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Élaboration d’une méthode quantitative d’évalutation des propriétés de l’os cortical au
moyen d’ondes guidées ultrasonores basse fréquences

Daniel PEREIRA

RÉSUMÉ

L’ostéoporose est associée à une réduction de la masse osseuse ainsi qu’à une détérioration

osseuse microarchitecturale, entraînant une réduction de la qualité de l’os et une augmenta-

tion du risque de fracture. La fracture du radius est l’une des fractures ostéoporotiques les

plus fréquentes et peut être considérée comme un site important pour le dépistage précoce de

l’ostéoporose et pour la prévention de fractures futures, telles qu’une fracture de la hanche ou

de la colonne vertébrale. Dans ce contexte, la technique de transmission axiale utilisant des on-

des guidées ultrasonores a été développée pour évaluer la qualité des os dans les os longs tel que

le radius. La méthode peut aller au-delà d’une simple estimation de la densité minérale osseuse

généralement obtenue avec l’absorptiométrie biphotonique à rayons X (DEXA), cette donnée

n’étant pas suffisante pour évaluer le risque de fracture. Les ondes guidées ultrasonores ont le

potentiel d’interroger à la fois les propriétés mécaniques et géométriques de l’os cortical. À

basses fréquences, la sensibilité aux variations de propriétés de l’os intracortical est améliorée

en raison de la profondeur de pénétration accrue obtenue par les différents modes d’ondes

guidées. Ceci est particulièrement pertinent afin d’évaluer les stades précoces de l’ostéoporose

puisque l’initiation de celle-ci est associée à la résorption endostéale. Par conséquent, les ondes

guidées ultrasonores à basse fréquences sont prometteuses en tant que méthode de dépistage

rapide, sûre et portable pour l’évaluation de l’ostéoporose précoce en soins primaires. Ainsi,

le but de ce projet est de mieux comprendre l’interaction physique entre les ondes guidées ul-

trasonores à basse fréquences et la structure de l’os cortical. Pour ce faire, un modèle de l’os

cortical complet, et efficace en termes de calcul, a été mis en œuvre à l’aide de la méthode des

éléments finis semi-analytiques. (SAFE). La méthode permet la simulation d’ondes guidées

ultrasonores dans une coupe transversale d’os multicouches, irrégulières, et hétérogènes mod-

élisée au moyen de matériaux anisotropes et viscoélastiques. Le modèle a été appliqué dans le

contexte de la transmission axiale pour étudier l’effet des propriétés des os intracorticaux sur la

propagation des ultrasons à basse fréquence. Les résultats ont permis d’identifier une config-

uration de sonde appropriée ainsi qu’une stratégie robuste de traitement du signal permettant

d’extraire des caractéristiques significatives des modes ultrasonores. Basé sur ces informa-

tions, un prototype de configuration à transmission axiale a été réalisé afin d’évaluer la perfor-

mance de la méthode sur cinq échantillons de radius ex-vivo. Pour ce faire, un modèle SAFE

paramétré similaire à un os a été mis en œuvre dans une routine d’optimisation automne per-

mettant d’inverser le modèle et déterminer les différentes propriétés de l’os cortical. La config-

uration par transmission axiale à basse fréquence proposée a permis de récupérer des données

fiables d’épaisseur et de densité sur les radius testés ainsi que des données géométriques sup-

plémentaires associées à la forme corticale des échantillons. Les propriétés ainsi prédites sont

associées à un volume cortical beaucoup plus grand en comparaison à la méthode d’inversion

conventionnelle utilisant des fréquences plus élevées. La méthode inverse proposée a le po-

tentiel d’augmenter la détectabilité des stades précoces de l’ostéoporose, ainsi que d’améliorer



X

l’évaluation du risque de fracture. Les résultats disponibles peuvent maintenant être utilisés

pour définir les paramètres et l’instrumentation d’une étude clinique pilote sur la détection de

l’ostéoporose.

Mots-clés: Ostéoporose, Technique de transmission axiale, Ondes guidées ultrasonores, Basse

fréquence, Os cortical, Os endostéale, Méthode des éléments finis semi-analytiques, Problème

d’inversion



Development of a Quantitative Ultrasound Method for the Assessment of Cortical Bone
Properties using Low-Frequency Ultrasonic Guided Waves

Daniel PEREIRA

ABSTRACT

Osteoporosis is associated with a reduction of the bone mass and microarchitectural bone de-

terioration, leading to a reduction in bone quality and to an increase in fracture risk. The radius

fracture is one of the most frequent osteoporotic fractures and can be considered an important

site for the early detection of osteoporosis and to prevent future fractures, such as hip and spine

fractures. In this context, the axial transmission technique using ultrasonic guided waves was

developed to assess bone quality in long bones such as the radius. The method can go beyond

a simple estimation of the bone mineral density typically achieved with dual-energy x-ray ab-

sorptiometry (DEXA), which is not sufficient to assess fracture risk. Ultrasonic guided waves

have the potential to interrogate both the mechanical and geometrical properties of cortical

bone. When operating at low frequencies, the sensitivity to variations in intracortical bone

properties is improved due to the great penetration depth achieved by the ultrasonic guided

wave modes. This is particularly relevant to assess early stages of osteoporosis since early

osteoporosis is known to be associated with endosteal resorption. Therefore, low-frequency

ultrasonic guided waves hold promises as a rapid, safe and portable screening method for as-

sessment of early osteoporosis in a primary care level. Thus, the purpose of this project is

to bring a better understanding of the physical interaction between low-frequency ultrasonic

guided waves and the cortical bone structure. In order to do so, a comprehensive and computa-

tionally efficient cortical bone model was implemented using the semi-analytical finite element

(SAFE) method. The method allows the simulation of ultrasonic guided waves in an irregular,

multi-layer and heterogeneous bone cross-section modeled with anisotropic and viscoelastic

material properties. The model was applied in the context of axial transmission to investi-

gate the effect of intracortical bone properties on the propagation of low-frequency ultrasonic

guided wave modes. The results allowed the identification of a suitable probe configuration as

well as a robust signal processing strategy to extract significant mode features from ultrasonic

responses. With this information, a prototypical axial transmission configuration was built so

that the performance of the method could be evaluated on five ex-vivo radius samples. To do

so, a parametrized bone-like SAFE model was implemented into an autonomous model-based

optimization routine to perform the inverse determination of different cortical bone proper-

ties. The proposed low-frequency axial transmission configuration was able to retrieve reliable

thickness and density values for radius specimens as well as provided additional geometrical

information associated with the cortical shape of the samples. The predicted properties found

were associated to a much larger cortical volume when compared to the conventional inversion

techniques using higher frequency. The proposed inverse method has the potential to increase

the detectability of early stages of osteoporosis as well as improve the assessment of risk of

fracture. The results available can be now used to define the parameters and instrumentation of

a pilot clinical study on the detection of osteoporosis.
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INTRODUCTION

Osteoporosis is defined as a disease characterized by a reduction of bone mass and microar-

chitectural bone deterioration, leading to a severe reduction of the bone strength and, conse-

quently, increasing significantly the risk of future fractures even for low energy traumas (Con,

1991). Despite the financial burden for the government and the high impact of those fractures

on the quality of life of the patients, a deficiency in the management of the diagnosis and the

treatment of osteoporosis can be found in Canada (Papaioannou et al., 2004) and in different

countries around the world (Strom et al., 2011; Giangregorio et al., 2006; Dempster, 2011). In

this context, the radius fracture is the most frequent osteoporotic fracture in elderly patients,

and several studies showed that radius fractures can be used as a predictor of future fracture at

important sites of the body, such as hip and spine (Padegimas & Osei, 2013; Rozental et al.,

2013; Muller et al., 2003). Thus, the early identification and treatment of fragility fractures on

the radius is a great opportunity to prevent future fractures, and reducing all associated costs.

One particular topic of much interest to the biomedical engineering community is the pos-

sibility of using quantitative ultrasound (QUS) to detect and monitor the bone condition. A

cost-effective and non-hazardous in-situ system that can be used to obtain the properties of the

radius in a non-invasive manner is much desirable in this context. For osteoporosis detection,

ultrasonic guided waves have the potential to offer a more complete characterization of the

bone properties than the established method of bone densitometry; the Dual-Energy X-ray Ab-

sorptiometry (DEXA). DEXA can only provide limited information on the mineralization and

geometry of bones whereas QUS would also be sensitive to elastic properties and the presence

of defective bone structural features. Moreover, the cost of DEXA in developing countries is

prohibitive. Thus, there is much interest in alternative QUS techniques, which will have the

advantage of not exposing the patient to ionizing radiation, will be feasible in a primary care

setting and for which the equipment will be affordable relative to DEXA.
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Bone QUS was initially developed in the context of trabecular bone characterization using

transverse transmission devices (Kaufman & Einhorn, 1993). However, the investigation of

cortical bone (Rico, 1997) has attracted significant interest since about 80% of the skeleton is

made of cortical bone, which supports most of the body load, and is involved in osteoporotic

fractures (DG et al., 1991). Cortical bones, such as the radius or the tibia, constitute suit-

able waveguides for the propagation of ultrasonic guided waves, as shown in various studies,

including for instance (Haba et al., 2016; Gluer, 2008, 1997).

The endosteal resorption of cortical bone results in a deterioration of material properties and in

a reduction of the cortical bone thickness (Ritzel et al., 1997). low frequencies (typically below

200 kHz) axial transmission research demonstrated that ultrasonic guided waves are sensitive

to mechanical and geometrical variations in the cortical layer (Yeh & Yang, 2011; Rozental

et al., 2013; Muller et al., 2005). Operating at low frequencies offers the advantage of a lower

attenuation as well as a reduced number of generated modes, which simplifies the signal analy-

sis. In addition, low frequencies guided wave modes tend to achieve greater penetration depths

(when compared to high-frequency) due to its attenuation characteristics. As a consequence,

the sensitivity to variations in intracortical bone properties, which is relevant to assess early

stages of osteoporosis, could be improved when using low-frequencies.

The determination of cortical bone properties using ultrasonic guided waves commonly in-

volves the challenge of solving multi-parametric inverse problems. Current multi-mode char-

acterization methods lie in inversion schemes used to match experimental data with the simu-

lated modes obtained from plate and cylinder models (as an approximation of the actual bone

geometry) (Minonzio et al., 2015; Xu et al., 2016; Kilappa et al., 2015). Recently, more com-

prehensives numerical approaches are being increasingly explored aimed at improving the re-

alism of cortical bone models (Bossy et al., 2004; Haiat et al., 2011; Chen & Su, 2014; Moreau

et al., 2014). Despite the improvements achieved so far, the physical interaction between low



3

frequencies guided waves and the cortical bone structure remains unexplored. In this context,

the semi-analytical finite-element (SAFE) method has been successfully implemented for mod-

eling waveguides with arbitrary cross-section geometry (Thakare et al., 2017; Nguyen et al.,

2017; Tran et al., 2015). The method enables the implementation of multi-layer heterogeneous

and viscoelastic materials (Bartoli et al., 2006). All theses features combined make the method

suitable to model bone as a waveguide in an effective way. However, the method has not been

thoroughly explored yet, being mostly used to model plate or cylinder cross-sectional geome-

tries and using homogeneous materials properties. The implementation of a complex geometry

along with a heterogeneous distribution of material properties has never been investigated in

the literature for bone application. The capability of modeling different features is particularly

interesting at low-frequencies, where the cross-sectional curvature of the cortical bone and its

particular shape play an important role in the propagation of the excited guided wave modes.

Thus, the core of this thesis lies in the implementation of a more comprehensive but compu-

tationally efficient cortical bone model using the SAFE method. A cortical bone model with

an irregular, heterogeneous and multi-layered cross-section and using transversally isotropic

viscoelastic material properties was implemented. The model was used to study the ultrasonic

guided waves propagating in the cortical bone system in different ways. The model was first

applied in the context of an axial transmission configuration in order to investigate the feasi-

bility of first arrival signal (FAS) velocity at low frequencies. The FAS velocity is the most

commonly used method to evaluate bone quality in-vivo and its feasibility at low frequencies

has not been completely investigated yet. The obtained FAS velocity was shown to be asso-

ciated with the velocity of the modes with high excitability. However, due to the interaction

between several high excitability modes around the FAS, the FAS velocity was shown to be a

poor discriminator of cortical bone properties at low frequencies. To address this limitation,

the same SAFE model was used to simulate a multi-element axial transmission configuration,

while using a two-dimensional spatio-temporal Fourier transform (2D-FFT) instead of the FAS
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velocity. More specifically, the effect of intracortical bone properties on the phase velocity and

cut-off frequency of low frequencies ultrasonic guided wave modes was investigated at fre-

quencies between 20 kHz and 85 kHz. The results obtained lead to a more comprehensive

understanding of the physical interaction between the cortical bone curvature and the excitabil-

ity of low frequencies ultrasonic guided wave modes. By selecting an adequate frequency

and position of excitation, the proposed axial transmission configuration was found to be very

promising in assessing cortical bone properties at low frequencies. Hence, this configuration

was then used to perform measurement on five ex-vivo radius samples at frequencies between

5 kHz and 60 kHz. From the measured data, the dispersion curves of the propagating modes

was computed using a 2D-FFT and systematically compared to the simulated modes obtained

with the SAFE model. More specifically, a parameterized bone-like model was implemented

to perform the inverse characterization of the cortical bone properties in the middle 1/3 dia-

physis. The inversion scheme was able to estimate equivalent bone conditions associated to

larger cortical volume, showing remarkable agreement with the values observed in computed

tomography (CT) images. Furthermore, the method retrieved additional information associated

to the geometrical shape, which may be useful to improve the assessment of the risk of fracture

of the cortical bone.

0.1 Objective

The purpose of this thesis is to develop an ultrasonic guided wave method for the assessment

of cortical properties at low frequency aiming at early detection of osteoporosis. In order to

achieve this goal, the following specific objectives were defined:

I. Implement a comprehensive and computationally efficient cortical bone model that al-

lows different geometrical features as well as anisotropic and viscoelastic material prop-

erties.
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II. Perform a simulation study to identify the most promising axial transmission configu-

ration as well as a suitable signal processing strategy to retrieve reliable cortical bone

properties at low frequencies.

III. Implement an autonomous model-based optimization routine to perform the inverse

characterization of the cortical bone properties.

IV. Investigate the potential of the axial transmission configuration and validate the perfor-

mance of the inverse method by performing measurements on ex-vivo radiuses samples.





CHAPTER 1

LITERATURE REVIEW

1.1 Osteoporosis

According to the World Health Organization (WHO) (WHO, 1994), osteoporosis can be de-

fined as “a disease characterized by low bone mass, microarchitectural deterioration of bone

tissue leading to enhanced bone fragility, and a consequent increase in fracture risk”. In

Canada (2008), the Public Health Agency estimated that osteoporosis was diagnosed in ap-

proximately 1.5 million Canadians aged 40 years and over, mostly in women (80%) (Govern-

ment of Canada, 2010). Although osteoporosis can be considered more frequent among older

women, it can affect individuals of all ages and both sexes (Kanis, 1994; MacLaughlin et al.,

2006). Moreover, the symptoms of the disease are rarely detected until the first fracture occurs,

making early diagnosis and treatment challenging. In fact, osteoporosis can be considered the

most common bone disease, and the tendency for it is to become even more common in the

future due to the aging of the population (Hernlund et al., 2013; Rachner et al., 2011).

1.1.1 Osteoporotic fractures

The main consequence of osteoporosis is the severe reduction of bone strength, which signif-

icantly increases the risk of future fractures even for low energy traumas (Kanis, 1994). The

wrist, shoulder, spine and hip are the most common fracture sites and depending on their sever-

ity, fractures can lead to several complications such as hospitalization, disability, and in some

cases, premature death (Ioannidis et al., 2013). A Canadian population study (Tarride et al.,

2012) documented that during the fiscal year 2007/2008, 57,413 hospitalizations and 832,594

hospitalization days were registered due to osteoporosis fractures, accounting for a direct cost

of $1.2 billion for the Canadian government. The study also documented the total cost of $2.3

billion and $3.9 billion, when indirect costs and long-term care costs were respectively taken

into account. In addition, osteoporosis was shown to cause a similar impact on the quality of
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life compared to other chronic diseases, such as arthritis, pulmonary disease, diabetes mellitus

and heart disease (Sawka et al., 2005). Despite its economic burden and high impact on qual-

ity of life, a clear deficiency in management of diagnosis and treatment of osteoporosis can be

found in Canada (Papaioannou et al., 2004) and in different countries around the world (Strom

et al., 2011; Giangregorio et al., 2006; Dempster, 2011). According to a prospective study

(Bessette et al., 2008), less than 16% of those who suffered a fragility fracture received treat-

ment in a period of six to eight months following the fracture, and only 21% of them received

an osteoporosis test during the same period. Since the risk of fracture can be considered higher

after a previous fragility fracture (Sajjan et al., 2012; Eisman et al., 2012; Gehlbach et al.,

2012), the rates of future fractures and all related costs can be significantly reduced through

the adequate identification and treatment of the first fracture.

1.1.2 Radius fracture

The distal radius fracture can be considered the most frequent osteoporotic fracture in elderly

patients. In Canada in 2008 (Tarride et al., 2012), wrist fractures were responsible for 25%

of emergency room visits related to osteoporotic fractures, while hip and vertebral fractures

accounted for 23% and 5%, respectively. In the same year, wrist fractures represented only 9%

of the total care cost, while hip fractures accounted for 53%. For that reason, hip fractures have

so far received more attention from the government and research communities.

In fact, wrist fracture is a minor fracture and the related costs are substantially lower. However,

fragility fractures in one site can be used as a predictor of future fractures in different sites of

the body, such as the hip and spine (Padegimas & Osei, 2013; Rozental et al., 2013; Muller

et al., 2003). Furthermore, the frequency of radius fractures peaks at age 65, approximately 10

years before the peak for hip and spine fractures (Muller et al., 2003), making early diagnosis

at the distal radius important to predict future hip and spine fractures (Oyen et al., 2010). In

other words, the identification and treatment of fragility fractures on the distal radius is a great

opportunity for the early detection of osteoporosis and reduction of its associated costs.
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1.2 X-ray-based techniques for the assessment of osteoporosis

1.2.1 Dual-energy x-ray absorptiometry (DEXA)

Dual-energy X-ray absorptiometry (DEXA) is currently recognized as the gold standard to

diagnose osteoporosis and evaluate the risk of fracture. DEXA measurement is based on dual

X-ray beams of different energy levels, which interact differently according to the body tissue

through which they propagate. Thus, the soft tissue effect can be eliminated and the mineral

content of the bone can be interrogated separately, allowing the calculation of the Bone Mineral

Density (BMD) (WHO, 1994). For the clinical assessment of osteoporosis and risk of fractures

in patients, BMD is expressed in terms of standard deviations of a healthy young adult reference

population, by a parameter commonly called the “T-score”. According to the World Health

Organization (WHO) criteria, osteoporosis is recognized as a T-score of -2.5 or less (Sur, 2004).

The success of DEXA is mainly related to the acceptability of the X-ray technology, since

all the mechanisms involving the interaction of X-rays with bone are well understood Gluer

(1997). Moreover, DEXA densitometers have the ability to assess both peripheral and inter-

nal sites of the body using an acceptable dose of radiation for adults. The major limitation of

DEXA is the fact that it is intrinsically insensitive to the mechanical properties of the bone, giv-

ing only an estimative of the relative risk of fracture through the general relationship between

bone mineral density and mechanical properties (Haba et al., 2016). Furthermore, DEXA

seems to be insensitive to small variations in the BMD, taking several years to confirm a diag-

nosis and also showing difficulties to monitor response to treatments (Gluer, 1997). In addition,

DEXA equipment is also relatively expensive and non-portable, restricting the analysis to large

hospitals and making the access to the technology difficult in developing countries.

1.2.2 Quantitative computed tomography (QCT)

Quantitative Computed Tomography (QCT) is an X-ray modality that performs a volumetric

density measurement with a high spatial resolution. Clinical CT can be generally considered



10

more sensitive to BMD changes when compared to DEXA (Li et al., 2013). Furthermore, the

QCT analyses can separately assess cortical and trabecular bone architectures, which is another

advantage relative to DEXA (Engelke et al., 2009). The main limitations of this technique are

the high dose of X-ray radiation required to reach a good resolution on internal sites of the

body and the high cost of the equipment, both higher than DEXA (Griffith & Genant, 2011).

1.2.3 High-resolution peripheral quantitative computed tomography (HR-pQCT)

High resolution peripheral quantitative computed tomography (HR-pQCT) is a relatively recent

QCT imaging modality for assessing changes in cortical and trabecular bone on peripheral

skeletal sites, such as the radius and the tibia. This technique can assess the bone architecture

with an excellent spatial resolution, between 80-120 μm (Griffith & Genant, 2011), at a lower

cost and smaller radiation doses, lower than an adult hip DEXA dose (Damilakis et al., 2010).

HR-pQCT demonstrates the capability to assess different structural parameters of peripheral

bones, as shown in recent studies on the distal radius (Burt et al., 2014; Kawalilak et al.,

2014; Zhu et al., 2014). Indeed, HR-pQCT can be considered a promising new approach for

estimating bone quality in peripheral sites. However, this X-ray based technique still provides

an indirect assessment of mechanical properties, and, even if it is considered less expensive

than other QCT techniques, it is too costly for a primary care setting.

1.3 Quantitative ultrasound (QUS) for the assessment of osteoporosis

The main motivation that drives the development of ultrasonic methods for osteoporosis as-

sessment is the potential of the technique to directly interrogate the mechanical properties of

the bone Kaufman & Einhorn (1993); Laugier & Haiat (2011). In addition, ultrasonic bone

assessment can overcome the currently standard technique, DEXA, in other aspects, such as

the possibility to separately interrogate the cortical and trabecular regions and the ability to

assess other mechanical parameters than the BMD (Breban et al., 2010). Furthermore, the

ultrasonic equipment is portable, non-hazardous and relatively inexpensive (Gluer, 1997). As

was mentioned before, wrist fractures play an important role in the early detection of future
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fractures of different types. In this context, a cost-effective ultrasound technique to estimate

the distal radius quality would represent an important tool to improve the management of os-

teoporosis. Currently, QUS assessment on radius is performed by two different techniques: (1)

the through transmission method and (2) the axial transmission method. The research using

these techniques are still being developed and a summary of the characteristics, as well as the

advantages and limitations of each technique, is given below.

1.3.1 Through-transmission technique

Through-transmission techniques are based on the interaction between the mechanical prop-

erties and the propagating characteristics of the waves through the bone (Cavani et al., 2008).

The way that the waves interact with the bone depends on the operating frequency and the

geometry of the transducers. Commonly, two transducers, a transmitter and a receiver, are

positioned on opposite sides of the bone, usually in sites containing mainly trabecular bone:

heel, distal radius or fingers (Mano et al., 2013). Ultrasonic parameters, such as attenuation

and speed of sound, are extracted from the measured signal, and then, bone properties can

be estimated. Recently, different devices using through-transmission at the distal radius have

been developed (Breban et al., 2010; Stein et al., 2013). As a limitation, the technique is not

directly sensitive to elastic properties, reflecting mainly the porosity and architecture of the

bone (Nicholson, 2008). In other words, the apparent sensitivity of the technique to the elastic

properties exists most likely because there is a correlation between the structure, the porosity

and the elastic properties, that are reflected together in the ultrasonic measurement.

1.3.2 Axial transmission technique

In axial transmission, the transmitter and the receiver are used to propagate ultrasonic waves

along the axial direction of the bone. In axial transmission the transducers are positioned

on the same side of the skeletal site. This method is mainly applied to long bones, such as

the radius and tibia (Kilappa et al., 2011). Furthermore, in the axial transmission setup, the

generated waves travel along the cortical layer, instead of through the trabecular bone (Sievanen
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et al., 2001; Bossy & Talmant, 2015). The first generation of axial transmission devices was

developed based on the analysis of the time-of-flight (TOF) of the first arrival signal (FAS). In

this approach, the velocity of the fastest mode is calculated by dividing the distance between

the two transducers by the TOF of the first signal. The calculated FAS velocity can be, to some

extent, correlated to the thickness and density of the cortical bone. Correlation between FAS

measurements and bone degradation status has been performed in several clinical studies in

different sites (Muller et al., 2008; Kilappa et al., 2011; Talmant et al., 2009), but this simplistic

approach does not seem to be sensitive enough to assess additional structural parameters to

those predicted by DEXA measurements (Sasso et al., 2009).

1.3.3 Axial transmission using ultrasonic guided waves

Ultrasonic guided wave methods have been successfully applied in non-destructive testing

(NDT) to characterize different classes of materials, including composite plates and complex

structures (Agostini et al., 2003; Chimenti, 1997; Vallet et al., 2014). In the last decade, the

methods have been extensively studied and adapted to cortical bone quality assessment (Tal-

mant, 2011; Nicholson et al., 2002). Most developed axial transmission devices are focused

on the assessment of the cortical tissue, since the cortical bone properties are affected by age-

related bone reabsorption and osteoporosis (Rico, 1997). Furthermore, cortical bone accounts

for the main portion of the skeleton and it supports most of the load of the body (Laugier & Ha-

iat, 2011).

Similarly to pipes in the NDT field, long cortical bones such as the radius or tibia are suit-

able waveguides for the propagation of ultrasonic guided wave modes (Minonzio et al., 2013).

Each propagating mode interacts differently with the mechanical and geometric aspects of the

waveguide, and this multi-modal characteristic can be considered the main advantage of the

method, once the sensitivity of the analysis can be improved through the selection of a de-

sired group of modes in order to interrogate a specific region/parameter of the bone structure.

Recent studies based on this ultrasonic guided wave method already show considerable ev-

idence that the multi-modal approach is more comprehensive and sensitive when compared
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to the single velocity analysis (Ta et al., 2006; Moilanen et al., 2007a). However, due to the

complex propagation characteristic of ultrasonic guided waves and the high number of modes,

sophisticated multi-transducer setups (Minonzio et al., 2010; Moilanen et al., 2013) and signal

processing algorithms (Xu et al., 2010; Sasso et al., 2008; ZhengGang Zhang & Wang, 2013)

must be considered. A brief review of relevant concepts of ultrasonic guided waves theory and

a semi-analytic simulation tool will be presented in the next section.

1.4 Ultrasonic guided waves

Ultrasonic guided waves are mechanical stress waves that propagate along any extended struc-

ture with a cross-section of finite dimensions. The wave energy is concentrated between the

boundaries of the waveguide and travels in the direction parallel to the boundaries. In the quan-

titative ultrasound field, long bones with cylinder-like geometry can be considered as suitable

waveguides for the propagation of ultrasonic guided waves (Minonzio et al., 2013), and for that

reason the discussion will adopt cylindrical coordinates which better represent bone systems

(Figure ??). Extended content on ultrasonic guided wave propagation in cylindrical waveguide

structures can be found in several textbooks (Rose, 2014; Collin, 1990; Cheeke, 2012). Here,

only a brief overview is provided.

1.4.1 Ultrasonic guided waves in cylindrical waveguides

An ultrasonic guided wave in a cylinder can be described by the radial displacement field,

u(r,θ ,z, t), using the following expression:

u(r,θ ,z, t) = u(r)eiϑθ e−i(kz−ωt) (1.1)

where u(r) is the radial distribution function characteristic of a specific mode, k and ϑ are the

wavenumber in the axial and angular direction, respectively, z is the propagation direction, ω

is the angular frequency and t is time. Considering the propagation along the axial direction of

the cylinder, and continuous displacements in the angular direction, ϑ must be an integer and
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is associated with the circumferential order of the mode. The wavenumber k can be complex if

the waveguide has viscoelastic properties or if it is immersed in a viscoelastic medium.

Figure 1.1 Cylindrical coordinates used to represent

the bone system

The wave propagation phenomenon can be described by different parameters, depending on

which kind of waves and the aspects or components to be considered. A common parameter

for ultrasonic guided waves is the phase velocity, Cp which is defined as the rate at which the

phase of the wave propagates in space. It is given by the wavelength Λ divided by the period T

of vibration (equation (1.2)), or similarly dividing the angular frequency ω by the wavenumber

k (equation (1.3)).

Cp =
Λ
T

(1.2)

Cp =
ω
k

(1.3)

Another important parameter is the group velocity, Cg, defined as the velocity at which the

energy of the wave propagates through space, giving an idea about how fast the energy of the

wave is propagating along the z direction.

Cg =
∂ω
∂k

(1.4)
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The group velocity will always be smaller than the fastest bulk wave present in the system

and is given by the derivative of the angular frequency with respect to the derivative of the

wavenumber, as shown in equation (1.4).

1.4.1.1 Dispersion curves

Ultrasonic guided waves exhibit dispersive characteristics of phase velocity and group velocity

along the frequency axis. As a result of dispersion effects, the shape of the energy envelope that

propagates along the structure is distorted, decreasing the amplitude of the signal. The disper-

sion curves are commonly used to predict those dispersive characteristics for each ultrasonic

guided wave modes and for a specific frequency range. In order to select the most promis-

ing ultrasonic guided wave modes and operating frequency, it is fundamentally important to

understand the dispersion curves of ultrasonic guided wave modes propagating in a certain

waveguide.

In cylindrical waveguides, there are three families of ultrasonic guided wave modes: longitu-

dinal, torsional, and flexural, each one with an infinite number of modes. Thus, the number of

modes presented in a dispersion curve chart is only limited by the frequency and wavenumber

range. Longitudinal and torsional modes are commonly abbreviated as L(0,N) and T (0,N),

respectively, where the first parameter indicates the circumferential order and the second term

distinguish the modes of the same family. The circumferential order for both longitudinal and

torsional modes is zero, which means that the the mode-shape is constant around the circumfer-

ence, in other words, they are axially symmetric. Flexural modes are abbreviated as F(ϑ ,N),

where the circumferential order in the first parameter is always 1 or higher.

Figure 1.2 shows the displacement field in the radial direction for longitudinal and flexural

modes for a hollow steel cylinder at a frequency of 100 kHz. The geometrical parameters

and material properties of the cylinder are given in Table 1.1. The displacement fields were

obtained using the methodology presented in the section 1.4.2. Note that the longitudinal mode

L(0,1) has radial displacement constant around the circumference, while the flexural modes of
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Table 1.1 The geometry parameters and material

properties of the hollow cylinder.

Cylinder in vacuum

Inner radius (mm) 7

Outer radius (mm) 10

Density (kg/m3) 1600

Young modulus (GPa) 4.9

Poisson ratio 0.27

the same family F(1,2), F(2,2), F(3,2) have different circumferential order. Figure

Figure 1.2 Displacement field in the radial direction for

longitudinal (a) and flexural modes (b-d) for a hollow steel

cylinder at frequency of 100 kHz.

1.3 shows the phase velocity dispersion curves of different families of ultrasonic guided wave

modes propagating in a hollow cylinder in a vacuum (Table 1.1).
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Figure 1.3 Phase velocity dispersion curves of ultrasonic guided

wave modes in a hollow cylinder in vacuum. The dispersion

curves were obtained using the methodology presented in the

section 1.4.2.

1.4.1.2 Mode shape

The mode shape of an ultrasonic guided wave mode shows the distribution of the displacement,

stress and energy fields along the cross-section of the waveguide. For each ultrasonic guided

wave mode and each frequency in the dispersion curve, those quantities are different. Figure

?? shows the radial displacement variation for the frequency of 80 kHz, 100 kHz and 120

kHz for longitudinal L(0,1) mode shape in a bi-layer cylinder. The geometrical parameters

and material properties of the cylinder are the same given in Table 1.1. for the external layer,

while the internal layer was modeled using different properties (Density= 1400 kg/m3), Young

modulus= 3.5 GPa and Poisson ratio= 0.27 )

The mode shape of the displacement field is commonly used to identify the mode family, but

it is also related with the excitability of the mode. The mode excitability characteristic will be

further discussed later in this thesis.
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Figure 1.4 Radial displacement variation with the frequency for L(0,1) mode shape

in a bi-layer cylinder. The displacement fields were obtained using the methodology

presented in the section 1.4.2

.

Figure 1.5 shows the radial, axial and angular displacements along the thickness of a bi-layer

cylinder waveguide for each mode family. It shows that the flexural mode exhibits displace-

ment in the three directions, however, at the central point the angular displacement is always

zero. The torsional mode exhibits only angular displacement, but it is zero at the central point.

Finally, the longitudinal mode exhibits displacement mainly in the axial direction, but also

some displacement in the radial direction. A summary of displacement features of each family

of modes in a bi-layer cylinder is given in Table 1.2, where Ur Uz and Uq denote radial, axial

and angular displacements, respectively.

Table 1.2 Summary of displacement features of each family of mode

in a bi-layer cylinder system.

Mode Family
Displacement

Radius line Central point

Longitudinal Ur,Uz �= 0; Uq = 0 Ur,Uz �= 0; Uθ = 0

Flexural Ur,Uz,Uq �= 0 Uq = 0

Torsional Uq �= 0; Ur,Uz = 0; Ur,Uz,Uq = 0

1.4.1.3 Modal excitability

Modal excitability is an important parameter that provides information on the amplitude of

modes relative to each other for a given excitation direction. For example, to predict the prop-
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Figure 1.5 Displacement along the radial line according to the mode family for: a)

radial displacement, b) axial displacement and c) angular displacement. The

displacement along the radial line were taken from the displacement field obtained

using the methodology presented in the section 1.4.2.

agating signal at the surface of a plate, excitability curves are crucial to distinguish the modes

that can in fact be excited, and the mode that just exists theoretically and cannot be excited

by a given excitation direction. Like the phase and group velocity, excitability curves are not

constant along the frequency axis. For a given frequency, the modal excitability can be defined

as the ratio of the induced force applied in a given direction to the displacement of the mode

measured at the surface in the same direction. For a point excitation in a cylinder system, we

can assume two different excitations: in-plane and out-of-plane. Using an analogy from the

plate excitability (Wilcox et al., 2005), out-of-plane excitation in cylinders will generates only

circular crested Lamb waves (longitudinal and flexural modes), while in-plane excitation will

generate a combination of circular crested Lamb waves and shear horizontal waves (torsional
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modes), as shown in Figure 1.6. The definitions of in-plane and out of-plane excitation will be

described separately next and they are only valid after the very near field.

Figure 1.6 Plate analogy of circular Lamb waves and shear horizontal waves

generated by out-of-plane and in-plane point excitation in a cylinder.

The out-of-plane point excitability of a specific mode responsible for out-of-plane displacement

can be calculated in terms of the out-of-plane displacement on the surface, ur, by the following

equation:

E(r)
(r) =

ikω
8

(
ur

2

P

)
(1.5)

where i is
√−1, and P the power flow associated with the mode shape. Similarly, the out-

of-plane excitability responsible for the in-plane displacement can be defined in terms of the

out-of-plane and in-plane displacements ( ur and uz, respectively) on the surface of the mode

as:

E(r)
(z) =

ikω
8

( ur∗ uz

P

)
(1.6)

In-plane point excitability

For the in-plane point force, the excitability can be divided into two kinds: the waves generated

in the longitudinal direction z, composed by longitudinal and flexural modes (equations (1.7)
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and (1.8)); and the waves excited in the tangential direction q by torsional modes (equations

(1.9) and (1.10)). The in-plane point excitability in the longitudinal direction responsible for

the in-plane displacement can be expressed by:

E(z)
(z) =

ikω
8

(
uz

2

P

)
cosφ , (1.7)

Where φ is the angular position with respect to the applied force (Figure 1.6). Similarly,

the in-plane point excitability in the longitudinal direction responsible for the out-of-plane

displacement can be defined by:

E(z)
(r) =

ikω
8

( uz∗ ur

P

)
cosφ , (1.8)

Finally, for the tangential direction, q, the in-plane point excitability responsible for the in-

plane displacement (Equation (1.9)) and responsible for the out-of-plane displacement (Equa-

tion (1.10)) can be defined as:

E(z)
(z) =

ikω
8

(
uz

2

P

)
sinφ (1.9)

E(z)
(r) =

ikω
8

( uz∗ ur

P

)
sinφ . (1.10)

1.4.2 Semi-analytical finite-elements method (SAFE)

The Semi Analytical Finite Element (SAFE) method has been extensively used to study uni-

form waveguides of arbitrary cross-sections (Hayashi et al., 2003; Treyssede & Frikha, 2008;

Fan et al., 2008a; Mazzotti et al., 2013; Bartoli et al., 2006). The main advantage of this method

when compared to conventional finite element modeling, is the fact that only the cross-section

needs to be modeled and meshed (Predoi et al., 2007). The method assumes that the waves

propagate harmonically in the axial direction (z direction), and for that reason it can be consid-
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ered computationally more efficient. Moreover, the method is much more comprehensive than

the traditional global matrix method for multilayered media (Pavlakovic & Lowe, 1999; Lowe,

1995). Figure 1.7 shows the arbitrary cross-section waveguide SAFE representation.

Figure 1.7 SAFE representation system; a) meshed arbitrary cross-section

waveguide; b) representation of a waveguide in a multi-layer system (built using

COMSOL Multiphysics Graphic User Interface).

The SAFE approach was first applied to waveguides of arbitrary geometries in the 70s (Kumar,

1972), but through recent development of specific finite element codes and improvements in

system description, such as the consideration of material anisotropy (V. V. Volovoi & Sutyrin,

1998) and leaky waves (Fan et al., 2008b). The first implementation of the SAFE method using

the finite element eigenvalue formalism was done by Predoi et al. (2007), using a commercial

finite element software, COMSOL Multiphysics. In this thesis, a brief review of the SAFE

equations and finite element formalism is given.

1.4.2.1 SAFE in solid waveguide

As mentioned above, the waves are assumed to propagate harmonically in the axial direction

(z direction) of the waveguide. Than, the displacements vector can be described as:

ug (x,y,z, t) =Ug (x,y)e−i(kz−ωt), i =
√−1 (1.11)
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where g=1,2,3 and ρ is the mass density. Considering Cik jl as the elastic constants, the differ-

ential equations of motion for an anisotropic material can be defined using the formalism for

eigenvalues problems by:

Cgh jl
∂ 2Uj

∂xh∂xl
+ i(Cg3 jl + Cgh j3)

∂ (kU j)

∂xh
− kCg3 j3 (kUj)+ρω2δ g jUj = 0, (1.12)

with the subscripts h, l=1, 2, and where δg j is the Kronecker symbol. In a commercial finite

element software, the same formalism can be expressed by:

Λ2eau−Λdau+∇.(−c∇u−αu+γ)+β .∇u+ au = 0 (1.13)

where u represents the unknowns. Comparing the two formalism and considering γ=0 and

ea=0, the coefficients c, α, β , a and da in equation (1.13), can be defined in terms of stiffness

properties, density ρ and ω in order to match to equation (1.12). The detailed description of

the coefficients used in this thesis is given by Predoi et al. (2007). Thus, the equation (1.13)

can be solved for a certain angular frequency ω , resulting in an infinite number of complex

wavenumbers k as an eigenvalue solution of the equation. Dispersion can be achieved by

selecting all the propagative modes among the wavenumber solutions for a desired number of

frequencies.

1.5 Chronological arrangement of the manuscripts

The core of this thesis consist on three journal publications. In addition, this thesis contains two

conference proceeding that are presented as a supplementary content. The contextualization as

well as the chronological sequence of these studies are described next:

Initially, a preliminary study involving 3D finite element (FE) simulations (appendix I) was

performed to evaluate the potential of ultrasonic guided waves assessing the properties of tra-

becular bone at distal radius. The diagnosis of osteoporosis at skeletal sites composed mainly

of trabecular bone is know to be clinically relevant. Therefore, the possibility to assess this site

using ultrasonic guided waves is very motivating. Thus, this simulation study was published on
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this topic in the Proceeding of the 170th Meeting of the Acoustical Society of America (Jack-

sonville, Florida, US), in November 2016. However, the proposed configuration was found to

be very limited at a practical level for the propagation of ultrasonic guided waves due to the

nonuniform nature of the cross-section along the distal region. From this point, the focus of this

thesis changed to the assessment of cortical bone properties in middle 1/3 radius instead. The

assessment of cortical bone have significant interest since it supports most of the body load is

know to be associated with a number of osteoporotic fractures. Furthermore, the middle region

consist in a much more suitable waveguide for the propagation of ultrasonic guided waves.

After that, a SAFE method was developed in the context of axial transmission method on cor-

tical bone. The SAFE model provided a comprehensive and computationally efficient tool

to simulate and understand the propagation of ultrasonic guided waves in the cortical bone

medium. The SAFE method is attractive when modeling constant waveguide with arbitrary

cross-section because of the significant reduction in computation time when compared to con-

ventional 3D finite element (FE) simulation. A journal paper (Chapter 2) was published on

this topic in April 2017 in the Journal of Acoustical Society of America (JASA). This study

consist on the implementation of the SAFE model in the context of axial transmission in the

middle 1/3 radius to investigate the feasibility of first arrival signal (FAS) to monitor degrada-

tion of intracortical properties at low frequencies. The FAS velocity consist on a very simple

approach that has been extensively used to evaluate bone quality in-vivo but feasibility at low

frequencies was completely investigated. From this publication, the FAS velocity was shown

to be a poor discriminator of intracortical bone properties, which was mainly associated with

the destructive and constructive interference between propagating modes in the time-domain

signal at low frequencies.

To address this limitation, a time-spatial frequency analysis technique instead of the FAS ve-

locity was proposed using a large array of receivers. A second manuscript (Chapter 3) was

published on this topic in January 2019 in the same journal (JASA). In this study, the effect

of intracortical bone properties on the phase velocity and cut-off frequency of low-frequency

ultrasonic guided wave modes was determined for different excitation positions on the bone
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surface. The results of this manuscript suggested that by selecting an adequate frequency

and position of excitation, the low-frequency axial transmission (combined with appropriated

frequency-domain signal processing techniques) was able to identify promising mode features

for assessing intracortical bone properties.

Based on the success in the second publication (Chapter 3, an autonomous model-based op-

timization routine was proposed to perform the inverse characterization of the cortical bone

properties. The model used in the second publication was adapted to a parameterized bone-

like geometry and used to perform the inverse characterization of five ex-vivo radius samples

at low frequencies (<60 kHz). A third journal paper (Chapter 4) was submitted on this topic to

IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control Journal in November

2018, which is currently under revision.

As an extension of this thesis, the inversion method implemented in the third paper was applied

to another application. A very inversion procedure applied in Chapter 4 was adapted to perform

the inverse characterization of a stiffener bonded line using an appropriated SAFE geometry

and model parameters. This study was presented at the 45th Annual Review of Progress in

Quantitative Nondestructive Evaluation (Burlington, Vermont, US) in July 2018 and published

in the Proceeding of the 45th Annual Review of Progress in Quantitative Nondestructive Eval-

uation (Burlington, Vermont, US), in November 2018. (Appendix II).

The the next chapters (chapter 2, 3 and 4) consist of the complete journal manuscript while the

two appendixes (appendix I and II) contains conference proceeding.
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Abstract Axial transmission techniques have been extensively studied for cortical bone quality

assessment. However, the modeling of ultrasonic guided waves propagation in such a complex

medium remains challenging. The aim of this paper is to develop a semi-analytical finite el-

ement method to simulate the propagation of guided waves in an irregular, multi-layer and

heterogeneous bone cross-section modeled with anisotropic and viscoelastic material proper-

ties. The accuracy of the simulation results was verified against conventional time-domain

three-dimensional (3D) finite element simulations. The method was applied in the context of

axial transmission in bone to investigate the feasibility of first arrival signal (FAS) to monitor

degradation of intracortical properties at low-frequencies. Different physiopathological condi-

tions for the intracortical region, varying from healthy to osteoporotic, were monitored through

FAS velocity using a 10-cycles tone burst excitation centered at 32.5 kHz. The results show

that the variation in FAS velocity is mainly associated with four of the eight modes supported

by the waveguide, varying with velocity values between 550 m/s and 700 m/s along the differ-

ent scenarios. Furthermore, the FAS velocity is shown to be associated with the group velocity
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of the mode with the highest relative amplitude contribution at each studied scenario. However,

because of the evolution of the mode with the highest contribution, the FAS velocity is shown

to be limited to discriminate intracortical bone properties at low-frequencies.

Keywords: Ultrasonic guided waves, Cortical bone, Axial transmission.

2.1 Introduction

One particular topic of interest to the biomedical engineering community is the possibility

of using quantitative ultrasound (QUS) to monitor bone conditions. A cost-effective, non-

hazardous and in-situ system that can be used to obtain the properties of the bones in a non-

invasive manner is very desirable in this context (Gluer, 1997). Axial transmission techniques

have been extensively studied for cortical bone quality assessment (Laugier & Haiat, 2011;

Haiat et al., 2011). Long cortical bones such as the radius or tibia are suitable waveguides for

the propagation of ultrasonic guided waves. The possibility of measuring ultrasound waves us-

ing the axial transmission technique has been already demonstrated by several studies (Gluer,

1997; Haba et al., 2016; Gluer, 2008). Axial transmission assessment using ultrasonic guided

waves is attractive because they can interrogate mechanical and geometrical properties of cor-

tical bone. When studying axial transmission configuration, it is of interest to develop effective

modeling methods that accurately predict the excitation and propagation of each ultrasonic

guided wave mode separately. For simple geometries, such as plates and cylinders, analytical

solutions may be obtained (Pavlakovic et al., 1997; Jin et al., 2003). The effect of microstruc-

ture can be introduced by using non-classical elasticity theories such as higher-order gradient

theories of elasticity (Vavva et al., 2009). However, to predict time responses of complex ge-

ometry waveguides, such as long bone, numerical procedures are commonly used. Bossy et al.

(2004) performed three-dimensional finite difference simulations using a realistic cortical bone

model to evaluate the effect of curvature, cortical thickness, anisotropy, and microporosity on

speed of sound. Similarly, Protopappas et al. (2007) performed 3D finite element simulations

to investigate the influence of geometrical irregularities and callus formation on the charac-

teristics of guided wave propagation. However, the simulation of the time responses using
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these methods is typically computationally expensive because of the large number of elements

required and the small time step between each increment. In addition, simulation of the re-

sponses of the individual ultrasonic guided wave modes using this method is not trivial. The

semi-analytical finite element (SAFE) method can be used to study the propagation of guided

waves in arbitrary cross-section waveguides in an effective way. The first implementation of the

SAFE method on thin-walled arbitrary waveguides was done by Gavrić (1995), in 1995, on rail

structures. More recently, the method has been applied in the context of the axial transmission

technique for computation of the modal properties of cortical bone waveguides (Tran et al.,

2015; Castellazzi et al., 2013). However, the method has not been thoroughly explored yet.

The method enables the implementation of heterogeneous and viscoelastic material properties

(Bartoli et al., 2006). In addition, it is possible to consider a layer of surrounding fluid. All the-

ses features combined make the method suitable to model bones as waveguides. Moreover, the

method assumes harmonic wave propagation along the axial direction while free displacement

is assumed across the cross-section. Thus, only a 2D cross–section needs to be modeled and

meshed, which results in a significant reduction in computation time. The modal properties of

the waveguide are commonly computed in the frequency domain. In order to study the time

domain interaction between each mode, time responses are required. In this paper, the modal

properties of the waveguide in the frequency domain were used to compute the responses in the

time domain, allowing the simulation of responses that can be directly compared with those ob-

tained experimentally. The simulated time domain responses consist in a linear superposition

of the response of each mode supported by the waveguide. This approach enables the simula-

tion of only the selected modes, leading to a better understanding of the contribution of each

mode to the wave propagation. The aim of this paper is to present a computationally efficient

semi-analytical finite element method to simulate the propagation of acoustic guided waves in

cortical bone modeled as a waveguide. The novelty of this study lies in the computation of the

dispersion curves of the cortical bone waveguide with irregular, heterogeneous and multi-layer

cross-section. The method allows the use of anisotropic and viscoelastic material properties. In

order to verify the accuracy of the method, the simulations were first compared against conven-

tional time-domain 3D finite element simulations. The method was then applied in the context
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of an axial transmission configuration in order to investigate the feasibility of FAS velocity at

low-frequencies. The FAS velocity is the most commonly used method to evaluate bone qual-

ity in-vivo (Barkmann et al., 2000; Stegman et al., 1995; Hans et al., 1999) and its feasibility

at low-frequencies has not been completely investigated yet. The current bone geometry of a

human radius was modeled using different physiopathological conditions for the intracortical

region, varying from healthy to osteoporotic. The excitation was performed using a 10-cycles

tone burst centered at 32.5 kHz. The propagation was monitored through FAS velocity at a

position 150 mm away from the point source. The results shown that FAS velocity is mainly

associated with the group velocity of the mode with highest relative amplitude contribution.

However, the mode with the highest amplitude contribution evolves with the properties of the

bone waveguide. As a result, the FAS velocity is shown to be a poor discriminator of intracor-

tical bone properties at low-frequencies.

2.2 Acoustical modeling of wave propagation

This section first describes the SAFE method employed to model wave propagation. Then, a

finite element method used for the validation of our approach is described.

2.2.1 Semi-analytical finite element method

The SAFE method was used to simulate guided wave propagation in the time domain and in

an infinite arbitrary cross-section waveguide. The modal properties of the waveguide were

first determined in the frequency domain and then transformed into the time domain. Such

an approach for computing the time response from the modal properties of waveguides had

previously been performed by different authors, including (Wilcox et al., 2001), considering a

point source excitation and (Loveday, 2008), using a coupling with 3D piezoelectric elements

as a source. In this paper, the resulting time domain signals consist in a superposition of the

propagated response of each dispersive mode supported by the waveguide, excited from a point

source in the out-of-plane direction.
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2.2.1.1 Formulation of the semi-analytical finite elements

The SAFE method assumes that ultrasonic guided waves propagate harmonically in the axial

direction z. Constant cross-section and material properties are assumed along the axial direc-

tion. Thus, the displacements field ug can be described as (Fan et al., 2008a):

ug (x,y,z, t) =Ug (x,y)e−i(kz−ωt), i =
√−1 (2.1)

where g=1,2,3, Ug is the displacement field in the cross-section plane (x,y), k is the wavenum-

ber, and ω is the angular frequency. Considering the mass density ρ and the viscoelastic co-

efficients Cgh jl , the differential equations of motion for an anisotropic material can be defined

using the formalism for eigenvalues problems by:

Cgh jl
∂ 2Uj

∂xh∂xl
+ i(Cg3 jl + Cgh j3)

∂ (kU j)

∂xh
− kCg3 j3

(
kUj

)
+ρω2δ g jUj = 0, (2.2)

where

Cgh jl =C+Ni (2.3)

with the subscripts j=1, 2, 3 and h, l=1, 2, where C and N are the elastic and viscous com-

ponents of the viscoelastic coefficients and δg j is the Kronecker symbol. Equation 4.2 can be

solved for a given angular frequency ω , resulting in infinite instances of complex wavenumber

k and their respective displacement fields Uj(x,y), the so-called mode shapes. The dispersion

curve of each mode k(ω) can be obtained by selecting all the wavenumbers that have real parts

significantly higher than the imaginary parts at each frequency. The curves provide the dis-

persive behavior of each mode that can propagate in the waveguide of interest. Furthermore,

the modal properties, such as power flow and surface displacement, can be calculated based on

the mode shape obtained at each frequency. These modal properties are used to simulate the

theoretical time domain signal, as explained next.
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2.2.1.2 Simulation of time domain signal

The time domain signal of a single guided wave mode excited from a point source and propa-

gated over a certain distance along a given waveguide can be obtained by (Wilcox et al., 2005):

u(t) =
1

2π

∫ +∞

−∞
F(ω)E (ω)H(1)

0 (k (ω)zo)e−iωtdω, i =
√−1, (2.4)

where u(t) is the out-of-plane surface displacement for a given mode as a function of time t,

for an arbitrary propagation distance z0. The factor H(1)
0 is the first Hankel function of order

zero and F(ω) is the frequency spectrum of the force input signal uinput(t) (a 10-cycle Hanning

windowed tone burst centered at 32.5 kHz). The factor k(ω) is the mode wavenumber, defined

as a complex number by:

k(ω) = k(ω)real + ik(ω)imag (2.5)

where the real part denotes the propagating term and the imaginary part denotes the attenuation

associated with the wavenumber. The factor E(ω) is the excitability with the mode of interest

as a function of the angular frequency respectively. The out-of-plane excitability can be de-

fined roughly as the ratio between the applied out-of-plane force and the resulting out-of-plane

displacement related to the mode of interest. More details related to the definition of excitabil-

ity are given by Wilcox et. al (Wilcox et al., 2005). The frequency-dependent out-of-plane

excitability of a given mode can be obtained by:

E(ω) =
ik(ω)ω

8

(
Umax(ω)2

Pz(ω)

)
(2.6)

where Pz(ω) is the total power flow in the z-direction associated with the mode shape as a

function of the angular frequency, and Umax(ω) is the maximum out-of-plane displacement

on the surface of the mode shape in terms of the angular frequency. Thus, modes having

large displacements in the out-of-plane direction tend to have higher out-of-plane excitability.

Finally, the complete time domain signal usum(t), including all the ultrasonic guided wave
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modes supported by the waveguide can be obtained by the sum of the n existing modes by:

usum(t) =
n

∑
m=1

um(t) (2.7)

where um(t) is the out-of-plane displacement associated with the m-th mode after propagating

an arbitrary distance z0, and n is the total number of modes supported by the waveguide. It

is worth noting that this approach considers the waveguide as infinite, neglecting the waves

traveling around it (in the circumferential direction) and ignoring the reflections from the ends.

The waves traveling in the circumferential direction will arrive later compared to the waves

traveling straight in the axial direction. Therefore, the measured FAS velocity will not be

affected by waves traveling circumferentially since the FAS is calculated using the beginning

of the signal.

2.2.2 Finite element method

The accuracy of the SAFE method described above was verified by comparing the results with

those obtained from a 3D finite element simulation. The validation was carried out by consid-

ering a 500 mm long cortical bone waveguide filled with bone marrow and surrounded by 3.5

mm of soft tissue. Cortical bone layer was modeled by a homogeneous transversally isotropic

medium using the elastic coefficients and density shown in Table 2.1, for the "Middle" re-

gion. Soft tissue and bone marrow were modeled using the properties of water (Naili et al.,

2010) (bulk modulus=2.25e9 Pa and density=1000 kg/m3). Absorbing boundaries were added

to avoid reflections from the edges (Drozdz et al., 2007). The mesh was built using 1 mm

tetragonal-shaped elements, respecting a constraint of at least 15 elements per wavelength.

The complete mesh size consists of around 611,000 elements and results in approximately

4,600,000 degrees of freedom. The simulation was carried out in the time domain using ex-

plicit integration. A 2e-8 seconds time step was considered, and the total simulation time was

equal to 1 ms. A point force source in the out-of-plane direction was applied in contact with

the upper part of the periosteal region of the bone cross-section as shown in Figure 2.2, at

one extremity of the model. The excitation signal was the same as the one applied for the
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SAFE method (a 10-cycle Hanning windowed tone burst centered at 32.5 kHz). A linear ar-

ray of 73 receivers equally spaced by 4 mm was placed along the axial direction, recording

the out-of-plane displacement. The problem was solved using the ABAQUS 6.13-1 software.

Once the 73 signals were obtained in the time domain, they were processed using the 2D-FFT

(Alleyne & Cawley, 1990) in order to obtain the intensities of the propagating modes in the

wavenumber-frequency diagram. The obtained intensities were then compared to the simula-

tions performed by the SAFE method using equivalent configurations.

2.3 Application to cortical bone

In this section, the SAFE method described in the previous section was applied to cortical bone

assessment. The ultrasonic responses were computed at different positions along a heteroge-

neous waveguide in the context of axial transmission configuration. Different physiopatho-

logical conditions were simulated and the contribution of each mode to the first arrival signal

(FAS) velocity was investigated.

Figure 2.1 Schematic of the equivalent 3D axial transmission

configuration used to perform the SAFE simulations.
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2.3.1 Axial transmission configuration

The geometrical configuration (see Figure 2.1) was modeled as a 2D multilayer medium com-

posed of a viscoelastic heterogeneous solid layer corresponding to cortical bone. The solid

layer was surrounded by two viscoelastic homogeneous fluids corresponding to bone marrow

and soft tissues, respectively.

Such a 2D multilayer waveguide is assumed to have an infinite length along the axial direction,

resulting in a 3D equivalent medium, as shown in Figure 2.1. The bone geometry was taken

from a micro computed tomography (μCT) image of a human radius sample obtained in the

middle of the long bone. Cortical bone was modeled as a transverse isotropic viscoelastic ma-

terial with heterogeneous material properties along the radial direction (see subsection 2.3.2.2

for further details). Acoustic excitation was performed using a point source located in a plane

denoted z0 = 0 in contact with the upper part of the periosteal region of the bone cross-section

as shown in Figure 2.2. The input waveform was defined as a 10-cycle Hanning windowed tone

burst centered at 32.5 kHz. The frequency was chosen based on a recent study performed by

(Moilanen et al., 2013), which reported improved performance of fundamental flexural modes

in assessing cortical bone thickness using low ultrasonic frequency (30 kHz). A large number

of cycles was used to reduce the bandwidth in order to control the number of excited modes.

The propagating waves were monitored using out-of-plane displacement at five positions (#1,

#2, #3, #4 and #5) on the same side of the excitation. The acquisition positions were separated

by a distance of 1 mm, varying from z = 150 mm to z = 155 mm. For each position #i located

at z = zi, the time ti of the FAS was determined when the envelope of the signal crossed a

pre-established threshold. The threshold was defined based on a percentage of the maximum

envelope amplitude of the complete signal, 10% in this study. The FAS velocity was then given

by the slope of zi as a function of ti obtained through a least-square linear regression analysis.

For high frequencies, the FAS velocity is consistent with the bulk velocity propagating in thick

waveguides. The SAFE method might not be interesting for calculating the signal at those

frequencies since the number of modes increases drastically. However, the SAFE method is

still suitable to determine the signal at higher frequencies up to approximately 500 kHz (as-
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suming a cortical thickness of 4 mm) (Bossy et al., 2002). At low-frequencies, the wavelength

is large when compared to the bone thickness. Therefore, the waves are guided by the bound-

aries of the bone and travel with the velocity of guided wave modes. The FAS is expected to

have the velocity of the fastest guided wave modes traveling in the waveguide. In addition, the

amplitude contribution of each mode was calculated in order to provide an estimation of the

influence of each mode on the FAS velocity. This parameter is useful for understanding the

variations of the FAS velocity for the different scenarios investigated in this work. In order to

calculate this parameter, the acquisition at position #3 was performed considering each mode

separately, which was made possible by the flexibility of the SAFE approach (see subsection

2.2.1 for further details). Then, for the response obtained for each mode, the amplitude was

measured at the same time step as the response signal that the FAS velocity was calculated (in

the acquisition containing all modes). In other words, the mode contribution used the time t3,

obtained by the thresholding method in the acquisition considering all modes, as a reference

to calculate the amplitude in the acquisition, considering a single mode. More specifically, the

relative amplitude contribution of each mode Am can be estimated by:

Am =
am

∑n
m=1 am (2.8)

where am is the envelope amplitude of the m-th mode at time t3, and n is the total number of

modes.

2.3.2 Modeling cortical bone

2.3.2.1 Cortical bone waveguide

The bone geometry was taken from μCT images of a human radius provided by Sawbones

(Sawbone - Pacific Research Laboratories, USA). The images were converted into a 3D model

and delivered as a CAD geometry by the supplier, where the original dimensions of the hu-

man bone were kept. The boundaries of the waveguide were extracted from a slice of the
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CAD geometry. In this work, the middle 1/3 region was used, which is composed only of

cortical bone, as shown in Figure 2.2. Additionally, bone marrow and 3.5 mm of soft tissue

were added internally and surrounding the cortical bone, respectively. The selected slice was

imported into COMSOL Multiphysics-5.2, and meshed using triangular elements with a max-

imum size of 0.55 mm. The complete mesh size consists of around 3,400 elements, resulting

in approximately 62,400 degrees of freedom. The bone marrow and soft tissue were modeled

as homogeneous viscoelastic fluids with the same properties used by (Naili et al., 2010) (bulk

modulus=2.25e9+1.97 f i Pa and density=1000 kg/m3), while cortical bone was modeled as a

viscoelastic transversally isotropic material. Furthermore, cortical bone was divided into three

regions along the radial direction: periosteal (A-B), middle (B-C) and endosteal region (D-E)

(see Figure 2.2a). Each region was defined with different values for the transversally isotropic

stiffness coefficients and density (C11,C13,C33,C44,C66 and ρ). The value of each region was

chosen based on a simplification of experimental results reported by (Sansalone et al., 2010),

which were obtained using 3D synchrotron micro-computed tomography images. A more de-

tailed description of the distribution of the material properties along the radial direction is

provided in the next section. Because of a lack of available data, the viscoelastic coefficients

(N11,N13,N33,N44 and N66) were defined based on the same ratio between the viscosity and

elastic coefficients found in the literature, as given by:

Nc =
η∗

c
C∗

c
.Cc. f = ηc. f (2.9)

where the subscript c=11, 13, 33, 44 and 66, η∗
c and C∗

c are respectively the viscosity and elas-

tic coefficients reported by Naili et al. (2010) for the cortical bone, and f is the frequency.

2.3.2.2 Heterogeneous distribution of bone properties

The heterogeneous nature of the biomechanical properties of cortical bone tissue was adapted

from the experimental results obtained by (Sansalone et al., 2010). In order to properly sim-
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Figure 2.2 Cross-section taken from the middle of the radius

bone and used for the SAFE analysis. Different regions were

defined along the radial direction: periosteal (A-B), middle (B-C)

and endosteal (D-E) regions.

plify the spatial distribution of each material property, the original values (Sansalone et al.,

2010) were adapted by choosing three different constant values for the periosteal (between

A and B), middle (between B and C) and endosteal (between D and E) regions, as shown in

Figure 2.3a for the coefficient C11. Moreover, a linear variation was assumed in the region

between the middle and periosteal bones (between C and D in Figure 2.2). For the density,

the same approach was applied based on the distribution of porosity reported in the study. The

conversion was made considering a scale where 0% of porosity denotes a bone density value

of 1850 kg/m3 and 100% of porosity denotes a bone density value of 1000 kg/m3. The con-

stant values and the linear variation of each material property were chosen to minimize the gap

between the original (Sansalone et al., 2010) and simplified values. Figure 2.3b shows the sim-

plified distribution defined for each coefficient and density. In order to model the evolution of

the physiopathological condition varying from healthy to osteoporotic, each material property

was defined with different values for the endosteal region (between D and E in Figure 2.2).
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The "Osteoporotic" condition (identified as IX in what follows) was defined with the simpli-

fied distribution taken from the original data (Sansalone et al., 2010). This assumption was

made because the data were obtained from an osteoporotic 79-year old patient. The "Healthy"

condition (numbered I next) was obtained by i) arbitrarily increasing the value of all stiffness

coefficients and densities in the endosteal region by 20% and ii) by reducing the length of the

endosteal region by an amount of 20%. These differences between healthy and osteoporotic

conditions reflect the fact that early osteoporosis is known to be associated with endosteal re-

sorption. Once the "Osteoporotic" and "Healthy" conditions were defined, seven intermediate

distributions (identified as II to VIII) were considered in order to mimick the evolution of the

osteoporotic state. This procedure resulted in a total of nine distributions, as shown in Fig-

ure 2.4, for the elastic constant C11. This approach constitutes a simple way of modeling the

gradual degradation of intracortical bone properties due to early stage osteoporosis. Table 2.1

shows a summary of the "Healthy" and "Osteoporotic" material properties used to defined the

scenarios investigated numerically in this work.

Figure 2.3 a) Original and simplified distribution of C11 varying from the

periosteum to endosteum b) Elastic coefficients and density varying with the

distance from the periosteum.
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Table 2.1 Summary of the properties used to model cortical bone. The real part of the

stiffness coefficients was adapted from the experimental results obtained by (Sansalone

et al., 2010). The imaginary part was adapted from the results used by (Naili et al., 2010),

applying equation 2.9.

Propertiesa Periosteal

(A-B)

Middle

(B-C)

Endosteal (D-E)

I-Healthy* IX-Osteoporotic

C11(Pa) 13.17e9+94.95 f i 11.46e9+82.62 f i 4.78e9+34.46 f i 3.11e9+22.42 f i
C13(Pa) 6.60e9+91.74 f i 6.03e9+83.81 f i 3.32e9+46.14 f i 2.65e9+36.83 f i
C33(Pa) 16.04e9+109.2 f i 14.31e9+97.45 f i 6.19e9+42.15 f i 4.17e9+28.39 f i
C44(Pa) 3.75e9+14.70 f i 3.15e9+12.34 f i 0.87e9+3.41 f i 0.30e9+1.17 f i
C66(Pa) 3.62e9+14.19 f i 2.99e9+11.72 f i 0.78e9+3.05 f i 0.23e9+0.90 f i

Density (kg/m3) 1850.00 1850.00 1299.04 1161.30

a Defined as a complex number by Cc +ηc f i.
* The "Healthy" condition was defined based on an arbitrary increase of the value of all stiffness coefficients and

density by 20%.

Figure 2.4 Nine different heterogeneous distributions defined

between the "Healthy" and "Osteoporotic" conditions.
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2.4 Results and discussion

2.4.1 Validation of SAFE simulations

Figure 2.5a and 2.5b show the 2D-FFT maps obtained by the FEM and SAFE methods, respec-

tively. The gray lines show the dispersion curves obtained by SAFE. The intensities obtained

for both simulation methods are consistent with the dispersion curves obtained by SAFE. Fur-

thermore, the distributions of the intensities in the maps are similar for both methods, which

constitutes a validation of the SAFE approach. Figs. 2.6a and 2.6b show the normalized time

domain signal recorded at 150 mm for the simulation performed using FE and the SAFE meth-

ods, respectively. The signals of both methods are similar, especially at their beginning, where

the FAS velocity is calculated. A few discrepancies can be observed at the end of the signal,

which may be associated with the ultrasonic waves traveling in the circumferential direction

due to the point excitation. The advantage of the SAFE method as compared to finite element

modeling is that with SAFE, only the cross-section is modeled and meshed, resulting in com-

putationally efficient simulations. For example, one simulation using the FE method required

approximately 5.5 hrs and 2.5 Gb of memory while to obtain an equivalent signal using the

SAFE method required around 4 hrs and 1.4 Gb of memory. Even though the advantages of

SAFE in term of resources requirements are modest, once the dispersion curves are calculated,

the propagated responses can be computed for different excitation configurations without run-

ning the simulations again, which may represent a significant gain for large parametric studies.

Furthermore, the simulations can be performed separately mode by mode, as shown Figure

2.6c, where only the four modes with the highest amplitude were computed. The flexibility of

the SAFE method may lead to a better understanding of the contribution of each mode to the

signal. However, the waveguide is assumed to have constant cross-sectional properties along

the axial direction.
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Figure 2.5 Time-domain signal obtained at 150 mm of propagation distance using:

a) FE simulations; b) SAFE simulations showing the signal containing all modes; c)

SAFE simulations showing the signal of each mode separately.

Figure 2.6 Time-domain signal obtained at 150 mm of propagation distance using:

a) FE simulations; b) SAFE simulations showing the signal containing all modes; c)

SAFE simulations showing the signal of each mode separately.

2.4.2 Dispersion curves of cortical bone

Figure 2.7 shows the velocity dispersion curves obtained with a "Healthy" and “Osteoporotic”

cortical bone properties (condition I and IX, respectively). Due to the modification of the

waveguide properties, a variation in the mode velocity at several regions of the dispersion
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curves was obtained. However, the interpretation of these dispersion curves in the context of

an axial transmission measurement using FAS is difficult because the FAS velocity behavior is

associated to a combination of different modal properties of the waveguide (velocity, excitabil-

ity and attenuation) as well as the input signal used to perform the excitation. For that reason,

the FAS velocity cannot be predicted using only the phase velocity taken from the dispersion

curves. However, simulating the temporal synthetic signals (combining velocity, excitability

and attenuation dispersion curves) is an efficient way of modeling and understanding the FAS

velocity.
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Figure 2.7 Phase velocity dispersion curves of the simulated

modes obtained with "Healthy" and “Osteoporotic” waveguide

condition.

Figure 2.8a shows the group velocity dispersion curves obtained with a "Healthy" cortical bone

waveguide (condition I). Eight ultrasonic guided wave modes were identified in the 10-60 kHz

frequency range, with group velocities varying between 0 and 2200 m/s. The dotted line shows

the frequency spectrum of the excitation waveform used to simulate the signal in the time
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domain. The 6dB bandwidth is concentrated between 25 kHz and 40 kHz. Figure 2.8b and

2.8c show, respectively, the attenuation and excitability dispersion curves used to compute the

time-domain signal for the "Healthy" condition.

The simulated signals obtained from this dispersion curve consist of the superposition of prop-

agated responses of each mode. One advantage of the semi-analytic approach is that it allows

the simulation of only the selected modes, which can lead to a better understanding of the con-

tribution of each mode to FAS velocity. Such a mode contribution cannot be easily resolved

using conventional finite element modeling.

Figure 2.8d shows the time domain signal obtained for each mode separately and all modes

together, for the "Healthy" condition. It is worth noting that at time t3, the amplitude contribu-

tions of the modes m=1, 3, 4 and 5 are substantially higher as compared to the amplitudes of

modes m=2, 6, 7 and 8. This result suggests that the high amplitude modes tend to affect the

FAS velocity to a lesser degree since the FAS velocity is measured in this part of the signal.

However, the influence of the modes on the FAS velocity along the different scenarios will be

investigated in the following section.

2.4.3 Effect of properties on the FAS velocity

Figure 2.9 shows the calculated FAS velocity when different combinations of modes are con-

sidered. The dashed line shows the results obtained when all the modes are taken into account.

The dashed line with stars shows the results obtained when considering the three dominant

modes observed in Figure 2.8 (m=1, 4 and 5). Between scenarios I and V, the values of the

computed FAS velocity are significantly different as compared to the combination including

all modes. The discrepancy is related to the fact that the amplitude contribution of mode m=3

decreases as we go from scenario I to scenario V as shown in Figure 2.10a. This suggests that

mode m=3 affects the FAS velocity for scenarios I to V. Thus, the solid line with circles shows

the results when taking into account modes m=1, 3, 4 and 5. The variation of the FAS velocity

as a function of the physiopathological state matches the results obtained when considering
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Figure 2.8 Dispersion curves obtained for the "Healthy" condition a) Group

velocity superposed with the frequency bandwidth of the input signal; b) Attenuation;

c) Out-of-plane excitability; d) Time-domain signal obtained for the SAFE

simulation, showing each mode separately and all modes together for the "Healthy"

condition. The legend in Figure 2.8d is applied to Figure 2.8a, 2.8b, and 2.8c.

all modes for all scenarios (see Figure 2.9b). Therefore, combining modes m=1, 3, 4 and 5

constitutes a good approximation that can be used to mimic the complete signal, which will

facilitate the interpretation of the results.

Figure 2.10a shows the amplitude contribution of modes m=1, 3, 4 and 5, varying separately

from the "Healthy" to the "Osteoporotic" condition. Similarly, Figure 2.10b shows the group

velocity of each mode separately and the FAS velocity varying with the same scenarios. The
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Figure 2.9 FAS velocity obtained using the

combinations of different modes.

group velocity was taken from the dispersion curves at 32.5 kHz and the FAS velocity simulated

considering the combination of modes m=1, 3, 4 and 5.

A decrease is observed for the FAS velocity at the beginning (from scenarios I to III), followed

by an increase in the intermediate scenarios (from III to VIII) and, again, a decrease at the

end (from VIII to IX). Such non-linear behavior is not desirable in a clinical measurement

since a given measured FAS velocity can be associated with more than one scenario. However,

this phenomenon is expected since the amplitude contribution of each mode is changing along

the different scenarios. Indeed, the variations of the FAS velocity cannot be associated with

the group velocity of a single mode. The FAS velocity tends to follow the group velocity

of the higher contribution modes. However, due to the competition between the modes with

the higher contribution, the FAS velocity switches its velocity from mode to mode with the

different scenarios.

For example, between scenarios I and III, the FAS velocity has a value similar to mode m=1

(Figure 2.10b). This is consistent with the fact that the mode m=1 has the highest amplitude
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Figure 2.10 a) Amplitude contribution of the four main modes

separately, varying with the scenarios; b) Group velocity of each

of the four modes separately and FAS velocity (simulated

considering four of the modes) varying with the scenarios. The

circles show the change of the mode with the highest amplitude

contribution (from m=1 to m=4).

contribution in this range (Figure 2.10a). Then, from scenarios III to VIII, the FAS velocity

switches its behavior and starts to increase. This is in accordance with the change of the mode

with the highest amplitude contribution (from m=1 to m=4), as indicated by the circles in

Figure 2.10a. Then, from scenario VI to VIII, the FAS velocity has a similar value as mode

m=4. Again, mode m=4 has a substantially higher amplitude contribution compared to the

other modes in this range.

However, although the FAS velocity could be associated with the high contribution mode ve-

locities, a completely unexpected behavior of the FAS velocity was found for some scenarios
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(from IV to VI). Such an unexpected behavior may be due to the constructive and destructive

interference between the modes for certain scenarios.

2.4.4 Limitations of the study

The 2D trilayer model investigated is this study using the SAFE method did not account for

the impacts of structural irregularities along the axial direction since the waveguide is assumed

to be constant and infinite. Such structural features can change the signal of guided waves

propagation in bone tissue, and consequently, modify the effect of bone status on the FAS

velocity. However, this limitation is mitigated by the fact that the bone properties are measured

in the central region of the bone, where the assumption of a constant profile along the axial

direction holds. Despite the lack of experimental data, the predictions obtained have shown

results in good agreement with conventional 3D finite element simulations.

The influence of the heterogeneous nature of the biomechanical properties of realistic cortical

bone geometry was analyzed with respect to the FAS velocity. The heterogeneous distribution

of cortical bone properties applied in this study was based on homogenized local material prop-

erties applied by Sansalone et al. (2010), which are not easy to define due to the multi-scale

nature of bone and its dependence on the microstructure at smaller scales. Furthermore, ap-

proximations were employed in order to determine the value and the distributions of stiffness

coefficients adapted from (Naili et al., 2010) and (Sansalone et al., 2010) by choosing constant

values and linear variations to describe the variation along the radial direction. However, such

discrepancies tend to be minimized by using low-frequencies excitation since the large wave-

length characteristic of the low-frequencies excitation performed in this work tends to be less

sensitive to minor variations in the distribution.

Another limitation of this study is that the physiopathological condition was defined based

on an evolution from arbitrarily extrapolated "Healthy" values to the original "Osteoporotic"

data. More complex variations in material properties are expected for real bone degradation.

This approach provides a simple way of modeling the gradual degradation of intracortical
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bone properties, which may be due to the aging and/or early stage osteoporosis. It would be

beneficial for the study to adapt the scenarios to a more realistic degradation condition by using

appropriate homogenization procedures.

2.5 Conclusion

It has been shown that the propagation of guided waves using axial transmission configurations

can be simulated using the SAFE method. The 2D-FFTs maps obtained for simulations using

the SAFE and 3D FE methods showed comparable results. For the assessment of intracortical

bone properties, eight guided wave modes were found to be propagating as a result of an

excitation in the 25-40 kHz frequency range. However, only four modes showed a substantial

influence on the propagated signal and, consequently, a major impact on the FAS velocity.

The calculated FAS velocity was shown to be associated with the velocity of the mode with the

highest amplitude contribution. However, due to the change between the modes with the greater

contribution, the FAS velocity was shown not to be a good discriminator of intracortical bone

properties. This method can now be used to study the possibility of targeting specific modes by

performing the excitation at different orientation on the bone surface, as well as to investigate

different receiver array configurations through more advanced signal processing methods.
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Abstract The assessment of intracortical bone properties is of interest since early-stage os-

teoporosis is associated with resorption in the endosteal region. However, understanding the

interaction between ultrasonic guided waves and the cortical bone structure remains challeng-

ing. The purpose of this work is to investigate the effect of intracortical bone properties on the

ultrasonic response obtained at low-frequency (<100 kHz) using an axial transmission config-

uration. The semi-analytical finite element method was used to simulate the propagation of

ultrasonic guided waves in a waveguide with realistic geometry and material properties. An

array of 20 receivers was used to calculate the phase velocity and cut-off frequency of the ex-

cited modes using the 2D Fourier transform. The results show that the position of the emitter

around the circumference of the bone is an important parameter to control since it can lead to

variations of up to 10 dB in the amplitude of the transmitted modes. The cut-off frequency of

the high order modes was, however, only slightly affected by the circumferential position of the

emitter, and was sensitive mainly to the axial shear modulus. The phase velocity and cut-off
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frequency in the 20-85 kHz range are promising parameters for the assessment of intracortical

properties.

Keywords: Ultrasonic guided waves, Intracortical, Low-frequency.

3.1 Introduction

Osteoporosis is associated with a reduction of the bone mass and microarchitectural bone dete-

rioration, leading to a reduction in bone quality (Papaioannou et al., 2004; Strom et al., 2011;

Giangregorio et al., 2006) and to an increase in fracture risk (Con, 1991). Endosteal resorp-

tion of cortical bone results in an increase in bone porosity at the inner part of the cortical

shell and in a reduction of the cortical bone thickness (Ritzel et al., 1997). Dual-energy X-

ray absorptiometry (DEXA), which is currently the gold standard for osteoporosis diagnostics

(Kanis, 1994), nonetheless suffers from several limitations (Haba et al., 2016; Gluer, 2008).

Quantitative ultrasound (QUS) was developed to assess bone quality and has the advantage

of being non-radiative, non-invasive and relatively cheap (Gluer, 1997). It, therefore, holds

promise as a rapid screening method in a clinical setting. The mechanical nature of ultrasonic

waves allows the technique to be used to retrieve the biomechanical properties of bone tissue

(Kaufman & Einhorn, 1993). QUS techniques can be used to go beyond a simple estimation

of the bone mineral density (Nicholson, 2008), which can be achieved with DEXA and which

is not sufficient to assess fracture risk (Sur, 2004).

Bone QUS was initially developed in the context of trabecular bone characterization using

transverse transmission devices (Stein et al., 2013). However, the investigation of cortical

bone (Rico, 1997) has attracted significant interest since about 80% of the skeleton is made of

cortical bone, which supports most of the body load, and is involved in osteoporotic fractures

(DG et al., 1991). QUS using axial transmission techniques have mostly been used to study

the cortical bone quality (Haiat et al., 2011). Cortical bones, such as the radius or the tibia,

constitute suitable waveguides for the propagation of ultrasonic guided waves, as was shown

in various studies, including for instance (Haba et al., 2016; Gluer, 2008, 1997). Ultrasonic
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guided waves have the advantage of being sensitive to both the mechanical and geometrical

properties of cortical bone (Yeh & Yang, 2011; Rozental et al., 2013; Muller et al., 2005).

Most studies focusing on the assessment of cortical bone properties using axial transmission

consider plate or cylinder waveguides (as an approximation of the actual bone geometry) to

simplify the interpretation of ultrasonic responses obtained numerically or experimentally (Mi-

nonzio et al., 2015; Xu et al., 2016; Kilappa et al., 2015). Recently, more comprehensive

numerical approaches were explored with the aim of improving the realism of the effect of

cortical bone features on the axial transmission propagation expected in vivo. Bossy et al.

(2004) performed three-dimensional (3D) finite difference simulations on geometries derived

from a human radius tomography image to evaluate the effect of bone curvature, anisotropy,

and micro-porosity on the first arriving signal (FAS) velocity. However, the actual anatomical

variations of bone biomechanical properties were not taken into account and more empha-

sis was brought to the analysis of numerical simulations performed with idealized 3D objects

(tubes and semi-infinite hemicylinder geometries). Moilanen et al. (2007a) developed a 2D

numerical bone model to investigate the impact of realistic bone geometry specimens on the

ultrasonic cortical thickness evaluation using plate assumptions. Haiat et al. (2009) and Naili

et al. (2010) assessed the effect of the heterogeneous nature of cortical bone on the axial trans-

mission response at 1 MHz in the context of an anisotropic material by using 2D finite element

(FE) simulation on a plate model. More recently, Chen & Su (2014) proposed a quantitative

compensation for the effect of soft tissues based on an in vitro calibration, which facilitates

the development of high-precision measurements of ultrasonic guided wave modes. Moreau

et al. (2014) introduced a modified method to predict the dispersion curves of an isotropic

plate waveguide with a linearly varying thickness along the propagation direction. The en-

hanced model allows the detection of the mode’s wavenumbers more accurately in the context

of the formulation of inverse problems. However, despite the improvements achieved so far

concerning the modeling of cortical bone, a more detailed numerical study remains needed to

explain the influence of the cross-sectional curvature and distribution of properties in the radial

direction on the propagation of ultrasonic guided waves at low frequencies.



54

Low-frequency (typically below 200 kHz) axial transmission research (Sarvazyan et al., 2009;

Kilappa et al., 2011; Egorov et al., 2014; Tran et al., 2015) demonstrated that ultrasonic guided

waves are sensitive to changes in bone properties, such as cortical thickness and porosity.

Muller et al. (2005) introduced low-frequency axial transmission as a promising method for

assessing the cortical thickness. Tatarinov et al. (2005) showed the potential of low frequencies

(≈ 100 kHz) in assessing changes of deep underlying spongy layers in bovine tibia. More re-

cently, Kilappa et al. (2015) reported an improved performance of fundamental flexural modes

used to assess cortical bone thickness using phase-delayed excitation at very low-frequency

(50 kHz). Kassou et al. (2017) investigated the feasibility of dry point-contact transducers to

infer the thickness of the in-vivo subjects in the 50-150 kHz frequency range. Operating at low-

frequency offers the advantage of a lower attenuation as well as a reduced number of generated

modes, which simplifies the signal analysis. In addition, low-frequency ultrasonic guided wave

modes tend to achieve greater penetration depths as compared to high-frequency. As a conse-

quence, the sensitivity to variations in intracortical bone properties could be improved when

using low-frequencies, which is relevant to assess early stages of osteoporosis. Notwithstand-

ing the remarkable level of realism that has been introduced in simulations over the past few

years, the physical interaction between low-frequency ultrasonic guided waves and the cortical

bone structure remains unexplored because the cortical bone has i) a complex cross-sectional

geometry and ii) a heterogeneous distribution of material properties along the circumferential

direction.

In a previous study by our group (Pereira et al., 2017), the propagation of ultrasonic guided

waves in an irregular, multi-layer and heterogeneous bone cross-section modeled with anisotropic

and viscoelastic material properties was investigated. The effect of the intracortical bone prop-

erties was then evaluated using the first arriving signal (FAS) velocity obtained from only five

receivers. However, due to the interaction between several modes around the FAS, the velocity

associated with the FAS was shown to be a poor discriminator of the intracortical bone proper-

ties. The goal of this paper is therefore to determine the effect of intracortical bone properties

on the phase velocity and cut-off frequency of low-frequency ultrasonic guided wave modes
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using an array of receivers, as well as a time-spatial frequency analysis technique instead of

the FAS velocity. In order to do so, the excitation was generated by an emitter while the ac-

quisition was performed in the time domain by an array of 20 receivers equally spaced along

the bone surface. The bone ultrasonic responses were converted into the frequency domain

using the two-dimensional Fourier transform (2D-FFT) in order to obtain the phase velocity

and cut-off frequency of the propagating modes. Therefore, in this paper, the individual con-

tribution of each viscoelastic coefficient and of the density were evaluated separately. The

originality of this study when compared to our previous publication also lies in the application

of the excitation source at different positions on the bone surface. This leads to a more com-

prehensive understanding of the physical interaction between the cortical bone curvature and

the excitability of low-frequency ultrasonic guided wave modes.

The paper is organized as follows: section 3.2.1 introduces the semi-analytical finite element

(SAFE) method used to simulate the signal of ultrasonic guided waves propagation in an arbi-

trary cross-section waveguide; section 3.2.2 describes the emitter/receivers configuration used

to measure the ultrasonic responses on the bone surface in order to compute the frequency

vs. wavenumber diagram. This section also describes the procedure employed to derive the

phase velocity and cut-off frequency from the measured diagrams. In section 3.2.3 and 3.2.4,

the cross-sectional geometry of the cortical bone model and the methodology used to define

the distribution of properties along the radial direction are presented respectively. In section

3.3.1 and 3.3.2, the effect of the excitation position and the physiopathological condition on

the phase velocity and cut-off frequency are presented, respectively. In addition, the individual

contribution of each viscoelastic coefficient and density on the overall physiopathological con-

ditions are presented in the section 3.3.3. Conclusion including potential clinical implications

are presented in section 3.4.
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3.2 Material and methods

3.2.1 Simulating time domain signals

The SAFE method has recently been used to simulate the modal properties of ultrasonic

guided waves in bone systems (Thakare et al., 2017; Nguyen et al., 2017; Tran et al., 2015;

Nguyen & Naili, 2014). The computation of the time response from the modal properties

of waveguides in an infinite arbitrary cross-section waveguide was previously described by

Wilcox et al. (2001) and Loveday (2008). The resulting time domain signals consist in a linear

superposition of the propagated response of each mode supported by the waveguide. A more

detailed description of the implementation of the SAFE method can be found in the literature

(Predoi et al., 2007; Fan et al., 2008c), while the detailed procedure used to generate the time

domain signal, can be found in a recently published study (Pereira et al., 2017).

The dispersive response of a given mode excited from a point source in the out-of-plane direc-

tion (radial direction r in Figure 3.1) can be calculated in the time domain using the following

expression (Wilcox et al., 2001):

u(t) =
1

2π

∫ +∞

−∞
F(ω)E (ω)H(1)

0 (k (ω)z0)e−iωtdω (3.1)

i =
√−1 (3.2)

where u(t) is the surface out-of-plane displacement for a given mode as a function of time

t, after propagating for an arbitrary distance z0. The factor H(1)
0 is the zeroth-order Hankel

function of the first kind and F(ω) is the frequency spectrum of a force input signal uinput(t).

The factor k(ω) is the mode wavenumber, defined by:

k(ω) = k(ω)real + ik(ω)imag (3.3)
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where the real part denotes the propagating term and the imaginary part denotes the attenuation

associated with the wavenumber. The term E(ω) is the frequency-dependent out-of-plane

excitability of a given mode, and can be obtained with (Wilcox et al., 2005):

E(ω) =
ik(ω)ω

8

(
uout(ω)2

Pz(ω)

)
(3.4)

where Pz(ω) is the total power flow in the z-direction associated with the mode-shape as a func-

tion of the angular frequency, and uout(ω) is the out-of-plane displacement on the surface of

the mode-shape (at the position of excitation) as a function of the angular frequency. The dis-

persion curves of the waveguide (k, Pz and uout) were obtained by solving the SAFE equations

using the partial differential equation package in the COMSOL Multiphysics-4.4 and Matlab

LiveLink environment. The complete time domain signal usum(t) can then be obtained with the

linear superposition of n modes supported by the waveguide as:

usum(t) =
n

∑
m=1

um(t) (3.5)

where um(t) is the surface out-of-plane displacement associated with the m-th mode and n is

the total number of modes supported by the waveguide. The advantage of the SAFE method

as compared to other simulation methods such as 3D FE modeling is that with SAFE, only the

cross-section is modeled and meshed, resulting in computationally efficient simulations, which

may represent a significant gain of computation time. Furthermore, the dispersion curves are

only calculated once using the SAFE method and then a number of time domain signals can be

generated within minutes at minimal computational cost. The equivalent simulation using 3D

FE would take hours, if not days, and use many times more memory (Pereira et al., 2017).

The SAFE method can be considered an accurate tool for simulating the ultrasonic guided wave

response. The method has shown results in agreement with 3D conventional FE simulations,

as presented in our previous study (Pereira et al., 2017). However, SAFE has the advantage of

requiring reduced computing resources (e.g. 5.5 h and 2.5 Gb of memory against 4 h and 1.4 Gb

of memory for the FE and SAFE methods receptively). Even though the advantages of SAFE in
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terms of resource requirements are modest, it is worth noting that once the dispersion curves are

calculated, the propagated responses can be computed for different excitation configurations

without running the simulations again within seconds at minimal memory cost (<500 Mb).

3.2.2 Axial transmission configuration

The axial transmission configuration was modeled using the SAFE procedure described above.

The waveguide consists of a 2D multilayer model composed of a viscoelastic heterogeneous

solid layer surrounded by two viscoelastic homogeneous fluids. The solid layer corresponds

to cortical bone while the two fluids correspond respectively to bone marrow and soft tissues.

Because of the characteristics of the SAFE simulations, the multilayer 2D medium is assumed

to have an infinite length along the axial direction, resulting in a 3D equivalent medium, as

shown in Figure 3.1.

Figure 3.1 Schematic of the equivalent 3D axial transmission

configuration used to perform the SAFE simulations.
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The acoustic excitation was performed using a point source located in a plane denoted z0 = 0

mm in contact with the upper part of the periosteal region of the bone cross-section. A 5-cycle

Hann windowed toneburst centered at different frequencies between 20-85 kHz was used as

the input waveform to perform the excitation. Eight different excitation positions around the

circumference of the cortical bone were investigated in this study. The positions, identified

with the letters "A" to "H" in Figure 3.2, were chosen based on the anatomical accessibility of

a probe in a left human forearm. As a limitation of our study, the simulation of the excitability

curves was conducted based on the displacement computed directly on the cortical bone tissue

instead of on the overlying soft tissue (see Figure 2). The reason for this simplification is the

higher mesh stability afforded by considering the displacement in the inner elements (cortical

tissue) instead of in the outer elements (soft tissue). When considering the displacement on the

cortical bone tissue instead of the overlying soft tissue, a negligible change in the excitability

curves was observed. However, for modes traveling with most of the energy in the cortical

layer (which is the case for the majority of modes investigated in this study), the effect of

this assumption on the excitability curves is acceptable. As the wavelengths of the modes

of interest are long relative to the soft tissue thickness, a very limited number of modes are

traveling with significant energy in the soft tissue. For the modes traveling in the cortical layer,

the excitability curves have shown similar shape for both cases so that the relative difference

and the rank between modes remained the same. As a consequence, no significant change on

the relative variation obtained for the phase velocity and cut-off frequencies in the sensitivity

study is expected by modeling the waveguide with or without the soft tissue.

At reception, the out-of-plane displacements of the propagating waves were simulated at 20

positions (#1, #2, #3...#20 in Figure 3.1), denoting an array of 20 receivers. The acquisition ar-

ray was rotated in accordance with the excitation position around the circumference in order to

keep the emitter and the receivers aligned. The acquisition elements were separated from one

another by a distance of 3.5 mm, while varied from z = 20 mm to z = 90 mm. The signals ob-

tained were processed using the 2D-FFT in order to calculate the frequency vs. phase-velocity

diagram (Alleyne & Cawley, 1990). Figure 3.3a shows typical received time domain signals
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Figure 3.2 Cross-section of the middle of the radius

bone used for the SAFE analysis. Different regions were

defined along the radial direction: periosteal (a-b),

middle (b-c) and endosteal (d-e) regions. The letters "A"

to "H" show the eight different positions used to perform

the excitation on the bone surface.

obtained for an excitation frequency centered at 45 kHz. Figure 3.3b shows the frequency vs.

phase-velocity diagram obtained after performing the 2D-FFT.

For each diagram, the phase velocity of the low-order mode (named Vph) was measured by

taking the peak energy at the central frequency of the excitation waveform, as shown in the

black square in Figure 3.3b. Similarly, the cut-off frequency of the higher-order mode (named

Fcut−o f f ) was measured by taking the peak of energy at a reference velocity equal to 4000 m/s

(see black circle in Figure 3.3b). Those two features (Vph and Fcut−o f f ) were used to evaluate

the performance of each configuration in terms of assessing the variations in the intracortical

bone properties.

It should be noted that the 2D tri-layer model investigated is this study did not account for the

impacts of structural or geometrical irregularities along the axial direction since the waveguide
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Figure 3.3 a) Simulated time domain signals obtained at each receiving position. b)

Typical phase velocity vs. frequency diagram showing the intensity of the excited

modes (dB scale) and the measured phase velocity Vph and cut-off frequency

Fcut−o f f . The withe ellipsis show the two excited regions in the diagram.

was assumed to be constant and infinite. Such an assumption may change the propagation of

ultrasonic guided waves in bone tissue. However, this limitation is balanced by the fact that the

bone properties are typically measured in the central region of the bone, where the assumption

of a constant profile along the axial direction holds because of the long wavelength in the

frequency range used in this study.

3.2.3 Modeling cortical bone

The geometry of the waveguide was extracted from a slice of a human radius geometry. The

radius geometry was provided by Sawbones (Sawbone - Pacific Research Laboratories, USA),

and was built based on μCT images of the human radius. In this work, the middle third region,

which is composed only of cortical bone, was used. Moreover, bone-marrow was added inside

the cortical shell, and a 3.5 mm layer of soft-tissue was added outside the cortical shell. The tri-

layer cross-section was imported into the COMSOL Multiphysics environment for execution of

the SAFE analysis. The mesh was built using triangular elements with a maximum size of 0.5

mm, subject to a constraint of at least 15 elements per wavelength. Bone marrow and soft tissue
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were modeled as homogeneous viscoelastic fluids with the same properties used by Naili et al.

(2010) (bulk modulus=2.25e9 Pa, bulk viscosity=1.97 Pa.s and density=1000 kg/m3), while

the cortical bone was modeled as a viscoelastic transversally isotropic material. Furthermore,

cortical bone was divided into three regions along the radial direction: periosteal (a-b), middle

(b-c) and endosteal (d-e) regions (see Figure 3.2a). Each region was defined with different val-

ues for the transversally isotropic stiffness coefficients and density (C11,C13,C33,C44,C66 and

ρ), as summarized in Table 3.1. The values of each region were chosen based on a simplifica-

tion of experimental results reported by Sansalone et al. (2010). A more detailed description

of the distribution of the material properties along the radial direction is provided in the next

section.

Table 3.1 Summary of the properties used to model cortical bone. The real parts of the

stiffness coefficients were adapted from the experimental results obtained by Sansalone

et al. (2010), while the imaginary parts were adapted from the results presented by Naili

et al. (2010), using equation 3.7.

Viscoelastic

coefficientb
Periosteal

(a-b)

Middle

(b-c)

Endosteal

Healthy

(d*-e*)

Osteoporotic

(d-e)b

C11(Pa) 13.17e9+94.95 f i 11.46e9+82.62 f i 4.78e9+34.46 f i 3.11e9+22.42 f i
C13(Pa) 6.60e9+91.74 f i 6.03e9+83.81 f i 3.32e9+46.14 f i 2.65e9+36.83 f i
C33(Pa) 16.04e9+109.2 f i 14.31e9+97.45 f i 6.19e9+42.15 f i 4.17e9+28.39 f i
C44(Pa) 3.75e9+14.70 f i 3.15e9+12.34 f i 0.87e9+3.41 f i 0.30e9+1.17 f i
C66(Pa) 3.62e9+14.19 f i 2.99e9+11.72 f i 0.78e9+3.05 f i 0.23e9+0.90 f i

Density (kg/m3) 1850.00 1850.00 1299.04 1161.30

a Adapted from the experimental results obtained by Sansalone et al. (2010)

* The "Healthy" conditions were defined based on an arbitrary gain of 20% on the value of all stiffness

coefficients and density.

In the viscoelastic model used in this study, the elastic stiffness constants were written as

complex numbers:

Cc =Cc +ηc f i (3.6)

where the subscripts c=11, 13, 33, 44 and 66, and f corresponds to the frequency. The real

part of the stiffness constants is assumed to be independent of the frequency, while the imag-
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inary part results from the use of the linear theory of viscoelasticity, assuming frequency-

dependent losses in the waveguide. Because relevant data ware lacking, the viscosity coeffi-

cients η11,η13,η33,η44 and η66 shown in Table 3.1 were defined based on the viscosity coef-

ficients found in the literature. The coefficients were adjusted by the ratio between the elastic

coefficients used in this study and those reported in (Naili et al., 2010), as given by:

ηc =
C∗

c
Cc

.η∗
c (3.7)

where the subscripts c=11, 13, 33, 44 and 66, η∗
c and C∗

c are respectively the viscosity and

elastic coefficients reported by Naili et al. (2010) for the cortical bone.

3.2.4 Heterogeneous distribution of bone properties

The heterogeneous nature of the biomechanical properties of cortical bone tissue was adapted

from the experimental results obtained by Sansalone et al. (2010) using 3D synchrotron micro-

computed tomography images (79-year old patient). In order to simplify the spatial distribution

of each material property, the original values (Figure 3.4) were adapted by choosing three

different constant values for the periosteal (between a-b), middle (between b-c) and endosteal

(between d-e) regions. Moreover, a linear variation was assumed in the region between the

middle and periosteal bone (between c-d). For the density, the same approach was applied

based on porosity distribution reported in the study. The conversion was made considering

a scale where 100% BV/TV (bone volume/ total volume) denotes a bone with a 1850 kg/m3

density and 0% BV/TV denotes only bone marrow with a 1000 kg/m3 density. The constant

values, as well as the linear variation of each material property, were chosen to minimize the

gap between the original (Sansalone et al., 2010) and simplified values. Figure 3.4 shows the

original and simplified (healthy and osteoporotic) distributions for the coefficient C11.

Two different physiopathological conditions, namely "Healthy" and "Osteoporotic", were de-

fined for the endosteal region (between d*-e* and d-e in Figure 3.4, respectively). The "Os-

teoporotic" condition was defined with the simplified distribution taken from the original data
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Figure 3.4 Simplified distribution of the elastic coefficients

C11 varying with the distance from the periosteum for the

healthy and osteoporotic condition.

(Sansalone et al., 2010). This assumption was made because the data were obtained from an

osteoporotic 79-year old patient. The "Healthy" condition was then obtained by: i) arbitrarily

increasing the values of all stiffness coefficients and density in the endosteal region by 20%,

and ii) by reducing the length of the endosteal region by 20%.

As a limitation, the approach used to model the "Healthy" condition constitutes a simple way

of modeling a slightly less degraded condition, which does not necessarily represents the con-

dition associated with a healthy patient. However, since the properties are changing only in the

endosteal region in our sensitivity study, the magnitude of change between the "Healthy" and

“Osteoporotic” condition can be considered very small, which may be similar to the magnitude

of degradation associated to the early-stage osteoporosis.

Furthermore, the heterogeneous distribution of cortical bone properties applied in this study

was based on homogenized local material properties applied by Sansalone et al. (2010), which

are not easy to define due to the multi-scale nature of bone and its dependence on the mi-
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crostructure at smaller scales. However, such discrepancies tend to be minimized by using

low-frequency excitation associated with long wavelengths of the excited modes. Table 3.1

shows a summary of the "Healthy" and "Osteoporotic" elastic coefficients and densities used

to defined the aforementioned scenarios.

3.3 Results and discussion

3.3.1 Effect of excitation position

Figures 3.5a to h show the normalized excitability curves (in the 10-100 kHz range) for an

excitation performed at eight different positions on the bone surface (identified with letters "A"

to "H" in Figure 3.2). The normalized excitability predicts the relative amplitude expected to be

observed by a receiver when an emitter at position "A" applies a load in the radial direction (see

Figure 3.2). The curves show the modal excitability of five modes with similar velocities (m=1,

m=2, m=3, m=4, and m=5, marked with a solid line ellipse in Figure 3.3). A notable difference

in the modal excitability can be observed between each configuration, which is expected for

non-symmetric waveguides such as the bone geometry modeled in this study. For practical

applications, a position that can mainly excite a single mode is preferable in order to avoid

interferences from other modes.

Modes m=1, m=2, m=3, m=4, and m=5 all present flexural-like mode shapes. For instance,

Figure 3.6a and 3.6b show the out-of-plane component of the fundamental flexural tube mode

F(1,1) and mode shape of m=1 respectively. Despite the similarities between the displacement

fields and the mode order, a direct association to the mode shape of tubular waveguides is not

possible due to the asymmetric nature of the waveguide and its arbitrary geometry

The modes m=1, m=2, and m=3 all show an excitability 10 dB higher than the other modes,

as shown in the highlighted regions in Figures 3.5a, 3.5c, and 3.5h, respectively. Furthermore,

according to Figure 3.7, the modes m=1, m=2, and m=3 have a higher percentage of the to-

tal power flow concentrated in the endosteal region as compared to the other modes, which
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Figure 3.5 Normalized modal excitability obtained for the excitation performed at

eight different position on the bone surface from 10 kHz to 100 kHz. The letters a) to

h) are associated to the excitation position "A" to "H" shown in Figure 2, respectively.

Figure 3.6 Out-of-plane displacement field (radial direction r in Figure 3.1) at 40

kHz for: a) fundamental flexural mode F(1,1) on a tubular geometry waveguide and

b) mode m=1 on a bone-like geometry waveguide. The highlighted regions denote

modes segments that have an excitability 10 dB higher than the other modes.
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indicates that they are likely to be sensitive to changes in this region. Thus, the excitation at

position "A", "C" and "H" were chosen as the most suitable positions to excite a dominant

mode; they were therefore further investigated in this paper. Since the attenuation of the modes

is expected to be small at very low frequencies (<100 kHz), it was not taken into account to

choose the most suitable excitation and detection positions

3.3.2 Effect of physiopathological conditions

Table 3.2 shows the percentage variation in the phase velocity (Vph) and cut-off frequency

(Fcut−o f f ) for the excitation performed at position "A", "C" and "H". The variations was

calculated based on the difference computed between the two physiopathological conditions

("Healthy" and "Osteoporotic"). The simulations were performed using input waveforms cen-

tered at different frequencies between 20-85 kHz. This choice was made in order to cover a

frequency range that has the potential to excite separately one of the five modes with similar

velocities on the excitability curves in Figure 3.5.

Table 3.2 Total variation of the phase velocity Vph and cut-off frequency Fcut−o f f
for the excitations performed at position "A", "C" and "H".

Phase velocity (Vph)a Position A (%) Position C (%) Position H (%)

35 kHz 5.59 4.91 4.21

45 kHz 7.98 6.01 4.23

55 kHz 7.36 6.23 4.03

65 kHz 6.72 5.44 2.18

75 kHz 6.21 4.99 2.50

85 kHz 5.99 4.48 2.07

Cut-off frequency (Fcut−o f f )a Position A (%) Position C (%) Position H (%)

First cut-off frequency (20 kHz) 17.37 16.31 16.31

Second cut-off frequency (40 kHz) 9.42 12.15 11.23

Third cut-off frequency (70 kHz) 5.45 6.99 5.38

a The variations were calculated based on the difference computed between the "Healthy" and the "Osteoporotic"

condition.

The sensitivity of phase velocity (Vph) was strongly affected by the excitation position. The

highest sensitivity was achieved at position "A", for all frequencies. On the other hand, the
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cut-off frequency (Fcut−o f f ) was only slightly affected by the position of excitation, showing

similar sensitivities for all positions. However, the cut-off frequency was strongly affected

by the frequency of excitation, showing a significantly higher sensitivity at the first cut-off

frequency (20 kHz) as compared to the second (40 kHz) and third (70 kHz). Similarly, an in-

crease in the sensitivity of the phase velocity (Vph) was observed at lower frequencies, reaching

a maximum variation at 45kHz, for all positions.

Figure 3.7 shows the power flow in the endosteal region (normalized to the total power flow)

for modes m=1, m=2, m=3, m=4, and m=5, varying from 20 kHz to 100 kHz. The results

show that mode m=1 has a higher power flow in the endosteal region as compared to the other

modes, achieving approximately 23% of the total power in this region at 45 kHz. This explains

the higher sensitivity obtained for the excitation performed at position "A", in which the mode

m=1 excitability is 15 dB higher than the other modes (see Figure 3.5a)
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Figure 3.7 Power flow in the endosteal region

normalized by the total power flow for modes m=1,

m=2, m=3, m=4, and m=5 from 20 kHz to 100 kHz.



69

3.3.3 Effect of stiffness coefficients and density

Table 3.3 shows the percentage variation computed for the Vph and Fcut−o f f for each viscoelas-

tic coefficient and density separately. The condition varied from "Healthy" to the "Osteo-

porotic". The excitation was performed at position "A" using central frequencies ranging be-

tween 20-85 kHz.

The sensitivity of Vph showed a positive variation associated with coefficients C11, C33, C44,

C66, while a negative variation was associated with the coefficient C13 and the density. Coeffi-

cient C44 showed the major contribution for most of the frequencies investigated (except at 35

kHz), accounting for approximately 50% of the variations in the degradation of all parameters

taken together (identified as "Overall" in Table 3.3). The reduction in sensitivity observed at

35 kHz was found to be associated with the sharp decrease in the power flow of mode m=1

seen in Figure 3.7 at frequencies below 45kHz. In addition, it may be related to the reduction

in excitability seen in mode m=1 at lower frequencies (see the excitability curves in Figure

3.5a), which may increase the interference from other modes, and consequently, reduce the

sensitivity.

For the sensitivity of Fcut−o f f , a positive variation associated with the coefficient C66 was

observed, accounting for almost 100% of the "Overall" variation. Such a dependence could be

used to assess the status of coefficient C66 separately.

3.4 Conclusion

In this paper, the SAFE method was used to simulate the propagation of ultrasonic guided

waves at low frequency (20-85 kHz) in a bone waveguide in the context of an axial transmission

configuration. The SAFE method was shown to be an efficient tool for investigating the effect

of intracortical properties on the propagation of ultrasonic guided waves since a number of

configurations were simulated using reduced computing resources.
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Table 3.3 Percentage variation computed for Vph and Fcut−o f f for each viscoelastic

coefficient and density separately

Phase velocity (Vph)

variation (%)a
Position A

C11 C13 C33 C44 C66 Density Overall

35 kHz 0.32 -1.42 0.8 1.30 1.63 -0.79 5.59

45 kHz 0.37 -1.45 1.24 3.30 2.01 -0.611 7.98

55 kHz 0.31 -2.23 1.47 3.21 0.31 -0.72 7.36

65 kHz 0.36 -2.02 1.73 3.25 0.36 -0.62 6.72

75 kHz 0.16 -1.73 1.54 3.25 0.32 -0.71 6.21

85 kHz 0.08 -1.14 1.20 3.21 0.42 -0.67 5.99

Cut-off frequency (Fcut−o f f )

variation (%)a

First cut-off frequency (20 kHz) 0 0 0 0 22.06 -2.34 17.37

Second cut-off frequency (40 kHz) 0 0 0.90 0.90 9.42 -0.90 9.42

Third cut-off frequency (70 kHz) 0.94 0.52 0.41 0.94 3.98 -1.05 5.45

a The variations were calculated based on the difference computed between the "Healthy" and the "Osteoporotic"

condition.

Considering the actual bone geometry, sixteen ultrasonic guided wave modes were found in

the 10-100 kHz frequency range (Figure 3.3b). However, only some of the modes have shown

enough excitability and consequently clinical interest. In addition, the excitability and sensitiv-

ity of each mode were shown to vary according to the frequency and position of excitation on

the bone surface. The phase velocity showed a maximum sensitivity at 45 kHz, which would

appear to be associated with the peak of energy (power flow) concentrated in the endosteal

region at this frequency. The cut-off frequency was only slightly affected by the position of

excitation, but strongly by the frequency of excitation. A maximum sensitivity was achieved

for the first cut-off frequency at approximately 20 kHz.

The sensitivity of phase velocity was associated with the variation in the physiopathological

conditions of all the coefficients and density, but mainly with C44. The sensitivity of the cut-off

frequency for its part was mainly associated with variation in the physiopathological conditions

of the stiffness coefficient C66, allowing the axial shear modulus to be assessed separately.

Thus, by selecting an adequate frequency and position of excitation, low-frequency axial trans-

mission was shown to be a promising method for assessing intracortical bone properties. The
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features identified in this study could be used as metrics to compare the similarity between

experimental and numerical data. A cost function based on these features could then be im-

plemented into an inversion scheme to retrieve reliable bone properties from experimental data

at low frequency. A parameterized bone-like geometry model, instead of a plate or cylinder,

could potentially reduce the errors commonly encountered with in-vivo and ex-vivo experi-

ments. For instance, the model could potentially compensate geometrical variations between

different patients that are unrelated to the bone quality, such as the outer diameter and the ex-

ternal shape of the bone. The method could, therefore, be applied to identify small changes

associated with early-stage osteoporosis or gradual evolution of the bone condition over time.

For these extreme cases, since the sensitivity associated to slightly different degraded condi-

tions was found to be modest, a good basis for comparison (e.g., a baseline method or a large

reference database) would have to be implemented in order to guarantee the robustness of the

method.
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Abstract The early diagnosis of osteoporosis through bone quality assessment is a major pub-

lic health challenge. Research in axial transmission using ultrasonic guided waves has show

the method to be sensitive to the geometrical and mechanical properties of the cortical layer

in long bones. However, because of the asymmetric nature of cortical bone, the introduction

of a more elaborate numerical model, as well as its inversion, continue to be challenging. The

aim of this paper is, therefore, to implement a bone-like geometry using semi-analytical fi-

nite element (SAFE) modelling to perform the inverse characterization of ex-vivo radiuses at

low frequencies (<60kHz). Five cadaveric radiuses were taken from donors aged between 53

and 88, and tested using a typical axial transmission configuration at the middle of the diaph-

ysis. The dispersion curves of the propagating modes were measured experimentally, and then

systematically compared to the solutions obtained with the SAFE method. For each sample,

four parameters were estimated using an automated parameter identification procedure: (1) the

bulk density; (2) the thickness; (3) the outer diameter, and (4) the shape factor. The results

showed a good agreement between the predicted bulk density and the average voxel value cal-

culated from computed x-ray tomography images. Furthermore, an excellent agreement was
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observed between the geometrical parameters (thickness, outer diameter and shape factor) and

the reference images.

Keywords: Low-frequency ultrasonic guided waves, Axial transmission, Cortical bone.

4.1 Introduction

Osteoporosis is associated with a reduction of bone mass and microarchitectural bone deteri-

oration, leading to a reduction of bone quality (Papaioannou et al., 2004; Strom et al., 2011;

Giangregorio et al., 2006) and to an increase in the risk of fracture (Con, 1991). Dual-energy X-

ray absorptiometry (DEXA) is currently the gold standard for diagnosing osteoporosis (Kanis,

1994). However, it suffers from several limitations (Haba et al., 2016; Gluer, 2008). Quanti-

tative ultrasound (QUS) was developed to assess bone quality using ultrasonic waves, and has

the advantage of being non-radiative, non-invasive and relatively inexpensive (Gluer, 1997). It

is therefore promising as a rapid screening method in clinical settings. The mechanical nature

of ultrasonic waves allows the technique to be used to retrieve the biomechanical properties of

bone tissues (Kaufman & Einhorn, 1993). QUS techniques can be used to go beyond simply

estimating the bone mineral density currently obtained when using DEXA (Nicholson, 2008),

and which is not sufficient to assess the risk of fracture (Sur, 2004).

QUS using axial transmission techniques has attracted significant interest, and has mostly been

used to study the cortical bone. The resorption of the cortical bone results in a deterioration of

material properties and in a reduction of the cortical bone thickness (Ritzel et al., 1997). Thus,

the stiffness, the density and the thickness are important properties when assessing cortical

bone condition. Long bones, such as the radius or the tibia, constitute suitable waveguides for

the propagation of ultrasonic guided waves, as has been shown in various studies (Haba et al.,

2016; Gluer, 2008, 1997). In this context, a multi-mode approach combining the measurement

of more than one mode was shown to be capable of distinguishing between the contributions

of mechanical and geometrical properties (Tatarinov et al., 2005). For instance, low-frequency

axial transmission (typically below 200 kHz) research has demonstrated that ultrasonic guided
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waves are sensitive to changes in bone properties, such as the cortical thickness and the bone

stiffness (Sarvazyan et al., 2009; Kilappa et al., 2011; Egorov et al., 2014; Tran et al., 2015).

Operating at low frequencies offers the advantage of a lower attenuation, as well as a reduced

number of propagating ultrasonic guided wave modes. The limited number of modes leads to

a simplified interpretation of the signals. In addition, low-frequency ultrasonic guided wave

modes tend to achieve greater penetration depths due to the longer wavelengths involved. Con-

sequently, a low-frequency configuration has the potential to assess a much larger volume when

compared to those with higher frequencies, e.g. 400-2000 kHz (Minonzio et al., 2018; Bochud

et al., 2017). Furthermore, the sensitivity to variations in intracortical bone properties could

be improved when using low-frequencies, which is of interest since early-stage osteoporosis is

associated with resorption in the endosteal region (Ritzel et al., 1997).

The ultrasonic assessment of mechanical and geometrical properties of cortical bone using ul-

trasonic guided waves commonly comes up against the challenge of solving multi-parametric

inverse problems. Current multi-mode characterization methods rely on inversion schemes

used to match experimental data with the modes simulated using simplified models, such as

plates and cylinders (Minonzio et al., 2015; Xu et al., 2016; Kilappa et al., 2015). Moilanen

et al. (2007b) introduced an inversion scheme based on a free isotropic tube model for the ex-

vivo estimation of the cortical thickness of the human radius. Similarly, Ta et al. (2009) used

a bilayer isotropic tube model to estimate the thickness of bovine tibia specimens by manually

matching the experimental velocities with the velocity of simulated modes. Recently, Foiret

et al. (2014) implemented an inverse characterization routine to perform a pioneering estima-

tion of both the thickness and the stiffness of ex-vivo cortical bone samples using a transversely

isotropic free plate model. However, the proposed gradient-based optimization procedure re-

quired considerable prior knowledge to match the experimental data with the modelled ul-

trasonic guided wave modes. To overcome this issue, the same group later implemented a

user-independent inversion scheme based on genetic algorithms to retrieve information from

a multi-mode data set without any prior knowledge of the mode orders (Bochud et al., 2016).

More recently, they used a bilayer model to solve a similar inverse problem in order to evaluate
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the impact of the complexity of the forward model on the accuracy of the inversion method

(Bochud et al., 2017). The results suggest that the sophisticated bilayer model is more precise

in predicting experimental data when compared to a free plate model, but is very difficult to

manage when solving the inverse problem. The reason for this was partially associated with

the large number of modes generated by a bilayer model, which eventually would let almost

any set of model parameters to fit the experimental data.

In this context, more comprehensive numerical approaches have increasingly been explored

with the aim of improving the realism of cortical bone models and obtaining a better under-

standing of the ultrasonic guided wave phenomenon in cortical bone (Bossy et al., 2004; Haiat

et al., 2011; Chen & Su, 2014; Moreau et al., 2014). The semi-analytical finite-element (SAFE)

method was already successfully implemented for modelling waveguides with arbitrary cross-

sections (Thakare et al., 2017; Nguyen et al., 2017; Tran et al., 2015; Pereira et al., 2017). The

capacity to model complex geometries is of particular interest at low frequencies, when the

cross-sectional curvature of the cortical bone and its particular shape play an important role

in modal excitability and on the propagation of the transmitted modes (Pereira et al., 2017).

Thus, introducing such a flexible model in an inversion scheme could potentially compensate

for errors commonly encountered with in-vivo and ex-vivo measurements, as well as provide

additional information associated with the cortical bone structure.

This paper aims to implement a parameterized bone-like model using the SAFE method to

perform the inverse characterization of the cortical bone at low frequencies (<60kHz). Five

ex-vivo radiuses were obtained from donors between the ages of 53 and 88 and tested using a

typical axial transmission configuration in the middle 1/3 diaphysis. From the measured data,

the dispersion curves of the propagating modes were computed using the two-dimensional

spatio-temporal Fourier transform (2D-FFT), and then systematically compared to the sim-

ulated modes obtained with the SAFE method. For each acquisition, four parameters were

estimated using an automated parameter identification routine: (1) bulk density; (2) thickness,

(3) outer diameter, and (4) shape factor. The bulk density value is associated with a set of five

effective transversally isotropic stiffness coefficients, which together constitute the material
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properties of the volume of interest (VOI). The originality of the proposed inverse method lies

in the consideration of the excitability curves to determine the most relevant modes when fit-

ting the experimental data. Using the excitability greatly reduces the number of relevant modes,

and therefore simplifies the mechanism of the inversion. The paper begins with a section on

the materials and methods (Section 4.2), with details of the experimental measurements, the

forward model and the procedure for the identification of the model parameters. This is then

followed by a section presenting the results, which also includes the discussions (Section 4.3).

Finally, conclusions are drawn (Section 4.4).

4.2 Material and Methods

4.2.1 Experimental measurements

4.2.1.1 Ex-vivo samples and reference values

The measurements were performed on five ex-vivo radius specimens supplied by the Université

de Sherbrooke (Sherbrooke, Canada). The samples were taken from fresh cadavers aged from

53 to 88 years old (three males and two females). Consent from the donors to provide their

tissues for investigation was provided in accordance with the Canadian code of ethics. The

samples were kept frozen at -23 ◦C until the measurements were performed. As a reference,

measurements using computed x-ray tomography (CT) were performed in order to evaluate

the robustness of the proposed inverse approach. The images were obtained with an isotropic

voxel size of 0.19 mm in the cross-section (x and y in Figure 4.1) and 0.62 mm in the axial

direction (z in Figure 4.2), using a CT scanner (GE-VCT-64, HSCM, Montreal, Canada).

For each specimen, the cross-sectional images were reconstructed at 120 sections in the mid-

dle 1/3 region. The region of interest (ROI - delimited by the white line in Figure 4.1) was

defined for each cross-sectional image using a semi-automated threshold-based image process-

ing algorithm. The average voxel value was then obtained for each cross-sectional image by

averaging the gray level of all the pixels inside the ROI. For their part, the mean and standard



78

deviation values were determined by averaging the values obtained for all 120 cross-sectional

images of the middle 1/3 region. Since the the X-ray absorption coefficient depends mainly

on the density, the mean value provides an estimation of the effective bulk density associated

with the VOI while the standard deviation estimates the variation in the bulk density over the

VOI. Similarly, the cortical thickness and outer diameter were computed by averaging the local

thickness (th) obtained at 60 different angles θ over the ROI (Figure 4.1) using an edge de-

tector image processing algorithm available in MATLAB 2017. The average cortical thickness

was then obtained for each of the 120 cross-sectional images. The mean provides an estimation

of the equivalent thickness associated with the VOI while the standard deviation estimates the

cortical thickness variability observed over the VOI.

Figure 4.1 Computed tomography (CT) image taken at the

middle 1/3 radius, with the white solid lines showing the ROI of

the axial transmission measurements.
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4.2.1.2 Axial transmission measurements

Acoustic excitation was performed using a piezoeletric probe (Olympus V318-SU-CF0.78IN-

PTF) in contact with the upper part of the periosteal region next to the middle 1/3 region

diaphysis, as shown in Figure 4.2. A 3-cycle Hann windowed toneburst centered at 40 kHz

was used as the input waveform to perform the excitation. Three consecutive acquisitions over

the middle 1/3 region were performed in the axial direction z at 38 positions equally spaced by

2 mm using a laser Doppler vibrometer (Polytec OFV-505). The probe and the sample were

repositioned between each acquisition. A reflective tape coupled to the bone surface using

ultrasonic gel was used to improve the signal-to-noise ratio (SNR) of the signal received by the

laser Doppler vibrometer.

Figure 4.2 Axial transmission configuration used to perform the

measurements on the radius specimens, with the black dashed

lines showing the ROI.
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The acquired time domain signals were processed using the 2D-FFT so as to calculate the in-

tensities of the propagating modes in a frequency-wavenumber diagram (Alleyne & Cawley,

1990). Such frequency-wavenumber dispersion curves are extensively used in the literature

in the context of cortical bone assessment (Lefebvre et al., 2002; Moilanen et al., 2006; Ki-

lappa et al., 2011). More recently, the sparse singular value decomposition (S-SVD) method,

combined with the fast Fourier transform (FFT), was established as an alternative for the high-

resolution extraction of dispersion curves on cortical bone systems (Xu et al., 2016). However,

the S-SVD-based methods are known to increase the resolution by removing the singular vec-

tors associated with the lowest singular values, which may lead to changes in the relative am-

plitude of the modes in the experimental dispersion curves. Since the proposed approach uses

modal excitability to fit the experimental data with the simulated modes, the 2D-FFT appears

to be more appropriate for preserving the relative amplitude between the propagating modes.

4.2.2 Forward model

In this study, a bone-like geometry was used as a forward model to match the experimental

dispersion curves with the simulated ultrasonic guided wave modes generated by the SAFE

model. The simulated solutions were obtained by solving the SAFE equations using the COM-

SOL Multiphysics 4.4 partial differential equation package. The following subsection (4.2.2.1)

summarizes the background of the SAFE method, while a more detailed description of the

SAFE procedure can be found in the literature (Predoi et al., 2007; Fan et al., 2008a). Subsec-

tion 4.2.2.2 then describes the bone-like model used as a forward model in this study.

4.2.2.1 Semi-analytical finite-element method

Essentially, the SAFE method assumes that ultrasonic guided waves propagate harmonically

in the axial direction z with constant cross-section and material properties (Fan et al., 2008a).

Thus, the displacements field ug can be described as:
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ug (x,y,z, t) =Ug (x,y)e−i(kz−ωt), i =
√−1 (4.1)

where g=1,2,3 stands for the direction x, y and z, respectively. Ug is the displacement field in

the cross-section plane (x,y), k is the wavenumber, and ω is the angular frequency. Considering

the mass density ρ and the viscoelastic coefficients Cgh jl , the differential equations of motion

for an anisotropic material can be defined using the formalism for eigenvalue problems by:

Cgh jl
∂ 2Uj

∂xh∂xl
+ i(Cg3 jl + Cgh j3)

∂ (kU j)

∂xh
− kCg3 j3

(
kUj

)
+ρω2δ g jUj = 0. (4.2)

Equation 4.2 can be solved for a given frequency f , resulting in infinite instances of complex

wavenumber k and their respective displacement fields Uj(x,y), the so-called mode shapes.

Figure 4.3 Forward model showing the bone-like geometry

described in terms of thickness and outer diameter variables.
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For a given frequency, the point excitability of the nth mode En can be calculated based on its

mode shape as (Wilcox et al., 2005):

En =
ikn f

8

(
Ur

2

Pz

)
(4.3)

where Pz is the total power flow in the z-direction associated with the mode shape, and Ur is

the integral of the radial displacement over the region of excitation (see dashed line in Figure

4.3). Thus, modes having mode shape with large radial displacements in the excitation region

tend to be highly excitable.

4.2.2.2 Bone-like model

The model geometry was defined based on the profile of the cortical bone in the middle 1/3

region of the human radius. Since the measurements were performed on dry specimens (with-

out soft tissue), the soft tissue was not taken into account in this study. Furthermore, the bone

marrow was not taken into account either in order to limit the complexity of the model and

reduce the computational time. Therefore, a single cortical layer was modeled with a bone-like

shape defined by three geometrical parameters: thickness (TH), outer diameter (OD) and shape

factor (SF), as shown in Figure 4.3.

The waveguide was modelled as a homogeneous medium defined by a density (ρ) and five

transversally isotropic stiffness coefficients (C11,C13,C33,C44 and C66) . The material proper-

ties were derived from an anisotropic homogenization theory recently introduced in the liter-

ature by Vu & Nguyen-Sy (2018). Figure 4.5 shows the effective coefficients as a function

of the bulk density obtained using the aforementioned homogenization method. The bone-

like geometry was then imported into the COMSOL Multiphysics environment. The mesh

was built using triangular elements, with the size of the elements subjected to a constraint of

at least 15 elements per wavelength, according to the frequency. Figure 4.4 shows a typical

wavenumber-frequency representation of the simulated ultrasonic guided wave modes found

between 5 and 60 kHz using the SAFE method. The color of each circle denotes the magni-
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Figure 4.4 Typical wavenumber-frequency-excitability

diagram computed by the forward model using the SAFE

method. The color-map shows the excitability of each mode.

tude of the modal excitability (equation 4.3) associated with each wavenumber solution. Such

a wavenumber-frequency-excitability representation was then systematically compared to the

experimental dispersion curves in order to solve the inverse problem, as detailed in the next

subsection.

4.2.3 Inversion problem

The inversion problem assumes that the properties of the cortical bone samples can be esti-

mated by matching the experimental dispersion curves with simulated ultrasonic guided wave

modes obtained from the parametrized bone-like model. Such a multi-parametric model-based

approach requires the implementation of a cost function into an optimization procedure in or-

der to find the optimal model parameters. The following two subsections (4.2.3.1 and 4.2.3.2)

describe the cost function and the automatic parameter optimization routine employed in this

study.
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Figure 4.5 Effective transversally isotropic elastic

properties of cortical bone varying with bulk density. The

properties were obtained using an anisotropic

homogenization theory introduced by Vu & Nguyen-Sy

(2018).

4.2.3.1 Cost function

The cost function is typically the criterion used to fit the experimental data with a numerical

solution, and it is a crucial element for solving the inversion problem. In the context of cortical

bone assessment, it is far from trivial to establish a robust approach to evaluate the fit between

the experimental and simulated dispersion curves (Minonzio et al., 2018). However, both oper-

ating at low frequencies and using the modal excitability both reduce the number of ultrasonic

guided wave modes of interest. A lower number of modes facilitates the fitting of the exper-

imental dispersion curves to the simulated modes. As an example, Figure 4.6 (a) shows the

dispersion curves measured experimentally on sample #1 between 5 and 60 kHz. The experi-

mental amplitude (surface plot) can be interpreted as the excited modes that were propagating

in the cortical bone waveguide during the experimental acquisition. Similarly, the circles de-
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Figure 4.6 a) Typical solutions of the SAFE model (circles) overlaid onto

experimental dispersion curves for frequencies between 5 and 60 kHz. The circles

were filled with colors defined based on the modal excitability computed using

equation (4.3); b) Amplitude extracted from experimental dispersion curves at 55

kHz along with simulated modes computed with the SAFE model and their

respective excitabilities.

notes the wavenumber-frequency-excitability representation of the modes that were obtained

using the SAFE model for a given set of model parameters. The challenge lies in defining a

cost function that can be systematically used to quantify the fit between these two representa-

tions. In this study, the misfit of a given simulated mode was defined at each frequency by the

distance between its modal excitability and the amplitude observed experimentally by:

dn = En −A(kn) (4.4)

where En is the excitability of mode kn and A(kn) is the amplitude observed experimentally

at position kn. For instance, Figure 4.6b shows the experimental amplitude and the modelled

excitability at 55 kHz. The orange line shows the experimental amplitude varying as a function

of the wavenumber, while the circles denotes the wavenumber-excitability representation for

each of the six simulated modes obtained at 55 kHz. The respective distances between the

modal excitability and the experimental amplitude (d1, d2, ..., d6) are shown in Figure 4.6b.
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Furthermore, a weighting factor wn associated with each mode was calculated by dividing the

excitability En of each mode by the sum of the excitability of all the modes as:

wn =

⎧⎪⎪⎨
⎪⎪⎩

En

∑ N
n=1 En

, if En > L.

0, otherwise.

(4.5)

where N is the total number of modes and L is user-defined threshold. The weighting factor

provides a means of accounting for the relevance of each mode when compared to all the

possible modes. In other words, the modes with excitabilities lower than L are not taken into

account in the cost function. For instance, by considering L=-25dB in Figure 4.6b, the modes

n=3, n=4 and n=6 have the weighting factors w3=0.55, w4=0.07and w6=0.38, respectively,

while the modes n=1, n=2 and n=5 all have weighting factors equal to zero (w1,2,5=0) because

their excitabilities are lower than -25dB. The cost function J is defined by the sum over a range

of frequencies of the square root of the sum of the square weighted distances as:

J =
fe

∑
f= fs

2

√
N

∑
n=1

(dn.wn)
2 (4.6)

where fs is the starting frequency and fe is the ending frequency. Thus, the cost function takes

into account only the most relevant modes, thereby reducing the possibility of confusion be-

tween solutions due to overfitting to the data. Furthermore, by evaluating the modes according

to their excitability, this approach can be used to solve the inverse problem without any prior

knowledge of the modes in the experimental dispersion curves.

4.2.3.2 Automatic parameter identification

The cost function was calculated for several different model solutions by sweeping the model

parameters along a multi-dimensional grid in steps, according to the values in Table 4.1. The

lowest value (global minimum) of the multi-dimensional grid was automatically identified for

each of the three consecutive acquisitions on each sample. The respective mean and standard
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deviations associated with the global minimums were then obtained and compared to the ref-

erence values obtained from the CT images. The density range was defined according to the

physiological observations found in the literature (Vu & Nguyen-Sy, 2018), while the geomet-

rical parameter ranges (thickness, outer diameter and shape factor) were defined in order to

cover all the values observed in the CT images. The frequency bandwidth was defined to have

enough mode features in the experimental dispersion curves while keeping the maximum fre-

quency as low as possible. The grid steps were defined based on a trade-off between resolution

and computation time. To resolve all the mode features, the frequency resolution was chosen

to be sufficiently high, at 1 kHz steps.

Table 4.1 Bounds of the model parameters and their

respective discretization used to perform the automatic

parameter identification.

Range Step size

Bulk density (kg/m3) 1720 - 2080 20

Thickness (mm) 1.5 - 4.0 0.1

Outer diameter (mm) 9.0 - 13.0 2.0

Shape factor 1.6 - 2.0 0.4

Frequency (kHz) 5 - 60 1

4.3 Results and Discussion

4.3.1 Dispersion curves fitting

Dispersion curves were measured for five ex-vivo specimens. Figure 4.7 shows the first acqui-

sition of experimental data (surface plot), along with the simulated modes (circles) computed

using the optimal model parameters. As shown, a remarkable agreement was found between

the experimental data and the bone-like model. Most of the experimental data was matched

by a combination of several high excitability mode segments (Excitability≥-5dB). At least

one cut-off frequency was identified in the dispersion curves and matched by a cut-off mode

at different frequencies between 25 to 55 kHz, depending on each sample. For sample #5,

however, no cut-off modes were observed. Furthermore, a considerable misfit between the
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experimental amplitude and the simulated modes was found for frequencies between 20 and

50 kHz. This would appear to be related to the lower SNR observed for this specimen which

is possibly associated with the high level of deterioration expected for the 88 year old female

donor. Nonetheless, although the data are noisy and incomplete, the optimal bone-like model

was able to match some of the features located at 10-20 kHz and 50-60 kHz.

Figure 4.7 Optimal matching between the experimental dispersion curves

and the simulated modes for: a) Sample # 1; b) Sample # 2; c) Sample # 3;

d) Sample # 4, and e) Sample # 5.

Figure 4.8 shows a 2D representation of the normalized cost function values obtained (lower

values mean better fit) when varying two model parameters (density and thickness). The re-

maining two parameters (outer diameter and shape factor) were set at the optimal values ob-

served for the solution with the best fit out of all the evaluated models. For each sample, filled

isolines were displayed using constant colors according to their current contour level in the
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colormap. The colormap was set at values between 1 and 4, while the contour levels were

separated from each other by an arbitrary value of 0.3. The contrast between the first and

last contour levels can be interpreted as the susceptibility to ambiguities associated with each

acquisition (higher contrast means less susceptibility to ambiguities). The dark blue area de-

limited by the first level (between 1 and 1.3) gives an idea of the resolution associated with

the density and thickness, which can be interpreted as the ability of the inverse method to dis-

tinguish between two similar conditions involving these parameters. Finally, the red circles

identify the precise location of the minimum values (J=1) associated with the first acquisition

(filled circle) and second and third acquisitions (hollow circles). On each sample, one single

and well defined dark blue region can be observed. The respective optimal density and thick-

ness values associated to the global minimum ranged from 1820 to 1980 kg/m3 and from 1.3

to 4.4 mm. The contrast between the first and last contour levels and the sizes of the dark blue

areas were found to be fairly similar for all the samples, except for sample # 5. As observed

in Figure 4.8e, a much wider dark blue area in the density dimension was found on sample #

5. The same phenomenon was recently reported on a similar cost function evaluation by Mi-

nonzio et al. (2018) for strongly deteriorated bone samples. The authors associated the weak

generation of guided modes with the disruption of the endosteal bone edge observed in aged

donors. Therefore, it can be argued that a considerable part of the mode energy is expected to

transfer across the endosteal edge to the bone marrow. Hence, this problem could potentially

be addressed by adding the bone marrow inside the cortical bone model.

Furthermore, because of the very poor contrast between the first and last contour levels, the

susceptibility to ambiguity was very evident for sample # 5. For instance, Figure 4.9 shows the

normalized objective function grid for the second and third acquisitions performed on sample

# 5. As observed, the presence of a second dark blue region was found on the third acquisition

on sample # 5 (Figure 4.9b). Consequently, the optimal solution switched to the second local

minimum region.
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Figure 4.8 Normalized cost function obtained for the first acquisition by sweeping

density and thickness while keeping outer diameter and shape factor with the optimal

values on: a) Sample # 1; b) Sample # 2; c) Sample # 3; d) Sample # 4, and e)

Sample # 5.

4.3.2 Estimated density

Figure 4.10 shows the mean and standard deviation obtained for the density (red circles) vary-

ing from samples # 1 to # 5, along with the reference average voxel values measured from

the CT images (black solid lines). It is worth remembering that the ultrasonic measurements

were performed over the whole middle diaphysis (76 mm of acquisition length) and at very

low-frequency (high penetration). Therefore, the predicted density values (and their respec-

tive stiffness coefficients) can be interpreted as the effective material status associated with the

whole middle diaphysis volume. Similarly, the average voxel values were calculated from the

average of 120 sections over the middle diaphysis and, therefore, allow a plausible comparison

with the equivalent density. Hence, the results suggest that the material condition on samples
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Figure 4.9 Normalized cost function grid obtained on: a) Sample

# 5, second acquisition and b) Sample # 5, third acquisition.

# 1 and # 2 are slightly less degraded when compared to samples # 3, # 4 and # 5. Despite

the lack of a parameter for performing a direct comparison against the predicted density, the

evolution of the predicted values over the samples was found to be in agreement with the evo-

lution of the average voxel values and the respective ages of the donors (see Figure 4.10). The

estimated resolution associated with the density measurements was around ±30 kg/m3.



92

Figure 4.10 Mean and standard deviation obtained for density (red

circles), varying from samples # 1 to # 5, along with the reference average

voxel values measured from the CT images (black solid lines).

4.3.3 Estimated thickness

Figure 4.11 shows the comparison between the estimated thickness (red circles) and the refer-

ence values (black solid lines). Similarly to the density, the predicted and reference thicknesses

can be interpreted as an equivalent thicknesses of the cortical layer associated with the whole

middle diaphysis volume. As observed, an excellent agreement was observed between the

predicated and reference thickness. The relative difference between the predicted and refer-

ence values varied between 4.2% and 9.8%, remaining around the order of magnitude of the

reference standard deviations for all the samples, except for # 5. The estimated resolution ac-

counted for the thickness measurements on sample # 1 to # 4 was around ±0.15 mm. The

higher standard deviation obtained for sample # 5 was associated with the presence of a second
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Figure 4.11 Mean and standard deviation obtained for thickness

(red circles) varying from sample # 1 to # 5 along with the

reference values measured from the CT images (black solid lines).

minimum region in the cost function grid (Figure 4.9b), which caused the optimal solutions to

alternate between the two local minimum regions.

4.3.4 Estimated bone-like shape

Figure 4.12 shows the estimated bone-like shape (white dotted lines) overlaid onto a cross-

sectional CT slice taken from the middle of the VOI. For each sample, the estimated bone-

like shape was drawn using the mean values obtained for the three geometrical parameters

(thickness, outer diameter and shape factor). A remarkable agreement was found between the

predicated bone-like geometry and the cross-sectional images. Instead of a simple thickness

estimation (seen in Figure 4.11), the bone-like model was able to predict other geometrical

features related to the bone shape that were clearly different among the samples. For instance,
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the external diameter observed for the male samples (# 1, # 2 and # 3) was higher than those for

female samples (# 4 and # 5): the bone-like model predicted an outer diameter of 13 mm for the

male samples (# 1, # 2 and # 3 ), while for the females samples (# 4 and # 5, respectively), it was

11 mm and 9 mm. Furthermore, the external shape of the bone observed in the cross-sectional

images was found to be slightly different from sample to sample. The model predicted a shape

factor of 2.0 for samples # 2 and # 5 and of 1.6 for the other samples, which appears to be in

agreement with the CT images. The estimated bone-like geometry can be seen as an equivalent

cross-sectional geometry associated with the whole middle diaphysis. Such an estimation goes

beyond a simple localized thickness measurement and has the potential to provide additional

information regarding the risk of fracture.

Figure 4.12 Estimated bone-like shape (white dotted lines), along with

cross-sectional CT slice taken from the middle of the VOI for: a) Sample # 1; b)

Sample # 2; c) Sample # 3; d) Sample # 4, and e) Sample # 5.
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4.4 Conclusions

In this study, the inverse characterization of five radius samples was performed at low frequen-

cies (<60kHz). Four parameters (bulk density, thickness, outer diameter and shape factor)

were estimated by systematically fitting the experimental data with simulated modes. In gen-

eral, the proposed bone-like model was able to match most of the amplitude in the experimental

dispersion curves thorough a combination of several high excitability mode segments.

Strong agreements were observed between the estimated density and thickness and theirs re-

spective reference values obtained from CT images. However, because of a lack of a direct

comparison parameter, only the thickness was directly validated against reference values, and

the error was always under 10%.

For sample # 5, a considerable misfit between the experimental amplitude and the simulated

modes was found, which drastically increased the uncertainty associated with the thickness

assessment. This would appear to be related to the highly aged condition associated with

sample # 5 (88 year old female), which weakens the reverberation from the endosteal edge and

subsequently limits the generation of the ultrasonic guided wave modes. This problem could

potentially be addressed by adding the bone-marrow inside the cortical bone model.

Besides the thickness and density, the bone-like model introduced in this study was able to re-

trieve additional geometrical information associated with the cortical bone shape. Furthermore,

the proposed low-frequency axial transmission configuration was able to infer equivalent bone

properties associated with a much larger cortical volume when compared to the conventional

inversion techniques using higher frequencies.

Finally, the proposed inverse method has the potential to improve the assessment of the risk

of fracture, However, the actual clinical relevance of assessing larger cortical volume and ex-

tra geometrical parameters is outside the scope of the present paper, and needs to be further

investigated.
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4.5 Originality of the proposed work

The novelty of this study lies in the implementation of a more comprehensive cortical bone

waveguide model than the typically plate and cylinder models reported in the literature. The

model was used to study the propagation of ultrasonic guided waves in a waveguide with an

irregular, heterogeneous, multi-layered cross-section and transversally isotropic viscoelastic

material properties. Such a combination of cortical bone features has never been reported in

the literature when modeling cortical bone as a waveguide. Furthermore, notwithstanding the

remarkable progress achieved over the past few years on the understanding of ultrasonic guided

wave phenomena in cortical bone, the physical interaction between low frequencies ultrasonic

guided waves and the cortical bone structure remains unexplored. Hence, the proposed SAFE

model was used to investigate, for the first time, the potential of ultrasonic guided waves in

assessing small variations in the intracortical bone properties at very low frequencies (<85

kHz). The proposed low frequencies configuration has the potential to assess a much larger

cortical volume when compared to higher frequencies typically reported in the literature, e.g.

400-2000 kHz. Finally, a parameterized bone-like model was used to perform the inverse

characterization of the cortical bone properties in the middle 1/3 diaphysis. The originality of

the proposed inverse method lies in its comprehensibility when simulating the cortical shape

as well as on the consideration of the excitability curves to determine the most relevant modes

when fitting the experimental data. The results from this thesis will be potentially used to define

the parameters and instrumentation of a pilot clinical study on the detection of osteoporosis.



CONCLUSION AND RECOMMENDATIONS

In this study, a comprehensive and computationally efficient cortical bone model was imple-

mented using the SAFE method. The model combined different cortical bone features such

as an irregular, heterogeneous and multi-layered cross-section and transversally isotropic vis-

coelastic material properties. The method was successfully applied in the context of axial

transmission in bone to investigate the feasibility of FAS to monitor degradation of intracorti-

cal properties at low-frequency. A first journal paper (Chapter 2) was published on this topic

in April 2017 in the Journal of Acoustical Society of America (JASA); a high impact factor

journal in the field of acoustic. The calculated FAS velocity was shown to be associated with

the velocity of the mode with the highest amplitude contribution. However, due to the change

between the modes with the greatest contribution, the FAS velocity was shown to be a poor

discriminator of intracortical bone properties.

To address this limitation, a time-spatial frequency analysis technique instead of the FAS ve-

locity was investigated using an array of receivers. The effect of intracortical bone properties

on the phase velocity and cut-off frequency of low-frequency ultrasonic guided wave modes

was then determined for different excitation positions on the bone surface. Furthermore, the

individual contribution of each viscoelastic coefficients and of the density were evaluated sep-

arately. The excitability and sensitivity of the excited modes were shown to vary according

to the frequency and the position of excitation on the bone surface. A second journal paper

(Chapter 3) was submitted on this topic in July 2018 to JASA and is currently under final re-

visions. The phase velocity showed maximum sensitivity at 45 kHz, which would appear to

be associated with the peak of energy (power flow) concentrated in the endosteal region at this

frequency. The cut-off frequency was only slightly affected by the position of excitation, but

strongly by the frequency of excitation. A maximum sensitivity was achieved for the first cut-

off frequency at approximately 20 kHz. Thus, by selecting an adequate frequency and position
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of excitation, the low-frequency axial transmission was shown to be a promising method for

assessing intracortical bone properties.

In order to validate that, an autonomous model-based optimization routine to perform the in-

verse characterization of the cortical bone properties was successfully implemented. A parame-

terized bone-like model was used to perform the inverse characterization of five radius samples

at low frequency (<60 kHz). A third journal paper (Chapter 4) was recently submitted to IEEE

Transactions on Ultrasonics, Ferroelectrics and Frequency Control; the journal has a high im-

pact factor and it is a reference regarding new and improved clinical ultrasound techniques in

medicine. The proposed bone-like model was able to match most of the amplitude in the ex-

perimental dispersion curves by a combination of several high excitability mode segments. A

good to excellent agreement was found between the estimated density and thickness and their

respective references values obtained from CT images. Furthermore, the bone-like model was

able to retrieve additional geometrical information associated to cortical shape. The proposed

low-frequency axial transmission configuration was able to interrogate equivalent bone proper-

ties associated to a much larger cortical volume when compared to the conventional inversion

techniques using higher frequency.

As a global conclusion, the proposed axial transmission configuration combined with a novel

inversion procedure has the potential to increase the detectability of early stages of osteoporosis

as well as improve the assessment of the risk of fracture. However, the actual clinical relevance

of assessing larger cortical volume and extra geometrical parameters was outside the scope of

this work and should to be further investigated. The results available could be used to define

the parameters and instrumentation of a pilot clinical study on the detection of osteoporosis.

Furthermore, the methodology implemented in this project was successfully extended to other

applications. The methodology was adapted to perform the inverse characterization of a stiff-

ener bonded line using an appropriated SAFE geometry and model parameters. This study was
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presented at the 45th Annual Review of Progress in Quantitative Nondestructive Evaluation

(Burlington, Vermont, US) in July 2018 and reported as conference paper (Appendix II).

Finally, as a recommendation, the development of a customized SAFE solver code using paral-

lel graphics processing unit (GPU) computation to reduce the computational time to solve the

inverse problem would be very useful. In summary, this would allow increasing the complex-

ity of SAFE model and/or adding more model parameters in the analysis. In this context, it is

strongly recommended the implementation of bone marrow on the inversion model and also

the soft-tissue when dealing with in-vivo measurements.

Furthermore, the fabrication of a linear probe array that reproduces the axial transmission con-

figuration applied in the experiments on third manuscript (chapter 2) is recommended.

Finally, an in-vivo study involving a large number of samples combined with reliable reference

technique (e.g. HR-pQCT) is also recommended. This would provide a statistical support for

the findings raised in this thesis, specifically in the third manuscript (chapter 2).
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Abstract The diagnosis of osteoporosis at skeletal sites composed mainly of trabecular bone,

such as the distal radius, can be considered clinically more relevant than cortical bone regions.

Thus, the possibility to merge the potential of guided waves method to the clinical relevance

of trabecular bone assessment is extremely motivating and has not yet been explored in details.

Therefore, the objective of this paper is to investigate the feasibility of using ultrasonic guided

waves to detect variation in the mechanical properties of trabecular bone at the distal radius us-

ing axial transmission. Finite elements simulations were performed using a three-dimensional

(3D) model of a human radius. The simulated excitation was applied at the extremity of the

bone, while the acquisition of the responses was performed by an array of receivers along the

bone surface. The responses were compared to the numerical dispersion curves obtained us-

ing semi-analytical finite element method (SAFE). Finally, different trabecular bone properties

were simulated in order to evaluate the effect on the propagation of the guided waves. The

results showed that ultrasonic guided waves excited at the extremity and detected on the bone

surface are feasible to detect changes in the properties of the trabecular bone.

Keywords: Ultrasonic guided waves, Intracortical, Low-frequency.

1. Introduction
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Ultrasonic guided waves methods have been successfully applied in non-destructive testing

(NDT) to characterize different classes of materials, including composite plates and complex

structures Agostini et al. (2003); Chimenti (1997); Vallet et al. (2014). In the last decade, the

methods have been extensively studied and adapted to cortical bone quality assessment (Tal-

mant, 2011; Nicholson et al., 2002). Similarly to pipes in the NDT field, long cortical bones

such as the radius or tibia are suitable waveguides for the propagation of ultrasonic guided

waves (Minonzio et al., 2013). Each propagating mode interacts differently with the mechan-

ical and geometrical aspects of the waveguide, and these multi-modal characteristics can be

considered the main advantage of the method, once the sensitivity of the analysis can be im-

proved through the selection of a desired group of modes in order to interrogate a specific

region/parameter of the bone structure. Recent studies based on ultrasonic guided waves al-

ready showed considerable evidences that the multi-modal approach is more comprehensive

and sensitive when compared to single velocity analysis (Ta et al., 2006).

Most axial transmission devices are developed focusing on the assessment of the cortical region

of the middle 1/3 of the radius, since cortical bone properties are affected by age-related bone

reabsorption and osteoporosis (Rico, 1997). Furthermore, cortical bone accounts for the main

portion of the skeleton, and it supports most of the load of the body (Laugier & Haiat, 2011).

The cortical bone is a much more convenient waveguide, since it is essentially composed of

a cortical shell filled with a bone marrow in a virtually constant cylinder-like geometry. For

that reason, cylinder and plate models have been successfully used as a theoretical reference

for inverse estimation of elastic and geometrical properties of the cortical bone (Ta et al., 2009;

Kang Il Lee, 2015). On the other hand, the diagnosis of osteoporosis at skeletal sites composed

mainly of trabecular bone, such as the distal radius, is more clinically relevant (Muller et al.,

2008). Most of the distal radius fracture occurs about 3 cm from the end of the bone, in a region

composed mainly of trabecular bone, where the osteoporotic changes are considered to occur

first due to the higher surface to volume ratio (Langton & Njeh, 2008). Thus, the possibility to

merge the potential of ultrasonic guided waves method to the clinical relevance of trabecular

bone assessment is extremely motivating and has not yet been explored in detail.



103

In this paper, the feasibility of propagation of ultrasonic guided waves to assess the mechani-

cal properties of trabecular bone at the distal radius was investigated in an axial transmission

configuration. Due to the complexity of the distal region, finite elements (FE) simulations

were performed using a 3D model built from a computed tomography of a human radius. The

simulated excitation was transmitted to the radius using a longitudinal load applied to a small

circular region at the extremity of the bone using an 8-cycle Hann windowed toneburst cen-

tered at 80 kHz. The acquisition of the responses was simulated using an array of 32 receivers

positioned on the surface of the bone using two-dimensional fast Fourier transform (2D-FFT).

The intensities of the 2D-FFT map were compared to the numerical dispersion curves obtained

using the semi-analytical finite element (SAFE) method. Finally, 2D-FFTs maps were simu-

lated for different trabecular bone properties in order to evaluate the sensitivity of the guided

waves to the properties of trabecular bone. The results have shown that the excitation imposed

at the extremity generates ultrasonic guided waves that can be identified by an array of re-

ceivers along the long bone. Furthermore, the propagating modes were sensitive to changes in

the trabecular bone properties.

2. Methods

2.1 Finite-element method

Time domain FE simulations were performed in ABAQUS software using explicit analysis.

The model was built using a 3D computed tomography of a human radius composed of two

different parts: distal 1/3 of the radius, located at the end of the bone and composed of cortical

and trabecular bone; and the middle 1/3 radius, located in the long bone and composed of

cortical bone and bone marrow. The cortical and trabecular bone were modeled as viscoelastic

isotropic material, while the bone marrow was modeled as a viscous fluid using the values

shown in the Table I-1. To avoid reflections from the extremity, absorbing boundaries were

added on the end of the model Drozdz et al. (2007). The model was built using 2 mm tetragonal

elements, respecting at least 7 elements per the smallest wavelength. The simulation was

performed using time-step of 1e-8 seconds and total time of 0.001 seconds. A longitudinal
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load was applied to a small circular region at the extremity of the bone using an 8-cycle Hann

windowed toneburst centered at 80 kHz. The out-of-plane displacement was recorded by an

array of 32 receivers equally displaced by 2 mm placed along the the bone in the axial direction

and processed using 2D-FFT. Figure I-1a shows the excitation and acquisition setup applied in

the FE simulations.

Excitation 

Trabecular bone 

a) b) 

Figure-A I-1 FE model used in the simulations showing: a) the excitation and

acquisition setup applied in the simulations and b) the trabecular bone located on the

internal part of the distal 1/3 region.

Table-A I-1 Properties of the radius bone model used to perform the FE simulations.

Bone component Density (kg/m3) Ea (GPa) Ka (GPa) Poisson ratio Damping (s−1)

Cortical bone 1850 10 - 0.3 2e-7

Trabecular bone 1220 2 - 0.2 5e-7

Bone marrow 1000 - 2.2 - 0.5e-7

a E and K are the Young’s and Bulk modulus, respectively.

2.1.1 Sensitivity study

In order to evaluate the sensitivity of ultrasonic guided waves to the properties of trabecular

bone, the FE simulations were performed using different values for density and Young’s mod-

ulus while the other properties were kept constant as showns in Table I-2. Such an approach
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constitutes a simple way of modeling early changes in trabecular bone due to osteoporosis. The

2D-FFT maps obtained for each simulations were compared qualitatively.

Table-A I-2 Properties of the trabecular bone used in the sensitivity study.

Bone component Density (kg/m3) E (GPa) Poisson’s ratio Damping (s−1)

Trabecular bone 1 1470 3.87 0.2 5e-7

Trabecular bone 2 1420 3.25 0.2 5e-7

Trabecular bone 3 1370 2.63 0.2 5e-7

Trabecular bone 4 1320 2.00 0.2 5e-7

Trabecular bone 5 1270 1.37 0.2 5e-7

Trabecular bone 6 1220 0.75 0.2 5e-7

2.2 Semi-analytical finite-element method

The SAFE stimulations were performed using COMSOL Multiphysics software. A brief

overview related to the theoretical background of the semi-analytical finite-element method

will be provided here. A more comprehensive background can be found in standard textbooks

(Mazzotti et al., 2013; Fan et al., 2008a).

The differential equations of motion for an anisotropic material can be defined using the for-

malism for eigenvalues problems by:

Cih jl
∂ 2Uj

∂xk∂xl
+ I(Ci3 jh + Cih j3)

∂ (kU j)

∂xk
− kCi3 j3

(
kUj

)
+ρω2δ i jUj = 0 (A I-1)

where δi j is the Kronecker symbol and the subscripts j=1, 2, 3 and h, l=1, 2. The same

formalism can be expressed using a partial differential equation in the finite element software:

λ 2eau−λdau+∇.(−c∇u−αu+ γ)+β .∇u+au = 0 (A I-2)

where u represents the variables to be determined. If one considers γ=0 and ea=0, the coef-

ficients c,α,β ,a and da can be described in term of the Young’s modulus E, the Poisson’s
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ratio ν , the density ρ and angular frequency ω in order to match with equation A I-1. A more

detailed description and the definition of each coefficient can be found in the literature Predoi

et al. (2007). Equation A I-1 can be solved for a certain angular frequency ω , resulting in an

infinite number of complex wavenumbers k as the eigenvalue solutions of the equation. The

dispersion can be obtained by selecting all the propagative modes among the wavenumber so-

lutions for a desired number of frequencies. Figure I-2c shows a typical dispersion curve of the

two waveguides obtained by the SAFE method.

2.2.1 Application to radius bone

The numerical dispersion curves of the radius bone waveguide were calculated in order to

understand the responses obtained from the FE simulations. The boundaries of the waveguide

were extracted from the same 3D model used in the previous step. Two different regions were

selected for the SAFE simulations: the distal radius and long bone region as shown in the

Figure I-2a and Figure I-2b, respectively. The cross-sections were meshed using triangular

elements with a maximum size of 0.5 mm. Although the focus of this paper is the assessment

of the trabecular bone, the simulation of the dispersion curves of the long bone region is also

relevant since the signal will be received along the long bone. The bone materials were modeled

using the same properties presented in Table I-1.

a) b) 

Cortical bone 

Cortical bone 

Bone marrow 

Trabecular bone 

 

  

c) 

Figure-A I-2 a) Boundaries of the waveguide defined from different regions: a) Distal

1/3 radius and b) Middle 1/3 radius. c) Typical dispersion curves of the two waveguides

obtained by the SAFE method.

3. Results and Discussion
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3.1 Mode identification

Figure I-3a shows a snapshot of the out of plane displacement (z direction) obtained for the

simulations using the properties in Table I-1. The time responses received at each receiver are

shown in Figure I-3b while the obtained 2D-FFT map is shown in Figure I-3c. The continuous

lines show the numerical dispersion curves computed for the two regions of the radius bone

using the SAFE method. The results show that different modes in the frequency range between

50 kHz and 90 kHz are propagating in the radius waveguide since the amplitudes in the 2D-FFT

map are consistent with the dispersion curves of the simulated modes.

a)
b)

c)b)

Receiver #Time (s)

+5.453e-13
+1.000e-13
+2.750e-13
+2.500e-13
+2.250e-13
+2.000e-13
+1.750e-13
+1.500e-13
+1.250e-13
+1.000e-13
+7.500e-14
+5.000e-14
+2.500e-14
+1.200e-17
+0.000e-17

Amplitude, U

a)

Figure-A I-3 Results related to the simulations using the properties in Table I-1. a)

Snapshot of the out of plane displacement (z direction). b) Time responses received at

each receiver, where #1 is the receiver located closer to the extremity where the excitation

was performed. c) 2D-FFT map compared to the simulated dispersion curves.

3.2 Sensitivity study

Figure I-4 show the 2D-FFTs maps obtained by the simulations using different trabecular bone

properties. A clear difference in the distribution of the intensities can be observed by comparing

the different simulations. Such a qualitative approach suggests that ultrasonic guided waves are

sensitive to the properties of trabecular bone. Further investigations need to be performed in

order to quantify the results.

4. Conclusion
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Trabecular 1 Trabecular 2 

Trabecular 4 Trabecular 5 Trabecular 6 

Trabecular 3 

Figure-A I-4 2D-FFTs maps obtained by the simulations using different properties for

the trabecular bone.

The feasibility of the ultrasonic guided waves method to assess the mechanical properties of

trabecular bone at the distal radius was investigated using an axial transmission configuration.

The results showed that different modes propagates in the radius waveguide when excited at

the extremity of the distal region and received on the surface of the long bone. The propagating

modes were sensitive to changes in the trabecular bone properties, and the method was shown

to be sensitive to changes in the trabecular bone properties at the distal radius. However, future

work need to be performed using more realistic bone properties, and a quantitative approaches

needs to be considered to evaluate the changes observed in the propagation of the ultrasonic

guided waves.
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Abstract Adhesively bonded stiffeners are widely used in aerospace structures. A well-cured

bond can increase structural stiffness, and, consequently, enhance the performance of the en-

tire structure. The feasibility of ultrasonic feature-guided wave modes for the inspection of

the bond line adhesion in difficult-to-access regions has been already investigated in the liter-

ature. However, due to the complexity of the guide wave phenomena in the bond line region,

a more comprehensive methodology to identify the curing state remains an open issue. This

work introduces a multi-mode and multi-frequency inverse method for the characterization of

stiffener bonded line using Semi-Analytical Finite Element (SAFE). Experiments were con-

ducted on a T-shaped stiffener bonded to an aluminum plate. The feature-guided modes were

excited using a piezoelectric shear transducer and measured using a laser interferometer at sev-

eral times along a period of four days. The experimental dispersion curves were computed

from the measured data and then systematically compared to the numerical solutions obtained

with the SAFE model. At each measurement, the shear modulus of the adhesive material could

be estimated by iteratively minimizing the error between the experimental and numerical data.

The results showed an abrupt increase in the shear modulus from the first to the second day,

suggesting that the end of the curing processes was achieved. In general, the inverse scheme
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presented in this work was shown to be very sensitive, being able to distinguish differences of

5% in the shear modulus.

1. Introduction

Composite materials can provide a much better strength-to-weight ratio than metal. There-

fore, they have become a key substitute to produce critical components in different industrial

field, such as aerospace, oil and gas and energy. In this context, adhesively bonded composite

stiffeners are widely used to enhance the performance of the entire structure. For instance, a

well-cured bond can provide the adhesion between a composite plate and an aluminum stiffener

in order to increase structural stiffness. The feasibility of ultrasonic feature-guided wave modes

for the inspection of the bond line adhesion of stiffeners has been already investigated in the lit-

erature using Semi-Analytical Finite Element (SAFE) method. However, due to the complexity

of the guide wave phenomena in the bond line region, a more comprehensive methodology to

classify the adhesion and curing state of the bond line remains an open issue. This work in-

troduces a multi-mode and multi-frequency inverse method for the characterization of stiffener

bonded line using Semi-Analytical Finite Element (SAFE) model.

The paper begins with the description of the experimental setup and the signal processing. The

SAFE method is then briefly introduced. The finite element model and the inversion method

are discussed. Results are then presented and discussed.

2. Experimental measurements and signal processing

The experimental data acquisition was performed by Zheng Fan (Nanyang Technological Uni-

versity) and Michel Castaings (Institut National Polytechnique de Bordeaux) and kindly shared

with our group. In summary, the acquisition was conducted on a T-shaped stiffener bonded to

an aluminum plate. A photo of the experimental setup as well as a typical dispersion curve are

shown in Figure II-1. The feature-guided modes were excited using a piezoelectric shear trans-

ducer and measured using a laser interferometer at several times along a period of four days.
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The detailed description of the experimental procedure can be found in a previously published

paper (Fan et al., 2013).

Figure-A II-1 a) The experimental setup used to perform the acquisition of the

dispersion curves (adapted from Fan et al. (2013)). b) Typical dispersion curve

obtained after processing the data using the 2D-FFT.

The experimental time domain signals were processed using the 2D-FFT in order to calcu-

late the intensities of the propagating modes in the frequency-wavenumber diagram. The ex-

perimental dispersion curves were then systematically compared to the numerical solutions

obtained with the SAFE model as described next.

3. Semi-analytical finite element method

The Semi-Analytical Finite Element (SAFE) has been extensively used to study uniform waveg-

uides of arbitrary cross-sections (Hayashi et al., 2003; Treyssede & Frikha, 2008; Fan et al.,

2008b; Mazzotti et al., 2013; Bartoli et al., 2006). The main advantage of this method when

compared to conventional finite element modeling is the fact that only the cross-section needs

to be modeled and meshed (Predoi et al., 2007). The waves are assumed to propagate harmon-

ically in the axial direction (z direction) of the waveguide. The displacement vector can be
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described by equation (A II-1), where k is the wavenumber and ω is the angular frequency and

i =1,2,3.

ug (x,y,z, t) =Ug (x,y)e−i(kz−ωt), i =
√−1 (A II-1)

Considering the mass density ρ and the elastic constants Cik jl , the differential equations of

motion for an anisotropic material can be defined using the formalism for eigenvalues problems

by equation (A II-2), where the indices j=1,2,3 and k, l=1,2 and where δi j is the Kronecker

symbol.

Cgh jl
∂ 2Uj

∂xh∂xl
+ i(Cg3 jl + Cgh j3)

∂ (kU j)

∂xh
− kCg3 j3

(
kUj

)
+ρω2δ g jUj = 0, (A II-2)

In a commercial finite element software, the same formalism can be expressed by equation

(A II-3), where u represents the variables to be determined. Comparing the two formalism

and considering γ=0 and ea=0, the coefficients c, α, β , a and da in equation (A II-3), can be

defined in term of stiffness properties, ρ and ω in order to match to the equation (A II-2).

λ 2eau−λdau+∇.(−c∇u−αu+γ)+β .∇u+ au = 0 (A II-3)

The detailed description of the coefficient used in this study is given by Predoi et al. (2007).

Thus, equation (A II-3) can be solved for a certain angular frequency ω resulting in an infinite

number of complex wavenumber k as the eigenvalues solutions of the equation.

3.1 Stiffener model

In this study, a T-shaped aluminum stiffener coupled to an aluminum plate by an adhesive

layer (Figure II-2a)) was implemented as a forward model to match the experimental disper-

sion curves. In short, an equivalent plate-adhesive-stiffener geometry and material properties
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(Figure II-1b)) was used in order to reproduce the experimental configuration (Figure II-1a)).

The thickness (0.5 mm) and density (1040 kg/m3) of the adhesive layer were kept constant in

order to limit the size of the inverse problem and, therefore, reduce the computational time.

The adhesive shear modulus (C66) was set as the unknown parameter to be optimized.

Figure-A II-2 a) T-shaped aluminum stiffener coupled to an aluminum plate by an

adhesive layer; b) Forward model geometry (adapted from)

3.2 Modal excitability

For the longitudinal direction (z) the modal excitability associated to the nth mode (En) and

responsible for the displacement in the shear direction (x) can be estimated based on the shear

displacement at the surface of the excitation region ux(e)(red rectangle in Figure II-2b and the

acquisition region ux(a)(red line in Figure II-2b) using the equation (A II-4), where P is the

power flow associated with the mode shape.

En =
ikω

8

(
ux(e)∗ ux(a)

P

)
(A II-4)

Figure II-3 shows (a) the solutions to the SAFE simulation of the bonded stiffener and (b) the

associated modal excitability. Figure II-3c shows the same SAFE solutions as (a) but after
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applying a threshold to keep only the modes with the highest excitability. In Figure II-3c the

SAFE solutions are overlaid onto an experimental dispersion curve.

4. Inversion scheme

For each measurement, the mechanical condition associated with the bond line can be defined

by choosing an appropriate shear modulus for the adhesive material. Such a model-based

inverse approach requires the implementation of a cost function into an optimization procedure

to find the optimal value for the shear modulus. The following subsections describe the cost

function and the optimization routine using a genetic algorithm employed in this study.

4.1 Cost function

In this study, the misfit for each simulated mode is defined at each frequency by the product

between the modal excitability and the amplitude observed experimentally, where En denotes

the modal excitability associated to nth mode and A(kn) denotes the experimental amplitude

observed at the wavenumber (kn) associated to the nth mode.

J =− ∑
f= f s: f e

∑
n=1:M

E(kn) . A(kn) (A II-5)

4.2 Genetic algorithm

The inverse problem assumes that the condition of any given condition in the bonded line can be

estimated by optimization of the shear modulus (C66). Genetic algorithm (GA) are commonly

adopted as an alternative to solve this inverse problem by running a limited number of cases.

The GA optimization technique is based on survival competition mechanisms between the

members of a population defined from natural selection and genetics rules. In contrast to

gradient-based optimization techniques, it has the advantage of finding the global minimum

without the need for an accurate initial guess for the model parameters. Furthermore, the
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Figure-A II-3 a) Typically solutions of the SAFE simulation for the bonded

stiffener. b) The associated modal excitability computed using the equation (A II-4).

c) The highest excitability modes (same SAFE solutions as (a) but after applying a

threshold) overlaid onto an experimental dispersion curve.

optimization mechanisms allow performing the search in parallel, which is of particular interest

when using a relatively expensive model-based routine such as the SAFE method.

Figure-A II-4 Flowchart of the GA operations used to solve a

model-based inverse problem.

The basic idea of solving a model-based inverse problem using GA is summarized as a flowchart

in Figure II-4 and described in more details in the following steps:
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I. An initial population of N individuals with randomly generated values for C66 (re-

stricted to the constraints in Table II-1) is created.

II. The shear modulus C66(n) associated to each individual n is transmitted to the model

solver so as N simulated data are computed (Ss1, Ss2, SsN)

III. The objective function J (equation (A II-5)) is then evaluated against the experimental

data (Se) for each of the simulated data (Ssn).

IV. The individuals are ranked according to the value obtained for J (Se, Ssn).

V. The stopping criterion of the GA scheme is checked (maximum number of generation,

in this paper). If this criterion is satisfied, the individual with the minimum J (Se, Ssn)

is returned as the winner providing the estimated shear modulus.

VI. If not, a new generation is created by applying genetic operators to the individuals of

the previous generation based on the ranking. The algorithm restarts from step (ii) and

the procedure continues until the stopping criterion is reached.

Table-A II-1 Setting for the genetic algorithm

optimization procedure.

Properties Range Step

C66 (MPa) 1 - 1000 2

Frequency (kHz) 20 - 120 2

Number of individuals 20

Number of generations 10

5. Results and discussion

Figure II-5 shows the experimental data with the SAFE solution overlaid (circles) computed

using the optimal shear modulus for three different times of acquisition (initial, intermediate

and final stages). As observed, a remarkable agreement was found between the experimental

data and the SAFE model for all three stages. Most of the experimental data were matched by

a combination of several high excitability modes segments (En>-30dB).
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Figure-A II-5 Experimental dispersion curves along with the SAFE solution (circles)

computed using the optimal shear modulus for three different stages of acquisition: a)

initial, b) intermediate and c) final.

Figure II-6 shows the predicted shear modulus varying along four days of acquisition. The

shear modulus was found to be varying between 8 MPa and 660 MPa. An abrupt increase in

the shear modulus was observed from 400 minutes to 1150 minutes, which is in accordance

with the expected time for the transition to the glassy state (dotted line in Figure II-6) of the

resin applied in this work (DGEBA-PAMAM) (Budzik et al., 2012). Thus, we can assume that

the method was able to monitor the curing process by monitoring variations in the mechanical

properties of the adhesive layer.

6. Conclusion

An inverse routine using a SAFE model was successfully implemented to determine the shear

modulus of a stiffener bond line. The excitability curves played a key role in determining the

most relevant modes. The results showed an abrupt increase in the shear modulus from the first

to the second day, suggesting that the end of the curing processes was achieved. In general, the

inverse scheme presented in this work was shown to be very sensitive, being able to distinguish

variation in the shear modulus of the order of 10 MPa. The method is now ready to be tested on

in-situ stiffener bonded structures. Furthermore, the inverse procedure introduced in this work

can be considered for other applications.
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Figure-A II-6 Predicted shear modulus varying along four

days of acquisition.
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