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RÉSUMÉ 

 

Le soudage par friction linéaire (LFW) est une technologie de fabrication émergente d’une 
part pour l'assemblage des aubes aux disques et d’autre part pour la réparation des disques de 
turbine (Blisks) dans les turbines à gaz et des moteurs à réaction. Ce type de soudage a déjà 
été appliqué à des alliages de Ti pour des applications de fonctionnement de compresseur 
(c'est-à-dire à basse température) mais pas à des composants à haute température. Ainsi, de 
nombreux défis devaient être résolus avant une application industrielle complète. Certains de 
ces défis ont été pris en compte dans cette recherche. L'objectif de cette étude a été de 
développer, pour ce type de soudage, une meilleure compréhension des mécanismes 
fondamentaux régissant l'évolution de la microstructure et des propriétés mécaniques à haute 
température des superalliages base nickel et particulièrement dans le cas d'un alliage 
nouvellement introduit, AD730TM. 

Les expériences LFW ont été réalisées en utilisant différents paramètres de procédé. Une 
méthodologie a été développée pour déterminer les paramètres optimaux pour l'alliage étudié. 
Cette méthode peut être appliquée à d'autres alliages métalliques. Cela a consisté à estimer 
l'oscillation, la fréquence, le frottement et la force de forge en utilisant des contraintes 
plastique d'écoulement de matière, des données rapportées dans la littérature et la capacité de 
la machine. Le temps de frottement a été estimé sur la base d'un modèle analytique de 
distribution de température. Il a été déterminé que les échantillons obtenus, par ce type de 
soudage, avec un raccourcissement axial de 3.5 mm étaient exempts de défauts tels que 
couches d'oxyde ou microfissures. 

Ce superalliage base nickel, AD730TM, a subi des traitements de mises en solution à 
différentes températures. Dans le but de décrire les processus de dissolution des particules γ' 
et de quantifier leur fraction volumique des modèles semi-analytique ont été développés. Ces 
modèles ont été utilisés pour prédire la température ou la fraction volumique du γ' dans 
différentes zones de l'échantillon soudé par cette technique. Les mécanismes de re-
précipitation et la cinétique de reprécipitation des particules γ' pendant le refroidissement des 
regions super-solvus et sub-solvus ont été étudiés. Suite à cela, un modèle cinétique a été 
proposé pour quantifier et prédire la fraction volumique de particules γ' reprécipitées à des 
vitesses de refroidissement élevées et faibles, représentant le refroidissement post-soudure à 
différentes distances de l'interface de soudure. 

L'étude de la microstructure à l'aide de la microscopie électronique à balayage (MEB) a 
révélé que la fraction volumique et la taille de γ' augmentaient avec la distance de l'interface 
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de la soudure. Ces particules ont été totalement dissoutes à l'interface de la soudure, et seule 
une distribution de re-précipitée γ′ monomodale re-précipitée, de taille inférieure à 10 nm, a 
été observée à l'interface de soudure. Les cartes de diffraction par électron rétrodiffusé 
(EBSD) ont montré que la recristallisation discontinue se produisait dans la zone de soudure. 
La taille des zones affectées thermo-mécaniquement (TMAZ) et des zones de soudure a été 
estimée en utilisant des cartes EBSD, et confirmée par des mesures de microdureté. 

Des mesures de mico-dureté sur des échantillons soudés ont révélé une diminution de la 
dureté dans les zones affectées thermo-mécaniquement due à la dissolution des particules γ' 
secondaires et une augmentation de la dureté dans la zone de soudure due au raffinement du 
grain. 

L'examen de l'interface de soudure et de la matière extrudéà l’interface  n'a révélé aucun 
phénomène de liquéfaction (formation de zones resolidifiées). Un nouveau modèle 
analytique a été développé ; celui-ci prédit les conditions de l'apparition ou de l'absence de la 
liquéfaction durant le soudage par LFW des superalliages base nickel. Une explication 
générale est proposée à l’aide de ce modèle qui est capable d'expliquer les données 
contradictoires rapportées dans la littérature. 

Un traitement thermique post-soudage (PWHT), consistant en un traitement en solution sub-
solvus γ' suivi d'un vieillissement, a été réalisé sur des éprouvettes soudées par la technique 
LFW. L'évolution de la microstructure à travers la soudure dans les conditions de soudure et 
de PWHT a été étudiée en utilisant la microscopie optique et électronique (MEB et EBSD). 
Les propriétés mécaniques des éprouvettes ont été évaluées en utilisant la microdureté, la 
traction à température ambiante et à 650°C, ainsi que des tests de fluage. 

Des essais de traction 650°C sur des échantillons soudés ont révélé une rupture dans la zone 
affectée thermiquement (ZAT) en raison de la dissolution des précipités γ'. Les joints ayant 
subis un traitement thermique post-soudage présentaient une résistance à la traction et au 
fluage plus élevées que celles des échantillons soudés du fait de la re-précipitation des 
précipités γ' dans les zones TMAZ et ZAT ; ainsi qu’une croissance des grains dans la zone 
de soudure. Après le traitement thermique post-soudage (PWHT), les échantillons soudés par 
la technique LFW ont rompu dans le matériau de base lors des essais de traction. Les joints 
PWHT présentaient, d’une part une meilleure ductilité, que ceux du matériau de base, à 
850°C et d’autre part, une durée de fluage légèrement inférieure à 700°C en comparaison avec 
le métal de base. L'examen de la microstructure a montré que des fissures étaient initiées à 
l'interface des particules oxydées à 700°C. La diminution de la résistance au fluage du 
superalliage AD730TM à 850°C était liée à la combinaison de la formation de zones exemptes 
de précipités (PFZ) au voisinage des joints de grains (GB) et de microfissuration assistée par 
oxydation. En outre, il a été trouvé que dans l'intervalle de température étudié, l'AD730TM 
PWHT avait des caractéristiques de fluage similaires à UdimetTM720 Li et Inconel 738LC 
pour des faibles valeurs des paramètres de Larson-Miller (LMP) et de meilleures propriétés 
de fluage que celles de l'alliage Inconel 617 pour des grandes valeurs de LMP. 
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ABSTRACT 

 
Linear friction welding (LFW) is an emerging manufacturing technology for joining of 
blades to disks or repairing turbine disks in gas turbines and jet engines. LFW has already 
been applied to Ti alloys for compressor (i.e. low temperature) operation applications but not 
to high temperature components. Thus, many challenges need to be addressed before full 
industrial application. Some of these challenges will be considered in this research. The focus 
of this study is to develop a better understanding of the fundamental mechanisms governing 
the evolution of the microstructure and high temperature mechanical properties of LFWed 
Ni-based superalloys in the case of a newly introduced alloy, AD730TM. 

LFW experiments were carried out using different processing parameters. A methodology 
was developed for determining the optimum LFW parameters for the investigated alloy. The 
method can be extended and applied to other metallic alloys too. This consisted in estimation 
of the oscillation, frequency, friction and forge force using material plastic flow stresses, data 
reported in the literature and machine capability. Friction time was estimated based on an 
analytical thermal model. It was determined that the LFWed specimens with axial shortening 
of 3.5 mm were sound and free from oxide layers and microcracks. 

The Ni-based superalloy, AD730TM, was solution treated at different temperatures. Semi- 
analytical model was developed to describe the dissolution processes of γ´ particles, and 
quantify their volume fraction. This model was used to predict temperature or γ´ volume 
fraction in different zones of LFWed sample. Reprecipitation mechanisms and kinetics of γ′ 
particles during cooling from supersolvus and subsolvus temperatures were studied. Then, 
kinetic model was proposed to quantify and predict the volume fraction of reprecipitated γ′ 
particles for high and low cooling rates representing the post weld cooling at different 
distances from the weld interface.  

Microstructure investigation using Scanning Electron Microscopy (SEM) revealed that γ′ 
volume fraction and size increased with the distance from the weld interface. These particles 
were totally dissolved at the weld interface, and only a monomodal re-precipitated γ′ 
distribution, less than 10 nm in size, was observed at the weld interface of the as-welded 
specimens. Electron Backscatter Diffraction (EBSD) maps showed that dynamic 
recrystallization occurred in the weld zone during LFW in as-welded samples. Thermo-
mechanically Affected Zone (TMAZ) and weld zone sizes were estimated using EBSD maps, 
and were confirmed with microhardness measurements. 

Micohardness measurements on as-welded samples revealed a decrease in hardness in 
TMAZ due to dissolution of secondary γ′ particles, and an increase in hardness in the weld 
zone due to grain refinement. 
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Examination of the weld interface and the flash did not reveal any occurrence of liquation 
(formation of resolidified zones). A new analytical model was developed that predicts the 
conditions for the occurrence or absence of liquation during LFW of Ni-based superalloys. 
Using this model, a general explanation is proposed that is able to explain the contradictory 
data reported in the literature. 

Post Weld Heat Treatment (PWHT), consisting of γ′ sub-solvus solution treatment followed 
by aging, was conducted on LFWed specimens. Microstructure evolution across the weld in 
the as-weld and PWHT conditions were studied using optical microscopy, SEM and EBSD. 
Mechanical properties of the LFWed specimens were evaluated using microhardness, tensile 
at room temperature and 650°C, as well as creep tests.  

Tensile tests on as-welded samples at 650°C revealed failure at Heat Affected Zone (HAZ) 
due to dissolution of γ′ precipitates. PWHTed joints showed higher tension and creep 
resistance than those of as-welded samples due to a combination of reprecipitation of γ′ 
precipitates at TMAZ and HAZ as well as grain growth at the weld zone. After PWHT, 
LFWed specimens failed in the base material under tensile tests.  The PWHTed joints 
exhibited better ductility than those of base material at 850°C while they showed slightly 
lower creep life at 700°C in comparison to the base metal. Microstructure examination 
showed that cracks initiated at the interface of oxidized particles at 700°C. The decrease in 
creep resistance of AD730TM Ni-based superalloy at 850°C was related to a combination of 
the formation of Precipitate Free Zones (PFZ) in the vicinity of the grain boundaries (GBs) 
and microcracking assisted by oxidation.  In addition, it was found that in the investigated 
temperature range, the PWHTed AD730TM had similar creep characteristics to UdimetTM720 
Li and Inconel 738LC at low values of Larson Miller Parameter (LMP) and better creep 
properties than those of Inconel 617 alloy at higher LMP values. 
 
 
Key Words: Linear friction welding; Ni-based superalloy; AD730TM; Dissolution and re-
precipitation kinetics, Liquation temperature; Liquation mechanisms; Mechanical properties 
at elevated temperatures, Creep mechanisms 
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INTRODUCTION 

 

Ni-based superalloys have emerged as materials of choice for high temperature applications 

(above 800°C) in gas turbines in aerospace and power generation industries, when significant 

resistance to loading under static, fatigue and creep conditions is required (Reed, 2006b). 

Turbine discs and blades are two key components in gas turbines. Indeed, turbine blades are 

affected by high operation temperatures while high rotation speed imparts tensile stresses to 

both the turbine disc and blades. The development of new superalloys has therefore been 

motivated to increase efficiency by allowing higher operating temperatures. The cast and 

wrought (C&W) Ni-based superalloy, AD730TM, has been recently developed by Aubert & 

Duval, and introduced especially for the first stages of the turbine discs with high properties 

up to 700°C (Devaux et al., 2012b). However, many of its fundamental properties are still 

unknown. For example, no quantitative data is available on dissolution and reprecipitation 

kinetics in AD730TM. 

In recent years, an emerging technology, LFW, has been developed for manufacturing and 

repair of aerospace components such as rotating gas turbine components. This technique has 

many advantages over traditional mechanical assembly process such as fir tree. For example, 

the weight is reduced, and the susceptibility to fatigue damages and initiation of fretting 

cracks from fir tree is decreased, and therefore, the service life is improved. In addition, it is 

economical to repair damaged blades tips by fusion welding rather than blade replacement. 

However, liquation and solidification which are often observed in fusion welded Ni-based 

superalloys has a deteriorating effect on mechanical properties of the welded components due 

to heat affected zone cracking. In this context, LFW can be an excellent alternative technique 

for the repair of damaged turbine disc and blades. 

LFW is a solid state joining technique in which heat is generated by the reciprocal motion 

between a moving component and a stationary workpiece under compression loading. LFW 

is divided into three stages (Bhamji et al., 2011): I- conditioning stage: two parts to be joined 

are moving under specified frequency and amplitude, and brought together under small 

pressure; II- frictional stage: the friction pressure is increased. Thus, heat is increased due to 
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friction and sliding between the two parts. Plasticized material is expelled out of the weld 

interface due to applied friction pressure and high temperature, and axial shortening of the 

samples start to occur, and therefore, a flash is formed. III- forge stage: the amplitude is 

decreased to zero, and the workpieces are brought together while forge pressure is applied. 

The weld is consolidated and is strengthened at this stage.  

This Ph.D. thesis begins with a comprehensive literature survey to review the state-of-the-art 

knowledge regarding linear friction welding of Ni-based superalloys. This chapter 

summarizes developments on manufacturing processes of gas turbine discs, and discusses 

different points of view about microstructure evolution of LFWed superlloys. Finally, an 

overview on the mechanical properties of LFWed samples is presented, the challenges are 

identified, and the objectives are defined. Based on these objectives, a methodology is 

proposed at the end of this section.   

 

 

 

 

 

 



 

 

CHAPITRE 1 
 
 

LITREATURE REVIEW AND RESEARCH METHODOLOGY 

1.1 Superalloys 

Superalloys were, and continue to be, developed for elevated temperature service. They are 

utilized at a higher proportion of their actual melting point than any other class of broadly 

commercial metallic material. They are divided into three classes, namely Ni-based 

superalloys, cobalt-based superalloys and iron-based superalloys (Sims, Stoloff et Hagel, 

1987). Among them, the Ni-based superalloys are the most widely used for the hottest 

applications. In advanced aircraft engines, more than 50 percent of the weight comes from 

Ni-based superalloys. They are also used in power generation, chemical, and petroleum 

industries because of their superior mechanical properties and corrosion resistance at 

elevated temperature. 

1.1.1. Composition–microstructure relationships in Ni-based superalloys  

Most of the superalloys contain significant amounts of chromium, cobalt, aluminium and 

titanium. Small amounts of boron, zirconium and carbon are often included. Other elements 

that are added, but not to all alloys, include rhenium, tungsten, tantalum, hafnium, ruthenium, 

molybdenum, niobium and zirconium. Some superalloys, such as IN718 and IN706, contain 

significant proportions of iron, and should be referred to as nickel–iron superalloys. The first 

group of elements includes nickel, cobalt, iron, chromium, ruthenium, molybdenum, rhenium 

and tungsten; having atomic radii close to that of nickel, they prefer to partition to the 

austenitic γ and thereby stabilize it. A second group of elements, aluminum, titanium, 

niobium and tantalum, have greater atomic radii and promote the formation of ordered phases 

such as the compound Ni3(Al, Ta, Ti), known as γ′. Boron, carbon and zirconium constitute a 

third class that tends to segregate to the grain boundaries of the γ phase, on account of their 

atomic sizes, which are very different from that of nickel. Carbide and boride phases can also 

be promoted. Chromium, molybdenum, tungsten, niobium, tantalum and titanium are 
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particularly strong carbide formers; chromium and molybdenum promote the formation of 

borides (Reed, 2006b). 

The microstructure of a typical Ni-based superalloy consists therefore of different phases, 

drawn from the following list (Reed, 2006b): 

(i) The gamma phase, denoted γ has a face centered cubic, FCC, structure, and in nearly all 

cases, it forms a continuous matrix phase in which the other phases reside. It contains 

significant concentrations of elements such as cobalt, chromium, molybdenum, ruthenium 

and rhenium.  

(ii) The gamma prime phase, denoted γ′ forms as a precipitate phase, which is often coherent 

with the γ -matrix, and rich in elements such as aluminum, titanium and tantalum. In nickel–

iron superalloys and those rich in niobium, a related ordered phase, γ ̋, is preferentially 

formed instead of γ′. 

(iii) Carbides and borides. Carbon, often present at concentrations up to 0.2 wt%, combines 

with reactive elements such as titanium, tantalum and hafnium to form MC carbides. During 

processing or service, these can decompose to other species, such as M23C6 and M6C (M=Cr, 

Mo, W), which prefer to reside at the γ - grain boundaries. Boron can combine with 

chromium or molybdenum to form borides which also reside at the γ - grain boundaries. 

Other phases can be found in certain superalloys, particularly in the service-aged condition, 

for example, the topologically close-packed (TCP) phases μ, σ, Laves, etc. However, these 

phases are deleterious to mechanical properties, and the compositions and processing of 

superalloys are selected to avoid, rather than to promote, the formation of these compounds. 

After the beneficial effects of the coherent phase γ′ in improving the strength properties of 

alloys at high temperatures were discovered (Durand-Charre, 1997; Reed, 2006b), more γ′ 

forming elements such as aluminium (Al), titanium (Ti), and tantalum (Ta) were added to the 

base composition to increase the proportions of γ′ in superalloys. The γ′ fraction of some 

single crystal superalloys can be as high as 70% (Murakumo et al., 2004). Some refractory 

metal additions, such as molybdenum, tungsten, and rhenium are also used in superalloys to 

provide additional strengthening through solid solution and carbide formation. In 

polycrystalline superalloys, boron and carbon are also added to form borides and carbides for 



5 

grain-boundary strengthening. In single-crystal superalloys, these elements are removed 

since there is no need for grain-boundary strengthening; instead, rhenium (Re) and ruthenium 

(Ru) gradually take greater roles in the development of new generations of single crystal 

superalloys. 

1.2 Linear Friction Welding 

Industrial and aircraft gas turbine engines are high technology products and their 

manufacturing processes involve various innovative techniques. Technological viability and 

manufacturing costs are the key factors in the successful development of new processes. In 

the turbine engines, ″blade″ and ″disk″ (BLISK) can be integrated by machining from a 

single forged part as a single piece for both compressor and turbine sections. However, this 

manufacturing technique is expensive for large BLISKs, and is not good for fabricating 

dissimilar blades and disk. Blades and disks can be attached mechanically (fir tree assembly); 

although damaged blades are easily replaceable, fatigue cracks initiate from the fir tree, and 

the weight of the part will increase due to the fir tree root. Figure 1.1 shows separated and 

integrated ″blade″ and ″disk″ in a typical gas turbine (Bhamji et al., 2011). 

 

 

Figure 1.1 Two various attachments of blades and 
 disk (Bhamji et al., 2011) 
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Recent developments have led to emerging LFW technology. The major commercial use of 

LFW is for the joining of aeroengine compressor blades to compressor discs to form blisks. 

As a result, much of the published literature on the subject has focused on the joining of 

materials for aeroengine applications. To this end, a range of titanium alloys and Ni-based 

superalloys have been studied for understanding the influence of LFW process parameters on 

the microstructural characteristics and mechanical performance. However, the process can be 

used to join other materials and interest in this aspect is growing. The application of LFW 

has greatly extended the commercial potential of conventional frictional welding techniques 

since non-round and round parts can be joined with precise angular alignment (Nicholas et 

Thomas, 1998).  

Friction welding is classified as a solid state welding process, in which joining occurs at a 

temperature below the melting point of the work metal. If incipient melting does occur, there 

is no evidence in the finished weld, because the metal is worked during the welding  

stage (Bhamji et al., 2011).  

In LFW, an imposed linear reversing motion of the two surfaces to be joined generates 

frictional heat and plasticizes the material at the weld interface (Figure 1.2). When adequate 

heat and metal flow has been reached, the moving part is brought into alignment with the 

stationary one while the axial load is maintained or increased to finalize the weld sequence. 

Material, including surface oxides, are expelled from the interface as “flash” and a Thermo-

Mechanically Affected Zone (TMAZ) expands from the interface into the parent  

material (McAndrew et al., 2018). LFW has three main stages: Conditioning, Frictional and 

Forge (Bhamji et al., 2011; Vairis et Frost, 2000a). 
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Figure 1.2 Sample geometry, LFW  
process principles  

 

I) Conditioning Phase 

Oscillation of one of the parts is increased and stabilized over a set period (usually very 

quickly) and the parts are brought together under a small force for a predetermined  

time (Figure 1.3). 

 

 

Figure 1.3 Schematic diagram of the parameter  
traces that are obtained during LFW  

process (Bhamji et al., 2011)  
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II) Frictional Phase 

The compressive force (friction force) is increased to a set level and heat is generated at the 

interface. The material at the interface becomes plastic and flows out of the weld, as flash, 

because of the shearing motion between the two parts and the applied force. This loss of 

material from the weld causes the parts to shorten (or burn-off). This phase usually ends, and 

the next is triggered, when a predetermined loss of length, or burn-off distance, is reached. 

However, the next phase can also be triggered after the frictional phase has continued for a 

predetermined time (burn-off time) or a number of oscillation cycles (burn-off cycles). The 

LFW process is always carried out under load control, but other parameters also play a role 

in controlling the welding process. For example, when using a burn-off distance the load is 

controlled throughout the welding process, however, the burn-off is also monitored (although 

not controlled) and at a set burn-off distance, the next phase (forge phase) is triggered. 

Similarly with burn-off time or cycles the load is controlled throughout welding and the 

amount of time or cycles determines the transition to the next phase. 

III) Forge Phase 

The last phase is known as the deceleration or forge phase. The amplitude is decayed to zero 

over a predetermined time to ensure good alignment (usually very quickly). In other words, 

the materials are brought to rest after the desired shortening has been attained. Once the 

materials have been brought to rest and aligned, the axial pressure is increased and held for a 

set time until the weld is consolidated. 

1.2.1 Thermomechanical Analysis of the LFW Process 

As the solid surfaces rub against each other, heat is generated as a result of friction. The heat 

generated due to friction subsequently diffuses through the bulk of the contacting solid 

materials. Varis and Frost (1998; 1999b; 2000a) calculated the rate of heat generation during 

LFW by considering two solid objects with flat surfaces while pressed together with a 

friction pressure P and sliding against each other with a relative velocity of V: 
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ሶܳ =  (1.1) ܸܲߤ

 

where μ is the friction coefficient. If the contact area is A, the rate of thermal energy 

generation per unit area becomes: 

ݍ  = ሶܳܣ = ܣܸܲߤ  (1.2) 

 

Frictional heating along with the applied pressure increases temperature at the interface and 

plasticizes the material. The parent material cannot be melted by this frictional heat. 

Varis and Frost (1998; 1999b; 2000a) proposed the following equation for the average 

friction heat rate: 

ݍ  = ߨ2  (1.3) ܲ߱ߙߤ

 

where α and ω are the amplitude and the oscillation angular velocity. 

Thus, the main input parameters during LFW process are: 

- Frequency (f): Number of oscillatory cycles per second, 

- Amplitude (α): Maximum displacement of the oscillating sample from its equilibrium 

position, 

- Friction Pressure (P୊୰୧ୡ.): Pressure applied during the friction stage, 

- Forge Pressure (P୊୭୰୥.): Pressure applied during the forge stage. 

By choosing appropriate LFW process parameters, a sufficient heat can be generated, oxides 

and other impurities could be expelled as flash, and a defect free joint with a narrow heat 

affected zone (HAZ) could be formed. 

1.3 LFW of Superalloys 

Very little has been published on LFW of Ni-based superalloys (Chamanfar et al., 2011a; 

2012a; Dalgaard et al., 2012; Ola et al., 2011a; Ola et al., 2012). The few reported 
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publications have been focused on LFW of Ti alloys (Dalgaard et al., 2012; McAndrew et al., 

2018). While fusion welding is an economical joining technique for the fabrication and repair 

of service-damaged Ni-based superalloy turbine parts; their poor weldability limits the 

application of welded components in critical structure locations. The alloys, particularly, 

those with high-volume fraction of the γ′ phase (>40%) are highly susceptible to 

intergranular microcracking during conventional welding processes. The fundamental cause 

of the weldability problem in these alloys is the liquation of grain boundary region, which 

weakens the material during joining (Rowe, Ishwar et Klarstrom, 2006). Developments in 

welding research have resulted in the use of solid-state friction joining processes (Henderson 

et al., 2004; Korsunsky et al., 2009). These include Friction Stir Welding (FSW), friction 

spot welding, inertia friction welding, continuous drive friction welding and LFW, which are 

state of- the-art in producing crack-free welds in difficult-to-weld structural alloys. Studies 

have shown that, in particular, LFW is potentially well-suited for joining highly crack-

susceptible Ni-based superalloys (Karadge et al., 2008). Currently, there is active on-going 

research on effective and efficient industrial utilization of this technique in the manufacturing 

of aero-engine components like turbine discs and blades (Vairis et Frost, 1998). 

1.3.1 Microstructure Evolution during LFW 

Since the mechanical properties of superalloys strongly depend on their microstructure, and 

its widespread industrial applications, it is necessary to understand microstructural evolution 

with time, temperature and deformation during LFW to optimize the friction welding 

process. 

Although the interface temperature during LFW is not expected to exceed the melting 

temperature of the materials being welded, the peak interface temperature is nevertheless 

very high, and could be close to the solidus temperature of the material (Mary et Jahazi, 

2007a). In all reported cases, this high temperature, along with the applied pressure, cause 

significant microstructural variations at the weld interface and its neighboring region. These 

changes in microstructure are summarized in the following sections. 
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1.3.1.1 Microscopic Features of LFW 

No widely accepted nomenclature exists for microstructural regions in linear friction welds. 

The following nomenclature that has received widespread acceptance for friction stir welds is 

also used for LFW (Threadgill, 2007). The weld is divided into four regions: 

 Parent material (PM): This region corresponds to the base material, where no change 

in microstructure, mechanical properties or other properties can be detected. 

 Heat-affected zone (HAZ): In this region, the microstructure and/or other properties 

have been changed by heat from the weld, but there is no optically visible plastic 

deformation. Changes could, for example, include one or more of grain growth, 

precipitate morphology, mechanical or physical properties. 

 Thermo-mechanically affected zone (TMAZ): In this region, the material has been 

subjected to more heat than in the HAZ and shows clear evidence of plastic 

deformation. Phase transformation could also take place in some materials in this 

zone. Changes in this region would be expected to be more apparent than in HAZ. 

 Weld zone (WZ): In many materials there will be a region close to the weld line 

where the microstructure is very different to that in other parts of the weld due to 

recrystallization, phase transformation, etc. As this area has been subjected to severe 

heat and plastic flow, it is a sub-group of the TMAZ. 

I) Occurrence of Recrystallization  

It is suggested that recrystallization occurs dynamically in linear friction welded  

poly-crystal to poly-crystal and single crystal to single crystal Ni-based superalloy, due to the 

thermomechanical conditions imposed during friction welding, namely, the combination of 

high strain and strain rates at elevated temperatures (Chamanfar et al., 2011a; Ola et al., 

2012). The recrystallization behavior in the weld zone of linear friction welded CMSX-486 is 

notable, in that finer (smaller) grains are present at the weld centerline area (Figure 1.4) 

compared to other weld zone areas away from the centerline, where the grains are more  

than 5 times greater (Ola et al., 2012). LFW has many similarities with hot deformation 

processes, and can be compared with hot forging. Hot deformation of IN-718 induces 

competitive mechanisms of strain hardening, dynamic recovery and recrystallization. During 
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the first steps of hot deformation, the main phenomena are usually linked to energy storage 

and strain hardening. As strain increases, dislocations rearrange themselves into sub-

boundaries that progressively divide them into finer grains. This phenomenon is called grain 

fragmentation and is followed by the nucleation of the first recrystallized grains. Through 

nucleation and grain boundary migration, the recrystallized microstructure  

progresses (Thomas, Montheillet et Dumont, 2003).  

 

 

Figure 1.4 EBSD-based orientation maps  
showing the recrystallized grains of weld line  

in LFWed CMSX-486 (Ola et al., 2012). 
 

II) γ´ Evolution 

As the temperatures experienced during LFW are above the solvus temperatures of the 

strengthening precipitates, dissolution of the precipitates can occur in the weld zone and 

TMAZ/HAZ (Chamanfar et al., 2011a; Ola et al., 2012). Under equilibrium conditions, both 

coarse and fine γ´ precipitates start to dissolve as the temperature increases due to the 

diffusion of γ´ forming elements (Al and Ti) into the surrounding γ matrix. Therefore, above 

γ´ solvus temperature, full γ´ dissolution can occur. However, the rapid heating cycle 

experienced by the material during LFW is far from equilibrium conditions, and therefore, no 

significant diffusion of the γ´ forming elements occurs. Hence, probably only very fine γ´ 

particles dissolve and the coarse ones most likely remain intact. However, for linear but 
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mostly inertia friction welded Ni-based superalloys, during cooling from solvus 

temperatures, two types of γ´ evolution trends have been reported. (Chamanfar et al., 2011a; 

Damodaram, Raman et Rao, 2013; Huang et al., 2007a; Mary et Jahazi, 2007a; Preuss et al., 

2002a; Preuss, Withers et Baxter, 2006a) 

In alloys with low γ´ volume fraction, such as Inconel 718 or Waspaloy, γ´ completely 

dissolves in the vicinity of the weld line during friction welding and, does not reprecipitate 

during cooling (Figure 1.5) (Chamanfar et al., 2011a; Damodaram, Raman et Rao, 2013; 

Huang et al., 2007a; Mary et Jahazi, 2007a; Preuss et al., 2002a; Preuss, Withers et Baxter, 

2006a). In these alloys, in the as-welded condition, the microhardness of the weld zone of the 

sample with prior solution treatment (ST) was found to be higher than that of its base 

material counterpart. The increase in hardness of the ST sample in the weld zone was 

attributed to grain refinement due to dynamic recrystallization. However, in the case of the 

sample with prior solution treatment followed by aging (STA) condition, the hardness of the 

weld zone was lower than that of the base material (Figure 1.6). This can be attributed to the 

dissolution of γ´ precipitates as the temperature reached in the weld zone was found to be 

above the γ´ solvus temperature (Damodaram, Raman et Rao, 2013). 

 

 

Figure 1.5 TEM microstructure of a  
friction weld interface of Inconel 718  
(Damodaram, Raman et Rao, 2013). 
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Figure 1.6 Microhardness profile  

obtained across the weld of Inconel 718  
(Damodaram, Raman et Rao, 2013). 

 

In contrast, in alloys with high γ´ volume fraction such as Astroloy and Udimet-720 Li and 

RR1000, close to the weld line, large amounts of dissolved γ´ reprecipitate during cooling. In 

these alloys, due to the high levels of Ti and Al, the driving force for reprecipitation during 

fast cooling is large. Preuss et al. (2002a) reported that at 1mm from the weld line only 

partial dissolution of γ´ has taken place during welding. Therefore, it can be assumed that the 

driving force for reprecipitation is larger at the weld line than 1mm from it. The high level of 

γ´ close to the weld line in these alloys is reflected in relatively high hardness values in this 

region (Figure 1.7) (Preuss, Withers et Baxter, 2006a). 
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Figure 1.7 Vickers hardness profiles of  
Inconel 718, Alloy 720Li and RR1000  
inertia friction welds in the as-welded  

condition as a function of axial distance  
from the weld line (z = 0)  

(Preuss, Withers et Baxter, 2006a). 
 

1.3.1.2 Liquation and Microcracking during LFW 

The necessary pre-conditions for the occurrence of liquation cracking include grain boundary 

liquation (a continuous film of liquid) and the existence of tensile stresses along the relatively 

weak wetted grain boundary. As a result, analysis of the microstructural changes during 

linear friction welding is really important. Ola et.al (2011a; 2011b; 2012) proposed a model 

to describe nonequilibrium dissolution behavior of the precipitates during rapid heating 

conditions. They showed that grain boundary liquation occurs during linear friction welding 

of IN 738 (Figure 1.8) as a result of nonequilibrium phase reaction between γ′ particles and 

the surrounding γ matrix. Using Gleeble testing, they observed interdendritic liquated areas at 

all temperatures above 1423 K (1150°C). This newly formed fine eutectic product consisted 

of a major phase that chemically appeared to be based on Ni5Hf intermetallic with a melting 

point around 1150°C. A similar type of resolidified fine eutectic microconstituent was also 

observed in TMAZ interdendritic regions of a LFWed joint. Microscopic examinations 

showed that the morphology and chemical composition of the liquated phase was similar to 

the Ni5Hf phase observed after Gleeble tests. 
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The main strengthening phase of the alloy, γ′ precipitates could also liquate through a 

phenomenon known as constitutional liquation. It generally occurs below equilibrium solidus 

temperature of the alloy by a eutectic-type reaction between a second-phase particle and the 

surrounding matrix, producing a metastable solute-rich liquid film at the particle/matrix 

interface. The basic requirement for the occurrence of constitutional liquation of an 

intermetallic compound AxBy in an alloy is the existence of AxBy particles at temperatures 

equal to or above the eutectic temperature of the matrix- AxBy system (Ola et al., 2011b). It is 

generally known that γ-γ′ eutectic reaction occurs during solidification of several γ′ 

precipitation- hardened Ni-based superalloys. The γ-γ′ eutectic reaction is often assumed to 

take place at the solidus temperature as the final solidification reaction during casting. Ola 

et.al. (2011a; 2011b; 2012) considered the possibility of compressive strains in aiding the 

dissolution kinetics of γ′ precipitates. An increase in dissolution of γ′ precipitates, which is 

typically known to be controlled by diffusion of γ′ forming elements away from the 

precipitate/matrix interface, is also observed to be significantly enhanced by externally 

induced compressive strains in nickel-base superalloys (Shahriari et al., 2009a). They 

explained that contrary to tensile stresses in fusion welds, compressive stresses are imposed 

on the work pieces during linear friction welding and may cause liquation cracks to close. 

They also attributed the cracking resistance of the joint to the rapid resolidification of 

intergranular and intragranular liquid aided by imposed compressive strain. 
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Figure 1.8 SEM micrographs of the TMAZ showing  
(a) intergranular and (b) intragranular liquation  

and the presence of resolidified fine γ- γ′ eutectic  
products that formed from residual liquid  
during weld cooling (Ola et al., 2011b). 

 

In contrast, Chamanfar et.al. (2012b) did not observe γ′ liquation, and associated it with a 

lower peak temperature or γ′ sizes that do not reach the critical values. The incidence of 

Dynamic Recrystallization (DRX), lower peak temperature, lower level of welding stresses 

and high applied strains, which are specific to the LFW process, were identified as the main 

factors contributing to the suppressed microcracking of linear friction welded Waspaloy 

components (Chamanfar et al., 2012b). DRX in LFW leads to fast migration of grain 

boundaries during welding, leaving precipitates behind. Thus, the unity of the new grains is 
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preserved and no grain boundary liquation occurs. Furthermore, the rapid heating cycle 

experienced by the material during LFW is far from equilibrium conditions and therefore no 

significant diffusion of the γ′ forming elements occurs. Hence, probably only very fine γ′ 

particles dissolve and the coarse ones most likely less affected i.e. the peak temperature 

during welding is well below γ′ liquation temperature. 

1.3.2 Mechanical Properties after LFW 

Mechanical properties, especially tensile and creep strengths of the joints, are among the 

most important factors in mechanical design and performance in operation for gas turbine 

engine parts. The mechanical properties of LFWed samples significantly depend on process 

parameters which affect the microstructural zones that have been deformed in the region of 

the weld line during the process (Chamanfar et al., 2011a; Dalgaard et al., 2012). An 

appropriate post weld heat treatment (PWHT) may be needed to reduce residual stresses and 

recover the strengthening phases in the microstructure since γ′ precipitates could be dissolved 

at the weld interface during LFW process (Chamanfar et al., 2011a). 

More heat input, and therefore higher axial shortening provides an oxide free joint with better 

mechanical properties. Accordingly, higher friction and forge pressure create localized severe 

deformation and result in more recrystallized structures and develop better tensile properties 

at room temperature (Amegadzie, 2012; Chamanfar et al., 2012a). Fine grains exhibit greater 

yield strength than the coarse ones at low temperature (Amegadzie, 2012) while at elevated 

temperature grain boundaries are weak and sliding occurs.  

Recrystallization (i.e. grain refinement) is unfavorable for creep properties (Cormier et 

Cailletaud, 2010b; Cormier, Milhet et Mendez, 2007b; le Graverend et al., 2010b). 

Therefore, a grain coarsening solution annealing treatment can be performed on LFWed 

samples to improve the creep properties. The creep strength increases with increasing γꞌ 

content and thus, higher γꞌ fractions are often specified where creep strength is  

required (Cormier et Cailletaud, 2010b; Cormier, Milhet et Mendez, 2007b; le Graverend  

et al., 2010b). Optimum creep performance would require minimum coarsening rate of γꞌ 

precipitates. 
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1.4 LFW of Ni-based Superalloys: State-of-the-art 

Based on the above mentioned literature, for joining "difficult to weld" materials like Ni- 

based superalloys, LFW is a very promising method because bulk melting does not occur 

during the process. However, many challenges need to be addressed before full industrial 

applications. Some of these challenges will be considered in this research as follows: 

a) Determination of Optimum Linear Friction Welding Process Parameters for 

AD730TM Alloy 

The above literature review showed that there is ongoing research on LFW of superalloys. 

While extensive data is available on hot deformation of Ni-based superalloys, few data is 

available on microstructure evolution during LFW, and its role on mechanical properties of 

welded Ni-based superalloys. In addition, the effect of post weld heat treatment has been 

hardly studied on LFWed assemblies, especially Ni-based superalloys. Furthermore, no data 

is available in the literature on the methodology of designing LFW experiments to determine 

optimum process parameters. Moreover, the mechanical tests have been performed at room 

temperature, and the results cannot be directly applied to mechanical properties at high 

temperatures such as the one used in the present investigation. Hence, this study discusses the 

design of LFW experiments with the objective to determine the optimum process parameters, 

and fabricate sound LFWed joints. Finally, the integrity of the weld is evaluated by hot 

tensile tests. 

b) Predicting Dissolved and re-Precipitated γ´ Volume Fraction after Various Heat 

Treatments 

Literature review showed that significant microstructural changes, including dissolution and 

reprecipitation of γ´ particles, occur during thermomechanical processes such as LFW which 

play a key role in controlling the mechanical properties of the joints. However, no data is 

available on the kinetics of γ´ dissolution and reprecipitation during LFW of superalloys and 

particularly the investigated alloy. 



20 

 

c) Liquation and Microcracking during LFW 

In the literature review, different ideas on one of the on-going debates in LFW about whether 

liquation and consequently cracks occur during this process were proposed. No quantitative 

data is available on the possibility of constitution liquation during LFW. Therefore, one 

quantitative study under non-equilibrium thermal cycles such as those encountered in LFW is 

conducted in this research to clarify the above mentioned debate. 

d) Creep Properties after LFW 

The components used in hot section of gas turbines are subjected to creep and/or fatigue 

damage during operation. Thus, improving their high temperature performance (e.g. creep 

behavior) is of paramount importance for industry.  No data is available on creep properties 

of LFWed Ni-based superalloys in as-weld or post weld heat treated conditions. Hence, it is 

essential to systematically investigate creep performance of a defect free LFWed AD730TM 

in as-weld and post weld conditions and compare the results with those of base material, and 

discuss the damage mechanisms governing the creep processes. 

 

1.5 Objectives 

During LFW, the interface material is exposed to severe deformation at high temperatures 

and high strain rates. Therefore, significant changes occur in microstructure and mechanical 

properties across the weld interface. So, the main objective of the present study is to 

understand and predict microstructural changes at the weld interface. This information is 

crucial for the mechanical behavior of the weld and quantifying the impact of LFW 

parameters. In this regard, it is also necessary to answer an ongoing debate in the scientific 

community about whether or not liquation of second phases and subsequent microcracking, 

often observed in fusion welded Ni-based superalloys occurs during LFW.  

To reach the main objective, the sub-objectives are defined as follows: 

1- To characterize the newly developed superalloy AD730TM. 
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2- To determine the influence of LFW process parameters on microstructure and 

mechanical properties: 

a) To evaluate the effects of heat input on weld integrity and microstructure 

evolution, 

b) To evaluate the mechanical properties for optimal weld, 

c) To evaluate the liquation of second phases and cracking possibility.  

3- To better understand the mechanisms of dissolution and reprecipitation of γ´ phase: 

a) To predict γ´ morphology and volume fraction, 

b) To predict γ´ characteristics in LFWed samples. 

To tackle these objectives following methodology is developed.  

1.6 Materials and Methods 

1.6.1 Materials 

The cast and wrought (C&W) Ni-based superalloy, AD730TM, has been recently developed 

by Aubert & Duval and introduced especially for the first stages of the turbine discs with 

high properties up to 700°C (Devaux et al., 2012b). It was designed to provide a better 

combination between mechanical properties and cost compared to Rene88DT, N18, RR1000, 

and etc. This alloy has mechanical properties close to Udimet 720 and significantly higher 

than 718Plus, Waspaloy and Inconel 718. Table 1-1 shows a comparison between chemical 

composition and γꞌ volume fraction of these alloys. AD730TM is also strengthened by γ′ 

precipitates and presents a good ability for C&W manufacturing process with desired 

strength, creep and fatigue properties. The equilibrium volume fraction of γ′ (Vf) is around 

37-40% for this alloy. Primary γꞌ particles exist at the grain boundary while secondary and 

tertiary γꞌ are within the grains. The first type of γꞌ particles are formed during forging stages 

while the secondary and tertiary precipitates form during the cooling process. Thus, size and 

distribution of the precipitates in this alloy are determined by the cooling rate after solution 

heat treatment and can be adjusted with the aging process. 

 



22 

 

Table 1-1 Chemical composition and γꞌ volume fraction of AD730TM compared  
to some other Ni-based superalloys (wt%) 

 Ni Fe Co Cr Mo W Al Ti Nb B C Zr Vf 

718 Bal. 18 - 18 3 - 0.5 1 5.4 0.004 0.03 - 17 

718Plus Bal. 10 9 18 2.75 1 1.5 0.7 5.5 0.004 0.02 - 24 

Waspaloy Bal. - 
13.

5 
19.5 4.25 - 1.5 3 - 0.006 0.05 0.03 32 

U720Li Bal. - 15 16 3 1.3 2.5 5 - 0.015 0.02 0.03 44 

AD730TM Bal. 4 8.5 15.7 3.1 2.7 2.25 3.4 1.1 0.01 0.015 0.03 37 

 

1.6.2 Methods 

The literature review extracted the knowledge useful for the purpose of this study and 

introduced the shortcomings of the literature in dealing with LFW of superalloys. This 

information allowed defining the methodology to accomplish the objectives introduced in 

introduction.  

Regarding objective 2, to develop defect free LFWed specimens, the ranges of friction and 

forge pressures and time were designed based on the proposed analytical method, and several 

samples were welded with various process parameters and heat inputs. Optimum welding 

parameters were determined performing microhardness, room and hot tensile and creep tests. 

The size of weld zone and TMAZ, and grain size evolution at the weld interface were 

determined using EBSD maps. Creep and tensile damage mechanisms were investigated 

using SEM. 

With regard to objectives 1 and 3, understanding microstructure evolution during LFW, 

conventional heat treatments were designed, and performed. To predict dissolved γ´ volume 

fraction or temperature in different zones of a LFW joint, various solution treatments with 

two different heating rates, were carried out. To predict re-precipitated γ´ volume fraction at 

weld interface of LFW, heat treatments with various cooling rates were performed. For 

microstructural studies, Field Emission Gun Scanning Electron Microscopy (FEG-SEM) was 

used. Then, γ′ size and volume fraction changes during solution and cooling treatments were 
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determined. Semi-analytical models were developed to describe the dissolution and re-

precipitation processes during heating and cooling steps of heat treatments. 

To evaluate grain boundary and second phase liquation and cracking possibility, liquation 

temperature of AD730TM was determined using Gleeble™ 3800 physical simulator and SEM. 

Then, temperature distribution in LFWed specimen was obtained using analytical models 

based on primary and secondary γ´ dissolution temperatures (obtained by Gleeble) as 

boundary conditions. The determined weld temperature was compared to liquation 

temperature of AD730TM to justify whether or not liquation occurs during LFW. Finally, 

microscopic analysis of the weld was performed by SEM to evaluate if liquated and 

solidified products are observed in weld zone or TMAZ. 

The objectives are addressed in chapters 2 to 7 in this Ph.D. thesis. 

Chapter 2 proposes an analytical method, validated by experiments, for the determination of 

the optimum LFW process parameters. Then, it focuses on performing LFW experiments 

using different processing parameters. Appropriate LFW process parameters are chosen to 

generate sufficient heat for obtaining sound welds, and removing oxides and other impurities 

as flash, and to form a defect free joint with a narrow TMAZ. Subsequently, microstructure 

and mechanical properties including hardness, room and high temperature tensile properties 

are investigated. This chapter responds to the first and second part of the second objective 

which is discussing about the interaction of process parameters to maximize the integrity of 

LFWed AD730TM. A paper on this chapter is being prepared for publication. 

Chapter 3 presents the first published article in Journal of Alloys and Compounds. During 

second stage of LFW (heating stage), the alloy is heated to the temperatures at which the γ′ 

precipitates are dissolved. Therefore, size distribution and morphology evolution of γ´ 

particles are quantified and analyzed during dissolution process in this article. Finally, a 

semi-analytical model for dissolution and coarsening kinetics is proposed, and a better 

understanding of fundamental mechanisms governing γ´ dissolution in Ni-based superalloys 

is developed. This chapter responds to the first and third objective which is to propose a 

model for predicting γ´ volume fraction at high temperatures.  
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Chapter 4 is the second published article in Scientific Reports. Depending on the portions of 

Al and Ti elements, γ´ particles re-precipitate during the third stage of LFW (cooling stage). 

Thus, this article addresses fundamental mechanisms of re-precipitation during cooling stage 

of heat treatments. In addition, volume fractions of re-precipitated γ´ with temperature and 

time and γ´ re-precipitated kinetics are predicted. This chapter responds to the third objective 

of the thesis. 

Chapter 5, published in Metallurgical and Materials Transactions A, aims to investigate the 

possibility of second phase liquation and microcracking during LFW of AD730TM. Then, the 

conditions under which liquation can take place during LFW were determined using 

Gleeble™ 3800 machine, and possible governing mechanisms are discussed. This chapter 

responds to the third objective and the first and third part of the second objective which tries 

to answer an ongoing debate in the scientific community about the possibility of liquation 

during LFW. 

In Chapter 6, published in Material Science and Engineering A, the high temperature creep 

performance of LFWed AD730TM is investigated in as weld and post welded conditions, and 

the results are compared to the creep properties of the base material. Furthermore, creep life 

of the joint is predicted by Larson-Miller plot, and then, the creep properties are compared 

with those of several other Ni-based superalloys. Finally, the governing damage mechanisms 

are discussed. This chapter responds to the second part of the second objective 

Conclusions section constitutes a summary of the research work presented in chapters 2 to 6. 

Recommended future works are presented subsequently after this section. 

In summary, in the current work, a procedure for determining process parameters to reach a 

defect free LFWed joint is proposed. Also, microstructure of LFWed AD730TM was studied. 

Models for γ´ evolution during various heating and cooling cycles are proposed. In addition, 

second phase and grain boundary liquation and cracking possibility during joining were 

evaluated. Finally, the mechanical properties, including room and hot tensile and creep 

properties of LFWed AD730TM were studied.  



 

 

CHAPITRE 2 
 
 

DETERMINATION OF OPTIMUM LINEAR FRICTION WELDING PROCESS 
PARAMETERS FOR AD730TM ALLOY 

2.1 Introduction 

LFW is fundamentally a hot deformation process. During LFW of Ni-based superalloys, 

microstructural changes such as dissolution and subsequent re-precipitation of γ′ precipitates 

have substantial impact on mechanical properties of welded joint. In addition, dynamic and 

post-dynamic recrystallization as well as dissolution of tensile resisting phases occur during 

welding which are expected to impact on mechanical properties of the joint (Cormier et 

Cailletaud, 2010b; Cormier, Milhet et Mendez, 2007b; le Graverend et al., 2010b). While 

extensive data is available on hot deformation of Ni-based superalloys (Ola, Ojo et 

Chaturvedi, 2013b; Shahriari et al., 2009a; Viswanathan et al., 2015; Wang et al., 2011b), 

few data is available on microstructure evolution during LFW, and its role on mechanical 

properties of welded Ni-based superalloys. In addition, the effect of post weld heat treatment 

has been hardly studied on LFWed assemblies, especially Ni-based superalloys (Chamanfar 

et al., 2011a; Damodaram, Ganesh Sundara Raman et Prasad Rao, 2014a). Damodaram et al. 

(2014a) studied tensile properties of as weld and post weld heat treated (PWHT) conditions 

on continuous drive friction welded Inconel 718 specimens. Post weld heat treated samples 

exhibited better room temperature tensile properties than those of as-welded samples. 

Reduction in average size and volume fraction of γ´ precipitates results in reduction in 

mechanical properties of as-welded specimens (Damodaram, Ganesh Sundara Raman et 

Prasad Rao, 2014a). Chamanfar et al. (2012a) reported that post weld heat treatment of 

LFWed Waspaloy leads to superior hardness properties compared to as-weld condition.  

However, the tests have been performed at room temperature, and the results cannot be 

directly applied to tensile properties at high temperatures such as the one used in the present 

investigation. Furthermore, no data is available in the literature on the methodology of 

designing LFW experiments to determine optimum process parameters.  
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 Hence, this chapter discusses the design of LFW experiments with the objective to 

determine the optimum process parameters, and fabricate sound LFWed joints. In this regard, 

the roles of frequency, amplitude, and pressure on weld integrity are discussed in details. In 

addition, evolution of the microstructure, especially γ′ precipitates and γ grain size is 

quantified, and its impact on microhardness changes, room and hot tensile properties are 

discussed. 

2.2 Selection of the LFW Process Parameters 

2.2.1 Selection of Friction and Forge Pressures 

The friction and forging phases in LFW can be considered as an upsetting process, consisting 

in deforming a metal between two flat dies. In this case, a plane-strain hot compression with 

sticking friction condition could be used to analyze these two stages. Using the slab analysis 

method for plane strain compression, average pressure due to friction and forge pressures can 

be estimated by (Altan, Ngaile et Shen, 2005; Dieter, Kuhn et Semiatin, 2003; Hosford et 

Caddell, 2014): 

 

௔ܲ௩௘. = 2݇(1 + ℎܽߤ ) (2.1) 

 

where ݇ is the shear strength, ߤ is the constant coefficient of friction, ܽ and ℎ are width and 

height of the specimen, respectively. 

By considering plane strain compression, ݇ can be expressed as: 

 ݇ =  ത√3 (2.2)ߪ

 

where ߪത is the flow stress. 

By substituting ݇ into Eq.(2.1), the minimum pressure at the onset of plastic flow during 

LFW process will become: 

௔ܲ௩௘. ≥  ത√3 (2.3)ߪ2
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Therefore, accurate estimation of material flow stress is a necessary condition to determine 

the pressure that allows plasticizing the material. In its most general form, the flow behavior 

of a material is a function of strain (ߝ), strain rate (ߝሶ) and temperature (ܶ) (Dixit, Joshi et 

Davim, 2011; Lin et Chen, 2011; Turner et al., 2014). In the present investigation, a 

combination of published data on hot deformation and LFW of Ni-based superalloys and 

analytical calculations were used to estimate the flow stress and its relation as a function of 

the above variables, as described in the following: 

2.2.1.1 Strain during LFW 

The equivalent plastic strain distributions were estimated during friction welding process of a 

typical Ni-based superalloy using Finite Element Modelling (FEM) simulation (Yang et al., 

2015). Based on the authors’ results, the plastic strain at the center of interface reached about 

12. However, no experimental support was provided. Similarly, the strains at 1mm and 8mm 

far from the weld line were estimated to be approximately 0.8 and 0.01, respectively. In order 

to analyze and implement flow stress curves under isothermal compression, the reliable strain 

is approximately 1 (Yang et al., 2016). Therefore, the flow behaviour of the investigated 

material was estimated at a strain of 0.8 at various temperatures and strain rates to simulate 

deformation during LFW. 

2.2.1.2 Strain Rate during LFW 

A wide range of strain rate values (between 0.1 to 2000 s-1) has been proposed for  

LFW (Buffa et Fratini, 2017; Chamanfar, Jahazi et Cormier, 2015b; Li et al., 2016; Turner et 

al., 2011b). However, most of the authors have reported strain rates between 0.1 s-1and 20 s-1 

for LFW. The case of 2000 s-1 has been based on simulation results with no experimental 

support (Turner et al., 2011b). Varis et al. (2016) reported that strain rate has the minimum 

value at the friction stage of LFW and reaches the highest value during the forge phase. Thus, 

in the present work, the friction pressure was estimated at a strain rate of about 0.1s-1 while 

the forge pressure was calculated based on the available data on high strain rate values.  
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2.2.1.3 Deformation Temperature Estimation  

Temperature should be high enough to allow easy plasticization of the metal during LFW. 

Considering that the strength of the Ni-based superalloys is strongly dependent on the 

presence of γ´ particles, the minimum temperature to start deformation is the temperature at 

which these particles are dissolved. However, the dissolution temperature of the primary γ´ 

particles varies with the heating rate and since the heating rate varies at different locations 

from the joint interface, the dissolution kinetics of the γ´ particles is expected to change with 

the distance from the weld interface. In the present investigation, Differential Thermal 

Analysis (DTA) and Gleeble®3800 physical simulator were used to determine the 

dissolution temperatures of primary γ´ at low (up to 2°C.s-1) and high heating rates (up to 

400°C.s-1), respectively. Figure 2.1 shows the influence of heating rate on primary γ´ 

dissolution temperature for the AD730TM alloy. It can be seen that the lowest temperature for 

γ´ dissolution is around 1060°C. Thus, the minimum temperature that needs to be reached 

before the application of deformation in the initial stage of the LFW process is considered to 

be 1060°C.  

Temperature measurements using an infrared thermal imaging instrument indicated that the 

temperature at the joint interface was about 1100°C during friction stage of LFW of a Ni-

based superalloy (Yang et al., 2015). Li et al. (2016) reported that the weld interface 

temperature in the steady state zone was between 0.75 and 0.95 of the melting temperature ெܶ. In this study, 0.85T୑ was considered as the upper limit which corresponds to 1150°C 

(the melting temperature of AD730TM alloy was taken as 1350°C based on the literature 

(Devaux et al., 2012b). 
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Figure 2.1 Primary γ´ dissolution temperature of  
the AD730TM at different heating rates. 

 

2.2.1.4 Influence of Adiabatic Heating 

For accurate calculation of the forge pressure, temperature increase due to straining, and 

consequently adiabatic heating, needs to be considered. Since adiabatic heating is only 

present during friction stage, it is only estimated for a strain rate of 0.1s-1 (corresponding to 

the friction phase of LFW) and 1s-1 (corresponding to the end of friction phase of the LFW 

process). The effect of adiabatic heating can be estimated by ∆ܶ = ଴.ଽହఎఘ஼ ׬ ఌ଴ߝ݀ߪ  (Altan, 

Ngaile et Shen, 2005). In this equation, η is the thermal efficiency (63.5% for strain rate of 

0.1s-1 and 95% for strain rate of 1s-1), ρ the density of the alloy (8155.33 Kg.m-3 at 1150°C), C the specific heat (792.68 J.Kg-1.K-1 at 1150°C), ߝ the maximum strain (0.8) and ߪ 

maximum flow stress (peak stress) during hot deformation. The peak stress values for 

AD730TM and some other Ni-based superalloys (Jiang et al., 2015; Wang et al., 2013) which 

are similar to AD730TM at strain rates of 0.1s-1 and 1s-1 in the temperature range  

of 1000-1250°C are shown in Figure 2.2 andFigure 2.3. In these curves, only the one for 

AD730TM was adjusted for adiabatic heating calculation. From Figure 2.2 and Figure 2.3, it 

can be found that the ‘adjusted’ peak stress at 1150°C is approximately 120 MPa at strain rate 

of 0.1s-1 while it is around 290 MPa at strain rate of 1s-1. Using the above data, ∆ܶ was 

calculated to be ~10°C for a strain rate of 0.1s-1 and ~30°C for a strain rate of 1s-1. Therefore, 
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the maximum weld interface temperature or the upper limit of deformation temperature at the 

end of friction stage is estimated to be approximately 1200°C. 

 

 
Figure 2.2 Peak stress values of the AD730TM  

and the other Ni-based superalloys at  
strain rate 0.1s-1.  

 

 

Figure 2.3 Peak stress values of the AD730TM  
and the other Ni-based superalloys at  

strain rate 1s-1.  
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In order to estimate forge pressure, the available data on highest strain rate values (10 and 

20s-1) for Ni-based superalloys were used. Temperature dependence of the peak stress  

at strain rates of 10 and 20s-1are shown in Figure 2.4. The experimental peak stress data at 

these strain rates is not available for AD730TM, and is only available for 617B and 740H 

superalloys. In addition, these alloys have similar behavior in deformation temperature of 

1060°C to 1150°C as γ´ precipitates are dissolved at these temperatures. Furthermore, at low 

and medium strain rates (0.1 and 1s-1), AD730TM has almost similar behavior to 617B and 

740H superalloys (Figure 2.2and Figure 2.3). Therefore, the measured peak stresses for these 

alloys were used for the calculations of forge pressure at strain rates of 10 and 20s-1 (Figure 

2.4). 

Based on the above analysis, to estimate friction pressure, the peak stress at strain rate of 

0.1s-1 and deformation temperature of 1060°C to 1150°C were used while the flow stress at 

strain rate of 20 s-1 and deformation temperature of 1060°C to 1200°C were used to calculate 

forge pressure. From Figure 2.2, it can be found that the corresponding peak stress at about 

1060°C is 260MPa while it is around 120MPa at 1150°C. Then, according to Eq.(2.3), 

friction pressure for AD730TM was calculated to be ranging from 133 to 285MPa. 

From Figure 2.4, it can be seen that the peak stress for the weld joint temperature interval of 

1060-1200°C varies between 530MPa and 240 MPa, respectively. On the basis of the above 

analysis and using Eq.(2.3), the forge pressures during the LFW process of AD730TM alloy 

were calculated to be between 265 and 580MPa. 
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Figure 2.4 Peak stress values of the various  

Ni-based superalloys at strain rates 10 and 20s-1. 
 

2.2.2 Oscillation Frequency and Amplitude 

The oscillation frequency and amplitude also influence the maximum weld line temperature. 

By increasing these two parameters, the weld interface temperature increases rapidly at the 

early stage of LFW process and then reaches an almost stable state. In order to quantify the 

impact of these two parameters, Addisonʼs equation (2010) was used:  

௥ݒ  = 4. .ߙ ݂ (2.4) 
 

where ݒ௥ is the rubbing velocity, ߙ and ݂ are the oscillation amplitude and frequency. 

A sound LFW joint can be formed by increasing the rubbing velocity which may cause a 

slight increase of the heat input, and consequently, higher temperature and removal rate of 

oxide layers. Therefore, the rubbing velocity has to be kept as a maximum value. The 

maximum values were selected for oscillation amplitude and frequency within the operating 

window of the LFW machine. Figure 2.5 illustrates the recommended amplitude and 

frequency parameters for the LFW machine at TWI, Cambridge, UK, used in this study. As 

shown in Figure 2.5, the highest oscillation amplitude was about 2.7 mm, and the highest 

allowable amplitude was 2.5 mm which was selected for the welding trials. Similarly, the 

highest allowable oscillation frequency was 40 HZ, which was used for the tests. On this 
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basis, the maximum rubbing velocity from Eq. (2.4) was calculated to be  

400 mm.s-1. 

 

 
Figure 2.5 Operating window for LFW  

machine (FW34 at TWI, Cambridge, UK). 
 

According to the above analysis, using analytical calculation, machine capability, and data in 

the literature, and with the view to reaching a defect free joint with optimum mechanical 

properties, an experimental plan was therefore conducted using the welding conditions 

provided in Table 2-1. Among the four variables of the LFW process, i.e. oscillation 

frequency, amplitude, friction and forge pressure, the first three provide heat at the interface 

while the fourth one controls the joint integrity. As discussed, the highest allowable values 

were considered for oscillation frequency and amplitude in the four trials. Then, trials 1 and 4 

were conducted at the lowest and highest limits of calculated friction and forge pressures, 

respectively. Intermediate values of friction and forge pressures were selected between the 

minimum and maximum of the calculated values for trials 2 and 3. 
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Table 2-1 Linear friction welding parameters determined and used for AD730TM a  
Ni- based superalloy 

Test  
Condition 

Oscillation  
Amplitude 

(mm) 

Oscillation  
Frequency  

(Hz) 

Friction  
Pressure 
(MPa) 

Forging  
Pressure 
(MPa) 

Heat  
Input  

(W.m-2) 
#1 

2.5 40 

133 330 3.192×107 
#2 150 265 3.600×107 
#3 187.5 265 4.500×107 
#4 285 580 6.840×107 

 

2.2.3 Estimating the Heat Input 

In order to estimate the heat input (ܫܪ) in the friction phase for the selected LFW process 

parameters reported in Table 2-1, the following equation was used (Li et al., 2016; Vairis et 

Frost, 1999b): 

ܫܪ  = ሶݍ = .ߤ .௥ݒ ிܲ௥௜௖. (2.5) 
 

where ߤ is the friction coefficient, ݒ௥ and ிܲ௥௜௖. are the rubbing velocity and friction pressure. 

For the calculation purposes, a fixed rubbing velocity of 400 mm.s-1 was considered, and the 

friction coefficient was taken equal to 0.6, as reported in the literature (Li et al., 2014; 

Maalekian, 2007; Yang et al., 2015). As presented in Table 2-1, the higher friction pressure 

will generate more heat at the weld interface which will lead to higher deformation rate and 

hence higher axial shortening, if the appropriate forging pressure is applied.  

Based on Eq. (2.5), test conditions #1 and #4 have the lowest and the highest heat input, 

respectively. 

2.2.4 LFW Process Time 

To determine the optimum linear friction welding time, an analytical procedure based on one 

dimensional (1D) thermal model was used. During the LFW process, heat losses by radiation 

and convection are usually negligible (Maalekian, 2007). Therefore, the temperature 

distribution in each solid part can be determined by solving the 1D heat conduction equation 
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(Bergman et Incropera, 2011; Grong, 1997; Lindgren, 2006; Yilbas et Sahin, 2014). Heat 

equation for three-dimensional without energy generation is given by: 

ݐ߲߲ܶ  = ܽ	(߲ଶ߲ܶݔଶ +	߲ଶ߲ܶݕଶ + ߲ଶ߲ܶݖଶ) (2.6) 

 

where ܶ is the temperature, ݐ is the time, ݔ, ,ݕ  are the heat flow directions, and ܽ is the ݖ

thermal diffusivity. The thermal diffusivity is related to thermal conductivity ߣ, densityߩ and 

specific heat ܥ௣ through the following equation (Bergman et Incropera, 2011): 

 ܽ = 	  ௉ (2.7)ܥߩߣ

  

The concept of instantaneous heat source in an infinite medium was used to solve the heat 

conduction Equation (2.6) in relation to the LFW process (Grong, 1997; Yilbas et Sahin, 

2014). The analytical solution for the 1D transient temperature distribution with time, in the 

case of frictional heat generation at a rate of ݍሶ 	(ܹ ݉ଶൗ ) diffusing along the ݔ distance from 

the weld interface, is given by (Grong, 1997): 

 

,ݔ)ܶ (ݐ = 	 ௜ܶ + ߣሶ2ݍ ቎ඨ4ܽߨݐ ݌ݔ݁ ቆ− ቇݐଶ4ܽݔ − )݂ܿݎ݁ݔ   (2.8)	቏(ݐܽ√2ݔ

 

where ௜ܶ is the ambient temperature. 

According to Eq. (2.8) for ݔ = 0, the temperature distribution is given by: 

ܶ(0, (ݐ = 	 ௜ܶ + ߣሶݍ 	ඨܽߨݐ 	 (2.9) 

 

Using Eq. (2.9) and the analysis made in section 2.2.1.3, the maximum temperature of the 

weld interface was estimated to be about 1250°C at the end of the process. The thermal 

diffusivity and thermal conductivity of the investigated alloy are 11.15 W.m-1.K-1 and 

2.79×10-6 m2.s-1, respectively (Devaux et al., 2012b).  
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Using the LFW process parameters given in Table 2-1, Eq. (2.5) and Eq. (2.9), the estimated 

temperature profiles were calculated for different test conditions and are presented in Figure 

2.6. Test condition #1 has minimum heat input with the interface reaching approximately the 

estimated maximum weld line temperature after about 10 s. In contrast, for the test condition 

#4, in which frictional heat input is the highest, the estimated maximum weld line 

temperature is obtained after 2.5 s. Considering the research nature of the work, it was 

decided to use a constant processing time of 10 s to allow better weld integrity and bonding 

for all test conditions. The selected processing time will be sufficient for reaching the 

maximum temperature of 1250°C at the weld interface which is sufficient for inducing plastic 

deformation over the entire weld interface. 

 

 
Figure 2.6 Temperature variation with time for  

different LFW process parameters. 
 

2.2.5 Estimating the Axial Shortening 

Based on Eq. (2.5), test conditions #1 and #4 have the lowest and the highest heat input, 

respectively. Then, temperature distribution in the stationary part for these two test 

conditions was calculated according to Eq. (2.8), and the results are shown in Figure 2.7 (a, 

b). The evolution of temperature with position from the weld interface and heating period 
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times can be clearly observed in these figures. For both conditions, the temperature in the 

bulk of the material increases with increasing welding process time. It is a reasonable 

approximation to assume that when the material flow starts at 0.85 ெܶ, a significant volume 

fraction of the secondary and primary γ´ precipitates have already been dissolved. Therefore, 

locations at 0.3mm and 0.4mm away from the weld interface are expected to be easily 

deformed under test conditions #1 (after 10 s) and #4 (after 2.5 s), respectively. As shown in 

Figure 2.7 (a), the minimum heat input results in 0.6 mm plastic deformation in 10s, while 

the maximum heat input provides an overall deformation of 0.8 mm after 2.5 s (Figure 2.7 

(b)). Hence, the corresponding axial shortening values predicted from the temperature 

profiles are around 0.6 mm and 3.2 mm for low and high frictional heating inputs. In the next 

section, the metallography (macro and micro) examination of the samples for 4 testing 

conditions will be presented and the obtained results will be compared and validated with the 

above predictions. 

 

 

Figure 2.7 Temperature distribution with various times along the x-axis with  
(a) the lowest and (b) the highest heat input. 
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2.3 Macrostructure  

2.3.1 Macroscopic Evaluation of the Joint after LFW 

Figure 2.8 shows the LFWed samples for the four selected conditions. It can be seen that 

while a very little flash is formed under conditions 1 and 2, a well-formed flash, and 

consequently better joint integrity, is generated with test conditions #3 and #4. The amounts 

of measured axial shortening were 0.5mm, 0.58 mm, 1.7 mm and 4mm for test conditions 1 

to 4, respectively. The flash material was cut from the samples for further examination, as it 

will be documented in the upcoming chapters. 

 

 

Figure 2.8 Photographs of side views of the LFWed AD730TM joints. Minimum  
flash is observed in the test condition #1 while test conditions #3 and #4 present  

well-formed flash. 

 

Only macroscopic features of the LFWed joints #1 and #4, which have respectively the 

minimum and maximum flash, are illustrated in Figure 2.9 (a, b) for comparison. Impurities 

like oxide layers appeared at the weld interface of sample #1 while under welding condition 

#4 it appeared that a defect-free joint was produced. The oxide inclusions present in weld #1 
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had a wavy shape. Similar observation has also been reported on other LFWed joints, and 

related to the reciprocating motion of the parts during the welding process (Senkov et al., 

2014). Appropriate selection of the process parameters in test condition #4 allowed obtaining 

a good bonding structure and a sound joint. Visual inspection of the weld interfaces showed 

that bifurcated flash was formed during LFW. In sample #4, the flash was connected around 

the corners of the specimen which is indicative of its high integrity. Further examination of 

the weld line at higher magnifications (Figure 2.9 (c)) did not reveal oxide particles, voids or 

microcracks at the corner of the LFWed sample, indicating that all the oxides were removed 

from the weld line due to sufficient extrusion of the interface material. Thus, further 

macroscopic and microscopic evaluations as well as evaluation of mechanical properties 

were performed on the sample#4. 

Figure 2.10 shows the heat input calculated based on Eq. (2.5) versus the measured and the 

predicted axial shortening (calculated based on Eq.(2.8)) for the four test conditions. A good 

agreement is observed between the analytical methodology and experiments. A better 

conformance can be observed for lower axial shortenings than that of the higher one. 

Therefore, 2D or 3D numerical simulations are recommended to be employed to predict more 

accurate axial shortenings.  

No oxide particles were observed at the weld interface of AD730TM with an axial shortening 

larger than 1.7 mm. This finding is confirmed by reports in which an axial shortening of 

more than 2 mm could provide a weld interface without any defects as well as adequate room 

temperature tensile properties for Ti6Al4V and Waspaloy (Chamanfar et al., 2012a; Wanjara 

et Jahazi, 2005). It can be concluded that the axial shortening should be in the range of ~2-

4mm in order to produce a high quality joint for AD730TM Ni-based superlloy. Therefore, the 

proposed analytical approach appears to be very efficient in identifying LFW process 

parameters without employing a large number of welding experiments. 
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Figure 2.9 Macrograph of the LFWed joints#1 and #4. Oxides are forming  
similar to sinusoid or wavy shape at the weld interface in test  

condition #1(a) while uniform deformation is attained in test condtion#4(b).  
Higher magnification of red box is revealed in (c) where no voids  

or oxides are observed. 
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Figure 2.10 Variation of axial shortening with the  
expected heat input. 

 

2.4 Microstructure  

2.4.1 Grain Refinement at the Weld Interface 

The EBSD map of the base material is provided in Figure 2.11 (a) and the distribution of 

grain misorientation in Figure 2.11 (b). An average grain size of approximately 40 µm was 

calculated based on ASTM E112 standard and image J analysis software. About 57% of the 

grain boundaries were high angle in character (HAB) with misorientation ranging from 15 to 

55°. Low angle grain boundaries (LABs defined in the misorientation range of 1 to 15°) 

fraction was as low as 9 % with most of them clustered within some grains as shown by 

black dots in Figure 2.11 (a). Finally, about 34% of the microstructure was composed of 

twins, shown by yellow lines in Figure 2.11 (a) (Figure 2.11 (b)). 

Table 2-2 summarizes the distribution of grain orientations in the base metal and its evolution 

from the base metal to the weld interface. 
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Figure 2.11 (a) EBSD map of the base material, (b) misorientation distribution in  
the parent material. 

 
Table 2-2 Distribution of grain orientations from the base material to  

the weld region of sample #4 
Microstructural  
Region (mm) 

HAB %  
(between 15-55 misorientation) 

LAB % Twin % 

Base Material 57 9 34 
1.8-2 43 27 30 
0.8-1 17 61 21 

0.6-0.8 20 65 15 
0.4-0.6 27 60 12 
0-0.4 40 56.1 3.9 

 

Figure 2.12 shows an EBSD map of sample#4 over a large distance covering both sides of 

the weld line. Since the measured distance was very large, the width of the recording window 

was small; however, this does not affect the interpretation of the obtained results. In Figure 

2.12, the area with concentrated red zones, with a width of approximately 4mm corresponds 

to the TMAZ, and shows a heavily deformed region. 
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Figure 2.12 Low magnification EBSD map of the transversal cross section of the LFWed 
sample#4. Red zones depict deformed areas and blue areas are undeformed zones. 

 

In Figure 2.13, the evolution of the microstructure at different locations from the weld line is 

presented. The LABs, HABs and Ʃ3 twin boundaries (within 5° tolerance) are depicted as 

green, black and yellow lines, respectively. At approximately 2 mm far from the weld line, 

LABs start to develop within parent grains or near parent grain boundaries (Figure 2.13 (a)). 

Therefore, this zone could be considered as the outer edge of the TMAZ. The LABs have 

very low misorientations, and the HAB fraction in this region is close to that of the base 

material. Furthermore, twin boundaries are transformed into random boundaries and their 

fraction is reduced from 34% to 30% and gradually disappeared from the  

microstructure (Figure 2.13 (b)-(f) and Table 2-2). This phenomenon is attributed to strain-

induced crystallographic rotations of the twins and their surrounding matrix from their initial 

orientations [5]. 

Closer to the weld zone, LABs are observed within most of the original grains, and mostly 

concentrated close to the original grain boundaries. As shown in Table 2-2, the LABs 

fraction is significantly increased from 9% in the base material to 60% at 0.6 mm from the 

weld line while the twin fraction is substantially reduced from 34% in the base material to 

12%. Grain boundary bulging was clearly visible in the microstructure located  at 0.4-0.6 mm 

from the weld line, as shown in Figure 2.13 and Figure 2.14. Some of these serrated 

boundaries transform into fine grains indicating the occurrence of Dynamic Recrystallization 

(DRX) (Mironov et al., 2008). This process probably starts from L=0.8 mm, as HAB fraction 

in the misorientation range of 15-55° gradually increases from 17% at L=1 mm to 20% at 

L=0.8 mm (Table 2-2 and Figure 2.13). The average grain size at L=1 mm zone was 

determined to be about 25 µm. 
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Figure 2.13 EBSD grain boundary maps showing microstructural changes  
of the LFWed sample#4. (a) 1.8-2mm, (b) 0.8-1mm, (c) 0.6-0.8mm,  

(d) 0.4-0.6mm, (e) 0.2-0.4mm from the weld interface and (f) 0.2mm to  
weld line. In the maps, LABs, HABs and twin boundaries are  

depicted as green, black and yellow lines, respectively. 
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Figure 2.14 EBSD grain boundary map of the LFWed sample#4;  
(a) 0.6 mm and (b) 0.2 mm from the weld interface showing grain  

boundary bulging. 
 

HAB fraction drastically increased to 40% at L=0.4 mm and until the weld line indicating a 

substantial increase in the recrystallization process. Therefore, this zone was identified as the 

weld zone. In this zone, bulging of the grain boundaries and formation of fine grains around 

the original grains led to the formation of a necklace structure (Figure 2.14 (b)). The average 

grain size was reduced from 40 µm in the base material to about 4 µm in this zone. These 

fine grains are characterized by a very low dispersion in misorientation. Furthermore, twin 

boundaries, which made 34% of the grain boundaries of the base material were nearly absent 

in this zone with their fraction reducing to only 3.9% in the weld zone. 

Finally, it must be noted that the observed recrystallization process was not the result of 

progressive movement of LAB peak toward HAB misorientations but mostly due to the 

building up of a wide peak near 45°, as illustrated in Figure 2.15. The above observed 

microstructural changes correspond very well with the main characteristics of the dynamic 

recrystallization phenomenon as reported by Mironov et al. (2008). 
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Figure 2.15 (a) Misorientation distribution in weld zone(0-0.4mm),  
TMAZ (0.6-0.8mm) and base metal (1.8-2mm) of the LFWed sample#4.  

(b) Higher magnification of (a). 

 

2.4.2 γ´ Size and Volume Fraction Variation across the Weld 

In addition to changes in grain size and misorientations in different zones of the LFW joint, 

significant changes were also observed and quantified in volume fraction, morphology and 

distribution of the γ´ phase. Figure 2.16 shows variation of γ´ size and volume fraction at 

different distances from the weld interface. FEG-SEM examination of the as-received 

AD730TM alloy revealed that the material consisted of 8% primary, 26% secondary and 3% 

tertiary γ´ precipitates. With a decrease in distance from the weld interface, γ´ precipitates 

volume fraction and size decrease, as shown in Figure 2.16 (e) and (f). Secondary and tertiary 

γ´ precipitates began to dissolve at 2.2 mm from the interface while primary γ´ particles 

started to dissolve from 1 mm. The total γ´ volume fraction at 2.2 mm from the weld 

interface was similar to that of the parent material. This finding indicates that TMAZ width is 

around 4 to 4.4 mm which confirms the EBSD results shown in Figure 2.12 and Figure 

2.13as well as in Table 2-2. 
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Figure 2.16 FEG-SEM images of γ´ precipitates in sample#4 (a) in the parent material,  
(b) to (d) respectively at 1.7, 1, and 0.8mm from the weld interface. (e) Variation of γ´  
volume fraction as a function of the distance from the weld interface. (f) Average γ´  

size at various distances from the weld line. The standard deviations of the γ´  
volume fraction and size measurements are shown by error bars. 
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Secondary and primary γ´ particles were mostly dissolved at respectively 0.8 mm, and  

0.2 mm from the weld interface, as shown in Figure 2.16. At the weld interface and  until  

100 µm from that, all γ´ precipitates were dissolved, and only a monomodal re-precipitated γ´ 

distribution, less than 10 nm in size, was observed in the microstructure of the as-welded 

specimens. The absence of primary or secondary γ′ particles at the weld line indicates that the 

temperature in this zone was above the γ′ solvus. Figure 2.1 shows that primary γ′ solvus is 

around 1200°C at a heating rate of 400°C/s (physically simulated heating rate at the weld 

interface). Therefore, weld line and until 100 µm from that (i.e. very close to the weld 

interface) experienced temperatures higher than 1200°C which confirms the analytical results 

obtained from Eq. (2.9) for weld interface temperature.   

2.5 Mechanical Properties 

2.5.1 Microhardness Variation across the Weld 

Microhardness profiles were obtained for LFWed samples with different heat inputs to 

evaluate weld strength. Figure 2.17 depicts the results of the microhardness measurements 

across the weld. The microhardness profiles for test condition #1 with low heat input and 

LFWed joint#4 with high heat input are shown in Figure 2.17 (a) and (b), respectively. 

Figure 2.17 (a) (sample #1) shows that LFW with lower heat input, friction and forge 

pressure  results in lower hardness in the weld line (425 HV) and a wider  

TMAZ (8.2 mm)  than those of sample#4 (Hardness of 470 HV and TMAZ of around  

4.3 mm). Figure 2.18 shows that grain size (20 µm) in the weld line of sample#1 is bigger 

than that of sample #4 (4 µm).  

Based on Zener-Hollomon equations (Medeiros et al., 2000), dynamic recrystallization 

(DRX) grain size (d) can be correlated to process parameters of strain rate (ߝ.) and 

temperature (ܶ): ܼ = )	exp.ߝ ொோ்) and ݀஽ோ௑ =  ఉ where ܼ is the Zener-Hollomonିݖܣ

parameter, ܳ activation energy and ܣ and ߚ are material constants. According to this 

equation, recrystallization is accelerated at higher temperatures. As shown in Figure 2.10, 

heat input (and consequently weld interface temperature) of sample #4 (6.84×107 W/m2) is 
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higher than that of sample #1(3.192×107 W/m2). In addition, forge pressure during LFW of 

sample #4 (580 MPa) is higher than that of sample#1 (330 MPa). It has been reported that 

when the forge pressure increased from P to 2.5P or 4P, DRX grain size of Waspaloy and 

INCONEL 738 decreased from 13.1 μm to 4 μm and from 17 μm to 5 μm, respectively 

(Amegadzie, 2012; Chamanfar et al., 2013). Thus, lower temperature and pressure lead to 

lower driving force for recrystallization and consequently, bigger grain size (20 µm) in the 

weld line for sample#1, as shown in Figure 2.18, compared to that of sample#4 (4 µm). 

Therefore, hardness of the weld line for sample#1 is lower than that of sample#4. As shown 

in Figure 2.17 (b), the width of TMAZ is around 4.3 mm for sample #4 (2 to 2.2 mm on 

either side of the weld interface), and the size of the weld zone is 0.3-0.4 mm. These findings 

further confirm the EBSD and microstructure analysis results shown in Figure 2.12 and 

Figure 2.13 and Table 2-2 for determining the size of TMAZ and weld zone. 

 

 

Figure 2.17 Variation in microhardness with distance from the weld line of  
LFWed samples produced at (a) low heat input with test condition #1 and  

(b) high heat input with test condition #4. The standard deviation of  
the microhardness measurement is shown by error bars. 

 

Two symmetrically hardness zones are observed on either side of the TMAZ. At 1 mm from 

the weld interface, the hardness decreased from 470 to 387 HV (Figure 2.17(b). This drop in 

hardness can be correlated to the evolution of γ´ volume fraction across  
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the weld (Figure 2.16). As shown in Figure 2.16, secondary γ´ volume fraction which is most 

effective in increasing the hardness (Monajati et al., 2004b) decreases from 26% in the base 

material to 2.9% at 1 mm from the weld interface, and lower portion of γ´ particles 

reprecipitates compared to those of weld metal. This abrupt change is probably the root cause 

for the observed decrease in the microhardness level. On the other hand, Figure 2.17 (b) 

shows that with a decrease in the distance from the LFW interface, the microhardness 

increases gradually. This is probably due to γ´ reprecipitation (see chapter 6) and the partially 

refined grain structure, as shown in Figure 2.13. Figure 2.17 (b) shows that LFW leads to 

significant increase in the weld hardness as the hardness of the parent material at 1 mm from 

the LFW interface increases from 387 to 470 HV at the weld interface. Based on Figure 2.13, 

this increase can be attributed to grain refinement of the material decreasing from 25 µm to 4 

µm at the weld interface during LFW and γ´ reprecipitation. 

 

 

Figure 2.18  EBSD grain boundary map of  
the LFWed sample#1 at the weld interface. 

 

Furthermore, it is important to note that the TMAZ width in sample#4 is smaller than that of 

sample#1. This finding could be explained in terms of the processing conditions of sample#4. 

The higher heat input results in more heating and therefore more softening to occur in 

sample#4 compared to sample#1. In addition, the higher forge pressure of 580 MPa in this 

sample provides more extrusion of the softened material as flash from the weld interface. The 

combination of these two phenomena results in smaller TMAZ width in sample#4. Similar 
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trend in TMAZ reduction due to increasing forge pressure has been observed for Waspaloy 

and INCONEL 738 (Amegadzie, 2012; Chamanfar et al., 2012a). 

2.5.2 Mechanical Properties of as-welded and Post Weld Heat Treated (PWHTed) 

Samples 

As a criterion, it was considered that a defect-free and sound LFW joint was produced when 

its tensile strength at room and high temperatures was higher than the ultimate tensile 

strength of the base material.  In this case, fracture of the welded joint should appear far from 

the weld zone. Accordingly, the quality of the LFWed sample was evaluated by performing 

tensile tests at room and elevated temperatures.  

It has been reported that by increasing axial shortening, the yield and ultimate tensile 

strengths at room temperature increase (Chamanfar et al., 2012a; Wanjara et Jahazi, 2005). 

Therefore, in the present investigation, the weld joint with the maximum axial shortening 

corresponding to the highest amount of heat input (i.e. sample#4) was studied.  

The as-welded samples were subjected to solution treatment and aging before tensile testing. 

Solutionizing was carried out in two steps: initially the samples were heated to 900°C and 

held for 2 hours. Then, they were heated at 0.15°C/s to 1080°C, held at this temperature for 4 

hours followed by air cooling. The aging treatment was conducted at 730°C for 8 hours 

followed by air cooling. The average grain size in the weld interface was about 8 µm after 

PWHT, as shown in Figure 2.19. This grain size is nearly twice the size of the grains in as 

welded samples. This increase could be associated with the dissolution of the primary γ´ 

particles at the weld line, thereby facilitating the grain growth during PWHT in this zone, as 

demonstrated in Figure 2.19.  
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Figure 2.19 EBSD grain boundary map 
of the LFWed sample#4 after PWHT. 

 

The configuration of tensile test specimens inside LFWed sample and its geometry are 

reported in Figure 2.20. The specimens were machined in such a way that the LFWed joint 

interface was located in the middle of the gauge length and perpendicular to the tension axis. 

Tensile tests were carried out at 20°C and 650°C using a constant strain rate of 10-3s-1 on an 

electromechanical "Insrton8562" machine. Sample temperature was controlled using S-type 

thermocouples and the gauge of the specimen was measured. During hot tensile tests, the 

temperature difference between the programmed and the actual sample was within ±1°C. 
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Figure 2.20 Configuration of (a) tensile specimen inside LFWed  
sample and (b) specimen geometry for tensile tests according  

to ASTM A370 standard (all dimensions are in mm). 
 

Fractured samples after room and hot tensile tests on the PWHT joint#4 are shown in  

Figure 2.21. Macroscopic examination revealed that both specimens were failed out of the 

weld zone. 

 

 

Figure 2.21 Fractured PWHT tensile samples  
of jonit#4 at room temperature (RT) and 650 °C. 

 

Tensile properties at room and elevated temperatures of the base material as well as PWHT 

joint are given in Table 2-3. These data are the mean value of three tensile experiments.  
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Table 2-3 Room and elevated tensile properties  

Specimen 
Test 

Temperature(ºC) 
Yield 

Strength(MPa) 
Ultimate Tensile 
Strength(MPa) 

Elongation 
(%) 

Base 
Material 

20 1247±20 1587±18 20.0±3 

650 1116±15 1362±16 22.0±3 
PWHTed 
Sample#4 

20 1264±19 1911±8 22.1±2 
650 1162±17 1647±6 24.7±2 

As-LFWed 
Sample#4 

20 961±5 1781±12 22.3±3 
650 936±7 1447±10 23.2±3 

 

Figure 2.22 displays tensile stress-strain curves for LFWed samples before and after post 

weld heat treatment at room temperature and 650°C. As shown in Figure 2.22 and Table 2-3, 

tensile properties improved after subjecting welded specimens to post weld heat treatment. 

Table 2-3 shows that the as-welded joints have lower yield strength but higher ultimate 

tensile strength than those of the base material. Microstructural examination results reported 

in Figure 2.16 showed that secondary γ´ precipitates started to dissolve at 2 mm from the 

weld line until the weld interface, due to high temperatures experienced by this zone during 

LFW. On the other hand, it was found (see chapter 6) that γ´ particles (in the range of a few 

nanometers) reprecipitated in the weld interface after LFW during cooling in higher portion 

than those of TMAZ. Therefore, the observed higher strength of the weld zone compared to 

TMAZ  in the present work, is probably due to higher portion of γ´ reprecipitates and the fine 

grain microstructure, as shown in Figure 2.13 and Figure 2.17 (b). Thus, TMAZ should be 

the region which experiences cracking and failure during tensile tests at 650°C of the as-

welded specimens due to dissolution of strengthening precipitates and lower level of 

reprecipitated γ´ particles. 
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Figure 2.22 Stress-strain curves of the LFWed  
sample #4 before and after heat treatment. 

 

Yield and ultimate tensile strengths of the PWHTed sample at room temperature and  

650ºC show higher values than those of the base material. For example, the yield strength of 

the PWHTed sample tested at 650ºC is about 46MPa higher than that of the base material. In 

addition, fracture strength of PWHTed sample is approximately 285MPa more than the 

ultimate strength of the base material tested at 650ºC. Such behavior is indicative of forming 

a good joint in this sample.  

The grain size in the weld region of the sample is 8μm after PWHT which is 5 times finer 

than that of the base metal (40 μm). Therefore, the defect-free joint with dynamically 

recrystallized grains in the weld zone in this sample subjected to PWHT led to higher 

ultimate tensile strength. In addition, as shown in Figure 2.23, PWHT leads to reprecipitation 

of γ´ particles in the TMAZ and restores tensile properties of the LFWed joints. Thus, after 

PWHT, all LFWed specimens failed in the base material.  

The fracture surfaces of the samples in PWHT condition were examined, and the findings are 

discussed in details as follows. 

  



56 

 

 

Figure 2.23 FEG-SEM images γꞌ particles of the LFWed sample #4 after PWHT  
(a) at 1mm from the weld interface, (b) higher magnification of the inset(red box) in (a). 

 

2.5.2.1 Fracture Surface of Tested Samples in PWHT Condition 

The fractograhic features of the tensile tested specimens at room temperature and 650°C are 

shown in Figure 2.24 and Figure 2.25, respectively. Figure 2.24 shows that the fracture 

surface is almost flat and dark at the center of the sample while it is bright and orientated at 

±45° to the fracture surface at the edges. Higher magnification of the flat surface (Figure 2.24 

(a)) shows dimples on fractured area, indicative of a ductile type fracture.  

More detailed analysis of the fractured specimen and fracture surface (Figure 2.21 andFigure 

2.24) revealed that failure initiated in the base material during tensile testing at room 

temperature. Final fracture occurred in zones adjacent to the TMAZ, by shearing at ±45° to 

the tensile axis.  
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Figure 2.24 (a) Macrofractograph of the fractured surface at room temperature.  
The central portion of the fracture is slightly flat and 45° shear lips surround  

this region. (b) Higher-magnification view of the selected area (red box)  
at the center of the specimen which consists of equiaxed dimples formed  

during ductile rupture. 
 

Figure 2.25 shows the fracture surface of the sample tested under tensile stress at 650°C. The 

surface is characterized by flat regions of shallow dimples (Figure 2.25 (b)), indicative of 

ductile fracture. The crack propagation is transgranular, and occurs in the parent material, as 

shown in Figure 2.25 (c). The presence of primary γ´ precipitates, as marked by orange 

arrows in Figure 2.25 (c), and topography of the fracture surface is consistent with a 

transgranular fracture. Two portions of the fracture surface next to the edge of the sample, 

shown by black arrows, are slanted suggesting a shear lip (Figure 2.25 (a)). Therefore, the 

final fracture occurs by shear, one side in the parent material and the other side in the weld 

zone. 
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Figure 2.25 (a) Macrofractograph of the fractured surface at 650°C. Shear lips  
observed at 45° to the stress axis are indicated by black arrows. (b) Magnified view  

of a flat area from region A (inset in (a)). Ductile dimple rupture is the fracture  
mode. (c) Typical features of region B (inset in (a)) which consists of  

γ´ particles (orange arrows) in the fracture surface. 
 

2.5.3 Conclusions 

1- The proposed analytical method was validated by experiments, and a good agreement was 

obtained between the predicted axial shortening and the experiments. Therefore, the 

simplified robust and reliable analytical approach can allow for rapid determination of the 

optimum LFW process parameters for AD730TM alloy. The proposed methodology can be 

applied to other materials. 
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2- The different zones of LFWed joints were determined and the evolution of their 

microstructure and microhardness as a function of processing parameters was related to 

fundamental metallurgical processes. 

3- Yield and ultimate tensile strengths of the PWHTed samples at room temperature and  

650ºC showed values higher than those of the as-welded samples indicating that a PWHT is 

necessary after LFW of AD730TM superalloy. 

4- Macroscopic examination of room and high temperature PWHTed tensile samples showed 

that both specimens failed out of the weld zone. Tensile strengths of the PWHTed samples 

showed higher values than those of the base material at room temperature and 650ºC, further 

demonstrating the appropriate selection of processing parameters for obtaining a sound LFW 

joint, proposed in the present investigation. 
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3.1 Abstract 

The kinetics of γ′ size and volume fraction changes during solution treatment of the advanced 

Ni-based superalloy, AD730TM are determined and the underlying mechanisms are 

investigated. High resolution Differential Thermal Analysis (DTA) and thermodynamic 

modeling were used to design and perform solution heat treatment experiments. Semi-

analytical models are developed to describe the dissolution and coarsening processes. The 

results from the proposed models, supported by electron microscopy observations, indicate 

that coarsening occurs before complete dissolution takes place. Agglomeration is shown to 

be the governing coarsening mechanism for this alloy after calculation of the coefficients for 

both the Ostwald ripening and agglomeration mechanisms.  Electron microscopy 

observations revealed that the early stages of agglomeration occur by neck formation 

between two neighboring particles. The splitting of γ′ particles was identified as one of the 

main dissolution mechanisms. Based on the obtained results, a dissolution kinetics model is 

proposed to quantify the volume fraction of dissolved γ′ particles and estimate the activation 

energy of this process for AD730TM. A coarsening model based on the time-temperature 

dependence of the γ′ coarsening rate coefficient is also proposed taking the concentration of 

elements, γ′ volume fraction and the temperature into consideration. Based on this model, a 

method is developed to predict γ′ size evolution during aging heat treatment process and an 

optimum heat treatment to reach the desired γ′ distribution is proposed. The validity and 
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accuracy of the proposed models were verified by carrying out different heat treatment 

experiments. 

Keywords: Ni-based Superalloys; AD730TM; γ′ Phase Dissolution; γ′ Phase Coarsening;  

Semi-Analytical Modeling; Activation energy 

3.2 Introduction 

Thermomechanical processes such as rolling, forging, machining and friction welding 

involve substantial microstructural changes including dissolution and subsequent re-

precipitation of γ′ precipitates in Ni-based superalloys. These changes play a key role in 

controlling the mechanical properties of these alloys. The thermal cycle (heating rate, 

temperature, and holding time) in addition to accumulated plastic strain and applied stress 

were found to enhance γ′ dissolution rate in Ni-based superalloys (Cormier, Milhet et 

Mendez, 2007a; Giraud et al., 2013; Shahriari, Sadeghi et Akbarzadeh, 2009; Shahriari et al., 

2009b). Out of the parameters listed above, the heating stage plays a major role in 

determining optimum processing parameters. In addition, in thermal processes such as aging 

and creep, dissolution and coarsening of γ′ have a determining effect in property evolution. 

Therefore, γ′ size and volume fraction are critical inputs for models of mechanical behavior 

and microstructure evolution (Cormier et Cailletaud, 2010a; Le Graverend et al., 2014; 

Payton, 2008). For reliable and accurate kinetics models to be developed, it is necessary to 

better understand the underlying mechanisms governing γ′ phase evolution during solution 

heat treatment (SHT).  

After solutionizing, aging is carried out to achieve a controlled γ′ phase re-precipitation 

(Fuchs, 2001). Although γ′ reprecipitation during isothermal aging or continuous cooling in 

Ni-based superalloys has been the subject of extensive research works (Monajati et al., 

2004a; Radis et al., 2009; Singh et al., 2013; Wen et al., 2006), much less attention has been 

paid to the dissolution kinetics during the heating stage (Cormier, Milhet et Mendez, 2007a; 

Wang et al., 2009). Hence, the main objective of this research is to accomplish a time and 

temperature dependent study concerning the evolution of the γ′ phase during the heating 

stage of the solution heat treatment process.  
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Theoretically, as suggested by Semiatin et al. (2004), the homogenizing should be performed 

between γ′ solvus and the solidus temperature of the alloy in order to entirely dissolve γ′ and 

other phases. This approach also removes chemical non-uniformity formed during previous 

preparation processes. However, solution heat treatments at temperatures high enough to 

dissolve all the primary γ′ particles have been seriously limited in various superalloys due to 

the occurrence of incipient melting (Ojo, Richards et Chaturvedi, 2004b). To elucidate the 

influence of the solutionizing temperature on γ′ dissolution kinetics and eliminate possible 

microstructural damage, both subsolvus and near solvus heat treatments are used in the 

present investigation.  

Thomas et al. (1961) presented a theory on the dissolution kinetics of a single precipitate in 

which dissolution was considered to be approximately the reverse of growth. However, 

Whelan mentioned that this assumption was not fully accurate (Whelan, 1969). Lifshitz, 

Slyozov, and Wagner (LSW) (1961) proposed an analytical theory describing diffusion-

limited coarsening (or Ostwald ripening) of isolated precipitates. The LSW theory is based 

on the Gibbs-Thomson equation, which describes that solubility in the small precipitates with 

a large surface area-to-volume ratio is higher than that for larger precipitates. The larger 

precipitates, therefore, tend to grow at the expense of the smaller ones to decrease the total 

interfacial free energy of the alloy. Umantsev, Olson (1993) and Philippe et al. (2013) 

expanded the LSW theory to multicomponent systems.  

Coarsening and coalescence of γ′ precipitates, through application of the LSW theory and 

particle agglomeration mechanism have been studied in several research works (Mao et al., 

2007; Wang et al., 2008). However, the contributions of these two mechanisms to the 

dissolution process have not yet been identified nor quantified. Whelan et al. (1969) 

developed an analytical solution for the dissolution of a single precipitate under assumptions 

of stationary interface. This solution can be considered as one of the most accurate analytical 

solutions to date. However, in real systems, precipitates are often close to each other making 

it reasonable to assume that some impingement of diffusion fields of neighboring precipitates 

takes place (Ferro, 2013). This assumption was not taken into account in the Whelan model. 
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In the present study, this aspect is addressed and a model which considers multiple 

precipitates is presented for dissolution kinetics and validated after a series of experiments. 

Wang et al. (2009) developed a model to study the influence of initial particle size 

distribution (PSD) on the dissolution rate of Ni-Al alloys (above the solvus) by using 3D 

phase field simulations. A critical review of this work indicates that during dissolution the 

volume fraction of particles decays exponentially with time and while the initial PSD does 

not affect this trend, the dissolution rate is strongly dependent on PSD. However, computer 

based simulation methods are generally associated with long computation times and large 

and expensive infrastructures, particularly when it comes to simulating the behavior of 

industrial size components. Many physical constants such as element diffusion coefficients, 

surface energies, interface kinetic coefficients and driving forces for phase transformations 

are needed for obtaining reliable results. However, this data is not always readily available 

for alloys with complex compositions (Kovačević et Šarler, 2005). The situation becomes 

even more complicated when a new alloy, such as the one used in the present investigation, is 

considered.  

Semi-analytical models calibrated by experiments were proposed to address this problem. 

These models are widely used for characterizing phase precipitation under isothermal and  

non-isothermal conditions (Ferro et Bonollo, 2012; Lee et Kim, 1990) but to the knowledge 

of the authors, no such models exist for the identification and quantification of the 

dissolution mechanisms during the solution heat treatment process of Ni-based superalloys. 

In addition, AD730TM is a newly developed Ni-based superalloy for turbine disk applications 

with reported superior service properties at 700◦C (Bellot et Lamesle, 2013; Devaux et al., 

2012a; Masoumi et al., 2014). However, many of its properties are unknown for advanced 

manufacturing applications and especially no quantitative data is available on γ′ dissolution 

kinetics in AD730TM.  

On the basis of the previous analysis, the objectives of this study are three fold: 

1- To identify the dissolution temperatures for different populations of γ′ by DTA,  

Thermo-calc® and heat treatment for AD730TM alloy. 
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2- To quantify and analyze size distribution and morphology evolution of γ′ precipitates 

during dissolution process using electron microscopy and image analysis. 

3- To propose and validate semi-analytical models for dissolution and coarsening kinetics 

and calculate the partitioning contribution of various coarsening mechanisms during γ′ 

dissolution process. 

Research results will help to develop a better understanding of fundamental mechanisms 

governing γ′ dissolution in Ni-based superalloys. 

3.3 Coarsening by agglomeration 

Smoluchowski (1916) proposed that the agglomeration process can be modeled as an infinite 

set of second-order reactions. Smaller particles combine to form larger particles, and 

dissociation is not considered. The rate of change in number density of particle size 

distribution is given by: 

ݐ߲݂߲  = 12න ᇱ௩ݒ)ܹ
଴ , ݒ − ,ᇱݒ)݂(ᇱݒ ݒ)݂(ݐ − ,ᇱݒ ᇱݒ݀(ݐ − ,ݒ)݂ න(ݐ ᇱஶݒ)ܹ

଴ , ,ᇱݒ)݂(ݒ  ᇱ (3.1)ݒ݀(ݐ

 

where	݂(ݒ,  is the number density of precipitates per unit volume with particles volumes ݒ݀(ݐ

in the range of 	ݒ ,ݒ + ,ᇱݒ)ܹ  and where ݒ݀   .is the volume of the agglomerated particle (ݒ

The first term describes the coalescence of precipitates whose volumes are respectively  ݒ  through ݒ The second term describes the annihilation of the precipitates with volume of .ݒ ᇱ. Merging upon contact, the two particles become one, the resulting volume equal toݒ ᇱ andݒ−

diffusion. After some manipulation Eq. (3.1) gives (Thompson, 1968): 

ݐ߲݊݀  = −12න න ,ᇱݒ)ܹ ஶ(ݒ
଴ ᇱஶݒ)݂

଴ , ,ݒ)݂(ݐ  (3.2) ݒᇱ݀ݒ݀(ݐ

 

where ݊(ݐ) is the number density of the particles and ݊(ݐ) = ,ݒ)݂׬ (ݐ   .ݒ݀	
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To obtain the growth law for a particle with an average radius ݎ଴, Eq. (3.2) can be simplified 

by considering ܹ(ݒᇱ, (ݒ ≈ ഥܹ   that is the average volume of an agglomerated particle (Ratke, 

1987; 1995): 

ݐ݀݊݀  = −12 ഥܹ    (3.3)		ଶ(ݐ)݊

 

Eq. (3.3) shows that particle density in the agglomeration reaction decays with time. The 

solution to this equation is: 

(ݐ)݊  = ݊଴1 + 12݊଴ ഥܹ  (3.4)  ݐ	

 

where ݊଴ is the initial density of particles. Since agglomeration does not change the volume 

concentration of precipitates, ݊଴̅ݒ଴ = ഥ	ݒ(ݐ)݊ (t) or: 

଴ଷ݊଴ݎ̅ߨ43  =  (3.5) (ݐ)തതതതതଷ݊(ݐ)ݎߨ43

 

So, the change in the average particle radius is: 

തതതതതଷ(ݐ)ݎ  − ଴ଷݎ̅ = 12݊଴̅ݎ଴ଷ ഥܹ ݐ	 =  (3.6) ݐ௔௚௚ܭ

 

Since the growth law is similar to that of the Ostwald ripening mechanism, it is possible to 

combine them, resulting in Eq. (3.7): 

തതതതതଷ(ݐ)ݎ  − ଴ଷݎ̅ = ௅ௌௐܭ) +  (3.7) ݐ(௔௚௚ܭ
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3.4 Experimental Procedure 

The material used in this study, AD730TM, was supplied by Aubert & Duval Co. in the form 

of a forged square bar. A post forge heat treatment consisting in solutionizing at 1080°C for 

four hours followed by air cooling had also been conducted on the material. The chemical 

composition of the AD730TM alloy used in this study is provided in Table 3-1. Three 

different solution treatment temperatures (1,080°C, 1,100°C and 1,110°C) were used in the 

investigation. These solutionizing temperatures were selected based on calculations using 

Thermo-calc® with the TCNI5 database and DTA results. The DTA was carried out using 

Diamond TG/DTA PerkinElmer with Pt crucible and a flowing Ar atmosphere. DTA samples 

were heated at the rate of 1°Cs-1 in order to replicate as close as possible the heating rate 

applied during the solutionizing process of γ′ particles. 

 

Table 3-1 Chemical composition of AD730TM (wt%)  
(Devaux et al., 2012a) 

Ni Fe Co Cr Mo W Al Ti Nb B C Zr 

Base 4 8.5 15.7 3.1 2.7 2.25 3.4 1.1 0.01 0.015 0.03 

 

Sample size for solution treatment trials was 5×5×5mm3. Holes of 1.5mm in diameter were 

drilled in the center of one face to a depth of 2.5mm before inserting a K-type thermocouple. 

All the tests were carried out on samples with thermocouples. Since thermal and 

thermomechanical processes are performed at various heating rates, two different heating rate 

ranges (low and high) were selected. The higher range used to simulate the dissolution 

process, the lower implemented to validate the model. For the high heating rate experiments, 

samples were heated from room temperature to 900°C at a constant rate of 20°Cs-1 and then 

from 900°C to the target temperature at 1°Cs-1. The heating cycle for the low heating rate 

experiments consisted of heating to 900°C at 2°Cs-1 and then from 900°C to target temperature 

at 0.4°Cs-1. The specimens were held for 1.5, 5, 15, 30, and 60 minutes, at the corresponding 

temperature followed by quenching in iced salt water at a rate of over 100°Cs-1 in order to 

conserve the microstructure developed at high temperatures. For each test, the heating and 
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cooling profiles were recorded by a computer aided electronic device using the attached 

thermocouple.  

For microstructural studies, the samples were mounted and polished using standard 

metallographic techniques and etched using two different etchants. The first was composed 

of 170cc H3PO4, 10cc H2SO4 and 15gr Cro3, the second a mixture of Regia water (2/3) and 

distilled water (1/3). After etching, the specimens’ microstructures were observed using 

optical and Field Emission Gun Scanning Electron Microscopy (FEG-SEM). 

Characterization of the nanometric size particles and morphology of the precipitates were 

conducted using Hitachi SU70 SEM in the secondary electron (SE) mode. The back-scattered 

electron (BSE) images were recorded from polished cross sections by use of a backscattered 

electron detector attached to the SEM. Furthermore, distribution mappings of the different 

chemical elements constituting the specimen were obtained by Energy Dispersive 

Spectroscopy (EDS). Analyses were carried out at a microscopic scale using small and high 

magnification SEM images such as 2000, 50,000 and 100,000 magnifications to investigate 

γ′ morphology. The average dimensions and volume fractions of the γ′ precipitates were 

quantified using digitized images and ImageJ analysis software. The area of each particle was 

measured using the ImageJ software in view to measure γ′ phase size. The particle radius was 

then calculated as the radius of a circle whose surface area equaled that of the corresponding 

particle. 

3.5 Results 

3.5.1 Characteristics of the As-Received Material 

FEG-SEM examination of the as-received AD730TM material revealed that its microstructure 

consisted of γ matrix, primary γ′ precipitates, most of them present at the grain boundaries, 

intragranular secondary and tertiary γ′ particles, borides and two types of carbides (Figure 3.1 

and Figure 3.2). The average size of the primary, secondary and tertiary γ′ were found to be 

1.4 μm, 30 nm and 8 nm, respectively. Primary γ′ precipitates were oval and had irregular 

shapes while secondary and tertiary ones were either spherical or cuboidal. The average 
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volume fractions of the primary, secondary and tertiary γ′ were measured and are 8%, 26%, 

and 3%, respectively. 

 

 

Figure 3.1 SEM microstructure of the as-received AD730TM superalloy showing  
a) primary γ′ b) secondary and tertiary γ′. 

 

 

 

 

 

 

 

 

 

 

 



74 

 

 

Figure 3.2 BSE/EDS X- ray maps of the (a) MC carbide mainly  
consisting of Ti, Nb (b) M23C6 carbides mainly consisting of Cr  

(c) M3B2 boride. 
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MC carbides formed during solidification generally exhibit coarse, random, globular or 

blocky, and script morphologies and are located inside the γ matrix as well as at grain 

boundaries. The second type of carbides, M23C6, are observed mostly at grain boundaries in 

the form of films, globules, platelets, lamellae and cells. Borides are hard particles, blocky to 

half-moon appearance, that are observed at grain boundaries (Safari et Nategh, 2006; Sajjadi 

et al., 2006; Shahriari, Sadeghi et Akbarzadeh, 2009; Shahriari et al., 2009b; Siddall et 

Eggar, 1986). Figure 3.2 presents an X-ray map of boron as well as the two former carbides. 

MC carbide and M3B2 boride phases mainly consist of Ti, Nb and Mo whilst the M23C6 

phases contain significant amounts of Cr, Mo, and W. Out of all these elements, only Ti, Nb 

and Cr maps are shown in Figure 3.2.  

3.5.2 Thermo-calc ® Simulations 

The Thermo-calc® software is widely used for simulating phase transformations processes 

under equilibrium conditions. Figure 3.3 shows a simulation of the amounts of phases, in 

moles, between 400 and 1400°C for the AD730TM superalloy under equilibrium conditions on 

two different scales. On the first scale, phases like γ′, γ, liquid and σ are shown. The 

simulation results predict that the γ′ solvus, solidus, and liquidus temperatures are 

respectively 1090, 1220 and 1350°C. The secondary scale displays MC and M23C6 carbides, 

M3B2 borides and τ phases. The MC carbide is stable and does not dissolve until 1300°C.  

It is well-known that, in Ni-based superalloys, the principal purpose of the homogenization 

process is to dissolve the irregular-shaped primary γ′ precipitates that are formed during the 

casting process in view of fine particles re-precipitation during cooling (Semiatin et al., 

2004). Thus, from a theoretical point of view, the ideal temperature region for conducting the 

homogenizing of the investigated alloy would be between its γ′ solvus and solidus 

temperatures. This corresponds to a three- phase region composed of γ, MC carbide and 

M3B2 boride phases and in the temperature range of 1090-1220°C. Subsequently, the 

simulation results indicate that under equilibrium conditions, the percentage of γ′ phases, in 

moles, is 3% at 1080°C and no γ′ is present at 1100 and 1110°C. 
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Figure 3.3 (a) and (b) Calculated equilibrium phase diagram of AD730TM  
superalloy representing the amounts of all phases between 400 and 1400°C. 
 

3.5.3 DTA Experiments  

Figure 3.4 displays a DTA diagram obtained using a heating rate of 1°Cs-1. Various 

endothermic peaks indicating the dissolution of γ′ at specific temperatures are revealed. 

Three peaks can be clearly distinguished from the heating curve: The first peak, Peak A, 

occurs around 615°C and shows that for a given phase volume fraction, some energy depicted 

by the area under the peak, is required for the transformation to be completed. This peak can 

correspond to the dissolution of tertiary (i.e. the finest) γ′ particles because equilibrium phase 

diagram calculated by Thermo-calc® software does not show any other phases with 

transformation temperature around 600°C. The second peak (Peak B), occurring around 

800°C represents the dissolution of secondary γ′ particles, and the third peak is linked to 

primary γ′ dissolution and is around 1107°C (Peak C).  
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Figure 3.4 DTA curve at the 1°Cs-1 heating rate,  
showing three endothermic reactions that occur  

during heating  indicating tertiary (Peak A),  
secondary (Peak B) and primary γ′ (Peak C)  

dissolution temperatures. 

 

The above findings are in agreement with those of other researchers (Singh et al., 2013) who 

reported the temperature ranges of 600-650°C and 800-850°C for respective transformations 

of tertiary and secondary γ′ particles in Rene 88 DT superalloy, which contains almost the 

same volume fraction of γ′ as AD730TM. 

3.5.4 Dissolution Kinetics 

 Figure 3.5 and Figure 3.6 show the evolution of γ′ particles morphology and size after 

solution treatments at temperatures between 1080 and 1110°C. Heat treatment at 1080°C 

using a heating rate of 20°Cs-1 results in the dissolution of all tertiary and secondary γ′ 

particles (Figure 3.7 (b)) and the coarsening of primary γ′ (Figure 3.5 (a),Figure 3.6 and 

Figure 3.7). As the temperature increases to 1100°C, tertiary, secondary and small primary γ′ 

precipitates are dissolved.  
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Figure 3.5 Microstructure of solution treated samples at (a) 1080°C for 15min and 
(b) 1100°C for 15min, showing the occurrence of γ′ particles agglomeration 

(c) 1110°C for 15min and   (d) 1110°C for 1.5min,  
showing γ′ particlesʼ dissolution. 

 

 

Figure 3.6 Evolution of average γ′ particle size as a  
function of time at 1080, 1100 and1110°C. 
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Figure 3.7 Denuded zones from the small precipitates around primary γ′ particles 
 at 1080°C for 5 minutes at (a) lower magnification (b) higher magnification. 

 

However, measurements of γ′ average size, shown in Figure 3.6, indicate that the size of 

larger precipitates increases before final dissolution. These increases in particle sizes appear 

to be the result of two complementary processes: particles agglomeration (Figure 3.5 (a) and 

Figure 3.5(b)) and Ostwald ripening (Figure 3.7). Measurements of γ′ size and volume 

fraction indicate that only particle dissolution is observed when increasing the solution 

temperature from 1080 to 1110°C. For instance, heat treatment at 1110°C for 15min leads to 

the complete dissolution of all the tertiary and secondary γ′ precipitates, forming initially 

83% of the total γ′ content in the matrix. In addition, the primary γ′ average size is decreased 

from 1420 nm to 1150 nm and its volume fraction from 8% to 1%. It is also worth noting that 

the average volume fraction of γ′ reduces from 37% in the as received material to about 1% 

after solutionizing at 1110°C for 15 minutes.  

Microstructural examinations of the samples heat treated at 1110°C revealed that 90% of γ′ 

particles are dissolved after a short holding time of 1.5 minutes (Figure 3.5 (d)). After one 

hour, only 0.3% of initial γ′ remains. On the contrary, MC carbides average size and volume 

fraction show no change during heat treatment at 1110°C while M23C6 carbides are totally 

dissolved. Based on the above analyses, the γ′ solvus can be estimated to be about 1110°C for 

AD730TM with the high heating rate. 
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3.5.4.1 Dissolution Kinetics Model for a Single Precipitate 

The dissolution of γ′ in Ni-based superalloys is a diffusion controlled process (Fuchs, 2001). 

The following analytical model, based on the work of Whelan et al. (1969), was applied to 

analyze this process in the AD730TM alloy.  

The dissolution of a spherical precipitate under diffusion controlled conditions can be 

formulated as: 

ݐ݀ݎ݀  = 2ܦ݇− ݎ1] +  (3.8) [ݐܦߨ√1

 

The solution to Eq. (8) is: 

ݎ  = ଴ݎ − ଴ݎ2ݐܦ݇ − ߨ√ݐܦ√݇  (3.9) 

 

where ݎ is the particle radius after ‘t’ seconds, ݎ଴ the initial precipitate radius, ݇/2 the 

supersaturation and ܦ the solute interdiffusion coefficient in the matrix at temperature ܶ. ݇ is 

given by: ݇ = ଴ܥ)2 − ௣௘ܥ(௜௘ܥ − ௜௘ܥ  (3.10) 

 

where	ܥ଴ is the solute concentration in the matrix, ܥ୧௘ and ܥ୮௘ are equilibrium solute 

concentrations respectively at the precipitate/solid solution interface and in the precipitate.  

Using the Thermo-calc® software, ܥ௜ and ܥ௣ values were calculated in the present 

investigation to estimate the coefficient ݇ in Eq. (3.10). This value was determined to be 0.35 

with Al and Ti considered as solutes.  

The solute interdiffusion coefficient follows an Arrhenius type equation and is given by:  
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ܦ =  (3.11) (ܴܶܳ−)	݌ݔ଴݁ܦ

 

where ܦ଴ is the frequency factor, ܳ the activation energy, ܴ the gas constant and ܶ the 

absolute temperature.  

Table 3-2 shows the calculated values of ܦ for Al, Ti and Cr in a nickel matrix. As 

illustrated, ܦ increases with the solutionizing temperature and therefore, according to  

Eq. (3.8), the dissolution rate should increase by 43% with a 30°C temperature increment 

starting from 1080°C. 

The variation of precipitate radii versus dissolution time at 1110°C is plotted in Figure 3.8 for 

three different particle sizes. The two biggest radii (1.4 and 0.5 µm) are representative of 

primary γ′, the smallest (0.2 µm) corresponds to secondary γ′. The dissolution rate is shown 

to increase from 1.46×10-3 µm .s-1 for primary γ′ to 5.02×10-3 µm .s-1 for secondary γ′, 

mainly due to their smaller sizes. 

 

Table 3-2 Activation energies Q , frequency factors Do (Campbell, 
Boettinger et Kattner, 2002) and calculated D for the diffusion of 

aluminium, titanium and chromium in nickel 
Element D0 (m2s-1) Q (KJ mole-1) T(ºK) *Calculated D (m2s-1)  

Al 2.94 × 10-4 269 

1353 1.2 × 10-14 

1373 1.7 × 10-14 

1383 2.1× 10-14 

Ti 4.1 × 10-4 275 

1353 9.9 × 10-15 

1373 1 × 10-14 

1383 2 × 10-14 

Cr 5.2 × 10-4 289 

1353 3.6 × 10-15 

1373 5.2 × 10-15 

1383 6.3 × 10-15 

*This work 
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Figure 3.8 Comparison of the single γ′ precipitate  
dissolution kinetics at different sizes at 1110°C  

indicating the influence of particle  
size on dissolution rate. 

 

3.5.4.2 Dissolution Kinetics Model for Multiple Precipitates 

A dissolution model based on Johnson-Mehl-Avrami-Kolmogorov (JMAK) (1941) is 

proposed to study the precipitation evolution in AD730TM. More specifically, the γ′ area 

fraction on various samples from different solution heat treatments is measured and used as a 

basis to estimate dissolution kinetics.  

The γ′ area fraction (ܨௌఊᇱ) can be written as a function of heat treatment time: 

ௌఊᇱܨ  = ௌ௟௜௠ܨ + ଵݐݐ−)	݌ݔ݁	ଵܨ ) (3.12) 

 

where FSlim is the γ′ area fraction at thermodynamic equilibrium, F1 the difference between 

the γ′ area fraction at t=0 seconds and FSlim, ݐଵ a constant dissolution time and FSlim a material 

parameter. An optimization procedure was developed, using Origin and Matlab 2013, in 

order to find the values for the preceding factors for each solution heat treatment 

temperature. The procedure is based on nonlinear least-squares method and uses the 
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Levenberg-Marquardt algorithm which was implemented in the optimization module. The 

routine searches for optimized parameter values.  

The evolution of the γ′ area fraction as a function of the holding time for three different 

dissolution temperatures and the heating rate of 20°Cs-1 is presented in Figure 3.9 (a). A 

decrease in area fraction of γ′ precipitates is observed as temperature or holding time 

increases. The different parameters of Eq. (3.12) were identified for each experimental 

condition allowing quantification of the dissolution kinetics.  

The dissolution equations for each heat treatment temperature are given as follows:  

 

ௌఊᇱܨ = 5.83 + )	݌ݔ݁	31.16   (For heat treatment at 1080°C) (0.69ݐ−

(3.13) 

 

ௌఊᇱܨ = 2.47 + )	݌ݔ݁	34.53   (For heat treatment at 1100°C) (0.57ݐ−

(3.14) 

 

ௌఊᇱܨ = 1.08 + )	݌ݔ݁	35.92   (For heat treatment at 1110°C) (0.54ݐ−

(3.15) 

 

In order to quantify the differences in γ′ dissolution kinetics, a criterion, known as “settling 

time”, or the time required to reach a given percentage of the equilibrium value, was  

used (Giraud et al., 2013). This criterion is also used in the analysis of electronic systems and 

is shown schematically in Figure 3.9 (b). 
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Figure 3.9 (a) Comparison of the multiple γ′ precipitate dissolution kinetics  
at 1080, 1100 and1110°C (b) Schematic of the T95%. 

 

In this research, a settling time of 95% was selected. As illustrated in Figure 3.9 (b), T95% is 

the time needed for the γ′ volume fraction to satisfy the following condition: 

(60݉݅݊	ݐܽ)ௌఊᇲܨ0.95  ൑ (%95ܶ	ݐܽ)ௌఊᇲܨ ൑  (3.16) (60݉݅݊	ݐܽ)ௌఊᇲܨ1.05

 

From the calculated ܨௌఊᇱ values and Arrhenius law, the activation energy (ܳ) for the 

dissolution of γ′ was calculated using the following equations: 

 ݇ = ݐ݀´௦ఊܨ݀ = ଵݐଵܨ ଵݐݐ−)݌ݔ݁ ) (3.17) 

݇ = ܣ ܴܳ−)݌ݔ݁ ௞ܶ) (3.18) 

 

Table 3-3 shows the results for the kinetics of dissolution, ݇, and ܳ for different heat 

treatment temperatures at various holding times. As shown in Figure 3.9 (a), although 

solutionizing starts with very high kinetics at the beginning due to the dissolution of large 

proportions of secondary γ′, it slows with time.  After only 1.5 minutes, all ultra-fine γ′ 
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precipitates, which make 83% of initial γ′ particles, are dissolved (see Figure 3.7 (b)). The γ′ 

area fraction will reach 8%, 5%, and 3.3% respectively for 1080°C, 1100°C, and 1110°C, in 

comparison to 37% at room temperature. 

 

Table 3-3 Dissolution kinetics and activation energies for various solution 
treatments 

t (min) T (ºK) K (%.min-1) Q (kJ.mol-1) 

0-1.5 

1353 -0.45159 
204 

 
1373 -0.60042 

1383 -0.66565 

1.5-5 
1353 -0.0247 273 

 1373 -0.03912 
1383 -0.04066 

 

The above findings are consistent with DTA results which showed that the dissolution 

temperature for ultrafine γ′ was lower than that of primary γ′ particles (Figure 3.4). On the 

other hand, since primary γ′ particles are coarse and difficult to dissolve (Figure 3.8), the 

activation energy increases from 204 kJ.mol-1 to 273 kJ.mol-1 demonstrating the impact of 

particle size on dissolution kinetics. Therefore, when holding times are longer than 1.5 

minutes, dissolution becomes slower (Table 3-3, Figure 3.9 (a)). These results have revealed 

that the activation energy needed to dissolve γ′ varies during the dissolution process and that 

particle size evolution is an important consideration for accurate calculation of γ′ dissolution 

kinetics. 

Bellot et al. (2013) reported that γ′ particles in the AD730TM alloy contain fractions of Al, Ti 

and Nb. So, the presence of Nb in secondary γ′ particles, which is not possible to be verified 

by EDS, has been proved using extraction replicas in the AD730TM alloy (Bellot et Lamesle, 

2013) . Furthermore, Figure 3.10 reveals schematically that primary γ′ precipitates contain 

higher contents of Al and Ti whilst secondary γ′ have lower Al and Ti and higher Co and Cr. 

Thus, in addition to particle size, chemical composition can also affect the dissolution rate in 

the multi precipitate model. Indeed, since the secondary γ′ particles in the as-received alloy 

were found to be small in size, their sizes increased using slower cooling rates (10ºC/min) 
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from 1110ºC. In this way, as shown in Figure 3.10, it was possible to obtain a qualitative 

estimate of the difference in the chemical composition between primary and secondary γ′ 

precipitates using EDS line map analysis.  Therefore, it can be said that for primary γ′ 

particles, activation energy should be correlated mainly with those of Al and Ti while for 

secondary γ′, Al and Ti play a less important role in diffusion.  

 

 

Figure 3.10 Comparison of the Al, Ti, Co and Cr concentration  
profiles for large or primary (P) and small or secondary (S) γ′  

particles using EDS line map analysis. 

 

The activation energy values determined in the present investigation are in accordance with 

the reported activation energies for the dissolution of Al (269 kJ.mol-1), Ti (272 kJ.mol-1) 

(Baldan, 2002; Campbell, Boettinger et Kattner, 2002)  and Nb (203 kJ.mol-1) (Patil et Kale, 

1996) elements in a nickel matrix. In other words, since Nb atoms have lower activation 

energy than the other elements, their dissolution rate is higher and they dissolve first. By 

contrast, longer holding times increase the diffusion of Al and Ti atoms. The above results 

prove that the dissolution of γ′ precipitates is controlled mostly by the diffusion of Al, Ti and 

Nb in γ matrix. On the basis of the above calculations, average dissolution kinetics of  

-0.3 %.min-1 which shows decrease in volume fraction of γ′ precipitates as a function of time 

is obtained. 
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In addition to the well-known effects of temperature and holding time, heating and cooling 

rates also have significant effects on γ′ evolution in superalloys (Soucail et Bienvenu, 1996). 

To address this aspect, a time-temperature dependent analytical method, proposed by Soucail 

and Bienvenu (1996), was used in the present investigation to analyze the effect of a thermal 

cycle on γ′ evolution. In this model, equivalent holding time (ݐ௘) is represented by the 

following equation: 

௘ݐ  = ܴ ௠ܶଶܳ ൬ 1ܸ௛ + 1ܸ௖൰ +  ௠ (3.19)ݐ

 

where ௠ܶ is the holding temperature, ܳ the activation energy for the dissolution of the γ′ 

phase, ௛ܸ and ௖ܸ respectively the heating and cooling rates, and 	ݐ௠  the holding time. ݐ௘ was 

calculated to be about (32	(sec) +  ′௠) at 1080 and 1100°C for low heating rates. Then, the γݐ

surface fraction, ܨௌఊᇱ was calculated by substituting the obtained value into Eqs. (For heat 

treatment at 1080°C)                           (3.13) and(For heat treatment at 1100°C)                  

(3.14). The calculated values of ܨௌఊᇱ for each temperature were validated through 

experimental data for low heating rate testing conditions. These values are presented in 

Figure 3.11. 

The results indicate a good correlation between the calculated and measured data thereby 

confirming the validity of the proposed approach (Eqs. (For heat treatment at 1080°C)                   

(3.13)-(For heat treatment at 1110°C)                          (3.15)). 
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Figure 3.11 Comparison of experimental data and  
theoretical prediction of γ′ surface fraction as a  

function of time at 1080 and 1100°C for low heating  
rate heat treatments. 

 

3.5.5 Coarsening Kinetics Model  

The experimental results reported in Figure 3.5 indicated that γ′ coarsening takes place 

during the dissolution process. In order to determine the coarsening rate during this process, 

the Lifshitz, Slyozov, and Wagner (LSW) analytical model is modified to account for both 

Ostwald ripening and the agglomeration that occurs during the dissolution process. A linear 

relationship between heat treatment time and the cube of average precipitate size exists in the 

LSW model (Lifshitz et Slyozov, 1961; Wagner, 1961): 

௧ଷݎ̅  − ଴ଷݎ̅ = ݇௅ௌௐ(3.20) ݐ 

 

where ̅ݎ௧ is the average precipitate radius at time ,ݐ	ݎ̅଴ the average precipitate radius at the 

beginning of coarsening, and ݇௅ௌௐ the coarsening rate constant. Umantsev, Olson and 

Philippe expanded the LSW theory to a multicomponent system (UO theory) (Philippe et 

Voorhees, 2013; Umantsev et Olson, 1993). Since low mobility elements in a 

multicomponent alloy limit the kinetics of coarsening, for simplicity purposes, only Ti and 
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Cr, which have the lowest mobilities, were considered for coarsening rate calculations. On 

this basis, the coarsening rate constant of γ′ precipitates, ݇௎ை, is expressed as: 

௎ைܭ  = 	 ௜ఊ்ܥ]9ܴܶߗߪ8 	(1 − ௜்ܦ௜)ଶ்ܭ ஼௥ఊܥ	+ 	(1 − ஼௥ܦ஼௥)ଶܭ ] (3.21) 

 

where ߪ is the interfacial free energy, ߗ the molar volume of the γ′ precipitates, ܴ the gas 

constant, ܶ the heat treatment temperature, ܦ௜ = ଴ܦ exp(ିொோ்) the diffusion coefficient, ܥ௜	ఊ the 

equilibrium concentration of the ݅		th solute element in the γ matrix, and ܭ௜ = ஼೔	ംᇲ஼೔	ം  the 

distribution coefficient of the ݅	th solute element between the γ matrix and γ′ precipitates.  

In the present investigation, the coarsening rate constant was determined and Eq. (3.20) was 

modified so that the contributions of both agglomeration and the Ostwald ripening processes 

were quantified. Furthermore, the flux from small to large particles is larger than expected 

with increasing volume fraction indicating that when the volume fraction of particles is not 

negligible, coarsening rate will increase (Laughlin et Hono, 2014). The coarsening rate 

constant in Eq. (3.20) is therefore modified by ݇( ௩݂), a precipitate volume fraction function 

(Laughlin et Hono, 2014; Voorhees et Glicksman, 1984).  

The results of FEG-SEM microscopy experiments (Figure 3.5 (a) and (b)) and reported  

simulations (Mao et al., 2007), however, demonstrate that the agglomeration mechanism 

cannot be excluded in the coarsening of Ni-based superalloys. It is reasonable to assume that 

particle growth follows a pattern similar to that of LSW during the agglomeration process as 

demonstrated in Eqs. (3.1) to (3.6). This assumption has also been used by Ratke for 

modeling particle coarsening through coagulation (Ratke, 1987; 1995).  

Combining Eq. (3.6) and Eq. (3.20), and considering that ݇஼௢௔௥௦௘௡௜௡௚ is dependent on the γ′ 

volume fraction, the following equation is obtained: 

௧ଷݎ  − ଴ଷݎ = ݇( ௩݂)(݇௎ை + ݇௔௚௚.)(3.22) ݐ 
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Therefore, agglomeration and Ostwald ripening coarsening follow the same growth law for 

average γ′ particle size with different rate constants.  

The coarsening rate can be written as Eq. (3.23) considering that ܥ′௜ఊ is a temperature 

dependent, and being different of ݇( ௩݂) values for various γ′ volume fractions: 

 ݇஼௢௔௥௦௘௡௜௡௚ = )଴݇ܣ ௩݂)(ܦ଴்௜ܥ′஼௥ఊ + ௜ఊ்′ܥ଴஼௥ܦ )ܶ ×  (3.23) (ܴܶܳ−)݌ݔ݁

 

where ܥ′஼௥ఊ = ஼௥ఊ	ܥ (1 − ݇஼௥)ଶ and ܥ′்௜ఊ = ௜ఊ்	ܥ (1 − ்݇௜)ଶ. 

The value of ݇( ௩݂) was found by Ardell (Laughlin et Hono, 2014), Voorhees and Enomoto 

(1984) for different volume fractions of precipitates. Voorhees and Enomoto reanalyzed the 

model both analytically and numerically showing coarsening rate increases with the volume 

fraction but at a slower rate than first suggested by Ardell (Laughlin et Hono, 2014). Using 

the above analysis, the value of ݇( ௩݂) for the present investigation is considered to be 1.2 and 

1.3 for 1100°C and 1080°C heat treatment temperatures, respectively.  

The activation energy ܳ for γ′ dissolution in AD730TM was calculated to be 273 kJ.mol-1 

from the slope of the plot of ݇݊ܮ versus 1/ܶ, with ݇ representing dissolution kinetics. The 

calculated value is close to reported activation energies for the diffusion of either Ti (272 

kJ.mol-1) or that of Cr in a Ni matrix (286 kJ.mol-1) (Campbell, Boettinger et Kattner, 2002). 

Values for 	ܦ଴௜ are given in Table 3-2. ܥ′௜ఊ values were determined for different elements of 

solute in a γ matrix at various heat treatment temperatures by Thermo-calc® software. Figure 

3.12 shows the composition of solute elements in the γ matrix and γ′ precipitates at different 

temperatures.  
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Figure 3.12 Calculated equilibrium composition of (a) γ′ phase  
(b) γ phase, as a function of temperature. 

 

The coarsening kinetics of γ′ particles in AD730TM can be predicted using Eqs. (3.20), (3.21) 

and (3.23): 

௧ଷݎ  − ଴ଷݎ = 		 2.23 × 10ିଵଷ	݇( ௩݂)(ܦ଴்௜ܥ′஼௥ఊ + ௜ఊ்′ܥ଴஼௥ܦ )ܶ 273000ܴܶ−)݌ݔ݁  (3.24) ݐ(

 

According to the data presented in Figure 3.12, the mass percentages of Ti and Cr in the γ 

matrix were determined to be 3.2% and 16.1% respectively. Furthermore, ்݇௜ and ݇஼௥ were 

calculated to be 3.34 and 0.09 respectively. Since the fluctuation of  ܥ′௜ఊ is negligible for 

temperatures around 1080°C and 1100°C, using previous data and Eq. (3.24), kinetics of γ′ 

coarsening for this alloy at these temperatures can be summarized by: 

௧ଷݎ  − ଴ଷݎ = 		 1.53 × 10ିଵଵ	݇( ௩݂)ܶ 273000ܴܶ−)݌ݔ݁  (3.25) ݐ(
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3.6 Discussion 

3.6.1 γ´ Precipitate Size Evolution after Short Exposure Time 

As shown in Figure 3.6, γ′ size decreases continuously for the first 1.5 minutes for all heat 

treatment temperatures (i.e. the dissolution process is dominant). However, the dissolution 

rate is higher at 1100 and 1110°C than that observed at 1080°C. These findings are in 

agreement with the calculated values based on the diffusion coefficients (Table 3-2) and  

Eq. (3.8).  

Figure 3.13 regroups the evolution of the primary γ′ size distribution during dissolution for 

three different temperatures below and around the AD730TM γ′ solvus. In all cases, the peak 

was observed to shift to smaller precipitate size after 1.5 minutes. In the case of 1080°C, only 

size reduction of γ′ occurs and particle disappearance is not observed while for the other 

temperatures, only few γ′ disappear. The previous analysis confirms that for the investigated 

conditions average particle size reduces with time and is mostly controlled by γ′ size 

reduction up to 1.5 minutes (Figure 3.6). Moreover, as shown in Figure 3.8, the dissolution 

rate of the large precipitates is slower compared to that of fine particles. 
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Figure 3.13 Evolution of γ′ particle size distribution as a function of time at  
(a) 1080°C (b) 1100°C (c) 1110°C. The plot indicates that dissolution occurs for  
the first 1.5 minutes and coarsening takes place after 30 minutes holding time  

at 1080 and 1100°C. For heat treatment at 1110°C, only dissolution occurs  
at all holding times. 

 

So, it is predicted that primary (large) γ′ particles also dissolve slower than secondary (fine) 

γ′ in multiple particles dissolution process because more solutes are required to diffuse from 

large particles toward the matrix. Consequently, soft impingement may take place. In 

addition, when small particles dissolve, large precipitates grow due to the Ostwald ripening 

effect. Moreover, primary γ′ particles have higher amounts of Al and Ti and lower contents 

of Co and Cr than those of secondary γ′ (Figure 3.10) which slows down further the 
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dissolution process. Thus, the combination of the soft impingement process, the coarsening 

processes and chemical composition can probably lead to a deceleration of the dissolution of 

the large γ′ particles. 

3.6.2 γ´ Precipitate Size Evolution after Longer Holding Times 

As shown in Figure 3.6, γ′ coarsening is observed for 1080°C and 1100°C solution heat 

treated samples and for holding times superior to 1.5 minutes whereas dissolution dominates 

for the 1110°C heat treated samples. It was shown that after solution heat treatments at 

1080°C and 1100°C, agglomeration of the primary γ′ particles (Figure 3.5(a) and Figure 

3.5(b)),  and their coarsening at the expense of secondary or tertiary γ′ (Figure 3.7) take 

place. Figure 3.14 shows an illustrative example of the coalescence of two γ′ particles 

through a diffuse necking process.  

 

 

Figure 3.14 Early stage of coalescence of two  
γ′ particles through diffuse neck at  

1100°C for 5 minutes. 
 

Agglomeration is seen to start by neck formation between two neighboring particles which is 

consistent with the predictions for multicomponent Ni (Al, Cr) alloys (Mao et al., 2007). It 

must be noted that the coalescence process includes the overlapping of precipitates diffusion 

fields followed by neck formation. Finally, fast diffusion along the precipitate-matrix 

interface leads to its migration and precipitates coalescence (Mao et al., 2007).  
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In addition to neck formation, solute absorption from the matrix could be an additional factor 

influencing γ′ coarsening during solution heat treatment. The solute absorption process is 

characterized by the formation of denuded zones around primary γ′ particles (Philippe et 

Voorhees, 2013). The results obtained in the present investigation confirm the occurrence of 

a solute absorption process in the AD730TM alloy. An illustrative example is shown in Figure 

3.7 (b) where denuded zones from secondary and tertiary γ′ can be observed around primary 

γ′ in 1080°C solution treated samples for 5 minutes. As reported in the section above, all 

tertiary γ′ precipitates were dissolved after a 1.5 minute holding time for any of the three 

selected SHT temperatures. The dissolved fine particles could provide the necessary solutes 

which could migrate to the larger particles, thus increase the size of the larger particles.  

Coarsening continues up to 15 minutes holding time for SHT at 1100°C and 60 minutes for 

1080°C. As particle size measurements did not indicate significant changes between 15 and 

30 minute holding times at 1080 and 1100°C (Figure 3.6), comparisons were made for the 30 

minute holding time condition only. Figure 3.13 shows that for 1080°C SHT, precipitate size 

distribution peak after a 30 minute holding time shifts to the larger particle size of 1.24 µm in 

comparison to 1.15 µm for the 1.5 minute holding time. For 1100°C SHT, the peak at the 30 

minute holding time also shifts to 1.05 µm compared to 950 nm for 1.5 minute holding time. 

However, the number of particles decreases from 15 to 10 for 1080°C and from 10 to 4 for 

1100°C SHT. These findings confirm the occurrence of coarsening for holding times superior 

to 1.5 minutes due to the coalescence and agglomeration of γ′ particles (Figure 3.5 and 

Figure 3.7). Average γ′ size is therefore controlled by particle disappearance and solute 

diffusion between adjacent particles.  

3.6.2.1 Determination of the Coarsening Rate 

Using Eq. (3.22) and the experimental data provided in Figure 3.6, the total coarsening rate 

constant (i.e. ݇( ௩݂)(݇௎ை + ݇௔௚௚.)) was calculated to be 3.24×10-23 m3s-1 for SHT at 1080°C 

and 6.31×10-23 m3s-1 for SHT at 1100°C. The determined values indicate that γ′ precipitates 

coarsen about two times faster for a solution temperature at 1100°C in comparison to 1080°C. 

The value of the agglomeration coefficient ݇௔௚௚. was also determined to be 3.15×10-23 m3s-1 
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and 6.13×10-23 m3s-1 respectively, for heat treatments at 1080°C and 1100°C. The results 

indicate that agglomeration has the most important contribution (97%) to the coarsening 

process for SHT temperatures of 1080 and 1100°C; while the contribution of the Ostwald 

ripening process is only very minor (3%). 

The fraction of agglomerated γ′ particles (ߦ) is obtained by: 

ߦ  = ௣ܰ௣௧.஺௚௚.
௣ܰ௣௧.்௢௧.  (3.26) 

 

where ௣ܰ௣௧.஺௚௚. is the number of agglomerated γ′ particles and ௣ܰ௣௧.்௢௧. the total number of γ′ 

particles in the analyzed surface. The values of ߦ for heat treatments at 1100°C shown in 

Figure 3.15 indicate that the amount of agglomeration first increases for longer heat 

treatment times before reaching a peak value for 15 minutes holding time and then decreases 

as the time increases.  

 

 

Figure 3.15 The fraction of γ′ particles interconnected  
by neck as a function of holding time  

at 1080 and 1100°C. 
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On the other hand, agglomeration monotonically increases as the heat treatment time at 

1080°C increases. These trends are similar to the ones observed for the evolution of average 

γ′ particle size with time, as previously reported in Figure 3.6, indicating that coarsening is 

mainly dominated by the agglomeration of the precipitates. Furthermore, Figure 3.15 reveals 

that the coarsening rate for 1100°C is higher than that of 1080°C, correlating with the 

previous finding of a higher value (almost twice) for ݇௔௚௚. at 1100°C in comparison to 

1080°C.  

As a result, it is concluded that both mechanisms, agglomeration and Ostwald ripening, 

govern γ′ size evolution during the heat treatment process of the AD730TM Ni-based 

superalloy. However, it appears that the Ostwald ripening contribution is negligible, 

affirming agglomeration is the dominant coarsening mechanism for short heat treatments at 

subsolvus or around solvus temperatures. 

The evolution of the cubed of the precipitate radius, ̅3ݎ, as a function of holding time, ݐ, is 

plotted in Figure 3.16 for heating conditions of 1080 and 1100°C. A linear relationship was 

identified (R2 >0.93), suggesting that particles growth kinetics follow a cube power law and 

are consequently diffusion controlled. In addition, the slope of the linear regression increases 

for higher solution temperatures indicating faster coarsening rates.  
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Figure 3.16 Mean precipitate radius cubed, r̅3, as a  
function of holding time at 1080 and 1100°C. Points  
represent experimental values and the regression line  

shows there is a reasonable linear relationship  
(R2 >0.93) between r̅3 and t. 

 

This further confirms the obtained values of ݇( ௩݂)(݇௎ை + ݇௔௚௚.) for 1080 and 1100°C and 

the results obtained from Figure 3.15 in which the coarsening rate is higher for heat 

treatments at 1100°C. 

3.6.2.2 Application to Aging Heat Treatments 

Using Eq. (3.24), the evolution of γ′ average size after various aging times for different heat 

treatment temperatures can be predicted. Figure 3.17 illustrates this evolution for aging heat 

treatments at 700°C, 750°C and 800°C. Monajati et al. reported that γ′ particles above 200nm 

in size play a smaller role in the hardness increment for Udimet 720 (Monajati et al., 2004a). 

It has also been reported that in Ni-based superalloys, the achievable optimum hardening is 

directly related to an optimal γ′ particle size. For example, for PE16 and Nimonic 105, the 

optimum diameter was respectively found to be in the range of 26-30 nm and 55-85 nm 

(Reed, 2006a). Hence, the data in Figure 3.17 can be practically used to design aging heat 

treatment schedules for the AD730TM superalloy in order to reach the desired γ′ particle size. 
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This was applied in the current investigation for average secondary γ′ particle size of the as-

received material which was 30nm.  

 

 

Figure 3.17 Model predictions of γ′ precipitate radius  
as a function of aging time at 700, 750 and 800°C  

based on Eq. (3.24). 
 

On the basis of the above findings, Eq. (3.24) and Figure 3.17, an aging heat treatment at 

750°C for 8 hours would be necessary to reach a mean diameter of 40nm. In order to achieve 

precipitate sizes of 60 nm, an 8 hour holding at 800°C would be required. Devaux et al. 

(2014) carried out aging heat treatment at 750°C for 8 hours and reached an average particle 

size of 37nm. This value is very close (about 7% difference) to the predicted value by the 

model proposed in this investigation.  

The proposed treatment is also very close to the one reported by the former authors who used 

730°C for 8 hours in order to achieve the best compromise between creep and tensile  

properties (Devaux et al., 2014). Therefore, Eq. (3.24) and Figure 3.17 can be used as a very 

efficient tool for determining desired γ′ size for specific applications such as aging. 
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3.6.3 γ´ Precipitate Dissolution Mechanisms  

As Figure 3.5 and Figure 3.6 show, only dissolution is observed for heat treatments at 

1110°C. Under these conditions, fine precipitates are completely dissolved during the early 

stages of heat treatment. Average particle size is therefore totally controlled by primary γ′ 

size reduction for the entire holding time. Figure 3.13 shows a shift of particle size peaks to 

lower values and a reduction in the number of particles for all holding times. γ′ size peak 

reaches 800nm, from a starting value of 1.35 µm in as-received condition, after a 30 minute 

holding time at  1110°C. The number of particles decreases by 53%. Complete dissolution of 

primary γ′ particles occurs at 1110°C for a holding time of 60 minutes and with the high 

heating rate.  

Interestingly, the number of particles is increased by 50% for 1100°C SHT and a holding time 

of 60 minutes, although γ′ size peak shifts to smaller values of 950 nm from a starting value 

of 1.05 µm in comparison with a 30 minute holding time at1100°C. This confirms that 

primary γ′ particles break into small pieces or split until their complete dissolution occurs 

(Figure 3.18).  

Several dissolution patterns were observed depending on the SHT temperature. As shown in  

Figure 3.18, splitting of the γ′ particles in which two or more particles with parallel interfaces 

are created and dissolving from the center, corner and in the form of layers of γ and γ′ are 

observed. Similar behavior was also reported for other Ni-based superalloys (Reed, 2006a). 

The results of the present investigation are in agreement with the theoretical model of Doi 

(1992) and finite element model of Hazotte (1996) in which they stated that above a certain 

lattice misfit value and consequently certain strain energy, particles split to create precipitates 

with parallel interfaces.  
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Figure 3.18 Various dissolution mechanisms a) Splitting  (b) Dissolution from  
center and corner (c) Dissolution in the form of layers of γ and γ′. 

 

The results obtained based on the analytical model for single particle dissolution illustrate 

that secondary and primary γ′ with diameters of 200 nm and 1.4 µm dissolve completely after 

respectively 12 seconds and 6 minutes. However, experimental results indicated that, a 15 

minute holding at 1110°C is required to reach a 1% γ′ volume fraction and 60 minutes in 

order to reach 0.3 % γ′. As the analytical solution is limited to single precipitate dissolution 

in a matrix, it does not consider the impingement of diffusion fields of neighboring particles 

nor precipitate size distribution during the dissolution process. This probably explains the 

underestimated dissolution times obtained by using the single particle model. The proposed 

multi-particle model however, has a relatively better prediction of γ′ dissolution kinetics as 
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illustrated in Figure 3.9 (a) and Eqs. (For heat treatment at 1080°C)                           (3.13)-

(For heat treatment at 1110°C)                          (3.15). 

Figure 3.19 (a) and Figure 3.19 (b) compare precipitate size distribution for the three selected 

SHT temperatures for holding times of 30 and 60 minutes, respectively. It can be seen that 

the peak shifts to smaller particle sizes for higher temperatures and time values suggesting 

particle dissolution is dominant during heat treatments at 1100 and 1110°C for the above 

holding times. Furthermore, the number of particles for a heat treatment at 1110°C is superior 

by 75% in comparison to that of 1100°C for 30 minutes holding times. This indicates the 

breaking and splitting of larger particles into smaller ones (Figure 3.19).  

 

 

Figure 3.19 Comparison of γ′ particle size distribution at 1080, 1100 and 1110°C  
for (a) 30 minutes holding time (b) 60 minutes holding time. The plot indicates  

that breaking and splitting of larger particles into smaller ones occurs during  
heat treatment at 1110°C for 30 minutes holding time. 

 

The observations are in agreement with phase field simulations reported previously by Wang 

et al. (2009) and confirm the simulation results concerning the occurrence of coarsening 

before final dissolution. It is important to note that the results obtained in this research can be 

directly applied to thermal or thermomechanical processes characterized by very short or 

long processing times. For example, the findings can be applied to analyze the Linear 
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Friction Welding (LFW), an emerging joining process in aerospace industry (Mary et Jahazi, 

2007a) in which the joining cycle is completed in less than 30 seconds. Based on the data 

presented in Figure 3.6, only dissolution is dominant in heating cycles less than 1.5 minutes. 

γ′ evolution and dissolution kinetics can therefore be modeled from the dissolution equations 

allowing for rapid optimization of the LFW process parameters. Similarly, for some thermal 

processes such as aging, post weld heat treatments and creep in which the process time is 

long, coarsening equations can be applied.  

3.7 Summary and Conclusions 

This study represents a detailed investigation of the dissolution and coarsening mechanisms 

and kinetics of γ′ precipitates during solution treatment in the newly developed AD730TM Ni-

based superalloy. The findings are summarized as follows: 

1-Evidence of various dissolution temperatures for different size distributions of γ′ were 

observed by DTA investigation. Three methods including DTA, Thermo-calc®, and heat 

treatments via microstructure observations were used to determine the dissolution 

temperature of the primary γ′ particles. The solvus temperatures of primary, secondary and 

tertiary γ′ were determined to be 1110ºC, 800ºC, and 615ºC respectively.  

2- Dissolution kinetics and coarsening models are proposed to predict γ′ volume fraction and 

its average size at various heat treatment temperatures. The results from the proposed models 

and FEG-SEM observations indicate that before complete dissolution, coarsening through 

agglomeration and Ostwald ripening occurs when short holding times at subsolvus 

temperatures are used. It was also found that not just the average size, but the size 

distribution of the γ′ phase plays a critical role in microstructural evolution in the dissolution 

and coarsening processes. 

3- The activation energy during the dissolution process of the AD730TM alloy was 

determined during this investigation. This value varies throughout the heat treatment cycle; 

204 kJ.mol-1 up until 1.5minutes, increasing to 273 kJ.mol-1after that. The dissolution of γ′ 
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precipitates is concluded to be mostly controlled by the diffusion of Al, Ti and Nb in the γ 

matrix.  

4- The contribution to coarsening from agglomeration and Ostwald ripening were quantified 

for temperature ranges from 1080°C to 1100°C. In the case of the AD730TM superalloy, 

agglomeration contributes for 97% compared to only 3% for the Ostwald ripening 

mechanism. 

5- It is demonstrated that the early stage of agglomeration is created by neck formation 

between two neighboring particles. Splitting and breaking of the larger γ′ particles into 

smaller ones and dissolution from the center of the particles can be identified as mechanisms 

of γ′ dissolution.  

6- A single particle analytical model was used to determine dissolution kinetics and a  

multi-particle semi-analytical dissolution model was proposed to quantify and predict 

dissolution kinetics. The models were validated by experiments. The comparison of single 

and multi-particle models indicated that the proposed multi-particle model has a relatively 

better prediction of γ′ dissolution kinetics.  
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Appendix A: Analytical Solution to the Non-Linear Differential Equation: Eq. (3.8) 

is used for dissolution of a spherical precipitate: 

ݐ݀ݎ݀  = 2ܦ݇− ݎ1] + 	 [ݐܦߨ√1
 

To integrate Eq. (3.8) assuming: 

ܽ = ଶ஽(஼బି஼ം೐)஼ംᇲ೐ ି஼ം೐ 	;	ܾ = ටವഏ(஼బି஼ം೐)஼ംᇲ೐ ି஼ം೐ ݌	;	 = ௕௔	;	ݕ = ோோబ	;	߬ = ௔మ௧ோబమ	 (A1) 

 

Eq. (3.8) then becomes: 

߬݀ݕ݀  = − ݕ12 −  (A2) ߬√݌

 

Eq. (A2) can be integrated by substitution yଶ = wଶτ. Therefore, the following implicit 

relation for y as a function of τ is obtained. 

 ݈݊൫ݕଶ + ݕ߬√݌2 + ߬൯ = − ඥ1݌2 − ଶ݌ )ଵି݊ܽݐ	 ඥ1 − ݕଶ൬݌ √߬ൗ ൰ +  (A3) (݌

 

Thus, Eq. (3.8) at short times is integrated approximately to give an analytical solution. 

Hence the answer for this assumption is: 

ݕ  = 1 − 12 ߬ −  (A4) ߬√݌2

 

This gives the solution of: ݎ = ଴ݎ − ଴ݎ2ݐܦ݇ − ߨ√ݐܦ√݇  	
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4.1 Abstract 

The reprecipitation mechanisms and kinetics of γ′ particles during cooling from supersolvus 

and subsolvus temperatures were studied in AD730TM Ni-based superalloy using Differential 

Thermal Analysis (DTA). The evolution in the morphology and distribution of reprecipitated 

γ′ particles was investigated using Field Emission Gun Scanning Electron Microscopy  

(FEG-SEM). Depending on the cooling rate, γ′ particles showed multi or monomodal 

distribution. The irregularity growth characteristics observed at lower cooling rates were 

analyzed in the context of Mullins and Sekerka theory, and allowed the determination of a 

critical size of γ′ particles above which morphological instability appears. Precipitation 

kinetics parameters were determined using a non-isothermal JMA model and DTA data. The 

Avrami exponent was determined to be in the 1.5-2.3 range, suggesting spherical or irregular 

growth. A methodology was developed to take into account the temperature dependence of 

the rate coefficient ݇(ܶ) in the non-isothermal JMA equation. In that regard, a function for ݇(ܶ) was developed. Based on the results obtained, reprecipitation kinetics models for low 

and high cooling rates are proposed to quantify and predict the volume fraction of 

reprecipitated γ′ particles during the cooling process. 

Keywords: Ni-based superalloy; AD730TM; γ′ Phase Reprecipitation; DTA; Morphological 

Instability; Kinetics Model 
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4.2 Introduction 

AD730TM is a newly developed Ni-based superalloy for turbine disk applications, with 

reported superior service properties around 700°C when compared to Inconel 718 and several 

other alloys (Devaux et al., 2012c). This alloy is a γ′ strengthened alloy produced by the cast 

and wrought processes. In manufacturing processes such as rolling, forging, machining, 

friction welding and repair processes of turbine disks, different zones of the component 

experience temperatures above or below the solvus temperature of γ′ particles. Therefore, 

dissolution and subsequent γ′ reprecipitation occur during these thermomechanical processes 

(Shahriari et al., 2009b). In this context, an evaluation of γ′ characteristics and precipitation 

kinetics after cooling is critical in order to develop optimum process parameters and reach 

optimal mechanical performance (Payton et al., 2008).  

The precipitate size distribution depends strongly on the cooling rate. It has previously been 

reported (Babu et al., 2001; Huang et al., 2007b; Masoumi et al., 2014; Seidman, Sudbrack et 

Yoon, 2006; Shahriari, Sadeghi et Akbarzadeh, 2009) that γ′ particles reprecipitate in 

monomodal morphology at high cooling rates, while multimodal distribution is obtained for 

slow cooling (Radis et al., 2009; Sarosi et al., 2007; Singh et al., 2013; Singh et al., 2011; 

Wen et al., 2003; Wen et al., 2006). The formation of multimodal γ′ has been associated with 

multiple bursts of γ′ at different temperatures (Radis et al., 2009; Singh et al., 2013; Singh et 

al., 2011; Wen et al., 2003). At lower undercoolings, just below γ′ solvus, higher diffusivity 

levels result in the formation of a first population of γ′ particles; while higher undercoolings 

provide supersaturation and thermodynamic driving forces for the formation of other 

populations of γ′ precipitates (Babu et al., 2001; Wen et al., 2003; Wen et al., 2006). 

Furthermore, it has been reported that γ′ reprecipitation can be suppressed at high cooling 

rates in alloys with low volume fractions of γ′ (< 30%) (Huang et al., 2007b; Maldonado et 

North, 2002; Mary et Jahazi, 2007a; Preuss et al., 2002b). For example, no γ′ reprecipitation 

was observed in the fusion zone of laser and electron beam or linear friction welded 

Waspaloy (Chamanfar et al., 2011b; Sekhar et Reed, 2002). This suppression leads to a 

precipitate-free region adjacent to the interface and, consequently, a pronounced drop in 

hardness in these regions. However, the influence of process and material parameters, such as 
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the cooling rate, cooling start temperature, γ′ volume fraction, etc., on the formation of 

monomodal or multimodal precipitation of γ′ is still not well documented. It should also be 

noted that most of the reported works on γ′ reprecipitation have been focused on cooling 

from supersolvus temperatures, while little data (Cormier et al., 2010; Cormier, Milhet et 

Mendez, 2007b) is available on cooling from subsolvus temperatures.  

In addition to the precipitate size distribution, the γ′ morphology is also a function of the 

cooling rate. Based on Mullins and Sekerka (1963) theory, in a diffusion-controlled process, 

when a second phase grows in a supersaturated matrix, there is a potential for morphological 

instability. Several examples of γ′ morphological instability and dendrites are available in the 

literature (Furrer et Fecht, 2000; Lippard et Jones, 2000; Locq, Marty et Caron, 2000) but 

few studies (Behrouzghaemi et Mitchell, 2008; Yoo, 2005) have investigated the origin of 

this instability, and specifically, the role of the cooling rate on inducing such instability. In 

the present study, the effect of the cooling rate on the morphological instability of γ′ particles 

in recently developed AD730TM Ni-based superalloy is quantified, and the possible origin of 

this instability is investigated. 

Little quantitative data is available on the kinetics of γ′ reprecipitation reaction in 

superalloys. Most studies (Ardell et Ozolins, 2005; Bian, 2015; Masoumi et al., 2016a; 

Meher et al., 2013; Monajati et al., 2004a) have been focused on the effect of different aging 

heat treatments on the size and morphology or coarsening kinetics of γ′ in superalloys. 

Rougier et al. (2013) developed a particle size distribution (PSD) model for numerical 

simulations of γ′ precipitation during isothermal aging of NiCrAl superalloys. They used a 

multicomponent diffusion model in order to calculate the growth rate. However, their model 

was fully coupled with CALPHAD (Computer Coupling of Phase Diagrams and 

Thermochemistry) for the calculation of the nucleation driving force, and this coupling is 

very expensive computationally. Y. Wang et al. (Sarosi et al., 2007; Wen et al., 2003; Wen et 

al., 2006) used phase field modeling to visualize the microstructure development and 

quantify physical phenomena such as impingement, particle coalescence or splitting by 

solving nonlinear time-dependent phase field equations within the framework of irreversible 

thermodynamics. However, to obtain accurate results, particularly for a new alloy, extensive 
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experimental work is needed to set realistic values for the boundary conditions and determine 

material parameters. Therefore, besides its valuable benefits, its application to new alloys is 

not straightforward. Bonvalet et al. (2015) recently proposed a numerical model for γ′ 

precipitation during the isothermal heat treatment of NiCrAl alloys. The model is based on 

the particle coarsening theory of Philippe et al. (2013), and cannot be directly applied to 

continuous cooling processes and to transient cooling conditions such as the one used in the 

present investigation. Olsen et al. (Jou et al., 2012; Olson et al., 2008; Wusatowska-Sarnek et 

al., 2003) used the PrecipiCalcTM software to develop models for PSD and transformation 

rates. The software is built around thermodynamic computations and multicomponent 

diffusional nucleation and growth models to simulate multiphase precipitation. However, 

since the operation of this software is based on CALPHAD databases, calibration and 

independent experimental measurements need to determine the model parameters with high 

fidelity and minimum overfitting for each new alloy. As a consequence, these methods are 

not easy to apply for industrial applications due to the large computational time required. 

Many physical constants, such as element diffusion coefficients, surface energies, interface 

kinetic coefficients and driving forces for phase transformations, are also needed for 

obtaining reliable results in numerical models; this data is not always readily available for 

alloys with complex compositions (Kovačević et Šarler, 2005). The situation becomes even 

more complicated when a new alloy, such as the one used in the present investigation, is 

considered.  

In order to overcome the limitations of numerical methods, semi-analytical models calibrated 

by experiments may be used. The Johnson-Mehl-Avrami (JMA) model (1941) is one of the 

most important semi-analytical models available, and plays a central role in transformation 

studies, where nucleation and growth mechanisms operate. The model has been widely 

applied to γ′ volume fraction evolution during isothermal dissolution and aging treatments 

(Cormier, Milhet et Mendez, 2007a; Giraud et al., 2013; Masoumi et al., 2016a). However, to 

the knowledge of the authors, no such model exists for the quantification of the kinetics of 

reprecipitation reaction and its mechanisms during the continuous cooling process of Ni-

based superalloys. The JMA model holds some constraints in the case of isochronal 

transformations. Mittemeijer et al. (1992) extended the JMA equation to non-isothermal 
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transformations. However, the applicability of the model to complex alloy systems, such as 

Ni-based alloys, has not been reported. 

On the basis of the above analysis, the objectives of this study are: 

1- To analyze the size distribution and morphology of multiple populations of γ′ precipitates 

formed during continuous and interrupted cooling from supersolvus and subsolvus 

temperatures.  

2- To develop and validate a semi-analytical model to predict γ′ reprecipitation kinetics at 

low and high cooling rates. 

3- To develop a better understanding of fundamental mechanisms governing γ′ 

reprecipitation and its morphological instability as a function of the cooling rate. 

4.3 Precipitation Kinetics 

For the analysis of precipitation kinetics, a physical property such as specific volume/length 

or enthalpy of the material can be investigated as a function of time and temperature. Then, 

the fraction of transformation, ܻ, can be described by following JMA equation, which is 

applicable to both isothermal and non-isothermal analysis (Avrami, 1941; Mittemeijer, 

1992): 

 ܻ = 1 −  (4.1) (௡ߚ−)	݌ݔ݁

 

where ݊ is the Avrami exponent which depends on precipitate growth modes. For non-

isothermal transformations, ߚ is written as: 

ߚ  = න ௧ݐ݀(ܶ)݇
଴  (4.2) 

 

where ݇(ܶ) = ݇଴(ܶ)݁݌ݔ	(−ܳ/ܴܶ) is the Avrami rate parameter which depends on the 

nucleation and growth rate and varies with ݐ. Analytical approximation of the above integral 

using a limited development as proposed by Mittemeijer et al. (1992) gives: 
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ߚ = ܴܶଶ߮ܳ ݇(ܶ)(1 − 2ܴܶܳ) (4.3) 

 

where ܴ is the gas constant, ߮ the cooling rate and  ܳ the activation energy of the reaction. 

Values of ݐ, ܶ, ܻ and the kinetics parameters, ݊, ܳ and ݇(ܶ) representative of the 

precipitation process can be obtained from DTA measurements using the following 

procedure.  

In a DTA run, the fraction of the precipitation ܻ(ܶ) at temperature ܶ is given by (Jena, Gupta 

et Chaturvedi, 1989; Luo et al., 1993) : 

 ܻ(ܶ) = )ܣ(ܶ)ܣ ௙ܶ) (4.4) 

 

where ܣ(ܶ) is the area under the peak between the initial temperature of the peak ௜ܶ (i.e. 

temperature of precipitation onset) and temperature ܶ, and ܣ( ௙ܶ) is the area of a peak 

between ௜ܶ and ௙ܶ in which ௙ܶ is the final temperature of the peak (i.e. temperature of 

precipitation end).  ܣ(ܶ)	is defined as: 

(ܶ)ܣ  = න ்ܶ݀(ݍߜ)
்೔  (4.5) 

 

where ݍߜ is obtained during a constant cooling rate test by subtracting the measured heat 

flow of the sample from that of the inert reference.  

The precipitation kinetics,	ܻ݀/݀ݐ, can be related to cooling rate, ߮, in DTA scan by:  

ݐܻ݀݀  = ܻ݀݀ܶ 	× ߮ (4.6) 

 

The growth exponent, ݊, can be obtained from the transformed fraction, ்ܻ , attained at a 

certain value of ܶ, as measured for different cooling rates by (Liu et al., 2007) :  
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 −݈݊[− ݈݊(1 − ்ܻ )] = ݈݊݊߮ (4.7) 

 

Finally, the activation energy (ܳ) of the process during non-isothermal cooling can be 

determined by (Mittemeijer, 1992):  

 

−߲݈݊( ௒ܶଶ߮)߲ ቀ 1ܴܶ௒ቁ = ܳ (4.8) 

 

where ௒ܶ is the temperature which is attained at a certain fixed value of ܻ. Using the above 

equations, it is possible to determine the kinetics of γ′ precipitation during continuous cooling 

and to study the governing mechanisms by determining ݊,	݇(ܶ) and 	ܳ. 

4.4 Experimental Procedure 

The AD730TM material was provided by the Aubert & Duval company in the form of a 

forged square bar. The bar had been solutionized at 1080°C for four hours, and then air-

cooled to room temperature. The chemical composition of the alloy is given in Table 4-1. 

The equilibrium volume fraction of γ′ is around 40%. 

The DTA technique is a well-established technique for studying the kinetics of precipitation 

or phase changes in alloy systems (Chen et Jeng, 1997). The continuous cooling tests were 

carried out using a Diamond TG/DTA PerkinElmer with a Pt crucible and flowing Ar 

atmosphere. DTA experiments were conducted in order to determine γ′ transformation 

temperatures, to follow the evolution of the γ′ size, morphology and volume fraction during 

cooling, and to measure the heat flow. All experiments were conducted using high purity Ar 

to minimize potential oxidizing effects. The unit was calibrated using pure aluminum and 

gold, with precise melting points of 660◦C and 1064◦C, respectively. The samples were 2 mm 

×2 mm ×0.5 mm in size, and were heated at rates of 10, 15, 65 and 120°C/min, up to 1200°C, 

held for one minute, and then cooled down to room temperature by the same rates of 



118 

 

10°C/min (SC10: Slow Cooling), 15°C/min (SC15), 65°C/min (IC: Intermediate Cooling) and 

120°C/min (FC: Fast Cooling). The cooling rates were chosen in order to mimic the 

quenching of a reasonably large superalloy forged disc in air or oil. The 10°C/min cooling 

rate is typical of the conditions encountered in industry for equiaxed solidification. 

 

Table 4-1 Chemical composition of AD730TM (wt%) (Devaux et al., 
2012c) 

Ni Fe Co Cr Mo W Al Ti Nb B C Zr 

Base 4 8.5 15.7 3.1 2.7 2.25 3.4 1.1 0.01 0.015 0.03 

 

For accurate and reliable measurements of the heat flow, all the DTA runs were corrected by 

subtracting the measured heat flow of the sample from that of a DTA baseline obtained from 

a run with an empty pan. In the DTA plots, the endothermic and exothermic reactions were 

plotted downward and upward, respectively. In order to validate the equation predicting γ′ 

size evolution obtained from DTA continuous cooling experiments, samples were heated at a 

rate of 120°C/min, up to 1200°C, held for one minute, and then water-quenched (WQ) to 

room temperature using the Gleeble™ 3800 thermomechanical simulator. The microstructure 

of the samples, and particularly the γ′ characteristics, were then examined with FEG-SEM. 

Discontinuous (interrupted) cooling tests were also carried out to study different nucleation 

bursts of γ′ during cooling cycles from subsolvus temperatures. For these tests, samples were 

heated from room temperature to 1100°C at a rate of 120°C/min, and held one minute at this 

temperature. The interrupted cooling consisted in continuous cooling at a constant rate of 

120°C/min, followed by immediate water quenching at 1040°C or 780°C. 

For microstructure characterization, the specimen surface was prepared following standard 

metallographic preparation procedures and etched using a mixture of Regia water (2/3) and 

distilled water (1/3). Microstructural examination of the etched samples was carried out using 

a Hitachi SU70 FEG-SEM.  The characterization of the nanometric size particles and 

morphology of the precipitates were conducted in secondary electron (SE) and back-scattered 

electron (BSE) modes. Analyses were carried out using low and high magnification SEM 

images ranging from 2000 to 100,000 magnifications in order to investigate the γ′ 
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distributions and morphologies. In order to measure the dimensions and volume fractions of 

the γ′ precipitates, digitized microscopic images and ImageJ analysis software were used. 

Each reported value for γ′ size or volume fraction is an average of 5 measurements. In each 

case, area measurements on more than 100 precipitates were carried out using the ImageJ 

software. The particle radius was then calculated as the radius of a circle whose surface area 

equaled that of the corresponding particle. 

4.5 Results 

4.5.1 Continuous Cooling Precipitation from supersolvus Temperature 

4.5.1.1 DTA Data Analysis 

Figure 4.1 shows DTA diagrams with different endothermic and exothermic peaks showing 

the dissolution and precipitation in the AD730TM alloy measured for the four investigated 

heating and cooling rates. Two endothermic peaks can clearly be observed at the 65°C/min 

and 120°C/min heating curves. Peak A occurs around 800°C, and corresponds to the 

dissolution of secondary γ′ particles. Peak C is related to the dissolution of primary γ′ and is 

observed for all heating rates. This peak is around 1080°C for the 10°C/min heating rate and 

1120°C for the 120°C/min heating rate.  
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Figure 4.1 DTA curves showing (a) γ′ dissolution and  
precipitation peaks during heating for different  
heating rates (b) γ′ precipitation peaks during  

cooling for various cooling rates. 
 

Figure 4.1 (b) shows the results of the cooling portion of the DTA diagram, and the phase 

transformation temperatures values obtained during cooling are provided in Table 4-2. It can 

be seen that the first burst of nucleation initiates at 1075°C for the SC10 condition and at 
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1070°C for the FC condition. Both bursts occur below Peak C (i.e., primary γ′ solvus 

temperature). As the cooling rate increases, the peak shifts to lower temperatures and 

undercooling increases. For example, the peak temperature is around 1060°C for the SC10 

sample, while it drops to 1035°C for the FC condition.  

 

Table 4-2 Values of phase transformations temperatures during cooling for various 
cooling rates 

Cooling Rate 
(°C/min) 

Temperature of  
maximum precipitation (°C)  

Temperature of  
precipitation end (°C)   

10  1060 1039 

15 1058 1020 

65  1042 980 

120  1035 945 

 

Figure 4.2 displays the evolution of the γ′ precipitated fraction (ܻ) as a function of 

temperature (ܶ) for the four cooling rates. Figure 4.2 was obtained using Figure 4.1 (b) and 

Eqs. (4.4) and (4.5). It can be seen that as the cooling rate increases, the curves shift to lower 

temperatures. For example, for the SC10 condition, 25% and 50% of the volume fraction of γ′ 

particles reprecipitate until 1063°C and 1059°C, respectively. However, these fractions are 

obtained at up to 1040°C and 1027°C, respectively, for the FC condition. The evolution of the 

precipitation rate (ܻ݀/݀ݐ) with temperature, calculated from DTA data (Figure 4.1 (b)), 

using Eqs. (4.4) and (4.6), is shown in Figure 4.3 for different cooling rates. An analysis of 

Figure 4.3 indicates that as the cooling rate increases, the maxima of the transformation rate 

curves shift by 25°C to lower temperatures, going from 1060°C for 10°C/min to 1035°C for 

120°C/min. 

 



122 

 

 

Figure 4.2 Amount of γ′ precipitation as a function of  
temperature for various cooling rates showing the curves  

shift to lower temperatures with increasing the cooling rate. 
 

 
Figure 4.3 γ′ precipitation rate as a function of temperature  
for various cooling rates showing the shift of the maxima  
of the transformation rate curves to lower temperatures  

with increasing the cooling rate. 
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4.5.1.2  Determination of Precipitation Kinetics Parameters 

In order to develop a general precipitation equation, the kinetics parameters of precipitation 

(݊, ܳ, ݇(ܶ)) can be determined from DTA measurements using the non-isothermal JMA 

model presented in Eqs. (4.1) to (4.8). The method used in the present investigation is 

detailed as follows: 

A) Determination of the Avrami coefficient 

The coefficient ݊ can be determined from the slope of the plot ݈݊[− ݈݊(1 − ்ܻ )] versus ݈݊߮. 

Using the above procedure, the coefficient ݊ was determined to be in the range 1.5-2.3. In 

order to avoid displaying similar data, the plot for the minimum value of exponent ݊ (݊ =1.5) 

is provided only in Figure 4.4. It must be noted that in order to obtain reliable data, the 

transformed fraction, ்ܻ , in Eq. (4.7) should be considered in the same temperature range for 

all cooling rates. This temperature range is between 1039°C and 1070°C, as shown in Figure 

4.2. 

 

 

Figure 4.4 The relationship between ݈݊[− ݈݊(1 − ܻ)] and 
 ݈݊߮ at 1039°C for determining Avrami exponent of γ′  

precipitation (R2= 0.95). 
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B) Determination of the Activation Energy 

Figure 4.5 shows the plot of ln	( ௒ܶଶ/߮) versus 1000/ܴ ௒ܶ. Based on Eq. (4.8) and using 

Figure 4.5, the activation energy for γ′ reprecipitation, ܳ, was obtained as 396 kJ/mol from 

the slope of the linear fit to the data. The calculated value is close to the activation energy 

value of γ′ precipitation reported for Waspaloy (398 kJ/mol) (Whelchel, 2011). Rosen et al. 

(1994) reported an activation energy of 250 kJ/mol for γ′ precipitation in several wrought Ni-

based superalloys. This value for activation energy is close to that of nickel self-diffusion. 

However, the alloys used by Rosen et al. (1994) were of a much simpler composition than 

the AD730TM alloy used in this study. The smaller number of alloying elements could 

account for the activation energy being lower than that for AD730TM which has significant 

amounts of alloying elements. 

 

 

Figure 4.5 The relationship between ln	( ௒ܶଶ/߮) and 
 1000/ܴ ௒ܶ for determining activation energies of  

γ′ precipitation (R2= 0.98). 
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C) Determination of the Avrami Rate Parameter 

The rate parameter ݇(ܶ) can be determined from ݇(ܶ) = ݇଴(ܶ)݁݌ݔ	(−ܳ/ܴܶ). In order to 

provide the evolution of ݇଴(ܶ) with temperature, a function needs to be developed. This 

function should be defined, in which difference between γ′ precipitated fraction (ܻ) 

calculated using the non-isothermal JMA model and that of the experimental data (Figure 

4.2) is small. In order to develop this function, MATLAB® was used to optimize the kinetics 

models for SC15 and FC conditions to the experimental values. 

Optimization was performed using the Nelder-Mead algorithm as implemented in the 

MATLAB®, and the experimental data inputs used as initial values. The mean squared error, ܧܵܯ, which is used as an indicator of the quality of the model (Palavar, Özyürek et Kalyon, 

2015), is the average squared difference between experimental data (Figure 4.2) and the 

calculated values of ܻ at each of the n time steps (݊ =80-200). 

ܧܵܯ  = 1݊෍( ௠ܻ௢ௗ௘௟.௜௡
௜ − ௘ܻ௫௣.௜)ଶ (4.9) 

 

The average difference between the value determined by optimization and the experimental 

value of the kinetic parameter ݇଴(ܶ) divided by the actual value is defined as the mean 

absolute percentage error, ܧܲܣܯ.   

ܧܲܣܯ  = 1݊෍ቤ∆݇଴(ܶ)݇଴	௘௫௣ ቤ௡
௜ = 1݊෍ቤ݇଴	௢௣௧௜௠௜௭௘ௗ − ݇଴	௘௫௣݇଴	௘௫௣ ቤ௡

௜  (4.10) 

 

On the basis of the optimization process, ݇(ܶ) is developed as a function of temperature as 

follows: 
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݇(ܶ) = [݇଴ + ݌ݔଵ݁ܣ ቆ−(ܶ − ଴ܶ)ݐଵ ቇ + ݌ݔଶ݁ܣ ቆ−(ܶ − ଴ܶ)ݐଶ ቇ
+ ݌ݔଷ݁ܣ ቆ−(ܶ − ଴ܶ)ݐଷ ቇ]݁(4.11) (ܴܶܳ−)݌ݔ 

 

The constants of this function were obtained using experimental data at cooling rates of 

15°C/min (SC15) and 120°C/min (FC). Then, the evolution of the γ′ precipitated fraction (ܻ) 

as a function of temperature was determined using Eqs. (4.1) and (4.3), ݇(ܶ), ܳ and ݊ at 

these cooling rates.  

The constants of Eq. (4.11), ݇଴, ଴ܶ, ,ଵܣ ,ଶܣ			,ଵݐ	 ,ଶݐ ,ଷܣ  ଷ, are given in Table 4-3 for SC15ݐ

and FC conditions. Figure 4.6 (a) shows the error between the non-isothermal JMA model 

and the experimental data is negligible.  

 

Table 4-3 The constants of kSC15(T) and kFC(T) equations for SC15 and FC conditions, 
respectively 

Cooling 
Rate 

(°C/min) 
݇଴ ଴ܶ ܣଵ ݐଵ	 ܣଶ ݐଶ ܣଷ ݐଷ 

15 1.46×1015 1293.99 4.5×1015 1.92 6.09×1015 22.24 7.45×1015 22.24 

120 7.07×1015 1220.01 9.3×1017 23.62 2.48×1017 6.57 5.22×1016 1.4 

 

The corresponding differences between input (experimental) values and the optimized value 

of the kinetic parameter ݇(ܶ) are given in Table 4-4. It can be seen that the model is able to 

correctly describe the experimental kinetics, as evidenced by small ܧܵܯ values for SC15 and 

FC conditions. 

The developed equations of ݇(ܶ) for SC15 and FC samples were also validated respectively 

for the SC10 and IC conditions, and the results are shown in Figure 4.6 (b) and Table 4-4.  

The results show that ܧܵܯ and ܧܲܣܯ are respectively less than 7 and 6% for the SC10 and 

IC conditions. Therefore, the equation of ݇(ܶ) for SC15 condition, ݇ௌ஼భఱ(ܶ), is applicable for 
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slow cooling rates lower than 15°C/min, and the equation of ݇(ܶ) for the FC condition, ݇ி஼(ܶ), can be applied for cooling rates higher than 65°C/min. 

 

 

Figure 4.6 (a) Comparison between experimental data of DTA (solid lines) and predictions  
by the non-isothermal JMA model (dashed lines) using developed k(T) function for  

SC15 and FC conditions (b) Validating developed equations of kSC15(T) and kFC(T) for  
SC10 and IC conditions, respectively. The error between the experimental  

data (solid lines) and the calculated model (dot lines) is small. 
 

Table 4-4 The results of optimizing kinetics models to the experimental reprecipitation 
kinetics for SC15 and FC conditions and using optimized kSC15(T) and kFC(T) models for 

SC10 and IC conditions, respectively. For the optimized parameter k0(T), the mean absolute 
percentage error, MAPE, is given by Eq.(4.10. Additionally, the quality of the optimization 

is quantified by the mean squared error, MSE (Eq.(4.9). 
Cooling Rate: 

(°C/min) 
ܧܵܯ 1.01 4.1 1.99 5.15 ܧܲܣܯ 120 65 15 10 × 10ସ 6.98 1.86 5.12 0.91 

 

On the basis of the above calculations, and considering an average value of 1.8 for the 

coefficient ݊, the kinetics of γ′ reprecipitation in the AD730TM superalloy can be described by 

the following general equation for both low and high cooling rates: 
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ܻ = 1 − ቆ2.1)−]	݌ݔ݁ × 10ିହܶଶ߮ ቇ݇(ܶ)(1 − 4.2 × 10ିହܶ))ଵ.଼] (4.12) 

 

where ݇(ܶ) = ݇ௌ஼భఱ(ܶ) for low cooling rates and ݇(ܶ) = ݇ி஼(ܶ) for high cooling rates with 

the various constants provided in Table 4-3. It is important to note that the methodology 

presented in this study can be applied to other Ni-based superalloys where γ′ reprecipitation 

may take place. 

4.5.1.3 Influence of Cooling Rate on γ′ Characteristics 

Slow, intermediate and fast cooling from supersolvus temperatures result in multimodal 

distribution of γ′ precipitates, as will be shown later in this section. This multimodal 

distribution of particles can be divided into different groups based on their morphology and 

size. Fig. 7 shows the morphology and size scale of the first population of γ′ particles for 

samples cooled under the four investigated cooling rates. The particlesʼ shapes range from 

relatively round and regular (Figure 4.7 (a)) for the FC condition to fully irregular (Figure 4.7 

(d)) for the SC10 condition. Papon et al. (2006) and Christian et al. (1975) suggested that 

when particle growth is spherical or irregular, the Avrami exponent ݊ varies between 1.5 and 

2.5. In the present investigation, the ݊ value ranges between 1.5 and 2.3, thus indicating that 

γ′ growth in the AD730TM alloy follows a diffusion-controlled growth process. This is also 

confirmed by micrographs in Figure 4.7.  

Figure 4.8 shows a correlation between average diameters of the first population of γ′ 

precipitates with the cooling rate. It can be seen that the average sizes of γ′ particles are about 

196 nm for the SC10 condition and 61 nm for the FC condition. Since γ′ growth during 

cooling is a diffusion-controlled process (Vaunois et al., 2010) , a power law relation could 

describe the evolution of size with the cooling rate using the data presented in Figure 4.8: 

ఊᇱܦ  = 521 × ߮(ି଴.ସସ) (4.13) 

 

where ܦఊᇱ is the precipitate diameter in nm and ߮ is the cooling rate in °C/min. The above 

relation provides a reasonable prediction (R2 =0.97) of the size evolution over a very broad 
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range of cooling conditions for the first population of cooling γ′ particles. In order to validate 

the above equations, a heat treatment cycle, 1200°C/1 minute/ cooling at a rate of 100ºC/sec, 

was performed using Gleeble™ 3800. The morphology and distribution of γ′ precipitates 

obtained after the above heat treatment cycle were examined using high magnification SEM 

micrographs, and are presented in Figure 4.9 (a) and (b). The results show that a monomodal 

size distribution of very fine spherical particles, ranging from 7 to 20 nm, with an average 

size of 13 nm was obtained. The particle diameter should be 11 nm according to Eq. (4.13), 

confirming the validity of the proposed equation. 

 

 

Figure 4.7 Scanning electron microscopy images of the (a) FC (b) IC (C) SC15  
(d) SC10 samples, showing the morphology and size-scale of first generation of γ′ 

precipitates. Some of protrusions are shown by arrows and their number, ݈, was indicated inside some particle core areas. 
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Figure 4.8 Average diameter of first generation of γ′  
precipitate as a function of cooling rate (R2 =0.97). 

 

 

Figure 4.9 (a) Scanning electron microscopy image  
(b) Precipitate size distribution plot of the Gleeble™ 3800 sample. 

 

The second population of cooling γ′ particles for the SC10 and FC conditions are shown in  

Figure 4.10 (a) and (b). Particle size measurements indicate that γ′ particles range from 11 to 

35 nm for the SC10 and from 8 to 12 nm for the FC condition. A detailed particle size 

distribution analysis carried out over 300 particles clearly reveals a multimodal distribution 

for the SC10 condition as shown in Figure 4.11.  
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Figure 4.10 BSE and SE images of the (a) SC10 (b) FC samples, respectively,  
showing first and second population of cooling γ′ precipitates. 

 

 

Figure 4.11 Precipitate size distribution plot of SC10  
sample showing the size difference between the first  

and second population of cooling γ′ precipitates. 
 

The size distribution of the third population of γ′ precipitates could not be precisely 

quantified due to their small size (less than 10 nm). A particle volume fraction analysis 

showed that the volume fraction of γ′ from the first nucleation burst forms about 85% of the 

total amount of γ′ precipitates in the AD730TM alloy (which is about 40%) for the SC10 
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condition, indicating that a very small portion of γ′ will be formed as second or third 

populations of γ′ precipitates.  

4.5.2 Precipitation during Discontinuous Cooling from Subsolvus Temperature 

Interrupted cooling tests were carried out at a cooling rate of 120°C/min to study the 

development of γ′ precipitates during a cooling process which represents interpass cooling 

during forging. It should be noted that the alloy contains around 7% initial primary γ′ when 

cooling from subsolvus temperature. The distribution of γ′ precipitates, presented in Figure 

4.12, reveals a bimodal distribution during cooling from 1100°C interrupted either at 1040°C 

or 780°C. 

 

 

Figure 4.12 Precipitate size distribution plot of (a) high interrupt temperature  
(b) low interrupt temperature, from 1100ºC showing the size difference between  

the first and second population of γ′ precipitates. 
 

For the interrupt temperature of 1040°C, the first burst of nucleation occurs in the  

1100 -1040°C interval (Figure 4.13 (a)), and results in the formation of spherical γ′ particles 

25 to 50 nm in size and 13% in volume fraction. The second burst of nucleation occurs 

during water quenching from 1040°C, and leads to much smaller particles (less than 10 nm), 

with a small volume fraction of 2.5%. The density of the small particles is about 9 times 

more than that of the larger precipitates. 
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Figure 4.13 Scanning electron microscopy image of the (a) first burst  
of nucleation at high interrupt temperature (b) coarsening of first  

generation of γ′ and second burst of nucleation between initial primary  
and existing γ′ precipitates at low interrupt temperature. The  

interrupted cooling consisted of continuous cooling from 1100°C  
at a constant rate of 120°C/min, followed by water quenching at 1040°C 

(high interrupt temperature) or 780°C (low interrupt temperature). 
 

For the 780°C interrupt temperature, the first population of γ′ particles formed in the  

1100°C-780°C interval was 40 to 80 nm in size, with a volume fraction of about 24%. The 
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average size of these particles is around 60 nm (Figure 4.12 (b)). This value is very close to 

the one obtained after continuous cooling (FC), as shown in Figure 4.8. This finding 

indicates that, due probably to low diffusion, very little or no growth of γ′ particles takes 

place below 780°C.  

Furthermore, as shown in Figure 4.13 (b), a second burst of nucleation takes place in the  

1040-780°C interval. This second nucleation gives rise to precipitates which are much 

smaller in size (8 to 15 nm) and volume fraction (3%). The average size and volume fraction 

for the second population of γ′ particles are the same as those after continuous cooling (FC), 

10 nm and 3%. This indicates that a second burst occurs between 1040 and 780°C in 

AD730TM. This finding is in agreement with DTA results (Figure 4.1 (a)) which showed that 

the solvus for the secondary γ′ is around 825°C for a 120°C/min heating rate.  

4.6 Discussion 

4.6.1 Analysis of DTA Data during the Heating Cycle 

The DTA graphs shown in Figure 4.1 (a) reveal both endothermic and exothermic peaks, 

indicating that dissolution and precipitation take place during the heating cycle. The peak 

temperature for precipitation during heating corresponds to the maximum precipitation rate 

resulting from a competition of two opposing factors: 1) An increase in the diffusivity of the 

precipitating elements at higher temperatures, which results in an increase in precipitation;  

2) A decrease in the driving force for precipitation, due to lower supersaturation, at higher 

temperatures (Gao, Starink et Langdon, 2009; Masoumi et al., 2016a). The competition 

between these two phenomena results in the occurrence of various peaks labeled from A to C 

in Figure 4.1 (a): A- dissolution of secondary γ′ precipitates; B- precipitation of primary γ′ 

precipitates; C- dissolution of primary γ′ precipitates. The results obtained are in agreement 

with those reported by other researchers who observed similar dissolution-reprecipitation 

sequences in precipitation-hardened aluminum alloys (Buha, Lumley et Crosky, 2008; Gao, 

Starink et Langdon, 2009; Kamp, Sinclair et Starink, 2002). The results also confirm the 

findings of Boettinger et al. (2006), who observed that the limits of the peaks become more 

and more visible as the heating rate increases. 
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The full sequence of precipitations of different populations of γ′ particles is only possible 

when the alloy is maintained below the γ′ solvus temperature of that population. For instance, 

if the alloy is kept at a temperature above the secondary γ′ solvus, but below the primary γ′ 

solvus (peak B), only primary γ′ could precipitate.  

Based on the classical nucleation theory, the critical free energy for the nucleation of a 

spherical particle (ܩ∗) is given by (Russell, 1980): 

∗ܩ  = △)ଷ3ߪߨ16  ௩)ଶ (4.14)ܩ

 

where ߪ is the interfacial energy between γ and γ′ and △  ௩ is the driving force forܩ

precipitation. As shown in Figure 4.10, the second population of cooling γ′ particles is very 

small in size (10 nm) and spherical in shape. Such characteristics result in highly coherent 

precipitates with the matrix (i.e., minimum interfacial energy and misfit strains), and 

consequently, very low values for the nucleation barrier ܩ∗ (Reed, 2006b; Sato et al., 2006) 

DTA results (Figure 4.1 (a)) show that secondary γ′ particles dissolve at around 785ºC and 

825ºC for the SC10 and FC conditions, respectively. It has been reported that for each 

transformation peak in heating, there should be an equal peak for reprecipitation at a few tens 

of degrees undercooling (Boettinger et al., 2006). Therefore, it is expected that γ′ particles 

which dissolve during heating will reprecipitate during cooling. This was confirmed in the 

present investigation by an electron microscopy examination of the microstructure of the 

samples as shown, for example, in Figure 4.10 (a) and (b). 

4.6.2 Effect of Cooling Rate on γ′ Stability during Growth 

The morphology of γ′ precipitates is a key factor in determining the properties of superalloys 

(Papon, Leblond et Meijer, 2006). The irregular growth of precipitates during slow cooling 

observed in the present work (Figure 4.7 (d)) is analyzed in the context of the Mullins and 

Sekerka (MS) model (1963). In the model, the critical particle radius (ݎ௖௥) for the occurrence 

of morphological instability, defined by the presence of protrusions on spherical particles, is 

given by:  
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௖௥ݎ = [൬12൰ (݈ + 1)(݈ + 2) +  (4.15) ∗ݎ[1

 

where ݈ is the number of protrusions.  

The critical radius (ݎ∗) for nucleation is given by: 

∗ݎ  = ஽ܵ߁2  (4.16) 

 

with ܵ = (஼ಮି஼బ)஼బ  representing supersaturation, and ߁஽ = ఙఆோ் showing capillary constant. ܥ଴ is 

the equilibrium solute concentration at the precipitate/solid solution interface, ܥஶ is the 

initial solute concentration in the supersaturated matrix, ߪ the matrix-particle interfacial 

energy, and ߗ is the increment of precipitate volume per mole of added solute. Finally,	ܴ is 

the gas constant, and ܶ	the absolute temperature.  

In order to calculate the precipitate critical radius, an estimation of ߁஽ and S must be made. 

Using ߪ and ߗ values for superalloys reported by Porter (1983), ߁஽ was determined to be 9.7 × 10ିସ	μ݉. Also, using the Thermo-calc® software, ܥ଴ was calculated for AD730TM 

(Masoumi et al., 2016a), and consequently, a maximum value of 0.4 was obtained for 

supersaturation constant ‘S’ when Al and Ti were considered as solutes.  

Two-dimensional protrusions on spherical γ′ particles are observed in Figure 4.7 (d), as 

indicated by the arrows. The number of protrusions, ݈, was calculated to be 4 for samples 

slowly cooled from 1200◦C. The measurements were made over 100 particles on 15 different 

high magnification electron micrographs, such as the one shown in Figure 4.7 (d).  

Using the above data and Eqs. (4.15) and (4.16), the precipitate critical radius for slow 

cooling from 1200◦C was calculated to be 78 nm. In order to compare the predicted value 

with experimental findings, the average core radius of particles was measured and 

determined to be 89 nm. As for the calculation of ݈, this value represents the average of 100 

particles core radii measurements over 15 high magnification SEM micrographs, indicated by 

circles in Figure 4.7 (d). A relatively good agreement is observed between measured and 
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calculated values. The difference seen (of about 12%) may be due to the fact that the 

experimental conditions of Figure 4.7 (d) do not correspond exactly to the onset of instability, 

as it is very difficult to achieve such precisions experimentally. 

The variation of precipitate critical radius versus supersaturation is plotted in Figure 4.14 for ݈ = 4. It can be observed that precipitates are stable below and unstable above the critical 

radius rୡ୰. In Figure 4.14, the growth routes of precipitates for slow cooling and water 

quenching conditions are shown schematically by paths 1 and 2, respectively. In both cases, 

samples were cooled from above the γ′ solvus temperature ( ௦ܶ). According to MS theory 

(Mullins et Sekerka, 1963), morphological instability depends on the domination of either 

supersaturation or the capillary effect. Once supersaturation is sufficiently built up, spherical 

particles become unstable. Therefore, the formation of protrusions during slow cooling (path 

1) should occur as sufficient supersaturation can build up during a temperature drop (Figure 

4.14). Path 1 shows that at the start of nucleation, the shape of the precipitates is mostly 

spherical due to small supersaturation. As higher supersaturation is present in the case of 

undercooling, these particles will grow into the unstable zone. 

 

 

Figure 4.14 The calculated variation of the critical  
precipitate radius with supersaturation and schematic  
illustration of possible growth trajectories of spherical  

precipitates for SC10 (path-1) and WQ (path-2). 
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If multiple bursts of precipitates are considered, then after the first burst of nucleation, few γ′ 

nuclei will form at high temperatures due to the small undercooling below γ′ solvus (as 

shown in DTA results in Figure 4.1 (b)). Under these conditions, far from these particles, the 

γ matrix will remain supersaturated until lower temperatures, i.e., below the peak for the 

formation of the first population of cooling γ′. Supersaturation will increase further with an 

additional drop in temperature, such that the second burst of nucleation can occur at these 

sites (Figure 4.10). The nucleation of this population of cooling γ′ will reduce the 

supersaturation of solute elements, and with the third nucleation burst, most of the 

supersaturation is consumed, and the γ matrix reaches equilibrium. While it is expected that 

once the level of supersaturation is decreased, morphological instability should also decrease 

(return of path 1 to the stable region), γ′ particles keep their morphological instability, as 

shown in Figure 4.7 (d). This is probably due to the fact that most of the supersaturation is 

consumed for the second and third nucleation bursts, rather than for the growth of γ′. 

In the light of the above analysis, it can be said that the first population of γ′ particles is 

formed between 1075ºC and 1039ºC, and grow rapidly due to high diffusion at high 

temperatures, and results in an irregular shape or instability (Figure 4.2 and Figure 4.7 (d)). 

The results also indicate that cooling down to room temperature and reduced supersaturation 

will not necessarily remove any shape irregularity. 

In contrast, when high cooling rates are employed (Figure 4.14-path 2), instability is 

prevented. This is probably due to the high number of reprecipitated fine γ′ particles, which 

increases in the presence of high cooling rates. Indeed, as shown in Figure 4.1 (b) and Figure 

4.3, higher cooling rates result in increased undercooling below the γ′ solvus temperature, 

and therefore in higher supersaturation and faster nucleation rates. The proximity of the 

precipitates results in the overlapping of their diffusion fields and in a rapid reduction of 

supersaturation around the newly nucleated particles. This overlapping inhibits the instable 

growth of γ′ precipitates, resulting in the formation of spherical shape particles (Figure 4.9 

(a) and Figure 4.10 (b)). 

The influence of the cooling rate on the morphology of γ′ precipitates is further illustrated in  

Figure 4.15. It can be seen that during cooling from supersolvus temperature, the first 
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population of γ′ precipitates in AD730TM keeps a spherical shape under fast cooling 

conditions (FC). The particles coarsen, but still keep their spherical shapes during 

intermediate cooling (IC).  

However, with a further decrease in the cooling rate (SC15), they coarsen very rapidly, and 

develop a cuboidal, and then butterfly, shape. In addition, as shown in Figure 4.7, the density 

of the first population of γ′ precipitates is higher for the FC condition, at 35/µm2, compared 

to 3/µm2 for the SC10 condition. This value for the WQ condition is 85 times higher than that 

of the SC10 condition (Figure 4.7 (d) and Figure 4.9). 

 

 

Figure 4.15 Scanning electron microscopy images showing  
the morphology evolution of first generation of γ′ precipitates during  

various cooling rates. 
 

The above analysis shows that supersaturation is not the only governing mechanism in the 

formation of γ′ morphological instability during cooling of the AD730TM alloy and most 

probably other Ni-based superalloys. Low nucleation density and sufficient diffusivity 

between precipitates and the matrix are other essential factors for irregular growth in Ni-

based superalloys. These findings are in agreement with those of Doherty and Yoo (Doherty, 

1982; Yoo, 2005), who reported that there should be isotropic interfacial energy, low lattice 
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mismatch between the two phases, and a low density of nucleation for the formation of 

protrusions. γ′ precipitates in Ni-based superalloys normally fulfill all these requirements; 

specifically, the latter condition was satisfied in this work due to the low nucleation density 

of the first population of cooling γ′ for the SC10 condition. 

4.6.3 Multiple Precipitation during Cooling 

As Table 4-2 and Figure 4.1 show, 20°C and 85°C undercooling below the γ′ solvus are 

necessary to enable subsolvus nucleation for slow and fast cooling rates, respectively. 

According to Eq. (4.16), at higher supersaturation, the critical radius for nucleation is 

decreased, and based on the classic nucleation theory (Russell, 1980), the nucleation rate will 

increase. Consequently, the transformation rate will increase gradually from 0 to 0.7 and 

2.3%/min respectively for the SC10 and FC conditions, as shown in Figure 4.3. Thus, for the 

first burst of γ′ nucleation for the SC10 condition, only a limited density of γ′ precipitates will 

be obtained due to the small undercooling at 20°C (Figure 4.1(b)).  

Zener (Christian, 1975) proposed the following model for the precipitates growth rate: 

ݐఊᇱ݀ݔ݀  ≅ ݐ√2ܦ√ܵ  (4.17) 

 

where ݔఊᇱ is the precipitate size, ܵ the supersaturation and ܦ the diffusion coefficient. As the 

first nuclei are formed and start growing, supersaturation in the matrix is gradually reduced, 

as does the driving force for nucleation. According to Eq. (4.17), the growth rate will also be 

reduced due to a decrease in supersaturation and temperature. Therefore, the transformation 

rate will decrease and reach 0, and the volume fraction of the particles in the system becomes 

almost constant. However, as the temperature decreases, the redistribution of the solute 

elements becomes more and more difficult due to their reduced mobility. This leads to a 

higher supersaturation level in the region free from the first population of γ′ precipitates, 

which will then become suitable sites for the second and/or third burst of nucleation (Figure 

4.10).  
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For a reprecipitation reaction to occur, the thermodynamics must be favorable (enough 

driving force), and the kinetics fast enough (small activation energy). Therefore, the 

transformation rate is proportional to (Kinetic factor) × (Thermodynamic factor). Based on 

Eqs. (4.14) and (4.16), the critical radius (r∗) is high, and the driving force is small for 

nucleation near equilibrium. Thus, the nucleation rate will be slow for the first population of 

γ′ due to small supersaturation at slow cooling rates (SC10 and SC15 conditions). As a result, 

the reprecipitation process will not be thermodynamically favorable, and most of the 

transformation will be controlled by growth. At these cooling rates, supersaturation, ܵ, is 

small, and the growth rate is controlled by diffusion coefficient, ܦ, according to Eq. (4.17). 

The growth of first population of γ′ precipitates, which is a diffusion-controlled process, can 

occur by replacement of the γ atoms at the γ/ γ′ interface with γ′ atoms by normal lattice 

diffusion involving vacancies. Therefore, the reprecipitation process is kinetically controlled 

at the SC10 and SC15 conditions.  

As the temperature is lowered during continuous cooling and enough supersaturation and 

driving force is produced, the probability of nucleation may thus increase rapidly with 

decreasing temperature, according to Eq. (4.14). 

As Table 4-2 and Figure 4.3 show, in the case of samples cooled at a higher cooling rate 

(FC), most of the transformation seen will occur at a slightly lower temperature (compared to 

the SC10 condition), where both nucleation and growth rates are higher. For the FC condition, 

the density of the first population of γ′ precipitates is 12 times, and the transformation rate is 

3.5 times higher than that of SC10, as shown in Figure 4.3 and Figure 4.7. The reprecipitation 

process of the first population of γ′ precipitates occurs at high temperatures (1075°C-945°C) 

for the FC condition, as shown in Figure 4.2. However, a combination of shorter cooling time 

as compared to the SC10 condition, the higher density of particles and therefore overlap of the 

diffusion fields of precipitates limit the growth rate of γ′ precipitates for the FC condition. 

This condition will promote a finer size of γ′ precipitates (60 nm) as compared to the SC10 

condition (196 nm). Thus, the reprecipitation process of the first population of γ′ precipitates 

is thermodynamically and kinetically favored, and controlled by both nucleation and growth 

at higher cooling rates (FC). 
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The experimental results indicate that supersaturation is not uniform at the early stages, when 

cooling from subsolvus temperature. This is illustrated in Figure 4.16, where it can be seen 

that during cooling from subsolvus temperature of 1100ºC interrupted at 1040°C, γ′ particles 

nucleate in the supersaturated matrix around the initial primary γ′ precipitates, which 

remained undissolved during the solutionizing stage, and mostly lie at the γ grain boundaries.  

As shown in Figure 4.13 (a), for the interrupt temperature of 1040°C, there is no time for the 

growth of first generation of precipitates formed during cooling.  

 

Figure 4.16 Nucleation of γ′ particles around initial  
primary γ′ at the γ grain boundaries at high interrupt  
temperature indicating supersaturation is not uniform  

at the early stages when cooling from subsolvus  
temperature.  

 

In addition, the high supersaturation buildup in the matrix during water quenching will be the 

precursor for the second nucleation burst. Conversely, for the 780°C interrupt temperature 

(Figure 4.13 (b)), existing particles from the first nucleation burst grow by diffusional 

transfer of atoms toward the precipitates; however, as the temperature is lower, solute 

diffusivity, and consequently, the growth rate of the precipitates, is slow. Here, the matrix is 

supersaturated with Al and Ti, and is therefore still in non-equilibrium condition, and thus, a 

sufficient driving force for a second nucleation burst will be provided at a critical 

undercooling. This group of precipitates was observed between the initial primary and first 
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groups of precipitates (Figure 4.13 (b)). It is worth noting that the second group of 

precipitates is small in size due to the slower movement of solute under these conditions.  

4.7 Summary and Conclusion 

This study reported the reprecipitation mechanisms and kinetics of γ′ particles in the newly 

developed AD730TM wrought Ni-based superalloy, with around 40% γ′ particles, but the 

findings could be also extended to other Ni-based superalloys.  

The main conclusions of the present investigation can be summarized as follows: 

1- The precipitation of γ′ particles during cooling follows a modified JMA equation, and it 

was demonstrated that the process is kinetically controlled for the first population of γ′ 

precipitates at the SC10 and SC15 conditions. This process is thermodynamically and 

kinetically favored at the FC condition. The growth parameter (݊), the activation energy (ܳ), 

the amount of precipitation (ܻ) and precipitation rate (ܻ݀/݀ݐ) were determined for the first 

time for the AD730TM alloy.  

2- A function for the kinetic parameter ݇(ܶ) is developed, and reprecipitation kinetics 

models for low and high cooling rates were proposed to quantify the volume fraction of 

reprecipitated γ′ particles. 

3- High resolution FEG-SEM indicated that with a decreasing cooling rate, γ′ precipitates 

show morphological instability going from a spherical shape at high cooling rates to butterfly 

shapes at slow cooling rates. 

4- A new equation is proposed on the basis of experimental correlations between the cooling 

rate and the γ′ precipitate size for continuous cooling from supersolvus temperatures. The 

proposed equation was validated experimentally for high cooling rates using Gleeble™ 3800. 

5- It was found that supersaturation is not the only determining factor in instability 

formation. Low nucleation density and enough diffusivity between precipitates and matrix 

are other essential parameters accounting for an irregular growth of γ′ particles in Ni-based 

superalloys. 
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5.1 Abstract 

A combination of experimental and analytical methods were used to study the possible 

occurrence of liquation during LFW of the newly developed AD730TM Ni-based superalloy. 

LFWed joints were produced using a semi-industrial size facility and the interfaces of the 

joints as well as the ejected flash were examined using optical and Field Emission Gun 

Scanning Electron Microscopy (FEG-SEM). Physical simulation of the LFW thermal cycle, 

using thermomechanical simulator Gleeble™ 3800, showed that incipient melting started 

from 1473K (1200°C). The analytical model, calibrated by experiments, predicted that the 

highest temperature of the interface was about 1523K (1250°C). The constitutive equations 

based on lattice and pipe diffusion models were developed to quantify the self-diffusivity of 

the elements and control the extent of liquation by considering the effect of LFW process 

parameters. Analytical results show that the application of compressive stresses during LFW 

results in 25 times increase in the diffusion of Ni atoms at the weld interface. Therefore, no 

presence of re-solidified phases, i.e. occurrence of liquation, was observed in the 

microstructure of the weld zone or the flash in the present study. Based on the obtained 

results, a methodology was developed for designing the optimum pressure above which no 

liquation, and hence cracking, will be observable.  

 



152 

 

Key Words: Linear friction welding; Ni-based superalloy; Liquation temperature; Liquation 

mechanisms; Diffusion mechanisms. 

5.2 Introduction 

AD730TM is a recently developed Ni-based superalloy for turbine disk applications (Devaux 

et al., 2012c); however, many of its properties, especially its weldability, are still unknown 

for advanced manufacturing applications such as LFW. LFW is an emerging manufacturing 

technology for joining of blades to disks or repairing turbine disks in gas turbines and jet 

engines. This process presents significant advantages over the traditional mechanical 

assembly techniques by providing quality and performance improvements or weight 

reduction and economic benefits. The LFW process is in essence a hot deformation process 

and in this regard the material undergoes a severe thermomechanical process which brings 

substantial microstructural changes (Bhamji et al., 2011; Mary et Jahazi, 2007a; Uday et al., 

2010).   

One of the on-going questions in LFW is whether liquation and consequently cracks occurs 

during this process (Chamanfar et al., 2012b; Ola et al., 2011c). The possibility of liquation 

during LFW plays a key role in controlling the mechanical properties of the joint as micro-

cracks can be produced due to weakness of liquid film against thermal and mechanical 

stresses induced during cooling. Although bulk melting and consequently solidification 

cracking does not occur in LFW (Mary et Jahazi, 2007a), the occurrence of local melting and 

possible micro-cracks are still imaginable. Re-solidified eutectic micro-constituent and 

constitutional liquation of γ′ precipitates were observed in thermo-mechanically affected 

zone (TMAZ) of LFWed IN 738 material (Ola et al., 2011c) while no liquation was observed 

in the LFWed Waspaloy components (Chamanfar et al., 2012b). Constitutional liquation of 

second phase particles occurs due to the formation of intergranular liquid films along the 

particle-matrix interface through a eutectic-type reaction with the surrounding matrix (Ojo, 

Richards et Chaturvedi, 2004a). Having a good understanding of liquation mechanisms is 

critical for reliable prediction of microstructure evolution and mechanical properties of 
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LFWed joints and correlating it to process parameters for the optimum design of weld 

parameters. 

Extensive studies have investigated different mechanisms of grain boundary (GB) liquation 

during fusion welding of Ni-based superalloys (Danis et al., 2010; Dye, Hunziker et Reed, 

2001; Mousavizade et al., 2009; Nakkalil, Richards et Chaturvedi, 1992; Ojo, Richards et 

Chaturvedi, 2004a; Zhang, Ojo et Chaturvedi, 2008). These reports suggest that some 

metallurgical and mechanical factors affect liquation cracking susceptibility. The main 

metallurgical factors are the amount of borides, carbides and γ′ precipitates, grain and 

particle size, heat input and segregation of boron, phosphorous and sulfur. The mechanical 

factors are thermally induced strains, stresses and base alloy hardness (Dye, Hunziker et 

Reed, 2001; Mousavizade et al., 2009; Ojo, Richards et Chaturvedi, 2004a; Zhang, Ojo et 

Chaturvedi, 2008). However, no quantitative data is available on the possibility of 

constitutional liquation and subsequent cracking of superalloys under non-equilibrium 

thermal cycles such as those encountered in LFW. 

In order to have a better insight on microstructure development during LFW, the influences 

of the two most important process parameters (i.e. temperature and external imposed 

pressure) need to be quantified. Experimental measurement of temperature evolution during 

LFW of superalloys has been carried out by few research groups (Chamanfar et al., 2011a; 

Mary et Jahazi, 2007a). However, it is nearly impossible to experimentally obtain the exact 

temperature at the interface during welding due to the highly dynamic nature of the process. 

Varis and Frost (2000b) developed a numerical model to obtain temperature history in the 

initial stage of LFW. Li et al. (2010) formulated a model, using ABAQUS, for temperature 

prediction during LFW of Ti alloys. Having estimated the interface heat generation rate, a 

one-dimensional temperature distribution in the case of inertia friction welding has been 

calculated (Li et al., 2016; Shinoda et al., 2000; Soucail et al., 1992; Yilbas et Sahin, 2014). 

However, in none of the above works, the predicted interface temperatures were not 

validated experimentally. In this study, in order to predict the weld interface temperature, an 

analytical approach based on solving one-dimensional thermal energy conservation equation 

(Bateman, 1932; Bergman et al., 2011; Xiong et al., 2013) is used. The obtained results were 



154 

 

then validated using a semi-analytical model, developed previously for γ′ dissolution kinetics 

(Masoumi et al., 2016a) , and measured temperatures by thermocouples or infrared thermal 

camera for Ni-based superalloys in the literatures (Chamanfar et al., 2011a; Yang et al., 

2015). 

LFW is fundamentally a hot deformation process. While extensive data is available on hot 

deformation and creep of Ni-based superalloys (Cormier, Milhet et Mendez, 2007b; Giraud 

et al., 2013; Ola, Ojo et Chaturvedi, 2013a; Shahriari et al., 2009b; Viswanathan et al., 2015; 

Wang et al., 2011a), few of them could be used for analyzing the LFW process. The reason is 

that the applied stress, deformation and temperatures used for these experiments are much 

lower than those occurring during the LFW process even though the fundamental 

mechanisms governing microstructure evolution are similar. The glide and climb of 

dislocations and the diffusive flow of individual atoms can cause plastic flow during creep or 

hot deformation (Cormier, Milhet et Mendez, 2007b; Giraud et al., 2013; Porter et Easterling, 

1992). Glide and climb of dislocations are controlled by lattice or pipe diffusion (Giraud et 

al., 2013; Viswanathan et al., 2015). Therefore, from a fundamental point of view, it is 

important to quantify the contribution of the LFW process parameters on lattice and pipe 

diffusion processes on microstructure development during LFW. 

The present research has been defined in this context and has the objective to evaluate the 

possible occurrence of liquation during LFW of Ni-based superalloys, determine the 

conditions under which liquation could take place during LFW, and discuss possible 

governing mechanisms. 

5.3 Experimental Procedure 

The AD730TM material was a forged square bar provided by Aubert & Duval. A post forge 

heat treatment consisting in solutionizing at 1353K (1080°C) for four hours followed by air 

cooling had also been conducted on the material.  The chemical composition of the alloy is 

given in Table 5-1. The equilibrium volume fraction of γ′ particles was around 40% in the as 

received material. 
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Table 5-1 Chemical composition of AD730TM (wt%) (Devaux et al., 
2012c) 

Ni Fe Co Cr Mo W Al Ti Nb B C Zr 

Base 4 8.5 15.7 3.1 2.7 2.25 3.4 1.1 0.01 0.015 0.03 

 

For LFW experiments, rectangular blocks 26 mm × 13 mm × 37 mm (length × width × 

height), were machined by wire electro-discharge machining (EDM). The LFW process was 

conducted using the FW34-E20 LFW machine at TWI, Cambridge, UK. This process 

generally consists in three major phases (Bhamji et al., 2011; Chamanfar, Jahazi et Cormier, 

2015a). The schematic of the processing stages and the details of the processing parameters 

are shown in Figure 5.1. The axial shortening after welding was 1.7 mm.  

In order to determine the range of non-equilibrium liquation temperature of the alloy during 

LFW, the thermal cycle of the LFW process was reproduced using Gleeble™ 3800 physical 

simulator. Specifically, the experiments consisted in heating at a fast heating rate of 400K/s 

to temperatures ranging from 1423K (1150°C) to 1573K (1300°C), holding for 3 seconds at 

the target temperature, followed by compressed air cooling at a rate of 150K/s.  

 

 

Figure 5.1 Processing phases and parameters  
during LFW of AD730TM. 
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The microstructure of the LFWed samples from the parent material to the weld interface, and 

Gleeble samples, particularly the characteristics of the γ′ particles and their constitutional 

liquation, were investigated. For microstructural studies, the samples were mounted and 

polished using standard metallographic techniques and etched using two different etchants. 

The first was composed of 170cc H3PO4, 10cc H2SO4 and 15gr Cro3, the second a mixture of 

Regia water (2/3) and distilled water (1/3). After etching, the specimens’ microstructures 

were observed using optical and FEG-SEM. Characterization of the nanometric size particles 

were conducted using Hitachi SU823 SEM in the secondary electron (SE) imaging mode. 

The back-scattered electron (BSE) images were recorded from polished cross sections by use 

of a backscattered electron detector attached to the SEM.  

Furthermore, distribution mappings and chemical composition of the different chemical 

elements constituting various phases in the specimen were obtained by EDS. Analyses were 

carried out at microscopic scale using small and high magnification SEM images such as 

2000, 50,000 and 100,000 magnifications to investigate γ′ characteristics. In order to measure 

the dimensions and volume fractions of the γ′ precipitates, digitized microscopic images and 

ImageJ analysis software were used. Each reported value for γ′ size or volume fraction is an 

average of 5 measurements. In each case, area measurements on more than 100 precipitates 

were carried out. The particle radius was then calculated as the radius of a circle whose 

surface area equaled that of the corresponding particle. 

5.4 Results and Discussion 

5.4.1 Macroscopic and Microscopic Examination of the Joint after LFW 

Visual examination of the flash (Figure 5.2 (a)) revealed that the material extruded 

symmetrically from four sides of each weld, and developed curly swirl shape. The flash, 

formed due to the applied pressure and material plastic flow, was connected around the 

corners of the specimen. Therefore, the flash shape implies that the entire area of the 

interface was plasticized as a result of high temperature and stress applied during the LFW 

process. The presence of a continuous flash is often considered as an indication for a sound 

weld (Chamanfar, Jahazi et Cormier, 2015a; Chamanfar et al., 2011a; Mary et Jahazi, 2008) 
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as oxides present at the interface are ejected out, and therefore “fresh” atoms from both sides 

of the joint come into contact. Higher magnification of flashes (numbered 1 and 2 in Figure 

5.2 (b)) showed that they are 1.7 mm in thickness and 3.3 mm in height, as shown by arrows 

in Figure 5.2 (c). Oxide particles which are observed in flash number 3, arrowed in Figure 

5.2 (b), are expelled oxides from the interface. Examination of the weld by optical 

microscopy (Figure 5.2 (b)) revealed no microcracks or microvoids in the weld interface.  

Parent material, AD730TM alloy, has around 10 % primary γ′, 26% secondary and 3% tertiary 

γ′, and around 1% MC, M23C6 carbides and M3B2 borides, with M being the metallic element 

(Ti, Nb, Cr, Mo and W) (Masoumi et al., 2016a). Figure 5.3 shows the evolution in volume 

fraction of primary and secondary γ′ as a function of the distance "L" from the weld interface. 

For instance, as shown in Figure 5.3, primary and secondary γ′ particles are mostly dissolved 

at L = 0.4 mm and L = 1.5 mm, respectively. Figure 5.4 shows that primary γ′ particles are 

dissolved in the central zone and at the corners. Noticeable changes occur in the 

microstructure of the LFWed alloy from its original condition (parent material) within 4-4.5 

mm thick layer on both sides from the weld interface, with a total width of the TMAZ and 

heat affected zone (HAZ) of 8-9 mm, as shown in Figure 5.3. The absence of primary or 

secondary γ′ particles and the presence of MC carbides at the weld line indicate that the 

temperature in this zone was above the γ′ solvus and below the carbide solvus temperature. 

The above observations confirms the presence of a strong  temperature gradient across the 

LFWed joint with the highest temperatures existing in the weld zone and the flash as reported 

by other authors (Chamanfar et al., 2011a; Li, Ma et Li, 2010; Mary et Jahazi, 2007a; Vairis 

et Frost, 2000b). 
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Figure 5.2 (a) A photograph of LFWed sample (b) a low magnification optical  
image of the welded sample showing oxide particles in flash 3, as shown by  

arrow (C) higher magnification of flash 1 and 2 (defined in (b)) showing  
formation of flashes with thickness 1.7 mm and height 3.3mm due  

to material flow, as shown by arrows, near the LFW interface. 
 

In the microstructure examination of the flash, as shown in Figure 5.4 (a), no indication of 

liquation or γ/γ′ eutectic product was observed. Examination by electron microscopy 

indicated that TMAZ was also free from resolidified products, and no γ/γ′ eutectic phase was 

observed at the γ/γ′ interface (Figure 5.4 (b)). However, flash is formed from the expulsion of 

material subjected to the highest temperature out of the interface. In addition, coarse second 

phase particles such as γ′ particles, carbides and borides that formed along the grain 

boundaries in the microstructure of the as received material have a high tendency for 

constitution liquation at high temperatures (Mousavizade et al., 2009).  
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Figure 5.3 Variation in γ′ volume fraction as a  
function of distance from the weld interface. 

 

 

Figure 5.4 SEM micrographs of the: (a) flash (b) TMAZ at 500 µm from  
the weld interface. No indication of liquation or γ/γ′ eutectic product was  

observed at the γ/γ′ interface at the flash or TMAZ. 
 

Thus, two assumptions could be made on the possibility of γ′ liquation during LFW of this 

alloy and most probably other Ni-based superalloys: 1) Processing conditions (temperature, 

friction and forge pressures, strain and strain rate) are such that no liquation occurs during 

LFW, and 2) liquation is produced but disappeared before eutectic re-solidification.  
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The thermal cycle (heating rate, temperature, and holding time) in addition to accumulated 

plastic strain and applied stress paly significant role in the microstructural evolution during 

LFW. Out of the parameters listed above, the heating stage is the most important factor in 

contributing to the occurrence of liquation. Therefore, in order to elucidate the observed 

microstructural development during LFW of AD730TM, the non-equilibrium liquation 

temperature of the investigated alloy is predicted through physical simulation using the 

Gleeble™ 3800 equipment. The microstructure examinations are described in the following 

section. 

5.4.2 Physical Simulation of the LFW Thermal Cycle 

Samples were heated at a rate of 400K/s to temperatures ranging from 1423K (1150°C) to 

1573K (1300°C) followed by air cooling at a rate of 150K/s. Figure 5.5 (a) and (b) show the 

microstructure of the samples after heat treatment at 1423K (1150°C) and 1493K (1220°C), 

respectively. As shown in Figure 5.5 (a), the microstructure mainly consisted of primary and 

small volume fraction, 0.4 %, of fine spheroidal secondary γ′ particles which remained 

undissolved during heat treatment at 1423K (1150°C), and dispersed non-uniformly in the 

matrix. Therefore, the solvus temperature of secondary γ′ precipitates is considered to be 

1423K (1150°C).  Primary γ′ particles were 1.2 µm in size and 7 % in volume fraction which 

is comparable to the values of average size and volume fraction of these particles in the as-

received material. Therefore, no indication of primary γ′ dissolution was observed while 99% 

of secondary γ′ have been dissolved after heat treatment at 1423K (1150°C). Figure 5.5 (b) 

shows primary γ′ particles have somewhat reduced in size, from 1.4 µm to 800 nm, due to 

solid-state diffusion, during heat treatment at 1493K (1220°C) but not totally dissolved. There 

are still 0.4 % undissolved primary γ′ particles after this heat treatment probably due to the 

short time for diffusion of Al and Ti. As a result, the solvus temperature of primary γ′ 

precipitates is considered to be 1493K (1220°C). In the case of AD730TM alloy, under 

equilibrium conditions, γ′ solvus is around 1073K (800°C) for secondary γ′ precipitates and 

1383K (1110°C) for the primary γ′ particles (Masoumi et al., 2016a). In contrast, at a heating 

rate of 400K/s, this temperature is around 1423K (1150°C) for secondary and 1493K 
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(1220°C) for primary γ′ particles (Figure 5.5). Thus, there is clearly a large departure from 

thermodynamic equilibrium for the dissolution of the γ′ particles during rapid heating.  

 

 

Figure 5.5 SEM micrographs of Gleeble-simulated materials under rapid thermal cycle 
(heating rate of 400K/s) and 3 s holing time at peak temperatures of : (a) 1423K (1150°C) 
and (b) 1493K (1220°C) showing the presence of some undissolved secondary γ′ particles  

at 1423K (1150°C) (see zoom area in (a)) and primary γ′ particles at 1493K (1220°C)  
(with only 0.4 % remained undissolved). 

 

Dissolution kinetics of γ′ particles depends strongly on the time experienced at high 

temperature, accumulated plastic strain and the initial γ′ characteristics (size, morphology 

and chemical composition) (Cormier, Milhet et Mendez, 2007a; Giraud et al., 2013; 

Masoumi et al., 2016a; Soucail et Bienvenu, 1996). Under equilibrium conditions, both 

coarse and fine γ′ precipitates dissolve by diffusional transfer of γ′ forming elements toward 

the γ matrix. The dissolution rate is much faster for secondary γ′ precipitates than for primary 

γ′ particles due to their smaller sizes and the lower amounts of γ′ forming atoms. Therefore, 

their solvus temperature is lower than that of primary γ′ particles (Masoumi et al., 2016a; 

Masoumi et al., 2016c; Milhet et al., 2013; Wang et al., 2009).  

In comparison to the deformation cycle, the thermal cycle (heating rate, temperature, and 

holding time) plays the most important role in the occurrence of liquation during LFW. High 

heating rates, such as those applied during LFW, can induce non-equilibrium liquation of 

second phase particles (Ojo, Richards et Chaturvedi, 2004a). Therefore, it is important to 
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quantify the impact of the LFW thermal cycle on liquation and separate it from the 

deformation cycle. 

On the other hand, the application of deformation has two separate effects: 1) it will increase 

the temperature by internal heating, and 2) enhances the atomic diffusion which at the end 

could impact the extent of liquation as will be discussed in the section 3.4.  

Temperature increase due to deformation, including the effect of strain rate, was calculated 

according to the equation proposed by Altan et al. (2005). This value was estimated to be 

about 25.5K (25.5°C) at 1473K (1200°C). Details regarding the influence of deformation on 

internal heating and estimation of the strain rate value during LFW are provided in Appendix 

I. Also, diffusion enhancement due to the application of compressive strain has been reported 

in different alloy systems (Lesuer et al., 2001; Samantaray et al., 2011; Xu, 2003). For 

example, a three orders of magnitude increase in the diffusion coefficient of impurity-

vacancy complex of low carbon steels has been reported by Xu (2003). Such acceleration of 

the atomic diffusion would contribute to the reduction of the liquation ‘footprint’ in the 

microstructure and hinder its detection. Therefore, in order to accurately determine the 

liquation temperature, it is better not to apply pressure during the heating cycle.  

Based on the applied thermal cycles in the present investigation, no liquation was observed at 

1423K (1150°C) while rosette shaped phases, which is commonly called as γ-γ′ eutectics start 

to form at γ/γ′ interface at 1473K (1200°C), as shown in Figure 5.6.  
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Figure 5.6 SEM micrographs showing the formation of  
γ-γ′ eutectic at γ/γ′ interface after constitutional  
liquation of primary γ′ particle. Heating rate of  
400K/s + 3 s holing time at 1473K (1200°C)  

followed by compressed air cooling. 
 

Therefore, if the weld zone reaches this temperature, liquation should occur. γ-γ′ eutectics 

can be morphologically characterized by coarse γ′ particles embedded in a narrow γ channel. 

Large areas of fine γ′ particles are formed around the incipient melted zone. On the basis of 

the above analysis, the constitutional liquation temperature of this alloy can be considered to 

be around 1473K (1200°C) during fast heating (e.g. the thermal cycle of LFW). This result 

confirms Thermo-calc® simulation results (Masoumi et al., 2016a) which predict a solidus 

temperature of 1493K (1220°C) for AD730TM alloy. The necessary conditions for 

constitutional liquation are: slow phase dissolution, rapid heating and microscopic 

equilibrium at the particle/matrix interface (Ojo, Richards et Chaturvedi, 2004a). Primary γ′ 

particles “survive” until 1493K (1220°C), as shown in Figure 5.5 (b). Since there is not 

enough time for the accommodation of the solute into the matrix and homogenization by 

diffusion during rapid heating, the solid in contact with the γ′ particles would become solute 

rich with a diffusion gradient compared to the matrix. At the eutectic temperature, the 

particles would be smaller yet, but now a eutectic reaction between the solid at the interface 

and the particles would form liquid phase around the particles. Again, a diffusion gradient 

would be present in the solid. When temperature is increased, the particles will be in contact 
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with the solute rich liquid phase. Upon solidification, this will lead to an excess of solute in 

the solid. 

SEM micrograph and EDS mapping results presented in Figure 5.7 show eutectic products 

formed close to Nb-Ti carboborides and Cr-Mo-W-Nb rich borides during cooling from 

1493K (1220°C). γ-γ′ eutectics, as shown by arrows in Figure 5.7 (a), take the form of 

lamellar rosettes in which γ′ particles are separated by γ ribbons in fan like shapes. As shown 

in Figure 5.7 (b), EDS spectrum of samples heat treated at 1493K (1220°C) indicated that the 

platelet shape phase is rich in Ni, Ti and Nb. It has also been reported that the eutectic 

temperature of the Nb-Ni-Ti ternary system varies between 1336K (1063°C) and 1553K 

(1280°C) depending on the mole fraction of each element suggesting the formation of Ni-Ti-

Nb compound/γ eutectic in the liquated areas during heat treatment at 1493K (1220°C) 

(Matsumoto et al., 2005). 

Moreover, Thermo-calc® simulation shows MC carbide particles start dissolving at 1118K 

(845°C), and are totally dissolved at 1553K (1280°C) while M3B2 particles dissolve much 

earlier at around 1493K (1220°C) (Masoumi et al., 2016a). The dissolution of Nb-Ti-rich 

carboborides provides a source of Nb and Ti elements.  

High amounts of Ti make γ′ unstable and platelet shape Ni-Ti-Nb intermetallic (η) phase is 

formed during degeneration of Nb-Ti carbides or carboborides instead of γ′. These findings 

are in agreements with those obtained by Choi et al. (2004) who found that Ni-Ti 

intermetallic formation was mostly accompanied by MC decomposition and the release of Ti. 

In addition, it is well known that Ni and Al promote the formation of Ni3Al γ′ phase in which 

Al may also be replaced by Ti, Nb and Ta. However, once the sum of Ti+ Nb+Ta exceeds 

Al, Ni3(Ti, Nb),  η phase would form preferentially (Bouse, 1996). As indicated in Figure 5.7 

(b), chemical composition of Ni-Ti-Nb phase shows this situation is susceptible to occur in 

AD730TM as the (Ti+Nb)/Al ratio is more than 8. Therefore, this phase may have transformed 

from the γ′ eutectic pools, and is confirmed that this resolidified phase can be η which has 

been formed in the incipient melted region. 
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The constituent phase of the eutectic-like products formed during cooling from 1523K 

(1250°C) are shown in Figure 5.8, and the chemical composition of the three main phases, as 

determined by EDS, are given in Table 5-2. Significant carbon concentration was detected in 

Nb-Ti rich particles, phase 1, indicating that they are carbides. 

 
Figure 5.7 a) SE/EDS X-ray maps of simulated material showing the formation of γ-γ′  

eutectic and Ni-Ti-Nb intermetallics close to  Nb-Ti carboboride and Cr-Mo-W-Nb  
rich boride particles. b) EDX spectrum from Ni-Nb-Ti intermetallic contain  

32 % Ni, 20 % Ti, 14 % Nb, 4 % Al, 17% Cr, 7 % Zr, 3 % Mo, 1.8 % W. samples  
heated at a rate of 400K/s, 3 s holing time at peak temperature of  1493K (1220°C). 
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Figure 5.8 a, b) SEM micrographs showing formation of γ-γ′ eutectic and Ni-Ti-Nb 
intermetallic close to Nb-Ti carbide and Cr-Mo-W-Nb rich boride particles . 

Samples heated at a rate of 400K/s + 3 s holding time at 1523K (1250°C),  
followed by air quench. 

 
Table 5-2 Chemical composition of intermetallic constituents (wt%) in the incipient melting 
zone at samples heated at a rate of 400K/s, held 3 s at peak temperature of 1523K (1250°C) 

Elements Ni-Nb-Ti intermetallic Nb-Ti carbide Cr-Mo-W-Nb boride 

Al 4.14 0.42 0.24 

Ti 21.46 30.81 4.25 

Cr 19.46 2.72 38.8 

Ni 33.53 1.12 1.98 

Zr 4.1 4.73 0.88 

Nb 11.18 46 13.09 

Mo 3.92 7.48 31.21 

W 2.21 6.72 9.53 

 

A significant concentration of boron was detected by EDS in particles of phase 2, which also 

had a high concentration of Cr and Mo (Table 5-2). High Cr and Mo concentration observed 

in the EDS chemical analysis in this work is the characteristic feature of the boride phase 

observed in many Ni-based superalloys (Masoumi et al., 2014; Masoumi et al., 2016a; Reed, 

2006a; Shahriari, Sadeghi et Akbarzadeh, 2009). Presence of boride and carbide particles in 

AD730TM has also been reported in our previous work (Masoumi et al., 2014; Masoumi et 

al., 2016a). Close to Nb-Ti carbides and Cr-Mo-W-Nb rich boride particles and at grain 



167 

boundaries, γ-γ′ eutectics as well as some binary eutectics containing γ phase and Ni-Ti-Nb 

intermetallics, phase 3, can be seen. The presence of these eutectic products contributes to 

the formation of liquid “pockets” in these zones via eutectic-type reaction between second 

phase particles and the surrounding matrix. The width of incipient melted region is around 

1.2 µm. As given in Table II, the ratio of (Ti+Nb) /Al is around 8 for Ni-Ti-Nb phase. 

Therefore, the chemical composition of phase 1, given in Table II, and the platelet like 

morphology of the phase suggest that this phase is based on intermetallic Ni3(Ti, Nb), η. 

Figure 5.7, Figure 5.8 and Table 5-2 show that some degrees of grain boundary liquation can 

be also attributed to the constitutional liquation of borides during heat treatment  

between 1473K (1200°C) and 1523K (1250°C). 

As Figure 5.9 shows although all the primary γ′ precipitates have been dissolved at 1573K 

(1300°C), sub-solidus incipient melting of boride and carbide particles is still present. Figure 

5.9 (b) shows another type of partially melted, intergranular liquation, observed at this 

temperature. Alloying elements such as B, C, Zr, Nb, Ti, Mo and Nb have the tendency to 

segregate at the grain boundaries and form compounds with lower melting temperatures. It is 

then reasonable to assume that melting takes place for some critical combinations of 

concentrations and temperature (Ojo, Richards et Chaturvedi, 2004a). 

 

 
Figure 5.9 SEM micrographs showing: (a) formation of Ni-Nb-Ti intermetallic after  
sub-solidus incipient melting of boride and carbide particles, and (b) liquated grain  

boundary. Samples heated at a rate of 400K/s, held 3 s at 1573K (1300°C),  
followed by compressed air cooling. 
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The above findings indicate that liquation may take place at temperatures in the vicinity of 

1473K (1200°C). During LFW, in addition to rapid heating, high strain and strain rate will be 

applied which would increase the tendency of the material to have liquation at different 

locations. In the following, an analytical model is developed for predicting the temperature of 

the weld region, and hence to find out whether or not the weld zone experiences temperatures 

higher than the liquation temperature of this alloy. 

5.4.3 Prediction of Temperature in Different Zones of LFWed Sample 

The highly dynamic nature of the LFW process characterized by high frequency reciprocal 

movement of the parts accompanied by sever plastic deformation at the weld interface 

renders challenging the accurate measurement of the temperature at the interface during 

LFW. Attempts have been made by several authors to place thermocouples near the joint area 

(Chamanfar et al., 2011a; Mary et Jahazi, 2007a). However, plasticized material pushed 

down into thermocouple hole by the applied pressure during LFW, displaces the 

thermocouple from the desired location. Therefore, thermocouples should be placed far from 

the weld interface, and the measurement of temperature at the interface or any locations very 

close to the interface is not possible due to the complexity of the LFW process. 

In order to overcome the limitations of experimental methods in temperature measurements 

at the interface, an analytical method calibrated by experiments is used to approximate the 

interface temperature and compare with the obtained liquation temperature of the alloy. 

Assuming that the plastic flow has a uniform thickness, and the stress, strain rate as well as 

the temperature of the weld interface are uniform and symmetric, friction welding can be 

modeled as a one-dimensional problem in which the effects of the flash are considered 

(Xiong et al., 2013). Using the one-dimensional thermal energy conservation analysis 

(Bateman, 1932; Bergman et al., 2011; Xiong et al., 2013; Yilbas et Sahin, 2014), 

temperatures at the weld interface and at different distances (L) from the weld line are: 

௜(ܫܹ)ܶ  = 	 ଵܶ + 	 ଵܶ − ଶܶ݁ି	 ௨௞ഀ	௅భ −	݁ି	 ௨௞ഀ	௅మ 	− 		 ଵܶ − ଶܶ1 −	݁ି	 ௨௞ഀ	(௅భ	ି௅మ) (5.1) 
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(ܮ)ܶ = ଵܶ + ଵܶ − ଶܶ݁ି	 ௨௞ഀ	௅భ −	݁ି	 ௨௞ഀ	௅మ 	݁ି	 ௨௞ഀ	௅ 	−		 ଵܶ − ଶܶ1 −	݁ି	 ௨௞ഀ	(௅భ	ି௅మ) (5.2) 

 

where Tଵ and Tଶ are temperatures at ܮଵ and ܮଶ, ݇ఈ is the thermal diffusivity and ݑ the axial 

shortening rate. Non-equilibrium primary and secondary γ′ dissolution temperatures, 

determined from section 3.2, are used as boundary conditions to predict temperatures 

experienced by different weld zones during LFW. As shown in Figure 5.5, primary γ′ and 

secondary γ′ precipitates are practically totally dissolved at 1493K (1220°C) and 1423K 

(1150°C), respectively. Microstructure evaluation of LFWed samples showed that such 

volume fraction for primary and secondary γ′ particles is obtained at 0.4 mm and 1.5 mm 

from the weld interface, respectively. Therefore, considering the axial shortening of 0.21 mm 

during the forge stage, the temperatures at 0.505 mm and 1.605 mm from the weld line 

should be respectively 1493K (1220°C) and 1423K (1150°C) (according to boundary 

conditions obtained from the experiments). Based on the experimental data, the rate of axial 

shortening, ݑ, is around 0.1 mm/s for the LFWed sample. Thermal diffusivity is normally 

expressed as ݇ఈ = ఒఘ஼೛ where ߣ is the thermal conductivity,	ߩ is the density and ܥ௣ the heat 

capacity. The values for ܥ ,ߩ ,ߣ௣ and therefore, ݇ఈ are 35 W/(m.K), 8353 Kg/m3,  

828 J/(Kg.K) and 5.06×10-6 m2/s , respectively for Ni-based superalloys (Donachie Matthew 

et Donachie Stephen, 2002). Using the above data, temperature distribution along the moving 

interface was calculated based on the formulation presented in Eqs. (5.1) and (5.2), and is 

shown in Figure 5.10, with the interface being the ݔ axis origin. The obtained results indicate 

that the temperature of the weld zone decreases from 1523K (1250°C) at the weld line to 

1473K (1200°C) at L= 0.7 mm. 
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Figure 5.10 Comparison between predicted values using 1D  
analytical model and measured (thermocouple or infrared  
camera) temperature distributions in locations near to the 

 LFW line and for two different superalloys, Waspaloy and  
GH4169. Predicted temperature at one location is  

also compared with predicted temperature by  
microstructure observation. 

 

The evolution of the γ′ area fraction (ܨ௦ఊᇱ) as a function of the processing time (ݐ) for 

dissolution heat treatment at 1373K (1100°C) for AD730TM superalloy was determined in a 

previous study and is equal to (Masoumi et al., 2016a): 

௦ఊᇱܨ  = 2.47 +  (5.3) (௘0.57ݐ−)	݌ݔ݁	34.53

 

where ݐ௘ is the equivalent holding time at 1373K (1100°C) which considers the effects of 

heating and cooling rates on γ′ evolution in superalloys. ݐ௘ was calculated based on the 

following equation proposed by Soucail and Bienvenu (1996): 
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௘ݐ = ܴ ௠ܶଶܳ ൬ 1ܸ௛ + 1ܸ௖൰ +  ௠ (5.4)ݐ

 

where ܴ is the gas constant, ௠ܶ the holding temperature, ܳ the activation energy for the 

dissolution of the γ′ phase, ௛ܸ and ௖ܸ respectively the heating and cooling rates, and ݐ௠ the 

holding time. Using Eq. (5.4), ݐ௘ was calculated to be about 8 sec at 1373K (1100°C) for 

 ܳ =270 KJ/mol, ௛ܸ= 400K/s, ௖ܸ= 50K/s, and ݐ௠= 6.5 sec (Chamanfar et al., 2011a; Mary et 

Jahazi, 2007a; Masoumi et al., 2016a).  

By substituting the obtained value of ݐ௘ into Eq. (3), the γ′ surface fraction, ܨ௦ఊᇱ, was 

calculated to be about 29 %. Based on microstructure examination, the total area fraction of 

primary and secondary γ′ precipitates is 25.9 % at 2.5 mm from the weld interface (see 

Figure 5.3 and Figure 5.11). Therefore, this location which is in the TMAZ should have 

experienced a temperature around 1373K (1100°C). On the other hand, using Eq. (5.2), 

temperature at L= 2.5 mm is calculated to be 1360K (1087°C). The above analysis confirms 

that the thermal energy conservation equation can reliably predict the temperature at the weld 

interface during LFW of AD730TM. 

 

 

Figure 5.11 SEM micrographs of (a) primary γ′ (b) secondary γ′ precipitates  
at 2.5 mm from the weld interface. 
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Figure 5.10 shows a comparison between measured (thermocouple or infrared camera) 

temperature distributions in locations near to the LFW line and predicted values using the 

proposed 1D thermal analysis for two different superalloys, Waspaloy and GH4169 

(Chamanfar et al., 2011a; Yang et al., 2015). It can be seen that in both cases a reasonable 

agreement exist between the predicted values and the measured ones (an error of about 3%) 

thereby confirming the good predictability of the 1D thermal model in the present 

investigation. For example, in the case of LFWed Waspaloy (Chamanfar et al., 2011a) at 

1.5mm far from weld line, the measured temperature was around 1408K (1135°C) and the 

predicted one, 1423K (1150°C). A similar difference between the measured and predicted 

values was found for the GH4169 superalloy at 1.1 mm location from the weld line. 

Moreover, in the case of the GH4169 alloy, the authors (Yang et al., 2015) used 2D FEM 

simulation for predicting the temperature fields at and near the weld line. Their simulation 

results, confirmed by infrared camera measurement, indicated that temperature maps in the 

liquation sensitive zone, as shown in Figure 5.10, are approximately equal and their 

distribution is uniform in both directions (±5K (5°C) from one end to another of the sample in 

both directions) which are in agreement with the rational used in the present investigation in 

considering a uniform temperature distribution.  

The above analyses confirm that the proposed 1D analytical thermal conservation equation 

can be used to predict reasonably well temperature distribution in the liquation sensitive zone 

(Figure 5.10) during LFW of the AD730 alloy used in this investigation. Finally, it must be 

noted that for the calculations the same thermal expansion coefficients was used for the three 

alloys, as no specific data is available for each alloy and very similar heat input values 

(3000kW/m2) was used for the three cases. 

According to Eqs. (5.1), (5.2) and Figure 5.10, weld zone should experience temperatures 

higher than 1473K (1200°C) until L= 0.7 mm. On this basis, the highest temperature reached 

at the interface is about 1523K (1250°C), and at L=0.5 mm, it is about 1486K (1213°C). As 

shown in Figure 5.6 to Figure 5.9, during the rapid heating process, constitutional liquation 

of both grain boundaries and second phase particles such as γ′ particles, carbides and borides 

were observed between 1473K (1200°C) and 1573K (1300°C). Since weld line and TMAZ 
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(i.e. very close to the weld interface) experience temperatures higher than 1473K (1200°C), 

indications of liquation are expected to be evident in these areas. However, as illustrated in 

Figure 5.4, no such indications were observed in the microstructure. Therefore, the 

contribution of other process parameters such as the applied compressive stress, frictional 

and forge deformation, as well as strain rate needs to be considered. No quantitative data is 

available on the possible influence of applied frictional and forge pressures on atomic 

diffusion of precipitates during LFW. However, simulation results showed that atomic 

diffusion can be enhanced by compressive stress and reduced by tensile stress (Xu, 2003) 

during hot compression or hot tensile tests in complex alloys. Thus, it is possible that 

liquation may be produced but disappears due to diffusion assisted pressure during LFW. In 

order to confirm this possibility, the governing mechanisms need to be determined before 

their impact could be quantified. 

5.4.4 Possible Micromechanisms Controlling Diffusivity during LFW 

Considering that AD730TM would be fully austenitic at 1523K (1250°C), the effect of stress 

will therefore be evaluated on the diffusion of Ni atoms. It is well known that lattice and pipe 

diffusion are the two most important mechanisms describing the diffusion of solutes to or 

away from stacking faults (Viswanathan et al., 2015). Transport of matter via dislocation 

pipe diffusion contributes significantly to the overall diffusive transport of matter, and under 

certain circumstances becomes the dominant transport mechanism (Robinson et Sherby, 

1969). This contribution is included by defining the effective diffusion coefficient:  

௘௙௙ܦ  = ௅ܦ ௅݂ + ௣ܦ ௣݂ =   (5.5)		೐೑೑	௣ܦ+	೐೑೑	௅ܦ	

 

where ܦ௅ and ܦ௉ are, respectively, the lattice and dislocation pipe diffusion coefficients, 

while ௅݂, essentially is equal to unity, and ௣݂ = ܽ௣ߩ are, respectively, the fraction of atoms 

participating in lattice and pipe diffusion processes (Robinson et Sherby, 1969). ܽ௣ is the 

cross-sectional area of the dislocation pipe in which fast diffusion is taking place, and ߩ is the 

dislocation density. 
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Argon and Frost et al. (Ashby et Verrall, 1977; Frost et Ashby, 1982) reported that under an 

applied stress of ߪௌ, the dislocation density is given by ߩ = ଵ଴௕మ ቀఙೞఓ ቁଶ with ܾ the Burgerʼs 

vector, and ߤ the shear modulus of the material. In the present investigation, the values of 

applied frictional and forge pressures (i.e. ߪௌ) during linear friction welding were 187.5 and 

265 MPa, respectively. 

Ashby and Frost (1977; 1982) have proposed relations for obtaining the values of ܾ and ߤ 

under applied stress. These equations are identified as A3 and A5 in Appendix II. Also, the 

general expressions for calculating ܦ௅ and ܦ௣ according to Eqs. (A7) and (A8) are reported 

in this Appendix. Finally, all the variables that are needed for the calculation of ܦ௅ and ܦ௣ in 

Ni alloys are listed in Table 5-3. The reported data were obtained from the literature 

(Donachie Matthew et Donachie Stephen, 2002; Frost et Ashby, 1982; Masoumi et al., 

2016a; Reed, 2006a). 

Temperature measurements at different distances from the interface for Waspaloy 

(Chamanfar et al., 2011a) and IN 718 superalloys (Mary et Jahazi, 2007a) have shown that 

holding time at the highest temperature for each location close to the weld line is around 3 

seconds. Combination of load and temperature measurements during the process (Chamanfar 

et al., 2011a; Mary et Jahazi, 2007a) showed that frictional pressure takes about 65 % of this 

time, and forge pressure the remaining, 35%. Therefore, since the applied pressures are 

different in each phase during LFW, the corresponding diffusion coefficient should be 

obtained separately. 
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Table 5-3 Temperature, pressure coefficients and material data for Ni alloys  
(Lesuer et al., 2001; Li et al., 2016; Milhet et al., 2013; Wang et al., 2009) 

Bulk modulus, ܭ଴, MPa 1.27×105 

Shear modulus, , μ଴, MPa 5.3×104 

Pressure dependence, 
ௗஜௗఙೞ  1.8 

Pressure dependence, 
ௗ௄ௗఙೞ 5.1 

Temperature dependence, 
்ಾௗ௄௄బௗ்  0.26 

Temperature dependence, 
்ಾௗஜஜబௗ்  -0.64 

Activation Volume ௣ܸ∗, (m3/mole)  6.9×10-6 

Burgerʼs vector, ܾ଴, m 2.5×10-10 

Pre exponential of pipe diffusion, ܽ௣ܦ଴௣ (m4/s)  3.1×10-23 

Activation energy of pipe diffusion, ܳ௣ (kJ/mole) 170 

Pre exponential of lattice diffusion for nickel, ܦ଴௅ (m2/s)  1.9×10-4 

Activation energy of lattice diffusion for nickel, ܳ଴௅ (kJ/mole) 284 

Melting point of AD730TM, ெܶ, K (°C) 1623 (1350) 

 

Based on Eq. (A8), there is no pipe diffusion when there is no applied stress, and only lattice 

diffusion is taking place. On this basis, using Eqs. (A3) to (A9) and the data provided in 

Table 5-3, the value of ܦ௅	೐೑೑ is determined to be 3.45×10-14 m2/s under no stress, and the 

values of ܦ௣	೐೑೑ were determined to be respectively 3.9×10-13 and 8.2×10-13 m2/s under 

frictional and forge pressures at 1523K (1250°C). Therefore, the application of compressive 

stress during LFW results in 25 times increase in the value of ܦ௘௙௙. The findings indicate that 

the applied stress during LFW results in a minor increase (about 16 %) of the lattice diffusion 

while pipe diffusion (ܦ௣	೐೑೑) is about 23 times faster than lattice diffusion, ܦ௅	೐೑೑. The results 

are in agreement with the simulation results reported by Xu (2003) who showed that for low 

carbon steels, under applied stress, the diffusion coefficient of impurity-vacancy complex is 

three orders of magnitude larger than that of under no applied stress conditions. 
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In order to estimate the length scales over which diffusion of Ni element may realistically 

take place in the core of the liquated phase during LFW at the weld interface, a plot of 

diffusion length, ݔ, vs. ݐ is shown in Figure 5.12 for lattice and pipe diffusion coefficients 

following ݔ =   .ݐܦ√
 

 

Figure 5.12 Diffusion distance, ݔ =   vs. time for ,ݐܦ√
lattice, pipe and total diffusion coefficients at 1523K (1250°C)  

for LFWed AD730TM superalloy. 
 

The calculated pipe diffusion coefficient would correspond to a diffusion distance of about 

1.8 µm over the course of the 3 sec friction and forge pressures period at 1523K (1250°C). In 

contrast, if only lattice diffusion had been considered, the distance Ni atoms have diffused 

would have been only 0.5 microns (i.e. 3.6 times shorter). These findings indicate that the 

governing mechanism controlling the diffusion of elements from the liquated zone at the 

weld interface is dislocation pipe diffusion. Similar behavior has been observed on the 

diffusion mechanisms during hot deformation of steels (Lesuer et al., 2001; Samantaray et 

al., 2011). 



177 

As shown in Figure 5.12, the total diffusion length of Ni atom (due to lattice and pipe 

diffusion) under compression is around 2.3 µm at 1523K (1250°C). Therefore, the maximum 

diameter of the liquated phase that can disappear by the applied stress is 4.6 µm. Otherwise, 

some traces of the liquidated zone will remain after the end of the welding. SEM results 

(Figure 5.8) show that the maximum length (or diameter) of the liquated phase is around 1.2 

µm at 1523K (1250°C). Thus, it is reasonable to consider that the liquated phase at the 

interface can be eliminated by the imposed pressure and that is probably the reason why no 

trace of liquated phase was observed at the weld interface in our experiments. 

Ola et al. (2011c) reported intergranular and intragranular liquation in the TMAZ 

experiencing 1503K (1230°C) during linear friction welding of IN 738.The frictional and 

forge pressures reported by the authors were identical and equal to 90 MPa (Ola et al., 

2011c). To analyze this apparent discrepancy with the results obtained in the present work, 

lattice and pipe diffusion coefficients of Ni atoms were calculated using the process data 

provided by the authors. These values were determined to be 2.7×10-14 (lattice diffusion) and 

3.3×10-14 m2/s (pipe diffusion), and the results are presented in Figure 5.13. It can be seen 

that a diffusion length of 0.4 µm for lattice and pipe diffusion coefficient under the above 

mentioned conditions is obtained. A comparison between Figure 5.12 and Figure 5.13 show 

that although lattice diffusion lengths are almost the same for IN 738 and AD730TM, the pipe 

diffusion length for IN 738 is 4.5 times shorter than the one for AD730TM. This result is in 

agreement with those of Leuser (2001) and Samantaray (2011) who found that pipe diffusion 

is much faster at higher temperatures and higher applied stresses. 
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Figure 5.13 Diffusion distance, ݔ =   vs. time for ,ݐܦ√
lattice and pipe diffusion coefficients at 1503K (1230°C)  

for LFWed IN738 superalloy. 
 

Also, the total diffusion lengths over the course of the 3 seconds peak temperature of 1503K 

(1230°C) are compared for different pressures of 90 and 187.5 and 265 MPa in Figure 5.14 

for AD730TM and IN 738.  
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Figure 5.14 Comparison of diffusion distance, ݔ =   .vs ,ݐܦ√
time for total diffusion coefficients at 1503K (1230°C)  

for LFWed AD730TM and IN738 superalloys. 
 

It can be seen that the higher is the applied pressure, the faster would be the diffusion of 

atoms during LFW. Specifically, the total diffusion length is around 2 µm for the frictional 

pressure of 187.5 MPa and forge pressure of 265 MPa while this value is only 0.8 µm under 

constant friction and forge pressures of 90 MPa. Therefore, only a liquated zone with a 

maximum diameter of 1.6 µm can be eliminated by the applied pressure of 90 MPa. 

However, the size of the observed liquated phase is around 3 µm for IN 738 (Ola et al., 

2011c). Therefore, the liquated phase cannot be eliminated during the LFW process and will 

be detectable upon post weld microscopic examination as reported by the authors. In order to 

eliminate this liquation, pressures higher than 90 MPa should have to be applied during linear 

friction welding.  

The above proposed methodology can be used for the design of optimum LFW processes and 

accurate determination of the applied frictional and forge pressures in order to obtain sound 

and crack free LFW joints of Ni based superalloys. 
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5.5 Summary and Conclusions 

In the present study, the influence of high temperature and pressure on liquation occurrence 

during LFW of wrought Ni-based superalloy was investigated. The effect of each parameter 

was studied and quantified separately. A combination of LFW welding, Gleeble 

thermomechanical testing and analytical modeling allowed us to determine the liquation 

temperature of the investigated alloy and to propose a methodology for optimum design of 

LFW of Ni-based superaloys. By considering the influence of kinetic parameters, the 

governing mechanisms responsible for the possible observation or not observation of 

resolidified phases were identified and discussed. 

The main conclusions of the present investigation are as follows: 

1- Noticeable changes occur in the microstructure of the LFWed AD730TM from parent 

material within 4-4.5 mm thick layer on both sides from the weld interface. The volume 

fraction of primary and secondary γ′ particles decrease with a decrease in the distance from 

the weld interface, and they are totally dissolved until respectively 0.4 mm and 1.5 mm from 

the weld interface. 

2- Constitutional liquation of primary γ′, Cr-Mo-W-Nb borides, and Nb-Ti carbides were the 

predominant liquation mechanisms in AD730TM between 1473-1573K (1200-1300°C). 

3- Analytical modeling results indicated that the peak temperature in the weld interface 

reached 1250°C. However, no liquation was observed in the weld zone or flash. 

4- The compressive stress increases the diffusion coefficient of the Ni atoms by about 25 

times.  

5- The combination of high temperature, frictional and forge pressures during LFW can 

result in liquation and crack resistant microstructure in LFWed superalloy. 
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Appendix I 

Strain rate in LFW 

There is still debate on the actual strain rate value during the LFW process. Due to the very 

dynamic nature of the process, most of the estimations are done indirectly or using 

simulation. Grant et al. [55] using 2D FEM simulation reported that the maximum strain rate 

during inertia friction welding process of Ni-based superalloy RR1000, which could be 

considered similar to LFW is about 4.5 s-1. Wang et al. (2017) and Vairis et al. (1999a) 

estimated a strain rate of 4.3 s-1 for linear friction welding of titanium alloys. Vairis and Frost 

proposed the following equation for estimating the strain rate in the LFW process (Vairis et 

Frost, 1998): 

ሶߝ = ݂݈ܽ
 (A1) 

 

where ܽ is the amplitude of the oscillation, ݂ is the frequency and ݈ is the length of specimen 

in the direction of oscillation. Since then, changes to this equation have been proposed by 

other authors but essentially the equation remained the same. Using the above equation, the 

strain rate during LFW of superalloys (considering the process parameters used for these 

alloys) is in the range 3-18 s-1. Turner et al. (2011a) carried out by a 2D numerical simulation 

of LFW for Ti-6Al-4V alloy. The authors predicted a peak strain rate of 2500 s-1 in some 

region along the weld line. However, the stress-strain curves used in the simulation were 

obtained using the JMatPro software till strain rate values of 1000 s-1. Considering the 
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microstructural evolution and the greater deformation in LFW joint, the strain rate has been 

estimated to be around 70 s-1 (Jing et al., 2015).  

Based on Eq. (A1), and the LFW parameters used in the present investigation, the strain rate 

during LFW of AD730TM was determined to be 3.85 s-1. This value was then used for 

calculating the adiabatic effect during LFW. In order to cover a wider range of strain rate 

values, the temperature rise due to internal heating during deformation was estimated for 

strain rates of 1s-1 and 20 s-1 at 1473K (1200°C) providing a lower and upper limit for 

temperature variations. 

Temperature increase during LFW 

The following equation was used for calculating the extra increase in temperature (∆T) due to 

deformation (Altan, Ngaile et Shen, 2005): 

 ∆ܶ = ௣ܥߩߟ0.95 න ఌߝ݀ߪ
଴  (A2) 

 

where ρ is the density of the alloy (8353.86 Kg/m3 at 1473K(1200°C)), ܥ௣ the specific heat 

(828 J/(Kg.K) at 1473K(1200°C)), σ the flow stress, ε the true strain, and η the thermal 

efficiency which is function of strain rate, and can be expressed as η= 0.95 for ߝሶ ≥ 1 s-1. σ 

and ε values were obtained for similar Ni-based superalloys from literature (Guo et al., 2012; 

Jiang et al., 2016; Liu et al., 2008).  

The temperature increases at strain rates 1 s-1 and 20 s-1 are about 13.5K (13.5°C) and 25.5K 

(25.5°C) at 1473K (1200°C), respectively. This indicates that a 20 times increase in strain rate 

results in a temperature increment of about 12K (12°C) showing a relatively slow increase in 

temperature with the strain rate. Little experimental data is available on the impact of high 

strain rate (100 s-1 and more) on temperature increase; however, it is generally accepted that 

as the strain rate increases the temperature increase reaches almost the steady state  

value (Guo et al., 2012; Oluwasegun et al., 2014; Zhao, 1993). 
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Appendix II 

(௦ߪ)ܾ  = ܾ଴݁݌ݔ	(−  (A3) (ܭ௦3ߪ

,ܶ)ܭ  (௦ߪ = ଴[1ܭ + ெܶ݀ܭܭ଴݀ܶ ൬ܶ − 300ெܶ ൰ + ଴ܭ௦ߪ  ௦ (A4)ߪ݀ܭ݀

 μ(ܶ, (௦ߪ = μ଴[1 + ெܶ݀μμ଴݀ܶ ൬ܶ − 300ெܶ ൰ + ௦μ଴ߪ ݀μ݀ߪ௦ (A5) 

 ܳ௣ = ܳ௣଴ + ௦ߪ ௣ܸ∗ (A6) 

௅ܦ  = ଴ܦ ݌ݔ݁ ൬− ܳ௅ܴܶ൰ (A7) 

௣೐೑೑ܦ  = 10ܾଶ ߤ௦ߪ)	 )ଶܽ௣ܦ௣ (A8) 

 ܽ௣ܦ௣ = ܽ௣ܦ଴௣ ݌ݔ݁ ൬− ܳ௣ܴܶ൰ (A9) 
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6.1 Abstract 

AD730TM Ni-based superalloy specimens in solution-treated conditions were linear friction 

welded. Then, post-weld heat treatment (PWHT), consisting of γ´ sub-solvus solution 

treatments followed by aging, was conducted on the linear friction welded samples. High 

temperature creep tests were performed on the as-welded and PWHTed joints at two different 

temperatures: 700°C under 600 and 750 MPa stress levels, and 850°C under 100 and 200 

MPa stresses. The creep resistance of the PWHTed joints was higher than that of the as-

welded samples. The PWHTed joints exhibited better ductility than that of the base material 

at 850°C, while they showed slightly lower creep life at 700°C in comparison to the base 

metal. Microstructure examination showed that cracks initiated at the interface of oxidized 

particles at 700°C. The decrease in creep resistance of the AD730TM Ni-based superalloy at 

850°C was related to a combination of the formation of precipitate-free zones (PFZ) in the 

vicinity of the grain boundaries (GBs) and microcracking assisted by oxidation. The Larson-

Miller Parameter (LMP) was used to correlate the creep strength, temperature and time to 

failure for the as-welded and PWHTed samples. LMP values varied between 21.5×103 and 

24.5×103. It was found that in the investigated temperature range, the PWHTed AD730TM has 

similar creep characteristics as UdimetTM720 Li and Inconel 738LC at low values of LMP 

and better creep properties than those of the Inconel 617 alloy at higher LMP values. 



192 

 

Key words: Linear friction welding, Ni-based superalloy, AD730TM, Mechanical properties 

at elevated temperatures, Creep mechanisms 

6.2 Introduction 

Ni-based superalloys are widely used in the hot section of gas turbines, and consequently, are 

subjected to creep and/or fatigue damage during operation (Cormier, Milhet et Mendez, 

2007b; Devaux et al., 2014; Reed, 2006a). Therefore, improving their high temperature 

performance is of paramount importance for industry. Linear Friction Welding (LFW), which 

is an emerging technology for manufacturing and repairing of rotating gas turbine 

components, has many advantages, such as improving service life and reducing weight, over 

fir tree assembly. It has been reported that slotted blade/disk assemblies are susceptible to 

fatigue damage since fretting cracks initiate from the fir tree, while LFW joints can be free 

from such problems (Chamanfar, Jahazi et Cormier, 2015a; Mary et Jahazi, 2007b; Okazaki, 

Ohtera et Harada, 2004; Preuss, Withers et Baxter, 2006b). Therefore, LFW can be used as 

an alternative manufacturing technology for fir tree replacement. LFW has already been 

applied to Ti alloys for compressor (i.e. low temperature) operation applications, but not to 

high temperature components. Thus, there is a need to understand the properties of LFWed 

joints at elevated temperatures. 

LFW is a solid state joining process free from micro-cracking or porosity defects as the 

temperature does not reach the fusion point of the alloy during this process. This process is 

divided into three stages (Chamanfar, Jahazi et Cormier, 2015a): I) the conditioning phase, 

during which samples are oscillated under a specific frequency and amplitude, and brought 

together under a small force and time; II) the frictional phase, where friction pressure 

increases and heat is generated at the interface; the material at the interface then becomes 

plastic, and is expelled out of the weld interface as a flash (this material loss from the weld 

interface causes the parts to be shortened); III) the forge phase, during which the amplitude 

decreases to zero, and the samples are brought and consolidated together.  

Thermomechanical processes such as LFW involve substantial microstructural changes in 

Ni-based superalloys. The occurrence of dissolution and subsequent re-precipitation of γ′ 
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precipitates during LFW play a key role in controlling the mechanical properties of these 

alloys (Masoumi et al., 2016a; Masoumi et al., 2016c). The dynamic and post-dynamic 

recrystallization, as well as the dissolution of creep resisting phases during welding, are 

expected to have some adverse effects on creep properties (Cormier et Cailletaud, 2010a; 

Cormier, Milhet et Mendez, 2007b; le Graverend et al., 2010a). Damodaram et al. reported 

that, a reduction in the average size and volume fraction of γ´ precipitates led to a reduction 

in the mechanical properties of as-welded specimens (Damodaram, Ganesh Sundara Raman 

et Prasad Rao, 2014b). They studied the tensile properties of as-weld and post-weld heat-

treated (PWHT) conditions on continuous drive friction-welded Inconel 718 specimens. The 

post-welded samples provided better room temperature tensile properties than those of the as-

welded samples. Chamanfar et al. (2011b) reported that the post-weld heat treatment of 

LFWed Waspaloy provides better hardness properties than what is seen in the as-weld 

condition. However, the tests in that case were performed at room temperature, and 

consequently, the results cannot be directly applied to creep properties at high temperatures. 

Therefore, in this study, post-weld heat treatment is performed on the as-welded samples, and 

their creep properties are compared to those of the as-welded specimens.  

Steuer et al. and Shi et al. (Shi et al., 2012; Steuer et al., 2011; 2014) evaluated the creep 

properties of the transient liquid phase bonding and brazed joints of two different Ni-based 

superalloys used for blade applications. They reported that an increase in the density of 

pores, brittle phases and impurities at the grain boundaries resulted in lower creep properties 

in the brazed samples. In addition, both the volume fraction and morphology of γ´ particles at 

the grain boundary have significant impacts on the creep rupture life. Thus, a homogenous 

joint after heat treatment may lead to higher yield strength for bonded samples. To the 

knowledge of the authors, no study has covered the creep properties of LFWed Ni-based 

superalloys in as-weld or post-weld heat treated conditions. 

This study thus aims to investigate the high temperature creep performance of linear friction 

welded AD730TM in as-weld and post-weld conditions, in comparison to the base material. In 

addition, the creep life of LFWed AD730TM is predicted by the Larson-Miller plot. The creep 
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properties are compared with those of several other Ni-based superalloys, and the underlying 

damage mechanisms are discussed. 

6.3 Experimental Procedures 

The material used in this study was a wrought AD730TM (Devaux et al., 2012a) produced by 

the Aubert and Duval company, Les Ancizes (France) site. Table 6-1 presents the chemical 

composition of the investigated material. The material was subjected to a post-forge heat 

treatment consisting in solutionizing at 1080°C for four hours, followed by air cooling. The 

as-received material had around 40% γ′ particles at room temperature in equilibrium 

condition (Masoumi et al., 2016a). 

 

Table 6-1 Chemical composition of AD730TM (wt%) (Devaux et al., 
2012a) 

Ni Fe Co Cr Mo W Al Ti Nb B C Zr 

Base 4 8.5 15.7 3.1 2.7 2.25 3.4 1.1 0.01 0.015 0.03 

 

For the LFW experiments, rectangular blocks measuring 26 mm × 13 mm × 37 mm (length × 

width × height) were machined by wire electro-discharge machining (EDM) at the mid-

radius of a forged bar having a ~ 150 mm diameter. An FW34-E20 LFW machine at TWI, 

Cambridge, UK was used for welding. The welding parameters which resulted in a sound 

joint with axial shortening of 3.8 mm were as follows: frequency of oscillation of 40 Hz, 

friction pressure of 285 MPa and forge pressure of 580 MPa.  

A PWHT consisting of solutionizing and aging was conducted on the LFWed specimens as 

follows: solutionizing at 900°C for two hours, heating at 0.15°C/s to 1080°C, held at this 

temperature for four hours followed by air cooling, and aging at 730°C for eight hours 

followed by air cooling. This last aging heat treatment is known to maximize the tensile 

strength in the 600-700°C temperature range, without affecting the creep strength of 

AD730TM at 700°C in the fine grain state (Devaux et al., 2014). 

Creep tests were conducted in as-welded and PWHTed conditions on cylindrical samples 

having a diameter of 4 mm and a gage length of 14 mm. Specimens were machined after 
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PWHT (if any) by EDM, and then turned. A final mechanical polishing of the gage length up 

to a 4000 grade SiC was used to limit the surface roughness, and to avoid any surface 

recrystallization of the specimens due to surface residual stresses. Creep tests were 

performed in tension under constant load, and elongation was continuously monitored using 

a Linear Variable Displacement Transducer (LVDT). Creep tests were carried out under 

initial stresses of 600 MPa and 750 MPa at 700°C (± 1°C), and initial stresses of 100 MPa and 

200 MPa at 850°C (± 1°C). These tests were performed at 700°C and 850°C to cover possible 

applications of AD730TM alloy, such as high pressure turbine disks or seal rings for  

land-based gas turbine or aero-engines.  

Macro and microstructural investigations were conducted after specimens were mounted and 

polished using standard metallographic techniques. For the microstructure characterization of 

as-welded samples, a mixture of Regia water (2/3 vol. part) and distilled water (1/3 vol. part) 

was used as an etchant. Microstructure evolution and fractographic observations were 

examined by optical microscopy (OM), Field Emission Gun Scanning Electron Microscopy 

(FEG-SEM) and JEOL 6400 SEM. The welds were investigated by FEG-SEM to examine 

the changes that occur in the microstructure during post-weld heat treatment, as well as to 

analyze the fracture surfaces. In order to characterize the nanometric size γ′ precipitates, the 

secondary electron (SE) mode in Hitachi SU8230 SEM was used. The back-scattered 

electron (BSE) mode was used to record images from the polished surfaces of the samples. 

The energy dispersive spectroscopy (EDS) technique was performed to acquire local 

chemical composition and distribution maps of the different chemical elements constituting 

various phases along the fractured locations. Grains sizes were evaluated by analyzing EBSD 

maps obtained for 5 areas in the weld interface in as-welded and PWHT conditions. High 

angle boundaries in the misorientation range of 15-55° were considered to estimate the grain 

size. 
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6.4 Results and Discussion 

6.4.1 Macroscopic and Microscopic Evaluation of the Joint after LFW 

Visual inspection of the weld interface (Figure 6.1 (a)) showed that a bifurcated flash was 

formed during LFW, and that the flash is connected around the corners of the specimen, 

which is indicative of the high integrity of the joint in the LFWed sample. Examination of the 

weld by optical microscopy revealed that the weld line did not have any microcracks or 

impurities such as oxides, which can affect the mechanical properties or life of the weld 

(Figure 6.1 (b)). Higher magnification of the weld revealed no oxide particles, voids or 

microcracks in the corner of the LFWed sample (Figure 6.1 (c)). 

 

 

Figure 6.1 (a) A photograph of LFWed sample (b) a low magnification optical image  
of the welded sample showing integrated joint with no defects or impurities in  

the weld line (c) higher magnification of flash corner showing no microcracks or  
oxide particles. 

 

Microstructure examination of the parent material showed a trimodal γ´ size distribution 

composed of primary, secondary and tertiary γ´ particles with average diameters of 1.4 µm,  

30 nm, and less than 10 nm, respectively (Masoumi et al., 2016a). In contrast, a monomodal 
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re-precipitated γ´ distribution, less than 10 nm in size, was observed in the microstructure of 

the as-welded specimens in the weld line until 100 µm from the weld  

interface (Figure 6.2 (a)). As shown in Figure 6.2 (a), primary γ´ and boride particles are 

mostly dissolved at the weld interface, indicating that the weld interface experiences 

temperatures higher than boride and γ´ solvus during LFW (Masoumi et al., 2017a). 

 

 

Figure 6.2 Microstructure of LFWed specimens in: (a) weld line in  
as-welded condition (b) parent material and (c) weld zone (100 µm  

from the weld interface) in PWHTed condition. Primary (P),  
secondary (S) and tertiary (T) γ´ precipitates have been shown by white  
arrows. γ´ size distribution of the parent material and the weld zone after  

PWHT are presented respectively in (b) and (c). 
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After post-weld heat treatment, the parent material showed a bimodal precipitate size 

distribution, containing primary and secondary γ´ particles, having respectively average 

diameters of 1.5 µm and 40 nm, while the weld zone revealed a trimodal size distribution, as 

shown in Figure 6.2 (b) and Figure 6.2 (c). The obtained results show that subsolvus post-

weld heat treatment led to coarsening of re-precipitated γ´ particles formed during cooling in 

the weld zone after LFW. The morphology of the coarsened particles is cuboidal, and their 

average size and volume fraction were determined to be 230 nm and 4%, respectively (Figure 

6.2 (c)). Higher magnification (insert in Figure 6.2 (c)) shows that tertiary γ´ particles were 

formed between the cuboidal precipitates during cooling from 1080°C, and that they 

coarsened during the aging heat treatment at 730°C, as they were 40 nm in size after PWHT.  

Finally, grain size measurement revealed that the average grain size of the weld interface was 

about 8 µm in PWHT condition, which is twice of that in the as-welded condition (Figure 

6.3). 

 

 

Figure 6.3 Microstructure of a LFWed AD730TM at the weld line in:  
(a) as-welded (b) post welded conditions. 

 

6.4.2 Creep Testing of PWHTed Joints at 700°C and 850°C 

The creep behavior of specimens tested under 100 MPa and 200 MPa at 850°C and under  

600 MPa and 750 MPa at 700°C are compared in Fig. 4 for the base material, as well as in the 
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as-welded and post-weld heat-treated conditions. As shown in Figure 6.4 (a) and (d), creep 

properties improved after the welded specimens were subjected to post-weld heat treatment. 

In order to observe the three stages of creep in uniaxial tension, the creep curves are plotted 

in the form of the instantaneous strain rate versus strain, as illustrated in Figure 6.4 (b), (c), 

(e) and (f). The results demonstrate that at 700°C and 850°C, the minimum creep strain rate 

decreases with decreasing applied stress. In these figures, a noticeable primary creep stage is 

observed for PWHTed condition at 700°C under both stress levels and at 850°C under stress 

level 200 MPa, as the strain rate decreases until a minimum true creep strain is reached. 

The secondary creep stage is identified where the strain rate is approximately constant. As 

shown in Figure 6.4 (a), (b) and (c), it is relatively easy to observe this stage for creep tests of 

the base material and under the PWHT condition at a temperature of 700°C under 600 MPa 

and 750 MPa stress levels. There is no clear secondary creep domain in the creep curve of the 

as-welded specimen since there is a continuous increase in the creep rate. This continuous 

acceleration of creep deformation is expected to result from a dynamic evolution of γ´ 

precipitation during creep deformation. 

 During stage II, the creep rate is controlled by the balance between the strain hardening of 

the alloy due to deformation and thermal softening due to dislocations movement (Riedel, 

1987). The tertiary creep regime can be seen at 700°C and 850°C as the strain rate begins to 

increase once again. It is worth mentioning here that the as-welded specimens did not exhibit 

any primary and secondary creep stages at 850°C creep test conditions. In addition, PWHTed 

specimens did not reveal any primary and secondary creep stages at 850°C under the 100 

MPa stress level.  Their creep behavior consisted of continuous creep acceleration up to 

failure (see Figure 6.4 (b), (c), (e) and (f)). This thus indicates an absence of any strain 

hardening mechanism, which will be elaborated in section 3.4.1 through microstructure 

analyses. 
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Figure 6.4 Creep curves of base material and LFWed specimens in as-welded and  
PWHTed conditions at (a) & (b) & (c) 700°C under 600 MPa and  

750 MPa (d) & (e) & (f) 850°C under 100 MPa and 200 MPa. Strain rate vs. strain  
data, shown in (b) & (c) & (e) & (f), are used to reveal various stages of creep tests.  

Shaded zone is magnified to indicate the absolute minimum of the curves,  
as shown by filled circles. 
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Figure 6.5 (a)-(d) show the appearance of the cross section of PWHTed samples after rupture 

during creep tests at 700°C and 850°C. More creep strain accumulation occurs during creep 

testing at 850°C compared to that at 700°C. Microscopic observations showed that the 

fracture surface was mostly oxidized, especially after testing at 850°C. In addition, SEM and 

optical observations showed that the failure initiated in the parent material during testing 

under 750 MPa at 700°C and 100 MPa at 850°C, while it was in the weld zone after testing 

under 600 MPa at 700°C and 200 MPa at 850°C. Although PWHTed samples exhibited 

failure initiation in the weld zone, their creep life was found to be comparable to that of the 

parent material, as illustrated in Figure 6.4 (d). The specimens after failure at 850°C under 

100 MPa, had a non-homogenous diameter due to the difference in grain size in the heat-

affected area close to the weld joint. At this temperature, diffusion creep is mainly active for 

fine grain materials, with the grain boundary sliding acting as a rate controlling parameter for 

creep strains in excess of 1% (Soula et al., 2010; Soula et al., 2009; Thibault et al., 2013). 

The creep damage mechanisms in the LFWed samples will be discussed in detail in the 

following sections. 

 

 

Figure 6.5 Appearance of the cross section of PWHTed samples after  
rupture during creep tests at (a) 700°C / 600 MPa  

(b) 700°C / 750 MPa (c) 850°C / 100 MPa (d) 850°C / 200 MPa. 
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6.4.3 Effect of PWHT on Larson-Miller Diagram 

The creep rupture characteristics of the base, as-welded and PWHTed materials are 

compared in Figure 6.6 (a) in the form of a Larson-Miller diagram. Eq. (6.1) is used to plot 

creep strength data as a function of a Larson-Miller Parameter (LMP) (Reed, 2006a): 

ܲܯܮ  = ܶ[20 + [(ݐ)݃݋݈ × 10ଷ (6.1) 

 

where ܶ is the absolute temperature in Kelvin and ݐ is the creep time to failure in hours. The 

diagram, presented in Figure 6.6, shows that at high values of LMP=23.3×103 - 25.3×103 

(high temperatures, low loads), base and PWHTed materials have similar characteristics. 

However, at lower values of LMP (low temperatures, high loads), the base material has 

higher strength than that of as-welded and PWHTed conditions. Testing conditions for the 

homogeneous fine grain parent AD730TM are 700°C/950MPa, 700°C/850MPa, 

700°C/800MPa, 700°C/750MPa, 700°C/700MPa, 700°C/600MPa, 850°C/250MPa, 

850°C/200MPa, 850°C/100MPa and 850°C/50MPa. 

 

 

Figure 6.6 Comparison of Larson Miller parameter (LMP) for (a) base metal,  
as-welded and PWHTed samples of AD730TM (b) PWHTed AD730TM, U720Li,  

IN 738 LC and IN 617. 
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The creep life values and creep rupture characteristics obtained in the present study (Figure 

6.4 and Figure 6.6) indicate that the PWHTed specimens have higher creep life and strength 

than those of as-welded specimens for all test conditions and LMP values. Crack propagation 

is mainly associated with the joint microstructure in as-welded samples. It has been reported 

that if creep is controlled by diffusion, the creep strain rate is proportional to 1/(grain size)2 

or 1/(grain size)3, depending on whether the diffusion is along grain boundaries or within the 

grain bulk during creep tests (Bano, Koul et Nganbe, 2014). Microstructural examination 

results reported in Figure 6.3 indicate that the average grain size in the weld interface is 

about 4 µm in the as-welded condition, while it is about 8 µm in the PWHTed condition. 

Thus, the creep strain rate of the weld interface in as-welded samples will be about four or 

eight times larger than that of the PWHTed samples, therefore leading to lower creep life for 

the as-welded samples. 

Furthermore, the creep crack growth rate, CCGR is inversely proportional to the grain size, ݀, as follows (Xu, Koul et Dickson, 2001): 

ܴܩܥܥ  = ଶ݀ܭܣ  (6.2) 

 

where ܭ is the stress intensity factor and ܣ is a material constant. Therefore, the crack 

growth rate should be higher in small grain size samples such as the as-welded samples based 

on  Eq. (6.2). 

The creep rupture properties of PWHTed AD730TM are compared to those of UdimetTM720Li 

(U720 Li) (Gu et al., 2009), Inconel 738LC (IN 738LC) (Hou et al., 2004) and Inconel 617 

(IN 617) (Nandi, Reddy et Singh, 2014) by a Larson-Miller plot, as shown in Figure 6.6 (b). 

The plot shows that PWHTed AD730TM has similar characteristics as U720 Li and IN 738LC 

at low values of LMP (low temperatures and high stresses). The diagram also shows that the 

PWHTed sample has an advantage over the IN 617 alloy, while the IN 738LC alloy boasts 

higher LMP characteristics, LMP=22×103 - 26×103, at high temperatures and low stresses. 

This could be due to the fact that IN 738LC has a higher γ´ volume fraction than AD730TM in 
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this temperature range (IN 738LC has a 45% γ´ volume fraction, which is 5% higher than 

that of AD730TM), and larger grains, since it is a cast alloy, while IN 617 alloy has a lower 

volume fraction of γ´ as compared to AD730TM. The IN 617 alloy is mainly a solution-

hardened Ni- based alloy with a very low γ´ volume fraction of about 4%. 

6.4.4 Microstructure Analysis of PWHTed Joints 

6.4.4.1 Deformation and Damage Mechanism during Creep 

a) 700°C-600 MPa 

The fractographic features of the creep-tested specimen at 700°C under 600 MPa are shown 

in Figure 6.7 and Figure 6.8. Figure 6.7 (a) shows that the fracture surface is almost flat. An 

analysis of this flat surface at higher magnification (Figure 6.7 (b)) revealed dimples 

throughout the fracture surface, indicating a ductile fracture. Parallel strips observed on the 

fracture surface at low magnification (Figure 6.7 (a)) and a multimodal size distribution of γ´ 

particles on the longitudinal fracture surface (Figure 6.8 (a)) are specific to a fracture at the 

weld zone. 

Cavities initiate preferentially in the weld zone at the grain boundaries due to the nucleation 

of voids around the primary γ´ or carbide precipitates and the decohesion of these particles, 

as shown in Figure 6.8. Furthermore, the growth and coalescence of voids, nucleated at grain 

boundaries connected to the surface, assist surface creep crack growth (Figure 6.7 (c)). As 

reported in Figure 6.2 (b), primary γ´ precipitates are largely dissolved in the weld zone 

during LFW. Therefore, grain boundaries have the weakest configuration in the weld region, 

and microcracks could easily propagate in this zone due to a lack of borides and primary γ´ 

particles at the grain boundaries (Figure 6.8 (b)). It is worth noting that while grain 

boundaries are the preferred crack initiation sites, as shown in Figure 6.8 (c), some cavities at 

the interface of coarse secondary γ´ coalesced and formed continuous intergranular cracks. 
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Figure 6.7 Fracture surface of the creep tested specimen at 700°C  
under 600 MPa showing (a) parallel strips on flat fracture surface, as  

marked by black arrows (b) dimples and intergranular fracture  
(c) oxidized layer at the fracture surface, as marked by red arrow.  

Transverse direction is shown by brown color. 
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Figure 6.8 Post-failure observations on longitudinal cut from the creep tested  
samples at 700°C/600 MPa showing (a) decohesion of primary γ′ (b) cavities  

and microcracks at GB (c) Cavities at the interface of coarse secondary γ′.  
Longitudinal direction is shown by brown color. 

 

b) 700°C-750 MPa 

Figure 6.9 (a) shows the fracture surface of the sample tested at 700°C under the highest 

stress used in this investigation. The surface is characterized by flat regions of dimpled, 

ductile appearing fracture in the parent material. In contrast, in the zones adjacent to the weld 

zone, shiny shear lips are visible, and are formed on bands oriented at ±45° to the sample 

thickness. An examination of the fracture surface also indicates that cracks initiate mainly 

from oxidized carbide particles in the parent material at the surface and propagate through 

grain boundaries (Figure 6.9 (b) and (c)). The presence of primary γ´ particles, as indicated 

by arrows in Figure 6.9 (d), and oxidized grain boundaries (Figure 6.9 (c)) at the fracture 
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surface indicate that crack propagation is initially intergranular, and occurs in the parent 

material. Since oxide particles are brittle, creep cracks could initiate very easily from the 

interface of oxides located at grain boundaries connected to the surface. Then, oxygen 

diffusion ahead of the crack can weaken the grain boundary and aid intergranular crack 

propagation in the early stages. 

 
Figure 6.9 Post-failure transverse and longitudinal observations of  

the creep tested specimen at 700°C /750 MPa test condition showing  
(a) initiation of crack at parent material and propagation adjacent to  
the weld zone, at the thermomechanically affected zone (TMAZ) (b)  

and (c) crack initiation from oxidized secondary particle and  
intergranular fracture (e) and (f) pore nucleation at the primary γ′ and  

the matrix interface or at the junction of GB. Transverse and  
longitudinal directions are shown by brown color. 
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Thermocalc simulation (Masoumi et al., 2016a) showed that the microstructure of AD730TM 

contains about 37% γ´ at 700°C. An examination of the fracture surface in the longitudinal 

direction revealed that nucleation and growth of pores occurred through diffusion at the 

interface of the matrix and second-phase particles (Figure 6.9 (e) and (f)). This is generally 

related to dislocation pile-up at the interface (Frost et Ashby, 1982). Therefore, the first mode 

of fracture, as shown in Figure 6.9, is grain boundary sliding controlled by diffusion and 

assisted by oxidation. Testing at 700°C under 750 MPa stress, compared to that at 700°C 

under 600 MPa stress will generate more dislocations, increasing the propensity for 

transgranular fracture by linkage of these dislocations. Therefore, crack propagation leads to 

faster fracture of regions at a ±45° angle relative to the applied stress direction, as suggested 

by the shiny zones at the fracture surface, as shown in Figure 6.9 (a). 

c) 850°C-100 MPa 

During creep tests at 850°C under 100 MPa, all specimens fail in the base material far from 

the weld zone. Fractographic analyses reveal that the specimens neck in the parent material 

before fracture (Figure 6.10 (a)). As soon as necking starts, deformation is concentrated in 

the neck, and triaxiality of local applied stress increases due to the geometry of the neck 

(Rogers, 1968). This causes excessive growth and a coalescence of microvoids at the center 

of the neck and very high levels of creep elongation, as shown in Figure 6.10 (a) and (b) and 

Figure 6.5 (c). An analysis of the fracture surface in the longitudinal direction, presented in 

Figure 6.10 (c) and (d), reveals that cellular γ′ particles and precipitate-free zones (PFZ) are 

formed adjacent to grain boundaries. The absence of an efficient γ′ precipitation close to the 

GB probably explains the continuous acceleration of the creep curve (Figure 6.4 (e) and (f)). 

Cellular or discontinuous coarsening occurs when γ′ particles coarsen perpendicularly to a 

moving grain boundary (Maldonado et Nembach, 1997). Then, solute diffusion along the 

grain boundary accelerates the growth of these particles, and as a result, a PFZ is formed. 

The morphology of γ′ particles is lamellar after coarsening (Figure 6.10 (c) and (d)). An 

examination of the fracture surface in the transverse and longitudinal directions (Figure 6.10) 

shows that cracks initiate and propagate inside the PFZ due to strain accumulation in this soft 

area. 
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Figure 6.10 Transverse and longitudinal fracture surface of samples tested at  
850°C under 100 MPa stress showing (a) necking (b) coalescence of voids at  
the center of the neck (c) and (d) PFZ formation and lamellar coarsening of γ′  

particles, crack and cavity initiation in PFZ (e) chromium oxide particles.  
Transverse and longitudinal directions are shown by brown color. 

 

Furthermore, EDS mapping results and chemical analyses of the area adjacent to the grain 

boundary, presented in Figure 6.11, reveal chromium enrichment at the grain boundaries. On 

the other hand, at such high temperatures, oxygen diffuses very rapidly along grain 
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boundaries connected to the surface, and with the  high affinity of chromium for oxygen, 

chromium oxides are formed, as shown in Figure 6.10 (e) and Figure 6.11 (c). The low 

ductility of the oxide layer results in its rupture under loading, which induces crack 

nucleation, and exposes fresh metallic material to the environment. Crack propagates due to 

oxide-induced crack growth Therefore, as Figure 6.10 and Figure 6.11 show, the fracture 

mechanism is intergranular, assisted by diffusion and oxidation. The shape of the specimen 

after failure (Figure 6.5 (c)) is indicative of the heterogeneity in grain size. A coarser grain 

area in HAZ leads to slower creep, and thus, to a smaller reduction in the diameter and less 

elongation in this area. It is also worth mentioning that the increase in grain size has been 

shown to be very effective in improving the creep strength in the AD730TM alloy at 850°C 

(Michel et al., 2016; Thébaud et al., 2015). 
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Figure 6.11 EDS mapping results and chemical analysis of the samples  
tested at 850°C/100 MPa showing Chromium enrichment at the grain  

boundary. Longitudinal direction is shown by brown color. 
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d) 850°C-200 MPa 

Multimodal size distribution of γ´ precipitates and parallel strips, shown in Figure 6.12, point 

to a fracture in the weld zone. However, creep test results (Figure 6.4 and Figure 6.6) show 

that LMP and creep life of the joints are about 23.8×103 and 14 hours, respectively, which 

are approximately comparable to those of the base metal. Figure 6.12 shows that during creep 

tests at 850°C under 200 MPa, PFZ are formed close to grain boundaries. EDS mapping 

results presented in Figure 6.13 show oxides and cracks formed at the grain boundaries. PFZs 

are formed due to solute elements absorption by intergranular γ′ precipitates, and are weak 

and less resistant to oxidation. Thus, cavities, and therefore, chromium oxides (Figure 6.13), 

are formed more easily in the weak regions than in the matrix. Then, these grain boundary 

cavities and oxides accelerate the intergranular cracking. Figure 6.12 shows secondary 

microcracks initiated from the cavities inside the precipitate-free zone, and crack branching 

develops during propagation due to severe oxidation of the grain boundary. The connection 

of several grain boundary cracks leads to decohesion of the grain from the matrix, as shown 

in Figure 6.12 (b). 
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Figure 6.12 Transverse and longitudinal observations of post-failure of samples  
tested in 850°C under 200 MPa stress showing (a) parallel strips on flat fracture  

surface, as marked by white arrows (b) decohesion of grain due to crack  
connection (c) and (d) PFZ and cavity formation adjacent to GB.  
Transverse and longitudinal directions are shown by brown color. 
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Figure 6.13 EDS mapping results of the creep tested specimen at 850°C/200 MPa 
showing oxide and crack formation at GB. Longitudinal direction is shown by  

brown color. 
 

6.5 Conclusions 

The creep behavior of the LFWed AD730TM was investigated in as-welded and PWHTed 

conditions under 100 MPa and 200 MPa at 850°C, and 600 MPa and 750 MPa at 700°C. The 

findings are summarized as follows: 

1- A specific PWHT was developed for an LFWed fine grain AD730TM alloy. It resulted in 

superior creep strength compared to that of as-welded joints.  

2- A high LMP value (24.5×103) of the PWHTed AD730TM compared to the IN 617 alloy 

indicates a good service life under high temperature and low stresses. 
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3- The nucleation of voids around precipitates and the decohesion of these particles at 

oxidized grain boundaries connected to the surface assist surface creep crack growth at 

700°C. 

4- Cracks initiate inside the PFZ at the grain boundaries, and propagate due to oxide-induced 

crack growth at 850°C. 
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CONCLUSIONS 

 

In this research, microstructure evolution and the mechanical properties of LFWed AD730TM 

Ni-based superalloy were studied. This study allowed characterizing this newly developed 

superalloy for manufacturing processes such as LFW where rapid heating and cooling cycles 

take place. Moreover, several fundamental aspects related to dissolution, reprecipitation and 

liquation of γ′ precipitates at the weld interface were identified and discussed. Welded 

samples at various friction and forge pressures were analyzed, and the effect of pressure in 

obtaining a defect free LFWed specimen was quantified and a methodology is proposed for 

rapid determination of optimum LFW process parameters. 

From analyses and discussions, provided in each chapter, the main contributions of this thesis 

are: 

1) Friction and forge pressure and time values were estimated to reach a defect free bonding 

condition. LFWed samples revealed oxides and microcracks below axial shortening of 1.7 

mm. Therefore, samples with higher axial shortening of 3.5 mm were chosen for 

microstructure and mechanical testing. By increasing friction and forge pressure, and thus, 

axial shortening, the size of TMAZ decreased. 

2) EBSD maps showed that LABs fraction significantly increased close to the weld interface 

while the twin fraction was substantially reduced. Grain boundary bulging and wavy 

boundaries were also observed in TMAZ indicating occurrence of dynamic recrystallization. 

HAB fraction drastically increased in the weld interface indicating a substantial increase of 

recrystallization. From EBSD maps interpretation, the outer edge of weld zone and TMAZ 

were determined. 

3) The volume fraction of primary and secondary γ′ particles reduced with a decrease in the 

distance from the weld interface, and they were totally dissolved at the weld interface. 

However, re-precipitated γ′ precipitates (less than 10 nm in size) were formed during cooling 

at the weld interface. 

4) The microhardness evaluation of LFWed samples showed there was a drop in hardness in 

TMAZ due to dissolution and 90 % reduction of secondary γ´ volume fraction. On the other 
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hand, with a decrease in distance from LFW interface, the microhardness gradually increased 

due to partially refined structure. 

5) Tensile properties of LFWed specimens improved after PWHT for room temperature and 

650°C test conditions. As-welded samples failed in HAZ region during tensile test at 650°C 

due to dissolution of γ´ particles in this region. Weld zone was stronger than TMAZ and 

HAZ due to finer grain microstructure. PWHT led to re-precipitation of γ´ precipitates at 

HAZ and TMAZ and restored tensile properties of LFWed joints. 

6) A multi-particle semi-analytical dissolution model was proposed to quantify and predict γ′ 

dissolution kinetics. The comparison of the proposed model with the existing single particle 

model indicated that the proposed multi-particle model has a better prediction of γ′ 

dissolution kinetics. Then, an equation based on experimental correlations between the 

cooling rate and the γ′ precipitate size was proposed for continuous cooling from supersolvus 

temperatures. The proposed equation was validated experimentally for high cooling rates 

using Gleeble™ 3800. These dissolution and re-precipitation kinetics models were used to 

predict temperature or γ´ volume fraction in different zones of the LFWed samples.  

7) Simulation of LFW thermal cycle using Gleeble™ 3800 physical simulator revealed 

constitutional liquation of primary γ′, Cr-Mo-W-Nb borides. Nb-Ti carbides were the 

predominant liquation source in AD730TM between 1200-1300°C. Peak temperature in the 

weld interface was estimated to be around 1250°C using an analytical model. However, no 

liquation was observed in the weld zone or flash. The results showed a combination of high 

temperature, frictional and forge pressures during LFW could result in the elimination of 

liquation and formation of crack resistant microstructure in LFWed superalloy.  

8) PWHT improved creep properties of LFWed specimens due to increasing weld interface 

grain size. Comparison of LMP values for these specimens with other Ni-based superalloys 

revealed good service life under high temperature and low stresses for LFWed AD730TM. 

9) Nucleation of voids around precipitates at the grain boundaries and decohesion of them 

contributed to creep crack growth at 700°C while forming precipitate free zones at the grain 

boundaries and crack initiation from these regions assisted by oxidation were identified as 

the main damage mechanisms at 850°C. 



 

RECOMMENDATIONS 

 

In this study, the LFW of the AD730TM Ni-based superalloy was studied for the first time. 

Following recommendations are suggested for future investigations in continuing the present 

PhD thesis: 

1) Tensile testing at room temperature and 650°C on defect free and sound LFWed joint 

revealed ultimate tensile strength of the joint is more than that of the base material. In 

addition, the joint revealed better creep life at 850°C while slightly lower creep life at 700°C 

than that of the base material. The tensile and creep damage mechanisms were investigated in 

details. However, fatigue resistance is one of the other properties desired for disk materials. 

Therefore, it is suggested to investigate fatigue resistance and damage mechanisms during 

fatigue for LFWed joint. 

2) The precipitation of γ′ phase was discussed based on classical nucleation theory. It is 

recommended that the occurrence of γ′ precipitation is also examined through non-classical 

nucleation or spinodal decomposition mechanism. 

3) Joining of polycrystal (PC) to single crystal (SC) presents an important technological 

interest for the gas turbine industry as it will allow increasing the efficiency of gas turbines. 

To this end, not only LFW of PC to SC superalloys is of great interest from an industrial 

point of view but also presents many scientific challenges. For example, successful bonding 

is still challengeable as there should be the ability to activate major slip systems in both 

workpieces. It may require favorable orientation of the primary slip system of the SC to the 

principle axes of the pressure force. Furthermore, recrystallization may occur during joining 

in SC superalloy which will have some effects on mechanical properties. 

4) In order to determine the range of liquation within a material, there are several quantifiable 

parameters. In this study, rang of liquation was found through physical simulating of the 

thermal cycle of LFW process using Gleeble physical simulator machine. Another method 

which is suggested by the author is determining characteristic temperatures: nil ductility 

temperature (NDT) and the nil strength temperature (NST) using Gleeble machine. As the 

alloy is heated from the NDT, the liquid film slowly increases in thickness, and thus,  



224 

 

the strength decreases due to reduction in capillary forces holding the grains together. These 

temperatures can be compared with the results obtained in the present study. 

5) In this thesis, the effect of stress/strain on increasing diffusion was quantified and 

discussed in details. It is recommended that the possibility of strain rate enhanced solute 

diffusivity on preventing the resolidification products is analyzed. 
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