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CONCEPTION DE MÉCANISMES D’ALLOCATION DE RESSOURCES POUR LES
RÉSEAUX D’AMENÉE SANS FIL DE 5G

Tri Minh NGUYEN

RÉSUMÉ

Au cours des dernières années, la densification du réseau a progressivement été présentée

comme étant un candidat technologique de premier plan pour répondre efficacement aux de-

mandes croissantes des appareils sans-fil. Bien qu’il hérite de nombreux avantages de l’ archi-

tecture conventionnelle des petites cellules, un réseau dense entraîne une demande énorme de

connexions sur les liens fibres optiques entre les stations de base des petites cellules et le réseau

cœur. Cela conduit à une perspective de déploiement réseau coûteuse et peu pratique. Afin de

surmonter ce problème, la technologie de liaison sans-fil au réseau cœur (Wireless Backhaul

-WB) est proposée comme un remplaçant rentable et viable des liens filaires vers le réseau

cœur. Elle permet ainsi de transporter les données vers les petites cellules et ensuite servir les

utilisateurs locaux efficacement. Toutefois, la technologie WB doit garantir un haut débit des

liens des petites cellules, comparable à celui offert par les liens filaires, afin de maintenir la

fiabilité des communications d’accès sans-fil (Wireless Access -WA) entre les petites cellules

et les utilisateurs locaux. Techniquement, il est nécessaire que le débit du lien WB soit toujours

supérieur à celui du WA. Cependant, le débit du lien WB est généralement limité à cause des

atténuations spatiales et les interférences provenant d’autres transmissions simultanées. Ceci

crée un certain défi pour soutenir les nouveaux réseaux hétérogènes sans-fil (Heteregenous Net-

works - HetNets) à leurs performances attendues, ce qui nécessite une conception appropriée

de l’allocation des ressources dans WB-HetNets.

Cette thèse a pour objectifs de concevoir et réaliser l’allocation des ressources dans les WB-

HetNets considérant la relation entre les transmissions WB et WA. Cette relation nécessite

que le débit offert par WB soit toujours supérieur ou égal à celui de WA, permettant ainsi de

maintenir la viabilité des WB-HetNets. En optimisant conjointement l’allocation de ressources

multi-dimensionnelles, telles que la formation de faisceaux d’émission (ou de réception), l’ al-

location d’énergie, le partitionnement du spectre, l’ordonnancement des transmissions des pe-

tites cellules ou des utilisateurs, etc., cette thèse investigue les performances des WB-HetNets

à travers les deux parties suivantes.

Dans la première partie, les chapitres 2 et 3 étudient principalement l’allocation des ressources

des HetNets à deux couches, opérants sous le système de duplexage à division temporelle in-

versée (Reverse Time Division Duplexing -RTDD). En particulier, chapitre 2 met en évidence

le comportement couplé des transmissions montantes et descendantes résultant de la RTDD.

Ceci mène à la conception d’une allocation conjointe des ressources radio (puissance de trans-

mission et partitionnement du spectre), dans le but de maximiser le débit des petites cellules

sur les liens montant et descendants. Chapitre 3 se concentre uniquement sur la conception

de la formation du faisceau d’émission et de l’allocation de puissance sur le lien descendant

de la communication, dans le but de maximiser l’efficacité énergétique de l’accès, là où le
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partitionnement du spectre est connu. Dans les travaux de ces deux chapitres, un cadre de solu-

tion unifiée, basé sur des techniques d’approximation convexe successive (Successive Convex

Approximation -SCA), et de programmation de cône de second ordre (Second-Order Cone

Programming -SOCP) est invoqué pour développer un algorithme itératif de faible complexité.

Ce dernier permet d’atteindre efficacement une solution sous-optimale de haute précision. Les

résultats numériques sont présentés pour corroborer la supériorité des conceptions proposées

par rapport aux travaux conventionnels en termes de gain de performance du système et de

convergence de l’algorithme.

Dans la deuxième partie, les chapitres 4, 5, et 6 se concentrent sur le déploiement de nouvelles

idées pour améliorer la performance des WB-HetNets à deux couches, en plus de formuler le

problème d’allocation des ressources afin d’optimiser un objectif d’intérêt. Plus précisément,

chapitre 4 considère une mémoire tampon locale (buffer) dans chaque petite cellule. Cette

mémoire permet à cette dernière de stocker et libérer de manière flexible les données reçus du

réseau cœur, pour les transmettre aux utilisateurs lorsque cela s’avère nécessaire. Le problème

est de savoir comment contrôler de manière optimale la dynamique des files d’attente des

mémoires tampon en optimisant conjointement l’allocation des ressources radio et la gestion

des données dans la mémoire tampon. Le but étant de maximiser le débit total de l’utilisateur au

fil du temps. Chapitre 5 aborde le sujet d’amélioration des WB-HetNets en proposant d’utiliser

la nouvelle technologie d’accès multiple non-orthogonal (Non-Orthogonal Multiple Access -

NOMA) pour exploiter à la fois les débits réalisés par les communications WB et celles par

WA. Afin de trouver une solution, ce travail résout le problème de maximisation de la somme

des débits des utilisateurs des petites cellules et des cellules macro, en déterminant un ordre

de décodage NOMA, une stratégie de coopération ente les petites cellules, la formation des

faisceaux de transmission à la station de base de la cellule macro, et l’allocation de puissance

aux petites cellules. Une approche efficace semblable à celle utilisée dans les chapitres 3 et 4

est adoptée pour déterminer les solutions des problèmes formulés. Les résultats numériques

montrent l’amélioration et l’efficacité des WB-HetNets utilisant le nouveau schéma proposé,

par rapport aux solutions conventionnelles.

Enfin, chapitre 6 présente une idée novatrice qui consiste à remplacer les stations de base des

petites cellules par des drones aériens sans pilote (Unmanned Aerial Vehicles -UAV). Outre

la possibilité d’émettre et de recevoir un signal vers/depuis des récepteurs, comme une pe-

tite cellule, les drones peuvent voler de manière flexible dans l’espace tri-dimensionnel pour

augmenter la puissance du signal. Ceci offre potentiellement plus de degrés de liberté afin

d’améliorer les performances globales, par rapport aux réseaux WB-HetNets conventionnels.

Par conséquent, chapitre 6 vise à optimiser conjointement l’allocation des ressources radio et

les emplacements des drones, dans le but de maximiser le débit total des utilisateurs. Enfin,

un algorithme de complexité faible, basé sur la programmation de la différence de convexité

(Difference of Convex -DC) est développé pour trouver la solution optimale du problème for-

mulé. Les résultats obtenus montrent que le nouveau système de réseaux de drones WB peut

considérablement améliorer les performances du réseau.
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RESOURCE ALLOCATION DESIGNS FOR 5G WIRELESS BACKHAUL
NETWORKS

Tri Minh NGUYEN

ABSTRACT

In recent years, network densification has progressively been shown as a prominent techno-

logical candidate to effectively serve the ever-increasing demands of wireless devices. Despite

greatly inheriting many benefits from the conventional small cell architecture, dense network

prompts a tremendous requirement of excessive fiber backhaul connections between the small

cell base stations and core networks. This leads to a costly and impractical network deploy-

ment perspective. To overcome this issue, wireless backhaul (WB) technology is proposed as a

cost-effective and viable replacement of wired backhaul to wirelessly transport data to the in-

termediate small cell nodes and subsequently serve local users on the access links. Contrarily,

WB must guarantee the quality of small cell’s backhaul rate as comparatively high as the wired

one in order to sustain the reliable wireless access (WA) communications between small cells

and the local users. Technically, it is required that WB rate must always exceed the WA rate.

However, WB rates are generally limited since the backhaul signals, when propagating through

wireless channel, spatially attenuate and suffer severe interference from many other concurrent

transmissions. This creates a certain challenge to sustain the newly introduced WB HetNets at

their expected performance, which calls for an appropriate resource allocation design in WB

HetNets.

This dissertation aims at designing and performing resource allocation in WB HetNets under

an explicit consideration of WB and WA transmission relationship. This relationship requires

that the WB rate must always be greater than or equal to the WA rate so as to maintain the

viability of WB HetNets. Via jointly optimizing the multi-dimensional resource allocation such

as transmit (or/and) receive beamforming, power allocation, spectrum partitioning, small cell

or user scheduling, and data management, etc., this dissertation investigates the WB HetNets

performance via the following two parts.

In the first part, Chapters 2 and 3 mainly study the resource allocation of the WB small cell

two-tier HetNets operated under the reverse time devision duplexing (RTDD) system. In partic-

ular, Chapter 2 highlights the coupled behavior of uplink and downlink transmissions resulting

from the RTDD to design a joint radio resource allocation of beamforming, power, and spec-

trum partitioning which maximizes small cell sum rate on both uplink and downlink sides. On

the other hand, Chapter 3 only focuses on the downlink design of transmit beamforming and

power allocation which maximizes the access energy-efficiency, where spectrum partitioning

is given. In both work, a unified solution framework based on successive convex approxima-

tion (SCA) and second order cone programming (SOCP) techniques are invoked to develop

an iterative low-complexity algorithm to attain a high-quality sub-optimal solution efficiently.

Extensive numerical results are presented to corroborate the superiority of the proposed de-
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signs compared to conventional work in terms of system performance gain and algorithm’s

convergence behavior.

In the second part, Chapters 4, 5, and 6 concentrate on deploying novel ideas to improve the

WB small cell two-tier HetNets performance on top of formulating a resource allocation prob-

lem to optimize the objective of interest. Specifically, Chapter 4 considers a local buffer at

each small cell which can flexibly store and release backhaul data to transmit to the users when

needed. With many concurrent backhaul and access transmissions occurring through multiple

time slots and assuming channel condition varies after each time slot, the problem is how to

optimally control the dynamic of buffer queues via jointly optimizing the radio resource allo-

cation together with data management in the buffer which maximizes the total throughput of

small cell user over time. On the other hand, Chapter 5 approaches the WB HetNets enhance-

ment by proposing a novel cooperative non-orthogonal multiple access (NOMA) technology to

leverage both the achievable rates of WB and WA communications. To approach the solution,

this work solves for a joint optimal solution of NOMA’s decoding order, small cell cooperation

policy, transmit beamforming at the macro cell base station and power allocation at the small

cell base station which maximizes the total small cell and macro cell user sum rate. Here,

a similar efficient solution approaches from Chapters 3 and 4 are properly exploited to com-

pute the solution of the formulated problems. Numerical results show the improvement and

effectiveness of WB HetNets under the novel proposed scheme compared to the conventional

designs.

Towards this end, Chapter 6 presents a novel idea of replacing the traditional small cell base

stations in WB small cell HetNets by unmanned aerial vehicles (UAVs). Beside the capabil-

ity of transmitting and receiving signal to/from intended receivers like a small cell, UAVs can

flexibly fly in space at any three-dimensional (3D) coordinate to increase the signal strength.

This potentially provides more degrees of freedom to improve the overall performance with

WB UAV networks compared to the conventional WB small cell HetNets. Therefore, Chap-

ter 6 aims at jointly optimizing the radio resource allocation together with the UAVs’ locations

which maximizes the user sum rate. Finally, a novel, more advanced with lower complexity

algorithm based on the difference of convex (DC) programming are developed to compute the

solution of the formulated problem. Achieved results show that the new system of WB UAV

networks, though optimizing the UAVs’ location, can significantly boost the network perfor-

mance.

Keywords: Resource allocation, heterogeneous networks, wireless backhaul, optimization
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INTRODUCTION

The evolution of mobile wireless networks towards their Fifth Generation (5G) establishment

and beyond (Andrews et al., 2014; Nikolich et al., 2017) has seen an increasingly massive

number of connected devices ensuing from the Internet of Things (IoT) and Industry 4.0 phe-

nomena. According to the report in (Lucero, 2016), the amount of wireless equipments will

outreach 75 billions by 2025. Among many key enabling technologies (Boccardi et al., 2014)

such as massive multi-input multi-output (MIMO), millimeter wave (mmWave), full-duplex

(FD), 5G promotes Ultra Dense Network (UDN) technology (Ge et al., 2016) as one significant

candidate to fulfill its promises on enhancing user’s throughput, catering seamless coverage,

and reducing overall system power. In general, UDNs spatially deploys a massive number of

small cell base stations (BSs) in the proximity of local users to reduce communication range,

thus can ubiquitously guarantee undisrupted services to cell-edge users, significantly improve

area spectral efficiency (SE) and efficiently conserve transmit power. Despite many inherited

benefits, dense deployment of classical small cell architecture quickly raises the operational

cost (OPEX) due to a huge amount of fiber backhaul establishment to the core networks, which

causes new economical and deployment challenges.

Recently, wireless backhaul (WB) technology has emerged as a cost-effective and pragmatic

architectural solution, which enables the transportation of backhaul data over-the-air to the

remote small cell without the needs of fiber connections. Therefore, it can potentially sus-

tain the operation of dense networks. In the context of 5G, WB in dense heterogeneous net-

works (HetNets) is found most applicable and advantageous when being accommodated under

the mmWave, microwave, and sub–6 Gigahertz spectrum bands to exploit both Line-of-Sight

(LoS) and Non-Line-of-Sight (NLoS) communications. Especially in the last case, NLoS WB

can fully exploit the availability of existing hardwares and developed wireless access (WA)

technologies for immediate WB’s experiment towards its future deployment. Despite the in-

troduced advantages, this new WB scheme must ensure the quality of backhaul rate as high as
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Figure 0.1 The IoT market will be massive (Lucero, 2016).

the conventional wired ones so as to assist the WA communications between the small cells

and local users. Note that in the sub–6 Gigahertz case, simultaneous WB communications

are concurrently operated over the same spectral channel, also known as Point-to-Multi-Point

(PtMP) in-band WB. Under such circumstance, WB signals are severely interfered by other

concurrent WB and WA transmissions. This becomes a fundamental bottleneck of PtMP WB

HetNets and makes it more difficult to manage a proper system resource allocation to respect

the stringent WB-WA rate constraint while optimizing the network performance. Motivated by

these observations, this dissertation aims at constructing several novel designs which jointly

optimize the resource allocation in NLoS PtMP WB HetNets to improve WB’s operation and

consolidate its viability in 5G dense networks.

The detailed organization of this dissertation, which contains 7 chapters, is as follows. Chap-

ter 1 introduces the overview of WB in the scope of 5G HetNets, which is followed by its

challenges and existing solutions. Then, this chapter presents the dissertation’s motivations
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which lead directly to its objectives. In addition, it also highlights the significant novel con-

tributions of each technical chapter throughout the dissertation. Towards its end, the main

methodology employed to solve all the formulated problems is described.

Chapter 2 presents the first article which studies the operation of NLoS PtMP WB small cell

HetNets under the application of RTDD system. Observing that the uplink and downlink WB

and WA transmissions are coupled under the proposed scheme, a joint design of transmit and

receive beamforming at the macrocell BS (MBS), the transmit power at the small cell access

points (SAPs) and users, along with the spectrum partitioning which maximizes the small

cell user (SUE) sum rate on both uplink and downlink is presented. Then, a high-complexity

branch-and-bound (BnB) algorithm based on monotonic optimization and an efficient low-

complexity algorithm based on successive convex approximation (SCA) second order cone

programming (SOCP) are developed to solve for a global optimal and a sub-optimal solution,

respectively. Achieved results show that the proposed joint consideration of uplink and down-

link transmissions significantly outperforms other existing designs. Besides, the developed

SCA- and SOCP-based algorithm is shown more efficient in terms of convergent and time-

consuming performance compared to the conventional solution approaches.

Chapter 3 presents the second article which investigates a similar WB small cell HetNet, where

an equal spectrum partitioning is fixed for the RTDD system. Under this consideration, this

work concentrates on a downlink design of transmit beamforming and power allocation which

maximizes the access energy-efficiency, defined by the ratio between the user sum rate and

the overall network power consumption. In this work, a novel non-linear power consumption

model which reflects the mathematical dependence of the consumed power with respect to the

small cell backhaul rate is proposed. Followed by the claim of the formulated problem’s NP-

hardness, this work develops two centralized high- and low-complexity algorithms to achieve

the global optimal and sub-optimal solutions, respectively. Then, by leveraging the advantage
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of alternating direction method of multipliers (ADMM) method and the capability of message

exchanging between the considered BSs, a decentralized algorithm is developed to offload the

resource computing tasks among the BSs in order to achieve a distributed solution. Numerical

results validate the superiority of the novel power consumption model and the efficiency of the

low-complexity centralized and decentralized algorithms.

Chapter 4 presents the third article regarding the downlink resource allocation of a WB small

cell HetNet over multiple time slots, where each small cell is equipped with a buffer of finite

size. In this work, wireless channels are assumed time-varying after each time slot and a variant

of RTDD, namely co-channel TDD (CoTDD), combined with fixed spectrum partitioning is

employed. Under this assumption, an optimization problem which maximizes the SUE sum

rate of all the considered time slots is formulated. This problem is first theoretically proved to

improve the network performance when the small cell buffers are exploited properly. Following

these findings, two practical low-complexity online algorithms are developed to solve for a joint

solution of transmit power, beamforming, and buffer usage to obtain the expected performance.

Through numerical results, these algorithms are shown to perform close to the benchmarking

off-line algorithm, which again validates the theoretical statement about the enhancement from

the proposed small cell buffer scheme.

Chapter 5 presents the forth article which enhances the performance of WB small cell Het-

Nets under the proposed cooperative multi-input single-output (MISO) non-orthogonal multi-

ple access (NOMA). In particular, the MISO NOMA scheme similar to (Hanif et al., 2016) is

employed for the downlink WB communications from the MBS to the SAPs, and a novel coop-

eration scheme between the small cells, stemmed from the successive interference cancellation

(SIC) protocol, is proposed to improve the downlink WA communications. Under this scheme,

a resource allocation of transmit power, beamforming, together with the decoding order of the

SIC NOMA and the cooperative policy between the SAPs are jointly designed to optimize two
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separate problems. The first problem is to maximize the user sum rate. The second problem is

to maximize the number of admitted users which satisfy the minimum rate requirement. In this

work, a method based on the principle of difference of convex (DC) programming combined

with Lipschitz continuity is derived to efficiently solve the formulated combinatorial non-linear

problem for a high-quality sub-optimal solution. Numerical results are extensively conducted

to show that the proposed cooperative NOMA scheme remarkably improves the performance

of the WB HetNet and outperforms all the existing approaches in the literature.

Finally, Chapter 6 presents the fifth article which investigates the improvement of the un-

manned aerial vehicle (UAV)-assisted WB HetNet compared to the traditional small cell WB

HetNets. In this new network, each WB SAP resembles a UAV, which can flexibly fly to any

position in addition to the capabilities of receiving data via WB communications and trans-

mit data via WA communications. Then, this work revisits the impact of cooperative NOMA

scheme proposed in Chapter 6 on the new UAV-assisted WB networks. The challenge is that

the flexible changes of UAV’s position modify the channel’s discrepancy from the MBS to

UAVs, which in turn affect the decision on the SIC’s decoding order and UAV’s cooperative

policy. Thus, we formulate a problem which jointly optimizes the radio resource allocation

together with the location of UAVs, the SIC’s decoding order, and the UAV cooperation pol-

icy which maximizes the user sum rate. Solving the formulated problem is more challenging

than all previous works due to a huge amount of mixed integer variables coupled through

several non-convex functions. Consequently, employing the developed methods in Chapter 5

is not efficient. Toward this end, a more elegant with lower complexity algorithm based on

the combination of DC programming and Lipschitz continuity is developed to overcome the

raised challenges of Chapter 6’s algorithm, which can more efficiently solve for a sub-optimal

solution of the considered problem.





CHAPTER 1

WIRELESS BACKHAUL IN HETEROGENEOUS NETWORKS: OVERVIEW,
BENEFITS, CHALLENGES, THESIS OBJECTIVE AND CONTRIBUTIONS,

METHODOLOGY

1.1 Overview

Network Densification

The term network densification refers to the dense deployment of small cells over the cellular

coverage (Bhushan et al., 2014). Small cell architecture was first proposed to deploy small

size, low power, short range base stations, capable of serving indoor and local users, to coexist

with the underlying macrocell BSs which are mainly dedicated to serve outdoor mobile users

(Chandrasekhar et al., 2008). Towards the establishment of 5G and its subsequent generations,

small cell and macrocell BSs are likely to be equipped with a large scale of antenna array,

also known as massive MIMO, embraced by mmWave technologies to cope with the expected

increase of 1000× user’s data traffic, 10− 20× SE and system energy-efficiency (EE) (An-

drews et al., 2014). In fact, due to the characteristics of wireless signal propagation, improving

wireless transmissions by massive MIMO operated at mmWave band is compatible with the

short-range communications, which subsequently leads to small cell coverage shrinkage (Ge

et al., 2014). Since this shrinkage creates several out-of-service spots (Ge et al., 2014), as

depicted in Fig. 1.1 this encourages a dense deployment of small cell BSs to form the UDN in

order to ubiquitously serve users at a large scale. Upon the newest 3GPP Release 15 of 5G stan-

dard along with the proliferation of IoT and Industry 4.0, UDNs embraced by massive MIMO

and mmWave will remain as a dominant candidate to support the expected user’s demand of

diverse QoS requirements.

In small cell HetNets, the essential component which maintains the backbone of the entire

network is the backhaul architecture. Backhaul generally represents the family of connections

which spans from the BSs to the core networks. It is important to note that the backhaul traffic
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of small cell BSs are often aggregated at the macrocell BS (donor node (Siddique et al., 2015b))

via wired or wireless backhaul connectivities before being routed to the core networks.

Wired Backhaul

A classical wired backhaul connection prefers fiber optic material to bridge the necessary links

between the BSs and core networks since fiber backhaul can support high capacity and low

delay (Ranaweera et al., 2013). At the macrocell tier, wired backhaul connections can be dis-

tinguished based on the physical connection distances between the BSs and the core networks

as follows (Wang et al., 2015b):

- More than ten kilometers: optical transport network (OTN) with wavelength-division mul-

tiplexing (WDM).

- Less than ten kilometers: point-to-point (PtP) or PtMP unified passive optical network (Uni-

PON) which uses an optical splitter to aggregate WDM signals from the backhaul links of

multiple cells.

At the small cell tier, small cell BSs can take advantage of the existing indoor wired infras-

tructure such as digital subscriber loop (DSL) over copper wire (Dahrouj et al., 2015), which

is capable of providing up to 1 Gb/s of data rate when more sophisticated technology such as

G.fast is employed (Wang et al., 2015b). If there exists a fiber optic connectivity nearby, the

small cell traffic via DSL link can be multiplexed into the main fiber optic link and transported

towards the aggregated MBS node before forwarding to the core network. In most situations,

ubiquitous wired backhaul connections are often deployed less ubiquitously due to their expen-

sive cost. For a dense small cell network, this becomes excessive and impractical, and hence a

more viable backhaul solution is always anticipated.

Wireless Backhaul

WB emerges as a replaceable and cost-effective technology which more flexibly and efficiently

adapts with the backhauling demands compared to the wired backhaul. In fact, WB concept
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is not entirely new and was used to relay information between the MBS and core networks in

the traditional homogeneous cellular networks. In particular, WB LoS transmissions based on

PtP microwave or free space optic (FSO) (Dahrouj et al., 2015) have been shown to achieve

comparatively high capacity as the fiber optic ones; and in some cases, it can be used for small

cell backhaul if LoS condition is feasible. In general, when small cells are densely deployed

in urban area with several surrounding giant buildings and blockages, NLoS transmissions

are more favorable and practical for WB small cell BSs. However, NLoS transmissions often

occur in the sub–6 GHz band where conventional wireless access transmissions preoccupy.

Thus, accommodating WB technology here could create many concurrent transmissions and

degrade each transmission’s quality without a proper network resource planning.

According to the report of spectrum feature for WB in (Siddique et al., 2015b), accommodation

of WB on each spectrum band has some relations with the environmental conditions, hardware

availability and desired quality requirement. The pros and cons characteristics of the WB

solutions, which are summarized in Table 1.1, are explained as follows:

- 900 Mhz to sub–6 Ghz bands: WB operated in these spectrum bands must be licensed

but then most suitable for the NLoS communications. Therefore, sub–6 GHz WB is often

used for low mobile applications within urban area. Beside maintaining wider coverage

with low attenuation transmissions, it also economically benefits from the available hard-

wares and WA technologies without suffering from the burden of higher frequency migra-

tion and antenna alignment. However, since the frequency resource of sub–6 GHz band is

scarce, newly operated WB must concurrently coexist with the other WA communications

and causes (or suffers) severe interference to each other. Thus, an appropriate resource

management is necessary to control the co-channel interference and attain an effective WB

deployment on these spectrum bands.

- 600-800 MHz bands (TV white space): similar to the 900 Mhz to sub–6 Ghz bands, WB

operated in the TV white space unlicensed bands also benefits from the NLoS communica-

tions. Although it can support wider coverage at low attenuation transmissions, operation

of WB under these bands must deal with the expensive hardware cost and interference issue
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in addition to the event of opportunistic availability of spectrum for WB accommodation.

Therefore, TV white space WB is more likely to be applied in the sparsely populated area.

- 6–60 Ghz bands (microwave): Since these spectrum bands reserve a much wider licensed

bandwidth, the new WB communications can be accommodated orthogonally here to avoid

the impact of interference. Consequently, the cost of licensed frequency registration, in

addition to the hardware cost, is high. Nonetheless, due to shorter wavelength, microwave

signals are only suitable with LoS short range transmissions, which require no obstacle

in-between since transmitted signals are easily attenuated and impaired during their propa-

gation in the air. To overcome the LoS-related challenges, microwave-assisted antennas are

traditionally placed at the high-ground positions on some tall buildings in the urban area,

so that they can accurately align their directions to the intended destination and preserve a

good quality communications.

- 60–80 Ghz bands (mmWave): these spectrum bands are recently considered a spectral

gold-mine which attracts many wireless transmissions to migrate to. Most mmWave bands

are categorized into unlicensed and light-licensed ones. WB operated under these bands

includes all the advantages and limitations as in microwave bands, such as orthogonal trans-

mission availability, interference-free communications, low coverage, high hardware cost,

high attenuation transmission, antenna alignment, etc. In mmWave bands, multi-hop trans-

mission strategies are frequently needed to wirelessly transmit backhaul data to the remote

terminal. WB operated in the mmWave spectrum bands is often used in dense urban net-

works.

- Satelite bands: these bands span in several sub-bands, e.g., 4–6 (C band), 10–12 (Ku band),

and 20–30 GHz (Ka band), which are especially used to support users with high mobility

and can guarantee wide and ubiquitous coverage. However, WB transmissions operated

under these bands are obviously expensive due to spectrum and hardware costs, and must

highly suffer from the delay issues. Thus, it is only used at some rural or remote areas and

for some mobile situations.
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Figure 1.2 Available spectrum for WB accommodation.

Table 1.1 Simulation parameters

Backhaul spectrum features Benefits Limitations Applications

Sub-6 GHz No additional spectrum

800 MHz–6 GHz No new hardware required Low mobility scenarios

Licensed Easy O and M Limited spectrum Rural and urban areas

NLOS Wider coverage High cost spectrum Conversational voice

70 Mb/s @ 20 MHz Antenna alignment not Interference issues and video (live streaming),

Urban: 1.5–2.5 km required real-time gaming

Rural: 10 km @ 3.5 GHz Low attenuation

Microwave

6–60 GHz Additional spectrum cost

Licensed High capacity Hardware cost Urban and rural areas

LoS Medium coverage Require antenna alignment Real-time as well as

1 Gb/s+ High directivity High attenuation non-real-time services

2 ∼ 4 km

Millimeter-wave Bulk of unused spectrum

60 GHz High capacity Hardware cost

Unlicensed Low coverage Multi-hopping required Dense urban areas

LoS High directivity High attenuation Real-time as well as

1 Gb/s+ Small form factor Multiple antennas required non-real-time services

∼ 1 km Zero spectrum cost Require antenna alignment

Noise limited

Millimeter-wave Bulk of unused spectrum Hardware cost

70–80 GHz High capacity Multi-hopping required Dense urban areas

Light licensed Low coverage High attenuation Real-time as well as

LoS High directivity Multiple antennas required non-real-time services

1 Gb/s Small form factor Require antenna alignment

∼ 3 km Noise limited

TV White Space

600–800 MHz Antenna alignment not Primary user constraints

Unlicensed required Hardware cost Sparse areas

NLoS Wider coverage Opportunistic availability Conversational voice

18 Mb/s Low attenuation Interference issues and video (live streaming),

1 ∼ 5 km urban real-time gaming

Satellite

4–6, 10–12, 20–30 GHz Additional spectrum cost

Licensed Wider coverage Hardware cost Rural and remote areas

LoS Supports high mobility Antenna alignment issues Mobile situations

2–10 Mb/s downlink Ubiquitous coverage Jitter, time delay Buffered streaming

1–2 Mb/s uplink
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1.2 Challenges and Existing Solutions

1.2.1 Fundamental Challenges of PtMP WB Small Cell HetNets

The Bottleneck of Backhaul and Access Transmission Relationship

In WB small cell HetNets, it is important to concentrate on two activities of small cell BSs,

which are: the transmission/reception of backhaul data to/from the core networks via the WB

links, and the transmission/reception of these data to/from the intended users via WA links. It

is apparent that the small cell BSs cannot transmit/receive more WA data rate than what they

receive/transmit, denoted as WB data rate, from/to the core networks. The fundamental design

of WB small cell HetNets must allocate the radio resource such that the relationship where

WB rate must be greater than or equal to WA rate are always maintained (Wang et al., 2016,

2015a). However, such constraints imply a limitation on the overall system performance due

to the following reason. When the condition of WB channels are bad, but the condition of WA

channels are good, the resource allocation on the WA link must be accordingly reduced to let

the WA rate be no greater than the WB rate. This means that WA channel is underexploited.

In general, the fluctuation of WB rate, in responding to time-varying channel, enforces the

achievable WA rate to accordingly vary. In other word, it imposes a finite upper bound of the

access rate in the entire WB HetNets. This is a bottleneck compared to the conventional wired

backhaul networks, where channel condition remains temporally constant. In this case, wired

backhaul rate is often high so that the upper bound on the access link is neglected and WA

channel can always be fully exploited.

Co-channel Interference

WB operated in the sub–6 GHz spectrum bands envisages the co-channel interference issue,

especially when the network is dense and the spectrum resource is scarce. The small cells in

WB HetNets which are functional with WB transmission/reception capability in this band are

mainly divided into in-band and out-of-band half-duplex categories (Siddique et al., 2015b).
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In the in-band half-duplex case, the small cells accommodate their WB communications on the

spectrum resource dedicated for the WA communications. This causes co-channel interference

at each considered access and backhaul receiver on the uplink and downlink sides, which de-

grades both the WB and WA rates. On the other hand, in the out-of-band half-duplex small cell

case, the small cells accommodate their WB communications on the non-overlapped spectrum

with the WA ones. This approach has one drawback since spectrum is inefficiently utilized.

Although it can avoid interference causing on the WA communications, WB transmissions on

the same spectral channel must compete with each other for its best performance. Under the

dense network scenario, these two in-band and out-of-band WB small cells will eventually

suffer from severe interference from neighboring nodes. Therefore, an optimal strategy for in-

terference management should be taken into account to capture the best network performance.

Signaling Overhead

Another practical challenge of WB is the excessive signaling overhead (Siddique et al., 2015b).

This issue occurs due to the huge amount of information required to be exchanged from the

small cell to the core networks; or between the neighboring small cells in multi-hop commu-

nications via wireless channel. Signaling overhead usually comes from the demand of channel

state information (CSI) transportation, frequent handover, interference management, load bal-

ancing or any cooperative communication strategy. Consequently, small cells must manage

their overall system parameters in order to minimize as much signaling overhead as possible to

preserve some sufficiently good wireless channels for the WB communications.

Distributed and Self-organized WB Networks

The inherent drawback of conventional small cell HetNets is its limitation on centralized com-

putation of resource allocation. Due to the requirement of excessive signaling overhead and the

emergence of dense small cell deployment, a distributed resource allocation is preferred and

anticipated (Goonewardena, 2017). This requirement also applies to the WB small cell Het-

Nets. However, due to many newly introduced design challenges such as WB-WA relationship,
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co-channel interference, limited signaling overhead, developing a distributed algorithm in WB

is often difficult. This is because these WB-related challenges modify the characteristics of the

conventional small cell networks, so that existing solution approaches must be redesigned to

cope with these new system changes.

Delay

A transmission failure in the medium access control (MAC) layer leads to a request of retrans-

mission or announcement of drop call. In either case, a delay occurs. This also applies to the

scenario of WB, where there exists the factors of channel fading and severe interference from

concurrent WB and WA transmissions. These impacts might degrade the backhaul system re-

liability and overall performance so that characterizing the backhaul delay behavior is highly

important in the WB networks (Chen et al., 2015).

1.2.2 Existing Solutions

Massive MIMO combined with mmWave for WB

In recent years, the advanced extensions of spectral and spatial (antenna equipment) domains

in wireless technology opens many alternatives to improve the system performance. By mi-

grating wireless transmissions to a much higher frequency of GHz, mmWave technology was

able to provide up to several Gb/s of achievable rate (Pi et al., 2016; Heath et al., 2016) and is

obviously selected as an enabling candidate for WB. Despite the fact that it highly requires di-

rectional antennas and mostly compatible with LoS communications, mmWave WB can lever-

age a large amount of underutilized bandwith to achieve higher rate. For example, 1 Gb/s of

backhaul capacity can be achieved over a 250 MHz in E-band (71-76 GHz and 81-86 GHz)

(Gao et al., 2015). Another characteristic is that mmWave only supports short range com-

munications since mmWave signals quickly attenuate when propagating in space further than

510-700 meters in V-band or several kilometers in E-band. Therefore, inter-cell interference

can be remarkably reduced, while using orthogonal spectrum allocation on these bands, intra-
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cell interference is also suppressed. However, this characteristic is also a system drawback

since mmWave signal cannot traverse to the remote receiver while retaining a good signal’s

quality. To deal with this, there are two solutions: multi-hop transmission and hybrid BS. In

the multi-hop scheme, neighboring small cell BSs can communicate with each other in order

to forward the backhaul data from the core networks through multi-hop to the edge small cell

BSs. In the hybrid BS scheme, the macrocell and small cell BSs are assumed to flexibly switch

their operation between mmWave and sub-6 GHz bands. The small cells locating near the

macrocell base stations are preferred to communicate at the mmWave band due to their short

distances, while the small cells at the edge may switch to the sub-6 GHz band to receive NLoS

backhaul signal.

In addition, mmWave technology facilitates the installation of much more number of anten-

nas within a small size antenna circuit without causing antenna correlation. This allows the

BSs to be equipped with a large number of antenna (massive MIMO) (Larsson et al.). It is

worth to mention that massive MIMO is also chosen as the key enabler for 5G standard due

to its capability to significantly increase the area SE and EE. Largely distinguished from the

classical MIMO technology, massive MIMO relies on simple beamforming techniques such as

maximum ratio transmission (MRT), Zero forcing (ZF), etc. (Ngo et al., 2013; Nguyen et al.,

2015b; Nguyen & Le, 2015), to serve multiple users within the same time-frequency resource

while satisfying the 5G’s QoS and quality-of-experience (QoE). According to the principle of

large number theory applying on massive MIMO, BSs equipped with a large number of an-

tenna can basically focus their transmit power towards to intended users while substantially

canceling co-channel inter-user interference, thus effectively improve the user rate. In light of

this, massive MIMO is very promising to embrace the WB small cell HetNets performance.

In some scenario, mmWave can be combined with massive MIMO to inherit the fruitful ad-

vantages from these two technologies to achieve the substantial improvement for a viable WB

solution. Despite these benefits, mmWave based on massive MIMO also faces some challenges,

which are shown as below:
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- First, the cost and complexity of designing a mmWave based on massive MIMO transceiver,

including the high-speed analog-digital converters (ADCs) and digital-analog converters

(DACs), synthesizers, mixers, etc. are high. Therefore, using a large scale of inexpensive

antennas with a finite number of expensive baseband RF chains is more appealing. How-

ever, this subsequently leads to other challenges related to precoding/combining schemes.

- Channel estimation in mmWave based on massive MIMO can be more difficult even when

TDD leveraging the channel reciprocity is considered. Even for TDD-based mmWave com-

munications, the synchronization and calibration error of RF chains to guarantee the chan-

nel reciprocity are not trivial (Chan. et al., 2006).

Half Duplex Time-Frequency Scheduling

A half-duplex transceiver refers to the one which either transmits or receives signal, but not

simultaneously, at the same time-frequency resource. Most classical macrocell and small cell

BSs operate in half-duplex mode. In the half-duplex system, wireless communications are

divided into the uplink and downlink ones, and are accommodated separately either in time do-

main, named as time division duplexing (TDD), or in frequency domain, named as frequency

division duplexing (FDD) (Tse & Viswanath, 2005). For the conventional wired backhaul small

cell HetNets, the downlink (and uplink) communications of the small cell are allocated in the

same resource with the downlink (and uplink) communications of the macrocell, since back-

haul data transportation is isolated in the wired channel (Chandrasekhar et al., 2008; Nguyen

et al., 2013, 2012a,b; Nguyen & Le, 2014b,a). However, the rise of WB communications be-

tween small cell and macrocell BSs complicates these uplink and downlink accommodations.

For instance, assuming that the macrocell and small cells are operating on the downlink of

the TDD system. Macrocell BS must transmit backhaul and access data to the small cell BSs

and macrocell users (MUEs), respectively. However, since the small cell BSs operating on the

downlink must also transmit at this stage, it is impossible to simultaneously trigger both the

receiving and transmitting capabilities in half-duplex small cell BS.
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To overcome this obstacle, some work in (Hoydis et al., 2013; Sanguinetti et al., 2015) pro-

poses a novel variant schemes of TDD, namely RTDD and CoTDD combined with spectrum

partitioning to effectively allocate the uplink and downlink of the access and backhaul trans-

missions. As depicted in Fig. 1.3, RTDD divides the time domain into time slots. While the

macrocell BS transmits access and backhaul data to the MUEs and small cell BSs, the small

cell BSs operate on the uplink side to receive signals from both the macrocell BS and small

cell users (SUEs). Similarly, while the macrocell BS receives access and backhaul data to the

MUEs and small cell BSs, the small cell BSs operate on the downlink side to transmit signals

to both the macrocell BS and SUEs. It is worth to mention that the spectrum partitioning in

RTDD is proposed to facilitate the cross-tier interference received at each small cell BS. The

same arguments are also applied for the CoTDD system. In fact, these schemes have been

widely investigated in the literature and embraced as a viable solution for future WB small cell

HetNets.

Full Duplex

Full-duplex communications refer to the simultaneous transmissions and receptions of infor-

mation in the same frequency band at the same time so as to improve spectral efficiency (Sab-

harwalet al., 2014). BSs equipped with full-duplex transceiver are often categorized by two

particular antenna configurations, namely shared and separated antenna configurations. The

shared antenna configuration uses a single antenna for simultaneous in-band transmissions and

receptions through a three-port circulator (c.f Fig. 1.4). On the other hand, the separated an-

tenna configuration requires separate antennas for transmissions and receptions (Liu et al.,

2015). Based on these characteristics, it is obvious that WB small cells should be coupled with

the full-duplex module to improve WB rate while facilitating the time-frequency division in

RTDD from the half-duplex case (Pitaval et al., 2015). As depicted in Fig. 1.4, small cell BSs

can simultaneously transmit and receive access backhaul data to and from the intended users

and macrocell BSs within the same time slot and spectrum. According to (Pitaval et al., 2015),

using full-duplex can also facilitate the problem related to control signal communication re-
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striction, thus shortens the length of a subframe and potentially reduces transmission latency

and energy consumption.

Despite the above potentials, the gains of full-duplex for WB small cell HetNets are funda-

mentally limited by the overwhelming self-interference, which is caused by the transmitter

to its own collocated receivers. However, thanks to the three complementary techniques to

mitigate self-interference in full-duplex, namely spatial isolation, RF cancellation, and digital

cancellation, self-interference can be pushed down to the level of noise-floor in low-power de-

vices (Bharadia et al., 2013). Thus, by enabling small cell with the capability of full-duplex

to forward backhaul data to the users, spectral efficiency can be effectively increased when

self-interference is radically handled.

Cache and Buffer at Small Cell

Cache is a concept which stores (or prefetches) the potentially interested databefore it is re-

quested by the user (Wang et al.; Bastug et al.). This data can be predicted by certain methods,

such as machine learning, based on the data’s likelihood from a given content distribution. In

recent years, cache technology from computer network field has been adopted to the small

cell wireless networks in order to reduce the overload of backhaul transmissions (Shanmugam

et al., 2013). In particular, a small cell can be equipped with a local cache of small size to

prefetch data and then wirelessly transmit it to the small cell users, instead of requesting back-

haul data to be directly transmitted from the core networks. If local cache has sufficiently large

size, more data can be prefetched and cache hits ratio, defined as the number of request found in

the cache over the total request, increases. In practice, small cell cache’s size is rather small so

that whenever there is a cache miss, data must be requested from the macrocell BS to be wire-

lessly transmitted to the small cell BS and then SUEs. Therefore, an effective scheme which

jointly controls the cache content management together with the wireless backhaul transmis-

sions is always interested.
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Different from cache, buffer is a protocol which receives causal incoming data, store it shortly

within the buffer queue, and this data will be released to be transmitted to the receiver (Xia

et al.; Zlatanov et al.). When buffer is equipped at a small cell, the buffered data is often re-

ceived directly from the macro BS’s wireless transmissions. This is different from the cache

since prefetched data is typically routed from different other sources, through multiple gate-

ways, to reach the final destination at the local cache. Although buffer and cache aim at reduc-

ing the overload for backhaul links, buffer in a much small time period, targets to store data
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and release it to transmit as soon as possible so that it can save more queue space for more in-

coming data. This is to avoid buffer overflow and prevent buffer delay (Guo et al.; Georgiadis

et al., 2006). However, the prefetching process of cache is updated after a longer time period,

only when the distribution of request content changes.

In practical system, cache and buffer can be collocated at the small cell to effectively leverage

the overall WB small cell performance (Xiang et al.). On one hand, small cell cache serves

as a long-term alternative to proactively predict and prefetch popular content in case the SUEs

request it. On the other hand, there might be some requested content which is not cached, and

must be wirelessly transmitted from the macro cell BS. Here, buffer is used to improve the WB

data reception under the time-varying wireless channel environment in order to satisfy the QoS

and QoE requirement. The joint management of cache and buffer at the small cell has recently

become the ever-demanding topic which attracts many research in the field.

Small Cell Coordination

Coordination among small cells in the conventional wired backhaul small cell HetNets can

significantly mitigate interference and improve link quality, and consequently boost the over-

all system capacity. Such a strategy was widely investigated and standardized in the 4G LTE

standard as Coordinated Multi Point (CoMP) (Lee et al., 2012). The small cell BSs when

participating in CoMP transmissions are discriminated by two coordination levels. In the first

approach, which is known as multi-point joint coordination, the cooperative small cell BSs is

only capable of sharing CSI but not the transmit signals. In this case, this CoMP system resem-

bles the multi-cell network configuration. In particular, each small cell BS serve its local users

by transmitting the planned signals, while it causes inter-cell interference to the other users be-

longing to other small cells. Under the assumption that CSI is known at the coordinator, which

is located at a central server, joint radio resources allocation (such as transmit beamforming or

power) can be computed across all the small cell BSs to effectively control interference and

achieve the optimal network performance.
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In the second approach, also known as multi-point joint transmission, coordinated small cell

BSs share both the CSI and transmit data. We can imagine these small cell BSs now forms

a centralized multi-antenna BS system similar to the MISO multi-user networks to simultane-

ously beamform data to all users. These small cell BSs are now in full coordination mode. The

differences between the joint coordination and joint transmission are illustrated in Fig. 1.5. A

subtle point should be highlighted that users in this scenario still suffer co-channel inter-user

interference, but with beamforming techniques, interference can be better managed to achieve

a much higher gain in system performance compared to the first approach.

It is important to note that cell coordination poses extra signaling overhead burdens to the

scarce small cell backhaul channel resource. The extra overhead is due to the exchanging of

information between the neighboring small cell, via the wired X2/S1 interface (Yang et al.,

2013; Hou & Yang, 2011). In wireless backhaul scenario, there is no available wired connec-

tions between small cells or small cell to the core networks. Therefore, it is more challenging

to enable the wireless message exchanging between these BSs via the wireless X2/S1 interface

(Ge et al., 2014). The availability of cell coordination and performance gain due to coor-

dination depend on the quality of WB channel conditions and how many dedicated channel

resources are given for the signaling overhead.

Resource Allocation

Resource allocation in WB small cell HetNets is the task to allocate radio resource such as

transmit power at the BSs or users for the WB and WA links. In general, to attain a proper allo-

cation, the first step is to formulate an optimization problem with respect to the radio resource

variables in order to maximize the objective function subject to some certain constraints. The

objective function and the constraints can be involved in different form of network utilities,

which are the functions of the radio resources, e.g., the rate function computed according to

Shannon capacity formula, the power function, the energy efficiency function, etc. In this dis-

sertation, since WB communications are operated in the sub–6 GHz band, most WB and WA

communications are in the interference-limited regime so that radio resource are tightly cou-
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pled together in the formulated problems. This makes the second step, which aims at solving

the optimization problems more challenging. It is important to note that since these problems

are formulated on the WB small cell HetNet environment, the constraints related to WB-WA

relationship are always considered, which further complicates the solution approach (Wang

et al., 2016; Zhao et al., 2015; Hur et al., 2013b).

1.3 Related Work

This section aims at elaborating the state-of-the-art related to resource allocation work which

spans from a general conventional wired backhaul to WB small cell HetNets. It is worth to

recall that a typical HetNet is a superimposition of one macrocell tier and multiple small cell

tiers, e.g., picocell, microcell, femtocell. Each tier consists of several serving BSs and many

users within its coverage. BSs that belong to each particular tier are distinguished by some

key parameters such as maximum power budget and operating transmission range. In addi-

tion, users belonging to different tiers might possibly be regulated by different minimum QoS

requirements. In other words, we can treat a traditional wired backhaul HetNet similar a multi-

cell multi-user network. Thus solutions proposed for this network type are also applicable for

the wired backhaul multi-tier HetNet scenario as well. A literature related to resource alloca-

tion optimization problems in multi-cell multi-user networks were investigated by considering

various design objectives such as power minimization, sum rate maximization, and utility op-

timization.

1.3.1 Power Minimization

In the early stage of designing the effective solutions for power minimization problems in cel-

lular network, power control (PC) technique proposed by (Foschini & Miljanic, 1993) was seen

as the most popular algorithm not only by its superior, fast-converging behavior and compati-

bility for distributed implementation but also by its applicability to more sophisticated network

scenarios. In PC technique, each user can independently update its power at one time instance

based on the acquired signal-to-interference-plus-noise (SINR) information fed back from the
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BS in the previous time instance and the predefined target SINR. As long as the target SINR

is feasible, this PC algorithm is shown to converge fast to a fixed set of power values which is

equivalent to the minimum aggregate transmit power of the users. In case of infeasible SINR

target, user scheduling should be incorporated (Andersin et al., 1995).

Inspired by the result in (Foschini & Miljanic, 1993), Rashid-Farrokhi et al. (1998b,a) em-

ployed the existing PC to investigate extended network schemes with multiple antennas equipped

at the BS. Rashid-Farrokhi et al. (1998b) devised a joint computation of receive beamforming

and uplink power allocation algorithm to iteratively compute the receive beamforming vector

with a fixed allocated power, and then update the power based on the SINR value calculated

from the recent obtained receive beamforming value. Further, Dahrouj & Yu (2010) visited a

similar problem of transmit beamforming design on the downlink of a multi-antenna BS and

provided a theoretical framework that shows the dual relationship between downlink transmit

beamforming vector and the existing joint receive beamforming and uplink power control in

(Rashid-Farrokhi et al., 1998b,a). This finding is useful and important in the consideration of

a very large scale of antenna number at the BS, where power can be updated using its asymp-

totically formula to overcome the burden of matrix inversion computation that was involved in

receive beamforming updating (Huang et al., 2013). On the contrary, instead of exploiting the

uplink and downlink duality, designing transmit beamforming can be directly tackled by equiv-

alently reformulating the initial optimization problem into the standard form of second order

cone programming (SOCP) in which modern dedicated solvers are available for numerical so-

lution (Liu et al., 2011a; Cheng et al., 2013; Gershman et al., 2010). In some cases, resorting

the problem into semidefinite programming (SDP) (Gershman et al., 2010) and relaxing the

rank one constraints shows more effectiveness than other approaches when some additional

non-convex constraints are introduced into the problem (Nasir et al., 2015). Once obtaining

the relaxed solution from SDP, a post processing method is proposed to convert the covariance-

matrix typed variables into the feasible transmit beamforming vector. In OFDMA HetNets,

these problems are further considered by jointly optimizing the power allocation (or transmit

beamforming) together with sub-carrier assignment which minimizes the overall power con-
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sumption. Note that in a OFDMA system, one communication can be allocated on multiple

sub-carriers, and one sub-carrier can be accommodated with different communications. There-

fore, the mathematical formulations of these joint power and sub-carrier allocation problems

often fall into the mixed integer non-linear programming category, which is generally NP-hard

(as proved in (Liu et al., 2011a)) and more challenging to solve. Despite these difficulties,

Lopez-Perez et al. (2013) considered an OFDMA system where multiple users share multiple

discrete sub-carriers, but they restricted that at most one user is allowed to transmit on each

sub-carrier. Then, they developed a centralized and a distributed algorithm to jointly solve for

the power and sub-carrier allocation. In (Cheng et al., 2013), a joint optimization of beam-

forming, BS selection, user association which minimizes the power consumption for CoMP

transmission was considered, where the authors developed an algorithm based on MISOCP

and another algorithm based on SOCP combined with Inflation technique to solve for efficient

solutions. This MISOCP based technique is extended to the limited fronthaul capacity cloud

radio access networks (C-RANs) in (Luong et al., 2017c,b,a, 2016a; Luo et al., 2015). In (Li

et al., 2016), a problem which jointly optimizes BS operation, user association, sub-carrier

assignment, and power allocation to minimize the average energy consumption was formu-

lated. The authors developed the Steerable Energy ExpenDiture algorithm (SEED) which can

efficiently solve for a local optimal solution within a polynomial time and significantly reduce

power consumption against other existing schemes. In (Yadav et al., 2016a,b), the authors

studied the energy minimization for the hybrid small cell which can either exploit energy from

the grid or the harvested renewable energy through battery.

1.3.2 Rate Maximization

Unlike the power problem case, rate-related resource allocation problems aims at maximizing

the achievable rate given limited radio resource. These resources can simply be the maximum

power budget at each transmitter, or/and the number of available sub-carriers to accommo-

date the required communications. The objective function in rate-related problems can be the

maximization of sum rate, or minimum rate, of sum of log rate. It is worth to mention that
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the two latter cases are known as the rate maximization problems with fairness. In (Papandri-

opoulos & Evans, 2009; Kha et al., 2012; Chiang et al., 2007), the authors proposed different

approaches to develop low-complexity algorithms to solve the sum achievable rate problem.

In particular, (Papandriopoulos & Evans, 2009) rewrites the non-concave rate as a function

of respective power variables into a logarithm concave approximation with additionally intro-

duced parameters and reformulate the original problem into a lower-bounded concave one. In

this way, an algorithm with polynomial time complexity is proposed to recursively solve the

approximated concave problem and update the corresponding parameters until it converges to

a local optimal point. Akin to (Papandriopoulos & Evans, 2009), Kha et al. (2012); Chiang

et al. (2007) approached the problem by rewriting it in the difference of convex (DC) and ge-

ometric programming (GP), respectively. Then, Kha et al. (2012) proposed to employ the first

Taylor order linear approximation, while Chiang et al. (2007) employed the geometric-mean

approximation to approximate the non-concave problem following the similar process used in

(Papandriopoulos & Evans, 2009) and develop different low complexity algorithms based on

their proposed methods. A good summary of these three techniques is reported in (Ngo et al.,

2014b), in which the authors jointly solve the sub-carriers assignment and power allocation

to maximize the sum achievable rate in the OFDMA environment. In (Luong et al., 2016b,

2014a), the authors considered the throughput analysis in the coexistence of IEEE 802.15.4

and 802.11 networks under unsaturated traffic. Different versions of these approaches can be

found in (Wang & Vandendorpe, 2010; Tan et al., 2011; Wang & Vandendorpe, 2012) and the

references therein.

Moving to the multi-cell multiple antenna scheme, the design of sum rate maximization prob-

lem needs to be reconsidered more carefully since the optimization domain now deals with

the functions of complex-valued beamforming variables, which is more complicated than real-

valued power variables in the single antenna case. To convey this, Tran et al. (2012) invokes

the framework of sequential parametric convex approximation (SPCA) in (Beck et al., 2010) to

propose a low complexity, fast converging iterative SOCP-based algorithm that attains a local

optimal set of complex-valued beamforming vector and maximizes the objective function. Dif-
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ferent from that, the authors in (Ha et al., 2015) resort the proposed problem into a weighted

minimum mean square error (WMMSE) minimization problem, in which separate block of

variables, each has different physical meaning, is iteratively solved using Gauss-Seidel method

when other blocks are fixed by some values (Grippo & Sciandrone, 2000). For a general set-

ting of MIMO network, the above methods applied for MISO can also be reused with simple

manipulation, which have been extensively studied in (Shi et al., 2011; Nguyen & Le-Ngoc,

2014).

Similar to the above power problems, design beamforming in multi-cell can be coupled with

other parameters, such as sub-carrier, or user association in different network scenarios, which

raise the computational complexity. Sun et al. (to appear) considered a problem of jointly op-

timizing the beamforming together with sub-carrier allocation which maximizes the user sum

rate. The authors proposed a method based on SDP combined with DC programing to relax

the considered problem into a more tractable convex form, so that an efficient low-complexity

algorithm can be developed to solve for a solution. In (Sun et al., 2015b; Sanjabi et al., 2014;

Hong et al., 2013), two joint optimization problems of beamforming and user association were

considered to maximize a system wide utility function related to the rate formula on the down-

link and uplink of a multi-cell multi-user network. The authors first proved the NP-hardness

of the formulated problems. Then, in (Sanjabi et al., 2014), they employed the Block Coor-

dinated Descent method to iteratively solve their problem until convergence. In (Sun et al.,

2015b), they developed a low-complexity algorithm based on game theory approach to com-

pute the local optimal solution in a distributed manner.

1.3.3 Energy Efficiency Maximization

In the recent years, research on green communication has become an active trend in wire-

less communication systems (Hu & Qian, 2014; Li et al., 2011; I et al., 2014; Soh et al.,

2013). Unlike conventional wireless communication networks where the metric of interest is

the achievable rate computed in bits per second, achieving greener communications can be

interpreted as obtaining the maximum number of information bits over the energy unit Joule,
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which is referred to as the maximization of EE. In fact, according to the report in (Auer et al.,

2011), almost 80 % the total network energy is spent at BS sites; thus, saving more energy

while attempting to maintain an acceptable achievable rate simply translates to greener and

more economical communications. Motivated by the need of EE amendment, which also helps

in lowering operational cost for mobile network operators and contributes to the decrease of

CO2 emission, optimally managing the radio resource is equally vital to attain the best EE.

Solving a general EE maximization problem is complicated since it carries the combination

of difficulties in the two previous problem categories in the form of a nonlinear fraction. A

common approach to overcome this obstacle is to transform the fractional form into linear

subtractive form using Dinkelbach method (Dinkelbach, 1967) and directly apply the devel-

oped method used for the rate and power optimization to solve this equivalent problem. This

solution direction has been frequently exploited in many work in the literature. Specifically,

optimal beamforming and zero-forcing based beamforming designs for maximizing the EE in

MC MU HetNets were studied in (He et al., 2014) and (Xu et al., 2014), respectively. In (Ng

et al., 2012), the authors addressed the joint power allocation and antenna design that maxi-

mizes the system EE in OFDMA massive MIMO networks. However, these works only aimed

to develop centralized algorithms with full coordination between cells. This approach often

requires high computational cost and signaling overhead since each node needs to have the full

knowledge of global channel state information (CSI) to compute the joint optimal solution. To

overcome these difficulties, the authors in (Huang et al., 2014) proposed a decentralized algo-

rithm based on alternative optimization to design the beamforming that maximizes the system

EE. Here, limited information exchange between uncoordinated BSs are assumed. The work

in (Ngo et al., 2014b) employs the framework of primal decomposition in (Palomar & Chiang,

2006b) to decompose the coupled problem into smaller problems to iteratively solve and up-

date the involved parameters until convergence. To enhance the convergence behavior of the

primal decomposition method, (Tervo et al., 2015a) develops a decentralized algorithm based

on ADMM.
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In some cases, when there are more antennas at each small cell, the ratio of power for main-

taining radio frequency chains or switching the BS ON/OFF to the total power consumption

becomes more important since it is now comparable to the transmit power. This motivated the

authors in (Zhou et al.) to consider BS sleep/active or in (Tervo et al., 2015b) for antenna selec-

tion to refine the achieved EE in comparison with fixed circuit power. In (Luong et al., 2017c),

a joint optimization of beamforming, BS sleep/active selection, together with user association

is considered to maximize the system EE under the limited fronthaul capacity C-RANs. More-

over, at the WB small cell BS, the energy consumed in decoding the collected backhaul data

from the MBS cannot be ignored. This is due to the fact that small cell BS have small range

of operation and the energy consumed in the decoding process is eligible in comparison to the

one used in transmitting the data (Luong et al., 2018b,a, 2017b, 2011; Rubio & Pascual-Iserte,

2014). For the downlink of WB small cell HetNets, each SAP relates its decoding rate propor-

tionally to the amount of power to decode the backhaul messages before forwarding them to its

own users. Hence, this decoding power is fundamentally important (Rubio & Pascual-Iserte,

2014) and should be considered in the problem of EE optimization. More studies on energy

efficiency in WiFi-cellular HetNets can be found in (Luong et al., 2016c, 2014b)

1.3.4 Wireless Backhaul Communications

The problem of radio resource allocation optimization in WB networks has been started over

ten years. However, the intensity of this research topic just recently grows faster and attracts

more researchers in the 5G networks. One of the first works on WB was proposed in (Cao

et al., 2007) in 2007. In this work, the authors consider a joint design of routing, medium

access control scheduling and beamforming in order to achieve the minimum power consump-

tion performance while still guarantee some minimum achievable rate requirement. In this

work, WB communication are planted in an orthogonal resource dimension (e.g., spectrum) to

the wireless access channel so that there is no cross interference between these two commu-

nication types. To overcome the difficulty of coupling factor in the non-convex problem, the

authors propose to decouple the first problem into smaller subproblems corresponding to each
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layer and iteratively solve each until convergence. Similarly, (Lee et al.) proposed different

methodologies and strategies to activate the multi-hop WB in medium access control layer to

meet the proposed criteria such as call admission or delay.

Moving to the perspective of 5G, the work in (Hur et al., 2013b) is found as one of the first

work to propose the solution for WB in small cell networks. Hur et al. (2013b) proposed the

use of outdoor mmWave communications for WB between small cells. To overcome the im-

pairment of mmWave propagation in outdoor environment, this work proposes to use massive

MIMO and beam alignment to mitigate the sensitivity of the narrow beam to the movement

and wind-induced factor, which are considered as the main causes to performance degradation

of mmWave communication. Motivated from this work, Singh et al. considered the scenario

of self-backhauled mmWave small cell, where a part of the small cell BSs, namely A-BSs,

have wired backhaul and the rest backhaul wirelessly to A-BSs. The authors of (Niu et al.,

2017) presented an optimization problem of scheduling and power control which maximizes

the mmWave WB energy efficiency. The analysis on the coverage and rate distribution are

characterized where it is concluded that in dense network, increasing the fraction of A-BSs

improves the performance of the network while the user rate coverage saturates if the density

of the A-BSs is kept constant.

In the scenario of reuse the sub–6 GHz spectrum bands for WB, (Wang et al., 2016) proposes

a model of large scale antenna at the MBS to efficiently mitigate interference causing to their

users and SBSs on the wireless access and backhaul links, respectively. In addition, the WB

communications between MBS and SBSs are accommodated on an orthogonal time/frequency

domain by employing the reverse time division duplex and spectrum splitting as a strategy

of interference management. A joint optimization problem of spectrum allocation and user

association is formulated such that the sum log-rate of the network is maximized. Interestingly,

another work from (Sanguinetti et al., 2015) also follows the same spirit as in (Wang et al.,

2016). In (Sanguinetti et al., 2015), the authors setup an almost similar system model of

massive MIMO and interference management with reverse time division duplex and spectrum

splitting to let the BSs communicate with two types of user: low and fast mobility. Unlike
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(Wang et al., 2016), an analytical framework to evaluate the consumed power at the large

regime of antenna are conducted by some simple formulas to give some insights to the system

behavior. On the other hand, to further investigate the effect of interference management,

the work in (Thomsen et al., 2014; Phan et al., 2015) introduce the idea of applying network

coding to develop a new communication strategy between SBSs and MBS. With a scenario of

two SBSs and two users, an optimization problem is formulated and solved to give rise to the

optimal setup of the proposed strategy. To better exploit the available spectrum, (Li et al., 2018;

Siddique et al., 2017) introduced a hybrid strategy of out-of-band and in-band full-duplex and

formulated a problem which optimizes the spectrum allocation under the proposed scheme.

The problem of optimally deploying BS with WB capability in space is also of great interest.

In general, this deployment issue is related to the problem of minimizing the cost function

with some guarantee on the QoS requirement. In (Zhao et al., 2015), the meaning of cost

minimization is translated into the definition of how many maximum WB SBSs are admitted

in the considered network to achieve some user minimum rate requirement on the DL. As

such, the number of SBSs underlaid with macrocell that can be admitted to the network is

optimized. In (Islam et al., 2014), two-tier HetNets are considered where SBSs that cannot

access the MBS are assisted by single-hop wireless link aggregator nodes to ensure backhaul

connectivity. A joint cost function of node locations, power control, channel scheduling and

routing is optimized to achieve the best deployment scenario of the aggregator nodes in spatial

domain.

Recently, a framework of stochastic geometry is applied to analyze the energy efficiency be-

havior of WB two-tier HetNets in (Yang et al., 2016a). By assuming that all the BSs and users

are distributed according to different independent Poisson Point Processes, this paper computes

the average achievable rate and energy efficiency on the uplink and downlink and shows that

WB can be significantly more energy efficient in two tiers than in one tier.
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1.4 Motivations and Objectives

The evolution of wireless technology towards its future generations will always seek for a

more economical, efficient but viable and practical solution. Denser network deployment to

cope with the exponential growth of mobile equipment is inevitable. This raises an increasing

importance of designing a more effective WB solution for the future networks. Motivated to

overcome the raised challenges together with bridge the gap from the benefits and drawbacks

of the existing solution discussed above, the main objective of this thesis is to address the fun-

damental challenges and achieve the optimal performance of the overall WB systems in terms

of sum achievable rate and network energy efficiency. To achieve these goals, this dissertation

jointly optimizes the allocation of multi-dimensional resource, such as transmit power, beam-

forming, buffered content, small cell ON/OFF selection, etc., which maximizes the considered

network utility function while always explicitly respecting the WB and WA relationship con-

straints.

In general, the formulated optimization problems when considering the WB and WA relation-

ship are generally difficult and provably NP-hard. According to the mathematical terminology,

there exists no algorithm which can solve a NP-hard problem within a polynomial time. To

solve for global optimal solution of such problem requires a exhaustive search based algorithm.

However, the computational complexity of this method exponentially scales with the problem

size, which is not applicable for real-time wireless application. Motivated by this, this dis-

sertation aims at developing a pragmatic low-complexity algorithm to solve for a high-quality

sub-optimal solution.

1.5 Highlighted Novel Contributions

The novel contributions of this dissertation are elaborated in each chapter as follows:

- The main contribution of Chapter 2 lies in the realization that the RTDD combined with

spectrum partitioning which couples the uplink and downlink WB and WA communica-

tions. Consequently, it proposes to simultaneously optimize the resource allocation on the
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uplink and downlink sides. In fact, this important characteristics must not be overlooked

as in (Wang et al., 2016), since if the resource allocation is only for the downlink (or the

uplink) side without respecting the uplink (or downlink) WB–WA relationship, this could

jeopardize the operation of WB small cell HetNets under the proposed RTDD. Another

contribution of this chapter lies in the solutio approach. In particular, a novel result which

extend from (Nguyen et al., 2015a) is derived to approximate the generalized exponential

cone constraint into a system of conic constraints. This derivation supports the developed

algorithm in reducing more computational complexity compared to the existing approaches,

which is helpful in achieving an practical and wireless-application-oriented solution.

- The main contribution of Chapter 3 lies in the novel power consumption model, which re-

flects the dependence between the consumed power and the decoding backhaul data from

the received signal. Compared to the existing linear power consumption model in the liter-

ature, this newly proposed model offer an appropriate method to quantify the overall power

consumption. This provides a more precise solution of resource allocation which optimizes

the system energy efficiency. Another important contribution is that this work is the first

one which claims and rigorously proves the NP-hardness of the formulated EE problem. It

should be noted that the derived proof does not only apply for this particular problem of EE

in WB HetNet, but is also useful to prove the NP-hardness of an EE problem in a general

interference-limited regime of wireless networks.

- The main contribution of Chapter 4 is the analysis and design which study the improved

impact of small cell buffer on WB HetNet over multiple time slots. Due to the wireless

channel variation, there is some time instances where in the first time slot, the channel of

WB is better than WA, and in the second time slot, the channel of WB is worse than WA.

If we allocate the resource to achieve a strictly higher WB data rate than the achievable

WA one in the first time slot, the backhaul data which is not used by the WA transmission

will be stored in the buffer queue. Without the buffer, this data will be dropped. In the

second time slot, we recall that the channel condition in the second time slot leads to a poor

WB data rate, and therefore WA communication cannot achieve a high rate. Small cell with

buffer can overcome this rate-related obstacles by exploiting the buffered data together with
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the received data from the WB transmission. Without the buffer, the small cell can only the

receive data from the WB transmission without getting any extra data from the buffer, which

obviously results in a less performance than the buffer case. The contribution of this work

is to effectively integrate this intuition by jointly designing the radio resource allocation

together with the buffer usage according to the changes of channel condition in order to

maximize the user sum rate over time.

- The main contribution of Chapter 5 lies in the novel cooperative NOMA scheme employed

on the WB and WA communications. The novelty of this scheme is the proposed coop-

eration between the small cell BSs as the consequence of the successive interference can-

cellation (SIC) NOMA protocol from the WB communications. This work is the first one

which proposes such scheme, as well as the approach to optimize the SIC decoding order in

the MISO NOMA scenario. By analyzing the potential benefits of a proper decoding order

decision and the cooperation policy between the small cell BSs, a joint design of resource

allocation together with SIC decoding order and small cell cooperation policy is considered

to maximize the two objectives of interest.

- The main contribution of Chapter 6 lies in the novel proposal of employing multiple UAVs

as the flying WB small cells to consider the UAV-assisted PtMP WB networks. Moreover,

this work revisits the impact of cooperative NOMA in Chapter 5 on this new UAV-assisted

PtMP WB networks. A subtle observation is that UAV can flexibly change their spatial

position, which in turn affects the WB channel’s discrepancies and consequently change

the performance of the proposed cooperative NOMA scheme. Based on these analyses, a

joint design of UAV placement together with radio resource allocation, SIC decoding order,

and cooperation policy is formulated to maximize the user sum rate.

1.6 Methodology

Most of the optimization problems formulated throughout Chapter 2 to 6 retain in a non-linear

non-convex form, where this form’s NP-hardness was proved in (Luo & Zhang, 2008; Liu et al.,

2011a). This implies a general difficulty in solving these problems for an optimal solution. The
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difficulty is that one must customize a high-complexity based on exhaustive search method to

exhaustively seek for a possible optimal solution over excessive data set within the solution

domain. This is not prominent for a typical wireless application. In light of this, the main

methodology of this dissertation is to invoke the recent results on SCA techniques to develop a

more appealing low-complexity algorithms, which can efficiently solve for a high-quality sub-

optimal solution. The highlighted benefit of this employed SCA approach is that it can always

achieve a solution better than any existing method in the literature. In general, the framework

to solve a formulated problem involves in the following basic steps:

- Step 1: Transforming the original problem into an equivalent but more tractable form,

which will be more amenable to the application of SCA method.

- Step 2: Appropriately employing the SCA technique on the non-convex parts to approxi-

mate the equivalently transformed problem into a sequence of convex approximated ones,

where each of them is a convex approximate of the original non-convex problem. It is

important to note that the employed approximation step introduces some additional input

parameter to each approximated problem.

- Step 3: Further deriving a new controlled-accuracy based on SOCP approximation method

to manipulate each approximated problem into a standard form of conic programming,

which is more amenable to the dedicated commercial solvers.

- Step 4: Developing an algorithm to iteratively solve the sequence of the convex approxi-

mated problems and update the introduced parameters in Step 2 until convergence

- Step 5: Deriving the computational complexity analysis for each developed algorithm.
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2.1 Introduction

Network densification is becoming one of the architectural shift towards the emerging 5G wire-

less networks to support the ever-increasing needs of data and services from users (Bhushan et

al., 2014; Andrews et al., 2014). By densely deploying more low-power small cells in multi-tier

HCNs (Ghosh et al., 2012), the operators are able to deliver seamless coverage to the cell-edge

users and enhance the area spectral efficiency. However, since data destined to the local users

is often received from the core network through backhaul transmissions, this also means that a

denser backhaul connection establishment with the core network is required.

Conventionally, small cell networks (SCNs) rely on fast and reliable fiber links to establish the

transmissions with the backhaul center. However, for SCNs densification, a fiber link solution

may not be a cost-effective alternative. Thus, a novel architecture of wireless backhaul network

which concurrently accounts for cost saving and convenient installation has emerged. Wireless

backhaul (WB) technology (Ge et al., 2014; Hur et al., 2013b) is introduced as a viable solution

that reuses available spectrum to communicate backhaul data via the wireless X2 interface. By

replacing (or coexisting with) the fiber connection to exchange backhaul data, the cellular op-

erators can rely on WB technology to reduce the installation cost and overcome the difficulties

of backhaul deployment at some rural areas. Although providing a promising cost-effective
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alternative, WB communications (WBC) must guarantee the high speed, long range and reli-

able backhaul transmission requirements under a low latency constraint. Furthermore, WBC

needs to share the available spectrum and power resources with the forward communication.

Thus, efficient resource allocation becomes a challenging task (Zhang et al., 2014; Zhang et

al., 2015; Zhang et al., 2015).

2.1.1 Related Work

Multiuser multiple-input multiple-output (MU-MIMO) has emerged in wireless cellular net-

works as it exploits both the advantages of MIMO and MU diversity gains. In MU-MIMO

environment, establishing WBC concurrently with existing wireless access communication

(WAC) is simply equivalent to introducing more users with simultaneous transmissions into

the network. In contrast, these WB nodes act as special users that are required to attain suffi-

ciently high data rates to support their access links. It is worth to note that integrating multiple

antennas and activating the WBC and WAC simultaneously on the same radio resource makes

the resource management more complicated. In fact, an appropriate radio resource allocation

(such as power, frequency, time, and antennas) plays a crucial role in enhancing the wireless

network performance. This has been indeed an active area of research over the last decade. In

particular, numerous resource allocation problems for the MU single-cell MIMO systems have

been investigated considering various design objectives such as power minimization (Rashid-

Farrokhi et al., 1998b; Dahrouj & Yu, 2010; Tran et al., 2014), sum-rate maximization (Tran

et al., 2012), and utility optimization (Liu et al., 2011b). The early work in (Rashid-Farrokhi

et al., 1998b) addresses the problem of uplink (UL) power minimization. The authors em-

ployed the Foschini-Miljanic power control protocol to devise an iterative receive beamform-

ing and transmit power update. Dahrouj & Yu (2010) revisited the same problem on the UL

and downlink (DL) and derived a different algorithm based on the DL–UL duality relationship.

Moving to the problem of maximizing the network sum-rate, the authors in (Tran et al., 2012)

developed an efficient algorithm based on the successive convex approximation combined with

second order cone programming (SOCP), which is numerically shown to quickly converge to
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the optimal solution. A very good survey of various network utility optimization problems is

reported in (Liu et al., 2011b), where each problem is conducted with complexity analysis and

efficient algorithm.

Communicating backhaul data on wireless link was first introduced in (Viswanathan & Mukher-

jee, 2006; Cao et al., 2007). In these works, design criteria pertaining to medium access control

(MAC) layer are taken into account for the optimal system design. In (Viswanathan & Mukher-

jee, 2006), a linear optimization framework is proposed for the optimum routing and scheduling

with the objective of throughput maximization in a wireless mesh network. Whereas in (Cao

et al., 2007), a cross-layer design is considered for multi-hop wireless backhaul networks. Re-

cently, the concept of WBC applying to HCNs is revisited in the deployment of small cells. To

leverage the potential of WBC in multi-tier cellular networks, the work in (Sanguinetti et al.,

2015) proposed the reverse time division duplexing (RTDD) model to accommodate transmis-

sions of different tiers in each time slot reversely where in each time slot WBC and WAC are

split into two orthogonal resource blocks (RBs) to exchange data. Based on RTDD model,

Wang et al. (2016) considers the joint bandwidth allocation and user association that maxi-

mizes the achievable DL sum rate of small cell when the macro base station is equipped with a

large antenna number (massive MIMO). In (Zhao et al., 2015), the authors studied the admis-

sion control of small cell access points (SAPs) in order to permit WB to serve as many SAPs

as possible while guaranteeing predetermined quality of service (QoS) rates. Apart from these

works, in (Thomsen et al., 2014; Phan et al., 2015), the authors introduced the idea of wireless

backhaul via the framework of relay and network coding.

2.1.2 Contributions

In this paper, we propose a novel interference management based on RTDD and orthogonal

spectrum splitting for the WB HCNs that caters to both UL and DL transmissions. In particu-

lar, WBC between multi-antenna MBS and single antenna SAPs are enabled among the con-

ventional WAC of MBS-MUEs and SAPs-SUEs. In order to share available spectrum resource

and mitigate cross-tier interference, we propose to arrange the WBC and WAC according to the
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setting of RTDD and spectrum splitting as in Fig. 2.2. Unlike the related work in (Wang et al.,

2016), our work realizes that the achievable rate of UL and DL transmissions are coupled under

the proposed RTDD interference management to further consider the joint design of transmit

beamforming, power allocation and spectrum splitting factors that takes into account both UL

and DL transmissions. The contributions and novelties of this paper are summarized as follow:

- We formulate a novel problem of maximizing the achievable sum rate of small cells on both

UL and DL. We consider two distinguished levels of bandwidth partition located at two

consecutive time slots to reflect the coupling factor between UL and DL transmissions in

designing the system parameter.

- The formulated problem is non-convex. To solve it optimally, we first apply the Branch-and-

Bound exhaustive search algorithm to find the global optimal solution. Then, we propose

a low complexity efficient iterative joint beamforming and resource allocation optimization

(JBRAO) algorithm. Specifically, we transform the original problem into a tractable form

and invoke the framework of sequential parametric convex approximation (SPCA) in (Beck

et al., 2010) to approximate the original non-convex problem by its lower bound concave

problem.

- We study the network performance in the presence of imperfect channel state information

(CSI). In particular, we formulate a robust optimization problem in which the proposed low

complexity algorithm can be employed to achieve its solution.

- The approximation of the optimization problem naturally leads to the set of second order

cone (SOC) and general exponential cone constraints. Solving the convex exponential cone

is often more complicated and requires modern convex programming solver to achieve the

results. Motivated by the perspective of SOCP approximation in (Ben-Tal & Nemirovski,

2001a), we arrive at a novel approach that can approximate the problems with general ex-

ponential cone constraints into a form that only involved with SOC constraints.

The rest of this chapter is organized as follows. Section 2.2 introduces the system model

and formulates the optimization problem. Section 2.3 and 2.4 develop a Branch-and-Bound

algorithm and a low complexity algorithm based on SPCA to solve the formulated optimization
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problem. In Section 2.5, we revisit the convex approximated problem to transform general

exponential cone constraint into SOC form. Section 2.6 presents our numerical results and

discussions. Finally, the concluding remarks of the chapter are given in Section 2.7.

2.2 System Model

2.2.1 Spatial model

Consider a two-tier HCN consisting of a MBS in the macrocell tier and F SAPs in the small

cell tier as shown in Fig. 2.1. The MBS is equipped with N antennas to communicate with M

macrocell users (MUEs) and SAPs. Each SAP and user is equipped with only single antenna.

For simplicity, we assume that each SAP serves only one SUE. The general case of multiple

SUEs in one small cell can be extended by following the same framework. In this model,

besides the transmissions between the pair of MBS-and-MUE and SAP-and-SUE, we further

consider the operation of WBC of the SAPs on the UL and DL to communicate with the

MBS, where the SAPs are allowed to transmit and receive backhaul data concurrently with

the macrocell on the same spectrum. It is worth to note that this spectrum is often available

for conventional communications, which is referred to as WAC for convenience. Therefore,

the communications in our model are categorized into: WBC between the SAP-and-MBS and

WAC between the MBS(or SAP)-and-MUE (or SUE), respectively.

2.2.2 Reverse time division duplex (RTDD)

In this model, we assume that the system exploits the channel reciprocity property, where the

channel condition on the UL and DL time slot is the same within a coherence time. Thus, to

facilitate the CSI estimate acquisition, we consider the network operating in the TDD mode,

where the channel gain can be estimated via orthogonal pilot transmissions over the time do-

main(Tse & Viswanath, 2005). Recently, some modified versions of TDD, namely RTDD

(Fig. 2.2), studied in the context of (Hoydis et al., 2013) and (Sanguinetti et al., 2015), are

considered as a novel option to accommodate WBC in the two-tier HCNs. In particular, (Hoy-
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dis et al., 2013) recalibrates the setting of TDD system to reverse the UL/DL time slot in two

tiers so that when the MBS transmits its signals to the MUEs on the DL, each SUE transmits

its signal to its serving SAP on the UL. A similar transmission protocol applies to the UL of

the macrocell and DL of the small cell. However, when WBC coexists with macrocell and

small cell transmissions as in (Sanguinetti et al., 2015), assuming in-band half-duplex SAPs,

an additional resource dimension such as frequency should be taken into account to avoid the

self-interference arising at the SAPs.

Figure 2.1 Two-tier HCNs with wireless backhaul communications.

2.2.3 Signal Model

We assume the channel is flat over the spectrum and time-invariant within the coherence time

Tc where Tc is much larger than the duration of two consecutive time slots. Therefore, we only

consider the performance of the network in two consecutive time slots, named as, UL and DL

time slots. For simplicity, we denote the duration of the DL time slot Tαd as the period which
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accounts for macrocell DL and small cell UL; and the duration of the UL time slot Tαu as the

period which accounts for macrocell UL and small cell DL transmissions.

UL DL UL DL UL DL

UL DL UL DLDL UL

Macrocell

Small cell

UL: SAPs and 

MUEs transmit to 

MBS

DL: MBS transmits 

to 

SAPs and MUEs
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to SUEs UL: SUEs transmit 

to SAPs

uWα⎡ ⎤
⎢ ⎥

( )1 u Wα⎢ ⎥−
⎣ ⎦

dWα⎡ ⎤
⎢ ⎥

( )1 d Wα⎢ ⎥−
⎣ ⎦

uTα dTα

Figure 2.2 Two-tier HCNs with WBC and RTDD setting.

2.2.3.1 Macrocell DL - Small Cell UL

This subsection considers the time slot dedicated for macrocell DL and small cell UL trans-

missions, i.e., Tαd . The spectrum is assumed to be divided into W resource blocks (RBs) of 1

Hz each. The W RBs are split into two parts with the splitting factor of αd , where αd takes

some real value between 0 and 1 so that both αdW and (1−αd)W should take some integer

values from the available W RBs. On αdW RBs, the MBS transmits to its MUEs and the SAPs

via WAC and WBC, respectively, while in the remaining (1−αd)W RBs, each SUE simulta-

neously transmits data to its serving SAP. By bundling the set of SAP and MUE indices into

one group, denoted as G = {F ,M } = {{1, . . . ,F} ,{F +1, . . . ,F +M}} where SAP indices
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are from 1, . . . ,F and MUE indices are from F +1, . . . ,F +M, the received signal, within Tαd

in αdW RBs, at the jth receiver is (Tse & Viswanath, 2005):

y j = vH
j h jx j +

F+M

∑
k 
= j

vH
k h jxk +n j, (2.1)

where h j ∈ C
N×1 is the channel state vector which includes fading gain and pathloss compo-

nents and v j ∈ C
N×1 is the beamforming vector from the MBS to the jth receiver. x j is the

message intended for the jth receiver with unit average power, i.e., E
{

x jx∗j
}
= 1. n j is the

additive white Gaussian noise (AWGN) vector at the jth receiver. The fading gain and noise

are modeled as independent and identically distributed (i.i.d.) circularly-symmetric complex

Gaussian random variables from the distribution C N (0,1) and C N (0,Nαd), respectively,

where Nαd = αdWσ0 is the noise power over the allocated RBs and σ0 is the noise power

spectral density (PSD). Treating interference as noise, the achievable rate at the jth receiver is

given by Rd
j = αdW log(1+Γd

j ) where

Γd
j =

∣∣∣vH
j h j

∣∣∣2
F+M

∑
k 
= j

∣∣vH
k h j

∣∣2 +αdWσ0

, (2.2)

where we denote the set of transmit beamforming at the MBS as v �
[
vT

1 , . . . ,v
T
F+M

]T
for later

usages. Note that in this paper, we compute the formula of rate in nats/s/Hz, so that the base of

all the log(.) function is e. On the other hand, in the other (1−αd)W RBs, each SUE in the

ith small cell transmits data to its intended SAP with power pu
i . By denoting hu

i j as the scalar

channel coefficient from the ith SAP to the SUE in the jth small cell which includes fading

gain and pathloss components and pu =
[
pu

1, . . . , pu
F
]T

as the set of transmit powers of SUEs,

we can write the achievable rate at ith SAP on the UL as ru
i = (1−αd)W log(1+ γu

i ), where

γu
i =

pu
i |hu

ii|2

∑
j 
=i

pu
j

∣∣∣hu
i j

∣∣∣2 +(1−αd)Wσ0

. (2.3)
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2.2.3.2 Macrocell UL - Small Cell DL

Similarly, this subsection considers the time slot dedicated for macrocell UL and small cell DL.

In Tαu , W RBs are divided into two parts by a factor αu, where in αuW RBs, the MUEs and

SAPs transmit signals to the MBS through WAC and WBC, respectively, while in (1−αu)W

RBs, each SAP simultaneously transmits its signal to its SUE. Similar to the previous scenario,

it is also important to constrain αu to take some real value between 0 and 1 so that αuW and

(1−αu)W can take some integer values from the W RBs. By applying the above notation

for the set of indices at the SAPs and MUEs to denote the set of transmit power of the SAPs

and MUEs as ρ = [ρ1, . . . ,ρF ,ρF+1, . . . ,ρF+M]T , we can write the received signal at the MBS

within Tαu period in αuW RBs as

y =
F+M

∑
j=1

h j
√ρ js j +n, (2.4)

where n ∈ C
N×1 is the AWGN vector at the MBS with distribution C N (0,αuWσ0I), where I

is the N ×N identity matrix. s j is the message from the MUE or SAP with unit average power,

i.e., E
{

s js∗j
}
= 1. The minimum mean square error (MMSE) receive beamforming w j =

d j
(
∑k 
= j ρkhkhH

k +αuWσ0I
)−1 h j is applied at the MBS to detect the transmitted signal from

the jth SAPs and MUEs, where d j is the normalized coefficient. Again, by treating interference

as noise, the achievable rate at the jth user can be presented as in (Tse & Viswanath, 2005)

Ru
j = αuW log(1+Γu

j) = αuW log(1+ρ jhH
j Σ−1

j h j), (2.5)

where Σ j = ∑F+M
k 
= j ρkhkhH

k +αuWσ0I is the covariance matrix, with j ∈ G . On the other hand,

in the other (1−αu)W RBs, each ith SAP transmits data to its intended SUE in the ith small

cell with power pd
i . By denoting hd

i j as the channel from the jth SAP to the SUE in the ith small

cell and pd =
[
pd

1, . . . , pd
F
]T

as the set of transmit powers of the SAPs, the achievable rate at
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each small cell on the DL can be written as rd
i = (1−αu)W log

(
1+ γd

i
)

where

γd
i =

pd
i

∣∣hd
ii

∣∣2
∑
j 
=i

pd
j

∣∣∣hd
i j

∣∣∣2 +(1−αu)Wσ0

. (2.6)

2.2.4 Resource allocation optimization problem

In conventional HCNs, it is always of great interest to obtain the optimal achievable rate of the

small cell with some protection on the macrocell performance, e.g., MUE minimum rate QoS

(Ngo et al., 2014a). However, with WB, the required access rate to guarantee a reliable and

high quality transmission at each SAP should be upper bounded by the backhaul rate. This

applies to both the UL and DL transmissions. Thus, we are interested in formulating a problem

to jointly optimize the beamforming, power allocation together with fraction of bandwidth

usage αd and αu to maximize the sum achievable rate at the small cell on the UL and DL.

Denoting p =
[
(pu)T ,

(
pd)T

]T
as the set of transmit power at the SUEs and SAPs in the WAC

and α =
[
αu,αd]T

, the optimization problem can be casted as:

max
α,v,ρ,p

F

∑
i=1

(
rd
i + ru

i

)
(2.7a)

s.t. Ro
i ≥ ro

i ,∀i ∈ F , (2.7b)

Ro
j ≥ ro

min,∀ j ∈ M , (2.7c)

0 ≤ ρn ≤ ρ̄ f ,∀n ∈ G ; 0 ≤ po
i ≤ p̄o,∀i ∈ F , (2.7d)

F+M

∑
k=1

‖vk‖2 ≤ Pm, (2.7e)

αoW,(1−αo)W ∈ Z
+, (2.7f)

1 ≤ αoW ≤W −1; ∀o ∈ A = {d,u} , (2.7g)

where the objective function (2.7a) is the sum achievable rate at the small cell on the DL and

UL. Constraint (2.7b) means that the WB transmission rate from the MBS to the ith SAP on
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the DL should be larger than the WA data transmission rate from the ith SAP to its intended

SUE. The same rule applies to the WB and WA rate on the UL. With (2.7a) and (2.7b), the rate

at each ith small cell should be regulated by the smaller value between the rate of the WBC

and WAC at that small cell. Note that the relationship between the WB and WA rates in (2.7b)

is important since the WBC must rely on an appropriate resource allocation solution to attain

sufficient rate to support the corresponding WAC. Intuitively, if we consider the maximization

of WA small cell sum rate on the UL and DL without (2.7b), the achieved WA rate might exceed

the WB rate, which practically violates their relationship. On the other hand, the achievable

rates at the MUEs via WAC are regulated by (2.7c) to be larger than some fixed minimum

rate requirements ro
min. Constraints (2.7d)–(2.7e) account for the maximum power at the SAPs,

MUEs, SUEs, and MBS. (2.7f) requires that the RB assignment is a positive integer number.

In (2.7g), due to constraint (2.7c), there must be at least 1 RB allocated for the MBS-to-MUEs

transmissions to ensure the QoS requirement, which subsequently implies that the WBC and

WAC of the small cell on the UL and DL must have at least 1 RB. Since αoW,(1−αo)W ≥ 1,

we have αoW,(1−αo)W ≤ W − 1. The difference between (2.7) and the conventional MU-

MISO problem lies in (2.7b) where the lower bound of WB rate of each SAP is not fixed as in

(2.7c). A summary of the optimization variables is presented in Table 2.1.

It is easy to check that (2.7a) is a function of both α and p which can be decoupled. However,

these variables are then coupled in (2.7b), which make it challenging to be decomposed into

two independent problems, and thus admits a joint approach to solve. Solving (2.7) is difficult

due to the non-concave objective function in (2.7a) and the non-convex constraints (2.7b) and

(2.7c). (2.7) is also difficult owing to the integer constraint (2.7f). To solve this problem,

we first employ multiple equivalent transformations on (2.7) to turn it into a more tractable

form. Then, we apply a Branch-and-Bound algorithm and propose a low complexity iterative

algorithm to arrive at the global and local optimal solutions, respectively.
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2.3 Global Optimal Solution

In this subsection, we solve (2.7) optimally using Branch-and-Bound (BnB) exhaustive search

algorithm. First, we proceed to equivalently transform (2.7) into the following form

max
α,v,ρ,p,χ≥0

∑
o∈A

F

∑
i=1

(
1−αA \o

)
χo

i (2.8a)

s.t. Γo
i ≥ exp

⎛
⎝

(
1−αA \o

)
χo

i

αo

⎞
⎠−1,∀i ∈ F , (2.8b)

Γo
i ≥ exp

(
romin

αo

)
−1,∀i ∈ M , (2.8c)

γo
i = eχo

i −1,∀i ∈ F ; (2.7d)− (2.7g), (2.8d)

where χ =
[
χu

1 , . . . ,χ
u
F ,χ

d
1 , . . . ,χ

d
F
]T

is the set of newly introduced variables and χo
i ≥ 0,∀i ∈

F ,o ∈ A . The equivalence between (2.8) and (2.7) can be seen by replacing χo
i with γo

i ,∀i ∈
F from (2.8d). By observing (2.8), we note two important properties. First, when each of

the term χo
i or 1−αo,∀i,o increases within its feasible domain, the objective function of (2.8)

achieves a higher value. Second, when all of χo
i and αo,∀i,o are fixed, (2.8) becomes the

feasibility checking problem of finding the solution of {v,ρ,p} that satisfies (2.8b)–(2.8d).

Thus, we can employ the concept of monotonic optimization (Tuy et al., 2005) to customize

the BnB based algorithm in order to optimally solve (2.8). Let us denote Ω =
[
χT , α̃T ]T

as

the set of variables χ and 1−αo,∀o ∈ A . By following the definitions and facts in (Tervo

et al., 2015b, Section III-B, pp. 5577), we define C =
{

Ω ∈ R
F+2|(2.8b)− (2.8d)

}
as the

normal compact set and D =
[
Ω,Ω̄

]
as the box that contains all the feasible solutions related

to Ω in (2.8). Obviously, the lower bound is given by Ω = [0, . . . ,0,ε,ε]T , where ε = 1/W .

To compute the upper bound, we can simply consider that χo
i ≤ χ̄o

i = log

(
1+

|ho
ii|2 po

i
εWσ0

)
and

1−αo ≤ 1−ε,∀i,o. Thus, the upper bound is given by Ω̄ =
[
χ̄d

1 , . . . , χ̄
u
F ,1− ε,1− ε

]T
. Given

the value of Ω ∈ D , the problem of checking whether Ω ∈ C or not becomes the feasibility
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checking problem, which can be decoupled into two sub-problems as follow

(DL) :find
{

v,pd|(2.8b)− (2.8d),o = d
}

(UL) :find{ρ,pu|(2.8b)− (2.8d),o = u} .

Problem (DL) can be easily transformed into SOCP problem as in (Liu et al., 2011b), which

can be easily solved optimally. To solve problem (UL), we follow the framework in (Rashid-

Farrokhi et al., 1998b) to check the feasibility of problem (UL) with the given Ω. In partic-

ular, we can formulate the problem of power minimization as the work in (Rashid-Farrokhi

et al., 1998b) and apply the similar algorithm to achieve the optimal solution. Then, we

can compare the achieved solution with constraint (2.7d) to check for the feasibility of prob-

lem (UL). Based on the above analysis, the reformulated problem (2.8) can be rewritten as

max
{

∑o∈A ∑F
i=1

(
1−αA \o

)
χo

i |Ω ∈ C ⊂ D
}
. To solve (2.8), we first check whether Ω is

feasible or not. If feasible, we run the BnB based algorithm that recursively branches the box

D into smaller boxes, checks the feasibility of each new box, updates the new upper and lower

bounds by the Box Reduction—Bound Computation process and disposes the boxes that do not

contain the optimal solution. Unlike the case in (Tervo et al., 2015b, Section III-B), our formu-

lated boxes contain the variable 1−αo,∀o ∈ A which only takes discrete value that satisfies

the integer condition (2.7f). Therefore, we apply the modified box branching techniques as fol-

lows. Suppose that at the nth iteration, one of the boxes associated with the largest upper bound

is selected to branch. The box is divided into two smaller boxes by a bisection rule that parti-

tions along the longest edge of the box. Assume that j is the index of the longest edge of the

chosen box D =
[
Ω,Ω̄

]
. If j is the index of a continuous variable, i.e., not 1−αo, the two new

boxes are computed as D (1) =
[
Ω,Ω̄− e j

(
Ω̄ j −Ω j

)
/2

]
and D (2) =

[
Ω+ e j

(
Ω̄ j −Ω j

)
/2,Ω̄

]
,

where e j represents a (2F +2)×1 vector that contains 1 at the jth element and 0 everywhere.

If j is the index of a discrete variable such as 1−αo, we first compute ΔΩ =
�W((Ω̄ j−Ω j)/2)�

W .

Then, the two new boxes are computed as D (1) =
[
Ω,Ω̄− e jΔΩ

]
and D (2) =

[
Ω+ e jΔΩ,Ω̄

]
.

According to (Tuy et al., 2005), the BnB algorithm exhaustively searches for all possible so-

lutions and terminates after many iterations when the difference between the upper and lower
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bounds is arbitrary small and the global optimal solution is determined. The details of the BnB

algorithm are similar to Algorithm 1 in (Tervo et al., 2015b, Section III-B), where explicit de-

scriptions of the protocol of Box Branching, Box Reduction, Pruning and Bound Computation

are presented.

2.4 Low Complexity Iterative Algorithm

The BnB algorithm is basically an exhaustive search method, which requires very high com-

putational cost to yield the global optimal solution. Typically, this solution approach is not

practical and only helpful for benchmark evaluation. In this section, we first propose to re-

move the integer constraints in (2.7f) and to solve the relaxed problem of (2.7). Then, we aim

to develop a low complexity efficient algorithm to solve this new problem based on multiple

equivalent transformations and convex approximation methods to achieve the solution. The

solution obtained from this algorithm is then refined by choosing α̃o close to αo that satisfies

α̃oW = �αoW� and (1− α̃o)W = �(1−αo)W�. Note that α̃o is a feasible solution of (2.7)

which also satisfies constraint (2.7b) 1.

2.4.1 Equivalent transformations

We first deal with the non-concave objective function of the relaxation of (2.7). By introducing

a set of slack variables qu
i ,q

d
i ≥ 0, where i ∈ F , we can simply reformulate the problem as

max
α,v,q≥0

ρ,p

F

∑
i=1

(
Wqd

i +Wqu
i

)
(2.9a)

s.t. γo
i ≥ eqo

i /(1−αA \o)−1,∀i ∈ F , (2.9b)

(2.7b)− (2.7e), (2.7g),

1 The feasibility of α̃o that satisfies (2.7b) after applying the rounding function can be checked

by observing two monotonically increasing functions f1 (x) = x log
(

1+ a1
b1+x

)
and f2 (y) =

y log
(

1+ a2
b2+y

)
. If ∃(x̂, ŷ) : f1 (x̂)≥ f2 (ŷ), then we have f1 (�x̂�)≥ f1 (x̂)≥ f2 (ŷ)≥ f2 (�ŷ�).
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where q =
[
qu

1, . . . ,q
u
F ,q

d
1, . . . ,q

d
F
]T

is a vector consisting of the newly introduced variables.

Indeed, if we multiply the term
(

1−αA \o
)

on both sides of (2.9b), the right side of (2.9b) is a

convex function with respect to variables qo
i and αA \o. However, the left side of (2.9b) is still

a non-concave function. To ease later transformation tractability, we can further decompose

this constraint into two new inequalities with the help of another set of new slack variables

t =
[
tu
1 , . . . , t

u
F , t

d
1 , . . . , t

d
F
]T

, where tu
i , t

d
i ≥ 0,∀i ∈ F , as

(
1−αA \o

)
γo

i ≥ to
i , (2.10)(

1−αA \o
)(

eqo
i /(1−αA \o)−1

)
≤ to

i , (2.11)

∀i∈F . Note that the objective function now becomes linear with respect to the variables q and

(2.11) admits the form of exponential cone programming, which is a convex constraint. We ob-

serve that the relaxation of (2.7) and (2.9) are equivalent since at optimality, all the constraints

in (2.10), (2.11) are active. The proof of equivalence is briefly summarized in Appendix 1.1.

Constraint (2.10) can be made more tractable by decomposing it into the following inequalities:

(
1−αA \o

)
po

i |hii|2 ≥ to
i zo

i , (2.12a)

∑
j 
=i

po
j
∣∣hi j

∣∣2 +(
1−αA \o

)
Wσ0 ≤ zo

i , (2.12b)

where zd
i ≥ 0 and zu

i ≥ 0 for i ∈ F are the newly introduced variables, which can be packed

into a vector z =
[
zd

1, . . . ,z
d
F ,z

u
1, . . . ,z

u
F
]T

for notational convenience. The equivalence between

these transformations follow the same line of proof as shown in Appendix 1.2. Next, we turn

our attention to another non-convex constraint (2.7b). In particular, we rewrite each inequality

in (2.7b) into a set of three inequalities as

αoao
i ≥

(
1−αA \o

)
bo

i , (2.13a)

ao
i ≤ log(1+Γo

i ) , (2.13b)

bo
i ≥ log(1+ γo

i ) , (2.13c)
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where ao
i ≥ 0, bo

i ≥ 0 are the newly introduced variables which are, for brevity, denoted by a

set of variables a =
[
ad

1, . . . ,a
d
F ,a

u
1, . . . ,a

u
F
]T

, b =
[
bd

1, . . . ,b
d
F ,b

u
1, . . . ,b

u
F
]T

for later usage. The

proof for the equivalence of these transformations in (2.13) is presented in Appendix 1.3.

At this point, we can reformulate (2.9) into a new equivalent form as in (2.14) given at the

end of this subsection, where the constraints in (2.14f) and (2.14g) are the results from the

equivalent decomposition from (2.13b) and (2.7c) with o = d. Note that in (2.14), we have

introduced a set of new variables ν = [ν1, . . . ,νF+M]T with additional constraints (2.14f) and

(2.14g). The equivalence between these can be proved by following similar steps used in

the proof in Appendix 1. To leverage the presentation of all the constraints in (2.13b) and

(2.7c) in a unified manner, we introduce an additional constraint (2.14k) to exhibit the sim-

ilarity between (2.13b) and (2.7c). Similarly, we rewrite (2.13b) and (2.7c) with o = u by

(2.14i) and (2.14j), respectively, where ηi,∀i ∈ F are the newly introduced variables and

η = [η1, . . . ,ηF ,ηF+1, . . . ,ηF+M]T . The reason for introducing η will be shown in the next

subsection as it is helpful to reveal the non-convex property of constraint (2.14i) so that the

convex approximation technique can be appropriately applied.

max
α,q≥0

t≥0,z>0
a≥0,b≥0
v,ν ,ρ,p,η

F

∑
i=1

(
Wqu

i +Wqd
i

)
(2.14a)

s.t.
(

1−αA \o
)

po
i |hii|2 ≥ to

i zo
i ,∀i ∈ F , (2.14b)

∑
j 
=i

po
j
∣∣ho

i j
∣∣2 +(

1−αA \o
)

Wσ0 ≤ zo
i ,∀i ∈ F , (2.14c)

(
1−αA \o

)(
eqo

i /(1−αA \o)−1
)
≤ to

i ,∀i ∈ F , (2.14d)

αoao
i ≥

(
1−αA \o

)
bo

i ,∀i ∈ F , (2.14e)∣∣vH
l hl

∣∣2 /νl ≥ ead
l −1,∀l ∈ G , (2.14f)

∑
k 
=i

∣∣vH
k hl

∣∣2 +αoWσ0 ≤ νl,∀l ∈ G , (2.14g)

bo
i ≥ log(1+ γo

i ) ,∀i ∈ F , (2.14h)

η2
i hH

l Σ−1
l hi ≥ eau

l −1,∀l ∈ G, (2.14i)
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ρl ≥ η2
l ,∀l ∈ G , (2.14j)

ao
j ≥ ro

min/(Wαo),∀ j ∈ M , (2.14k)

(2.7d), (2.7e), (2.7g), (2.14l)

2.4.2 Problem approximations

We note that the transformed optimization problem (2.14) is still non-convex due to the non-

convex constraints (2.14b), (2.14e), (2.14f), (2.14h), (2.14i). To deal with these constraints, we

present various convex approximation methods to construct an approximated convex problem

which can be used to develop a low complexity iterative algorithm. In addition, we rely on the

result in (Marks & Wright) to associate the three conditions which can be employed to verify

the application of the proposed convex approximation. The proposed convex approximation

methods should follow these three conditions so that the developed iterative algorithm based on

these approximation will converge to the result with a solution that satisfies the KKT conditions

of problem (2.7). First, note that (2.14b), (2.14e) admit the same non-convex constraint form,

which can be simply expressed as xy ≥ uv. It is easy to see that the left and right sides of

this inequality are neither convex nor concave functions with respect to all variables. To deal

with this obstacle, we first employ the upper bound convex approximation of the right side

by the following inequality as uv ≤ ξ (n)

2 u2 + 1
2ξ (n) v

2, for every ξ (n) > 0 (Beck et al., 2010).

It is straightforward to show that uv = ξ (n)

2 u2 + 1
2ξ (n) v

2 when ξ (n) = v/u. In addition, at this

value of ξ (n), their first derivative is also equal, e.g., ∇(uv) = ∇
(

ξ (n)

2 u2 + 1
2ξ (n) v

2
)

. Thus, this

convex approximation satisfies the three conditions in (Marks & Wright). By replacing the

right side of xy ≥ uv with its upper bound convex approximation
ξ (n)

2 u2 + 1
2ξ (n) v

2 and rewriting

xy = (x+y)2−(x−y)2

4 , we can write the approximated convex constraint in the SOC form as

x+ y
2

≥
∥∥∥∥∥∥
√

ξ (n)

2
u,

√
1

2ξ (n)
v,

x− y
2

∥∥∥∥∥∥ . (2.15)
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Next, we consider the non-convex constraint (2.14f). Observe that the right side of (2.14f) is

convex with respect to ad
l and the left side is jointly convex with respect to vl and νl . Thus,

we proceed to approximate the functions on the left side of these inequalities by their first-

order approximation, denoted as F
(

hl,vl,νl,v
(n)
l ,ν(n)

l

)
around the point v(n)l ,ν(n)

l for l ∈ G as

follows:

F
(

hl,vl,νl,v
(n)
l ,ν(n)

l

)
=

2R
(
(v(n)l )HHlvl

)
ν(n)

l

− (v(n)l )HHlv
(n)
l

(ν(n)
l )2

νl, (2.16)

where Hl = hlhH
l . Now, we turn our attention to the non-convex constraints (2.14h). By simple

algebraic manipulation, these constraints can be rewritten as

bo
i + log

(
F

∑
j 
=i

po
j
∣∣ho

i j
∣∣2 +(

1−αA \o
)

Wσ0

)
≥ log

(
F

∑
j=1

po
j
∣∣ho

i j
∣∣2 +(

1−αA \o
)

Wσ0

)
,

(2.17)

where the left side and the right side of these inequalities are concave functions of the in-

volved variables. By following the same framework in (Kha et al., 2012), we approximate the

function on the right side of these inequalities by their first-order approximation, denoted as

Go
i

(
po,αA \o,po(n),αA \o(n)

)
around the point po(n),αA \o(n) as follow

Go
i

(
po,αA \o,po(n),αA \o(n)

)
= log

(
go

i

(
po(n),αA \o(n)

))
+

gd
i

(
po,αA \o

)
go

i
(
po(n),αA \o(n)

) , (2.18)

where go
i

(
po,αA \o

)
= ∑F

j=1 po
j

∣∣∣ho
i j

∣∣∣2 + (
1−αA \o

)
Wσ0. Finally, we focus on the non-

convex constraints (2.14i), which is equivalent to eau
i − 1−η2

i hH
i Σ−1

i hi ≤ 0. Note that func-

tion h(h,ηi,ρ∼i) =−η2
i hH

i Σ−1
i hi is a jointly concave function of the corresponding variables

(Boyd & Vandenberghe, 2004), where ρ∼i denote the set of transmit power at the SAPs and

MUEs to the MBS on the UL, except for the ith user. Thus, the convex upper bound of the term

h(h,ηi,ρ∼i) in (2.14i) can be found by its first-order approximation around the point η(n)
i ,ρ(n)

∼i

as follow

h(h,ηi,ρ∼i)≤ H
(

h,ηi,ρ∼i,η
(n)
i ,ρ(n)

∼i

)
(2.19)
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= h
(

η(n)
i ,ρ(n)

∼i

)
−2η(n)

i hH
i

(
Σ(n)

i

)−1
hi

(
ηi −η(n)

i

)
+Tr

[(
η(n)

i

)2(
Σ(n)

i

)−1
hihH

i

(
Σ(n)

i

)−1(
Σi −Σ(n)

i

)]
(2.20)

It can be easily verified that the approximation employed in (2.16), (2.18) and (2.20) also satisfy

the three conditions shown in (Marks & Wright) by following the same steps to verify the

convex approximation on xy ≥ uv. By applying the approximations (2.15), (2.16), (2.18) and

(2.20) into their corresponding non-convex constraints in (2.14), the problem in (2.7) can be

solved by iteratively solving the following approximated convex problem, which is formulated

at the n+1 index as

max
α,q≥0

t≥0,z>0
a≥0,b≥0
v,νρ ,p,η

F

∑
i=1

(
Wqu

i +Wqd
i

)
(2.21a)

s.t.

∥∥∥∥∥∥
√

ξ o(n)
i
2

to
i

|hii| ,
√

1

2ξ o(n)
i

zo
i

|hii| ,
1−αA \o − po

i
2

∥∥∥∥∥∥≤
(

1−αA \o
)
+ po

i

2
,∀i ∈ F , (2.21b)

∥∥∥∥∥∥
√

ψo(n)
i
2

(
1−αA \o

)
,

√
1

2ψo(n)
i

bo
i ,

αo −ao
i

2

∥∥∥∥∥∥≤ αo +ao
i

2
,∀i ∈ F , (2.21c)

F
(

hl,vl,νl,v
(n)
l ,ν(n)

l

)
≥ ead

l −1,∀l ∈ G , (2.21d)

bo
i + log

(
F

∑
j 
=i

po
j
∣∣ho

i j
∣∣2 +(

1−αA \o
)

Wσ0

)
≥

Go
i

(
po,1−αA \o,po(n),1−αA \o(n)

)
,∀i ∈ F , (2.21e)

H
(

h,ηl,ρ∼l,η
(n)
l ,ρ(n)

∼l

)
≤ 1− eau

l ,∀l ∈ G , (2.21f)

(2.14c), (2.14d), (2.14g), (2.14j), (2.14k), (2.7d), (2.7e), (2.7g). (2.21g)

Note that αd(n),αu(n),ξ o(n)
i ,ψo(n)

i , po(n)
i for i ∈ F ,o ∈ A and η(n)

l ,ρ(n)
l ,v(n)l ,ν(n)

l for l ∈ G are

not the variables of the optimization problem but the parameters that are iteratively updated by

the optimum solution after each iteration. We denote ξ (n) = [ξ d(n)
1 , . . . ,ξ d(n)

F ,ξ u(n)
1 , . . . ,ξ u(n)

F ]T ,

ψ(n) = [ψd(n)
1 , . . . ,ψd(n)

F ,ψu(n)
1 , . . . ,ψu(n)

F ]T , η(n) = [η(n)
1 , . . . ,η(n)

F ]T and ν(n) = [ν(n)
1 , . . . ,ν(n)

F+M]T
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for the sake of brevity. Thus, the pseudo code presents the JBRAO algorithm to solve the op-

timization problem is summarized in the Algorithm 1. We rely on the proof in (Venkatraman

et al., 2016a, Appendix A) to provide the proof that Algorithm 1 converges at the KKT solution

of (2.14). The detailed proof is omitted here.

Algorithm 1: Iterative JBRAO Algorithm

Initialize starting points of α(n),ξ (n),ψ(n),η(n),ρ(n),p(n),v(n),ν(n);

Set n := 0;

repeat
Solve the convex problem in (2.21) to achieve the optimal solution

α�,q�, t�,z�,a�,b�,v�,ν�,ρ�,p�,η�;

Set n := n+1;

Update α(n) = α�,p(n) = p�,η(n) = η�,ρ(n) = ρ�,v(n) = v�,ν(n) = ν�,ξ o(n)
i = zo�

i /to�
i ,

ψo(n)
i = bo�

i /(1−αA \o�) for i ∈ F ,o ∈ A ;

until Convergence

2.4.3 Imperfect channel state information (CSI)

In practice, due to time-varying channel conditions and user mobility, CSI knowledge is im-

perfect. This subsequently leads to a few difficulties in system design considering imperfect

CSI. At first sight, it is easy to see that we cannot in a straightforward manner apply the MMSE

receive beamforming vector with only the knowledge of the estimated CSI to achieve a closed-

form formula of the rate as in (2.5). More importantly, the solution of the optimization prob-

lem in (2.7) with the knowledge of estimated CSI might not lie in the feasible domain of the

problem with perfect CSI. This is because this “imperfect” solution may probably lead to the

violation of constraints (2.7b) and (2.7c). Motivated by these observations, we consider the

robust design of resource allocation in the case of errorneous CSI with the worst-case design

as in (Iserte et al., 2006; Jeong et al., 2011). In particular, the estimated channel values are

known with the estimation errors lying in some known size bounded sets. For example, the

estimated channel model can be given as in (Iserte et al., 2006): hi = ĥi + εh,∀i ∈ G and
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ho
i j = ĥo

i j + εho ,∀o ∈ A ,∀i, j ∈ F where ĥi, ĥo
i j are the estimated CSI and ‖εh‖2 ≤ δh and

|εho |2 ≤ δho represent the estimation error which lies in a bounded set defined by δh and δho ,

respectively. The robust optimization problem can be formulated as:

max
α,v,
ρ,p

max
|εho |2≤δho

F

∑
i=1

(
rdi + rui

)
(2.22a)

s.t. min
‖εh‖2≤δh

Ro
i ≥ max

|εho |2≤δho

roi ,∀i ∈ F , (2.22b)

min
‖εh‖2≤δh

Ro
j ≥ romin,∀ j ∈ M , (2.22c)

(2.7d)− (2.7g), (2.22d)

where in this problem, we only have the knowledge of estimated CSI, e.g., ĥi and ĥo
i j. For the

sake of simplicity and tractability, we assume the MRC receive beamforming, wi =
ĥi

‖ĥi‖ at the

MBS to maintain a tractable formula of UL rate. By following the same analysis in (Jeong

et al., 2011), we can write each term of (2.22b) and (2.22c) as in (2.23)–(2.25).

min
‖εh‖2≤δh

Rd
i = αdW × log

⎛
⎝1+

∣∣ĥH
i vi

∣∣2 −δh ‖vi‖2
2

∑ j 
=i

(∣∣ĥH
i v j

∣∣2 +δh
∥∥v j

∥∥2

2

)
+αdWσ0

⎞
⎠ (2.23)

min
‖εh‖2≤δh

Ru
i = αuW log

⎛
⎜⎜⎝1+

ρi

(∥∥ĥi
∥∥2 −δh

)
∑ j 
=i ρ j

( |ĥH
i ĥ j|2
‖ĥi‖2 +δh

)
+αuWσ0

⎞
⎟⎟⎠ (2.24)

max
|εho |2≤δho

roi =
(

1−αA \o
)

W log

⎛
⎜⎜⎝1+

(∣∣ĥo
ii

∣∣2 +δho

)
po

i

∑ j 
=i

(∣∣∣ĥo
i j

∣∣∣2 −δho

)
po

j +
(
1−αA \o

)
Wσ0

⎞
⎟⎟⎠ (2.25)

Towards this end, we follow the same steps of relaxation, transformation and approximation in

Section 2.4 to arrive at the approximated convex problem, in which a similar iterative algorithm

as Algorithm 1 can be applied.
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Table 2.1 Summary of optimization variables

Notation Used for problem Description
αd(αu) (2.8), (2.21) Spectrum splitting factor in the DL (and UL) time slot

ad(au) (2.21) Soft SE level on the DL (UL) from the MBS

bd(bu) (2.21) Soft SE level on the DL (UL) at the small cell via WAC

κ (2.28) Auxiliary variables for SOCP approximation

η (2.21) Auxiliary power variables to assist the extraction of (2.14i)

ρ (2.8), (2.21) UL transmit power from SAP and MUEs to MBS

pd(pu) (2.8), (2.21) DL (UL) transmit power from SAPs(SUEs) to SUEs(SAPs)

qd(qu) (2.21) Soft rate level at the small cells on the DL (UL) via WAC

td(tu) (2.21) Auxiliary variables to assist the extraction of (2.9b)

ν (2.21) Soft interference level on the DL from MBS to SAPs or MUEs

v (2.8), (2.21) DL beamforming vector from MBS to SAPs and MUEs

χ (2.8) Soft SE level at the small cells on the DL (UL) via WAC

zd(zu) (2.21) Soft interference level at the small cells on the DL (UL) via WAC

2.5 SOCP approximation of general exponential constraint

The problem formulation in (2.21) is categorized as a general nonlinear convex program (GNCP),

which in general can be solved efficiently within a polynomial time. When a GNCP contains

exponential cone constraints, its convexity can be recognized through the callback evaluation

process in MATLAB and thus can be solved by a convex solver such as MATLAB’s FMIN-

CON. However, this solver often requires high computational time compared to other standard

convex programs such as the SOCP. Therefore, this motivates us to approximate (2.21) into a

SOCP problem within a desired controlled accuracy since all constraints in (2.21) satisfy the

SOCP condition, except for (2.21d), (2.21e), (2.21f), (2.14d). By rewriting (2.21e) as

F

∑
j 
=i

po
j
∣∣h ji

∣∣2 +(
1−αA \o

)
Wσ0 ≥ eco

i , (2.26)

Go
i

(
po,1−αA \o,po(n),1−αA \o(n)

)
−bo

i ≤ co
i , (2.27)

we can observe that (2.21d), (2.21f), and (2.26) take the convex exponential cone constraint

form of y ≥ ex. Moreover, we also remark that (2.14d) contains a more general form of expo-

nential cone, which is y ≥ tex/t , where if t = 1, we obtain the special form y ≥ ex. Towards this

end, we extend the result in (Ben-Tal & Nemirovski, 2001a) to provide a replacement for the
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general exponential cone constraint by a set of newly introduced constraint, which is given by

the following system of inequalities as

κm+4 ≤ y,∥∥[2t + x/2m−1 t −κ1

]∥∥
2
≤ t +κ1,

‖[5t/3+ x/2m t −κ2]‖2 ≤ t +κ2,

‖[2κ1 t −κ3]‖2 ≤ t +κ3, (2.28)

19/72t +κ2 +1/24κ3 ≤ κ4,

‖[2κi−1 t −κi]‖2 ≤ t +κi, i = 5,6, . . . ,m+3,

‖[2κm+3 t −κm+4]‖2 ≤ t +κm+4,

where κi, i= 1, . . . ,m+4 are the newly introduced variables and m is the parameter that controls

the accuracy of the approximation. The proof for the derivation of (2.28) is given in Appendix

2. Interestingly, with t = 1, we arrive at the special case of y ≥ ex as in (Tervo et al., 2015b).

Here, for a given m, the system of constraints in (2.28) can approximate y ≥ tex/t to a desired

accuracy ε defined by m over a given interval u = x/t ∈ [0, ū]. From (Ben-Tal & Nemirovski,

2001a), when x/t ∈ [0, ū] and y ≥ tex/t , there exists {y,x, t,κ1, . . . ,κm+4} that satisfies (2.28).

In addition, if x/t ∈ [0, ū] and (x, t,y) can be extended by some κi, i = 1, . . . ,m+4 to a solution

of (2.28), then tex/t − ε ≤ y ≤ tex/t + ε .

Complexity analysis: We discuss the complexity of each proposed algorithm to solve (2.7)

in this section. For the BnB based exhaustive search algorithm, since the number of boxes

branched by the algorithm is unbounded, the complexity of this algorithm cannot be deter-

mined. On the other hand, it is well-known that both the GNCP and SOCP can solve a convex

problem within a polynomial time. Thus, we provide the worst-case per-iteration complexity

analysis of Algorithm 1 where the exponential cone constraint is applied to the approximation

(2.28), which is recognized as SOCP, by following the result in (Lobo et al., 1998). Since the

structure of this problem is complicated, we assume that in the worst case, all the constraints

have the same size of the most complicated SOC constraint in the problem, where the size
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of a SOC constraint is the number of elements in the norm. With this assumption, there are

(N +3)(F +M) + 12F + 2+ 4F (m+4) variables in problem (2.21) that applies SOCP ap-

proximation (2.28). In addition, there are 10F + 1 SOC constraints in (2.21) of size F + 1

and 4F (m+4)SOC constraints in (2.28) of size 3. Thus, by omitting the small order, the

complexity is given by O
(

N2
(
F2 +M2

)
F2 +F4 +F3 (m+4)3

)
.

2.6 Numerical Results

In this section, the network performance with the proposed algorithms is evaluated. We assume

time-invariant and flat Rayleigh fading channels and the path-loss component is calculated as(
di j/d0

)−3.8
, where di j is the distance between the ith transmitter and the jth receiver, and

d0 = 10 m is the reference distance. Note that all the numerical results in this section are

obtained on the average of 100 channel realizations. In most results, we apply the scenario

depicted in Fig. 2.3, where we assume a circular coverage of the macrocell with radius 20d0.

The MBS is positioned at the center and F = 4 small cells are uniformly placed within the

considered coverage. We assume that each small cell has a circular coverage of radius 2d0

with its SAP at the center and a SUE at the circumference of the each small cell coverage. In

addition, we assume M = 2 MUEs randomly scattered across the macrocell coverage. Unless

being mentioned elsewhere, we choose this scenario as the standard simulation mode, where

the number of transmit antenna as N = 4 and the maximum transmit power as Pm = 45 dBm.

The maximum transmit power at the SAPs and users are set as ρ̄ = p̄o = 35 dBm. To protect

the QoS at each MUE, we choose the minimum rate requirement romin = 105 nats/s. The noise

power is Wσ0 =−120 dB and the bandwidth is W = 10 MHz.

In Fig. 2.4, we compare the convergence performance of different algorithms applied to solve

(2.7) with F = 2 small cells, where its objective function is divided by W , which can be de-

fined as sum spectral efficiency (SSE) (nats/s/Hz). Moreover, we also show the performance

of the algorithm in (Wang et al., 2016) (denoted by Algorithm in [20]) to solve our problem

(2.7). Note that these algorithms are applied to each set of channel realizations to obtain the

corresponding objective function value. The evolution of these objective values with respect to
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Figure 2.3 Spatial simulation setting

the iteration number are then summed and divided by the number of set of channel realizations

to obtain Fig. 2.4. It is worth to mention that in (Wang et al., 2016), this algorithm proposes

to use fixed transmit power on the WAC. Based on that, it iteratively searches for the optimal

spectrum splitting factor by a bi-section method, then fixes this factor value and solves a convex

problem based on the given splitting factor. In our problem, since we use two factors of spec-

trum splitting, the attempt to search for these optimal values should follow the Box Branching

protocol as proposed in BnB Algorithm in Section 2.3. As shown in the figure, the BnB Al-

gorithm recursively updates its upper and lower bounds after several iterations and terminates

when their gap is arbitrary small. On the other hand, our proposed algorithm requires much

less iterations to converge to its stationary point. Moreover, by averaging out the performance

over several channel realizations, our proposed algorithm is shown to converge to the same sta-

tionary point despite different initial points. Compared to the algorithm in (Wang et al., 2016)

after the same iteration number, the solution achieved from our proposed algorithm is shown to

be much closer to the global optimal solution achieved by the BnB Algorithm. This is because
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in (Wang et al., 2016), the usage of transmit power on the WAC is not considered for a joint

design and not optimally utilized.
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Figure 2.4 SSE convergence.

In Fig. 2.5 and Table 2.2, we compare the average running time and the value of the ratio

objective function in (2.21) over W from different solvers over different channel realizations.

For the GNCP problem in (2.21) with general exponential cone constraints, we use a general

convex solver FMINCON to iteratively obtain the optimum solutions at each iteration of Al-

gorithm 1. To implement the SOC approximations in (2.28) and show the improvement of

running time, we use different convex solvers, namely SDPT3, SEDUMI and ECOS. Note

that SDPT3 and SEDUMI (Sturm, 1999) are provided by YALMIP (Lofberg, 2004), where

SEDUMI is well-known to solve SOCP faster and more efficient than SDPT3. Besides, we

attempt to run a commercial SOCP solver, namely ECOS, to solve the approximated SOCP

problem. As we can see from the figure, when the problem size grows, all the solvers require

more time to achieve the stationary point solution. FMINCON requires a huge amount of time
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to finally solve, whereas SEDUMI only requires approximately 3–100 times less running time

to achieve the same results. This performance is further improved by the usage of ECOS, which

again proves the power of applying SOCP approximation in solving GNCP. In Table 2.2, we

compare the value of objective function associated with their average running time obtained at

each solvers. These values are achieved at the termination of the algorithm when the difference

between two iterations is around 10−4.
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Figure 2.5 Running time of different solvers.

Table 2.2 Comparison of the objective function and running time at different solvers

Solver/F 2 4 6 8 10

FMINCON
Runn. Time 48.7153 319.9065 2 ×103 9.20 ×103 2.36 ×104

Obj. func. 5.93255 10.33211 11.1548 11.1541 11.1545

SDPT3
Runn. Time 14.9915 30.9467 80.7447 87.4012 226.3562

Obj. func. 5.93265 10.332 11.1551 11.1554 11.1551

SEDUMI
Runn. Time 13.6397 22.1418 47.6735 60.1245 160.3279

Obj. func. 5.93265 10.3319 11.15505 11.1553 11.1554

ECOS
Runn. Time 0.5385 2.0193 6.8717 11.7978 33.6731

Obj. func. 5.93265 10.33206 11.1553 11.1552 11.1552
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In Fig. 2.6, we show the SSE on both UL and DL in the imperfect CSI case versus p̄d
f , with

different values of error bound δh = δho = δ = 0, 0.1, 0.3 and r0min = 105, 106 nats/s. Note

that for simplicity, MMSE receive beamforming vector is applied at the MBS on the UL only

in the perfect CSI case (δ = 0). From the figure, we observe that MMSE provides better

performance than the MRC. On the other hand, all the SSE regarding MMSE and MRC cases

increase with p̄d
f and finally saturates at high value of p̄d

f , e.g., at p̄d
f = 50 dBm. This is obvious

because when SAP has higher individual power budget, they will choose to transmit at higher

power to achieve more SSE. However, at the regime of high p̄d
f , due to the interference from

other SAPs, one tends not to utilize its maximum power budget to attain the optimal sum rate

of the network, which in turn leads to the saturation of the SSE. In addition, the SSE in the

imperfect CSI is degraded at lower performance compared to the perfect CSI. This is because

the optimization problem in (2.22) is solved with the knowledge of the estimated CSI and the

obtained solution is deteriorated with this imperfect information. Further, the achieved SSE

reduces when δ increases. Finally, when r0min increases, SSE decreases accordingly. This can

be explained as when the MUEs have larger minimum rate requirement, more spectrum should

be drawn towards the macrocell access transmission to guarantee the constraints. Thus, the

radio resource saved for the small cell access link becomes less, which results in lower small

cell SSE.

In Fig. 2.7a, we compare the SSE on the UL and DL between four schemes: (i) Proposed

scheme where the objective function of (2.7) contains two terms of UL and DL; (ii) UL scheme

where (2.7a) only has one term of UL; (iii) DL scheme where (2.7a) has one term of DL and

(iv) EQ scheme where (2.7) has one additional constraint αd = αu. Note that the EQ scheme

is similar to the case where we only have one level of spectrum partitioning. To prevent the

rate at each small cell to go to zero, we add a minimum rate constraint on each small cell on

the UL and DL, respectively. In particular, in each optimization problem for each scheme,

we add one more linear constraint qo
i ≥ q̄o,∀i,o. In the simulation, we choose q̄o = 0.1 nat-

s/s/Hz. Alternatively, the solutions of these schemes are obtained by applying Algorithm 1 to

the corresponding problems. We compare the performance of four schemes by evaluating the
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Figure 2.6 SSE of the network in the case of imperfect CSI.

SSE with the achieved solutions. From the figure, we note that the proposed scheme always

achieves higher SSE compared to UL and DL schemes. The reason for this is that without con-

sidering the resource allocation on both the UL and DL, the allocator only contributes as much

resource either to the UL or DL transmission as possible while maintaining enough quality for

the other transmission side. Note that when Pm increases, the SSE of DL scheme increases

while the SSE of UL scheme remains constant. Since Pm represents the power resource for the

DL backhaul transmissions, thus, when it increases, only the DL communications benefit. In

addition, we can also observe that the performance of the proposed scheme is always better

than the EQ scheme. These results show the effectiveness of our proposed design compared to

the traditional designs.

In order to get further insight, in Fig. 2.7b, we compare the SSE of the four schemes by varying

ρ̄ f . The SSE of the proposed scheme always outperforms the others. We also note that when

ρ̄ f increases, the SSE of the UL scheme increases while the SSE of the DL scheme remains
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constant. This can be explained because ρ̄ f represents the power resource for the UL backhaul

transmissions, thus, when it increases, only the UL communications benefit.
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a) SSE at different schemes with respect to Pm.
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b) SSE at different schemes with respect to ρ̄ f .

Figure 2.7 SSE of the network with respect to maximum

power budget at the MBS and SAP.

Fig. 2.8a shows the level of bandwidth partitioning dedicated for the DL access transmission

from the SAPs to SUEs, namely 1−αu when Pm increases. We observe that when Pm increases,

the percentage of bandwidth used for the DL access transmission increases and finally saturates

when Pm is sufficiently large. This is due to the fact that when more power budget is available

for the WBC on the DL, it creates more resource to increase the wireless backhaul rate on the

DL and allows the DL access transmissions to use more bandwidth to increase their achievable

rates, thus increase 1−αu. Compared to the usage of one level bandwidth partitioning in EQ
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scheme, the proposed scheme exploits bandwidth partitioning on the UL and DL transmission

differently and more efficiently to achieve a better SSE than the EQ scheme as in Fig. 2.7a.
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a) Bandwidth partitioning for the DL access transmissions (SAPs to

SUEs).
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SAPs).

Figure 2.8 Bandwidth partitioning with respect to maximum

power budget at the MBS and SAP.

In Fig. 2.8b, we show the level of bandwidth partitioning dedicated to the UL access transmis-

sion from the SUEs to the SAPs, namely 1−αd , versus the maximum power budget at each

SAP for the WBC ρ̄ f . We can easily note that when ρ̄ f increases, the term 1−αd for the

proposed scheme and UL scheme increases, while it remains constant for the DL scheme. This

can be explained similarly to Fig. 2.7b since ρ̄ f only takes effect on the problem of maximizing

the UL transmissions. When ρ̄ f increases, more power budget is available to support the WBC
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on the UL. This in turn creates more resource for the UL, thus enforces the UL access trans-

missions to use more bandwidth to increase their achievable rates. This results in the increment

of the term 1−αd in the proposed and UL scheme.

In Fig. 2.9a, we observe that when romin increases, all the SSE from four schemes decrease. This

can be explained using similar analogy as in Fig. 2.6 when the MUEs require higher minimum

rate for the QoS, more spectrum should be drawn towards the macrocell access transmission to

guarantee the constraints, which subsequently leads to lower SSE achieved at the small cells. In

addition, the proposed scheme always outperforms the others, which again validates the benefit

of our design. Finally, we show the average achieved SSE by applying the proposed algorithm

with respect to MBS maximum budget power for different numbers of small cell at romin = 103

nats/s. From the figure, we can see that when Pm increases, the achieved SSE increases at

different numbers of small cell. This can be explained similarly to Fig. 2.7a. Moreover, when

the number of small cell increases, we obtain higher SSE. However, this increment of SSE is

low at large number of small cell, e.g., F = 50. This is due to the effect of severe interference

when there are more small cells deployed into the WB HCNs, which limits the achieved SSE.

2.7 Concluding Remarks

This paper studied the joint design of transmit beamforming, power allocation and bandwidth

partitioning for the maximization of sum rate of small cells on both UL and DL transmissions

in two-tier HCNs using WBC. By employing the RTDD system, we propose a strategy to

partition the bandwidth in two consecutive time slots by two different levels and we formulate

an optimization problem based on the proposed scheme. To solve the non-convex problem, we

leverage the SPCA method to iteratively find the stationary point of the approximated problem.

Moreover, we approximate the problem into SOCP and propose a fast converging algorithm to

achieve the solution. To study the performance loss in the imperfect CSI case, we formulate a

robust optimization problem and apply the proposed algorithm to solve it efficiently. Numerical

results are conducted to demonstrate the network performance gain achieved by deploying the

proposed algorithms.
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Figure 2.9 SSE of the network with respect to romin and Pm.
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3.1 Introduction

The evolution and widespread acceptance of 5G networks has strongly relied on its promise

of providing thousand-fold enhancement of network capacity (Andrews et al., 2014). Among

others, network densification is considered as a key candidate technology for achieving the

desired capacity(Bhushan et al., 2014). Not surprisingly, achieving maximum throughput

with minimal energy consumption has recently become an extremely attractive area of re-

search(Hu & Qian, 2014). According to (Auer et al., 2011), almost 80% of the total network

energy is consumed at base station (BS) sites; thus, saving energy on such dense networks

simply translates to greener and more economical communications. Motivated by the need for

energy efficiency operation and deployment, which also helps in lowering operational cost for

mobile network operators and contributes less CO2 emission to the environment, maintaining

the optimal resource management is equally vital to attain the best system energy efficiency

(EE) (Rao & Fapojuwo, 2014).

Currently, deploying more BSs generally exposes the challenging cost problem of installing

more fiber backhaul links. To overcome this burden, wireless backhaul (WB) (Ge et al., 2014)

emerged to present a simple and viable solution to solve the expensive backhaul architecture

installation obstacle in dense networks. Unlike the conventional wired backhaul architecture

in small cell networks where information is transported via fiber links, WB enables these small
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cell access points (SAPs) to transmit and receive backhaul data over-the-air. According to (Sid-

dique et al., 2015a), it is sufficiently mature to activate the WB operation in the sub–6 GHz

spectrum band with the available hardware. By replacing (or coexisting with) the fiber connec-

tion, the operators can confide WB to solve the problem of installation and difficulties for the

backhaul deployment in urban and some rural areas. However, WB communication (WBC)

must guarantee both high speed and reliable backhaul transmissions to maintain a certain level

of quality of service (QoS). In light of these observations, it is imperative to consider an EE

design for WB.

3.1.1 Related work

WB concept was first proposed in IEEE 802.16 mesh networks (Viswanathan & Mukherjee,

2006). By enabling WB transmission, the authors in (Viswanathan & Mukherjee, 2006) devel-

oped an algorithm based on linear optimization that maximizes the total network throughput to

design an optimal routing and scheduling strategy for the medium access control layer. In the

5G context, WB technology was widely revisited in various network scenarios and, interest-

ingly, extended to different spectrum bands (Siddique et al., 2015a). Specifically, in the 60–80

GHz band, known as mm-wave, the authors of (Hur et al., 2013b) presented a novel idea for

small cells equipped with mm-wave transmitters to effectively align their transmit beam un-

der wind induced impairments. In the sub–6 GHz band, some works proposed to reuse the

available hardware and implementation to accommodate WBC concurrently with the wireless

access communications (WAC). By employing the reverse time division duplex (RTDD) model,

the authors in (Sanguinetti et al., 2015; Wang et al., 2016) considered the joint bandwidth allo-

cation and user association that maximizes the achievable downlink (DL) sum log rate of small

cells when the macrocell base station (MBS) is equipped with large antenna. In (Zhao et al.,

2015), the authors studied the admission control of SAPs in order to permit WB to serve as

many SAPs as possible while guaranteeing QoS rates. The authors of (Niu et al., 2017) were

the first ones to consider the optimization of scheduling and power control that maximizes the
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mm-wave WB EE communication. The authors of (Yang et al., 2016b) considered the WB

network and analyzed the EE of the small cells using stochastic geometry.

In general, achieving EE communications for green 5G heterogeneous networks (HetNets) has

drawn significant research attention in recent years (Hu & Qian, 2014; I et al., 2014; Soh et al.,

2013). Specifically, optimal beamforming and zero-forcing based beamforming design for

maximizing the EE in multicell multiuser HetNets were studied in (He et al., 2014) and (Xu

et al., 2014), respectively. In (Ng et al., 2012), the authors addressed the joint power alloca-

tion and antenna design that maximizes the system EE in OFDMA massive MIMO networks.

However, these works only aimed to develop centralized algorithms with full coordination

between cells. This approach often requires high computational cost and signaling overhead

since each node needs to have the full knowledge of the global channel state information (CSI)

to compute the joint optimal solution. To overcome these difficulties, the authors in (Huang

et al., 2014) proposed a decentralized algorithm based on alternative optimization to design

the beamforming that maximizes the system EE, where limited information exchange between

uncoordinated BSs is assumed. The work in (Ngo et al., 2014a) employs the framework of

dual decomposition in (Palomar & Chiang, 2006a) to decompose the coupled problem into

smaller problems to iteratively solve and update the involved parameters until convergence.

To enhance the convergence behavior of the dual decomposition method, Kaleva et al. (2016)

develops a decentralized algorithm based on alternative direction multiplier method (ADMM).

When there are more antennas at each small cell, the ratio of power for maintaining radio

frequency chains or switching the BS ON/OFF to the total power consumption becomes more

important since it is now comparable to the transmit power. This motivated the authors of

(Zhou et al.) to consider BS sleep/active or in (Tervo et al., 2015b) for antenna selection to

refine the achieved EE in comparison with fixed circuit power. Moreover, at the SAP, the energy

consumed in decoding the collected WB data from the MBS cannot be ignored. This is due to

the fact that the SAPs have small range of operation and the energy consumed in the decoding

process is comparable to the one used in transmitting the data (Rubio & Pascual-Iserte, 2014).

For the DL of WB small cell HetNets, each SAP relates its backhaul rate proportionally to the
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amount of power to decode the backhaul messages before forwarding them to its own users.

Hence, this decoding power is fundamentally important (Rubio & Pascual-Iserte, 2014) and

should be considered in the problem of EE optimization.

3.1.2 Contribution

In this paper, we consider the two-tier small cell HetNets that operates WBC in the sub–6 GHz

band. In particular, WBC between multi-antenna MBS and single antenna SAPs are consid-

ered among conventional WAC of MBS-macrocell user equipments (MUEs) and SAPs-small

cell users equipments (SUEs). To completely remove the self interference at the SAP, we apply

the RTDD combined with equal spectrum splitting in each time slot to separate transmissions

between WBC and WAC for interference mitigation. Based on that, we study the joint beam-

forming and power allocation optimization (JBPAO) design that maximizes a proposed metric,

the access EE (AEE), which is defined by the ratio of the total wireless access spectral effi-

ciency achieved at the MUEs and SUEs to the total power consumption. Unlike traditional

works (e.g., (He et al., 2014; Xu et al., 2014; Venturino et al., 2014; Tervo et al., 2015b))

where a fixed value of decoding power is assigned at each BS, we emphasize the importance

of the adaptive decoding power which is a result of considering WBC in our model. With this

consideration in the formulation of AEE, the overall power consumption is more appropriately

addressed, which leads to some improvement in the achieved EE. The contributions of the

paper are summarized as follows:

- We formulate the problem of maximizing the access EE under the WB small cell HetNets.

The model of total power consumption proposed here considers not only the transmit power

but also the adaptive decoding power at each SAP as a function of its achievable rate, and

therefore is more appropriate.

- The formulated optimization problem is non-convex and NP-hard. To solve it optimally, we

present an exhaustive search based on customized branch-and-bound algorithm to achieve

the global optimal solution for transmit beamforming and power allocation. The achieved

result can be used as the network performance benchmark.
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- To overcome the high computational complexity of the branch-and-bound algorithm, we

propose a low complexity efficient algorithm based on first order Taylor convex approxima-

tion (FOTCA) which helps in achieving a local optimal solution by iteratively solving the

convex approximated problem of the non-convex problem. The final solution is achieved

through few iterations, which is much faster than the branch-and-bound algorithm.

- This EE problem formulation is further extended to consider the small cell selection that

takes into account the impact of power to switch ON/OFF each SAP. By simply introducing

binary variables to represent the active/idle status of each SAP, we follow the same step of

the FOTCA based framework to drive the new problem into a mixed integer second order

cone programming (MISOCP) approximated problem, where the developed algorithm can

be applied to efficiently obtain the solution.

- We further propose to decompose the convex approximated problem into smaller sub-

problems by the ADMM approach and develop a distributed algorithm to enable indepen-

dent computation at each SAP and MBS. Specifically, each SAP and MBS will only have

to solve its own sub-problem with local CSI by exchanging limited information with other

BSs to update each cell parameters at each iteration until the algorithm converges.

The rest of the paper is organized as follows. Section 3.2 introduces the system model and the

AEE. Section 3.3 formulates the optimization problem that maximizes the access EE on the

DL of the WB HetNets and proposes two algorithms to solve it. In Section 3.4, a distributed

algorithm is developed to solve the optimization problem. Section 3.5 extends the study of the

previous AEE problem with SAP selection. Section 3.6 presents our numerical results under

different simulation setups and discussions and the concluding remark are given in Section 3.7.

A list of acronyms used in this paper is given in Table 3.1.
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Table 3.1 List of acronyms.

Acronym Description n

ADMM Alternating direction method of multipliers

EE, AEE Energy efficiency, Access EE

AO Alternating optimization

AWGN Additive white Gaussian noise

BnB Branch and Bound

CSI Channel state information

DL (UL) Downlink (Uplink)

FOTCA First order Taylor convex approximation

HetNets Heterogeneous networks

JBPAO Joint beamforming power allocation optimization

KKT Karush-Kuhn-Tucker

MBS (BS) Macrocell base station (Base station)

MISOCP Mixed integer SOCP

MUE Macrocell user equipment

QoS Quality-of-service

RTDD Reverse time division duplexing

SLNR Signal-to-leakage-plus-noise ratio

SAP Small cell access point

SUE Small cell user equipment

WMMSE Weighted minimum mean square error

WA (WAC) Wireless access (WA communication)

WB (WBC) Wireless backhaul (WB communication)

W /2 W /2

W /2 W /2

Figure 3.1 Model of two-tier DL wireless backhaul small cell HetNets.
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3.2 System Model

3.2.1 Spatial Model

We consider the downlink of a two-tier HetNet consisting of one MBS of N antennas in the

macrocell tier and Sa single antenna SAPs in the small cell tier, as depicted in Fig. 3.1. The

MBS serves M MUEs and each SAP serves the same number of Su SUEs within their cover-

age. The general case of different number of SUEs in different small cells can be intuitively

studied by following the same framework. Here, the wireless access transmissions refer to the

transmissions from MBS to MUEs and from SAPs to SUEs, whereas the wireless backhaul

transmissions refer to the ones from the MBS to the SAPs. Both WA and WB transmissions

operate concurrently in the same resource block. For brevity, we assume that the signal trans-

missions from the MBS to the SAPs is modeled similarly to the ones from the MBS to MUEs.

3.2.2 Reverse time division duplex (RTDD)

We assume that all the transmissions operate under the RTDD system (Sanguinetti et al., 2015).

Unlike traditional time division duplexing, RTDD employs a reverse setting of UL and DL

time slots in two tiers and splits the available spectrum of W Hertz in two equal parts to ac-

commodate different transmissions. As shown by Fig. 3.1, the MBS can now transmit its DL

signals on an orthogonal time-spectrum resource block with the UL signals from the SUEs to

their serving SAPs. Similarly, the MUEs and SAPs can transmit UL signals to the MBS or-

thogonally with the DL signals from the SAPs. With this interference management, the in-band

half-duplex SAPs can avoid self-interference when WBC coexists with WAC as in (Sanguinetti

et al., 2015).

3.2.3 Signal model

We assume the channel is flat over the spectrum and time-invariant within the coherence time

Tc where Tc is larger than the duration of one time slot. We first consider the time and frequency
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block dedicated for the macrocell DL, where the MBS transmits signals to its MUEs and SAPs

as shown in Fig. 3.1. By denoting F = {Sa,M } = {{1, . . . ,Sa} ,{Sa +1, . . . ,Sa +M}}, the

received signal within this time-frequency block at the jth receiver is

y j = vH
j h jx j + ∑

k∈F\ j
vH

k h jxk +n j, (3.1)

where h j ∈CN×1 is the channel state vector which includes fading gain and pathloss compo-

nents and v j ∈CN×1 is the beamforming vector from the MBS to the jth receiver. x j is the

message intended for the jth receiver with unit average power, e.g., E
{

x jx∗j
}
= 1 and n j is

a circularly symmetric complex additive white Gaussian noise (AWGN) at the jth receiver,

which is distributed according to a normal distribution C N (0,N0), where N0 is the noise

power over the allocated spectrum. Treating interference as noise, the achievable rate at the jth

receiver is

R j = log
(
1+Γ j

)
= log

⎛
⎜⎜⎝1+

∣∣∣vH
j h j

∣∣∣2
∑

k∈F\ j

∣∣vH
k h j

∣∣2 +N0

⎞
⎟⎟⎠ , (3.2)

where we denote the set of transmit beamforming as v � {vi,∀i ∈ F} for later usages. In the

other time-frequency block dedicated for small cell DL, each ith SAP transmits data to its Su

intended SUEs in the ith small cell. Let us denote pi j as the transmit power from the SAP to

the jth SUE in the ith small cell and hik j as the channel from the ith SAP to the jth SUE in the

kth small cell; p = [p1, . . . ,pSa ]
T , where pi = [pi1, . . . , piSu ]

T is the set of transmit powers of

the SAPs. Hence, the received signal within this time-frequency block at the jth SUE in the ith

small cell is

yi j = hii j
√

pi jsi j + ∑
k∈Su\ j

hii j
√

piksik + ∑
k∈Sa\i

∑
l∈Su

hki j
√

pklskl + zi j, (3.3)

where si j is the message intended for the jth SUE from the SAP in the ith small cell with unit

average power, e.g., E
{

si js∗i j

}
= 1. Similarly, zi j is a circularly symmetric complex AWGN

at the SUE from the SAP in the ith small cell, distributed according to a normal distribution

C N (0,N0). Treating interference as noise, the achievable rate at the jth SUE in ith small cell
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is ri j = log
(
1+ γi j

)
, where

γi j =
pi j

∣∣hii j
∣∣2

∑k∈Su\ j pik
∣∣hii j

∣∣2 +∑k∈Sa\i ∑l∈Su pkl
∣∣hki j

∣∣2 +N0

. (3.4)

3.2.4 Access Energy Efficiency (AEE)

In this subsection, we introduce an EE expression for the considered system. Let us define the

overall network power consumption Ptot as

Ptot = κm ∑
i∈F

‖vi‖2 +Pactive
m +Pdiss

m +Pdec
m︸ ︷︷ ︸

Pcirc
m

+κs ∑
i∈Sa

∑
j∈Su

pi j + ∑
i∈Sa

⎡
⎢⎢⎢⎣

Pad
s︷ ︸︸ ︷(

Pactive
s +Pdiss

s

)
+Pdec

s,i︸ ︷︷ ︸
Pcirc

s,i

⎤
⎥⎥⎥⎦ , (3.5)

where κm,κs > 1 are the constants which account for the inefficiency of the power amplifier at

the MBS and each SAP when they transmit on the DL. Pcirc
m and Pcirc

s,i represent the circuit power

at the MBS and the ith SAP, respectively. Specifically, Pcirc
m includes the power that keeps the

MBS active Pactive
m , the power dissipation in the transmitting filter, mixer, frequency synthesizer

and digital-to-analog converter Pdiss
m , and the power necessary for decoding at the MBS Pdec

m .

For simplicity, we assume that Pactive
m and Pdiss

m remain constant at all times. Moreover, since

we consider the DL of the MBS, we also assume the MBS always decodes the same amount of

information at all time slots so that Pdec
m is also constant. Thus, Pcirc

m should take the same value

for all considered time slots. On the other hand, the decoding term Pdec
s,i , should be considered

more carefully in the small cell tier. Since each ith SAP receives backhaul data from the MBS

via the wireless channel, it should decode the received signals before transmitting them to its

SUEs. Thus, based on the consensus that the decoding power used for this process increases

with the achievable rate (Rubio & Pascual-Iserte, 2014) Ri at each ith SAP, we apply the model

in (Rubio & Pascual-Iserte, 2014) to formulate the decoding power as a linear function of the
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achievable rate, e.g.,

Pdec
s,i = αiRi,∀i ∈ Sa. (3.6)

Next, we propose an expression for the computation of AEE, defined as the ratio between the

sum rate at all the MUEs and SUEs and the total network power consumption. In particular,

the AEE (computed in bits/Joule/Hz) can be expressed as

η =
∑k∈M Rk +∑i∈Sa ∑ j∈Su ri j

Ptot
. (3.7)

Discussion: This above definition of the EE metric is widely used in the literature as the ma-

jor metric to evaluate green communications and is often proposed in a single cell cellular

network where the behavior of one cell is of most interest. In the context of multicell Het-

Nets, beside this definition, there also exists other metrics to evaluate the network EE, such as

weighted sum EE η1 or product of individual EE η2(Lasaulce et al., 2009; Miao et al., 2011;

Venturino & Buzzi, 2015; Xiong et al., 2014; Venturino et al., 2014) as follows:

η =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

η1 = ωm
∑k∈M Rk

κm ∑i∈F ‖vi‖2+Pcirc
m

+∑i∈Sa ωs,i
∑ j∈Su ri j

κs ∑ j∈Su pi j+Pcirc
s,i

,

η2 =
(

∑k∈M Rk
κm ∑i∈F ‖vi‖2+Pcirc

m

)ωm

×∏i∈Sa

(
∑ j∈Su ri j

κs ∑ j∈Su pi j+Pcirc
s,i

)ωs,i

.

(3.8)

These formulations offer more flexibility to directly prioritize the EE at an individual cell rather

than relying on indirectly weighting the individual rate at each user from the definition in

(3.7). With different minimum rate QoS constraints and disparate power budgets for each

tier, setting higher weight for the potential BS might allow to retrieve better energy-efficient

resource allocation solution for that individual BS and attain suitable optimal EE performance

as expected from the given weight setting. To this end, we observe that regardless the choice

of EE metrics, the following analytical and algorithmic frameworks developed next can also be

applied with (3.8) with very simple manipulation.



83

3.3 AEE Optimization Problem

3.3.1 Problem formulation

The constrained optimization problem of maximizing the AEE can be formulated as follows:

(P) : max
v,p≥0

∑k∈M Rk +∑i∈Sa ∑ j∈Su ri j

Ptot
(3.9a)

s.t. Ri ≥ ∑
j∈Su

ri j,∀i ∈ Sa, (3.9b)

Rk ≥ rm
min,∀k ∈ M ; (3.9c)

ri j ≥ rs
min,∀i ∈ Sa,∀ j ∈ Su, (3.9d)

∑
k∈F

‖vk‖2 ≤ Pmax, (3.9e)

∑
j∈Su

pi j ≤ pmax,∀i ∈ Sa. (3.9f)

To convey the property of the WB networks into this optimization problem, constraint (3.9b)

enforces that the backhaul rate of each SAP should always be larger than the corresponding

access rate at each SAP on the DL. The backhaul rate in this case becomes a limiting factor

for the access rate at the SAP. Even if there are good channel conditions on the DL of the

SAP, without sufficiently good WB link, the corresponding SAP cannot achieve higher rates

than that regulated by the backhaul rate, and thus restrains the optimal AEE. (3.9b) also ren-

ders a complicated coupled relationship between variables v and p by nonlinear non-convex

functions, e.g., Ri, ri j, which makes it more difficult to solve compared to conventional min-

imum constant SINR requirement constraint used in multiuser networks. The minimum rate

requirements at the MUEs and SUEs are given by (3.9c). (3.9e)–(3.9f) imply that MBS and

SAP cannot transmit more than their maximum power budget Pmax and pmax, respectively. The

following proposition characterizes the relationship between the achievable rate of the WBC

and WAC.

Proposition 1. Given the AEE constrained optimization problem as in (3.9), all the inequalities

(3.9b) become equalities at optimality.
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Proof. We prove Proposition 1 by contradiction. Assuming that at the optimal solution v�,p�,

(3.9b) occurs at strict inequalities at some index i ∈ Sa. Then, we can find a new value ṽi =

εiv�i , εi < 1 so that Ri,∀i ∈ Sa will slightly decrease to occur at equality. On the other hand,

note that the numerator of objective function only contains the MUE rate Rk,∀k ∈ M . Thus,

the scaled down version of v�i ,∀i ∈ Sa causes less interference to each Rk,k ∈ M and leads

to the increase of the numerator of (2.7a). In addition, the denominator of (3.9a) decreases

with the scaled down version of v�i ,∀i ∈Sa and decoding power proportionally decreases with

Ri,∀i ∈ Sa. These improves the value of objective function, which contradicts the assumption

of optimality. This completes the proof.

It is easy to observe that (3.9) is a non-convex and an NP-hard optimization problem due to

the existence of Ri and ri j on the numerator of (3.9a) as the function variables v and p. The

NP-hardness proof is sketched in Appendix 5. Note that since we consider an interference term

in each rate formula, Ri and ri j are neither convex nor concave functions with respect to the

relevant variables. The appearance of Ri in constraint (3.9b) and in the denominator of (3.9a)

introduces an additional non-convex factor to the entire optimization problem so that conven-

tional nonlinear fractional programming method for EE problem used in (He et al., 2014; Xu

et al., 2014; Ng et al., 2012; Tervo et al., 2015b) cannot be straightforwardly applied here. To-

ward this end, we rely on the result in Proposition 1 that at optimality, Ri = ∑ j∈Su ri j,∀i ∈ Sa

to instead compute Pdec
s,i as a function of ∑ j∈Su ri j, e.g., Pdec

s,i = αi ∑ j∈Su ri j. Based on this, we

propose another optimization problem as follows:

(P1) : max
v,p≥0

{
∑k∈M Rk +∑i∈Sa ∑ j∈Su ri j

P̃tot

∣∣∣∣(3.9b)− (3.9f)

}
. (3.10)

where

P̃tot = κm ∑
i∈F

‖vi‖2 +Pcirc
m +κs ∑

i∈Sa

∑
j∈Su

pi j + ∑
i∈Sa

[(
Pactive

s +Pdiss
s

)
+αi ∑

j∈Su

ri j

]
.

The purpose of visiting this problem will prove helpful in the next section to achieve the global

optimal solution through a branch-and-bound algorithm. Here, we observe that depending on
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the given values of rm
min,r

s
min,Pmax, pmax, (3.10) can be infeasible due to the minimum rate and

power constraints (3.9c)–(3.9f). Setting a power budget to be low may cause infeasibility to

(3.10) when minimum rate requirements rm
min,r

s
min are high. Moreover, posing high rm

min,r
s
min in

an interference–limited operational regime can also make (3.10) infeasible despite having high

power budget. To facilitate this issue, we only consider the feasible problem with sufficiently

small rm
min,r

s
min setting in this paper. Furthermore, to guarantee the convergence of the iterative

algorithm developed later, we assume that all the feasible solutions of (3.10) are regular as

in (Scutari et al., 2017). The condition of a regular solution of an optimization problem is

sketched in Appendix 4.1.

3.3.2 Branch-and-bound algorithm for global optimal solution

In this subsection, we optimally solve (3.10) using a branch-and-bound (BnB) based algorithm.

First, we rewrite (3.9) into a more tractable form as

(Pbnb) : max
v,p≥0,t≥0,

τ≤τ≤τ̄

�(t,τ) =

(
∑

k∈M

tm
k + ∑

i∈Sa

∑
j∈Su

ts
i j

)
· τ (3.11a)

s.t. P̃tot ≤ 1

τ
, (3.11b)

Ri ≥ ∑
j∈Su

ts
i j,∀i ∈ Sa, (3.11c)

Rk ≥ tm
k ,∀ j ∈ M , (3.11d)

tm
k ≥ rm

min,∀k ∈ M , (3.11e)

ts
i j ≥ rs

min,∀i ∈ Sa,∀ j ∈ Su, (3.11f)

ri j = ts
i j,∀i ∈ Sa,∀ j ∈ Su, (3.11g)

(3.9e)− (3.9f), (3.11h)
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where tm
i ≥ 0,∀i ∈ F , ts

i j ≥ 0,∀i ∈ Sa,∀ j ∈ Su, and τ ≤ τ ≤ τ̄ are the slack variables intro-

duced to facilitate the tractability of the optimal solution. The definitions of τ and τ̄ are:

τ =
1

κmPmax +Pcirc
m +κsSa pmax +SaPad

s + t̄ s
i j

(3.12)

τ̄ =
1

Pcirc
m +SaPad

s
, (3.13)

where t̄ s
i j will be defined shortly later. For convenience, we denote t =

[
(tm)T ,(ts)T

]T
, where

tm =
[(

tmb)T
,(tma)T

]
=

[[
tm
1 , . . . , t

m
Sa

]T
,
[
tm
Sa+1, . . . , t

m
Sa+M

]T
]T

, and ts =

[(
ts
1

)T
, . . . ,

(
ts
Sa

)T
]T

,

ts
i =

[
ts
i1, . . . , t

s
iSu

]T
. The equivalence between (3.11) and (3.9) can be shown by following

the same line of proof for Proposition 1. Here, we note two important observations. Firstly,

when each of tm
j ,∀ j ∈ M , ts

i j,∀i ∈ Sa,∀ j ∈ Su, or τ increases within its feasible domain,

(3.11) achieves a higher valued objective function. Secondly, when all of tm
j ,∀ j ∈ M , ts

i j,∀i ∈
Sa,∀ j ∈ Su, and τ are fixed, (3.11) becomes a convex feasibility checking optimization prob-

lem. Thus, we can employ the concept of monotonic optimization (Tervo et al., 2015b) to

customize the BnB algorithm in order to optimally solve (3.11). Before providing the detailed

algorithm, we use the results and concepts defined in (Tervo et al., 2015b) to present some

definitions and notations to support the presentation of the customized BnB algorithm.

Let Ω = [t,τ]T denote the set of variables t,τ . We define the normal compact set D =

{Ω|(3.11b)− (3.11h)} by following the same definition as in (Tervo et al., 2015b). On the

other hand, we denote C =
[
Ω,Ω̄

]
as the box that contains all the feasible solutions of Ω in

(3.11). From (3.11e), we observe that tm
j ≥ rm

min,∀ j ∈ M and ts
i j ≥ rs

min,∀i ∈ Sa,∀ j ∈ Su.

Thus, the lower bound of Ω can be computed as Ω =
[
rm

min, . . . ,r
s
min,τ

]T
. In addition, we can

simply compute the upper bound of Ω as Ω̄ =
[
t̄m
1 , . . . , t̄

s
SaSu

, τ̄
]T

, where

tm
j ≤ log

(
1+

∥∥v j
∥∥2∥∥h j

∥∥2
)

≤ log
(

1+Pmax

∥∥h j
∥∥2

)
= t̄m

j ,∀ j ∈ M , (3.14)

ts
i j ≤ log

(
1+ pi j

∣∣hii j
∣∣2)
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≤ log
(

1+ pmax

∣∣hii j
∣∣2)= t̄ s

i j,∀i ∈ Sa,∀ j ∈ Su. (3.15)

Now, given the value of Ω, the problem of checking whether Ω ∈ C is reduced to a con-

vex feasibility checking problem to find {v,p ≥ 0|(3.11b)− (3.11h)} . From these discussions,

problem (3.11) can be rewritten as max{�(t,τ) |Ω ∈ C ⊂ D}. First we check if Ω is feasible

or not. If feasible, we customize a BnB algorithm to solve (3.11) globally. This algorithm

recursively branches the box D into smaller boxes, checks the feasibility of each new box, up-

dates the new upper and lower bounds by the box reduction—bound computation process and

disposes the boxes that do not contain the optimal solution. The algorithm terminates when

the difference between the upper and lower bounds is arbitrarily small and the global optimal

solution is determined. Since the protocol of the BnB algorithm is similar to the content in

(Tervo et al., 2015b), its detailed presentation is omitted here for brevity. The steps of box

branching, box reduction can also be found in (Tervo et al., 2015b). Note that for a given set

Di =
[
Ωi,Ω̄i

]
, where Ωi = [ti,τ i]

T and Ω̄i =
[
t̄i, τ̄i

]T
, the lower and upper bounds computation

are given by L(Di) = �(ti,τ i) and U (Di) = �
(
t̄i, τ̄i

)
, respectively.

3.3.3 Low complexity FOTCA-based algorithm

The BnB algorithm basically requires very high computational cost to yield the global optimal

solution. This solution approach is not practical and is only helpful for benchmark evalua-

tion. In this section, we develop a low complexity and efficient algorithm to solve (3.10) based

on multiple equivalent transformations and convex approximation methods. When applying

the convex approximation, we rely on the result in (Marks & Wright) to associate the three

conditions which can be employed to verify the application of the proposed convex approxi-

mation. These three conditions guarantee that the developed iterative algorithm based on these

approximations will converge after much less iteration than the BnB algorithm. The following

proposition is provided to transform (3.10) into a more equivalent tractable form to develop the

low complexity algorithm to reach the solution.
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Proposition 2. By introducing slack variables tm
i ≥ 0,∀i∈F , si j ≥ 0, ts

i j ≥ 0,∀i∈Sa,∀ j ∈Su,

τ ≥ 0, and q ≥ 0, problem (3.10) is equivalent to the following optimization problem
(
Peq

)

max
Π

q2 (3.16a)

s.t.
(
1T tma +1T ts) · τ ≥ q2, (3.16b)

˜̃Ptot ≤ 1

τ
, (3.16c)

log(1+νi)≥ tm
i ,∀i ∈ F , (3.16d)

tm
i ≥ ∑

j∈Su

si j,∀i ∈ Sa, (3.16e)

si j ≥ log
(
1+ γi j

)≥ ts
i j,∀(i, j) ∈ (Sa,Su) , (3.16f)∣∣vH

i hi
∣∣2

∑
k∈F\i

∣∣vH
k hi

∣∣2 +N0

≥ νi,∀i ∈ F , (3.16g)

tm
k ≥ rm

min∀k ∈ M , (3.16h)

ts
i j ≥ rs

min,∀(i, j) ∈ (Sa,Su) , (3.16i)

(3.9e)− (3.9f), (3.16j)

where

˜̃Ptot = κm ∑
i∈F

‖vi‖2 +Pcirc
m +κs ∑

i∈Sa

∑
j∈Su

pi j + ∑
i∈Sa

[(
Pactive

s +Pdiss
s

)
+αi ∑

j∈Su

si j

]

and Π = {v,p ≥ 0,ν ≥ 0,s ≥ 0, t ≥ 0,τ ≥ 0,q ≥ 0}. In addition, t is denoted as in (3.11); s =[
(s1)

T , . . . ,(sSa)
T
]T

, where each si = [si1, . . . ,siSu ]
T ; and ν = [ν1, . . . ,νSa ,νSa+1, . . . ,νSa+M]T .

Proof. The proof is given in Appendix 3.

We observe that the current optimization problem (3.16) is a maximization of a convex ob-

jective function, which is also a non-convex problem. However, the maximization of q2 is

equivalent to maximization of q. Since q is a linear function, the objective function of (3.16a)
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is now a concave function. Thus, problem (3.16) can be equivalently rewritten as

max
Π

{q|(3.16b)− (3.16j)} . (3.17)

Moreover, (3.16b) can be rewritten into a second order cone (SOC) constraint as

τ +
(
1T tma +1T ts)

2
≥

√
q2 +

(τ − (1T tma +1T ts))2

4
. (3.18)

Next, by taking a closer investigation at the constraints (3.16c) and (3.16g), we find that the

factors that cause the non-convexity of (3.16c) and (3.16g) are on the greater side of the in-

equalities and share the same form of function f (y,x) = |y|2
x ,∀y ∈ C

N ,x ∈ R
+. In particular,

we can rewrite (3.16g) and (3.16c) as

f
(
vH

i hi,νi
)≥ ∑

k∈F\i

∣∣vH
k hi

∣∣2 +N0,∀i ∈ F , (3.19)

f (1,τ)≥ ˜̃Ptot. (3.20)

At this point, we apply a generic first order Taylor approximation to approximate all the f (·, ·)
function in (3.16c) and (3.16g). For example, the function f (y,x) can be approximated around

the point of y(n),x(n) by

F
(

y,x,y(n),x(n)
)
=

2R
(

y(n)y
)

x(n)
−

∣∣∣y(n)∣∣∣2
(x(n))2

x. (3.21)

Finally, we return at the non-convex constraint (3.16f). First we rewrite this constraint into two

separate constraints as

si j + log
(
Ii j +N0

)≥ log
(

pi j
∣∣hii j

∣∣2 + Ii j +N0

)
, (3.22a)

ti j + log
(
Ii j +N0

)≤ log
(

pi j
∣∣hii j

∣∣2 + Ii j +N0

)
, (3.22b)
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It is obvious to state that both (3.22a) and (3.22b) are non-convex constraints. Thus, by denot-

ing gSI
i j (p) = pi j

∣∣hii j
∣∣2 + Ii j +N0 and gI

i j (p) = Ii j +N0, where

Ii j = ∑
k∈Su\ j

pik
∣∣hii j

∣∣2 + ∑
k∈Sa\i

∑
l∈Su

pkl
∣∣hki j

∣∣2 ,
we apply the first order Taylor approximation to approximate the functions log

(
gSI

i j (p)
)

and

log
(

gI
i j (p)

)
around the point p(n) as

GSI
i j

(
p,p(n)

)
= log

(
gSI

i j

(
p(n)

))
+

gSI
i j (p)−gSI

i j

(
p(n)

)
gSI

i j
(
p(n)

) , (3.23a)

GI
i j

(
p,p(n)

)
= log

(
gI

i j

(
p(n)

))
+

gI
i j (p)−gI

i j

(
p(n)

)
gI

i j
(
p(n)

) , (3.23b)

By applying the approximations (3.21) and (3.23) into their corresponding non-convex con-

straints in (3.16c), (3.16e) and (3.16g), the problem in (3.17) can be solved by iteratively solv-

ing the following approximated convex problem
(
P̃(n+1)

)
, which is formulated at the n+ 1

index as

max
Π

q (3.24a)

s.t.
τ +1T tma +1T ts

2
≥

∥∥∥∥∥q,
τ − (

1T tma +1T ts)
2

∥∥∥∥∥ (3.24b)

F
(

1,τ,τ(n)
)
≥ ˜̃Ptot, (3.24c)

F
(

vH
i hi,νi,v

(n)
i ,ν(n)

i

)
≥ ∑

k∈F\i

∣∣vH
k hi

∣∣2 +N0,∀i ∈ F , (3.24d)

si j + log
(
Ii j +N0

)≥ GSI
i j

(
p,p(n)

)
,∀i ∈ Sa,∀ j ∈ Su, (3.24e)

log
(

pi j
∣∣hii j

∣∣2 + Ii j +N0

)
− ti j ≥ GI

i j

(
p,p(n)

)
,∀i ∈ Sa,∀ j ∈ Su, (3.24f)

(3.16d), (3.16e), (3.16h), (3.16j). (3.24g)
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Note that v(n),ν(n),p(n),τ(n) are not the variables of the optimization problem but the param-

eters that are iteratively updated by the optimal solution after each iteration. Algorithm 2

presents the pseudocode to solve the optimization problem (3.17). The proof that Algorithm

2 converges is given in Appendix 4.2. Here, we only present the convergent property of the

objective function. The convergent proof of the optimization variables to a limiting point sat-

isfying the KKT conditions is more elaborated in (Venkatraman et al., 2016a, Appendix A),

which is omitted here due to space constraint.

3.4 Distributed FOTCA-based Algorithm

In the previous section, we developed a centralized algorithm to solve for the joint beam-

forming and power allocation at the MBS and SAPs. In practice, each SAP or MBS only

knows its local CSI, e.g., the MBS only knows h j,∀ j ∈ F and the ith SAP only knows

hi jk,∀ j ∈ Sa,k ∈ Su. Therefore, the centralized solution is not practical since there is in-

sufficient CSI at each node to compute the joint solution. In this section, by assuming that

there are limited message exchanges between MBS and SAPs, we develop a distributed algo-

rithm based on the framework of decomposition and ADMM. In particular, we decompose the

main convex approximated problem (3.24) into smaller sub-problems. Then, each SAP (and

MBS) iteratively solves its local problem based on the local CSI and exchanges few informa-

tion bits to update local parameters until convergence. To simplify the decomposition process,

we first replace constraints (3.24b) and (3.24c) by

τ + z1

2
≥

√
q2 +

(τ − z1)
2

4
, (3.25)

1T tma +1T ts ≥ z1, (3.26)

F
(

1,τ,τ(n)
)

≥ κm ∑
i∈F

‖vi‖2 +Pcirc
m + z2, (3.27)

z2 ≥ κs1T p+ ∑
i∈Sa

∑
j∈Su

si j, (3.28)

where z1 ≥ 0 and z2 ≥ 0 are the newly introduced variables. Similarly, by introducing Jloc
i j ≥ 0

and Jext
i j ≥ 0 as the local and external interference terms at the jth SUE in the ith small cell, we
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can replace (3.24e) and (3.24f) by

si j + log
(

Jloc
i j + Jext

i j +N0

)
≥ GSI

i j

(
pi j,Jloc

i j ,Jext
i j ,p(n)

)

and

log
(

pi j
∣∣hii j

∣∣2 + Jloc
i j + Jext

i j +N0

)
≥ GI

i j

(
Jloc

i j ,Jext
i j ,p(n)

)
+ ti j,

respectively, with additional constraints

Jloc
i j ≥ ∑

k∈Su\ j
pik

∣∣hii j
∣∣2 , (3.29)

Jext
i j ≥ ∑

k∈Sa\i
∑

l∈Su

pkl
∣∣hki j

∣∣2 , (3.30)

Then, let us introduce the Lagrange multipliers λ = [λ1λ2]
T ,μ = [μ1, . . . ,μSa ]

T , and ξ =

[ξ11, . . . ,ξSaSu ]
T

, and proceed to write the dual problem as

min
λ≥0,μ≥0,ξ≥0

g(λ ,μ,ξ ) . (3.31)

where g(λ ,μ,ξ ) is determined by the following optimization problem

max
Πc

L (p,q,s, t,z,J,λ ,μ,ξ ) (3.32a)

s.t.
τ + z1

2
≥

√
q2 +

(τ − z1)
2

4
, (3.32b)

F
(

1,τ,τ(n)
)
≥ κm ∑

i∈F

‖vi‖2 +Pcirc
m + z2, (3.32c)

si j + log
(

Jloc
i j + Jext

i j +N0

)
≥ GSI

i j

(
pi j,Jloc

i j ,Jext
i j ,p(n)

)
,∀i ∈ Sa,∀ j ∈ Su, (3.32d)

log
(

pi j
∣∣hii j

∣∣2 + Jloc
i j + Jext

i j +N0

)
− ti j ≥ GI

i j

(
Jloc

i j ,Jext
i j ,p(n)

)
,∀i ∈ Sa,∀ j ∈ Su,

(3.32e)

Jloc
i j ≥ ∑

k∈Su\ j
pik

∣∣hii j
∣∣2 ,∀i ∈ Sa,∀ j ∈ Su, (3.32f)

(3.24d), (3.16e), (3.16h), (3.16i), (3.16j), (3.32g)
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where Πc = {Π,z ≥ 0,J ≥ 0} and the objective function L (p,q,s, t,z,J,λ ,μ,ξ ) is the partial

augmented Lagrangian function of (3.24), which can be written as

L (p,q,s, t,z,J,λ ,μ,ξ ) = q+λ1

(
1T tma +1T ts − z1

)
+λ2

(
z2 −κs1T p− ∑

i∈Sa

∑
j∈Su

si j

)

+ ∑
i∈Sa

μi

(
tm
i − ∑

j∈Su

si j

)
+ ∑

i∈Sa

∑
j∈Su

ξi j

(
Jext

i j − ∑
k∈Sa\i

∑
l∈Su

pkl
∣∣hki j

∣∣2)+
ρ
2

P (p,s, t,z,J) ,

(3.33)

where

P (p,s, t,z,J) =−(
1T tma +1T ts − z1

)2

− ∑
i∈Sa

(
tm
i − ∑

j∈Su

si j

)2

−
(

z2 −κs1T p− ∑
i∈Sa

∑
j∈Su

si j

)2

︸ ︷︷ ︸
P1(tm,s,z2,p)

− ∑
i∈Sa

∑
j∈Su

(
Jext

i j − ∑
k∈Sa\i

∑
l∈Su

pkl
∣∣hki j

∣∣2)2

, (3.34)

is the penalizing term, which is added to support the convergence speed of the distributed

algorithm. Without (3.34), when λ ,μ,ξ are fixed, (3.32) can be decomposed into the one

macrocell and multiple small cell sub-problems by the dual decomposition method (Ngo et al.,

2014a). However, the appearance of P (p,s, t,z,J) in (3.33) has coupled all the variables in

the objective function in (3.32a), so that the methods proposed in (Ngo et al., 2014a) cannot

be directly applied in here. At this point, we observe that when λ ,μ,ξ are fixed, (3.32) is still

convex. Thus, if we apply Alternating Optimization (AO) to iteratively solve each block of

variables, we can actually decompose the problem into smaller sub-problems. In particular, by

considering Πm = {q ≥ 0, tm ≥ 0,τ ≥ 0,v,ν ≥ 0,z ≥ 0} as variables and fixing the values of

the other variables from the previous iteration as parameters, the macrocell sub-problem can
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be casted as

max
Πm

q+λ1

(
1T tma − z1

)
+λ2z2 + ∑

i∈Sa

μitm
i −

(
1T tma −1T ts(t)− z1

)2
+P1

(
tm,s(t),z2,p(t)

)
(3.35a)

s.t.
τ + z1

2
≥

√
q2 +

(τ − z1)
2

4
, (3.35b)

F
(

1,τ,τ(n)
)
≥ κm ∑

i∈F

‖vi‖2 +Pcirc
m + z2, (3.35c)

(3.24d), (3.16e), (3.16h), (3.9e), (3.35d)

and by considering Πs
i = {pi ≥ 0,si ≥ 0, ts

i ≥ 0,Ji ≥ 0} as variables and fixing the values of

other variables from the previous iteration as parameter, the ith small cell sub-problem can be

written as

max
Πs

i

λ11T ts
i −λ2κs1T pi −μi ∑

j∈Su

si j +

(
∑

j∈Su

ξi jJext
i j − ∑

k∈Sa\i
∑

l∈Su

ξkl pil
∣∣hik j

∣∣2)

+P
(

pi,p
(t)
∼i,si,s

(t)
∼i, t

s
i , t

m(t), ts(t)
∼i ,z

(t),Ji,J
(t)
∼i

)
(3.36a)

s.t.: si j + log
(

Jloc
i j + Jext

i j +N0

)
≥ GSI

i j

(
pi j,Jloc

i j ,Jext
i j ,p(n)

)
,∀ j ∈ Su, (3.36b)

log
(

pi j
∣∣hii j

∣∣2 + Jloc
i j + Jext

i j +N0

)
− ti j ≥ GI

i j

(
Jloc

i j ,Jext
i j ,p(n)

)
,∀ j ∈ Su, (3.36c)

Jloc
i j ≥ ∑

k∈Su\ j
pik

∣∣hii j
∣∣2 ,∀ j ∈ Su, (3.36d)

(3.16i), (3.9f), (3.36e)

where P
(

pi,p
(t)
∼i,si,s

(t)
∼i, t

s
i , t

s(t)
∼i ,z

(t),Ji,J
(t)
∼i

)
is the function P (p,s, t,z,J) in which p∼i,s∼i,

ts
∼i,z,J∼i are fixed with values p(t)

∼i,s
(t)
∼i, ts(t)

∼i ,z
(t),J(t)∼i. Note that when λ ,μ,ξ are fixed, the

macrocell sub-problem (3.35) and each ith small cell sub-problem (3.36) are convex problems

with respect to all the relevant variables. By allowing each SAP and MBS solve its local

problem and updating the parameters with the exchanged information computed from opti-

mal solution, we can obtain the joint optimal solution of these sub-problems at convergence.

However, the optimal values obtained from solving these sub-problems may not be the global
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optimal solution to (3.24) because the fixed set of dual variables λ ,μ,ξ is not the optimal dual

variables. To obtain the optimal λ ,μ,ξ , we apply the gradient method to solve the master

dual problem (3.31) by iteratively updating these dual variables so that they will approach to

the optimal dual variables that achieve global optimality. The dual variables can be updated

following these rules

λ (n3+1)
1 =

[
λ (n3)

1 − ελ
((

1T tma +1T ts)− z1

)]+
,

λ (n3+1)
2 =

[
λ (n3)

2 − ελ
(
z2 −κs1T p−1T s

)]+
,

μ(n3+1)
i =

[
μ(n3)

i − εμ
(
tm
i −1T si

)]+
, (3.37)

ξ (n3+1)
i j =

[
ξ (n3)

i j − εξ (J
ext
i j − ∑

k∈Sa\i
∑

l∈Su

pkl
∣∣hki j

∣∣2)]+.
The decentralized algorithm is summarized in Algorithm 3. Note that in Step 4, each ith SAP

can compute the term J̃ext(n2)
i j = ∑k∈Sa\i ∑l∈Su p(n2)

kl

∣∣hki j
∣∣2 without the need to obtain the out-

of-cell CSI, e.g., hki j,∀k 
= i by the following process. Each ith SAP first request its jth SUE

to report its received power at the n2th step, e.g., ∑k∈Sa ∑l∈Su p(n2)
kl

∣∣hki j
∣∣2. Then, it computes

J̃ext(n2)
i j = ∑k∈Sa ∑l∈Su p(n2)

kl

∣∣hki j
∣∣2 −∑l∈Su p(n2)

il

∣∣hii j
∣∣2, where p(n2)

il and
∣∣hii j

∣∣2 are available at

the ith SAP.

Algorithm 2: Iterative Centralized JBPAO Algorithm

1: Initialize starting points of v(n),ν(n),p(n),τ(n);
2: Set n := 0;

3: repeat
4: Solve the convex problem in (3.24) to achieve the optimal solution

v�,p�,ν�,s�, t�,τ�,q�;

5: Set n := n+1;

6: Update v(n) = v�,ν(n) = ν�,p(n) = p�,τ(n) = τ�;

7: until Convergence of the objective (3.24a).

Remark 1. Problem (3.32) is the result of the equivalent transformation from the convex prob-

lem (3.24) and the relaxation of constraints (3.16e), (3.26), (3.28) and (3.30) into the objective
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(3.32a). With this relaxation, the solution achieved at each step 6–7 of Algorithm 3 does not

guarantee the feasibility of constraints (3.16e), (3.26), (3.28) and (3.30) as if they are not re-

laxed into the objective function. Because of this infeasibility, solution at each step 6–7 of

Algorithm 3 does not guarantee the feasibility of the minimum rate constraints (3.9c) as well.

When λ (n3),μ(n3),ξ (n3) converge at step 12 of Algorithm 2, the constraints (3.16e), (3.26),

(3.28) and (3.30) occur at equality and the minimum rate constraint (3.9c) is satisfied.

In (3.33), we note that without the penalizing term, the sub-problems in (3.35) and (3.36) can

be optimally solved at one-shot to achieve the optimal solution with given λ (n3),μ(n3),ξ (n3).

We refer to this approach as dual decomposition method. Indeed, by not considering the AO

points, we can simply apply Algorithm 3 to achieve similar results as with the ADMM method.

However, we will show later in our simulation results that dual decomposition method will

converge slower than ADMM.

Algorithm 3: Iterative Decentralized JBPAO Algorithm

1: Initialize FOTCA points of v(n1),ν(n1),p(n1),τ(n1); AO points

p(n2),q(n2),s(n2), t(n2),z(n2),J(n2); dual variables λ (n3),μ(n3),ξ (n3);

2: Set n1 := 0; n2 = 0; n3 = 0;

3: repeat
4: repeat
5: The ith SAP compute J̃ext(n2)

i j ,∀ j ∈ Su, then signal J̃ext(n2) to the other SAPs and

MBS to feed into their own P (p,s, t,z,J);
6: The ith SAP solves (3.36), then signal Πs

i to the other SAPs and MBS;

7: The MBS solves (3.35), then signal Πs
i to the other SAPs;

8: n2 := n2 +1;

9: until Convergence of p(n2),q(n2),s(n2), t(n2),z(n2),J(n2);

10: Update dual variables using (3.37);

11: n3 := n3 +1;

12: until Convergence of λ (n3),μ(n3),ξ (n3);

13: n1 := n1 +1;

14: The MBS updates v(n1),ν(n1),p(n1),τ(n1) and repeat Step 3–12 until convergence of the

objective (3.32a).
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3.5 AEE with adaptive decoding power and SAP selection

In this section, we aim at improving the achieved AEE by conserving more power contributing

to P̃tot with SAP selection strategy. In particular, we can decide to switch OFF the SAP to save

more power so that the achieved AEE can result in a better performance. This improvement

of AEE can be intuitively explained as follows. First, with fewer SAPs concurrently receiving

and transmitting, SUEs and MUEs suffer from less interference so that the numerator of AEE

increases. Second, fewer SAPs switched ON means that less total power is consumed, which in

turn reduces the denominator of AEE. Being motivated by this intuition and taking advantage

of the developed framework in Section 3.3.3, we introduce binary variables bi ∈ {0,1} ,∀i∈Sa

as the selection variables for the SAP, where bi = 1 means that the ith SAP is active to receive

backhaul data and transmit to its SUEs and bi = 0 means that the ith SAP is switched OFF. The

new formula of Pcirc
s,i ,∀i ∈ Sa can be presented as

P̂circ
s,i = bi

(
Pactive

s +Pdiss
s

)
+Pdec

s,i . (3.38)

Then, we must ensure the relationship that when bi = 0, vi = 0 and pi = 0. This can be enforced

since when the ith SAP is turned OFF, there should be no beamforming transmitted towards

it and it also should not transmit any signal to its SUEs. This condition can be easily met by

introducing the following two convex constraints: ‖vi‖2 ≤ biPmax and pi j ≤ bi pmax. Thus, the

AEE optimization problem with SAP selection can be formulated as

max
v,p≥0,b

∑i∈M Ri +∑i∈Sa ∑ j∈Su ri j

P̂tot

(3.39a)

s.t. ‖vi‖2 ≤ biPmax,∀i ∈ Sa, (3.39b)

pi j ≤ bi pmax,∀i ∈ Sa,∀ j ∈ Su, (3.39c)

ri j ≥ birs
min,∀i ∈ Sa,∀ j ∈ Su, (3.39d)

bi ∈ {0,1} ,∀i ∈ Sa, (3.39e)

(3.9b)− (3.9f). (3.39f)
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where

P̂tot = κm ∑
i∈F

‖vi‖2 +Pcirc
m +κs ∑

i∈Sa

∑
j∈Su

pi j + ∑
i∈Sa

P̂circ
s,i .

For this non-convex combinatorial problem, we follow the same steps in Section 3.3.3 to arrive

at the combinatorial approximated problem

max
Πb

{q|(3.39b)− (3.39e), (3.24b)− (3.24g)} , (3.40)

where Πb = {Π,b}. Algorithm 2 can be applied to iteratively solve (3.40) and update rele-

vant parameters until convergence. Note that without constraints (3.16d), (3.24e), and (3.24f),

(3.40) is indeed a MISOCP problem. This is because these convex constraints contain the

form log(x) ≥ y, which can be easily rewritten into x ≥ ey and reveals (3.40) as a general

mixed integer nonlinear convex programming. Towards this end, we are motivated to approxi-

mate (3.16d), (3.24e), and (3.24f) with corresponding SOC constraints so that (3.40) becomes

a MISOCP and can be solved optimally and much more efficiently by a dedicated MISOCP

solver like MOSEK. It is important to state that the accuracy of this approximation can be

achieved within a controlled error since we aim to approximate x ≥ ey by (Ben-Tal & Ne-

mirovski, 2001a)

∥∥∥(2−my+5/3
)
/2,

√
19/72

∥∥∥ ≤ κ1,∥∥2
(
1+2−my

)
,(κ2 −1)

∥∥ ≤ κ2 +1,∥∥∥κ1,κ2/
√

24
∥∥∥ ≤ κ3, (3.41)

‖2κ2+i,(κ3+i −1)‖ ≤ κ3+i +1, i = 1, . . . ,m,

κ3+m +1 ≤ x,

where κi,∀i = 1, . . . ,3+m are the newly introduced variables and m is the given parameter

that controls the accuracy of the approximation. This implies that for a given sufficiently large

m, the system of constraint (3.41) can approximate the hypograph of
{
(x,y) ∈ R

2|x ≥ ey} to

an arbitrary accuracy ε . From (Ben-Tal & Nemirovski, 2001a), when x ∈ [0, x̄] and x ≥ ey,

there exists {x,y,κ1, . . . ,κ3+m} that satisfies (3.41). In addition, if x ∈ [0, x̄] and the solution
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set
{
(x,y) ∈ R

2|x ≥ ey} is able to be extended by {x,y,κ1, . . . ,κ3+m} for some m that satisfies

(3.41), then ey − ε ≤ x ≤ ey + ε .

Complexity analysis: We discuss the computational complexity of each proposed algorithm.

We note that the convex approximated problem (2.21) is a general nonlinear convex program-

ming because it contains the exponential cone constraints (3.16d), (3.24e), and (3.24f). By fol-

lowing the result in (Ben-Tal & Nemirovski, 2001b) and realizing that there are Sa(3Su +N +

2)+M(N+2)+2 continuous variables in (3.24), the worst-case per-iteration complexity analy-

sis of Algorithm 1 for (3.24) after omitting the small order is given by O
(
S4

aS4
u +S4

aN4 +M4N4
)
.

Similarly, we derive the complexity analysis for Algorithm 2 for problem (3.40). With SOC

approximation (3.41), (3.40) is a MI-SOCP, which is a combinatorial optimization problem.

There are Sa binary variables bi in (3.40), which results in 2Sa combinations of all binary vari-

ables. Given the fixed value of bi,∀i∈Sa, (3.40) is in the form of SOCP. Similar to the analysis

in (Nguyen et al., 2016b), we note that there are approximately Sa(3Su+N +2)+M(N +2)+

2+(Sa +M + 2SaSu)(m+ 4) continuous variables in (3.40) with 2 constraints of dimension

N(Sa+M), 2Sa+2M+SaSu+2 constraints of dimension Sa+M and (Sa+M+2SaSu)(m+4)

SOC constraints of dimension 3. Thus, the worst-case per-iteration complexity of Algorithm 2

on problem (3.40) is given by O
(
2Sa

(
S4

aS3
u(M

3 +N3 +m3)
)
+M4

(
N3 +m3

))
.

Alternatively, we note that Algorithm 3 decouples the joint problem (3.24) into smaller sub-

problems at the MBS and each SAP. Thus, its complexity should rely on the individual com-

plexity that solves the macrocell subproblem (3.35) and the small cell subproblem (3.36).

By applying similar analysis and omitting small order, the worst-case per-iteration complex-

ity analysis for solving (3.35), which contains 4+ (Sa +M)(N + 2) continuous variables is

O
((

S4
a +M4

)
N4

)
and for solving (3.36), which contains 5Su continuous variables is O

(
S4

u
)
.

Signaling information analysis (Shi et al., 2014): For centralized approach in Algorithm 2, we

assume that all computations are executed at the MBS. The MBS has the knowledge of hi,∀i ∈
F . It receives SaSu channel coefficients from each SAP, and broadcasts SaSu coefficients

that represents the value of variables p� to all the SAPs. For the decentralized approach in
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Algorithm 3, under the assumption that the MBS and each SAP only know their local CSI, the

message passing in Algorithm 3 at each transmitter in the considered network can be listed as

follows:

- MBS has the knowledge of hi,∀i∈F , broadcasts 2+(2Sa+M) coefficients to all the SAPs

and receives 5Su coefficients from each SAP.

- Each ith SAP has the knowledge of hi jk,∀ j ∈ Sa,k ∈ Su, broadcasts 5Su coefficients to all

neighbor SAPs and MBS and receives 2+(2Sa +M) coefficients from the MBS and 5Su

coefficients from other SAP.

Note that the decentralized based on dual decomposition method also has the same local knowl-

edge of CSI and signaling information as the ADMM method.

3.6 Numerical Results

In this section, we evaluate the performance of the algorithms proposed in the previous sec-

tions. We assume time-invariant and flat Rayleigh fading channels and the pathloss component

is calculated as
(
di j/d0

)−3.8
, where di j is the distance between the ith transmitter and the jth

receiver, and d0 = 100 m is the reference distance. We apply a circular coverage of macro-

cell with radius 10d0. The MBS is positioned at the center, where there are S = 4 small cells

uniformly positioned in the macrocell coverage. We assume that each small cell has a circular

coverage of radius d0 with its SAP at the center and one SUE at the circumference of each

small cell coverage. In addition, we assume that there are M = 2 MUEs uniformly scattered

across the macrocell coverage. Unless being mentioned elsewhere, we choose this scenario

as the standard model for the numerical simulation, where the number of transmit antenna as

N = 4 and the maximum transmit power is Pmax = 50 dBm, while at the small cell, we choose

the maximum transmit power at the SAP pmax = 30 dBm. To protect the QoS of each MUE

and SUE, we choose the minimum rate requirement rm
min = rs

min = 0.01 bits/s/Hz. The noise

power is set N0 = −120 dB, and the bandwidth is W = 10 MHz. Furthermore, we choose

Pcirc
m = 30 dBm, Pad

s,i = 30 dBm, κm = κs = 5 and αi = 1,∀i ∈ Sa (Ng et al., 2012; Tervo et al.,

2015b). Throughout the numerical section, we compare the network performance between the
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following schemes, Scheme A and B: maximization of AEE using adaptive decoding power

model as in (3.6) and fixed decoding power, respectively; Scheme C: maximization of AEE

considering adaptive decoding power model as in (3.6) and SAP selection as in Section 3.5;

Scheme D: maximization of access sum rate (ASR) whose objective function is only the nu-

merator of the objective function in (3.10). The solution of the ASR maximization problem is

achieved through Algorithm 2 and then used to compute the achieved AEE by plugging it into

the formula (3.7). It is worth to mention that Scheme B with fixed decoding power assignment

and no SAP selection is similar to the traditional works in the literature (He et al., 2014; Xu et

al., 2014; Ng et al., 2012; Tervo et al., 2015b).
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Figure 3.2 Convergence of proposed BnB, Algorithm 2,

and other algorithms at Sa = 2.

In Fig. 3.2–3.4, we show the convergence of the objective function in (3.10) by applying

the BnB algorithm mentioned in Section 3.3.2 and Algorithm 2 (Centralized JBPAO) with

Sa = 2, 3, 4 amd Pcirc
m = 10 dBm, Pad

s,i = 10 dBm. In addition, we also compare these algorithms

with the traditional approaches using the Dinkelbach method (Ng et al., 2012) combined with
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Figure 3.3 Convergence of proposed BnB, Algorithm 2,

and other algorithms at Sa = 3.

the FOTCA technique and with the weighted minimum mean square error (WMMSE) (He et

al., 2014) to solve the fractional nonlinear problem. Note that with the Dinkelbach method,

the fractional objective function in (3.10) is transformed into a subtractive form with additional

fixed parameter θ (t) (Ng et al., 2012). The process of solving the new problem in subtractive

form can be briefly described in two folds: first, we fix θ (t) and apply the convex approxi-

mation in Section 3.3.3 or WMMSE in (He et al., 2014) to iteratively solve the approximated

problem and update corresponding parameters; second, we update θ (t) and repeat the first step.

In Fig. 3.2–3.4, we observe that the result of the objective function from Dinkelbach-based

FOTCA and Dinkelbach-based WMMSE approaches and Algorithm 2 converge after few iter-

ations. However, both the Dinkelbach-based approaches require more iterations to converge to

the same solution as with Algorithm 2, starting with the same initial point. The reason is that

in our proposed algorithm, we aim to directly tackle the fractional objective function without

introducing new parameters, which saves more time to achieve the converged result. On the
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Figure 3.4 Convergence of proposed BnB, Algorithm 2,

and other algorithms at Sa = 4.

other hand, the BnB algorithm requires many more iterations to update the upper and lower

bounds of the objective function and finally converges after several iterations, where at larger

Sa, the iteration number for convergence increases rapidly. We observe that the converged val-

ues of Algorithm 2 are very close to the baselines created by the converged values of the BnB

algorithm at Sa = 2, 3, 4, which again shows the efficiency of our proposed method to achieve

a close to optimal solution with much less computational complexity.

In Fig. 3.5, we show the convergence of Algorithm 2 (Centralized JBPAO) and Algorithm 3

(Decentralized JBPAO). Furthermore, we also compare the convergence speed of Algorithm 3

based on two different approaches: ADMM and Dual Decomposition (Dual Dec.). Here, the

performance is computed with respect to the total number of iterations necessary for the algo-

rithm to eventually converge. We observe that the decentralized Algorithm 3 based ADMM

and Dual Dec. finally converge to the same value at the convergence of the centralized Al-

gorithm 2 by iteratively solving the dual problem, applying the dual update and updating the
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initial FOTCA point. Compared to the ADMM algorithm with roughly 70 iterations for con-

vergence at the same initial points, the Dual Dec. algorithm requires much more iterations to

search for the optimal dual variables through gradient method with respect to fixed FOTCA

points.
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Figure 3.5 Convergence comparison of centralized and

decentralized JBPAO algorithms.

In Fig. 3.6, we show the achieved AEE with respect to Pmax by applying Algorithm 2 for

Schemes A, B, C, and D. In addition, we also compare the performance of Algorithm 2 with the

the signal-to-leakage-plus-noise ratio (SLNR) scheme as used in (Venturino & Buzzi, 2015). In

SLNR scheme, transmit beamforming is chosen by vi = ci

(
∑ j 
=i h jhH

j +N0IM

)−1
hi,∀i ∈ F ,

where ci is the normalized factor and we optimize the joint power allocation at the MBS and

SAPs. We choose rm
min = rs

min = 0. From the figure, we observe that when Pmax increases,

AEE values of Schemes A, B, and C and SLNR increase and then saturate. In fact, a low

power is required to maximize the AEE; therefore, increasing MBS power does not help in

improving the AEE. The intuition of this remark is that when the BS tries to allocate more
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power with more power budget, their achievable rates are also limited due to more interference

from other simultaneous transmissions. However, this limit does not suffice to compensate

the cost of using more P̃tot and results in the decrease of AEE. Another observation is that the

achieved AEE from Scheme C outperforms other scenarios. This is because when there are

some small cells achieving low rate while they still need to maintain power Pcirc
s,i to stay on, it

is better to switch off these SAPs to save circuit power so that less total power is consumed

to achieve high AEE. The solution from Scheme A provides better AEE than Scheme B. This

can be explained as when the SAP is unaware of the amount of power needed for the decoding

process, it should apply redundant power to make sure sufficient information will be decoded.

Hence, this results in power usage inefficiency and degrades the achieved AEE. In addition,

compared to the scenario with fixed SLNR beamforming, Scheme A also outperforms SLNR

scheme since it is more beneficial to optimally use antenna array to jointly design transmit

beamforming rather than predetermining the beamformed direction and limit the design with

only power allocation optimization. We observe that the achieved AEE of Scheme D shows a

very low performance compared to others. This is because the MBS and SAPs attempt to use

as much power as possible to attain the maximum ASR; thus when Pmax becomes large, AEE

will start to decrease.

In Fig. 3.7, we compare the performance of Algorithm 2 for Scheme A in the limited CSI

scenario, where the CSI acquired at the transmitter is erroneous because of some source of er-

rors such as imperfect estimation, quantization or limited feedback. For simplicity, we assume

that only estimated CSI is known at the transmitters with the estimation errors lying in some

bounded set. For example, the estimated channel model can be given by hi = ĥi + εh,∀i ∈ F

and hi jk = ĥi jk + εh,∀i, j ∈ Sa,k ∈ Su, where ĥi, ĥi jk are the estimated CSI and ‖εh‖2 ≤ δh

and |εh|2 ≤ δh represents the estimation error which lies in a bounded set defined by δh and

δh, respectively. It is important that the solution of the optimization problem in (3.10) with

the knowledge of estimated CSI might not lie in the feasible domain of the problem with

perfect CSI. This is because this “imperfect” solution may probably lead to the violation of

constraints (3.9b)–(3.9c). Thus, a robust optimization design in the case of erroneous CSI with
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Figure 3.6 Comparison of achieved AEE with respect to

Pmax at different scenarios.

the worst-case design as in (Nguyen et al., 2016b) must be considered. As in Fig. 3.7, we

show the achieved AEE at different values of error bound δh = δh = δ = 0, 0.2, 0.3, 0.4 and

rm
min = rs

min = 0.01, where δ = 0 is equivalent to the perfect CSI case. We observe that the

achieved AEE in the imperfect CSI is degraded at lower performance compared to the perfect

CSI and the achieved AEE reduces when δ increases. This is because the respective robust

optimization problem is solved with the estimated CSI knowledge and the obtained solution is

deteriorated with this imperfect CSI.

To further investigate the behavior of overall power consumption, in Fig. 3.8, we evaluate Ptot

with the solution achieved by applying Algorithm 2 to solve the problems with the same setup

as in Fig. 3.6, e.g., Schemes A, B, C, and D. The result is shown at two levels of Pmax = 30, 50

dBm. By observing Fig. 3.8, we see that Scheme C always consumes less power than Scheme

A, B and D. This is due to the fact that in Scheme C, the inefficient SAPs are switched off to

save not only transmission power but also the circuit power, decoding power and the transmit
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Figure 3.7 Achieved AEE with respect to Pmax in limited CSI.

beamforming power from the MBS towards that SAP for WBC. It is worth to note that at high

value of Pmax = 50 dBm, Scheme D uses most of the maximum budget power at the MBS Pmax

and each SAP pmax to maximize the ASR. This explains the reason that the achieved AEE of

Scheme D is very low in Fig. 3.6.

In Fig. 3.9, we show the achieved AEE with respect to rs
min at two different Pmax = 30, 50 dBm.

The AEE is evaluated for Scheme A, B, and D. Again, we observe that Scheme A outperforms

Scheme B and D. This can be explained similarly to Fig. 3.6. From the figure, we see that when

rs
min increases, the achieved AEE in Scheme A and B initially remain constant at low rs

min and

decrease when rs
min grows sufficiently large. This is because as rs

min increases, more transmit

power from each SAP for WAC transmission and corresponding transmit beamforming power

from MBS towards that SAP for WBC are required to maintain the minimum rate requirement

constraints. In addition, the decoding power at each SAP also increases, which finally results

in the decrease of AEE.
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Figure 3.8 Achieved Ptot with respect to Pmax.

In Fig. 3.10, we show the achieved AEE obtained from Algorithm 2 in Scheme A with respect

to the number of small cells Sa at different values Pcirc
m = 25, 30, 35, 40 dBm. We first see that

when Pcirc
m increases, more power at the MBS is required to maintain the operation of the WAC

and WBC, which in turn reduces the achieved AEE. Moreover, when the number of small cell

increases, all the achieved AEE decreases accordingly. This is obvious because when there are

more small cells serving their SUEs, the total rate achieved at the small cells also increases

accordingly. However, this increase is not sufficient to compensate the cost of consuming more

total power. Specifically, the MBS needs to consume more power to beamform the backhaul

data to the small cells. In addition, more transmit and circuit power at each SAP also con-

tributes to the increment of Ptot, which increases the overall power consumption. Therefore,

the AEE reduces when the number of small cell becomes higher.
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3.7 Concluding Remarks

This paper studied the joint design of transmit beamforming and power allocation that max-

imizes the AEE on the DL of the two-tier WB small cell HetNets. An important impact of

decoding power at each SAP that is proportional to the achievable backhaul rate at each small

cell is considered. In the first centralized algorithm, a global optimal solution is achieved by a

very high complexity algorithm based on BnB approach. In the second centralized algorithm,

a much lower complexity algorithm based on FOTCA is proposed, in which an approximated

problem is iteratively solved until convergence. Through numerical results, we see that the

solution achieved from the low complexity algorithm performs very close to the global opti-

mal solution, which proves the efficiency of our proposed algorithm. Compared to traditional

designs criteria using fixed decoding power, our proposed EE model achieves a better AEE

since more power usage is conserved under the proposed adaptive decoding power. These re-

sult are far more improved in the extended AEE problem that jointly considers SAP selection.

To approach a more practical algorithmic implementation, we develop a distributed algorithm

by conducting the framework of ADMM on the convex approximated problem, where MBS

and each SAP now only have to solve their own problems with local CSI and limited exchange

information. Results have shown that our proposed distributed method significantly improves

the convergence speed compared to previous works based on dual decomposition method.
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(Nguyen et al., 2018a).

4.1 Introduction

Network densification has recently become one essential catalyst for the evolution of exist-

ing heterogeneous networks (HetNets) towards the emerging 5G networks (Andrews et al.,

2014; Kela et al.). By densely deploying more short-range, low-power small cell access points

(SAPs) in multi-tier HetNets (Ghosh et al., 2012; Chandrasekhar et al., 2009; Nguyen et al.,

2013), operators are able to deliver seamless connectivity to users and significantly enhance the

area spectral efficiency. However, this also means that a denser and more expensive backhaul

connection establishment with the core network is required.

Recently, wireless backhaul (WB) is presented as a viable solution to overcome the installa-

tion difficulty and expensive cost of wired backhaul architecture in legacy small cell networks

(Siddique et al., 2015a; Ge et al., 2014; Hur et al., 2013a). WB enables the SAPs to wirelessly

transmit and receive backhaul data to/from the macrocell base station (MBS) concurrently

with the wireless access (WA) communications. The establishment problem creates two fun-

damental bottlenecks which limit the overall achievable rate performance. First, deploying

WB communications concurrently with WA communications renders the interference more se-

vere. Compared to wired backhaul with high and stable rate, WB rate are prone to the wireless

channel variation. Thus, allocating power resources between competing nodes to maintain a
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sustainable operation is more challenging. Second, each SAP should relay the received back-

haul data from the core network to its users (Siddique et al., 2015a). Therefore, it is essential

to impose that the WB rate achieved at a SAP exceeds the WA rate. Indeed, the WB highly

demands an appropriate radio resource design that caters to the stringent WB and WA com-

munications constraints in small cell HetNets to achieve its promising superior performance

(Zhao et al., 2015; Wang et al., 2016). These challenges are known as the limiting factors of

WB networks. Recently, deploying a local cache at each small cell is shown to be effective,

c.f. (Golrezaei et al., 2012; Liu & Lau, 2014, 2013), since it can offload wireless backhaul

transmission task by prefetching data into the cache prior to the user request. However, small

cell cache storage is often size-limited. Thus, the dual roles of limited wireless backhaul and

small cell caching are very essential to satisfy the scope of 5G requirement for ubiquity and

high data rate. Several work designs the resource allocation under the joint consideration of

cache and limited fronthaul-capacity in cloud radio access network (C-RAN) as in (Tao et al.,

2016; Chen et al., 2017; Tran et al., 2017), or limited backhaul in small cell networks as in

(Liao et al., 2017; Hamidouche et al., 2017). However, jointly designing WBl and cache is

complicated regarding the discussed challenges above, so that the existing work of WB Het-

Nets with resource allocation in (Wang et al., 2016; Zhao et al., 2015; Hu et al., 2016) have

been separated from the cache management for the sake of tractability.

4.1.1 Related Work

WB communications were first introduced as a standard technology to route backhaul data

over-the-air in IEEE 802.16 wireless mesh networks in (Viswanathan & Mukherjee, 2006)

where the authors developed a joint routing and scheduling strategy that maximizes the total

network throughput. Towards the evolution of 5G, WB technology was proposed as a viable

solution in sub–6 GHz spectrum band to overcome the deployment cost challenge of the wired

backhaul by allowing the WB and WA communications to operate concurrently. In (Hoydis

et al., 2013; Sanguinetti et al., 2015), a reverse time division duplexing (RTDD) scheme is

proposed to mitigate severe interference from the newly introduced communications. In (Wang
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et al., 2016), the authors developed a joint bandwidth partitioning and user association strategy

that maximizes the sum log rate of the downlink small cell using RTDD. Moreover, Zhao et al.

(2015) aimed at intuitively minimizing the operational cost of the WB architecture by achieving

the least number of admitted WB small cells in the overall network under quality-of-service

(QoS) constraints. In (Hu et al., 2016), the authors studied the design of wireless backhaul

transmissions in C-RAN. A joint beamforming for the WB links and the user-centric clustering

is formulated to maximize the weighted sum rate.

The model of WB system in two-tier HetNets (Wang et al., 2016) is constructed similarly to

the multiple point–to–point three–node relays system, where in the special case of one small

cell, wireless backhaul system reduces to the traditional two-hop relay system (Zlatanov et al.).

Among relaying related work, buffer-aided relay has been considered a prominent technique

to improve the overall system performance. However, this relay-buffer concept has not been

effectively utilized in the existing WB networks such as in (Wang et al., 2016; Sanguinetti

et al., 2015; Zhao et al., 2015; Hu et al., 2016), where each SAP is treated as a relay that

receives backhaul data from the source MBS and then forwards to its small cell user (SUE).

Here, each instantaneous WB rate at the SAP is generally different from the WA rate because

of the independence of the fading of these two links (Xia et al., 2008). Without buffering

at the intermediate small cell (or relay) node, we observe two important insights from the

conventional constraint, where the backhaul rate is considered larger than or equal to the access

rate (Wang et al., 2016). First, even when the WA link has a good channel condition, its

performance is limited by the WB rate bottleneck with a possibility of poor channel condition

(Samarakoon et al., 2013). Second, when the backhaul link has a good channel, it is designed

to transmit at a rate at most equal to the WA rate to avoid data drop occurrence (Xia et al.,

2008). To enhance the performance beyond these limitations, a buffer utilization, inspired by

the buffer-aided relay framework (Xia et al., 2008), can be regarded at each SAP to increase

the upper bound of the access rate. This upper bound is now defined as the WB rate with the

buffered data in the queue, rather than defined as only the WB rate like in (Wang et al., 2016;

Sanguinetti et al., 2015; Zhao et al., 2015; Hu et al., 2016). According to (Xia et al., 2008),
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the WB communication can transmit strictly faster than its respective WA communication, and

the data which is not forwarded to the SUE can be stored in the buffer of the SAP and be

transmitted later in the subsequent time slots. Therefore, exploiting buffer-aided small cell is

promising to improve wireless backhaul network.

Due to the aforementioned similarity between WB HetNets and 3-node relay system, designing

buffer usage in 3-node relay networks deserves a thorough survey. In the literature, engineer-

ing of buffer usage in a three-node relay system has been an attractive research area, e.g.,

(Nomikos et al., 2016; Zlatanov et al.; Xia et al., 2008; Ikhlef et al., 2012; Krikidis et al.,

2012; Zlatanov & Schober, 2013; Qiao et al., 2013). These work invoke a framework of opti-

mization to design the power allocation at the source and relay sides subject to various delay

constraints such as: infinite delay (Krikidis et al., 2012), average delay with adaptive relaying

strategy (Zlatanov & Schober, 2013) or statistical delay with fixed relaying (Qiao et al., 2013).

These delay constraints can be interpreted as the requirement that the stored data should not

exceed the buffer size. It is noteworthy that in these work, analytical results on queuing theory

are applied at the buffer so that asymptotic or probabilistic behavior of the delay is precisely

characterized and queuing state information (QSI) and channel state information (CSI) at all

time slots are known to achieve the optimal solution. However, considering multiple three-node

relay links that takes into account interference is under–explored in the literature so that jointly

integrating this buffer-aided relay concept and managing the radio resource under interference-

limited regime in the WB small cell HetNets should not be trivially treated. There are also

some work sharing this point of view by considering buffer design in their interference-limited

network. Peng et al. (2016) considered the explicit operation of buffer queue in heterogeneous

C-RAN and took into account the expected queue stability constraints under optimizing the net-

work objective using Lyapunov stochastic optimization and weighted minimum mean square

error algorithms. In (Lau & Cui, 2010), the authors designed a joint power and sub-carrier

allocation for orthogonal frequency division multiple access (OFDMA) system to minimize

the system delay by solving a Bellman-equation-based dynamic programming problem and

proposed a low complexity online algorithm to achieve the same optimal solution. Guo et al.
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(2017) presented a dynamic resource allocation for delay-aware application in two-tier small

cell networks which aims at maximizing the time-average sum capacity of small cell users

subject to the user’s delay constraint.

4.1.2 Motivation and Contribution

Motivated by the prominent benefits that buffer can provide on buffer-assisted 3-node relay

or large cellular network, in this paper, we propose a novel model of two-tier WB small cell

HetNets that considers the finite buffering capability at the SAPs. The novelty of our work

lies in the proposal of employing small cell buffer in the two-tier WB small cell HetNets and

how to formulate a problem to jointly optimize the usage of small cell buffer together with

radio resource allocation to improve the network performance compared to conventional de-

signs (Wang et al., 2016; Nguyen et al., 2016c; Zhao et al., 2015). To avoid cross-tier and

self-interference arising from the new half-duplex WB transmissions and cochannel interfer-

ence from other WA transmissions, we are inspired by the cochannel time division duplexing

scheme in (Hoydis et al., 2013) to propose the time–spectrum allocation for the downlink trans-

missions on top of jointly designing transmit beamforming and power allocation at the MBS

and SAPs. Compared to the previous work where the authors investigated the relationship be-

tween the WB and WA communications without exploiting the buffering ((Wang et al., 2016;

Nguyen et al., 2016c; Zhao et al., 2015)), our work appropriately exploits the SAP buffer by

imposing a proper mathematical relationship based on the practical system between WB, WA,

and buffered data management to achieve higher WA rate. In particular, we impose a new

constraint in our optimization problem which requires that the sum of backhaul transmitted

data at the current time slot and the buffered data from the previous time slots is greater than

or equal to the access transmitted data. Based on this constraint, when the WB data is higher

than the WA data evaluated at the achieved beamforming and power solution, the difference

between WB and WA data is stored in the SAP buffer. These buffered data can be transmit-

ted to SUEs in the subsequent time slots when the corresponding WA link has better channel

conditions. Although solutions of buffer usage were well explored via 3-node relay system
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(Nomikos et al., 2016; Zlatanov et al.; Xia et al., 2008; Ikhlef et al., 2012; Krikidis et al.,

2012; Zlatanov & Schober, 2013; Qiao et al., 2013), optimally allocating multi-dimensional

radio resource to harness the best buffer usage in interference-limited environment, like our

considered system, has not been well-investigated in the literature. It is worth to mention that

introducing buffer into WB HetNets increases more challenges in the resource allocation tasks.

In addition, our work differs from existing back-pressure power control framework for infinite

buffer capacity in which power allocation is optimized to minimize the buffered data and sta-

bilize the queue (Peng et al., 2016; Venkatraman et al., 2016b). Rather than stabilizing a finite

buffer, we aim at using the buffer queue in a proper manner to maximize the WA sum rate. Our

contributions are summarized as follows:

- We examine the impact of our proposed buffer strategy while assuming the availability of

instantaneous CSI in all current and future time slots. Hence, we formulate an offline problem

of joint design of beamforming and power allocation in a number of time slots that maximizes

the WA sum rate. This problem’s solution serves as a benchmark against the later–developed

online algorithm. The formulated problem is non-convex and NP-hard. Hence, we develop

a low-complexity algorithm to solve it via the following framework: (i) transform it into an

equivalent and more tractable form; (ii) convexify the transformed problem by proper convex

approximation techniques to the respective non-convex constraints.

- Assuming that the transmitter only knows the CSI at the current time slot, we reformulate our

problem of interest as an online problem of beamforming and power allocation at each time

slot. We also propose to maximize the WB rate at each time slot so that the data transmitted

over WB link is higher than that over the WA link. Then, we employ similar steps from the

offline approach to develop a low complexity algorithm that solves the online problem.

- We provide theoretical proofs which characterize the superiority of the proposed solutions for

offline and online problems compared to the conventional work in (Wang et al., 2016; Nguyen

et al., 2016c).
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- Extensive numerical results show that our proposed solutions properly take advantage of

buffering in WB small cell HetNets and hence improve the performance of the system.

The rest of this chapter is organized as follows. Section 4.2 introduces the system model.

In Section 4.3, we formulate the offline and online optimization problems, and present the

respective solution approaches to solve them. Section 4.6 presents and discusses our numerical

results under different simulation setups. Finally, the concluding remarks are given in Section

4.7.

4.2 System Model

4.2.1 Spatial Model

We consider the downlink of a two-tier WB HetNet consisting of one MBS in the macrocell

tier and Sa SAPs in the small cell tier as depicted in Fig. 4.1. The MBS is equipped with N > 1

antennas to communicate with its intended receivers, which includes Sa SAPs and M macrocell

users (MUEs). We assume each small cell contains Su SUEs. In this work, the WB communi-

cations between the MBS and SAPs operate concurrently with other WB communications and

with WA communications from the MBS to its MUEs. Each SAP is equipped with a single

antenna to serve Su SUEs within its small cell coverage. For simplicity, we assume that the

number of SUEs in each small cell is the same and the SUEs and MUEs are equipped with a

single antenna each.

4.2.2 Time and Spectrum Allocation for Downlink Transmissions

To facilitate the radio resource allocation design presented later for half-duplex transmitters

and receivers, we employ the time–spectrum allocation (similar to the cochannel time division

duplexing scheme in (Sanguinetti et al., 2015; Hoydis et al., 2013)) to accommodate the WB

and WA communications on the channel resources. The time domain is divided into multiple

time slots. We assume that the downlink and uplink transmissions are assigned the odd and
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even time slots, respectively. In each time slot dedicated for downlink, the spectrum band is

split by a factor of α to accommodate the bakchaul downlink transmissions orthogonally to the

access ones. The proposed time–spectrum allocation is illustrated in Fig. 4.1.

Figure 4.1 Two-tier WB HetNets with small cell buffering with the time–spectrum

setting.

4.2.3 Signal Model

Let us consider first the resource blocks dedicated for macrocell downlink transmissions. Here,

we assume that one resource block has T seconds and αW Hertz. For convenience, we denote

F = {Sa,M }= {{1, . . . ,Sa} ,{Sa +1, . . . ,Sa +M}}, where the SAP indices set is Sa and the

MUE indices set is M . By referring the interval [t, t+1) as the t th time slot, the received signal

within this resource block at the jth receiver at the t th time slot is

y j(t) = vH
j (t)h j(t)x j(t)+ ∑

k∈F\ j
vH

k (t)h j(t)xk(t)+n j(t), (4.1)

where h j(t) ∈ C
N×1 is the channel state vector at the t th time slot which includes fading gain

and path-loss components, v j(t) ∈ C
N×1 is the beamforming vector at the t th time slot from

MBS to the jth receiver, x j(t) is the message at the t th time slot intended for the jth receiver with

unit average power, e.g., E
{

x j(t)
(
x j(t)

)∗}
= 1 and n j(t) is a circularly symmetric complex

additive white Gaussian noise (AWGN) at the jth receiver, which is distributed according to

a normal distribution C N (0,N01), where N01 is the noise power over the allocated spectrum.

Treating interference as noise, the achievable rate R j(V (t)), computed in bits/s/Hz, and the
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amount of information D j(V (t)), computed in bits, at the jth receiver are

R j(V (t)) = log

⎛
⎜⎜⎝1+

∣∣∣vH
j (t)h j(t)

∣∣∣2
∑

k∈F\ j

∣∣vH
k (t)h j(t)

∣∣2 +N01

⎞
⎟⎟⎠ (4.2)

D j(V (t)) = αTWR j(V (t)), (4.3)

where we denote V (t) = {vi(t),∀i ∈ F}, V = {V (t),∀t = 1,3,5, . . . , te}, and te is the consid-

ered number of time slots. N01 = αWσ0 is the noise power over the αW band and σ0 is the

noise power spectral density. In the other resource block dedicated for the small cell downlink,

each ith SAP transmits data to its intended SUEs. Let us denote pi j(t) as the transmit power

from the SAP to the jth SUE in the ith small cell and hik j(t) as the channel from the SAP of the

ith small cell to the jth SUE in the another small cell, indexed by k (k 
= i) at the t th time slot;

P(t) =
{

pi j(t),∀(i, j) ∈ (Sa,Su)
}

, and P = {P(t),∀t = 1,3,5, . . . , te}; hence, the received

signal within this resource block at the jth SUE in the ith small cell is

yi j(t) = hii j(t)
√

pi j(t)si j(t)+ ∑
k∈Su\ j

hii j(t)
√

pik(t)sik(t)

+ ∑
k∈Sa\i

∑
l∈Su

hki j(t)
√

pkl(t)skl(t)+ zi j(t), (4.4)

where si j(t) is the message at the t th time slot intended for the jth SUE from the SAP in the

ith small cell with unit average power, e.g., E
{

si j(t)s∗i j(t)
}
= 1. Similarly, zi j(t) is a circularly

symmetric complex AWGN at the SUE from the SAP in the ith small cell, distributed accord-

ing to a normal distribution C N (0,N02). Treating interference as noise, the achievable rate

ri j(P(t)), computed in bits/s/Hz, and the amount of information data di j(P(t)), computed in

bits, at the jth SUE in the ith small cell are

ri j(P(t)) = log

(
1+

pi j(t)
∣∣hii j(t)

∣∣2
Ii j(P(t))

)
(4.5)

di j(P(t)) = (1−α)TWri j(P(t)), (4.6)
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where

Ii j(P(t)) = ∑
k∈Su\ j

pik(t)
∣∣hii j(t)

∣∣2 + ∑
k∈Sa\i

∑
l∈Su

pkl(t)
∣∣hki j(t)

∣∣2 +N02

and N02 = (1−α)Wσ0.

4.2.4 Buffering Strategy

We assume that each ith SAP contains a finite buffer that can store the decoded data received

from the MBS at the t th time slot. More specifically, at each channel realization, the MBS

allocates a value of beamforming to transmit data to the SAP, and the SAP subsequently stores

the decoded data in the buffer. In the resource block related to the transmissions from the

SAP to its SUEs, the SAP first releases some of these data from the buffer and then transmits.

Here, we assume the periods to store data in the buffer and release data out of the buffer are

small and can be negligible compared to the transmission period. Note that the relationship

between the backhaul and access rate when considering the small cell buffer requires that the

combination of backhaul data received from the MBS and the data stored in the buffer should

always be greater than or equal to the related access transmitted data. Assuming that with the

applied beamforming and power allocation, the sum of backhaul data and amount of buffered

data is strictly greater than the related access transmitted data, the SAP only releases sufficient

data amount to transmit to its SUE at the current time slot and leaves the remaining data in the

buffer. The remaining data will be transmitted in future time slots along with new decoded data

received from the MBS. Compared to a conventional approach (in (Wang et al., 2016; Nguyen

et al., 2016c; Zhao et al., 2015)) which do not consider this proposed buffer strategy and relies

solely on maximizing the small cell rate, the proposed scheme achieves a better performance

in terms of sum small cell WA rate by improving the upper limit of the WA rate at each time

slot. To better clarify this benefit, the transmission scenario given in Fig. 4.2a compares the

transmission scheme of the conventional approach and the proposed scheme.

Fig. 4.2a and 4.2b show how our proposed Scheme I takes advantage of the buffering strategy,

and hence the amount of data stored in the buffer in time slot 1 can be accumulated to the
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Figure 4.2 (a): An example illustrating the buffering protocol; (b): Buffer data

appending protocol. Scheme I refers to the proposed buffering scheme. Scheme II refers

to the conventional schemes (Wang et al., 2016; Zhao et al., 2015; Nguyen et al., 2016c).

received data in time slot 2. Consequently, at time slot 3, the WA rate can exploit its good

channel to transmit at the rate equal to the highest rate (e.g., 6 data units), since SAP has 11

data units in its buffer. We can observe that up to time slot 5, the total amount of transmitted

data of Scheme I and Scheme II are 20 data units and 13 data units, respectively. In Scheme II,

the buffer is not fully exploited and there is no data left in the buffer to be combined with the

new coming backhaul data in the next time slot. This is because the conventional approach only

aims at maximizing the WA rate and the WB rate only needs to reach the necessary WA rate.

Consequently, Scheme II needs 8 time slots to complete 20 data units. Hence, we can observe

that there is a throughput improvement of 32% from Scheme I compared to Scheme II.
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4.3 Resource Allocation Optimization Problem

4.3.1 Review of Conventional Design

In this subsection, we motivate our novel problem by briefly describing the effect of the con-

ventional design in (Wang et al., 2016; Nguyen et al., 2016c; Zhao et al., 2015) on our problem

of interest. Here, we assume that the transmitters know only the CSI of the current time slot.

The CSI varies independently each consecutive time slot. In the context of wireless backhaul

HetNets, the authors in (Wang et al., 2016; Nguyen et al., 2016c) proposed the backhaul-access

constraint where the backhaul rate is greater than or equal to the access rate in each time slot.

Based on this, the resulted optimization problem, denoted herein as Conventional Scheme,

which jointly designs the transmit beamforming and power allocation at the MBS and SAPs to

maximize the WA sum small cell data in all time slots is

(Pcon) : max
V ,P

te

∑
t=1,3,...

∑
i∈Sa

∑
j∈Su

di j(P(t)) (4.7a)

s.t. Di(V (t))≥ ∑
j∈Su

di j(P(t)),∀i ∈ Sa, (4.7b)

Di(V (t))≤Cmax,∀i ∈ Sa, (4.7c)

Rk(V (t))≥ Rmin,∀k ∈ M , (4.7d)

ri1 j1(P(t))≥ rmin,(i1, j1) ∈ (S sub
a ,S sub

u ) (4.7e)

∑
k∈F

‖vk(t)‖2 ≤ Pm, ∑
j∈Su

pi j(t)≤ pm, (4.7f)

∀t = 1,3 . . . , te, (4.7g)

where constraint (4.7b) reflects the design property of Conventional Scheme which requires

that the amount of WB transmitted data that is greater than or equal to WA transmitted data of

the ith SAP in each time slot. This is obvious because the SAP cannot transmit, via WA chan-

nel to the SUE, greater data than the amount it received from the MBS via WB channel. In

some cases, the achieved WB rate is less than the WA rate when we apply some value of V ,P .
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These values are indeed infeasible to constraint (4.7b). In these cases, via solving problem (4.7)

with constraint (4.7b), the power allocation of the WA transmissions is coordinated to decrease

to achieve the WA rate no greater than the WB rate. Without (4.7b), if the WA data evaluated

at the solved resource allocation is greater than the WB data, the system will be unreason-

able since the available backhaul data is insufficient to support the WA transmission. (4.7c)

requires that the amount of data stored in the ith buffer in the t th time slot should not exceed

the maximum buffer storage Cmax. (4.7d) and (4.7e) respectively guarantee the QoS minimum

rate requirement for each MUE and for some SUE indices belong to the set S sub
a ,S sub

u , where

S sub
a ⊆ Sa,S sub

u ⊆ Su. Finally, (4.7f) are the maximum power budget at the MBS and SAP,

respectively. We remark that at optimality, (4.7b) can occur at strict inequality at some SAPs.

This implies that MBS has transmitted more backhaul data than what those SAP can deliver

to their SUEs. Although the SAP can transmit some of the received WB data to its SUEs,

there exists some data which cannot be sent so that packet dropping and data retransmissions

can possibly occur. Besides, Section 4.2.4 has thoroughly discussed how the WA sum small

cell rate can be improved by properly taking advantage of the buffered data. Hence, we are

motivated to propose a problem with a redesign of the backhaul-access rate constraint (4.7b).

4.3.2 Proposed Offline Problem Formulation

To study the improvement resulted from the proposed scheme, let us first visit an ideal offline

design of transmit beamforming and power allocation at the MBS and SAPs. In this scenario,

we assume that the transmitters know the CSI for the current and future time slots. For con-

venience, we denote this as Proposed Offline Scheme. The discussion in Section 4.2.4 implies

that the backhaul-access constraint must enforce the data received at the SUE at the current time

slot be less than or equal to the data left in the buffer from the previous time slots combined

with the received data at the SAP via WB channel. Therefore, the problem of maximizing the

WA sum small cell data during all time slots in this scheme is given by

(Poff) : max
V ,P

te

∑
t=1,3,...

∑
i∈Sa

∑
j∈Su

di j(P(t)) (4.8a)
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s.t. Di(V (t))+Qi(V (t −2),P(t −2))≥ ∑
j∈Su

di j(P(t)),∀i ∈ Sa (4.8b)

Di(V (t))+Qi(V (t −2),P(t −2))≤Cmax,∀i ∈ Sa (4.8c)

(4.7d)− (4.7g) (4.8d)

where we denote

Qi(V (t −2),P(t −2)) =
t−2

∑
l=1,3,...,

Di(V (l))−
t−2

∑
l=1,3,...,

∑
j∈Su

di j(P(l))

as the amount of data remaining in the buffer collected from all the time slots before time slot

t. Unlike (4.7b), (4.8b) shows that the data received at each SUE in the ith small cell at the t th

time slot should be upper bounded by the buffered data at the (t −2)th time slot plus the data

received at the ith SAP at the t th time slot. Interestingly, the solution V ,P allows the WB rate

to be lower than the WA rate as long as computed WB data plus the buffered data is greater

than the computed WA data at the solution V ,P . In addition, the data stored in the ith buffer

should be upper bounded by Cmax as in (4.8c). The following proposition characterizes the

superiority of the Proposed Offline Scheme over the Conventional Scheme.

Proposition 3. The sum of optimal objective in (4.7) (Conventional Scheme) over te time slots

is always less than or equal to the sum of optimal objective achieved in (4.8) (Proposed Offline

Scheme) over te time slots.

Proof. The proof is in Appendix 7.

The formulated optimization problem (4.8) is non-convex due to the existence of the non-

convex non-concave rate formula as a function of variables V and P . In general, solving

(4.8) optimally is difficult since this problem is categorized as NP-hard problem (Liu et al.,

2011a). Thus, developing a polynomial-time algorithm to achieve suboptimal solution is more

realistic. In the following, we rely on the framework of equivalent transformations and convex

approximation method (Marks & Wright) to develop an offline algorithm to solve (4.8) and to

evaluate the performance of the Proposed Offline Scheme.
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Remark 2. Problem (4.8) is not always feasible due to the minimum rate constraints (4.7d) and

(4.7e). We note that each considered transmitter, e.g., SAP or MBS, has a limited power budget,

so that having low Pm and pm could make (4.8) infeasible. Moreover, our system operates

under the interference-limited regime, and hence, imposing high value of Rmin and rmin could

also lead to the infeasibility of (4.8). To facilitate these issues and direct our concentration

on the low-complexity design, we only consider the feasible problem with sufficiently low Rmin

and rmin. In case (4.8) is infeasible, we can reschedule to admit a smaller set of users which

satisfy the minimum rate requirement and employ our developed framework to find solution.

4.4 Evaluation of Offline Approach

In this section, we jointly solve the problem (4.8) for all variables V and P in all time

slots. First, by introducing the slack variables U = {ui(t)≥ 0,∀i ∈ Sa, t = 1,3,5 . . . , te}, W =

{wi(t)≥ 0,∀i ∈ Sa, t = 1,3,5 . . . , te}, X =
{

μi j(t)≥ 0,∀i ∈ Sa,∀ j ∈ Su, t = 1,3,5, . . . , te
}

,

and Y = {νi j(t)≥ 0,∀i ∈ Sa,∀ j ∈ Su, t= 1,3,5, . . . , te}, we can equivalently rewrite (2.7) as

max
V ,P,U ,
W ,X ,Y

te

∑
t=1,3,...

∑
i∈Sa

∑
j∈Su

νi j(t) (4.9a)

s.t. wi(t)≤ Ri(V (t))≤ ui(t),∀i ∈ Sa (4.9b)

νi j(t)≤ ri j(P(t))≤ μi j(t),∀i ∈ Sa,∀ j ∈ Su (4.9c)

α
t

∑
l=1,3,...,

wi(l)≥ (1−α)
t

∑
l=1,3,...,

∑
j∈Su

μi j(l),∀i ∈ Sa (4.9d)

α
t

∑
l=1,3,...,

ui(l)− (1−α)
t

∑
l=1,3,...,

∑
j∈Su

νi j(l)≤Cmax/TW ,∀i ∈ Sa (4.9e)

(4.7d)− (4.7g). (4.9f)

The equivalence between (2.7) and (4.9) is given in Appendix 6. Next, by further investigating

(4.9b), we can decouple these two constraints into four equivalent inequalities as

f (vi(t),πi(t)) = log
(

1+
∣∣vi(t)Hhi(t)

∣∣2 /πi(t)
)
≥ wi(t), (4.10a)
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∑
k∈F\i

∣∣vk(t)Hhi(t)
∣∣2 +N01 ≤ πi(t), (4.10b)

1+

∣∣vi(t)Hhi(t)
∣∣2

φi(t)
≤ exp(ui(t)), (4.10c)

g(V (t)∼i) = ∑
k∈F\i

|vk(t)hi(t)|2 +N01 ≥ φi(t), (4.10d)

where πi(t) ≥ 0 and φi(t) ≥ 0 are the newly introduced variables. Here, we denote Π =

{πi(t)≥ 0,∀i ∈ Sa, t = 1,3,5 . . . , te} and Φ= {φi(t)≥ 0,∀i ∈ Sa, t = 1,3,5 . . . , te}. The equiv-

alence between (4.9b) and (4.10a)-(4.10d) can be explained similar to the proof in Appendix 6.

Clearly, (4.10a), (4.10c), and (4.10d) are non-convex constraints because the convex functions

f (vi(t),πi(t)), exp(ui(t)), and g(V (t)∼i) lie on the greater sides of the inequalities. Thus, we

approximate the convex functions in (4.10a), (4.10c), and (4.10d) by their lower bound concave

approximation around the points vi(t)(n),πi(t)(n), ui(t)(n), and V (t)(n)∼i ,∀i ∈ Sa as

f (vi(t),πi(t))≥ F(vi(t),πi(t);vi(t)(n),πi(t)(n)) = log

[
1+

∣∣∣vi(t)(n)Hhi(t)
∣∣∣2

πi(t)(n)

]
−

∣∣∣vi(t)(n)Hhi(t)
∣∣∣2

πi(t)(n)

+

2R

(
vi(t)(n)HHi(t)vi(t)

)
πi(t)(n)

−

∣∣∣vi(t)(n)Hhi(t)
∣∣∣2[∣∣∣vi(t)(n)Hhi(t)

∣∣∣2 +πi(t)
]

πi(t)(n)
[∣∣vi(t)(n)Hhi(t)

∣∣2 +πi(t)(n)
] , (4.11)

exp(ui(t))≥ exp(ui(t)(n))+ exp(ui(t)(n))(ui(t)−ui(t)(n)), (4.12)

g(V (t)∼i)≥ G
(
V (t)∼i;V (t)(n)∼i

)
= 2R

(
∑

k∈F\i
vk(t)(n)HHi(t)vk(t)

)

− ∑
k∈F\i

vi(t)(n)HHi(t)vk(t)(n) +N01, (4.13)

Here, we briefly discuss the properties of F
(

vi(t),πi(t);vi(t)(n),πi(t)(n)
)

. First, we note

that f (vi(t),πi(t)) = F
(

vi(t),πi(t);vi(t)(n),πi(t)(n)
)

when vi(t) = vi(t)(n) and πi(t) = πi(t)(n).

Moreover, with this selection of vi(t) and πi(t), we can easily check that the first deriva-

tive of F
(

vi(t),πi(t);vi(t)(n),πi(t)(n)
)

with respect to either vi(t) or πi(t) is equal to that of

f (vi(t),πi(t)). The same argument can be made for G
(
V (t)∼i;V (t)(n)∼i

)
and its counterpart
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g(V (t)∼i). These properties are important to conclude the convergence of the iterative algo-

rithm developed later. Alternatively, we can rewrite (4.9c) into two equivalent inequalities as

log

(
pi j(t)

∣∣hii j(t)
∣∣2 + Ii j(P(t))

)
≥ νi j(t)+ log

(
Ii j(P(t))

)
(4.14a)

log

(
pi j(t)

∣∣hii j(t)
∣∣2 + Ii j(P(t))

)
≤ μi j(t)+ log

(
Ii j(P(t))

)
(4.14b)

Both (4.14a) and (4.14b) are non-convex constraints because the concave functions lie in

the lesser side of the inequalities. By denoting gI
i j (P(t)) = Ii j(P(t)) and gSI

i j (P(t)) =

pi j(t)
∣∣hii j(t)

∣∣2+ Ii j(P(t)), we employ an approximate to function log
(

gI
i j (P(t))

)
in (4.14a)

and log
(

gSI
i j (P(t))

)
in (4.14b) around the point P(t)(n) by their upper bound convex approx-

imation as follow⎧⎪⎪⎨
⎪⎪⎩

log
(

gI
i j (P(t))

)
≤ GI

i j

(
P(t);P(t)(n)

)
= log

(
gI

(
P(t)(n)

))
+

gI
i j(P(t))−gI

i j(P(t)(n))
gI

i j(P(t)(n))

log
(

gSI
i j (P(t))

)
≤ GSI

i j

(
P(t);P(t)(n)

)
= log

(
gSI

(
P(t)(n)

))
+

gSI
i j (P(t))−gSI

i j (P(t)(n))
gSI

i j (P(t)(n))
(4.15)

By applying the approximation in (4.11)–(4.13) to the non-convex constraints (4.10a) and

(4.10d), (4.12)to constraint (4.10c), and (4.15) to the constraints (4.14a)–(4.14b), problem (4.9)

can be solved by iteratively solving the following approximated convex problem formulated at

the n+1 iteration index as

max
V ,P,U ,W
X ,Y ,Π,Φ

te

∑
t=1,3,...

∑
i∈Sa

∑
j∈Su

νi j(t) (4.16a)

s.t. F
(

vi(t),πi(t);vi(t)(n),πi(t)(n)
)
≥ wi(t),∀i ∈ Sa, (4.16b)

∑
k∈F\i

∣∣vk(t)Hhi(t)
∣∣2 +N0 ≤ πi(t),∀i ∈ Sa, (4.16c)

∣∣vi(t)Hhi(t)
∣∣2 /φi(t)+1 ≤ eui(t)(n) + eui(t)(n)(ui(t)−ui(t)(n)),∀i ∈ Sa, (4.16d)

G
(
V∼i(t);V∼i(t)(n)

)
≥ φi(t),∀i ∈ Sa, (4.16e)

log
(

pi j(t)
∣∣hii j(t)

∣∣2 + Ii j(P(t))
)
≥ νi j(t)+
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GI
i j

(
P(t);P(t)(n)

)
,∀(i, j) ∈ (Sa,Su), (4.16f)

μi j(t)+ log
(
Ii j(P(t))

)≥ GSI
i j

(
P(t);P(t)(n)

)
∀i ∈ Sa,∀(i, j) ∈ (Sa,Su),

(4.16g)

(4.9d), (4.9e), (4.7d)− (4.7g). (4.16h)

Note that parameters P(n),V (n),Π(n),Φ(n),U (n) are iteratively updated by the optimal solu-

tion achieved by solving (4.16) at each iteration. The pseudo code that presents the algorithm

to solve problem (4.9) is summarized in Algorithm 4.

Algorithm 4: Offline Joint Beamforming and Power Allocation Optimization (JBPAO)

Algorithm

1: Set n := 0;

2: Initialize starting point of P(n),V (n),Π(n),Φ(n),U (n);

3: repeat
4: Solve the convex problem in (4.16) to achieve the optimal solution

V �,P�,U �,W �,X �,Y �,Π�,Φ�;

5: Set n := n+1;

6: Update P(n) = P�,V (n) = V �,Π(n) = Π�,Φ(n) = Φ�,U (n) = U �;

7: until Convergence of (4.16a);

Convergence Analysis: Let f (n) denote the optimal objective value and Ω(n) denote the op-

timal solution set at the nth iteration of Algorithm 4. Due to the convex approximation in

(4.11)–(4.13) and (4.15), the updating rules in Algorithm 4 ensure that the solution set Ω(n) is

a feasible solution to problem (4.16) at step n+ 1. This subsequently leads to the results of

f (n+1) ≥ f (n), which means that Algorithm 4 generates a non-decreasing sequence of objec-

tive function values. Due to the limited power constraints, the sequence of f (n),n = 1,2, . . . is

bounded above and therefore, Algorithm 4 guarantees that the objective converges.

Generation of starting point: A starting point of Algorithm 4 is the value of the set of variables

P,V ,Π,Φ,U which are feasible for problem (4.9). Although (4.9) is non-convex, we can
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choose its feasible solution by solving the convex problem

min
V ,P

te

∑
t=1

∑
i∈F

‖vi(t)‖2
2 +

te

∑
t=1

∑
i∈Sa

∑
j∈Su

pi j(t) (4.17a)

s.t. pi1 j1(t)
∣∣hi1i1 j1(t)

∣∣2 = (ermin −1)Ii1 j1(P(t)), (4.17b)

Re(vi1(t)
Hhi1(t))≥ A0.5

(
∑

l∈F\i

∣∣vl(t)Hhi1(t)
∣∣2 +N01

)0.5

(4.17c)

Re(vk(t)Hhk(t))≥ (eRmin −1)0.5

(
∑

l∈F\k

∣∣vl(t)Hhk(t)
∣∣2 +N01

)0.5

(4.17d)

(4.7d)− (4.7g). (4.17e)

for i1 ∈ S sub
a , j1 ∈ S sub

u ,k ∈ M , where A = (1−α)
(

e∑ j∈Su rmin −1
)
/α . Note that problem

(4.17) is convex since the objective function and all constraints are convex with respect to

variables V ,P . By denoting V (0),P(0) as the optimal solution of (4.17), we can compute

each ith element in Π(0),Φ(0),U (0)∀i ∈ Sa as follow

πi(t)(0) = φi(t)(0) = ∑
k∈F\i

∣∣∣vk(t)(0)Hhi(t)
∣∣∣2 +N01 (4.18)

ui(t)(0) = log(1+
∣∣∣vi(t)(0)Hhi(t)

∣∣∣2 /φi(t)(0)) (4.19)

4.5 Proposed Online Problem Formulation

In the previous section, a low complexity offline JBPAO algorithm is proposed to determine the

maximum sum WA data at the SUEs within te time slots. Since assuming the availability of the

current and future CSI at the transmitters is infeasible in practice, we tackle the design problem

by assuming that the transmitters only know the CSI at the current time slot. We denote this

scheme as Proposed Online Scheme. Similar to Section 4.3.1, we assume that the CSI is the

same in time slot t and varies independently each consecutive time slot. Recall that in the offline

setting, jointly solving the beamforming and power allocation allows us to allocate the best

tuple of WB and WA rates at all time slots, in which the total WA rate performance has been
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shown to be more superior than the Conventional Scheme. On the contrary, this cannot be done

in the same manner in the online setting due to the lackness of future CSI. Therefore, in order

to improve the WA sum achieved data by employing the buffering strategy in Section 4.2.4,

the MBS and SAP must set their transmit beamforming and power to maximize both WA and

WB rates subject to the new online backhaul-access constraint. Similar to (4.8b), this online

constraint requires that the data received at the SUE at the current time slot should be less than

or equal to the data left in the buffer from the previous time slots combined with the received

data from the MBS at the SAP. Thus, the online problem of interest at time slot t can be written

as two separate problems and is solved in two stages. The first stage problem is given by

(
P1

on

)
: max

V (t),P(t)
∑

(i, j)∈(Sa,Su)

ri j(P(t)) (4.20a)

s.t. Di(V (t))+Qi(V̄ (t −2),P̄(t −2))≥ ∑
j∈Su

di j(P(t)),∀i ∈ Sa (4.20b)

Di(V (t))+Qi(V̄ (t −2),P̄(t −2))≤Cmax,∀i ∈ Sa (4.20c)

(4.7d)− (4.7g), (4.20d)

where Qi(V̄ (t −2),P̄(t −2)) = ∑t−2
l=1,3,...,Di(V̄ (l))−∑t−2

l=1,3,...,∑ j∈Su di j( ¯P(l)). The second

stage problem is given by

(
P2

on

)
: max

V (t)
U (Γ(V (t))) (4.21a)

s.t. Di(V (t))+Qi(V̄ (t −2),P̄(t −2))≥ ∑
j∈Su

di j(P̄(t)),∀i ∈ Sa (4.21b)

Di(V (t))+Qi(V̄ (t −2),P̄(t −2))≤Cmax,∀i ∈ Sa (4.21c)

(4.7d)− (4.7g) (4.21d)
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where U (Γ(V (t))) is the utility function of received SINR at each SAP, which is often chosen

as a concave and increasing function with respect to Γ(V (t)), e.g.,

U (Γ(V (t))) =

⎧⎪⎨
⎪⎩

∑i∈Sa log(1+Γi(V (t))) , sum rate

mini∈Sa Γi(V (t)) , max-min-fairness

(4.22)

Here, we note that the difference between the problem formulation (4.20)-(4.21) of the Pro-

posed Online Scheme and (2.7) of the Proposed Offline Scheme lies in the attempt to maximize

both WB and WA rates. Since future CSI is unavailable in the online setting, to take advantage

of the data stored in the buffer queue (as discussed in Section 4.2.4), an intuition is to addition-

ally maximize the WB rate beside WA sum rate. By doing that, when the WB channel is good,

we can achieve WB rate strictly higher than the corresponding WA rate. Then, the difference

between WB and WA rates can be stored in the buffer. When there is a bad WB channel in

future time slots and the WA communication can potentially achieve a larger rate than the cor-

responding WB communication rate, the stored data can be added to the WB data to improve

the upper bound of the WA rate, as reflected in (4.20b). This observation can be exploited by

first attempting to find the solution that maximizes the sum WA rates at all the SAPs in (4.20)

first while still ensuring the backhaul-access relationship as in constraint (4.20b). Once we ob-

tain the desired solution for (4.20), we can evaluate the corresponding Qi(V̄ (t −2),P̄(t −2))

and di j(P̄(t)) and fix these values to solve the problem of maximizing utility function of re-

ceived SINR at each SAP as in (4.21). Again, we also note that unlike (4.7b), constraints

(4.20b) and (4.21b) in the Proposed Online Scheme show that the data received at each SUE in

the ith small cell via WA at the t th time slot should be upper bounded by the remaining data in

the buffer at the previous (t −2)th time slot together with the data received at the ith SAP via

WB communication in the t th time slot. In addition, to integrate the limited buffer constraint,

the amount of data stored in the ith buffer should be upper bounded by Cmax as in (4.8c). The

following proposition characterizes the superiority of the Proposed Online Scheme compared

to the Conventional Scheme.
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Proposition 4. The sum of optimal objective in (4.7) (Conventional Scheme) over te time slots

is always less than or equal to the sum of optimal objective achieved in (4.20) (Proposed Online

Scheme) over te time slots.

Proof. The proof is similar to that of Proposition 3 in Appendix 7.

4.5.1 Proposed Online Algorithm

By taking a similar analysis to problem (4.8) in Section 4.3.2, we also observe that (4.20) and

(4.21) are non-convex optimization problems. Thus, by applying similar techniques of equiv-

alent transformation and invoking the convex approximation in Section 4.4, the approximated

online optimization problem of (4.20) can be presented as

max
V (t),P(t),U (t),W (t),
X (t),Y (t),Π(t),Φ(t)

∑
i∈Sa

∑
j∈Su

νi j(t) (4.23a)

s.t. αwi(t)+
Qi(V̄ (t −2),P̄(t −2))

TW
≥ (1−α) ∑

j∈Su

μi j(t),∀i ∈ Sa

(4.23b)

αui(t)− (1−α) ∑
j∈Su

νi j(t)+
Qi(V̄ (t −2),P̄(t −2))

TW
≤ Cmax

TW
,∀i ∈ Sa

(4.23c)

(4.16b)− (4.16g), (4.7d)− (4.7g). (4.23d)

and the approximated online optimization problem of (4.21) can be presented as

max
V (t),U (t),W (t),

Π(t),Φ(t)

∑
i∈Sa

U (wi(t)) (4.24a)

s.t. αwi(t)+
Qi(V̄ (t −2),P̄(t −2))

TW
≥ ∑ j∈Su di j(P̄(t))

TW
,∀i ∈ Sa (4.24b)

αui(t)− ∑ j∈Su di j(P̄(t))−Qi(V̄ (t −2),P̄(t −2))

TW
≤ Cmax

TW
,∀i ∈ Sa

(4.24c)
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(4.16b)− (4.16e), (4.7d)− (4.7g). (4.24d)

where we denote U (t) = {ui(t)≥ 0,∀i ∈ Sa}, W (t) = {wi(t)≥ 0,∀i ∈ Sa}, X (t) = {μi j(t)

≥ 0,∀i∈ Sa,∀ j ∈ Su}, Y (t) =
{

νi j(t)≥ 0,∀i ∈ Sa,∀ j ∈ Su
}

, Π(t) = {πi(t)≥ 0,∀i ∈ Sa}
and Φ(t) = {φi(t)≥ 0,∀i ∈ Sa}. Note that P(t)(n),V (t)(n),Π(t)(n),Φ(t)(n),U (t)(n) are the

parameters of problem (4.23) that are iteratively updated by the optimal solution achieved by

solving (4.23) for current time slot t at each iteration. Once solving (4.23) for current time

slot t, the solution is used to evaluate Qi(V̄ (t − 2),P̄(t − 2)) and di j(P̄(t)) and then fed

into problem (4.21). Similarly, we can solve (4.21) for time slot t by iteratively solving the

approximated convex problem (4.24) and update parameters V (t)(n),Π(t)(n),Φ(t)(n),U (t)(n)

until convergence to attain the solution. Then, the solution of (4.21) can be used to evaluate

Qi(V̄ (t),P̄(t)) and fed into problem (4.20) to solve at time slot t+2. Algorithm 5 presents the

pseudo code that solves the online problems (4.20) and (4.21). By following the same argument

for the convergence of the offline Algorithm 4, we can prove the convergence of Algorithm 5

from Steps 5–9 and Steps 13–17. Since Algorithm 5 operates in a finite number of time slots

te, its convergence is guaranteed.

4.5.2 Delay-based Online Algorithms

Our proposed approach for Algorithm 5 contains a step of maximizing the WB rate at the small

cell, so that at each time slot, the buffer of some small cells may be non-empty. The buffered

data can be queued for a long period since the future wireless channel may not be sufficiently

good for transmission. Consequently, delay at these small cell links may occur. To avoid such

scenario, we propose an online delay-based resource allocation design by formulating a two-

stage optimization problem as in Section 4.5.1. The first stage problem, denoted by
(
P1

delay

)
,

is similar to problem (4.20), which aims at maximizing the small cell sum rate at time slot t.

On the contrary, at the second stage, we aim at minimizing the cost while guaranteeing that

all the backhaul rate must be greater than or equal to the access sum rate. The second stage
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Algorithm 5: Online JBPAO Algorithm.

1: t = 1;

2: repeat
3: Set n := 0;

4: Initialize starting points of P(t)(n),V (t)(n),Π(t)(n),Φ(t)(n),U (t)(n);
5: repeat
6: Solve the convex problem in (4.23) to achieve the optimal solution

V (t)�,P(t)�,U (t)�,W (t)�,X (t)�,Y (t)�,Π(t)�,Φ(t)�;

7: Set n := n+1;

8: Update P(t)(n) = P(t)�,V (t)(n) = V (t)�,Π(t)(n) = Π(t)�,Φ(t)(n) =
Φ(t)�,U (t)(n) = U (t)�;

9: until Convergence of (4.23);

10: Compute Qi(V̄ (t −2),P̄(t −2)) and di j(P̄(t)),∀(i, j) ∈ (Sa,Su) with the obtained
V (t)�,P(t)� and feed into (4.21);

11: Reuse the points V (t)(n),Π(t)(n),Φ(t)(n),U (t)(n) from Step 9;

12: Set n := 0;

13: repeat
14: Solve the convex problem in (4.24) to achieve the optimal solution

V (t)�,U (t)�,W (t)�,Π(t)�,Φ(t)�;;

15: Set n := n+1;

16: Update V (t)(n) = V (t)�,Π(t)(n) = Π(t)�,Φ(t)(n) = Φ(t)�,U (t)(n) = U (t)�;

17: until Convergence of (4.24a);

18: Compute Qi(V̄ (t),P̄(t)), ∀i ∈ Sa with the obtained V (t)� and feed into (4.20);

19: t := t +2;

20: until t = te;

problem is formulated as

(
P2

delay

)
: min

V (t)

{
∑

k∈F

‖vk(t)‖2 |(4.21b), (4.21c), (4.7d)− (4.7g)

}
(4.25)

The intuition of problem
(
P2

delay

)
is that we only allocate sufficient beamforming to the WB

transmissions to ensure that the WB rate can support their corresponding WA rates, so that

constraint (4.21b) occurs with equality at optimality (the proof can be sketched similar to Ap-

pendix 6). Since the backhaul rate is equal to the access rate, the SAP can use all the buffered

data in the queue to transmit to its SUE. This means that at the end of each time slot, no data are

stored in the queue, so that there will be no delay at all small cell links. We note that the result

of Delay-based online problem is different from the Conventional problem in (4.7) in terms of
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the achieved backhaul transmitted data. In Conventional scheme, the achieved backhaul trans-

mitted data at each time slot might possibly be greater than the access transmitted data at each

SAP, while the second stage of Delay-based online problem ensures that the resulted backhaul

and access transmitted data to be equal. Thus, we can follow similar steps of transformation

and approximation in Section 4.5.1 to solve problems (P1
delay) and (P2

delay).

In addition, we propose another design of resource allocation which stabilizes the small cell

buffer in the wireless backhaul two-tier HetNets based on the Dynamic Back-Pressure (DBP)

algorithm. In fact, when Cmax is sufficiently large, maximizing the small cell data objective

(like in (4.20)) without stabilizing the queue can cause excessive delay and instability at some

SAPs. The work on buffer stability has been widely investigated in the literature and summa-

rized in (Georgiadis et al., 2006), where the effective DBP algorithm was developed to achieve

a close-to-optimal solution of buffer usage. In our system, we can follow the same steps as

in (Georgiadis et al., 2006, Chapter 4) to formulate the DBP problem formulation and the

subsequent DBP algorithm as follows

(PDBP) : max
V (t),P(t)

{
∑

i∈Sa

Qi(V̄ (t −2),P̄(t −2))×
(

∑
j∈Su

ri j(P(t))
)∣∣∣∣∣(4.20b)− (4.20d)

}
(4.26)

where the objective function is the weighted small cell sum rate. We note that the weight at

each link is proportional to the amount of buffered data in the queue from previous time slot.

The intuition of this formulation is that we prioritize the maximization of the links which have

longer queues so that more data rate of that link can be achieved and released from the buffer.

Thus, DBP scheme can avoid the buffer overflow, maintain queue stability, and subsequently

reduce the delay on each link.

Complexity analysis: We discuss the worst-case per-iteration computational complexity of of-

fline algorithm. Note that online algorithms can be done similarly. We observe that problem

(4.16) is a generalized convex programming due to the existence of the exponential cone in
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constraints (4.14a) and (4.14b). For tractability of complexity analysis, we can employ the

second order cone (SOC) approximation in (Nguyen et al., 2016b, Section V, (27)) on each

constraint (4.14a) and (4.14b) with an additional m+ 4 slack variables and m+ 4 SOC con-

straints to equivalently transform (4.16) into a SOC programming. Under this approximation,

there are approximately te(N(M + Sa)+ 4Sa + 3SaSu + 2SaSu(m+ 4)) continuous variables in

(4.16) with (M + Sa + 1)te constraints of dimension Sa +M + 1, teSa(1+ 2Su(m+ 4)) SOC

constraints of dimension 2 and Sate(5+ 2Su) SOC constraints of dimension 3. After omitting

the small order, the worst-case per-iteration complexity of Algorithm 4 is O(t4
e (N

2(M4+S4
a)+

S2
aS2

u(m+4)2(M2 +S2
a))+ t3

e S3
aS3

u(m+4)3).

4.5.3 Discussions

As discussed by the end of Section 4.3.1, the proposed Offline and Online solution in Sec-

tion 4.3.2 can avoid the inherent issues from the conventional design, (c.f. optimization prob-

lem (4.7)) such as packet drop and retransmissions of backhaul data. Without retransmissions,

the overall backhaul data is transmitted with more efficient power consumption in each time

slot and can achieve a potential higher small cell rate than the conventional scheme. This

implies an improvement on network energy efficiency, computed as the ratio of sum spectral

efficiency over total network power consumption. Although research on energy efficiency un-

der the usage of small cell buffer in wireless backhaul networks is an interesting topic, it is

currently out of the scope of this paper and is left for future work.

4.6 Numerical Results

In this section, we evaluate the performance of the proposed algorithms. We assume that the

CSI is the same in one time slot and varies independently in the next time slot. In addition, we

consider Rayleigh fading channels and the pathloss component is calculated as
(
di j/d0

)−3.8,

where di j is the distance between the ith transmitter and the jth receiver, and d0 = 10 m is the

reference distance. We apply a circular coverage of macrocell with radius 20d0. The MBS is

positioned at the center, where Sa small cells uniformly positioned in the macrocell coverage
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(Nguyen et al., 2016b). For ease of illustration, we choose Sa = 4 unless otherwise being

mentioned. We assume that each small cell has a circular coverage of radius d0 with its SAP at

the center and one SUE is randomly located at the circumference of each small cell coverage.

In addition, we assume M = 2 MUEs randomly scattered across the macrocell coverage. Unless

being mentioned elsewhere, we choose this scenario as the standard model for the numerical

simulation. The setting of other parameters is given in Table 4.1.

Table 4.1 Parameters setting

Description Value
MBS antenna N = 4

Maximum power at the SAP pmax = 23 dBm

Bandwidth W = 10 MHz

Number of time slots te = 39

MUE QoS requirement Rmin = 105 bits/s

Maximum power at the MBS Pmax = 43 dBm

Time slot period T = 20 ms (Xiang et al., 2017)

Spectrum division factor α = 0.5
Buffer storage size Cmax = 1 Mbits

Noise power Wσ0 =−120 dB

Fig. 4.3 and 4.4 show the convergence of the total amount of data received at all the SUEs

by applying Algorithm 4 in the Offline Scheme and Algorithm 5 in the Online Sum Scheme,

where U(Γ(V (t)) =∑i∈Sa log(1+Γi(V (t))). In addition, the performance of the proposed al-

gorithms are also benchmarked by the global optimal solution achieved by applying the Branch

and Bound (BnB) algorithm developed in (Tervo et al., 2015b) on the offline problem (2.7).

In Fig. 4.3 and 4.4, we choose te = 2, 4. Based on (Tervo et al., 2015b), the BnB algorithm

recursively branches the considered potential set which contains the global optimal solution

into smaller sets, checking the feasibility of the newly branched sets and updating the stopping

criteria of the BnB algorithm until convergence. The stopping criteria used in the BnB algo-

rithm is the difference of upper and lower bound functions, which are computed from the sets

containing the potential global optimal solution. From Fig. 4.3, we observe that Algorithm 4 in

the Offline Scheme and Algorithm 5 in the Online Sum Scheme keep increasing and converge
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after a few iterations, which validates the convergence analysis. Moreover, the obtained results

from low-complexity algorithms are very close to the baseline optimal value obtained from

the BnB algorithm. This again shows the efficiency of our low-complexity offline and online

algorithms in solving the non-convex NP-hard problems with much less computational cost,

while still maintaining a close-to-optimal performance.
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Figure 4.3 Convergence between the optimal BnB algorithm,

Offline Scheme, and Online Sum Scheme when te = 2 and Sa = 4.

Fig. 4.5 compares the total amount of data received at the SUEs between the Offline, Online,

DBP (c.f. (4.26)), Conventional Scheme ((Wang et al., 2016; Zhao et al., 2015; Nguyen et al.,

2016c)), Schemes in (Peng et al., 2016) and (Guo et al., 2017) with respect to the SAP power

budget pm. The online approaches consider the Online Sum Scheme and the Online Max-Min

Fairness Scheme where U(Γ(V (t)) = mini∈Sa Γi(V (t)). We observe from Fig. 4.5 that the

Offline and Online Schemes always outperform the Conventional Scheme. At high pm, the

Offline, Online Sum and Max-Min Fairness Scheme achieve the gains of 93.67% , 93.42% and

66.86% compared to the Conventional Scheme, respectively, which again validates the superi-
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Figure 4.4 Convergence between the optimal BnB algorithm,

Offline Scheme, and Online Sum Scheme when te = 2 and Sa = 4.

ority of our proposed online approach compared to the conventional design in the literature as

stated in Propositions 3 and 4. The DBP Scheme and Schemes in (Peng et al., 2016) and (Guo

et al., 2017) perform lower than the Offline and Online Sum Scheme. This can be explained

since in DBP Scheme, we only aim at maximizing the WA weighted sum rate rather than WA

sum rate. Alternatively, the schemes in (Peng et al., 2016) and (Guo et al., 2017) respectively

aim at maximizing the energy efficiency and the total admission rate (similar to the total wire-

less backhaul rate in our case) subject to the stability of the buffer queue rather than the WA

sum rate maximization. Therefore, the performance of DBP Scheme and the Scheme in (Peng

et al., 2016) and (Guo et al., 2017) are less than the performance of Offline and Online Sum

Schemes. Here, we note that the gap between the Offline and the Online Sum Scheme is close

when pm grows. In addition, when pm increases, the total amount of data of all the schemes

increases and saturates at higher value of pm. This is because at high pm, each SAP stops in-

creasing its power to avoid creating more interference to its neighboring small cell, which leads

to the saturation in the amount of data transmitted to the SUEs in all the considered schemes.
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Figure 4.5 Comparison of the achieved amount of data transmitted

to the SUEs between offline and online algorithms.

Fig. 4.6 shows the total amount of data that is transmitted to the SUEs with respect to the buffer

size Cmax at two values of Pm = 33, 43 dBm. We observe that the amount of access transmitted

data increases with Cmax. To explain this, note that at low Cmax, the SAP cannot attain a WB

rate higher than the buffer capacity to buffer the received backhaul data and the amount of

data transmitted to the SUEs is limited. When Cmax grows, Online Sum and Online Max-Min

Fairness Schemes outperform Conventional Scheme since more data can be buffered for later

transmissions, as being analyzed in Section 4.2.4. When Cmax is sufficiently large, this amount

of data converges at a saturation value since the SAPs cannot use all the buffer storage to store

their data. Note that the performance of all the schemes is higher at higher values of Pm. This is

obvious since with higher power budget Pm, the MBS can transmit higher WB rate to the SAPs

and the SAPs can subsequently improve their WA rates. Fig. 4.7 compares the total delay of

all the small cell buffer with respect to Cmax between the Online Sum, DBP, and Delay-based

schemes (c.f. (4.25)). Here, we are inspired by the formula of time-average delay over infinite

time domain (Guo et al., 2017) to compute the delay at each small cell buffer link i over te time
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slots as

Delayi =
1/te ∑te

t=1 Qi(V̄ (t), ¯P(t))
1/te ∑te

t=1 αWRi(V̄ (t))

When Cmax increases, we observe that the Delay-based scheme always achieve the zero delay.

This is because it allocates the backhaul rate that is equal to the access rate at each small cell

link, so that no data is left in the buffer at the end of each time slot. On the other hand, the

proposed Online Sum scheme always achieves non-zero delay below 2.5×10−2 seconds. This

is because it stores data in the buffer of some the small cell, but in the next time slots, these data

still remain inside the buffer. When Cmax increases, due to the limited power budget and the

interference from other links, the backhaul rate is saturated (as shown in Fig. 4.6) so that the

data in the buffer do not increase much. Therefore, the computed delay under the Online Sum

scheme does not vary much at high Cmax. We also observe that the DBP scheme outperforms

the Online Sum scheme, but still achieves non-zero delay. This is because the DBP algorithm

prioritizes the maximization of the small cell access rates with the longer queues, so that it

reduces the amount of data and subsequently the delay in those buffers.
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Figure 4.6 Achieved amount of data transmitted to the

SUEs with respect to Cmax.
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In Fig. 4.8, we show the performance of the Online Sum Scheme with respect to the spectrum

splitting factor α at Pm = 33, 43 dBm. We observe that when α varies, the total small cell data

first increases and then decreases. There exists a value of α which maximizes the total access

transmitted data, where this maximal value is different for each Pm. This is because when α

is too low, more bandwidth partitioning is dedicated for the transmissions from MBS to SAPs

and MUEs. This leads to a low performance of small cell sum rate since less bandwidth is

provided for the transmissions from the SAPs. When α grows, more bandwidth is drawn for

the transmissions from SAPs. However, since less bandwidth is available for the backhaul

transmissions, this subsequently limits the upper bound performance of each SUE rate, and

restricts the total small cell transmitted data.

In Fig. 4.9a and Fig. 4.9b, we show the evolution in time of the amount of buffered data. In

particular, Fig. 4.9a shows the data stored in the buffer right after the MBS transmits data to the

SAP 1 in the Online Sum and Conventional Scheme. As shown in the figure, the data stored

in the buffer at SAP 1 in the Online Sum Scheme is always greater than in the Conventional
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Figure 4.8 Achieved amount of data transmitted to

the SUEs versus α .

Scheme. This can be explained as in the Conventional Scheme, the MBS only transmits at a

sufficient rate to support the rate requested by the SAP. However, the Online Sum Scheme aims

at maximizing the WB rate beside the WA rate, and thus more WB data can be achieved and

stored in the buffer compared to the Conventional Scheme. In addition, Fig. 4.9b examines the

behavior of the data in the buffer for the Online Sum Scheme at SAP 1 and SAP 2 after the

small cells transmit to their intended users. Again, we observe that some data remain in the

buffer of each small cell in some time slots. This data can be transmitted in the next time slots

to improve the upper-bounded backhaul rate corresponding to each small cell and thus improve

the small cell access sum rate.

Fig. 4.10 shows the amount of data that is transmitted to the SUE with respect to the number of

small cells at Pm = 33 or 43 dBm. In addition, we compare the performance between the Online

Sum, Online Max-Min Fairness and Conventional Scheme. We observe that the Online Sum

and Online Max-Min Fairness Scheme always perform better than the Conventional Scheme at

all values of number of small cell, which is consistent with the observations from the previous
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figures. When Pm is small, the achieved amount of data transmitted to the SUE is low. This

can be explained as when the MBS has a smaller power budget to transmit wireless backhaul

data to the SAP, the WA rate at each SAP will be upper bounded by a smaller valued WB rate.

Thus, the optimal sum WA rate only achieves a low value at low Pmax.
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Figure 4.9 Buffered data in the queue of: (a) SAP 1 after the MBS

transmits; (b) of SAP 1 and 2 after the SAPs transmit.

4.7 Concluding Remarks

This paper studied a novel model of two-tier wireless backhaul small cell HetNets where each

SAP is equipped with a finite buffer. By proposing the time–spectrum downlink transmission

allocation to manage interference, we developed a joint optimized transmit beamforming and

power allocation algorithm. By exploiting the advantage of the buffering capability at the

SAPs, we investigate the performance gain of the proposed network via solving a constrained

optimization problem of maximizing small cell sum rate. To solve the formulated problem, we

proposed an ideal offline and a practical online algorithm based on different assumption of CSI

knowledge. Both algorithms rely on the framework of convex approximation to be developed

to attain the solution within polynomial time, whereas the offline algorithm only serves for
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benchmarking purpose to evaluate the performance of the online algorithms. Our theoretical

results prove that our proposed wireless backhaul with buffer-aided small cells always performs

better than conventional work. Numerical results validate our derived theory and confirms that

our proposed model with advanced buffering strategy outperforms the conventional design in

terms of small cell access rate for both the offline and online algorithms.
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5.1 Introduction

In the last recent years, mobile wireless networks have been witnessing a major upgrade to-

wards their Fifth Generation (5G). The anticipated strategy which fulfills 5G goals by enhanc-

ing system spectral and energy efficiency to cope with the thousand-fold increase in data traffic

is unprecedentedly expected (Andrews et al., 2014; Kela et al.). Many key technologies are

proposed to reach this expectation (Wong et al., 2017). Among these, dense (or ultra-dense)

heterogeneous networks (HetNets) solution is shown to suit the 5G perspective in many studies

(Bhushan et al., 2014). Although they are famous for self-deploying small cells, dense Het-

Nets must inevitably deal with the indispensable installation problem by connecting excessive

fiber backhaul links from the small cells (SCs) to the core network (Ge et al., 2014). Thus, a

more appealing solution, instead of wiring each single SC access point (SAP)–core network

connection, is to transmit the backhaul data via wireless channels. Therefore, it can remarkably

reduce the cost of network deployment and maintenance (Siddique et al., 2015a).

As proposed in (Ghosh et al., 2012), wireless backhaul (WB) in HetNets enables simultaneous

wireless transmissions of backhaul signals between the SAPs and macro base station (MBS).

Although WB offsets the economical and deployment issues, it in turn creates two fundamental

bottle-necks which restrain the overall achievable rate performance (Zhao et al., 2015; Wang
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et al., 2016; Nguyen et al., 2016b,a, 2017b). First, deploying WB communications concur-

rently with the existing wireless access (WA) communications renders the interference more

severe. Second, it is apparent that each SAP should rely on the backhaul data to transmit to its

intended users (Siddique et al., 2015a). Therefore, it is essential to impose that the WB rate

achieved at a SAP exceeds the WA rate. Hence, designing the WB architecture in HetNets to

harness all of its potential advantages must explicitly consider these two drawbacks to operate

a sustainable system. However, this introduces more challenges for the resource allocation and

efficient methods to serve the above design criteria are imperative to yield the optimal solution.

5.1.1 Related Work

Employment and standardization of WB were initially proposed for IEEE 802.16 mesh net-

works (Viswanathan & Mukherjee, 2006). By enabling WB transmission, the authors in

(Viswanathan & Mukherjee, 2006) developed an algorithm based on linear program to find

the optimal routing and scheduling strategy so as to attain the maximal network throughput.

In the context of 5G, WB was more likely readdressed in different network scenarios and, in-

terestingly, looked at a wider variety of spectrum bands (Siddique et al., 2015a). Particularly,

Hur et al. (2013b) presented a novel idea for SCs equipped with mm-wave transmitters to ef-

fectively align their transmit beam under wind induced impairments. In the sub–6 GHz band,

some works proposed to utilize the available hardware and current implementation to accom-

modate WB communications concurrently with the WA ones. By employing the reverse time

division duplex model, the authors in (Sanguinetti et al., 2015; Wang et al., 2016) considered

the joint bandwidth allocation and user association which maximizes the achievable downlink

sum log rate of SCs under the massive multiple input multiple output (MIMO) MBS. In (Zhao

et al., 2015), the authors aimed at finding the maximum admitted WB-enabled SAP to serve

as many SAPs as possible while guaranteeing quality-of-service (QoS) rates. To better exploit

the available spectrum, Siddique et al. (2017) introduced a hybrid strategy of out-of-band and

in-band full-duplex and formulated a problem which optimizes the spectrum allocation un-

der the proposed scheme. On the other hand, the authors of (Niu et al., 2017) presented an
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optimization problem of scheduling and power control which maximizes the mm-wave WB

energy efficiency. Unlike the mentioned works, the authors of (Yang et al., 2016a) studied the

WB networks and analyzed the energy efficiency of the SCs using stochastic geometry.

In the aforementioned work, in-band and out-of-band WB within sub–6 GHz band are more

frequently studied due to their technological maturities. To facilitate sophisticated task in man-

aging WB with other coexisting communications, accommodation of WB and WA communi-

cations on orthogonal frequency is more likely considered. However, this not only reduces the

spectral reuse capability but also irradically handles severe interference under ultra-dense net-

works. Hence, more advanced and pragmatic technologies without overusing such orthogonal

spectrum partition manner are always vital. In such scenario, non-orthogonal multiple access

(NOMA) (Saito et al., 2013) emerges as a promising candidate to improve both WB rate and its

respective WA rate. Unlike conventional orthogonal multiple access strategies, NOMA allows

many simultaneous user’s transmissions and receptions to access the same sub-carrier. To han-

dle the inter-user interference, multi-user detection technique, such as successive interference

cancellation (SIC), is applied at each receiver. A general survey of NOMA techniques was

given in (Islam et al., 2017) while the particular application on downlink NOMA for 5G net-

works was surveyed in (Wei et al., 2016). In general, advanced by the characteristics such as

multiplexing transmitting technique, SIC receiving technique, and efficient network resource

allocation, NOMA has been able to show its prominent superiority through many research work

in the related field. Ding et al. (2014) investigated the network performance of NOMA in a

random user deployment scenario. In (Shi et al., 2016), the authors jointly solved the power al-

location and decoding order for an outage balancing downlink NOMA system. Cui et al. (2018)

studied the NOMA design in the MISO mmwave system. However, the authors employed a

fixed precoding beamformer prior to the design of NOMA so that the problem of interest is

reduced to the joint design of power allocation together decoding order. Unlike these work,

(Al-Imari et al., 2014) applied an uplink NOMA scheme and formulated a problem of joint

power and sub-carrier allocation optimization which maximizes the total network achievable

rate. A cooperative NOMA scheme is investigated in (Ding et al., 2015). Inspired by (Ding
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et al., 2015), Wei et al. (2017a) proposed a more advanced hybrid downlink-uplink cooperative

NOMA scheme to achieve a better trade-off between spectral efficiency and signal reception.

Interestingly, the concept of NOMA was recently applied to visible light communication sys-

tems in (Marshoud et al., 2016). When multiple antenna are available at the transmitter or/and

receiver, studies on multiple input single output (MISO) or MIMO NOMA are necessary so

as to better harness all the potential degrees of freedom for maximizing the performance en-

hancement. In (Choi, 2015) and (Hanif et al., 2016), the authors formulated a problem of

designing beamforming in the MISO NOMA to minimize the total consumed power or max-

imize the sum spectral efficiency, respectively. In a particular case of two-antenna-user, Sun

et al. (2015a) formulated a throughput maximization problem and developed two algorithms

to find solutions. In (Ding et al., 2016), a novel framework of downlink and uplink MIMO

NOMA was inspired by the application of signal alignment. The authors invoked the stochas-

tic geometry tool to derive a closed-form evaluation formula, in which two power allocation

schemes were studied to reflect the impact of the proposed scheme. Furthermore, Wei et al.

(2017b) and Sun et al. (2017a) respectively studied the power-efficient and system throughput

resource allocation optimization for multicarrier (MC)-NOMA system and full duplex MC-

NOMA. In (Sun et al., 2017a), the authors developed a polyblock optimal algorithm based on

the monotonic branch-and-bound algorithm and low complexity successive convex approxi-

mation algorithm to solve the formulated problem optimally and sub-optimally. Similarly, Wei

et al. (2017b) also adopted the monotonic branch-and-bound algorithm and developed a low

complexity algorithm based on difference of convex (DC) programming to solve for global

optimal and sub-optimal solutions.

5.1.2 Motivation and Contribution

According to the above discussed works, improving the macrocell WB rate while simultane-

ously increasing the small cell WA rate is imperative. To the best of our knowledge, the existing

literature lacks of work which jointly enhances the WB and WA downlink transmissions prior

to the maximization of network performance. Being motivated by these observations, this pa-



151

per proposes a novel cooperative transmission scheme for the WB and WA communications

based on NOMA strategy. In particular, we study the downlink two-tier WB small cell Het-

Nets which comprises of one macrocell coexisting with multiple small cells. To efficiently and

tractably manage cross-tier and self-interference from the new WB transmission type, an inter-

ference management scheme based on cochannel time division duplexing (CoTDD) (Hoydis

et al., 2013) is considered. Under this CoTDD setting, we contribute the following points in

our work:

- Our first important contribution lies in the advanced usage of the MISO NOMA on the

macrocell downlink. Rather than fixing the decoding order in the MISO NOMA process

prior to the optimization of the resource allocation as in (Hanif et al., 2016) or solving for

a decoding order in the SISO NOMA homogeneous networks as in (Shi et al., 2016), our

work proposes to present the decoding order between the SAPs as a set of binary variables

and propose to jointly determine these binary variables together with the radio resource

allocation which optimizes the objective of interest.

- In our second and most significant contribution, we observe that some small cells can op-

portunistically decode the backhaul data which is intended for other small cells thanks to

the proposed NOMA SIC process. Based on this observation, we present a novel cooper-

ative transmission scheme for the small cell downlink which allows different SAPs to co-

operatively transmit their decoded messages to the small cell users (SUEs). This provides

additional degrees of freedom for small cell access transmissions, which can potentially

improve their achievable rates. However, appropriately controlling the SAPs’ cooperation

must comply with the decoding rule from the NOMA process, which is undetermined ini-

tially. Therefore, our alternative contribution is to formulate the proper WA rate formula

taking into account the proposed cooperation. Note that this formula must cope with the the

decoding order rule represented by the binary variables.

- Under the novel scheme, we formulate two problems of jointly determining the decoding

order together with allocating the transmit beamforming and power at the MBS and SAPs

which optimizes the problems of interest. The first problem aims at maximizing the total
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macrocell user (MUE) and SUE sum rate. The second problem aims at maximizing the

number of MUEs and SUEs which can satisfy the minimum rate requirements.

- We observe that both formulated problems are mixed integer non-convex and are gener-

ally NP-hard. Finding a global optimal solution is very difficult and cannot be done us-

ing any existing off-the-shelf polynomial-time algorithm. Thus, we propose to approach

the solution via a more efficient and pragmatic method. In particular, we first employ

the DC functions to present the formulated binary variables and then equivalently trans-

form the optimization problems into more tractable forms. Finally, we present an iterative

low-complexity algorithm based on successive convex approximation (SCA) technique and

majorization minimization method (MMM) to attain the solution, which is provable to even-

tually converge at a sub-optimal solution.

The rest of this chapter is organized as follows. Section 5.2 introduces the system model

and proposes the novel transmission scheme. In Section 5.3, we formulate two optimization

problems and analyze their characteristics. In Section 5.4, we develop a unified algorithm

to solve both formulated problems. Section 5.5 presents and discusses our numerical results.

Finally, the concluding remarks of this chapter are given in Section 5.6.

5.2 System Model

5.2.1 Spatial Model and Interference Management

We consider the downlink of a two-tier WB HetNet consisting of one MBS in the macrocell

tier and S SAPs in the small cell tier as shown in Fig. 4.1. The MBS is equipped with N > 1

antennas to communicate with the SAPs and its MUEs. In this work, we assume the WB trans-

mission between the MBS and SAP operates concurrently with other WB transmissions and

with the WA transmissions from the MBS to its MUEs on the same spectrum. For tractability,

we consider that each SAP serves one SUE within its coverage, where all SAPs, SUEs, and

MUEs are equipped with a single antenna each. We also consider the design of this system

under perfect and imperfect channel state information in this work. In a more complicated
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case, the SAPs can be equipped with multiple antenna to enable multiple-stream transmissions

from the MBS and allow each SAP to simultaneously serve many SUEs within its coverage.

The resource allocation must then deal with the design of transmit and receive beamforming

for the MBS–SAPs transmission to suit with the MIMO configuration and satisfy the inher-

ent characteristics of the WB HetNet. Such scenario is a non-trivial extension of our current

work, which is especially complicated when considering the NOMA concept in the subsequent

sections, and thus deserves further study in future works.

Figure 5.1 Two-tier WB HetNets with CoTDD scheme.

To facilitate the radio resource allocation design presented later for the half-duplex transmit-

ters and receivers, we employ the CoTDD scheme as in (Sanguinetti et al., 2015; Hoydis et al.,

2013) to accommodate the WB and WA communications on the available channel resources.

More specifically, the time domain is divided into multiple time slots to separate the downlink

and uplink transmissions. The spectrum band W is split by a factor of α . In each time slot

dedicated for the downlink transmission, αW Hertz is reserved to accommodate the backhaul

downlink transmissions while (1−α)W Hertz is reserved for the access downlink transmis-
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sions. In another time slot dedicated for the uplink transmission, αW Hertz is reserved to

accommodate the backhaul uplink transmissions while (1−α)W Hertz is reserved for the ac-

cess uplink transmissions. The proposed time–spectrum allocation is illustrated in Fig. 5.1.

5.2.2 Transmission Model

5.2.2.1 Macrocell Downlink Transmissions

In this work, we assume that the channel is time invariant for the considered time slots. We first

consider the resource blocks dedicated for the macrocell downlink transmissions. We assume

that this resource block has T seconds and αW Hertz. We denote the SAP and MUE indices

set are S and M , where F = {S ,M }. Let w j ∈ C
N×1 be the beamformer from the MBS to

the jth receiver (including the SAPs and MUEs), s j be the message intended for the jth receiver

with unit average power, e.g., E
{

s js∗j
}
= 1. Then, the received signal at the jth receiver is

y j = hH
j w js j + ∑

k∈F\ j
hH

j wksk +n j, (5.1)

where h j ∈ C
N×1 is the channel state vector from the MBS to the jth receiver, which includes

fading gain and path-loss components. Note that the path-loss is calculated according to the

distance and carrier frequency dependent model (Goldsmith, 2005) as

PL j (dB) =−10log10

Gl(c/ fc)
2

(4πd j/d0)2
, (5.2)

where d j is the distance from the MBS to the jth receiver, and d0 is the reference distance.

In addition, Gl is the non-directional antenna gain, c is the speed of light, fc is the carrier

frequency. In addition, n j is an additive white Gaussian noise (AWGN) at the jth receiver,

which is distributed according to a normal distribution C N (0,N01), where N01 is the noise

power over the allocated spectrum.
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At the receiver side, each SAP applies the SIC technique used for the NOMA downlink (Islam

et al., 2017) prior to decoding its intended message. Here, we do not consider the SIC protocol

among the MUEs. Depending on the determined decoding order, the jth SAP might decode

some messages intended for the other ith SAP, for some i ∈ S . It is worth to mention that

in single-input single-output (SISO) downlink NOMA system (Saito et al., 2013), where the

receivers indices follow the ascending order of the channel quality, the jth receiver can decode

all the messages of the ith receiver, for i ≤ j. However, such ordering mechanism cannot be

straightforwardly applied in MISO systems since computing channel quality in this case differs

from SISO environment. This is because with multiple transmit antenna, we must deal with

channel and beamforming vectors rather than scalar channels and powers in single antenna

case. To convey the determination of an appropriate decoding order, let us introduce binary

variable a�, j ∈ {0,1}, where a�, j = 0 implies that the jth SAP can decode message s� intended

for the �th SAP and subtract the interfered signal caused by message s� out of the total received

signal; and a�, j = 1 otherwise. Therefore, the achievable rates, computed in bps/Hz, after

applying SIC–NOMA for the downlink transmission at the jth receiver to detect the �th SAP’s

message and its own jth messages ar

R j,� (w,a) = α log

⎛
⎜⎜⎝1+

∣∣wH
� h j

∣∣2
∑

l∈S \ j
al, j

∣∣wH
l h j

∣∣2 + ∑
m∈M

∣∣wH
mh j

∣∣2 +N01

⎞
⎟⎟⎠ (5.3)

R j, j (w,a) = α log

⎛
⎜⎜⎝1+

∣∣∣wH
j h j

∣∣∣2
∑

l∈S \ j
al, j

∣∣wH
l h j

∣∣2 + ∑
m∈M

∣∣wH
mh j

∣∣2 +N01

⎞
⎟⎟⎠ (5.4)

Rk,k (w) = α log

⎛
⎜⎜⎝1+

∣∣wH
k hk

∣∣2
∑

l∈F\k

∣∣wH
l hk

∣∣2 +N01

⎞
⎟⎟⎠ , (5.5)

where j, � ∈ S , � 
= j and k ∈ M . In addition, we denote w =
{

w j ∈ C
N ,∀ j ∈ F

}
and a ={

a�, j,∀�, j ∈ S
}

. In addition, N01 = αWσ0 is the noise power over the αW band and σ0 is

the noise power spectral density. The characteristic of a deserves more elaboration. First, since
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each jth SAP can decode its own message s j, it holds that a j, j = 0,∀ j ∈ S . Second, supposed

that a decoding order is determined so that the jth SAP is ranked before the �th SAP. According

to the SIC principle, if the jth SAP decodes the �th SAP’s message s�, the �th SAP cannot

decode the jth SAP’s message s j or reversely. This implies that either a�, j = 0 and a j,� = 1

or a�, j = 1 and a j,� = 0. In general, we have a j,�+ a�, j = 1,∀ j, � ∈ S . Third, if the jth SAP

cannot decode the ith SAP’s message si, and the kth SAP cannot decode the jth SAP’s message

s j, then the kth SAP cannot decode the ith SAP’s message si. Mathematically, we can write the

third relationship as ai,k ≥ ai, ja j,k∀i, j,k ∈ S . Finally, supposed that the jth SAP can decode

message s� intended for the �th SAP, ∀� 
= j, the following constraints, which are also reflected

in (Sun et al., 2017b, Eq. (4)), must hold

R j,� (w,a)≥ (
1−a�, j

)
R�,� (w,a) ,∀�, j ∈ S , � 
= j. (5.6)

5.2.2.2 Novel Cooperative Small Cell Downlink Transmissions

In the other resource block of T seconds and (1−α)W Hertz where the SAPs transmit to

their SUEs, we propose a novel cooperative transmission scheme which directly inherits from

the SIC detailed above. The details of this transmission can be elaborated by analyzing the

following example with S = 3 as illustrated in Fig. 5.2.

An example case for S = 3 : In this example, we assume that SAP 1 is ranked after SAP 2, and

SAP 2 is ranked after SAP 3. As a consequence of the reception in the macrocell downlink

transmission, SAP 1 can only decode data for its SUE in SC 1. SAP 2 decodes data not only

for its SUE in SC 2 but also for the SUE in SC 1. Finally, SAP 3 decodes all the data for

the SUEs in SCs 1,2, and 3. Since SAP 2 and 3 have the data of the SUE in SC 1, they can

cooperate with SAP 1 to send data s1 to the SUE of SC 1. Similarly, since SAP 3 also has

the data of the SUE in SC 2, it can cooperate with SAP 2 to send data s2 to the SUE in SC 2.

Here, the cooperation between SAP 1, 2, and 3 is that SAP 2 and 3 can simultaneously transmit



157

MBS

SAP 1

SAP 2

SAP 3

Decode s1

Decode 

s1, s2

Decode 

s1, s2, s3

SUE 1

SUE 2

SUE 3

v11s1

v21s1

v22s2

Novel
transmission 

strategyNOMA

v31s1

v32s2

v33s3

Figure 5.2 Details of macrocell and SC transmissions

under the proposed cooperative NOMA scheme.

message s1, in addition to their own messages s2 and s3, respectively, to help SAP 1 improve

the signal reception at SUE 1. Without this cooperation, each SAP � > 1 will only transmit s�

without helping to transmit s1. By assuming that v1 = [v11,v21,v31] ,v2 = [v12,v22,v32] ,v3 =

[v13,v23,v33] are the transmit beamformers from SAP 1, 2, and 3, respectively, the received

signal at each SUE is

yi = vH
i gisi +∑

k 
=i
vH

k gisk + zi, (5.7)

where gi = [g1i,g2i,g3i]
T is the vector which concatenates the channel from all the SAPs to the

SUE in the ith small cell. Note that we associate the cooperation capability for each SC by
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coupling the binary variable a j,i with the weight vi j using the following inequalities

⎧⎪⎨
⎪⎩
∣∣vi j

∣∣2 ≤ (1−a j,i)λi j ,∀i, j = 1,2,3,

∑3
j=1 λi j ≤ pmax ,∀i = 1,2,3,

(5.8)

where λi j ∈ R
+ represents the soft power level that the SAP i applies at the jth SUE. In our

example, a1,2 = a1,3 = a2,3 = 1 where the remaining elements of a are 0. This means that

v12,v13,v23 are enforced to 0, where the remaining elements of each vector vi,∀i = 1,2,3 can

take any complex value whose norm is from 0 to λi j. In general case of S SCs, to mathemati-

cally derive the above cooperative transmission and reception, let us denote vi = [v1i, . . . ,vSi]
T

and gi = [g1i, . . . ,gSi]
T as the array of weights and channel vector from all the SAPs to the SUE

of the ith small cell. Then, the received signal at the SUE of the ith small cell is

yi = vH
i gisi + ∑

k∈S \i
vH

k gisk + zi, (5.9)

where we also have

∣∣vi j
∣∣2 ≤ (1−a j,i)λi j,∀i, j ∈ S (5.10)

∑
j∈S

λi j ≤ pmax,∀i ∈ S , (5.11)

and si is the message intended for the SUE in the ith small cell with unit average power, e.g.,

E{sis∗i } = 1, z j is a AWGN at the SUE in the ith small cell, distributed according to a normal

distribution C N (0,N02). Treating interference as noise, the achievable rate r j(v) of the jth

SAP, computed in bps/Hz, is

ri(v) = (1−α) log

(
1+

∣∣vH
i gi

∣∣2
∑k∈S \i

∣∣vH
k gi

∣∣2 +N02

)
, (5.12)

where we denote N02 = (1−α)Wσ0 as the noise power over the (1−α)W band.
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5.3 Problem Formulations

In this section, we aim at jointly optimizing the decoding order together with the radio resource

allocation to solve two optimization problems. The first problem is to maximize the sum rate

of the SUEs and MUEs, which can be formulated as

(P1) : max
w,v,a,λ

∑
j∈S

r j(v)+ ∑
k∈M

Rk,k(w) (5.13a)

s.t. R j, j(w,a)≥ r j(v),∀ j ∈ S (5.13b)

R j,� (w,a)≥ (1−a�. j)R�,� (w,a) ,∀�, j ∈ S (5.13c)∣∣vi j
∣∣2 ≤ (1−a j,i)λi j,∀i, j ∈ S (5.13d)

∑
j∈S

λi j ≤ pmax,∀ j ∈ S ; ∑
i∈F

‖wi‖2 ≤ Pmax (5.13e)

a j,�+a�. j = 1,∀�, j ∈ S , � 
= j (5.13f)

a j, j = 0,ai,� ≥ ai, ja j,k,∀i, j,k ∈ S (5.13g)

a j,� ∈ {0,1} ,∀ j, � ∈ S , (5.13h)

The second problem is to maximize the number of satisfied SUEs and MUEs whose achievable

rates exceed the minimum rate requirement γmin and Γmin, which can be formulated as

(P2) : max
w,v,a,λ ,x,y,ω

∑
j∈S

x j + ∑
k∈M

yk (5.14a)

s.t. r j(v)≥ x jγmin,∀ j ∈ S ;Rk,k(w)≥ ykΓmin,∀k ∈ M (5.14b)∥∥w j
∥∥2 ≤ x jω j,∀ j ∈ S ;‖wk‖2 ≤ ykωk,∀k ∈ M (5.14c)

∑
i∈F

ωi ≤ Pmax; ∑
j∈S

λi j ≤ xi pmax,∀ j ∈ S (5.14d)

x j = {0,1} ,∀ j ∈ S ,yk = {0,1} ,∀k ∈ M (5.14e)

(5.13b)− (5.13d), (5.13f)− (5.13h) (5.14f)
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The characteristics of these introduced problems deserve more elaboration. In (P1), we aim

at maximizing the continuous value of the total achievable rate at the SUEs and MUEs. This

means that in some scenario, there might exist some admitted users with low rates while the

other user rates are much higher to arrive at the optimal sum rate objective (5.13a). On the

contrary, problem (P2) guarantees that each admitted user must exceed a minimum rate re-

quirement, e.g., γmin or Γmin, via constraint (5.14b) when the maximum number of admitted

users is achieved.

To convey the property of the WB networks into these optimization problems, constraints

(5.13b) is imposed to restrict that the WB downlink rate of each SAP at the t th time slot

should always be larger than or equal to the corresponding WA downlink rate at each SAP

at the (t +2)th time slot. Since we consider time invariant channel within the considered time

slots, we omit the notation of time index for ease of presentation. Note that the backhaul

rate formula, e.g., R j, j(w,a),∀ j ∈ S , under the proposed NOMA technique in (5.4) is more

complicated than the existing expression in (Nguyen et al., 2016b; Wang et al., 2016) due

to the NOMA-related decoding capability constraints in (5.13c). (5.13b) also implies a com-

plicated coupling between variables w,v, and a by non-concave non-convex functions, i.e.,

R j, j (w,a) ,r j(v),∀ j ∈ S . The first and second terms in (5.13e) are the maximum power bud-

get constraint at the SAP and MBS, respectively. To reflect the impact of decoding capability of

the proposed NOMA in Section 5.2.2.1, we also present the binary constraints (5.13f)–(5.13h).

Note that the relationship of the decoding capability at each small cell also affects the setting

of each weight’s value at each SAP, as shown in (5.13d). In addition, in (P2), we present

the maximum power budget constraints (5.14c)–(5.14d) slightly differently by adopting the

concept of perspective reformulation in (Günlük & Linderoth, 2010) and the slack variables

ω = {ωi ≥ 0,∀i ∈ F}. By this, when the binary variable x j,∀ j ∈ S (or yk,∀k ∈ M ) take

value 0, the respective beamforming vector w j and v j for j ∈ S (or wk for k ∈ M ) will be

enforced to 0. Towards this end, we provide the following remark to characterize the perfor-

mance of problem (P1) over the conventional works (Wang et al., 2016; Zhao et al., 2015;

Nguyen et al., 2016b) in certain channel conditions.
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Proposition 5. Without applying NOMA in Section 5.2.2, the problem (P1) is rewritten as

(Pnon) : max
w,v ∑

j∈S

r̃ j(v)+ ∑
k∈M

R̃k,k (w) (5.15a)

s.t. R̃ j, j (w)≥ r̃ j(v),∀ j ∈ S (5.15b)

∑
i∈F

‖wi‖2
2 ≤ Pmax,

∣∣v j j
∣∣2 ≤ pmax,∀ j ∈ S , (5.15c)

where

R̃ j, j (w) = α log

(
1+

∣∣∣wH
j h j

∣∣∣2
∑

k∈F\ j

∣∣wH
k h j

∣∣2 +N01

)
(5.16)

r̃ j(v) = (1−α) log

(
1+

∣∣∣v∗j jg j j

∣∣∣2
∑k∈S \ j

∣∣v∗kkgk j
∣∣2 +N02

)
, (5.17)

which is similar to the formulation in (Nguyen et al., 2016c). We observe that in some specific

scenarios of (P1) where R j, j (w,a) from (5.4) satisfies constraints (5.13c) for all feasible w,

the optimal solution of (P1) provides a backhaul rate tuple higher than the optimal solution

of (Pnon). In such cases, the optimal objective of (P1) is provable to be greater than or equal

to that of (Pnon). The detailed proof for this is given in the Appendix 8.

In order to solve (P1) and (P2), we first assume that global channel state information (CSI)

is available at all the transmitters (Wang et al., 2016; Niu et al., 2017; Zhao et al., 2015).

The assumption of global CSI to embrace the centralized computation of problem (P1) and

(P2) requires that all the necessary CSI are gathered at one central computational node. This

is necessary to execute the later developed algorithm to attain the solution. Thus, a cost of

exchanging of |h| and |g| CSI elements, e.g. C(|h|+ |g|), towards to the computational node,

where h = {hi,∀i ∈ F} and g =
{

g j�,∀ j, � ∈ S
}

, is required.
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Toward this end, we observe that both problems (P1) and (P2) are mixed integer non-convex

optimization problems, which are generally NP-hard and difficult to solve. The non-convexity

of (P1) and (P2) is due to the existence of the non-convex rate functions which lie in the

objective functions and the constraints (5.13b)–(5.13c). Finding a global solution for each

problem (P1) or (P2) often requires a high–complexity exhaustive search algorithm, which

is impractical and cumbersome. This high computational complexity is illustrated in the nu-

merical results section, where we employ an exhaustive search based on branch and bound

(BnB) algorithm to solve for the global optimal solution. Motivated by these, we only aim at

developing a more appealing low-complexity algorithm to attain the solution within a poly-

nomial time. In the next sections, we mainly concentrate to develop our framework to solve

(P1), where solving (P2) can follow the similar steps.

5.4 Proposed Efficient Solution Methodology

5.4.1 Equivalent Problem Transformation

Let us first equivalently rewrite the binary constraint in (5.13h) in a D.C form as

a j,�−a2
j,� ≤ 0 (5.18a)

0 ≤ a j,� ≤ 1. (5.18b)

Next, we can rewrite (5.13g) into a system of linear binary constraints as

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ai,k ≥ bi, j,k

bi, j,k ≥ ai, j,bi, j,k ≥ a j,k

bi, j,k ≥ (ai, j +a j,k)−1

,∀i, j,k ∈ S (5.19)

where bi, j,k is another slack variable. For convenience, we denote b =
{

bi, j,k,∀i, j,k ∈ S
}

.

Next, we also introduce some other slack variables χ =
{

χ j ≥ 0,∀ j ∈ S
}

, and γ = {γk ≥
0,∀k ∈ M }, ξ =

{
ξ j ≥ 0,∀ j ∈ S

}
, and θ =

{
θ j ≥ 0,∀ j ∈ S

}
and equivalently represent
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constraints (5.13b) and (5.13c) as

ξ j ≥ r j(v)≥ χ j,∀ j ∈ S , (5.20)

Rk,k (w)≥ γk,∀k ∈ M , (5.21)

1/θ j ≥ R j, j(w,a)≥ ξ j,∀ j ∈ S , (5.22)

R j,� (w,a)≥ (1−a�. j)2

θ j
,∀�, j ∈ S , (5.23)

Similarly, we introduce slacking variables t =
{

t j ≥ 0,∀ j ∈ S
}

, q =
{

q j ≥ 0,∀ j ∈ S
}

to

rewrite the right side of (5.20) as (5.24b), (5.24d), (5.24e) and u=
{

u j ≥ 0,∀ j ∈ S
}

, to rewrite

the left side of (5.20) as (5.24c) and (5.24f). Then, we also introduce τm = {τkk ≥ 0,∀k ∈ M },

τs =
{

τ j� ≥ 0,∀�, j ∈ S
}

, s =
{

s� j ≥ 0,∀�, j ∈ S
}

, ζ =
{

ζ j� ≥ 0,∀�, j ∈ S
}

to rewrite con-

straint (5.21) and the right side of (5.22) as constraint (5.24g)–(5.24l). Finally, we also in-

troduce μ =
{

μ j ≥ 0,∀ j ∈ S
}

, π =
{

π� j ≥,∀l, j ∈ S
}

to rewrite the left side of (5.22) as

(5.24m)–(5.24o). The resulted equivalent transformation of problem (5.13) is recasted as

max
w,v,a,b,λ ,

χ,γ,ξ ,θ ,π,q,
s,u,μ,t,τ,ζ

∑
j∈S

χ j + ∑
k∈M

γk (5.24a)

s.t. (1−α) log
(
1+ t j

)≥ χ j,∀ j ∈ S (5.24b)

(1−α) log
(
1+u j

)≤ ξ j,∀ j ∈ S (5.24c)∣∣vH
j g j

∣∣2 /q j ≥ t j,∀ j ∈ S (5.24d)

∑
k∈S \ j

∣∣vH
k g j

∣∣2 +N02 ≤ q j,∀ j ∈ S (5.24e)

∣∣vH
j g j

∣∣2 /u j ≤ ∑
k∈S \ j

∣∣vH
k g j

∣∣2 +N02,∀ j ∈ S (5.24f)

α log(1+ τkk)≥ γk,∀k ∈ M (5.24g)

α log
(
1+ τ j j

)≥ ξ j,∀ j ∈ S (5.24h)∣∣wH
k hk

∣∣2
τkk

≥ ∑
l∈F\k

∣∣wH
l hk

∣∣2 +N01,∀k ∈ M (5.24i)
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∣∣∣wH
j h j

∣∣∣2
s j j +N01

≥ τ j j,∀ j ∈ S (5.24j)

∑
�∈S \ j

a2
�, j

ζ�, j
+ ∑

k∈M

∣∣wH
k h j

∣∣2 ≤ s j j,∀ j ∈ S (5.24k)

∣∣wH
� h j

∣∣2 ≤ 1

ζ�, j
,∀�, j ∈ S , � 
= j (5.24l)

α log
(
1+μ j

)≤ 1

θ j
,∀ j ∈ S (5.24m)∣∣∣wH

j h j

∣∣∣2
μ j

≤ ∑
�∈F\ j

π2
� j +N01,∀�, j ∈ S , � 
= j (5.24n)

a�, j +
∣∣wH

� h j
∣∣2 ≥√

π2
� j +

(
a�, j −

∣∣wH
� h j

∣∣2)2
,

∀�, j ∈ S , � 
= j (5.24o)

α log
(
1+ τ� j

)≥ a2
�, j

θ j
,∀�, j ∈ S , � 
= j (5.24p)∣∣∣wH

j h�

∣∣∣2
s� j +N01

≥ τ� j,∀�, j ∈ S , � 
= j (5.24q)

∑
�∈S \ j

a2
�,m

ζ�,m
+ ∑

k∈M

∣∣wH
k h�

∣∣2 ≤ s� j,∀�, j ∈ S , � 
= j (5.24r)

∣∣wH
mh�

∣∣2 ≤ 1

ζ�,m
,∀�,m ∈ S , � 
= m (5.24s)

(5.13d)− (5.13f), (5.18), (5.19). (5.24t)

5.4.2 Successive Convex Approximation (SCA) Method

In this section, owing to the fact that (5.24) is still difficult to solve, we will present the SCA

method to approximate the non-convex problem (5.24) and develop an iterative low-complexity

algorithm to attain the solution. The difficulties of problem (5.24) are recognized through some

existing constraint types. The first type of constraint involves in the binary variables a, e.g.,

(5.13f), (5.18), and (5.19). If we directly employ the SCA method under the consideration
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of constraint (5.18), there will be some steps where solving the approximated problem result

is infeasible because of (5.18), which leads to a failed convergence of the mentioned itera-

tive algorithm. Inspired by the approach in (Vu et al., 2016a), we overcome this obstacle by

considering the relaxed version of problem (5.24) as

max
w,v,a,b,λ ,φ ,
χ,γ,ξ ,θ ,π,q,
s,u,μ,t,τ,ζ

∑
j∈S

χ j + ∑
k∈M

γk −A ∑
j,�∈S

φ j,� (5.25a)

s.t. (5.24b)− (5.24s), (5.13d)− (5.13f), (5.18b), (5.19), (5.25b)

a j,�−a2
j,� ≤ φ j,�∀�, j ∈ S , (5.25c)

where φ =
{

φ j,� ≥ 0∀�, j ∈ S
}

is a new slack variable and A >0 is the penalty parame-

ter. It is obvious to remark that (5.24) and (5.25) are equivalent when φ j,� = 0. Under

the relaxed problem (5.25), we also remark that the second constraint type includes all the

convex constraints (5.24b), (5.24e), (5.24g), (5.24h), (5.24k), (5.24n), (5.24p), (5.24r), and

(5.13d)–(5.13f). The third type contains the non-convex constraints (5.24c), (5.24d), (5.24f),

(5.24i), (5.24l), (5.24m), (5.24o), (5.24q), and (5.24s), (5.25c). The non-convexity of the con-

straints (5.24d), (5.24f), (5.24i), (5.24j), (5.24l), (5.24m), (5.24o), (5.24q), and (5.24s) are due

to the existence of the convex functions on the greater side of the inequalities. It is worth

to mention that the greater sides of (5.24d), (5.24i), (5.24l), (5.24m), (5.24q), (5.24s) have a

generic form as f (x,y) = |y|2
x ,∀y ∈C,∀x ∈R

+. On the other hand, the greater sides of (5.24o),

(5.24f) has the quadratic form with respect to variable w or v. Beside, the non-convexity of

constraints (5.24c), (5.24m), and (5.25c) are due to the concave functions which lie on the

lesser side of the inequality. Toward this end, we first proceed to approximate function f (x,y)

by its lower–bounded concave approximation F(x,y;x(n),y(n)) as (Nguyen et al., 2016b):

f (x,y)≥ F(x,y;x(n),y(n)) =
2Re

{
y(n)∗y

}
x(n)

−

∣∣∣y(n)∣∣∣2(
x(n)

)2
x (5.26)
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Similarly, we can also approximate the function ĥ j(g,v) = ∑k∈S \ j

∣∣∣vH
k gk

j

∣∣∣2 +N02 respectively

appeared in constraint (5.24f) and functions g(u j) = log
(
1+u j

)
,g(μi) = log(1+μi) respec-

tively appeared in constraints (5.24c) and (5.24m) by their lower-bounded concave and upper-

bounded convex approximation Ĥ j(g.v;v(n)), and G(u j;u(n)j ), respectively, as:

ĥ j(g,v)≥ Ĥ j(g,v;v(n)) = ∑
k∈S \ j

2Re
(

v(n)Hk G jvk

)
− ∑

k∈S \ j

∣∣∣v(n)Hk g j

∣∣∣2 (5.27)

g(u j)≤ G(u j;u(n)j ) = log
(

1+u(n)j

)
+

u j −u(n)j

1+u(n)j

. (5.28)

where we denote Gk
j = gk

j

(
gk

j

)H
,∀ j ∈ S . The characteristics of the above approximations

deserve some elaboration. First, it is obvious that (5.26) achieves its equality when x = x(n)

and y = y(n). Second, ∇ f (x,y) = ∇(x,y;x(n),y(n)) when x = x(n) and y = y(n). Third, f (x,y)

is lower bounded by a convex approximated function F(x,y;x(n),y(n)). Similar analyses can

be employed for (5.27) and (5.28). According to the theory (Marks & Wright), employing

these approximation creates a sequence of convex approximate of the continuous non-convex

problem (P1), where sequentially optimizing these convex approximated problems produces

a non-decreasing sequence of objective values and eventually leads to convergence. Moti-

vated by this, we replace the non-convex constraints (5.24d), (5.24i), (5.24l), (5.24m), (5.24q),

(5.24s) by their approximation using the proper lower–bounded concave approximation in

(5.26), the non-convex constraint (5.24f) by the approximation in (5.27), and non-convex con-

straints (5.24c) and (5.24m) by the approximation in (5.28). Then, the solution of (5.24) can

be attained by solving the following approximated problem at iteration (n+1) as

max
w,v,a,b,λ ,φ ,
χ,γ,ξ ,θ ,π,q,
s,u,μ,t,τ,ζ

∑
j∈S

χ j + ∑
k∈M

γk −A ∑
j,�∈S

φ j,� (5.29a)

s.t. (1−α) log
(
1+ t j

)≥ χ j,∀ j ∈ S (5.29b)

(1−α)G(u j;u(n)j )≤ ξ j,∀ j ∈ S (5.29c)

F(q j,vH
j g j;q(n)j ,v(n)Hj g j)≥ t j,∀ j ∈ S (5.29d)
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∣∣∣vH
j g j

∣∣∣2
u j

≤ Ĥ j(g.v;v(n)),∀ j ∈ S (5.29e)

α log(1+ τkk)≥ γk,∀k ∈ M ; α log
(
1+ τ j j

)≥ ξ j,∀ j ∈ S (5.29f)

F(τkk,wH
k hk;τ(n)kk ,w(n)H

k hk)≥ ∑
l∈F\k

∣∣wH
l hk

∣∣2 +N01,∀k ∈ M (5.29g)

F(s j j +N01,wH
j h j;s(n)j j +N01,w

(n)H
j hk)≥ τ j j,∀ j ∈ S (5.29h)∣∣wH

� h j
∣∣2 ≤ F(ζ�, j,1;ζ (n)

�, j ,1),∀�, j ∈ S , � 
= j (5.29i)

(1−α)G(μ j; μ(n)
j )≤ F(θ j,1;θ (n)

j ,1),∀ j ∈ S (5.29j)∣∣∣wH
j h j

∣∣∣2
μ j

≤ Ĥ j(1,π;1,π(n))+N01,∀�, j ∈ S , � 
= j (5.29k)

a�, j +2Re
(

w(n)H
� H jw�

)
−

∣∣∣w(n)H
� h j

∣∣∣2 ≥√
π2
� j +

(
a�, j −

∣∣wH
� h j

∣∣2)2
,∀�, j ∈ S , � 
= j (5.29l)

α log
(
1+ τ� j

)≥ a2
�, j/θ j,∀�, j ∈ S , � 
= j (5.29m)

F(s� j +N01,wH
j h�;s(n)� j +N01,w

(n)H
j h�)≥ τ� j,∀�, j ∈ S , � 
= j (5.29n)∣∣wH

mh�

∣∣2 ≤ F(ζ�,m,1;ζ (n)
�,m,1),∀�,m ∈ S , � 
= m (5.29o)

a j,�−
(

2a(n)j,�a j,�−
(

a(n)j,�

)2
)
≤ φ j,�,∀�, j ∈ S (5.29p)

(5.24e), (5.13d)− (5.13f), (5.18b), (5.19), (5.24k), (5.24n), (5.24r). (5.29q)

5.4.3 Majorization-Minimization Method (MMM) based Approximation and Proposed
Algorithm

In the previous subsection, problem (5.24) has been convexified into a sequence of convex

problems (5.29), where obtaining the solution of (5.24) involves sequentially solving a se-

quence of convex problems (5.29). We observe that the approximated problem (5.29) at the

(n+1)th iteration is categorized as a generalized nonlinear convex programming (GNCP),

which in general can be solved within a polynomial time. When a GNCP contains an ex-

ponential cone constraint, we can employ a universal convex solver MATLAB’s FMINCON
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to seek for the optimal solution. However, this often results in high computational time com-

pared to other standard convex programs dedicated for quadratic problems (Nguyen et al.,

2016b). Therefore, this motivates us to approximate (5.29b), (5.29f), and (5.29m) into a con-

vex quadratic constraint. In the existing work (Nguyen et al., 2016b), to approximate each ex-

ponential cone constraint by a system of second order cone programming (SOCP), extra m+4

slack variables and m+ 4 new constraints must be additionally introduced. This approaches

might become excessive when we meet a large-sized problem. Hence, in this work, we propose

a novel approximation based on Majorization-Minimization method (Parikh & Boyd, 2014b)

which does not require any addition of slack variables and constraints. We provide the follow-

ing proposition to approximate the generic function log(1+ x).

Proposition 6. The function �(x) = log(1+ x) ,∀x ∈ R can be approximated by its lower-

bounded quadratic function L(x;x(n)), which is given by

�(x)≥ L(x;x(n)) = log
(

1+ x(n)
)
+

x− x(n)

1+ x(n)
− L

2

(
x− x(n)

)2
(5.30)

where L = 1 is the Lipschitz constant of ∂�(x)/∂x.

Proof. The detailed proof of deriving (5.30) and explaining the chosen value L = 1 is given in

Appendix 9.

By applying the result of Proposition 6 on the logarithm function in constraints (5.29b), (5.29f),

and (5.29m), we can rewrite the GNCP problem (5.29) into a quadratic optimization problem

at the (n+1)th iteration as

max
w,v,a,b,λ ,φ ,
χ,γ,ξ ,θ ,π,q,
s,u,μ,t,τ,ζ

∑
j∈S

χ j + ∑
k∈M

γk −A ∑
j,�∈S

φ j,� (5.31a)

s.t. (1−α)L(t j; t
(n)
j )≥ χ j,∀ j ∈ S (5.31b)

αL
(

τkk;τ(n)kk

)
≥ γk,∀k ∈ M (5.31c)

αL
(

τ j j;τ(n)j j

)
≥ ξ j,∀ j ∈ S (5.31d)
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αL
(

τ� j;τ(n)� j

)
≥ a2

�, j/θ j,∀�, j ∈ S , � 
= j (5.31e)

(5.29c)− (5.29e), (5.29g)− (5.29l), (5.29n)− (5.29q). (5.31f)

where u(n),q(n),v(n), t(n),τ(n),w(n),s(n),ζ (n),μ(n),θ (n), π(n),a(n) are not the optimization vari-

ables but the problem parameters that are iteratively updated by the obtained optimal solution

of (5.31) at each iteration. Algorithm 6, which is based on successive convex approximation

and majorization-minimization method (SCAMMM), presents the pseudo code to solve prob-

lem (5.24). First, we initially set A at small value. Then after each iteration n, we increase A

using a constant c > 1 to ensure that ∑ j,�φ�
j,� = 0 when n → ∞. The proof that there exist a fi-

nite value of Amax and n1 such that ∑ j,�φ�
j,� = 0 and

∣∣∣∣∑ j∈S
χ(n2)

j +∑k∈M γ(n2)
k −∑ j∈S

χ(n2−1)
j +

∑k∈M γ(n2−1)
k

∣∣∣∣ = 0 at iteration n2,∀n2 > n1 is similar to (Vu et al., 2016a). We omit the proof

here due to space limitation.

Algorithm 6: Iterative SCAMMM Algorithm

1: Initialize starting points of u(n),q(n),v(n), t(n),τ(n),w(n),s(n),ζ (n),μ(n),θ (n),π(n),a(n) and A(0);

2: Set n := 0;

3: repeat
4: Solve the convex problem in (5.31) to achieve the optimal solution

w�,v�,a�,b�,λ �,φ �,χ�,γ�,ξ �,θ �,π�,u�,μ�, t�,τ�,ζ �
;

5: Set n := n+1;

6: Update u(n) = u�,q(n) = q�,v(n) = v�, t(n) = t�,τ(n) = τ�,w(n) = w�,s(n) = s�,ζ (n) = ζ �,μ(n),=
μ�,θ (n) = θ �,π(n) = π�,a(n) = a�;

7: Update A(n) = min
{

cA(n−1),Amax

}
;

8: until Convergence of the objective (5.31a);

By applying similar steps of transformation and approximations, (P2) can also be transformed

and approximated by its quadratic approximation at iteration (n+1) as

max
w,v,ω,a,b,λ ,φ ,
x,y,ξ ,θ ,π,q,Φ,

s,u,μ,t,τ,ζ

∑
j∈S

x j + ∑
k∈M

yk −A ∑
j,�∈S

φ j,�−B

(
∑

j∈S

Φx
j + ∑

k∈M

Φy
k

)
(5.32a)
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s.t. (1−α)L(t j; t
(n)
j )≥ x jγmin,∀ j ∈ S (5.32b)

αL(τkk;τ(n)kk )≥ ykΓmin,∀k ∈ M (5.32c)

αL
(

τ j j;τ(n)j j

)
≥ ξ j,∀ j ∈ S (5.32d)

αL
(

τ� j;τ(n)� j

)
≥ a2

�, j/θ j,∀�, j ∈ S , � 
= j (5.32e)

x j −
(

2x(n)j x j −
(

x(n)j

)2
)
≤ Φx

j,∀ j ∈ S (5.32f)

yk −
(

2y(n)k yk −
(

y(n)k

)2
)
≤ Φy

k,∀k ∈ M , (5.32g)

0 ≤ x j ≤ 1,∀ j ∈ S ; 0 ≤ yk ≤ 1,∀k ∈ M , (5.32h)

(5.29c)− (5.29e), (5.29g)− (5.29l), (5.29n)− (5.29p), (5.24e),

(5.14c)− (5.14e), (5.13f), (5.18b), (5.19), (5.24k), (5.24n), (5.24r). (5.32i)

where Φ =
{

Φx
j ≥ 0,Φy

k ≥ 0,∀ j ∈ S ,∀k ∈ M
}

. Note that u(n),q(n),v(n), t(n),τ(n),w(n),s(n),

ζ (n),μ(n),θ (n),π(n), a(n),x(n),y(n) are not the optimization variables but the problem param-

eters that are iteratively updated by the obtained optimal solution of (5.32) at each iteration.

We can directly employ Algorithm 6 to solve (5.14) by simply replacing problem (5.31) by

problem (5.32) in Step 4 of Algorithm 6.

5.4.4 Initial point setting

To start Algorithm 6, we must choose an initial point u(0),q(0),v(0), t(0),τ(0),w(0),s(0),ζ (0),

μ(0),θ (0),π(0),a(0) which is feasible to (5.24). Although (5.24) is non-convex, we can de-

termine this feasible point by the following steps. First, a feasible point w(0) can be chosen

as ⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

w(0)
1 = · · ·= w(0)

S−1 = 0;w(0)
S = Pmax

S+M [1,0, . . . ,0]T

w(0)
k = Pmax

S+M [1,0, . . . ,0]T ,∀k ∈ M

ζ (0)
�, j = ε,∀�, j ∈ S , � 
= j,

(5.33)
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where ε can be arbitrary small (ε = 10−3). Then, we can calculate s(0),∀�, j ∈ S by setting

(5.24k) and (5.24r) with equality. In addition, we set μ(0)
j equal to

∣∣∣w(n)H
j h j

∣∣∣2
s(n)j j +N01

and θ (0)
j equal

to 1

α log
(

1+μ(0)
j

) ,∀ j ∈ S . Alternatively, we can calculate π(0) by setting (5.24s) with equality.

Then, we choose v(0)1 = · · ·= v(0)S−1 = 0 and choose v(0)S by solving

min
vS

‖vS‖2 (5.34a)

s.t. Re
{

vH
S gS

}≥

√√√√∣∣∣w(0)H
S hS

∣∣∣2
N01

N02,∀ j ∈ S (5.34b)

‖vS‖2 ≤ pmax (5.34c)

and calculate q(0) at by solving (5.24e) at equality. We can set u(0)1 = · · · = u(0)S−1 = ε , t(0)1 =

· · ·= t(0)S−1 = 0 and choose u(0)S = t(0)S =

∣∣∣v(0)HS gS

∣∣∣2
N01

. Finally, we can choose a(n)1,S = · · ·= a(n)S−1,S = 0

and the other element of a(n) is equal to 0.5. It is worth to note that we can find the initial point

using another approach by simply setting an arbitrary point without checking its feasibility.

Such approach, which was used in (Venkatraman et al., 2017), employs a penalty method

which allows our SCA-based algorithm, e.g., SCAMMM algorithm, to start from any initial

point, even if it is infeasible to (5.24). In particular, some slack variables are introduced at each

constraint as the violations and these violations are additionally considered to be minimized in

the objective. In this way, some first iterations of Algorithm 6 may be infeasible to (5.32), but

violations are minimized to be zero as the algorithm iterates. We refer to (Lipp & Boyd, 2016,

Algorithm 3.1) for a complete description of this initialization method.

5.4.5 Computational complexity analysis

We first present the worst-case per-iteration computational complexity analysis of Algorithm 6.

We note that (5.31) is in the standard quadratic programming, which can be easily rewritten

into a second order programming (SOCP). By following the result in (Lobo et al., 1998), we

observe that there are approximately S3 + 8S2 + 7S+ 2M +N(S+M) continuous variables in
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(5.31) with 6S+M + 3S2 + 2S3 SOC constraints of dimension 1, 7S2 − 4S SOC constraints

of dimension 2, S SOC constraints of dimension S, S2 +M +1 SOC constraints of dimension

S+M+1. After omitting the small order, the worst-case per-iteration complexity of Algorithm

6 is approximately O(S9 +S8M+
(
S3 +S2M

)
N2(S2 +M2)).

5.4.6 Imperfect channel state information (CSI)

In the previous sections, we assume perfect global CSI at the transmitters. In practice, CSI

knowledge at the transmitter can be imperfect. Under imperfect CSI, solution from solving

(5.13) using estimated CSI knowledge might not belong to the feasible solution domain of

(5.13) with perfect CSI. This is because imperfect CSI may lead to the violation of constraint

(5.13b) and (5.13c) (Nguyen et al., 2016b). To evaluate the impact of imperfect CSI on the

resource allocation design, we propose a robust design of radio resource allocation in the erro-

neous CSI case using the worst-case design as in (Iserte et al., 2006; Jeong et al., 2011; Zhang

et al., 2016). For simplicity, we consider that the erroneous CSI is only due to the channel esti-

mation error. Considering the outdated CSI can be left for future work. Under this assumption,

the estimated channel values are obtained with some estimation errors lying in some bounded

sets of known size. For instance, the estimated channel model can be given as in (Jeong et al.,

2011; Zhang et al., 2016): hi = ĥi+εh,∀i ∈ F , and g j = ĝ j +εg,∀ j ∈ S , where ĥi, ĝ j are the

estimated CSI and ‖εh‖2 ≤ δh,
∥∥εg

∥∥2 ≤ δg reflect that the estimation errors lie in a bounded set

of size δh and δg, respectively. The robust optimization problem is given by:

(
Pimp

)
: max

w,v,a,λ
min

‖εg‖2≤δg

∑
j∈S

r j(v)+ min
‖εh‖2≤δh

∑
k∈M

Rk,k (w) (5.35a)

s.t. min
‖εh‖2≤δh

R j, j (w,a)≥ max
‖εg‖2≤δg

r j(v),∀ j ∈ S (5.35b)

min
‖εh‖2≤δh

R j,� (w,a)≥ max
‖εh‖2≤δh

(1−a�, j)R�,� (w,a) ,∀�, j ∈ S (5.35c)

(5.13d)− (5.13h). (5.35d)



173

where in this problem, transmitters only have the estimated CSI ĥi, ĝ j. For simplicity, we follow

the framework in (Jeong et al., 2011) to derive an approximation of each term in (5.35b) and

(5.35c) as in (5.36a)–(5.36d).

min
‖εg‖2≤δg

r j(v)≈ (1−α) log

[
1+

|vH
j ĝ j|2 −δg‖v j‖2

∑k∈S \ j
(|vH

k ĝ j|2 +δg‖vk‖2
)
+N02

]
(5.36a)

max
‖εg‖2≤δg

r j(v)≈ (1−α) log

[
1+

|vH
j ĝ j|2 +δg‖v j‖2

∑k∈S \ j
(|vH

k ĝ j|2 −δg‖vk‖2
)
+N02

]
(5.36b)

min
‖εh‖2≤δh

R j,i(w,a)≈

α log

[
1+

|wH
i ĥ j|2 −δh‖wi‖2

∑�∈S \ j
(
a�, j|wH

� ĥ j|2 +δha�, j‖w�‖2
)
+∑m∈M

(|wH
m ĥ j|2 +δh‖wm‖2

)
+N01

]
(5.36c)

max
‖εh‖2≤δh

R j, j(w,a)≈

α log

[
1+

|wH
j ĥ j|2 +δh‖w j‖2

∑�∈S \ j
(
a�, j|wH

l ĥ j|2 −δha�, j‖wl‖2
)
+∑m∈M

(|wH
m ĥ j|2 −δh‖wm‖2

)
+N01

]
.

(5.36d)

Towards this end, we can follow the same steps developed in Sections 5.4.2 and 5.4.3 to trans-

form, approximate and develop a low-complexity algorithm similar to Algorithm 6 to solve

(5.35) for an efficient solution.

5.5 Numerical Results

In this section, we evaluate the network performance with the proposed algorithm. We assume

time-invariant flat Rayleigh fading channels and the pathloss component is computed according

to (5.2), wehre d0 = 10 m, Gl = 1, c = 3×108 m/s, fc = 2.36 GHz. In most of the numerical

instances, we apply the spatial scenario where we assume a circular coverage of the macrocell

with radius 20d0. The MBS is positioned at the center and there are S = 6 small cells placed

within the considered coverage. We assume that each small cell has a circular coverage of

radius 2d0 with its SAP at the center and a SUE at the circumference of the coverage. In
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addition, we assume M = 2 MUEs scattered across the macrocell coverage. Unless being

mentioned elsewhere, we choose this scenario as the standard simulation mode, where the

number of transmit antenna as N = 4 and the maximum transmit power as Pmax = 43 dBm.

On the other hand, the maximum transmit power at the SAPs are set as pmax = 30 dBm. We

choose the minimum rate requirement Γmin = 1.5 bps/Hz and γmin = 0.1 bps/Hz. The noise

power is Wσ0 =−120 dB and the bandwidth is W = 10 MHz. The convergence of Algorithm

6 is determined when the difference of objective value between two consecutive iteration is

below 10−3.
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Figure 5.3 Total throughput comparison of the proposed NOMA,

NOMA fixed order, no NOMA, and NOMA no cooperation schemes

with respect to pmax.

In Fig. 5.3, we show the performance of the proposed NOMA, the “NOMA fixed order” (c.f.

(Hanif et al., 2016)), the conventional “no NOMA”, and the “NOMA no cooperation” schemes.

According to (Hanif et al., 2016), the “NOMA fixed order” scheme sorts the decoding order

by ranking the norm of channel vectors from the MBS to the SAPs prior to optimizing the re-

source allocation. The conventional “no NOMA” scheme (c.f. (Wang et al., 2016; Zhao et al.,
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2015; Nguyen et al., 2016b)) can be translated into the optimization problem in (5.15), and

the “NOMA no cooperation” scheme can be interpreted similar to problem (5.13), where the

backhaul and MUE rates satisfy the conditions in (5.6), but the SUE rates take the formulas

in the right side of (5.16) as a result of no cooperation. We evaluate the sum throughput at

the MUEs and SUEs by the solution obtained at the termination of Algorithm 6 with respect

to pmax. We first validate that our proposed NOMA scheme always performs better than the

“NOMA fixed order” scheme. However, depending on the studied channel realization and sys-

tem parameter setting, the gap between these two schemes may vary. In addition, our proposed

NOMA scheme significantly outperforms the conventional “no NOMA” and the “NOMA no

cooperation” schemes. Although “NOMA no cooperation” scheme performs almost similar

to “no NOMA” scheme at some value of pmax in Fig. 5.3, their performance difference can

be more significant under different set of channel realization input hi,∀i ∈ F and g j,∀ j ∈ S ,

as illustrated in Fig. 5.4. This is because equation (5.6) used for “NOMA no cooperation”

constraints make the feasible solution domain of “NOMA no cooperation” problem generally

different with “no NOMA” problem, so that these two problems are generally different.

Fig. 5.5 compares the achieved throughput at the MUEs and SUEs between the aforementioned

schemes by applying Algorithm 6. The throughput performance is shown with respect to the

MBS power budget Pmax. When Pmax increases, the throughput of all the considered schemes

increase. However, the proposed NOMA scheme always outperforms the other schemes. This

can be explained as when Pmax increases, more power can be supported to improve the MUE

and the backhaul rate at each SAP. Note that improving the backhaul rate enhances the up-

per bound of the corresponding access rate at each SAP, which can potentially increase the

achievable rate delivered to the SUEs. Again, we observe that our proposed NOMA scheme

slightly outperforms the “NOMA fixed order” scheme, but is considerably better than the “no

NOMA” and “NOMA no cooperation” schemes. We also observe that “no NOMA” perfor-

mance slightly differs from “NOMA no cooperation” at small Pmax. At high Pmax, these two

schemes performs similarly. This can be explained as in Fig. 5.3 where due to the value of

channel realization input, “no NOMA” and “NOMA no cooperation” schemes might share the
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Figure 5.4 Total throughput comparison of the proposed NOMA,

NOMA fixed order, no NOMA, and NOMA no cooperation schemes

with respect to pmax.

same optimal objective value at high Pmax, which results in the almost overlapped performance

of two curves.

In Fig. 5.6, we examine the total achieved throughput of the proposed NOMA scheme by ap-

plying Algorithm 6 at different values of the spectrum partitioning factor α . We compare the

achieved throughput performance between Pmax =38, 43, and 45 dBm. We observe that when

α increases from 0.1 to 0.98, the total achieved throughput at the MUEs and SUEs first in-

creases and then decreases. There exists a value of α which maximizes the throughput, where

this maximal α value varies for each Pmax curve. This can be explained when α is too low,

more bandwidth partition is dedicated for the macrocell downlink transmissions from the MBS

to the SAPs and MUEs. This leads to a low performance of the total SUE throughput since less

bandwidth is provided for the small cell downlink transmissions from the SAPs to the SUEs.

When α is too high, more bandwidth is drawn for the small cell downlink transmissions from

the SAPs to the SUEs. However, since less bandwidth is now available for the backhaul trans-
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Figure 5.5 Total throughput comparison of the proposed NOMA, NOMA fixed order, no

NOMA, and NOMA no cooperation schemes with respect to Pmax.

mission, this subsequently limits the upper bound performance of the SUE rate, and restricts

the total achieved SUE throughput. It is worth to note that this value of α which maximizes

the throughput is not a global optimal solution for (5.13). This is because (5.13) is non-convex

if we consider a joint optimization of w,v,a,λ ,α . In Fig. 5.6, we fix α and employ Algorithm

6 to seek for a joint sub-optimal solution, so that the achieved solution α̃ together with the w̃,

ṽ, ã, and λ̃ is jointly sub-optimal. To find a jointly global optimal solution of w,v,a,λ ,α , an

exhaustive search algorithm like BnB in (Tervo et al., 2015b) should be used. Since this is not

the scope of our paper, we leave this study for future work.

In Fig. 5.7, we show the total achievable throughput versus the network size S + M under

the proposed NOMA, the “NOMA fixed order” and the conventional “no NOMA” schemes,

where we choose M = 2. For each scheme, we compare the network performance between

two values of pmax = 20 and 30 dBm. We first observe that our proposed NOMA scheme

always outperforms the “NOMA fixed order” and “no NOMA” schemes, which is consistent

with the previous results showed in the above figures. Moreover, under the proposed NOMA
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Figure 5.6 Throughput performance of the proposed NOMA scheme with respect to α .

scheme, when the network size increases, the total achieved throughput increases and saturates

at high value of S+M. The proposed NOMA scheme of higher pmax outperforms the one

with lower pmax in the regime of small network size. However, the performance gap between

these curves diminishes at larger network size. This can be explained as when the network size

grows, more number of small cell can cooperate as the consequence of the cooperative NOMA

scheme to transmit to their SUEs. Under the scenario of large network size, the cooperation

between these small cells result in more degrees of freedoms, which potentially leads to the

maximum throughput solution at lower maximum power budget pmax. On the contrary, in

the conventional “no NOMA” scheme, the performance gap between the lower and higher

pmax is more apparent. At large network size, each received signal must suffer more inter-cell

interference in the conventional no NOMA scheme since no small cell cooperation is allowed.

This leads to the rapid saturation of these curves when the network size grows.

Fig. 5.8 shows the achieved throughput in the imperfect CSI case versus pmax with different

value of error bound δh = δg = δ = 0,0.02,0.04,0.08. When pmax increases, the performance

of the proposed NOMA increases and saturates at high value of pmax. This is obvious because
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scheme with respect to total user number.

when each SAP has higher power budget pmax, it will transmit at higher power to achieve

more throughput. However, due to the interference from concurrent SAP transmissions, these

SAPs will not transmit at it maximum budget power pmax so as to maintain the maximal total

throughput, which results in the performance saturation. We observe that the achieved through-

put performance in the imperfect CSI case is less than the achieved throughput in the perfect

CSI case. This is because the robust optimization problem in (5.35) is solved using the erro-

neous estimated CSI. Furthermore, when the CSI error grows, the achieved throughput reduces

more.

In Fig. 5.9, we show the total number of satisfied MUEs and SUEs with respect to the minimum

SUE rate requirement γmin, where we choose Γmin = 1.5 bps/Hz. In this figure, we compare

the performance between the proposed NOMA and the conventional “no NOMA” schemes

(c.f. (Wang et al., 2016; Zhao et al., 2015; Nguyen et al., 2016b)). Note that the problem of

maximizing the satisfied user number under the conventional “no NOMA” scheme is similar

to problem (P2), where where the backhaul, MUE, and SUE rates take the formulas in (5.16).
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Figure 5.8 Comparison of the achieved throughput with

respect to pmax when δ = 0,0.02,0.04,0.08.

The results in this figure are obtained by applying Algorithm 6 on problem (P2) until conver-

gence. We observe that the proposed NOMA scheme always provides more number of satisfied

user compared to the conventional no NOMA scheme, which again justifies the usefulness of

our NOMA strategy not only in boosting the throughput metrics but also in admitting more

qualified served users. When γmin increases, the number of satisfied users decreases. This is

apparent because when the SUEs are obliged to achieve higher access rate, we must schedule

to deny service to some insignificant SUEs in order to reduce the concurrent transmissions.

This alleviates the interference introduced to the served SUEs possessing the better channel

conditions, which in turn improves their achievable rates.

In Fig. 5.10, we show the number of satisfied MUEs and SUEs with respect to both the SUE

minimum rate requirement γmin and the maximum power budget Pmax, where we choose Γmin =

1.5 bps/Hz. At high Pmax and low γmin, we observe that all the MUEs and SUEs are active since

the the available power budget is sufficient to guarantee the satisfaction of each user. However,

when γmin increases, the number of satisfied SUEs and MUEs decreases. This can be explained
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Figure 5.9 Number of satisfied users achieved at different

schemes with respect to γmin.

similar to Fig. 5.9. Moreover, when Pmax decreases, the number of satisfied SUEs and MUEs

also reduces since with less power budget to support the WB communications, the achievable

rates at some WB links are insufficient to satisfy the minimum rate requirement of the related

small cell WA links, which results in the less number of active users.

In Fig. 5.11, we compare the performance of our proposed low-complexity Algorithm 6 with

the global optimal branch-and-bound (BnB) algorithm developed in (Tervo et al., 2015b) for

Scenario 1 with N = 4, S = 4 and M = 2. According to the characteristic of BnB algorithm de-

scribed in (Tervo et al., 2015b), the BnB algorithm repeatedly operates the following steps: (i)

partitioning the set which contains the global optimal solution into smaller sets, (ii) checking

the feasibility of the newly branched sets, and (iii) updating the terminating criteria of the BnB

algorithm until convergence. The BnB algorithm is terminated when the difference between

upper and lower bound, as can be observed from Fig. 5.11, is below a threshold of 10−3. Note

that BnB algorithm is indeed an exhaustive search based algorithm, which has prohibitively
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Figure 5.10 Number of satisfied users achieved at the proposed

NOMA scheme with respect to Pmax and γmin.

high computational complexity. Therefore, we choose to show the performance of this BnB

algorithm under small network setup. For Algorithm 6, we examine its convergence behavior

with two different set of initial points. We observe that these two curves of Algorithm 6 con-

verge less than 20 iterations. However, the BnB algorithm keeps updating the upper and lower

bound value and requires an excessive number of iteration to converge. We observe that the

results from low-complexity algorithm are very close to the baseline optimal value obtained

from the BnB algorithm. We also show the convergence of Algorithm 6 on Scenario 2 with

N = 4,S = 6,M = 2. Due to the large network size, we skip the result of the BnB algorithm

for Scenario 2. Again, we observe that the objective value (5.31a) resulted from Algorithm 6

finally converges, which again validates the convergence analysis in Section 5.4.3.

Fig. 5.12 shows the convergent behavior of Algorithm 6 applying to solve (P2) on Scenario

2 with N = 4,S = 6,M = 2. We also show the convergence of BnB algorithm employed to

solve (P2) under Scenario 2. The BnB algorithm checks all binary combinations of {x,y} for

(P2) and verifies the feasibility of each combination. As shown in Fig. 5.12, the result of 8
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Figure 5.11 Convergence between the optimal branch-and-bound

(BnB) algorithm and Algorithm 6 for (5.13).

active users (including SUEs and MUEs) is infeasible, which is shown by the cross marker.

However, when examining the combinations of 7 active users, there are 1 feasible case, which

are illustrated by the green circle markers. The BnB algorithm can exhaustively search to result

in 7 maximum active users, while Algorithm 6 only achieve lower result with 6 maximum

active users. However, BnB algorithm requires much more computation to solve the feasibility

checking when each binary combination of {x,y} is fixed, and this task is more excessive when

the network size grows.

5.6 Concluding Remarks

We proposed a novel transmission scheme based on cooperative NOMA to aim at redesigning

the WB two-tier HetNets system. By employing the CoTDD combined with spectrum par-

titioning scheme, we introduced two optimization problems which jointly design the NOMA

decoding order together with the downlink transmit beamforming and power allocation at the
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(BnB) algorithm and Algorithm 6 for (5.14).

MBS and SAP to maximize the two objectives. The formulated problems are generally NP-

hard. To efficiently solve them, we first employed the DC functions to present the formu-

lated binary variables and then equivalently transformed the optimization problems into more

tractable forms. Finally, we developed an iterative low-complexity algorithm based on SCA

technique and MMM to compute the sub-optimal solution, which is provable to eventually con-

verge at a sub-optimal solution. Numerical results highlight that our proposed scheme when

exploiting the novel cooperative transmissions as a result of the MISO-NOMA is more ad-

vanced and effective that the scheme which straightforwardly applies the MISO-NOMA from

the literature. These achieved numerical results corroborate that our proposed scheme also

outperforms the conventional designs in terms of total achievable rate.
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6.1 Introduction

In recent years, owing to their benefit, dense heterogeneous networks (HetNets) (Ghosh et

al., 2012) have constantly been promoted as a prime candidate technology for the evolution

of wireless networks towards 5G (Andrews et al., 2014). However, dense HetNets presented

a tremendous economical drawback due to their expensive cost of installing and maintaining

fiber backhaul infrastructure, especially at some hard-to-reach areas. To effectively exploit the

benefits of HetNets within a reasonable budget, it is essential to replace the wired connections

for backhauling data into the core with the wireless ones (Siddique et al., 2015a).

Nonetheless, the proposed wireless backhaul (WB) solution could prove unable to bridge the

connectivity to isolated users, especially, in disaster-prone situations. Therefore, rather than

deploying small cell base stations, a more practical, cost-saving, and efficient solution is to

dispatch unmanned aerial vehicles (UAVs) as flying small cell base stations (Zeng et al., 2016a)

which can communicate with ground users and backhaul the data to the core network (Zeng

et al., 2016b; Zeng & Zhang, 2017). While stimulating more opportunities, using UAVs to

cope with the structure of point-to-multi-point (PtMP) WB must tackle the following inherent

challenges. First, deploying WB links concurrently with the existing wireless access (WA)

links renders the interference more severe (Nguyen et al., 2016b). Second, each small cell
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UAV cannot transmit more data than what it received from the core network (Siddique et al.,

2015a). Third, since UAV can ubiquitously move in space, a change of coordinates can lead

to different channel gain realizations and modify the system performance. Thus, considering

UAV-assisted WB networks must engineer a proper resource allocation design considering the

above characteristics to fully reap their potential performance gains.

6.1.1 Related Work

The concept of WB for IEEE 802.16 mesh networks was investigated in (Viswanathan & Mukher-

jee, 2006). The authors used linear programming to maximize the network throughput by

optimizing the routing and scheduling strategy. More generally, WB for 5G was extensively

considered in different network scenarios and, interestingly, on different spectrum bands (Sid-

dique et al., 2015a). The authors in (Hur et al., 2013b) presented a novel idea for mmWave

small cells to efficiently align their transmit beamformer under wind induced impairments ef-

fect. WB can also be operated in the commercial sub–6 GHz band (Siddique et al., 2015a)

concurrently with the WA ones. In (Wang et al., 2016), the authors employed the reverse time

division duplex interference management and massive multiple input multiple output (MIMO)

to jointly optimize the bandwidth allocation and user association. Siddique et al. (2017) intro-

duced a hybrid strategy of out-of-band and in-band full-duplex for the considered small cells

and formulated a problem which optimizes the spectrum allocation.

UAV (or drone) communications represent the data transmissions/receptions between the ground

controller and the air-borne UAVs (Frew & Brown, 2008). UAVs used for communications are

more advanced than conventional UAVs which are only commanded from ground controller for

tasks such as transportation, infiltration, rescuing (Frew & Brown, 2008; Gupta et al., 2016).

They are expected to extend the coverage, guarantee more ubiquity, and support higher trans-

mission rate to satisfy the user’s experience. Related work on UAVs claimed that these gains

can be obtained by optimizing the ubiquitous movement of UAVs jointly with the radio re-

sources to reap the best network performance (Mozaffari et al., 2017). Beside, investigating

the UAV performance under various network settings such as device-to-device UAV (Mozaf-
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fari et al., 2016), UAV-assisted relay (Zeng et al., 2016b), task offloading with UAV in mobile

edge computing (Jeong et al., 2018), coverage extension with UAV (Mozaffari et al., 2017)

were investigated. More particularly, in (Zeng et al., 2016b), the authors optimized the trans-

mit power along with the trajectory of the moving relay UAV to maximize the throughput and

the energy-efficiency. In (Wu et al., 2018), the authors modelled multi-UAV serving multi-user

and formulated a problem of power allocation together with user association to maximize the

minimum throughput. Despite its promising feature, it is still unclear how to interplay the role

of UAV with existing WB infrastructure. When the question of poor scattering line-of-sight

(LOS) channel condition between the macrocell base station (MBS) and UAVs is anticipated,

the benefit of beamforming is now reduced to power allocation and is under-explored to re-

trieve the expected spectral efficiency. Without exploiting the multipath channel characteristic

to beamform data to multiple receivers, applying a transmission scheme such as non-orthogonal

multiple access (NOMA) is more effective to leverage the UAV’s benefit.

Recently, NOMA (Saito et al., 2013) was proposed as a pragmatic scheme to effectively han-

dle simultaneous transmissions. Instead of separating transmissions in orthogonally split re-

sources, NOMA consolidates the concurrent transmissions’ benefit with improved spectral ef-

ficiencies by using a sophisticated successive interference cancellation (SIC) technique at the

receiver side. A report on a downlink NOMA for 5G networks were surveyed in (Wei et al.,

2016). In general, by simultaneously exploiting the multiplexing transmission, SIC recep-

tions, and efficient network resource allocation, many works have been able to highlight the

NOMA’s superiority compared to conventional designs. For instance, the network performance

using NOMA under a random user deployment was studied in (Ding et al., 2014). Power al-

location and NOMA decoding order were jointly optimized in (Shi et al., 2016) in an outage

balancing downlink NOMA system. Tabassum et al. (2017) analyzed the impact of imperfect

SIC on the network performance. Cui et al. (2018) studied the use of NOMA in multiple input

single output (MISO) mmWave systems. On the other hand, a cooperative NOMA scheme was

investigated in (Ding et al., 2015). In (Hanif et al., 2016), the authors formulated a problem of

designing beamforming in the MISO NOMA to maximize the sum spectral efficiency.
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6.1.2 Motivations and Contributions

In this paper, we study the downlink of UAV-assisted PtMP WB networks under a novel coop-

erative NOMA scheme. In one time slot, the MBS superimposes the WB messages to transmit

to the UAVs, and the UAVs employ the SIC to decode the message depending on the deter-

mined decoding order. In the next time slot, we exploit the benefit that SIC allows some UAVs

to decode the messages of other UAVs to enable the UAV’s cooperation to transmit to the users.

Based on this scheme, our contribution is as follows:

- Since CSI varies with the UAV’s position, we jointly optimize the UAVs’ positions, the

transmit beamformer at the MBS and UAVs, and the decoding order of the NOMA-SIC so

as to maximize the user sum rate.

- The formulated problem is a general mixed-integer non-linear programm, which is very

difficult to solve optimally. Thus, we propose a framework based on difference of convex

(DC) (Kha et al., 2011) method characterized by the Lipschitz continuity (Parikh & Boyd,

2014a) to approximate the original problem into a series of convex approximate ones, and

develop a low-complexity algorithm to sequentially solve for each approximate problem

until convergence.

The rest of this chapter is as follows. Section 6.2 introduces the system model. In Section 6.3,

we formulate mathematically our resource allocation as an optimization problem. The solution

approach is given in Section 6.5. Section 6.6 presents and discusses our numerical results under

different simulation setups. Finally, the concluding remarks are given in Section 6.7.

6.2 System Model

6.2.1 Spatial Model

We consider the downlink of a WB network comprising of one MBS, equipped with N sector-

ized antennas to split the coverage into 3 non-overlapped sub-sectors. The signals transmitted

from each MBS’s sub-sector are orthogonal with each other. Assuming that in each sector n,
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where n = 1,2,3, there is a set Un = {1, . . . ,U} of UAVs and clusters of users, where a UAV

or a user has single antenna each. UAVs can wirelessly receive backhaul data from the MBS.

Beside, each UAV is set to serve a distinct cluster of users based on a predetermined agreement

between the operator and that cluster’s representative. The MBS and each jth user belonging

to the ith cluster in sector n are spatially placed at some fixed grounded positions, denoted by

{x̄b, ȳb,Hb} and {x̄ j
ni, ȳ

j
ni,0},∀i ∈ Un, respectively. On the other hand, each UAV can flexi-

bly fly to any position in space. We later aim at determining each ith UAV’s position in each

sector n, which is represented as pni = {xni,yni,H}, where the height H is assumed constant

(Wu et al., 2018). We consider that user cannot be directly served by the MBS due to some

geographical difficulties. For simplicity, we omit the service from MBS to macrocell users.

We assume that WB and WA communications are accommodated on a spectrum band of W

Hertz within the sub–6 GHz band in consecutive time slots as depicted in Fig. 6.1. In the

first time slot, the MBS transmits backhaul data to the UAVs. In the second time slot, all

the UAVs simultaneously transmit the decoded backhaul data to their destinations. Here, we

assume that each ith UAV is scheduled to serve only one user belonging to the ith cluster,

where the remaining users are scheduled to be served later. For simplicity, we denote the user

intended for the ith UAV is the ith user. We can also schedule each UAV to serve multi-user

by orthogonally splitting the spectrum and accommodate users on each partition to avoid intra-

cluster interference. In this way, determining UAV’s positions should be optimized to provide

service to multi-user at each time instant. For brevity, we assume that the scheduling is decided

prior to our resource allocation problem and each ith user’s position in sector n is denoted as

{x̄ni, ȳni,0} ,∀i ∈ Un.

6.2.2 Channel Model

We assume the fading channel remains unchanged within a coherence time. Following (Lyu

et al., 2018), we denote hn j as the ground-to-air (GtA) channel, consisting of path-loss and

small scale fading, from the MBS to the jth UAV in sector n. Similarly, we denote gmn jk as the

air-to-ground (AtG) channel from the jth UAV in sector m to the kth user in sector n. hn j and
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Figure 6.1 Spatial model of the UAV-assisted WB networks.

gmn jk can be written as

hn j = δn jh̃n j (6.1)

gmn jk = Δmn jkg̃mn jk (6.2)

where each component h̃n j,δn j respectively represents the small scale fading and path-loss

coefficient between the MBS and the jth UAV in sector n. Moreover, g̃mn jk, Δmn jk respectively

represent the small scale fading and path-loss coefficient between the jth UAV in sector m and

the kth user in sector n. In particular, we can write

δn j = [(x̄b − xn j)
2 +(ȳb − yn j)

2 +(Hb −H)2]−1/2 (6.3)

Δmn jk = [(x̄nk − xm j)
2 +(ȳnk − ym j)

2 +H2]−1/2 (6.4)
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Since the GtA and AtG channel are often governed by the LoS propagation, h̃n j (or g̃mn jk)

can follow a Rician distribution of factor Kb (or Ku), which consists of a deterministic LoS

component h̄n j (or ḡmn jk) with |h̄n j|= 1 (or |ḡmn jk|= 1) and a random scattered component ĥn j

(or ĝmn jk) as

h̃n j =
√

Kb/(1+Kb)h̄n j +
√

1/(1+Kb)ĥn j (6.5)

g̃mn jk =
√

Ku/(1+Ku)ḡmn jk +
√

1/(1+Kb)ĝmn jk (6.6)

where each of ĥn j, ĝmn jk follows a complex Gaussian distribution C N (0,1).

6.2.3 Transmission Model

6.2.3.1 Transmissions from MBS to UAVs

In sector n, we employ NOMA technique (Sun et al., 2017b) to let the MBS superimpose the

messages of all UAVs and transmit. Under this strategy, the received signal at the jth UAV in

sector n is given by

yn j = hn j
√

wn jsn j +hn j ∑
l∈Un\ j

√
wnlsnl + ñn j, (6.7)

where wn j ∈ R
+ is the power from the MBS to the jth UAV in sector n, sn j is the message for

the jth UAV in sector n with unit average power, e.g., E
{

sn js∗n j

}
= 1, and ñn j as the AWGN at

the jth UAV, which is distributed according to C N (0,N0), where N0 is the noise power.

At the receiver side, each UAV applies the SIC to detect its message. Depending on the given

decoding order, the jth UAV might decode some messages intended for the other ith UAV, for

i ∈ Un, before decoding its own message. Here, we assume perfect SIC, where the decoding

processing is always successful. We observe hence that the decoding order is coupled with the

UAV’s positions. To allow the determination of an appropriate decoding order, let us introduce

binary variable an,i, j ∈ {0,1}, where an,i, j = 0 implies that the jth UAV can decode the ith
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UAV’s message sni in sector n and subtract it out of the total received signal; and an,i, j = 1

otherwise. Therefore, the achievable rate, computed in bps/Hz, after applying SIC at the jth

UAV to detect messages sn j is Rn, j, j
(
an,wn,δn j

)
= log

(
1+SINRn, j, j

)
, where

SINRn, j, j =
wn j

∣∣h̃n jδn j
∣∣2

∑
l∈Un\ j

an,l, jwnl
∣∣h̃n jδn j

∣∣2 +N0

(6.8)

and wn =
{

wn j,∀ j ∈ Un
}

, an =
{

an,l, j,∀l, j ∈ Un
}

. Let us denote w = {wn,∀n} and a =

{an,∀n}. Note that an, j, j = 0,∀ j ∈ Un and an, j,i + an,i, j = 1,∀i, j ∈ Un, i 
= j. In addition, in

sector n, if the jth UAV can decode the ith UAV’s message sni, ∀i 
= j, the following constraints

must hold

δn j|h̃n j| ≥ (1−an,i, j)δni|h̃ni| (6.9)

δn j|h̃n j| ≤ (1−an,i, j)M+δni|h̃ni|. (6.10)

where M � 1. The characteristic of (6.9)–(6.10) can be explained as follows. If the jth UAV can

decode the ith UAV’s message, we have an,i, j = 0 so that from (6.9)–(6.10), we have δn j
∣∣h̃n j

∣∣≥
δni

∣∣h̃ni
∣∣ and δn j ≤ M + δni|h̃ni|. Reversely, if the ith UAV can decode the jth UAV’s message,

we have an,i, j = 1 so that from (6.9)–(6.10), we have δn j
∣∣h̃n j

∣∣≥ 0 and δn j
∣∣h̃n j

∣∣≤ δni
∣∣h̃ni

∣∣.
6.2.3.2 Novel Cooperative Access Transmissions from UAVs to Users

The details of the proposed cooperative transmission scheme can be elaborated by analyzing

the following example, as illustrated in Fig. 6.2. An example case for Un = 3,∀n: We assume

that in each sector n, the UAV decoding order is ranked 1, 2, and 3. Following this, UAV 1

decodes only sn1, UAV 2 decodes sn1 and sn2 and UAV 3 decodes sn1, sn2, and sn3. Here, the

cooperation between UAVs is that UAVs 2 and 3 can simultaneously transmit message sn1, in

addition to their own messages sn2 and sn3, respectively, to help UAV 1 improve‘ the signal

reception at user 1. Similarly, UAV 3 can cooperate with UAV 2 to send sn2 in addition to sn3

and sn1. By assuming that vn1 = [vn11,v21,v31] ,vn2 = [vn12,vn22,vn32] ,vn3 = [vn13,vn23,vn33]
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Figure 6.2 Proposed cooperative NOMA scheme.

are the transmit beamformers to users 1, 2, and 3 in sector n, respectively, the received signal

at each user is

yni = vH
nignnisni +∑

k 
=i
vH

nkgnnisnk + ∑
m
=n

∑
l∈Um

vH
mlgmnisml + ñni, (6.11)

where gmni = [gmn1i(Δmn1i),gmn2i(Δmn2i),gmn3i(Δmn3i)]
T is the channel vector from all the UAVs

in sector m to the ith user in sector n. sni is the message for the ith user in sector n with unit

average power, e.g., E{snis∗ni} = 1, ñni ∼ C N (0,N0) is an AWGN at the ith user in sector n.

Note that we associate the cooperation capability at each UAV by coupling the binary variable

an,i, j with the weight vni j using the following inequalities

⎧⎪⎨
⎪⎩
∣∣vni j

∣∣2 ≤ (1−an, j,i)λni j ,∀i, j = 1,2,3,

∑3
j=1 λni j ≤ pmax ,∀i = 1,2,3,

(6.12)

where λni j ∈ R
+ represents the soft power level (c.f. (Tervo et al., 2015b)) that UAV i applies

at the jth user. In our example, an,2,1 = an,3,1 = an,3,2 = 1 where the remaining elements of an
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are 0. This means that vn12,vn13,vn23 are enforced to 0, where the remaining elements of each

vector vni,∀i = 1,2,3 can take any complex value whose norm is from 0 to λni j.

In the general case, let us denote vni = [vn1i, . . . ,vnUi]
T , v = {vni,∀i ∈ Un,∀n = 1,2,3} and

gmni(Δni)= [gmn1i(Δmn1i), . . . ,gmnUi(ΔmnUi)]
T and gni(Δni)= [g1ni(Δ1ni),g2ni(Δ2ni),g3ni(Δ3ni)]

T as

the arrays of weights and channel vectors from all the UAVs to the ith user. Treating interference

as noise, the achievable rate rni(v,Δni) at the ith user in sector n is rni(v,Δni)= log(1+SINRni),

where

SINRni =

∣∣vH
nignni(Δnni)

∣∣2
∑(m,l)
=(n,i)

∣∣vH
mlgmni(Δmni)

∣∣2 +N0

(6.13)

6.3 Mathematical Problem Formulation

Observing that the achievable rate of each user depends on the design of transmit beamforming

w, v, λ the decoding order a, the placement of each UAV p, and the path-loss factor δ and Δ,

we aim at formulating a problem which jointly optimizes w,v,λ ,a,p, δ , and Δ to maximize

the user sum rate. The optimization problem can be formulated as

max
a,λ ,w,v,

p,δ ,Δ

3

∑
n=1

∑
j∈Un

rn j(v,Δn j) (6.14a)

s.t.Rn, j, j
(
an,wn,δn j

)≥ rn j(v,Δn j) (6.14b)

δn j
∣∣h̃n j

∣∣≥ (
1−an,i, j

)
δni

∣∣h̃ni
∣∣ (6.14c)

δn j
∣∣h̃n j

∣∣≤ (
1−an,i, j

)
M+δni

∣∣h̃ni
∣∣ (6.14d)

δ−1
n j ≥

√
(x̄b − xn j)2 +(ȳb − yn j)2 +(Hb −H)2 (6.14e)

Δ−1
nm ji ≥

√
(xn j − x̄mi)2 +(yn j − ȳmi)2 +H2 (6.14f)

3

∑
n=1

∑
j∈Un

|wn j|2 ≤ Pmax (6.14g)

∣∣vni j
∣∣2 ≤ (1−an, j,i)λni j; ∑

j∈Un

λni j ≤ pmax (6.14h)

an,i, j +an, j,i = 1; an, j, j = 0;an,i, j ∈ {0,1} (6.14i)



195

for i, j ∈ Un, i 
= j and n = 1,2,3. Here, constraints (6.14b) ensure that the WB rate at the jth

UAV be greater than or equal to the WA rate for the jth user in sector n (Wang et al., 2016,

Eq. (13)). (6.14b) also implies a complicated coupling between variables w,v,a, δ , and Δ by

non-concave non-convex functions, i.e., Rn, j, j
(
an,wn,δn j

)
,rn j(v,Δn j),∀ j ∈ Un,∀n. Note that

(6.14e) and (6.14f) consider the relaxed version of the relationship in (6.14e) and (6.14f) to

reduce the complexity of the formulated problem. Indeed, (6.14e) and (6.14f) become equality

at optimality (which can be proved similar to Appendix I in (Nguyen et al., 2016b)). (6.14g)

and (6.14h) are the maximum power budget at the MBS and each UAV. To reflect the impact

of decoding order, we also present the binary constraints (6.14i).

We first observe that solving (6.14) requires the knowledge of CSI, e.g., h̃ni, g̃ni,∀i ∈ Un,∀n =

1,2,3. However, CSI varies when the location of the UAV changes. Since we cannot determine

the location of UAVs initially, we cannot obtain the accurate CSI, and thus cannot properly

solve (6.14). To overcome this obstacle, in the following, we first propose an approach to

decouple the design of UAV’s location p,δ ,Δ from the remaining variables a,w,v,λ . To serve

the practicability of this method, we assume that the MBS can store a collection of past CSI,

denoted by h̃ni,t , g̃ni,t ,∀t = 1, . . . ,T by collecting the copy of each obtained CSI starting from

the T th previous time slot. We use these past CSI to first solve for the UAV’s location apart

from a,λ ,w,v. Then, we command the UAV to stay at the determined positions to attain the

real CSI (via training) and proceed to solve for a,λ ,w,v.

6.4 Proposed Solution Approach

As discussed above, we assume that the MBS has a collection of past CSI h̃ni,t , g̃ni,t ,∀t =

1, . . . ,T . Using these past CSI, we solve for the location of UAVs p,δ ,Δ jointly with the

variables Ã,W̃, Ṽ, Λ̃ in the following problem

max
Ã,Λ̃,W̃,Ṽ,

p,δ ,Δ

1

T

T

∑
t=1

3

∑
n=1

∑
j∈Un

rn j(ṽt ,Δn j) (6.15a)

s.t. : Rn, j, j
(
ãn,t , w̃n,t ,δn j

)≥ rn j(ṽt ,Δn j) (6.15b)
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δn j
∣∣h̃n j,t

∣∣≥ (
1−an,i, j,t

)
δni

∣∣h̃ni,t
∣∣ (6.15c)

δn j
∣∣h̃n j,t

∣∣≤ (
1−an,i, j,t

)
M+δni

∣∣h̃ni,t
∣∣ (6.15d)

3

∑
n=1

∑
j∈Un

|w̃n j,t |2 ≤ Pmax (6.15e)

∣∣vni j,t
∣∣2 ≤ (1−an, j,i,t)λni j,t ; ∑

j∈Un

λni j,t ≤ pmax (6.15f)

an,i, j,t +an, j,i,t = 1; an, j, j,t = 0;an,i, j,t ∈ {0,1} (6.15g)

(6.14e), (6.14f). (6.15h)

for i, j ∈ Un, i 
= j, n = 1,2,3, and t = 1, . . . ,T . We denote Ã = {ãt ,∀t = 1, . . . ,T},W̃ =

{w̃t ,∀t = 1, . . . ,T}, Ṽ = {ṽt ,∀t = 1, . . . ,T} and Λ̃ = {λ̃ t ,∀t = 1, . . . ,T}. Note that variables

p, δ , and Δ in (6.14) and (6.15) are similar, while variables Ã,W̃, Ṽ, Λ̃ in (6.15) are different

from a,w,v,λ in (6.14) in the index t. The purpose of using Ã,W̃, Ṽ, Λ̃ is to jointly solve them

together with p, δ , and Δ. The physical meaning of (6.15a), which is computed as the average

sum rate evaluated from the past CSI h̃ni,t , g̃ni,t ,∀n, i, t represents the long-term overall network

performance. Here, the reasons that we choose this objective function are two main folds.

First, the available collection of past CSI can represent any channel realization hni,t ,gni,t ,∀n, i, t

drawn from a random distribution. This means that we can use these channel realization value

at any location of UAVs and users within the considered region. Using this collection of past

CSI to maximize the average sum rate can be considered as the optimization of the long-term

network performance, which is reasonable for the determination of UAV’s location. Second,

since collecting CSI can be done in any previous time before the current transmission period,

solving (6.15) can also be executed offline before the current transmission.

Next, once we attain the solution Ã◦, Λ̃◦
,W̃◦, Ṽ◦,p◦,δ ◦,Δ◦, we command the UAV to stay at

those location corresponding to the value of p◦. Then, we can obtain the real CSI associ-

ated with location p◦ and proceed to solve for the remaining variables a,λ ,w,v through the
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following problem.

max
a,w,v,λ

3

∑
n=1

∑
j∈Un

rn j(v,Δn j) (6.16a)

subject to : (6.14b)− (6.14i) (6.16b)

We observe that (6.15) and (6.16) are both general mixed-integer non-linear programs, which

are generally NP-hard and difficult to solve. Note that (6.16) is a simpler version of (6.15)

with fixed value of p, δ , Δ and no index t. Here, the main difficulty of solving (6.15) is to

deal with the binary-related constraints (6.14i). Moreover, even if we relax constraint (6.14i)

to make ãni, j,t continuous within the interval [0,1], the relaxed version of (6.15) is still non-

convex. The non-convexity of (6.14) is due to the existence of the non-convex non-concave

rate functions rn j(ṽt ,Δn j) and Rn, j, j
(
ãn,t , w̃n,t ,δn j

)
which appear in the objective function and

constraint (6.14b). Finding a global solution for (6.15) often requires a high–complexity ex-

haustive search algorithm, which is impractical. Motivated by this, we only aim at developing

a low-complexity algorithm to attain a sub-optimal solution within a polynomial time.

6.5 Low-Complexity Solution Approach

In this section, we present a method to transform (6.15) into a tractable form which is more

amenable to develop a low-complexity algorithm based on the principle of DC programming.

Note that our proposed method introduces a minimum number of slack variables to attain the

solution at most efficiency, which is more efficient than (Nguyen et al., 2016b). The developed

algorithm from this approach can be used to solve for the simpler problem (6.16) as well.

6.5.1 DC-based Transformations

We first equivalently rewrite the binary constraint in (6.15g) into the continuous DC form

constraints as

ãn,i, j,t − ã2
n,i, j,t ≤ 0 (6.17a)
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0 ≤ ãn,i, j,t ≤ 1. (6.17b)

Since (6.17a) implies that ãn,i, j,t ≤ 0 or ãn,i, j,t ≥ 1, the joint condition of (6.17a) and (6.17b) re-

sults in ãn,i, j,t = 0 or 1, which is equivalent to (6.15g). After the above transformation, the diffi-

culties in solving (6.14) still remain because of the continuous but non-convex non-concave rate

functions rn j(ṽt ,Δn j), Rn, j, j
(
ãn,t , w̃n,t ,δn j

)
, with respect to their variables in (6.14a), (6.14b),

the non-convex non-concave function
(
1− ãn,i, j,t

)
δni in (6.15c), the convex function δ−1

n j and

Δ−1
nm ji lie in the greater side of (6.14e) and (6.14f), and the concave function in (6.17a). Based

on the concept of DC programming, we will express each of the non-convex non-concave func-

tions rni(ṽt ,Δni) and Rn, j, j
(
ãn,t , w̃nt ,δn j

)
as the difference of two convex or concave ones. To

illustrate this, we rewrite rni(ṽt ,Δni) as

rni(ṽt ,Δni) = rni(ṽt ,Δni)+ξni(‖ṽt‖2 +‖Δni‖2)︸ ︷︷ ︸
fni(ṽt ,Δni)

−ξni(‖ṽt‖2 +‖Δni‖2) (6.18)

= rni(ṽt ,Δni)−ζni(‖ṽt‖2 +‖Δni‖2)︸ ︷︷ ︸
gni(ṽt ,Δni)

+ζni(‖ṽt‖2 +‖Δni‖2) (6.19)

for any ξni,ζni ≥ 0. If ξni (or ζni) is chosen sufficiently large, function fni(ṽt ,Δni) (or gni(ṽt ,Δni))

becomes convex (or concave) with respect to variables ṽt ,Δni due to the dominance of the

strongly convex quadratic function ξni

(
‖ṽt‖2 +‖Δni‖2

)
(or concave function −ζni(‖ṽt‖2 +

‖Δni‖2)). Thus, the DC form of function rni(ṽt ,Δni) is more clearly exposed. Although this

DC decomposition approach was previously visited (Kha et al., 2011), we remark that the

problem of finding a proper value for ξni,ζni to make (6.19) the appropriate DC expression is

very challenging. Under this observation, we provide the following theorem to characterize the

computation of ξni,ζni.

Theorem 1. For ξni ≥ ξ 0,ζni ≥ ζ0, where ξ 0, and ζ0 can be determined via Appendix 10,

fni(ṽt ,Δni) and gni(ṽt ,Δni) are strongly convex and concave, respectively.

Proof. The proof is given in Appendix 10.
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Similarly, we can also alter the DC decomposition of Rn, j, j
(
ãn,t , w̃n,t ,δn j

)
as

Rn, j, j
(
ãn,t , w̃n,t ,δn j

)
=−ψn, j, j(‖w̃n,t‖2 +‖ãn,t‖2 +

∣∣δn j
∣∣2)

+Rn, j, j
(
ãn,t , w̃n,t ,δn j

)
+ψn, j, j(‖w̃n,t‖2 +‖ãn,t‖2 +

∣∣δn j
∣∣2)︸ ︷︷ ︸

un, j, j(ãn,t ,w̃n,t ,δn j)

(6.20)

for any ψn j, j ≥ 0. Again, if ψn, j, j are chosen sufficiently large, function un, j, j(ãn,t , w̃n,t ,δn j)

become convex due to the dominance of strongly convex functions ψn, j, j(‖w̃n,t‖2 + ‖ãn,t‖2 +∣∣δn j
∣∣2). The convexity of un, j, j(ãn,t , w̃n,t ,δn j) is characterized in the following theorem.

Theorem 2. For ψn, j, j ≥ ψ0, where ψ0 can be derived following similar steps in Appendix 10,

un, j, j(ãn,t , w̃n,t ,δn j) is strongly convex.

Proof. The proof for Theorem 2 is similar to Appendix 10, which is omit due to space con-

straint.

6.5.2 Proposed Relaxation of (6.14)

After applying the DC-based and binary transformation, we remark that the joint existence of

dual constraint (6.17a)–(6.17b) will make the subsequent iterative DC-based algorithm may

fail to converge, due technical difficulties associated with existence of feasible solutions (Vu

et al., 2016b). Inspired by (Vu et al., 2016b), we relax the constraint (6.17a) into the objective

function by introducing a new slack variable C̃ =
{

cn,i, j,t ≥ 0,∀n, i, j, t
}

and reformulate (6.14)

as

max
Ã,Λ̃,W̃,Ṽ,
p,δ ,Δ,C̃

1

T

T

∑
t=1

3

∑
n=1

∑
j∈Un

[
fn j(ṽt ,Δn j)−ξn j(‖ṽt‖2 +

∥∥Δn j
∥∥2
)

]
−A

T

∑
t=1

3

∑
n=1

∑
i, j∈Un

cn,i, j,t

(6.21a)

subject to:

un, j, j(ãn,t , w̃n,t ,δn j)−ψn, j, j(||w̃n,t ||2 + ||ãn,t ||2 + |δn j|2)≥ gn j(ṽt ,Δn j)+ζn j(||ṽt ||2 + ||Δn j||2)
(6.21b)
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δn j
∣∣h̃n j,t

∣∣≥ 0.25(1− ãn,i, j,t +δni|h̃ni,t |)2 −0.25(1− ãn,i, j,t −δni|h̃ni,t |)2 (6.21c)

δn j
∣∣h̃n j,t

∣∣≤ (
1− ãn,i, j,t

)
M+δni

∣∣h̃ni,t
∣∣ (6.21d)

ãn,i, j,t − ã2
n,i, j,t ≤ cn,i, j,t (6.21e)

(6.14e), (6.14f), (6.14g)− (6.14i), (6.17b) (6.21f)

∀i, j,n, t, where A > 0 is a penalty parameter. Note that we have equivalently rewritten (6.15c)

as (6.21c) by some simple algebraic manipulations. It is obvious that (6.21) and (6.15) are

equivalent when cn,i, j,t = 0,∀n, i, j, t.

6.5.3 DC-based Approximation Method

In this section, we propose the DC-based method to solve (6.21). To better describe this

method, we visit the following general DC constraint using a slight abuse of notation

f (x)−g(x)≤ 0 (6.22)

where f (x) and g(x) are convex with respect to x. It is easy to observe that the concave function

−g(x) is the factor that makes (6.22) non-convex. Assuming that g(x) is differentiable, the

DC-based method approximates g(x) around the point x[n] to result in the following convex

approximate constraint:

f (x)−g(x[n])−
〈

∇g(x[n]),x−x[n]
〉
≤ 0 (6.23)

Note that in the above approximation, we have upper-bounded the concave function −g(x) by

its linearization −g(x[n])−
〈

∇g(x[n]),x−x[n]
〉

, which is a convex (and concave) function of

variable x. Using the principle from this general example, let us first deal with the objective

function (6.21a). We quickly observe that the non-convexity of the objective function (6.21a)

is due to the maximization over the convex functions fn j(ṽt ,Δn j). Thus, we can respectively

approximate function fn j(ṽt ,Δn j) by its first order Taylor linearization around the point ṽ[n]t and
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Δ[�]
n j as

Fn j(ṽt ,Δn j; ṽ[�]t ,Δ[�]
n j) = fn j(ṽ

[�]
t ,Δ[�]

n j)+ f̂n j(ṽt ; ṽ[�]t ,Δ[�]
n j)+ f̆n j(Δn j; ṽ[�]t ,Δ[�]

n j)︸ ︷︷ ︸
F̃(ṽt ,Δn j;ṽ

[�]
t ,Δ[�]

n j)

+

2ξn j Re

(
ṽ[�]Ht ṽt −

∥∥∥ṽ[�]t

∥∥∥2
+Δ[�]H

n j Δn j −
∥∥∥Δ[�]

n j

∥∥∥2
)

︸ ︷︷ ︸
F̄(ṽt ,Δn j;ṽ

[�]
t ,Δ[�]

n j)

(6.24)

where we denote f̂n j(ṽt ; ṽ[�]t ,Δ[�]
n j) as

f̂n j(ṽt ; ṽ[�]t ,Δ[�]
n j) =

2Re
(

ṽ[�]Ht Gn j

(
Δ[�]

n j

)
ṽt − ṽ[�]Ht Gn j

(
Δ[�]

n j

)
ṽ[�]t

)
ṽ[�]Ht Gn j

(
Δ[�]

n j

)
ṽ[�]t +N0

−
2Re

(
ṽ[�]Ht G̃n j

(
Δ[�]

n j

)
ṽt − ṽ[�]Ht G̃n j

(
Δ[�]

n j

)
ṽ[�]t

)
ṽ[�]Ht G̃n j

(
Δ[�]

n j

)
ṽ[�]t +N0

, (6.25)

using the derivation in (A I-79), and f̆n j(Δn j; ṽ[�]t ,Δ[�]
n j) as

f̆n j(Δn j; ṽ[�]t ,Δ[�]
n j) =

2Re
(

Δ[�]H
n j Ωn j

(
ṽ[�]t

)
Δn j −Δ[�]H

n j Ωn j

(
ṽ[�]t

)
Δ[�]

n j

)
ṽ[�]Ht Gn j

(
Δ[�]

n j

)
ṽ[�]t +N0

−
2Re

(
Δ[�]H

n j Ω̃n j

(
ṽ[�]t

)
Δn j −Δ[�]H

n j Ω̃n j

(
ṽ[�]t

)
Δ[�]

n j

)
ṽ[�]Ht G̃n j

(
Δ[�]

n j

)
ṽ[�]t +N0

(6.26)

using the derivation in (A I-80). Similarly, we note that the non-convexity of (6.21b) is because

of the concave function gn j(ṽt ,Δn j) on the lesser side and the convex function un, j, j(ãn,t , w̃n,t ,δn j)

on the greater side of the inequality. Thus, we can approximate function gn j(ṽt ,Δn j) around

the point ṽ[�]t ,Δ[�]
n j as

Gn j(ṽt ,Δn j; ṽ[�]t ,Δ[�]
n j) = gn j(ṽ

[�]
t ,Δ[�]

n j)+ F̃(ṽt ,Δn j; ṽ[�]t ,Δ[�]
n j)−2ξn jF̄(ṽt ,Δn j; ṽ[�]t ,Δ[�]

n j) (6.27)
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and function un, j, j(ãn,t , w̃n,t ,δn j) around the point ã[�]n,t , w̃
[�]
n,t ,δ

[�]
n j as

Un, j, j(ãn,t , w̃n,t ,δn j; ã[�]n,t , w̃
[�]
n,t ,δ

[�]
n j ) = un, j, j(ã

[�]
n,t , w̃

[�]
n,t ,δ

[�]
n j )

+2ψn, j, j(w̃
[�]H
n,t w̃n,t −||w̃[�]

n,t ||2 + ã[�]Hn,t ãn,t −||ã[�]n,t ||2 +δ [�]
n j δn j − (δ [�]

n j )
2)

+ ûn, j, j(ãn,t ; ã[�]n,t , w̃
[�]
n,t ,δ

[�]
n j )+ ŭn, j, j(w̃n,t ; ã[�]n,t , w̃

[�]
n,t ,δ

[�]
n j )+ ūn, j, j(δn j; ã[�]n,t , w̃

[�]
n,t ,δ

[�]
n j ) (6.28)

where we denote ûn, j, j(ãn,t ; ã[�]n,t , w̃
[�]
n,t ,δ

[�]
n j ) as

ûn, j, j(ãn,t ; ã[�]n,t , w̃
[�]
n,t ,δ

[�]
n j ) =

π̃n j(w̃
[�]
n,t ,δ

[�]
n j )

(
ãn, j,t − ã[�]n, j,t

)
πH

n j(w̃
[�]
n,t ,δ

[�]
n j )a

[�]
n, j,t +N0

−

π̃n j(w̃
[�]
n,t ,δ

[�]
n j )

(
ãn, j,t − ã[�]n, j,t

)
π̃n j(w̃

[�]
n,t ,δ

[�]
n j )ã

[�]
n, j,t +N0

, (6.29)

where

πn j(w̃n,t ,δn j) = [|w̃H
n,1,t h̃n j,tδn j|2, . . . , |w̃H

n,U,t h̃n j,tδn j|2]T .

In addition, we have

ãn, j,t = [ãn,1, j,t , . . . ,1, . . . , ãn,U, j,t ]
T ,

and

π̃n j(w̃n,t ,δn j) = [|w̃H
n,1,t h̃n, j,tδn j|2, . . . ,0, . . . , |w̃H

n,U,t h̃n, j,tδn j|2]T ,

where 0 appears at the jth element. Moreover, we denote ŭn, j, j(w̃n,t ; ã[�]n,t , w̃
[�]
n,t ,δ

[�]
n j ) as

ŭn, j, j(w̃n,t ; ã[�]n,t , w̃
[�]
n,t ,δ

[�]
n j ) =

2Re
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−

2Re
(

w̃[�]H
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))
π̃n j(w̃

[�]
n,t ,δ

[�]
n j )ã

[�]
n, j,t +N0

, (6.30)

where

θ(ãn, j,t) = [ãn,1, j,t1T , . . . ,0T , . . . ,an,U, j,t1T ]T ,
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where 0 appears at the jth element. In addition, we have denoted Ĥn j,t = h̃n j,t h̃H
n j,t and Hn j,t =

Bdiag
(
Ĥn j,t , . . . ,Ĥn j,t

)
, and H̃n j,t = Bdiag

(
Ĥn j,t , . . . ,0, . . . ,Ĥn j,t

)
. Finally, we have denoted

ūn, j, j(δn j; ã[�]n,t , w̃
[�]
n,t ,δ

[�]
n j ) as

ūn, j, j(δn j; ã[�]n,t , w̃
[�]
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[�]
n j ) =
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n j φ H
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n j )
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n j )ã
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n, j,t +N0

− 2δ [�]
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[�]
n,t)ã

[�]
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π̃n j(w̃
[�]
n,t ,δ
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n j )ã

[�]
n, j,t +N0

(6.31)

where

φ n j(w̃n,t) = [|w̃n,1,t h̃n, j,t |2, . . . , |w̃U,t h̃ j,t |2]T

and

φ̃ n j(w̃n,t) = [|w̃n,1,t h̃n, j,t |2, . . . ,0, . . . , |w̃H
n,U,t h̃n, j,t |2]T ,

where 0 appears at the jth element. By applying the above approximations, we can formulate

the convex approximate of (6.21) at the �th iteration as

max
Ã,Λ̃,W̃,Ṽ,

p,δ ,Δ,C̃

1

T

T

∑
t=1

3

∑
n=1

∑
j∈Un

[
Fn j(ṽt ,Δn j; ṽ[�]t ,Δ[�]

n j)−ξn j(‖ṽt‖2 +
∥∥Δn j

∥∥2
)

]
−A

T

∑
t=1

3

∑
n=1

∑
i, j∈Un

cn,i, j,t

(6.32a)

subject to:

Un, j, j(ãn,t , w̃n,t ,δn j; ã[�]n,t , w̃
[�]
n,t ,δ

[n]
n j )−ψn, j, j(‖w̃n,t‖2 + ||ãn,t ||2 + |δn j|2)≥

Gn j(ṽt ,Δn j; ṽ[�]t ,Δ[�]
n j)+ζn j(‖ṽt‖2 +

∥∥Δn j
∥∥2
) (6.32b)

δn j ≥ 0.25
(
1− ãn,i, j,t +δni

)2 −0.25
(

1− ã[�]n,i, j,t −δ [�]
ni

)2

− 1− ã[�]n,i, j,t −δ [�]
ni

2

(
ã[�]n,i, j,t +δ [�]

ni − ãn,i, j,t −δni

)
(6.32c)

2δ [�]
n j −δn j

(δ [�]
n j )

2
≥

√
(x̄b − xn j)2 +(ȳb − yn j)2 +(Hb −H)2 (6.32d)



204

2Δ[�]
nm ji −Δnm ji

(Δ[�]
nm ji)

2
≥

√
(xn j − x̄mi)2 +(yn j − ȳmi)2 +H2 (6.32e)

ãn,i, j,t −2ã[�]n,i, j,t ãn,i, j,t +(ã[�]n,i, j,t)
2)≤ cn,i, j,t (6.32f)

(6.14g)− (6.14i), (6.17b) (6.32g)

for i, j ∈ U , where Ã[�],W̃[�], Ṽ[�],δ [�],Δ[�] are not the optimization variables but the parame-

ters. Note that we approximated the concave function −(
1− ãn,i, j,t −δni

)2
by the second and

third terms on the right side of (6.32c). Similarly, we also approximated δ−1
n j and Δ−1

nm ji by the

left side of (6.32d) and (6.32e), respectively. Algorithm 7 outlines the DC–method to solve

(6.21). First, we initially set A[0] at sufficient small value. Then after each iteration n, we in-

crease A[�] using a constant ε > 1 to ensure that ∑∀n, j,i,t c�n,i, j,t = 0 when �→ ∞. The proof that

Algorithm 7 converges after a finite number of iteration is similar to (Vu et al., 2016b), which

is omitted here.

After using Algorithm 7 to solve (6.21), the value of UAV’s positions p◦ is determined. At

this point, we command the UAV to fly to p◦ to attain the real CSI there and use these CSI

as the input for problem (6.16). Then, we can develop a low-complexity algorithm similar to

Algorithm 7 to solve for the value of variables a,λ ,w,v. We omit the details of this proceess

here for brevity.

Algorithm 7:

1: Initialize starting points of Ã[�],W̃[�], Ṽ[�],δ [n],Δ[n] and A[�];

2: Set � := 0;

3: repeat
4: Optimally solve the convex problem in (6.32) to achieve Ã�,W̃�, Ṽ�, Λ̃�

,p�,δ �,Δ�, C̃� ;

5: Set � := �+1;

6: Update Ã[�] = Ã�,W̃[�] = W̃�, Ṽ[�] = Ṽ�,δ [�] = δ �,Δ[�] = Δ�;

7: Update A[�] = min
{

εA[�−1],Amax

}
;

8: until Convergence of the objective (6.32a);

9: Assign p◦ = p�.
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6.6 Numerical Results

We consider a circular coverage of radius 20d0 (d0 = 103 meter is the reference distance)

centered at the MBS with coordinate {0,0,0}. The coverage is equally divided into 3 sectors,

each contains 4 users and 4 UAVs. The users in sector n are evenly placed on the circumference

of radius 10d0 away from the MBS within sector n. Each UAV’s position in sector n is bounded

inside this sector area. Unless otherwise mentioned, we set Pmax = 43 dBm, pmax = 23 dBm,

N0 =−120 dB, Kb = 4 dB, Ku = 3 dB, T = 100. After solving for p◦, we consider the random

Rician channels h̃n j and g̃n j as the input to solve (6.16) for a,w,v,λ .

In Fig. 6.3, we show the convergence of Algorithm 7 when solving (6.15) to obtain p◦. Then,

we fix p = p◦ and examine the convergence when runing Algorithm 7 to solve (6.16) at three

choices of initial setup. The curves Initial Point 1 and 3 have the same value of w[�],v[�]A[�], but

the values of ξ 0,ζ0,ψ0 for Initial Point 1 uses much smaller than Initial Point 3, where we com-

pute ξ 0,ζ0,ψ0 for Initial Point 3 according to Appendix 10. However, the curves Initial Point

1 and 2 have the same value of ξ 0,ζ0,ψ0, but the values of w[�],v[�]A[�] are chosen differently.

We observe that the objective value (6.32a) always improves and converges after some number

of iterations. Here, we also observe that the curves Initial Point 1 and 2 only require around

50 iterations to convergence, but the curve Initial Point 3 requires up to 300 iterations. In fact,

the choice of a[�],w[�],v[�]A[�] does not have a significant impact on Algorithm 7 performance,

but a loose choice of ξ 0,ζ0,ψ0 can lead to slow convergence behavior. As reflected in Fig. 6.3,

there also exist tighter bounds for ξ 0,ζ0,ψ0 than the results in Appendix 10. In Fig. 6.3, we

validate this argument by heuristically choosing a better choice of ξ 0,ζ0,ψ0 for Initial Point 1

and 2. Note that theoretically deriving such bounds is challenging so that we search for these

bounds by gradually reducing the value of ξ 0,ζ0,ψ0 until Algorithm 7 does not converge.

In Fig. 6.4, we compare the achievable sum rate of users considering different transmission

schemes. In particular, the problem of NOMA no Cooperation Scheme is similar to (6.14), ex-

cept that there is no cooperation between the UAVs, e.g., we additionally consider the constraint

vi j = 0,∀i 
= j. The NOMA no Cooperation fixed Position Scheme is similar to the NOMA
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Figure 6.3 Convergence of the proposed algorithm.

no Cooperation Scheme, where we choose the fixed position of all the considered UAVs. In

particular, the coordinate of UAV i in sector n is chosen as xni = x̄ni/2 and yni = ȳni/2,∀i ∈Un.

On the other hand, in the no NOMA Scheme, there is no application of NOMA for the WB

transmission, and consequently there is no cooperation between the UAVs. We can easily con-

firm the similarity of this no NOMA design with (Mozaffari et al., 2017). In this case, we can

formulate the no NOMA problem similar to (6.14) where ãn,i, j,t = 1,∀n, i, j, and (6.14i) is re-

moved. Similarly, in the no NOMA fixed Position Scheme, we apply the aforementioned fixed

position strategy for the no NOMA Scheme. When pmax increases, all the schemes increase and

saturate at high value pmax, where the Proposed Scheme and NOMA no Cooperation Scheme

always outperforms the other schemes. This is because the NOMA process improves the WB

rates, so that when the UAVs have higher pmax, the system can achieve higher rate. Moreover,

when combining the NOMA process with the cooperation between the UAVs, the system can

achieve a higher gain, as shown by the gap between the Proposed Scheme and the NOMA no

Cooperation Scheme. However, without the NOMA process, the WB rate is limited and hence

WA rate is also limited according to constraint (6.14b). In the NOMA no Cooperation and no
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NOMA with fixed Position Schemes, it is important to note that fixing the position also reflects

a fixed decoding order, which also limits the benefit of NOMA over the WB transmissions.
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Figure 6.4 Comparison of the achieved sum rate

with respect to pmax.

In Fig. 6.5, we show the achievable sum rate of the users with respect to the MBS’s maximum

power budget Pmax. We again observe that the Proposed Scheme always significantly outper-

forms the other schemes, which is consistent with the analysis of Fig. 6.4. Beside, we also

observe that when Pmax increases, the achievable rate of all the schemes increase and saturate

at high power Pmax. This can be explained as when Pmax increases, the MBS can allocate more

power to increase the WB rate, which in turn increases the WA rate. However, when Pmax

is high, the MBS does not allocate all of its available power to the UAVs to avoid increasing

the co-channel interference between the UAVs. This results in a saturation of WB rate, and

subsequently leads to the saturation of the WA achievable sum rate.
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Figure 6.5 Comparison of the achieved sum rate

with respect to Pmax.

Finally, in Fig. 6.6, we show the performance of the Proposed Scheme when the number of

UAV and the number of cluster of the users is U = 4,7,10. Again, we observe the when pmax

increases, the achievable rate of the Proposed Scheme in different scenarios increase, which is

consistent with Fig. 6.4. However, when U becomes greater, we can achieve higher sum rate.

This is because under our proposed cooperative NOMA scheme, more UAVs can cooperatively

provides higher degree of freedom to transmit to the users. Also, we notice that the 4 UAVs

scheme significantly outperforms the 1 (and 2) UAV(s) schemes. This is because it is less

beneficial with fewer UAVs to cooperate under the cooperative NOMA scheme. Consequently,

inter-user interference is poorly coordinated, leading to a rapid saturation at low user sum rate

at the 1 (and 2) UAV(s) schemes. This corroborates the improvement of our proposed scheme.
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Figure 6.6 Comparison of the achieved sum rate with

respect to pmax between the number of UAV.

6.7 Concluding Remarks

In this paper, we investigated the downlink transmissions in the UAV–assisted WB networks.

We proposed a novel cooperative NOMA strategy to simultaneously boost the system perfor-

mance. Observing that the employed NOMA scheme is affected by the change of UAV’s posi-

tion, we jointly optimized the radio resource allocation at the MBS and UAVs along with the

decoding order of the NOMA process and the positions of the UAVs to maximize the user sum

rate. To overcome the difficulty in achieving the optimal solution, we proposed a framework

based on the method of DC program characterized by the Lipschitz continuity to transform the

original problem in an approximate sense, into a series of convex optimization problems, lead-

ing to a low-complexity algorithm that may be iterated until convergence. Numerical results

showed that our achieved solution, under the proposed model and developed algorithm, can

outperform the other designs which aim at optimizing without using cooperative NOMA or do

not optimize the UAV position. For future work, it is interesting to analyze the theoretical gain
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of the proposed NOMA scheme and to study the impact of imperfect SIC in (Tabassum et al.,

2017) on the UAV’s cooperation and overall network performance.



CONCLUSION AND RECOMMENDATIONS

7.1 Conclusions

This dissertation studied the performance of PtMP WB HetNets. As being raised by the aca-

demic and industrial research, WB plays an important role in the 5G perspective to sustain the

future 5G’s operation. However, jointly designing the WB together with the WA communi-

cations is generally challenging due to their fundamental bottleneck relationship. The main

theme of this dissertation was to design the multi-dimensional resource allocation in PtMP

WB HetNets under an explicit consideration of WB and WA transmission relationship. Via the

joint optimization, this dissertation improved performance of the WB HetNets from different

approaches. In particular, Chapter 2 addressed the coupling between the uplink and downlink

transmissions and designed a joint radio resource allocation of beamforming, power, and spec-

trum partitioning which maximizes small cell sum rate on both uplink and downlink sides. On

the other hand, Chapter 3 concentrated on the energy-efficiency side of the WB HetNets. Then,

a joint optimization of downlink transmit beamforming and power allocation which maximizes

the access energy-efficiency was formulated. By developing a low-complexity iterative algo-

rithm based on SCA and SOCP, each of these work arrived at a high-quality solution of resource

allocation which outperforms the conventional work and achieve a close-to-optimal solution

achieved by the exhaustive search algorithm. Chapter 4 further considered a finite-size buffer

at each small cell which can flexibly store and release backhaul data. Via jointly optimizing

the radio resource allocation together with data management in the buffer which maximizes

the total throughput of small cell user over time, this work derived an appropriate design of

buffer usage which can achieve a better network performance compared to previous design

without properly exploiting the dynamics of the buffer queue. optimizing the radio resource

allocation together with data management in the buffer which maximizes the total throughput

of small cell user over time. Chapter 5 enhanced the WB HetNets by proposing a novel co-
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operative NOMA to improve both the achievable WB and WA rates. This work proposed to

solve for a joint solution of NOMA’s decoding order, small cell cooperation policy, transmit

beamforming at the macro cell BS and power allocation at the SAPs which maximizes the to-

tal small cell and macro cell user sum rate. By employing a novel low-complexity algorithm

based on DC programming and Lipschitz continuity, the achieved results of this work show a

significant gain of system throughput under the proposed cooperative NOMA compared to the

literature. Finally, Chapter 6 presented a novel idea of using UAVs combined with the cooper-

ative NOMA to assist the WB communications in WB networks. Chapter 6 proposed to jointly

optimize the radio resource allocation, NOMA’s decoding order, UAV cooperation policy, to-

gether with the UAVs’ locations which maximizes the user sum rate. Via developing a novel,

more advanced with lower complexity algorithm based on the DC programming and Lipschitz

continuity, achieved results show that the new system of WB UAV networks can significantly

boost the network performance compared to traditional WB designs.

7.2 Recommendations

For future work, we recommend to move beyond than the focus on optimizing the resource

allocation of PtMP NLoS WB HetNets. In fact, WB can be accommodated on mmWave spec-

trum band or can be combined with advanced 5G technological candidates. According to

the results in Chapters 4, 5, and 6, proper exploitation of small cell buffering, NOMA or UAV-

assisted communications can significantly improves the network performance compared to sole

resource allocation design. This implies that there might exist some other approaches to im-

prove the WB operation in 5G dense networks. In particular, small cell and macrocell BSs can

indeed flexibly switch between the mmWave and sub-6 GHz modes to harness both the NLoS

and LoS communications for WB and WA transmissions. Small cell BSs can either communi-

cate with macrocell BS using NLoS or LoS, depending on their geometrical distances; or they

can communicate with each other using LoS combined with multi-hop communications. The
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challenge is how to determine which NLoS and LoS communications should be allocated for

each WB communication in order to achieve the best network performance.

Furthermore, equipping a local cache beside using finite-size buffer at each small cell can

potentially improve the user sum rate compared to the achieved results in Section 4. Caching

content at the small cell BS prior to be requested by local users can efficiently reduce WB

overload, thus preserve more communication channel for needed WB transmission to achieve

higher data rate. However, the prediction process to cache data is not always perfect, so that

content must be transmitted through WB links and buffered whenever a cache miss occurs.

Therefore, it is interesting to appropriately manage the cached and buffered content through

jointly with the resource allocation to improve the performance of the WB networks.

Cache is recently proposed for UAV-assisted communications and is obviously a prominent

solution for UAV-assisted WB networks. Cache usage at each UAV can be combined with

the advantages of the proposed cooperative NOMA and the flexible movement of each UAV in

order to exploit more cooperation between UAVs. However, it is challenging to jointly optimize

the cached content management, the decoding policy at each UAV, the cooperation between the

UAVs, and the positions of UAV in order to leverage the overall network performance.

Finally, we can concentrate on the energy-efficiency characteristic of the proposed cooperative

NOMA on WB HetNets used in Chapter 5. Although NOMA can boost the achievable rate of

each user, its implementation is complicated due to the complexity nature of the SIC process.

The SIC principle involves in the decoding of other users’ messages, which in turn requires

more energy consumption at each small cell BSs. Beside, some small cell BSs must cooperate

to transmit more messages to other users beside its own user, therefore, increases the amount

of energy consumption. To achieve the greenest communication, it is interesting to determine

whether a particular small cell BS will participate in the NOMA or not to save more energy

while still maintains a good network performance.





APPENDIX I

1. Proof of equivalence between problem transformations in Chapter 2

1.1 Equivalence between the relaxation of (2.7) and (2.9)

To prove that (2.7) and (2.9) are equivalent by adding more slack variables and constraints,

we have to prove that at optimality, all the newly introduced constraints (2.10), (2.11) are

active. This can be easily proved by contradiction. Let us assume that at the optimum solution

α�,v�,ρ�,p�,q�, t�, some constraints in (2.10) and (2.11) are strictly inequalities, e.g. the ith

constraint. Observing from (2.10), we can slightly increase each optimum solution to�
i until

equality occurs. Consequently, we can increase qo�
i in (2.11) until equality occurs. However,

increasing qo�
i results in an improvement of objective function (2.9a), which contradicts the

assumption of the optimality. Thus, we conclude that at optimality, all the constraints in (2.10),

(2.11) occur at equalities.

1.2 Equivalence in the transformation in (2.12)

The equivalence between these transformations can again be proved by contradiction. As-

suming that z and the constraints (2.12) are added into (2.9). Without any loss of generality,

assuming that at optimum solution of α�,v�,ρ�,p�,q�, t�,z�, some of the constraints in the

system (2.12) are strictly inequalities, e.g., the ith constraint with o = d. From there, we can

form a pair of optimum solution
{

zd�
i /c, td�

i c
}

for c > 1 so that (2.12b) occurs at equality,

where the product of zd�
i /c× td�

i c remains the same as zd�
i td�

i . Then, one can improve the

objective function by slightly increasing td�
i until (2.12a) occurs at equality. As shown in (1.1),

increasing td�
i is equivalent to increasing the objective function. This leads to the contradiction
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of the assumption of optimality and validates the equivalence in the transformation from (2.9b)

to (2.12).

1.3 Equivalence in the transformation in (2.13)

Similar to the contradiction method in Appendices 1.1 and 1.3, the equivalence of these trans-

formations in (2.13) can be proved by proving that at optimality, all the inequalities in (2.13)

are active. Without loss of generality, assuming that at optimality with the optimum solution

α�,v�,ρ�, p�,q�, t�,z�,a�,b�, there are some constraints with index k ∈ F with o = d and

l ∈ F with o = u in (2.13) occur at strict inequalities, while the rests are equalities. Consider

the kth constraints of the inequalities system in (2.13) with o = d. There exists a feasible so-

lution of ṽk = εv�k , where ε < 1, such that ad�
k = log

(
1+Γd

k

(
ṽk,v�∼k,α

d�)). In addition, there

also exists b̃d
k = εbd�

k where ε < 1 such that b̃d
k = log

(
1+ γd

k

(
pd�,1−αu�)). Applying a simi-

lar argument for the lth constraints of the inequalities system in (2.13) with o = u , there exists

a pair of ρ̃l, b̃u
l such that au�

l = log
(
1+Γu

l

(
ρ̃l,ρ�

∼l,α
u�)) and b̃u

l = log
(
1+ γd

l

(
pu�,1−αd�)).

With the new values of ṽk, ρ̃l less than v�k ,ρ
�
l , respectively, all the constraints in (2.13a), for

i 
= k with o = d and i 
= l with o = u result in a higher value of ao�
i and become strict in-

equalities. From there, we can slightly increase 1−αd� and 1−αu� by new feasible values

1− α̃d and 1− α̃u and achieve a higher value of the objective function. This contradicts with

the assumption of optimality. Therefore, at optimality, all the constraints in (2.13) occur at

equalities.

2. Proof of Derivation in (2.28)

We complete the proof by following the similar framework as in (Ben-Tal & Nemirovski,

2001a). We rewrite ex/t as [exp(2−mx/t)]2
m

and write its fourth order Taylor approximation
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( fm (x, t))2m
as

fm (x, t) = 1+
(

2−m x
t

)
+

(
2−m x

t

)2

2
+

(
2−m x

t

)3

6
+

(
2−m x

t

)4

24
. (A I-1)

It is obvious that fm (x, t) is a good approximation of ex/t since at large m, ( fm (x, t))2m ≈
[exp(2−mx/t)]2

m
= ex/t . To further extract y ≥ t ( fm (x, t))2m

into SOC constraints, we first

introduce variable κm+4 and rewrite this constraint as

κm+4 ≤ y, (A I-2)

t ( fm (x, t))2m ≤ κm+4 (A I-3)

Multiplying t on both sides of (A I-3) and introducing slack variable κm+3, we can rewrite

(A I-3) as

κ2
m+3 ≤ tκm+4 ; t ( fm (x, t))2m−1 ≤ κm+3 (A I-4)

Thus, by applying the same rule of multiplying t and introducing more slack variables m times,

we can rewrite the constraint y ≥ t ( fm (x, t))2m
as

κm+4 ≤ y, (A I-5)

κ2
m+3 ≤ tκm+4, (A I-6)

κ2
i−1 ≤ tκi, i = 5, . . .m+3, (A I-7)

t fm(x, t)≤ κ4. (A I-8)

where κ4,κ5, . . . ,κm+4 are the newly introduced variables. Taking further manipulation, we

rewrite the term t fm(x, t) in the last inequality as follow

19

72
t +

(
5/6t + x2−m−1

)2

t
+

(t + x2−m)
4

24t3
≤ κ4. (A I-9)
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To complete the proof, we can equivalent decompose the above constraint by the introduction

of new variables κ1,κ2,κ3 as

(
t + x2−m)2 ≤ κ1t, (A I-10)(

5/6t + x2−m−1
)2 ≤ κ2t, (A I-11)

κ2
1 ≤ κ3t, (A I-12)

(19/72) t +κ2 +(1/24)κ3 ≤ κ4, (A I-13)

where we noted that the first 3 constraints can be rewritten in the form of SOC as

∥∥[2t + x/2m−1 t −κ1

]∥∥
2
≤ t +κ1, (A I-14)

‖[5t/3+ x/2m t −κ2]‖2 ≤ t +κ2, (A I-15)

‖[2κ1 t −κ3]‖2 ≤ t +κ3. (A I-16)

3. Proof of Proposition 2 in Chapter 3

To prove that (3.16) and (3.10) are equivalent, we must prove that at optimality of (3.16),

(3.16b)–(3.16g) occur at equality. This can be proved by contradiction. Assuming that at the

optimal solution Π�, (3.16b)–(3.16g) occur at strict inequalities. However, we can always find

q̃ > q� which results in a higher objective function but still makes constraint (3.16b) equal. In

addition, at (3.16c), we can always find another value τ̃ > τ� so that (3.16c) becomes equal.

Moreover, this increment event of variable τ� to τ̃ allows q� to increase to achieve a better

valued objective, which contradicts the assumption of optimality. Similarly, assuming that

(3.16d)–(3.16g) occur at strict inequalities at some index (i, j) ∈ (Sa,Su). At (3.16f), we

can find another t̃ s
i j > ts�

i j and s̃i j < s�i j so that (3.16f) occurs at equality. The increment in

ts�
i j to t̃ s

i j again offers the possibility of objective function improvement, which contradicts the

assumption of optimality. Moreover, with the reduction of s�i j to s̃i j, we can also find t̃m
i < tm�

i
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so that (3.16e) occurs at equality. This implies that ν�
i ,v�i , i ∈ Sa should be reduced to ν̃i =

βν�
i , ṽi = αv�i ;α,β < 1 so that (3.16d) and (3.16g) occur at equality with i ∈ Sa. Finally, the

reduction of v�i , i ∈ Sa will lead to the reduction of ˜̃Ptot and we can find a larger τ̃ and q̃ to let

(3.16c) and (3.16b) occur at equality, which again contradicts the assumption. Therefore, we

conclude that at optimality, (3.16b)–(3.16g) should all occur at equalities.

4. Proof of Convergence in Section 3.3.3 of Chapter 3

4.1 Conditions for regular feasible solution (Rockafellar & Wets, 1998)

Given a general non-convex optimization problem as

(Q) : max
x∈Ω

{ f0 (x) | fi (x)≤ 0,g j (x)≤ 0, i = 1, . . . , I; j = 1, . . .J}, (A I-17)

where Ω⊂R
n, f0 (x) is concave, fi (x) is convex ∀i= 1, . . . , I, g j (x) is nonconvex ∀ j = 1, . . . ,J,

a feasible solution x̂ of problem (Q) is called regular if the Mangasarian-Fromovitz Constraint

Qualification (MFCQ) holds at x̂. Particularly, MFCQ holds at x̂ if there exists a vector ω ∈R
n

that satisfies

∇ fi(x̂)T ω < 0, for i ∈ I(x̂) (A I-18)

∇ fi(x̂)T ω < 0, for i ∈ I(x̂) (A I-19)

where I(x̂) = {i : fi(x̂) = 0} and J(x̂) = { j : g(x̂) = 0}.

4.2 Slater Conditions and Convergence of Algorithm 2

- Under the assumption that all the feasible points of problem (3.17) are regular, and the

fact that all the convex approximation used in Section 3.3.3 satisfy the last two conditions
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in (Marks & Wright) , any choice of initial point v(0),ν(0),p(0),τ(0) from the regular feasible

solution of (3.16) implies that the approximated problem at the 1st iteration
(
P̃(1)

)
also con-

tains all regular feasible solution. According to (Scutari et al., 2017), Slater condition holds

for
(
P̃(1)

)
since it is a convex problem contains all regular feasible solutions. Similarly, as-

suming that v�,p�,ν�,s�, t�,τ�,q� is the optimal solution of
(
P̃(1)

)
and by the updating rule

in Step 6, v(1),ν(1),p(1),τ(1) is chosen from the optimal solution v�,p�,ν�,s�, t�,τ�,q� as the

feasible point parameter of
(
P̃(2)

)
. This also implies that

(
P̃(2)

)
contains a regular point

which satisfies MFCQ and Slater CQ. By repeating this step, we conclude that Slater condition

holds for all the approximated problems.

- Let f (n) denote the optimal objective value and Π(n) denote the optimal solution set at the

(n− 1)th iteration of Algorithm 2. Due to the convex approximation in Section 3.3.3, the

updating rules in Algorithm 2 and the second condition in (Marks & Wright) ensure that the

solution set Π(n) is a feasible solution to problem (3.24) at step n + 1. This subsequently

leads to the results of f (n+1) ≥ f (n), which means that Algorithm 2 generates a non-decreasing

sequence of objective function values. Due to the limited power constraints, the sequence of

f (n),n = 1,2, . . . is bounded above and therefore, Algorithm 2 guarantees that the objective

converges.

5. Proof of NP-hardness of (3.9) in Chapter 3

We will apply the reduction from the maximum independent set problem to problem (2.7).

Since the former problem is NP-hard, this will imply the NP-hardness of (2.7). Suppose that

G = {V ,E } is an undirected graph. An independent set of G is a subset U ⊂ V such that no

two nodes in U are connected: for any two vertices ui,u j ∈ U , we have (ui,u j) /∈ E . To find

an independent set with a given size is NP-hard (Luo & Zhang, 2008).
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Consider a connected graph G = {V ,E } with Sa vertices, i.e., |V |= Sa. Then we choose the

instance of (2.7) with Su = 1. For convenience, we denote the channel gain from the ith SAP

to the SUE in the jth SAP as hi j, where we choose hii = 1. For each ui ∈ V , let

hi j =

⎧⎪⎪⎨
⎪⎪⎩
√

KS3
a , if u j is adjacent to ui

0 , otherwise

(A I-20)

where we choose K >
5(S4

a+2)5+2S4
a(S

4
a+2)

S3
a

. Beside, we choose an arbitrary value of N,M and

- h j =
√

K × [1,0, . . . ,0]T︸ ︷︷ ︸
N components

,∀ j ∈ Sa and hk = [0, . . . ,0]T︸ ︷︷ ︸
N components

,∀k ∈ M ,

- N0 = K, pmax = 1, Pmax = Sa +M, and rm
min = rs

min = 0.

- κm = κs = 2, αi = 1,∀i ∈ Sa and Pcirc +Pad = P0, where P0 is chosen sufficiently large

compared to K,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P0 >
4
K
(Sa+2)2(Sa+1)2

2Sa+3

P0 > 4Sa(K +1)2

P0 >
2Sa(K+1)2

r(y)

P0 >
8S4

a(K+1)(KS3
a+K)(KS3

a+K+1)
(S3

a+1)2(K−1)
+Sa

(A I-21)

We claim that G has a maximum independent set of size |I | if and only if (3.9) has an optimal

value η� that satisfies

ξ (|I |)≤ η� < ξ (|I |+1) (A I-22)

where

ξ (|I |) = |I | log(1+ 1
K )

2(|I |+ |I |
K−|I |+1

)+P0 + |I | log(1+1/K)
(A I-23)
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We prove “⇒”: If G has a maximum independent set I , then we can choose the value of p

pi =

⎧⎪⎪⎨
⎪⎪⎩

1 , if ui ∈ I

0 , otherwise

(A I-24)

and the value of v as solving the following problem with the chosen p

min
v ∑

i∈F

‖vi‖2 (A I-25a)

s.t. (3.9b), (3.9c), (3.9e). (A I-25b)

Here, we note that when p is fixed, (A I-25) can be rewritten as a standard second order cone

programming, which is a convex optimization problem with respect to variable v. Moreover,

we can remark that by the chosen structure of channel hi,∀i ∈ {Sa ∪M } and rm
min = 0, at

optimality of (A I-25), all constraints (3.9b) occur at equality (the proof for this is similar to

Proposition 2 in the Chapter 3). Beside, at optimality of (A I-25), we have the optimal vk =

0,∀k ∈M , v j = 0,∀ j ∈Sa\I and vi j = 0,∀i ∈I ,∀ j = 2, . . . ,N and vi j 
= 0 otherwise. Thus,

we can easily compute ∑i∈F ‖vi‖2 =∑i∈I |vi1|2 = |I |
K−|I |+1

and Ri(v) = log(1+1/K),∀i∈I .

It is obvious that the computed p and v are a feasible solution to (3.9). Therefore, we have a

solution for (3.9) with an objective value equal to ξ (|I |) which satisfies (A I-22).

We prove “⇐”: Suppose that we have an optimal solution p� and v� with the optimal objective

value η�. Following the same step in (Luo & Zhang, 2008), we compute the first and second

derivatives of the objective η(v,p) of (3.9) with respect to each component pi,∀i ∈ Sa. The

following claim is provided to characterize the form of the optimal solution p�.
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Proposition 7. η(p) is either strictly increasing or convex with respect to each variable pi,∀i∈
Sa at all the feasible value of p∈ [0,1]Sa×1 when we choose P0 >K and K >

5(S4
a+2)5+2S4

a(S
4
a+2)

S3
a

.

Proof. The proof is given at the end of this section.

Since the maximum of a convex function with respect to variable pi is always attainable at a

vertex, we can assume that p�i must be either 0 or 1. Beside, since the maximum of a strictly

increasing function is attainable at its highest value of pi, we can also assume that p�i must be

1. Therefore, it follows that we can assume that p� contains either 0 or 1 elements.

Let us construct a set A from the optimal variable p� as follow

A := {ui|p�i = 1,∀i ∈ Sa} (A I-26)

Let I be a maximum independent set contained in A . For convenient purpose, we denote

xi =
1

KS3
a ∑ j∈A \i:(u j ,ui)∈E 1+K , y = 1

KS3
a+K , r(x) = log(1+ x). Then we have

η(v�,p�) (A I-27)

=

∑i:ui∈A log

(
1+

p�i
KS3

a ∑ j∈A \i:(u j ,ui)∈E p�j+K

)
2∑i:ui∈A p�i +2∑i∈F ‖v�i ‖2 +∑i∈Sa Ri(v�)+P0

(A I-28)

(a)
≤ |I |r(1/K)+∑i:ui∈A \I r(xi)

2 ∑
i:ui∈A

p�i +2
|I |+K ∑i:ui∈A \I xi

K−(|I |−1)−K ∑i:ui∈A \I xi
+ |I |r(1/K)+ ∑

i:ui∈A \I
r(xi)+P0

(A I-29)

(b)
<

|I |r(1/K)+∑i:ui∈A \I r(y)

2(|I |+1)+2
|I |+K ∑i:ui∈A \I y

K−(|I |−1)−K ∑i:ui∈A \I y + |I |r(1/K)+ ∑
i:ui∈A \I

r(y)+P0

(A I-30)

=
|I |r(1/K)+(|A |− |I |)r(y)

2(|I |+1)+2
|I |+K(|A |−|I |)y

K−(|I |−1)−K(|A |−|I |)y + |I |r(1/K)+(|A |− |I |)r(y)+P0

(A I-31)
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(c)
<

|I |r(1/K)+Sar
(

1
KS3

a+K

)
2(|I |+1)+2

|I |+K Sa
KS3

a+K

K−(|I |−1)−K Sa
KS3

a+K

+ |I |r(1/K)+Sar
(

1
KS3

a+K

)
+P0

(A I-32)

(d)
<

|I |r(1/K)+ r( 1
2K )

2(|I |+1)+2
|I |+K 1

2K
K−(|I |−1)−K 1

2K
+ |I |r(1/K)+ r( 1

2K )+P0

(A I-33)

(e)
<

|I |r(1/K)+ r( 1
K )

2(|I |+1)+2
|I |+K 1

K
K−(|I |−1)−K 1

K
+ |I |r(1/K)+ r( 1

K )+P0

(A I-34)

=
(|I |+1) log

(
1+ 1

K

)
2(|J|+1)+2

|I |+1
K−|I +(|I |+1) log

(
1+ 1

K

)
+P0

= ξ (|I |+1) = ξ (|I |+1) (A I-35)

which establishes our claim above.

5.1 Proof of Proposition 7

Let us monitor the computation of first and second derivative of function η(p) = f (p)/g(p)

with respect to each pi, which is given by

∂ ( f (p)/g(p))
∂ pi

=

∂ f (p)
∂ pi

g(p)− f (p)∂g(p)
∂ pi

g2(p)
(A I-36)

∂ 2 ( f (p)/g(p))
∂ p2

i
=

∂ 2 f (p)
∂ p2

i
g2(p)− f (p)g(p)∂ 2g(p)

∂ p2
i

−2
∂ f (p)

∂ pi

∂g(p)
∂ pi

g(p)+2 f (p)
(

∂g(p)
∂ pi

)2

g3(p)

(A I-37)

where we can derive and bound
∂ 2 f (p)

∂ p2
i

as

∂ 2 f (p)
∂ p2

i
=− 1

(K +∑k:(ui,uk)∈E KS3
a pk + pi)2

+ ∑
j:(u j,ui)∈E

(KS3
a)

2 p j(p j +2∑l:(ul ,u j)∈E KS3
a pl +2K)

(p j +∑l:(ul ,u j)∈E KS3
a pl +K)2(∑l:(ul ,u j)∈E KS3

a pl +K)2
(A I-38)

∂ 2 f (p)
∂ p2

i
>− 1

K2
+ ∑

j:(u j,ui)∈E

K(KS3
a)

2 p j

K4(S4
a +2)4

=
∑ j:(u j,ui)∈E K(KS3

a)
2 p j −K2(S4

a +2)4

K4(S4
a +2)4

(A I-39)



225

Similarly, we can derive and bound
∂ f (p)

∂ pi
as

∂ f (p)
∂ pi

=
1

K +∑k:(ui,uk)∈E KS3
a pk + pi

+ ∑
j:(u j,ui)∈E

−KS3
a p j

(p j +∑l:(ul ,u j)∈E KS3
a pl +K)(∑l:(ul ,u j)∈E KS3

a pl +K)
(A I-40)

1

K
>

∂ f (p)
∂ pi

>
1

K(S4
a +2)

− ∑ j:(u j,ui)∈E KS3
a p j

K2
(A I-41)

f (p)≤ Sa

K
(A I-42)

Finally, we can also derive and bound
∂ 2g(p)

∂ p2
i

as

∂ 2g(p)
∂ p2

i
= 0;

∂g(p)
∂ pi

= 2;g(p)≥ P0 (A I-43)

The following special cases are in order:

- In case ∑ j:(u j,ui)∈E p j >
(S4

a+2)4P0+4K(S4
a+2)4

KS6
aP0

, we can bound

∂ 2 f (p)
∂ p2

i
>

K2(S4
a +2)4 +

4K3(S4
a+2)4

P0
−K2(S4

a +2)4

K4(S4
a +2)4

=
4

K
> 0 (A I-44)

∂ 2 ( f (p)/g(p))
∂ p2

i
>

∂ 2 f (p)
∂ p2

i
g(p)−2

∂ f (p)
∂ pi

∂g(p)
∂ pi

g2(p)
>

4
K − 4

K
g2(p)

= 0 (A I-45)

Thus,
∂ 2( f (p)/g(p))

∂ p2
i

is positive, and η(p) is convex with respect to pi in the region of

∑
j:(u j,ui)∈E

p j >
(S4

a +2)4P0 +4K(S4
a +2)4

KS6
aP0

.
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- In case ∑ j:(u j,ui)∈E p j ≤ (S4
a+2)4P0+4K(S4

a+2)4

KS6
aP0

, if we choose P0 > K, K >
5(S4

a+2)5

S3
a

and K >

5(S4
a +2)5 +2S4

a(S
4
a +2), then we have

∑
j:(u j,ui)∈E

p j ≤ (S4
a +2)4P0 +4K(S4

a +2)4

KS6
aP0

<
5P0(S4

a +2)4

KS6
aP0

=
5(S4

a +2)4

KS6
a

(A I-46)

∂ f (p)
∂ pi

>
1

K(S4
a +2)

−
KS3

a
5(S4

a+2)4

KS6
a

K2
=

1

K(S4
a +2)

− 5(S4
a +2)4

K2S3
a

=
KS3

a −5(S4
a +2)5

K2S3
a(S4

a +2)
> 0

(A I-47)

∂ ( f (p)/g(p))
∂ pi

>

KS3
a−5(S4

a+2)5

K2S3
a(S4

a+2)
P0 −2Sa

K

g2(p)

>

KS3
a−5(S4

a+2)5

P0KS3
a(S4

a+2)
P0 −2Sa

K

g2(p)
=

KS3
a−5(S4

a+2)5−2S4
a(S

4
a+2)

KS3
a(S4

a+2)

g2(p)
> 0 (A I-48)

Thus,
∂ ( f (p)/g(p))

∂ pi
is positive, and η(p) is strictly increasing with respect to pi in the region

of

∑
j:(u j,ui)∈E

p j ≤ (S4
a +2)4P0 +4K(S4

a +2)4

KS6
aP0

.

By repeating the similar step, we also have the same results for the derivatives of η(p) with

respect to other variable p j, j 
= i. In conclusion, η(p) is either strictly increasing or convex

with respect to each variable pi,∀i ∈ Sa at all the feasible value of p ∈ [0,1]Sa×1 when we

choose P0 > K and K >
5(S4

a+2)5+2S4
a(S

4
a+2)

S3
a

. This completes the proof.

5.2 Explanations for inequality (a)-(e) in (A I-27)

- (a) is because the set of the optimal solution v� must satisfy the following optimization

problem given the value of p�

min
v

2 ∑
i∈F

‖vi‖2 + ∑
i∈Sa

Ri(v) (A I-49a)

s.t. Ri ≥ log(1+1/K),∀i ∈ I (A I-49b)



227

R j ≥ log(1+ x j),∀ j ∈ A \I (A I-49c)

Rk ≥ 0,∀k ∈ {Sa \A }∪M (A I-49d)

(2.7e) (A I-49e)

We quickly note at optimality of (A I-49), all constraints (A I-49b)-(A I-49d) occur at equal-

ities. We can prove this by following the proof for Proposition 1 in our manuscript. Thus

problem (A I-49) is equivalent to

min
v ∑

i∈F

‖vi‖2 (A I-50a)

s.t. K|vi1|2 =
(

K ∑
j∈Sa\i

|v j1|2 +K

)
1/K, i ∈ I (A I-50b)

K|v j1|2 =
(

K ∑
l∈Sa\ j

|v j1|2 +K

)
x j, j ∈ A \I (A I-50c)

K|vk1|2 = 0,∀k ∈ {Sa \A }∪M (A I-50d)

(2.7e) (A I-50e)

it can be seen that because the channel gain is chosen as hi =
√

K[1,0, . . . ,0],∀i ∈Sa, each

vector vi only involves in its first component vi1. Beside, vi j = 0,∀i∈Sa∪M ,∀ j = 2, . . . ,N

due to the minimization problem on the objective of (A I-50). In conclusion, the optimal v�

should contain vi1 
= 0 and vi j = 0,∀i ∈ A ,∀ j = 2, . . . ,N, and vk = 0,∀k ∈ {Sa \A }∪M .

Therefore, we have

∑
i∈F

‖v�i ‖2 = ∑
i∈A

|v�i1|2 = ∑
i∈I

(
∑

j∈Sa\i
|v�j1|2 +1

)
1

K
+ ∑

i∈A \I

(
∑

j∈Sa\i
|v�j1|2 +1

)
xi

(A I-51)
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= ∑
i∈A

(|I |−1)|vi1|2
K

+
I
K
+ ∑

k∈A \I

|vk1|2
K

+ ∑
k∈A \I

(
∑

i∈A \k
|vi1|2

)
xk + ∑

k∈A \I
xk

(A I-52)

(α)
> ∑

i∈A

(|I |−1)|vi1|2
K

+
I
K
+ ∑

k∈A \I

(
∑

i∈A

|vi1|2
)

xk + ∑
k∈A \I

xk (A I-53)

where in (α), we have ∑k∈A \I
|vk1|2

K > ∑k∈A \I |vk1|2xk since 1/K ≥ xk,∀k ∈A \I . This

subsequently leads to

∑
i∈A

|v�i1|2
(

K − (|I |−1)−K ∑
k∈A \I

xk

)
≥ |I |+K ∑

k∈A \I
xk (A I-54)

⇔ ∑
i∈A

|v�i1|2 ≥
|I |+K ∑k∈A \I xk

K − (|I |−1)−K ∑k∈A \I xk
(A I-55)

- (b) is because the function on the right side of (a) is a monotonical increasing function with

respect to each xi. We can verify this property by seeing its first derivative with respect to

each xi is greater than

P0
1+xi

−Sar(1/K)
(

2
K(K+1)

(K−(|I |−1)−K ∑i xi)2 +
1

1+xi

)
(

2(|I |+1)+2
|I |+K ∑i:ui∈A \I xi

K−(|I |−1)−K ∑i:ui∈A \I xi
+ |I |r(1/K)+ ∑

i:ui∈A \I
r(xi)+P0

)2
>

P0
2 −2Sa(K +1)2(

2(|I |+1)+2
|I |+K ∑i:ui∈A \I xi

K−(|I |−1)−K ∑i:ui∈A \I xi
+ |I |r(1/K)+ ∑

i:ui∈A \I
r(xi)+P0

)2
(A I-56)

since we treat r(xi) < r(1/K) < 1, 0 < xi < 1/K, and K − (|I |−1)−K ∑i:ui∈A \I xi > 1.

The right side of (A I-56) is greater than 0 if we choose P0 > 4Sa(K +1)2. Thus, function

on the right side of (a) is a monotonical increasing function with respect to each xi and with

xi < y, we obtain the inequality (b).
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- To explain (c), let us treat |A |− |I | in (A I-31) as a variable z where |A |− |I | ≤ z ≤ Sa.

The function in (A I-31) is indeed a monotonical increasing function with respect to z. We

can verify this by seeing its first derivative with respect to z is greater than

P0r(y)−Sar(1/K)
(

2
Ky(K+1)

(K−(|I |−1)−Kzy)2 + r(y)
)

(
2(|I |+1)+2

|I |+Kzy
K−(|I |−1)−Kzy + |I |r(1/K)+ zr(y)+P0

)2
>

P0r(y)−2Sa(K +1)2(
2(|I |+1)+2

|I |+Kzy
K−(|I |−1)−Kzy + |I |r(1/K)+ zr(y)+P0

)2
(A I-57)

since we treat r(y)< r(1/K)< 1, y < 1
K and K − (|I |−1)−Kzy > K −|A |+1 > 1. The

right side of (A I-57) is greater than 0 if we choose P0 >
2Sa(K+1)2

r(y) . Thus, the function in

(A I-31) is indeed a monotonical increasing with respect to z and since |A |− |I |< Sa, we

obtain the inequality (c).

- (d) is because the function on the right side of (c) is monotonically decreasing with respect

to Sa in the region Sa ≥ 1 and P0 is chosen large [R.0-4, Appendix]. By denoting the

function on the right side of (c) as η1(Sa) =
f1(Sa)
g1(Sa)

as the function with respect to Sa, we

can bound its first derivative as follow

f ′1(Sa) =

(
Sar

(
1

KS3
a +K

))′
= r

(
1

KS3
a +K

)
− 3KS3

a
(KS3

a +K)(KS3
a + k+1)

(A I-58)

(i)
< r

(
1

KS3
a +K

)
− KS3

a +2K
(KS3

a +K)(KS3
a + k+1)

(ii)
<

−(K −1)

(KS3
a +K)(KS3

a + k+1)
< 0

(A I-59)

g′1(Sa) =

(
Sar

(
1

KS3
a +K

))′
+2

⎛
⎝ I + Sa

S3
a+1

K −|I |+1− Sa
S3

a+1

⎞
⎠′

(A I-60)

=

(
Sar

(
1

KS3
a +K

))′
+2

(1−2S3
a)(K+1)

(S3
a+1)2

(K −|I |+1− Sa
S3

a+1
)2

(A I-61)

η ′
1(Sa) =

f ′1(Sa)g1(Sa)− f1(Sa)g′1(Sa)

g2
1(Sa)

(A I-62)
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<

(
Sar

(
1

KS3
a+K

))′(
P0 +Sar

(
1

KS3
a+K

))
− f1(Sa)g′1(Sa)

g2
1(Sa)

(A I-63)

=

(
Sar

(
1

KS3
a+K

))′ (
P0 −|I |r( 1

K )
)−2

f1(Sa)(1−2S3
a)(K+1)

(S3
a+1)2(K−|I |+1− Sa

S3
a+1

)2

g2
1(Sa)

(A I-64)

=

−(K−1)
(KS3

a+K)(KS3
a+k+1)

(
P0 −|I |r( 1

K )
)
+2

f1(Sa)(2S3
a−1)(K+1)

(S3
a+1)2(K−|I |+1− Sa

S3
a+1

)2

g2
1(Sa)

(A I-65)

(iii)
<

−(K−1)
(KS3

a+K)(KS3
a+k+1)

(P0 −Sa))+
4Sa2S3

a(K+1)
(S3

a+1)2

g2
1(Sa)

(A I-66)

since we treat 3KS3
a > KS3

a + 2KS3
a > KS3

a + 2K in (i) because Sa ≥ 1. Beside we have

r
(

1
KS3

a+K

)
< 1

KS3
a+K < 1 in (ii). In (iii), we have |I | ≤ Sa and r(1/K) < 1 and finally

K −|I |+1−K Sa
KS3

a+K > K −|I |> 1. η1(Sa) is negative if we choose

P0 >
8S4

a(K +1)(KS3
a +K)(KS3

a +K +1)

(S3
a +1)2(K −1)

+Sa.

Thus, the function on the right side of (c) is strictly decreasing with respect to Sa ≥ 1, so

that its maximum value is at Sa = 1 and we achieve the function on the right side of (d).

- (e) can be explained similar like (b). If we treat 1/(2K) as a variable t, we can argue that

the function on the right side of (d) is monotonically increasing with respect to variable t

by following the similar step as for (b). Thus, since 1/2K < 1/K, we obtain the function

on the right side of (e).

6. Proof of the Equivalence between (4.8) and (4.9) in Chapter 4

To prove that problems (4.8) and (4.9) are equivalent, we must prove that any feasible solution

of (4.8) is also a feasible solution of (4.9). Conversely, from any feasible solution of (4.9), we

can always find a feasible solution of (4.8). Assuming that V̄ ,P̄,Ū ,W̄ ,X̄ , Ȳ is a feasible

solution of (4.9). It is easy to remark that since V̄ ,P̄,Ū ,W̄ ,X̄ , Ȳ satisfy all constraints
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(4.9b)–(4.9e), (4.7d)–(4.7g), this subsequently leads to the fact that V̄ ,P̄ satisfy all constraints

(2.7b)–(4.8d) of problem (4.8). On the other hand, assume that V̆ ,P̆ is a feasible solution of

(2.7). Since V̆ ,P̆ satisfy all constraints (4.8b)–(4.8d), then we can find

ν̆i j(t) = μ̆i j(t) = log

[
1+

p̆i j(t)
∣∣hii j(t)

∣∣2
Ĭi j(P̆(t))

]
(A I-67)

w̆i(t) = ŭi(t) = log

[
1+

∣∣v̆ j(t)Hh j(t)
∣∣2

∑
k∈F\ j

∣∣v̆k(t)Hh j(t)
∣∣2 +N01

]
. (A I-68)

It is obvious that V̆ ,P̆ and Ŭ ,W̆ ,X̆ , Y̆ also satisfy constraints (4.9b)–(4.9e), (4.7d)–(4.7g).

Thus, V̆ ,P̆,Ŭ ,W̆ ,X̆ , Y̆ is a feasible solution of (4.9). This completes the proof.

7. Proof of Proposition 4 in Chapter 4

The proof of Proposition 4 is provided by observing that the set of feasible solutions of problem

(Pcon) in (4.7) is a subset of the feasible solution of of problem (Poff) in (4.8). To prove this,

we consider two possible cases as follows:

- Case 1: Assume that (Pcon) has an optimal solution V (t)�,P(t)� at time slot t such that

this solution makes all constraints (4.8c) in (Poff) all satisfied. It is easy to check that if

V (t)�,P(t)� satisfies all constraints (4.7b), (4.7d)–(4.7g), it also satisfies all constraints (4.8b),

(4.8d). Thus, we can state that an optimal solution of (Pcon) is a feasible solution of (Poff). In

other words, the set of feasible solutions of problem (Pcon) is a subset of the feasible solution

of (Poff).

- Case 2: Assume that (Pcon) has an optimal solution V (t)�,P(t)� at time slot t such that this

solution makes at least one constraint (4.8c) in (Poff) violated. Without loss of generality, we

observe that the violation only occurs at t ≥ 3. This can be verified since at time slot t = 1,

both problems (Pcon) and (Poff) are the same so that the violation cannot occur at time slot
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1. Thus, let us assume that the violation occurs at constraint (4.8c) of problem (Poff) at time

index t = 3 and at some small cell index i1 ∈ Sa (the same proof can be applied to other time

and small cell indices), e.g.,

Di1(V (3)�)+Qi1(V (1)�,P(1)�)>Cmax, i1 ∈ Sa, (A I-69)

Dl(V (3)�)+Ql(V (1)�,P(1)�)≤Cmax, l ∈ Sa \ i1. (A I-70)

Then, we provide the following claim to support further proof.

Claim 1. We claim that if (A I-69)-(A I-70) occur, problem
(
Poff

)
must contain solution

V (3)◦ such that

⎧⎪⎪⎨
⎪⎪⎩

Di1(V (3)◦) =Cmax −Qi1(V (1)�,P(1)�)< Di1(V (3)�), i1 ∈ Sa,

Dl(V (3)◦) = Dl(V (3)�)≤Cmax −Ql(V (1)�,P(1)�), l ∈ Sa \ i1.

We can easily prove Claim 1 by examining the feasibility of the two following problems

(
P1

min

)
: min

V (3)
∑
i∈F

‖vi(3)‖2 (A I-71a)

s.t. Di1(V (3))≥Cmax −Qi1(V (1)�,P(1)�), i1 ∈ Sa, (A I-71b)

Dl(V (3))≥ Dl(V (3)�), l ∈ Sa \ i1. (A I-71c)

Rk (V (3))≥ Rmin,∀k ∈ M , (A I-71d)

∑
k∈F

‖vk(3)‖2 ≤ Pm, (A I-71e)

and

(
P2

min

)
: min

V (3)
∑
i∈F

‖vi(3)‖2 (A I-72a)

s.t. Di1(V (3))≥ Di1(V (3)�), i1 ∈ Sa, (A I-72b)



233

(A I-71c)− (A I-71e) (A I-72c)

We remark that the feasible solution set of problem (A I-72) is a subset of the feasible solution

set of problem (A I-71). This can be explained because problem (A I-72) has a set of higher

minimum rate requirement than problem (A I-25), e.g., Di1(V (3)�)>Cmax−Qi1(V (1)�,P(1)�),

i1 ∈ Sa, so that any feasible solution of problem (A I-72) is also feasible to problem (A I-71).

Beside, the optimal solution of problem (A I-72) is V (3)�, implies that problem (A I-72) is fea-

sible, which subsequently leads to the feasibility of problem (A I-71). Thus, problem (A I-71)

is feasible and at the optimality, constraints (A I-71b)-(A I-71d) occur at equalities. This es-

tablishes Claim 1.

The result of Claim 1 allows us to recast problems (Poff) and (Pcon) up to time index 3 as

(
P̃off

)
: max

P(3)
∑

(i, j)∈(Sa,Su)

di j(P(3)) (A I-73a)

s.t. Cmax ≥ ∑
j∈Su

di1 j(P(3)), i1 ∈ Sa, (A I-73b)

Dl(V (3)◦)+Ql(V (1)�,P(1)�)≥

∑
j∈Su

dl j(P(3)), l ∈ Sa \ i1 (A I-73c)

∑
j∈Su

pi j(3)≤ pm,∀(i, j) ∈ (Sa,Su) ,∀k ∈ M , (A I-73d)

and

(
P̃con

)
: max

P(3)
∑

(i, j)∈(Sa,Su)

di j(P(3)) (A I-74a)

s.t. Cmax ≥ Di1(V (3)�)≥ ∑
j∈Su

di1 j(P(3)), i1 ∈ Sa, (A I-74b)

Dl(V (3)�)+Ql(V (1)�,P(1)�)≥
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∑
j∈Su

dl j(P(3)), l ∈ Sa \ i1. (A I-74c)

∑
j∈Su

pi j(3)≤ pm,∀(i, j) ∈ (Sa,Su) ,∀k ∈ M , (A I-74d)

We quickly observe that both
(
P̃off

)
and

(
P̃con

)
are almost similar, except for (A I-73b) and

(A I-74b). Particularly, we note from constraints (A I-73b) and (A I-74b) that
(
P̃off

)
offers a

higher buffer capacity Cmax than the buffer capacity shown in constraint (A I-74b) of
(
P̃con

)
.

Thus, it is obvious that any feasible solution of problem
(
P̃con

)
is also feasible to

(
P̃off

)
.

Therefore, the optimal objective of
(
P̃off

)
is greater than or equal to the optimal objective of(

P̃con

)
. This completes the proof.

8. Proof of Proposition 5 in Chapter 5

By examining the rate formula R̃ j, j (w) in (5.16) and R j, j(w,a) in (5.4), where j ∈ F , we

observe that for all value of w, R j, j (w,a) ≥ R̃ j, j (w) ,∀ j ∈ S . Therefore, problem (P1) can

provide a tuple of backhaul rates no less than the optimal solution of (Pnon). Beside, by

comparing the rate formula of r j(v),∀ j ∈ S , we observe that when vk j = 0,∀k, j ∈ S ,k 
= j,

the rate formula of r j(v) becomes similar to r̃ j(v), ∀ j ∈S . From this observation, let us denote

the optimal solution of (Pnon) as w�,v�, where the set of power allocation v�k j = 0,∀k, j ∈
S ,k 
= j. We easily examine that this optimal solution of (Pnon) is a feasible solution of (P1).

However, the optimal solution of (P1) does not always satisfy the constraints of (Pnon). This

means that the set of feasible solution of (Pnon) is always a subset of the set of feasible solution

of (P1). Therefore, the optimal solution of (P1) is greater or equal to the optimal solution of

(Pnon).

9. Proof of Proposition 6 in Chapter 5
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To prove Proposition 6, let us review the smoothness property of a continuous function f (x) :

R
B → R, where B is the dimension of the vector of variable x. According to (Sohrab, 2014),

f (x) is L-smooth, where L is the Lipschitz constant of ∂ f (x) (derivative of function f (x) with

respect to x), if and only if

‖∂ f (x1)−∂ f (x2)‖2 ≤ L‖x1 − x2‖2 ,∀x1,x2 ∈ R
A. (A I-75)

Based on this property, we show that �(x) = log(1+ x) ,∀x ∈ R is a smooth function with

Lipschitz constant L = 1. By taking the first derivative of �(x), we obtain

|∂ f (x1)−∂ f (x2)|=
∣∣∣∣ 1

1+ x1
− 1

1+ x2

∣∣∣∣ =

∣∣∣∣ x2 − x1

(1+ x1)(1+ x2)

∣∣∣∣≤ |x1 − x2| (A I-76)

since we have (1+ x1)(1+ x2)> 1. Then, from the result of (Parikh & Boyd, 2014a), we have

log(1+ x)≥ log
(

1+ x(n)
)
+

x− x(n)

1+ x(n)
− L

2

(
x− x(n)

)2
(A I-77)

where x,x(n) ∈ R and L = 1. This completes the proof.

10. Proof of Theorem 1 in Chapter 6

Let us replace ṽt by v in rn j
(
ṽt ,Δn j

)
for simplicity and rewrite rn j

(
v,Δn j

)
as

rn j
(
v,Δn j

)
= log

⎛
⎜⎝ ∑

l∈Um
m=1,2,3

∣∣vH
mlgmn j(Δmn j)

∣∣2 +N0

⎞
⎟⎠

− log

(
∑

(m,l)
=(n,i)

∣∣vH
mlgmn j(Δmn j)

∣∣2 +N0

)
(A I-78)
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The derivative of rn j
(
v,Δn j

)
is defined as ∇r j

(
v,Δn j

)
=

[
∇vr j

(
v,Δn j

)
;∇Δn j r j

(
v,Δn j

)]
, which

are given by

∇vr j
(
v,Δn j

)
=

2vHGn j
(
Δn j

)
vHGn j

(
Δn j

)
v+N0︸ ︷︷ ︸

h̄1(v,Δn j)h̄2(v,Δn j)

− 2vHG̃n j
(
Δn j

)
vHG̃n j

(
Δn j

)
v+N0︸ ︷︷ ︸

h1(v,Δn j)h2(v,Δn j)

(A I-79)

∇Δn j r j
(
v,Δn j

)
=

2ΔH
n jΩn j (v)

vHGn j
(
Δn j

)
v+N0︸ ︷︷ ︸

h̄3(v,Δn j)h̄2(v,Δn j)

− 2ΔH
n jΩ̃n j (v)

vHG̃n j
(
Δn j

)
v+N0︸ ︷︷ ︸

h3(v,Δn j)h2(v,Δn j)

(A I-80)

where in (A I-79) and (A I-80), we denote Ĝn j
(
Δn j

)
= gn j(Δn j)

(
gn j(Δn j)

)H
to support the

notation of

Gn j
(
Δn j

)
= Bdiag

(
Ĝn j

(
Δn j

)
, . . . ,Ĝn j

(
Δn j

))︸ ︷︷ ︸
U elements

and

G̃n j
(
Δn j

)
= Bdiag(Ĝn j

(
Δn j

)
, ...,0, ...,Ĝn j

(
Δn j

)
),

where 0 appears at the jth element. Beside, in (A I-80), we denote ωn, j,k(v) = vk ◦ g̃n j,

Ωn, j,k(v) = ωn, j,k(v)
(
ωn, j,k(v)

)H
. Then, we denote Ωn j(v) = ∑k∈Un Ωn, j,k(v) and Ω̃n j (v) =

∑k∈U \ j Ωn, j,k(v). Next, we will find the Lipschitz constants for ∇vr j
(
v,Δn j

)
and ∇Δn j r j

(
v,Δn j

)
.

First, we have

∥∥∥h̄1(v,Δn j)− h̄1(v(0),Δ
(0)
n j )

∥∥∥
= ‖2vHGn j(Δn j)−2vHGn j(Δ

(0)
n j )+2vHGn j(Δ

(0)
n j )−2v(0)HGn j(Δ

(0)
n j )‖

≤ 2‖v‖
∥∥∥blkdiag

((
gn j(Δn j)−gn j(Δ

(0)
n j )

)(
gn j(Δn j)

)H
)∥∥∥

F

+2‖v‖
∥∥∥∥blkdiag

(
gn j(Δ

(0)
n j )

(
gn j(Δn j)−gn j(Δ

(0)
n j )

)H
)∥∥∥∥

F
+2

∥∥∥v−v(0)
∥∥∥∥∥Gn j (1/H)

∥∥
F

≤ 2‖v‖2U
∥∥gn j(1/H)

∥∥∥∥g̃n j
∥∥

∞

∥∥∥Δn j −Δ(0)
n j

∥∥∥+2
∥∥∥v−v(0)

∥∥∥∥∥Gn j (1/H)
∥∥

F

≤ A1

(∥∥∥Δn j −Δ(0)
n j

∥∥∥+∥∥∥v−v(0)
∥∥∥) (A I-81)
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where A1 = max{4U2 pmax||gn j(1/H)||||g̃n j||∞, 2||Gn j (1/H) ||F}. In other words, the Lips-

chitz constant of h̄1(v,Δn j) is A1 (Parikh & Boyd, 2014a). Similarly, we can derive

∥∥∥h̄2(v,Δn j)− h̄2(v(0),Δ
(0)
n j )

∥∥∥≤ B1

(∥∥∥Δn j −Δ(0)
n j

∥∥∥+∥∥∥v−v(0)
∥∥∥) (A I-82)

where B1 = 1/N2
0 (A1/2+U pmax

∥∥Gn j (1/H)
∥∥

F . Using (A I-81) and (A I-82), we can find the

Lipschitz constant A1 of h̄1(v,Δn j)h̄2(v,Δn j) as

∥∥∥h̄1(v,Δn j)h̄2(v,Δn j)− h̄1(v(0),Δ
(0)
n j )h̄2(v(0),Δ

(0)
n j )

∥∥∥
≤ (

2U pmax
∥∥Gn j (1/H)

∥∥
F B1 +1/N0A1

)︸ ︷︷ ︸
A1

(∥∥∥Δn j −Δ(0)
n j

∥∥∥+∥∥∥(v−v(0)
)∥∥∥) (A I-83)

Next, we can derive the Lipschitz constant of h̄3(v,Δn j) as

∥∥∥h̄3(v,Δn j)− h̄3(v(0),Δ
(0)
n j )

∥∥∥≤C1

(
‖Δn j −Δ(0)

n j ‖+
∥∥∥(v−v(0)

)∥∥∥) (A I-84)

where C1 = max
{

4U2/H
∥∥g̃n j

∥∥2

∞ pmax,2U pmax

∥∥g̃n j
∥∥

∞

}
. Then, we can also find the Lipschitz

constant B1 of of h̄3(v,Δn j)h̄2(v,Δn j) as

∥∥∥h̄3(v,Δn j)h̄2(v,Δn j)− h̄3(v(0),Δ
(0)
n j )h̄2(v(0),Δ

(0)
n j )

∥∥∥
≤ (

2U/H2U pmax
∥∥g̃n j

∥∥
∞ B1 +1/N0C1

)︸ ︷︷ ︸
B1

(∥∥∥Δn j −Δ(0)
n j

∥∥∥+∥∥∥(v−v(0)
)∥∥∥) (A I-85)

By following the same steps, we can also conclude that the Lipschitz constants for the terms

hk(v,Δn j),k = 1 . . . ,3 are A1,B1,C1, respectively. Finally, we have

∥∥∥∇rn j
(
v,Δn j

)−∇rn j

(
v(0),Δ(0)

n j

)∥∥∥≤ ξ0

(∥∥∥Δn j −Δ(0)
n j

∥∥∥+∥∥∥(v−v(0)
)∥∥∥) (A I-86)
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where ξ0 = 2×max{A1,B1}. We now show that fi(v,δ i) is strongly convex. According to

(A I-86), r j
(
v,Δn j

)
is ξ0–smooth. Thus, we have

∣∣∣∣rn j(v,Δn j)− rn j(v(0),Δ
(0)
n j )−∇rn j(v(0),Δ

(0)
n j )

T ([v,Δn j]− [v(0),Δ(0)
n j ])

∣∣∣∣
≤ ξ0

2
(||Δn j −Δ(0)

n j ||2 + ||v−v(0)||2) (A I-87)

and

rn j
(
v,Δn j

)≥−ξ0

2

(∥∥∥Δn j −Δ(0)
n j

∥∥∥2
+

∥∥∥(v−v(0)
)∥∥∥2

)
+

rn j(v(0),Δ
(0)
n j )+∇rn j(v(0),Δ

(0)
n j )

T
(
[v,Δn j]− [v(0),Δ(0)

n j ]
)

(A I-88)

Due to the strong convexity of ξni(‖v‖2 +
∥∥Δn j

∥∥2
), we have

ξn j(‖v‖2 +
∥∥Δn j

∥∥2
)≥ ξn j

(∥∥∥v(0)
∥∥∥2

+
∥∥∥Δ(0)

n j

∥∥∥2
)
+2ξn j[v(0),Δ

(0)
n j ]

T
(
[v,Δn j]− [v(0),Δ(0)

n j ]
)

+
ξn j

2

(∥∥∥Δn j −Δ(0)
n j

∥∥∥2
+

∥∥∥(v−v(0)
)∥∥∥2

)
(A I-89)

Summing these two inequalities (A I-88)–(A I-89), we obtain

fn j(v,Δn j)≥ ξn j −ξ0

2

(∥∥∥Δn j −Δ(0)
n j

∥∥∥2
+

∥∥∥v−v(0)
∥∥∥2

)
+

fn j(v(0),Δ
(0)
n j )+∇ fn j(v(0),Δ

(0)
n j )

T
(
[v,Δn j]− [v(0),Δ(0)

n j ]
)

(A I-90)

which implies that fn j(v,Δn j) is strongly convex with factor ξn j − ξ0. Similarly, we also con-

clude that gn j(v,Δn j) is strongly concave with factor ξn j −ξ0. This completes the proof.
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