image restoration model

This section presents the proposed model for image restoration. We start by introducing an adaptive

low-rank patch reconstruction model based on the weighted nuclear norm, and then describe how this

model can be enhanced by adding global structure regularization.

3.4.1 Low-rank reconstruction of similar patches

The proposed method employs a patch-based model to reconstruct the image x from its degraded ob-

servation y. Let pi ∈ R
d be the

√
d×√

d patch centered on pixel i. Note that patches from neighbor

pixels overlap, making the reconstruction process more robust. We exploit the repetitiveness of similar

patches using a low-rank regularization approach. Let Pi be the matrix having as columns the K most

similar patches to pi, K being a user-defined parameter. The k-th similar patch (i.e., column) in Pi,

denoted as pk
i , is connected to image x via a patch selection matrix Sk

i such that pk
i = Sk

i x.

We impose Pi to have low-rank, using the weighted nuclear norm (WNN) (Gu et al., 2014): WNN(Pi) =∑
j ωjσj , where σj is the j-th singular value of Pi such that 0 ≤ σj ≤ σj+1, and ωj ≥ 0 is its cor-

responding weight. Since larger singular values typically encode more information than smaller ones,

following (Gu et al., 2014), we define weights ωj so that components corresponding to larger singular

values have less shrinkage: ωj = 1/
(
σj + ε

)
, where ε is a small positive constant to avoid division

by zero. The optimal solution to this problem is provided by the weighted singular value thresholding

(W-SVT) operator:

Sω(P) = U
(
Σ−Diag(ω)

)
+
V�. (3.5)

Here, Σ′ = (Σ)+ is the matrix of soft-thresholded singular values such that Σ′
jj = max{Σjj − ωj , 0}.

3.4.2 Global sparse structure regularization

We propose a new strategy for the regularization of global structure, inspired by a pre-processing tech-

nique described in (Gu et al., 2015) for the super-resolution problem. The key idea of this strategy is

to decompose the image to reconstruct (i.e., x) into a smooth component fL ⊗ xL, where xL is a low-

frequency feature map of the image, and a residual component xR representing the global structure of
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this image:

x = fL ⊗ xL + xR. (3.6)

Here, fL is a low pass filter of size 3× 3 and ⊗ is the convolution operator. This operation ensures that

the smooth component contains low frequencies, thereby modeling high-level information in the image.

Two priors are added to the model. The first one, modeled as ‖xR‖p, imposes the residual component

xR to be sparse under the lp norm. As in total variation or related regularization techniques, this reflects

the fact that pixels corresponding to object edges and image details represent a small fraction of all

pixels in the image. Although the l0 norm could also have been used, in this work, we considered the

l1 norm for its convexity. On the other hand, the second prior enforces the low-frequency feature map

xL to be smooth (i.e., to have a weak response to an edge-filter). This regularization prior is modeled as

‖gd⊗xL‖22, where gd = [1,−1] is the gradient operator along direction d ∈ {1=horizontal, 2=vertical}.

These two priors can be combined into a single regularization functional

Rstruct(x) = ‖xR‖1 + κ

2∑
d=1

‖gd ⊗ xL‖22

s.t. x = fL ⊗ xL + xR. (3.7)

Parameter κ controls the smoothness of the low-frequency feature map. In practice, a higher value

for this parameter will give a residual xR containing more image information. Because regularization

prior Rstruct enforces sparsity of the residual, this will thus lead to a reconstructed image with reduced

gradient (i.e., more uniform regions).

Figure 3.1 compares the proposed residual component (in absolute value), for κ = 1, with the result

of a standard gradient operator. While both highlight structural and texture information in the image,

it can be seen that the residual component is globally sparser than the image of gradient magnitudes.

This property is further analyzed in Figure 3.2, which gives the distribution of values (log scale) in the

gradient magnitude image and the proposed residual for κ = 0.1, 1 and 10. We see that κ impacts the

sparseness of the residual, a smaller value for this parameter resulting in a higher density of near-zero

values.
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a) |∇x| b) |xR| (κ = 1)

Figure 3.1 Comparison between (a) gradient magnitudes and (b) the proposed residual

component (in absolute value) for κ = 1.

In the prior of Eq. (3.7) and TV, the l1 norm is used to enforce sparsity in the residual or gradient

magnitudes. This sparseness regularization can be seen as the negative log-prior of a Laplace distri-

bution, i.e. − log p(xR) = λ‖xR‖1 + const, if p(xR) ∼ Laplace(0, λ−1). In logarithmic scale, this

distribution appears as a line with downward slope. Likewise, a regularization based on the lp norm, for

0 ≤ p < 1, gives a distribution with convex function in logarithmic scale. From Figure 3.2, we see that

the proposed regularization strategy follows this property. In contrast to our residual, the distribution of

gradient magnitudes has a concave shape, peaking at a non-zero value. Applying l1 norm regularization

on gradient magnitudes, as in TV, will therefore result in a loss of details in the reconstructed image.
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Figure 3.2 Distribution of absolute values in the gradient magnitude and the proposed

residual component for different κ. Values are shown for the image of Fig. 3.1.

3.4.3 Image reconstruction combining both priors

Combining the WNN regularization of similar patches with the proposed global structure regularization

model, the image recovery task can be formulated as the following optimization problem:

argmin
x,xL,xR

1

2
‖y −Φx‖22 + λ‖xR‖1

+ κ
∑
d

‖gd ⊗ xL‖22 + γ

N∑
i=1

WNN(Pi)

s.t. x = fL ⊗ xL + xR

pk
i = Sk

i x, i = 1, . . . , N, k = 1, . . . ,K. (3.8)
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Here, λ and γ are parameters used for controlling the trade-off between data fidelity, l1 norm sparsity of

structure residuals, and weighted nuclear norm regularization of similar patches. The following section

presents an efficient technique to solve this problem.

3.5 Efficient ADMM method for image recovery

Due to the l1 norm and WNN terms, optimizing the problem of Eq. (3.8) is a complex task. To recover

image x efficiently, we use an iterative optimization strategy based on the Alternating Direction Method

of Multipliers (ADMM) algorithm (Boyd et al., 2011). In this strategy, constraints are moved to the cost

function via an augmented Lagrangian formulation

argmin
x,xL,xR, {Pi}

1

2
‖y −Φx‖22 + λ‖xR‖1 + κ

2∑
d=1

‖gd ⊗ xL‖22

+ γ

N∑
i=1

WNN(Pi) +
μA

2

N∑
i=1

K∑
k=1

‖pk
i − Sk

i x+ aki ‖22

+
μB

2
‖x− (fL ⊗ xL + xR) + b‖22 (3.9)

where aki , i = 1, . . . , N , k = 1, . . . ,K, and c are the Lagrange multipliers of each constraint and μA, μB

are the corresponding parameters. As mentioned in (Boyd et al., 2011), the choice of these parameters

mostly affects the convergence of ADMM approaches. In practice, these parameters are initialized with

a small positive value, which is then increased at each iteration to guarantee convergence.

Since the cost function of Eq. (4.11) is convex with respect to each parameter, we can optimize it by

updating each parameter iteratively until convergence is reached, i.e. constraints are satisfied up to a

given ε. Assuming all other parameters are fixed, image x can thus be updated by solving the following

problem:

argmin
x

1

2
‖y −Φx‖22 +

μA

2

N∑
i=1

K∑
k=1

‖Sk
i x− (pk

i + aki )‖22

+
μB

2
‖x− (fL ⊗ xL + xR − b)‖22. (3.10)
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Let S̃ =
∑

i

∑
k (S

k
i )

�
Sk
i and p̃ =

∑
i

∑
k (S

k
i )

�
(pk

i + aki ). The solution to this problem is given by

x =
(
Φ�Φ+ μAS̃+ μBI

)−1

(
Φ�y + μAp̃+ μB(fL ⊗ xL + xR − b)

)
. (3.11)

For image completion or denoising, Φ�Φ and S̃ are diagonal matrices, and solving this system is trivial.

For super-resolution, the system can also be solved efficiently using the fast Fourier transform (FFT).

Additionally, in the case of noiseless image completion, there is an implied constraint that x is consistent

with the observed entries in y(Gu et al., 2016):

PΦ(x) = PΦ(y) (3.12)

where PΦ(·) is a projection operator.

Likewise, the task of updating xL corresponds to a deconvolution problem

argmin
xL

μB

2
‖fL ⊗ xL − (x− xR − b)‖22 + κ

∑
d

‖gd ⊗ xL‖22. (3.13)

As described in (Gu et al., 2015), the solution to this problem can be found via the FFT operator F :

xL = F−1

⎛⎝ F(fL) ◦ F(x− xR − b)

F(fL) ◦ F(fL) + κ
μB

∑
dF(gd) ◦ F(gd)

⎞⎠ , (3.14)

where “·” is the complex conjugate operator, “◦” the component-wise multiplication and “··” the

component-wise division.
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Algorithm 3.1 The proposed image completion method

Input: The degraded image y and degradation matrix Φ;

Output: The reconstructed image x;

Set aki := 0, i = 1, . . . , N , k = 1, . . . ,K, and b := 0;

while not converged do

Find groups of similar patches for each pixel i;
Update Pi, i = 1, . . . , N , using Eq. (3.16);

Update xL using Eq. (3.14);

Update xR, by solving Eq. (3.18);

Update image x using Eq. (3.11);

Update Lagrange multipliers using Eq. (3.19);

end

return x ;

Let P̃i = [(S1
ix−a1i ) . . . (S

K
i x−aKi )]. Patch matrices Pi, i = 1, . . . , N , can be updated independently

by solving the following problem:

argmin
Pi

γWNN(Pi) +
μA

2
‖Pi − P̃i‖2F . (3.15)

As described in Section 3.4.1, this problem can be solved using the weighted singular value thresholding

(W-SVT) operator (Gu et al., 2014):

Pi = Ui ·
(
Σi − γ

μA
Diag(ω)

)
+
·V�

i , (3.16)

where UiΣiV
�
i is the SVD decomposition of P̃i.

Let u = x− fL ⊗ xL + b, we update the structure residual xR by solving the following problem:

argmin
xR

λ‖xR‖1 +
μB

2
‖xR − u‖22. (3.17)

This problem can be solved independently for each pixel i via a simple soft-thresholding:

[xR]i = sign
(
[xR]i

) · ([u]i − λ
μB

)
+
. (3.18)
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Finally, the Lagrange multipliers can be updated following the standard ADMM approach:

aki := aki + (pk
i − Sk

i x), i = 1, . . . , N, k = 1, . . . ,K,

b := b + (x− xR − fL ⊗ xL). (3.19)

The whole reconstruction process is summarized in Algorithm 3.1. It can be shown that, for sufficiently

large values of ADMM parameters (i.e., μA and μB) the algorithm is guaranteed to converge. In practice,

convergence is facilitated by initializing these parameters with small positive values, and then increasing

them by a given factor at each iteration.

3.6 Experiments

The usefulness of the proposed method is evaluated on two important image restoration problems: image

completion and super-resolution. For the image completion problem, we consider the scenarios of

random pixel corruption, which can happen for instance during image transfer, and text corruption.

The latter scenario is closer to the problem of image inpainting, where larger regions of the image are

missing. To understand the role of our method’s parameters and their influence on performance, we also

present an analysis of parameter impact.

3.6.1 Parameter setting and performance metrics

For all image restoration problems considered in our experiments, the performance of tested methods

was measured using Peak Signal to Noise Ratio (PSNR) and Structure Similarity Index (SSIM) (Wang

et al., 2004). The parameters of these methods were tuned empirically based on a validation set of

images (i.e., images not used to compute the reported performance values), and were selected to give

the best mean PSNR on these additional images.

The parameters of our method were set as follows. For the low-rank reconstruction of similar patches,

we set the patch size to 6 × 6, the number of similar patches to K = 45, and the patch regularization

parameter to γ = 5. The residual sparseness parameter λ was selected per problem: λ = 50 for

random pixel corruption, λ = 450 for text inpainting, and λ = 25 for super-resolution. In the case
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of random pixel corruption, better results could possibly be achieved by setting λ proportionally to the

ratio of missing pixels in the image. Moreover, κ = 1 was used while computing xL (see Section

3.4.2). Finally, ADMM parameters were initialized to μA = μB and increased by a factor of 5% at each

iteration. As mentioned in Section 4.3.3, this strategy is commonly used with ADMM approaches to

facilitate their convergence.

In our experiments, we compare the proposed method against various approaches for the problems of

image completion and super-resolution (see the following sub-sections). The implementation of these

approaches were obtained from their authors’ website, and their parameters tuned using a grid search

around the default setting.

Figure 3.3 The 13 grey-level benchmark images used in our experiments.

3.6.2 Random pixel corruption

We first evaluate our method on the task of recovering the grey-level benchmark images of Fig. 3.3,

degraded by randomly removing pixels. Our method’s performance is compared to that of four state-

of-the-art image completion approaches: Iterative support detection-based split Bregman method for
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wavelet frame-based image inpainting (ISDSB) (He and Wang, 2014), Fields of experts: A framework

for learning image priors (FOE) (Roth and Black, 2005), Image restoration using joint statistical mod-

eling in a space-transform domain (JSM) (Zhang et al., 2014a) and Nonparametric Bayesian dictionary

learning for analysis of noisy and incomplete images (BPFA) (Zhou et al., 2012). Table 3.1 gives the

PSNR and SSIM values obtained by the five tested methods on the 13 images of Fig. 3.3, for various

ratios σ of missing pixels. For each image and missing pixel ratio, the best PSNR and SSIM value is

highlighted in bold. The average performance of the methods on the test images is provided in the last

row. We see that the proposed method achieves the highest average PSNR and SSIM, in all cases. In

a one-sided t-test, the performance of our method is statistically higher than all other approaches for

σ ≤ 80, with a significance of p < 0.05. Compared to the second best method (i.e., JSM), our method

yielded a mean improvement of 0.83 dB in PSNR and 0.027 in SSIM, most significant improvements

observed for lower ratios of missing pixels.
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Figures 3.4 and 3.5 shows the results obtained by tested methods for the Barbara and Lena512 images

with missing pixel ratios of σ = 60% and σ = 70%, respectively. Compared to other approaches,

the proposed method produces visually better results, reconstructing image details and textures with a

greater accuracy. In contrast, ISDBS, FOE and BPFA give low quality images, the distortion from miss-

ing pixels clearly visible. In comparison to JSM (i.e., the second best approach) our method produces

less image artifacts like false textures. An example of such artifact generated by JSM can be seen on the

woman’s nose in the Barbara image.

Figure 3.4 Completion results for the Barbara image, with a missing pixel ratio of

σ = 60%.

3.6.3 Text corruption

We also evaluated the proposed method on the task of recovering five text-corrupted benchmark images,

shown in Fig. 3.6. The same image completion approaches were used for comparison, except ISDBS

which did not support color images. Table 3.2 gives the PSNR and SSIM obtained by the four tested

methods, the best result of each image highlighted using bold font numbers. It can be seen that the

proposed method achieves the best PSNR and SSIM, for all tested images. In a one-side t-test, our

method is statistically superior to FOE, JSM and BPFA, with significance level p < 0.05.
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Figure 3.5 Completion results for the Lena512 image, with a missing pixel ratio of

σ = 70%.

Figure 3.6 The five text-corrupted benchmark images used in our experiments.
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Table 3.2 PSNR (dB) and SSIM obtained by the tested methods

on the five text-corrupted images of Figure 3.6.

FOE JSM BPFA Ours

Butterfly
32.20 31.83 30.21 32.45
0.972 0.980 0.960 0.982

Lena
35.40 35.70 34.10 37.18
0.968 0.971 0.943 0.976

Parrots
33.72 35.09 33.41 35.90
0.976 0.980 0.962 0.982

Starfish
33.04 34.26 32.33 34.28
0.967 0.968 0.955 0.973

Parthenon
29.98 34.85 33.13 35.09
0.921 0.970 0.959 0.975

Avg.
32.87 34.35 32.64 34.98
0.961 0.973 0.956 0.978

Figures 3.7 and 3.8 give the results obtained by tested approaches on the text-corrupted Lena and

Parthenon images. We see that the proposed method can accurately recover these images with less

noise and reconstruction artifacts than competing approaches. In comparison with FOE, our method

can better recover textures in regions corresponding to missing pixels, as can be observed in the zoomed

portion of Fig. 3.8. Moreover, as illustrated in Fig. 3.7, our method yields sharper edges than BPFA and

JSM.

The convergence of the proposed method is illustrated in Fig. 3.9, where completion results for the

text-corrupted Parthenon image are shown for different iterations. We see that our method provides a

fast convergence, achieving near perfect recovery of the image within 100 iterations.

3.6.4 Image super-resolution

In this experiment, we applied the proposed method on the noise-free super-resolution (i.e., interpola-

tion) problem and compare it against six state-of-the-art approaches for this problem: Bicubic interpo-

lation, Image super-resolution via sparse representation (CSCR) (Yang et al., 2010a), Nearest-neighbor

interpolation (NE), Single-image super-resolution using sparse regression and natural image prior (Kim)

(Kim and Kwon, 2010), Super-resolution from a single image (Glasner) (Glasner et al., 2009), and

Learning a deep convolutional network for image super-resolution (SRCNN) (Dong et al., 2014a). The
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a) Lena b) Degraded c) FOE

d) JSM e) BPFA f) Ours

Figure 3.7 Completion results for the text-corrupted Lena image.

reconstruction performance of tested method was measured on the 10 benchmark images of Fig. 3.10,

low resolution version of these images generated via bicubic interpolation.

Table 3.3 gives the PSNR and SSIM values obtained by the seven tested methods, for upscale factors of

2× and 3×. Once again, the highest PSNR and SSIM values of each image are highlighted in bold font.

We see that our method obtains the highest average PSNR and SSIM, for both upscale factors. Compared

to the state-of-the-art SRCNN approach, which is based on a deep convolutional neural network, our

method provides an average PSNR improvement of 0.94 db and 0.16 dB, for 2× and 3× upscale factors

respectively. Likewise, we observe an average SSIS improvement of 0.017 and 0.016 over SRCNN, for

these upscale factors. For 2× upscaled images, the proposed method is statistically superior to all other

approaches, based on a one-sided t-test with p < 0.05.
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a) Parthenon b) Degraded c) FOE

d) JSM e) BPFA f) Ours

Figure 3.8 Completion results for the text-corrupted Parthenon image.

a) 10 iterations b) 50 iterations c) 100 iterations

Figure 3.9 Text-corrupted Parthenon image recovered by the proposed method after

various iterations.

Figures 3.11 and 3.12 show examples of results obtained by the seven super-resolution methods on Im-

age 2 and Image 3 of Fig. 3.10. Staircasing artifacts are clearly visible in images reconstructed by

Bicubic interpolation, SCSR and NE. While such artifacts are absent in images produced by Glasner,

these images exhibit over-smoothing in textured regions which can account for the lower PSNR and

SSIM values obtained by this method. In general, images produced by the proposed method are compa-

rable in terms of visual quality to those of Kim and SRCNN, however with less pronounced staircasing

artifacts (see the zoomed portion of Image 3, for instance).
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Figure 3.10 The 10 benchmark images used in our super-resolution experiments.

Images are named 1− 10 from left to right, starting with the top row.

Table 3.3 PSNR (dB) and SSIM obtained by the tested methods on the 10 images of

Fig. 3.10, for upscale factors of 2× and 3×.

UPSCALE 2×
Bicubic SCSR NE Kim Glasner SRCNN Ours

1
35.61 36.55 32.73 36.85 36.10 36.57 37.40
0.942 0.949 0.954 0.955 0.945 0.951 0.960

2
34.87 37.02 30.63 37.56 36.38 37.33 39.43
0.963 0.970 0.925 0.974 0.967 0.969 0.984

3
26.11 29.21 23.53 30.30 29.54 30.59 30.02
0.898 0.943 0.857 0.952 0.942 0.948 0.954

4
31.50 31.89 30.63 32.02 31.71 31.93 33.91
0.798 0.815 0.783 0.822 0.808 0.818 0.840

5
28.19 33.09 27.85 33.48 32.83 33.47 33.95
0.915 0.958 0.912 0.963 0.954 0.960 0.960

6
27.47 30.02 26.57 30.35 29.32 30.39 30.81
0.849 0.900 0.851 0.903 0.889 0.898 0.919

7
30.98 33.31 30.57 33.48 33.01 33.40 34.87
0.863 0.861 0.832 0.865 0.856 0.863 0.909

8
29.84 34.35 28.82 35.33 34.63 35.44 34.85
0.938 0.961 0.925 0.967 0.961 0.963 0.961

9
29.76 31.05 28.87 31.41 31.35 30.91 34.08
0.862 0.842 0.820 0.844 0.839 0.841 0.894

10
26.43 31.57 26.06 31.98 29.74 31.82 31.99
0.849 0.930 0.857 0.935 0.911 0.934 0.935

Avg.
30.08 32.81 28.63 33.28 32.46 33.19 34.13
0.888 0.913 0.872 0.918 0.907 0.915 0.931

UPSCALE 3×
Bicubic SCSR NE Kim Glasner SRCNN Ours

29.01 33.19 29.65 33.50 32.85 33.40 33.45
0.838 0.896 0.837 0.902 0.890 0.899 0.895

27.23 31.51 27.28 32.31 31.50 32.20 33.56
0.845 0.919 0.837 0.926 0.912 0.922 0.949

20.43 23.88 20.56 25.88 23.09 26.08 24.96
0.739 0.829 0.722 0.887 0.819 0.877 0.893

29.21 30.25 28.89 30.50 29.80 30.37 31.97
0.711 0.741 0.694 0.751 0.725 0.746 0.775

23.94 28.22 24.71 29.18 28.86 29.46 28.91
0.913 0.894 0.816 0.911 0.902 0.911 0.905

23.67 26.13 23.83 26.69 26.27 26.73 26.84
0.703 0.798 0.729 0.807 0.792 0.803 0.812

27.20 30.55 28.08 31.06 30.49 31.04 31.24
0.776 0.799 0.750 0.808 0.795 0.806 0.852

25.59 29.19 25.77 30.80 29.97 30.94 30.90
0.870 0.917 0.857 0.934 0.923 0.929 0.936

26.04 28.90 26.76 29.33 29.29 29.15 29.89
0.796 0.794 0.750 0.797 0.792 0.794 0.858

21.96 26.53 22.84 27.56 25.48 27.48 26.73
0.666 0.815 0.707 0.830 0.788 0.832 0.800

25.43 28.84 25.84 29.68 28.76 29.69 29.85
0.786 0.840 0.770 0.855 0.834 0.852 0.867

3.6.5 Parameter impact

In this section, we evaluate the impact of our method’s parameters on performance. For the low-rank

regularization of similar patches, our analysis focused on the parameters corresponding to the number of
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a) Image 2 b) Bicubic b) SCSR b) NE

c) Kim d) Glasner c) SRCNN d) Ours

Figure 3.11 Super-resolution results obtained for Image 2, for a 3× upscale factor.

a) Image 3 b) Bicubic c) SCSR d) NE

e) Kim f) Glasner g) SRCNN h) Ours

Figure 3.12 Super-resolution results obtained for Image 3, for a 3× upscale factor.
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similar patches K and patch size
√
d. We also measured the trade-off between this regularization term

and residual sparsity (see Section 3.4.2 for details), by fixing γ to 5 and varying parameter λ. Other

parameters were kept as in previous experiments, i.e. κ = 1 and μA = μB = 1 with a 5% at each

iteration.

Figure 3.13 gives the PSNR obtained while varying each of these parameters, for the task of recon-

structing the Lena512 image with a missing pixel ratio of 60%. We see that the number of similar

patches used for the low-rank regularization has a weak impact on performance, but using more patches

generally increases the number of iterations required to converge. Since finding the similar patches is

computationally expensive, we thus limited the number of patches to 45 in our experiments.

In contrast, the size of patches has a more pronounced effect on performance, small patches leading to

a faster convergence and larger ones to a higher PSNR at convergence. This is due to the fact that small

patches are less informative and, thus, their regularization leads to a loss of details (i.e., edge blurring).

Conversely, similarities between large patches can vary more significantly from one iteration to the next,

thereby increasing the total number of iterations required for convergence. In our experiments, we used

a patch size of 6× 6, which offers a good trade-off between convergence speed and PSNR.

As with patch size, sparse regularization parameter λ affects both convergence and reconstruction ac-

curacy, larger values yielding a faster convergence but slightly lower accuracy upon convergence. This

observed trade-off is typical of many regularization terms in inverse problems, such as those based on

l1 or l2 norm.

3.7 Conclusion

A novel method was presented for the high-quality restoration of images with missing or corrupted

pixels. This method exploits the repetitiveness of small patches in the image, via the low-rank reg-

ularization of matrices corresponding to similar patches. It also preserves the global structure of the

image using an innovative strategy, which models the image to recover into a smooth component and a

sparse residual, the latter component regularized using l1 norm. Unlike current approaches, which have

focused on either nonlocal self similarity or global structure preservation, our methods combines both

these powerful principles in a single model. An efficient optimization technique, based on the Alternat-
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a) Number of similar patches b) Patch size c) Sparse regularization λ

Figure 3.13 Impact of the number of similar patches K, patch size
√
d and

regularization parameter λ on the reconstruction of the Lena512 image with 60% pixels

missing.

ing Direction Method of Multipliers (ADMM) algorithm, was proposed to recover corrupted images,

following this model.

The performance of our method was evaluated on two important image restoration problems, image

completion and super-resolution, and compared against ten different approaches for these problems.

Results obtained on many benchmark images have shown our method to significantly outperform state-

of-the-art image completion approaches like JSM (Zhang et al., 2014a), for various ratios of missing

pixels and text corruptions. Similarly, our method yielded a higher mean PSNR and SSIM than recent

super-resolution approaches like SRCNN (Dong et al., 2014a), for different upscale ratios. Furthermore,

our parameter impact analysis has demonstrated the robustness of the proposed method to its main pa-

rameters, and highlighted the trade-off between convergence speed and reconstruction accuracy offered

by these parameters.
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4.1 Abstract

Image priors based on total variation (TV) and nonlocal patch similarity have shown to be power-

ful techniques for the reconstruction of magnetic resonance (MR) images from undersampled k-space

measurements. However, due to the uniform regularization of gradients, standard TV approaches of-

ten over-smooth edges in the image, resulting in the loss of important details. This paper proposes a

novel compressed sensing method which combines both external and internal information for the high-

performance reconstruction of MRI data. A probabilistic atlas is used to model the spatial distribution of

gradients that correspond to various anatomical structures in the image. This atlas is then employed to

control the level of gradient regularization at each image location, within a weighted TV regularization

prior. The proposed method also leverages the redundancy of nonlocal similar patches through a sparse

representation model. Experiments on T1-weighted images from the ABIDE dataset show the proposed

method to outperform state-of-the-art approaches, for different sampling rates and noise levels.

Keywords: Compressive sensing, Total Variation, Re-weighted TV, Nonlocal similarity, Sparse regres-

sion, ADMM.
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4.2 Introduction

Magnetic Resonance Imaging (MRI) is a widely used technique for the in-vivo visualization of anatom-

ical structures, which plays an essential role in the detection, staging and tracking of various diseases.

Due to its acquisition process, MR data differs significantly from natural images (Liang and Lauterbur,

2000). Such data typically captures volumetric (3D) information, each image representing a slice in

the volume along the imaging plane. Moreover, unlike natural images which normally have three color

channels, MR images have a single channel representing signal intensity. Although intensities are linked

to the physiological properties of imaged tissues, they are also determined by the imaging equipment

(i.e., scanner). Comparing MRI data from multiple subjects or sites thus requires pre-processing steps to

account for contrast differences. Another important difference between MR images and natural images

is that the former are obtained in the frequency domain (or k-space). Measurement in this space are

controlled by a pulse sequence, i.e., an accurately timed sequence of radiofrequency (RF) and gradient

pulses.

Due to some physical constraints, such as the remagnetization of tissues between RF pulses and the

slew rate of scanners, the acquisition of high-resolution MR images can be a time-consuming process

(Zhang et al., 2016b). An effective way of accelerating this process is to reduce the number of samples

acquired in k-space, a principle on which is based compressed sensing (CS) (Donoho, 2006). CS theory

shows that a high-resolution image can be recovered perfectly with fewer samples than required by the

Nyquist sampling rate, if the image is sparse under a given transform.

Mathematically, the process of acquiring a vector of undersampled k-space samples y ∈ R
N from a

scanned image x ∈ R
M , with N < M , can be modeled as

y = RFx + n, (4.1)

where F is the Fourier transform projecting x in k-space, R is a sampling mask in k-space (e.g., random,

radial, etc.), and n is additive noise. In CS approaches, the task of recovering x from y is generally
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modeled as an inverse problem (Candes et al., 2008; Chen and Huang, 2014; Xu et al., 2015b):

argmin
x

1

2
‖y −RFx‖22 + λ‖Ψ(x)‖p. (4.2)

The firm term of this cost function, known as data fidelity, measures the consistency between the recon-

structed image x and k-space samples y. Data fidelity is often defined as the negative log-likelihood,

i.e., − logP (y |RFx), and depends on the distribution of noise component n. The formulation of Eq.

(4.2), which measures data fidelity with the l2-norm, results from the assumption that n follows a zero-

mean Gaussian distribution (i.e., white noise). To simplify the presentation of the proposed method, we

suppose that this assumption holds and use the data fidelity term of Eq. (4.2). However, our method

could also be applied to other noise models by using a different data fidelity term, for instance to Laplace

noise via an l1-norm formulation.

When the number of k-space samples is below the required sampling rate, recovering image x becomes

an under-determined problem. The second term of the cost function alleviates this problem by further

constraining image x to be sparse (or compressible) under a suitable transform Ψ. In this regularization

prior, sparsity is measured using an lp-norm, with 0 ≤ p ≤ 1. Because it is convex, and thus easier to

optimize, the l1-norm is commonly used for measuring sparsity. Finally, λ is a parameter that controls

the trade-off between data fidelity and sparse regularization.

Over the years, a wide range of sparsifying transforms have been proposed for CS (Ma et al., 2008a;

Yang et al., 2010b; Huang et al., 2011b; Van Den Berg and Friedlander, 2008). One of the most com-

monly used transforms is total variation (TV) (Candès et al., 2006), which measures the integral of

absolute gradients in the image. Let X be a 2D image in matrix format, i.e. x = vec(X), and denote as

∇dX the gradient of X along dimension d ∈ {horizontal = 1, vertical = 2}. TV can be defined as

TV(X) =
∑
i,j

√∑
d

∣∣∇dXi,j

∣∣2. (4.3)

Because it regularizes gradient evenly across both image directions, the above model is known as

isotropic TV. In contrast, weighted anisotropic TV (WTV) (Candes et al., 2008; Gnahm and Nagel,

2015) allows controlling the amount of regularization at each image location (i, j) and along each di-
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rection d, using weights ωd
i,j ≥ 0:

WTV(X) =
∑
i,j

∑
d

ωd
i,j

∣∣∇dXi,j

∣∣. (4.4)

As demonstrated in this paper, WTV is particularly useful when information on the spatial distribution

of gradient magnitudes and orientations is available.

Most research efforts in CS have been devoted to defining novel image priors (Chen and Huang, 2014;

Wang and Ying, 2014; Gnahm and Nagel, 2015; Haldar et al., 2008; Lauzier et al., 2012; Liu et al.,

2012c) and developing efficient optimization methods to solve the inverse problem (Huang et al., 2011b;

Xu et al., 2015b; Huang et al., 2014b; Hu et al., 2012; Candes et al., 2008). Initial work focused on

modeling sparsifying transforms that use a fixed basis, such as wavelets (Chen and Huang, 2012; Ning

et al., 2013; Ma et al., 2008a; Daubechies et al., 2003) or curvelets (Qu et al., 2010). Sparse dictionary

learning was then investigated as a more adaptive approach for defining sparsifying transforms (Lustig

et al., 2007; Wang and Ying, 2014). Methods based on this technique use training images to compute a

basis (i.e., the dictionary) which can reconstruct image patches accurately with only a few basis elements

(i.e., dictionary atoms). In (Zoran and Weiss, 2012; Yu et al., 2012), a Gaussian Mixture Model (GMM)

was used to learn multiple dictionaries from training images, offering a more compact and effective

representation of image patches.

The reconstruction process can also be improved by exploiting the redundancy of small patterns in the

image, a principle known as nonlocal self-similarity (NSS) (Manjón et al., 2010; Lai et al., 2016; Dong

et al., 2014d; Wang and Ying, 2014; Qu et al., 2014; Mairal et al., 2009) In (Lai et al., 2016) and (Qu

et al., 2014), similar nonlocal images patches are grouped before applying a sparse wavelet transform.

A related method is proposed in (Dong et al., 2014d), where a low-rank regularization prior is applied

on groups of nonlocal patches to enhance the reconstruction of MRI data. Recent work also centered

on improving the reconstruction of multi-channel or multi-contrast images using the principle that these

images have a common sparsity structure (Xu et al., 2015b; Li et al., 2015; Huang et al., 2014b; Chen

and Huang, 2014). Finally, various methods have been proposed to reconstruct image sequences from

dynamic MRI, for instance, using sparse dictionaries to model spatio-temporal patches (Wang and Ying,

2014) or via a low-rank approach (Hu et al., 2012).
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Spatial priors using information internal or external to the image have also been a key factor for im-

proving CS methods. In (Liu et al., 2012c), an adaptive reweighting strategy is proposed for isotropic

TV, where the amount of gradient regularization at each pixel is determined based on the reconstruction

at the previous iteration. Likewise spatially-weighted TV models have been applied successfully for

image reconstruction (Chantas et al., 2010; Zhang and Desrosiers, 2016), image restoration (El Hamidi

et al., 2010), and multiframe super-resolution (Yuan et al., 2012a). Such models exploit image-specific

information to better preserve edges and texture during the reconstruction process. Although less com-

mon, spatial priors based on external information have also been proposed. In (Lauzier et al., 2012),

the difference between the reconstructed image and a reference image (e.g., image of different contrast)

is constrained to be sparse under a given transform. A similar method is presented in (Haldar et al.,

2008), where a quadratic penalty proportional to the gradient of a reference image is used to impose

smoothness constraints in the reconstructed image. Closely related to this paper is the work of Gnahm

and Nagel (Gnahm and Nagel, 2015), where a spatially-weighted second-order TV model is used to

constrain the reconstruction of sodium MR images. In most cases, however, such a reference image is

not available.

Unlike natural images, the spatial characteristics of medical images are often restricted by the target

anatomical structure and imaging modality. If data of a large subject group is available, the variability

of image characteristics in a population can be modeled effectively using probabilistic atlases. Such

atlases are commonly used to guide the segmentation and registration of medical images (Shi et al.,

2014). Moreover, in many anatomical structures like the brain, the spatial distribution of characteristics

like gradients is not uniform. For instance, ventricles and white matter tissues in the brain are usually

characterized by uniform regions with low gradient, while cortical regions typically exhibit high gradient

magnitudes. In (Zhang et al., 2016b), we proposed the first atlas-based approach for the reconstruction

of brain MR data. This approach used an anatomically-weighted TV model to further constrain gradients

of the reconstructed image, in which weights are derived from a probabilistic atlas. While using this atlas

improved reconstruction accuracy compared to standard TV, our method only used external information

(i.e., the atlas) and did not consider internal image cues. In this paper, we extend this previous work by

combining atlas-driven weighted TV regularization with a patched-based NSS model.
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The detailed contributions of our work are as follows:

a. So far, CS methods in the literature (e.g., (Chantas et al., 2010; El Hamidi et al., 2010; Gnahm

and Nagel, 2015; Zhang et al., 2016b)) have considered image priors based on either internal

or external information, but not both. To our knowledge, this is the first approach to combine

internal and external priors in a single consistent model. Internal information is considered as

groups of similar patches in the image, which are reconstructed together using multiple sparse

dictionaries. These dictionaries are learned with a Gaussian Mixture Model (GMM), providing a

more efficient and compact representation of patches. External information is also incorporated

in the model in the form of a weighted TV regularization prior, the weights of which are driven by

a probabilistic atlas of gradients. These internal and external image priors offer complementary

information, the first one modeling nonlocal repetitive patterns and the other one preserving the

contours and textures of anatomical structures.

b. The proposed model is solved efficiently using an approach based on the alternating direction

method of multipliers (ADMM) algorithm (Boyd et al., 2011). The hard optimization problem

deriving from our model is carefully decomposed into individual sub-problems, each of which

can be solved via simple operations (i.e., sparse matrix multiplications, thresholding, etc.). The

resulting optimization approach has a low computational complexity and provides a high conver-

gence rate.

c. An extensive set of experiments is presented for validating the proposed approach. These exper-

iments compare our approach against eight different CS methods on the task of reconstructing

brain MR images from undersampled k-space measurements. Results show our approach to out-

perform state-of-the-art methods for this task.

The rest of this paper is as follows. In the following section, we present the proposed compressive sens-

ing model, describing the anatomically-weighted TV regularization and the NSS patch reconstruction

strategies in separate sub-sections. We then explain how the complex optimization problem resulting

from our model can be solved efficiently via an ADMM method, and provide a complexity analysis

for this method. Our approach is then evaluated on the brain MR reconstruction problem, using 184
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volumes from the ABIDE dataset. Finally, we conclude with a summary of our main contributions and

results.

4.3 The proposed method

The overall flowchart of the proposed method is presented in Fig. 4.1. In an offline learning stage, multi-

subject training data is used to learn the NSS patch dictionaries, each one corresponding to a different

GMM component, and the probabilistic atlas of gradients. Given a vector of k-space measurements y,

the corresponding image x is reconstructed with an iterative approach using the pre-computed patch

dictionaries and gradient atlas. The following sub-sections present each of these steps in greater details.
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Figure 4.1 Flowchart of the proposed compressed sensing method for the reconstruction

of brain MR data.

4.3.1 Probabilistic atlas of gradients

We analyzed the spatial distribution of gradients in 184 T1-weighted MR volumes from the ABIDE

dataset (see Section 4.4). Figure 4.2 (a) shows the log2 probability density of gradients observed in the
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same mid-brain coronal slice of these volumes. It can be seen that the distributions are heavy-tailed and

that the corresponding log2 density is shaped like an inverted ‘V’. This observation suggests a Laplace

distribution as underlying model1.

A Bayesian approach is proposed to model the probabilistic atlas of gradients. Let {X1, . . . ,XT } be

a set of images from T subjects, and denote as ∇Xt the gradient image corresponding to Xt. We find

distribution parameters θ of the probabilistic atlas by maximizing the a posteriori probability:

θ̂ = argmax
θ

P
(
θ
∣∣∇X1, . . . ,∇XT

)
= argmax

θ
P
(∇X1, . . . ,∇XT

∣∣θ) + P
(
θ
)
. (4.5)

Based on the previous observation, we suppose the gradient in direction d at each position (i, j) to be

independent and identically distributed (i.i.d.), and following a Laplace distribution with parameters

θdi,j > 0. Using a Laplace hyperprior of parameter ε > 0, the atlas parameters θdi,j can be obtained by

solving the following MAP problem:

argmax
θdi,j > 0

T∑
t=1

log
(θdi,j

2
e−θdi,j |dXt

i,j |
)
+ log

( ε

2
e−ε θdi,j

)
. (4.6)

The optimal estimation of these parameters is as follows (please refer to the appendix for a detailed

derivation):

θdi,j =
T

ε+
∑T

t=1 |dXt
i,j |

. (4.7)

We see that parameter θdi,j is inversely proportional to the mean gradient along direction d, observed at

position (i, j), and that ε acts as a regularization factor when the gradient magnitudes are small (i.e.,

uniform regions).

As in our previous work (Zhang et al., 2016b), we use our probabilistic gradient atlas in the weighted

anisotropic TV model of Eq. (4.4), and set ωd
i,j = θdi,j for each image location (i, j) and gradient

direction d. Let Gd = Diag(θd) · (I ⊗ d), where ⊗ is the Kronecker product. The atlas-weighted TV

prior can then be expressed simply as ‖Gx‖1, where G� =
[
G�

1 G�
2

]
. Adding this prior in the CS

1A Gaussian distribution would be shaped like an inverted parabola.
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formulation of Eq. (4.2) yields the following problem:

argmin
x

1

2
‖y −RFx‖22 + λ‖Gx‖1. (4.8)

Figures 4.2(b) and 4.2(c) show examples of atlas parameter values for the horizontal and vertical gradi-

ent directions, using ε = 0.1. Higher values can be seen in uniform regions like the background, white

matter tissues and brain stem, corresponding to a more important penalization of gradients in those

regions. In contrast, cortical regions in the atlas have smaller values, leading to a less aggressive regu-

larization of gradients in those regions. We also observe notable differences between the atlas gradients

in the horizontal and vertical directions, supporting our choice of considering gradient orientation in the

model (i.e., weighted anisotropic TV).
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Figure 4.2 (a) Heavy-tailed distribution of horizontal gradients from a subset of 50

subjects. Atlas weights corresponding to (b) horizontal and (c) vertical gradients, for

ε = 0.1.

4.3.2 Sparse dictionaries of NSS patches

As in most NSS approaches, we use a patch-based description of image x to improve its reconstruction.

From now on, since x is modeled as a vector, we use a single index i for referring to a pixel in x. Denote

as pi ∈ R
S the

√
S×√S patch centered on pixel i of x. Using the same training data as for obtaining the

probabilistic atlas of gradients, we learn a set of dictionaries that offer a sparse representation of patches

in x. While any dictionary learning scheme can be used for this task, in this work, we adapt the group
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patch based GMM learning technique proposed in (Xu et al., 2015a) to our reconstruction framework.

This technique is described in the following two paragraphs.

In an offline stage, KPG groups of similar patches are extracted from training images, for instance, based

on the k-means algorithm. For each patch group, the mean patch vector is computed and subtracted from

all patches in the group. These normalized patch groups thus encode modes of variation with respect

to the group mean. To further reduce the number of parameters, a set of KGMM Gaussians are then

learned from the normalized patch groups, requiring that all patches in a group belong to the same

Gaussian component. The Expectation-Maximization (EM) algorithm is used for this learning step.

Denote as Σj the covariance matrix of the j-th Gaussian component, and let Σj = DjΛjD
�
j be its

eigendecomposition. A dictionary is obtained for each component as its matrix of eigenvectors Dj .

Note that these dictionaries are orthogonal bases, i.e. D�
j Dj = I.

During the reconstruction phase, for each pixel i, we find the K patches most similar to pi based on the

Euclidean distance. Let {pk
i }, k = 1, . . . ,K, be the set of patches most similar to pi, and denote as pi

the mean patch of this group, i.e. pi =
1
K

∑
k p

k
i . Following our dictionary learning model, pi can be

sparsely encoded as pi ≈ Diαi + pi, where αi are sparse coding coefficients. Note that the dictionary

used for encoding patches depends on the pixel index i. This is done so that the most suitable dictionary

is used for each pixel. Following (Xu et al., 2015a), we select for pixel i the dictionary ji maximizing

the the log-likelihood of normalized patches similar to pi:

ji = argmax
j

logP (j |p1
i , . . . ,p

K
i ) ∝

K∑
k=1

logN (pk
i − pi |0, Σj + σ2I), (4.9)

where σ2 is the variance of noise component n.

Let Sk
i be the patch extraction matrix such that pk

i = Sk
i x. We add the NSS prior described above in

the atlas-weighted TV reconstruction model of Eq. (4.8):

argmin
x, {αk

i }

1

2
‖y −RFx‖22 + λ‖Gx‖1 + γ

N∑
i=1

K∑
k=1

‖Wiα
k
i ‖1

s.t. Sk
i x = Diα

k
i + pi, i = 1, . . . , N, k = 1, . . . ,K. (4.10)
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In this combined model, Wi is a diagonal matrix whose s-th diagonal element is equal to 2
√
2σ2/(λi,s+

c), where λi,s ≥ 0 is the eigenvalue associated with the s-th eigenvector (i.e., column) of Di, and c is a

small positive constant. The role of this matrix is to reduce the sparse regularization of more informative

components in Di, as measured by their respective eigenvalue. A similar strategy is used in (Gu et al.,

2014) for the weighted nuclear norm regularization of patch groups. Moreover, γ is a method parameter

controlling the relative importance of NSS patch sparsity in the model.

4.3.3 Recovering the image

While convex, the optimization problem of Eq. (4.10) cannot be solved directly due to the l1-norm

regularization terms. Furthermore, because F and G are large matrices (e.g., N × N for F), special

care must be taken to limit the computational complexity of solving the problem. Considering these

constraints, we propose an iterative optimization approach based on the Alternating Direction Method

of Multipliers (ADMM) algorithm (Boyd et al., 2011). The main principle of ADMM methods is

to decompose a hard-to-solve problem into easier sub-problems, which are solved alternatively until

convergence.

In a first step, we decouple the terms of the cost function by introducing constrained auxiliary variables

z = Fx, u = Gx and υki = Wαk
i , i = 1, . . . , N , k = 1, . . . ,K. This particular decomposition

strategy is used to make each variable update as efficient as possible. The problem of Eq. (4.10) can

then be expressed equivalently as

argmin
x, {αk

i }, z,u, {υk
i }

1

2
‖y −Rz‖22 + λ‖u‖1 + γ

N∑
i=1

K∑
k=1

‖υki ‖1

s.t. Sk
i x = Diα

k
i + pi, υ

k
i = Wαk

i , i = 1, . . . , N, k = 1, . . . ,K

u = Gx, z = Fx. (4.11)

The constraints in this equivalent problem are then moved to the cost function, via an augmented La-

grange formulation:
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argmin
x, {αk

i }, z,u, {υk
i }

1

2
‖y −Rz‖22 + λ‖u‖1 + γ

N∑
i=1

K∑
k=1

‖υki ‖1

+
μA

2

N∑
i=1

K∑
k=1

‖Sk
i x−Diα

k
i − pi + aki ‖22 +

μB

2
‖u−Gx+ b‖22

+
μC

2

N∑
i=1

K∑
k=1

‖υki −Wαk
i + cki ‖22 +

μD

2
‖z− Fx+ d‖22. (4.12)

Here, aki , b, cki and d are the Lagrange multipliers of these constraints, and μA, μB , μC and μD

their corresponding parameters. In general, ADMM approaches are not very sensitive to the choice of

these parameters, which mostly affect the convergence of the solution (Boyd et al., 2011). In practice,

convergence can be facilitated by initializing them to a small value, which is then increased at each

iteration.

The solution to this problem is obtained by updating each variable in turn, until convergence is reached.

Let hk
i = Diα

k
i +pi − aki . Assuming all the other parameters fixed, we can update image x by solving

the following unconstrained least-square problem:

argmin
x

μA

2

N∑
i=1

K∑
k=1

‖Sk
i x − hk

i ‖22 +
μB

2
‖Gx − (u+ b)‖22

+
μD

2
‖Fx − (z+ d)‖22 (4.13)

Let Q̃ =
∑

i

∑
k (S

k
i )

�
Sk
i and h̃ =

∑
i

∑
k (S

k
i )

�
hk
i . Since F is orthogonal, the solution to this

problem is given by

x =
(
μDI + μAQ̃ + μBG

�G
)−1(

μDF
�(z+ d) + μAh̃ + μBG

�(u+ b)
)
. (4.14)

It can be shown that Q̃ is a diagonal matrix and that G�G is a matrix with exactly five non-zero

diagonals. Consequently, this linear system can be solved in O(N) using an extended Thomas algorithm

(Golub and F, 1996). Moreover, F�(z + d) can be evaluated in O(N logN) with the 2D inverse

fast Fourier transform (IFFT), based on the following relation: F�x = vec
(
IFFT(X)

)
. Likewise,

G�(u+ b) can be computed rapidly using a gradient filter operation.
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Moreover, sparse coefficients αk
i can be updated independently for each pixel i and similar patch k, by

solving the following problem:

argmin
αk

i

μA

2
‖Diα

k
i − (Sk

i x− pi + aki )‖22 +
μC

2

N∑
i=1

K∑
k=1

‖Wiα
k
i − (υki + cki )‖22. (4.15)

Since Di is orthogonal, the solution to this problem is given by:

αk
i =

(
μAI + μCW

2
i

)−1
(
μADi

�(Sk
i x− pi + aki ) + μCWi(υ

k
i + cki )

)
. (4.16)

Note that μAI + μCW
2
i is diagonal and thus trivial to invert. Updating z also corresponds to a least-

square problem,

argmin
z

1

2
‖Rz − y‖22 +

μD

2
‖z − (Fx− d)‖22, (4.17)

the solution of which is given by

z =
(
R�R+ μDI

)−1(
R�y + μD(Fx− b)

)
. (4.18)

Once again, inverting diagonal matrix R�R+ μDI is a trivial operation. Moreover, as before, Fx can

be computed efficiently with a 2D FFT operator.

To update u, we consider the following problem:

argmin
u

λ‖u‖1 +
μB

2
‖u − (Gx− b)‖22. (4.19)

This problem can be solved independently for each pixel via soft-thresholding:

u = sign
(
Gx− b

)
·max

{
|Gx− b| − λ

μB
, 0

}
. (4.20)

Here, the sign and max operations are applied separately to each vector element. Likewise, the task of

updating υik can be modeled as

argmin
υk
i

γ‖υki ‖1 +
μC

2
‖υki − (Wiα

k
i − cki )‖22, (4.21)
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and solved via soft-thresholding:

υki = sign
(
Wiα

k
i − cki

)
·max

{
|Wiα

k
i − cki | − γ

μC
, 0

}
. (4.22)

Finally, the Lagrange multipliers can be updated following the standard ADMM approach:

aki := aki + (Sk
i x−Diα

k
i − pi), i = 1, . . . , N, k = 1, . . . ,K

b := b + (u−Gx)

cki := cki + (υki −Wαk
i ), i = 1, . . . , N, k = 1, . . . ,K

d := d + (z− Fx). (4.23)

4.3.4 Algorithm summary and complexity

The proposed reconstruction method is summarized in Algorithm 4.1. Starting with an initial estimation

of x (e.g., using the weighted TV formulation of Eq. (4.8)), at each iteration, the algorithm finds for

every pixel i the group of K patches most similar to pi. The dictionary Di, corresponding to the most

likely GMM component, is then used to encode all patches from this group. Following this, ADMM

variables are updated and image x recomputed. This process is repeated until the change to x is smaller

than a given threshold.
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Algorithm 4.1 The proposed CS method

Input: The undersampled k-space measurements y;

Input: The gradient atlas G and patch dictionaries Dj , j = 1, . . . ,KGMM;

Output: The reconstructed image x;

Compute an initial estimate of x;

Set aki := 0, b := 0, cki := 0, d := 0, ∀i, ∀k;

Set z := 0, u := 0, υki := 0, ∀i, ∀k;

while not converged do

foreach pixel i do
Find group of similar patches {pk

i }, k = 1, . . . ,K;

Select dictionary Di using Eq. (4.9);

Update αk
i , k = 1, . . . ,K, using Eq. (4.15);

Update υki , k = 1, . . . ,K, using Eq. (4.22);

end

Update z, by solving Eq. (4.18);

Update u, by solving Eq. (4.20);

Update Lagrange multipliers using Eq. (4.23);

Update x using Eq. (4.14);

end

return x ;

In terms of computational complexity, the most expensive operations of the proposed method are com-

puting the similar patch groups, selecting the Gaussian components (i.e., dictionaries), and updating

variables αk
i and υki , since these operations depend on both the number of pixels N and the number of

similar patches K. For each iteration, finding the K nearest neighbors of every pixel’s patch can be done

in O(SKN logN) using a K-D tree. An approximation method like locality-sensitive hashing (LSH)

(Pan and Manocha, 2011) could also be employed to further accelerate this step. Moreover, this step can

be skipped entirely after a few iterations, since the list of nearest neighbors then becomes fixed. Like-

wise, selecting the dictionary Di for each patch group has a complexity in O(S2KNKGMM), where

KGMM is the number of GMM components. Finally, following Eq. (4.15) and (4.22), updating sparse

codes αk
i and ADMM variables υki can be done in O(S2KN) and O(SKN), respectively. Hence, the

overall complexity of each iteration is in O(
SKN(logN + SKGMM)

)
. In practice, S, K and KGMM

are very small compared to N , do not vary much from one application to another.
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4.4 Experiments

In this section, we evaluate the performance of our method on the task of reconstructing MR images

from undersampled k-space measurements obtained using different sampling masks.

4.4.1 Evaluation methodology

We used the whole-brain T1-weighted scans of 184 subjects from the Autism Brain Imaging Data Ex-

change dataset2, an online consortium of MRI and resting-state fMRI data from 17 international sites.

In accordance with Health Insurance Portability and Accountability (HIPAA) guidelines, all data are

anonymized with no protected health information included. Each volumetric image was acquired with

a 3T MRI scanner at a voxel resolution of 1 mm3, for a total size of 256 × 256 × 256 voxels. The

184 volumes used in our experiments correspond to all healthy subjects of 18 years or older in the

dataset. To emphasize the reconstruction of brain tissues, we used skull-stripped images processed by

the FreeSurfer 5.1 software3. All used images are in their original subject space.

The parameters of our method were tuned empirically on images not used in testing. Following Eq.

(4.7), the gradient distribution parameters were computed with ε = 0.1. In the GMM dictionary learning

stage, the patch size S was set depending on the sampling rate r: S = 9 for r < 0.2, S = 8 for

0.2 ≤ r ≤ 0.4, and S = 7 for r > 0.4. Likewise, the number of GMM components was set to

KGMM = 33 for r ≤ 0.4, and KGMM = 65 for r > 0.4. For all experiments, image prior trade-

off parameters were set to λ = 0.1 and γ = 1. With a higher value for λ, gradients may be too

penalized and the reconstructed image over-smoothed. Conversely, with higher γ values, reconstruction

artifacts may be introduced. It should be mentioned that better results could potentially be obtained

by tuning these parameters per reconstruction task. Finally, ADMM parameters were initialized to

μA = μB = μC = μD = 1 and increased by 5% at each iteration to accelerate convergence.

The proposed method was compared to six baseline CS approaches: Robust uncertainty principles:

Exact signal reconstruction from highly incomplete frequency information (TV) (Candès et al., 2006),

Sparse MRI: The application of compressed sensing for rapid MR imaging (SparseMRI) (Lustig et al.,

2http://fcon_1000.projects.nitrc.org/indi/abide/
3http://surfer.nmr.mgh.harvard.edu/
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2007), An efficient algorithm for compressed MR imaging using total variation and wavelets (TVCMRI)

(Ma et al., 2008a), A fast alternating direction method for TVL1-L2 signal reconstruction from partial

Fourier data (RecPF) (Yang et al., 2010b), Efficient MR image reconstruction for compressed MR imag-

ing (FCSA) (Huang et al., 2011b) and Probing the Pareto frontier for basis pursuit solutions (SPGL1)

(Van Den Berg and Friedlander, 2008). Both SparseMRI and TVCMRI have a regularization term based

on wavelet sparsity. Our method’s performance was also compared to that of two recently-proposed CS

approaches: Compressive sensing via nonlocal low-rank regularization (NLRCS) (Dong et al., 2014d)

and Nonlocal image restoration with bilateral variance estimation: a low-rank approach (SAISTCS)

(Dong et al., 2013a). The implementation of all approaches were obtained from their authors’ website.

Parameters were selected based on a grid-search around the default setting.

The performance of tested methods was measured using the Relative l2 Norm Error (RLNE) (Qu et al.,

2014) and the Signal to Noise Ratio (SNR). Let x be the reconstructed image and x0 the ground-truth

reconstruction (i.e., original image used for sampling). The RLNE is defined as ‖x − x0‖2/‖x0‖2.

Three types of sampling masks were used to generate the k-space measurements (Tsai and Nishimura,

2000): random sampling, pseudo-random sampling and radial sampling. Figure 4.3 gives examples of

these mask types for a sampling rate (i.e., number of k-space samples / 2562) of 25%. Compared to

random sampling, pseudo-random sampling gives more importance to the center of the k-space, where

lies most of the information. All experiments were carried out in MATLAB, on a 2.3 GHz PC with 16Gb

of RAM.

(a) Random (b) Pseudo-random (c) Radial

Figure 4.3 Examples of random, pseudo-random and radial sampling masks, for a

sampling rate of 25%.
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4.4.2 Impact of the atlas-weighted TV prior
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Figure 4.4 (a) Reconstruction accuracy in SNR (db) obtained by TV and WTV for

increasing noise levels σ, with a sampling rate of 10%. (b) SNR values for different brain

slices, using a sampling rate of 10% and noise level of σ = 0.01. Values in both figures

correspond to the average computed over the slices of 10 different subjects.

To analyze the impact of our probabilistic atlas of gradients, we compared our method using only the

atlas-weighted TV regularization of Eq. (4.8), denoted as WTV, to the uniform TV model of Eq. (4.3).

Figure 4.4(a) gives the reconstruction accuracy, in terms of SNR (dB), obtained by TV and WTV for a

10% pseudo-random sampling and increasing noise levels (i.e., standard deviation) σ. Reported values

correspond to the mean obtained for the same mid-brain slice (i.e., slice #100) of 10 different subjects.

While our method obtains a similar mean accuracy (SNR) as uniform TV in the noiseless case, we

observe a significant improvement for higher noise levels, due to the additional information provided by

the probabilistic atlas of gradients.

Figure 4.4(b) shows the mean SNR (and stdev) of the same methods for different slices of the 10 sub-

jects, using the same sampling mask. For this experiment, the noise level was fixed to σ = 0.01. Once

again, we see that WTV outperforms uniform TV on all slices, demonstrating the advantage of our

method for whole-brain reconstruction.
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Table 4.1 Mean accuracy (± stdev) in terms of SNR (db) and RLNE obtained by the

tested methods for different sampling rates and a noise level of σ = 0.01 on random

mask. Values correspond to the average computed over slice #100 of 10 different subjects.

Rate SparseMRI TVCMRI RecPF FCSA SPGL1 Ours

20%
22.15 ± 1.45 21.82 ± 1.34 23.72 ± 1.90 29.95 ± 3.02 25.13 ± 1.09 32.80 ± 2.89
0.068 ± 0.011 0.070 ± 0.010 0.057 ± 0.012 0.029 ± 0.011 0.048 ± 0.005 0.021 ± 0.008

25%
30.74 ± 2.41 29.76 ± 1.34 33.60 ± 1.90 34.76 ± 1.46 26.62 ± 0.98 37.93 ± 2.08
0.026 ± 0.007 0.029 ± 0.007 0.018 ± 0.004 0.016 ± 0.003 0.040 ± 0.003 0.011 ± 0.002

28%
36.38 ± 2.36 35.34 ± 2.27 35.82 ± 1.09 36.91 ± 1.61 27.94 ± 1.07 38.00 ± 0.96
0.013 ± 0.004 0.015 ± 0.004 0.014 ± 0.002 0.012 ± 0.002 0.034 ± 0.004 0.011 ± 0.001

30%
35.83 ± 2.81 33.51 ± 2.52 37.68 ± 1.28 38.46 ± 0.56 29.14 ± 0.41 44.05 ± 2.38
0.014 ± 0.004 0.019 ± 0.005 0.011 ± 0.002 0.010 ± 0.001 0.030 ± 0.001 0.006 ± 0.002

35%
43.68 ± 1.91 45.08 ± 1.82 40.05 ± 1.81 42.44 ± 2.04 31.78 ± 1.45 47.83 ± 1.64
0.006 ± 0.001 0.005 ± 0.001 0.009 ± 0.001 0.007 ± 0.002 0.022 ± 0.004 0.004 ± 0.001

38%
45.49 ± 2.15 47.13 ± 2.30 42.92 ± 2.19 44.29 ± 2.67 33.49 ± 1.84 49.05 ± 1.81
0.005 ± 0.001 0.004 ± 0.001 0.006 ± 0.001 0.005 ± 0.002 0.019 ± 0.004 0.003 ± 0.001

4.4.3 Comparison to baseline approaches

Table 4.1 gives the mean reconstruction accuracy in SNR (dB) and RLNE obtained by our method and

the five baseline CS approaches, obtained for various rates of a random k-space sampling and a fixed

noise level of σ = 0.01. Each value in the table corresponds to the average (and stdev) obtained over

the 10 different images (subjects) used in the previous experiment. Likewise, the mean performance for

different sampling rates of pseudo-random and radial samplings, for the same noise level, are provided

as curves in Fig. 4.5. Note that the tested version of RecPF did not support pseudo-random sampling.

It can be seen that our method obtains the best SNR and RLNE for all sampling masks and rates.

Comparing the values in Table 4.1 using a pairwise Wilcoxon sign-rank test, our method is statistically

superior to all baseline approaches, with p < 0.01.

Figure 4.6 gives the accuracy obtained by tested approaches for different brain slices of the same subject,

using a 25% random sampling and a noise level of σ = 0.01. Once again, we see that our method out-

performs all baseline approaches over all slices. For slice #100, our method yields an SNR improvement

of 8db and a RLNE improvement of 0.01 compared to the second best approach (i.e., SparseMRI).
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Figure 4.5 Reconstruction accuracy in SNR and RLNE, for different sampling rates and

noise level of σ = 0.01. Top row: pseudo-random sampling. Bottom row: radial sampling.

Examples of reconstruction errors obtained with a random, pseudo-random and radial sampling mask,

using 25% sampling rate and noise level σ = 0.01, are provided in Fig. 4.7, 4.9 and 4.8, respectively. It

can be observed that SparseMRI, TVCMRI and SPGL1 lead to streaking reconstruction artifacts, which

are most pronounced for the radial sampling mask. Compared to baseline approaches, our method

yields less reconstruction noise in the background, possibly due to the high gradient penalty impose

by the probabilistic atlas. Likewise, fine details in cortical regions are also better preserved than with

competing approaches, as a result of the image prior based on nonlocal similar patches.

The convergence of our method is analyzed in Fig. 4.10, comparing the SNR obtained by our method at

each iteration with that of baseline approaches. Once more, results were obtained using a 25% sampling
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Slice # Slice #

Figure 4.6 SNR and RLNE values for difference atlas of one subject using a random

sampling rate 25% and noise level of 0.01.

Figure 4.7 Residual reconstruction error for a 25% random sampling and noise level of

σ = 0.01. Numerical values correspond to RLNE.

rate and noise level of σ = 0.01. We see that the convergence rate of our method is comparable to

other approaches, with a highest SNR value achieved within 200 reconstruction iterations for all types
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Figure 4.8 Residual reconstruction error for a 25% pseudo-random sampling and noise

level of σ = 0.01. Numerical values correspond to RLNE.

of sampling masks. However, in all cases, the accuracy at convergence is higher for our method than for

these approaches.

4.4.4 Comparison to state-of-the-art

Table 4.2 Mean (± stdev) accuracy and runtime obtained by the tested methods for

different number of radial mask lines. Values correspond to the average computed over

slice #80 of 8 different subjects.

Radial lines WTV NLRCS SAISTCS Ours

6
8.97 ± 0.20 11.89 ± 0.76 12.06 ± 0.32 12.87 ± 0.48 SNR

0.342 ± 0.051 0.236 ± 0.011 0.225 ± 0.009 0.200 ± 0.012 RLNE
82.3 ± 0.9 844.2 ± 10.0 950.1 ± 11.4 95.8 ± 1.0 Time (s)

20
14.52 ± 1.19 16.67 ± 1.27 16.88 ± 1.33 18.38 ± 1.07 SNR

0.198 ± 0.027 0.131 ± 0.020 0.129 ± 0.018 0.102 ± 0.010 RLNE
80.1 ± 1.8 978.7 ± 10.9 955.8 ± 9.9 97.3 ± 1.8 Time (s)

45
22.83 ± 0.48 36.98 ± 0.67 37.32 ± 0.77 37.37 ± 0.89 SNR

0.075 ± 0.011 0.014 ± 0.007 0.012 ± 0.001 0.011 ± 0.001 RLNE
80.1 ± 0.7 985.9 ± 10.8 977.8 ± 9.7 99.7 ± 0.6 Time (s)
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Figure 4.9 Residual reconstruction error for a 25% radial sampling and noise level of

σ = 0.01. Numerical values correspond to RLNE.

(a) Random (b) Pseudo-random (c) Radial

Figure 4.10 The reconstruction accuracy in SNR at each iteration obtained for different

types of sampling masks, using a sampling rate of 25% and noise level of σ = 0.01.

We also compared our method against three recently proposed CS approaches: A weighted total vari-

ation approach for the atlas-based reconstruction of brain MR data (WTV) (Zhang et al., 2016b), NL-

RCS (Dong et al., 2014d), Compressive sensing via nonlocal low-rank regularization (SAISTCS) (Dong

et al., 2013a). As mentioned before, WTV corresponds to our CS method using only the atlas-weigthed
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TV regularization. Table 4.11 gives the mean SNR, RLNE and runtime of tested methods for radial

masks having a different number of sampling lines, and a noise level of σ = 0.01. Values reported in

the table correspond to the average computed over the same slice (i.e., slice #80) of 8 subjects in the

dataset. An example of image, mask and reconstruction errors obtained by the methods, for one of the

test subjects, is shown in Fig. 4.11.

From these results, we see that our method outperforms all other approaches for all sampling rates,

both in terms of SNR and RLNE. For 20 radial lines, our method yields a mean improvement of 1.5

dB in SNR and 0.027 in RLNE over the second best approach (i.e., SAISTCS). In a pairwise Wilcoxon

sign-rank test, our method is statistically superior to NLRCS and SAISTCS, with p < 0.01, for low

sampling rates (i.e., 6 – 20 sampling lines). For larger sampling rates (i.e., 45 sampling lines), our

method’s accuracy is greater than that of WTV and NLRCS, but equal to the accuracy of SAISTCS.

However, our method is much faster than this state-of-the-art approach, with a mean runtime of 97.6

seconds, compared to 961.2 seconds for SAISTCS.

4.5 Conclusion

We presented a novel compressed sensing method for the high-performance reconstruction of brain MR

data, that combines external and internal information in a single efficient model. A probabilistic atlas,

based on the Laplace distribution, was used to model the heavy-tailed characteristic of image gradients

and to define the weights in an anatomically-weighted TV regularization prior. The repetitiveness of

nonlocal patches was also leveraged to improve the reconstruction process, through the sparse model-

ing of similar patch groups. To provide a more compact and effective patch representation, multiple

patch dictionaries were learned based on a Gaussian Mixture Model (GMM). An efficient optimiza-

tion approach, based on the alternating direction method of multipliers (ADMM), was proposed to

decompose the hard optimization problem resulting from our model into easy-to-manage sub-problems.

Experiments on T1-weighted MR images from the ABIDE dataset showed our method to outperform

state-of-the-art approaches, for different sampling rates and noise levels.
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Figure 4.11 Residual reconstruction error for a radial mask with 20 sampling lines and a

noise level of σ = 0.01.





CHAPTER 5

CONCLUSION

This last chapter provides a summary of the thesis’ contributions and recommendations for addressing

the limitations of this work.

5.1 Summary of contributions

In Chapter 2, we proposed a novel image reconstruction approach that combines the low rank regulariza-

tion of similar nonlocal patches with a texture preserving prior based on gradient histogram estimation.

A dynamic thresholding technique, based on the weighted nuclear norm, was also proposed for the si-

multaneous reconstruction of similar patch groups. Moreover, we presented an efficient algorithm based

on ADMM to recover the image from the proposed model. Numerical experiments on two benchmark

datasets have shown the capacity of our method to suppress various levels of noise, while preserving im-

age details like texture and edges. The proposed method achieved the highest mean SSIM for all noise

levels and the best overall PSNR, among all tested approaches. Our experiments have also illustrated the

usefulness of employing a dynamic thresholding technique and using a gradient histogram preservation

prior.

Chapter 3 presented a novel image completion method that preserves both local and global image con-

sistency. The proposed method exploits the similarity of nonlocal similar patches in the image via a low

rank approxiamtion technique. An innovative strategy is also proposed for the regularization of global

structure, which decomposes the image into a smooth component and a sparse residual. This strategy

is shown to have advantages over standard techniques likes wavelet sparsity. The proposed model is

solved with an effective optimization strategy based on ADMM. Experiments on several benchmark

images have shown the proposed method to outperform state-of-the-art image completion and super-

resolution methods, for various levels of corruption (i.e., ratio of missing pixels) and upscale factors.

In Chapter 4, a novel compressed sensing method is proposed for the reconstruction of MR images.

The main contribution of this method lies in the combination of both internal and external information
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in a single efficient model. The recurrence of similar patches throughout the image is considered as

internal information, which is used in a sparse representation model. External information is leveraged

in the form a probabilistic atlas that models the spatial distribution of gradients in anatomical struc-

tures. This atlas serves as prior to control the level of gradient regularization at each image location,

within a weighted TV regularization prior. Experiments on phantom, real MRI data and photographic

images illustrated the efficacy and robustness of the proposed method. Compared to state-of-the-art CS

approaches, quantitatively and qualitatively better results are achieved.

5.2 Limitations and recommendations

The reconstruction methods proposed in this thesis suppose that images are corrupted by additive white

Gaussian noise, leading to an l2 formulation of data fidelity. However, in applications like MR imaging,

noise follows a different distribution such as the Rician distribution. A possible extension of this work

would be to adapt the proposed methods to these noise distributions. This could be done in our different

formulations by replacing the l2 norm in the data fidelity term to some other norm (e.g., l1 norm form

Laplacian noise), or by employing a non-linear function for this term for more complex noise types. A

decomposition approach like the ADMM could be used to solve this new formulation. Likewise, the

gradient histogram estimation technique, presented in Chapter 2, can only deal with images corrupted

by white Gaussian noise. This limitation could be addressed using a histogram regularization technique

in the frequency domain, which could also exploit the property of sparsity (i.e., the histogram of gradient

magnitudes typically follows a Laplace distribution).

The methods proposed in Chapters 2 and 3 rely on the weighted nuclear norm for the adaptive threshold-

ing of similar patch groups. In some cases, this technique may require an image-specific tuning of pa-

rameters to achieve optimal results. Based on preliminary experiments, the truncated soft-thresholding

operator could be a good alternative for this task.

Another limitation of the proposed methods stems from their optimization techniques, which are based

on the ADMM algorithm. While ADMM facilitates solving a complex problem (e.g., combining several

regularization terms) through a process of decomposition, its convergence rate is below that of other op-

timization approaches. An alternative could be to use techniques based on accelerated gradient descent
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(Nesterov et al., 2007) like Nesterov’s method. Moreover, techniques combining ADMM optimization

with deep learning, such as ADMM-Net (Sun et al., 2016), could also be explored as a way to improve

computations and reduce the burden of parameter tuning.

Recently, deep learning techniques like convolutional neural networks have shown a great potential for

various image reconstruction problems, such as denoising (Zhang et al., 2017) and super-resolution

(Dong et al., 2016; Kim et al., 2016). A promising extension of this research would be to investigate

the combination of deep learning-based models with powerful image priors based on sparse modeling

or nonlocal self-similarity.





APPENDIX I

Maximum a posteriori (MAP) estimate of gradient atlas parameters for Chapter 4

Recall the MAP formulation of Eq. (4.6):

argmax
θdi,j > 0

T∑
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log
(θdi,j
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i,j

)
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( ε

2
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Using the logarithm product identity, this is equivalent to

argmax
θdi,j > 0
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Deriving this cost function with respect to θdi,j and setting the result to zero then gives

T

θdi,j
− ε −

T∑
t=1

|dXt
i,j | = 0,

yielding

θdi,j =
T

ε+
∑T

t=1 |dXt
i,j |

�





APPENDIX II

Publications during Ph.D. study

• Mingli Zhang, Christian Desrosiers. High-quality image restoration using low rank regulariza-

tion and global structure sparsity. IEEE Transactions on Image Processing. (Submitted to IEEE

TIP)

• Mingli Zhang, Christian Desrosiers. Structure preserving image denoising based on low rank

reconstruction and gradient histograms. Elsevier Computer Vision and Image Understanding

(CVIU). (Submitted to CVIU)

• Mingli Zhang, Christian Desrosiers, Caiming Zhang. Atlas based reconstruction of high perfor-

mance brain MR data. Elsevier Pattern Recognition (Revision PR)

• Mingli Zhang, Christian Desrosiers. Image Completion with Global Structure and Weighted Nu-

clear Norm Regularization. IEEE International Joint Conference on Neural Networks (IJCNN),

pp. 4187-4193, 2017. (IEEE IJCNN 2017)

• Mingli Zhang, Christian Desrosiers. Effective Compressive Sensing via Reweighted Total Vari-

ation and Weighted Nuclear Norm Regularization. IEEE International Conference on Acoustics,

Speech and Signal Processing (ICASSP), pp. 1802-1806, 2017 (IEEE ICASSP 2017)

• Mingli Zhang, Christian Desrosiers. Robust MRI Reconstruction via Re-weighted Total Varia-
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