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Analyse de formes pour le suivi de la progression en Scoliose Idiopathique Adolescente 

 

Edgar Eduardo GARCIA CANO CASTILLO 

 

RÉSUMÉ 

 
La scoliose idiopathique adolescente (SIA) est une déformation tridimensionnelle de la 
colonne vertébrale. Elle se manifeste généralement par une déviation latérale du rachis dans le 
plan postéro-antérieur. La SIA peut se manifester dès le début de la puberté, touchant entre 1 
et 4 % de la population adolescente âgée de 10 à 18 ans, les jeunes femmes étant les plus 
touchées. Certains cas graves (0,1% de la population avec AIS) nécessiteront un traitement 
chirurgical visant à corriger la courbure scoliotique.  
 
A ce jour, le diagnostic de la SIA repose sur l’analyse des radiographies postéro-antérieures et 
latérale et la sévérité de la courbure est déterminée par la méthode de l'angle de Cobb.  Cet 
angle est calculé en traçant deux lignes parallèles. Une ligne parallèle à la plaque d'extrémité 
supérieure de la vertèbre la plus inclinée en haut de la courbe et une ligne parallèle à la plaque 
d'extrémité inférieure de la vertèbre la plus inclinée en bas de la même courbe. Les patients qui 
présentent un angle de Cobb supérieur à 10° sont diagnostiqués avec la SIA. 
 
La mesure étalon pour classer les déformations des courbures scoliotiques est la méthode de 
Lenke. Cette classification est largement acceptée dans la communauté clinique divise les 
patients atteints de scoliose en six types et fournit des recommandations de traitement selon le 
type. Cette méthode se limite à l'analyse de la colonne vertébrale dans l'espace 2x2D, 
puisqu'elle repose sur l'observation de radiographies et de mesures de l'angle de Cobb. 
 
D'un côté, lorsque les cliniciens traitent des patients atteints de SIA, l'une des principales 
préoccupations est de déterminer si la déformation évoluera avec le temps. Le fait de connaître 
à l'avance l'évolution de la forme de la colonne vertébrale aiderait à orienter les stratégies de 
traitement. D’un autre côté, les patients à plus haut risque d'évolution doivent être suivis plus 
fréquemment, ce qui entraîne une exposition accrue aux rayons-X. Par conséquent, il est 
nécessaire de mettre au point une autre technologie sans radiations pour réduire l'utilisation 
des radiographies et atténuer les dangers d'autres problèmes de santé découlant des modalités 
actuelles d'imagerie. 
 
Cette thèse présente une méthode pour l’évaluation de la forme de la colonne vertébrale de 
patients atteints de SIA. Elle comprend trois contributions : 1) une nouvelle approche pour 
calculer les descripteurs 3D de la colonne vertébrale, et une méthode de classification pour 
catégoriser les déformations de la colonne vertébrale selon la classification de Lenke, 2) une 
méthode pour analyser la progression dans le temps de la colonne vertébrale et 3) un protocole 
d’acquisition pour générer un modèle 3D de la colonne à partir d'une reconstruction de volume 
produite par des images échographiques. 
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Dans notre première contribution, nous avons présenté deux techniques de mesure pour 
caractériser la forme de la colonne vertébrale dans l'espace 3D. De plus, une méthode 
d'ensemble dynamique a été présentée comme une alternative automatisée pour classer les 
déformations de la colonne vertébrale. Ces techniques de mesure pour calculer les descripteurs 
3D sont faciles à appliquer dans les installations cliniques. En outre, la méthode de 
classification contribue en aidant les cliniciens à identifier les descripteurs propres à chaque 
patient, ce qui pourrait aider à améliorer la catégorisation des déformations à la limite et, par 
conséquent, les traitements. 
 
Afin d'observer la progression du rachis dans le temps, nous avons conçu une méthode pour 
simuler la variation de la forme depuis la première visite jusqu'à 18 mois. Cette simulation 
montre les changements de forme tous les trois mois. Notre méthode est entraînée avec des 
modes de variation, calculés à l'aide d'une analyse par composantes indépendantes à partir de 
reconstructions de modèles 3D de la colonne vertébrale de patients atteints de SIA. Chacun 
des modes de variation peut être visualisé pour interprétation. Cette contribution pourrait aider 
les cliniciens à identifier les déformations de la colonne vertébrale qui pourraient progresser. 
Le traitement peut donc être adapté en fonction des besoins de chaque patient. 
 
Finalement, notre troisième contribution porte sur la nécessité d'une modalité d'imagerie sans 
radiations pour l'évaluation et la surveillance des patients atteints de SIA. Nous avons proposé 
un protocole pour modéliser la colonne vertébrale d'un sujet en marquant la position des 
apophyses sur une reconstruction volumique. Cette reconstruction a été calculée à partir 
d’images échographique acquises sur la surface externe du patient. Notre protocole fournit un 
guide étape par étape pour établir un dispositif d'acquisition d'images, ainsi que des 
recommandations à prendre en compte en fonction de la composition corporelle des sujets à 
reconstruire. Nous croyons que ce protocole pourrait contribuer à réduire l'utilisation des 
radiographies lors de l'évaluation et du suivi des patients atteints de SIA. 
 
Mots clés : Scoliose idiopathique adolescente ; classification de la colonne vertébrale ; 
sélection dynamique d'ensemble ; descripteurs de la colonne vertébrale ; prédiction de la 
progression du rachis ; analyse par composantes indépendantes ; apprentissage machine ; 
échographie 3D à main levée ; échographie ; reconstruction de la colonne. 
 
 
 

 
 



 

Shape analysis for assessment of progression in spinal deformities 

 

Edgar Eduardo GARCIA CANO CASTILLO 

 

ABSTRACT 

 

Adolescent idiopathic scoliosis (AIS) is a three-dimensional structural spinal deformation. It 
is the most common type of scoliosis. It can be visually detected as a lateral curvature in the 
postero-anterior plane. This condition starts in early puberty, affecting between 1-4% of the 
adolescent population between 10-18 years old, affecting in majority female. In severe cases ( 
0.1% of population with AIS) the patient will require a surgical treatment. To date, the 
diagnosis of AIS relies on the quantification of the major curvature observed on posteroanterior 
and sagittal radiographs.  
 
Radiographs in standing position are the common imaging modality used in clinical settings to 
diagnose AIS.  The assessment of the deformation is carried out using the Cobb angle method. 
This angle is calculated in the postero-anterior plane, and it is formed between a line drawn 
parallel to the superior endplate of the upper vertebra included in the scoliotic curve and a line 
drawn parallel to the inferior endplate of the lower vertebra of the same curve. Patients that 
present a Cobb angle of more than 10°, are diagnosed with AIS. 
 
The gold standard to classify curve deformations is the Lenke classification method. This 
paradigm is widely accepted in the clinical community. It divides spines with scoliosis into six 
types and provides treatment recommendations depending on the type. This method is limited 
to the analysis of the spine in the 2D space, since it relies on the observation of radiographs 
and Cobb angle measurements.   
 
On the one hand, when clinicians are treating patients with AIS, one of the main concerns is to 
determine whether the deformation will progress through time. Knowing beforehand of how 
the shape of the spine is going to evolve would aid to guide treatments strategies. On the other 
hand, however, patients at higher risks of progression require to be monitored more frequently, 
which results in constant exposure to radiation. Therefore, there is a need for an alternative 
radiation-free technology to reduce the use of radiographs and alleviate the perils of other 
health issues derived from current imaging modalities. 
 
This thesis presents a framework designed to characterize and model the variation of the shape 
of the spine throughout AIS. This framework includes three contributions: 1) two measurement 
techniques for computing 3D descriptors of the spine, and a classification method to categorize 
spine deformations, 2) a method to simulate the variation of the shape of the spine through 
time, and 3) a protocol to generate a 3D model of the spine from a volume reconstruction 
produced from ultrasound images. 



X 

In our first contribution, we introduced two measurement techniques to characterize the shape 
of the spine in the 3D space, leave-n-out, and fan leave-n-out angles. In addition, a dynamic 
ensemble method was presented as an automated alternative to classify spinal deformations. 
Our measurement techniques were designed for computing the 3D descriptors and to be easy 
to use in a clinical setting. Also, the classification method contributes by assisting clinicians to 
identify patient-specific descriptors, which could help improving the classification in 
borderline curve deformations and, hence, suggests the proper management strategies.  
 
In order to observe how the shape of the spine progresses through time, in our second 
contribution, we designed a method to visualize the shape’s variation from the first visit up to 
18 months, for every three months. Our method is trained with modes of variation, computed 
using independent component analysis from 3D model reconstructions of the spine of patients 
with AIS. Each of the modes of variation can be visualized for interpretation. This contribution 
could aid clinicians to identify which spine progression pattern might be prone to progression.  
 
Finally, our third contribution addresses the necessity of a radiation-free image modality for 
assessing and monitoring patients with AIS. We proposed a protocol to model a spine by 
identifying the spinous processes on a volume reconstruction. This reconstruction was 
computed from ultrasound images acquired from the external geometry of the subject. Our 
acquisition protocol documents a setup for image acquisition, as well as some 
recommendations to take into account depending on the body composition of the subjects to 
be scanned. We believe that this protocol could contribute to reduce the use of radiographs 
during the assessment and monitoring of patients with AIS. 
 
Keywords:  Adolescent idiopathic scoliosis; spine classification; dynamic ensemble selection; 
descriptors of the spine; prediction of spinal curve progression; independent component 
analysis; machine learning; freehand 3D ultrasound; tracked ultrasound; spine reconstruction. 
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INTRODUCTION 

 

Adolescent Idiopathic Scoliosis (AIS) is a 3D deformation of the spine, mainly visible as a 

lateral curvature in the form of an elongated “S” or “C” shape from the posteroanterior plane. 

AIS is the most common type of scoliosis, and it is highly prevalent in adolescent between 10 

and 18 years of age, or until skeletal maturity. Between 1% to 4% of the adolescent population− 

mainly girls−is affected by AIS. AIS starts in early puberty, a time when children are growing 

rapidly, and although not all the curves will be progressive, 1 over 1000 will require a surgical 

treatment.  

 

The “idiopathic” part of AIS means that the cause is not known. However, genetic studies 

indicate that there exists an increased risk of developing AIS when there are first degree 

relatives with this condition. In addition, AIS can be related to other factors such as 

environmental, central nervous system abnormalities, skeletal and muscle growth, hormonal 

and metabolic, or other factors not yet identified. 

 

AIS is usually diagnosed by a physical examination or postural screening exam at school. 

Common signs of AIS are asymmetry in shoulder height or shift of the trunk, where the hips 

look uneven, which cause that one leg appears to be longer than the other. In addition, a back 

hump can be visualized when the patient is bending forward. 

 

Clinical assessment and classification of IAS rely on 2D radiographic observations of the spine 

in the posteroanterior and sagittal planes. These radiographs are taken in a standing position 

having a full view of the shape of the spine. A sense of abstraction is needed by clinicians who 

evaluate these projections to figure not only how the spine looks in the 3D space, but also how 

the curvature will progress.  

 

Advances in technology are changing the current 2D description of AIS towards a 3D 

characterization. These 3D descriptors could be important to improve the understanding of 

AIS, as well as to improve assessment, prediction of progression and treatment. 
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0.1 Problem statement and motivation 

 

The goal of studying scoliosis is to understand the medical condition, and to select the optimal 

treatment or surgical strategy for each patient. Since the spine is a 3D structure, experts who 

evaluate 2D images of the spine need experience, abstraction and visualization skills in order 

to avoid misinterpretation. Likewise, the evaluation is not deterministic and can change from 

expert to expert.  

 

The current gold standard for the assessment of the magnitude of the curve is a 2D 

measurement used to evaluate a 3D structure. Nevertheless, two patients sharing the same 

profile in 2D will not necessarily share the same morphology in the 3D space. Hence, the 

treatments should be adapted specifically to the 3D shape of the spine (Labelle et al., 2011). 

Recent advances in technology allow to generate new techniques to characterize the spine in 

the 3D space. However, these descriptors are difficult to interpret and to measure in a clinical 

setting where only 2D radiographs are available. 

 

Classification methods emerge to present a way to ease the visualization of common patterns 

in a dataset. In the case of spine deformities, the Lenke classification method helps to group 

similar curves. Nevertheless, although this system is widely used in clinical practice, it does 

not provide a full understanding of the deformation in the 3D space, since it depends on the 

analysis of 2D radiographs. The importance of a 3D classification system resides in improving 

the description and comprehension of AIS, in a way that can be reproduced with reliable 

outcomes.  

 

Prediction of the development of the curves through time is also a relevant task. Knowing 

beforehand how the curve could change in the future, would help clinicians to improve 

treatments. Clinical indices such as chronological, skeletal, and menarcheal age, curve 

magnitude, and curve location have been studied (Cheng et al., 2015), however these are not 

robust enough to predict the deformations. 
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Computer-based approaches to describe, classify and predict the evolution of spine deformities 

would help to validate manual measurements, to decrease time for evaluating and treating 

patients, and to improve reproducibility. 

 

Since patients with AIS are young, their tissues are still immature and sensitive to X-rays, 

which is the main imaging technology used to evaluate scoliosis. Patients with high risk of 

progression need to be evaluated frequently, every 4 to 6 months. Some studies (Doody et al., 

2000; Hoffman, Lonstein, Morin, Visscher, & Harris III, 1989; Ronckers et al., 2010; 

Ronckers, Doody, Lonstein, Stovall, & Land, 2008)  have shown that young women are 

especially sensitive to the exposure to ionizing radiation. Therefore, age, gender and recurrent 

exposure to radiation may increase the risk of developing breast or lung cancer (Levy, 

Goldberg, Mayo, Hanley, & Poitras, 1996). The development of radiation-free imaging 

technology to monitor spinal deformities progression would be of high interest for the 

management of AIS. 

 

0.2 Research objectives and contributions 

 

This thesis presents a framework designed to characterize and model the variation of the shape 

of the spine affected with AIS. This framework includes three contributions: 1) two 

measurement techniques for computing 3D descriptors of the spine, and a classification method 

to categorize spine deformations, 2) a method to simulate the variation of the shape of the spine 

through time, and 3) a protocol to generate a 3D model of the spine from a volume 

reconstruction produced from ultrasound images. 

 

Three main contributions were proposed toward this goal: 

 

1) Computer-based characterization and classification methods in AIS using 3D 

descriptors. The classification system for spine deformations developed by Lenke, is 

a descriptive and reproducible method widely used in clinical practice. However, its 

main disadvantage is the use of the Cobb angle to quantify the deformation of the spine, 
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a measurement that does not describe the spine in the 3D space. We introduced two 

techniques to represent the variation of the spine in 3D. Also, we proposed to use a 

computer-based classification algorithm called dynamic ensemble selection to 

categorize spine deformations. The classification method does not depend on a specific 

learning algorithm or set of descriptors of the spine. It identifies the best combination 

of them to classify curve types. This could help clinicians to evaluate the role of each 

descriptor in a specific spine.  

 

2) Shape analysis using computer-generated models for progression of the curve of 

the spine through time. Prediction of the progression of the spine deformation is one 

of the main concerns when treating patients with AIS. Knowing how the shape of the 

spine is going to evolve from the first visit of the patient, would help clinicians to 

improve treatment strategies. In this contribution, we proposed independent 

components analysis to describe the modes of variation of the spine in the 3D space, 

together with an approach to predict the curve progression from the first visit, every 

three months for a time lapse of eighteen months. The results show that our approach 

for curve progression is a promising technique, which can help to identify the variation 

of the shape of the spine through time.  

 

3) A preliminary study for a radiation-free 3D imaging system based on 2-D 

ultrasound. Radiation is one of the clinician’s critical concerns in patients with AIS. 

Since patients are young, there is a high risk of exposure to ionizing radiation, even 

with low dose systems. In this contribution, we propose the use of a freehand 3D 

ultrasound system to generate volume reconstructions of the spine. Ultrasound is a 

radiation-free technology, which could help clinicians in follow-up of patients with 

AIS, decreasing the need of X-rays. In this study, we were able to generate a 3D 

representation of the centerline of the spine, by identifying landmarks on the volume 

reconstruction. Our results suggest that this system can be promising for the evaluation 

of the shape of the spine.  

 



5 

0.3 Outline 

 

This manuscript is organized as follows. In Chapter 1, we presented the clinical context of 

AIS, as well as a review of the relevant studies related to each of the contributions of this 

research. Chapter 2 introduces our techniques, leave-n-out angles and fan leave-n-out angles 

to describe the shape of the spine in 3D space, and the dynamic ensemble selection method to 

categorize deformations of the spine, this work was published in the Medical and Biological 

Engineering and Computing. Chapter 3 presents our approach to predict curve progression 

through time, based on 3D descriptors of the spine. This chapter was published in the 

Computers in Biology and Medicine. Chapter 4 presents our efforts to reduce the use of X-

ray imaging by introducing a freehand 3D ultrasound system to generate volume 

reconstructions of the spine. This work was submitted to the Ultrasound in Medicine and 

Biology. In Chapter 5, a summary of the main contributions of this research is presented and 

discusses its limitations and future work. Finally, Appendix I shows a complete list of works 

resulting from this research. 
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CHAPTER 1 
 
 

LITERATURE REVIEW 

The objective of this chapter is to present a general overview of the clinical context of 

Adolescent Idiopathic Scoliosis, as well as the state-of-the-art methods for the evaluation of 

spinal deformities in 2D and in 3D.  This chapter starts describing the anatomy of the spine, 

followed by the clinical concepts associated with the clinical study of AIS. Then, a critical 

review of computer-based methods involved in the study of AIS is presented.  At the end, this 

chapter includes a summary of the approaches proposed in the literature. 

 

1.1 Clinical context 

1.1.1 Anatomy of the spine 

The spine is usually composed by articulated bones called vertebrae, which help keeping an 

upright or stand up posture. Being the main support of the human body, it is on charge of the 

movements of the head and torso, and it serves as a protection for the spinal cord. The spine 

can flex or rotate, but the grade of movement or function depends on the different sections that 

compose it: cervical, thoracic, lumbar, sacral and coccyx.  

 

1.1.2 Sections of the spine 

The spine is divided in five sections (see Figure 1.1), each of them is in charge of specific 

functionalities: 

• Cervical spine (upper back): Numbered from C1-C7, is the main support of the head. 

It is the section with greatest range of motion, especially because the first two vertebrae 

are directly connected to the skull, which allow the motion of the head.  

• Thoracic spine (middle back): Numbered from T1-T12. This section is on charge of 

the protection of the heart and lungs by holding the rib cage. 
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• Lumbar spine (lower back): Numbered from L1-L5. The weight of the body is 

supported by this region. The vertebrae that form this part of the spine are much larger 

in size, compared to the previous sections.  

• Sacrum: It contains five fused vertebrae. Its principal purpose is to connect the spine 

to the hip bones. 

• Coccyx: Also known as tailbone, is comprised by four fused vertebrae. It helps to keep 

attached the ligaments and muscles of the pelvic floor. 

 

 

Figure 1.1    The five sections of the spine, and numbering of 
the vertebrae. Adapted from: Henry Gray (1918) Anatomy of 

the Human. Altered by User: Uwe Gille, public domain. 
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1.1.3 Curves of the spine 

The spine naturally develops curves. When viewed from the coronal plane, it looks like a 

straight line. However, from the sagittal plane there are two observable curvatures in the 

thoracic and lumbar sections, and the aspect of the spine seems such as a soft ‘S’ shape (see 

Figure 1.1). These normal curves are known as kyphosis and lordosis, which are essential for 

the human body to keep the balance between the trunk and head over the pelvis. Both are 

considered normal to a certain extent.  

 

Abnormal curvatures could be caused by congenital defects or triggered by degenerative 

diseases. These deformities occur when the natural curves of the spine are misaligned or 

surpass the acceptable limits (see Figure 1.2). 

 

Figure 1.2    Spines and its abnormal curvatures. 
Adapted from StudyForce, public domain. 
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1.1.4 Adolescent Idiopathic Scoliosis: characterization and classification 

The gold standard method to quantify the magnitude of the curves with AIS is the Cobb angle. 

It receives its name from Dr. Jon R. Cobb, who in 1948, first described the curvature of the 

spine as a measure of the magnitude of deformities. It is measured in degrees and helps 

physicians to determine the severity of the deformation and to decide what treatment will be 

necessary for the patient. 

 

In clinical practice, the Cobb angle is measured on the posteroanterior and lateral X-rays, the 

most common imaging modality to observe the spine in a standing position. The radiographs 

are acquired based on the global coordinate system proposed by the Scoliosis Research Society 

(Stokes, 1994b). The x-axis is the horizontal axis that runs from the rear to the front of the 

patient, while the y-axis is the horizontal axis that runs from the right to the left of the patient. 

The z-axis is the vertical axis, which goes from the bottom of the patient upward (see Figure 

1.3). 

 

Figure 1.3    Global coordinate system. 
Adapted from: Wikimedia Commons used 
under Creative Common created by CFCF, 

June 2014. 
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The Cobb angle is calculated in the postero-anterior plane, and it is formed between a line 

drawn parallel to the superior endplate of the upper vertebra included in the scoliotic curve and 

a line drawn parallel to the inferior endplate of the lower vertebra of the same curve (see Figure 

1.4). If the Cobb angle is ≥ 10°, the patient is diagnosed with scoliosis.  

 

 

Figure 1.4   Cobb angle measurements for 2 
patients using a different geometrical 

construction. Photo courtesy of Prof. Frank 
Gaillard, Radiopaedia.org, adapted under 

Creative Common license. 

 

Classification methods arise as a way to ease the appreciation of common patterns. In AIS, a 

comprehensive classification system is relevant because it allows to identify all types of curve 

patterns, and hence to standardize the assessment and treatment. A classification method 

should have good to excellent inter- and intra- observer reliability in order to be reproducible 

in clinical setting. It would also provide clinicians with a common language to compare similar 

cases. 

 

Concerning to AIS, King et al. proposed a classification method for severe thoracic curves 

(King, Moe, Bradford, & Winter, 1983). They classify the spines in 5 types, excluding 

thoracolumbar, lumbar, or double or triple major curves. However, poor inter- and intra-

observer reliability and reproducibility of the method has been reported (Lenke et al., 1998). 

In 2001, a new classification system of AIS was developed by Lenke et al. Nowadays, the 

system has been  widely accepted in clinical setups (Lenke et al., 2001). This categorization 
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divides the spine deformities in 6 types. It is based on the measurement of three components: 

type of curve (Lenke 1-6), a lumbar modifier, and sagittal thoracic modifier. These components 

are used to distinguish structural and nonstructural curves in the proximal thoracic, main 

thoracic, and thoracolumbar/lumbar sections. According to the classification of the spine 

deformation, treatment recommendations are also provided. The authors reported the reliability 

of the classification by the kappa values of the interobserver (0.74) and intraobserver (0.893).  

 

Once the patient has been diagnosed, it is feasible to provide a treatment in order to prevent 

the progression of the deformation, and hence, avoid surgical operation when possible. Bracing 

(see Figure 1.5) is prescribed for patients between 10-15 years of age, at skeletal maturity 

specified by the Risser grade between 0-2, and magnitude of the main curvature between 20°- 

40° (Richards, Bernstein, D’Amato, & Thompson, 2005).  

 

Figure 1.5   Two different braces to treat scoliosis. 
Chêneau brace on the left and Chêneau light on the 

right. Adapted from Wikimedia Commons used under 
Creative Common license. Created by Scolidoc (Weiss 
et al. Scoliosis 2007 2:2 doi:10.1186/1748-7161-2-2). 
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Patients at risk of curve progression during adult life, are considered for surgery (see Figure 

1.6). Generally, they present curve magnitude > 50° in the thoracic section, or between 50°- 

60° in the thoracolumbar section. Pain, appearance and shortness of breath are symptoms used 

as indicators for surgery   (Asher & Burton, 2006). Patients that require surgical intervention  

represents 0.1% of the total with AIS (Cheng et al., 2015). 

 

  

Figure 1.6   On the left, a patient before surgery. On 
the right, the patient after surgery. Photo courtesy of 
LIS3D, Sainte-Justine Hospital. 

 

1.2 State-of-the-art on computer-based characterization and classification 
methods in Adolescent Idiopathic Scoliosis using 3D descriptors 

A 3D classification system would help with the understanding and description of the scoliotic 

curves; which improve evaluation, follow-up and treatment (Labelle et al., 2011). Nowadays, 

technology allows to automatically collect more data, to perform measurements systematically, 

to generate 3D descriptors, and to create complex models to enhance the classification of the 

spine (Stokes, 1994a). Discovering patterns concerning the 3D space could help to introduce a 
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3D classification able to surpass the limitation of 2D. In addition, the Scoliosis Research 

Society (SRS) has accepted the need to treat AIS based on the analysis of the deformity in the 

3D space (Labelle et al., 2011). Hence, the development of 3D classification method, that can 

be applied in everyday clinical practice, is of vital importance. 

 

In recent studies, new classification systems based on 3D descriptors of the spine have been 

proposed. Negrini et al. (Negrini, Negrini, Atanasio, & Santambrogio, 2006) used an 

optoelectronic system (AUSCAN), generating a 3D reconstruction of the spine in real time by 

markers positioned on the skin of the patient. Other classification systems use 3D 

reconstructions of the spine obtained from standing stereographic X-rays. The reconstruction 

consists of 3D coordinates of particular anatomic landmarks, (Delorme et al., 2003) (see Table 

1.1). 

 

Table 1.1   Characteristics of included studies 

Author Patients Classification Instrument Design 
Poncet 2001 62 AIS All Lenke Stereo radiographies Prospective 
Negrini 2006 122 AIS 

23 hyperkyphosis 
4 AIS+ hyperkyphosis 

All Lenke AUSCAN Cross-sectional 

Duong 2006 409 AIS All Lenke Stereo radiographies Prospective 
Boisvert 2008 307 AIS Lenke 1 and 5 Stereo radiographies Cross-sectional 
Sangole 2009 172 AIS right thoracic Lenke 1  Stereo radiographies Cross-sectional 
Stokes 2009 110 AIS Double curves Stereo radiographies Cross-sectional 
Duong 2009 68 AIS Lenke 1 Stereo radiographies Prospective 
Kadoury 2012 170 AIS right thoracic Lenke 1 Stereo radiographies Cross-sectional 
Kadoury 2014 65 AIS 

5 healthy  
All Lenke Stereo radiographies Cross-sectional 

Shen 2014 255 AIS  Lenke 1 Stereo radiographies Cross-sectional 
Thong 2015 155 AIS Lenke 1 Stereo radiographies Cross-sectional 
Thong 2016 633 AIS All Lenke Stereo radiographies Cross-sectional 

 

The descriptors of the spine can be divided by its nature in geometric or global. Geometric are 

measured from the 3D reconstructions of the spine, such as apical vertebra rotation (AVR), 

best fit plane (BFP) , direction, geometric torsion (GT), phase, plane of maximum curvature 

(PMC), shift (Duong, Cheriet, et al., 2009; Kadoury, Shen, & Parent, 2014; Negrini et al., 

2006; Poncet, Dansereau, & Labelle, 2001; Sangole et al., 2009; Shen, Parent, & Kadoury, 
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2014; Stokes, Sangole, & Aubin, 2009). In a different approach, Boisvert et al. (Boisvert, 

Cheriet, Pennec, Labelle, & Ayache, 2008) proposed the use of rigid transformations  as 

geometric descriptors of the spine. 

 

On the other hand, when the descriptors are obtained by applying a method to reduce the 

dimensionality of the 3D reconstructions of the spine, are called global. Some descriptors have 

been obtained by computing a wavelet compression technique (Duong, Cheriet, & Labelle, 

2006), principal component analysis (Boisvert, Cheriet, Pennec, & Labelle, 2008), locally 

linear embedding (Kadoury & Labelle, 2012), and stacked auto-encoders (Thong et al., 2016; 

Thong, Labelle, Shen, Parent, & Kadoury, 2015) (see Table 1.2). 

 

In order to provide a new classification, some studies used a quantitative analysis made by an 

expert, while others utilized clustering. Clustering analysis have been used to automatically 

group similar 3D curve patterns of the spine.  

 

Table 1.2 presents the state-of-the-art in 3D classification systems as well as the type of 

descriptors used for the classification of spinal deformities.  
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Table 1.2   Methodology of included studies 

 

Author Classification 
methodology 

Descriptors of 
the spine* 

Advantages Disadvantages 

Poncet 
2001 

Qualitative 
analysis 

GT • Classification based on a 3D 
descriptor. 

 

• The estimation of GT could be 
inaccurate due to the 3D 
reconstruction. 

• The GT only provides a measurement 
at vertebral level, hence, the effect on 
the global shape is not considered. 

Negrini 
2006 

Qualitative 
visual 
analysis 

Direction, Shift, 
Phase 

• Quasi-3D graphic representation of 
the spine based on the spinal top 
view. 

• Classification based on 3D 
parameters. 

• The AUSCAN system cannot be used 
in every day clinical practice. 

• The descriptors are not intuitive. 

Duong 
2006 

Fuzzy 
clustering 

Global shape 
descriptors 
based on a 
wavelet 
compression 
technique 

• Automatic classification based on 3D 
curve patterns. 

• The descriptors do not offer direct 
interpretation, which difficult their use 
in clinical procedures.  

Boisvert 
2008 

Qualitative 
visual 
analysis 

Principal 
deformation 
modes of 
articulated 
models 

• The principal modes of variation can 
be interpreted. They show distinctive 
patterns of curves associated with 
Lenke 1 and 5. 

• The modes of variation were 
computed on only two types of curves. 
More experiments should be 
performed to find out if the modes of 
variation can be generalized for other 
curve patterns.    

Sangole 
2009 

ISOData 
clustering 

C°, AVR, PMC, 
kyphosis 

• Automatic classification based on 
PMC could be used to analyze curves 
in 3D. 

• When the PMC is used along with the 
daVinci view, provides a 
comprehensive visual representation 
of the deformation. 

• The PMC needs to be tested on other 
scoliotic curves to prove its 
effectiveness.  

• The method would be more relevant if 
it were related to sagittal and coronal 
projections, common views used 
clinically. 

Stokes 
2009 

K-means 
clustering 

C°, AVL, AVR, 
PMC 

• Automatic classification based on 
PMC can separate groups of 3D 
shapes.  

• PMC could be used to indicate 
likelihood of progression. 

• The PMC is very sensitive to small 
changes from postural variability. 

Duong 
2009 

K-means 
clustering 

PMC, BFP, GT • Automatic classification based on 
intuitive descriptors. 

• BFP was the best parameter to 
analyze the curves in 3D. 

• The BFP is difficult to visualize from 
2D radiographs. 

Mezghani 
2010 

Self-
organizing 
maps 

C° • Automatic classification that agrees 
with Lenke. 

• The map provides smooth transitions 
between Cobb angles, instead of 
strict cut-off used in Lenke 
classification. 

• Limited to C°, which does not provide 
a 3D classification of the deformities. 

Kadoury 
2012 

K-means 
clustering 

Global shape 
descriptors 
extracted by 
applying locally 
linear 
embedding 

• Automatic classification with a 
custom-designed similarity metric 
for articulated shape deformations, 
which allows to preserve the 
neighborhood relationships of 
similar shapes on a nonlinear 
manifold. 

• Only tested on Lenke 1 curves. 

• The descriptors are not intuitive. 
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Table 1.2   (Continuation) 

Abbreviations: AVL, apical vertebra level; AVR, apical vertebrae rotation; BFP, best fit 
plane; C°, Cobb angle; GT, geometric torsion; PMC, rotation of the plane of maximum 
curvature of the main thoracic curve.  
* Direction: the angle between spinal pathological and normal AP axis; Phase: the parameter 
describing the spatial evolution of the curve; Shift: the co-ordinates of the barycenter of the 
top view. 

 

 

Author Classification 
methodology 

Descriptors of 
the spine* 

Advantages Disadvantages 

Phan 
2013 

Self-
organizing 
maps 

C° • Automatic classification that agrees 
with Lenke. 

• Improves Lenke classification 
accuracy and study treatment 
variability. 

• Limited to C°, which does not provide 
a 3D classification of the deformities. 

Kadoury 
2014 

Fuzzy c-
means 
clustering 

Parametric GT • Automatic classification based on 
parametric GT to distinguish 3D 
deformations. 

• The parametric GT captures the 
estimated at the junction of the 
segmental curves, instead of at each 
vertebral level. 

• The descriptor can be used as 3D 
index to identify subgroups within 
Lenke classification. 

• Complex to apply in clinical setups. 

Shen 
2014 

Fuzzy c-
means 
clustering 

Parametric GT • Automatic classification can 
differentiate subgroups within Lenke 
1. 

• Allows to evaluate the spine in the 
thoracolumbar region, useful in 
surgical strategies. 

• Although provides with a quantitative 
analysis, it is still complex to use in 
clinical setups. 

Thong 
2015 

K-means++ 
clustering 

Global shape 
descriptors 
extracted from 
stacked auto-
encoders 

• Automatic classification can 
differentiate subgroups using 3D 
descriptors. 

• Simplified version of the 3D 
reconstructions of the spine. 

• Could help to improve surgical 
strategies. 

• Requires sizeable datasets to generate 
the low-dimensional representation of 
the 3D curves. 

• Only tested on Lenke 1 curves. 

• The descriptors are not intuitive or 
interpretable. 

Thong 
2016 

K-means++ 
clustering 

Global shape 
descriptors 
extracted from 
stacked auto-
encoders 

• Automatic classification can 
differentiate groups using 3D 
descriptors. 

• Simplified version of the 3D 
reconstructions of the spine. 

• Could help to improve surgical 
strategies. 

• Requires sizeable datasets to generate 
the low-dimensional representation of 
the 3D curves. 

• There is not direct clinical 
interpretation of the descriptors. 
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1.3 State-of-the-art on computer-generated models for progression of the curve of 
the spine through time 

Predicting the development of the curvature of the spine through time, is one of the challenges 

that clinicians must face in order to improve the treatment of scoliosis. Once the patient has 

been clinically evaluated and diagnosed with AIS, the ideal would be to obtain a prediction of 

the progression of the deformation.  

 

AIS and growth are connected. While the patient grows, the clinician needs to know how the 

indices of normal growth differ in patients with AIS. Also, the analysis of these indices helps 

to plan the best treatment, as well as to understand the progression before, during and after 

puberty (Dimeglio & Canavese, 2013).  In clinical practice, the current indices to assess curve 

progression are maturity in terms of chronological, skeletal, and menarcheal age, curve 

location and its magnitude (Cheng et al., 2015).  These indices are used to evaluate the 

possibility of progression. However, there is not a reliable method to predict the progression 

of the deformity from the first visit. The main criteria to determine the progression of the 

deformity is the Cobb angle increasing ≥ 6° between the first and the last visit (Noshchenko, 

2015). Nevertheless, since the magnitude of the curve is calculated with the Cobb angle, 

treatment strategies, and follow-up examination are based on high variability measurements 

(Aubin, Labelle, & Ciolofan, 2007; Majdouline, Aubin, Robitaille, Sarwark, & Labelle, 2007). 

 

The pubertal cycle plays a major role regarding the understanding of AIS. This is a period that 

last 2 years, characterized by an increase in growth rate, also called “peak height velocity”. It 

starts generally at bone age of 11 for girls and 13 for boys. After this phase, there is a period 

of 3 year of deceleration.  In patients with AIS, the main curve progression occurs at the phase 

of peak height velocity, and it has a risk of progression associated to the initial curve angle. 

Patients with a curve of 5°, 10°, 20°, 30° have 10, 20, 30, and up to 100% of risk of progression 

respectively. In 75% of the cases with thoracic curves, in a range between 20° to 30°, are prone 

to progress ending up with surgery  (Dimeglio & Canavese, 2013). 
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The assessment of the skeletal maturity is associated to the growth velocity and the cessation 

of the growth. Recently (Sitoula et al., 2015) showed a correlation of the Sanders Stage (SS) 

with the progression of the curve in AIS. This assessment of the SS for skeletal maturity is 

based on progressive growth and subsequent fusion of epiphyses of small long bones of the 

hand (SS1 to SS8),  depicted from radiographs of the hand and wrist (Sanders et al., 2008). 

 

Recently,  Li et al.(Li et al., 2018) proposed a novel method to assess skeletal maturity by 

analyzing ossification patterns on proximal humeral epiphyseal. The novelty of this method is 

that the proximal humeral is present in the spine radiographs, hence there is no need of extra 

X-rays. 

 

Secondary sexual characteristics are developed during puberty. Menarche status has been used 

as a mark of the pubertal growth spurt, and as an index to evaluate the risk of curve progression. 

However, it showed weak association with progression (Noshchenko, 2015; Sitoula et al., 

2015). 

 

Characterization of the spine in 3D is an important aspect to study in AIS, Labelle et al. 

(Labelle et al., 2011) have shown that similar deformities in 2D have different morphology in 

3D. In recent studies, 3D descriptors to characterize the morphology of the spine have shown 

promising results with respect to the prediction of curve progression.  These descriptors were 

computed from 3D reconstructions of models of the spine obtained from radiographs. In a 

retrospective study by Nault et al. (Nault et al., 2013), 5 descriptors (Cobb angles, three-

dimensional wedging of vertebral body and disk, axial/sagittal/coronal rotation of the apex, 

upper, and lower junctional level, torsion, and slenderness) were evaluated to distinguish two 

groups, progressive and nonprogressive curves between the first and the last visit.  From the 

descriptors studied, 3D wedging of apical disks, intervertebral axial rotation, spinal torsion, 

slenderness in the T6 vertebra, and slenderness of the whole spine, were found with statistically 

significant difference between the 2 groups. Later on, a prospective study by (Nault et al., 

2014) was performed to evaluate 3D morphological descriptors between progressive and 

nonprogressive curves using the first visit of the patients. The most significant descriptors were 
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plane of maximal curvature, kyphosis, apical intervertebral rotation, torsion, and slenderness. 

However, a limitation of this work is that the values of the morphological descriptors at the 

first visit are small in both groups. Also, an evaluation about how accurately these descriptors 

can predict curve progression, and how do they change throughout puberty, must be performed.  

 

Opposite to expert-based descriptors used in the previous studies,  (Kadoury, Mandel, Roy-

Beaudry, Nault, & Parent, 2017) proposed a probabilistic manifold embedding to reduce high-

dimensional data to its low-dimensional representation. Based on this new representation, a 

spatiotemporal regression model was built to predict the evolution of the deformations. The 

patients were separated in two groups progressive and nonprogressive. A patient is cataloged 

as progressive if there is a difference of 6° in the magnitude of the curvature. This could 

represent a limitation, since the predicted model is based on a 2D measure, with high variability 

and it does not characterize the spine in 3D. 

 

1.4 State-of-the-art on radiation-free imaging systems to reduce the use of X-rays. 

Radiograph is the most common imaging method used to treat patients with AIS. They have 

been used to study the inside of the body to diagnose illnesses such as breast cancer, fractures, 

spine deformities, among others. Radiographs are acquired by applying ionizing radiation that 

goes through the human body, creating an image of tissues and structures inside the body on 

photographic plates or other detectors. 

 

The advantage of X-rays is that it allows visualizing the spine in a standing position, hence, it 

is possible to analyze the full length of the spine with the effect of gravity. X-rays are the gold 

standard imaging technology employed to calculate the magnitude of the curve by using the 

Cobb angle method.  However, some patients need to undergo radiographs every 4 to 6 months 

in follow-up visits, which results in frequent exposure to harmful radiation (Doody et al., 2000; 

Hoffman et al., 1989; Ronckers et al., 2010, 2008). This makes it difficult to perform close 

evaluations to assess progression and adequate treatments. 
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Magnetic Resonance Imaging (MRI) or Computed Tomography (CT) could be used as an 

appealing acquisition technology compared to X-rays, however both modalities are generally 

not performed in standing position, which is necessary to correctly evaluate the shape of the 

spine. Another drawback of MRI and CT scanners is their elevated cost, which makes them 

inaccessible to many people. 

 

Ultrasound (US) imaging is a possible and economical alternative to radiographs. Imaging in 

real time, radiation free, and low cost are its principal features. US is an inexpensive technology 

compared to radiographs, MRI and CT, and it does not need to have neither a special room for 

its installation nor security protection for its operators. In addition, the easy access to US 

imaging and affordable price means that most hospitals, even those with low budget, located 

in areas where it is difficult to transport large instruments or without room for large machines 

might already be equipped with at least one. 

 

By itself, US is limited to produce only one 2D image at certain time interval. To examine 

complex structures like the spine this is inconvenient, since the full shape of the spine cannot 

be visualized. To overcome this limitation, a freehand 3d US systems have been developed. 

This type of system is used to generate 3D reconstructions from tracked ultrasound images. In 

the case of the spine, the reconstruction would represent the surface of each vertebrae. 

 

A freehand 3d ultrasound system is non-invasive and it is composed of four devices. 1) a 2D 

ultrasound scanner, 2) a tracking system used to determine the position and orientation of the 

transducer, 3) a workstation with the software to capture, store and process the images and 4) 

a grabber to transmit the images from the ultrasound scanner to the workstation.  

 

There are two common tracking systems, optical and magnetic. On the one hand, an optical 

tracking system (OTS) uses infrared cameras pointed to a reference and a navigation 

instrument with attached markers. It needs an uninterrupted line of sight to the navigation 

instruments. On the other hand, magnetic tracking systems (MTS) contain a magnetic field 

generator used to measure pulses produced by transmitters. The control unit calculates the 
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position of each sensor inside the magnetic field. Opposite to the OTS, it does not need a direct 

line of sight to the navigation instruments. However, in a clinical setup, other medical 

instruments could cause disturbance, which affects the accuracy and precision of the 

measurements.  

 

Purnama et al. (Purnama et al., 2009) proposed a freehand 3D US system to generate a volume 

reconstruction of the spine. Only one acquisition from a healthy subject, from T4-T9 vertebrae 

was performed. The transverse processes (TP), superior articular processes (SAP) and laminae 

were the landmarks identified on the volume reconstruction. These landmarks were 

automatically obtained by filtering out the non-vertebral features from the reconstruction. They 

reported that from vertebra T3 upward, it was not possible to distinguish the landmarks. Also, 

the ribs caused strong reflections which made difficult to filtering them out. Additionally, two 

3D measurements were determined semi-automatically, axial rotation and vertebral tilt. For 

this purpose, they use the center of mass of the landmarks, since exact boundaries were not 

easy to identify on the volume. This method was tested in only one reconstruction from a 

healthy individual. More experiments need to be performed to generalize the method for 

subjects with spine deformation. 

 

Chen et al. (Chen, Lou, & Le, 2011) proposed an equivalent method to calculate the Cobb 

angle called center of pedicle method (CPM), based on the use of the TP and laminae from US 

images. They validated this method on 56 scoliotic curves from PA radiograph images. This 

set of images was divided into three groups based on the Cobb angle, mild, moderate and 

severe. Their results show an average difference between the CPM method and the Cobb angle 

of -0.6°, 1.7° and 2.6° respectively for each group. To validate the identification of the TPs on 

US images, a second experiment was performed. Two phantoms were used, a cadaver thoracic 

vertebra (T9) and a phantom from the T2-T12 vertebrae. For scanning purposes, the phantoms 

were immersed in a water-filled container. At 8mm above the phantom, a 2mm tick 

polypropylene sheet was placed to simulate the skin. Their result show that they were able to 

find the center of pedicle on the US images. However, since the images were acquired from 



19 

phantoms, the reflections were stronger, and it was easy to identify the landmarks, which could 

vary in acquisitions from a real patient. 

 

Cheung et al. (C. W. J. Cheung, Siu-Yin Law, & Zheng, 2013) used a freehand 3D US system 

for acquisition of images from the spine. Four spinal phantoms, containing from L5-T1 

vertebrae, were employed for acquisition of US images and X-rays. Each phantom was 

deformed into 4 curvatures, for a total of 16 spinal deformations. The TPs and SAPs were 

marked manually on the US images. Any image without these landmarks was discarded. These 

landmarks were projected into the three orthogonal planes. On selected vertebrae, two lines 

joining the TP and SP were marked. Thee lines represented the most tilted vertebrae at the top 

and bottom of the spine and were used to calculate the Cobb angle. This calculation was 

compared to the Cobb angles obtained from the X-rays. Their results showed a correlation 

(R2=0.759; p<0.005) between both measurements. The main limitation is the manual marking 

in each image which is time consuming, depends on the operator and the quality of the images 

could vary in real subjects. 

 

The center of the laminae (COL) method has been studied by Chen et al.(Chen, Lou, Zhang, 

Le, & Hill, 2013) to calculate the equivalent of the Cobb angle from US images. A cadaver 

spinal phantom, containing from L5-C1 vertebrae, was employed in the study. This was 

deformed to represent 30 scoliotic curves, but only from the L5-T1 vertebrae were scanned. 

Images with an US scanner and a laser scanner were acquired from the phantom. The COL 

method was used on the US images to calculate the Cobb angle. This method consists on 

finding the most tilted vertebrae at the top and bottom of the spine. Then, two lines were drawn 

joining the center of the laminae on each side of these vertebrae. The angle between these two 

lines was the Cobb angle (COL angle), which was compared to the Cobb angle obtained from 

the images from laser scanner. Their results showed an intra- and inter- observer reliability as 

high as the reported for Cobb angle measurements (ICC values > 0.88). An extra experiment 

was performed on 5 subjects who had PA X-rays. A comparison between the Cobb angle from 

X-rays and the COL angle was performed. As result, an average difference of 0.7° between 

both methods was obtained.  
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Koo et al. (Koo, Guo, Ippolito, & Bedle, 2014) proposed the posterior deformity angle to 

quantify scoliotic deformities based on US images. For capturing the US images, a freehand 

3D US system was developed. From the tracked US images, the SPs were manually marked, 

and their 3D coordinates were obtained. Three cadaver spine phantoms were used to configure 

30 different curvatures. PA X-rays were also acquired from these phantoms to measure the 

Cobb angle. To calculate the posterior deformity angle, they proposed a locally weighted 

polynomial regression technique to curve fit the SPs. From the fitted curve, the tangents with 

the most positive and negative slopes were identified at the top and bottom of the curve, and 

the angle between them was calculated. Their results show that their approach had a high 

correlation with respect to the Cobb angle (r=0.915). The limitation of this method is that there 

was no validation in patients with scoliosis. 

 

Ungi et al. (Ungi et al., 2014) proposed a method to calculate the curvature of the spine based 

on TP by tracking ultrasound snapshots. One US image is taken at each side of the vertebrae 

finding the TP. Then, midpoints of the TP are located on the US image. The line joining these 

midpoints is used to calculate an angle relative to a reference line. This angle is called 

transverse process angle. The same angle was calculated on PA X-rays, and then compared to 

the one obtained from the snapshots. The method was tested on two phantoms, an adult and a 

pediatric spine containing 12 thoracic and 5 lumbar vertebrae. Their results show small inter-

operator differences between the transverse process angle and the Cobb angle. However, the 

disadvantage of this method is the ability to recognize the landmarks during the acquisition. 

This would be challenging in patients where fat and muscles interfere the visibility of the 

vertebrae. Also, the change in breathing and posture could increase the difficulty of taking two 

images at each side of the vertebrae. 

 

Cheung et al. (C. J. Cheung, Zhou, Law, & Mak, 2015) proposed a method to generate a 

volume projection imaging by using a freehand 3D US system. Based on this projection, 

curvatures of the spine were calculated using two measurement methods. In both methods, the 

inflection points along the projection are identified. These points are treated as the most tilted 

vertebrae. The first method employed the TPs of the most tilted vertebrae to calculate the angle, 
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while the second uses two pair of SPs from the most tilted vertebrae.  These two angle 

measurements were compared to the Cobb angle from PA X-rays. This approach was tested 

on 29 subjects with different curvatures. Their results show a high correlation of R2 = 0.79 (p 

<0.005) and R2=0.78 (p<0.005) using the SPs and TPs respectively when compared to the 

Cobb angle. The examination of the spine is limited to the posteroanterior plane, since it is not 

possible to determine other landmarks that could provide information of the morphology in the 

3D space of the spine. 

 

In another study, Cheung et al. (C. W. J. Cheung et al., 2015) evaluated a freehand 3D US 

system for assessment of scoliosis. Its feasibility was validated by scanning the spine of 28 

subjects. To improve the standing stability of the subject during the US sweeps, an adjustable 

frame support was included in the setup. This support fixed the position of the shoulders and 

hip. After the acquisition of the tracked US images, the TP and the SP were manually marked, 

and a 3D model was formed. The model was projected into a 2D plane, simulating the PA 

plane from X-rays. Then, the Cobb angle was calculated using this projection in an analog 

manner to the X-rays. This angle was compared to the one measured on X-rays. Their results 

show a significant correlation between both measurements (R2 = 0.86; p <0.001). Although 

their results are promising, the landmarking is time consuming and the methods to quantify the 

curvature of the spine tend to underestimate the deformation.  

 

Young et al. (Young, Hill, Zheng, & Lou, 2015) validated the center of lamina (COL) as a 

method to approximate the Cobb angle. In this study, 20 subjects with AIS were recruited with 

a Cobb angle variation between 10° and 45°. X-rays and tracked ultrasound images were 

acquired from the L5 to C7 vertebrae. Four raters measured the Cobb angle on X-rays and its 

approximation from the tracked US images. Their results showed an intra-observer correlation 

between 0.86 to 0.96. They used previous X-rays to improve the landmarking in US, therefore, 

the correlation agreement between the Cobb angle and the US was high. However, without the 

use of previous data, the correlation was moderately reliable. The source of error was the 

limitation to select the end-vertebrae on the US images.  They reported that for some patients, 

it was impossible to find their curves since the landmarks were not visible. This method has 
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not been in the longitudinal study, where patients with AIS could have progressed or growing 

up, and the previous radiographs will not correspond with the US, which would make the 

marking difficult. 

 

Based on the work in (C. J. Cheung, Zhou, Law, & Mak, 2015), Zheng et al. (Zheng et al., 

2016) evaluated the reliability and validity of a freehand 3D system called Scolioscan. This 

hardware uses a frontal frame and supports that can be adjusted to fix the position of the chest 

and hip of the subject depending on his height. The system was tested with 55 participants with 

AIS. Images of the spine were acquired from L5 to T1 vertebrae using the Scolioscan as well 

as X-rays. Their results exhibit a reliability in intraclass correlation coefficient (ICC) of 0.88 

to 0.97 for angle measurement. Also, the inter-rater ICC from 0.88 to 0.93 indicates a high 

reliability. The support frame could have helped with the high values in reliability. Since the 

patients were in a fixed position, the error produced by breathing or the change in position can 

be reduced. However, there exists an underestimation of the angle. This can be produced for 

the same fixed position of the patient, as it was shown by Bellefleur et al. (Bellefleur, 

Dansereau, Koller, & Labelle, 2002). The natural position and the balance of the subject change 

when the hip or shoulder are fixed. An analysis on the platform versus barefoot should be 

conducted to eliminate other sources that could influence the posture, therefore the 

measurements. 

 

Based on the freehand 3D US system used by Zheng et al. (Zheng et al., 2016), Brink et al. 

(Brink et al., 2017) tested three methods to measure the curvature of the spine from the coronal 

plane. These methods were 1) automatic SP angle, 2) manual SP angle and 3) manual TP angle. 

The angles calculated from these three methods were compared to the Cobb angle, measured 

from PA X-rays. In this study, 33 patients with AIS were included. As in previous studies (C. 

W. J. Cheung et al., 2015, 2013; Zheng et al., 2016), the angles calculated from tracked US 

images were 15%-37% smaller than the Cobb angle. This was because they were calculated 

on landmarks located in different regions of the vertebrae. However, their results showed that 

the three methods were reliable. The lowest linear correlation R2=0.970 was found in the 



23 

lumbar curve by using the manual SP angle, while the highest one R2=0.987 was found for the 

manual TP angle. 

  

Table 1.3 shows the devices used in this literature review. In most of the studies, the US scanner 

is different. In the case of the transducer, the linear one is more frequently employed. Also, the 

MTS is more favored compared to the OTS. 

 

Table 1.3   Hardware used for US image acquisition 

Author Ultrasound scanner Transducer Tracking system Video capture card 
Purnama 
2009 

Not specified Not specified OTS Not specified 

Chen 
2011 

TomoScan Focus 
Phased Array 
Ultrasound system 
(Olympus NDT Inc., 
Canada) 

• Type: Linear (5L64-I1) 

• Frequency: 5.0 MHz Width: 38.4 
mm x 10 mm 

Not applicable Not applicable 

Cheung 
2013 

EUB-8500, Hitachi 
Ltd., Japan 

• Type: Linear 

• Frequency: 5-10MHz 

• Width: 92mm  

MTS (MiniBird, 
Ascension Technology 
Corporation, Burlington, 
VT, USA) 

NIIMAQ PCI/PXI-1411, 
National Instruments 
Corporation, Austin, TX, 
USA 

Chen 
2013 

Olympus TomoScan 
Focus LT Phased 
Array instrument 
(Olympus NDT Inc., 
Waltham, MA) 

• Type: Linear transducer 

• Frequency: 5-MHz 

• Width: 64mm x 10mm 

Not applicable Not applicable 

Koo 2014 Ultramark 400c; ATL 
Ultrasound Inc, 
Bothell, WA 

• Type: Linear 

• Frequency: 6.5-10 MHz 

• Width: Not specified 

OTS (Northern Digital 
Inc, Waterloo, Canada) 

Frame grabber PCI-1411 
Data acquisition card 
(PCI 6024E) 

Ungi 
2014 

Sonix Tablet with 
GPS extension 
(Ultrasonix, 
Richmond, BC, 
Canada) 

• Type: Linear  

• Frequency: 5 MHz 

• Width: Not specified 

MTS (Ascension, 
Milton, VT, USA) 

Not specified 

Cheung 
2015 

EUB-8500 (Hitachi 
Ltd., Tokyo, Japan) 

• Type: Linear (Hitachi L53L/10–5) 

• Frequency: 5–10 MHz 

• Width: 92mm 

MTS MiniBird Model 
130 (Ascension 
Technology Corporation, 
Burlington, VT, USA) 

NIIMAQPCI/PXI-1411 
(National Instruments 
Corpora- tion, Austin, 
TX, USA) 

Cheung 
2015b 

EUB-8500 (Hitachi 
Ltd., Tokyo, Japan) 

• Type: Linear (Hitachi L53L/10–5) 

• Frequency: 5–10 MHz 

• Width: 92mm 

MTS MiniBird Model 
130 (Ascension 
Technology Corporation, 
Burlington, VT, USA) 

NIIMAQPCI/PXI-1411 
(National Instruments 
Corpora- tion, Austin, 
TX, USA) 

Young 
2015 
 

Sonix TABLET • Type: Convex (C5-2/60 GPS, 
(Ultrasonix, BC, Canada) 

• Frequency: Not specified 

• Width: Not specified 

Sonix GPS Not specified 

Zheng 
2016 

Custom made • Type: Linear (custom made)  

• Frequency: 4–10 MHz  

• Width: of 100 mm 

MTS (custom made) Not specified 

Brink 
2017 

Scolioscan, Telefield 
Medical Imaging Ltd, 
Hong Kong 

• Type: Linear 

• Frequency: 7.5MHz 

• Width: 75mm 

MTS (custom made) Not specified 
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1.5 Summary 

In this chapter, we provided the background necessary to understand the anatomy of the spine. 

We also described the natural curves of the spine, as well as its deformations. Then we 

introduced the gold standard methods used in clinical practice to characterize and classify AIS. 

We finished with a critical review of the state-of-the-art in three specific-objectives identified 

in the problem statement: 1) computer-based characterization and classification methods in 

AIS using 3D descriptors, 2) computer-generated models for progression of the curve of the 

spine through time, and 3) radiation-free imaging systems to reduce the use of X-rays. These 

three topics are put together to define the main blocks to form a framework. This framework 

can help clinicians in assessment and follow-up of patients with AIS by reducing the need of 

X-rays, which is the main objective of this research. 

 

In the context of characterization and classification methods, Cobb angle and Lenke 

classifications are the main strategies used to diagnose and to treat AIS. However, these 

methods are based on 2D radiographs, which limits the description of the deformation in the 

3D space. Computer-based alternatives to describe the spine in the 3D space have been 

proposed. However, their lack of interpretability complicates their adaptation into a clinical 

paradigm. In addition, new classification systems have been developed as an attempt to better 

categorize spine deformations based on 3D descriptors, rather than visual descriptions from 

radiographs. Automatic classification systems can find complex patterns to define the 

categories. The can also reduce the inter- and intra- observer variability associated with current 

classification systems. Nevertheless, its usability in clinical setups still needs to be tested. 

 

To the best of our knowledge, the studies presented in this review did not address the problem 

of using easy to adopt and interpret 3D descriptors in clinical setups. Also, there is not a 

classification model able to dynamically find the best combination of clinical and/or computer-

based descriptors to categorize individual curves.  
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Predicting the likely changes to occur in the spine curve through time could help clinicians in 

applying a more effective and patient-specific treatment. The studies based on clinical indices 

have been imprecise predicting the final curve deformation. 3D morphological parameters are 

promising; however, they must be carefully handcrafted from 3D models. Additionally, their 

robustness and accuracy still need to be evaluated. Moreover, existent automated models use 

complex descriptors which are difficult to interpret and to apply in clinical practice.   

 

To the best of our knowledge, a model to predict the variation of the shape of the spine, from 

the first visit, at different intervals of time, and with 3D easy to interpret computer-based 

descriptors, remain as a research task. 

 

With respect to the use of a radiation-free imaging modality, ultrasound has come as an 

alternative to treat patients with scoliosis. On the one hand, there have been many attempts at 

finding the best landmarks that can be used to calculate an angle to quantify the curvature of 

the spine similar to the Cobb angle obtained from PA X-rays. On the other hand, only one 

reconstruction of the spine based on US has been reported in the literature. This consist in 

tracked ultrasound images used to generate a projection of the spine on the coronal plane. 

These previous studies only describe the spine with 2D measurements. 

 

To the best of our knowledge, none of the previous studies address the characterization of the 

spine in the 3D space. A volume reconstruction of the shape of the spine from tracked US, that 

facilitates the landmarking of the spine in the 3D space has not yet been proposed. 
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2.1 Abstract  

While classification is important for assessing adolescent idiopathic scoliosis (AIS), it however 

suffers from low interobserver and intraobserver reliability. Classification using ensemble 

methods may contribute to improving reliability using the proper 2D and 3D images of spine 

curvature features.  In this study, we present two new techniques to describe the spine, namely, 

leave-n-out and fan leave-n-out. Using these techniques, three descriptors are computed from 

a stereoradiographic 3D reconstruction to describe the relationship between a vertebra and its 

neighbors. A dynamic ensemble selection method is introduced for automatic spine 

classification. The performance of the method is evaluated on a dataset containing 962 3D 

spine models categorized according to three curve types. With a log loss of 0.5623, the dynamic 

ensemble selection outperforms voting and stacking ensemble learning techniques. This 

method can improve intraobserver and interobserver reliability, identify the best combination 

of descriptors for characterizing spine per curve type, and provide assistance to clinicians in 

the form of information to classify borderline curvature types. 
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Dynamic Ensemble Selection, Machine Learning 

 

2.2 Introduction  

Adolescent Idiopathic Scoliosis (AIS) is a medical condition involving a 3D spinal deformity. 

It causes the shape of the spine on the posteroanterior plane to take an “S” or a “C” form, 

instead of a straight line. AIS affects between 1 and 3% of the population, and 1 out of 1000 

patients will require a surgical treatment. When treating scoliosis, it is crucial to find out the 

characteristics that best describe each specific deformity in order to provide patients with an 

optimal treatment, as well as to monitor their progress. To date, the evaluation of the spine has 

relied mainly on observations of posteroanterior and sagittal radiographs, which constitute the 

most common imaging modality used in clinical practice to observe the spine in a standing 

position. The Cobb angle is the standard measurement of scoliosis severity in radiographs, and 

is a 2D index that measures the curvature of the spine (Stokes, 1994a). The analysis of these 

radiographs to assess a diagnosis is not deterministic and may vary from expert to expert. 

 

Two classification models have been used in an effort to identify curve patterns. In 1983, the 

King classification (King et al., 1983) model was proposed, and described five thoracic curve 

classes. Its low intra- and interobserver reliability and limitation to only thoracic curves were 

its principal disadvantages. In 2001, the Lenke classification of AIS (Lenke et al., 2001) 

emerged as a new paradigm to characterize the deformation of the spines, and it became the 

most clinically accepted and widely used model. This paradigm classifies scoliosis into six 

types (Lenke 1-6). It relies on 2D radiographs of the posteroanterior and sagittal planes and 

Cobb angle measurements, which are used to discern structural and nonstructural curves in the 

proximal thoracic, main thoracic, and thoracolumbar/lumbar regions. It also provides treatment 

recommendations according to the type. Although the Cobb angle and Lenke classifications 

are the prevailing primary strategies used to define and treat scoliosis, these methods do not 

allow a full understanding of the deformity. 
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Computer-based classification models have been used to study AIS. Phan et al. (Phan, 

Mezghani, Wai, De Guise, & Labelle, 2013) proposed the use of self-organizing maps based 

on eight Cobb angle measurements to classify AIS and highlight treatment patterns. Clustering 

techniques, such as ISO Data, K-means, Fuzzy k-means, K-means++, have been used to 

propose new categorizations (Duong et al., 2006; Duong, Mac-Thiong, Cheriet, & Labelle, 

2009; Kadoury & Labelle, 2012; Kadoury et al., 2014; Sangole et al., 2009; Shen et al., 2014; 

Thong et al., 2015). These methods use different descriptors of the spine, such as parametric 

3D curve representation (Duong et al., 2006), 3D reconstructions (Kadoury & Labelle, 2012; 

Sangole et al., 2009; Thong et al., 2016, 2015), plane of maximum curvature (Duong, Mac-

Thiong, et al., 2009; Sangole et al., 2009), best fit plane (Duong, Mac-Thiong, et al., 2009), 

torsion estimator (Duong, Mac-Thiong, et al., 2009; Kadoury et al., 2014; Shen et al., 2014), 

Cobb angle (Sangole et al., 2009), and axial rotation (Sangole et al., 2009). Some of these 

works use techniques, such as wavelet-based, non-linear manifold and stacked auto-encoders 

(Duong et al., 2006; Kadoury & Labelle, 2012; Thong et al., 2016, 2015),  to reduce high 

dimensionality as a pre-step before clustering. The importance of these classification systems 

resides in their attempt to better categorize the severity and progression of AIS to allow better 

treatments. However, although these descriptors could complement the Lenke classification, 

there is no consensus among experts on which of them to use in everyday clinical practice. The 

descriptors used in the studies referenced are based on the choices made by researchers on how 

to tackle a specific clinical problem (Donzelli et al., 2015).  

 

In this paper, we present the first approach for an automated classification of spinal deformities 

based on a dynamic ensemble selection of descriptors to characterize the spine. A set of eight 

descriptors are employed, from which we propose the leave-one-out and the fan leave-one-out 

angle measurement techniques used to calculate three different descriptors, one based on the 

existing Cobb angle measurement, and the others based on two new proposed variations of 

angle calculations among the vertebrae. Considering that each descriptor characterizes 

different aspects of the spine, the objective of this work is to contribute through new descriptors 

to characterize the spine, as well as through a computer-based model to assist clinicians in the 

classification of spine deformities. Three classes are defined for this task: 1) spines with a main 
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thoracic (MT) major curve and a non-structural thoracolumbar/lumbar (TL/L) curve; 2) spines 

with an MT major curve, and a structural TL/L curve; and 3) spines with a TL/L major curve 

and a non-structural proximal thoracic (PT) curve. The dynamic ensemble selection is carried 

out using Random Forest (RF) as base classifier. 

 

2.3 Methods 

2.3.1 Dataset 

A dataset consisting of 962 3D spine models provided for this work by the Centre hospitalier 

universitaire Sainte-Justine (Sainte-Justine University Hospital Center) in Montreal, Canada, 

was used. This dataset contained 3D spine models reconstructed from stereoradiographic X-

rays, as described in (Delorme et al., 2003). Each 3D model in the dataset consisted of at least 

17 vertebrae (T1 to L5). For each vertebra, six points (superior and inferior endplates; left and 

right superior pedicles, and left and right inferior pedicles) were identified by a trained 

technician. The dataset was divided into three main classes, as described in Table 2.1, and their 

distribution is shown in Table 2.2. Two criteria were used to define a curve as structural or 

non-structural:  1) the mayor curve is always defined as structural, and 2) a minor curve that 

bends less than 25° on side bending radiographs is always non-structural. 

 

Table 2.1   Description of the classes in the dataset 

 Proximal thoracic Main thoracic Thoracolumbar/Lumbar 

Class 1 Structural/non-structural Major curve Non-structural 

Class 2 Structural/non-structural Major curve Structural 

Class 3 Non-structural Structural/non-structural Major curve 

 

Table 2.2   Distribution of the dataset 

 Class 1 Class 2 Class 3 
Samples 329 (34%) 327 (34%) 306 (32%) 
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2.3.2 Descriptors of the spine 

A descriptor is a measurement that characterizes the spine. Clinical measurements were not 

available in the dataset, and therefore, a set of eight descriptors were automatically estimated 

for our experiments (see Table 2.3). 

 

Table 2.3   Descriptors generated from a dataset of 3D spine models 

Name Description Number of features 

Descriptor 1 Cartesian coordinates in yz (posteroanterior plane)a 204 
Descriptor 2 Cartesian coordinates in xz (sagittal plane)a 204 
Descriptor 3 Cartesian coordinates in xy (transverse plane)a 204 
Descriptor 4 Axial rotation of each vertebrab 17 
Descriptor 5 The first and second derivatives of the centroid of each vertebrac 34 
Descriptor 6 Leave-n-out angles estimated with n=0 to 10 (see section 2.3.2.1) 108 
Descriptor 7 Leave-n-out angles estimated with n=0 to 17 (see section 2.3.2.1) 136 
Descriptor 8 Fan leave-one-out angles estimated with n=0 to 17 (see section 

2.3.2.2) 
64 

a Coordinates extracted directly from 3D models of spines. 
b Calculated by applying the method proposed by Stokes et al. (Stokes, Bigalow, & 
Moreland, 1986). 
c  Method used by Duong et al. (Duong, Cheriet, & Labelle, 2010) to deduce curves in King’s 
classification. 

 

The first five descriptors were estimated straightforwardly. Descriptors 1 to 3 correspond to 

the normalized values of the coordinates in each plane (6 points for each of the 17 vertebrae). 

Descriptor 4 corresponds to the axial rotation of each vertebra, and Descriptor 5 was estimated 

using the first and second derivatives of the centroids of the vertebrae. To estimate descriptors 

6 to 8, we are proposing two new techniques named leave-n-out and fan leave-n-out angles. 

 

2.3.2.1 Leave-n-out angles 

The general idea behind this technique is to take advantage of the spine being a sequence of 

vertebrae to automatically estimate the angle that one vertebra has with respect to its neighbors. 

For example, considering the sequence of vertebrae from T1 to T4, the leave-0-out angles of 



32 

this sequence would be computed as the angles between the centroids of T1 and T2, T2 and 

T3, and T3 and T4 (see Figure 2.1a); the leave-1-out angles would be the angles between the 

centroids of T1 and T3, and T2 and T4 (skipping one vertebra in between; see Figure 2.1b); 

while the leave-2-out angles would be the angles between the centroids of T1 and T4 (skipping 

two vertebrae in between; see Figure 2.1c), and so forth. The assumption is that the inter-

vertebrae angles of spines with similar curve types will have similar measurements. 

 

a) Leave-0-out angles b) Leave-1-out angles c) Leave-2-out angles 

Figure 2.1   Leave-n-out angles calculation with respect to the horizontal axis, 
with n=0 to n=2 

 

Based on this idea, two descriptors are proposed. Descriptor 6 estimates the leave-n-out angles 

using the Cobb angle method. For descriptor 7, the angles are estimated from the line 

connecting two vertebral centroids with respect to the horizontal axis (see Figure 2.1).  

 

2.3.2.2 Fan leave-n-out angles 

Based on the notion of the leave-n-out angles, we propose an estimation of the inter-vertebrae 

angle relationship among three vertebrae centroids, e.g., T1, T2 and T3, by estimating the angle 

formed between two lines, T1-T2 and T2-T3, forming a fan-like shape (see Figure 2.2). 

Considering the sequence of vertebrae from T1 to T5, the fan leave-0-out angles of this 

sequence would be computed as the angles formed by the line segments T1-T2 and T2-T3, T2-
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T3 and T3-T4, and T3-T4 and T4-T5 (see Figure 2.2a). In the T1 to T6 sequence, the fan leave-

1-out angles would be computed as the angles formed by the line segments T1-T3 and T3-T5; 

and T2-T4 and T4-T6 (leaving one vertebra in between for each line segment; see Figure 2.2b).  

 

a) Fan leave-0-out angles  b) Fan leave-1-out angles 
 

 

 

 

Figure 2.2   Fan Leave-n-out angles calculation for n=0, and n=1 

 

2.3.3 Ensemble learning 

Given the great diversity of models used by machine learning algorithms to learn from data, 

the results obtained from applying these algorithms on the same dataset may differ significantly 

from one case to the other. In some cases, one algorithm can perform better than others for 

certain types of patterns or classes, but not sufficiently for others. Hence, it is to be expected 

that in some cases, a single classifier will not be able to cover the whole variability in a dataset.  

A multiple classifier system consists of a set of different classifiers that combine their 

individual decisions into a more accurate and robust consensual prediction (Woźniak, Graña, 

& Corchado, 2014). An example of this type of system is RF, which combines different 

decision tree classifiers to perform the final prediction. In this combination model, it is assumed 

that the classifiers are independent and that the errors made by the individual classifiers are 

uncorrelated (Dietterich, 2000). Britto et al. (Britto, Sabourin, & Oliveira, 2014) decompose a 

multiple classifier system into three phases: generation, selection and integration. 
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In the generation phase, a pool of base classifiers is produced. A pool combining base 

classifiers which use a single learning algorithm, with each base classifier trained with different 

subsets of the training data, is known as a homogenous pool. On the other hand, where the base 

classifiers use different learning algorithms, with all of the former trained with the same data, 

we have a heterogeneous pool.  

 

In the selection phase, the best base classifiers are selected from the pool. There are two 

different types of selection, static and dynamic. In static selection, the best classifiers are 

chosen during the training phase, based on how competent they are in discriminating. In 

contrast, with dynamic selection, the classifiers are selected during the test phase. A complete 

review of the dynamic selection of classifiers is available in (Britto et al., 2014). 

 

The integration phase consists in combining the selected classifiers to categorize each test 

sample, under a determined strategy (Kittler, Hatef, Duin, & Matas, 1998). Woźniak et al. 

(Woźniak et al., 2014) describe this phase in three strategies: 1) class label fusion, where a 

majority voting scheme is applied; 2) support function fusion, which provides a decision based 

on the estimated likelihood for each class computed by all individual classifiers; and 3) 

trainable fuser, which involves a learning process to reach a consensus. 

 

2.3.3.1 Dynamic ensemble selection of learner-descriptor classifiers 

For our work, we selected the dynamic ensemble selection (DES) method to combine 

descriptors that are routinely used in clinical settings with other computational methods 

(Donzelli et al., 2015), in order to find the most suitable descriptors for characterizing a spine. 

This method consists in dynamically finding the best learner-descriptor classifiers (LDCs) that 

can be brought together as an ensemble to assess the curvature type of a spine. Here, a 

descriptor is a measurement that characterizes the spine, and a learner refers to the algorithm 

used to find patterns in the data. Since the idea behind DES is to select the most accurate 

classifiers for each pattern, a decision was made to train one learning algorithm per descriptor, 
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with the aim of determining the best LDC or their combination to define a particular type of 

deformity. 

 

The method proposed in this work is an adaptation of the K-nearest-oracle, with the eliminate 

fusion scheme of the best classifiers (KNORA-E) proposed by Ko et al. (Ko, Sabourin, & 

Britto, 2008). In KNORA-E, the dataset is divided into three parts: training (Tr), validation 

(Va) and test (Te) sets. It has a pool of base classifiers (trained with a Tr set) that evaluates a 

test sample t (from the Te set) as follows: if the entire pool reaches a unanimous decision, the 

test sample t is labeled accordingly. Otherwise, the k-nearest neighbors (knn) to the test sample 

are found in the Va set using the Euclidean distance. The knn are classified by each algorithm 

in the pool. The classifiers that correctly categorize all knn are brought together as an ensemble 

to perform the final classification of the test sample. 

 

Our proposal includes three modifications to the KNORA-E, while still maintaining its 

essence. First, the base algorithm for the LDCs is RF, and each LDC is trained with a different 

descriptor (see Table 2.3). Second, during the training step, a ranking of the best LDCs per 

class is performed. For this strategy, a 3-fold cross-validation (CV) is computed, and the 

confusion matrix is obtained in each fold. From the confusion matrix, the accuracy for every 

class is calculated. At the end of the CV, the 3-fold mean accuracy per class is obtained for 

each LDC. Then, one list per class is created, and the LDCs are ranked from highest to lowest, 

in accordance with their mean accuracy in Tr. The lists will be used to select the best classifiers 

for the dynamic ensemble in the test phase. Third, only the nearest neighbor is used as a 

reference from the Va set.  

 

A description of the steps to follow to perform the dynamic ensemble selection of learner-

descriptor classifiers is presented in Algorithm 2.1.  
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Algorithm 2.1   Dynamic ensemble selection of learner-descriptor classifiers (LDCs) 

 
Input: Set of d descriptors calculated from the original set of spines. 
Output: Te set labeled by class according to the dynamic ensemble of LDC. 
Method: 

1. For each descriptor, the samples are divided into three sets: Tr, Va and Te. 
2. An LDC is trained with each Tr set of every descriptor, generating one pool. 
3. Compute a list of ranked LDCs per class using 3-fold CV. 
4. For each test sample t in the Te set: 

a. Obtain the decision of each LDC in the pool. 
b. If all LDCs coincide, the test sample t is labeled accordingly. 
c. Else 

i. Look in the Va set for the nearest neighbor of t. 
ii. Using the LDCs ranking list for the nn class, select the m highest ranked LDCs 

(m is specified by the user). 
iii. Classify the nn using the selected LDCs. 
iv. If at least one LDC correctly classified the nn: 

1. Generate the ensemble with the LDCs that correctly classified the 
nn. 

2. Classify t according to the maximum sum of the predicted 
probabilities of the ensemble. 

v. Else 
Use the highest ranked LDC for the nn class to classify t. 
 

 

Three scenarios are possible when classifying a test sample (step 4, Algorithm 2.1). In the first 

scenario, all the LDCs agree on the class type; hence, the classification is unanimously decided 

(step 4.b in Algorithm 2.1). In the second scenario, not all the LDCs agree, and therefore, the 

nn must be found in the Va set. The best m highest ranked LDCs capable of categorizing the 

nn form an ensemble that predict the class of the t (step 4.c.iv Algorithm 2.1). Table 2.4 shows 

an example of a classification of a test sample with nn and the best 3 highest ranked LDCs per 

class. Table 2.4a displays the ranking of the LDCs per class. For this example, only the best 

three LDCs per class are used during the testing phase. Table 2.4b exhibits the LDCs used to 

classify the nn, which belongs to class 1, and their predictions. LDC_1 is within the first three 

places in the ranked list for class 1, hence it performs a prediction. In the case of LDC_2, it is 

not in the first three places in the ranked list for class 1, and therefore, it is discarded. At the 

end, the LDCs that correctly categorize the nn (LDC_1, LDC_3) are used to form the ensemble. 

In the third scenario, there is neither unanimity nor an ensemble capable of making a 

prediction. This leads us to use the highest ranked LDC for the nn class to classify t. 
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Table 2.4   Example of the analysis of one test sample using the 3 highest ranked LDCs 
per class. a) displays the rank of 6 LDCs per class, computed during the training phase. b) 

shows the classifiers that were employed to perform a prediction on the nn, which 
belongs to class 1 (LDC_1, LDC_2 and LDC_3). Then, the DES ensembles LDC_1 and 
LDC_3 to perform the prediction of the test sample, which were the ones that predicted 

correctly the nn. The crossed LDCs were discarded for the prediction.  

a. Rank of LDC per class 

 

Class 1 Class 2 Class 3 

LDC_1 LDC_4 LDC_5 

LDC_5 LDC_5 LDC_1 

LDC_3 LDC_6 LDC_4 

LDC_4 LDC_1 LDC_6 

LDC_2 LDC_3 LDC_3 

LDC_6 LDC_2 LDC_2 
   

 

b. Ensemble 

 True label 

(nn) 

Prediction Ensemble? 

LDC_1 1 1 Yes 

LDC_2 - - - 

LDC_3 1 1 Yes 

LDC_4 - - - 

LDC_5 1 3 No 

LDC_6 - - - 
    

 

 

2.4 Experimental setup 

2.4.1 Base learning algorithm 

Random Forests is an ensemble of classifier algorithms built on decision trees. It was first 

introduced by Breiman (Breiman, 2001), and was selected as the base learning algorithm for 

this work. It is an ensemble classification method, which means that it is composed of multiple 

decision trees that are encapsulated in a single classifier. Every decision tree is a learner that 

votes on a category for a sample. The category with the most votes is then chosen as the final 

classification for that sample. RF has been widely used, and its performance has been proven 

in various automatic classification problems (Fernández-Delgado, Cernadas, Barro, & 

Amorim, 2014). 
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2.4.2 Feature selection 

Eight descriptors were generated from the original dataset. They were standardized to the 

(−3:3) range for experimentation. We took advantage of RF to compute feature selection and 

reduce dimensionality based on the importance of the features. Algorithm 2.2 describes the 

steps for extracting the best features for one descriptor, and this procedure is repeated for each 

of them.  

 

Algorithm 2.2   Selection of the best features 

 
Input: 1 descriptor. 
Output: 1 descriptor with only best features selected. 
Method: 
1. Generate 10 folds.  

1.1. Train one learner with 9 folds performing inner cross-validation of the hyper-parameters based on 
the internal out-of-bag error. 

1.2. Select the best features based on their importance scores.   
1.2.1.  Compute the scores. 
1.2.2.  Generate 15 intervals to select the features between min and max values of the sorted 

importance scores. 
1.2.3.  Train and evaluate a new model with the best features selected for each interval. 
1.2.4.  Select the best features with the highest accuracy scores. 

2. Return the reduced version of the descriptor with the features that were selected during the 10 folds. 
 

 

2.4.3 Classification 

The DES was used to perform the classification. Its performance was compared to two other 

ensemble learning techniques. The first technique was based on stacking. It combined multiple 

classification learners via a meta-classifier. In the technique, one base learner is trained on one 

of the eight descriptors, (eight base learners in total). Then, the meta-classifier is trained with 

the outputs of the base learners as features and is used for the final prediction. The second 

technique was based on voting ensembles. In this as well, eight base learners are trained with 

one of the eight descriptors, and the final prediction is made based on the argmax of the sums 

of the predicted probabilities. Two metrics were employed to evaluate all three ensemble 
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learning techniques, accuracy and log loss. Algorithm 2.3 shows the steps involved in the 

classification task of each learning technique. 

 

Algorithm 2.3   Evaluation process for an ensemble learning technique 

 
Input: 8 descriptors. 

Output: The accuracy and log loss scores of a 10-fold cross-validation for the ensemble. 

Method: 

1. Generate 10 folds.  
1.1. Train the ensemble with 9 folds performing inner cross-validation of the hyper-parameters 

based on the internal out-of-bag error. 
1.2. Test the ensemble learning technique with the fold that was left out. 

2.  Return the accuracy and log loss scores of each of the 10 folds. 
 

 

2.5 Results 

2.5.1 Feature selection 

The features were selected before the classification, based on the procedure described in 

Algorithm 2.2. The set of features with the highest accuracy were the ones chosen for 

experimentation. Table 2.5 shows the final dimension of each descriptor. 

 

Table 2.5   Feature selection based on importance scores 

Name Original number 
of features 

Reduced number of 
features 

Descriptor 1 204 204 

Descriptor 2 204 51 

Descriptor 3 204 204 

Descriptor 4 17 17 

Descriptor 5 34 17 

Descriptor 6 108 89 

Descriptor 7 136 86 

Descriptor 8 64 25 
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Descriptor 1 

 

 
Descriptor 2 

 

 
Descriptor 3 

 

Descriptor 4 

 

Descriptor 5 

 

Descriptor 6 

 

Descriptor 7 

 

Descriptor 8 

 

 

Figure 2.3   Visualization of the best features of each of the eight descriptors employing 
multidimensional scaling 

 

2.5.2 Classification 

The performance of the algorithms was tested using a 10-fold cross-validation (see Algorithm 

2). The DES employed the best four LDCs per class obtained in Tr to evaluate the nn in the 

test phase. Table 2.6 shows the most effective LDCs. The results of the classification are shown 

in Tables Table 2.7 and Table 2.8. 
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Table 2.6   Best descriptors employed in the test phase of the DES (steps 4.c.i to 
iv in Algorithm 2.1) 

 LDC_1 LDC_2 LDC_3 LDC_4 LDC_5 LDC_6 LDC_7 LDC_8 

Class 1 0 0 1 0 9 10 10 10 

Class 2 1 0 2 1 10 8 9 9 

Class 3 0 0 1 0 10 9 10 10 

 

Table 2.7   Accuracy of the classification 

Folds Voting Stacking DES 
1 0.7423 0.7423 0.7732 
2 0.7113 0.6598 0.6907 
3 0.8041 0.8041 0.8247 
4 0.8351 0.8041 0.8041 
5 0.7423 0.7113 0.7423 
6 0.8041 0.8144 0.8144 
7 0.6979 0.7188 0.7396 
8 0.7368 0.7368 0.7789 
9 0.8105 0.7789 0.7789 
10 0.8298 0.8298 0.8191 

Avg. 0.7714 0.7600 0.7766 
 

Table 2.8   Log loss of the classification 

Folds Voting Stacking DES 
1 0.5966 1.6358 0.5808 
2 0.6792 1.7748 0.6575 
3 0.5273 0.8891 0.4852 
4 0.5438 0.4779 0.4886 
5 0.6116 1.2755 0.6249 
6 0.5651 1.5285 0.5405 
7 0.6520 1.6699 0.6188 
8 0.6016 0.9350 0.5255 
9 0.5656 0.8599 0.5588 
10 0.5532 1.1493 0.5429 

Avg. 0.5896 1.2196 0.5623 
 

 

Table 2.9   Descriptive statistics of accuracy and log loss 

 
Mean Std. Deviation Minimum Maximum 

Accuracy     
     Voting 0.7714 0.0506 0.6979 0.8351 
     Stacking 0.7600 0.0548 0.6598 0.8298 
     DES 0.7766 0.0425 0.6907 0.8247 

Log loss     
     Voting 0.5896 0.0484 0.5273 0.6792 
     Stacking 1.2196 0.4291 0.4779 1.7748 
     DES 0.5623 0.0578 0.4852 0.6575 

 

 

 

 



42 

2.6 Discussion 

We presented two new techniques, leave-one-out and the fan leave-one-out, to calculate three 

descriptors for use in characterizing the spine. These descriptors calculate the relation of one 

vertebra and its neighbors in three ways: applying the Cobb angle method, using the line that 

connects two vertebral centroids with respect to the horizontal axis, and the angle formed 

between two-line segments that connect three vertebral centroids forming a fan-like shape. In 

addition, we employed the dynamic ensemble selection approach to perform an automatic 

classification of spines with scoliosis. The classification aims not only to distinguish among 

three classes, but also to find the LDC or sets of them that best describe each spine. Our 

objective is to provide clinicians with new descriptors and computational assistance for an 

impartial and consistent characterization of spine deformations. 

 

We performed a feature selection process to reduce dimensionality. Table 2.5 shows that 

Descriptors 2, and 5 to 8 reduced their size significantly, while Descriptors 1, 3 and 4 

maintained their size. This reduction was based on the importance of their features.  

 

Figure 2.3 shows that Descriptors 4 to 8 seem to provide the best partition of the classes.  To 

perform the classification, the best four LDCs per class, ranked during the training, were used 

in the test phase to generate the dynamic ensemble. Since the DES depends on the nn to 

perform the prediction, there is no general ensemble that works for all types of curvatures. In 

Table 2.6, LDCs 5 to 8 are notably the most relevant. This is almost in agreement with the 

visualization in Figure 2.3. While LDCs 1 to 4 were practically disregarded during the dynamic 

ensemble, our proposed LDCs, 6, 7, and 8, were always in the list of the best ranked LDCs per 

class and were consistently used to generate the final ensemble. 

 

We compared the performance of the DES classification against two ensemble learning 

techniques, stacking and voting. Tables Table 2.7 and Table 2.8 show the performance of the 

classifiers with two metrics, accuracy and log loss, respectively. Table 2.9 shows the 

descriptive statistics for the two metrics, accuracy and log loss. At first glance, DES slightly 
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outperforms voting and stacking in both metrics. In accuracy, DES (0.7766) has a small 

advantage when compared to voting (0.7714) and stacking (0.7600). Regarding log loss, the 

advantage of DES (0.5623) is higher when compared to stacking (1.2196), and more modest 

in comparison to voting (0.5896). 

 

To evaluate the significance of these differences, the non-parametric Friedman’s test was 

applied. A null-hypothesis was formulated, stating that the DES outperforms the voting and 

stacking ensemble methods. The results of the test are shown in Table 2.10. The following 

parameters were used: level of significance, α = 0.05; corresponding critical value, pα = 5.99; 

and 2 degrees of freedom. 

 

Table 2.10   Results of Friedman's test, considering 2 degrees of 
freedom, significance level α = 0.05, and critical value pα = 5.99 

 Average ranks   

Metric Voting Stacking DES Ft 
Null-

hypothesis 

Accuracy 2.05 1.60 2.35 0.205 Rejected 

Log loss 2.00 2.80 1.20 0.002 Accepted 
 

 

When comparing the three ensemble methods using the accuracy metric, there is no significant 

difference between the three approaches. However, when using the log loss metric, the 

difference is significant (Ft=0.002).  

 

To provide a one-to-one comparison of the log loss metric among the classifiers, a post hoc 

analysis with the Wilcoxon signed-rank test was conducted with a Bonferroni correction 

applied on a pairwise combination. The significance level was set to p < 0.017. The 

performance between all three approaches was significantly different, as seen in Table 2.11. 
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Table 2.11   Results of Wilcoxon Sign-Rank Test, on the 
results using the log loss metric, with a Bonferroni 

correction and significance level p < 0.017 

 Stacking vs. 
Voting 

DES vs. 
Voting 

DES vs. 
Stacking 

Z -2.701 -2.497 -2.701 

Significance 0.007 0.013 0.007 
 

 

The log loss metric evaluates the performance of a classifier by penalizing misclassifications. 

Based on the uncertainty of the prediction, it quantifies how much the prediction differs from 

the correct class. Log loss tends to zero as predictions are closer to being correct. In contrast, 

the accuracy metric only estimates the percentage of correct classifications. In our view, the 

log loss metric provides a more thorough comparison between classification techniques.  

 

The DES outperformed the other algorithms despite being at a small disadvantage: it sacrifices 

20% of the training data to create the Va set where the nn is searched. 

 

2.7 Conclusions 

Our main contribution in this work is to present the leave-n-out and the fan leave-n-out angle 

measurement techniques, which automatically determine the position of each vertebra with 

respect to its neighbors. Three different descriptors were obtained to characterize the curvature 

of the spine using these techniques. The first descriptor was based on the Cobb angle, a clinical 

measurement used in the classification of AIS. The second and third descriptors were two new 

proposed variations of angle calculations carried out among vertebrae. In our experiments, 

these descriptors were the most relevant on the DES, being the most frequently picked for 

performing the classification. 

 

When performing automatic classifications of spine deformities, each type of deformation may 

be characterized by a specific descriptor or combination of them. In this paper, we proposed 

the use of a classifier based on a dynamic ensemble selection. For our implementation, we also 
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proposed an adaptation of the KNORA-E to incorporate the ranked lists of the best LDCs that 

classify the nearest neighbor of each sample. 

 

Our proposed approach does not depend on a specific learning algorithm or descriptor, but 

rather, it dynamically selects the best combination of LDCs for each individual case. To this 

end, the dynamic ensemble selects the specific LDCs that have proven to best characterize 

similar curvatures, instead of using a learner that has been generically trained with many 

different cases that may or may not be related to the one at hand. This versatility offers the 

opportunity to combine well-known clinical-based descriptors with computer-generated ones 

to provide a more intuitive and consistent insight into a specific curvature type, allowing the 

user to analyze the role that each LDC plays during the classification. To the best of our 

knowledge, this is the first attempt at dynamically combining independent descriptors of the 

spine to perform a classification.  

 

Despite sacrificing 20% of the training data to create the validation set to find the nearest 

neighbor for each sample, in our experiments, the DES method modestly outperformed the 

stacking and voting ensemble techniques in terms of the log loss metric. However, the potential 

of a DES approach for characterizing spine deformities extends beyond just classification 

applications. Since the combination of certain learning algorithms with particular descriptors 

allows for a better discernment of specific curvature types, these combinations could be 

analyzed to determine how they complement each other in order to improve the study of a 

particular type of deformation. This could also help clinicians to extend their current gold 

standard methods with 3D descriptors. In addition, regarding the best discerning descriptors, a 

3D sub-classification of AIS could be performed by using a clustering technique.  

 

There are two disadvantages to consider when using DES. First, it requires a large quantity of 

data since it sacrifices a percentage of the data for the Va set. Second, DES is a time-consuming 

algorithm because it has to find the nn, evaluate and classify it, and then perform the ensemble 

to classify each test sample. Hence, it is not recommended for use in real-time applications. 
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For this work, no clinical measurements were available to use as descriptors. As part of our 

future work, we will be experimenting with clinical descriptors in a bid to improve the 

performance of our DES. Additionally, we consider that a bigger dataset could improve the 

performance of the dynamic ensemble, which sacrifices a significant portion of data to generate 

the validation subset, thus reducing the amount of data available for training. 
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3.1 Abstract 

Background: The progression of the spinal curve represents one of the major concerns in the 

assessment of Adolescent Idiopathic Scoliosis (AIS). The prediction of the shape of the spine 

from the first visit could guide the management of AIS and provide the right treatment to 

prevent curve progression.  

 

Method: In this work, we propose a novel approach based on a statistical generative model to 

predict the shape variation of the spinal curve from the first visit. A spinal curve progression 

approach is learned using 3D spine models generated from retrospective biplanar X-rays. The 

prediction is performed every three months from the first visit, for a time lapse of one year and 

a half. An Independent Component Analysis (ICA) was computed to obtain Independent 

Components (ICs), which are used to describe the main directions of shape variations. A 

dataset of 3D shapes of 150 patients with AIS was employed to extract the ICs, which were 

used to train our approach.  
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Results: The approach generated an estimation of the shape of the spine through time. The 

estimated shape differs from the real curvature by 1.83, 5.18, and 4.79 degrees of Cobb angles 

in the proximal thoracic, main thoracic, and thoraco-lumbar lumbar sections, respectively. 

 

Conclusions: The results obtained from our approach indicate that predictions based on ICs 

are very promising. ICA offers the means to identify the variation in the 3D space of the 

evolution of the shape of the spine. Another advantage of using ICs is that they can be 

visualized for interpretation. 

 

Keywords: Prediction of spinal curve progression, Adolescent Idiopathic Scoliosis, 

Independent Component Analysis, Machine Learning, Random Forest 

 

3.2 Introduction 

Adolescent idiopathic scoliosis (AIS) is a complex 3D deformation of the spine which looks 

like an “S” or “C” shape from the posteroanterior plane. It is called idiopathic because its cause 

is unknown. It is the most common type of scoliosis, with a high prevalence in adolescents 

between 10 and 18 years of age. AIS affects between 1 and 4% of adolescents, mainly females 

(Cheng et al., 2015). In a meta-analysis, Cheng et al. (Fong et al., 2010) showed that the global 

prevalence of AIS with the main curvature ≥ 10° was 1.34%. Currently, the evaluation of the 

spine relies mainly on the observation of conventional posteroanterior and sagittal X-rays, 

which constitute the most common imaging modalities for observing the spine in a standing 

position in clinical practice.  

 

The Cobb angle represents the gold standard method for measuring the curvature of the spine. 

Its measurement is based on the most tilted vertebrae, at the top (upper vertebra) and at the 

bottom (lower vertebra) of the curve. The angle is formed by the line parallel to the superior 

endplate of the upper vertebra and the inferior endplate of the lower vertebra. It should however 

be noted that the Cobb angle has certain limitations. First and foremost, it is a measurement of 

a 3D spinal deformity from 2D radiographs. This is noteworthy because two spines with 
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radically different 3D morphologies could yield similar Cobb angle estimations (Labelle et al., 

2011). Furthermore, it is known that Cobb angle measurements could vary by up to 10 degrees 

(Majdouline et al., 2007). This is relevant since two spines with similar curves may render 

different recommendations for treatment (Labelle et al., 2011).  

 

Predictions of the progression of a spinal curve should provide valuable insights into how the 

deformation is going to evolve and should greatly assist in guiding treatment strategies. 

Maturity (chronological, skeletal, and menarcheal age), curve magnitude, and curve location 

(Cheng et al., 2015) have traditionally been the main clinical indices used to assess spinal curve 

progression, with treatment decision based mainly on the curve magnitude: because the Cobb 

angle is normally used to assess the curve magnitude, this therefore means that the treatment 

depends on high-variability measurements.  

 

 Other clinical indices, such as different body length dimensions (sitting height, subischial leg 

length, and foot length or shoe size), secondary sexual characteristics, skeletal age in different 

areas, the Risser index, status of the triradiate cartilage, and electromyography ratios of the 

paraspinal muscle activity, have also been considered as predictors of  curve progression 

(Busscher, Wapstra, & Veldhuizen, 2010; J Cheung et al., 2004; John Cheung, Veldhuizen, 

Halberts, Sluiter, & Horn, 2006; Little, Song, Katz, & Herring, 2000; Sanders, 2007; Sanders 

et al., 2006, 2007). Additionally, the relationship between a rapid growth of the patient and the 

evolution of the spinal deformity has been widely studied (Busscher et al., 2010; J Cheung et 

al., 2004; John Cheung et al., 2006; Little et al., 2000; Lonstein & Carlson, 1984; Ran et al., 

2014; Tan, Moe, Vaithinathan, & Wong, 2009). Noshchenko et al. (Noshchenko, 2015) carried 

out a systematic review of 25 studies presenting clinical parameters that are statistically 

significantly associated with the progression of AIS. However, the parameters presented a 

limited or little evidence as predictors of the final deformation. 

 

Studying the analysis of the spine in 3D is of vital importance, since it can lead to a more 

relevant and reliable 3D classification method for assessing and treating AIS (Labelle et al., 

2011). In this respect, computerized clinical indices (Stokes, 1994a) and geometric descriptors 
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(Duong et al., 2006; Kadoury et al., 2017, 2014; Shen et al., 2014; Thong et al., 2016, 2015) 

have been proposed to capture the complexity of the spinal deformity. However, characterizing 

the spine in 3D space with meaningful descriptors is still challenging. This characterization 

must be capable of retaining the most significant information, not only in order to achieve the 

highest classification performance, but also to be clinically relevant. 

 

In statistical shape analysis, methods such as Active Shape Models or Active Appearance 

Models have been used to study the main directions of shape variations (Cootes, Hill, Taylor, 

& Haslam, 1994; Cootes, Taylor, Cooper, & Graham, 1995; Cootes & Taylor, 1999) with the 

objective of mapping high-dimensional feature vectors onto lower-dimensional 

representations, while maintaining most of the variability of the original dataset. Usually, these 

models use Principal Component Analysis (PCA) to derive the low-dimensional representation 

of the data. The eigenvectors with the highest variance are used as modes of shape variations. 

The main disadvantage of PCA is the assumption of a Gaussian distribution of data, which 

could lead to incorrect descriptions.  

 

Using support vector machines, Assi et al. (Assi, Labelle, & Cheriet, 2014) analyzed several 

dimensional reduction techniques, which were used before surgery to predict the postoperative 

appearance of a patient’s trunk. Recently, a supervised model based on discriminant manifolds 

was proposed to study the 3D morphology of the curve progression (Kadoury et al., 2017). The 

samples in the dataset of the latter were labeled as progressive and non-progressive, based on 

the Cobb angle. However, since there are many forces acting simultaneously in the curve 

progression, the prediction could fail if only patterns related to the Cobb angle are considered, 

which may not necessarily characterize the progression in a 3D space in sufficient detail.  

 

Independent Component Analysis (ICA) is another technique that has been used in shape 

analysis to obtain the modes of shape variations (Rogez, 2005; Ruto, Lee, & Buxton, 2006; 

Üzümcü, Frangi, Reiber, & Lelieveldt, 2003; Zhao et al., 2014). Unlike PCA, ICA generates 

independent non-Gaussian components. It also takes into account higher-order moments of 
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data distribution, instead of variance maximization, as in PCA. Hence, ICA could obtain more 

representative modes of variation from the dataset.  

 

In this work, we propose an approach for predicting the progression of spinal curvatures using 

ICA to capture the modes of shape variation of 3D models of the spine from a cohort of patients 

with AIS. We compared the performance of shape variation modes obtained with ICA against 

a low-dimensional representation of 3D models of the spine, generated from Stacked 

Denoising Autoencoders (SDAE).  

 

3.3 Methods 

3.3.1 3D spine models 

For this study, we selected 150 unique patients from a database of 3D spine models collected 

at the Centre hospitalier universitaire Sainte-Justine, Montreal, Canada. The inclusion criteria 

for our research were: (1) all patients must have at least three visits; (2) these visits must be 

pre-surgery (if surgery was performed); (3) the Cobb angle > 10°; (4) all patients should have 

a Risser index of 0 or 1; (5) the patients ought to have posteroanterior and lateral radiographs 

at each visit. 

 

The gold standard measurement to quantify the curvature of the spine is the Cobb angle, which 

was performed from radiographs. At the first and following visits, lateral and posteroanterior 

spine radiographs were acquired. Usually, the follow-up ended when the patient reached 

skeletal maturity (Risser 4) or underwent surgery. In severe cases, patients undergo 

radiographs every 4 to 6 months during follow-up, which results in higher exposure to ionizing 

radiations. This is the main impediment performing close evaluations to assess progression.  

 

In our approach, for each patient, 3D spine models were reconstructed from each visit using 

stereoradiographic 3D reconstructions from conventional X-rays. All 3D models comprised 

vertebral levels ranging from C7 to S1. A trained technician identified 6 landmarks in each 
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vertebra (superior and inferior endplates, left and right superior pedicles, and left and right 

inferior pedicles).  

 

We aimed to simulate the shape of the spine every three months. However, two aspects had to 

be considered with respect of the patients’ visits: 1) not all the patients had the same number 

of visits, and 2) the time between one visit and the next was not always the same for all patients. 

In order to overcome these limitations, we linearly interpolated transitional 3D spine models 

that represented intermediate visits for each patient as needed. We estimated an interpolated 

value among visits for every landmark on each vertebra. This interpolation was based on the 

speed at which each landmark changes over the span between visits. Finally, a set of 7 3D 

spine models per patient was formed, with each model representing a visit separated by a span 

of three months. 

 

When generating the interpolated models, we always favored preserving models obtained from 

actual visits. Three considerations were taken into account for the interpolations: 1) the 3D 

spine model at the first visit was always preserved; 2) among patients with only three visits, 

we only considered those who had the second and third visits within a ±30-day range from 9 

and 18 months after the first visit, respectively, and 3) if a patient had more than three visits, 

we picked the two visits closest to 9 and 18 months from the first one. As for the remaining 

visits, we included in the model those that were closest (within a ±30-day span) to 3, 6, 12 and 

15 months from the first visit. If no visit was made within that span, we then proceeded to 

interpolate one visit based on the nearest actual ones. 

 

Figure 3.1 shows three examples of patients for whom interpolated 3D spine models were 

generated. Case 1 represents the worst-case scenario, where there are only 3 actual models, 

separated by 9 months: models i3 and i6 were interpolated based on models r0 and r9, while 

models i12 and i15 were interpolated using models r9 and r18. Case 2 had 4 actual models (r0, r6, 

r9-12, and r18): model i3 was interpolated using models r0 and r6. At 6 months, the actual model 

r6 was preserved since it was within the ±30 days range of difference to the current interval. 

Model i9 was interpolated using models r6 and r9-12. Models i12 and i15 were interpolated with 
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the closest models at r9-12 and r18. Model r18 was preserved. In case 3, there were 5 actual 

models (r0, r3-6, r9, r15 and r18+). Model i3 was interpolated by models r0 and r3-6. Model i6 was 

interpolated using r3-6 and r9. Model i12 was interpolated using models r9 and r15. Finally, model 

i18 was interpolated using models r15 and r18+. 

 

0 3 6 9 12 15 18

Case 1

Case 2

Case 3

Time from the first visit (months)

Interpolated model
Actual model

i3 i6 i12 i15

i3 i12 i15i9

i3 i6 i12 i18

r0

r0

r0

r3-6

r9

r9

r9-12

r18

r18

r18+r15

r6

 

Figure 3.1   Three cases of interpolated 3D models of the spine. The black triangles 
correspond to models of actual visits. If they were within 30 days of the cut-off time for an 
interval, they were preserved in the dataset as the models for that interval. Black squares 

represent interpolated models generated based on the nearest actual models. 

 

The 3D models were represented in the Scoliosis Research Society reference frame, where x 

is the horizontal axis that runs from the rear to the front of the patient, y is the horizontal axis 

that runs from right to left, and z is the vertical axis, which goes from the bottom of the patient 

upward (Stokes, 1994a). To align the models of the spines, we followed a process used in 

previous works (Duong et al., 2006; Thong et al., 2016, 2015). All 3D spine models were 

normalized according to the patient height, calculated along the axis defined by C7-S1. Also, 

a rigid transformation was computed to consider the centroid of the superior endplate of S1 as 

the origin of the reference frame. Each 3D spine model consisted of a vector of 306 values, 

corresponding to the 3D coordinates in x, y and z of the 6 landmarks on each vertebra. 
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3.3.2 Descriptors of the spine 

Two sets of descriptors were computed for this work. We used Independent Component 

Analysis (ICA) and Stacked Denoising Autoencoders (SDAE) to obtain a simplified version 

of the 3D models of the spines. The aim here was to capture the main variation of the shape of 

the spine in 3D space.  

 

3.3.2.1 Independent Component Analysis (ICA) 

Independent Component Analysis (Comon, 1994; Hyvärinen & Oja, 2000) is a statistical 

model in which the centered shapes x are described in terms of a linear combination of 

statistically independent components, also called latent variables s, and an unknown constant 

mixing matrix A (x = As). In addition, the independent latent variables must have a non-

Gaussian distribution. By estimating the mixing matrix A, it is possible to obtain the 

Independent Components (ICs) s by computing W as the inverse of A (s = Wx). The ICs are 

used as the modes of shape variations. As in the case of PCA, the modes of shape variations 

can be interpreted by the linear model that combines the mean shape (ẋ) and each IC (s) (x ≈ 

ẋ + sb), where b is the weighted coefficient vector. By modifying b, we can observe variations 

with respect to the mean shape. A method to calculate b is proposed in (Üzümcü et al., 2003). 

 

We used the MetICA (Liu et al., 2016) algorithm to compute the ICs from the 3D models of 

spines. Unlike other algorithms, it statistically evaluates the reliability of the ICs. In MetICA, 

PCA is computed on the centered data, and the denoised matrix Xd is obtained while preserving 

95% of relevant information. FastICA is performed multiple times on Xd to estimate the 

demixing matrix W. Then, for each run, the sources are estimated to form the combined source 

matrix S. Spearman’s correlation coefficient is used to describe the similarity between the 

components from different runs, and the correlation matrix is transformed into a distance 

matrix D. Hierarchical clustering analysis is computed on D. By cutting the dendrogram, a 

number of clusters are obtained. The centrotypes of each cluster are considered as convergence 

points of FastICA. The reliability of the centrotypes is evaluated based on bootstrapping 
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validation. A score is provided to measure how similar the centrotypes are to the estimated 

sources of the bootstrapped data. The centrotypes can be sorted based on the bootstrap score, 

and the higher the score, the more statistically significant it is. 

 

3.3.2.2 Stacked Denoising Autoencoders (SDAE) 

An autoencoder is an unsupervised machine learning algorithm based on feedforward neural 

networks. It is fundamentally characterized by its input vector x being ideally equal to its output 

vector x’ (Bengio, 2009). The process involves two parts. The first part is encoding, in which 

the input is compressed into a low-dimensional representation. The second part is decoding, 

where the output is reconstructed from that low-dimensional representation. In the case of 

denoising autoencoders, the input is corrupted, and the objective is to recover the clean input 

while extracting useful features that capture the structure of the data (Vincent, Larochelle, 

Bengio, & Manzagol, 2008). A typical stacked denoising autoencoder contains several layers 

of nodes. In the encoder, each subsequent layer has fewer nodes than the last one , while in the 

decoder, the number of nodes increases symmetrically to the encoder (Vincent, Larochelle, 

Lajoie, Bengio, & Manzagol, 2010). For dimensionality reduction, the layer that is shared 

between the encoder and decoder (code layer) contains the low-dimensional representation of 

the input, also called codes. An implementation of SDAE for this work was performed based 

on the Keras library, version 2.1.3 (Chollet, 2015) for Python. 

 

3.3.3 Spinal curve shape prediction 

In this study, an approach using chained predictors to estimate the shape of the spine from the 

first visit is proposed. We consider two schemes (a and b) to perform the shape prediction of 

the spine (see Figure 3.2). Each scheme has six chained layers, meaning that the output of one 

layer is the input of the next. The difference between schemes is that a only considers the data 

of the immediate previous visit (short memory), while b considers the data of all previous visits 

(long memory). 
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a 

X0 X1;

X1 X2;

X2 X3;

X3 X4;

X4 X5;

X5 X6

a0

a1

a2

a3

a4

a5  

b 

X0 X1;

X0,X1 X2;

X0,X1,X2 X3;

X0,X1,X2,X3 X4;

X0,X1,X2,X3,X4 X5;

X0,X1,X2,X3,X4,X5 X6b5

b4

b3

b2

b1

b0

 

Figure 3.2   Schemes for shape prediction. Scheme a uses only the immediate output of 
the past visit as input for the next layer. Scheme b takes all previous outputs as input for 

the next layer. 

 

Each layer consists of two tasks and represents the changes from one visit to the next within a 

three-month time lapse. The first task receives as input the ICs obtained from ICA or the codes 

obtained from SDAE. Its output are the estimated ICs or codes of the next visit. The second 

task takes the same input, but the output is the estimated 3D shape of the spine. 

  

Random Forests (RF) was applied to model the changes between visits in both tasks. Breiman 

(Breiman, 2001) introduced RF as an ensemble of decision tree predictors that apply bagging 

and random selection of features at each split of each tree. Predictions are made by combining 

decisions from a set of decision trees, which are constructed independently using a different 

subsample of the data. RF is able to capture non-linear relationships between the features and 

the target, and can be applied to classification, regression and feature selection tasks. 

Regressions models usually predict only one target. If predictions of more targets are desired, 

it is possible to concatenate multiple regression models. However, the relationships between 

the models are not considered. Conversely, RF has the characteristic of performing multi-

output regressions natively. It captures the dependencies between the different target variables, 

as opposed to other models that build a predictor for each target (Borchani, Varando, Bielza, 

& Larrañaga, 2015). These characteristics make RF suitable to be applied as a predictor in the 

layers of the schemes. The RF regression implementation of the Python library scikit-learn 

version 0.19.1 (Pedregosa et al., 2011) was used in this work. 
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3.4 Results 

3.4.1 Descriptors of the spine 

An independent component analysis was performed on 1050 3D models of the spine (150 

patients x 7 3D spine models each) to describe the main variations of the shape of the spine. A 

set of 9 ICs was obtained from the dataset. These ICs captured 95% of the variability of the 

shape of the spines.  

 

Table 3.1 presents the modes of variation of the shape and the positions of the spines in the 

posteroanterior (PAP), sagittal (SP) and apical planes (AP) with respect to the mean shape. 

The shapes are projected onto each IC, and a histogram is obtained from the projections. The 

variance of the ICs was estimated by using the width of the histogram w. The value of w is 

varied between ±w/2 to visualize the modes of variation with respect to the mean shape, as 

proposed in (Üzümcü et al., 2003). 

 

For the stacked denoising autoencoders, we used the architecture shown in Figure 3.3. The 

hyper-parameters were optimized by grid search cross-validation. The code layer applies linear 

activation, while the other layers use a rectified linear unit f(x) = log(1 + exp x). A random 

Gaussian noise of 0.4 was added to the 3D models of the spines used as input. 
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Table 3.1   Variation of independent components, obtained from the 3D models of the spines 
with respect to the mean shape. 

IC_1 
           Posteroanterior plane   Sagittal plane       Apical plane 

IC_2 
       Posteroanterior plane   Sagittal plane       Apical plane 

IC_3 
           Posteroanterior plane   Sagittal plane       Apical plane 

IC_4 
        Posteroanterior plane   Sagittal plane       Apical plane 

IC_5 
           Posteroanterior plane   Sagittal plane       Apical plane 

IC_6 
        Posteroanterior plane   Sagittal plane       Apical plane 
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Table 3.1   (Continuation) 
 

IC_7 
           Posteroanterior plane   Sagittal plane       Apical plane 

IC_8 
        Posteroanterior plane   Sagittal plane       Apical plane 

IC_9 
                                                                Posteroanterior plane   Sagittal plane       Apical plane 

 
 

  

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 3.3   Architecture of the stacked denoising 
autoencoders. The layer in the center (9) is the coded 

representation of the 3D models of the spine. 
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3.4.2 Shape prediction 

The prediction of the spine was performed according to two schemes. Scheme a considered 

only the descriptors of the previous visit, while scheme b used all the descriptors of the 

preceding visits (see Figure 3.2). The performance of each scheme was evaluated using a 10-

fold cross-validation procedure. The dataset was divided into 10 sets, with 9 out of the 10 used 

to train the schemes, while the remaining one was used to test them. The predicted shape was 

evaluated against its original representation, and a prediction error calculated using the distance 

between points. The root-mean-squared error (RMSE) metric was used to evaluate the shape 

prediction. 

 

The internal out-of-bag error was applied to validate the hyper-parameters of RF: n_estimators 

[500, 1000] (number of trees in the forest), max_features [0.1, 0.2, 0.3, 0.4, 0.5] (variables 

randomly chosen as candidates at each split), max_depth [5, 10, 15, 20, 25, 30, None] 

(maximum depth of the tree), and min_samples_leaf, [1, 2, 4, 6, 8, 10] (minimum number of 

samples required to be at a leaf node). Table 3.2 shows the RMSE results of evaluating the two 

schemes using the sets of descriptors from ICA and SDAE. Table 3.3 displays the prediction 

of the spines of two patients after 18 months from their first visit.  
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Table 3.2   Average scores by layer of the prediction models using the 
descriptors obtained from ICA and SDAE after 10-fold cross-validation. 
Four root-mean-squared errors (RMSE) were calculated. 3D indicates the 
error in the three-dimensional space. PAP, SP and AP show the RMSE in 

the posteroanterior, sagittal and apical planes, respectively. Each row 
indicates a layer in the scheme. 

ICA 

 RMSE (mm), scheme a  RMSE (mm), scheme b 

Layer 3D PAP SP AP  3D PAP SP AP 

1 7.93 7.71 6.31 9.04  7.92 7.69 6.31 9.03 

2 9.77 9.65 7.57 11.16  8.38 8.02 6.76 9.55 

3 10.35 10.23 8.11 11.74  8.41 8.26 6.72 9.53 

4 10.91 10.72 8.63 12.37  9.09 8.93 7.22 10.27 

5 11.19 11.05 8.76 12.68  9.40 9.22 7.50 10.57 

6 12.01 11.75 9.62 13.57  9.51 9.26 7.66 10.74 

Avg. 10.36 10.18 8.17 11.76  8.78 8.56 7.03 9.95 
          

 

SDAE 

 RMSE (mm), scheme a  RMSE (mm), scheme b 

Layer 3D PAP SP AP  3D PAP SP AP 

1 7.47 7.08 6.63 8.25  7.46 7.06 6.62 8.24 

2 9.53 9.26 7.94 10.66  7.87 7.39 6.91 8.75 

3 10.13 9.94 8.23 11.35  7.70 7.38 6.65 8.57 

4 11.31 11.05 9.22 12.70  8.33 8.13 7.03 9.28 

5 11.80 11.65 9.49 13.19  8.46 8.31 7.10 9.39 

6 12.57 12.34 10.16 14.06  8.57 8.34 7.27 9.55 

Avg. 10.47 10.22 8.61 11.70  8.06 7.77 6.93 8.96 
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We took the scheme b, which was the one with the lowest RMSE with both sets of descriptors 

and compared the magnitude of the main curvature between the predicted spine and the original 

one. Table 3.4 shows the averages of the differences in Cobb angles after the 10-fold cross-

validation. 

 

Table 3.4   Averages and standard deviations of the differences in Cobb angles, in the 
proximal thoracic (PT), main thoracic (MT) and thoraco-lumbar lumbar (TL/L) sections, 

between the predicted and the original shapes of the spine after the 10-fold cross-validation. 
Each row indicates a layer in the scheme. 

 ICA 
scheme b 

SDAE 
scheme b 

Layer PT 
(degrees) 

MT 
(degrees) 

TL/L 
(degrees) 

PT 
(degrees) 

MT 
(degrees) 

TL/L 
(degrees) 

1 -1.65 ± 1.96 -4.71 ± 2.02 -4.61 ± 2.25 -2.34 ± 1.69 -5.68 ± 2.56 -5.75 ± 1.83 
2 -1.69 ± 1.40 -4.94 ± 2.81 -4.40 ± 2.33 -2.22 ± 1.59 -5.46 ± 3.52 -5.35 ± 2.62 
3 -1.76 ± 1.46 -5.25 ± 2.58 -4.57 ± 2.67 -2.48 ± 1.72 -6.11 ± 2.96 -5.48 ± 2.68 
4 -1.75 ± 1.81 -5.45 ± 3.09 -4.91 ± 2.60 -2.36 ± 1.68 -5.87 ± 2.53 -5.14 ± 3.15 
5 -1.98 ± 2.00 -5.43 ± 2.63 -5.16 ± 2.64 -2.82 ± 1.78 -6.42 ± 3.04 -6.05 ± 3.15 
6 -2.15 ± 2.37 -5.27 ± 3.22 -5.11 ± 2.95 -2.86 ± 1.57 -7.06 ± 3.83 -6.42 ± 3.58 

Avg. -1.83 ± 1.83 -5.18 ± 2.72 -4.79 ± 2.57 -2.51 ± 1.67 -6.10 ± 3.07 -5.70 ± 2.84 

 

 

3.5 Discussion 

In AIS, the deformation prognosis varies from patient to patient. Adolescents are in a period 

of growth, which means that their tissues and skeleton are immature. Furthermore, the way the 

shape of the spine changes through time is different from patient to patient as well. For optimal 

treatment, there is a need to identify which patients are at higher risk of curve progression at 

the early stages of the disease.  

 

In this study, we modeled the geometric progression of the spinal curvature based on prior 

observations of retrospective visits. Knowing such progression patterns could assist clinicians 

in monitoring, following up and adequately treating patients according to their specific needs. 

Extracting the relevant geometric components to describe changes in the spine is very 

important for quantification of curvature progression. Labelle et al. (Labelle et al., 2011) 
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showed that the morphology of two similar deformities in 2D are different when they are 

characterized in 3D. Recently, in a retrospective study, expert-based 3D morphological 

descriptors of the spine were proposed to differentiate between two groups of progressive and 

non-progressive curves (Nault et al., 2013). Then, in a prospective evaluation, these 3D 

morphological descriptors were analyzed in order to find a significant difference between the 

two groups at each patient’s first visit (Nault et al., 2014). One limitation of the local 

descriptors presented in (Nault et al., 2013, 2014) is that they can vary depending on the 

patient’s posture during the acquisition of radiographs, which could lead to inaccuracies if used 

as predictors.  

 

On the other hand, computer-based methods such as wavelet compression techniques (Duong 

et al., 2006), manifold characterization (Kadoury & Labelle, 2012; Kadoury et al., 2017), and 

staked auto-encoders (Thong et al., 2016, 2015) have been proposed to characterize the 3D 

models of the shape of the spine by reducing the high-dimension set of features to a new low-

dimension representation. Most of these cited works offer a new 3D classification system of 

AIS based on clustering techniques. From these approaches, only (Kadoury et al., 2017) has 

been proposed for predicting the evolution of AIS. Descriptors are extracted from 3D models 

of the spine and divided into progressive and non-progressive curves based on the magnitude 

of the Cobb angle. Then, a spatiotemporal regression model is computed to predict the 

progression of the spine deformation. The robustness of this method could be affected by the 

well-known high variability of the Cobb angle and its limitation in characterizing the spine in 

3D space. In addition, in spite of its high association with progression, this measure has a 

limited prognostic capacity (Noshchenko, 2015).  

 

Computer-based descriptors offer the advantage of capturing the complex nature of the 3D 

models in low-dimensional space. However, their interpretation is difficult for application in 

everyday clinical practice.  In this work, we found ICA to be a promising technique for 

obtaining the principal modes of variation of the 3D models of the spine. It reduces the 

complexity of the 3D models, in addition to providing an interpretation of the principal modes 

of variation in 3D space, which represents an advantage over the techniques mentioned earlier. 
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ICA is a generative model, which identifies the ICs resulting from a process of mixture of 

components. Building on this concept, we considered the dataset of shapes of spines as a 

mixture of components from which we obtained the ICs, which we used to describe the main 

shape variation.  

 

ICA nevertheless has some disadvantages. It is a stochastic method, which means that with it, 

the same algorithm will not always produce the same output when repeated. Additionally, 

unlike PCA, ICs are not sorted by their significance. MetICA is an implementation of ICA that 

addresses these points by applying a heuristic method, hierarchical clustering and 

bootstrapping validation. 

 

We used MetICA to reduce the input space from 306 coordinates of 3D reconstructions to 9 

ICs. We used these representations to perform a prediction of the shape of the spine from the 

first visit, without using any other clinical descriptor derived from the 3D models of the spine 

or 2D projections. 

 

Our 9 ICs describe 95% of the 3D variability of the shapes in the posteroanterior, sagittal and 

apical planes, as can be seen in Table 3.1. For all the ICs, the apical plane captures the direction 

of the main curvature in the posteroanterior plane. IC_1 mainly captures minor changes in 

thoracic curves in the PAP, and lordosis in the SP. IC_2 captures changes in thoracic curves to 

the right in the PAP, and kyphosis in the SP. IC_3 shows changes in thoracic curves to the 

right in the PAP, and lordosis in the SP. IC_4 displays changes in thoracic curves in the PAP, 

and alignment and kyphosis in the SP. IC_5 represents double curvatures in the PAP, where 

the lumbar curve is significant, as well as kyphosis in the SP. IC_6 shows double curvatures 

in the PAP, where the thoracic curve is the significant, and also shows kyphosis in the SP. IC_7 

displays major changes in thoracic curves in the PAP, and lordosis and alignment in the SP. 

IC_8 mainly captures kyphosis in the SP. Finally, IC_9 presents thoracolumbar/lumbar curves 

in the PAP, and alignment and kyphosis in the SP. 
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Previously, Thong et al. (Thong et al., 2016, 2015) evaluated the relevance of using 

autoencoders (SDAE) for dimensionality reduction in the classification of 3D spinal 

deformities. Based on the encoded versions of the 3D spines, they performed cluster analysis 

and found subgroups within Lenke types. We decided to compare the performance of our 

proposed ICs approach to SDAE. To this end, we configured the code layer in the SDAE 

architecture (see Figure 3.3) to obtain 9 codes in order to match the number of ICs. This meant 

that the same number of components was used as input for shape prediction in both approaches. 

The code layer captures the most relevant information into a compressed representation. 

However, due to the nature of neural networks, there is no direct interpretability of the codes. 

Unlike the codes, ICs can provide an intuition of how the shape changes by visualizing its 

variation modes. 

 

We presented two schemes to compute the shape prediction. Scheme a was a short-memory 

strategy that used the immediate output of the past visit as input for the next layer. As a long-

memory strategy, scheme b took all previous outputs as input for the following layers. The 

results of comparing both schemes using the two sets of descriptors are shown in Table 3.2. 

After a 10-fold cross-validation, it can be seen, through the different layers of the approaches, 

that the error spreads over time. Comparing both schemes, we see that b has the smaller RMSE 

with both sets of descriptors. Hence, incorporating all the information from previous layers 

helps improve the prediction of the following layer. This can be better observed in Table 3.3 

(rows 2 and 4). 

 

Since the shape of the spine develops in 3D space, we evaluated the predictions of the shapes 

in the posteroanterior, sagittal and apical planes. Table 3.2 shows that RMSE scores from 

SDAE present a modest advantage over those from ICA.   

 

When comparing two particular cases of patients (Table 3.2) using scheme b, the descriptors 

from SDAE provided a better prediction on the posteroanterior plane, while the descriptors 

from ICA showed more favorable approximations on the sagittal and apical planes.  
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After performing the 10-fold cross-validation, we observed that scheme b generated a 

conservative prediction. Independently of the descriptors, the magnitude of the Cobb angle in 

the predicted shape was smaller than the original in all the sections of the spine (Table 3.4). 

Using ICs produces a model with lesser curve magnitude differences with respect to the 

originals on average when compared to SDAE. 

 

Our approach could be used clinically to monitor the progression of current patients and to 

evaluate new patients. By simulating the shape of the spine, we could identify which curve 

pattern might be a candidate for progression. Hence, we could help clinicians plan a treatment 

based on our estimations. Also, by analyzing the treatment of the curve pattern that progresses 

up to surgery, we could guide clinicians to identify the proper treatment or surgical 

management based on the progression of the curve pattern rather than on the curve pattern 

alone.  

 

From the 150 patients included in this study, 66 patients were found to have progressive (P) 

curves, which means that there was a Cobb angle difference of 6° or more between the first 

and the last visit. The other 84 patients had non-progressive (NP) curves. We used a 6° 

difference cut-off to determine the progression based on the confidence level of the 

measurement error in radiographs (Nault et al., 2014). 

 

In addition to shape prediction, we compared the ICs at the first visit between P and NP 

patients. There were 53 patients with main thoracic curves and 13 with main thoracolumbar 

curves in the P group, while in the NP group, there were 43 patients with main thoracic and 41 

with thoracolumbar main curves. We found a higher prevalence of progression in main thoracic 

curves (55%) as compared to thoracolumbar curves (24%). This finding was in agreement with 

previous works (Dimeglio & Canavese, 2013; Nault et al., 2013). This dataset was not evenly 

distributed, and had a relatively small size, and as such, these percentages may not be 

representative of the general population. A specific study focused on these types of curves 

could help illustrate a more accurate prevalence for each type of curve. 
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Table 3.5 shows the significance (p-value) of each IC in order to differentiate P and NP after 

performing t-tests. Significant ICs (p-value < 0.05) are presented with an asterisk. We found a 

statistically significant positive correlation of NP with IC_5 (double curvatures in the PAP 

with major lumbar curve and kyphosis in the SP), and IC_9 (thoracolumbar/lumbar curves in 

the PAP, and alignment and kyphosis in the SP) values at the first visit. 

 

Table 3.5   Significance of 
correlation of ICs at first visit with 

progression 

Independent component p-value 
IC_1 0.104 
IC_2 0.102 
IC_3 0.547 
IC_4 0.815 
IC_5 0.011* 
IC_6 0.217 
IC_7 0.808 
IC_8 0.194 
IC_9 0.019* 

 

 

We consider that in a prospective cohort study, the significance of the ICs could be confirmed, 

not only to evaluate the ICs at the first visit, but also to know how the changes of the ICs 

through time is related to the magnitude of the curve. Also, since every IC describes a mode 

of variation of the spine in 3D, an unsupervised analysis could be performed to automatically 

group the components at each visit, and to evaluate if there is a significance level of the groups 

that can provide new insights between the ICs and progression. This knowledge could help 

improve patient follow-up and treatment. 

 

Growth is an essential factor in studying patients with AIS. The main curve progression occurs 

at the peak height velocity phase during puberty. Mainly, thoracic curves are prone to 

progression among 20° to 30° of pre-pubescent children (Dimeglio & Canavese, 2013). A 

curve with a magnitude of more than 30° at peak height velocity has a high probability of 

progression (Little et al., 2000). However, the limitations of using the peak height velocity 
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include the fact that they are a function of several continual height measurements of the patient, 

and they vary according to gender. 

 

Bone age is one of the main parameters used to monitor growth. The Risser index is a common 

method used by clinicians to grade bone age. However, it has been found to be inaccurate for 

this task (Dimeglio & Canavese, 2013; Sitoula et al., 2015),  since patients at peak height 

velocity could be cataloged as Risser 0, along with patients that are not yet in this phase. 

Recently, Sitoula et al. (Sitoula et al., 2015) found a correlation between Sanders’ skeletal 

maturity and Cobb angle in determining curve progression.  

 

Most patients with AIS are female, and as a result, menarche has been used to assess 

progression. However, it is not a reliable indicator since it occurs at a median of 7 months after 

the peak height velocity (Noshchenko, 2015; Sitoula et al., 2015).  

 

Different genes have also been associated with curve progression. Nevertheless, the way the 

studies are designed, along with their replicability, represent the main limitations for their use 

as prognostic descriptors (Noshchenko, 2015).  

 

Given the limitations inherent in using demographic factors to accurately evaluate growth, in 

this study, we proposed a predictive approach to generate the shape of the spine through time, 

considering only geometric descriptors. We decided to generate transitional models between 

real visits in order to visualize changes in the shape of the spine through time.  

 

Evaluating the progression of AIS depends on assessments of radiographs captured between 4 

and 6 months prior to and until skeletal maturity. Hence, the samples in our study were not 

acquired according to a fixed schedule, which meant that we had to interpolate 3D spine models 

linearly. This implies that a possible dependency among the models that were interpolated, 

which could lead to a reduction in the amount of prediction errors. To minimize this effect, we 

always interpolated each visit based on actual ones, and we favored actual visits as inputs to 

our approach. 
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We evaluated the errors using interpolated spine models versus actual visits, and performed 

the evaluation at different intervals on 15 patients with at least 5 visits each.  The patients 

chosen were the ones with the most visits. This helped remove intermediate actual visits at 

certain intervals. Then, interpolated models were generated, replacing the actual visits that had 

been removed. We evaluated the error between the actual and the interpolated visits (average 

± Std. Dev.). We obtained an RMSE of the 3D shape of 7.26 ± 3.17 (mm). We also calculated 

the error in terms of the Cobb angle (degrees) at 1.31 ± 2.50, -0.44 ± 4.05, and -1.28 ± 3.56 of 

the proximal thoracic, main thoracic and thoracolumbar-lumbar sections, respectively.  

Although the change in the shape of the spine is not linear, for patients with less than 5 visits, 

the approximation of the interpolated models between actual visits did not produce significant 

errors.  

 

This study provides a basis for further investigations into the significance of the ICs and curve 

progression in AIS. We consider that the inclusion of peak height velocity and skeletal maturity 

to our approach could be very useful in improving the generation of interpolated transitional 

models, as well as the prediction of spine curve progression.  

 

3.6 Conclusion 

The ability to predict the evolution of spine curves among patients could help clinicians detect 

patients who may have progressive curves. This could help them devise patient-specific 

treatments, which could in turn lead to better outcomes. Currently, the gold standard for 

evaluating AIS patients is the Cobb angle, which presents high variability of measurements 

and does not capture the 3D morphology of the spine. Computer-generated descriptors offer 

the advantage of using standardized data, which eliminates the variability of manual 

measurements and improves reproducibility. In this paper, we propose an approach for 

predicting the progression of spinal curves. Our predictions show the possible development of 

the shape of the spine right from the first visit, and for every three months thereafter, up to a 

period of 18 months. 
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We propose the use of the Independent Component Analysis to capture the variation modes in 

a dataset of 3D spine models of patients with AIS, and compare it with an approach based on 

autoencoders. Although both approaches have the potential to simulate the development of the 

spine in 3D space, one advantage of using ICA over SDAE is that in the former, the descriptors 

can be visualized for interpretation (see Table 3.1). This information could provide clinicians 

with a better insight into how the shape of the spine is expected to evolve through time.   

 

Our proposed work makes predictions based only on 3D models obtained from radiographs 

taken at the first visits by patients. We compare two schemes to generate the predictions, one 

short-memory and one long-memory. The long-memory scheme provides the 3D 

reconstructions closest to the real evolution of patients’ spine curves. This means that inputting 

the information on subsequent visits would potentially significantly improve the predicted 

models.  

 

In future work, we aim to further this study by exploring how the variation modes are related 

to the progression of the curvature in AIS. We will also include local vertebra information to 

the model in order to improve the prediction of the vertebral bodies. Additionally, we will 

incorporate radiographic and other growth indicators. Finally, to improve the robustness of the 

approach, a larger dataset would contribute more diverse curve patterns. 
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4.1 Abstract 

X-ray imaging is the current gold standard technology for the assessment of spinal deformities. 

The purpose of this study is to evaluate a freehand 3D ultrasound system for volumetric 

reconstruction of the spine. A setup consisting of an ultrasound scanner with a linear 

transducer, an electromagnetic measuring system and a workstation was used. We conducted 

64 acquisitions of US images of 8 adults in natural standing position, and we tested three 

setups: 1) Subjects are constrained to be close to a wall, 2) Subjects are unconstrained, and 3) 

Subjects are constrained to performing fast and slow acquisitions. The spinous processes were 

manually selected from the volume reconstruction from tracked ultrasound images to generate 

a 3D point-based model depicting the centerline of the spine. We defined three measurements 

to quantify the variation of the landmarks of the 3D point-based models: the distance between 

spinous processes, and the angles of two adjoint spinous processes with respect to the 

horizontal in the posteroanterior (PA) and sagittal (Sa) planes. Based on these measurements, 

we calculated the root-mean-square error (RMSE) between the models of each subject.  On 
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average, we obtained an RMSE of 6.50 mm, 5.66 degrees in PA, and 6.94 degrees in Sa for 

the thoracic section, and an RMSE of 4.54 mm, 6.74 degrees in PA, and 7.37 degrees in Sa for 

the lumbar section. The landmarks in the lumbar section were more difficult to identify since 

this section contains more muscles. The results suggested that a freehand 3D ultrasound system 

can be suitable for representing the spine. Volumetric reconstructions can be computed and 

landmarking can be performed to model the surface of the spine in the 3D space. These 

reconstructions are promising to generate computer-based descriptors to analyze the shape of 

the spine in the 3D space. 

 

Keywords: Freehand 3D ultrasound, tracked sonography, tracked ultrasound, ultrasound 

images, spine reconstruction, spinous process, adolescent idiopathic scoliosis 

 

4.2 Introduction 

Adolescent idiopathic scoliosis (AIS) is a common deformation of the spine that affects 1 to 

4% of adolescent population, with a greater prevalence among females (Cheng et al., 2015). 

Patients are diagnosed with AIS when the Cobb angle, the angle between the two most rotated 

vertebrae is greater than 10 degrees. The Cobb angle and X-ray imaging are currently the gold 

standard to assess spinal deformities. X-ray imaging allows visualizing the full spine in 

standing position, including the pelvis, and C7 vertebrae.  

 

The treatment of AIS depends on the severity of the curvature and progression. Generally, the 

curve magnitude increases over time. However, how much the magnitude increases depends 

on each individual patient. Patients with Cobb angles of 20 degrees or less usually remain 

under observation, while in whom the angle lies between 20 and 40 degrees are eligible for 

bracing treatment. Patients are candidates for corrective surgery when they have a thoracic 

Cobb angle > 50 degrees or between 40 to 45 degrees in the thoracolumbar section. These 

patients represent 0.1% of the total population with AIS (Cheng et al., 2015). 
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There are three main limitations with the current gold standard when it comes to assessing AIS: 

1) It has been reported that the Cobb angle measurement could have a variation of up to 10 

degrees (Majdouline et al., 2007); 2) 2D radiographs present an oversimplification of the entire 

3D shape of the spine, and 3) Patients with a high risk of curve progression are usually closely 

monitored, with follow-ups every 4 to 6 months. This results in frequent exposure to potentially 

harmful ionizing radiations, and, consequently, an increased risk for breast or lung cancer 

(Doody et al., 2000; Ronckers et al., 2010, 2008). Therefore, a radiation-free imaging method 

for assessing and following up patients would be very beneficial. Magnetic resonance imaging 

could represent a very good alternative to radiography, but does not allow imaging in standing 

position, hence modify the normal posture.  

 

Ultrasound (US) is one of the most inexpensive and widely used radiation-free diagnostic 

image technologies in medicine. It provides images from within the body by applying high-

frequency sound waves on the skin. The waves are reflected to the transducer by the organs as 

echoes. Then, the received signals are processed and displayed as images on the screen. The 

elapsed time from the emission of the wave to its reception from the body is used to create the 

images. These images can be used to diagnose and treat several medical conditions. Prenatal 

health is its most common application; however, it has been exploited to evaluate more 

complex information concerning, for example, cancer, flow of blood, bones and tissues.  

 

Since US in B-mode only produces one 2D image at a given time, it is not suitable for analyzing 

the volume of structures. This would be the main limitation with examining spine deformations 

using US imaging. However, freehand 3D US systems have been developed and applied to 

augment the capabilities of US. This is a non-invasive and low-cost technique that makes it 

possible to generate a 3D view of the anatomy. It combines a tracker sensor that captures the 

position and orientation of the probe, while the 2D images are being acquired in real time. The 

result is a 3D volume that represents the topography of the anatomy. 

 

Recently, freehand 3D US systems have been proposed as an alternative to characterize 

curvatures of the spines (C. J. Cheung, Zhou, Law, & Mak, 2015; C. W. J. Cheung et al., 2015, 
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2013; Ibrahim, Usman, Mohktar, & Ahmad, 2016; Zheng et al., 2016). Approaches to identify 

landmarks on US images, such as the spinous process, transverse process, superior articular 

process and the center of laminae have been reported (Chen et al., 2011; C. W. J. Cheung et 

al., 2013; Koo et al., 2014; Vo, Lou, Le, & Huynh, 2015). All these studies used these 

landmarks as a means to find an equivalent angle to characterize curvatures like the Cobb 

angle. However, a measure conducted in the 2D space is not suitable for performing a full 

description of a 3D deformity. The Scoliosis Research Society has identified the analysis of 

the spine in 3D space as a step forward to improve the assessment, follow-up and treatment of 

AIS (Labelle et al., 2011). 

 

In recent studies, computer-based descriptors (Duong et al., 2006, 2010; Duong, Mac-Thiong, 

et al., 2009; García-Cano et al., 2018a, 2018b) have been proposed to characterize the 3D 

nature of the spine. These descriptors are based on 3D spine models reconstructed from 

stereoradiographic X-rays. Likewise, automatic methods have been proposed to predict the 

curve progression (García-Cano et al., 2018b). By extracting the visible landmarks (spinous 

process, transverse process, superior articular process and laminae) from freehand 3D US 

reconstructions, it could be possible to produce computer-based descriptors to model the spine 

in 3D, similar to the aforementioned approaches, complementing the current 2D 

measurements. Also, a prediction curve deformation model could be applied to personalize 

each patient’s treatment.  

 

In this paper, we investigated a freehand 3D US system using hardware available in clinics, as 

well as, a free, open-source software for data acquisition, pre-processing, calibration to 

reconstruct the shape of the spine of healthy subjects. The paper is organized as follows: In 

Section 2, we present the hardware of our freehand 3D US system, the acquisition protocol, as 

well as our methodology for identifying landmarks and the metrics for evaluating the posture 

of the subject. Section 3 shows the results of our experiments in three setups. Section 4 

discusses our findings, challenges and limitations. Finally, Section 5 concludes the work and 

identifies areas for prospective future work. 
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4.3 Materials and Methods 

4.3.1 Freehand 3D ultrasound system 

The freehand 3D US system consisted of an US scanner Toshiba Xario with a linear transducer 

with a width of 38 mm (Toshiba PLT-704AT/5-11MHz). A USB video capture card (Dazzle 

DVD Recorder HD, Pinnacle) was used to save the digital images produced by the US scanner 

on a computer. An electromagnetic measuring system (EMS) Aurora V2 (NDI Ontario, 

Canada) was used to record the 3D position and orientation of the US transducer in real time. 

This information was synchronized with the US image acquisition. According to the 

information provided by the manufacturer, the tracking system generates a magnetic field in 

the shape of a cube measuring 50 cm per side, with a root mean square error (RMSE) of 0.70 

mm for position accuracy, and an RMSE of 0.20 degrees for orientation accuracy.  

 

The Open-Source Toolkit for Ultrasound-Guided Intervention Systems (PLUS) (Lasso et al., 

2014) was used to perform the temporal and spatial calibrations between the transducer and 

the tracking sensor attached to it. This framework provides a convenient user interface to 

perform each of the steps involved in the calibration, as well as the functionalities for the 

acquisition of the US images, and the volume reconstruction. In this study, we used the 

PlusApp-2.6-Win64 version. The software was tested on an Intel Core i7 3.6 GHz workstation 

with 16 GB of RAM. 

 

4.3.2 Study subjects 

A total of 8 healthy adults (5 women and 3 men; mean age, 30±5.13 years) were recruited for 

this study. The study was evaluated and approved by our institution’s research ethics 

committee. All participants were informed of the acquisition protocol by the first author, and 

they signed a written consent form before being enrolled in this study. The inclusion criteria 

used in this study were: 1) subjects should have no spinal deformation, 2) subjects should have 

no metallic implants, and 3) subjects should not be overweight.  



78 

4.3.3 Acquisition protocol 

Acquisitions were performed in a controlled environment two days per week for two weeks; 

each time, they were done twice on the same day, once in the morning and once in the 

afternoon, for a total of 8 acquisitions per subject. The subjects were asked to use a gown to 

cover the front of their body, while leaving the back exposed. Prior to the first acquisition, we 

measured each subject’s height, weight and waist circumference. Furthermore, two pictures of 

the trunk were taken, the first picture from the posteroanterior plane, and the second from the 

sagittal plane. We tried as much as possible to avoid taking pictures of any identifiable features 

such as the face, hair, birthmarks, tattoos, scars, and other recognizable markings. 

 

In this study, we performed three experiments. The first was done during the first week. We 

acquired the tracked US images by positioning the subject in front of a wall, at a distance of 

15 cm from it (constrained setup). A vertical line was drawn on the wall, and was used as the 

reference to center the subject in the setup (see Figure 4.1). In all the experiments, we adjusted 

the height of the magnetic field generator with respect to the height of the subject, positioning 

the former close to the subject’s region of interest. Four acquisitions were performed for each 

subject using this setup. Since the transducer of the US was not wide enough to capture the 

whole vertebral body, we performed three sweeps in each acquisition. The first one was to the 

left of the centerline (L-sweep) of the spine (tip of the spinous process), the second one directly 

on the centerline of the spine (C-sweep), and the last one, to the right of the centerline of the 

spine (R-sweep). This can be seen in Figure 4.2. 
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Figure 4.1   Image acquisition setup: the electro-magnetic 
measurement system, US scanner, and workstation. 

Figure 4.2  One acquisition 
has 3 sweeps. The white 
boxes indicate the positions 
of the probe in each sweep. 

 

In the second week, we performed the second and third experiments. For the second 

experiment, we separated the subjects from the wall. This implied that the patients were not 

limited by the closeness to the wall or aligned relative to any reference (unconstrained setup). 

We only put a red line on the floor as reference for the subjects, so that they knew where to 

stand up (see Figure 4.1). Two acquisitions per subject were performed the same day, one in 

the morning and one in the afternoon. 

  

For the third experiment, we carried out the acquisitions using the same arrangement as for the 

constrained setup. However, in this session the acquisitions were completed in two modes, fast 

and slow. The fast mode lasted approximately 20 seconds per scanning, while the slow mode 

took approximately 140 seconds. Only one acquisition per mode per patient was obtained. 

Before scanning the subjects, an identification and marking of the vertebrae was performed by 

the operator through palpation of the spinous process (see Figure 4.3). First, the subject was 

sitting on a chair with the head bended forward, exposing the C6 and C7 vertebrae, which were 

identified and marked with a water-based marker. These vertebrae have the most prominent 
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spinous process in the cervical section of the spine. Then, the subject curved the spine and, by 

palpation of the iliac crest bones, the intervertebral space between vertebrae L4 and L5 was 

marked (Figure 4.4). By counting downward from the C7 vertebra, the tips of the thoracic (T1 

to T12) and lumbar (L1 to L4) vertebrae were identified and marked. Later, to validate the 

initial markings, a counting upward from the vertebra L4 to C7 was performed. This procedure 

was validated by two physicians.  

 

Figure 4.3   Identification of 
vertebrae by the operator 

Figure 4.4   Localization of 
the intervertebral space 
between the L4 and L5 

vertebrae 

Figure 4.5   Fix 
reference sensor on the 
subject, 3 inches to the 
left from the centerline 

 

Before performing the acquisitions, temporal and spatial calibrations were carried out. All the 

acquisitions were performed by the same operator. The acquisition of the US data was made 

in B-mode, with the subject in a natural standing position, barefoot and without any support or 

platform that could alter the standing stability of the subject. Also, it is important that patients 

continue breathing naturally to maintain the normal shape of the spine. However, breathing 

and other involuntary movements of subjects could change their position during the 

acquisition. Hence, a reference tool that is part of the tracking system was attached to the 

subject.  The reference tool is used to capture any unintentional shifting, and its location is 

used to correct the position and orientation of the tracked data. This reference tool was fixed 
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three inches to the left of the intervertebral space between the vertebrae L4 and L5 on each 

subject (see Figure 4.5).  

 

Once all the vertebrae were identified with a water-based marker, the operator applied US gel 

on the region of interest to ensure image quality. He then requested the subject to stand still 

behind one of the red lines (depending on the experiment) on the floor, to be centered according 

to the vertical line on the wall (only for the constrained setup), to breathe shallowly, and to 

keep the sight forward with the arms relaxed. Prior to the acquisition, the subject was requested 

to remove any metallic object. For long-haired subjects, we asked them to arrange their hair in 

an updo to have an unobstructed view of the spine. 

 

The calibration of the probe’s frequency was set at 6.6 MHz, and the depth was fixed at 6 cm. 

The gain and the dynamic range were adjusted depending on the subject to enhance the quality 

of the images of the vertebrae. During each scanning, the operator moved the probe upward, 

starting at the fourth lumbar (L4). The position of the transducer was always adjusted to ensure 

that the spinous process was visible in the images. At the end of each acquisition, all subjects 

were questioned whether they experienced any inconvenience or discomfort during the 

procedure. 

 

4.3.4 3D reconstruction of the spine 

The data of each sweep was saved in one raw image file containing the raw images with the 

transformations required to perform the volume reconstruction. As part of the pre-processing, 

all the data that belonged to the US configuration was removed from each of the images 

acquired, and only the region of interest was saved (see Figure 4.6).  

 

The collected sweeps were used to generate a freehand 3D reconstruction. The reconstruction 

consists of arranging every US image into a 3D volume. Then, the value of each voxel is 

determined by the weighted average of all the coinciding pixels, or simply by the last 

coinciding pixel. A method based on the interpolation of nearby voxels was included to 
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compute hole-filling. This process was computed using the image utilities of the PLUS 

software (Lasso et al., 2014). 

 

a 

 

b 

 

Figure 4.6   a) original raw image with dark margins and configuration from the US. 
b) cropped image showing the region of interest. 

 

4.3.5 Anatomical landmark identification 

Once the reconstruction was generated, the volume was displayed in 3D Slicer (Fedorov et al., 

2012) using the volume rendering module. Then, guided by a physician, the operator manually 

identified the spinous processes on the volume reconstructions as anatomical landmarks. When 

the US waves go into the body, most of them are absorbed, and the rest are reflected to the 

transducer, which are used to generate the images. In the case of vertebrae, these reflect most 

of the sound waves, producing a bright section on the image. Also, since the waves cannot 

penetrate the osseous matter, an acoustic shadow is presented behind each vertebral body (Abu-

Zidan, Hefny, & Corr, 2011). 

 

From the sagittal view, we divided the reconstruction in two by identifying the inflexion point 

that divides the lumbar and thoracic sections of the spine. The vertebra L4 was the starting 

point at the bottom of the reconstruction. Also, since we marked and took a note of how many 

vertebrae were acquired of all subjects, we knew how many vertebrae we should identify in 



83 

the reconstruction. To recognize the spinous process, we looked for the acoustic shadows on 

the reconstruction.  Using the three sweeps, we used the sweep 1 or 3 to locate the vertebrae 

in the sagittal plane (see Figure 4.7a). By modifying the volume rendering of sweeps 1 or 3, 

we were able to see in more detail the structure of the surface of the vertebrae. Figure 4.7b and 

Figure 4.7c show the depth of the spinous process in the sagittal view by modifying the display 

values in 3D Slicer. Finally, using sweep 2, we aligned the landmarks to the centerline of the 

spine (see Figure 4.7d).  

 

a b c d 

    

Figure 4.7   Identification of spinous processes 

 

4.3.6 Posture quantification 

Based on the 3D point-based model of the centerline of the spine, we divided the spine into 

thoracic and lumbar sections. To quantify the posture of the subject in each section, we used 

three measurements, the distance between spinous processes, and the angles of two adjoint 

spinous processes with respect to the horizontal in the posteroanterior and sagittal planes (see 

Figure 4.8). The root-mean-square error was calculated to evaluate the anatomical landmarks 

from each acquisition.  
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Figure 4.8   Calculation of the angle formed 
by two adjoint vertebrae (black dots) with 
respect to the horizontal axis in the lumbar 

section, from two planes 
 

4.4 Results 

Table 4.1 shows the anthropometric characteristics of the sample. Two indices were calculated 

based on these measurements. Body Mass Index (BMI), estimated by dividing the weight in 

kilograms by the square of the height in meters, and Waist-to-height Ratio (WtHR), calculated 

by dividing the waist circumference by the height. 

 

Table 4.1   Anthropometric characteristics of the subjects involved in this study 

Subject Genre Age Waist (cm) Height Weight BMI 
WtHR 

(%) 
1 F 33 80 168.5 61.6 21.70 47.48 
2 F 32 74.5 172.5 59.9 20.13 43.19 
3 M 37 70 178.5 60 18.83 39.22 
4 M 32 89 182.5 74.8 22.46 48.77 
5 F 28 77 158 55.5 22.23 48.73 
6 F 33 76.5 159 51.6 20.41 48.11 
7 M 25 73 179 69.6 21.72 40.78 
8 F 21 71 166.5 57.3 20.67 42.64 

Average: 30±5.3 76.4±6.1 171.7±8.2 61.3±7.5 21.02±1.2 44.87±3.9 
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Each acquisition was composed of three sweeps. In total, there were eight acquisitions per 

subject. The average time for the first acquisition was 20 minutes. For the following 

acquisitions, the average time was of 12 minutes, since no anthropometric characteristics or 

pictures were taken. Preparing the subject for each acquisition took around 5 minutes. This 

time included: providing initial instructions, changing of upper clothes for a gown, marking of 

the vertebrae, positioning of the subject and application of US gel. Table 4.2 shows the 

averages of the acquisition time and frames per sweep in three different setups. As well as the 

average of the disk space used to save the raw and pre-reconstruction data. Also, it displays 

the average time to generate a reconstruction and the disk space to save it. 

 

Table 4.2   Statistics per one sweep in different setups. As part of the acquisition, time 
(seconds), number of frames and disk space (megabytes) used are presented. Also, 

disk space (megabytes) after selection the region of interest is displayed, together the 
reconstruction time and disk space for each computed reconstruction. 

Setup 

Average 
time per 

acquisition 
(sec.) 

Average 
frames 

Raw images 
(disk space) 

Crop images 
(disk space) 

Average 
reconstruction 

time (sec.) 

Average 
reconstruction 

(disk space) 

Exp 1* 40 1460 86 72 27 2 

Exp 2┼ 40 1370 80 71 27 2 

Exp 3* 20 691 40 36 30 1.8 

Exp 3* 140 3800 226 200 50 2.1 

*Constrained setup 
┼Unconstrained setup 

 

4.4.1 Volume reconstructions 

Figure 4.9 shows the L-sweep volume reconstruction of three subjects along with their 

corresponding picture from the sagittal plane. It can be observed that the reconstruction 

captures the shape of the spine of the subject. 
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Subject 3 Subject 7 

    

Figure 4.9   Volume reconstruction of the spine of three subjects 

 

In the experiment 1 (constrained setup), we quantified the differences in the location of the 

spinous process marked on the freehand 3D reconstructions across different acquisitions. Three 

measurements were evaluated, distance between spinous processes, and the angle of two 

adjoint spinous processes in the posteroanterior and sagittal planes. We quantified the variation 

of the first three 3D-point-based models of the spine with respect to the fourth.  The results of 

this evaluation are shown in Table 4.3. 

 

In experiment 2 (unconstrained setup), we performed the evaluation of the two 3D-point-based 

models similarly as for experiment 1, the results are shown in Table 4.4. 

 

In experiment 3, we evaluated the two 3D-point-based models of the spine obtained from the 

freehand 3D reconstructions, where the US images were acquired in fast and slow mode. The 

fast and slow models were contrasted against the fourth model from experiment 1, Table 4.5 

and Table 4.6 respectively. 
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Table 4.3   Differences of the first three 3D point-based models of the spine with 
respect to the fourth in experiment 1 

 
Distance (mm) Posteroanterior angle (degrees) Sagittal angle (degrees) 

 
Thoracic Lumbar Thoracic Lumbar Thoracic Lumbar 

Subject RMSE STD RMSE STD RMSE STD RMSE STD RMSE STD RMSE STD 

1 5.82 5.44 6.84 6.41 6.94 6.09 7.59 5.96 7.92 5.64 10.23 8.29 

2 5.32 5.19 4.44 4.05 6.66 6.48 2.39 1.73 10.42 9.98 11.79 10.51 

3 10.48 9.85 5.19 4.31 5.12 4.01 4.40 4.29 5.52 4.97 4.07 2.80 

4 7.57 7.38 3.67 2.14 3.50 3.32 5.70 5.45 5.64 4.84 4.65 4.50 

5 5.52 5.08 5.23 4.05 5.81 5.73 10.41 3.91 7.28 7.16 6.26 4.88 

6 5.29 4.81 4.69 3.27 6.97 6.51 8.16 6.57 5.50 5.16 11.12 5.78 

7 6.62 5.57 3.48 3.18 3.78 3.35 9.40 8.86 5.30 4.56 5.77 4.77 

8 5.40 5.23 2.78 2.73 6.51 6.16 5.87 5.17 7.97 7.70 5.08 4.80 

Average 6.50 6.07 4.54 3.77 5.66 5.21 6.74 5.24 6.94 6.25 7.37 5.79 

 

Table 4.4   Differences between two models obtained from an unconstrained setup 

 
Distance (mm) Posteroanterior angle (degrees) Sagittal angle (degrees) 

 
Thoracic Lumbar Thoracic Lumbar Thoracic Lumbar 

Subject RMSE STD RMSE STD RMSE STD RMSE STD RMSE STD RMSE STD 

1 5.03 5.01 2.00 2.98 2.83 2.83 4.06 1.50 7.03 7.00 8.17 7.00 

2 6.04 5.76 9.65 1.87 5.23 5.16 3.22 2.26 10.56 10.50 12.83 8.15 

3 4.45 4.43 5.09 3.49 6.03 5.68 3.61 1.56 4.57 3.92 3.62 4.55 

4 6.16 6.07 7.33 1.98 3.67 2.84 6.92 1.01 8.45 8.04 9.04 5.24 

5 6.67 6.57 6.73 2.58 9.56 9.46 6.47 6.06 8.79 8.61 6.53 7.39 

6 7.97 7.86 5.42 2.86 6.66 5.33 9.42 4.73 6.54 6.50 9.92 8.46 

7 3.20 3.14 7.68 2.40 9.85 9.56 5.03 3.23 3.91 3.91 7.70 7.82 

8 3.52 3.48 2.97 2.21 8.64 8.64 5.12 3.57 8.85 8.80 7.05 5.66 

Average 5.38 5.29 5.86 2.54 6.56 6.19 5.48 2.99 7.34 7.16 8.11 6.78 
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Table 4.5   Differences between the fast and the fourth model of experiment 1 

 
Distance (mm) Posteroanterior angle (degrees) Sagittal angle (degrees) 

 
Thoracic Lumbar Thoracic Lumbar Thoracic Lumbar 

Subject RMSE STD RMSE STD RMSE STD RMSE STD RMSE STD RMSE STD 

1 6.08 5.96 2.74 2.48 6.58 6.20 3.14 1.98 4.84 4.84 3.38 3.38 

2 7.43 6.90 6.19 5.62 5.48 5.36 2.23 1.98 11.87 10.92 14.08 10.40 

3 5.33 5.13 5.29 3.07 4.31 4.24 3.98 3.90 4.42 4.42 5.24 5.05 

4 9.07 7.76 4.31 3.93 2.19 2.17 3.98 3.92 5.78 5.53 7.90 7.67 

5 4.29 4.28 2.01 1.87 4.62 3.42 5.15 4.45 8.34 8.21 2.89 2.88 

6 3.96 3.02 4.55 2.73 6.58 6.58 7.38 7.19 4.89 4.87 11.23 1.86 

7 7.87 7.46 3.87 3.70 2.58 2.39 8.55 8.22 5.44 5.26 6.25 4.71 

8 5.52 5.44 6.37 6.22 5.48 5.36 7.42 7.36 7.76 7.66 6.79 6.23 

Average 6.19 5.74 4.41 3.70 4.73 4.47 5.23 4.87 6.67 6.46 7.22 5.27 

 

Table 4.6   Differences between the slow and the fourth model of experiment 1 

Distance (mm) Posteroanterior angle (degrees) Sagittal angle (degrees) 

 
Thoracic Lumbar Thoracic Lumbar Thoracic Lumbar 

Subject RMSE STD RMSE STD RMSE STD RMSE STD RMSE STD RMSE STD 

1 4.19 4.19 4.30 3.90 6.55 6.53 7.92 7.81 6.21 6.21 3.49 3.49 

2 4.91 4.91 6.91 6.25 7.23 7.22 2.87 2.48 9.76 7.72 8.72 7.35 

3 4.12 4.10 6.67 5.90 2.28 2.26 5.76 5.75 4.25 4.24 6.19 4.43 

4 8.43 6.03 8.07 6.68 4.10 3.11 3.73 2.88 6.67 6.28 8.44 8.01 

5 3.84 3.81 2.72 2.60 5.33 4.73 5.80 3.59 8.00 7.19 10.74 3.60 

6 3.95 3.07 5.23 1.51 6.21 5.66 7.23 7.10 8.20 7.94 10.99 6.72 

7 6.50 5.93 3.82 3.64 3.90 3.89 9.65 8.34 4.53 4.31 9.42 8.20 

8 4.52 4.51 4.43 3.99 7.19 7.18 5.68 5.45 6.30 6.30 10.58 10.25 

Average 5.06 4.57 5.27 4.31 5.35 5.07 6.08 5.42 6.74 6.27 8.57 6.50 
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Subject S-2 Subject S-3 Subject S-6 Subject S-8 

    
 

Figure 4.10   Subjects with different body composition. Subject S-2 has the leanest mass. 
Subject S-3 is not muscular, but slim build. Subjects 6 and 8 have healthy body 

compositions. 

 

 

4.5 Discussion 

In this study, we modeled the shape of the spine by using a freehand 3D US system. The 

objective is to examine the challenges of these alternative systems to characterize the spine in 

the 3D space. These systems are composed by three main devices, a 2D US scanner, a tracking 

system and a computer. There is no agreement regarding the characteristics of the hardware to 

setup these systems to scan the spine. However, in most of the studies, linear transducers (Chen 

et al., 2011, 2013; C. J. Cheung et al., 2015; C. W. J. Cheung et al., 2015, 2013; Koo et al., 

2014; Ungi et al., 2014; Young et al., 2015) were more frequently used in comparison to 

convex ones (Zheng et al., 2016). Also, magnetic trackers (Chen et al., 2011, 2013; C. J. 

Cheung et al., 2015; C. W. J. Cheung et al., 2015, 2013; Ungi et al., 2014; Young et al., 2015) 

were more recurrent than optical trackers (Koo et al., 2014; Purnama et al., 2009). In most of 

these studies, a custom made software was implemented for the acquisitions and processing of 

the data; the exception was the work of Ungi et al. (Ungi et al., 2014), who used the PLUS 

library (Lasso et al., 2014). 
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The patient is required to be in standing position when modeling the shape of spine. This 

position is the gold standard in clinical practice to evaluate its morphology in the 3D space. In 

comparison to X-rays, the acquisition of US images from the spine takes more time. While 

sweeping the spine, an involuntary motion is produced, either by the operator when pushing 

the transducer on the spine, or by the subject’s natural breathing movements and while trying 

to maintain a stable position. Zheng et al. (Zheng et al., 2016) used a support frame to fix the 

shoulders and the hips during their acquisitions. However, Bellefleur et al. (Bellefleur et al., 

2002), showed that fixing the hips or shoulders produce a change in the natural position of the 

subject. As in (Ungi et al., 2014; Young et al., 2015), we preferred to adopt a natural position 

in our experiments. 

 

We used a freehand 3D US system comprised of an US scanner, an EMS, a grabber connected 

to simple workstation. We employed the PLUS library, which provides the software and 

phantom models to ensure the reproducibility of the setup. One of the advantages of this 

framework is that it allows carrying out the acquisition protocol with different hardware 

without modifying the software.  

 

In our cohort of 8 subjects, all of them were young healthy adults. Most of the participants 

fitted in the category of healthy weight by either of two indices, BMI or WtHR. According to 

the BMI, a healthy weight category is between 18.5-24.9. The categories for WtHR change 

depending on the gender. For a healthy weight in females, the ratio is between 42-48%, while 

for males it is between 43-50%. Subjects with values lower than these ranges are considered 

as underweight. 

  

From the cohort, two of the subjects, S-2 and S-7 were the most muscular. Subject S-3 was not 

muscular, but slim. These three subjects were the ones with more lean mass. In particular, 

subjects S-3 and S-7 were categorized as underweight according to their WtHR. The rest of 

the subjects were in healthy weight under both BMI and WtHR (see Table 4.1).  
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A total of 64 acquisitions were performed. The acquisitions were simple to repeat each time 

following the protocol. To the best of his ability, the operator tried to scan the subject at the 

same frame rate during each sweep. However, as seen in Table 4.2, for experiments 1 and 2, 

there was an unavoidable speed change during the sweeps, hence, a variability in the number 

of frames acquired. The operator preformed three sweeps per acquisition, which were used to 

generate the reconstruction of the spine (see Figure 4.9). In general, the reconstruction can be 

made in less than a minute, and the disk space use to store them is similar to the one used for 

radiograph images (see Table 4.2). 

 

For most of the cases, the operator only applied US gel one time, covering the region of interest 

before the acquisition. However, due to the stiffness and thickness of the muscles in subjects 

S-2 and S-7, the operator had to put more US gel and apply more pressure on the transducer to 

assure that the vertebrae were visible in the US images, mainly in the thoracolumbar/lumbar 

region (see Figure 4.11). 

 

Figure 4.11   Problematic region 
on thoracolumbar/lumbar section 
of the spine due to the stiffness 
of the muscles in subjects S-2 

and S-7. 
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Electromagnetic measuring systems are important tools for computer-assisted interventions. 

These systems have been used to determine the position and orientation of some sensors or 

medical instruments relative to the anatomy of a patient. In our case, the EMS allowed us to 

know the position and orientation of the transducer. According to the manufacturer, the 

transducer can be tracked in a magnetic field in the shape of a cube of 50 cm per side. During 

the acquisitions, we were able to capture the images at a length of 45 cm approximately. This 

was the main limitation to capture the full shape of the spine of the subjects. Also, the height 

of the subject played an important role in the number of vertebrae that we acquired (see Table 

4.7). 

 

Table 4.7   Number of vertebrae 
acquired by subject 

Subject Height Vertebrae 

1 168.5 16 

2 172.5 15 

3 178.5 14 

4 182.5 14 

5 159 16 

6 158 15 

7 179 16 

8 166.5 14 
 

 

An advantage of the EMS is that there is an uninterrupted line of sight between the subject and 

the navigation tools, so it is possible to use the EMS in applications such as tracking 

endoscopes or minimally-invasive procedures (Schicho et al., 2005). Nevertheless, in clinical 

setups, the disturbance caused by metal medical instruments, must be considered in order to 

know how they will affect the accuracy and precision of the measurements. In our setup, we 

detected that the EMS’s system control unit caused noisy images when it was in a range of less 

than 100 cm from the US scanner.  
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The limitation of the length of the field of view could be overcome by using an optical tracker, 

as long as the transducer is visible at all the time. Recently, Prevost et al. (Prevost et al., 2018) 

proposed a method based on convolutional neural network aimed to perform a freehand 3D US 

reconstructions by incorporating an internal measurement unit instead of and EMS or an optical 

tracking system. This method could be an option to replace either of the trackers, but its 

efficiency on spine reconstructions requires further research. 

 

Before computing the volume reconstructions, the US images were cropped and only the region 

of interest was left (see Figure 4.6).  Then, the volume reconstruction of each of the three 

sweeps for every subject was generated. When the US waves go through the skin, some of 

them are reflected to the transducer as an echo as soon as they come into contact with tissues 

or osseous matter. These echoes then are processed to form images. Every interface in the body 

reflects the echoes in different amount depending on the density of the tissue and the speed of 

the sound wave. This is called acoustic impedance.  Fat, muscle and bone have acoustic 

impedances of 0.138 g·cm-1·s-1, 0.170  g·cm-1·s-1 and 0.78  g·cm-1·s-1 respectively (Wagner, 

2013). Since the impedances of fat and muscle are lower than bones, the former will produce 

weaker echoes. On the US images, weaker reflections appear as grey pixels, while stronger 

reflection appear brighter. In the cases of solid structures like the vertebrae, they do not absorb 

the US waves, which produces an acoustic shadow (Wagner, 2013). Figure 4.9 shows the 

sagittal profile of the reconstructions along with the correspondent image of the subject in the 

same profile. Subject S-3, the participant with the lowest BMI and WtHR, had the brightest 

US images and the acoustic shadows generated by the vertebrae are more evident. Also, the 

vertebrae of subject S-7, one of the two with more muscle mass, are less visible compared to 

subject S-3, but clearer in contrast to subject S-1.   

 

Each of the three sweeps per acquisition can be reconstructed individually, or they can be put 

together to generate a unique volume. The disadvantage of a unique volume is that identifying 

the structure of the vertebrae is more time-consuming and less evident in comparison to the 

three individual reconstructions. For this reason, we decided to use the three separate 

reconstructions to perform the vertebral-level identification.  
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Landmark identification is not a trivial work. The thoracic section contains the ribs, which 

produce similar reflections to those of the vertebrae. The lumbar section contains more muscles 

in comparison to the thoracic section. Therefore, the muscles tend to occlude the vertebrae. In 

contrast to radiographs, in US images only the surface of certain regions of the vertebrae are 

visible. The spinous process(Brink et al., 2017; C. J. Cheung et al., 2015; Koo et al., 2014; 

Zheng et al., 2016), transverse process (Brink et al., 2017; Chen et al., 2011; C. J. Cheung et 

al., 2015; C. W. J. Cheung et al., 2015, 2013; Koo et al., 2014; Purnama et al., 2009; Ungi et 

al., 2014),  superior articular process (C. W. J. Cheung et al., 2015, 2013; Purnama et al., 2009) 

and laminae (Chen et al., 2011, 2013; Purnama et al., 2009; Young et al., 2015) are the common 

landmarks used in US images.  

 

In this study, we were able to mark the spinous processes to generate a 3D point-based model 

of the spine. This was performed manually by the operator using the volume rendering module 

of 3D Slicer. We evaluated these models in the thoracic and lumbar sections by calculating the 

distance between each spinous process, as well as the angles of two adjoint spinous processes 

with respect to the horizontal axis in the posteroanterior and sagittal planes. The angle in the 

posteroanterior plane indicates the displacement of the spinous process on the y axis, while the 

angle in the sagittal plane indicates the depth of the spinous process.  

 

For experiment 1, we used the fourth model as reference to compare the first three. We used 

this model because, by the time of the fourth acquisition, the operator had gained experience 

and was able to adjust more efficiently the parameters of the US scanner and the EMS. 

 

Table 4.3 and Table 4.4 contrast the measurements between the experiment 1 (constrained 

setup) and experiment 2 (unconstrained setup) respectively. The errors were similar between 

both setups. However, in the reconstructions we noticed that motion of the subjects was more 

evident in the unconstrained setup. Figure 4.12 shows two reconstructions of the C-sweep from 

subject S-4. The operator detected that this individual was more prone to move during the 

sweeps. For subject S_2, the identification of the spinous process in the lumbar section was 

more difficult, which is reflected as higher errors in Tables 4.3 and 4.4. This was due to the 
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stiffness and thickness of the muscles, which did not permit a good contact with the transducer. 

In both setups, it can be seen that the highest errors were produced at the lumbar section. 

 

  

Figure 4.12   Motion in reconstructions 
from constrained (left) and 
unconstrained (right) setups 

 

During the acquisition, the subjects reported that they felt more comfortable in the constricted 

setup, since they had a reference while looking forward and could maintain the position. Also, 

the operator manifested that the motion of the subject during the acquisitions with the 

unconstrained setup was more noticeable. Thus, we used the constrained setup for experiment 

3. For the acquisitions in this experiment, the operator put extra marks on the back of the 

subject (see subject 8 in Figure 4.10). These marks helped the operator to control the motion 

of the transducer, and to cover regions of the spine equitably in both the fast and slow sweeps. 

 

We compared the models obtained from the fast and slow acquisitions with the fourth model 

from experiment 1. Table 4.5 and Table 4.6 show the results of these comparisons. Although 

the results are similar in terms of the error in the three measurements, for the subjects, it was 

tedious to keep the relaxed standing position for 140 seconds per sweep. Hence, the subjects 
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tended to move more. Also, it was more tiring for the operator to move the transducer upward 

in a slow fashion. 

 

The greater or lesser number of frames per sweep influenced the resolution of the volume 

reconstruction. Since the operator cannot keep the same pace during the sweeps, the number 

of slices vary in different regions of the spine. When the spacing between slices is large, the 

resolution of the volume is low. On the other hand, when the slices are close, a higher resolution 

volume reconstruction can be generated.  Since the errors are similar in either of the three 

experiments, we considered that 40 seconds per acquisition allows a good compromise 

between time, subject’s and operator’s comfort, and number of frames per sweep (around 

1400). 

 

Recently, a volume projection imaging was proposed by Cheung et al. (C. J. Cheung et al., 

2015), to generate a coronal representation of the spine from tracked US images. This method 

has been implemented in the freehand 3D system proposed by Zheng et al. (Zheng et al., 2016). 

They use this projection to calculate an angle equivalent to the Cobb angle. However, the 

angles based on this projection underestimate the spinal deformity compared to the Cobb angle. 

This implies a double disadvantage for the method, since it is well known that Cobb angle has 

already a high-variability of measurements (Majdouline et al., 2007). Since AIS is a 3D 

deformation, a 2D measurements cannot describe spine in enough detail.  

 

For our approach, we used a volume reconstruction and we marked the spinous processes to 

generate a 3D representation of the spine. Although the landmark identification is a time-

consuming process, we were able to identify the spinous processes in the 3D space. We also 

found out that analyzing in more detail the reconstructions’ geography in some subjects, the 

laminae could be identified (see Figure 4.13). The correct location of the center of the laminae 

will be investigated in future work. 
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Figure 4.13   On the left, a sagittal view of four 
thoracic vertebrae. On the right a frontal view of 

the same vertebrae. Red dots indicate the 
spinous processes, and orange dots indicate the 

laminae 

 

In future work, we will use a wider transducer to perform only one sweep per subject, which 

will reduce the acquisition time. Also, the transducer should have a higher penetration 

capability, to evaluate if landmarks can be extracted from freehand 3D reconstructions on 

overweight subjects. Other tracker systems will be evaluated to capture the full shape of the 

spine.  

 

The manual placement of the markers on the volume reconstruction is a time-consuming 

process, which depends on the interpretation of the operator, mainly in the lumbar section 

where the vertebrae are less visible. Practice may improve US image acquisition by the 

operator, as well as reduce the variability of the landmarking.  

 

We aim to improve the quality of the reconstructions by performing an automatic segmentation 

of the vertebrae similar to the one done in (Berton, Cheriet, Miron, & Laporte, 2016). The 

correct segmentation of the vertebrae could help to reduce the manual work and subjectivity 

when placing the landmarks.  
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4.6 Conclusions 

In this study, we made a proof of concept of using a freehand 3D US system for 3D modeling 

of the spine. For this, we acquired US images from the back of eight healthy subjects. This is 

a radiation-free alternative to X-rays for describing the spine shape. From each subject, we 

obtained 3D models that represent the centerline of the vertebral column, based on the spinous 

process of each vertebrae.  

 

The errors in the landmarks in either of the three setups tested were similar. This can be caused 

because the subjects do not maintain the exact same position throughout the different 

acquisitions, the operator moved the transducer at different speeds, or simply because there is 

a margin of error when placing the landmarks on the reconstructions.  

 

Examining the results of our experiments, it is our belief that our proposed method could be 

used to help in the assessment and monitoring of AIS. This assessment could be performed by 

analyzing the landmarks detected on the 3D reconstruction of the spine, which is generated by 

tracking US images from the back of the subject and provide more information about the 

morphology of the spine than 2D measurements. For such an assessment, we consider that the 

constrained setup, would favor the evaluation of patients holding a stable natural position. The 

acquisition could be performed in 40 seconds. This time provides a good trade-off between the 

number of frames per acquisition, and the comfort of patients and operators.  

 

Additional studies with more participants are required to support the identification of the 

landmarks and to ensure the reproducibility of the protocol. Ideally, participants should present 

different types of spine curvatures and body composition. Further studies with a cohort of AIS 

patients would help to validate the application of this method in the follow-up of this disease. 

It is also necessary to investigate the potential application of computer-based descriptors to 

characterize the deformation of the spine based on models obtained from tracked US images. 

This could help to improve the comprehension of the 3D nature of spinal deformations, as well 
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as to assist in the adequation of treatments and follow up of patients by using a radiation-free 

technology. 

 

After our experimentations, we consider that, ideally, a freehand 3D US framework should 

able to: 

 

• Guarantee its usability in individuals with different body compositions. 

• Capture in a single sweep the full length of the spine, and the width of each vertebra. 

• Generate a fast volume reconstruction with enough quality to easily identify the 

landmarks of the spine. This could be accomplished by performing preprocessing steps 

to improve the identification of the vertebrae on the US images. 

• Automatize the landmarking process to decrease variability in the generation of 3D 

models from US images. 

 

Since this framework uses a radiation-free technology, patients could be examined more 

frequently and decrease the use of X-rays for follow-ups, which could help clinicians to adapt 

more effectively patients’ treatments.  

 

 

 



 



 

CHAPTER 5 
 
 

DISCUSSION AND CONCLUSION 

Considerable research has been made to understand the complexity of adolescent idiopathic 

scoliosis. The gold standard methods for assessing spinal deformities are limited since they are 

based on the analysis of radiographs, which implies that the observations are restricted to 2D 

measurements, limiting the characterization of the full morphology of the spine. Moreover, the 

frequent exposition to radiation during the follow-up period on young patients could lead to 

other health problems, such as an increased risk of cancer.  

 

Patients with AIS must undergo constant monitoring, a process that could last a few years 

depending on how early the deformation was detected, and on the magnitude of the curve. If 

the curve increases with time, the patients will need more regular examinations. In severe 

cases, the patients will need surgical correction. The uncertainty in curve progression brings 

with it concerns, both, in patients and their families, and in the clinicians. On the patient and 

family side, knowing a possible outcome of the treatment could help to cope with the mental 

stress related to the use of bracings. On the medical side, if clinicians could know beforehand 

how the shape of the spine of each patient will vary through time, they would be able to provide 

a patient-specific treatment. This could improve outcomes and reduce treatment times, the 

number of medical visits, and therefore, the exposure to radiation. 

 

New computer-based studies have been proposed to address the limitations in key areas such 

as early detection and 3D classification of the spinal deformation, prediction of the curve 

progression, and reduction of radiation during follow-ups. However, the adaptation of these 

studies in a clinical setup is still challenging since they are difficult to interpret and to apply in 

everyday practice. 
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In this research we delineated as main objective the design of a framework to characterize and 

model the variation of the 3D shape of the spine through time. In Chapter 1, we presented a 

literature review, which highlighted the state-of-the-art and its limitations with regard to the 

main objective. From here, we defined three specific objectives: 1) 3D characterization and 

classification of spinal curves, 2) prediction of the shape of the spine, and 3) radiation-free 

imaging for modeling the shape of spine in 3D. 

 

In Chapter 2, we established our first contribution, which comprises two parts, characterization 

of the spine and a classification method to categorize curvatures. We detected a disconnection 

between the gold standard method to quantify spinal deformations and the computer-based 

descriptors used to characterize the spine. Therefore, instead of proposing another automated 

descriptor, we introduced two new measurement techniques. These techniques use angles to 

characterize the spine in 3D. The use of angles for this task is well known in clinical practice.  

 

The two angle-measurement proposed techniques were called leave-n-out and fan leave-n-out. 

These techniques consist of determining the angle of one vertebra with respect to the adjacent 

vertebrae in any of the 3 planes, assuming that similar spinal curvatures would share similar 

angles. The leave-n-out measurement has the advantage that it could be estimated using the 

same technique employed for estimating the Cobb angle, which is a well-known technique 

among clinicians and facilitates the understanding and adopting of this method in clinical 

practice. 

 

The Lenke classification uses 2D measurements to categorize spinal deformations. To include 

3D descriptors in this method could help to improve the categorization of the spines. Compared 

to new 3D classification methods proposed in literature, which are mainly based on cluster 

techniques, we aimed to design a computer-based method that can be used to extend the current 

Lenke classification.  

 

We presented a novel method to classify spinal curvatures. This method was called dynamic 

ensemble selection of learner-descriptor classifiers. This consisted into first, training a set of 
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predictors with different descriptors. And second, categorizing test samples. This 

categorization was performed by automatically selecting the most suitable learner-descriptor 

classifiers. Therefore, the method does not depend on a specific descriptor or predictor, but 

rather, on the best combination of them that describes each test sample. This flexibility allows 

the user to combine clinical or computer-based descriptors to analyze how each of them is 

involved in the classification of a specific curvature, or in a set of similar curvatures. 

 

The clinical relevance of this contribution lies on providing clinicians with an approach that 

can extend their current gold standard methods. On the one side, the angles are easy to interpret 

and help describing the spine in the 3D space. On the other hand, the dynamic selection method 

could aid to disentangle complex or borderline deformations by providing the more suitable 

descriptors to define them. This could assist clinicians to improve the characterization of these 

deformities by identifying patient-specific descriptors, and hence, provide tailored treatments. 

 

The classification method has the limitation of needing a large quantity of data. It requires to 

exclude part of the training data to create a validation set. Also, the prediction of a complex 

test sample can be time-consuming. This is because the algorithm must look for the k-nearest-

neighbors, classify them, and then generate the final ensemble to classify a test sample. This 

presents a limitation for real-time prediction applications.  

 

The main reason for performing follow-ups of patients is the concern of clinicians for the risk 

of an increase in the magnitude of the deformation. In Chapter 3, we presented our second 

contribution, which consisted in longitudinally simulate the changes in the shape of the spine. 

When the Cobb angle increases 6 degrees in the major curvature between the first and the 

current visits, the curve is considered as progressive. The current state-of-the-art does not 

provide methods to visualize how this progression of the curve is modifying the 3D shape of 

the spine in-between visits. Therefore, our proposed approach projects the shape of the spine 

every three months from the first visit, for up to 18 months. We aimed to model the 3D shape 

of the spine every three months to provide information about how the spine changes in the 

short term. 
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Our approach was trained with modes of variation obtained from a dataset containing 3D 

reconstruction models of patients with AIS. The modes of variation were computed applying 

Independent Component Analysis. We decided to apply ICA because it is effective to identify 

the sources that produce the variations. We compared the modes of variation with a low-

dimensional representation of the same 3D models of the spine, produced from Stacked 

Denoising Autoencoders. Our simulations with both representations generated similar results. 

However, the advantage of using the modes of variation over the low-dimensionality 

representation is that the first ones can be visualized for interpretation and comparison. 

 

We compared two schemes for the simulation. The first, called short-memory, was trained with 

data of the immediate previous visit. The second, named long-memory, was trained taking into 

account all previous visits. Our experiments showed that the long-memory scheme foretells 3D 

models of the spine closest to the real progression of patients in comparison to the short-

memory one.  

 

Our clinical contribution of simulating the shape of the spine from the first visit is to help 

clinicians to detect curves that might progress through time. Identifying patients at risk of 

progression could aid clinicians to plan better treatments based on our predicted models. In 

addition, we can easily adapt our approach to simulate the shape of the spine in shorter or larger 

periods of time if necessary. 

 

The main limitation of our second contribution is that we had to generate interpolated models 

when a patient does not have an actual model at a specific time span. The ideal situation would 

be to have a very short gap in between actual visits.  

 

In our first contribution, we characterized the spine and then we classified deformations. In the 

second contribution, we simulated the shape of the spine through time. In both contributions 

we used a dataset containing 3D model reconstructions obtained from radiographs. Therefore, 

we were motivated to find a radiation-free imaging modality for generating similar 3D model 

reconstructions. The acquisition of the images should be performed in a standing position. 
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Ultrasound technology fulfilled all these requirements. In Chapter 4, we present our third 

contribution, a protocol to model the spine from tracked US images. 

 

US images were acquired using a freehand 3D US system. This system was comprised of a US 

scan, an electromagnetic measurement system, and a workstation. In our experimentation, we 

were able to generate a 3D representation of the centerline of the spine. This representation 

was derived by marking the spinous processes on a 3D reconstruction of the spine, which was 

generated from tracked ultrasound images. We tested different setups varying the acquisition 

time. We also tested a setup in which patients were standing up with a visual reference to help 

them maintain a stable position, and another one without the point of reference. 

 

After our experimentation, we considered that an acquisition of the full shape of the spine can 

be achieved in 40 seconds. This is a tolerable time for the patient to maintain a stable natural 

position, and sufficient to capture enough frames for generating the volume reconstruction. We 

also found that patients felt more comfortable and maintained a more stable standing position 

when provided with a visual reference. 

 

We evaluated patients with different body compositions. For subjects with more lean mass, the 

images were difficult to acquire in the lumbar section since they had thicker muscles, and the 

transducer did not make good contact with the spine. However, the vertebrae were easier to 

identify on the images. On the contrary, the image acquisition process was easy in subjects 

with an average body composition, but the spinous processes were not as clear on the images 

as with leaner patients. Nevertheless, with both types of body compositions we were able to 

generate 3D models. 

 

The medical significance of our third contribution lies on supplying clinicians with a protocol 

that could be integrated in clinical setups for the assessment and monitoring of AIS. This 

protocol provides guidance on a setup for US image acquisitions. Since this protocol uses a 

radiation-free technology, the radioactive exposure during monitoring could be reduced. 
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Our protocol has two limitations with respect to the hardware devices. The magnetic field was 

insufficient to scan the full shape of the spine, and the transducer was not wide enough to 

capture the full length of the vertebrae.  

 

In contrast to scanning systems, non-contact 3D optical systems have been used to reconstruct 

the body surface to reduce exposure to radiation. These systems could help to assess the 

external asymmetry of the patients, as well as their progression. However, body composition 

will play a role in the evaluation of the asymmetry in extremely obese individuals. The fast 

acquisition of these system is one of its advantages, compared with tracked ultrasound systems. 

Moreover, lighting conditions and involuntary movement could interfere with the accuracy of 

the 3D reconstructions. Tracked ultrasound and non-contact 3D optical could complement each 

other to improve the monitoring of the shape of the spine using radiation-free technologies.  

 

Radiation-free acquisitions could be intercalated during regular monitoring. Our framework is 

a step forward on the inclusion of radiation-free technologies to reduce potential adverse 

effects caused by the constant use of X-rays in the immature tissue of young patients. In 

addition, our proposed methods for characterizing the spine curvature and its progression could 

provide clinicians not only with automated classification of curves, but also with interpretable 

information that may lead to an insight to help them design patient-specific treatments. 

 

In our framework, we designed methods to characterize and model the variation of the spine. 

However, further studies with patients with AIS still need to be performed to evaluate the 

appropriateness of the protocol for follow-ups of this condition. At least two things should be 

evaluated in further studies, 1) its usability for assessing spine deformities, and 2) its 

reproducibility from the first visit, up to the end of the follow-up.  

 

Also, the inclusion of an automated segmentation of the vertebra on the US images could help 

to ease the visualization of more landmarks on the surface of the reconstruction of the spine. 

Automated landmarking could be performed to reduce the variability of manual marking, and 

the speed to generate the shape model of the spine.  
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Skeletal maturity is an important index for predicting progression in AIS. A volume 

reconstruction of the humeral head can help in the identification of ossification patterns to 

assess skeletal maturity. An extension of our current protocol could include the acquisition of 

tracked US images of the humeral head for this purpose. 

 

Our first two contributions were made by using 3D reconstructions of stereographic 

radiographs. As a future work, it would be highly valuable to evaluate the effectiveness of our 

proposed methods with 3D models of the shape of the spine from tracked US images. 

Another open venue of research is to perform clustering analysis through time using the modes 

of variation to classify progressive and non-progressive spines. We hypothesize that spines 

with low progression will remain in the same cluster, while spines with higher progression will 

move to other clusters containing spines with higher curvatures. The advantage of this method 

would be to use progression curve patterns instead of a strict 6 degrees cut-off from 2D 

measurements. 
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