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IDENTIFIER ET QUANTIFIER LES ASPECTS THERMODYNAMIQUES ET
CINETIQUES DU REVENU RAPIDE DE L’ACIER AISI 4340 POUR
L'APPLICATION AEROSPATIALE

Faranak NAZEMI

RESUME

Le chauffage par induction, un procédé¢ localisé rapide et populaire de traitement thermique
est de plus en plus employ¢ dans les industries aérospatiales qui exigent des pieces présentant
une bonne tenue en fatigue et une bonne résistance a l'usure. En raison de l'exposition a haute
température d'induction, la transformation vers 1'état d'équilibre de la martensite dans la zone
de sur-revenu (perte de dureté) se produit entre la couche durcie de surface et le cceur de la
piece se produit par une série de phénomenes thermiquement activés. Afin de comprendre le
comportement de sur-revenu, la cinétique de la coalescence de la cémentite dans la
martensite de D’acier AISI 4340 avec dureté initiale 460 HV a été étudiée. Une étude
microstructurale et une modélisation ont été réalisées pour comprendre la réponse du
matériau pendant le revenu a 550 °C, 650 °C et 700 °C. Différentes méthodes pour révéler
les précipités ont été évaluées et comparées. Une analyse statistique a été effectuée sur des
mesures microstructurales telles que la taille, la fraction volumique et la morphologie.
D'autre part, le comportement de coalescence de ce systéme multi-composants a été étudié au
moyen d'une étude cinétique et thermodynamique grace au logiciel DICTRA. L'outil de
calcul peut traiter les alliages complexes et a ét¢ employé pour modéliser la précipitation
résultant de 1'effet du revenu. Les résultats de la modélisation indiquent que dans un premier
temps la résistance a la coalescence du systeme de I’alliage AISI 4340 est obtenue par la
répartition du Cr et du Mn dans la cémentite au début du revenu mais également par la
répartition de 1'élément Mo dans la cémentite a une étape ultérieure du revenu. Pour des
temps encore plus long, cette résistance est aussi contrdlée par la répartition des €¢léments Ni
et le Si dans la matrice. Ces résultats expliquent la remarquable résistance a la coalescence de
I’acier AISI 4340, méme pour un revenu prolongé. Egalement en raison de la basse
température 653 K (380 °C) choisi pour le revenu initial de la martensite, seul le C diffuse
dans la matrice, entrainant une stabilit¢ thermodynamique de type paraéquilibre, et toute
exposition a plus haute température (sur-revenu) nécessitera d'atteindre une nouvelle
condition thermodynamique, bloquant ainsi la coalescence rapide de la cémentite. Une
extension du modele de Bjorklund est employée pour valider les résultats du modéele
DICTRA. Finalement, les évolutions de la limite ¢lastique et de la dureté de la zone sur-
revenue ont été mesurées en fonction des parameétres de la microstructure.

Mots-clés: Chauffage par induction, Transformation, Cinétique, Coalescence ou
Mirissement d’Ostwald, Cémentite, Acier AISI 4340, Dureté






IDENTIFY AND QUANTIFY THE THERMODYNAMICS AND KINETICS
ASPECTS OF FAST TEMPERING IN MARTENSITE LOW-ALLOY MEDIUM
CARBON STEEL USED FOR AEROSPACE APPLICATION

Faranak NAZEMI

ABSTRACT

Induction heating, a fast and popular localized heat treatment process is increasingly used in
aerospace industries that require good fatigue and wear resistance. Due to the induction high-
heat exposure, transformation towards equilibrium state of martensite in over-tempered zone
(loss of hardness) happens between the hardened surface layer and the core of the part by a
series of thermally activated phenomena. In order to understand over tempering behavior, the
kinetics of cementite coarsening in tempered martensite AISI 4340 steel system with initial
hardness 460 HV has been investigated. Microstructural investigation and modeling have
been undertaken to understand the material response during tempering at 550 °C, 650 °C, and
700 °C. Different methods to reveal precipitates have been tested and compared. A statistical
analysis was performed on microstructural measurements such as size, volume fraction, and
morphology. On the other hand, the coarsening behavior of this multicomponent alloy system
has been investigated using kinetics and thermodynamics thanks to DICTRA software. This
computational tool can handle complex alloys and was used to model the precipitation
resulting from tempering effect. Modeling results indicate that the coarsening resistance of
4340 alloy system is achieved not only by Cr and Mn partition to cementite at the early stage
of tempering but also at later stage of tempering by partitioning element Mo in cementite,
and also provided by partitioning of Ni and Si in the matrix at later stage of tempering. These
results highlight the remarkable coarsening resistance of AISI 4340 steel even for prolonged
tempering. Also due to low temperature 653 K (380 °C) chosen for initial tempering, only C
can diffuse at this temperature, resulting a thermodynamics paraequilibrium stability, and any
further high temperature exposure (over-tempering) will require to reach a new
thermodynamic condition preventing rapid cementite growth. An extension of Bjorklund
model is used to validate DICTRA model results. At the end, based on microstructure
parameters strength and hardness of over-tempered zone are measured.

Keywords: Induction heating, Transformation, Kinetics, Coarsening or Ostwald ripening,
Cementite, AISI 4340 steel, Hardness
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INTRODUCTION

A common industrial process for surface hardening is induction hardening. The green
process of fast induction heating is increasingly used in the aeronautics industry in power
transmission devices. It allows combining speed, repeatability, automation, wear, and fatigue
performance of the treated parts, and it is an essential substitute to thermo chemical
treatments (Rudnev 2005).

Initial microstructure and process parameters are influenced on the final mechanical
properties of heat treated parts. For example, to harden steel spur gear initial quenched and
tempered martensite microstructure is recommended for having desirable final properties. It
provides a hard metastable phase in hardening case and sufficient toughness in the core of the
component.

Despite all advantages of using this initial microstructure, the component is affected just
below the transformed zone due to high temperature exposure, by a process called tempering.
The meta-stable quenched and tempered martensite softens by turning into more stable phase
with lower hardness in the so-called over-tempered zone (Ducassy 2010). In this area the
formed carbides coarsen in very short time by high heat exposure of induction process. This
coarsening stage is mainly responsible for the loss of hardness in this area. The recovery of
the dislocation substructure and ferrite grain growth may play secondary roles on hardness
loss.

In order to understand and predict the kinetic of transformation, a fundamental study is
conducted to investigate the coarsening kinetics of cementite. Then the microstructural

features could be predicted by using elaborate models and hardness may be estimated in the



over-tempered zone area. The chapter one reviews the literature existing on the subject. Then
the chapter two describes the context of the study.

The aforementioned goal was achieved by characterizing representative samples of over-
tempered zone, tempered at isothermal high temperature condition and different times, which
is described in chapter three. In chapter four, the investigation of carbides by different
methods revealed the average precipitate size, volume fraction, morphology, chemical
composition, roundness, as well as quantities derived from former measurements such as
inter-particle spacing, volume number density, and coarsening rate.

The results showed gradual increase of mean equivalent cementite size, supersaturation of
carbides by substitutional alloying elements Cr, Mn, and reduction of their number density
during isothermal tempering. A mathematical method was used to calculate volume size
distributions of precipitates in order to compare with the corresponding LSW distribution
function. The LSW distribution complies with the experimental distributions only for the
average size, although a low fraction of large precipitates overpass this limit.

In addition, a complementary study is performed by Thermo-Calc and DICTRA software
packages in chapter five to model the coarsening of precipitates in hardness loss area.
Experimental and calculated radius of precipitates is compared. The chemical composition of
precipitates determined by experiment and model shows that Cr, Mn, and Mo partitioned into
cementite, Cr and Mn at the early stage of tempering, and Mo at the longer stage of
tempering. These elements influence coarsening resistance of cementite particles. The non-
partitioning alloying elements Ni and Si accumulated in matrix, and play role on coarsening
resistance at later stage of tempering. These results are good evidence for explaining the

remarkable resistance of AISI 4340 steel under thermal treatment. In addition due to low



temperature 653 K (380 °C) selected for initial tempering to reach 460 HV only carbon can
diffuse to reach thermodynamics stability, and any further high temperature exposure (over-
tempering) will require a new set of thermodynamic condition to be reach, preventing rapid
cementite growth. Moreover, the kinetics coarsening of cementite and ferrite grain growth
are modeled by extension of Bjorklund model. It takes into account the effective diffusion
coefficient by considering grain boundary as fast diffusion path. Using existing strength
models one could estimate hardness of the tempered samples. Based on Holloman-Jaffe
equation that uses the concept of time-temperature equivalence, the former results of
isothermal tempering could explain the non-isothermal condition of tempering occurring
during induction hardening process in over-tempered zone.

This manuscript ends with a conclusion followed by recommendations and appendixes.






CHAPTER 1

LITERATURE REVIEW

t1 Introduction

Understanding the phenomena that happen during fast tempering of AISI 4340 steel is the
main concern of this study. Induction hardening, as a most favourable surface hardening
process of steel, is frequently used for cylindrical and gear components (Rudnev 2005). The
other goal of this chapter is to know the effective parameters of induction treatment influence
on final properties of components. Furthermore, this chapter will introduce a method for
predicting the hardness in over-tempered area, based on the thermodynamics and kinetics

laws.

L2 Induction hardening

Induction heating is one of the most popular localized heating processes (Yang, Hattiangadi
et al. 2010). It provides clean, accurate, and internal heating of an object. Its complexity
makes it somewhat hard to control compared to other surface hardening process such as
cementation.

It works based on the principal of electromagnetic law discovered by Michael Faraday in
1831. During this process, a metallic bar is placed in the coil through which high frequency
current passed by as illustrated in Figure 1-1. This figure shows how magnetic field created
by high-frequency alternating current passing through an inductor, usually made of water-
cooled copper, could induce eddy current in a metallic bar.

The induced eddy currents generated adequate heat for heat treatment process. The heat can
be calculated according to the H=RI? equation, where (R) is the electrical resistance and (I) is
the electric current. Fast change in the internal magnetization domain direction produces

considerable heat up to steel Curie temperature around 768 °C (Krauss 2005).
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Figure 1-1 Principle of induction hardening
(http://www.saetgroup.com).

Induction heating process is performed by the interrelation of electromagnetism, heat
transfer, and metallurgy; therefore, it is strongly influenced by parameters such as operating
frequency, time of holding, electrical power, workpiece, coil number of turns and geometry
(Rudnev, Loveless et al. 2003).

Desirable component properties for hard surface layer and tough core are achieved by
adjusting these parameters appropriately. As an example, high frequency and high power
density, in combination with short heating time, are required to harden the tooth’s tips of
gears, whereas low frequency is necessary for hardening the tooth’s roots of gears. Figure 1-2

shows the schematic frequency effect on a gear component during case hardening treatment.



Figure 1-2 Illustration of frequency influence on eddy current flow within the gear
when using an encircling inductor (Rudnev 2008).

1.1 Mechanical properties after induction hardening

High wear resistance accompanied with tough core increase fatigue property of steel
component. Induction hardening surface treatment is frequently applied on tempered low
alloyed medium carbon steels to provide desirable mechanical property especially for
aerospace application when fatigue resistance is demanded.

During the thermal treatment the steel must be heat up at austenizing temperature and
quenched by high cooling rate to form martensite and to avoid from any decomposition of
austenite to other products such as ferrite, pearlite, and bainite (Bhadeshia and Honeycombe

2006).



Full hardened section is not always desirable for machine parts when combination of hard
wear resistant surface with a tough core is required (Bhadeshia and Honeycombe 2006).
Surface hardening is preferred compared to complete ones, because the core creates a tensile
internal stress while the surface is under compressive stress. Fulfilling both requirement
achieve by surface treatment such as induction hardening. It avoids any fatigue cracks
nucleated at surface propagate easily in presence of compressive residual stress, as well as

resist tensile bending fatigue (Rudnev, Loveless et al. 2003).
- Metallurgical aspect of induction hardening

Induction hardening involves heating through or on surface or at selected areas of the
component to austenitizing temperature, holding at this temperature to have complete
austenite transformation (homogenization) and then, quenching very fast to form martensite
microstructure. During this process, austenite transforms to martensite and any phase
transformation known as self-tempering to phases with lower hardness should be controlled
(Valery and Rudnev 2007).

Critical factors like the prior microstructure, the composition, and the heating rate, etc affect
the resulting microstructures and the properties of components by changing case depth,
maximum surface hardness, and minimum hardness found in the sublayer between the
surface and core. In particular, they control the hardness profile found in the case-core

transition zone, and improve compressive residual stresses (Clarke, Van Tyne et al. 2011).

14.1 Initial microstructure

The initial microstructure of steel has a pronounced effect on the final properties of heat
treated parts under induction hardening process. As an illustration, Figure 1-3 displays the
effect of annealed, normalized, quenched and tempered initial microstructures on hardness
profile after surface hardening of AISI 1070 steel by using 450 kHz induction generator.
These steels are operated at the same power density and time duration 2.5 kW/cm? (16

kW/in%) (Speich and Leslie 1972, Rudnev 2005). The quenched and tempered initial



microstructure is the most desirable ones in acrospace industry. It helps to obtain suitable
hardness pattern, deepest hardened case depth, and the shortest transition zone compare to
other initial microstructure (Rudnev 2005). Despite all advantages of this initial
microstructure, hardness loss in over-tempered zone between surface hardened layer and

tough core is recognized as a weak area which is not desirable for fatigue life.

Figure 1-3 Effect of initial microstructure on surface hardening response for steel bars
AISI type 1070 (Rudnev 2005).

142 Composition

The carbon content of steel influences effectively on the properties of components treated by

induction hardening. It affects not only hardenability, (i.e., the process of forming martensite
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during cooling) but also the transition zone, namely eutectoid steels has a shorter transition
zone compared with a hypoeutectoid steel at the same condition of heating and quenching
(Rudnev 2005).

In addition, substantial alloying elements such as chromium, manganese, molybdenum
nickel, silicon, affect steel properties even in small amount. They are categorized based on
their influence on the critical temperatures (i.e. A1, A3, Acm), solubility in iron, kinetics of
austenitic transformation upon cooling, ability to prevent grain growth (Rudnev, Loveless et
al. 2003). They affect the tempering process, subsequent to quenching or during additional
tempering. In fact, they retard considerably growth and coarsening of the cementite particles
by partitioning in cementite or segregating in the interface of cementite and matrix (Chang

and Smith 1984).

1.5 Phase transformation

The thermodynamics and kinetics laws could be used to simulate diffusional phase
transformation in multicomponent alloy system. The concern would be how and how fast one
or more phases in an alloy transform into a more stable phase. Then, the mechanical
properties can be predicted by knowing the microstructural evolution described by cementite

growth and coarsening in conjunction with Orowan theory.

151 Fe-C phase diagrams, TTT, and CCT

Phase diagram presents the interrelationships between the different phases, compositions, and
temperatures of an alloy at equilibrium condition. Its application is a traditional and primary
approach for binary or ternary alloy system to determine the stable phases during thermal
treatment; however, in multicomponent alloy system its application has been limited
significantly. As an example, the Iron-Carbon (Fe-C) phase diagram is used as a guideline for
thermal treatments of steel alloys by taking into account that in any thermal treatment

alloying elements changes the position of phase boundary. Figure 1-4 shows the equilibrium
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phase diagram of Fe-C without the effects of alloying elements. This effect can be monitored
by thermodynamic calculation with T-C software in multicomponent system (Krauss 2005).

In this diagram, cementite and ferrite are shown as stable phases in room temperature. They
form from austenite under equilibrium condition. The variation in the lattice structure is

followed by the allotriomorphic change, when austenite (fcc, y ) with face-centered cubic
lattice structure transform to ferrite (bcc, o) with body-centered cubic lattice structure, and

cementite (Fe3C) orthorhombic crystal structure.

The transformation of austenite to martensite (bct) body centered tetragonal crystal structure
by fast quenching and non-equilibrium condition could be monitored by adding time
parameter to the equilibrium phase diagram. The temperature, time, and transformation
(TTT) diagrams are used to show how fast the system transforms to equilibrium state at
isothermal state of treatment. Figure 1-5 illustrates the TTT diagram of AISI 4340 steel. It
shows the variation of product phases during fast austenite transformation at different times
and temperatures. These kinds of diagrams are limited to isothermal treatment. To make a
solution on this limitation, Continuous Cooling Transformation (CCT) phase diagram can be
used to determine the progress of phase transformation during continuous cooling process by

different cooling rate. Figure 1-6 present the (CCT) diagram for AISI 4340 steel.
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Figure 1-4 The equilibrium iron-carbon phase diagram

(Bhadeshia and Honeycombe 2006).




13

Figure 1-5 Isothermal transformation diagram for an alloy steel (type 4340):
A, austenite; B, bainite; P, pearlite; M, martensite; F, proeutectoid ferrite
(ASM 1977).

1.52 Gibbs free energy

Prediction of any phase transformation like precipitation requires to take into account the

Gibbs free energy in a multicomponent and multiphase system. Phase transformation does
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not go directly to the stable state but can pass through a whole series of metastable states.
This transformation can be described by the concept of driving force and activation energy.
Figure 1-7 illustrates a phase transformation from metastable state (here tempered
martensite) to a more stable state (ferrite with dispersed carbides). If Gi is the free energy of
initial state and Gr is the free energy of final state, the driving force for transformation will
be AG = Gr - G1. Activation free energy AGa more than Gi is required to pass through from
state 1 to final state condition (Porter and Easterling 1992).

The decrease of interfacial area and thus energy produces driving force for precipitation
coarsening, spheroidization, and grain growth (Martin, Doherty et al. 1997). It is usually
considered insignificant in phase transformation, however in case of coarsening it should be
taken into consideration (Perez 2005). The surface free energy change due to radius of
curvature is so called Gibbs-Thomson effect. The solubility limit of A atoms in o matrix in
equilibrium with 6 particle cementite for equilibrium spherical shape particles of radius r can

be given by the Gibbs-Thomson equation (1.1):

20Vm
Xq, = Xéquexp () (