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RÉSUMÉ 

 
  
L'industrie aérospatiale est de plus en plus préoccupée par l'intégrité et la performance des 
structures métalliques vieillissantes dans les aéronefs qui ont été en service durant plusieurs 
années. Les charges cycliques appliquées à ces structures pendant la circulation au sol, la 
pressurisation, le décollage, la dépressurisation et l'atterrissage favorisent l’amorçage et la 
propagation de nombreuses fissures de fatigue dans les zones de concentration de contrainte. 
Ces fissures doivent être détectées et dimensionnées avec fiabilité par des méthodes de 
contrôle non destructif (CND) avant qu'elles n'atteignent une taille critique qui pourrait 
entraîner la défaillance désastreuse de la composante. Non seulement les inspections en 
service bénéficient d'un système de CND fiable, mais le rôle de ces systèmes devient vital 
lors des phases de conception. De nos jours, il est possible d'estimer la durée de vie d'une 
composante critique en se basant sur des modèles élaborés à partir de la mécanique de la 
rupture. Ces modèles permettent d’estimer, pour une durée de vie planifiée, la taille 
maximale d'un défaut acceptable dans une zone donnée. Par ailleurs, la taille maximale des 
défauts acceptables et la limite de détection fiable d'une technique de contrôle sont les 
intrants de modèles d'évaluation des risques utilisés pour planifier les inspections périodiques 
en service. En gardant cela à l'esprit, il est évident que la détection des défauts n'est plus la 
seule préoccupation des études sur les CND. Par conséquent, les études récentes tentent de se 
concentrer sur le dimensionnement des défauts et la fiabilité d'un tel dimensionnement. 
 
Les essais par courants de Foucault (ECF) constituent une méthode électromagnétique de 
CND bien établie. Depuis plusieurs années, elle est utilisée pour inspecter les composants du 
fuselage, du moteur et des roues d'un aéronef à la recherche de légers défauts de surface. 
Dans ce contexte, les sondes de surface différentielles en réflexion (noyau en forme de D 
inversé) sont parmi les meilleures candidates puisqu'elles fournissent un rapport signal sur 
bruit élevé. La complexité de la théorie électromagnétique régissant les ECF, additionnée à la 
finesse des détails géométriques de ces sondes ont ralenti le développement de modèles 
analytiques et semi-analytiques portant sur l'interaction entre ces sondes et des défauts de 
surface. Par conséquent, le développement de modèles pouvant fournir des mesures 
quantitatives des défauts inspectés s'est accompagné de difficultés. Cependant, au cours des 
dernières décennies, avec le développement de l'informatique, la modélisation de ce type de 
problèmes est devenue plus facile grâce à des méthodes numériques telles que la 
modélisation par éléments finis (MEF). De plus, les techniques de calcul souple sont 
devenues suffisamment sophistiquées pour imiter efficacement la reconnaissance des formes 
et les capacités décisionnelles du cerveau humain. Ces nouvelles possibilités, issues de l'ère 
technologique, peuvent être intégrées afin de développer de nouvelles méthodologies 
d'interprétation des signaux ECF et de dimensionnement des défauts détectés. 
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La présente recherche vise à développer un algorithme d'inversion des courants de Foucault 
pour caractériser des défauts de surface. Ce travail de recherche consiste en deux parties. La 
première vise à développer un outil MEF pour simuler le balayage des encoches de surface 
avec une sonde ECF. Dans ce contexte, la capacité de Comsol Multiphysics à modéliser 
l'interaction entre une sonde de surface différentielle et différentes encoches de surface a été 
étudiée et le modèle a été validé par des résultats expérimentaux. Par la suite, un système 
d'inférence adaptatif neuro-flou, conçu pour l'estimation de la longueur d'entailles, a été 
entraîné en utilisant les signaux de diverses encoches générées par simulation. De plus, le 
système de dimensionnement a été testé et sa performance a été évaluée. Concernant la 
deuxième partie de cette recherche, la fiabilité d'un système ECF manuel et automatisé a été 
étudiée en comparant les courbes de probabilité de détection obtenues en testant des 
composants en acier ferromagnétique comportant des fissures de fatigue. L'étude a porté sur 
une sonde de surface différentielle, différents inspecteurs et une variation de paramètres 
d'essai influents. Le concept de dimensionnement proposé dans cette recherche peut être 
utilisé pour tout type de sonde ECF, de matériau et de défaut. 
 
 
Mots-clés: Contrôle non destructifs (CND), Essai par courants de Foucault (ECF), Sonde 
différentielle en réflexion, Évaluation non destructive quantitative (ENDQ), 
Dimensionnement de fissures, Étude par modélisation, Méthodes numériques, Méthode par 
éléments finis (MEF), Système d'inférence adaptatif neuro-flou (SIANF), Fiabilité de 
l'inspection, Probabilité de détection (PD), Balayage manuel par courants de Foucault, 
Courants de Foucault automatisés, Simulation, Fissures. 
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ABSTRACT 
 
There is an increasing concern in aerospace industry regarding the integrity and performance 
of ageing metallic structures in aircraft that have been in service for several years. Cyclic 
loads applied to these structures during taxiing, pressurization, taking off, depressurization, 
and landing promote the nucleation and growth of many fatigue cracks from the locations of 
stress concentration. These cracks shall be detected and sized reliably by non-destructive 
evaluation (NDE) methods before they reach a critical size, which may lead to disastrous 
failure of components. Not only the in-service inspections benefit from a reliable NDE 
system, but also the role of such systems is becoming vital during design stages. Nowadays, 
it is possible to use life estimation models developed based on fracture mechanics to estimate 
the maximum allowable defect size located in critical components for an anticipated life 
span. Moreover, risk assessment models take the estimated maximum allowable flaw size 
and the flaw size that can be reliably detected as inputs to plan periodical inspections. 
Bearing these in mind, it is evident that defect detection is not the only concern of NDE 
studies anymore. Hence, the recent studies try to focus on defect sizing and the reliability of 
the sizing as well. 
 
Eddy current testing (ECT) is a well-established electromagnetic method of NDE. For 
several years, it has been employed to inspect the fuselage, wings, engine and wheel 
components of aircraft for tiny surface flaws. For these purposes, ECT split-D reflection 
differential surface probes are one of the best nominees since they provide a high signal-to-
noise ratio. The complexity of electromagnetic theory governing ECT along with the very 
delicate geometrical details of such probes have slowed down the advances in 
analytical/semi-analytical modelling of the interaction between such probes and surface 
defects. Therefore, development of models that could provide quantitative measures of 
inspected defects has been accompanied with difficulties. However, with the growth of 
computer science and resources in recent decades, modelling of these kinds of problems 
using numerical methods such as finite element modelling has become faster than before. 
Furthermore, the soft computing techniques have become sophisticated enough to effectively 
imitate the pattern recognition and decision making abilities of human brain. These offerings, 
brought by the new technology era, can be integrated in order to develop new methodologies 
for interpretation of ECT signals and sizing of detected defects. 
 
The present research aims at developing an eddy current inversion algorithm for 
characterization of surface defects. The research work consists of two main parts. The first 
part aims to develop a FEM tool to simulate scanning of surface notches with ECT probe. In 
this context, the capability of Comsol Multiphysics in modelling the interaction between a 
split-D probe and various surface notches was investigated and the model was validated by 
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experimental results. Subsequently, an adaptive neuro-fuzzy inference system was designed 
and trained, using model-generated signals of various notches, for notch length estimation. 
Furthermore, the sizing system was tested and its performance was assessed. As a second 
part to this research, reliability of the manual and automated ECT system was investigated 
through comparing probability of detection curves obtained by testing defective 
ferromagnetic steel components. The study involved a split-D surface probe, different 
inspectors and variation of influential test parameters. The sizing concept proposed in this 
research can be used for any type of ECT probe, material and defect. 
 
 
Keywords: Non-destructive testing (NDT), Eddy current testing (ECT), Split-D reflection 
differential probe, Quantitative non-destructive evaluation (QNDE), Crack sizing, Model-
based study, Numerical methods, Finite element method (FEM), Adaptive neuro-fuzzy 
inference system (ANFIS), Inspection reliability, Probability of detection (POD), Manual 
eddy current scan, Automated eddy current, Simulation, Cracks. 
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INTRODUCTION 

 

Problem statement 

Why quantitative non-destructive evaluation is important? 

Manufacturing high quality systems and ensuring their integrity throughout their expected 

service life has been the concern of many industries for years. Different non-destructive 

testing (NDT) methods are developed/evolved to meet the industrial needs for quality control 

during the past century and it was not long after the World War II when their importance was 

rocketed. Following a catastrophic failure of an aircraft fuselage from Aloha airlines in 1987, 

the safety measures became tighter in aerospace industry. This incident thrusted the growth 

of public awareness about airworthiness. Following this accident, many conferences and 

meetings were held regarding this matter in order to gather NDT experts and collect their 

recommendations. As the outcome of these meetings, many research projects were put in 

place to develop new techniques for inspection of ageing aircraft, and to expand the 

knowledge and practice of quantitative non-destructive evaluation (QNDE) (Achenbach & 

Thompson, 1991). Since 1978, many fatigue/fracture-critical components of aircraft 

structures have been mandated by Federal Aviation Administration of US (FAA) to be 

designed based on the damage tolerance (DT) design principles (Pitt & Jones, 1997). The 

lifing philosophy strongly depends on the reliable defect detection and sizing results provided 

by QNDE methods. DT approaches use fracture mechanic models to analyze and predict the 

integrity of designed components. Based on these models, it is possible to estimate the largest 

defect size that can be tolerated by taking into account the material properties, loading 

conditions and the location of stress concentration in the critical crack site. Accordingly, the 

defect size that can be reliably detected by the NDT system, and would not grow larger than 

the critical size until the next scheduled inspection, shall be repaired and kept in service. 

Therefore, based on life-assessment procedures, the planning for periodical non-destructive 

inspection can be determined by the defect size that is reliably detected. The possibility of 

sizing these defects using the selected NDT method stands as a guide to such plannings. This 
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fact highlights the importance of QNDE in the safety maintenance of aircraft structures 

(Achenbach & Thompson, 1991). 

 

Why eddy current split-D differential surface probes? 

As the first step in inspection, it is essential to select the NDT method to best fit the intended 

applications, meaning that the capability of NDT system in detection of the flaw type of 

interest should be determined in advance.  Fatigue failure of metallic aircraft components has 

resulted in many devastating accidents in the industry (Schijve, 1994).  Fatigue cracks 

frequently form and grow within aircraft fuselage and engine components exposed to cyclic 

loads during their service life. If such cracks are open to surface, NDT methods such as 

visual testing, liquid penetrant inspection, and eddy current testing (ECT) are preferred for 

inspection. However, due to tight opening and small size of fatigue cracks, sometimes they 

can be detected neither by visual inspection nor by liquid penetrant method. ECT offers high 

sensitivity and detection reliability in dealing with such tiny cracks. Additionally, ECT 

method has gained a high acceptance in industries owing to factors such as the ease of 

application, minimum surface preparations and possibility of inspection over paint layers. 

Therefore, a number of ECT surface probes dedicated to detection of small narrow surface 

discontinuities have been developed and employed in past years. From this category, the 

split-D reflection differential surface pencil probes are best suited for detecting fatigue cracks 

for which the opening is very tight and the dimensions are small at the early stages of their 

growth. The probe is comprised of a circular driver and two D-shaped receiver coils. The 

differential configuration of oppositely wound receiver coils renders the probe insensitive to 

gradual variations of conductivity and permeability of test subject. Furthermore, their small 

sizes as well as the exceptional spatial stacking of the coils and ferrite cores inside them 

provide high sensitivity to abrupt changes of the surface features such as a breaking. 
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How to characterize defects using split-D probe’s signal (inversion)? 

For defect characterization and sizing, it is essential to develop a forward model based on the 

underlying physical principles of the chosen NDT method, which is ECT in the present 

research. Forward models are used to predict the response of a testing method for a given 

material containing defects of known nature. These models are mainly developed 

analytically/semi-analytically based on the set of Maxwell’s equations for relatively simple 

problem assemblies involving the geometry of the ECT probe and the defect. Additionally, 

these models can be used as the core of inversion algorithms for characterization of an 

unknown defect based on the response of ECT system. In general, many of these algorithms 

aim to minimize the difference between predictions of the forward model and response of 

ECT system by readjusting model parameters iteratively. Therefore, forward models 

incorporated within the inversion algorithms should be computationally efficient since 

numerous iterations might be required for a model to minimize the difference between its 

response and that of ECT. Moreover, coupling these inversion algorithms with time-

consuming conventional numerical methods, as a forward model, makes it impossible to 

perform real-time inversion.   

 

Fortunately, owing to rapid advances in the field of soft computing (SC), nowadays, it is a 

more common practice to employ new SC strategies in inversion of NDT responses. In 

contrast to hard computing techniques based on solid binary logic that signifies precision and 

categoricity, SC engines provide tolerance of approximation since they have the human mind 

as their role model. To form SC engines, one would be able to integrate two or more different 

artificial intelligence (AI) techniques such as fuzzy logic (FL), neural networks (NN) and 

genetic algorithms. In this context, NN and FL are more frequently used together either in 

series or as an integration to form hybrid systems, in which the reasoning and inference 

power of FL can be complemented by adaptive learning nature of NN. These systems are 

great alternatives to the other complex inversion algorithms because of their high adaptability 

to changes, learning capability, simplicity of use, and low complexity of the theory. In case 

of ECT inversion, neuro-fuzzy hybrid systems could be directly trained using known 
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geometrical characteristics of defects and features of the corresponding signals as outputs and 

inputs, respectively. To obtain the input/output data, one method is to prepare a large set of 

samples containing defects of known geometries although; such experiments could be very 

costly. As an alternative, one could use the outcome of the numerical discretization 

techniques such as finite element modelling (FEM) to produce such data to train SC engines. 

 

FEM is a diverse numerical method capable of dealing with complex geometries and 

modelling of inhomogeneous media. FEM simulations of low frequency ECT are mainly 

carried out based on a differential equation in frequency domain derived from the quasi-static 

approximation of Maxwell’s equations. The solver time for frequency domain formulation is 

markedly lower than that of time transient solutions. FEM has been previously used to model 

the interaction of eddy currents (EC) with different types of flaws. However, related studies 

devoted to differential probes are limited in number and thus, the competency of such tools to 

model these probe types requires further research. Additionally, EC signal predictions by 

FEM for arbitrarily sized defects could provide a foundation for many inexpensive model-

based QNDE studies such as reliability assessment and defect characterization. 

 

How to determine the reliability of inspection? 

As another crucial step in QNDE, the reliability of the NDT method shall be assessed. It is 

well known in the field of NDT that different inspectors report different results for inspection 

of the same flaw. Such discrepancies are not only a matter of human error, but also could 

occur due to changes in non-destructive evaluation (NDE) system parameters and 

environmental conditions. Statistical analysis of inspection results, which considers 

inspection uncertainties, provides useful information on the probability of false indication 

(POFI) and probability of detection (POD). In industry, POD curves are used as a measure to 

quantify the detection reliability affected by the inspection system parameters. As an 

advantage, POD and POFI enable us to compare the reliability of detection for different NDE 

systems used for the same application. As implied earlier, the detectable defect size plays an 
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important role in life assessment models used for planning inspections. In this context, the 

higher reliability of NDE system results in higher POD and longer inspection intervals.  

 

Why automated eddy current testing? 

Recent advances in robotics have allowed industrialists to integrate new automated systems 

with innovative inspection techniques. In contrast to traditional approaches, employing these 

systems provides advantages such as shorter inspection time and lower labor cost while 

gaining an increased repeatability for scans. However, automated systems still need further 

improvements. In automated ECT, the imprecisions associated with the positioning and 

handling of probe during robotic scans can result in acquisition of erroneous signals. This in 

turn could give rise to misinterpretations of the signal and thus, taking wrong decision and 

actions. To address these issues, probe manipulation imprecisions, which are manifested by 

lift-off and tilt in ECT, are highly important and shall be investigated through modelling   

and experiments. 

 

Summary 

Nowadays, as the main challenge in NDT society, characterization and reliable sizing of 

defects are the subjects of a lot of ongoing research work. This is only achievable through 

development of reliable inversion algorithms. These algorithms are more frequently 

established in two ways; a) coupling an optimization algorithm with forward models 

developed according to physical principles of the NDT method, and b) developing SC 

algorithms using the AI methodologies and training them by input/output data. The first case 

requires development of either analytical or semi-analytical formulations, the derivation of 

which can be very awkward for complex problem geometries in electromagnetics. The 

second approach is less complicated and more flexible.  To these algorithms, the input can be 

the characteristics of the NDT signal acquired for the defects while the output stands for the 

dimensions of the corresponding defect. Normally, to collect such input/output data, one 

needs to have access to a large set of defects with diverse geometries in order to provide 
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enough training for SC algorithms. Fortunately, this data could be generated through 

numerical modelling approaches, such as FEM. However, like the analytical approach, 

numerical models should also be validated through experiments. Apart from defect sizing, 

the reliability of detection should also be taken into account in QNDE studies. Regardless of 

the chosen NDT method, inspection responses are accompanied by variabilities. These 

variabilities are majorly introduced by parameters such as human, environment, and 

inspection system. To account for all the influential factors and provide a measure for the 

reliability of inspection, POD analyses can become handy statistical tools. 

 

Research objectives 

This research was conducted to fulfill the objectives of two projects titled as MANU-418 and 

DPHM-601, which were conceived by Consortium de Recherche et d'Innovation en 

Aérospatiale au Quebec (CRIAQ). The first project started in 2011 and completed in 2015. 

Three universities (École de technologie supérieure (ETS), Université Laval and Concordia 

University) as well as two industrial partners (Pratt and Whitney Canada, and L-3 MAS) 

were involved in this project. MANU-418 was mainly focused on performing automated 

NDT surface inspections of components using a 6-axis MOTOMAN robotic arm in order to 

locate and size the potential flaws. During this project, we had the support of National 

Research Council Canada (CNRC-NRC). The second ongoing project is defined by CRIAQ 

and started in 2015. Three universities (ETS, Université de Montréal, and École 

Polytechnique de Montréal) were involved in this collaborative effort along with industrial 

partners including  Safran, Héroux-Devtek, and Bell Helicopter. The project aims to develop 

a NDT method to detect and evaluate hydrogen embrittlement in high strength steels.  

 

Research Contributions 

The present dissertation is a part of a larger study carried out in the framework of the 

aforementioned projects. The priority of the dissertation is to scrutinize and deliberate over 

the ECT of surface flaws through both experiments and numerical simulations in order to 
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satisfy the objectives of MANU-418 project. The followings stand for the original 

contributions of the present research in accordance to the MANU-418 project objectives. 

These contributions are presented in form of three journal papers embodied in chapters 2 to 4 

of this dissertation and two conference presentations for which the abstracts are presented in 

APPENDIX I and II. The following provides a list of these publications in a        

chronological sequence: 

• Ehsan Mohseni, Martin Viens, Demartonne Ramos França, « A Model-Based Study 

of The Effect of Semi-Elliptical Surface Notch Geometry on The Signal of a Split-D 

Eddy Current Probe » In NDT in Canada 2016 & 6th International CANDU In-

Service Inspection Workshop, November 15-17, 2016, Burlington, Ontario, Canada.  

• Ehsan Mohseni, Martin Viens, « Sensitivity of Eddy Current Signals to Probe’s Tilt 

and Lift-Off While Scanning Semi-Elliptical Surface Notches - A Finite Element 

Modeling Approach ». In NDT in Canada 2017, June 6-8, Quebec City, Quebec, 

Canada.  

• Ehsan Mohseni, Demartonne Ramos França, Martin Viens, Wen Fang Xie, Baoguang 

Xu, « Finite Element Based Modelling of Surface Cracks Scanning Using a 

Reflection Differential Split-D Eddy Current Probe ». Submitted to Journal of 

Nondestructive Evaluation in June 2018.  

• Ehsan Mohseni, Martin Viens, Wen-fang Xie, « Adaptive Neuro-Fuzzy Inference 

System Trained for Sizing Semi-Elliptical Notches Scanned by Eddy Currents ». 

Submitted to Journal of Nondestructive Evaluation in June 2018.  

• Ehsan Mohseni, Hamid Habibzadeh Boukani, Demartonne Ramos França, Martin 

Viens, « A Reliability Study on Automated and Manual Eddy Current Testing ». 

Submitted to Journal of Nondestructive Evaluation in July 2018. 

 

Paper #1, « Finite Element Based Modelling of Surface Cracks Scanning Using a Reflection 

Differential Split-D Eddy Current Probe », aims at evaluating the capacity and reliability of 

the FEM in simulation of absolute as well as differential ECT surface probes. The study 

covers the design and development of a FEM representing the interaction between a simple 

air-cored ECT probe and electrical discharge machined (EDM) surface notches. The design 
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of the probe and notches as well as the material properties were set to be identical to the ones 

used in a benchmark ECT study (Burke, 1988). Afterwards, the predictions of the model 

were compared to impedance measurements of the benchmark study. Moreover, the 

interaction between electromagnetic field of a split-D surface probe and rectangular through-

width notches were simulated. Subsequently, to check the validity of the model, ECT signals 

generated by FEM simulations were compared with the experimental results. The simulations 

were carried out using COMSOL Multiphysics®, which is a commercially available       

FEM software. 

 

Paper #2, « Adaptive Neuro-Fuzzy Inference System Trained for Sizing Semi-Elliptical 

Notches Scanned by Eddy Currents », considers the development of the FEM representing 

the interaction of the electromagnetic field of the split-D probe with semi-elliptical surface 

EDM notches. Subsequently, the validation of the model was carried out through comparing 

the model output with the outcomes of experiments. The sensitivity of ECT signals to 

common robotic positioning errors, emerging as probe’s lift-off and tilt during automated 

scans, were also studied and discussed. Followed by the model validation, semi-elliptical 

notches possessing different dimensions were modelled to constitute a size dependent table 

of ECT signals. Afterwards, the table of the model-generated ECT signals was utilized to 

train a SC algorithm for notch length estimation. Finally, the influence of variations in ECT 

signals, due to the robotic positioning errors, on the sizing results was studied. 

 

Paper #3, « A Reliability Study on Automated and Manual Eddy Current Testing », holds a 

discussion regarding the assessment of the reliability of manual and automated inspections 

conducted by ECT split-D probe. In the study, the noise level connected to each scan 

technique is evaluated. The dependency of noise on surface roughness orientation as well as 

frequency is investigated. Additionally, the effect of crack orientation on variations of the 

signal amplitude for this probe is studied. Finally, POD curves were extracted by carrying out 

manual and automated inspections on several AISI 410 martensitic steel samples at three 

different frequencies. Consequently, the extracted noise levels and POD curves acquired for 

one technique were compared to that of the other.  
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Furthermore, as required by DPHM-601 project, the effect of hydrogen in martensitic SAE 

4340 steel on the ECT probe’s impedance was investigated through FEM and experiments. 

The results and observations are partly discussed in the recommendation section                   

of this dissertation. 

 

The structure of thesis 

The present thesis is structured in 4 chapters. The first chapter is devoted to the review of 

previously published papers in the field of ECT. This chapter provides a better insight into 

the concepts of ECT modelling, reliability studies, and SC. 

 

Second chapter encompasses the first submitted paper entitled “Finite Element Based 

Modelling of Surface Cracks Scanning Using a Reflection Differential Split-D Eddy Current 

Probe”. The chapter explores the possibility of developing FEM for ECT split-D probe and 

studies the interaction between its electromagnetic field and the surface notches. 

 

The second paper submitted with the title of “Adaptive Neuro-Fuzzy Inference System 

Trained for Sizing Semi-Elliptical Notches Scanned by Eddy Currents” is presented in the 

third chapter. This chapter presents numerical studies regarding the ECT signal variations 

caused by the probe’s tilt and lift-off. Furthermore, details of using SC for inversion of ECT 

signals are discussed. 

 

The final chapter presents the third submitted paper with the title of “A Reliability Study on 

Automated and Manual Eddy Current Testing”. In this chapter, the noise levels and PODs are 

extracted for both automated and manual inspections. Accordingly, the comparison between 

the two techniques is discussed in details. 

 





 

CHAPTER 1 
 
 

LITERATURE REVIEW 
 

This chapter aims to review the concepts of ECT and its modelling as well as the application 

of AI and POD for ECT. Therefore, each of the following subsections is devoted to one of 

these subjects. Subsection one contains the physical principles of ECT, the main parameters 

affecting the signal of ECT and, different approaches that have been employed to model the 

ECT of surface notches with an emphasis on FEM. Subsection two provides a brief 

introduction to the basics of SC. In addition, a number of studies concentrated on classifying 

and sizing surface flaws by means of SC algorithms are reviewed there. In the last 

subsection, the statistical reliability study used for NDE systems is explained in summary. 

Furthermore, the application of such studies in ECT is described and the related published 

researches on this subject are presented. 

 

1.1 Eddy current testing 

Inspection of manufactured parts and systems during their service life is essential in order to 

ensure that they meet the design expectations and have a safe functionality during the 

specified period of service. These inspections shall be carried out in a proper way to not 

impair their properties and performance (Blitz, 2012). Non-destructive test methods used for 

such inspections have gained importance due to the rapid technological progress during the 

past 60 years in various industries such as transportation and energy, where the risks are high 

and strict precautions are required. In general, NDT name is assigned to a variety of methods 

and techniques concerned with quality, serviceability and integrity of a wide range of 

structures. Particularly in transportation industry, structures demand reliable, accurate and 

fast NDT solutions in order to avoid catastrophic accidents. ECT is one of the well-known 

electromagnetic NDT methods that is frequently used for these purposes. It is widely used to 

inspect conductive ferromagnetic and non-ferromagnetic materials since the method provides 

high sensitivity to surface and near surface flaws. ECT found its way to the aerospace 

industry in early years of its application when the aircraft structures were majorly made of 
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aluminum alloys. About 30 years into the service life of the first fleets, tragedies started to 

take place due to the fatigue failures. Ageing of airframes causes the material characteristics 

to degrade in components. In addition, all components are subjected to cyclic loads 

associated with taxing, pressurization, takeoff, landing, and depressurization. The changes in 

material characteristics along with the in-service cyclic loads in these structures mostly 

promote the formation of fatigue-induced cracks and stress corrosion cracks for which, very 

often, ECT is the preferred NDT method. 

 

1.1.1 Electromagnetic induction 

Placing a conductor loop in a time varying magnetic field brings about the electromagnetic 

induction process. In the process, an electromotive force (EMF) is induced in the conductor 

loop according to the Faraday’s induction law. EMF produces a current flow in the loop 

where the induced voltage is proportional to the applied magnetic flux as shown                   

in Equation 1.1. 

 

 ℰ = −߲Φ߲ݐ 	(ܸ) (1.1) 

 

In this equation, the negative sign indicates the direction of EMF according to the Lenz’s 

law. As implied by this law, the current flowing in the loop is directed in a manner to 

generate a secondary field opposing the one that produced the current. In a more general 

case, when a solenoid is connected to an alternating current (AC) generator, as demonstrated 

in Figure 1.1(a), it is placed in its own electromagnetic field. The field alternates with the 

same frequency as the injected current does and therefore, a back-EMF is applied across the 

solenoid according to Equation 1.1. The potential difference across an ideal coil, with no 

ohmic resistance, is 90° out of phase relative to current flowing in it. Therefore, the out of 

phase voltage resists the changes of the current in the coil. This type of resistance formed by 

the coil self-inductance (L) is called inductive reactance (X). AC resistance of the coil, or so-

called impedance (Z), is a complex value comprised of X as the imaginary part along with the 
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Ohmic resistance (R) of the wires as the real part. Equation 1.2 shows the impedance Z as a 

function of X and R. 

 

ࢆ  = ඥ(߱ܮ)ଶ + ܴଶ)	(Ω) (1.2) 

 

As shown in the Equation 1.2, X  itself is a function of both L and angular frequency (ω). 

According to Equation 1.3, inductance of a long solenoid is directly proportional to relative 

permeability of the core inside the coil ( μ ), square of the coil turns (N) as well as the cross 

sectional area of the coil (A). Besides, it is inversely proportional to the length of the 

magnetic path. 

 

ܮ  = ௥ߤ଴ߤ ܰଶ݈ܣ  (1.3) (ܪ)

 

In Equation 1.3, 0μ is the permeability of the free space, rμ is the relative permeability of the 

core, and l stands for the magnetic path (Hellier, 2013). 

 

 

Figure 1.1 (a) Self-induction for a current carrying coil (Hellier, 2013) 
and, (b) interaction between the coil’s electromagnetic field and the 

conductor leading to formation of ECs (Hellier, 2013) 

 

As depicted in Figure 1.1(b), when a current carrying loop is brought near to a conductive 

component, the time varying electromagnetic field produced by the loop penetrates the 

component. Consequently, according to the Faraday’s law of induction, the induced EMF 

within the sample triggers the flow of circular and continuous currents called ECs. As stated 
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by Lenz’s law, the ECs flow in a direction to produce a secondary magnetic field that 

opposes the changes in primary one (García-Martín, Gómez-Gil, & Vázquez-Sánchez, 2011; 

Shull, 2016). The opposition of secondary field forms a reduced net flux in the loop in case 

of non-ferromagnetic conductors. As a result, the loop’s X would decrease as compared to the 

X of the loop placed in air and thus, the loop’s impedance reduces. It is conventional to show 

impedance variations on impedance plane as demonstrated in Figure 1.2. 

 

 

Figure 1.2 Transformation from (a) an impedance plane 
to (b) a normalized impedance plane (Hellier, 2013). 

  

Referring to Equation 1.2, one can notice that the change in the test frequency changes the X 

value and accordingly, the impedance. Due to this fact, the scale of impedance plane requires 

to be scaled every time the test frequency changes. To address that, impedance plane is used 

in normalized form. This transformation is depicted in Figure 1.2, where the figure at left 

represents an impedance plane and the right one shows the normalized axes. On the new 

plane, the values of inductive reactance and resistance for the isolated coil are at one and 

zero, respectively. Normalizing the vertical and horizontal axes are carried out according to 

Equations 1.4 and 1.5, respectively (García-Martín et al., 2011; Hellier, 2013). 
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ݏ݅ݔܽ	݈ܽܿ݅ݐݎ݁ݒ	݀݁ݖ݈݅ܽ݉ݎ݋ܰ  = ߱ܮ ⁄଴߱ܮ  (1.4) 

ݏ݅ݔܽ	݈ܽݐ݊݋ݖ݅ݎ݋ℎ	݀݁ݖ݈݅ܽ݉ݎ݋ܰ  = ܴ − ܴ଴ܮ଴߱ 	 (1.5) 

 

In these equations, 0L and 0R are the inductance and the resistance of the inspection when it is 

isolated in air, respectively. In the rest of this chapter, the impedance plane implies the 

normalized one. 

 

1.1.2 Eddy current testing and influential parameters 

EC penetration depth is limited by the test frequency as well as the permeability and the 

conductivity of test material. Skin depth of ECs is determined by the standard penetration 

depth which is a depth in the material at which the density of eddy currents reduces by 63% 

of the value at the surface. The standard penetration depth is commonly shown by δ. Its 

relation with frequency, conductivity (σ) and relative permeability is presented in Equation 

1.6. The formulation is written based on, Equation 1.7, which is derived for the current 

density through solving Maxwell’s equations for electromagnetic plane waves 

 

ߜ  = 1 ඥߤߪ݂ߨ଴ߤ௥ (݉)ൗ  (1.6) 

ࢋࡶ  = ૙݁ିටఠఓబఓೝఙଶࡶ ௫݁ି௝ටఠఓబఓೝఙଶ ௫݁௝ఠ௧ (1.7) 

 

In Equation 1.7, 0J is the current density at the material’s surface. The equation shows that 

the EC penetration is not limited to one standard penetration depth however, as shown in 

Figure 1.3(a), the density of currents decreases exponentially as the currents develop deeper 

into the material. Furthermore, the phase of the currents flowing under the surface lags the 

phase of ones on surface. This phase variations are linearly related to the penetration depth 

according to Figure 1.3(b). 
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Figure 1.3 (a) Current density versus the penetration depth (Hellier, 
2013), (b) changes in ECs’ phase versus their depth of penetration 

(Hellier, 2013) 

 

Although some parameters such as the coil configuration, size, and electromagnetic coupling 

between the test specimen and the coil do not affect the standard depth of penetration, but 

they change the absolute amplitude of eddy currents at any depth (Mix, 2005). The coupling 

of the coil and the test material is a function of the distance between the two. The distance is 

known as probe lift-off and fill factor in ECT for surface coils and encircling coils, 

respectively. Increasing the lift-off and decreasing the fill factor decrease the coupling and 

consequently, reduces the signal amplitude. Similarly, by tilting the EC coil with respect to 

the normal of the surface of the material the field reaching the material diminishes and as a 

result, the signal amplitude reduces. Aside from probe parameters, there are other parameters 

related to the test subject affecting the impedance of an ECT coil. In fact, any change in the 

characteristics of the material that affects the distribution of EC flow influences the coil’s 

impedance. Accordingly, ECT is advantageous in detecting and characterizing anomalies that 

have an effect on material properties. From this category, inhomogeneities in conductivity 

and permeability of the material, flaws located on surface or close to surface, as well as the 

variations in thickness when they are smaller than the sensing depth of ECs (i.e. 3δ) can be 

named. Each of these changes the probe’s impedance in a different manner and also provides 

a distinct signature on impedance plane.  

 

Depending on the application, a wide variety of eddy current instruments and probes exists. 

In terms of the operation mode, EC probes can be divided into two main classes based on the 

configuration of their pickup coils; a) the absolute, and b) differential (Shull, 2016). As 
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demonstrated in Figure 1.4(a) and (b), absolute probes are comprised of a single receiver coil 

whereas differential probes possess two receiver coils, which are wound in opposite direction 

and connected differentially. As shown in Figure 1.4(b), EC probes can be configured to 

work in reflection (driver-pickup) mode, in which a primary coil is used for excitation while 

the secondary absolute or differential coils are meant for sensing. This type of configuration 

helps to avoid the temperature drift caused by the wire resistance since the current only flows 

in the driver coil whereas the current in receiver coils is very small; therefore, receivers do 

not experience heating (Cecco, Van Drunen, & Sharp, 1983). Furthermore, it would be 

possible to optimize the driver and receiving coils individually to achieve an enhanced 

probe’s flexibility and sensitivity (Burke & Ibrahim, 2004). Reflection probes have been 

exploited for diverse applications such as coating thickness and conductivity measurements, 

remote field ECT, and surface defect detection (Burke & Ibrahim, 2004). 

 

 

Figure 1.4 (a) Absolute and (b) reflection 
differential configurations of ECT probes                       

(García-Martín et al., 2011) 

 

Split-D reflection differential surface probe which is comprised of one driver coil and two 

differentially wound D-shaped receiver coils is among the most sensitive ECT probes which, 

in particular, are used for the purpose of surface defects detection. Each of the receiver coils 

in this probe is filled with a D-shaped ferrite core and a cylindrical ferrite shield contains the 

assembly of the coils. A 3-D half model reconstructed by the X-ray tomography of the probe 

is depicted in Figure 1.5(a). The probe’s components are visible in a microscopic image that 

captures a quarter of the probe’s tip in Figure 1.5(b).  A more detailed presentation of the 
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probe’s structure and geometry is provided later within chapters 2 and 3. The small footprint 

of the probe and its differential configuration makes it one of the most suitable choices for 

inspection of tiny surface breakings such as fatigue cracks. 

 

 

Figure 1.5 (a) 3-D model of a split-D probe reconstructed by X-ray tomography and 
sectioned in half, and (b) microscopic image taken from the split-D probe’s tip. 

 

1.1.3 Modelling in eddy current testing 

In order to describe systems and to predict their response, analytical and numerical models 

are developed based on their governing equations. These models are called forward models, 

which are used to predict the measurement results by taking into account the given 

parameters describing the problem (Tarantola, 2005). Forward models have unique solutions 

for simple problem geometries and they could be expressed in entirely basic mathematical 

functions. This type of solution to a forward problem is called a closed-form solution. For 

instance, a partial differential equation (PDE) written based on the set of Maxwell’s 

equations can be derived for an ECT problem. Depending on the complexity of the ECT 

problem, one might be able to find a closed-form solution to infer the ECT probe’s field 

distribution and to evaluate the probe’s impedance, accordingly. Otherwise, it is very 

common to estimate the solution by means of semi-analytical methods as well as purely 

numerical calculations. Maxwell’s equations relating the material properties to 

electromagnetic fields in differential form are presented in Equations 1.8 to 1.11            

(Shull, 2016). 
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 ∇ × ࡱ = ݐ߲ࡴߤ߲− ݈݈݁ݓݔܽܯ)	 −  (1.8) (݊݋݅ݐܽݑݍ݁	ݕܽ݀ܽݎܽܨ

 ∇ × ࡴ = ࡶ + ݐࡰ߲߲ 	(ݓ݈ܽ	݈ܽݐ݅ݑܿݎ݅ܿ	ݏᇱ݁ݎ݁݌݉ܣ)	 (1.9) 

 ∇ ∙ ࡰ = 	(ݏ݈݂݀݁݅	ܿ݅ݎݐ݈ܿ݁݁	ݎ݋݂	ݓ݈ܽ	ݏݏݑܽܩ	)	ߩ (1.10) 

 ∇ ∙ ࡮ = 	(݉ݏ݅ݐ݁݊݃ܽ݉	ݎ݋݂	ݓ݈ܽ	ݏݏݑܽܩ)	0 (1.11) 

 

where, E and H are electric and magnetic field intensities, respectively. D and B are electric 

and magnetic field densities, respectively. In addition, ρ is the charge density and J stands for 

the electrical current density. In Maxwell’s equations, the relation between field densities and 

intensities is specified by the constitutive equations presented in Equations 1.12 and 1.13, 

where ε symbolizes the electric permittivity of the material. 

 

ࡱ  =  (1.12) ࡰߝ

ࡴ  = ࡮ ⁄ߤ 	 (1.13) 

 

A closed-form solution to the PDE derived for a single cylindrical air-cored coil placed over 

a semi-infinite conductor cladded with a conductor of a finite thickness was first suggested 

by Dodd et al. (C. Dodd & Deeds, 1968; C. V. Dodd, Luquire, Deeds, & Spoeri, 1969). Their 

forward model was a start to ECT modelling by providing the solution for electromagnetic 

vector potential (A) in the form of integrals of first-order Bessel functions. Their model made 

it possible to evaluate various electromagnetic quantities alongside the coil’s impedance 

using the vector potential. The model holds for linear, isotropic and homogenous materials 

and axisymmetric problem geometries. Their proposed solution exceeded earlier models in 

many aspects; it was more comprehensive as compared to the Hochschild’s model developed 

for an infinite coil (Hochschild, 1959), and more capable relative to the model proposed by 

Libby, based on transformer approach (Libby, 1971). The Dodd’s model was the foundation 

to many consecutive inversion studies, which are performed to determine the thickness and 

the conductivity of metal layers (J. R. Bowler & Norton, 1992; Moulder, Uzal, & Rose, 

1992; Norton, Kahn, & Mester, 1989). Several semi-analytical models have been developed 

since the theory of Dodd et al. for different axisymmetric problem geometries. These 
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configurations include the interaction between the field of air-cored/ferrite-cored ECT probes 

and undefective/defective conductors (Lu, Bowler, & Theodoulidis, 2012; H. Sabbagh, 

1987). Noteworthy that, in the most of these studies, the problem becomes more complex as 

either a ferrite core is added to the coil or a defect is introduced to the material (J. R. Bowler, 

Theodoulidis, Xie, & Ji, 2012; Buvat et al., 2004; May, Zhou, & Morton, 2007; 

Theodoulidis, 2010). The solution to such problems is not unique anymore and therefore, 

they are mostly tackled through semi-analytical and numerical modelling, especially when 

the geometry is not axisymmetric. In fact, in many defect inspection applications of ECT, the 

geometry of the problem becomes non-axisymmetric. In such studies, ideally shaped 

rectangular or semi-elliptical EDM notches with finite openings are mostly used in modelling 

when a material contains surface and subsurface breakings (J. Bowler, Sabbagh, & Sabbagh, 

1990; J. R. Bowler, 1994). In this context, many different studies have tried to use 

simplifying assumptions in order to suggest analytical solutions to the problem (Auld, 

Muennemann, & Winslow, 1981; Beissner, 1988; Burke, 1985, 1988). However, thanks to 

advances in computer science, the majority of ECT problems of this hand are approached by 

numerical methods nowadays. These methods discretize the problem’s geometry into 

elements and they provide an approximate solution to either electromagnetic field integral 

equations or differential equations (Zeng, Udpa, & Udpa, 2010). As an example, Bowler et 

al. write integral equations for electromagnetic field generated by the source as an integration 

of Green’s dyadic functions. Subsequently, these integrals are discretized over the geometry 

of the problem and evaluated afterwards (J. Bowler et al., 1990; J. Bowler, Yoshida, & 

Harfield, 1997; H. A. Sabbagh, Murphy, Sabbagh, Aldrin, & Knopp, 2013). Their approach 

based on integral equations is presented in form of a volume integral method (VIM) code. A 

review of the studies relying on this method for evaluation of split-D probes’ impedance is 

presented in subchapter 1.1.5. Noteworthy that deriving such equations based on the Green’s 

function could be extremely difficult for complex geometries. Therefore, anywhere within 

ECT studies that geometrical irregularities, as well as field and material nonlinearities are 

involved, numerical methods based on the solution of differential equations such as finite 

difference method (FDM), boundary element method (BEM), and FEM are preferred. 

Ferrite-cored probes, ferromagnetic materials and non-axisymmetric geometries are ECT 
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studies that fall in this class. FDM was the only available method during the early times of 

emergence of computers and its applications are limited nowadays (Auld & Moulder, 1999). 

BEM is frequently used in conjunction with certain analytical approximations of the 

problem. The other alternative is FEM, which is believed to be the most flexible in dealing 

with complexity and nonlinearity of the ECT problems (Chari, 1974; Ida, Palanisamy, & 

Lord, 1983). The following provides a brief review of the FEM-based researches studying 

the electromagnetic field of ECT probes.  

 

1.1.4 Finite element modelling of eddy current probes 

FEM has been successfully used for many low frequency EC applications. A long list of such 

publications that use the FEM to analyze and study the EC phenomenon is provided within 

the FEM in NDT bibliography (Mackerle, 1999, 2004). The early approaches aimed to model 

axisymmetric problem geometries in two dimensions (2-D). From this class, a surface coil 

over an aluminum slab, an encircling coil inspecting an aluminum rod with copper cladding, 

and a bobbin probe inspecting for crevice gap in steam generators’ support plate were studied 

in 2-D axisymmetric (Palanisamy & Lord, 1979). Through 2-D axisymmetric modelling the 

geometry of a bobbin absolute coil inspecting the crevice gap was also optimized (Ida, 

Betzold, & Lord, 1982). The same authors also developed 2-D axisymmetric models for 

absolute and differential bobbin coils inspecting a tube with an outer diameter slot (Ida et al., 

1983). The agreement between the models’ predictions and experimentally measured signals 

was promising. They were also able to optimize the coil size and the spacing between the 

differential coils through the model.  

 

Advances in computer science accompanied the technological growth of EC probes. 

Therefore, the studies are more inclined toward 3-D analysis of the probe’s field interaction 

with defects. In this regard, two benchmark problems, defined by testing electromagnetic 

analysis methods (TEAM) workshop (Society) and JSAEM (Japan Society of Applied 

Electromagnetic and Mechanics) (Toshiyuki Takagi, Uesaka, & Miya, 1997), concerning an 

absolute surface coil scanning a surface rectangular notch were modelled in 3-D using the 
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FEM solver within COMSOL multiphysics® (Santandréa & Le Bihan, 2010). The coil model 

was prepared using the pre-defined multi-turn coil domain in COMSOL which considers a 

uniform current density across the coil cross sectional area and provides a reasonable 

approximation for low frequency ECT. The coil was moved along the notch length and the 

coil’s impedance was calculated at each scanning position in order to plot impedance 

changes. Three layers of first order elements were defined across the first standard 

penetration depth to provide a better resolution for the higher density of ECs that flow close 

to surface. Eventually, the simulation results were compared to the findings of the benchmark 

studies for validation. Another paper that uses COMSOL was used by Rosell and Persson as 

the main FEM tool to investigate one of the problems presented by TEAM workshop (Rosell 

& Persson, 2011). In their 3-D model presented in Figure 1.6(a), a rectangular surface notch 

was scanned using a reflection differential surface probe for two different scanning 

directions; a) perpendicular to, and b) parallel to the notch length. The problem was truncated 

using a box encapsulating the assembly of the coil and sample in their study. As shown in 

Figure 1.6(b), the size of the box was then optimized based on the attenuation of A field. 

Subsequently, to calculate the probe’s impedance variations as it scans the notch, several 

scan positions were modelled across each of the scan directions.  

 

 

Figure 1.6 (a) 3-D assembly model for TEAM problem 8. Scan directions 
modelled through FEM and the structure of the reflection differential surface 

probe used in simulations (Rosell & Persson, 2011), and (b) four different 
levels of the vector potential’s amplitude/maximum amplitude ratio and the 

truncation box defined on that basis (Rosell & Persson, 2011) 



23 

Noteworthy that to minimize the numerical errors connected to the mesh non-uniformity, the 

probe’s impedance at each position was calculated by subtracting the probe’s impedance 

when the notch is present from the impedance of the probe at the same position in absence of 

the notch. Consequently, they were able to investigate the effect of the truncation box size on 

the signal of their probe. They also explored the edge effect on the resulting signal           

using COMSOL. 

 

The same authors prepared a model for an absolute surface coil scanning a surface 

rectangular notch according to TEAM problem 15 (Rosell & Persson, 2012c). They used the 

quasi-static approximation of Maxwell’s equations to develop their FEM and validated their 

model by comparing it against experiments. They also tried to modify their model of EDM 

notch by defining different types of electrical contacts between the notch walls in order to 

reproduce the ECT signal of a closed surface fatigue crack having the same size as the notch. 

The effect of the contact types and their corresponding conductivity values was then 

investigated on the signal of the probe and consequently, the results are compared to 

measurements. The best agreement between the model and experiments was achieved as the 

discrete contact points was used to model conductivity bridges. The main purpose was to 

reproduce the signal of fatigue cracks as closely as possible using FEM to be able to use the 

model to conduct future model-assisted POD (MAPOD) studies.  

 

Rosell also studied the impedance variations of a transmit-receive ECT probe as it scans over 

semi-elliptical closed surface cracks (Rosell, 2015). At each scan position, the probe’s 

impedance evaluation was performed in two stages. a)  an analytical evaluation when the 

crack is not present, and b) a numerical assessment using FEM when the crack is present. 

Subsequently, the impedance at each position was derived from subtraction of the impedance 

for two flawed and unflawed cases. The cracks were defined as surfaces with electric 

isolation boundary conditions in the model and so, they were assumed to be impenetrable to 

electric currents. The agreement between the numerical results and those of the 

measurements found to be acceptable.  
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In another study, the same strategy was used to generate ECT signal amplitude distribution 

for different defect sizes through FEM simulations (Rosell & Persson, 2012a). Signal 

response variabilities were required for a POD study. The simplified model that they used in 

their study for fatigue crack is shown in Figure 1.7(a), where the grey area represents the 

non-zero conductivity region of the crack. The contact condition, represented by ζ was 

considered as one of their weighted main coefficients of amplitude variability. The other 

main coefficients considered in the study included crack tilt relative to the surface, probe’s 

lift-off and crack’s size. 

 

Using the same fatigue crack concept presented in (Rosell & Persson, 2012a), ECT signals 

were simulated through FEM (Rosell & Persson, 2012b). In their models, the scans of an 

ECT probe over two types of semi-elliptical fatigue cracks with fixed length to depth ratios 

were simulated. In addition, the crack position relative to the scan line (L) as well as the 

crack orientation relative to the scan line (γ), as demonstrated in Figure 1.7(b), were 

considered as the parameters influencing the signal response of ECT. 

 

 

Figure 1.7 (a) Simplified closed fatigue crack model containing non-zero conductivity 
region proposed by (Rosell & Persson, 2012a), and (b) relevant input parameters that 

were accounted for in signal response POD by (Rosell & Persson, 2012b) 
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1.1.5 Model-based studies of split-D differential eddy current probe 

FEM has been used in a few studies on split-D differential probes thus far. However, the 

popularity of the tool for ECT analysis has started to grow in industries recently (Brown & 

Eviston, 2017; R. D. Mooers & Aldrin, 2016a). Nakagawa et al. pointed out the importance 

of having a knowledge of the internal structure of the probe prior to modelling (N Nakagawa, 

Khan, & Gray, 2000). In their study, a split-D differential probe was characterized for model 

inputs using X-ray tomography. Afterwards, the inputs were fed into their BEM code and the 

model’s predictions were compared to the experimental measurements for the purpose of 

validation. Another study by the same group investigates the effect of the notch opening and 

shape on the signals of split-D differential probe (Norio Nakagawa, Yang, Larson, Madison, 

& Raulerson, 2009). The study is interesting since EDM notches are frequently used in ECT 

model-based studies to represent fatigue cracks and thus, it is of high importance to gain an 

insight into the impact of different notch dimensional parameters on the ECT signals. This 

would allow one to optimize these parameters in order to achieve the best approximation for 

the signal of a given fatigue crack. It was demonstrated by them that the increase in notch 

opening results in the increase of the signal amplitude. According to their experimental data, 

as shown in Figure 1.8, testing a semi-circular notch with opening of 0.025 mm produces 

signal amplitude of 35% smaller as compared to the one obtained by testing a rectangular 

notch with opening of 0.127 mm. In their tests, the notch length and depth were 0.76 mm and 

0.38 mm, respectively. Furthermore, it was shown that the discrepancy between the 

modelling and the experiment results are more significant for a notch with smaller opening. 

They were also able to carry out an extrapolation for their model-based study of the notch 

opening to deduce the signal amplitude of a notch with an opening of 0 mm. These results are 

presented together with their measurements in Figure 1.8. 
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Figure 1.8 Experimental peak-to-peak voltage versus the notch opening for two 
types of rectangular and semi-circular notches, each having two different 
dimensions. Extrapolated model-based curves for the larger notches were 

superimposed on the experimental curves. Tests were carried out at frequency 
of 2 MHz on samples of Ti-6246 (Norio Nakagawa et al., 2009) 

 

The modelling of split-D probes was majorly explored by a group of researchers that have 

been actively working in the field of computational electromagnetics since mid-1960s (H. A. 

Sabbagh et al., 2013). A series of studies devoted to split-D probes are performed using their 

volume integral code (VIC 3D®) to investigate the performance of such probes. The 

following presents a brief review of their publications.  

 

A parametrized FEM study for two probe types of absolute and split-D differential scanning 

a surface notch was conducted using COMSOL (Brown & Eviston, 2017). The model 

geometry was prepared for the absolute probe according to the benchmark study of the Burke 

(TEAM problem 15) (Burke, 1988). The impedance data obtained from the simulations of 

the notch scan were compared to their experimental measurements, presented in their earlier 

publication, and the results of VIC 3D®. These results are illustrated in Figure 1.9. In the 

second part of this study, they looked at the impedance variations of an air-cored split-D 
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differential probe, with large dimensions, scanning over a rectangular notch while the scan 

line was aligned with the notch length. As shown in Figure 1.9, their simulation results for 

the probe’s impedance were presented along with the measurements of impedance 

spectroscopy and VIC 3D®. 

 

 

Figure 1.9 Comparison between the impedance data measured by impedance 
spectroscopy and those obtained from VIC 3D® and COMSOL modelling for (a) an 

absolute air-cored probe, (b) a split-D air-cored differential probe scanning 
rectangular surface notches(Brown & Eviston, 2017) 

 

The error in estimation of the probe’s impedance using COMSOL seems to be very small 

however; most of the commercially available split-D probes could be five times smaller than 

the custom probe used in this study. Furthermore, incorporating ferrite cores inside the 
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receiver coils and ferrite shield surrounding the coils, which is normally the case in off the 

shelf probes, can add to the complexity of the model and thus, the impedance evaluation. 

   

The next study covered the fabrication and modelling of two split-D probes that were larger 

than the comparable commercial ones (R. D. Mooers & Aldrin, 2016a). One of the probes 

included ferrite cores whereas the other was air-cored. The two probes were used to scan a 

rectangular surface notch in a manner that the scan line fell onto the line of the notch length. 

Impedance variations were recorded using an impedance analyzer (IA) as well as an UniWest 

ECT unit. The scan was also modelled in COMSOL and VIC 3D® for the two probes. The 

variations in each axis of the probe’s impedance are depicted in Figure 1.10(a) and 1.10(b) 

for air-cored and ferrite-cored probes, respectively. 

 

 

Figure 1.10 Comparison between the impedance data measured by IA, UniWest 
ECT unit, and those obtained from VIC 3D® and COMSOL modelling for a 

rectangular notch with 12.6 mm in length, 5 mm in depth, and 0.28 mm in width. 
The results for (a) an air-cored (R. D. Mooers & Aldrin, 2016a) and (b) a ferrite 

cored split-D probe (R. D. Mooers & Aldrin, 2016a) 
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According to their results, the simulated signal fell within the range of measurement’s error 

at most of the scan positions in both probe cases. However, a huge discrepancy was observed 

between the recorded signals of UniWest and those measured by IA for the air-cored probe. 

As stated by authors, the source of such difference did not fully correspond to the phase 

rotation of the UniWest unit. They were also able to study the effect of the probe’s tilt on the 

impedance variations, as it scanned the notch, using VIC 3D®. Accordingly, the discrepancy 

between the results of simulations and measurements grew, as the tilt increased. 

 

In one of their early works, three probe types of split-D differential air-cored and ferrite-

cored as well as a ferrite-cored split-D reflection differential were studied through modelling 

using VIC 3D® (R. Mooers, Knopp, & Blodgett, 2012). However, only the simulation results 

for a shielded ferrite-cored split-D differential probe scanning EDM notches in a Ti-6Al-4V 

plate were compared to impedance recordings. For that purpose, a Nortec 19eII ECT unit was 

used. The models were prepared in both VIC 3D® and ECSIM softwares. The agreement 

between the results obtained by simulations and measurements was not satisfactory since 

according to authors the measurements made by Nortec provided only relative measures of 

the impedance change and not the absolute values. As stated by them, results’ discrepancies 

could be partly due to the misalignments in the scan and unbalance of the D coils. Later on, 

in another effort, an IA besides Nortec 2000D were used by them to verify their model which 

was built in VIC 3D® for a ferrite-cored split-D differential probe (R. D. Mooers, Knopp, 

Aldrin, & Sathish, 2014). Two notches with lengths of 2 mm and 2.5 mm, carved in a Ti-

6Al-4V plate, were scanned in two directions. The first scan line was parallel to the notch 

length (L) and the second one was perpendicular (T). Based on their results, the shape 

agreement between the simulated and measured data was satisfactory for T scans, and the 

largest difference appeared in ∆X values of the smaller notch sizes. In L scans, simulation 

data deviated from the measurements’ more noticeably since the simulated results did not 

quite follow the experimental curve for secondary peaks that emerge between the primary 

ones. In most of the graphs reported there, the minimum peaks of ∆R and ∆X recorded by 

both IA and Nortec encountered an overshoot as compared to the ones obtained for 
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simulation. The effect was explained to be attributed to the dimensional asymmetry of the    

D-shaped coils.  

 

Same group carried out a model-based study to incorporate the effect of coils’ assembly tilts 

and shifts as well as dimensional variations of the probe’s constituent element since they 

believed that the internal coil assembly of Split-D probes was not always perfect and thus, 

they commonly have tilted and shifted assemblies within the probe’s housing (R. D. Mooers, 

Aldrin, & Knopp, 2015b). In addition, the rotation of the assembly within the housing was 

also studied through the model since the direction of D cores was not always as marked on 

the probe housing (R. D. Mooers & Aldrin, 2016b). The images of Figure 1.11(a) 

demonstrates the three types of parametric studies on rotation and tilt that included in their 

paper. The variations in impedance components, as the coil assembly was tilted by 10° in two 

opposite directions, is presented in Figure 1.11(b) for scanning a notch in L direction. They 

validated the study by performing experimental measurements using the probes fabricated 

inheriting such defects. 

 

 

Figure 1.11 (a) D-coils’ assembly rotation about Z axis and tilt in two different planes (R. 
D. Mooers & Aldrin, 2016b), and (b) variations of the real and imaginary parts of the 
probe’s impedance with its D-coil assembly tilted by -10° and 10° in XZ plane (R. D. 

Mooers & Aldrin, 2016b) 
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After some successful ECT model-based studies by this group, based on their forward solver 

VIC 3D®, inversion schemes were introduced for crack characterization. Although the 

volume integral code VIC 3D® is much faster than FEM solvers, it is not sufficiently rapid 

in order to incorporate it within a real-time inversion scheme for repeated calculations (J. C. 

Aldrin et al., 2014). Therefore, the authors presented a surrogate model based on their 

simulations to perform the inversion using a nonlinear least-squares estimator (NLSE). The 

suggested inversion approach was tested to estimate the depth, and width of through 

thickness, and mid-bore cracks in borehole of a 6.35 mm thick plate. The error in depth 

estimation was around 10% for the through thickness crack and 25% for the mid-bore. 

Similar to the former procedure, an interpolation table of ECT signals is prepared by carrying 

out simulations for notches having different sizes and simulating the scan of notches having 

different orientations with respect to the scan line (Shell et al., 2014). Based on the model-

generated data, a surrogate forward model was defined and then, it was calibrated with 

reference to the collected experimental data. Accordingly, the proper transfer coefficients 

relating the experimental measurements to the modelling results were deduced. Furthermore, 

utilizing the NLSE, inversion was carried out for surface cracks. Results of the study 

demonstrated a good length estimation capacity whereas the depth estimation accuracy found 

to be lower. 

 

In order to take into account the effect of rounding of bolt-hole edge during the inspection for 

potential fatigue cracks, a model-based study was conducted using COMSOL version 5.2 by 

(P. Underhill & Krause, 2017). Their main concern was to investigate if corner rounding has 

any effect on the response of a corner crack. Therefore, they generated a model for a split-D 

differential probe scanning corner EDMs of different openings. Their results showed that the 

COMSOL can be used effectively in such a study where generating a sample set 

representative of different rounding radiuses could have unreasonable costs. As concluded by 

them, rounding with a radius of 0.4 mm could reduce the signal strength of a corner        

notch by 20%.  
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In summary, except a few, the studies of the last decade on split-D probes were mainly 

conducted by one group who exclusively used VIC 3D® and BEM codes.  The reliability of 

these models were well-verified through experiments. In their studies, different probe’s 

imperfection scenarios that could be originated by displacement, tilt and rotation of the 

probe’s internal assembly were explored. In addition, the impact of variations of notch 

opening on the ECT signal was discussed for specific materials. In some studies, model-

based simulations were used for the scan of surface notches with different dimensions to 

form interpolation table of signals, based on which a surrogate model was built. Followed by 

that, the inversion was performed using NLSE algorithms incorporating the surrogate model. 

Although, the approaches used for crack characterization seemed to be promising, but their 

forward model was based on the simulations of a proprietary volume integral code. This 

dissertation also follows the objective of crack characterization however, FEM, as a more 

flexible and commercially available tool, is chosen to be the main analysis method for 

model-based studies. 

 

1.2 Soft computing 

The innovative SC approaches were introduced through several works of Lotfi Zadeh et al. in 

midst of 90s. They introduced the SC as a partnership of its different principal methodologies 

such as FL and NN. FL was introduced as an approximating inference system that were able 

to emulate the human brain’s perception, reasoning and decision making effectively by 

incorporating the imprecisions and uncertainties of the real world. For instance, the human 

reasoning is not binary like computers to evaluate the temperature as “yes” or “no”. In 

contrast, these measures are expressed vaguely as “hot”, “cold” and “fine”. The very early 

successful application of these systems was in control systems, where each FL system was 

identified by three distinctive processing units; fuzzifier, inference system, and defuzzifier 

(Sugeno, 1985b). Fuzzifier is a unit at which the membership functions (MF) are used to 

assign a degree of a membership between 0 and 1 to a linguistic expression or value as input. 

According to fuzzy set theory, which is commonly used to model linguistic expressions, 

every input can be defined as a set to which different MFs with smooth transition boundaries 
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could be assigned. This is where the parameters of MFs play a very important role in 

mapping the inputs for further implication of the system and accordingly, in determining the 

system output. In next stage, operations on fuzzy sets such as intersection, union and 

complement can be performed depending on the design of the system. The inference system 

serves as reasoning core  and includes the fuzzy IF-Then rules. In this unit, the rule’s 

antecedent might be a single part or multiple, depending on the number of inputs. Therefore, 

the fuzzy operators might come to play in order to unify the antecedent. The defuzzification 

unit is the last segment of the system where the consequence of the inference system is 

interpreted using the MFs. The system consequents can be provided in different manners. As 

an instance, Takagi-Sugeno type systems calculate the crisp weighted average of consequents 

as the output (Tomohiro Takagi & Sugeno, 1985). A demonstration of a two-input Sugeno 

inference system is presented in Figure 1.12. The inputs are each having two MFs and the 

output is linear. The set of rules for this system are presented in Equations 1.14 to 1.17 (Jang, 

Sun, & Mizutani, 1997). 

 

z	ℎ݁݊ݐ	݈݈ܽ݉ݏ	ݏ݅	ܻ	݀݊ܽ	݈݈ܽ݉ݏ	ݏ݅	ܺ	݂ܫ  = −x + y + 1 

 

(1.14) 

z	ℎ݁݊ݐ	݁݃ݎ݈ܽ	ݏ݅	ܻ	݀݊ܽ	݈݈ܽ݉ݏ	ݏ݅	ܺ	݂ܫ  = −y + 3		 (1.15) 

z	ℎ݁݊ݐ	݈݈ܽ݉ݏ	ݏ݅	ܻ	݀݊ܽ	݁݃ݎ݈ܽ	ݏ݅	ܺ	݂ܫ  = −x + 3		 (1.16) 

z	ℎ݁݊ݐ	݁݃ݎ݈ܽ	ݏ݅	ܻ	݀݊ܽ	݁݃ݎ݈ܽ	ݏ݅	ܺ	݂ܫ  = x + y + 2		 (1.17) 
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Figure 1.12 Membership functions of X and Y as the two inputs of a Sugeno system, and the 
surface output of the inference system (Jang et al., 1997) 

 

In addition to FL, adaptive NN that was inspired by human brain’s neurons and it has been 

present for a while in the field of SC as an information processing tool with perception and 

pattern recognition abilities. These networks are comprised of several nodes, which are 

interconnected by neurons or links. Depending on the direction of the links and the 

information flow, these networks can be feedforward or recurrent. Each node may have a set 

of constituent parameters which dictates the output of that node and accordingly, affects the 

entire behavior of the network. These modifiable parameters in the network, such as the 

aforementioned MF parameters, are varied repeatedly by means of optimization methods in 

order to converge the behavior of the network to a prescribed mapping. This is the task of 

optimization algorithms to set those parameters and as a result, change MFs to map a given 

data set of inputs to a known output. In the so called learning process for NN, a LSE in 

forward pass and a backpropagation algorithm in backward pass modifies the parameters in 

order to reproduce the desired system outputs (Jang et al., 1997). The capacity of such 

networks in modelling of nonlinear systems, besides the fact that FL and NN are being 

complementary results in forming of adaptive neuro-fuzzy systems. Adaptive neuro-fuzzy 

inference system (ANFIS) is one of these system types that has a very similar architecture to 

FL, which is complemented by adaptive learning algorithms of NN. ANFIS, owing to its 

high capacity to match any non-linear system, is employed in recent QNDE studies as a 
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universal approximator. Although the usage of these algorithms in ECT is in its infancy, but 

the attention paid to such approaches has been growing rapidly. The following provides an 

overview of previous studies concerning the application of SC in ECT. 

 

1.2.1 Soft computing in eddy current testing 

Smid et al. used ANFIS as one of their classifier systems to predict the size and angle of 

surface notches based on the obtained ECT signal (Smid, Docekal, & Kreidl, 2005). Other 

SC techniques were also exploited for the purpose of inversion. As an instance, in a study by 

Kojima et al., the notch profile shape was approximated using the integration of genetic 

algorithm and fuzzy inference system (FIS) (Kojima, Kubota, & Hashimoto, 2001). 

Moreover, in order to characterize the defects occurring on steam generator tubes, the result 

from a hybrid network consisting of a feedforward NN and a FL system was compared with 

the approximations made by each of NN and FL, individually. According to the reported 

results, error corresponding to the hybrid system was the lowest (Morabito, 1998).  In the 

work presented by Sikora et al., a fuzzy inference system was trained by measured signals of 

rectangular surface EDM notches in Inconel 600 plates (Sikora & Baniukiewicz, 2005). They 

used the data, which was collected at six different frequencies with an ECT system, to 

reconstruct the notch profile. Sixty percent of the signals were used for training and the rest 

were devoted to the system assessment. The designed system used a processing moving 

window, which encompassed five scanning positions at each frequency. Accordingly, a 

system with thirty inputs and one output was formed. Numerous system inputs made it 

impossible computationally to use ANFIS in their study. Therefore, they optimized the 

number of MFs and their related parameters through experiments and simulations in order to 

decrease the training load as well as the resulting number of rules. Their results for the 

profile reconstruction for EDM notches and some natural flaws seemed to be promising, even 

though the estimation error was slightly high for the flaws with irregular profile shapes. Song 

et al. were also used a hybrid intelligent system comprised of two different architectures of 

NN, probabilistic and back propagation (Song & Shin, 2000). These two were employed to 

analyze the signals of a differential bobbin probe inspecting axisymmetric I, and V shaped 
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grooves located on an Inconel 600 tube. One of the networks was devoted to classification 

while the other to sizing. The scan of two hundred grooves by means of ECT probe was 

simulated using FEM at two different frequencies in order to generate model-based signals 

for training. In next step, the model was validated by carrying out measurements. Ten signal 

features were used as inputs for classification and another ten was extracted for sizing by 

only including the features that had the most sensitivity to dimensional changes of the 

groove.  Rosado et al. proposed a new method to extract the features of ECT signals 

(Rosado, Janeiro, Ramos, & Piedade, 2013). As reported by them, a trained NN with model-

generated signals was used to deduce the length and depth of surface notches. They 

introduced a function, comprised of the summation of two-paired odd Gaussian functions, to 

reproduce the ECT signal of inspected notches. The related parameters of Gaussian functions 

were chosen to serve as six inputs to their network. In a study by Rao et al., a NN was trained 

to estimate the depth in real time for both transversal and longitudinal notches located in a 

welded austenitic steel based on the two-frequency ECT signals (Rao, Raj, Jayakumar, & 

Kalyanasundaram, 2002). They extracted twelve effective parameters from the impedance 

trajectories. They also trained the network to neglect the edge effect and lift-off variations. 

Half of the number of notches in the study was used for on-line training while the other half 

was kept to test the system. Using their network, they could produce the depth profile 

excluding the noise in the signal created by the inhomogeneities of the welded area. 

 

In the present study, a single output Sugeno type fuzzy inference system is used to estimate 

the notch lengths (Sugeno, 1985a). As a part of MANU-418 project, our group formerly 

utilized ANFIS to characterize surface fatigue cracks of AISI 410 steel samples (Xu, 2014; 

Xu et al., 2013). In that effort, the system was trained by means of a training data set that was 

obtained by robotic ECT scan of the cracked samples. To train a system using experimental 

dataset, depending on the maturity needed for the system training, a large set of defective 

samples with cracks of different characteristics might be required. This can render the 

process very costly in terms of money and time. Therefore, as an effective alternative to that 

approach, it is decided to use a training data set, which is formed based on numerical 

simulations for the ECT of surface notches possessing different lengths. The concept of the 
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model-based training is implemented here to estimate the length of semi-elliptical surface 

notches in 7075-T6 aluminum alloy samples. Three different features of the simulated signals 

of the notches are taken as training inputs to ANFIS while the notch length stands as the 

single system’s output. A hybrid learning algorithm comprised of backpropagation error and 

least-squares estimator (LSE) is implemented to set the network parameters in a manner to 

model the system as close as possible to the desired one (Jang et al., 1997). Considering the 

fact that the approach is in its early stages of development, the results of the system are found 

to be quite acceptable. A more detailed discussion on the procedure and the length estimation 

results of the system is subsumed in chapter 3. 

 

1.3 Probability of detection 

QNDE techniques have grown in maturity owing to advances in the technology and the 

development of new life estimation programs based on the DT concept. Nowadays, the 

concept is being used in both stages of design and maintenance by different industries in 

order to ensure the integrity of components and systems during their service life. As an input 

to these models, defect size plays a very important role. In these concepts, it is mainly 

assumed that there are potentially many severe flaws within the structure that can grow 

beyond the critical allowable flaw size before the next inspection. Therefore, such defects, 

which can seriously endanger the performance of the structure, shall be detected and repaired 

at the beginning of each usage interval. The detection and sizing of these potential defects 

majorly dependent on the capability of the NDE system in use and therefore, this can directly 

dictate the frequency of scheduled inspections planned through the risk assessment models 

(Berens, 2000; Lemire, Underhill, Krause, Bunn, & Butcher, 2010). In other words, being 

able to use a NDE system that can reliably detect smaller defects decreases the frequency of 

periodical inspections indicated through risk assessment analysis. Thus, to choose NDE 

system wisely, it is essential to have a strategy to evaluate the performance and quantify the 

capability of different NDE systems in detecting and sizing of such defects. The concept was 

originally employed by National Astronautics and Space Administration (NASA) in early 

70’s suggesting that the reliability of a NDE system should be evaluated relying on the 
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largest defect that could be missed by a NDE system instead of the smallest defect which is 

detected (Neuschaefer & Beal, 1972). According to studies, the gap between these two sizes 

could be quite large for different NDE systems (Rummel & Matzkanin, 1997). Given this 

fact, NASA started a new program to quantify the reliability of inspections and consider 

them in their designs of the new shuttle based on linear elastic fracture mechanics. Not long 

after that, the approach was accepted as a standard in other industries. This concept, which is 

used routinely for assurance of the NDE system performance, can be explained more clearly 

providing instances. As an example, inspectors who inspect a defect with known dimensions, 

without having a prior knowledge of the presence of the defect, may face different detection 

qualities. Apart from the expertise of inspectors, the inspection outcome can vary if one 

inspector carries out the tests at different times of the day. Besides, the inspection reliability 

can also be affected by many other parameters such as material properties and geometry as 

well as environmental factors, test apparatus, and test procedures of the NDE system. In 

order to assess the reliability of an inspection considering its conditions and procedures, POD 

was developed as a quantification tool based on statistical models. The responses of a few 

NDE systems are presented in the form of detection/no-detection data whereas most of the 

systems provide signal amplitude as a function of flaw size. Depending on the type of 

inspection data in hand, the data is conventionally analyzed through two different types of 

POD curves namely, Hit-Miss and â vs. a . Where â  stands for the signal amplitude 

corresponding to a defect of size a . POD curves of â vs. a  data are plotted based on the 

variabilities in the response of an NDE method inspecting fix-sized defects. The response 

distribution is mainly originated from the variation of different parameters that are involved 

in the NDE system. These parameters do not equally affect the response, and they may not all 

be controllable during the inspection. Except the uncontrollable ones, whose effect would be 

already included in a POD study, it is wise to indicate the controllable parameters that have a 

stronger influence on signal. This makes it possible to design a limited number of 

experiments so the POD best reflects the capability of NDE while the effect of influential 

parameters is included. This strategy helps to reduce the costs associated with the fabrication 

of flawed/unflawed test coupons and the number of inspector involved. POD curves found 

several practical applications in industries such as measuring the improvements of NDE 
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systems, comparing the performance of different NDE systems in detection and sizing, and 

evaluating the qualification of inspectors. 

 

For starting a NDE reliability assessment, a calibration procedure shall be determined in 

advance to define a reference for different inspectors. Following the calibration, every factor 

regarding the defect, material, testing device and environment that has an impact on signal 

should be included during the POD demonstration in order to obtain a POD which represents 

the actual test conditions. Noteworthy that the number of defective specimens should be 

adequate in order to perform statistical analysis on data. Moreover, the size distribution of the 

flaws used in the demonstration is very dependent on the selected NDT method and 

procedure. Hence, a prior knowledge of the method capability might be helpful in 

determining the size interval that contains the highest concentration of flawed samples. After 

plotting â vs. a  data, it is possible to left and right censor the data. To this end, the responses 

smaller than the level of the background noise ( ˆtha ) can be left censored, Also the responses 

larger than an amplitude threshold level ( ˆsata ), indicating the saturation level, should be right 

censored. These values are shown in Figure 1.13(a) by dashed grey lines at the bottom of 

figure for background noise level, and at the top for ˆsata . The other important parameters that 

comes to play in creation of POD curves is known as ˆdeca , which is determined according to 

the noise distribution and hence, the desired POFI value. It should be noted that selecting low 

ˆdeca  levels, with a value very close to the noise level, leads to higher POFI and lower POD. 

As the data is censored, it is possible to derive a linear relationship between the â and a , 

where the regression parameters are estimated through maximum likelihood by considering a 

constant signal response variance at all crack sizes. To use this method, â  data is assumed to 

be distributed normally about the regression trend, as depicted in Figure 1.13(a). Sometimes, 

this linear relation can be best established for the data if â  or a , or both are presented in 

logarithmical scales. Since the regression parameters are estimated values, there is a variance 

connected to the regression. The can be calculated for the confidence level of 95%, which in 

turn yields the bounds for regression variance at each size. Figure 1.13(a) shows the 

regression line by a solid line, and the 95% confidence boundaries with dashed ones. 
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Confidence boundaries are further away from the regression line at its extremities since the 

confidence at the center of regression is the highest and it drops as it reaches the extremities. 

This is mainly observed due to the uncertainties of the regression line slope. According to 

experience, â  vs. a  POD has a form of cumulative normal or cumulative log normal  

(Annis, 2009). In Figure 1.13(b), POD curve and its 95% limits are plotted according to data 

presented in Figure 1.13(a). 

 

 

Figure 1.13 (a) Regression line along with the upper and lower confidence bonds for â
vs. log( )a data (Annis, 2009), and (b) POD curve and 95% confidence bonds        

(Annis, 2009)  

 

The defect size standing for 90/95a  is conventionally taken as the size that can be reliably 

detected in POD studies. However, this can be different considering the application 

sensitivity and the desired reliability criteria. 90/95a  states that there is 95% of confidence to 

detect a defect with size a  or larger, 90% of the inspection times (Berens, 2000). The 

following section is devoted to a review of previous reliability studies conducted in the     

field of ECT. 
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1.3.1 Probability of detection for eddy current testing 

A comprehensive reliability study regarding the EC inspection of bolt hole cracks was 

presented in several publications by (Lemire, Underhill, & Krause, 2009; Lemire et al., 2010; 

P. Underhill & T. Krause, 2011a, 2011b; P. R. Underhill & T. W. Krause, 2011; P. R. 

Underhill & Krause, 2016). These studies are particularly interesting since reflection 

differential bolt hole scanner ECT probes were used for inspections. In the initial study, 

numerous flawed/unflawed two-layered aluminum coupons were produced representing the 

bolt hole of layered aluminum structures of aircraft wing regions (Lemire et al., 2009; Lemire 

et al., 2010). Mid-bore flaws were introduced to the holes and several inspectors conducted 

the inspections using a calibration procedure. The bolt hole flaws were partially fatigue 

induced cracks developed from initial notches while the rest of them were EDM notches. 

They observed that the signal response plotted versus the depth for EDM notches has a 

different trend from the results of fatigue cracks. The difference between the aspect ratios of 

cracks and notches as well as the limited sensitivity of ECT to the notch depth at the selected 

frequency of 400 KHz were the main reasons mentioned in the study. Accordingly, they 

found that plotting the signal response data versus the length of EDM/cracks provides a 

better matching of the trend.  Moreover, after plotting the response data versus the defect 

length for each inspector, the results revealed that the initial notch size used in calibrations 

was too small and hence, it caused too much variability in the recorded signal amplitudes. 

Therefore, they suggested to normalized data with the response of a larger notch and the 

mean of two larger notches to address the issue. The improvements gained by this method in 

the POD curves of EDMs and cracks are demonstrated in Figure 1.14(a) and Figure 1.14 (b). 

Noteworthy that the curve of the crack is wider since there was a larger spread in the data of 

fatigue cracks. Their second approach to reliability of ECT for inspecting boreholes involved 

the creation of fatigue cracks in hole without having starter notches (P. Underhill & T. 

Krause, 2011a). They applied cyclic loads to samples in order to grow cracks from the 

machined surfaces of the holes. Several inspections were carried out using ECT split-D hole 

scanner during the loading. Afterwards, the crack size related to each ECT scan was 

indicated by investigating the striation patterns of fatigue through fractography. Some of the 
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induced cracks were corner cracks while the rest were mid-bores. The authors presented a 

comparison study, using C-scan data, for the detectability of corner and mid-bore cracks at 

two different frequencies based on the hit-miss data.  

 

 

Figure 1.14 Two-point normalization applied to raw data and the resulting POD curve is 
compared to the POD curve plotted for raw data for (a) EDM (Lemire et al., 2010), and (b) 

fatigue cracks (Lemire et al., 2010) 

 

As implied by Figure 1.15, higher test frequency increases the signal height, which is the 

main feature contributing to the detectability of C-scan images, and hence, enhances the 

POD. Furthermore, as the probe gets closer to the edge of the hole, adjacent to the sample’s 

surface, the current is compressed due to edge effect. Consequently, the higher current 

concentration at the edge gives rise to higher signal amplitudes and a better POD for corner 

cracks as compared to mid-bore ones. 
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Figure 1.15 POD parameters for (a) different test frequencies and crack locations                
(P. Underhill & T. Krause, 2011a), and (b) different probes and frequencies (P. R. Underhill 

& T. W. Krause, 2011) 

 

The effect of different test frequencies on POD was investigated in another study (P. R. 

Underhill & T. W. Krause, 2011). Also, the performance of a contact split-D probe was 

compared to a non-contact one, which had a steel sheath. As reported by authors, the phase 

angle, that the signal and lift-off trace make, increased at higher frequencies leading to an 

enhanced detection through C-scan images. In contrast, the signal amplitude almost remained 

unchanged. Their results for the comparing the PODs of the two different probes used at 

different frequencies are presented in Figure 1.15(b). Only the data gathered at the two 

highest frequencies were statistically adequate to form POD curves. The best POD was 

obtained for the intimate contact probe working at highest frequency of 1600 kHz. 

 

The hit-miss data, gathered from the visual inspection of C-scans of mid-bore cracks, was 

used for POD analysis in a similar study by (P. Underhill & T. Krause, 2011b). Cracks were 

grown under cyclic loading from the surface of machined bolt holes without the aid of starter 

notches. Additionally, the C-scan images were recorded for the automated ECT which was 

performed at different loading cycles. Then, the crack sizes corresponding to the cycles, at 

which the images were taken, were determined using quantitative fractography. In this 

manner, the hit-miss data versus crack length and depth were plotted and also the POD curve 

was extracted for each of them. Their results demonstrated that 50a for length was twice the 
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value of 50a found for depth. The observation reflected the actual length/depth aspect ratio of 

the fatigue cracks. The reasons provided for supporting the observation were that the crack 

depth was smaller than 3δ and also the crack length did not exceed the effective diameter      

of the probe. 

 

The same group used the real fastener holes of a stabilizer component, instead of using 

machined holes, to grow fatigue cracks in a recent publication (P. R. Underhill & T. W. 

Krause, 2016). Similar to their former studies, quantitative fractography was used to 

associate the crack sizes to the repeated automated ECT inspections. As illustrated in Figure 

1.16, hit-miss POD parameters showed that for mid-bore cracks, grown from the actual in-

service bolt holes, had a 90/95a  smaller than 90/95a  for corner cracks. These results were against 

the results reported for the POD of cracks grown from the machined bolt holes. Presence of 

burrs at the corners as well as the possible rounding of the corners was found to be the main 

reasons explaining this contrast in results. It sounds convincing since due to the first reason 

the signal/noise ratio was reduced and the signal was weakened by introducing lift-off as 

second reason. 

 

 

Figure 1.16 POD parameters are compared for mid-bore and corner cracks grown in drilled 
holes as well as the actual bolt holes of in-service components (P. R. Underhill                  

& T. W. Krause, 2016) 

 

Rossell et al. used their validated model of an absolute probe and a parametric fatigue crack 

in order to develop a MAPOD (Rosell & Persson, 2012c, 2013). The influential parameters 

contributing to the signal response variability in their experiments included the crack 
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characteristics, the probe’s lift-off, the probe’s position relative to the crack line, and the the 

crack orientation relative to the scan line. They prepared a meta-model based on FEM 

simulations of cracks to produce signal response distribution for each crack size. Rossell also 

carried out another model assisted POD using the simulations of FEM for a transmit-receive 

ECT probe scanning surface cracks (Rosell, 2015). In the model, he considered a broad set of 

variable parameters affecting the signal response such as probe’s position and scan 

orientation relative to the crack, lift-off, crack’s tilt, and the conductivity of material. The 

signal response was assumed be a linear function of these parameters varying around a mean

â  value for each crack size. Accordingly, a meta-model, which required a reduced number of 

simulations, was established. Once the model was built, parameters were changed and the 

signal responses were plotted versus crack length and consequently, the MAPOD              

was plotted. 

 

The study presented in chapter 4 investigates the combined effect of surface roughness and 

test frequency on the noise level for ECT of surface fatigue cracks in martensitic stainless 

steel samples of AISI 410, since both of these parameters are of high importance in choosing 

the appropriate NDE procedure for ferromagnetic materials. The chapter also incorporates a 

simplified reliability study by means of POD curves comparing the capability of manual and 

automated surface scans performed by a slit-D surface probe. Only the influential parameters, 

which are selected based on the prior experience of using such probes, are included to 

contribute to the signal response variability in order to generate PODs that reflect the actual 

test conditions in the best manner. The effect of crack orientation relative to the scan line, as 

an influential parameter on ECT amplitude, is further investigated through FEM simulations.  
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Abstract 

Differential eddy current probes are commonly used to detect tiny cracks on the surface of 

conductive materials. Since the development of analytical or semi-analytical models of such 

a sensor may be prone to intractable complications, there is, nowadays, a growing number of 

research works on the numerical modelling of these sensors. In this paper, by the use of finite 

elements modelling (FEM), the interaction of a reflection differential split-D probe with 

surface electrical discharge machined (EDM) notches has been simulated in 3 dimensional 

(3-D) half space. In order to attain a better insight into the correct setup of the FEM 

parameters, a simple multi-turn cylindrical absolute coil has also been modelled. The 

outcome generated through the simulated scan of this absolute coil over a surface notch in 

aluminum is validated with existing experimental impedance data taken from the literature. 

Parameters contributing to reliable FEM simulation results, such as maximum mesh size, 

mesh distribution, extent of the surrounding air domain and conductivity of the air are all 

investigated for the 3-D modelling of both absolute and differential probes. The investigation 

shows that the simulation results on a commercial reflection differential split-D surface 

pencil probe closely estimate the experimental measurements of the probe’s impedance 

variations as it scans three EDM notches having different depths in aluminum. The reliability 
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of the simulation results generated by Comsol Multiphysics version 5 FEM package 

(COMSOL, 2018) are discussed for the cases of absolute and differential probes. 

 

2.1 Introduction 

The presence of microscopic imperfections within the structure of materials is inevitable in 

production parts. Under specific loading and environmental conditions, these imperfections 

may grow and form critical discontinuities. For instance, the fatigue crack is a very common 

defect type that could be frequently found in components under cyclic loads. These defects 

may deleteriously affect the performance of components and industrial systems by reducing 

their expected lifetime. The presence of such cracks and other kinds of discontinuity justifies 

the necessity of in service non-destructive testing (NDT) of components and systems, 

especially when the associated systems are directly related to human safety. Among all other 

industries who employ NDT to assess the integrity of structures (Bhaumik, Sujata, & 

Venkataswamy, 2008; Jones, Molent, & Pitt, 1999; Pitt & Jones, 1997), the aerospace 

industry is tightly connected to human safety. A wide variety of fatigue induced flaw types 

may exist in the components of an aircraft (Findlay & Harrison, 2002; Grover, 1966). 

Therefore, depending on the nature and location of these flaws, proper NDT techniques 

should be assigned for in-service inspections. Eddy current testing (ECT) has been routinely 

employed in various industries as a well-established NDT technique applied to conductive 

materials. Recent progresses in ECT is readily found in thickness measurement of coatings or 

thin conductive sheet metals, evaluation of conductivity and permeability variations, 

detection of surface and near surface inhomogeneities such as cracks (Davis, 1989; Hellier, 

2013; Shull, 2016). This wide diversity of applications has demanded the development of 

different configurations of eddy current (EC) sensors tailored to specific inspection purposes 

(García-Martín et al., 2011). In the aerospace industry, ECT is well-known for its superior 

inspection performance of bolt holes, lap joints, wheels and engine components (Hagemaier 

& Kark, 1997; Krause, Hohmann, Gruneklee, & Maus, 2000; Wincheski & Namkung, 1998). 
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Absolute surface probes, with their simplest configuration (a single multi-turn circular coil), 

are conceived to operate typically at a frequency range of 100 Hz to 4 MHz. Depending on 

the type of application, they may have different shapes and sizes. Since lower operating 

frequencies imply higher penetration depths inside the material, low frequency absolute 

surface probes (no more than 500 kHz) with relatively large footprint diameters are  best 

suited for either performing thickness, permeability and conductivity evaluations or detecting 

near surface defects and inhomogeneities (Shull, 2016). Reflection differential and bridge 

differential probes have more elaborated designs and are essentially assigned for detecting 

and sizing tiny surface breakings. Besides being virtually insensitive to gradual variations in 

the material’s thickness, conductivity and permeability, the reflection differential probes 

compensate for the unwanted effects caused by the probe’s tilt or lift-off, owing to the 

differential configuration of their receiver coils. Surface differential probes are commonly 

used in the form of an optimized reflection differential split-D configuration, which has a 

relatively small footprint considering the shape of its receiver coils.  

 

For more than 50 years, numerous researchers have been trying to expand the borders of EC 

theory aiming at finding the solutions to the set of Maxwell’s equations for the interaction 

between different probe types and defective/un-defective materials. Only a few succeeded to 

deploy analytical/semi-analytical approaches for some specific cases, which were 

accompanied by simplifying assumptions limiting their applications for actual cases 

(Burrows, 1964; C. Dodd & Deeds, 1968). Others mainly utilized more flexible numerical 

methods to diminish the modelling complexity for the EC coupling with defects, making it 

possible to estimate probe impedance variations over defective samples (J. Bowler & 

Harfield, 1998; J. Bowler, Jenkins, Sabbagh, & Sabbagh, 1991; J. R. Bowler, 1994). These 

modelling approaches included a broad diversity of numerical techniques emerging as 

efficient tools for EC analysis. All classical discretization approaches, such as finite element 

method (FEM), finite volume method (FVM) and finite difference method (FDM) have been 

considered as powerful numerical techniques for approximating the solution of differential 

equations with relative advantages and disadvantages depending on the application and the 

governing partial differential equations (Peiró & Sherwin, 2005). Given the same computing 
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power, FEM may not be the best in terms of solving speed, but several well-stablished 

commercial FEM software packages are conceived for a wide variety of problem classes with 

appropriate governing equations and solvers. This feature makes FEM packages the most 

flexible and accessible tools for performing numerical analysis. In the present paper, Comsol 

is extensively used for FEM of the interaction between eddy currents and geometrical 

discontinuities in conductors. 

 

Considering all aforementioned advantages associated with the surface differential probes, a 

growing number of researchers focused on the modelling of this type of configuration. Most 

of the current works are devoted to numerical modelling and parametric studies of split-D 

differential probes, since the experimental tests may be time consuming and costly (Khan & 

Nakagawa, 1999; R. Mooers et al., 2012; R. D. Mooers, Knopp, Aldrin, & Sathish, 2013; R. 

D. Mooers et al., 2014; N Nakagawa et al., 2000; Norio Nakagawa et al., 2009; Rosell & 

Persson, 2011; H. A. Sabbagh, Sabbagh, & Murphy, 2002). For instance, in the work 

developed by R. D. Mooers et al (R. Mooers et al., 2012; R. D. Mooers et al., 2014), the 

results obtained from two numerical software packages, namely VIC-3D and ECSIM, are 

compared with experimental measurements performed by a split-D probe. In another related 

study (R. D. Mooers et al., 2013) a parametric sweep on the dimensions of each constituting 

component of a split-D probe is carried out with the two aforementioned software packages, 

and the influence of each parameter on the recorded signals is determined as the probe scans 

a notch. A model developed by N. Nakagawa et al (Norio Nakagawa et al., 2009) for a split-

D probe describes the effect of electrical discharge machined (EDM) notch width on the 

probe’s output signal, and simulation results are then validated with experimental data. The 

primary objective of each EC model is to reproduce the results of experiments to the highest 

possible accuracy. Then, the premium EC modeling results could form the essentials of 

defect characterization (inversion), and reliability studies (J. Aldrin, Knopp, Lindgren, & 

Jata, 2009; J. C. Aldrin et al., 2012; Knopp, Aldrin, Lindgren, & Annis, 2006; Shell et al., 

2014). Therefore, to assess the rigorousness of each EC model, a proper validation study 

must be carried out (Khan & Nakagawa, 1999; Knopp, Aldrin, & Misra, 2006; N Nakagawa 

et al., 2000). Rosell and Persson (Rosell & Persson, 2011) reproduced the results of a 
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numerical benchmark study called TEAM problem 8, which was established by TEAM 

workshop (Verite, 1990). In this study, a differential probe, comprised of a drive and two 

circular receiver coils, is modelled using Comsol Multiphysics. Within the benchmark study 

provided by TEAM, the probe’s dimensions are significantly larger than those of 

commercially available split-D probes, and the frequency investigated is much lower than the 

typical operating frequency for these types of probe. Certainly, all those ideal considerations 

are key for providing a basis for validating a wide range of modelling efforts. However, they 

are not sufficiently robust for validating the models for small cracks characterization. 

 

The present study aims at surface crack characterization using a split-D probe. Therefore, 

simulated signals obtained with realistic split-D probe configurations will be used for both 

probability of detection studies [Mohseni E., Habibzadeh Boukani H., Ramos França D., 

Viens M. (2018) Reliability study of manual and automated eddy current testing of AISI 410 

martensitic stainless steel. Submitted to Journal of Nondestructive Evaluation] and training 

data set for a fuzzy logic based inversion algorithm (Xu et al., 2013). For these very 

purposes, the reliability of Comsol on predicting the split-D probe’s output signals as it scans 

surface EDM notches are here investigated systematically. 

 

The current paper is organized as follows. In Section 2.2, the experimental setup used to 

validate numerical model is described. It comprises a commercially available split-D 

differential probe scanning three notches with different depths in an aluminum calibration 

block. In Section 2.3, an absolute probe is first modelled in Comsol version 5 in order to gain 

a better understanding on the simulation parameter setup. Results are compared with 

reference values found in the literature (Burke, 1988). In Section 2.4, the commercial split-D 

probe is modelled in Comsol. Numerical simulations are carried out for all three reference 

notches in the aluminum calibration block and compared against measurement data. Finally, 

the summary and conclusions are given in Section 2.5.  
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2.2 Impedance measurement of a commercial split-D coil 

In order to verify the reliability of Comsol Multiphysics in simulating the output response of 

a commercial split-D probe, a Nortec-500 flaw detector from Olympus NDT corporation 

along with a reflection differential split-D surface pencil probe are selected for the 

measurement of its impedance as it scans three distinct EDM reference notches engraved in 

an aluminum calibration block. The probe’s bandwidth extends from 500 kHz to 3 MHz. 

Figure 2.1(a) and Figure 2.1(b) give the details on the probe’s tip, showing the driver coil, 

receiver coils inside the driver, surrounding ferrite shielding and D-shaped ferrite cores. 

Because the probe’s configuration and geometry are proprietary, only a little design 

information is readily available from the manufacturer’s website. For this reason, the probe’s 

dimensions were either measured from microscopic images or extracted after destroying a 

probe to reveal its inner structure. Table 2.1 summarizes all relevant information on 

dimensions and material properties of the probe’s constituents. 

 

Table 2.1 Dimensions and material properties of the commercial split-D probe’s components. 

Receiver D-

coils: 

20 loops of 0.063 mm dia. 

wire 
Shielding inner diameter: 

1.934 

mm 

Driver coil: 
37 loops of 0.055 mm dia. 

wire in 2 layers 
Shielding outer diameter: 

2.528 

mm 

Coils height: 1.260 mm Shielding height: 
3.000 

mm 

Core: 
1.254 mm dia. × 2.000 mm 

height 

Conductivity of cores and 

shielding: 
0.2 S/m 

Gap between 

cores: 
0.224 mm 

Permeability of cores and 

shielding: 
2500 µr 

 

The Nortec-500 flaw detector has a built-in screen to display the probe’s differential 

impedance. Here, however, the measurements are performed by a LabVIEW application that 

controls a data acquisition card connected to the output voltages of the Nortec system. The 
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voltage signals, respectively given by the horizontal and the vertical position of the probe 

impedance on the detector screen, are used to verify the accuracy of shape, phase and 

amplitude of the simulated signals in Comsol. 

 

A 95 mm long × 35 mm wide × 5 mm high calibration 7075-T6 aluminum block containing 

three 0.18 mm-wide EDM notches with different depths (namely, 0.188 mm, 0.503 mm and 

1.008 mm) is used throughout the scan measurements. The conductivity of this aluminum 

block is measured as 19.7 MS/m using the Nortec 500 flaw detector itself, a dedicated 

conductivity probe and conductivity reference blocks. Since the notches extend throughout 

the width of the aluminum block, their lengths correspond to 35 mm and are much longer 

than the probe’s footprint. 

 

 

Figure 2.1 (a) 3-D model of the split-D probe showing coils, cores 
and magnetic shielding (b) zoom on the probe’s tip taken with a 
confocal optical microscope. The outer driver coil and the inner 

receiver coils are green and red, respectively 

 

With respect to the experimental procedure, the split-D probe is clamped inside an alignment 

device. The aluminum block sits on a motorized X-Y table allowing micrometric translations 

along each axis. Initially, the horizontal and vertical gains of the Nortec-500 flaw detector are 

equally adjusted, and a 6 V-driving voltage is selected. With this instrument, it is important 

to keep the same impedance plane rotation angle during all scans in order to be able to draw 

comparisons between simulation results and experimental measurements. In this case, the 
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angle of zero degree is selected. The probe’s tip is placed on the aluminum block in a manner 

to have a small lift-off of 0.03 mm. Each notch is scanned five times and each time, the lift-

off is recalibrated to include the error associated with the lift-off calibration in measurements. 

This procedure is essential since the lift-off calibration is very dependent on the accuracy of 

the Z-stage and thus it can vary slightly from one scan to another. Besides that, the rotation 

of the probe is finely adjusted in order to guarantee that the separation surface of the D-cores 

is parallel to the notch axis. The perpendicularity of the probe with respect to the aluminum 

block’s surface has been verified by scanning a surface notch. Indeed, the alignment of the 

system was confirmed by a fairly symmetric 8-shaped signal with positive and negative 

peaks of almost equal magnitudes. The scanning of notches is performed by moving the 

center of the probe's tip from -2 to +2 mm with respect to the notch centerline. The data is 

recorded in steps of 50 µm along the scanning path. Figure 2.2(a) and Figure 2.2(b) illustrate 

the experimental setup as well as the probe’s orientation and scan direction with respect to a 

single notch. 

 

 

Figure 2.2 (a) Experimental setup for measuring the split-D probe’s 
differential impedance as the probe scans three reference notches with 

different depths in aluminum (b) schematic of the split-D probe’s 
orientation and scan direction with respect to an EDM notch 

 

2.3 Refinement of finite element modelling parameters using an absolute coil 

In the present investigation, the authors optimize EC system modelling parameters in Comsol 

so as to reproduce experimental data provided in Burke's experiment (Burke, 1988). In his 
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work, Burke presented the impedance variation measurements of an air-cored absolute coil 

scanning over a rectangular notch in an aluminum plate. The detailed description of the 

setup, geometries and dimensions can be found in the original work (Burke, 1988). 

 

The axisymmetric nature of an eddy current absolute coil’s geometry allows one to build a 

two dimensional (2D)-axisymmetric model when the coil is either in air or located over an 

un-defective conductor. However, by introducing a notch onto the conductor’s surface, the 

geometry is no longer axisymmetric. Consequently, Burke's experimental arrangement needs 

to be modelled in 3-D. Nonetheless, because the coil is always centered on the notch axis, the 

problem is symmetric with respect to a plane perpendicular to the conductor's surface and 

passing through the notch’s centerline. The full scale geometry of the Burke’s setup model 

could thus be cut in half using this plane of symmetry. The overall half scale model created 

in Comsol is illustrated in Figure 2.3. 

 

 

Figure 2.3 The 3D-half model developed in 
Comsol to reproduce the results presented in 
(Burke, 1988) for an absolute coil EC probe.       

A circular coil, a defective plate and the 
encompassing air domain are shown 

 

It comprises an aluminum block with a rectangular surface notch located in the middle of the 

block’s surface, a hollow cylindrical conductor representing a coil and a rectangular prism 
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domain encompassing all the components. All the dimensions used in this model are taken 

from (Burke, 1988), except for the sizes of the aluminum block and the air domain, which are 

set to minimize the runtime of the finite element (FE) solver. The material properties of 

aluminum, as taken from (Burke, 1988), is assigned to the defective block. The properties of 

air have been assigned to the air domain surrounding the coil and the conductor block. 

 

Instead of a multi-turn coil’s winding, the hollow cylindrical conductor is defined with the 

multi-turn coil domain feature of Comsol. This enables direct specification of coil's 

properties such as the number of turns, as well as the conductivity and the gauge of the wire. 

The multi-turn coil domain feature of Comsol is useful when modelling the inductors with a 

highly compact number of coil turns at low operating frequencies. In this case, it is possible 

to assume that the current density is distributed uniformly over the coil’s cross section. The 

coil is excited by an alternating current I with magnitude of 1A, and the current density of a 

circular multi-turn coil domain is calculated through 

 

 /e NI S=J  (2.1) 

 

where N is the number of windings, and S is the cross sectional area of the cylindrical object 

to which the coil domain has been assigned to. 

 

It is worthwhile to mention that, according to Burke’s study, the scan direction is parallel to 

the notch’s length. So, to simulate this scan, the absolute coil is moved over a 20 mm range 

along the notch’s centerline. The corresponding coil impedance is computed for each 

displacement step of 2.5 mm starting at the center of the notch. 

 

2.3.1 Governing electromagnetic equations 

The “Magnetic Field Physics” package in Comsol version 5 is selected for FE simulations. 

The governing equation for the magnetic field interface is based on the                      

Maxwell-Ampere’s law. 
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 / t∇ × = + ∂ ∂H J D  (2.2) 

 

where H is the magnetic field intensity, J is the current density, and D is the electric flux 

density. The current density (J) can be expressed as the sum of the externally applied current 

density (Je) and the induced current density ( in σ= EJ ), where σ stands for conductivity and 

E for electrical field intensity. The constitutive equations are (Stratton, 2007): 

 

 = μH B  (2.3) 

 = ∇×B A  (2.4) 

 = εD E  (2.5) 

 /V t= −∇ − ∂ ∂E A  (2.6) 

 

where µ is the magnetic permeability, B is the magnetic flux density, A is the magnetic 

vector potential , ε is the electrical permittivity and V is the electrical potential applied to the 

system. It shall be noted that, in the current problem, 0V∇ = . Substituting equations           

(2.3 to 2.6) into the equation (2.2) and considering time-harmonic functions leads to: 

 

 2( ( )) / ( ) ejμ σω ω ε∇ × ∇ × + − =A A J  where 1j = −  (2.7) 

 

where ω is the angular frequency. Comsol solves equation (2.7) in the frequency domain. 

 

Generally speaking, in the low frequency regime, where the electromagnetic wavelength is 

much greater than the size of the system, it is possible to assume that the quasi-static form of 

the Maxwell’s equations can be used ( εωσ >> ). Although, in such a case, the displacement 

current term ( )/ t∂ ∂D is generally excluded from the calculations, the equation embedded in the 

magnetic field package of Comsol takes it into account without any solution cost. 
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2.3.2 Extent of the simulation domain 

Generating an unbounded or infinitely extended air domain in FE simulations has been a 

long-standing issue for many physical problems. In terms of execution time, it is beneficial to 

truncate this domain to an extent in which the simulation results remain reliable. Fortunately, 

in eddy current problems, the region of practical interest can be limited to a bounded domain 

large enough to capture a reasonable amount of the coil’s electromagnetic field. Truncating 

the block domain requires special attention to avoid that edge effects spoil the final results. 

To this end, the fields are initially solved according to a 2D-axisymmetric model for a large 

500 mm × 500 mm × 12 mm un-defective block surrounded by a 600 mm × 600 mm × 600 

mm air domain. Figure 2.4 shows the contour plots of the ϕ component of the magnetic 

vector potential A projected on the r-z  plane passing through the center of the coil, where ϕ, 

r and z are the components of a cylindrical coordinate system. The air domain is then 

truncated around the region where the intensity of the magnetic vector potential drops to 

0.1% of its maximum value. The width and length of the conductive block domain are also 

shortened with respect to the truncated size of the air domain such that each of the block’s 

lateral faces is 10 mm apart from the nearest wall of the air domain. A new simulation is 

performed with this truncated model and the results do not reveal any changes in the field 

distribution meaning that no edge effects are introduced by truncating the model’s domains 

to the aforementioned extent. It shall be noted that the changes in the distribution of the 

electromagnetic fields caused by the presence of a notch just occur locally around the notch 

itself. Hence, it is safe to assume that the field distribution at the boundaries of the air domain 

remains unchanged after introducing the notch. The truncated domain can therefore be used 

for further simulations of this absolute coil model. 
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Figure 2.4 Contour of the ϕ component of the magnetic vector potential 
A given by a 2D-axisymmetric model of an absolute coil located over 
an extremely large (500 mm×500 mm×12 mm) un-defective sample. r 

and z values are in mm. According to (Burke, 1988), simulation is 
performed with an operating frequency of 900 Hz 

 

2.3.3 Mesh assignment 

A sound understanding of the impact caused by each FE parameter on the model is critical 

for attaining accurate simulation results. The mesh sizes (i.e. the density of finite elements) 

as well as the distribution of these elements within the model are certainly two of them. Mesh 

is a geometrical dependent feature. While generating the elements within each domain, 

special attention has to be paid to the physics used and to the dimensions of the domain. It is 

also important to have a satisfactory resolution for the solved fields, which is fully dictated 

by the element’s type and size. 

 

In the current problem, the aluminum block is partitioned using a cylindrical surface in order 

to create a more concentrated mesh underneath the coil. The diameter of the partitioned 

region is twice the diameter of the coil. When surface scanning is simulated using parametric 

sweep, this cylindrical region in the aluminum block moves together with the coil at each 

displacement step so as to always maintain the concentrated mesh underneath the coil. 
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Because of the skin effect, eddy currents are almost completely contained within the first 

three standard penetration depth (δ) as defined by 

 

 2δ ωμσ=  (2.8) 

 

So, resolving the induced currents within their first three standard penetration depth, which is 

3 mm, is crucial for obtaining the correct values of the coil’s complex impedance. Initially, 

six boundary layer meshes made of second order elements have been generated for this 

region within the aluminum block. Later, the number of layers has been optimized according 

to the sensitivity of the simulated signals to this parameter. Apart from these critical regions, 

free tetrahedral meshes have been created in the rest of the model’s geometry including the 

coil domain. 

 

In order to get accurate simulation results in the shortest computational time, a sensitivity 

study is performed with respect to mesh size. For this study, the mesh is generated manually 

for each simulation step in order to have a better control on its distribution within different 

regions. The sensitivity of the simulation results in terms of mesh sizes is studied in two 

stages. First, the number of boundary layer meshes is kept at a constant value (six across the 

3δ depth within the aluminum block) while the total number of elements in the entire model 

is changed (i.e., the element’s size in the coil and aluminum block domains is refined in 3 

steps). The computed impedance data are then compared to the Burke’s measurements 

(Burke, 1988). In each step, regardless of the total number of elements, the mesh sizes in the 

coil and aluminum block domains are equally scaled such that the corresponding maximum 

size ratio remains constant. This approach enables to keep the mesh quality within an 

acceptable level and avoid the adverse influence of low element quality in the solution. In the 

second stage of this study, the best element size obtained previously is applied to all domains 

and kept constant. Then, the number of boundary layer meshes is varied from 1 to 3 per δ 

depth within the aluminum block. It is noteworthy that for mesh sensitivity studies the 

conductivity of air is initially set to 1 S/m, as suggested by Comsol’s guides. 
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Figure 2.5(a) and Figure 2.5(b) show the variations of the coil’s resistance and inductive 

reactance, normalized by the impedance measurements of Burke (Burke, 1988), for different 

element sizes as the coil scans the aluminum block containing a notch, respectively. In the 

normalization process, at each scanning position, the coil’s inductive reactance and resistance 

measured by Burke are subtracted from the estimated values by simulations, and the results 

are divided by the maximum variations of the reported impedance measurements. The 

normalization scheme is in place to compare the error of the estimated impedance 

components and to study the convergence of the solver as different element sizes are 

selected. For better understanding, the coil scanning positions relative to the notch are shown 

schematically for 5 different coil displacements in Figure 2.5(c). According to Figure 2.5(a), 

changing the maximum element size for the aluminum block from 1.4 mm to 2 mm does not 

introduce any significant change in the resistive part of the impedance and, regardless of the 

scan position, the error always remains below 2%. However, the solver becomes unstable for 

an element size of 4 mm, resulting in unreliable resistance values for the coil. This means 

that element size needs to be small enough to capture the resistive losses caused by eddy 

currents inside the conductor. On the other hand, the error connected to the coil’s inductive 

reactance has the same values at element sizes of 2 mm and 4 mm position wise. 

Furthermore, as the element size is further reduced to 1.4 mm, the inductive error is 

decreased by only 0.5 %. Although impedance estimations with the lowest level of error are 

achieved through meshing the block with the smallest element size of 1.4 mm, such a 

parameter increases the computational expenses unreasonably. Therefore, to avoid lengthy 

computational time, a maximum element size of 2 mm is selected knowing that the solver 

converges to consistent impedance estimations.  
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Figure 2.5 Effect of the element size on the normalized 
computed absolute coil’s (a) resistance and (b) inductive 

reactance as it scans an aluminum block containing a notch, (c) 
Schematic of the coil position with respect to the notch location. 
Results are normalized by the magnitude of impedance variation 

in the Burke’s measurements (Burke, 1988)  

 

Figure 2.6(a) and Figure 2.6(b) depict the variations of the normalized coil’s resistance and 

inductive reactance as a function of the coil’s position for three different numbers of 

boundary layer meshes. The normalization scheme is similar to the one used in the previous 

case. As it can be observed in Figure 2.6(a), the coil’s resistance is underestimated up to the 

scan position of 10 mm. This error is larger for 3 boundary layers as compared to the one 

obtained by 6 and 9 boundary layers. The estimation error becomes positive for the 

remaining probe positions where 6 boundary element layers provide the best estimation. For 

computed inductive reactance presented in Figure 2.6(b), estimated values are overestimated 

at all scan positions, similarly to the behavior seen in former sensitivity study. After 

comparing the effect of different boundary layers on coil’s resistance and inductive 

reactance, it is evident that the estimated values using 6 and 9 boundary layers are closely 

attached together at each scan position. This suggests that the solver already converges with 

6 boundary layers and that applying additional boundary layers would undoubtedly result in 

e 
e 

e 
e 

e 
e 
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an undesired increase of the computational time. Accordingly, 6 boundary layered elements 

should be sufficient across the first 3δ  depth.  

 

 

Figure 2.6 Effect of the number of boundary layers 
applied in the first three eddy current penetration 

depths on the normalized computed absolute coil’s 
(a) resistance and (b) inductive reactance as the 

coil scans an aluminum block containing a notch. 
Results are normalized by the magnitude of 

impedance variation in the Burke’s measurement 
(Burke, 1988) 

 

2.3.4 Conductivity of the air domain 

Whenever a multi-turn coil domain is used in a frequency domain study within Comsol, the 

convergence of the solver toward a solution for the electromagnetic field equation 

(COMSOL, 2007) depends on the conductivity value of the surrounding air domain. A null 

value does not allow the solver to converge, while a very small value would delay the 

iterative solver’s convergence remarkably. Therefore, the sensitivity of the simulation results 

e 
e 

e 
e 

e 
e 
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versus the air conductivity is studied in order to gain an idea about the optimum value for this 

parameter. It is important to choose the conductivity value judiciously, such that the 

execution time would be short and the results satisfactory. For this purpose, four conductivity 

values of 0.01, 0.1, 1 and 10 S/m are assigned to the air domain. The corresponding 

simulation results are presented in Figure 2.7. 

 

 

Figure 2.7 Effect of air conductivity on the normalized computed 
absolute coil’s (a) resistance and (b) inductive reactance as the 

absolute coil scans an aluminum block containing a notch. Results 
are normalized by the magnitude of impedance variation in the 

Burke’s measurements (Burke, 1988) 

 

From Figure 2.7(a), it is clear that the difference between the estimated values using air 

conductivity of 10 S/m and 1 S/m is very small whereas, estimated error becomes larger for 

smaller conductivity values. According to Figure 2.7(b), the coil’s reactance is not influenced 

by the simulation parameters. Because unreasonably large air conductivity values could 

affect the physics of the problem, the air conductivity of 1 S/m is preferred over others. In 

e 
e 

e 
e 

e 
e 



65 

addition, as a rule of thumb in Comsol, the ratio between the conductivities of air and of 

conductor (20 MS/m for aluminum) must be in the range of 10-6 to 10-8. 

 

2.3.5 Computed impedance with the optimized model parameters 

The optimized simulation parameters, as concluded from the previous sensitivity studies, are 

applied to the model and the estimated values for the resistive and the inductive parts of the 

impedance are superimposed on the measured plots, provided by Burke’s study, in Figure 

2.8(a) and Figure 2.8(b), respectively. Although Figure 2.8 shows a quite good fit with 

experimental data, a small discrepancy between the calculated and the measured impedance 

components is observed at each scan position. Regardless of the parameters in use, the 

calculated inductive reactance is always at least 1.5 % higher than the measured values. 

Deeper investigation into the model indicates that the reference edge specified within the 

circular coil’s model, which determines the direction of current flow in a relatively thick-

sectioned coil, can affect the computed coil’s impedance. Based on the instructions provided 

by Comsol for modelling 3-D coils (COMSOL, 2012), choosing a closed loop running 

through the middle of the circular coil’s thickness is expected to provide the best computed 

impedance values. In an attempt to improve the accuracy of the model, the effect of the 

position of the reference edge would thus require further investigation. Fortunately, this issue 

is not a concern in the modelling of split-D probes, where the coils’ cross sections are far 

thinner (i.e., one or two layers of AWG 22 wires). Additionally, they are modelled through 

numeric multi-turn coil domains instead of circular multi-turn coil domains. In such a 

modelling tool, there is no need to specify reference edges since the direction of the current is 

determined by defining an additional step within the solver.  
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Figure 2.8 Calculated values of the absolute coil’s (a) 
resistance and, (b) inductive reactance as the coil scans 

over a notch. Comparison with impedance measurements 
extracted from Burke's work (Burke, 1988) 

 

2.4 FEM analysis of a split-D differential coil 

A half scale 3-D CAD model for a differential probe is developed in Comsol based on the 

probe’s dimensions presented in Table 2.1. Instead of generating a complex CAD model for 

the coils including all coil turns and the corresponding geometrical complications such as 

winding angles and separations, three solid domains are generated for the coils, and the 

multi-turn coil domain within Comsol is assigned to each of them. Two solid geometries are 

created for the cores by cutting in half a cylinder across its diameter. A hollow cylinder is 

also created for the probe’s shielding, and all components are assembled properly respecting 

the dimensions of the commercial split-D probe. A very small 0.03 mm lift-off is introduced 

to the probe’s model according to experimental setup. 
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Unlike the scan path used in the experimental tests (-2 mm to +2 mm), it is optimized for 

simulations to shorten the time of the solver. Therefore, simulations are performed in the 

range of 0 to 1.3 mm (i.e., starting from a position where the center of the coil is aligned with 

the notch’s centerline, and ending at a position where the coil is 1.3 mm away from the 

notch’s centerline). The complete impedance signal is supposed to be a perfect mirror image 

of the signal so obtained, resulting in the distinctive 8-shaped signal. Usually, the simulations 

at 0.1 mm steps along the scanning path are carried out all together in a single run. In few 

cases, however, due to the complexity of the mesh structure, each 0.1 mm scanning step is 

treated individually. 

 

A 6V, 500 kHz alternating voltage is applied to the driver coil and both receiver coils are 

considered open (no current flow through them). At every scanning step, the voltage across 

each of the two receiver coils is obtained. As given by equation 2.9, the differential 

impedance of the probe ( )ΔZ  can be expressed as the difference of voltages across the 

serially connected receiver coils ( 2 1R R−V V , where 1RV  and 2RV  are the voltages across the 

receiver coils 1 and 2, respectively) divided by the current flowing in the driver coil ( )DI . 

 

 
2 1( ) / DR R= −Δ V V IZ  (2.9) 

 

Because the differential voltage for un-defective block is extremely small (theoretically 

zero), ΔZ  represents the variation of the probe impedance with respect to the one obtained in 

sound areas of the sample. 

 

The Nortec-500 flaw detector, the equipment used to experimentally acquire impedance data 

in the current work, provides relative impedance values rather than absolute ones. Therefore, 

in order to enable comparison between simulated and measured impedances, data conversion 

procedure is required. As previously mentioned, the relative probe impedance, which is 

displayed on the Nortec screen as a moving dot, is collected through the acquisition of two 

voltage signals (VH and VV), which are respectively proportional to the horizontal and the 
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vertical positions of the dot on the screen. These two voltages are first combined into a 

complex phasor given by 

 

 ( ) ( )0 0H H V V j M θΔ = − + − ⋅ = ∠V V V V V  (2.10) 

 where ( ) ( )2 2

0 0H H V VM = − + −V V V V  (2.11) 

 and 01

0

tan V V

H H

θ − − =  − 

V V
V V

 (2.12) 

 

With the horizontal and vertical gains selected on the Nortec system equally to be 56 dB, ΔV

shall be systematically multiplied by 0.0016 ( 2 1 / (10^ ( / 20))gainΔ Δ=V V , and phase shifted 

by 22 degrees clockwise to be able to compare the results of measurements to simulated ΔZ

values. This phase shift is believed to be due to the Nortec amplification circuitry that could 

introduce a gain and a frequency dependent phase shift in the displayed signal. 

 

Following the same development described in Section 2.3 for the modelling of the absolute 

coil, a sensitivity analysis is carried out for the case of the split-D differential probe to 

understand how the changes in the model’s parameters affect the simulation results. 

 

2.4.1 Extent of the simulation domain 

Depending on the probe lift-off, the operating frequency, the probe shielding, the coils' 

geometry and their configuration, the effective probe footprint may vary. Accordingly, 

because the operating frequency is significantly higher and the probe geometry much 

smaller, the truncation sizes of the air and aluminum block domains, as deduced in Section 

2.3, are no longer applicable to the case of the split-D probe. However, in order to reduce the 

computation time, the air and aluminum block domains are still truncated following the same 

strategy based on the magnitude of the magnetic vector potential. Figure 2.9 illustrates the 

contour map of the magnetic field potential component perpendicular to the symmetry plane 

at 500 kHz along with the model’s initial mesh distribution. As demonstrated, the outermost 
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contour shows the region at which the amplitude of vector potential reduces to approximately 

one thousandth of its maximum value. Since the vector potential field is concentrated inside 

the shielding, the air domain can be truncated up to twice the size of the shielding diameter.  

 

 

Figure 2.9 (a) Contour map of the magnetic vector potential component perpendicular 
to the symmetry plane at 500 kHz for a split-D probe over an un-defective aluminum 
block, (b) model’s mesh distribution for a split-D probe scanning an aluminum block 

with a 0.503 mm deep notch 

 

2.4.2 Mesh size 

To study the dependency of the simulation’s results on the mesh element size, the maximum 

element size in the aluminum block domain is changed in three steps while the element size 

of other domains is scaled proportionally. Based on the conclusion given about the absolute 

coil model (Section 2.3), an air conductivity value of 1 S/m is initially used for the simulation 

of the split-D probe’s model. The material properties presented in Table 2.1 are also assigned 

to each component of the model. This study is performed for the cases of both the shallowest 

(0.188 mm deep) and the deepest notches (1.008 mm deep). 
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Figure 2.10 and Figure 2.11 show the variations of the real and imaginary parts of the 

normalized probe’s impedance scanning over the 0.188 mm and the 1.008 mm deep notches, 

respectively. The same normalization scheme used in section 2.3 is applied here however, the 

curves are normalized by the impedance measurements of the notches using the split-D 

probe. According to these figures, imaginary and real parts of the computed impedance seem 

to converge as a total number of 388,000 mesh elements are used in the model. In order to 

leave some room for higher resolution results, a total number of 690,000 volumetric 

tetrahedral elements will be used for this probe model in the following simulations. 

 

 

Figure 2.10 Effect of the element size on the normalized computed  
(a) real and (b) imaginary parts of the differential impedance for a 

0.188 mm deep notch in an aluminum block. Simulations are 
performed using four different numbers of volumetric           

tetrahedral elements 
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Figure 2.11 Effect of the element size on the normalized computed 
(a) real and (b) imaginary parts of the differential impedance for 

1.008 mm deep notch in an aluminum block. Numerical 
simulations are performed using four different numbers of 

volumetric tetrahedral elements 

 

2.4.3 Conductivity of the air domain 

Similar to the sensitivity studies performed about the absolute coil model (Section 2.3), the 

sensitivity of the simulation results to the value of air conductivity is repeated for the split-D 

probe model. For this purpose, three values of air conductivity, namely 0.1, 1 and 10 S/m, are 

considered. Figure 2.12 demonstrates the impact of this parameter on the real and imaginary 

parts of the normalized probe’s impedance as the probe scans a 1.008 mm deep notch. As 

revealed by Figure 2.12, choosing the highest value of 10 S/m for the air conductivity affects 

the imaginary part of the normalized impedance and therefore, the solution becomes 

unstable.  Based on these results, the air conductivity of 1 S/m seems to provide the most 

reliable estimations and this is clearly in agreement with the case of the absolute probe 

presented in Section 2.3. 
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Figure 2.12 Effect of air conductivity on the normalized 
computed (a) real and (b) imaginary parts of the differential 
impedance for 1.008 mm deep notch in an aluminum block. 

Numerical simulations are performed for three different values 
of the air conductivity 

 

2.4.4 Simulation results and discussion 

The response of the split-D probe is here investigated numerically and experimentally as it 

scans three EDM notches with different depths engraved on an aluminum block. Measured 

and numerically calculated imaginary and real parts of the differential probe impedance are 

shown in Figure 2.13, Figure 2.14 and Figure 2.15 for 1.008, 0.503 and 0.188 mm deep 

notches, respectively. Figure 2.16(a), Figure 2.16 (b) and Figure 2.16 (c) display, on an 

impedance plane, the same results as the ones presented in Figure 2.13, Figure 2.14 and 

Figure 2.15, respectively. All the three impedance planes of Figure 2.16 are shown with the 

same scale to ease comparison between the given signals. Again, because of the symmetry of 

the model, only a single loop of the 8-shaped signal is shown. 
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Figure 2.13 Imaginary (a) and real (b) parts of the 
differential impedance obtained through numerical 

calculation and measurement with the Nortec-500 flaw 
detector for a 1.008 mm deep notch in an aluminum block 
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Figure 2.14 Imaginary (a) and real (b) parts of the differential 
impedance obtained through numerical calculation and 

measurement with the Nortec-500 flaw detector for a 0.503 
mm deep notch in an aluminum block 
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Figure 2.15 (a) Imaginary and (b) real parts of the 
differential impedance obtained through numerical 

calculation and measurement with the Nortec-500 flaw 
detector for a 0.188 mm deep notch in an         

aluminum block 
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Figure 2.16 Single loop of the 8-shaped signals obtained by plotting the imaginary and 
real parts of the probe’s impedance (Figures 2.13, 2.14 and 2.15) directly on the 

impedance plane. (a) 1.008 mm , (b) 0.503 mm and (c) 0.188 mm deep notch 

 

Referring to Figure 2.13, Figure 2.14, Figure 2.15 and Figure 2.16, it is observed that the 

shape of simulated and measured results is in good agreement for all the notches. The most 

significant discrepancy appear in the imaginary component of the impedance. From Figure 

2.10 and Figure 2.15 (the shallowest notch), it could be seen that the imaginary part is 

underestimated by 6 % at a probe position of about 0.5 mm. This discrepancy in the 

imaginary part of the probe impedance is reflected in the signal peak of the simulated 

complex impedance loops in Figure 2.16(c). Moreover, referring to Figure 2.11 and Figure 

2.13 (the deepest notch) the signal is underestimated by 4 % at the scan position of 0.8 mm. 

This deviation of simulation form measurement appears as widening of the simulated signal 

in Figure 2.16(a). Otherwise, most of the simulated impedance values are contained within 

the measurement error. To derive the error, each of these notches is scanned 5 times using the 

split-D probe and the impedance variations in each scan are recorded. Afterwards, the mean 

value and the standard deviation (σ ) of the 5 impedance measurements are calculated for 

each notch. Accordingly, the measurement error is presented by σ±  at each probe’s position. 

Scan 
direction 
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Discrepancies between simulated and measured impedances are believed to be somehow 

related to the deviation of the manufactured notches geometry from the ideal simulated ones 

(rectangular slot). In an EDM process, thin electrodes are used to erode narrow surface 

notches. As the notch gets deeper, the electrode’s lateral faces may further remove metal 

from the notch walls. Accordingly, the resulting notch is wider in the vicinity of its opening 

than at its tip. This nonuniformity grows by increasing the nominal depth of a notch. 

Correspondingly, referring to Figure 2.12, we find that the largest discrepancy in the width of 

the complex impedance loops is occurring with the deepest notch. Dimensions and properties 

of the probe components used in the model could also contribute to observed discrepancies. 

In addition, as the notch gets shallower, the sensitivity of the probe’s signal to geometrical 

imperfections grows significantly. Accordingly, the largest discrepancy between simulations 

and measurements is observed for the shallowest notch.  

 

The desired precision level of each signal's feature is strongly application-oriented. For 

instance, in order to have a good estimation of the crack characteristics in inversion 

approaches, the crack signals shall be accurately reproduced using modelling. However, the 

importance of signal shape and phase is undoubtedly less in reliability studies (POD studies) 

where the signal amplitude is the primary influential factor (Lemire et al., 2010; P. R. 

Underhill & T. W. Krause, 2011). Nonetheless, results reported in this work confirm that 

COMSOL model can reasonably predict probe impedance variations (in shape and 

amplitude) as it is scanned across a notch. 

 

The use of such a model could also help to properly design a specific probe as the impact of 

design parameters on probe performances could be accurately simulated. Indeed, in addition 

to probe impedance, magnetic and electric vector fields could be displayed to understand the 

probe behavior. As an example of this, Figure 2.17 shows the surface distribution, using the 

vector field representation, for the z and x components of inJ  (induced current density) in the 

vicinity of 0.188 mm deep notch for three different probe positions over this notch. 
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Moreover, beneath these figures, the surface distribution for the y and x components of H
(magnetic field intensity) is depicted as well.  

 

 

Figure 2.17 Distribution of the z and x components of the induced current density, 
represented by a vector field, in the vicinity of the 0.188 mm deep notch as the probe 
is displaced by (a) 0 mm, (b) 0.6 mm and (c) 1.2 mm. Side view of the scan shows 

the distribution of the x and y components of the magnetic field intensity 

 

As demonstrated, the surface current density is significantly perturbed at the scan positions of 

0 mm and 0.6 mm. At the scan position of 0 mm, the perturbation is seen by both of the 

receiver coils equally. However, at the scan position of 0.6 mm, the notch and its 

corresponding perturbation zone are directly located underneath one of the receiver coils. 

This results in the maximum amplitude of the differential impedance of the receiver coils for 

the shallowest notch. 

 

2.5 Summary and conclusions 

In this paper, a model based study of an absolute probe and a split-D reflection differential 

surface probe is performed using Comsol Multiphysics. The half scale 3-D model of the 

absolute coil is generated and the numerical simulations are carried out for the scan of a 

rectangular notch engraved on aluminum as per the Burke’s benchmark problem (Burke, 

1988). In an attempt to obtain reliable results, sensitivity to two simulation parameters have 
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been studied, namely the air conductivity and the model mesh size. Simulations revealed that 

an air conductivity of at least 1 S/m is required to allow the model to converge in a 

reasonable timeframe. Similarly, it has been found that the optimum mesh parameters was to 

use 6 boundary layer meshes across the first three penetration depths in the conductor block, 

with a maximum element size of 2 mm. Based on these parameters, a quite good agreement 

is achieved between the numerical results and the benchmark measurements (Burke, 1988). 

In fact, the error on the estimation of the coil's resistance is less than 2% of the impedance 

variation range while it is less than 4% for the coil's inductive part. It has also been noted that 

the coil's inductive reactance was always overestimated by the model (by at least 1.5%) most 

likely because of a parameter used to define the direction of current flow in a relatively    

thick-sectioned coil. 

 

Taking advantage of the knowledge acquired from the Comsol simulation of the absolute 

probe, a half scale 3-D model of a commercial split-D reflection differential surface probe 

has been investigated as well. Similar to the previous case, a sensitivity study to the same two 

simulation parameters has been carried out. For this smaller probe operating at a much higher 

frequency (500 kHz), an optimum air conductivity of 1 S/m has been found together with a 

minimum number of 388,000 volumetric elements in the model. Again, 6 boundary layer 

meshes across the first three penetration depths in the conductor block have been used. Based 

on these parameters, the computed impedance values have been found to pretty much match 

measurements. Only a slight widening of the simulated complex impedance loops has been 

observed. This minor discrepancy is believed to be due to non-ideal notch geometry in the 

measurements or inaccurate constituents’ dimensions or properties in the numerical probe 

model. The objective of the present work was to evaluate the reliability of Comsol 

Multiphysics as a tool to accurately estimate a split-D probe impedance while it scans surface 

cracks. Results obtained herein seem to confirm that signal amplitude could be simulated to a 

level of accuracy that should be sufficient for probability of detection studies. However, if 

the goal is to characterize the crack depth and shape through a fuzzy logic inversion 

algorithm, accuracy of the model outputs shall be further improved. To do so, information 
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about probe’s material and geometrical parameters need to be better defined. This aim will be 

pursued in future investigations  
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Abstract 

The present study explores the capability of Comsol Multiphysics, as a finite element 

modelling (FEM) tool, to model the interaction between a split-D differential surface eddy 

current (ECT) probe and semi-elliptical surface electrical discharge machined (EDM) 

notches. The effect of the small probe’s lift-off and tilt on its signal is investigated through 

modelling and subsequently, the simulation outcomes are validated using the probe’s 

impedance measurements. In the next stage, an adaptive neuro-fuzzy inference system 

(ANFIS) is designed to take the signal features as inputs and consequently, provide the 

length of the scanned notch as the system’s output. The system is trained by extracted 

features of thirty model-generated signals obtained from scanning of the same number of 

semi-elliptical notches by means of the split-D probe. The trained ANFIS is tested afterwards 

using the measured signals of 3 calibration EDM notches together with 5 model-based ones. 

A very low average estimation error is observed with regard to the length estimation of the 

test notches and the accuracy of the length estimation is found to be quite reasonable. 

 

3.1 Introduction 

Depending on the configuration of eddy current testing (ECT) probes, diverse analytical and 

semi-analytical models have been in use to study the interaction of these probes with surface 
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and near surface flaws. Evolution of ECT probes through years in order to fit for 

sophisticated new applications adds to their complexity and hence, leads to adoption of 

numerical approaches for their analysis more than before. From such probe categories, 

reflection differential split-D probe as a conventional ECT surface probe has served long in 

nuclear and aerospace industries owing to the spatial configuration of its differentially 

connected receiver coils. It has a very small footprint, high signal to noise ratio for tiny 

surface breakings and least sensitivity to gradual variations of both conductivity and 

permeability (R. Mooers et al., 2012; Shull, 2016). The impedance evaluation for this probe 

as it scans defective components requires finding a solution to the forward problem 

developed based on Maxwell’s equations. Most of these problems are tackled using semi-

analytical approaches and deriving integral equations for electromagnetic fields using 

Green’s dyadic functions (J. Bowler et al., 1990; J. Bowler et al., 1997; H. A. Sabbagh et al., 

2013). Followed by the these approaches, different studies investigated the performance of 

such probes through the developed volume integral code and some promising outcomes were 

presented using the method (J. Bowler et al., 1990; J. R. Bowler, Sabbagh, & Sabbagh, 

1989). However, the availability of diverse numerical tools nowadays allows one to treat the 

problems such as the interaction between complex probe geometries and defects more 

realistically without the need of evaluating the complicated Green’s function. Finite element 

modelling (FEM), as a well-known numerical method, is also very distinguished for its 

flexibility in processing complex geometries and has grown in popularity in ECT analysis in 

recent years since it is proved to be a competent mean. Unfortunately, the potential of the 

FEM in modelling of Split-D probes with non-axisymmetric geometries has not fully been 

explored yet. Accordingly, in the present study, FEM is exclusively used to compute the 

impedance of a split-D probe as it scans over 30 semi-elliptical electrical discharge machined 

(EDM) notches with different dimensions in order to form a size dependent signal archive. It 

is noted that semi-elliptical EDM notches are used to generate impedance trajectories since 

they can fairly be representative of surface fatigue cracks in terms of the shape (Yusa, Perrin, 

Mizuno, & Miya, 2007). 
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Employing various quantitative non-destructive testing techniques for crack sizing has 

become very important since the reliance of new structural life estimation approaches and 

maintenance decision-makings on accurate sizing has grown in various industries (Boukani, 

Viens, Tahan, & Gagnon, 2014; Iyyer, Sarkar, Merrill, & Phan, 2007). Reliable defect 

characterization and sizing through inversion of ECT signals can help one optimize the 

maintenance intervals which could result in the prevention of safety issues as well as the 

reduction in inspection costs. Therefore, due to their high importance, the inversion of ECT 

signals has been the concern of many studies in past. Most of the related publications are 

developed based on the Green’s function with solution to ECT forward problem in form of 

volume integrals and the inversion is commonly carried out through minimizing a cost 

function representing the difference between the predictions made by the forward problem 

and the measurements of the probe (J. Bowler, 2000; Burke, 1994). ECT Inversion based on 

these approaches requires low computational resources and they are fairly fast and accurate. 

However, some preliminary assumptions regarding the medium and flaw are required. 

Although, FEM is not as fast as the other techniques and thus, cannot be used directly in 

inversion, one can effectively use FEM-generated impedance trajectories of surface notches 

in conjunction with artificial intelligence (AI) to produce a sizing scheme. Furthermore, the 

primary task to adopt such a scheme is ensuring the reliability of FEM predictions for      

ECT signals.  

 

AI techniques such as fuzzy logic, neural networks, and genetic algorithms are developed 

based on the inspirations from biological and behavioural nature of human and they have 

been used in many real world applications. Integrating two or three of these  techniques can 

be advantageous in designing intelligent soft computing systems (Tsoukalas & Uhrig, 1996). 

Soft computing has been in use in the field of flaw characterization and classification using 

ECT signals for a while (Grimberg, Savin, Iancu, & Chifan, 2000; Udpa & Udpa, 1991; 

Upadhyaya, Yan, Behravesh, & Henry, 1999). Among all these approaches, neural networks 

(NN) and fuzzy logic (FL) are frequently used together either in series or as an integration to 

form hybrid systems in which the reasoning and inference power of the FL can be 

complemented by adaptive learning nature of NN. 
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In this paper, a hybrid system integrating NN and FL has been proposed for the notch length 

prediction. In FL, the values are transformed to membership degrees of linguistic information 

through fuzzy set theory by applying linguistic labels to which membership functions are 

assigned. Subsequently, a fuzzy inference system (FIS) composed of if-then rules is defined 

based on human perception and serves as the reasoning engine. Finally, the system outputs 

are defuzzified to quantitative values. Although the FIS is structured based on the human 

expertise, it does not adapt to changing environment. In order to optimize a designed FIS 

through training with sets of input/output data, an adaptive neuro-fuzzy inference system 

(ANFIS) can be of benefit. The training procedure for these systems requires several training 

data sets comprising of both known flaw dimensions and features of their corresponding 

signal. Fabricating such samples containing flaws with given dimensions is really costly and 

time consuming whereas modelling them by FEM allows one to generate as many signals as 

required to train ANFIS to cover a desired dimensional range for a certain flaw type. 

Therefore, in the present study ECT signals of the probe scanning over thirty notches with 

diverse lengths are obtained through FEM simulations in Comsol Multiphysics®. 

Afterwards, their signals are post-processed to extract the features which are fed as inputs to 

an ANFIS for training purposes. The initial Sugeno type FIS has the notch length as output. 

The trained system is tested subsequently using the measured signals of three calibration 

notches as well as the model-generated signals of 5 arbitrary semi-elliptical EDM notches. 

 

In industries, the demand for automated inspections is growing every day. Automation can 

eliminate the errors introduced by human factor as well as reducing the cost and time of 

inspections. However, there are also a few drawbacks linked to automated scans. For instance 

in the case of ECT automation, the probe manipulation is of high importance since even a 

very small tool alignment/positioning error affects the ECT signal significantly. In ECT, such 

errors appear in form of probe’s tilt and lift-off. Presence of any of these two can change the 

nature of the recorded signals of scanned flaws, which in turn introduces errors in crack 

characterizations. Therefore, the impact of small variations of the probe’s lift-off and tilt on 

ECT signal is investigated through FEM as it scans notches. Subsequently, the extent of the 
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error introduced into sizing caused by these small probe lift-offs and tilt angles is examined 

through feeding their signal features into the trained FIS. 

 

This study is organized in the following order. In section 3.2, the experimental setup and 

FEM preparations are explained. Initially, the credibility of FEM for predicting the probe’s 

signal as the tilt and lift-off vary is assessed by comparing their simulation results to the 

impedance measurements. Afterwards, the effect of probe’s tilt angle and lift-off variations 

on ECT signals of three calibration notches is investigated through simulations. In addition, a 

series of simulations concerning thirty semi-elliptical notches possessing different lengths 

and depths is performed and consequently, a size dependent table of the notch signals is 

formed (Mohseni, Viens, & Franca, 2016). In section 3.3, each of the signals is analyzed by 

means of a MATLAB script in order to extract their features such as the peak-to-peak 

amplitude, the maximum width and the shape type. Besides, an initial FIS is generated 

having the signal features as inputs and notch length as its output. The set of inputs and 

output related to each notch is prepared in form of vectors and used for training of ANFIS 

based on the hybrid method composed of back propagation and least squares optimization 

methods. Subsequently, the trained FIS is tested by the signals obtained from the 3 

calibration notches. Additional tests are carried out using the model-based simulated signals 

of 5 EDM notches randomly sized within the length size interval used in the training. At last, 

the signals acquired from the three calibration notches as the probe’s tilt angle and lift-off 

varies are analyzed. Following that, the extracted features of these signals are fed into the 

trained ANFIS to explore the level of error introduced in notch length estimation as a result 

of probe’s tilt and lift-off variation. 

 

3.2 Experiments and modelling 

Three semi-elliptical EDM notches in an aluminium 7075-T6 sample, as listed along with 

their dimensions in Table 3.1, are used for experimental measurements. The dimensional 

features if these notches are shown in Figure 3.1. The thickness of the aluminium sample is 6 

mm and it is extremely thick as compared to the penetration depth of eddy currents at 



86 

selected test frequency of 500 kHz, which is approximately 50 µm. A reflection differential 

split-D surface pencil probe working in frequency range of 500 kHz to 3 MHz together with 

a Nortec 500S ECT unit are used for scanning of the notches and recording the signals. The 

probe is fixed within an alignment device through which operator is able to set a tilt angle for 

the probe. The sample is mounted on an X-Y micrometric table which can be programmed to 

follow a scan trajectory. The experimental set up is demonstrated in Figure 3.2(a). An initial 

lift-off of 30 µm is introduced to the probe and maintained during all the experimental and 

modelling scans. The probe is oriented in a way so that the flat surface of D-cores, cutting a 

cylinder in half, becomes parallel to the notch side wall. Besides, the perpendicularity of the 

probe to the sample’s surface is ensured by checking the symmetry of the 8-shaped signal of 

a perpendicular to surface calibration through width notch. Afterwards, raster scans are 

conducted on each of the 3 notches in the way shown in Figure 3.2(b). The scans are 

performed with an index of 0.1 mm when the probe is tilted 0°, 2° and 4°. Figure 3.2(c) 

shows the tilt angle introduced to the probe while an initial lift-off of 30 µm is in place. In 

this figure, the tilt axis, which is perpendicular to the scan direction, passes through point A 

and is parallel to the surface of the sample. After recording the signals for tilt angle 

variations, notch signals are also acquired at probe’s lift-offs of 30 µm, 100 µm and 140 µm 

with no tilt. The impedance data recorded via a data acquisition card possessing a high 

sampling rate relative to the scan speed. The scan data is then analyzed using a MATLAB 

script to indicate the scan line being the closest to the line which cuts the notch length in half 

(i.e. notch center line). Clearly, the accuracy of finding the scan line passing over the notch 

center line depends on the scan index, symmetry of the notch relative to the plane cutting it in 

half along its length, the probes internal imperfections and, the surface waviness                

and non-parallelism. 
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Figure 3.1 Geometrical features of a semi-elliptical notch 

 

Table 3.1 Geometry of semi-elliptical EDM notches. 

Notch Length, L (mm) 
Depth, D 

(mm) 

Opening, W 

(mm) 

A 2.84 1.11 0.1 

B 1.62 0.63 0.1 

C 0.81 0.31 0.1 

 

 

Figure 3.2 (a) Setup for measuring the probe’s impedance as it scans the notches, (b) 
direction of the raster scan relative to the notch length, and (c) representation of the lift-

off distance and tilt angle applied to the probe 

 

For the purpose of modelling, the three dimensional (3D) CAD model of the probe is 

generated and imported into Comsol Multiphysics®. The model is cut in half along its 

symmetry plane which is parallel to the scan direction. Dimensions of the probe geometry, 

which are presented in detail previously (Mohseni et al., 2016), are extracted from X-ray 

tomography reconstruction. The X-ray scans are carried out using a Nikon XTH 225 micro 
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focus tomography unit and the reconstructed model is post processed via VG studio MAX. A 

schematic of the cut in half 3D rendering of the stack of the probe’s X-ray images is provided 

in Figure 3.3(a). Besides, the half-scaled 3D CAD model including the assembly of the probe 

and the sample prepared in Comsol along with a small region of the mesh which is applied to 

the model are illustrated in Figure 3.3(b). As shown in the figure, in order to shorten the 

simulation’s run time and save resources, a box encapsulating the probe and sample is 

defined to truncate the solution domain. 

 

 

Figure 3.3 (a) Cut in half 3D reconstruction of X-Ray tomography 
images of the split-D probe, (b) the probe and sample assembly model 

prepared within Comsol showing a small meshed region in close 
proximity to the notch geometry 

 

Followed by the assembly preparation, material properties for each domain are defined. 

Where the relative permeability of 2500 is assigned to the probe cores and the sample’s 

electrical conductivity is considered as 17.8 MS/m. Subsequently, a pre-defined magnetic 

field physics equation formulated as Equation 3.1 within AC/DC module of Comsol is 

employed and the magnetic insulation boundaries are placed on the faces of                        

the truncation box. 

 

 2( ( )) / ( ) ejμ σω ω ε∇ × ∇ × + − =A A J , j 1= −  (3.1) 

 

In Equation 3.1, A  is the electromagnetic vector potential, eJ  is the externally applied 

current density, 0ε  and rε  stand for the electrical permittivity of the free space and relative 
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electrical permittivity, respectively, 0μ  and rμ  are the permeability of the free space and the 

relative permeability, respectively. In addition, σ  and ω  are the electrical conductivity and 

angular frequency. In order to mesh the problem geometry, second order tetrahedral elements 

are used for each domain. The mesh global size within each domain is adjusted considering 

the constraints dictated by geometry of each domain and it is locally refined for regions 

where a high concentration of eddy currents is expected. Therefore, the maximum element 

size is set to be 0.08 mm on the surface of the sample. The size value is almost half the 

standard penetration depth of eddy currents (δ ) in aluminium at the frequency of 500 kHz. 

Following that, a small element growth rate of 1.1 is assigned to the sample volume. In this 

manner, the size of elements across the first few mesh layers under the surface remains below 

0.09 mm. Similarly, as depicted in Figure 3.3(b), a locally finer mesh is generated along the 

notch walls where eddy current density is expected to be high due to the flow perturbation 

caused by the notch. Afterwards, an iterative solver with frequency domain analysis step is 

used to run simulations. In each simulation, the notch is scanned by the probe having 0.1 mm 

displacement increments. This is defined as a parametric sweep step within the solver. 

Noteworthy, in all simulations presented here except those of the probe tilt study, the probe 

and the notch are both perpendicular to the surface of the sample. Therefore, there is a plane 

symmetry for the probe’s receiver coils and this plane is also parallel to the notch length 

during the scans. Accordingly, the notch signals are entirely symmetric relative to the 

impedance plane’s origin and because of that, only a half of the scan can be simulated for 

each notch. In this manner, the scan starts where the probe is centered with the notch and it 

continues until the notch is completely passed by the probe. Consequently, the probe finishes 

its scan at the position of 1.3 mm away from the notch center where it is located over the 

undefective region of the sample. However, in tilt study the probe’s full scanning path, which 

is twice 1.3 mm, is used since the signal is not symmetric anymore. Differential impedance 

of the probe at each scan position is calculated using Equation 3.2. 

 

 
2 1( ) / DR R= −Δ V V IZ  (3.2) 
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where  R1V  and R2V  are the voltages induced across the receiver coils 1 and 2, respectively 

and, DI  stands for the current flowing in the driver coil. 

 

Simulations presented in the subsequent sections are categorized in the following order: 

1. The scan of calibration notches as the probe has lift-offs of 60 μm, 80 μm, 100 μm, 

120 μm, and 140 μm are simulated. The model-based signals obtained at lift-offs of 

100 μm and 140 μm are compared with measurements to validate the study. 

2. The scan of the calibration notches as the probe’s tilt angle varies from 1° to 4° with 

steps of 1° are simulated. The model-based signals obtained at tilt angles of 2° and 4° 

are compared with measurements to validate the study. 

3. The signal of thirty notches possessing different sizes, as presented in Table 3.2, are 

simulated to establish a size dependent signal archive for ANFIS training.  

 

All the semi-elliptical notches used in these simulations have 0.09 mm of opening. 

 

Table 3.2 Dimensions of semi-elliptical EDM notches used in the simulations. 

Notch 

No. 
D* L** 

Notch 

No. 
D L 

Notch 

No. 
D L 

Notch 

No. 
D L 

Notch 

No. 
D L 

1 0.3 0.3 7 0.3 0.45 13 0.3 0.6 19 0.3 0.75 25 0.3 0.9 

2 0.5 0.5 8 0.5 0.75 14 0.5 1 20 0.5 1.25 26 0.5 1.5 

3 0.7 0.7 9 0.7 1.05 15 0.7 1.4 21 0.7 1.75 27 0.7 2.1 

4 0.9 0.9 10 0.9 1.35 16 0.9 1.8 22 0.9 2.25 28 0.9 2.7 

5 1.1 1.1 11 1.1 1.65 17 1.1 2.2 23 1.1 2.75 29 1.1 3.3 

6 1.3 1.3 12 1.3 1.95 18 1.3 2.6 24 1.3 3.25 30 1.3 3.9 

*  Depth in millimetres 
**  Length in millimetres 
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3.2.1 Lift-off and tilt studies 

The results of FEM simulations for the probe’s lift-offs of 100 μm and 140 μm when it scans 

the three calibration notches of Table 3.1 are plotted along with the impedance measurements 

carried out under the same conditions in Figure 3.4. 

The nature of the small discrepancies that could be observed between the simulations and 

measurements results in Figure 3.4 vary depending on the notch dimensions. These 

differences can be categorized into three classes:     

• The difference in maximum signal amplitude that can be mainly observed for the 

signals of notch A as demonstrated in Figure 3.4(a). This type of discrepancy is 

believed to be caused by one point calibration which is used for adjusting the initial 

lift-off of the probe. Depending on the initial spot chosen for lift-off calibration, the 

actual probe’s lift-off might slightly alter as the probe scans locations apart from the 

calibration point due to the possible non-parallelism of the sample’s top and bottom 

surfaces as well as surface waviness. It shall be noted that all three notches are 

located at a certain distance from each other on the same sample and changing the 

scan spot can affect the lift-off of the probe. 

• The shape discrepancy between the simulated and measured signals is mostly present 

for the smaller notches B and C as can be noticed in Figure 3.4(b) and Figure 3.4(c). 

This difference type is most likely associated to the deviations of the actual notch 

geometry from the ideal one used in simulations. This kind of difference is more 

visible for notches B and C as compared to notch A since their signature on 

impedance plane is smaller and more complex. In addition, the EDM manufacturing 

method that used to carve these notches reaches its limitations for the small sized B 

and C notches and hence, the likelihood of deviation from the nominal geometry 

becomes higher.  
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Figure 3.4 Comparison between the measured and simulated signals of (a) notch 
A, (b) notch B, and (c) notch C at two different lift-offs of 100 and 140 µm 

 

• The impedance plane’s origin for simulated signal slightly shifts relative to the one 

from measurement for notch C according to Figure 3.4(c). This difference mostly 

comes to sight for the smallest notch for which a high device gain is used during the 

measurements. This effect is connected to the nulling procedure used in simulations 

where the impedance of the probe scanning the defective parts of the sample is 

subtracted from the probe’s impedance when it is located on undefective parts. 

Depending on the mesh inhomogeneity in sample, the impedance may not be 

correctly nulled. Besides, the measured signal is not essentially passing the origin of 

impedance plane as there is a slight unbalance between the shape of the probe’s cores 

(Mohseni et al., 2016). The difference might as well be present for the larger notches 

however, owing to their higher signal amplitudes, the origin shift is negligible relative 

to the size of the impedance trajectory. 

   

Scan 
direction 
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Despite of these discrepancies, the predictions made by simulations are reasonably good and 

the model can be used further to study the signal variations as the lift-off changes. 

Consequently, for each notch, three more scans at probe’s lift-offs of 60 μm, 80 μm and    

120 μm are simulated and resulting signals along with the previous ones as the lift-off varies 

are presented in Figure 3.5. 

 

 

Figure 3.5 Effect of lift-off variations on the ECT signal of (a) notch A, (b) notch B,  and    
(c) notch C 

 

The previously presented validation strategy for lift-off variations is employed again to 

assess the performance of Comsol in tilt modelling. Therefore, the three calibration notches 

are scanned with the probe having tilt angles of 2° and 4°. Subsequently, as illustrated in 

Figure 3.6, the simulated signals are plotted alongside the probe’s measurements for 

comparison purposes. 

 

The slight discrepancies between the signals presented in Figure 3.6 are originated from the 

same sources that are listed previously with regard to the validation of the lift-off study. The 

influence of these estimation errors on the signal features that are used for ANFIS training is 

trivial and thus, the predictions are sufficiently satisfactory serving that purpose. For this 

reason, additional tilt angles of 1° and 3° are also simulated. The signal variations as the tilt 

angle varies from 1° to 4° with steps of 1° are depicted in Figure 3.7. 
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Figure 3.6 Comparison between the measured and simulated signals of (a) notch A, (b) 
notch B, and (c) notch C for two probe tilts of 2° and 4° 

 

 

Figure 3.7 Effect of the probe’s tilt angle variations on the signal of (a) notch A, (b) notch 
B, and (c) notch C 
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According to Figure 3.5 and Figure 3.7, the maximum signal amplitude of each notch 

decreases as either the lift-off distance or tilt angle grows whereas the signal phase changes 

are insignificant. Variations of the signal amplitude versus the lift-off distance and tilt angle 

are plotted in Figure 3.8(a) and Figure 3.8(b), respectively. In these figures, it can be 

observed that the probe’s signal amplitude variations are the largest when it scans notch A as 

either lift-off or tilt varies. As the notch gets smaller, the variations of amplitude reduce. This 

phenomenon is directly connected to the notch size. In fact, notch A with a depth almost 

equal to 7δ is counted as a broad barrier to eddy current flow. Therefore, this notch perturbs a 

high percentage of eddy currents regardless of the density imposed by either the lift-off 

distance or the tilt angle. Accordingly, increasing the lift-off/tilt reduces the absolute value of 

the signal amplitude remarkably for this notch. As for the smallest notch C, possessing a 

depth equivalent to 2δ, the interaction with eddy currents is less as compared to the previous 

case of notch A. Meaning that eddy currents partially flow beneath the notch. Thus, as a 

result of weaker interaction between the notch and eddy currents, the signal amplitude is 

much smaller and hence, the variations of the amplitude caused by the lift-off/tilt changes is 

limited to the changes of EC density in depth of 2δ. So, a minor amplitude variation is 

observed for notch C as compared to the larger notches. However, plotting the normalized 

amplitude variations, as shown in Figure 3.12, would prove that the amplitude of the smallest 

notch has higher sensitivity to these lift-off/tilt variations. Clearly, the behavior of amplitude 

variations for notch B falls in between the other two. 

 

 

Figure 3.8 Variations of the probe’s signal amplitude as it scans three 
notches A, B and C versus the probe’s (a) lift-off, and (b) tilt angle 
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3.2.2 Size dependent signals for ANFIS training 

The agreement between the signals obtained by simulations with those of measurements 

when the probe has its initial lift-off and does not have any tilt angle is previously verified 

for three calibration notches providing a proof on the versatility of the model in predicting 

the signals of notches having different sizes as well as the consistency of the outcomes 

(Mohseni et al., 2016). Accordingly, the model is used henceforth to simulate the scan of 

thirty notches presented in Table 3.2. Simulated signals of the notches numbered 13 to 18 are 

presented in Figure 3.9(a). As it can be seen, apart from the variations of the signal phase and 

amplitude, the signals can be classified into three distinctive shape classes which can be 

correlated to the ratio of the notch length to the probe’s diameter. These three types can be 

discriminated by the number of the loops that appears in impedance trajectory. A schematic 

of these three types are presented in Figure 3.9(b). As depicted for type 1, the half-scaled 

trajectory made by the movement of impedance loci forms only one loop as the probe scans a 

notch until it reaches the notch center. Both the 2 and 3 type half-scaled signals have two 

loops however, for the type 2 signal, the magnitude of vector X connecting the impedance 

plane’s origin to the point at which the curve intercepts itself is larger than 20% of the vector 

Z magnitude (i.e. the half of the peak to peak signal amplitude). Beside other parameters, the 

type classification presented here is used as a training input for ANFIS in the next chapter. 
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Figure 3.9 (a) Variations of the form of the probe’s signal as it scans 6 different 
notches with different dimensions and (b) three signal shape categories used for 

training ANFIS 

 

3.3 Adaptive neuro-fuzzy inference system 

A grid type ANFIS with an initial three inputs/single output Sugeno FIS is used in training. 

The set of inputs/output data used for this system is listed in Table 3.3. In Figure 3.10(a), the 

signal features used as inputs to ANFIS are marked on one of the simulated signals. 

Noteworthy, on each signal, the point at which the signal amplitude becomes maximum is 

determined and connected by a line Z to the plane’s origin. Afterwards, the hypothetical lines 

perpendicular to the line Z that intercept the impedance trajectory at two points are 

considered and the distance between the two points on each of these hypothetical lines is 

measured. Accordingly, the maximum distance is taken as the signal width. These features 

are calculated using a MATLAB script for all thirty signals. 

 

Table 3.3 Set of inputs and output that are used in the form of a vector to train a       
grid type ANFIS. 

 

Inputs Output 

Amplitude (Ω) Maximum width (Ω) Type (1, 2 and 3) Notch length (mm) 

1 2 3 
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The architecture of a grid type ANFIS having three inputs and a single output is presented in 

Figure 3.10(b). The demonstrated system is comprised of five layers where in layer one 

fuzzification happens meaning that, the membership value of the input is determined through 

fuzzy sets and the membership function defined for each input. In second layer, an AND 

operation representing the fuzzy rule is performed at each node providing an output derived 

from the algebraic product of the membership values of the previous layer. In third layer, 

each output of layer 2 is divided by the sum of all outputs for the purpose of normalizing and 

in layer 4, each normalized value from previous layer is multiplied by the sum of inputs 

having adjustable coefficients. Last layer yields the final output by performing summation on 

the outputs of layer 4. As it can be seen in Table 3.2, the simulated signals used for training 

the ANFIS are mostly dependent on the notch length since none of these notches share the 

same length. Accordingly, the system is trained by having the notch length as output. In 

Table 3.2, it can be observed that from one column to the other, the notch depth does not 

change while the length varies. In spite of the fact that their depth is analogous, their signal 

and hence, extracted features vary since the notch lengths change. Therefore, training the 

system with depth as an output results in inconsistency in learning which leads to unreliable 

depth sizing. In other words, the table of signals prepared in this study is primarily generated 

for notch length estimation and it is not fit for training a depth estimation system. 

 

 

Figure 3.10 (a) Maximum signal amplitude and width shown on a simulated signal of 
notch A and (b) structure of a three inputs/single output ANFIS (Jang et al., 1997)  



99 

Three Gaussian curve membership functions are assigned to each of the FIS inputs. In 

addition, the system’s output is taken constant and weight average defuzzification method is 

used to obtain the final output. Afterwards, the designed FIS is imported to ANFIS and 

trained by means of the thirty inputs/output vectors in the form of the one presented in Table 

3.3. Each of these vectors is associated to one of the notches listed in Table 3.2. The structure 

of the resulting system has 256 fuzzy rules.  The error generated during the training of the 

system is 2%. This error corresponds to the difference between the outputs fed to ANFIS and 

the predictions of the trained system for the given inputs. Performance of the system is also 

tested by measuring the error in length estimation for the three calibration notches as well as 

5 extra notches modelled in Comsol. To this end, the features for both measured and 

simulated signals are inserted into the trained FIS. Accordingly, Table 3.4 enlists the both 

actual and estimated lengths of aforementioned test notches for which the length estimation 

error is also presented. The average error in length estimation of the test notches does not 

exceed 5%. 

 

Table 3.4 Nominal length and the length estimated by the trained FIS for 3 calibration and 5 
model-based EDM notches. 

 

In the second phase of the study, the error introduced in length estimation caused by small 

variations of the probe’s tilt and lift-off are examined for the longest and the shortest 

calibration notches. Their signals as the probe’s lift-off and tilt change are previously 

depicted in Figure 3.5 and Figure 3.7, respectively. These signals are processed to extract 

their features which are subsequently fed into the trained FIS. Accordingly, the additional 

Notch 

Name 

Nominal 

Length 

(mm) 

Estimated 

Length(mm) 

Error 

(%) 

Notch 

Name 

Nominal 

Length 

(mm) 

Estimated 

Length 

(mm) 

Error 

(%) 

Notch A 2.84 2.86 0.70 Test 2 1.35 1.48 9.63 

Notch B 1.62 1.68 3.70 Test 3 1.85 2.01 8.65 

Notch C 0.81 0.83 2.47 Test 4 2.50 2.61 4.40 

Test 1 1.20 1.29 7.50 Test 5 3.00 3.03 1.00 
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error in length estimation caused by tilt and lift-off variations are acquired and plotted in 

Figure 3.11. According to this figure, the error connected to the length estimation made by 

FIS grows for both notches A and C as either the lift-off or the tilt angle of the probe 

increases. Moreover, the error associated to notch C grows with a higher rate as compared to 

notch A. To understand the phenomenon supporting the fact, it would be beneficial to plot 

the normalized signal amplitudes versus the lift-off and tilt variations for the three calibration 

notches, as depicted in Figure 3.12(a) and Figure 3.12(b), respectively. 

 

 

Figure 3.11 Percentage of additional error introduced into the length 
estimation of notch A and C because of the probe’s (a) lift-off and (b) tilt 

angle variations 

 

 

Figure 3.12 Variations of the normalized maximum amplitude of three 
notches A, B and C as the probe’s (a) lift-off and (b) tilt angle change 

 

For the plots of Figure 3.12, the maximum signal amplitude obtained for each notch is 

normalized by the maximum amplitude of the same notch at the lowest lift-off /tilt value. 
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Looking at this figure, it is clear that the sensitivity of the signal amplitude to both lift-off 

and tilt increases as the notch gets smaller yielding the highest sensitivity for the smallest 

notch C. Since, the interaction of this notch with eddy currents is less significant as compared 

to the case of notch A, it has a smaller signal amplitude. Besides, the notch is shallower than 

the first standard penetration depth meaning that it interacts with high density current flow. 

Considering these two facts, it would be evident that the smallest changes in the lift-off/tilt 

which in turn changes the eddy current density can have a more significant impact on the 

normalized amplitude of the smaller notches. In Figure 3.12, the rate of changes in the 

maximum signal amplitude of notch C, which is an input to the trained FIS, is higher than the 

notch A versus tilt/lift-off variations and hence, the error introduced into sizing would 

increase more rapidly. Furthermore, looking at each of the curves plotted in Figure 3.11 

individually, it can be seen that there exists a turning point on each curve dividing it to two 

zones. Before the turning points the sizing error grows faster while the growth rate 

diminishes as the point is passed. One could expect these observations concerning the error 

curves since according to eddy current principles, the density of induced currents changes 

remarkably as the probe is lifted within very low lift-off distances. On the other hand, the 

variations in current density becomes less sensitive to lift-off changes when the probe is more 

distant from the sample and the coupling is weaker. 

 

3.4 Conclusions 

According to the results presented in the preceding sections concerning the effect of the 

probe’s tilt and lift-off on eddy current signal of the notch as well as the ANFIS training and 

testing of the trained FIS the following results can be concluded: 

• Based on the validation studies carried out here, Comsol is proved to be a reliable 

FEM tool in predicting the behavior of eddy current signal variations as the probe’s 

lift-off distance and tilt angle varies. The maximum signal amplitude decreases as 

either the lift-off or tilt increases since the coupling between the probe and the test 

piece weakens. These amplitude variations are greater for the largest notch A and it 

becomes less significant as the notch gets smaller. However, the plot of the 
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normalized impedance versus lift-off/tilt shows that the sensitivity of the normalized 

impedance to the changes of lift-off/tilt increases as the notch gets smaller. 

• The size dependent table of the signals defined in this study is designed to provide 

ANFIS training data for length estimation. This table is comprised of thirty notches 

having different lengths. Obviously, the depth diversity of the notches modelled here 

is not sufficient to provide an efficient training for depth estimation. 

• The trained FIS could estimate the length of the test notches with an average error of 

less than 5%, where 2% of this error is attributed to the system’s inherent training 

error. The length estimation error for the measured signals of the calibration notches 

A, B and C stays less than 2.5% proving that the system can be used effectively to 

perform length estimation regardless of the length to depth ratio for semi-elliptical 

notches in this material. 

• It is observed that by increasing the probe’s lift-off/tilt the system underestimates the 

length of the calibration notches. Moreover, the growth rate in length estimation error 

as the lift-off/tilt increases is lower at the beginning, and it intensifies as the lift-

off/tilt increases. This growth rate drops at higher lift-off distances and tilt angles. In 

addition, the rate of the variations for the length estimation error is the highest for the 

smallest notch C since its signal demonstrates to be the most sensitive to the lift-

off/tilt changes. 
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Abstract 

Applying life estimation approaches to determine in-service life of structures and plan the 

inspection schedules accordingly are becoming acceptable safety design procedures in 

aerospace. However, these design systems shall be fed with reliable parameters related to 

material properties, loading conditions and defect characteristics. In this context, the role of 

non-destructive testing (NDT) reliability is of high importance in detecting and sizing 

defects. Eddy current test (ECT) is an electromagnetic NDT method frequently used to 

inspect tiny surface fatigue cracks in sensitive industries. Owing to the new advances in 

robotic technologies, there is a trend to integrate the ECT into automated systems to perform 

NDT inspections more efficiently. In fact, ECT can be effectively automated as to increase 

the coverage, repeatability and scanning speed. The reliability of ECT scanning, however, 

should be thoroughly investigated and compared to conventional modes of applications to 

obtain a better understanding of the advantages and shortcomings related to this technique. In 

this contribution, a series of manual and automated ECT tests are carried out on a set of 

samples using a split-D reflection differential surface probe. The study investigates the level 

of noise recorded in each technique and discuss its dependency on different parameters, such 

as surface roughness and frequency. Afterwards, a description of the effect of crack 

orientation on ECT signal amplitude is provided through experimental tests and finite 

element simulations. Finally, the reliability of each ECT technique is investigated by means 
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of probability of detection (POD) curves. POD parameters are then extracted and compared 

to examine the effect of scanning index, frequency and automation on detection reliability. 

 

4.1 Introduction 

Fatigue failure is the most important source of damage in systems subjected to cyclic loads.  

In the aerospace industry, this phenomenon is frequently observed as the dynamic nature of 

stresses during flight, takeoff and landing promotes the nucleation of micro-cracks and their 

propagation. In order to make decisions on the continuation of operation and also on the 

maintenance intervals, risk assessment programs have been introduced (Ghiocel & Wang, 

2004). In this framework, probabilistic physical models are used to estimate the remaining 

fatigue life of in-service components. These models are mostly developed based on the 

damage tolerance approach, which requires several input parameters including flaw 

characteristics, material properties and loading conditions (Dillström & Nilsson, 2007). 

Optimal definition of these input parameters considering their uncertainty would lead to more 

accurate remaining life estimation; thus, the maintenance intervals would be set based on 

more realistic results, and unexpected failure could be avoided (Bagaviev & Ulbrich, 2004). 

Concerning the flaw characterization, NDT methods are the most available and practical 

means. The uncertainty of flaw characterization is largely influenced by the NDT method, 

inspection device, test conditions, component under test and inspector (Olin & Meeker, 

1996). To address this issue, the reliability and capability of NDT methods in flaw 

characterization should be properly assessed. Probability of detection (POD) has been 

developed as a measure to quantify such reliability. Based on POD results it would be 

possible to make a better decision about the largest flaw which may be missed by a given 

NDT method (Annis, 2009). Beside POD as the main reliability parameter, probability of 

false indication (POFI) could also be investigated in the context of NDT reliability. Most of 

the programmed inspection plans employ POD curves along with POFI as an advantageous 

means to determine the inspection intervals in some critical safety fields, in particular 

aerospace industries (Carboni & Cantini, 2015; Georgiou, 2007). It is always of high 

importance to select the NDT technique and related equipment objectively to efficiently 
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detect flaws within structures. The appropriate selection of technique and inspection 

apparatus as well as the test parameters can increase the POD and assure the integrity and 

reliability of the in-service component over its expected life time (Volker, Dijkstra, Terpstra, 

Heerings, & Lont, 2004). 

 

Considering its simplicity of operation and effectiveness, eddy current testing (ECT) is one 

of the NDT methods widely used for detecting and sizing fatigue cracks in the aerospace 

industry (Boller, 2001). ECT, which is based on electromagnetic principles, is one of the 

preferred methods for the inspection of surface discontinuities in electrically conducting 

materials (Cecco et al., 1983). Since the nucleation sites for fatigue cracks are mainly located 

on the surface and near surface areas of materials, reflection differential split-D ECT probes 

can be a good option for the detection of such cracks. The placement of D-shaped receiver 

coils in the housing and their differential configuration provide a small footprint and high 

signal to noise ratio. This could be translated into high detection sensitivity for surface 

cracks, reducing undesirable noises caused by the probe’s lift-off and tilt (Mohseni et al., 

2016; R. Mooers et al., 2012). The advantages of using this type of probe configuration 

become more pronounced when inspecting ferromagnetic materials (e.g., martensitic steels), 

since the ECT signals detected from these materials could be very noisy. Different studies 

have investigated the performance of split-D probes through model-based approaches (R. 

Mooers et al., 2012; R. D. Mooers, Aldrin, & Knopp, 2015a; R. D. Mooers et al., 2015b; R. 

D. Mooers et al., 2013, 2014; Norio Nakagawa et al., 2009), while some others have tried to 

perform model-based inversion based on the flaws scanned by the probes (J. C. Aldrin et al., 

2015; J. C. Aldrin et al., 2014; Shell et al., 2014).  

 

Knowing that ECT is often used in the modern aerospace industry, where the quality of the 

inspection method plays a critical role in the public safety, it is crucial to investigate the 

reliability of the ECT method through POD studies. Like any other NDT technique, ECT 

signals are always accompanied with variability in tests that could impact the POD (Rajesh, 

1997). Therefore, POD studies on ECT have become increasingly important in recent years. 

Rosell et al. presented a comparative study on automated and manual scans of surface cracks 
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using an absolute ECT probe (Rosell & Persson, 2013). Moreover, a series of studies 

regarding POD of ECT inspections of bolt-hole were conducted by Krause et al. (Lemire et 

al., 2009; Lemire et al., 2010; P. R. Underhill & T. W. Krause, 2011). They generated PODs 

based on the inspection results for fatigue cracks and EDM (electrical discharge machined) 

notches located in bolt holes of bi-layer 7075-T6 aluminum sheets. Their inspections were 

performed using rotary split-D ECT probes, and the effect of different calibration schemes, 

such as two-point calibration, on the obtained POD were investigated.  

 

The present research aims to investigate, for the first time, the reliability of both manual and 

automated (encoded) scans for detecting surface fatigue cracks in a set of flat AISI 410 steel 

samples using a split-D probe. To this end, the signal response POD is considered as the 

quantitative tool for this comparison study, where only the most influential parameters (i.e. 

parameters that their variation affects the ECT signal significantly), namely the test 

frequency, the crack orientation, the index of automated raster scan and the inspector are 

considered. The methods used herein for POD data analysis are in accordance with the MIL 

Handbook 1823A standards (Annis, 2009)  and are using the mh1823 POD algorithms 

package, which is available online (Annis, 2018). Even though this study does not cover all 

the usual round robin of test parameters, the small matrix of laboratory tests conducted herein 

shows to be fairly conclusive as a comparative study. 

 

During the analysis of the signal amplitude as a function of the relative orientation between 

the scan and crack lines, it is observed that for each specific orientation there is a threshold 

crack length above which the changes of eddy current signal amplitude become less than 5%. 

Hence, one could speculate that the signal amplitude is becoming almost insensitive to the 

crack length. Unfortunately, the crack length interval used in the experiments is limited. In 

order to expand the extent of this study to larger crack sizes, and thus gain a better insight 

into the experimental observation, finite element modelling (FEM) is employed. For this 

purpose, a FEM is prepared for a split-D probe interacting with samples containing semi-

elliptical notches representative of fatigue cracks. Subsequently, the effect of notch length 

and orientation on the signal amplitude is analysed through FEM simulations.  
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The paper structure is organized in the following manner. The variables treated as the source 

of variability in ECT response for both automated and manual ECT scans are presented in 

section 4.2. Section 4.3 provides the details of experimental procedures and calibration 

system. In section 4.4, noise analysis for each technique is presented, and the dependency of 

the noise on different test parameters is investigated. The effect of crack orientation on the 

signal amplitude is studied experimentally and numerically in sections 4.5 and 4.6. The 

reliability studies concerning both techniques through POD curves are discussed in section 

4.7 and the study is concluded in section 4.8. 

 

4.2 ECT POD variables 

Obtaining variable responses by repeated inspection of a flaw with a fixed size is a proof of a 

lack of reproducibility for a given NDT technique. Scanning responses depend on many 

factors including the material properties, characteristics of the flaw, equipment set-up, 

inspector skills and environmental factors. Accordingly, for a specific flaw size, a 

distribution of signal amplitudes could be obtained, which could be used further to generate a 

POD curve using statistical analysis.  

 

An intuitive insight into the parameters affecting signals must be achieved when generating a 

POD curve for a certain ECT application. Special care should be taken to include the 

influential parameters while insignificant ones could sometimes be neglected. Table 4.1 lists 

several parameters that may contribute to the flaw response variability                   

(Rosell & Persson, 2013). 
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Table 4.1 List of parameters causing variations in ECT signals during automated and    
hand scans 

Hand scans Automated tests 

Inspector Index and speed of scan 

Squaring collar Vibrations and associated noise 

Environmental conditions 

Calibration 

ECT equipment and probe 

Test frequency 

Gain and electrical noise 

Probe orientation (differential probe) 

Probe’s tilt and lift off 

Sample’s surface conditions (curvatures, roughness and contaminations) 

Material properties (conductivity and permeability) 

Crack geometry (shape, opening, profile, length and depth) and orientation 

Signal acquisition and feature extraction for POD analysis 

 

Even though some of the parameters presented in Table 4.1, such as material properties and 

environmental conditions, may contribute to POD results, their contribution is negligible 

compared to some influential ones and might not be included in a POD study. Since the same 

ECT instrument and probe are used in both manual and automated scans, they are discarded 

as a possible source of variation in this study. During the tests, the probe is positioned 

randomly on the sample’s surface leading to possible variations in the relative angle that the 

scan direction makes with the orientation of milling tool marks on the surface. Although 

effort is put in keeping the perpendicularity of the probe relative to the surface, small tilt 

angles may still remain. The small tilt variations along with the effect of tool marks 

orientation are considered as contribution to lift-off. The speed of automated scans is 

significantly low relative to the data acquisition sampling rate; therefore, the effect of 

scanning speed is disregarded. In view of these assumptions, the list of the remaining 

influencing factors is summarized in Table 4.2. 
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Table 4.2 List of parameters examined in this work for monitoring their effect on the 
distribution of ECT response 

Hand scans Automated tests 

Inspector Scanning index 

Test frequency 

Crack orientation 

 

4.3 Experimental procedure 

The specimens used in this study were provided by an aircraft engine manufacturing 

company. They are made of martensitic AISI 410 steel with a 114.3 mm × 25.4 mm × 6.35 

mm dimensions. Pristine samples were mixed with others containing artificially induced 

fatigue cracks. Specimens are machined from three steel plates. Fatigue cracks are grown out 

of a small starter EDM notch using cyclically loaded three-point bending tests. Cracks are 

grown to predetermined lengths to cover a useful range. Then, the top and bottom surfaces of 

the samples are machined off so that the starter notches and fixture marks are removed. 

Destructive tests performed on a subset of these samples revealed that the depth (D) of 

fatigue cracks is correlated to their length (L) through the linear regression given in Equation 

4.1 with a coefficient of determination R2 = 0.984. 

 

  = 0.006 0.347D L− +  (4.1) 

 

A Nortec 500S eddy current device along with a reflection split-D differential surface probe 

with a frequency band in the range of 500 kHz to 3 MHz are selected for the inspections. The 

experimental tests are performed in two separate stages: a) first, all samples including 

defective and undefective are inspected manually; b) second, an automated raster scan is 

conducted on the entire set of samples. In both stages, horizontal and vertical gains of the 

Nortec device are fine tuned to fit the largest captured signal within 80 percent of both screen 

height and width at each test frequency. Accordingly, the response of the largest fatigue 

crack included in the study (2.95 mm in length and 1 mm in depth) is used for calibration 
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purpose. To do so, this crack is scanned in several passes perpendicular to its length and only 

the maximum response is kept for gain settings. Such an approach has been suggested by 

Krause et al. (Lemire et al., 2010) because longer cracks would decrease the variability 

resulting from different inspectors. Besides, the signal obtained from these cracks is higher in 

amplitude giving rise to the best available signal to noise ratio.  

 

Manual ECT scans are performed by three qualified inspectors. During the manual scans, a 

bell-shaped squaring collar is attached to the probe to maintain the perpendicularity of the 

differential probe to the sample’s surface. In addition, a Teflon tape with thickness of 50 μm 

is used on the probe’s tip. This helps to reduce the friction between the probe and the 

scanning surface, making it easier for the probe to glide over the surface during the 

inspection process.  

 

For automated scanning, a motorized X-Y table is utilized to perform a raster scan on the 

samples. The ECT probe is clamped inside an alignment holder, allowing gimbal and swivel 

micrometric rotation about the axis of a mounting post. The lift-off is controlled through a 

micrometric Z-stage and set at 30 μm to avoid friction between the probe’s tip and the 

sample’s surface, thus preventing the probe from flexing. The experimental setup for the 

automated scans is shown in Figure 4.1. Before starting each scan, the probe is positioned 

arbitrarily on the sample’s surface to randomize the relative position of the probe and cracks, 

if there is any. Subsequently, three scans with indexes of 2.5 mm, 1.25 mm and 0.5 mm are 

conducted for each sample while keeping the same probe position at the start of the scan. 
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Figure 4.1 Experimental setup for performing 
automated ECT scans 

 

A solvent cleaner is applied on the sample’s surface before starting the inspections to remove 

any potential contamination. All samples are tested at three test frequencies of 500 kHz, 750 

kHz and 1 MHz, and orientation angles of 0°, 45° and 90° (refer to θ in Figure 4.2(a)). The 

signals captured by the Nortec 500S device are recorded and transferred to a computer 

through a data acquisition card for further processing. The 8-shape impedance trajectories are 

plotted from the recorded data of horizontal and vertical axes, and then are post-processed in 

MATLAB to find the peak-to-peak amplitude values for all indications (refer to Vpp in Figure 

4.2(b)). 

 

 

Figure 4.2 (a) relative orientation represented by the angle Ɵ, which is 
defined by the crack line and scan direction, and (b) peak-to-peak amplitude 

of an 8-shape ECT signal 
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4.4 Noise Treatment 

As mentioned in Section 4.2, sample surface conditions, such as roughness, contribute to 

ECT noise. In addition, for manual scanning, surface roughness may induce probe wobble 

and vibration due to improper handling and pressure variation during scan. For automated 

scanning, undesired effect, such as non-parallelism between the sample surface and the scan 

plan, is another contributor to noise. There is finally a fundamental noise coming from 

electrical circuitry. 

 

Electrical noise has first been measured by nulling the Nortec device while the probe was 

held in the air. The signal acquired thereafter has been processed in MATLAB® to calculate 

the root mean square (RMS) variation of the probe impedance, rmsZ . Such a calculation is 

based on Equation 4.2 where ( )X t  and ( )R t  are respectively the inductive reactance and the 

resistance of the probe as a function of time. It has later been observed that less than 10 % of 

the noise level recorded during the scans is attributed to electrical noise. 

 

 
2 22 2

2 1 1

1
( ) ( ) ( ) , ( )

( )rms

t
Z t X t R t Z dtZ t

t t t
= + =    −

 (4.2) 

  

To calculate the noise level associated to sample scanning, the signals acquired from 

undefective samples are imported to MATLAB®. As depicted in Figure 4.3, typical noise 

signal is interrupted by intervals during which scanning direction is reversed. In order to 

disregard these intervals, noise samples are taken within windows that exclude these 

inconsistent signals. A moving average over each of these windows is calculated and 

subtracted from the sample’s response to compensate for the effects of the probe’s tilt and 

lift-off during each pass of the scan. This pre-processing operation is carried out in an 

attempt to isolate noise due to surface conditions from the one induced by non-ideal probe 

handling. Afterwards, the RMS impedance is calculated according to Equation 4.2 for each 

window, and the values of 10 windows are averaged to yield the noise level for one    

scanning condition.  



113 

 

Figure 4.3 Typical noise recorded during manual scan and the windows selected     
for processing 

 

Because the eddy current device gains differ with operating frequencies and scanning 

techniques (manual or automated), noise level shall be analysed in accordance with these 

settings. So, in all cases, noise level has been normalized with respect to the calibration 

signal amplitude. The noise variations against the orientation of the machining tool marks 

with respect to scanning direction are plotted in Figure 4.4. From this plot, it can be found 

that noise of the manual scan shows higher values at all testing conditions as compared to the 

automated scans. The lift-off introduced by the Teflon tape during manual scans is 50 μm, 

which is larger than the one used in automated scans. The higher lift-off distance results in 

weaker coupling between the probe’s electromagnetic field and sample. To compensate for 

such an effect, gains on each axis should be increased during calibration, and this fact alone 

elevates the level of noise in manual scans. Moreover, in comparison to automated scans, 

manual scans are affected by some other sources of noise, including the non-uniformity of 

hand pressure during the scanning process and fluctuations imposed by the surfaces’ 

irregularities, which raise the overall received noise on the eddy current signal. 

 

Both manual and automated noise levels get larger as the relative angle between the probe 

and machining tool path direction (i.e., tool marks orientation) increases from 0° to 90°. In 

the same fashion, the arithmetic mean deviation of the assessed profile ( aR ) increases as the 

surface tool marks orientation changes from 0° to 90°, according to Figure 4.5. Therefore, as 
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we look at the variations of the noise level with the tool marks orientation in Figure 4.4, the 

trend of variations closely follows the one observed for aR against the tool marks orientation 

in both techniques. However, the noise growth rate of automated scans more accurately 

resembles the aR variation trend.  This can be explained by observing that the scan direction 

relative to the tool marks orientation is more accurate in the automated scan than in the 

manual. Furthermore, the additional noise superimposed by other sources in manual scans, as 

mentioned previously, could contribute to the slight deviation of the slope of manual noise 

variations from that of aR . 

 

As another influential parameter, an increase in frequency would also intensify the noise 

levels in both techniques. Variation of the noise level as the frequency is increased from 500 

kHz to 1 MHz seems to be quasi-linear in automated scans, whereas the trend is moderately 

different in manual scans. As it is observed in Figure 4.4, the noise associated to the manual 

scan grows relatively faster as the frequency changes from 500 kHz to 750 kHz when 

compared to the growth rate in the 750 kHz and 1 MHz interval. Since the material under 

investigation is ferromagnetic, the skin depth of eddy currents at 750 kHz approaches that of 

the surface’s roughness. Therefore, further increase in frequency has a weaker effect on the 

noise level. 
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Figure 4.4 Variations of the percentage of noise level normalized 
by the calibration signal amplitude as angle between the probe 
scan direction and machining tool marks orientation changes. 
Results are presented for 3 frequencies for both manual and 

automated scans 

 

 

Figure 4.5 Optical laser microscope images and samples of the surface roughness profile for 
(a) 0°, (b) 45°, and (c) 90° angles that the probe’s scan direction makes with the orientation of 

tool marks on surface. (d) orientation of tool marks versus aR  



116 

4.5 Numerical modeling for orientation study  

To investigate the effect of crack orientation on the signal amplitude of the split-D probe, a 

three-dimensional model for the assembly of split-D probe and sample is prepared in Comsol 

Multiphysics. The scan of surface notches with different lengths at three orientations of 0°, 

45° and 90° is carried out to simulate the experimental tests. The frequency of 1 MHz is 

chosen for the model-based study. It shall be noted that in these simulations, fatigue cracks 

are replaced by semi-elliptical notches as they can fairly represent the shape of fatigue 

cracks. Also, the tight opening of 20 μm is considered for the notches to provide a better 

estimation of fatigue crack signals. According to the notch opening study presented in 

(Mohseni et al., 2016), however, the maximum signal amplitude becomes less dependent on 

notch opening as the notch gets larger in dimensions. The models for 0° and 90° orientations 

are cut in half across the symmetry plane to save simulation run time. On the other hand, the 

scans with 45° orientation have no symmetry plane, and simulations for this orientation shall 

be conducted with a full-scaled model. The details regarding the Comsol model for the 

assembly of the probe and sample along with the selected physics and solvers are discussed 

in (Mohseni et al., 2016). The mesh is slightly changed as compared to that study, since the 

material is ferromagnetic and requires a finer boundary layered mesh because of the lower 

penetration depth of ECs. Therefore, the entire geometry is meshed using second order 

tetrahedral elements and 8 boundary layers, each having a thickness of 20 μm starting from 

the surface of the sample. The thickness of each layer is almost equal to the skin depth of 

eddy currents in the steel sample. In addition, very fine elements (with the size of almost one 

standard penetration depth of eddy currents in the sample) are used for meshing the notch 

walls where a high concentration of eddy currents is expected due to perturbation. The rest of 

the model is freely meshed by selecting a very low growth rate within the domain volumes. 

  

Before conducting the study, the validity of the model is examined by comparing the 

simulation results with the experimental test results for two cracks with 2.92 mm and 1.50 

mm in length, both oriented at 0° relative to the scan direction. The procedure explained in 

section 2 (Equations 2.10-2.13) is used to translate the voltage recordings of Nortec to 
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impedance variations and compare the results of measurements to the ones from simulation.  

These results are plotted together in Figure 4.6(a) and Figure 4.6(b), respectively. The 

simulated and experimental signals are quite similar in terms of amplitude levels; however, 

there is a discrepancy between the shape of the simulated and experimental signals for a 1.5 

mm long crack. This could be attributed to the difference between the geometry of the 

simulated straight notches, which possess parallel side walls, and the zigzag shaped fatigue 

cracks. Another possible source of error may be that the probe is not scanned over the exact 

position at which the simulation is carried out. Furthermore, the deviation of the notch 

opening and profile from the real geometry of a fatigue crack, as small as 1.5 mm in length, 

can contribute to the signal shape discrepancies as well. It is worthy to note that the 

important signal feature required for validating our model-based case study is the maximum 

amplitude, for which the matching between the simulation and experimental results is quite 

acceptable. Following the model verification, the notch length is varied with incremental 

steps of 0.5 mm within the size intervals presented in Table 4.3, and the simulations are 

performed for all the notch sizes listed in the table. 

 

 

Figure 4.6 Comparison between the measured signal from a crack 
and simulated signal for a notch for a (a) 2.92 mm and (b) 1.5 mm 

long crack/notch oriented at 0° 
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Table 4.3 The length interval studied through modelling for each specific orientation 

Orientation Min. Length (mm) Max. Length (mm) 

0° 0.5 3.0 

45° 1.5 4.5 

90° 2.0 6.0 

 

4.6 Effect of crack orientation on signal amplitude 

Signal amplitudes obtained at frequencies of 500 kHz and 1 MHz from automated scans are 

normalized and plotted versus the crack length to driver coil’s diameter ratio (L/D) for the 

three orientations in Figure 4.7. At each crack length, the corresponding signal amplitude is 

normalized by the signal amplitude of the calibration crack oriented at 90°. According to the 

results of the 0° orientation, and up to a given L/D, the signal amplitude increases with the 

L/D. However, the amplitude remains almost constant beyond that value. Since such a 

threshold is dependent of the probe’s geometry, it is better to describe this value as a function 

of L/D, where the drive coil’s diameter is 1.8 mm. Referring back to Figure 4.7, the plateau 

for 0° starts once the L/D ratio approaches the unity. For the other two orientations, the 

existence of that critical value could not be observed in the measurement results, meaning 

that the normalized amplitude keeps increasing as the L/D grows. Comparing the two graphs, 

it can be seen that increasing the frequency to 1MHz would slightly augment the normalized 

amplitude for each L/D. In addition, each of these graphs shows that for the L/D values 

exceeding the unity, the 90° orientation generates higher signal amplitudes as compared to 

the other two orientations. A plausible explanation could be that at 90° orientation, the 

perturbation caused by eddy currents is more severe, and the resulting field distribution as 

well as the differential impedance are affected more significantly. However, for flaws with 

L/D approximately less than unity, the normalized signal amplitude is almost independent of 

the crack length. This is important in terms of probability of detection, since for flaw sizes 

lower than the drive coil’s diameter, the flaw orientation does not have an influential effect 

on the probability of detection, whereas the flaw orientation becomes a principal parameter 

for larger sizes. (This behaviour will be also observed later herein in the distribution of the â  
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vs. a  plot depicted in Figure 4.10(a). In that plot, it is evident that the dispersion of amplitude 

values for ECT signals recorded for cracks of different orientations is significantly less at 

crack sizes smaller than 2 mm.) 

 

According to the results shown in Figure 4.7, for each orientation the signal amplitude is 

associated with some deviations from a smooth correlation with L/D. Even though the fatigue 

cracks are produced under controlled conditions, those deviations could be explained by 

observing that the shape and opening of the cracks might vary, yielding to a certain level of 

deviation in the amplitude-length correlation.  

 

 

Figure 4.7 Normalized signal amplitudes versus L/D 
ratio for orientations of 0°, 45° and 90° at 
frequencies of (a) 0.5 MHz and (b) 1 MHz 

 

Since the thresholds for the 45° and 90° orientations do not fall within the experimental L/D 

intervals presented here, the L/D ratios beyond these intervals are explored with the aid of 

FEM simulations. The simulation results are compared (superimposed) with the experimental 
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measurements, performed at the same frequency, and presented in Figure 4.8. According to 

this figure, there is also a critical L/D for each of 45° and 90° orientations, after which the 

signal amplitude remains almost unchanged. Figure 4.8 shows that the critical L/D could not 

be determined for the 45° and 90° orientations by the measurements, since they were 

conducted on a limited crack length’s interval having a maximum L/D value of 1.62, whereas 

the simulation results cover larger flaw lengths with a maximum L/D of 3.33. The threshold 

L/D ratios are found to be 1.38 and 1.66 for the orientations of 45° and 90°, respectively. The 

simulation results also show the same trend as that of the experiments for the 0° orientation. 

It is noticed that as the orientation angle increases, the normalized amplitudes versus the L/D 

grow with a higher rate until they reach the threshold L/D value. All these observations 

confirm that the orientation has a very significant effect on the signal amplitudes after a 

given L/D. Therefore, for cracks with a L/D ratio higher than unity, the sizing of the crack 

will be associated with larger errors if the probe does not intercept the crack in                       

a favorable direction. 

 

 

Figure 4.8 Simulated and measured normalized signal amplitudes 
versus L/D ratio for orientations of 0°, 45° and 90° at 1 MHz 

 

For the 90° orientation, the distribution of current density on the surface of the steel sample is 

demonstrated in Figure 4.9(a).  As shown in this figure, for a 2 mm notch with L/D almost 

equal to unity, the probe’s amplitude becomes maximum when the notch is positioned 0.3 
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mm away from the center axis of the probe. In this situation, the notch disturbs the high 

density eddy current loops, which are formed adjacent to the driver coil on the surface. 

Therefore, the concentration of surface currents increases in the extremities of the notch 

length, since currents flow from sides to bypass it. Figure 4.9(b) demonstrates that further 

increase of the notch length from 2 mm to 4 mm continues to change the distribution of eddy 

currents on the surface. Accordingly, the probe’s differential impedance increases, as the 

larger notch acts as a stronger barrier, and perturbs the current flow more significantly. 

However, when the notch length goes beyond the threshold value of 1.66 for L/D, as it has 

already been discussed, the changes in the electromagnetic field distribution (and thus the 

current density distribution) on the surface become trivial. This can be verified by comparing 

Figure 4.9(b) and Figure 4.9(c). In fact, it is evident that a change from 4 mm to 6 mm in the 

notch length results in a very small influence on the surface current density and its 

distribution. The impact of the notch length on the current density distribution is more 

pronounced when comparing Figure 4.9(a) and Figure 4.9(b). To explain this, the fact that 

the probe’s impedance is related to the distribution of eddy currents in the sample should be 

considered. Accordingly, there is not any remarkable impedance changes for crack lengths 

larger than the threshold L/D value, since this distribution does not change noticeably. In 

other words, for notches longer than 3 mm, the flow of eddy currents from the notch sides 

becomes insignificant. As a result, the contribution of the length to impedance variations 

fades away, since the preferred path of current flow would be different. 
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Figure 4.9 Contours of current density norm distribution on the surface of a sample. The 
probe center is located 0.3 mm away from the notch center. Notches with lengths of (a) 2 

mm, (b) 4 mm, and (c) 6 mm are investigated 

 

4.7 POD of automated and manual tests 

A signal response POD analysis, according to the procedure provided in MIL-HDBK-1823, 

is performed on the â  vs. a  data acquired from both manual and automated scans (Annis, 

2009). As the first step in this analysis, it is observed that a linear relationship can be 

established between log (â) and log (a) as presented in Equation 4.3. In this equation, 0β  and 

1
β  are the regression line’s coefficients, and γ  is the random error, which is assumed to have 

a normal distribution with a mean value equal to zero. The standard deviation of γ  is 

presented by γσ . After finding the regression parameters, the POD of size a  can be 

calculated through Equation 4.4, where Φ  stands for cumulative log-normal function and 

ˆdeca is normally determined based on the noise distribution and a POFI value that is required 

to be achieved (Georgiou, 2007; Nath, Balasubramaniam, Krishnamurthy,                             

& Narayana, 2010). 

 

 
0 1ˆLog ( ) = Log ( ) + a aβ β γ+  (4.3) 
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ˆdeca is taken as 30% of the signal amplitude of the calibration crack. Figure 4.10(a) 

demonstrates the regression line correlating â  and a  data, as well as the corresponding POD 

curve plotted for the scan index of 0.5 mm in automated inspection at 500 kHz. 

 

Figure 4.10(b) and Figure 4.10(c) also present the curves extracted for scan indexes of 1.25 

mm and 2.5 mm, respectively. As expected, the comparison between these curves reveals 

that 90/95a  improves as the scan index becomes smaller. Moving from scan index of 2.5 mm 

towards 1.25 mm, 90/95a  improves by 50 %, and this improvement continues by 21% as the 

index reduces from 1.25 mm to 0.5 mm. This noticeable difference between 90/95a  values of 

2.5 mm and 1.25 mm scan occurs because any scan index larger than the driver coil’s 

diameter increases the chance of missing cracks. This is the case especially when the crack is 

oriented 0° with respect to the scan line. As can be seen in the â  vs. a  data plot presented in 

Figure 4.10(c), there are 4 crack sizes at which the crack is missed. On the other hand, in the 

case of using 1.25 mm scan index, all the cracks are detected based on the results shown in 

Figure 4.10(b). However, as compared to the index of 0.5 mm, there is a lower probability 

that the probe passes over the crack center at the index of 1.25 mm; therefore, the recorded 

signal response at this index can be lower for some crack sizes. It is well known by the ECT 

practitioners that choosing scan indexes smaller than the probe’s diameter improves the 

detection probability. The observations presented in Figure 4.10 support this idea. Similar 

results have also been suggested in a POD study presented for automated inspections using 

an absolute probe (Rosell & Persson, 2013). Automated scans POD parameters acquired at 

different test frequencies and scan indexes are listed in Table 4.4. 
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Figure 4.10 Regression lines found for â  vs. a  data and related POD curves plotted for 
automated scans with indexes of (a) 0.5 mm, (b) 1.25 mm and (c) 2.5 mm 

 

Table 4.4 POD parameters for automated scans 

Frequency 

(kHz) 
Scan Index (mm) 50a  (mm) 90a  (mm) 90/95a  (mm) 

1000 

0.50 1.306 1.636 1.732 

1.25 1.510 1.997 2.153 

2.50 1.990 3.630 4.720 

750 

0.500 1.300 1.616 1.708 

1.25 1.510 1.993 2.147 

2.50 1.900 3.301 4.135 

500 

0.50 1.262 1.571 1.661 

1.25 1.471 1.957 2.113 

2.50 1.900 3.374 4.284 

 

According to Table 4.4, and regardless of the selected frequency, 90/95a becomes smaller as 

the scan index is reduced. The table also implies that for scan indexes of 0.5 mm and 1.25 
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mm, an increase in the test frequency degrades the POD. The increase in the frequency can 

be advantageous up to a certain level at which the skin depth of eddy currents becomes 

comparable to the depth of surface features, such as surface roughness and scratches (P. R. 

Underhill & T. W. Krause, 2011). Beyond that level, signal amplitude does not improve, and 

using higher frequencies only adds to the level of the noise. In the case of AISI 410, a test 

frequency of 500 kHz is high enough to concentrate a larger portion of eddy currents flowing 

within the depth of surface features, since the material is a ferromagnetic martensitic steel 

with high permeability. Therefore, further increase of frequency improves neither the signal 

to noise ratio nor the POD. For the scan index of 2.5 mm, 90/95a  decreases as the frequency is 

reduced from 1 MHz to 750 kHz, and it increases subsequently as the frequency is lowered 

again from 750 kHz to 500 kHz. As stated earlier, at this index the cracks oriented at 0° 

relative to the scan direction are not always detected, since their detection is strongly 

dependent on the relative positioning of the probe at the beginning of the scan and the crack. 

Accordingly, it is wise to not arrive to a conclusion for the effect of frequency on POD based 

solely on the values found for 90/95a  at this scanning index.  

 

Table 4.5 provides the POD parameters for the manual scans performed at three different 

frequencies. Based on these results, the best POD occurs at 750 kHz, unlike the automated 

scans. As it can be noticed, at 500 kHz some cracks are missed during manual scans. 

Accordingly, the POD at this frequency is lower than the one obtained for 750 kHz. 

However, this is not the case in automated scans, since using the scan index of 0.5 mm 

provides indications for every defective sample.  

  

Table 4.5 POD parameters concerning the manual scans at different frequencies 

Frequency (kHz) 50a  (mm) 90a  (mm) 90/95a  (mm) 

1000 1.257 1.638 1.702 

750 1.182 1.524 1.581 

500 1.261 1.660 1.727 
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Comparing Table 4.4 and Table 4.5, it is evident that the value of 90/95a  for frequencies of 1 

MHz and 750 kHz is lower in manual scans, implying in better POD. It is expected that the 

POD for manual tests is better than the automated counterpart if we assume that all cracks are 

detected by both techniques. In manual scans, after an indication has been observed, the 

inspector will try to maximize the response by repeating the scan. However, this is not the 

case in automated scans, where the signal strength is strongly affected by both the position of 

the probe on the surface and the scan index. Therefore, the scan trajectory in automated scan 

can intercept the crack at any point across its length, which may not be necessarily the 

crack’s center. Based on these observations, the signals recorded during automated scans are 

usually weaker if the selected index is not small enough to get a response from the crack’s 

center.  In general, it is safe to assume that the main advantage of automated scans is that no 

cracks are missed when small scan indexes are used. On the other hand, the signal amplitude 

obtained for the detected defects is normally larger in manual scans as it is best practice to 

maximize the response as suggested by ECT inspection procedures.  

 

4.8 Conclusions  

• The results of the noise treatment suggest that the level of the manual noise is higher 

than the automated noise. This may be related to the additional gains used to 

compensate for the increased probe’s lift-off in manual tests. There are also some 

additional sources of noise which only exist in manual scans, such as variations of 

hand pressure and the contact between the probe and sample’s surface. 

• Regardless of the chosen technique, manual or automated, the noise level increases as 

either the frequency is heightened or the surface roughness is increased. However, the 

trend of these variations is steeper in manual scans. It is also observed that the 

variations of the noise (recorded in automated scans) versus the orientation of the tool 

marks on surface follow the trend of variations of aR  itself. 

• It is found that the signal amplitude of a crack whose size is smaller than the diameter 

of the driver’s coil is independent of the crack’s orientation. However, for cracks 

larger than this threshold, the difference in signal amplitude grows as the length 
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increases. The amplitude growth rate falls to less than 5 % for each orientation by 

reaching a certain L/D value at that orientation. These values are derived from 

simulated signals to be 1, 1.38 and 1.66 for 0°, 45°, and 90° crack             

orientations, respectively. 

• POD of automated scans strongly depends on the selected scan index. Decreasing the 

index to values smaller than the driver coil’s diameter improves the POD 

significantly; however, the effect of further increase would be less significant.  

• A lower frequency (e.g., 500 kHz) seems to provide the best POD in automated scans, 

as the noise captured from the surface features is less than that observed at higher 

frequencies. On the other hand, the best test frequency in manual scans is 750 kHz, 

since some cracks are missed when a 500 kHz testing frequency is used.  

• In general, manual scans provide better POD results than automated scans. It is 

believed that the tendency of inspectors to maximize the signals from the detected 

flaws is the main reason behind this observation. The probe’s trajectory in automated 

scans, even by selecting small indexes, does not always pass through the center of the 

crack, resulting in lower signal amplitude averages. 
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CONCLUSION 

As implied earlier, the objective of using QNDE techniques is to develop a NDE system that 

can reliably detect and size the potential flaws in structures. Therefore, Chapters 2 and 3 

aimed at providing a model-based strategy to size surface defects using the ECT method. 

Moreover, the reliability of the NDE system was assessed in Chapter 4. The following 

provides the contributions and conclusions of each of these chapters in summary.  

 

In chapter 2, it is tried to develop a very basic FEM, based on the governing electromagnetic 

field PDEs, in order to model the interaction between the electromagnetic field of a 

simplified surface absolute coil and a surface rectangular notch. Through the model, which is 

intended to be used as a basis to model construction for more complex probe geometries, the 

scan of the surface EDM is simulated and the probe’s impedance changes as a function of the 

scan position are obtained. The results of the modelling effort for the absolute probe are 

compared to the Burke’s benchmark study to ensure the model’s validity. The second part of 

the chapter aimed at modelling of a split-D surface probe and calculation of its differential 

impedance variations for scanning through width notches of different depths carved in an 

aluminum 7075-T6 sample. The simulation outcomes are accompanied with the impedance 

measurements of the actual probe scanning EDMs for validation and calibration of the 

model. The followings presents the conclusions drawn from the first study on modelling of 

ECT absolute and split-D differential probes using FEM: 

• A good agreement is observed between the experimental measurements and the 

outcomes of the initial model, which is prepared for the assembly of an absolute coil 

and EDM. The absolute probe’s model, designed based on the study of Burke, firstly 

proves that the COMSOL Multiphysics® version 5 could be used as a reliable FEM 

tool to simulate low/medium frequency electromagnetics. Secondly, it shows the 

consistency of the impedance estimations when certain parameters are set correctly in 

the model.  

• Beside the geometry and material properties of the elements, which are inherent and 

should be determined as accurate as possible for model inputs, the effect of different 
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modelling parameters such as truncation boundaries, surrounding air properties and 

mesh distribution is investigated. It is observed that truncating the problem’s 

geometry to an extend that encompasses A field down to thousandth of its maximum 

amplitude provides reasonable estimation of the electromagnetic field calculation at 

the selected frequency. The air conductivity cannot be zero in COMSOL magnetic 

field interface solver and should have a small positive value. The parametric sweep of 

this value demonstrates that the impedance readings become stable for values 

superior to 0.1 S/m. It is conservative to have at least six mesh layers across the first 

three standard penetration depths however, depending on the notch and probe’s 

geometry, assigning one layer of mesh to each penetration depth could also provide 

reliable results if computation resources are limited.  

• To determine the boundaries of the problem for modelling of the split-D probe the 

same strategy used for the FEM of absolute probe can be effectively applied. The 

number of mesh layers required on the surface also follows the same rule. Mesh non-

uniformities in undefective areas give rise to instability of differential impedance of 

the split-D probe passing over these regions since the probe compares the readings of 

two adjacent coils. Accordingly, a mirrored structured mesh is defined for 

undefective regions captured within the first few standard penetration depths. In this 

manner, while the probe is centered with the notch, the differential impedance is 

equal to zero. Alike the former model, air conductivity of 0.1 S/m shows to be a 

promising value for the case of split-D model.  

• The model impedance predictions closely follow the impedance measurements of the 

split-D probe. The peaks of the imaginary part estimated by model always fall within 

the measurement error however, as the notch depth decreases a small discrepancy 

appears between the real part of impedance estimated by model and the one from 

measurement. The shape agreement between the signal obtained by simulation and 

measurement is fair although the measured figures possess a smaller width as 

compared to simulated ones. The sources that could contribute to these discrepancies 

are the deviation of the actual EDM geometry from the ideal one used, unbalance of 

the D-cores and coils as well as the faulty positioning of the coil assembly in housing, 
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and inaccuracies of the material properties used as model inputs. In general, 

experimentally measured signal amplitudes are predicted by the numerical results for 

accuracies of more than 97%. 

 

In pursue of the flaw-sizing objective and as an evolution to the modelling approach 

investigated in chapter 2, the model is completed further and put to test for the study of semi-

elliptical surface EDM in chapter 3. In this chapter, bearing the experience of previous 

simulations, a model of the split-D probe scanning three semi-elliptical notches having 

different sizes is prepared. The model’s impedance predictions are compared to the result of 

experiments to verify its reliability. Once it is found acceptable, the sensitivity of the signal 

to probe’s tilt and lift-off, as common sources of error affecting the ECT signal in actual 

inspections, is explored during performing scans. The calibrated model is also used to 

establish a size dependent signal table covering a certain notch length size interval. 

Moreover, an adaptive network designed based on a fuzzy Sugeno inference system is trained 

using the signal table to carry out length estimations. This study including the modelling 

approach, sensitivity of ECT signal to tilt and lift-off, training of soft computing algorithm 

using model-based signals for notch length estimation suggests the following conclusions: 

• The signals obtained from three EDM notches have three distinct signatures 

depending on the probe’s diameter to notch length ratio. For notch lengths larger than 

the diameter of the driver coil, there is one distinctive loop in the half-scaled 8-shaped 

signal. However, as the length reaches the diameter of the driver coil a second loop 

emerges. For very small notch lengths as compared to the driver coil’s diameter, the 

signal reshapes again to one loop where the direction of forming the loop is apposite 

to the first one stated here as the probe scans over the notch (Mohseni et al., 2016).  

• The impedance trajectories acquired by experiments at different lift-off values 

slightly deviate from the predictions of the model. These discrepancies are classified 

in three groups, each originated by a different source. As reported, the first one is the 

difference in maximum signal amplitude, which can be mainly observed for the 

signals of the largest notch and it is attributed to one point calibration of the lift-off. 

The second one is perceived as shape discrepancy between the signals. It is mostly 
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present for the smaller notches B and C where the cause is mainly connected to the 

erroneous notch fabrication. The third type is concerning the impedance plane’s 

origin shift, which mostly comes to sight for the smallest notch for which a high 

device gain is used. This defect reflects the imperfection of nulling approach applied 

to simulations. 

• The amplitude of the signal decreases as the lift-off and tilt increase. Clearly, these 

variations are larger for the largest notch since the surface impeding the eddy current 

flow is larger and therefore, small changes in eddy current density caused by lift-

off/tilt are reflected as vast amplitude changes in signal. These amplitude changes as a 

function of lift-off/tilt reduce for smaller notch size. The variations in the signal phase 

caused by tilt and lift-off are mostly visible for the largest notch since eddy currents 

interact with this notch wall across several penetration depths. 

• The ANFIS network trained by the model-based ECT signals provides good length 

estimations the actual surface EDMs as well as the modelled ones. The estimation 

error in predicting the length of EDMs is below 4% while in length estimation for 

model-based notches, this error increases to a maximum of 10%. In general, 

considering that the average error remains below 5%, the trained network 

demonstrates an acceptable performance. 

• Increasing the lift-off distance and tilt angle of the probe during the scans of surface 

notches result in larger errors in length estimation provided by the trained ANFIS. 

The error introduced into sizing versus lift-off/tilt has the form of a logistic function. 

• The degree of the sensitivity of the signal amplitude to lift-off/tilt variations grows as 

the notch size decreases. This can be mainly explained by the ratio of the notch depth 

to the standard penetration depth of eddy currents. The lower this ratio, the higher the 

sensitivity of the notch signal to the changes of eddy currents’ density as well as lift-

off/tilt variations. 

 

Investigating the reliability of a selected NDE procedure is as critical as developing models 

for sizing in the framework of QNDE. Therefore, in chapter 4 of this dissertation, a series of 

manual and automated scans are performed on a number of flawed/unflawed martensitic 
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AISI 410 stainless steel samples. Based on a prior experience, a number of parameters are 

indicated as influential. Therefore, the variation of these parameters in a controlled manner 

and their attribution to signal response variations, in both manual and automated scans, are 

captured in a POD study. Furthermore, the recorded automated/manual noise is processed to 

conceive its dependency on the test frequency and the orientation of surface roughness. In 

addition, a model-based study is conducted to investigate the effect of defect orientation in 

these materials on the signal response of a split-D probe. Finally, the POD curves for the 

automated and manual scans are compared to get a better insight into the capability of each 

procedure. The following can be presented as the conclusions of the study: 

• After investigating the level of noise related to each of the manual and automated 

scans, it is observed that regardless of chosen test frequency and orientation of 

surface roughness, the noise level in manual scan always exceeds the levels of the 

noise in automated counterpart. The difference is explainable by the higher 

calibration gain used in the manual scans to compensate the increased effect of lift-off 

relative to automated scans. There are also additional sources in manual scans, 

including the uneven hand pressure and non-parallelism between the scan plane and 

the sample’s surface, contributing to the noise. 

• Noise level in both scan techniques increases as either the surface roughness 

orientation or the test frequency is increased. The slope of these variations is steeper 

for manual scans. The trend of variations of the noise, as the orientation of surface 

roughness is changed from 0° to 90° angle, is identical to the trend observed for aR  

versus orientation.   

• In crack orientation study, it is found that the variations of the signal amplitude versus 

the crack length get as small as 5 % when a threshold L/D value is reached at each 

crack orientation. The L/D value is found to be 1, 1.38 and 1.66 for 0°, 45°, and 90° 

crack orientations, respectively; by aid of experimental tests and numerical 

simulations. The investigations also show that the signal amplitude is independent of 

the crack length when L/D ratio is smaller than unity. 

• The extracted PODs for automated scans supports the idea of using a scan index 

smaller than the diameter of the driver coil. It is observed that the 90/95a  reduces as the 
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scan index is decreases from 2.5 mm to 0.5 mm.  The study also suggests that a better 

POD can be achieved in automated scans at the lowest frequency of 500 kHz.  

• In general, manual scans provide better POD results than automated scans. It is 

believed that the tendency of inspectors to maximize the signals from the detected 

flaws is the main reason behind this observation. The probe’s trajectory in automated 

scans, even by selecting small indexes, does not always pass through the center of the 

crack, resulting in lower signal amplitude averages. 



 

RECOMMENDATIONS 

Previous approaches, which provide a comprehensive strategy for modelling and model-

based sizing of detected defects, are mainly presented based on volume integral method for 

ECT using split-D probes. However, owing to recent progresses in computing hardware and 

resources, FEM dominates the current ECT modelling efforts as a highly flexible modelling 

tool.  Since the modelling tool is newly applied to ECT procedures, the modelling of more 

advanced ECT probes such as split-D probes used for different purposes should be further 

investigated for validation and calibration. Although the current study partly covers the use 

of such probes in a specific application to size surface defects in a certain material, some 

details regarding the defect model as well as the capacity of the inversion approach is still to 

be investigated. The following summarize some unexplored aspects of the present study, 

which seek the attention of future works:  

• This work mainly concentrates on using EDM notches as representative of fatigue 

surface cracks. However, the comparison between the signals of these two is beyond 

the scope of the thesis. In order to make a transition in modelling of EDMs and 

inversion of their signals toward actual industrial inspection of fatigue cracks, one 

should conduct a study to optimize the parameters of the notch to best estimate the 

signal of cracks of the same size. In fact, this would serve as a calibration study 

taking into account the effect of notch parameters such as width, profile and the 

conductivity bridges between its walls in modelling to reproduce the signal of a 

fatigue crack of the same length and depth.  

• We experienced some difficulty in characterizing the internal probe’s constituents and 

their properties. As suggested by experience, it would be beneficial to design and 

build a costume ECT probe for the purpose of model validation since this promotes 

the accuracy of model inputs and thus, provides a more rigorous validation.  

• The model presented here simulates the ECT signal of the split-D probe moving over 

the notch passing from its centerline. In other words, the probe inspects a single line 

centered to the notch length, which is not always the case in actual testing conditions. 

This simplifying assumption is made here since the concern of authors is mainly 
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focused on automated scans in which it is feasible to find the notch centerline for 

impedance recordings and accordingly, sizing. However, to build a more thorough 

and reliable sizing algorithm the impedance variations should be simulated across 

several scan lines of a certain index over the defect geometry. The additional 

impedance data, acquired from different positions of the probe relative to defect, 

compliment the training data sets and enhances the sizing accuracy. 

• In order to add to the maturity of the inversion algorithm to derive additional defect 

parameters such as depth, defect’s tilt angle and orientation, impedance values linked 

to a full scan over the notch should be obtained through modelling. This fact could 

result in lengthy simulation runs. As a remedy to such difficulty, a surrogate model 

interpolating the impedance data from limited scans of specific defect sizes, angles 

and orientations could be established to form a cost effective forward model. It should 

also be noted that by increasing the output parameters of the network, a Mamdani 

type fuzzy inference system should be used instead of the single output Sugeno 

system (Mamdani & Assilian, 1975). Once such an inversion algorithm is developed 

and trained, it can be integrated as a processing unit to the inspection system to 

provide the characteristics of detected flaws in real-time. 

• From the category of common probe’s positioning and misalignment errors, probe’s 

tilt and lift-off are investigated here since these two are majorly responsible for 

degrading the ECT signal quality during automated scans. Beside these two, angular 

deviations of the direction of D-shaped coils from the intended scan direction could 

also weaken the ECT signal. It is desirable to investigate the effect of such deviations 

on the signal of ECT and count them in development of the forward model. Doing so 

allows one to determine the sizing uncertainties more realistically.  Other factors 

originated from the faults in probe’s fabrication may also exist. Ideally, the effect of 

such parameters should be characterized and included in model as well (R. D. Mooers 

& Aldrin, 2016b). However using custom probes diminishes such problems. 

• Based on the experience achieved in the reliability study of ECT, it is highly 

recommended to use spring-loaded probes in automated ECT of ferromagnetic parts 

since this would reduce the lift-off noise in the signal and consequently, the noise can 
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be solely assigned to the surface roughness. Surface condition for the samples used in 

POD demonstration shall represent the condition of those in actual inspections since 

the impact of this factor in ECT of ferromagnetic materials is significant. 

Furthermore, other calibration procedures such as two-point calibration could reduce 

the variability of signal response caused by the inspector’s calibration. In this case, 

the POD representation majorly includes the effect of test parameters rather than 

human factor. 

 

The POD curves plotted for automated and manual scans here only served as a comparison 

measure between the two testing techniques. It is clear that including more flawed/unflawed 

samples and controlled parameters to such a study adds to its reliability albeit the costs 

increases. Whenever concerns related to the cost of the POD study arise, MAPODs are the 

most beneficial alternatives. Developing such studies requires models representing actual 

defects, material and probe properties, in order to simulate the signal of actual cracks as 

accurate as possible. Besides, carrying out ECT signal sensitivity studies based on these 

models helps to indicate the influential parameters required for the study. The volume of 

simulations in such studies could also be reduced by assuming that the signal response 

variability at each defect size is a linear function of influential parameters (Rosell, 2015). 

 

Future work 

Eddy current testing for detecting hydrogen embrittlement 

It has been known for a long time in industries that the exposure of steels to hydrogen during 

processes such as heat treatment welding, electroplating, and acid pickling could cause HE. 

HE endangers the performance of the in-service components by causing unexpected failure. 

Even the small amounts of hydrogen adsorbed by material can reduce ductility of the host 

and in turn, the time to failure of components. Among materials, the susceptibility of high 

strength steels to HE is highest even at room temperatures. Due to this fact and the high 

sensitivity applications of such materials, industries have been looking for a NDE method to 



138 

detect hydrogen and quantify the amount of it in components to be able to take necessary 

actions regarding them. For the same purpose the DPHM-601 project is defined by CRIAQ 

in order to explore the capability of different NDE techniques fitting this application. ECT is 

also nominated by the project, as one of the NDE methods, for assessment of HE in SAE 

4340 martensitic stainless steel components of aircraft landing gear. According to the plan of 

the project, some test coupons of SAE 4340 are prepared, each undergoing a different 

process to achieve various intensities of hydrogen content. The three principle processes used 

in preparation of samples are cadmium electroplating, baking and chemical etching. The 

philosophy of using cadmium electroplating is, mainly, to charge the samples indirectly with 

hydrogen. In addition, baking is believed to be the main mean of reducing the hydrogen 

content. Furthermore, the plated cadmium layer is removed (i.e. sample is stripped) from 

some samples using a chemical solution to investigate if this layer traps hydrogen. A primary 

bar stock of SAE 4340 having 3 inches of outer diameter is cut to length of 0.25 ± 0.015 

inches. The bar stock is prepared by air-melting per aerospace material specification (AMS) 

6415 standard and quenched and tempered according to AMS 2759/2 to obtain ultimate 

tensile strength of 260-280 ksi. Table 6.1 provides a list of the samples and summarizes the 

procedures used for their preparation. 

 

Table 6.1 procedures used in preparation of samples to study hydrogen embrittlement 

Sample ID Processing 

A Neither baked nor plated 

B Plated and baked immediately 

C Plated, and baked after 8 hours delay 

D Plated, and baked after 16 hours delay 

E Plated, stripped and baked immediately 

F Plated, stripped and baked after 8 hours delay 

G Plated, stripped and baked after 16 hours delay 

H Plated, neither stripped nor baked 

I Plated, stripped but it is not baked 
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As presented in Table 6.1, the processes for samples are planned in a manner to generate 

different hydrogen concentrations in samples. Although this is planned based on a literature 

review and experience-based knowledge of industrial partners, the result might not be as 

anticipated. To this end, other academics involved in the project are trying to measure the 

actual hydrogen concentration of each sample using nuclear resonance analysis and thermal 

desorption spectroscopy. Besides, some mechanical tests including the constant loading of 

standard samples, designed according to American society for testing and material (ASTM) 

F-519, are carried out to evaluate the HE of plated components (International, 2017). These 

tests are still incomplete, and only a fraction of the results is in hand. It is important to 

compare the ECT measurements to the result of those tests in order to gain a better 

understanding of the behaviour observed in ECT signal variations from one                  

sample to another.  

 

For the purpose of ECT inspections, a surface reflection absolute probe performing at 

frequency range of 20 kHz to 200 kHz is used. It is expected that hydrogen content affects 

conductivity or/and permeability of the ferromagnetic steel sample. Moreover, besides 

affecting the base metal properties, the hydrogen may also influence electrical conductivity 

of the cadmium layer for the samples plated with cadmium. The ECT probe used here is 

believed to be a good choice fitting the intended application since an absolute configuration 

is appropriate for monitoring the variations of this kind. The probe is connected to a Nortec 

500S ECT unit and subsequently, different test frequencies, selected within the interval of the 

probe’s performing frequency, are used in tests. The gains on Nortec device are set equally 

and the rotation angle is set to zero during the tests. A point is marked on the surface of each 

of A, E and I samples. The probe is nulled inside air and it is approached to samples A, E, 

and I to touch them perpendicularly at the marked point. The lift-off traces are captured 

consecutively for the frequency range of 20 kHz-200 kHz with increments of 20 kHz. Figure 

6.1(a) demonstrates the impedance plane including the lift-off traces collected from the three 

samples at different frequencies. As suggested by the figure, discrimination between the 

traces of these three samples is easier at the highest frequency of 200 kHz. Accordingly, this 

frequency is used for the tests hereafter. The primary result from inspecting random locations 
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on the surface of samples A, E, and I is shown in Figure 6.2(b). To provide a better visual to 

compare these traces, the impedance plane is rotated so the trace of sample A becomes 

horizontal and also the probe is nulled while it is placed on the surface of this sample. In this 

manner, all the measurements are referenced to the probe’s impedance when it is on sample 

A. According to observations, the lift-off traces obtained for different samples are 

distinguishable from each other. Moreover, the trace of sample E falls closer to the one from 

sample A since sample E is baked immediately after plating and sample A did not have any 

treatment. However, Figure 6.1(c) shows that by placing the probe randomly on the surface 

of one sample, as an instance sample E here, large signal variability is obtained. Thus, it is 

not possible to say that the trace of sample A always falls below the one from sample I, as it 

can be seen in Figure 6.1(c). These impedance variabilities for the samples with the stripped 

plating layer are related to non-uniformities in the removal of the plating layer. It is believed 

that the etching process does not completely remove the plating and the thickness of the 

remaining cadmium layer varies at different surface spots. In addition, for sample A, it is 

witnessed that the impedance value varies slightly as different surface spots are tested. These 

observations for sample A could be due to the inhomogeneities in conductivity and 

permeability of the base material. Figure 6.1(c) shows that the traces collected from sample 

A and I overlap. Noteworthy that among the non-plated samples, these two are supposed to 

have the largest signal discrepancy considering their treatment. In general, the probe’s 

impedance averaged for several test locations on the surface of each of these three samples 

shows that the impedance value decreases from sample I to A. 

 

The same testing procedure can be carried out for the plated samples. Extremely larger signal 

variability due to the change of test spot on the sample’s surface is observed for the plated 

samples. However, averaging the impedance values, which are randomly collected from 

different spots of a sample’s surface, helps to discriminate the signal of these samples.  

 

The first task was to ensure that ECT can provide enough resolution to discriminate different 

samples from each other. Now, it is time to plan a methodology to inversely infer the 

hydrogen content from the averaged impedance value of each sample. For this purpose, the 
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impedance value should be related to material properties that are directly affected by 

hydrogen content. 

 

 

Figure 6.1 Screen of Nortec 500S showing (a) the effect of test frequency on lift-off traces 
for three samples of I, E and A, (b) rotated horizontally lift-off traces at 200 kHz for three 

samples I, E and A, (c) overlapping of the lift-off traces of samples I and A recorded 
collectively from different spots on their surface 

 

As mentioned earlier hydrogen would most likely affect the conductivity and permeability of 

the substrate as well as the conductivity of the plating layer. Investigating the combined 

effect of material properties on the probe’s impedance could be misleading since it is 

possible that the effect of two different properties be identical and as a result, it becomes 

difficult to find out the changes in the probe’s impedance is attributed to which one. 

Therefore, the effect of each of these properties on the impedance should be studied 

individually by isolating one property and subsequently, relate it to the hydrogen content 

through experiments. As an example, saturating non-plated samples magnetically sets the 

relative permeability of the samples to one. In this manner, the effect of electromagnetic 

permeability is excluded and one would be able to relate the impedance changes to the 

variation of conductivity alone. The following is a proposed methodology providing the 

necessary steps to be able to present the recorded ECT impedance values as a function of 

hydrogen concentration.  

1. Simplifying the problem: It is essential to reduce the number of material properties 

included in the primary study. As an example, the non-plated steel samples can be 

magnetically saturated by applying a sufficiently large electromagnetic field on the 
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samples during the test. Doing so makes it possible to monitor the variations of the 

probe’s impedance, as we test different non-plated samples, as a function of the 

difference in their electrical conductivity.  

2. Developing a model: The probe’s impedance can be linked to the material’s 

conductivity through developing a model which incorporates the interaction between 

the probe and the material. To this end, the probe and material should be well 

characterized so, the inputs of the model are as accurate as possible. Subsequently, 

the model’s reliability should be verified. This can be done by comparing the model’s 

impedance outputs, testing a standard sample with known properties, to the 

experimental measurements of the same sample.  

3. Inferring the conductivity value from the measured impedance: Through this strategy, 

one could take the material’s conductivity as an unknown variable in the model and 

perform a sweep on this parameter to match the output of the model to the measured 

impedance of different samples. Accordingly, the conductivity value for each sample 

can be deduced. 

4. Conductivity versus hydrogen content: The same samples used in the study are also 

tested by other academic groups through destructive tests in order to determine their 

content of hydrogen. Therefore, it is possible to establish a relationship between the 

conductivity value and hydrogen content for each sample given these values.  

5. Inferring the permeability value from the measured impedance: After determining the 

conductivity, the permeability can be evaluated through the model by removing the 

saturation field. The conductivity value can be kept constant, as determined in the 

previous steps, and the permeability value can be swept in the model to fit the 

model’s output on the measured impedance value. Thus, the permeability can be also 

discovered and related to the hydrogen content. 

6. Plated samples: The procedure to determine the conductivity of the plated layer 

follows the same fashion. Initially, the conductivity and permeability of the substrate 

shall be evaluated through the aforementioned steps. Afterwards, by keeping those as 

constant values in the model, the conductivity of the plated layer should be swept to 

find the agreement between the impedance readings and the model’s output. 



143 

Currently, the project is still in its initial stages and the following describes the advancements 

that are made so far. The internal components of the probe used in these tests are 

characterized through 3-D model reconstruction of CT-scan images. Likewise, the number of 

turns and dimensions are extracted from these images as depicted in Figure 6.2. Moreover, 

the permeability of the cores are determined through model calibration. 

 

 

Figure 6.2 (a) 3-D model reconstructed from CT-scan image stack of the reflection 
absolute surface probe showing coils and cores, and (b) X-ray image of the probe along 

with its axis of symmetry 

 

According to the geometry of the probe while testing an undefective sample, it is possible to 

prepare a 2-D axisymmetric CAD model for FEM analysis. The axis of symmetry is 

illustrated with a dashed line in Figure 6.2(b). 2-D model decreases the simulation time 

significantly and allows very rapid parametric sweep within the model. Noteworthy that, only 

the bottom core and coils are included in the model since the upper half of the probe is only 

meant to serve as a reference sensing the air.  Accordingly, the model is prepared in Comsol, 

as shown in Figure 6.3(a) and the properties of the coils and the cores are assigned to the 

corresponding domains.  The probe’s model is subsequently calibrated by performing some 

tests on standard aluminum and copper samples with known conductivity values. 
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Figure 6.3 (a) Axisymmetric 2-D model for assembly of probe, sample and air domain 
prepared in Comsol and, (b) 3-D model of magnetizer’s assembly and SAE 4340 sample 

 

In order to saturate the samples magnetically, it is essential to have an electromagnetic yoke, 

which can apply high intensities of electromagnetic field to the sample. Toward that, a CAD 

model for an electromagnetic yoke comprised of two heavily wound coils and ferrite cores is 

designed based on the commercially available materials. The design is imported into Comsol 

for secondary analysis. The 3-D model assembly consists of the cores, coils and the steel 

sample A which is cut as a strip. The ferrite core material, called Kool Mμ90, is selected 

from the data sheets available in market. In order to be able to take into account its nonlinear 

permeability in FEM simulations, its B-H curve is extracted and digitized. In the same 

fashion, the B-H curve of SAE 4340 steel, extracted from literature (Kwun & Burkhardt, 

1987), is assigned to the steel sample.  The coils’ dimensions as well as their number of turns 

are varied in the model to achieve the saturation of the steel sample, which happens at 

approximately magnetic field density of 1.6 T within the sample. The coils are carrying a DC 

current of 20 A. Figure 6.4(a) shows the simulation results for the solution of B within the 

different components. From the figure, it is evident that the B field amplitude is larger than 

1.6 T in the steel sample. In Figure 6.4(b), a high pass filter is applied for the field densities 

of higher than 1.6 T to provide a clearer image of the saturated region in the sample. It is 

discovered that having two coils, each with 200 turns of a round-sectioned magnet wire with 

American wire gauge (AWG) of 7 could result in saturation of the steel sample. Based on the 



145 

design, the coils are ordered to be wound and they were sent for subsequent assembly. A 

picture of the final assembly coils and cores is presented in Figure 6.4(c).  

 

 

Figure 6.4 Magnetic field density (a) inside different domains of the assembly including 
the SAE 4340 sample, and (b) inside the SAE 4340 sample after applying 1.6 T             

high pass filter 

 

This work is still incomplete and it will be continued by other students involved in the project 

DPHM-601. However, the following conclusions could be drawn from the early work that 

has been done so far: 

• It is possible to discriminate the samples that are undergone different treatments, as 

presented in Table 6.1, using their ECT impedance values. In other words, ECT 

provides sufficient resolution for sorting these samples, each containing a different 

concentration of hydrogen.  

• ECT reflection absolute surface probe are best suited for measuring the variations of 

material properties such as electrical conductivity and magnetic permeability. Since, 

it is expected that hydrogen content affect these two properties, these probe types are 

3 cm 
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the most appropriate choice for such applications providing the absolute impedance 

reading of the receiver coil.  

• Using higher test frequencies seems to provide a better separation between the signals 

of different samples. The highest allowable frequency (i.e., 200 kHz) of the probe is 

used in this study however; it might be possible to further improve the results by 

using a probe, which performs at higher frequencies.      

• According to the design of magnetizer, two coils, each with 200 turns from a magnet 

wire of 7 AWG with round cross section should carry 20 A of DC current in order to 

saturate most parts of the SAE 4340 sample. The design parameters for the 

magnetizer are optimized to saturate a sample with size of 70 mm × 30 mm × 6 mm. 

• A time domain heat transfer analysis of the coils shows that the temperature of the 

coils remains below 90° C after one hour of operation while a DC current of 20 A 

flows in the coils. Accordingly, the wire insulation, which is designed to work at 

maximum temperature of the 200° C, should stay intact for short testing durations.
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Abstract 

 Eddy current testing (ECT) of tiny fatigue surface cracks are mostly carried out by means of 

differential probes. Among their various designs, Split-D reflection differential probes, 

named after their D-shaped internal cores and receiver coils, are particularly interesting 

because of their small footprint that makes them suitable for inspecting short surface cracks. 

In many of ECT theories and modelling trials that have been published on the interaction of 

fatigue cracks with the magnetic field of ECT probes, fatigue cracks are simplified and 

replaced by semi-elliptical notches. Therefore, in model-based ECT studies, electrical 

discharge machined (EDM) notches are frequently used since they are advantageous in terms 

of their low manufacturing cost as well as their usefulness in calibration and model 

verification procedures. Additionally, ECT signals obtained from EDM notches can roughly 

estimate those obtained from real fatigue cracks having the same size. Accordingly, in the 

present study a commercially available split-D surface probe is modeled based on its actual 

dimensions and material properties. The dimensions of the probe are extracted from a CT-

scan reconstruction and inserted in the 3-D model. The probe scanning over 3 semi-elliptical 

notches having different sizes is simulated using the AC/DC module of COMSOL 

Multiphysics. A test frequency of 500 kHz is considered in the simulations, and the test block 

containing the notches is assigned with material properties of aluminum. The effect of 

simulation parameters, such as mesh size and distribution, is investigated, and hence the 

parameters are finely tuned to achieve consistent results. Afterwards, the reliability of the 
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simulation outputs is assessed by comparing them to impedance measurements of semi-

elliptical surface notches in an aluminum block. This validation study shows acceptable 

matching of the probe’s impedance obtained from both simulations and measurements. After 

validation of the model, the sensitivity of eddy current signals to variations of the notch 

geometry (e.g., notch opening, depth and length) is studied using the 3-D simulations. The 

importance of studying the notch opening originates from the fact that by decreasing this 

opening in the simulations, a better approximation of a fatigue crack shall be achieved. On 

the other hand, the ECT signals obtained from different notch lengths and depths establish a 

size dependent signal archive at the selected test frequency. This archive can be used as a 

basis for inversion purposes using artificial intelligence algorithms to be pursued                  

in future studies. 
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Abstract 

In aircraft maintenance programs, Eddy current testing (ECT) has always been one of the 

most reliable methods of inspecting wheels, turbine blades, and rivet holes. Due to the 

loading conditions, fatigue induced crack is the most common flaw type in these 

components. Therefore, a high sensitivity ECT probe is required to reliably detect such 

shallow surface cracks. Split-D reflection differential probe with a very small footprint is 

proven to be the most efficacious tool for detecting very tight and tiny fatigue cracks. The 

advantages related to the differential configuration of D-shaped receiver coils are multifold. 

This configuration is less prone to the noise generated by lift-off variations; moreover, the 

effect of gradual variations of conductivity and permeability within the material is negligible 

on the probe’s signal. Accordingly, the signal to noise ratio and the reliability of such a probe 

are significantly improved. Evaluation of large panels with curved complex surfaces as well 

as high inspection volumes of aging structures have increased the demands for automated 

robotized inspection systems. Even though robotic systems could conduct faster and more 

consistent ECT scans, they always suffer from errors in probe positioning. These errors 

commonly emerge as lift-off variations or deviation of the probe from perpendicularity (i.e. 

probe tilt angle). Origins of these misalignments can be mainly attributed to the friction 

forces between the probe and the part surface, deviations of the part geometry from the one 

used for generating the scan path, and initial calibration process of the coordinates 

corresponding to the tool and sample frames. In any case, the errors regarding the probe 



150 

positioning change the nature of recorded signals. Accordingly, it is necessary to investigate 

it further in order to know the extent of their influence on probe’s impedance. Hence, this 

research studies the effect of small tilt angles and lift-off variations of a split-D reflection 

differential probe on the signals of three semi-elliptical surface notches each having different 

dimensions. For this end, numerical simulations are carried out using Comsol multiphysics 

while a validation study of this FEM approach is presented in an earlier publication. Five 

probe’s tilt angles, up to a maximum of 5 degrees, are considered. Similarly, four probe's lift-

offs, up to a maximum of 140 µm, are simulated. In both cases, model's outcome (phase and 

amplitude of the notch signals) is validated through experimental measurements. 
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