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Modélisation par éléments finis et éléments discrets de I'érosion interne dans les
ouvrages de rétention d'eau

Seyed Pouyan PIRNIA
RESUME

L'érosion interne implique le transport de particules a I’intérieur d'un sol en raison d'un
écoulement en milieu poreux. Ce phénomeéne est considéré comme une menace sérieuse pour
les structures en matériaux granulaires. L’érosion interne est la principale cause de dommage
ou de rupture du corps ou de la fondation des barrages en remblai. Par conséquent, il est
nécessaire d’avoir une connaissance précise des interactions fluide-particule dans les sols
saturés lors de la conception et de I’exploitation des barrages. Le comportement
hydrodynamique des milieux poreux en géotechnique est généralement modélisé a l'aide de
méthodes qui considerent le sol comme un milieu continu, telles que la méthode des éléments
finis (MEF).

Il est de plus en plus courant de combiner la méthode des éléments discrets (MED) avec des
méthodes pour les milieux continus, comme la MEF, afin de fournir des informations
microscopiques sur les interactions fluide-solide. Cette thése a pour but de développer un
algorithme MEF-MED hiérarchique permettant d'analyser le processus d'érosion interne dans
des milieux poreux pour des applications a grande échelle. Pour atteindre cet objectif, nous
avons (i) programmé une interface polyvalente entre deux codes MEF et MED, (ii) développé
une méthode macroscopique de calcul des forces de trainée sur les particules (CGM) pour le
modele couplé MEF-MED afin de minimiser le temps de calcul, (iii ) développé un algorithme
multi-échelle pour l'interface afin de limiter le nombre de particules discrétes impliquées dans
la simulation, (iv) évalué la précision de la force de trainée dérivée de CGM, et (v) former un
réseau de neurones artificiels (ANN) afin d'améliorer la prédiction de la force de trainée sur
les particules.

Le développement de modeles multiméthodes ou hybrides combinant des analyses de type
continuum et des éléments discrets est une piste de recherche prometteuse pour combiner les
avantages associés aux deux échelles de modélisation. Cette thése présente tout d’abord ICY,
une interface entre COMSOL Multiphysics (code commercial d’éléments finis) et YADE
(code d’éléments discrets ouvert). A travers une série de classes JAVA, I’interface associe la
modélisation par ¢léments discrets a 1’échelle des particules a la modélisation a grande échelle
avec la méthode des ¢léments finis. ICY a été validé avec un exemple simple basé sur la loi de
Stokes. Une comparaison des résultats pour le modele couplé et la solution analytique montre
que l'interface et son algorithme fonctionnent correctement. Le chapitre présente également un
exemple d'application pour l'interface. L’interface a utilis¢ la force de trainée CGM pour
modéliser un test d’érosion interne dans un perméametre.
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Le nombre de particules qui peuvent étre incluses dans les simulations DEM avec ICY est
limité. Cette limitation réduit le volume de sol pouvant étre modélisé. La deuxiéme partie de
la thése propose une approche multiméthode hiérarchique basée sur ICY pour modéliser le
comportement couplé hydromécanique de sols granulaires saturés. Un algorithme
multiméthode a été développé pour limiter le nombre de particules dans la simulation DEM et
permettre a terme la modélisation de 1'érosion interne de grandes structures. Le nombre de
particules dans les simulations a ét¢ limité en utilisant des sous-domaines discontinus le long
de I'échantillon. Cette approche évite de générer le domaine complet comme modele DEM.
Les particules dans ces petits sous-domaines ont été soumises a la flottabilité, a la gravité, a la
force de trainée et aux forces de contact pendant de courts pas de temps. Les petits sous-
domaines fournissent au mod¢le de continuum des données initiales (par exemple, un flux de
particules). Le modele FEM résout une équation de conservation des particules pour évaluer
les changements de porosité sur des intervalles de temps plus longs. L algorithme multi-échelle
a été vérifié en simulant un test numérique d’érosion interne.

Le mouvement des fluides dans les applications géotechniques est généralement résolu avec
une forme homogénéisée des équations de Navier-Stokes. La force totale de trainée obtenue
de la CGM peut étre appliquée aux particules proportionnellement a leur volume (CGM-V) ou
a leur surface (CGM-S). Cependant, il existe une certaine incertitude quant a 1’application des
modeles de trainée CGM aux mélanges polydisperses de particules. La précision de CGM pour
la modélisation de n'a pas été systématiquement étudiée en comparant les résultats CGM avec
les résultats plus précis obtenus en résolvant les équations de Navier-Stokes a 1'échelle des
pores. La derniére partie de cette thése compare les forces de trainée CGM-V et CGM-S avec
celles qui sont obtenues avec la résolution des équations de Navier-Stokes a 1’échelle des pores
avec la MEF. COMSOL Multiphysics a été utilisé pour simuler I'écoulement dans trois cellules
unitaires avec différentes valeurs de porosité (0,477, 0,319 et 0,259). Chaque cellule unitaire
comportait un squelette monodisperse de grandes particules avec des positions fixes, et une
particule plus petite, de taille et de position variables. Les résultats ont montré que les forces
de trainée CGM-V et CGM-S sont généralement assez ¢loignées des forces obtenues a petite
échelle avec la MEF. La précision diminue davantage quand le contraste entre les tailles des
grandes particules et de la petite particule augmente. Un ANN a été formé pour prédire la force
de trainée MEF en utilisant comme données d’entrée les forces de trainée CGM-V et CGM-S,
le rapport entre les tailles de particules, et la distance entre la petite particule et les deux grandes
particules les plus pres. Une trés bonne corrélation a été trouvée entre la sortie de I’ANN et les
résultats MEF. Ce résultat montre qu'un ANN peut fournir des forces de trainée aussi précises
que celles de la MEF, mais avec un temps de calcul comparable a celui des méthodes CGM.

Cette these contribue a la littérature en améliorant notre compréhension des méthodes hybrides
MED-continuum et des calculs de force de trainée dans les simulations MED. La thése présente
des recommandations aux chercheurs et aux développeurs qui tentent de modéliser 1'érosion
interne dans des systémes de sols a I'échelle réelle.
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Mots-clés: ¢rosion interne, ¢lément discret, ¢lément fini, COMSOL, YADE, force de trainée,
calcul macroscopique des forces de trainée, réseau de neurones artificiels






Finite and Discrete Element Modelling of Internal Erosion in Water Retention
Structures

Seyed Pouyan PIRNIA
ABSTRACT

Internal erosion is a process by which particles from a soil mass are transported due to an
internal fluid flow. This phenomenon is considered as a serious threat to earthen structures.
Internal erosion is the main cause of damage or failure in the body or foundation of
embankment dams. Therefore, it is necessary to have an accurate knowledge of fluid-particle
interactions in saturated soils during design and operation. The hydrodynamic behaviour of
porous media in geotechnical engineering is typically modelled using continuum methods such
as the finite element method (FEM).

It has become increasingly common to combine the discrete element method (DEM) with
continuum methods such as the FEM to provide microscopic insights into the behaviour of
granular materials and fluid—solid interactions. This Ph.D. thesis aims to develop a hierarchical
FEM-DEM algorithm to analyze the internal erosion process in large scale earthen structures.
To achieve this goal, we (i) programmed a versatile interface between two FEM and DEM
codes, (ii) implemented a coarse-grid method (CGM) for the coupled FEM-DEM model to
minimize the computations associated with drag force calculation, (iii) developed a multiscale
algorithm for the interface to limit the number of discrete particles involved in the simulation,
(iv) assessed the accuracy of drag force derived from CGM, and (v) trained an Artificial Neural
Network (ANN) to improve the prediction of the drag force on particles.

The development of multimethod or hybrid models combining continuum analyses and
discrete elements is a promising research avenue to combine the advantages associated with
both modelling scales. This thesis first introduces ICY, an interface between COMSOL
Multiphysics (commercial finite-element engine) and YADE (open-source discrete-element
code). Through a series of JAVA classes, the interface combines DEM modelling at the particle
scale with large scale modelling with the finite element method. ICY was verified with a simple
example based on Stokes’ law. A comparison of results for the coupled model and the
analytical solution shows that the interface and its algorithm work properly. The thesis also
presents an application example for the interface. The interface used CGM drag force to model
an internal erosion test in a permeameter.

The number of particles that can be included in the DEM simulation of ICY is limited, thus
restricting the volume of soil that can be modelled. The second part of the thesis proposes a
multimethod hierarchical approach based on ICY to model the coupled hydro-mechanical
behaviour for saturated granular soils. A hierarchical algorithm was specifically developed to
limit the number of particles in the DEM simulations and to eventually allow the modelling of
internal erosion for large structures. The number of discrete bodies in the simulations was
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restricted through employing discontinuous subdomains along the sample. This avoids
generating the full sample as a DEM model. Particles in these small subdomains were subjected
to buoyancy, gravity, drag force and contact forces for small time steps. The small subdomains
provide the continuum model with particle flux. The FEM model solves a particle conservation
equation to evaluate porosity changes for longer time steps. The multimethod framework was
verified by simulating a numerical internal erosion test.

The fluid motion in geotechnical applications is typically solved using CGM. With these
methods, an average form of the Navier—Stokes equations is solved. The total drag force
derived from CGM can be applied to the particles proportionally to their volume (CGM-V) or
surface (CGM-S). However, there is some uncertainty regarding the application of the CGM
drag models for polydispersed particle. The accuracy of CGM has not been systematically
investigated through comparing CGM results with more precise results obtained from solving
the Navier-Stokes equations at the pore scale. The last part of this research investigates the
accuracy of CGM-V and CGM-S drag forces in comparison with the pore-scale values
obtained by FEM. COMSOL Multiphysics was used to simulate the fluid flow in three unit
cells with different porosity values (0.477, 0.319 and 0.259). The unit cell involved a mono-
size skeleton of large particles with fixed positions and a smaller particle with variable sizes
and positions. The results showed that the CGM-V and CGM-S could not predict precisely the
drag force on the small particle. An ANN was trained to predict the drag force on the smaller
particle. A very good correlation was found between the ANN output and the FEM results. The
ANN could thus provide drag force values with accuracy similar to that obtained using flow
simulations at the pore scale, but with computational resources that are comparable to CGM.

This thesis contributes to the literature by improving our understanding of hybrid DEM-
continuum methods and drag force computations in DEM simulations. It provides guidelines
to researchers and developers who try to model internal erosion in real scale soil systems.

Keywords: Internal erosion, discrete element, finite element, COMSOL, YADE, drag force,
coarse-grid method, artificial neural network
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CHAPTER 1

INTRODUCTION

1.1 Background

Embankment dams are structures that impound and control water in upstream reservoirs. They
can be erected on almost all foundations or sites which are not proper for building concrete
structures, or where suitable soils are available locally (Fell et al., 2005). Soils are transported
to the site, dumped, and compacted in layers of required thickness. There are two main kinds

of embankment dams: earthfill and rockfill dams.

The chief advantages of earth dams are their adaptability with weak foundations and economic
benefits inasmuch as required construction materials are principally supplied near the dam site.
Earth dams can be of two main types: homogeneous and zoned dams (Figure 1.1). Since filters

are included in zoned embankment dams to control seepage, this type is often preferred.

Figure 1.1 Homogeneous earth dam with chimney drain (a)
and Zoned earth dam with central vertical core (b)



There are several types of dam failure including collapse and breaching. The resulting damage
depends largely on the volume of water stored in the reservoir. For large dams and reservoirs,
failure can often cause significant damage and loss of life (Graham & Wayne, 1999). Dam
failure can be caused by any one, or a combination of the following factors (Zhang et al., 2009):
e Flood and long period of rainfall;

e Overtopping as a result of spillway design error;

e Internal erosion or piping, specifically in earth dams;

e Improper maintenance for gates, valves, and other mechanical components;

e Sub-standard construction materials or improper design;

e Surges caused by landslides in the reservoir and resulting dam overtopping;

e High winds and associated waves resulting in erosion of the upstream slope;

e Earthquakes.

It is often impossible to determine the exact cause of dam failure inasmuch as failure tends to
destroy the evidence that would allow the cause to be identified (Hellstrom, 2009).
Nevertheless, statistics show that overtopping and internal erosion are the two main causes of
embankment dam failure while failure by slide is less common (Foster et al., 2000). Most
piping failures happen very fast. As a consequence, there is not enough time to take proper

actions (Hellstrom, 2009).

Internal erosion corresponds to the transportation of soil in embankment dams by seepage flow
(ICOLD, 2016). It changes the hydraulic and mechanical characteristics of materials in porous

media. The property that is most influenced is hydraulic conductivity.

The existence of internal erosion has been known for over 80 years. According to the statistical
analysis done by Foster et al. (2000) probing 11 192 dams in the world from 1986 to 2000, 136
dams encountered failure mainly because of internal erosion. These 136 dams represent 46%
of the total number of dams that encountered failure. Failure from internal erosion will occur

if four conditions are satisfied (Fell et al., 2005):



1) Existence of a seepage flow path and a source of water;

2) Existence of erodible material in the flow path;

3) Existence of an unprotected exit which allows the discharge of eroded materials;

4) Existence of an appropriate material directly above the flow path to support the roof of

the pipe.

Nearly all internal erosion failures have occurred when the water level in the reservoir was
near its highest level ever (Foster, 2000). Although most internal erosion failures happen on
the reservoir first filling as a result of weaknesses in the dam, it is also a threat to existing dams
due to (ICOLD, 2016):

e Settlement and cracking because of extreme water levels and earthquakes;

e Deterioration of spillways and hydraulic structures because of aging;

e Ineffective filters or transition zones.

There are four main processes for erosion in an earth dam: backward erosion, concentrated
leak, suffusion and contact erosion (Figure 1.2) (Hellstrom, 2009). Backward erosion begins
at the exit point and progresses backward to form a pipe. For concentrated leak, the water
source forms a crack or a soft region to an exit point. The erosion hole gets progressively wider
since erosion continues along the walls. During suffusion, fine particles of soil are eroded and
move between the coarser particles. Suffusion happens in soils that are described as internally
unstable. Erosion at the interface between two soils is termed interfacial or contact erosion.
Piping is defined in the same sense as internal erosion processes that create and extend an open

conduit for flow through the soil.

Piping can occur in different parts of the dam: through the embankment, through the foundation
and from the embankment into the foundation (Hellstrom, 2009; Foster et al., 2000). According
to Foster et al. (2000), piping through the embankment dam’s body is the most common mode
of failure as it is 2 times more probable than piping through the foundation and 20 times more

probable than piping from the embankment into the foundation.



Figure 1.2 Backward erosion, concentrated leak, suffusion and
soil contact erosion
Taken from Chang (2012)

Dam overtopping caused 30% of dam failures in the U.S. over the last 75 years (FEMA, 2013).
Overtopping causes a breach by erosion of the dam material. Overtopping is caused by
inadequate spillway capacity and improper operation of spillway gates. Core overtopping is a
different phenomenon during which the water level in the reservoir is situated above the crest
of the dam’s core and below the dam’s crest (Figure 1.3). Core overtopping causes a parallel
water flow at the interface of the core (fine soil layer) and its surrounding filter (coarse soil
layer) that can initiate contact or interfacial erosion (Dumberry et al., 2017). The shear stress
resulting from the hydraulic head gradient at the interface between filter and core materials can
cause the erosion of finer materials. Contact erosion may trigger serious damages in

embankment dams.

Recently, because of improvement in the analysis of extreme flood events, and better
precipitation and watershed information, it has been inferred that several thousand dams in the
United States alone do not have sufficient spillway capacity to accommodate the appropriate
design floods (FEMA, 2013). As a consequence, there has been a drive to understand the failure
mechanisms associated with core and dam overtopping (FEMA, 2007), and to assess the
performance of different protective measures in the eventuality of dam overtopping (FEMA,

2014).
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Figure 1.3 Core overtopping and water flow at the interface of core and filter

Canada is among the 10 most important dam builders in the world (CDA, 2015). More than
10 000 dams can be found in Canada. Of these dams, 933 are classified as "large" dams with a
reservoir of more than 3 million m®. The province of Quebec in Canada holds a third of the
large dams. There are 6000 dams and dikes in Quebec. Of these, 10% are managed by Hydro-

Québec. As can be seen from Figure 1.4, 72% of Hydro-Québec dams are embankment dams.

Internal erosion in embankment dams is a very complex phenomenon that is not well understood.
It cannot be detected until it has progressed enough to be visible. As will be shown with the
literature review, one of the most promising method to analyze internal erosion is numerical
modelling inasmuch as it allows several factors and parameters to be considered in the process.
As aresult, it can lead to a better insight into the details of the internal erosion happening inside

the dam. It can provide an early notion of potential erosion progress inside the dams.
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Figure 1.4 Percentage of dams operated by Hydro-Québec
according to their type
Taken from Hydro-Québec (2002)

Granular materials, like the body of an earth dam, have conventionally been analyzed within a
continuum framework in which the discrete nature of the soil is not taken into account.
Continuum models have had particular success in capturing some important aspects of porous
media behaviour such as seepage and stress-strain behaviour. Nevertheless, some processes,
like internal erosion, derive from complex microstructural mechanisms at the particle level,
and are currently difficult to model with continuum models. To understand the macroscopic

behaviour, the modelling should be done at the microscopic scale (Guo & Zhao, 2014).

The Discrete Element Method (DEM) is becoming increasingly common in geotechnical
engineering (O’Sullivan, 2015). DEM is a numerical method for computing the motion and
interaction of a large number of small particles. This approach considers explicitly each particle
in a granular material, hence it can simulate finite displacements and rotations of
particles(Cundall & Hart, 1993). It has had outstanding success in reproducing the mechanical
response of dry granular material at both the particle and continuum scales (e.g., O'Sullivan et

al., 2008). A multipurpose interface is needed to allow data to be exchanged between



continuum models based on FEM and particle scale models based on DEM. Current hybrid or
multimethod models for soils often are not extensible on both FEM and DEM sides. There is
also a need for a hydrodynamic method to calculate drag force in DEM simulations involving
a large number of particles. The most precise methods that solve fluid motion at the pore scale
are not applicable due to the heavy computational cost. On the other hand, there is not a
conclusive study considering the accuracy of methods that solve an averaged form of the
Navier—Stokes equations at the continuum scale. For most soil mechanic applications, it is not
feasible to model large scale structures, like an earth dam, solely with DEM. As a consequence,
to be included in the modelling of large-scale applications, DEM must be coupled with
continuum models in a multiscale analysis where small scale DEM simulations are conducted
for selected nodes in the model. This type of multiscale hybrid model remains in development

and has not seen widespread use in geotechnical practice.

1.2 Objectives

In this thesis, we tried to take some important steps required to achieve a multiscale FEM-
DEM model to be capable of simulating the internal erosion process in large structures. The

main and specific objectives can be summarized as follows:

1. Development of an interface between COMSOL Multiphysics and discrete element code
YADE for the modelling of porous media (paper #1).
The sub-objectives of paper #1 were:
i.  Develop an Interface between COMSOL and YADE to exchange data.
ii.  Program a YADE interface to apply hydrodynamic forces on particles based on a head
loss determined at the macroscopic scale.
iii.  Verify the interface using experimental results for contact erosion available in the

literature.



2. Development of a multiscale computational algorithm aimed at stimulating fluid-particle

interaction for large-scale applications in soil mechanics (paper #2).

The sub-objectives of paper #2 were:
i.  Develop a mass flux conservation equation for the COMSOL model.
ii.  Implement our multiscale computational algorithm for the ICY and YADE script.

iii.  Verify the multiscale model performance for a numerical suffusion test.

3. Assessment of the coarse grid method in computation of drag force and proposing an

improved method (paper #3).

The sub-objectives of paper #3 were:
iv.  Calculate the drag force at the pore scale on particles inside the unit cells involved a
skeleton of large particles and a smaller particle.
v.  Generate a data set by changing the smaller particle size and position in the unit cells.
vi.  Compare the drag forces derived from Darcy’s law and CGM, with the drag forces
derived from the Navier-Stokes equations.

vii.  Train an artificial neural network using the data set and assess its performance.

1.3 Synopsis and content

Chapter 2 of this dissertation presents a literature review on the following subjects:
» Physics of porous media

Experimental studies of internal erosion

Numerical modelling of fluid-particle interaction

Numerical modelling of internal erosion in embankment dams

vV V VYV V

Discrete element methods



The main part of this dissertation includes three manuscripts in Chapters 3, 4 and 5. Two of them
were published and one other is submitted. Three conference papers (Pirnia et al., 2016, 2017 and

2018) were also presented during this project.

e Chapter 3: “ICY: An interface between COMSOL Multiphysics and discrete element code
YADE for the modelling of porous media” Published in Computers and Geosciences, 2019.

This Chapter presents an interface that allows virtually any PDE to be combined with the DEM.
Through a JAVA interface called ICY, a DEM code modelling at the particle scale (open-source
code YADE) was combined with large scale modelling with the finite element method (commercial
software package COMSOL). The particle—fluid interaction is considered by exchanging such
interaction forces as drag force and buoyancy force between the DEM and the FEM model. The
interface was developed for a practical application including a relatively small assembly of
particles. Small number of particles included in the coupled model simulation was a restricting
factor in modelling of large scale soil systems. The development of a multiscale framework
combining continuum analyses and discrete elements is a promising research avenue to address
this limitation. The presented interface allows multiscale modelling for large scale granular
structures. The interface was introduced in Pirnia et al. (2016) and orally presented in the 69th

Canadian Geotechnical Conference, Vancouver, Canada.

® Chapter 4: “Hierarchical multiscale numerical modelling of internal erosion with discrete

and finite elements” submitted in Acta Geotechnica in March, 2019.

This Chapter presents a multiscale algorithm based on ICY that limits the number of particles
in the DEM simulation. It eventually allows the modelling of internal erosion for large
structures. With the multiscale algorithm, smaller DEM subdomains are generated to simulate
particle displacements and flux at the microscale. The particle flux distribution are set in a 1-
D COMSOL model that uses a particle conservation equation to calculate new porosity and

drag force values after longer time steps. The multiscale algorithm avoids generating the full
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sample as a DEM model. The multiscale model was introduced in Pirnia et al. (2017) and orally

presented in the 70th Canadian Geotechnical Conference, Ottawa, Canada.

® Chapter 5: “Drag force calculations in polydisperse DEM simulations with the coarse-grid
method: influence of the weighting method and improved predictions through artificial

neural networks ” Published in Transport in porous media, 2019.

This Chapter performed a detailed analysis on the accuracy of the coarse-grid method (CGM)
which is often used to compute drag force on the particles in geotechnical engineering. The
CGM solves an averaged form of the Navier—Stokes equations at the continuum scale. The
CGM drag force values were compared with finite element values by solving the Navier-Stokes
equations on a small particle variable in size and position inside three different porosity unit
cells. It was found that the CGM methods generally did not produce precise drag forces. Hence,
applicability of an artificial neural network (ANN) trained using the FEM drag force values

was assessed to predict the drag force on the smaller particle.

The final published paper in Chapter 4 may differ from the version presented in the dissertation

based on probable reviewers’ requests.

Chapter 6 presents a discussion of the results and recommendations for future works.



CHAPTER 2

LITERATURE REVIEW

The chapter first describes the physics and characteristics of porous media. It, then, briefly
presents experimental findings about the internal erosion and core overtopping in embankment
dams. The next section concerns the numerical modelling of saturated porous media. The
methods to couple fluid flow with DEM are presented. The next section reviews available
numerical methods for modelling internal erosion and highlights the fundamental issues that
hamper to use the methods for structures such as embankment dams. Two next sections deal
respectively with Multiphysics models and the discrete element method. Fundamental
concepts for DEM are explained in detail. The last section introduces YADE, a DEM package
that will be used in the project.

2.1 Physics of porous media

Fluid-particle interaction in geomechanics needs to be studied in terms of physical and
mechanical properties of solid skeleton of porous media and the fluid. The interaction between
soil particles and pore water is encountered in many problems in geotechnical engineering such
as liquefaction (Chen, 2009). Porous media can be defined as solid bodies that contain void

spaces inside (Figure 2.1).

Porous media are typically classified as unconsolidated (dispersed) or consolidated. Gravel and
sand are examples of unconsolidated porous media. A porous media is characterized by a
variety of geometrical properties (Scheidegger, 1958). Porosity is one of the most important
parameters for the characterization of porous media. It is defined as the ratio of void volume

(¥v) to total volume (V'7):
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(2.1)
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Figure 2.1 Example of a 3D porous medium
Taken from Perovic et al.(2016)

Porosity can be interconnected or non-interconnected (Scheidegger, 1958). The interconnected
porosity is also known as the effective porosity (7¢). Fluid flow in porous media occurs in the
effective porosity. Non-connected pores may be considered as part of the solid matrix (Bear,

2012).

The specific surface (Ss) is another basic characteristic of a porous medium. This feature
determines the fluid flow behaviour through the solid matrix. It is defined as the ratio of the

solid phase surface (4:) to the solid phase mass (M,):
A; m?
— 2.2

Fine grained porous media have a greater Ss than coarse-grained media. The behaviour of
coarse-grained media is governed by the body forces while the behaviour of fine-grained media

is controlled by surface forces.
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Tortuosity is a dimensionless geometrical property that describes diffusion and fluid
flow in porous media. It states the influence of the flow path followed by fluid in a porous

media. Tortuosity can be defined as:

l, (2.3)

where / is the straight-line distance between the beginning and ending point of a tortuous flow

path with length /.

2.2 Internal erosion

Internal erosion refers to the migration of particles from the soil matrix as a result of seepage
flow. Internal erosion may create open conduit or pipe inside the soil. Suffusion refers to the
transport of fine particles through the pores supported by coarser particles without changes in
the soil volume (Moffat et al., 2005). It commonly occurs in internally unstable soils with gap
graded classification. Suffusion is also described as “internal suffusion” because of the fine
particles redistribution inside a layer and changing the local permeability (Kovacs, 1981). It
is commonly observed between the core and filter of embankment dams (Garner & Sobkowicz,
2002). The phenomenon is defined as “suffosion” or “external suffusion” by some researchers
(Moffat, 2005; Kovacs, 1981) when the coarser fraction of the soil is rearranged by migration
of fine particles. The phenomenon suffosion is accompanied by an overall change in the
volume of soil. The internal erosion may lead to high seepage velocities and internal instability

condition through the soil.

Initiation, continuation, progression and breach are four phases (or mechanisms) of the internal
erosion process (ICOLD, 2016). The two first steps are governed at the micro-scale between
soil particles and fluid. Initiation occurs when a particle is detached from the soil when the
erosive drag force is greater than the resistance forces such as the cohesion, the interlocking

effect and the weight of the soil particles. The detached particle is transported in the void
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regarding the seepage force. The particle may stop in the layer (suffusion) or be washed out of

the layer (suffosion).

Kenney & Lau (1985) defined the term ‘internal instability’ as “the ability of a granular

material to prevent loss of its own small particles due to disturbing agents such as seepage and

vibration”. They performed laboratory tests on a wide range of gap-graded soils and realized
that the initiation and extent of the suffosion process depends on three main criteria (Figure

2.2):

e Mechanical criterion: the fine particles must be under low effective stress and hence
transportable under seepage. If the voids between coarser particles not completely occupied
by the finer particles, the finer particles carry a relatively low stress. Skempton & Brogan
(1994) identified two finer fraction values. The first critical content of the finer particles
(blow which do not fill the voids in the coarse component) was estimated between 24-29%
of finer fractions by mass for loose and dense samples, respectively. The second critical
fraction is an upper limit at 35% at which the finer particles completely separate the coarse
particles from one another.

e Geometric criterion: the pore constrictions of the coarser soil must be large enough to allow
grains from the finer soil to be transported. Pore size criteria are often based on the ratio
between the dss of the finer soil and the D5 of the coarser soil (e.g., Sherard et al., 1984),
where Dx is the grain size for which x % of the mass is composed of smaller grains.

e Hydraulic criterion: a critical water velocity is needed to induce sufficient seepage forces
to move the fine particles through the void space. This family of criteria is closely linked
with those developed in the field of sediment transport for fluvial environments (e.g., Cao

et al., 2006).
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Figure 2.2 Conceptual diagram of internal erosion criteria
Taken from Garner & Fannin (2010)

In a recent review, Philippe et al. (2013) identified geometrical and hydraulic criteria for the
erosion of the finer soil at the interface between layers of coarse and fine grained materials.
Both the pore size and hydrodynamic families of criteria are fairly well understood for the
interface between two uniform sands and simple flow conditions. This is not the case however
for widely graded soils (e.g., till), cohesive soils, unsaturated conditions, hydrodynamic
transients and more complex geometries (e.g., sloping surfaces and discontinuities). The
impact of effective stress on erosion also remains a matter of debate (Philippe et al., 2013;

Shire et al., 2014).

Vaughan & Soares (1982) proposed the idea of perfect filter in which a filter will retain the
finer particles that could arise during erosion. Filters are used to control internal erosion in

embankment dams while allowing seepage flow to exit without causing excessive hydraulic
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gradients (Indraratna & Locke, 1999). Two basic functions, retention and permeability, are
required of filters in embankment dams. The retention function, also known as stability
function, is to prevent the erosion of the base soil through the protecting filter. The permeability
function is met when the filter accommodates the seepage flow without the build-up of excess
hydrostatic pressure. Permeability ratios of at least 25 are often quoted between the filter and

adjacent materials.
Geometric criterion methods are based on particle size distribution. The gradation curve of the

dam’s core determines the filter grading. The non-erosion filters criteria (Table 1) were

developed by Terzaghi and Sherard & Dunnigan (1989) (ICOLD, 2016).

Table 1.1 Criteria for no-erosion filters, Taken from Sherard & Dunnigan (1985, 1989)

Impervious soil Base soil A Filter criteria
group (%)
1 Fine silts and ~85 Dis <9 dgs
clays
Sandy silts and
2 clays and silty | 40-85 Dis< 0.7 mm

and clayey sands

Sands and sandy
3 gravels with small | <15 Dis <4 dss
content of fines

Coarse
impervious soils
4 intermediate 15-39 D5 < (4.dss— 0.7).(40-A/40-15) + 0.7
between Group 2

&3

*A is % of the mass finer than 0.075 mm in the fraction passing the 5 mm sieve

For zoned embankment dams, experimental studies on overtopping involve raising the water
level from an operational level below the core to the crest of the dam. In many cases, it has

been observed that internal erosion will occur before the water level reaches the crest of the
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dam. For example, Worman & Olafsdottir (1992) progressively increased the water level on
the upstream side of a laboratory model of a rockfill dam with a sand filter and a till core. They
did not observe internal erosion when the water level reached the interface between core and
sand filter. On the other hand, when the water level crossed the interface between sand filter
and rockfill, erosion of the filter began at the downstream edge of the interface, a region where
water velocities and hydraulic gradients are relatively high. In that manner, Wérman &
Olafsdottir (1992) observed erosion for two rockfill materials, both of which did not respect
the filter criteria with respect to the sand filter. More recently, Maknoon & Mahdi (2010)
confirmed this observation with similar zoned embankment models. The erosion was also
observed in the unsaturated portion of the core and filter with zones of low effective stress

(Zhang & Chen, 20006).

Most contact erosion experiments have tried to reproduce idealized 1D flow conditions for
saturated soils under a constant hydraulic gradient (Guidoux et al., 2010; Worman &
Olafsdottir, 1992). The gradual overtopping of the core of a dam involves time- and space-
dependent effective stress, porosity, hydraulic gradient and degree of saturation. Internal
erosion also has a feedback on these variables. For example, erosion can induce preferential
flow paths and localized deformations that will change permeability, hydraulic gradient and

stress tensor (Dumberry et al., 2017).

23 Numerical modelling of fluid-particle interaction

Terzaghi's (1925) effective stress principle is the most fundamental theory in soil mechanics.
This principle states that the load on a saturated soil is born by the pore pressure and the grain
skeleton. When a clay deposit or some other low-permeability soil is loaded, the pore pressure
increases as a response to the stress increase. The effective stress is calculated as the difference

between the total stress and pore water pressure (or neutral stress).

o'=0—-P (2.4)
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Where P, 0 ' and o are respectively the pore pressure, the effective stress and the total stress
(positive for compression). The pore water pressure and the hydraulic head are related through

the following equation:

P=(h=2)y, @3)

where:
® 7, is the unit weight of water,
e his the total hydraulic head, and

e zis a datum head.

The relationship between the effective stress and strain (¢€) takes the following generic form

(Lewis et al., 1998):

o' =Dre (2.6)

Where Dy is a tangential matrix.

Deformation and shear strength changes are associated with changes in the effective stress.
The effective stress decreases as a result of increasing fluid pressures or increasing the total
stress. This can lead to a reduction in shear strength and deformation of the granular material.
Increasing pore pressures also cause particle motion in phenomena such as liquefaction and
internal erosion in dams. DEM basically models the micromechanical response of granular
materials in dry condition so the applied total stress is equal to the effective stresses. There is

a need for algorithms to couple particle motion and fluid flow.

In most geotechnical applications, up to three phases (i.e., soil, water and air) typically interact

with each other. Independent solutions for one phase or a subsystem is impossible without the
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simultaneous response of the others (Zienkiewicz & Taylor, 2000). These kinds of systems are
known as coupled models. The coupling can be achieved by overlapping domains or by
applying boundary conditions at domain interfaces. Dynamic of fluid structure is a case in
point that fluid and structural system cannot be solved independently without considering
interface forces. Biot theory of poroelasticity (1941), for instance, considers deformations of
the interaction between fluid flow and solid deformations considering the soil particles as a
continuum phase. There is mutual influence between the soil structure and the flow of water.

The following section introduces basic concepts of fluid-particle interaction in porous media.

2.3.1 Fluid transport equations in porous media

Motion of fluid can be simulated accurately by solving the Navier-Stokes equations on a
Eulerian mesh with sub-particle resolution (Goodarzi et al., 2015). The Navier-Stokes
equations were developed by Claude-Louis Navier and George Gabriel Stokes in 1822. The
Navier-Stokes equations are based on the assumption that the fluid is a continuum. The flow
variables (density, velocity and pressure) are also assumed to be continuum functions of space

and time.

The Navier-Stokes equations can determine the velocity vector field that applies to a fluid. It
can be derived from the application of Newton’s second law in combination with a fluid stress
and a pressure term. The equations can be obtained from the basic and continuity conservation
of mass and momentum, and continuity applied to the fluid properties. The equations are
capable of capturing the microscale and macroscale behaviours of the fluid flow and its

interaction with the solid bodies.

The equation describing conservation of mass is called the continuity equation. It describes

the relation between the fluid velocity (#) and density (p) as
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op | ~ 2.7)
E-I_ V-(pu)=0

The divergence of density expresses the net rate of mass flux per unit volume. A simpler form

of the equation is obtained for an incompressible fluid having a constant density:
V-u=0 (2.8)

The differential form of conservation of momentum is given by the Navier-Stokes equation for

incompressible Newtonian fluid (equation 2.8) and constant viscosity () would be:

Jdv 2.
pg—VP+/,tV2u=pE 2.9)

where P is pressure and g is the vector representing the acceleration due to gravity.

Flow through porous media is often modelled by Darcy’s law (Darcy, 1856). Henry Darcy
performed an experimental study on water flow in a pipe filled with sand. He found that water
flow is proportional to the cross-sectional area (4) and head loss (4h) along the pipe. Darcy’s

law describes the water flow based on a continuum hypothesis and averaged quantities like

permeability.
b= _g 21 2.10)
L

where L is the flow length (m) and K is the hydraulic conductivity (m/s) which is a measure of
porous media’s ability to transmit water. Hydraulic conductivity depends on the intrinsic
permeability of the porous media, degree of saturation, and water viscosity and density. It can

be calculated using the Kozeny-Carman equation (Chapuis & Aubertin, 2003):
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n3 11 2.11
log[K] = A, + log l @1

(1-n)? S2 D

where Dr is the specific weight and 4. is an empirical factor between 0.29-0.51.

The velocity vector in Darcy’s law (equation 2.10) is called the apparent velocity and it is
different from the real velocity () calculated in the Navier-Stokes equation. In Darcy’s law,
the fluid velocity (v) is calculated by dividing the discharge (m%/s) by the bulk cross-sectional
area of flow (m?). This value is smaller than the actual velocity because the flow takes place
only through the voids. An average velocity in the voids, or seepage velocity (vs), can be

computed as follows:

v (2.12)

The hydraulic gradient describes the water flow direction (seepage) in the soil. It is defined as

the relation of 4k (hydraulic head difference) and the length of the flow path (L):

=" (2.13)

The hydraulic head in Darcy’s law describes the mechanical energy per unit weight of water.
It is the sum of the velocity head (v’/2g), which is usually neglected in geotechnical
engineering, pressure head (p/pg) and the elevation with respect to datum (z). The total energy

(h) at the flow cross-section (N.m/N) is calculated with the following equation:

vz P (2.14)
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This equation is called Bernoulli relation and # is its constant. If we write Bernoulli’s equation
between two points (1 and 2) of a fluid volume (in the case of an incompressible and inviscid

fluid in a steady irrotational motion):

P V2 P v2 2.15
St =tz = 2+ 2tz e
Yw 29 Yw 29

In an anisotropic medium K has different values depending on the direction of water flow
through the porous media (K, K), K:). By combining the continuity consideration (equation

2.8) and Darcy velocity (equation 2.10) in a homogeneity medium, the water flow is shown:

a6, 92h 92h  8%h (2.16)

=K K K
ot x0x2+ y(’)y2+ 2 0z2

Where 6, is the volumetric water content, and ¢ is time. Equation 2.16 can be expressed as the
Laplace equation (equation 2.17) in the case of steady state water flow through an isotropic
porous medium (Kx = K, = K> = K):

0°h  0*h 0*h (2.17)

d0x? + dy? + 0z2

VZh =0 (2.18)

Although the Navier-Stokes equations describe all forms of flow, Darcy’s law is applicable

only to laminar flow (O’Sullivan, 2015).

Viscous flow generally is classified as turbulent or laminar. Reynolds (1883) showed the basic
difference between categories by injecting a thin stream of dye into the flow through a tube
(Kundu et al., 2012). He found that at low flow rate, the fluid moves in parallel layers without

overturning motion of the layer. This flow with orderly manner of dye particles is called
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laminar (Kundu et al., 2012). In contrast, the dye streak spreads throughout the cross-section

of the tube in case of turbulent flow.

The Reynolds number is a dimensionless parameter to determine the flow regime type in a

conduit. It is defined as the ratio of the inertial to viscous forces in the flow:

v.D.g (2.19)
U

Re =

where v is the average fluid velocity, D is the tube diameter and u is the fluid dynamic viscosity.
In laminar flow, the viscous forces are dominant over the inertial forces. The Reynolds number

for flow in porous media can be calculated via equation 2.20 proposed by Tsuji et al., (1993).

npd|V — v| (2.20)
U

where:

e nis the porosity,

e dis the particle diameter,

e Vs the average particle velocity,

e vis the average fluid velocity.

Trusel & Chung (1999) observed four regimes of flow in porous media based on Reynolds
number. The first regime is limited to Re < 1 which is called Darcy regime. There is no inertial

effect in laminar creeping.

Forchheimer regime is the second regime. The flow is in strictly steady laminar while the
inertial effects become increasingly significant at the upper limit of this regime. The Re is

around 100. The third regime is transitional between more or less inertial flows to full inertial
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flow. The Re is between 100 to 800. Most of this regime is dominated by inertial effects as
vortices are shaped at the downstream of the particles. The fourth and final regime is fully

turbulent and occurs above Re number of 800.

2.3.2 Discrete Element Method

The modelling of internal erosion at the particle scale can be done with the discrete element
method (DEM). DEM was first proposed by Cundall (1971; 1974 cited in Cundall and Strack
1979) for the analysis of rock mechanics problems. Finite displacements as well as rotations
of particles are simulated (Cundall & Hart, 1993). In DEM system, particles position are
automatically updated when they make new contacts or lose them (O'Sullivan, 2015). DEM
simulations make possible access to information such as contact forces and contact orientations

that are almost impossible to achieve in laboratory tests.

Besides the capability of DEM to simulate complex phenomena in granular materials, the main
advantage of DEM compared with other methods is simplicity of governing equations and
computational cycle (Figure 2.3). With DEM, Newton’s second law of motion (Force = mass

x acceleration) is applied individually to each grain of a soil (Cundall & Strack, 1979).
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Figure 2.3 Calculation sequences in a DEM simulation
Taken from O'Sullivan (2015)
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2.3.2.1 Governing equations of motion

The translational (¥) and rotational accelerations (W) of spherical particles are obtained by

applying Newton’s second law of motion. For the i-th element (Figure 2.4) we have:

X, = Fi/my @21)

where mi; is the element mass and /i the moment of inertia. F; and M; are the resultant force and

moment on each particle:

e ) (2.23)
Fi= ) Ff+ B4 BT
c=1
e (2.24)
Mi= Y (FE X8+ 05 + ME+ M
c=1

where:

e Fi®*'and Mi*™! are the external loads,

e Fi° the contact force at the contact point,

e Fi%m and M;%™ are the force and torque resulting from damping in the system,
e r1i°is the vector connecting the centre of the i-th sphere with the contact point c,
e qi°is the resultant torques due to rolling,

e ncis the number of particles in contact.
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Numerical integration of the accelerations according to a centred finite difference system over

a time step () gives the translational velocity (x) and rotational velocity (w) of the particle:

)'ci[HAt/Z] _ x[t‘At/z] N (%) Ae (2.25)
Wi[t"‘At/z] _ Wi[t‘At/z] + (?) At (2.26)

The velocities can be numerically integrated to give the new particle positions:

At

LT "Ci[H falzs (2.27)
At

wltHd =l Wl-[H /2l p (2.28)

After obtained new positions, the calculation cycle of updating contact forces and particle
locations are repeated to detect new contacts or losing contacts. The forces occurring at the

contact point Fican be decomposed into the normal (F») and tangential (¥7) components:
Fl == F‘l’l +FT = fnﬁ-l'FT (2.29)

where 7 is the unit vector directed along the line between spheres (i and j) centres at the contact

point:

Xi — X (2.30)

n= ——
||xi —xj”

The penetration distance (ux) is calculated as:
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tn = || (i =) |7 = (5 +72) (2.31)
_ {un u, <0 (2.32)
=100 w,>0

The #. unit vector is defined as:
t,.n=0 (2.33)
The simplest constitutive model that can be used to calculate the contact forces described by

the normal stiffness k», tangential stiffness k:, the Coulomb friction coefficient uc, and the

contact damping coefficient ¢, (Figure 2.5).

Figure 2.4 Geometry of the contact of two spheres
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Figure 2.5 Rheological contact model
The normal contact force is defined as:

E, = fp.n= (kyuy).n (2.34)
The tangential force, also known as shear force, acts orthogonal to the contact normal vector.
The tangential contact model must be able to describe the material response when the contact
is “stuck” (i.e. there is no relative movement at the contact) and when the contact is sliding
(O’Sullivan, 2015). The Coulomb friction law is the simplest way to define the contact

condition. It is a function of friction coefficient u.. If a cohesionless contact is considered for

simplicity, the condition for the absence of slippage at the contact can be written as:

|Fr| < uchy (2.35)
When slippage occurs, Fris given by:

|Fr| = ucky (2.36)
In the absence of slippage, the tangential component is computed as:

Ftt = FE8 — ke { (ot — %)t — (wiry + wymy) YAt 2.37)
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|FE| = Finit (2.38)
otherwise:
Finit (2_39)
t T
Fr = pelfal W

2.3.2.2 Constitutive models

Elastic theory states the relation between the load and deformation at the contact point of two
particles. The elastic response in the contact models is typically classified into linear and
nonlinear models. The linear elastic models are the simplest kind of contact model to simulate
the force-displacement in DEM (O’Sullivan, 2015). The contact normal force is a function of
the normal contact stiffness k» and the overlap at the contact point. Cundall & Strack (1979)
defined kx proportional to the particle size. The model was implemented in the PFC codes

(Itasca, 1998).

Two springs stiffnesses k' and &/ in the normal direction, one spring for each particle, and two

kr' and k7’ in the tangential direction forms the elastic connection between two particles i and

J-
. kik) (2.40)
"okt k)
kK] (2.41)
CkL K

Each spring stiffness is a function of the particle elastic modulus E:
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ki, = 4Er; (2.42)

The spring stiffness cannot be directly related to the solid particles’ material properties. The
Hertzian contact model was developed to address the non-physical nature of the linear spring
model. In fact, it relates the spring constant to the material properties. The normal stiffness in

the Hertz theory is defined as:

= 2 GV2r' \/_ (2.43)
n=\3a—p)) Vi
where G is the elastic shear modulus, v is Poisson’s ratio and » is defined as:

Ti+7}'

Mindlin and Deresiewicz (1953) extended the theory for the tangential force that was not

considered in the Hertz model:

(2.45)

2(G?3(1 —v)r"H)/3
kr = 2—v

> ful?
The linear and Hertz-Mindlin contact model developed over the model presented by Mindlin
and Deresiewicz are the most common tangential contact models for DEM simulations in

geomechanics (O’Sullivan, 2015).

DEM needs an accurate determination of the microscopic properties (e.g., damping,
coefficients of friction, etc.) to simulate behaviour of a mass of particles as close to reality as
possible. The microscopic properties are determined using macroscopic properties such as

Angle of Repose (AoR), particle-size distribution, shear rate, bulk density, triaxial and direct
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shear tests. The same AoR can be obtained from a wide range of combinations of rolling and
sliding friction coefficients. Thus, AoR alone cannot be considered as a reliable parameter for
DEM calibration. Discharging time is another parameter that can be considered along with
AoR to determine the microscopic parameters more accurately (Derakhshani et al., 2014).

Discharging time is defined as the time that takes the particles leave the top part of the pile.

Derakhshani et al. (2014) determined the microscopic properties of quartz sand through
comparing experimental results and DEM results. Particle diameters were in the range between
300 to 600 um. The Sandglass test (Figure 2.6) was first performed for different amounts of
quartz sand to measure the discharging time and AoR. The Sandglass experimental test setup
involved the transplant champer which is filled by a certain amount of particles and two
Sandglass neck (5 and 8 mm). Sand particles flowed from the upper champer when the plug
was pulled from the Sandglass neck. The particle stabilized after a few second in the chamber.
The test results were then reproduced by DEM for a varied range of coefficients of rolling and
sliding friction. The discharging values were measured along with the AoR in DEM
simulations. Rolling and sliding friction coefficients of 0.3 and 0.52 were determined by
comparing the AoR and discharging time of materials and DEM results. The DEM model was
then validated by a comparison between the experimental results of the conical pile test and
DEM simulations. However, the simulations in this study may suffer from the confinement

effect of the chamber.
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Figure 2.6 Sandglass experimental setup
Taken from Derakhshani et al. (2014)

Dang & Maguid (2018) used heap tests to determine AoR of rock clusters (Figure 2.7). They
draw a relationship between the AoR and the inter-particle friction coefficient required for the
DEM analysis of the rock particles. Since particle shapes play a key role in DEM simulations,
both spherical and clumps were used to better understand the influence of particle sphericity
and angularity on the results. Particle irregularity can be introduced in the DEM models by
clumping spheres of different sizes. Four clump templates (tetrahedral, cubic and octahedral)

were chosen to resemble the shape of rock used in the experiments (Figure 2.7).

The average measured AoR of 35 laboratory heap tests was 25.2°. In DEM simulations, the
friction coefficient was incrementally changed to reach the calculated angle of repose of 25.2°.
The friction coefficients were estimated at 0.55, 0.35 and 0.25 for tetrahedral, cubical and
octahedral clumps, respectively. While the maximum AoR of about 21° was found for the

spherical particles which corresponded to a friction coefficient of about 0.9.
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Figure 2.7 Experimental and numerical modeling of the repose angle tests:
(a) tetrahedral clumps; (b) cubic clumps; (c) octahedral clumps; (d) sphere;
(e) & (f) experimental observations
Taken from Dang & Maguid (2018)

The Young’s modulus is not the same as the contact stiffness. In DEM code YADE, with
FrictMat materials and FrictPhys interactions, a fictitious Young’s modulus (£) is used to
define the normal contact stiffness K» once two spheres form an interaction. For two spheres
with Young’s modulus E and diameters d; and d>, Kx can be calculated as follows (Smilauer

et al., 2015b):
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B d,d, (2.46)
Kn=E <d1 + dz)

YADE uses only a static friction angle which defines the microscopic friction coefficient
between two individual bodies. The macroscale internal friction angle is the angle of

inclination of the Mohr-Coulomb failure criterion with respect to the horizontal axis.

2.3.2.3 Damping

The elastic contact models used in DEM cannot describe the contact normal response
realistically due to a lack of energy dissipation as a result of damage and contact separation in
the normal contact direction. If we consider the particles in a DEM model as a connected
system of springs, the system vibration will never stop. Artificial damping is defined by DEM
users to avoid such non-physical phenomenon. Viscous and non-viscous dampings are the two
main types of damping in DEM. In both cases, both normal and tangential damping terms (F¢

and F77) are added to equations 2.27 and 2.28.
In the case of viscous damping, Cundall & Strack (1979) proposed a system of global damping
in which damping is considered as the effect of dashpots connecting each particle to the ground.
The value of the damping force on each particle is proportional to the magnitude of the
translational and rotational velocities:

Fnd = —am; jCl' (247)

Ff = —al;w (2.48)

where o is the damping constant.
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Cundall (1987) presented a non-viscous damping system to overcome some limitation of the
viscous damping (e.g., application equal damping to all nodes). The non-viscous damping acts
at each node, independent from each particle, to limit the particles vibrations. The damping
force is proportional to the magnitude to the resultant force and resultant moment. The damping
reduces the driving forces and increases those forces resisting the motion. The damping force

acts in the opposite direction of the velocity (x):

ne N (2.49)
W=—a§yﬁuwffL

a 1% I

c=1

ne " (2.50)
P?:—a}}ﬁx#+¢d+MW —

o llwll

The main feature of non-viscous damping is that it is applied only on accelerating motion. It

thus avoids erroneous damping forces derived from steady-state motion (Itasca, 2004).

2.3.2.4 Numerical stability

A limitation on the time step (4¢) is needed to ensure the stability of the explicit integration
scheme. Time step cannot be bigger than the critical time step (4triz). The critical time step is
evaluated as the maximum of the natural period of the mass-spring system (Smilauer et al.,

2015b):

(2.51)
Aterie = ——

max

where Wmax 1S defined as:
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P (2.52)
i
Whmax = max E

i

where ki is an equivalent stiffness that is evaluated considering all the contacts of one particle.

The critical time step is then:

) m; (2.53)
At i = min 2 7

2.3.2.5 DEM applications in geotechnical engineering

Block and particulate DEM are the two main types of discrete element models in geomechanics
(O'Sullivan, 2015). Block DEM codes are used to model rock blocks and masonry structures
such as stone retaining walls (Basarir et al., 2008). The use of particulate DEM in geotechnical
engineering is becoming increasingly common with increasing computational power. DEM
has been used for analyzing different aspects of soil mechanics such as granular mechanics
(Thornton, 2000), anisotropy of clay (Yao & Anandarajah, 2003; Anandarajah, 2003), particle
fracture and crushing (Lu & McDowell, 2006; Cheng et al., 2003), strain localization (Jiang &
Yin, 2012; Mohamed & Gutierrez, 2010) and soil-structure interaction (Dang & Meguid,
2013). The DEM is also applied to a wide range of research areas outside of geotechnical
engineering in physics, mathematics, chemical engineering, geology, material science, etc. Zhu
et al. (2008 and 2007) provided two useful reviews on application of DEM and developed

algorithms in chemical engineering fields.

A large number of DEM codes are currently available for applications in geotechnical
engineering. Some of them allow different methods to be combined, such as PFC3D and
Y ADE which can respectively be combined with finite difference code FLAC and an in-house
finite difference code developed at McGill (Tran et al., 2018). The available continuum-

discontinuum interfaces either limit the modification that can be made to the code or require
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the researchers to write their own code which can be very time-consuming. Most studies have
used commercial codes PFC2D and PFC3D (Itasca, 2004) for elemental studies where different
external stress tensors are applied on soil elements to study their behaviour and to reproduce
the macroscopic behaviour of soils. The code can be modified using an embedded scripting

language named FISH and recently using Python scripts.

Since their source codes can be accessed, open source and in-house DEM software packages
like LIGGGHTS (Kloss & Goniva, 2011), YADE (Kozicki & Donz¢, 2009) and ESySParticle
Simulation (Weatherley, 2009) offer many advantages for research projects where new DEM
applications and tools are to be developed (O'Sullivan, 2015). The molecular dynamic code
LAMMPS (Plimpton, 1995) is becoming more common for DEM simulations. It is an open-
source code for parallel computing on distributed memory machines using message-passing
interface (MPI) techniques. The parallel processing is suitable for simulation of large number
of particles. However, there is communication cost between cores; so, increasing processor
does not reduce running time on a linear scale (O’Sullivan, 2015). The granular contact model
LIGGGHTS developed by Kloss and Goniva (2010) is based on LAMMPS. YADE is a very
extensible DEM package that lets researchers add plug-ins for new methods and numerical
models in a single package. Its preprocessors and post processors are already developed so the
researchers mostly need to revise the equations. YADE adopts shared-memory parallel
execution environment using OpenMP (Open Multi-Processing) and a shared memory

strategy. It increases the calculation speed on multiprocessor systems.

YADE is coupled with open source FEM code Escript (Gross et al., 2007). Escript is a Python
library to solve boundary value problems. It does not include a graphical user interface. Users
need to work with Python scripts. The only example of a coupled Escript-YADE model that
we are aware of is the one presented by Guo & Zhao (2014). This reference concerns the

modelling of dry granular material and is discussed in section 2.4.
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The geotechnical research group at McGill University (Dang & Meguid, 2013; Tran et al.,
2018) coupled YADE with an in-house FEM code. The FEM was implemented in the YADE

source code in C++. Users can develop their own analyses using Python scripts.

2.3.2.6 YADE framework

The YADE framework permits changes, extensions and code reuse besides providing many
low-level operations through plug-ins and libraries (Kozicki & Donzé¢, 2009). Figure 2.8 shows
the schematic framework of YADE. The framework is divided into several layers and each

layer depends on the layers below.

The different layers in figure 2.8 were described by Kozicki & Donzé (2009). The first layer
is the library layer. The class factory takes the class name of plug-ins to be loaded or unloaded
as a string. It can make the relation between different installed classes (e.g., different plug-ins
used to solve contact interactions) possible. The generic layer is the core of YADE and it links
the different engines, bodies and interactions which are part of all DEM simulations. The next
layer is called the common layer. It embeds components which are commonly applied by
different simulation types such as Newton’s law of motion or damping methods Cundall &
Strack (1979). The common layer could be used to extend YADE, for example by adding an
FEM package. The specialized layer is based on the common layer but the code in this layer
cannot be shared between different methods. The top layer is graphical user interface. There is

an interface that can perform computation remotely.

Figure 2.9 depicts the schematics of a simulation loop in YADE. The loop relies on algorithms
which are regarded as engines in YADE to detect and process the interactions. The engine
outputs can be forces and displacements. The output generally results in a response that
influences body state. In total, there are three types of data structures in YADE: bodies,

interactions and intermediate data.
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Figure 2.8 Layered structure of YADE framework
Taken from Kozicki and Donz¢ (2009)

Figure 2.9 Simplified schematics of simulation loop
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233 Coupling DEM-flow schemes

Particles motion in a saturated porous media is influenced by the fluid. Drag force is the
dominant fluid interaction force and considered as the most important parameter in particle
motion. Thus, the accuracy of fluid-particle interaction models bears a close relationship with
drag force calculations. For geotechnical applications, drag force can be calculated at the pore
scale or at a coarser continuum scale where individual particles are not taken into account. The
pore-scale methods ideally simulate the fluid and a system of particles by solving the Navier-
Stokes at the sub-void or pore scale. It is considered the most accurate technique to model fluid

flow through porous media.

Computational fluid dynamics (CFD) use numerical methods to analyze and solve problems
involving fluid flows. Numerical methods need computers to perform the calculations required
to simulate and analyze fluid flows with respect to a surface. Most CFD methods can be used
to solve the flow at sub-particle discretization. Mesh-based numerical methods such as finite
volume, finite difference and finite element methods have been widely used to solve the flow

at the pore scale.

The lattice Boltzmann (LB) method has recently become a popular method to solve the Navier-
Stokes equation on a mesh with sub-particle resolution (Rubinstein et al., 2016). In the LB
method, the fluid is modelled as fluid pockets that move about a 3-D mesh of nodes (Rubinstein
et al., 2106). The Boltzmann equation governs the fluid mass transportation from one node to
another one. The particles in the simulation overlap with the mesh and a no-slip condition is

considered along the particle boundaries (O’Sullivan, 2015).

Pore network modelling (Chareyre et al., 2012) is another method to solve the fluid interaction
with particles using a pore-scale finite volume formulation. The pore network is decomposed
using a triangulation method and Voronoi graphs. The flow rate in the pore network is then

assumed to be proportional to the pressure gradient and a local conductance value function of
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the pore throat geometry. This method requires less computing resources than solving the
Navier-Stokes equations at the microscale. Forces on particles obtained from pore network
flow have been shown to be comparable to those obtained by solving the Navier-Stokes

equation for a 9-sphere assembly with two distinct diameters.

The smoothed particle hydrodynamics (SPH) method has recently received some attention. In
this method, a set of points represents the state of the system. The SPH points carry material
properties and interact with each other through a weight function or smoothing function. SPH
is a mesh-free lagrangian method that is considered a special advantage over the traditional

grid-based methods (Liu & Liu, 2010).

Pore scale methods are computationally expensive due to the large number of pores and the
complex geometry of soils involving large numbers of particles. Therefore, coarse-grid
methods are commonly used in geotechnical engineering to decrease the hydrodynamic
calculation costs. The coarse-grid method (CGM) was originally proposed by Tsuji et al.
(1993) for the modelling of fluidized bed applications. The drag force is calculated using the
average parameters of each cell. Pressure and fluid velocities are calculated on a grid that is
coarser than the average particle diameter. The flow velocity and pressure are determined by
the averaged Navier-Stokes and momentum equations presented by Zhu et al., (2007), Kafui
et al., (2002) and Tsuji et al., (1993). CGM drag force (Fp) is often calculated based on
empirical relations in the geotechnical literature. Ergun (1952) is a widely used empirical drag
equation for particle systems where porosity (#) is less than 0.8 (O’Sullivan, 2015; Rubinstein

etal., 2016):

v=V (2.54)
p

Fp=p

B (1 —n)? (1 —n)plv —V| (2.55)
B =150 4~ + 175 —
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Zeghal & El Shamy (2004) used Ergun equation to compute volumetric average drag force for
each finite volume using averaged particle size and fluid velocity. Then, the drag force on
particles was calculated by distribution of the drag force among the particles in each finite
volume proportionally to their volume. Assuming laminar flow in soil mechanics, drag force
can be calculated based on Darcy’s law and permeability prediction methods, such as the
Kozeny-Carman equation (Pirnia et al., 2019; Chapuis & Aubertin, 2003). Accuracy of coarse-
grid methods in modelling monodispersed and polydispersed particle systems will be discussed

in more details in Chapter 5.

24 Numerical modelling of internal erosion in embankment dams

Numerical modelling is an efficient method to study and analyze internal erosion in existing
saturated soil structures. Internal erosion is typically modelled based on continuum or
discontinuum methods. FEM is the most common type of continuum model to study seepage
and stresses-strain in embankment dams through the past 40 years (Day et al., 1998; Hnang,
1996; Ng & Small, 1999; Sharif et al., 2001; Zhang & Du, 1997). FEM discretize the porous
medium body to small elements.The physic of each element is considered continuous. Most
seepage analyses are based on FEM and it is typically modelled by solving a water
conservation equation (equation 2.16). The continuum-based theory of porous media solves
particle and water conservation equations based on average characteristics of the material (e.g.,
porosity) for a representative elementary volume (REV). Internal erosion can be modelled by
the mass exchange between the fluid and the solid continuous phases in a continuum-based
theoretical framework. The solid mass is decreased and transferred to the fluid phase as erosion

progresses.

The continuum method was first proposed by Vardoulakis et al. (1996) to simulate the sand
production problem for radial and axial flow in which sand and fine particles are displaced
from the soil matrix due to high fluid flow and stress changes. The sand production happens

during pumping fluid from the porous media. The proposed model was based on mass balance
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equations of three continuous phases for each REV consisting of a solid skeleton, fluidized or
suspended particles and the fluid. A phenomenological erosion law was used for the mass
generation term in the conservation equation of the suspended phase. Rotunno et al. (2018)
developed a novel formulation based on the mass balance equation of Vardoulakis (1996) for
the resolution of the backward piping problem in a multidimensional porous medium. The
model was used to simulate both the propagation and enlargement of the pipe at the scale of
the hydraulic structure. Flow is assumed as laminar in porous media and turbulent in pipes.
The fluid mass and the fluid pressure values are exchanged between two systems. The model
could reproduce some features of backward erosion piping observed in different experimental
tests. Abdou et al. (2018) recently proposed a numerical approach at a representative
elementary volume (REV) scale to model the transient and spatial evolution of the average
porosity of a porous medium using a FEM software (COMSOL Multiphysics). The method is
based on the erosion model of Vardoulakis (1996) while the mechanisms of erosion and
deposition are characterised by flow velocity thresholds. The erosion and deposition terms
used in the constitutive law increase and decrease the porosity, respectively. Internal erosion

occurs when the forces from the fluid are higher than the forces that keep the particles together.

Continuum models face fundamental limitations when dealing with internal erosion
phenomena which are controlled by mechanisms at the particle scale. The discrete element
method (DEM) has been used to study micro-mechanical response of granular materials. DEM
models suffer from two shortcomings. The first drawback is the excessive computational cost
for modelling large scale applications. The second issue is the inability to give real shapes to

particles although clumps have been used to model simple particle shapes.

For most soil mechanics applications, the numerical modelling of internal erosion needs a
multiscale framework (e.g., Frishfelds et al., 2011). A multiscale method may take advantages
from both FEM and DEM. Multiscale methods generally use information at smaller scale to
eventually model the response of the material at larger scale. The multiscale methods obtain

the continuum response without resorting to phenomenology (Andrade & Tu, 2009). For
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granular materials, results from modelling at the micro scale have a feedback on the large scale
continuum model by locally changing the permeability and by inducing local volume changes
because of particle entrainment. Changes on the continuum model also have an influence on
the particle scale model as seepage can be concentrated in areas where erosion has already

taken place, thus inducing further erosion.

The existing hybrid or multimethod DEM-flow models (explained in 2.3.3) can only simulate
internal erosion in small-scale soil assemblies and often need massive computational resources
due to too large number of particles in DEM simulations. There is a need for a multiscale
computational algorithm that overcomes the DEM limitation regarding the number of discrete

bodies and eventually allows the modelling of internal erosion for large structures.

A promising approach is to couple DEM with continuum models in a multiscale analysis where
small scale DEM simulations are conducted for selected nodes in the model. These analyses
are described as hierarchical. The large-scale model uses the information from a discrete model
as an input to model the material behaviour (Andrade & Tu, 2009). A hierarchical multiscale
model aimed at monitoring strain localization problem based on the assumption of a simple
plasticity model at the macroscale was developed by Andrade et al. (2011). Their approach
evades phenomenological nature because it obtains plasticity parameters directly from DEM.
Some improvements have recently been made to reach fully hierarchical multiscale models.
Guo & Zhao (2014), Nguyen et al., (2013), Dang & Meguid (2013) and Stransky & Jirasek
(2012) have presented hierarchical multiscale discrete-continuum frameworks in which a large
scale continuum model based on FEM was coupled with small scale DEM simulations
conducted at each Gauss point of the large-scale FEM mesh. The geometric information
(strain) from the FEM model is transferred to the microscale model at representative volume
element (RVE) to solve the boundary value problem (BVP) using periodic boundary conditions
(Figure 2.10). The stress tensor and the constitutive characteristics (stiffness tensor) are sent
back to the macro-scale problem to update the strain values. A main drawback with the method

is the large number of DEM iteration steps that are needed to reach local convergence (the
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Newton—Raphson scheme used to update the finite element solution). Wang & Sun (2016) and
Guo & Zhao (2016) extended the same hierarchical multiscale scheme to saturated porous
media by solving Darcy’s law at the macroscale.

There is no example of hierarchical multiscale model for the modelling of internal erosion in
the literature. The examples that were mentioned previously are all centred on the mechanical
behaviour of porous media. Chapter 4 of this thesis presents the first multiscale hierarchical
framework aimed at modelling internal erosion for large-scale particle assemblies. The model
solves fluid flow and particle conservation in the porous media by FEM and calculates particle
flux based on particles displacements in small subdomains along the discrete body with DEM.
In other words, DEM provides FEM with parameters that depend on microscale behaviour at

specific points of the geometry.

Figure 2.10 Schematic of hierarchical multiscale modelling
Taken from Liu et al. (2015)
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2.5 Multiphysics models

Recently, a growing trend has been observed toward the development of Multiphysics and
multipurpose software packages. Multiphysics codes involve the coupled simulation of
multiple phenomena. It can involve the resolution of sets of partial differential equations or the
combination of different model types, for example finite elements and molecular dynamics
models. A review by Keyes et al. (2013) showed that there are now numerous Multiphysics
models: PETSC (Balay et al., 2013), MUSE (Zwart et al., 2009), OOFEM (Patzak & Bittnar,
2001), Chombo (Trebotich et al., 2008), Fenics (Logg et al., 2012) and COMSOL Multiphysics
(COMSOL, 2013). COMSOL Multiphysics is one of the most popular Multiphysics codes in
the scientific and industrial communities because of its flexibility and its pre- and post-

processing interface.

The physics that can be modelled include fluid flow, seepage, chemical reactions, stress-strain
behaviour and heat transfer. COMSOL can also be used to solve custom partial differential
equations (PDEs), ordinary differential equations (ODEs) and initial value problems. Two
main modules are available for geotechnical engineering applications with COMSOL
Multiphysics:

e Subsurface Flow Module: It can be used for simulating fluid flow in porous media,

groundwater flow, spread of pollutants through soil and flow of oil and gas to wells. It can

link this flow with other phenomena such as chemical reactions and heat transfer.

e Geomechanics module: It can be applied to analyze stress-strain behaviour for geotechnical

applications like foundations, tunnels, excavations and slope stability.

The advantages of using COMSOL are stated at the beginning of the methodology section in
Chapter 3. Their presentation also highlights COMSOL’s main advantages: its user-friendly
GUI, its large number of preprogrammed differential equations than can be coupled, its
interface allowing users to program their own differential equations (e.g., Duhaime & Chapuis,
2014), and its JAVA API that facilitates the development of new applications for the interface
and the programming of add-ons (e.g., the Amphos 21 iMaGe project, Duhaime et al., 2017).
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COMSOL’s main disadvantage is its cost as it is a commercial software package. However,
combination of an open-source DEM code with the JAVA interface of COMSOL remains

relatively inexpensive.
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3.1 Abstract

The thermal, mechanical and hydrodynamic behaviour of porous media in geoscience
applications is usually modelled through the finite-element (FEM) or finite-difference
methods. These continuum models tend to perform poorly when modelling phenomena that
are essentially dependent on behaviour at the particle scale or phenomena that are not
accurately described by partial differential equations (PDE), such as internal erosion and
filtration. The discrete nature of granular materials can be modelled through the discrete-
element method (DEM). However, in some instances, DEM models would benefit from an
interface with continuum models to solve coupled PDEs or to model phenomena that occur at
a different scale. This paper introduces ICY, an interface between COMSOL Multiphysics, a
commercial finite-element engine, and YADE, an open-source discrete-element code. The
interface is centred on a JAVA class. It was verified using the simple example of a sphere
falling in water according to Stokes’ law. For this example, the drag force was calculated in
COMSOL and body forces (gravity, buoyancy and drag) on the sphere were summed in
YADE. The paper also presents an application example for the interface based on the

modelling of internal erosion tests.
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3.2 Introduction

Flow through porous media, like soil deposits or earth dams, has conventionally been analyzed
within a continuum framework. Continuum models have had particular success in capturing
some important aspects of porous media behaviour, such as seepage and stress-strain
behaviour. Nevertheless, some phenomena, such as internal erosion, derive from complex
microstructural mechanisms at the particle scale that cannot currently be upscaled and
described by macroscale partial differential equations (PDE). Since continuum models do not
explicitly take into account the discrete nature of porous media, phenomena like internal
erosion should be modelled at the particle scale (Guo and Zhao, 2014). At the same time, these
phenomena often depend on macroscale parameters such as stress and pore pressure. A
multiscale approach is thus needed.

The discrete-element method (DEM) is becoming increasingly common in the modelling of
porous media (O'Sullivan, 2015). With DEM, the motion and interaction (contact forces) of a
large number of small particles are computed. This approach considers explicitly each particle
in a granular porous media and the contact forces between them. Hence, it can simulate finite
displacements and rotations of particles (Cundall and Hart, 1992). Besides the capability of
DEM to simulate complex phenomena in granular materials, the main advantage of DEM
compared with other methods is the relative simplicity of governing equations and

computational cycle.

The discrete element method has had great success in reproducing the mechanical response of
dry granular material at both the particle and continuum scales (e.g., O'Sullivan et al., 2008).
However, for field scale applications, such as earth dams, it is not feasible to model structures
solely with DEM. The current practical limit on the number of particles in a model using
personal computers is around 100 000 (O'Sullivan, 2015). For fine sand with a uniform
diameter of 0.10 mm, this translates to a maximum model volume on the order of 70 mm? for
hexagonal close packing. As a consequence, to be included in the modelling of large-scale

applications, DEM must be coupled with continuum models in a multiscale analysis where
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small scale DEM simulations are conducted for selected nodes in the model. The continuum
model can also be used to calculate boundary conditions for the DEM simulations (e.g.,
hydraulic gradient and stress). This type of hybrid multiscale models remains in development
and has not seen widespread use (Indraratna et al., 2015; Chareyre et al., 2012; Elmekati & El
Shamy, 2010; Eberhardt et al., 2004).

A large number of DEM codes are currently available for applications involving granular
media. The most common commercial DEM codes are PFC2D and PFC3D (Itasca, 2014).
These codes have been used in a significant number of elemental studies where different
external stress tensors are applied on soil elements to study their behaviour and to reproduce
the macroscopic behaviour of soils (O’Sullivan, 2015; Ding, 2013). Although these
commercial software packages allow some modification using an embedded scripting language
named FISH, it is not as versatile as some open source codes. Python has recently been

integrated directly into PFC 5.0. It allows models to be manipulated from Python scripts.

The molecular dynamic code LAMMPS (Plimpton, 1995) is one example of an open-source
code that can be used for DEM simulations. It allows parallel computing on distributed
memory machines using message-passing techniques (MPI). Parallel computing makes
LAMMPS suitable for the simulation of large numbers of particles. However, increasing the
number of processors does not reduce computation time linearly (O’Sullivan, 2015).
LAMMPS and its derivative LIGGGHTS, have been used for some applications involving
granular materials (e.g., Huang et al., 2013; Bym et al., 2013). LIGGGHTS stands for

LAMMPS Improved for General Granular and Granular Heat Transfer Simulations.

YADE (“Yet Another Dynamical Engine”) is a highly flexible and extensible open-source
DEM package used in geotechnical engineering. The YADE framework permits changes,
extensions and code reuse besides providing many low-level operations through plugins and
libraries (Kozicki & Donzé, 2009). YADE has been developed for shared-memory parallel

execution environment using OpenMP (Open Multi-Processing) increase the calculation speed
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on multiprocessor systems. YADE has been shown to require computation times that are
similar to PFC3D (Jakob, 2012). A few methods can already be used with YADE to calculate
hydrodynamic forces on particles: pore network flow and Lattice-Boltzmann method (Lominé

et al., 2013; Chareyre et al., 2012).

There are already a few examples of DEM and FEM codes that can be interfaced. For instance,
PFC3D has a Computational Fluid Dynamics (CFD) module that allows fluid-particle
interactions to be modelled based on the volume-averaged coarse-grid approach (Furtney et
al., 2013). Goniva et al. (2010) developed a CFD-DEM coupling to solve fluid-particle
interactions using OpenFOAM, a finite-volume code, with LIGGGHTS. Zhao & Shan (2013)
modified the OpenFOAM library to solve the locally averaged Navier—Stokes equation based
on the coarse grid approximation method proposed by Tsuji et al. (1993). The interface
between the open-source FEM platform Kratos and DEM engine DEMPack is another
example. It has made possible the coupling of DEM with fluid dynamic, heat transfer and
structural analyses in the same package (Isach, 2013). Finally, Guo and Zhao (2014) have
presented a framework to couple a large scale continuum model based on FEM with small
scale DEM simulations conducted at each Gauss point of the large-scale FEM mesh. Open

source codes Escript (Gross et al., 2007) for FEM and YADE for DEM were used.

Hybrid FEM-DEM models for soils often require computing resources that are not readily
available. For instance, the Guo & Zhao (2014) model required approximately 4 hours of
computing time with 16 processors to solve a 2D problem involving only 240 elements. Also,
existing interfaces are often programmed with specific applications in mind and often require

extensive programming to develop new applications.

Recently, a growing trend has been observed toward the development of versatile multiphysics
finite difference and finite element software packages. Multiphysics codes involve the coupled
simulation of multiple phenomena. They can involve the resolution of sets of PDEs, for

example the combined analysis of stresses and strains, heat transfer, seepage and solute
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transport in a porous media (e.g., Finsterle et al., 2014). They can also involve the combination
of different model types, for example finite elements and molecular dynamics models (Keyes

et al., 2013).

Some multiphysics software packages, such as COMSOL Multiphysics (COMSOL, 2016a),
can be integrated in scripts or linked with other codes (Duhaime & Chapuis, 2014; Nardi et al.,
2014). COMSOL and PHREEQC, a thermodynamic equilibrium code, were successfully
coupled by Nardi et al. (2014) to create an interface named iCP (Interface COMSOL-
PHREEQC). iCP is written in JAVA and uses the COMSOL JAVA-API and the [Phreeqc C++
dynamic library.

This paper presents ICY, a multipurpose interface that allows data to be exchanged between
continuum models based on COMSOL Multiphysics (FEM) and particle scale model based on
YADE (DEM). Details on the interface code are first given. The interface is then verified with
the simple example of a particle falling in water according to Stokes’ law. An application
example involving the modelling of internal erosion tests in porous media is also presented. In
this example, DEM is used to compute particle displacements, while hydrodynamic forces on
particles are calculated based on Darcy’s law with FEM. Other potential applications for the

coupled model are finally presented.

Versatility is a key feature of ICY. The current interface allows virtually any partial differential
equations (PDEs) and ordinary differential equations (ODEs) to be coupled with a discrete
element simulation. The interface presented in this paper constitutes an important step toward

the integration of multiscale modelling in porous media applications.
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3.3 Methodology

3.3.1 COMSOL and YADE

COMSOL Multiphysics is a commercial finite element engine that can solve simultaneously a
large range of preprogrammed partial differential equations (PDEs). COMSOL has two main
interfaces for geoscience and geotechnical applications: the subsurface flow and geomechanics
modules. The phenomena that can be modelled include fluid flow, seepage, chemical reactions,
stress-strain behaviour and heat transfer. Custom partial differential equations (PDEs),
ordinary differential equations (ODEs) and initial value problems can also be specified without

programming, through a graphical user interface (GUI).

COMSOL models can be created through a graphical user interface. Each model is described
by a model tree which includes a series of nodes that describe the model geometry, material
properties, boundary conditions, PDE, solutions, etc. The information associated with these

nodes can be accessed and modified by JAVA classes or MATLAB scripts.

The DEM code interfaced with COMSOL, YADE, is an open-source C++ framework with a
Python script interface (Kozicki & Donzé, 2009; Smilauer et al., 2015a). All computation parts
(methods and algorithms) are programmed in C++ using object oriented models. This feature
allows developers to add new algorithms and plug-ins. The Python interface is used to describe
the model, to control the simulation and for post processing. YADE can be installed with
Debian and Ubuntu Linux operating systems. With DEM, Newton’s second law of motion
(Force = mass x acceleration) is applied individually to each grain of a granular material
(Cundall & Strack, 1979). Using the resultant forces on each particle, the velocity and position
of each particle are calculated at the end of each time step. The changes in contact status (come

into contact or lose contact) are automatically determined (O'Sullivan, 2014).
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3.3.2 Coupling procedure

The interface between COMSOL (FEM) and YADE (DEM) involves a partially coupled
framework. The algorithm is presented in Figure 3.1. The partially coupled approach solves
the continuum and discrete element equations separately for each time step (Goodarzi et al.,

2015). Results are exchanged between the two models at the end of each time step.

A JAVA class was used to control COMSOL. The JAVA interface was chosen because of its
speed, the capability of being combined with Python code (the programming language used
with YADE), and the fact that it does not require the MATLAB LiveLink module for
COMSOL (COMSOL, 2016b). Through the JAVA class, command lines are sent to COMSOL
to change the initial conditions for each time step, to set the parameter values received from
YADE, and to run the simulation. The information sent to COMSOL varies for each
application. Other JAVA classes are used in ICY. In the current interface, the algorithm

includes two subclasses which are controlled by the main class.

The first subclass, named Clientcaller, was written to connect the interface to YADE and to
supply the initial values of the required parameters and variables for YADE’s interface via the
client-server. As can be seen in Figure 3.1, the algorithm features a client-server between the
JAVA class controlling COMSOL and the Python script controlling YADE. The server for the

client-server connection should not be confused with the COMSOL server.

The client-server acts as an agent between the two interfaces. It saves computing time by
allowing the YADE interface to run independently of the JAVA interface and COMSOL.
Additionally, statistical functions (e.g., mean, median) can be applied on the YADE input data
from COMSOL and on the YADE data from the previous time step directly, on the server.
Hence, the Python interface script remains intact. The client and server tasks are as follow:

i.  The client receives simulation information (e.g., iteration number) from the JAVA

interface via a terminal in Linux.
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ii.  The client creates a TCP socket and sends the information to the server.

iii.  The COMSOL and YADE model results (e.g., drag force and pressure, particle velocity
from previous time step) are formatted by the client script as command line arguments
to be sent to the Python script that controls the current YADE time step.

The second subclass, called Reader, was programmed to read and organise results files
produced by YADE for COMSOL simulations. It reads the YADE result file including the
porous media mechanical response (e.g., particle velocity, porosity or permeability values) and
sends them to the main class. The main class then assigns these parameters in the COMSOL
model. Eventually, the main class runs the COMSOL model and save the results in predefined
files. More details about the two subclasses will be presented for the internal erosion example

(Figure 3.6).

Figure 3.1 Schematic view of the ICY algorithm in the context of the verification example
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34 Verification

The simple example of a sphere falling in a water column was chosen to demonstrate that data
can be successfully exchanged between COMSOL and YADE with ICY. YADE was used to
apply Newton’s second law on the sphere (discrete element), while COMSOL was used to
solve the fluid flow (velocity, pressure and density) around the sphere using the Navier-Stokes
equations (continuum). The steady-state incompressible Navier-Stokes equations (neglect
inertial term; Stokes flow) with no-slip boundary conditions on the sphere were solved in the
COMSOL model.

When a particle falls into a fluid, it accelerates until it reaches a constant (terminal) velocity.
In this example, the particle acceleration and terminal velocity were calculated using two
methods. First, they were calculated using Stokes’ law. Secondly, they were calculated by

applying Newton’s second law in YADE with a drag force calculated in COMSOL.

34.1 Fall velocity and Stokes’ equation

Stokes’ law expresses the settling velocity of a sphere falling through a viscous fluid. Stokes
derived the forces acting on a sphere sinking in a viscous liquid under the effect of gravity.

The drag force Fp is expressed as:

Fp = 3muvd (3.1)
where u is the kinematic viscosity of fluid, V' is the sphere velocity and dis the sphere diameter.
Combining equation (3.1) with other forces imposed on the sphere falling in a quiescent and
viscous fluid gives the acceleration of the sphere and its terminal velocity. Three forces act on

the sphere when it is dropped into a column of liquid: buoyancy (F), viscous drag (Fp) and

weight (Fw) respectively. Buoyancy and viscous drag are directed upward. Weight is directed
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downward. The sphere acceleration (@) and velocity can be calculated by combining these

forces:
Fp = (5d%) (3.2)
Fy = Cd®)ys (3.3)
o = fotosi G4
Viyqr =V +alt (3.5)
where:

e m is the particle mass,

vw 1s the specific weight of water,

e s is the specific weight of the sphere,

e At is the time step interval between time # and #i+1,
e Jiis the particle velocity at 4,

e Vit is velocity of the particle in #i+;.

Fp and Fw remain constant while the sphere is falling. Drag force is the only time-dependent
force. Since V' = 0 at the beginning, drag force is initially equal to zero and acceleration is
maximum. With time, the drag force increases until it reaches a constant value. From then

onward, the particle falls at a constant rate called the terminal velocity.
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3.4.2 YADE model

The falling particle model has two main parts. On the YADE side, a sphere with diameter 0.1
mm and zero initial velocity was created. The weight and buoyancy were constant during the
simulation. The drag force was calculated in COMSOL. During each time step, COMSOL
solved the Navier-Stokes equations based on the velocity received from the previous time step
in the YADE model. Then the calculated drag force was sent to YADE by the JAVA interface
and client-server to compute the acceleration and the velocity for the next time step. The time
step was set to 0.001 s in YADE. The COMSOL model is solved in a steady-state condition.
Therefore, the time step in YADE is the ICY or global time step. Note that for other
applications, different time steps can be used for ICY (global time step), YADE and COMSOL.
This will be the case in the application example. Particles density and gravity acceleration

implemented in the YADE model were 2500 kg/m?® and 9.806 m?/s, respectively.

343 COMSOL model

A particle with the same diameter as in the YADE model was created. The particle velocity
calculated in YADE was applied as a boundary condition on fluid velocity (inlet) in COMSOL
by the JAVA interface. Drag force was calculated in COMSOL and sent back to YADE by the
client-server for the next time step. In COMSOL, part of the model tree was defined through
the GUI (geometry, materials, fluid properties, boundary conditions, and mesh). In the
geometry node, a sphere with a radius of 0.05 mm was created in a box representing the
mathematical domain (width, depth and length of 40 mm). These dimensions were sufficiently
large to prevent wall effects. Laminar and incompressible flow with a reference pressure of 1
atm was applied at the outlet. The mesh size near the sphere was shown to have a large
influence on drag force accuracy. After trying a wide range of element sizes, a maximum
element size of 0.0078 mm was chosen with an element growth rate (size ratio for two

contiguous elements) of 1.5. The results do not change with a smaller mesh size.
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344 Verification results

Results from Stokes’ law and the FEM-DEM model are compared in Figure 3.2. The velocity
values for the COMSOL-YADE model are almost equal to those from Stokes’ law. According
to Stokes’ law, it takes 0.007 s for the particle acceleration to decrease to almost zero. After
0.022 s, the particle moves with a velocity of 0.008989 m/s. The FEM-DEM results are almost
identical. After 0.022 s, the particle velocity is 0.008990 m/s, a difference of 0.0027%. This
shows that the drag force and particle velocity are correctly exchanged between COMSOL and
YADE.
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Figure 3.2 Comparison of terminal velocity and accelerations
through Stokes’ law and FEM-DEM model
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3.5 Application example

In this section, the simulation of an internal erosion test first presented by Tomlinson & Vaid
(2000) is used as an application example for ICY. This permeameter test was chosen because
it involves two layers of monodisperse spherical glass beads and the specimen is relatively
small. Thus it can easily be simulated in YADE. In this example, YADE was used to solve the
motion and to calculate the contact forces and torques for a large number of particles by means

of the DEM, while fluid flow was solved with COMSOL based on the FEM.

3.5.1 Apparatus, testing materials and procedure

The permeameter used by Tomlinson & Vaid (2000) is presented schematically in Figure 3.3.
The specimen was composed of two layers of glass beads: a finer layer on top and a coarser
layer at the bottom. The bottom and top layers had thicknesses of 3.7 and 1.9 cm respectively.
Spherical glass beads with a uniform surface texture were used to exclude the influence of
particle shape on the internal erosion results (Tomlinson & Vaid, 2000). The minimum round
fraction was 70% and the glass density was 2500 kg/m>. A test with 3-mm glass beads in the
coarse layer and 0.346-mm glass beads in the fine layer (grain-size ratio of 8.7) under a

confining pressure of 100 kPa was selected to be reproduced by the coupled model.

The cylindrical permeameter has an inside diameter and a height of 10 cm. The base pedestal
has 5-mm holes to allow water and the glass beads to reach the sample collector. The specimen
bottom is covered with a mesh with 1.5-mm openings. This mesh can retain the glass beads
from the bottom layer inside the permeameter, but it allows water and the finer glass bead to

flow out of the specimen.

At the beginning of the test, the confining stress applied by the top platen was gradually

increased to 100 kPa over the course of several minutes. The specimen was then left under this
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stress for one hour. Thereafter, the desired hydraulic gradient was applied to the specimen
through a 5 mm hole in the top platen. A small hydraulic head difference of 2 cm was first
applied to initiate flow in the specimen. Finally, the upstream hydraulic head was increased

rapidly from 2 to 23 cm in 1 minute.
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Figure 3.3 Schematic diagram of laboratory permeameter
Taken from Tomlinson and Vaid, 2000

3.5.2 Fluid-DEM coupling theory

For the permeameter test, the same body forces as in the verification example (weight,
buoyancy and drag force) were applied to the discrete spheres. Drag force, the only variable

force, was directed downward.
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There are two main approaches for the computation of hydrodynamic forces. The first
approach is the sub-particle scale method. In this method, the Navier-Stokes equations are
solved at the pore scale with an appropriate computational fluid dynamics (CFD) method, for
example the Lattice-Boltzmann method (LBM) (Lominé et al., 2013). This approach requires

computational resources that are not readily available.

The second approach, the coarse-grid method, is less computationally intensive. It was
proposed by Tsuji et al. (1993). In this method, the fluid cell embraces several particles. Fluid
flow derives from average pressures and velocities in several pores in each cell.

The principal difference between the sub-particle and coarse-grid methods is how the porous
media topology is represented. The microscale grain arrangement is not considered explicitly
for coarse-grid methods. The frictional losses are calculated based on Darcy’s law and
macroscale permeability values. With sub-particle methods, frictional losses are calculated by
solving the Navier-Stokes equations at the microscale. The grain arrangement from the DEM

simulation is considered explicitly.

Goodarzi et al. (2015) developed a coarse-grid framework to model fluid-soil interaction. The
fluid was modelled as a continuum on an Eulerian mesh. The equivalent drag force was
calculated from the Ergun equation (Ergun, 1949). It was then applied to particles at the
microscopic scale in the DEM simulation. In this paper, a coarse-grid method based on Darcy’s

law was applied to model the Tomlinson & Vaid (2000) experiment.

DEM and coarse-grid calculations of drag force with FEM are the two main components in the
DEM-FEM model. These components have a feedback on each other. In the DEM model, the
movement of particles is influenced by the drag force calculated with the coarse-grid method.
The particle displacements have in return an influence on the permeability and the hydraulic

gradient that are calculated with the coarse-grid method. The hydraulic gradients are assessed



64

in COMSOL for the whole permeameter by solving a water conservation equation based on

Darcy’s law:

V.(KVR) = 0 (3.6)

where K is the hydraulic conductivity (m/s) and 4 is the hydraulic head (m).
Based on Darcy’s law, the flow rate in a porous media is related to the hydraulic head

difference and the porous media hydraulic conductivity or permeability:

v=K— (3.7)

where:

e v is the Darcy velocity (m/s),
e L is the flow path length (m), and

e Ah is hydraulic head change (m) over length L.
The influence of drag force on the fluid results in a force acting in the direction opposite to

fluid movement. From force equilibrium considerations (Figure 3.4), the drag force on particles

(Fp) can be derived based on Darcy's law:

F, =AU.A (3.8)

Fp = AU.dx.dy (3.9

where AU = Ah.y is the difference between the real pressure differential (4P) and the
hydrostatic pressure differential (dz. ). The hydraulic head (%) is the sum of the pressure head
(P/#) and the elevation head (z).



Figure 3.4 Effective forces on water
in a volume of porous media
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The total drag force can be applied on each particle proportionally to their volume or surface

(Zeghal & EI Shamy, 2004). If it is applied proportionally to their volume, the drag force on

each particle is given by:

Fp
1-n)vr' Vpi

Fppi =

where:

e Fppiis drag force on particle i,
e 7 1is porosity,
e Vris total volume of box, and

e Vpiis the volume of particle i.

(3.10)
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If the volume definition (dx dy dz) and equation (3.9) are substituted in equation (3.10), the

drag force on each particle can be defined as:

AU
Fopi = o az - Vei (3.11)

353 Model implementation

The DEM specimen is presented in Figure 3.5a. Compared to the test set-up, the domain has a
smaller horizontal section (1 cm X 1 cm) to reduce the total number of particles. The real height
of the coarse-grained layer was used (3.7 cm). To further reduce the number of particles, the
fine-grained layer thickness was halved. To compensate for the smaller number of fine
particles, the eroded particles gathered in the bottom container were moved to the top of the
fine-grained layer at the end of each global time step in the coupled COMSOL-YADE

simulation (0.5 s).

Figure 3.5 Model implementation in COMSOL and YADE. The x coordinate in
COMSOL (b) represents the vertical axis in YADE (a)
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A 2D mesh with 1.5 mm holes was produced by Gmsh, a finite element mesh generator
(Geuzaine & Remacle, 2009). The mesh was located at the bottom of the coarse-grained layer

(Figure 3.5a). It allowed the fine particles to reach the container below the mesh.

The DEM specimen contains 160 coarse particles and 25000 fine particles. The DEM specimen
was compacted by a wall generated at the top of the fine particles layer. The wall moved
downwards at a constant velocity (0.01 m/s). The compaction was stopped when porosity of
the layer reached 0.5. After settlement and compaction of the fine-grained layer, a small portion
of finer beads (0.17 g), approximately 3000 particles, fell through the specimen. These particles
were removed from the container before subjecting the specimen to the hydraulic gradient.
This initial segregation was also reported by Tomlinson & Vaid (2000) in the experimental
tests. This mass was removed from the container as well. At the end of this stage, the specimen

is ready to be submitted to the hydraulic gradient.

The YADE time step was determined based on the P-wave velocity in the spheres as calculated
by the PWaveTimeStep function (Smilauer et al., 2015b). The P-wave velocity is a function of
the particles density and Young’s modulus (E). FrictPhys interactions were used for the
contact model in YADE. This contact model is based on the classical linear elastic-plastic law

of Cundall & Strack (1979).

To have a longer time-step compared to PwaveTimeStep function, the density scaling
technique presented by O’Sullivan (2015) was used in this study. The particles’ density was
multiplied by 100. This increases particle weight by a factor of 100. The buoyancy (equation
3.2) and drag force (equation 3.12) were also multiplied by 100 to maintain the same

proportions between forces.

The Young’s modulus and Poisson ratio of the particles were set to 0.01 GPa and 0.3
respectively. A small Young’s modulus value was assigned to decrease the P-wave velocity

and to increase the maximum stable time step as a result. The damping coefficient and friction
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angle (¢) were found to be the most influential parameters in this simulation. The damping
coefficient dissipates kinetic energy at the particle contacts. A wide range of damping
coefficients and friction angles were tested for the YADE model (see application results and
discussion for a comparison). The coupled model shows results that are similar to the

experimental results with a damping coefficient of 0.4 and a friction angle of 17.19 degrees.

According to Tomlinson & Vaid (2000), confining pressure has a negligible effect on the
stability of finer beads, especially for the particle size ratio of 8.7 used in this example. A
similar observation made with the numerical model during preliminary tests. Therefore, the
100 kPa confining pressure was not taken into account in the numerical model. Particles
density was set to 2500 kg/m? in the YADE model. Fluid density and viscosity were set to
1000 kg/m? and 0.001 Pa.s in the COMSOL model, respectively.

The COMSOL component of the coupled model was used to calculate the hydraulic gradient
and the drag force. It consists in a 1-D domain representing the real thicknesses of the two
layers (3.7 and 1.9 cm, Figure 3.5). Based on equation (3.11), the drag force on each particle
depends on the hydraulic gradient, porosity and particle volume. The coarse-grained layer was
divided into 5 sections to calculate 5 average drag forces for each time step (Figure 3.5a). The
highest number of cells that could be used was 5 because of the filter layer thickness (3.7 cm)
and the average particle size ((0.3+0.0346)/2 = 0.167 cm). When dividing the filter layer in 5
cells, the thickness of each cell is 0.74 cm. This results in a ratio between cell and average
particle size of 4.5. According to O’Sullivan (2014), cell dimensions should be 5 to 10 times
larger than the average particle size. The model results with two cells are also compared to
those with five cells to verify the sensitivity of the model with respect to the number of cells.
The delay might be due to a smoothing effect of the pressure gradient that results in a
smoothing of drag forces. Therefore, the number of cells is an important parameter that needs

to be chosen carefully.
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The hydraulic conductivity for the 5 filter sections were defined as parameters that were
modified based on the YADE results as explained in the next section. The hydraulic
conductivity values were assigned to the centre of the five cells in the COMSOL model. The
hydraulic conductivity (K) in the water conservation equation (equation 3.6) was defined as a
linear interpolation of the K values for the five sections. The permeability of the fine-grained
layer was set to 0.00134 m/s. It was evaluated with the Kozeny-Carman equation (Chapuis &
Aubertin, 2003) considering the porosity of the layer of fine particles as 0.37. The hydraulic

head at the top of the fine-grained layer was set to 23 cm as in the experiment.

3.54 Calculation sequence

Figure 3.6 illustrates the sequences of calculation used for this simulation. For each global time
step, the YADE simulation was first conducted. The hydraulic conductivity of each layer (K},
K>, K3, K4, K5) was predicted based on the new particle distribution and the Kozeny-Carman
equation. The porosity and specific surface (total grain surface divided by total grain mass) of

each layer were calculated in YADE.

The drag force equation programmed in YADE’s Python interface requires the average
pressure differential (e.g., AU2=U>-Us) in each cell. The pressure values at the cells’ top and
bottom boundaries (Ui, Uz, Us, Uy, Us, Us, U7) were calculated in the COMSOL model based
on the previously mentioned hydraulic conductivity values (Figure 3.5b). After every global
time step in COMSOL, pressures at the subdomains’ boundaries are saved in a text file. This
file is read by the client-server at the beginning of global time step in YADE to supply 5
average pressure differentials to the Python interface. Based on the pressure gradients, the
applied drag forces are updated at the beginning of each new global time steps in YADE. It
should be apparent that the COMSOL model is solved as a steady-state (stationary problem).
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Figure 3.6 Calculation sequence in FEM-DEM simulation of internal erosion
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3.6 Application results and discussion

According to Tomlinson & Vaid (2000), the base layer was all eroded in 45 s after the
application of the hydraulic head difference of 23 cm for the modelled experiment (Figure 3.7).
The mass of eroded particles reported by Tomlinson & Vaid (2000) was 190 g. This
corresponds to 2.41 g for a numerical specimen with a 1 x 1 cm section. The coupled model
(five fluid cells) with time-steps of 0.5 s, friction angle 17.2 degrees and damping 0.4 in YADE
resulted in the complete erosion (2. 41 g) of the base layer in 48 s (circle markers). As shown
in Figure 3.7, the coupled model results are dependent on friction angle and damping
coefficients in the YADE model. The results also indicate that the number of fluid cells for the
coarse-grid approach can influence erosion. A model with the same parameters, but two fluid
cells in YADE, reached the same total erosion 10 seconds later (plus markers). It could stem
from a smoothing effect of the pressure gradient resulting in a smoothing of drag forces.
Therefore, number of cells is an effective parameter that needs to be chosen regarding the case

study.

Figure 3.7 Eroded mass for the experimental test, FEM-DEM model
with different parameters and DEM under constant drag force
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The same test was also simulated exclusively with YADE with a constant drag force
corresponding to the initial hydraulic gradient in the coarse-grained layer. In this case, erosion

was stopped after 7 seconds with 0.39 g of eroded particles in the container.

A comparison of the FEM-DEM results with the experimental results confirms that using
Darcy's law and a continuum model to calculate pressure gradients and drag force for the
modelling of internal erosion in granular material can give realistic results. The main part of

drag force calculation is done in YADE with a negligible computational cost.

Modelling the same test but under a constant average drag force in YADE reveals the necessity
of using a multiscale approach in the modelling of internal erosion. Piping was also stopped
after a few seconds under larger but still constant hydraulic head difference (up to 100 cm).
The main reason is that finer particles are trapped gradually in the coarse-grained layer. This
clogs the coarse-grained layer and eventually stops erosion. In reality, the migration of finer
particles to empty spaces in the coarse-grained layer gradually raises the pore pressure and the
drag force, thus limiting clogging. This process is considered in the FEM-DEM computational

cycle.

3.7 Conclusions

This paper introduced ICY, an interface between COMSOL, a FEM engine and YADE, a DEM
code. The interface is based on a series of JAVA classes. The interface was verified with the
simple example of a sphere falling in water according to Stokes’ law. In this test, the particle
motion was simulated using YADE. Drag force on the particle was calculated by solving the
Navier-Stokes equations in COMSOL. Comparison between simulation and analytical results
showed that the framework could accurately replicate the results obtained from Stokes’ law.
The coupled model was then applied to reproduce a laboratory erosion test with drag force
calculated with a coarse-grid method. The numerical results were in good agreement with the

experimental results. The coarse-grid method can be substituted for pore-scale approaches with
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a higher computational cost such as LBM and pore network flow methods in case studies with

very large number of particles.

Regardless of accuracy of FEM-DEM results, the main objective of this study is developing a
versatile interface between DEM and FEM models. A great number of applications in
geoscience could benefit from multiscale models that consider both the particle and continuum
scales. Multiscale FEM-DEM models could be used for instance in the study of mineral
industry applications (e.g., granular material segregation and sedimentation), geotechnical
applications (e.g., internal erosion and fluidized bed) and energy extraction (e.g., sand

production problem).

The coupled model might be used to simulate fluid-particles interaction for large-scale
applications in soil mechanics and geosciences in future. A multiscale scheme based on ICY

is already under development to simulate internal erosion tests of a large permeameter.

Computer code availability

Hardware required: recommended 3GHz or more, 8 cores. Software required: YADE,
COMSOL Multiphysics, JAVA integrated development environment (IDE). Program
language: Java, Python. Program size: 28 MB. Supplemental file: ICY instruction
guide. The source code and supplemental file are available

at: https://github.com/pouyanpirnia/ICY-2018.
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4.1 Abstract

This paper presents a coupled finite and discrete element model (FEM and DEM) to simulate
internal erosion. The model is based on ICY, an interface between COMSOL, an FEM engine,
and YADE, a DEM code. With this model, smaller DEM subdomains are generated to simulate
particle displacements at the gain scale. Particles in these small subdomains are subjected to
buoyancy, gravity, drag and contact forces for small time steps (0.05 second). The DEM
subdomains provide the macroscale (continuum) model with a particle flux distribution.
Through a mass conservation equation, the flux distribution allows changes in porosity,
hydraulic conductivity and hydraulic gradient to be evaluated for longer time steps (up to 0.5
second) and at a larger, continuum scale. The updated hydraulic gradients from the continuum
model provide the DEM subdomains with updated hydrodynamic forces based on a coarse-
grid method. The number of particles in the DEM subdomains is also updated based on the
new porosity distribution. The multiscale model was verified with the simulation of suffusion.
Results for the proposed multiscale model were generally consistent with results based on a
DEM model incorporating the full sample and simulation duration. The multiscale algorithm

could enable the modelling of internal erosion for larger structures (e.g. dams) and the study
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of erosion law and homogenization techniques for the modelling of internal erosion with

continuum methods.

4.2 Introduction

Internal erosion can be defined as the seepage-induced erosion of soil particles through the
pore network of a soil or through larger openings or conduits. It can result in serious damage
for water-retaining structures such as embankment dams and levees (Foster et al., 2000).
Internal erosion includes four distinct mechanisms: regressive erosion, erosion along a
concentrated leak, interfacial erosion, and suffusion. This paper is centred on the numerical
modelling of suffusion, the erosion of small particles through a coarser granular skeleton

(ICOLD, 2017).

The design of a new dam does not normally require the numerical modelling of internal erosion
as robust design criteria are available in the literature (ICOLD, 2017). However, older water
retaining structures do not always satisfy these criteria. Dam safety studies could thus benefit
from efficient methods for the numerical modelling of internal erosion. The methods that are
currently available can be classified into two main groups. Continuum methods combine
particle and water conservation equations with phenomenological erosion laws (e.g.
Vardoulakis et al. 1996), whereas discontinuum methods consider the behaviour of individual

soil particles explicitly through the discrete element method (DEM) (e.g. Lominé¢ et al. 2013).

Continuum methods are routinely employed in geotechnical engineering to model seepage and
stress-strain relationships based on phenomenological constitutive models. While less
common, continuum methods are also available for the modelling of internal erosion. These
methods are centred on particle mass exchanges between fluid and solid phases. Vardoulakis
et al. (1996; 2001) proposed a model of sand erosion for radial or axial flow conditions based
on mass balance equations for water and suspended solids. The mass generation term in the

conservation equation for suspended solid is associated with a phenomenological erosion law
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based on filtration theory and attributed to Sakthivadivel (1966). According to this law, the
increase in suspended solid mass due to erosion is proportional to the flow rate, the
concentration of suspended solids, the volume fraction of solids and an empirical coefficient
(Vardoulakis et al. 1996). Modified erosion laws were also presented by Steeb et al. (2005;
2007) to take into account non-erodible fines and the rate law of Wan and Fell (2004). The
main drawback of these continuum methods is the current lack of validation with experimental

data, especially in the context of real geotechnical applications.

Discontinuum methods based on the discrete element method (DEM) do not require a
phenomenological erosion law to model internal erosion. With DEM, finite particle
displacements are calculated based on Newton’s second law of motion (Cundall & Strack,
1979; O'Sullivan, 2014). Particle-particle and fluid-particle interactions are modelled through
contact laws and hydrodynamic forces. Internal erosion models based on DEM differ

principally based on the methods used to apply the seepage (drag) force on each particle.

Coarse-grid methods apply a drag force on each particle based on a macroscale head loss
calculated through Ergun’s equation (Tsuji et al., 1993; Zeghal & El Shamy, 2004) or Darcy’s
law and the Kozeny-Carman relationship (Pirnia et al. 2019). The drag force can be applied on
particles of different sizes proportionally to their volume or surface. Examples were presented
by Zhang et al. (2019) and Zeghal & El Shamy (2004) for the modelling of suffusion in a gap-
graded silty sand and liquefaction, respectively. The commercial DEM code PFC3D was used
for both examples (Itasca, 2004). The main advantage of coarse-grid methods is their
computational efficiency. Their main disadvantage is that they fail to resolve the variability of

drag force values at the pore scale for small particles in a coarse-grained skeleton.

More accurate drag force values can be obtained by solving the Navier-Stokes equations at the
pore scale. This can be done with different numerical methods, the lattice Boltzmann method
(LBM) currently being the most common (Galindo-Torres, 2013). This method allows a

regular grid to be used and the conservation of linear and angular momentum to be verified.



78

Several DEM-LBM coupling examples are available in the literature. For example, Lominé et
al. (2013) simulated fluid-particle interactions with DEM-LBM for a hole erosion test (Wan &
Fell, 2002). Galindo-Torres et al. (2015) used a DEM-LBM coupling to study contact erosion
at the interface between two monodisperse layers with contrasting particle sizes. Wang et al.
(2018) developed a 3D bonded DEM-LBM model to resolve fluid-particle interactions in

cohesive materials.

Intermediate methods have also been developed to provide information on the local drag force
variability without solving the Navier-Stokes equations around each particle. The pore scale
finite volume formulation (PFV) decomposes the pore network using a triangulation method
and Voronoi graphs (Chareyre et al., 2012). The flow rate in the pore network is then assumed
to be proportional to the pressure gradient and a local conductance value function of the pore
throat geometry. This method was shown to replicate the drag force values obtained by solving
the Navier-Stokes equation at the pore scale for assemblies of 8 to 200 spheres. PFV was also
used by Wautier et al. (2018) for the modelling of suffusion in well-graded granular materials.
A semi-resolved DEM-CFD model was developed by Cheng et al. (2018) to analyze fine
particle migration through a gap-graded soil consisting of fine and coarse particles. The semi-
resolved model takes advantage of both coarse-grid and pore-scale methods. On the one hand,
the flow around the coarse particles is fully resolved using the finite volume method and a
mesh which is finer than the particle size. On the other hand, the drag force on the fine particles
is solved based on locally averaged Navier-Stokes equations over a mesh that is several times

larger than the fine particles.

The previous survey of numerical modelling methods that have been applied to internal erosion
shows that modellers are currently facing a choice between continuum models that have seen
relatively little experimental validation or microscale methods based on computationally costly
DEM models. Even with methods that avoid solving fully resolved Navier-Stokes equations at

the pore scale, such as the coarse-grid (Tsuji et al., 1993), PFV or semi-resolved methods
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(Chareyre et al., 2012), the number of particles involved in DEM simulations is too large to

model large structures, such as embankment dams.

The hierarchical or multiscale modelling methods that have recently been developed in
geomechanics show one potential avenue to take advantage of DEM simulations in a
continuum framework. Hierarchical multiscale approaches combine two length scales, most
often using the finite element method (FEM) and DEM (Andrade et al., 2011; Dang & Meguid,
2013; Guo & Zhao, 2014 and 2016; Wang & Sun, 2016). The FEM is used to discretize the
whole domain and solve the governing equations for the boundary value problem, while DEM
simulations provide the local material responses at the Gauss points of the FEM mesh. The
objective is to bypass phenomenological constitutive laws for the FEM (e.g. linear-elastic
stress-strain relationship) and overcome the DEM limitation regarding the number of discrete

bodies.

A few examples of hierarchical multiscale model for geomechanical problems have been
developed. Andrade et al. (2011) studied a strain localization problem based on a simple
plasticity model at the macroscale. The continuum model extracted its plasticity parameters
directly from DEM simulations. Guo & Zhao (2004) developed a hierarchical multiscale
framework in which a large scale continuum model based on FEM was coupled with small
scale DEM simulations at the FEM gauss points. The geometric strain tensors from the FEM
model is applied to microscale DEM simulations corresponding to representative volume
elements (RVE) with periodic boundary conditions. Stiffness tensors are sent back to the FEM
model to update the strain tensors. The work of Guo & Zhao (2004) on dry porous media was
later extended to saturated porous media (Guo & Zhao, 2016; Wang & Sun, 2016). The
relationship between the effective stress and strain tensors is determined with the same method,
but seepage is also modelled at the macroscale with a water conservation equation and Darcy’s
law. Laminar flow and a negligible drag force on the particle in the DEM simulations is
assumed. The applicability of hierarchical multiscale framework is currently limited to the

mechanical behaviour of porous media.
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Pirnia et al. (2019) simulated internal erosion during a permeameter test using ICY, a
multipurpose interface that allows data to be exchanged between continuum models based on
FEM (COMSOL) and particle scale models based on DEM (YADE) (Pirnia et al., 2016; 2019;
Tomlinson & Vaid, 2000). The YADE model was divided in five cells in which discrete drag
force values were applied on the particles based on a coarse-grid method. For each time step,
the COMSOL model solved Darcy's law based on permeability values calculated in YADE
from the porosity and grain size distribution in each cell. The cell permeability values were
estimated based on the Kozeny-Carman equation (Chapuis & Aubertin, 2003). The model
results compared favorably with the experimental results. However, the model suffered from
the same shortcoming as the microscale models that were presented in the previous paragraphs:
it was limited to a small laboratory specimen because of the heavy computational load

associated with the large number of particles.

This paper presents a hierarchical FEM-DEM model based on ICY. The model is aimed at
simulating internal erosion for large-scale applications (e.g. dams) without a
phenomenological erosion law, without generating all particles and considering the total
simulation duration in the discrete model. With this method, RVE subdomains use the DEM
to calculate particle flux values for short time steps. These particle flux values are sent to a
continuum model that predicts the porosity and drag force values of the subdomains for longer
time steps through mass conservation equations for water and particles. The paper begins by
introducing the algorithm and its implementation in ICY. The model is later validated by
comparing its result to the microscale model of Pirnia et al. (2019). To the best of our
knowledge, this paper presents the first hierarchical FEM-DEM model for the modelling of
internal erosion based on continuum conservation equations for water and particles, and

microscale particle flux calculations.
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4.3 Methodology

4.3.1 ICY

ICY is an interface between COMSOL Multiphysics and YADE (Pirnia et al., 2019). YADE
(“Yet Another Dynamical Engine”) is an open-source discrete-element code (Kozicki &
Donzé, 2009; Smilauer et al., 2015). Simulations in YADE are described and controlled by a
Python interface. COMSOL Multiphysics (COMSOL, 2016) is a commercial finite element
engine. It can treat simultaneously multiple physical phenomena, such as fluid dynamics,
seepage, chemical reactions, stress-strain behaviour and heat transfer. ICY is programmed with
a Java class. The interface was verified using the example of a sphere falling in water according
to Stokes’ law (Pirnia et al., 2016; 2019). ICY allows virtually any partial differential equations

(PDEs) to be coupled with a discrete element simulation.

4.3.2 Hierarchical multiscale FEM-DEM model

The hierarchical FEM-DEM model was developed to simulate suffusion in the specimen
shown in Figure 4.1. The specimen is composed of spheres with two distinct diameters. The
finer particles are initially dispersed throughout a coarser-grained skeleton which remains fixed

during the simulation.

The main idea behind this hierarchical model is to solve fluid flow and particle conservation
in the porous media at the continuum scale with FEM and to calculate particle flux values
based on particle displacements in small subdomains along the specimen with DEM. In other
words, the DEM provides the FEM with particle fluxes at specific nodes along the geometry.
The DEM and FEM calculations have a feedback on each other. The initial small particle
distribution in each DEM subdomain for each time step, and the drag force on each particle
are respectively controlled by the particle and water conservation equations. The particle

displacements have in return an influence on the particle conservation equation through the
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flux computations. The DEM and FEM sides of the calculation cycle are described in the

following sections.

Figure 4.1 Representation of the numerical
specimen for the modelling of suffusion
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43.2.1 DEM

Particles in the subdomains are subjected to contact forces and body forces such as gravity,
buoyancy and drag force. Drag force is the only variable body force. It acts on the particles in
the direction of fluid movement and on the fluid in the opposite direction (Figure 4.2). In order
to minimize computational costs, drag force values were derived based on a coarse-grid
approach and Darcy’s law using a macroscopic hydraulic gradient calculated with the FEM.
Darcy’s law relates the Darcy or filtration velocity (v) to the hydraulic gradient (i) and the

porous media hydraulic conductivity (K):

v=—-Ki 4.1)

Figure 4.2 Effective forces on water in
a DEM subdomain
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For the one-dimensional suffusion test presented in Fig 1, i = oh/0z, where z is the elevation
and 4 is the hydraulic head. The hydraulic head is the sum of the elevation head (z), and the
pressure head (P/xv), where v 1s the unit weight of water and P is the water pressure. Equation

3.1 can be reformulated by substituting the hydraulic head definition.

b= _£<Z_IZJ 7w) 4.2)

"w

The total drag force (Fp) on the particles of a DEM subdomain can be derived from Darcy's

law (equation 4.2) and force equilibrium considerations (Figure 4.2):

oP 4.3
Fp = —EAxAyAZ — 7,AxAyAz (4.3)

where Ax, Ay and Az are the side lengths of a DEM subdomain. The first term on the right-
hand side represents the force due to the pressure difference on both sides of the subdomain.
The second force represents the weight of water. The drag force on each particle is obtained
by distributing the total drag force (equation 4.3) among the particles proportionally to their
volume (Pirnia et al., 2019; Zeghal & EI Shamy, 2004; Tsuji et al., 1993):

_ (gt ) 4

FDPi__ (1—71)

where Fpp; is the drag force on particle i, n is the subdomain porosity and Vp; is the volume of

particle i.

After each time step (Af) in YADE, the volume flux of small particles per unit surface and time
(f) in each subdomain is calculated from the vertical component of the mean velocity of the

small particles (vz):
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f=v0 (4.5)
2z (4.6)
Y2 = At ng

where ¢ is the proportion of small particles with respect to the subdomain volume, z; is the
vertical displacement of small particle i and ns is the number of small particles in each

subdomain.

4.3.2.2 FEM and computation cycle

The FEM side of the computational cycle for the hierarchical multiscale model is centred on
two partial differential equations (PDE) that verify the conservation of water and particles,
respectively. Fluid flow in the porous media is modelled by solving a water conservation PDE

based on Darcy's law:

2 (k)= (4.7)

0z 0z

Hydraulic conductivity values for equation (4.7) are estimated using the Kozeny-Carman

equation (Chapuis & Aubertin, 2003):

A.nd (4.8)

K=
D3.52.(1 —n)?

Where Dk is the particle specific weight (Dr = %/ % , where % is the particle unit weight), 4 is
an empirical factor that varies between 0.29-0.51 and S;s is the specific surface, the particle

surface divided by the particle mass.
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The second PDE is aimed at verifying particle conservation and calculating porosity changes
along the specimen length for future time steps. It is derived from the difference in f'values at

the upper and lower surfaces of a RVE (Figure 4.3).

Figure 4.3 Change in small particle flux
for a porous media RVE

The difference between f at the upper and lower surfaces must be equal to the change in small

particles stored in the box:

of 0¢ (4.9)
9z ot

If the large particles are fixed, the change in ¢ is equal in magnitude but opposite to the porosity

change:

of __on (4.10)
dz ot
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The computation cycle is presented schematically in Figure 4.4. Each main time step begins
with a shorter DEM simulation in YADE to calculate a mean particle flux value for each
subdomain with equations (4.5) and (4.6). The flux values are then sent to an interpolation
function in COMSOL through the main ICY Java class. The interpolated flux distribution is
assumed to be time-independent when solving equation (4.10) for the longer FEM time steps
in COMSOL (Figure 4.4). New porosity values are predicted at the midpoint of each DEM
subdomain at the end of the COMSOL time steps. These values are sent to the DEM model to
update the porosity. For each subdomain, the predicted porosity is first compared with the
value at the end of the previous time step. The porosity change is translated to a number of

small particles to be added or removed randomly.

Figure 4.4 Example of time steps for COMSOL and YADE in the hierarchical multiscale
model. Both water and particle conservation equations are solved for longer time steps in
the COMSOL model. Flux values are computed for shorter time steps in YADE

The change in porosity value can be used to calculate new specific surface values at the end of

each FEM time step:
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S = Slarge + Sfine (4.11)
s Vlarge' Ps + Vfine- Ps

30, 3(1-n-0Q) (4.12)

R T
S, =—
° Ps 1-n

where:

Starge: sum of large particle surface
Srine: sum of fine particle surface
Viarge: sum of large particle volume
Vfine: sum of fine particle volume

e ps: density of particles

e R:large particle radius

e 1 fine particle radius

Q : volume percentage of large particles

The new porosity and specific surface distributions at the end of the COMSOL time step allow
a new K profile to be computed through equation (4.8). New pressure values are calculated
through equation (4.7) at the upper and lower surface of each DEM subdomain. These pressure

values are used to update the drag force values in each subdomain (equation 4).

4.4 Validation example

Suffusion was modelled for the specimen shown in Figure 4.1 with two procedures to validate
the hierarchical multiscale model. With the first procedure, the full specimen and simulation

duration were modelled with a single DEM domain, without using the particle conservation
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equation (equation 4.10). The second procedure is centred on the hierarchical multiscale model

introduced in the previous section.

The same initial specimen was used for both procedures. The coarse-grained skeleton has a
cross-section of 1 cm % 1 cm and a height of 5 cm. It is composed of spheres with a 3 mm
diameter. Their position was fixed after settlement on a 2-D mesh with 1 mm openings. The
mesh was produced with the finite element mesh generator Gmsh (Geuzaine & Remacle,
2009). The mesh is located above an empty container with a height of 1 cm. A cloud of 20 000
fine spherical particles with a diameter of 0.3 mm and random positions was generated in the
pore space between the coarser particles. A constant hydraulic head difference of 5 cm was

applied between both ends of the specimen.

The contact model and parameters used by Pirnia et al. (2019) for their ICY application
example was used for both procedures. All particles have a density of 2500 kg/m’ (i.e. glass
beads). The Young’s modulus and Poisson’s ratio of the particles were set to 0.1 MPa and 0.3,
respectively. A relatively small Young’s modulus value was assigned to decrease the P-wave
velocity and to increase the maximum stable DEM time step as a result (Smilauer et al., 2015).
A damping coefficient of 0.3 and a friction angle (p) of 17.2 degrees were assigned for the

model.

Both procedures consist of a global time stepping scheme and alternating simulations in YADE
and COMSOL. Each YADE and COMSOL simulation has its own time stepping scheme based
on the default adaptive time stepping in COMSOL and the P-wave velocity in YADE. The
computational cycles for the full specimen and hierarchical multiscale procedures are detailed

in the following sections.
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4.4.1 Full specimen model implementation

The YADE model for the full specimen procedure is presented in Figure 4.5a. It is divided in
5 cells. For each global time step, a constant drag force is applied in each cell. At the end of
the YADE simulation, new # and Ss values are calculated for each cell. Using equation (4.8),

a new K value is calculated for each cell and sent to the COMSOL model.

The COMSOL model solves equation (4.7) to calculate the drag force values to be applied in
YADE for the next global time step. The 1-D COMSOL model represents the total thickness
of the specimen (Figure 4.5b). The hydraulic conductivity values obtained in the previous
YADE time step (K1, K2, K3, K4, K5) are assigned to the center of the five cells in the COMSOL
model. Equation 7 is solved using constant-head boundary conditions and based on a linear

interpolation of the K values.

Figure 4.5 Model implementation in YADE and COMSOL for the full specimen procedure.
The vertical axis in YADE (a) is represented by the x coordinate in COMSOL (b)
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The COMSOL model allows the pressure to be calculated at the upper and lower boundaries
of each cell (P, P2, P3, P4, Ps, Ps in Figure 4.5b). The pressure difference for each cell is used
in YADE to compute the drag force with equation (4) for the next global time step. More
information on the calculation sequence with ICY for a similar full specimen model may be

found in Pirnia et al. (2019).

4.4.2 Hierarchical multiscale model implementation

With the hierarchical multiscale procedure, particle flux values are calculated along the
specimen in 5 YADE subdomains. The particle flux distribution is substituted into the particle
conservation equation (4.10), to calculate and extrapolate the time-dependent n and Ss
distributions along the specimen. As with the full specimen procedure, pressure values at the
subdomain boundaries are calculated by solving equation (4.7) and drag force in the

subdomains are calculated with equation (4.4).

The particle flux was calculated in 5 subdomains (1 cm % 1 cm x 1 cm). One of the motivations
behind the multiscale hierarchical procedure is to eventually decrease the number of DEM
particles in internal erosion simulations. For comparison purposes, for some of the scenarios
presented in this paper, the subdomains encompass the complete specimen.

Particles that are located below each subdomain can clog the pore space and influence the
migration of small particles in the subdomains above. Three scenarios were defined to verify
this influence. In the first (reference) scenario, the finer particles below each subdomain were
updated at the beginning of each YADE time step based on the porosity values that were
extrapolated in the COMSOL model (Figure 4.6a). In the second scenario, the fine particles
below each subdomain were kept but their number was not updated during the simulation. In
the third scenario, the finer particles below each subdomain were removed from the initial

specimen (Figure 4.6b).
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Figure 4.7 shows the computation sequence for the hierarchical multiscale model. Each global
time step (loop counter n) begins with a shorter YADE simulation for each subdomain (loop
counter 7). These shorter simulations (see also Figure 4.4 for time stepping scheme) allow the
particle flux distribution, not the exact particle displacements, to be calculated. Mean particle

flux values are calculated for each subdomain using equation 4.6 (f1, 12, f3, f+ f5 in Figure 4.6c).

Figure 4.6 Model implementation in YADE and COMSOL for the hierarchical multiscale
model. All particles (a) or only the coarse particles (b) are kept below the flux calculation
section

The flux values are assigned in the COMSOL model after the loop on the DEM subdomains.
It was found that better results are obtained when the flux is assigned to the bottom of each
subdomain (Figure 4.6c). The particle conservation equation is then solved for a global time
step (Figure 4.4). New average porosity values for each subdomain are calculated at the end of

the time step (n1, n2, n3, n4, ns). Corresponding Ss and K values are calculated with equations
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(4.8) and (4.12). New pressure values are obtained by solving equation (4.7). The pressure and
porosity values are written in a text file that is passed on to YADE and used to add or subtract

particles from the model and to calculate new drag force values.

Figure 4.7 Calculation sequence in the hierarchical multiscale simulations
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The initial porosity distribution for the first global time step was set using a linear interpolation
of the subdomain porosity values. After the first time step, the porosity distribution from the
previous global time step is used as the initial value for the next time step in the COMSOL
model. A linear interpolation of the flux values was used. The interpolation methods for the

flux and the initial porosity were found to have a negligible influence on the results.

Several parameters of the multiscale scheme were noted to have an influence on the results.
The influence of the following parameters was studied: length of the global time step, particles
under the subdomain, particle removal method, flux assignment location in the COMSOL
model, interpolation methods for porosity and specific surface and number of subdomains.
Some results are reported in the following sections along with a comparison with the full

specimen procedure.

4.5 Results and Discussions

4.5.1 Full specimen model

From a numerical standpoint, the results of the full specimen procedure are mainly influenced
by the time step and the number of cells. The influence of the number of cells was studied by
Pirnia et al. (2019). The time step must be sufficiently short so that results are independent of
the time stepping scheme. On the other hand, it must be sufficiently long for the particles to
reach a constant velocity and to obtain representative flux values that are not overly influenced
by random velocity fluctuations. For example, Figure 4.8 compares particle flux values for the
full specimen procedure for time steps of 0.012 and 0.05 s. The drag force was not updated
during this simulation. For the shorter time step, flux values for the five cells show oscillations
that can reach 20 % (Figure 4.8a). The first flux value after the simulation beginning is also
generally lower than the following flux values. The initially lower flux is caused by particle
acceleration at the beginning of a DEM time step following the generation of new particles

that are initially static and the loading of the previous DEM simulation. Flux changes are
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dampened for the longest time step and do not show the impact of initial particle acceleration
(Figure 4.8b). The time step was set to 0.05 s for the comparison with the hierarchical

multiscale model.

Figure 4.8 Particle flux as a function of time for
two time steps of 0.012 s (a) and 0.05 s (b)

Figure 4.9 presents the relationship between the time elapsed since the simulation beginning
and the cumulative mass of particles that are eroded and that reach the bottom of the specimen.
The specimen contains 1.17 g of fine particles at the beginning of the simulation. Most of the

fine particle mass (1.05 g) was eroded in 8 s after application of the constant hydraulic head
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difference of 5 cm. Most of the particle mass, i.e. 0.95 g, reached the container in 4 s or less

(0.95 g).
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Figure 4.9 Cumulative eroded mass for the full specimen procedure
and the reference hierarchical multiscale model (HMM).

Particle flux and porosity values for cells 1, 2 and 4 are illustrated in Figure 4.10. For the top
cell (cell 1), the flux primarily decreases due to the entrainment of small particles toward the
lower cells. The flux becomes very small as the porosity reaches a maximum value determined
by the porosity of the coarse-grained skeleton. A similar behaviour, albeit delayed, can be
observed for cell 2. Lower cells, such as cell 4, do not show a marked decrease in flux as they
also receive particles from the upper cells. Their porosity is also higher at the beginning of the
simulation due to particles falling through the coarse-grained skeleton during specimen

preparation (Figure 4.1).
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Figure 4.10 Flux and porosity in the DEM cells or subdomains as a function of time elapsed
since the simulation beginning for the full specimen procedure and the reference hierarchical
multiscale model (HMM)

4.5.2 Hierarchical multiscale model (HMM)

Figure 4.9 compares the cumulative eroded mass for the full specimen procedure and a
reference hierarchical multiscale simulation with a global (COMSOL) time steps of 0.1 s and
a YADE time step of 0.05 s (Figure 4.4). The cumulative eroded masses for both models are
similar. A slight increase in the erosion rate can be observed for the full specimen after 2.5 s.
This increase is not observed for the hierarchical multiscale simulation. This difference is
probably due to instabilities that are associated with the time extrapolation for the hierarchical

multiscale model.

Figure 4.10 compares the flux and porosity values for cells 1, 2 and 4 for the full specimen
procedure and the reference hierarchical multiscale model (scenario 1). The results for

subdomains 1, 2, 3 and 5 generally agree with those for the same cells in the full specimen
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model. On the other hand, results for subdomain 4 show larger differences, especially for the

flux which increases in the full specimen model at the beginning of the simulations.

Particles that are located below each subdomain can clog the pore space and influence the
migration of small particles in the subdomains above. Three scenarios were defined to verify
this influence. In the reference scenario, the finer particles below each subdomain were updated
at the beginning of each YADE time step based on the porosity values that were extrapolated
in the COMSOL model (Figure 4.6a). In the second scenario, the fine particles below each
subdomain were kept but their number was not updated during the simulation. In the third

scenario, the finer particles below each subdomain were removed from the initial specimen

(Figure 4.6b).

Results for the three scenarios are compared in Figure 4.11. The three scenarios show almost
the same temporal and spatial variations of porosity and flux. However, in the case of the third
scenario, the porosity of the first subdomain was increased at the beginning of the simulation
(t <1 s). The clogging effect due to the fine particles below the subdomain is more important
in the first subdomain as, after the first subdomain, the second subdomain has the smallest

porosity and the largest content of fine particles at the beginning of the simulation.
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Figure 4.11 Flux and porosity variations for the hierarchical multiscale FEM-DEM model
(HMM) with different updating methods for the finer particles below each DEM subdomain

In the reference simulation, the flux values calculated in YADE for each subdomain were
assigned to the endpoint of each subdomain in the COMSOL model. To verify the influence
of this parameter, the flux values were also assigned to the center of each subdomain. As shown
in Figure 4.12, the porosity for the reference method are closer to the full specimen results,
especially for subdomains 1 and 2. When the flux is assigned to the center of a subdomain, the
flux and porosity derivatives (equation 4.10) in the lower half of the subdomain are influenced

by the flux value assigned in the next subdomain.
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Figure 4.12 Flux and porosity variations for the hierarchical multiscale model under different
particle removal methods from DEM subdomains, assigning the flux values at the middle of
the subdomains in COMSOL model, and three DEM subdomains

The method applied to remove particles from the YADE subdomain at the end of each
COMSOL time step can also have an influence on the results. In the reference simulation, the
fine particles were selected randomly to be eliminated from the domain. For a suffusion
example, it might also seem reasonable to remove the particles at the top (or upstream side) of
each subdomain, especially for the first subdomain in which new particles are not added at the
upstream boundary. A new function was thus programmed in the YADE model to remove the
particles from top to bottom in each subdomain. This particle removal method only improved
the results for the first subdomain at the beginning of the simulation (0.5 s). Otherwise, random

particle removal showed a better agreement with the full specimen results.

In the previous simulations, the five cells represented the total length of the specimen because
of the need for a minimum subdomain height. One of the objectives of the hierarchical
multiscale model is to simulate larger applications (e.g. dams) for which DEM subdomains

would provide particle flux values at nodes on a mesh. The performance of the hierarchical
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multiscale model was thus verified by simulating the same test, but with three subdomains (1
cm x 1 cm % 1 cm) instead of five. Flux values were calculated with YADE for subdomains 1,
2 and 5 were kept. Three subdomains were enough to reproduce particles transport through the
specimen. However, the porosity in the absent subdomains, as calculated from the COMSOL

model, were less accurate (Figure 4.12).

Different time step lengths for COMSOL were also compared. Results for COMSOL time
steps of 0.05, 0.1, 0.2 and 0.5 s are plotted in Figure 4.13. The smallest time step (0.05 s) is
equal to the time step in YADE. The model did not show any significant change for time steps
below 0.2 s. The porosity values were often overestimated compared to the full specimen
model values when the time step was longer than 0.2 s as it leads to an overestimation of the
flux due to removing more particles from the subdomains. It can be inferred that the rate of

porosity changes along the full specimen model was slower than 0.2 s.

Figure 4.13 Porosity and flux for the hierarchical multiscale model under different COMSOL
time steps for a constant YADE time step
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4.6 Conclusion

This paper introduced a hierarchical multiscale FEM-DEM model to simulate internal erosion.
The model is based on ICY, an interface between COMSOL (FEM) and YADE (DEM). The
micromechanical behaviour of the particles is modelled in distinct DEM subdomains along the
specimen. Shorter DEM simulations allow the flux of particles to be calculated for each
subdomain. These flux values are assigned in a 1-D COMSOL model that uses a particle
conservation equation to predict new porosity and drag force values after longer global time
steps. At the beginning of a new global time step, these values are sent to the DEM subdomains
to update the porosity and drag force. The water flow through the sample is modelled with a
continuum method by solving a water conservation equation based on Darcy’s law. A coarse-

grid method was used to calculate the drag force value for each subdomain.

The method was validated using a suffusion test. The porosity, flux values and cumulative
eroded mass calculated with the hierarchical multiscale procedure were generally consistent
with results obtained with a full DEM specimen and without a particle conservation equation.
The proposed hierarchical multiscale method could be improved and adapted to simulate
internal erosion for large structures (e.g. embankment dams) and to act as a stepping stone in
the development of continuum methods for the modelling of internal erosion. Many
applications in soil mechanics, such as internal erosion and fluidized bed, could benefit from
the multiscale model that considers both the discrete and continuum scales. The proposed
model could also be used to improve full continuum methods (e.g. Vardoulakis (1996)). The
numerical aspect of the hierachical multiscale model could be improved by involving an

implicit time-stepping scheme in the COMSOL model.
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5.1 Abstract

Several methods are employed for drag force calculations with the discrete element method
depending on the desired accuracy and the number of particles involved. For many
applications, the fluid motion cannot be solved at the pore scale due to the heavy computational
cost. Instead, the coarse-grid method (CGM) is often used. It involves solving an averaged
form of the Navier—Stokes equations at the continuum scale and distributing the total drag
force among the particles. For monodisperse assemblages, the total drag force can be uniformly
distributed among the particles. For polydisperse assemblages however, the total CGM drag
force must be weighted. It can be applied proportionally to the volume (CGM-V) or surface
(CGM-S) of each particle. This article compares the CGM-V and CGM-S weighting methods
with the weighting obtained by solving the Navier-Stokes equations at the pore scale with the
finite element method (FEM). Three unit cells (simple cubic, body-centered cubic and face-
centered cubic) corresponding to different porosity values (respectively 0.477, 0.319 and
0.259) were simulated. Each unit cell involved a skeleton of large particles and a smaller
particle with variable size and position. It was found that both the CGM-V and CGM-S

weighting methods do not generally give accurate drag force values for the smaller particles in
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a polydisperse assemblage, especially for large size ratios. An artificial neural network (ANN)
was trained using the FEM drag force as the target data to predict the drag force on smaller
particles in a granular skeleton. The trained ANN showed a very good agreement with the FEM
results, thus presenting ANN as a possible avenue to improve drag force weighting for the

coarse-grid method.

5.2 Introduction

Fluid-particle interactions play a fundamental role in most geotechnical problems and
applications. For example, fluid flow can trigger particle detachment and transportation during
internal erosion in embankment dams. Through the concept of effective stress, fluid flow also

influences the shear strength and compressibility of granular materials.

The discrete element method (DEM), originally proposed by Cundall and Strack (1979), has
been widely used to model the micromechanical behaviour of granular materials. The success
of this method lies in simple governing equations that consider each particle and the
interactions between them. The motion of each particle is computed from Newton’s second
law of motion. A contact model (force—displacement law) describes the forces at the particle
contacts. DEM has yielded insights into the mechanical response of granular materials at both

the micro- and macroscale.

Many algorithms have been presented in the literature to couple particle motion and fluid flow.
The accuracy of fluid-particle interaction models depends on drag force calculations
(O’Sullivan, 2015). Drag force models for geotechnical applications can be classified into two
main groups. The first group is based on numerical solutions to the Navier-Stokes or discrete
Boltzmann equations at the pore scale. The second group includes coarse-grid methods based
on Darcy’s law (Darcy, 1856) or its extension by Brinkman (1949) and Ergun (1952) for higher

flow velocities.
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Solving the Navier-Stokes or discrete Boltzmann equations at the pore scale is considered the
most accurate technique to model fluid flow through the interconnected voids of granular
materials (Holmes et al., 2011; Beestra et al., 2007; Chareyre et al., 2012; Hill et al., 2001).
Flow at the pore scale can be solved with most numerical methods encountered in
computational fluid dynamics (Liu and Liu, 2010). Mesh-based methods like the finite volume,
finite difference and finite element methods (FEM) are relatively common. Recently, the lattice
Boltzmann (LB) (Cook et al., 2004; Lominé et al., 2013; Rubinstein et al., 2016) and smoothed
particle hydrodynamics (SPH) (Holmes et al., 2011; Liu and Liu, 2010) methods have become
increasingly common. The LB method involves the modelling of fluid flow as the displacement
of discrete packets on a lattice according to the discrete Boltzmann equation. With the SPH
method, the fluid is represented by a set of particles that interact through smoothing functions.
Pore scale approaches suffer from large computational costs that limit their application in
geomechanics, especially for problems involving large numbers of particles. These methods
are more suitable for fundamental research or for industrial applications involving a small

number of particles.

The coarse-grid method (CGM) was originally proposed by Tsuji et al. (1993) for the
modelling of fluidized bed applications. With this method, pressure and fluid velocities are
calculated on a grid that is typically 5-10 times coarser than the average particle diameter. The
flow velocity and pressure are calculated based on an averaged form of the Navier-Stokes
equations that considers the porous media as a continuum. This approach avoids solving the
Navier-Stokes equations in each pore. The averaged Navier-Stokes equations and the
associated continuity equation have been presented by Zhu et al. (2007), Kafui et al. (2002)
and Tsuji et al. (1993).

Several methods can be used to calculate the total drag force with CGM (O’Sullivan, 2015).
The Ergun (1952) and Wen and Yu (1966) equations are two of the most commonly employed
empirical drag equations for particle systems (O’Sullivan, 2015; Rubinstein et al., 2016). The

Ergun and Wen and Yu relations are valid for cases where porosity is less than 0.8 and more
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than 0.8, respectively. For geotechnical applications, fluid flow is generally assumed to be
laminar because of the low porosity and flow velocity (Goodarzi et al. 2015). In this case, drag
force can be calculated based on Darcy’s law and permeability prediction methods, such as the

Kozeny-Carman equation (Pirnia et al. 2019; Chapuis and Aubertin 2003).

The geotechnical literature presents several examples of CGM drag force calculations. Zeghal
and El Shamy (2004) used the Ergun equation to calculate average drag force values for the
modelling of soil liquefaction. Goodarzi et al. (2015) used CGM drag force values based on
the Ergun and Kozeny-Carman equations to simulate upward seepage and isotropic
compression. Pirnia et al. (2019) used CGM drag force values to model an internal erosion test
in a permeameter. Darcy’s law and the Kozeny-Carman equation were used to estimate the
total drag force (Chapuis and Aubertin, 2003). Zhang et al. (2019) studied the seepage erosion

mechanism of soils around tunnels based on a coarse-grid method in PFC3D (Itasca, 2004).

Papers on fluidized beds, such as Tsuji et al. (1993), deal with monodispersed particle systems.
In this case, the total CGM drag force can be distributed uniformly on neighbouring particles
that have the same size. On the other hand, geotechnical applications usually deal with
polydisperse particle systems. In this case, the total CGM drag force must be weighted when
applied to neighbouring particles with different sizes. In other words, larger drag force values
should be applied on larger particles. The drag force can be applied proportionally to the
particle volume (CGM-V) or surface (CGM-S). A survey of the previously cited examples

shows that the CGM-V weighting method is more common.

The drag force on neighbouring particles can also vary locally for fluidized beds or other
applications involving monodisperse particle systems. The accuracy of CGM for the modelling
of fluidized beds has recently been investigated by comparing its results with those obtained
from pore-scale simulations. Kriebitzsch et al. (2013) performed a comparative analysis for a
gas-solid fluidized bed with uniform particles. They found that the average CGM drag force is

about 33 % lower than the reference value from pore-scale methods. Esteghamatian et al.
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(2017) also compared pore-scale and CGM results for a homogeneous liquid-solid fluidization
of spherical particles. The pore-scale and CGM predictions of pressure drop over the bed and
bed height were generally in agreement. However, CGM considerably underestimated the local
particle velocity fluctuations, regardless of the applied drag laws (Beetstra et al., 2007; Di
Felice, 1994; Huilin and Gidaspow, 2003). The drag force on each particle depends on its size,
but also on its position with respect to other particles. Some particles can be hidden behind

other particles and, as consequence, be influenced by a smaller drag force.

Although the coarse-grid method has been widely used to simulate fluid-solid interactions for
fluidized beds and geotechnical applications, some ambiguity remains regarding the
application of the different drag models, especially for systems comprising particles of
different sizes. While total drag force are relatively easy to measure (e.g., Chapuis and
Aubertin, 2003), it is not possible to observe directly the drag force applied on individual
particles. Therefore, no systematic studies of the weighting methods employed to distribute the
total CGM drag force on particles with varying sizes have been presented in the literature.
There are no clear guidelines on the choice between the CGM-V and CGM-S weighting
methods, even if the two approaches can result in drag force values that differ by several orders

of magnitude for the same total drag force, especially for large particle size contrasts.

This paper first aims at analyzing the accuracy of the CGM-V and CGM-S weighting methods
for simple particle systems comprising two particle sizes. Drag force obtained using the CGM-
V and CGM-S weighting were compared with drag force values obtained with pore scale FEM
models. The commercial FEM code COMSOL Multiphysics (COMSOL, 2017) was used to
conduct simulations for three unit cells: simple cubic, body-centered cubic, and face-centered
cubic. This paper only looks at weighting methods: the total drag force is set by the FEM
boundary conditions. Using COMSOL’s JAVA programming interface, a total of 2712
simulations were conducted by changing the small particle size and position inside the

packings outlined by the coarser particles.
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The second objective of the paper is to evaluate the capability of a multilayer perceptron
artificial neural network (ANN) to predict the drag force weighting in a polydisperse system.
The ANN was trained with the database generated by the FEM simulations. The input data for
the ANN were the CGM-V and CGM-S drag forces, the particle size ratio, the porosity of the
coarse grain skeleton and the distance between the small particle and the nearest large particle.
The drag force predicted by the ANN were found to be in very good agreement with the FEM

values.

Our results allow for the formulation of practical recommendations regarding the applicability
of CGM for different particle size ratios and porous media porosity values. The ANN presented
in the paper introduces a new drag force calculation method that could potentially combine the

accuracy of microscale methods with the computing efficiency of CGM methods.

5.3 Coarse-grid method

Fluid flow at the subparticle scale is governed by the continuity (equation 5.1) and Navier-
Stokes equations (equation 5.2). These equations respectively express fluid mass (equation

5.1) and momentum (equation 5.2) conservation for incompressible flow.

Vu=0 (5.1)
—VP +p,g + V- (uVu) = p, = (5.2)
where u is the fluid velocity, P is the pore pressure, pw is the fluid density, g is the
acceleration of gravity, u is the fluid dynamic viscosity, t is the time variable, V - is the

divergence operator and V is the gradient operator. Bold fonts refer to vector quantities.

The total fluid force, or drag force Fp, on a particle can be expressed as the integral of the sum

of viscous stress (7) and pressure on the surface (S):
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Fp= [, (t+P)nds (5.3)
where n is the unit normal to a differential surface element dS.

Darcy’s law was derived experimentally by Henry Darcy in 1856. It relates the effective or

Darcy velocity (v) to the hydraulic gradient (Vh) and the porous media hydraulic conductivity

(K):
v= —KVh (5.4)

The hydraulic head (%) is the sum of the pressure head (P/, ), where y, is the unit weight of
water, and the elevation head (z). The contribution of the velocity head (v?/2g) is usually
neglected for porous media. Equation 5.4 can be reformulated in terms of the elevation and

pressure heads.

K
v= (VP = pyg) (5-5)

w

Darcy’s law can be also derived theoretically by upscaling the incompressible Navier-Stokes

equations using a volume averaging procedure (Narsilio et al., 2009; Whitaker, 1985).

Compared to the drag force on the fluid, the total drag force (Fp) on a particle system is equal
but of opposite direction. The total drag force on a system of particles can thus be derived
based on Darcy's law (equation 5.4) and force equilibrium considerations (Figure 5.1). For

example, along the y-axis on Figure 5.1:

Fp, = AP dxdz (5.6)
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Figure 5.1 Boundary conditions for Simple Cubic packing

where AP is the pressure change along the y axis for a representative elementary volume (REV)
dxdydz. and Fpy is the drag force component along the y axis. Equation 5.6 can be generalized

based on equation (5.5):

YwV (5.7)
K \'4

Fp = (VP — p,,8)V = —

where V is the REV volume. Fp corresponds to a total drag force that must be distributed
among the particles. The CGM-V and CGM-S weighting methods allow two different drag
force values to be derived for each particle in a representative elementary volume (REV)
(Zeghal and El Shamy, 2004). If Fp is applied proportionally to the volume of each particle in

volume ¥, the drag force on one particle is given by:

Fp (5.8)

Fori = 5, Vei



111

where Fpp; is the drag force on particle i, n is the porosity (volume of void in V/V), Vi is the

volume of particle i.

The drag force on each particle can be defined by the following relationship if equation (5.7)

is substituted in equation (5.8):

(VP - py,8) (5.9)

Fppi = “A=n) 'k

If the total drag force is applied proportionally to the projected surface of each particle, the

drag force is defined by:
F
Fppi = —Dndg Api (5.10)
Sfers

where k is number of particles in the representative elementary volume, d; is the diameter of

article j, and Ap; is the projected area of particle i.

By substituting equation (5.7) in equation (5.10):

_ (VP + y,Vz) dxdy dz y (5.11)

pPi = > - Apj
n Tdi

i=1" 4

By substituting the specific surface (total surface divided by total mass) in equation (5.11), the

following relationship is obtained:

__— (VP —p,8) (5.12)
DPi ps(l _ TL)SS Pi
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where ps is the solid phase density.

5.4 Methodology

5.4.1 FEM model development and drag force calculations

Three COMSOL models were created to simulate the water flow through 3-D packings in
response to a pressure difference between the inlet and outlet. For each model, the spheres are
contained in a cube of size L = 1 cm. The loosest packing is a Simple Cubic (SC) packing of
eight spheres (Figure 5.1). The large particle diameter is D = 0.5 cm (1/2 L). The porosity of
the packing is 47.7 %. The second and third packings correspond respectively to the Body-
Centered Cubic (BCC, Figure 5.2a) structure with a porosity of 31.9 % and the Face-Centered
Cubic (FCC) structure with the porosity of 25.9 % (Figure 5.2b). The particle radiuses in the
case of BCC and FCC are respectively V3/4 L and 1/V8 L. For L = 1 c¢m, the BCC and FCC

packings correspond to particles with diameters of 0.43 and 0.35 cm, respectively.

The steady-state incompressible Navier-Stokes equations (equation 5.1 and equation 5.2) were
solved in the COMSOL models. The same combination of boundary conditions was used for
the three packings. The inlet and outlet flow boundaries are highlighted in Figure 2. A constant
pressure difference of 1 Pa was imposed across the length. A symmetry condition was applied
on the lateral boundaries. No-slip boundary conditions were imposed on the surface of each

particle.

As the first objective of the paper was to look at the weighting of the total drag force for coarse
grid methods in systems comprising two particle sizes, a smaller particle was also generated in
each unit cell. The possible size and position combinations for the small particle depend on the
packing. The drag force on the small particle can be influenced by the pressure gradient, the
small particle size and its position inside the box. Preliminary simulations confirmed that the

drag force is proportional to the pressure gradient. Different pressure gradients did not
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influence the distribution of the drag force between small and large particles. Therefore, only
the position and size of the small particle were varied in the final set of simulations.

The pore scale Fp on each particle was computed with equation 5.3 and the FEM simulations.
The CGM-V and CGM-S weighting was obtained with equations 5.9 and 5.12. In both cases,
the numerator (VP — p,,8) was determined by the boundary conditions and domain size

(4P/L).

Figure 5.2 Geometry of COMSOL models for Body-Centered Cubic (a)
and Face-Centered Cubic (b) packings

The mesh size was shown to have a large influence on drag force accuracy. Three different
maximum element sizes were specified on the small particles, large particles and lateral
boundaries for the three packings to make the simulations mesh independent. Each mesh
consists of approximately 1, 2 and 5 million tetrahedral elements for the SC, BCC and FCC

domains, respectively.

For the three packings, the drag force calculations for the smallest particle size (d = 0.0001 m)

was more influenced by the mesh size. The accuracy of Fp was estimated from simulations
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with decreasing mesh sizes. The error was defined as the difference between the value
calculated with the final mesh and the value extrapolated for an infinitely fine mesh (Roache,
1997). The maximum error for all packings and particle sizes was close to 10 %, but the error
was generally much smaller, especially for particles with d > 0.0001 m. The sum of viscous
and pressure forces on all particles was also compared to the total force on the particles (4PL?).
The difference was less than 0.6%, 1.2% and 4% for the SC, BCC and FCC packings,

respectively.

The simulations were conducted for the small particle diameters (d) and positions presented in
Table 1. The range of small particle positions was constrained based on symmetry
considerations. COMSOL’s JAVA programming interface was used to change the size and
position of the small particle in COMSOL models for the three packings and to run the
simulations. The JAVA class was also used to reject parameter combinations for which the
small particle was overlapping with the large particles, the lateral boundaries, the inlet or the
outlet. For each simulation, the drag force on the particles and lateral walls, and the average
velocity at the outlet surface were written in a .csv file. A total of 2712 simulations were

conducted for the three packings.

Table 5.1 Parameters for the geometry of the small particle in the COMSOL models

Type of | Small particle diameter Positions
Packing (m) X Y Z
SC 0.0001:L/100:0.0036 L/2:L/20:3L/4 | L/4:L/20:3L/4 L/2:1L/20:3L/4
BCC 0.0001:L/100:0.0016 0.001:L/10:L/2 0.001:L/10:L 0.001:L/10:L/2

CCp 0.0001:L/100:0.0011 0.001:L/10:L/2 0.001:L/10:L 0.001:L/10:L/2
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5.4.2 Artificial Neural Network

An ANN was prepared with the MATLAB neural network toolbox to predict the drag force on
small particles based on the dataset obtained from the COMSOL simulations. A neural network
receives input data, processes these inputs, and returns output data that must match a target
dataset. The input data used to train the neural network consisted of the drag force on the small
particles calculated by CGM-V and CGM-S, the particle size ratio, the porosity and the
differences in x, y and z coordinates between the center of the small particle and the center of
the nearest large particle. The target data are the drag force values derived from the FEM

model.

Input, hidden and output layers, in neural networks are made of a number of artificial neurons.
Artificial neurons are the fundamental element and computing unit of the neural network
(Figure 5.3). The inputs (x;) are separately multiplied by synaptic weights (#i). The neuron’s
bias (b) is added to the summed weighted inputs to generate the net input. The net input is

passed through an activation function (f) to produce the output (y).
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Figure 5.3 A single artificial neuron
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The original dataset containing 2712 simulations was split into training, validation and testing
datasets. During the training step, the weights are updated to minimize the error and improve
the network performance. For supervised learning, the network output is compared with the
target values to determine the error. After each training epoch, the validation dataset is used to
verify if the network is overfitting the training data and losing its ability to generalize. The
testing dataset is not introduced to the network during training. It provides an independent
measure of the network performance after training. The main portion of the dataset (70 %
chosen randomly) was presented to the network for training. The rest was split equally between

the validation and testing datasets (15 % each).

A network with 7 neurons in the input layer, 20 neurons in two hidden layers and 1 neuron in
the output layer was chosen in this study (Figure 5.4). Sigmoid activation functions were used
to increase the nonlinearity of the neural network output (Karn, 2016). A hyperbolic tangent
sigmoid transfer function with range (-1, 1) was used for the hidden layers (Figure 5.5a). A
unipolar sigmoid activation function was used in the output layer to constrain the data to the

range (0, 1) (Figure 5.5b).

Figure 5.4 Architecture of the ANN trained with MATLAB
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Figure 5.5 Bipolar sigmoid function (a), unipolar sigmoid function (b)

The performance of the network was evaluated using the mean squared error (MSE), the root
mean squared error (RMSE) and the coefficient of determination (R°). The MSE shows the

quality of the estimator. It has the following definition:

12 (Ti — P)? (5.14)
n

MSE =

where 7T'and P are vectors containing the target and predicted outputs, and #; is the number of
samples. The RMSE is simply the square root of the MSE. The R’ indicates how well the

predicted values fit the target values:
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21 (T — P)? (5.15)

R? - LS
r(T;—P)

where P is the mean of the predicted values. The R’ range between 0 and 1, the latter

corresponding to a better fit.

The Levenberg-Marquardt (LM) algorithm (Levenberg, 1944; Marquardt, 1963) is the most
commonly used method for training neural networks, especially for small and medium-sized
networks (Nawi, 2013; Hagan and Menhaj 1994). The LM algorithm showed the best
performance and reached the lowest RMSE and MSE values in the lowest number of epochs.
Epochs correspond to the number of times the entire training dataset passes through the
network. The early stopping method was used to stop training the network. It improves the
generalization and avoids overfitting to the training data. The training was stopped when the
error on the validation dataset increased for six iterations. The weights and biases that resulted

in the minimum validation error were used for the trained model.

Hyperparameters are variables that determine the model structure. They are set before the
training begins (e.g., number of hidden neurons). An optimization of hyperparameters is
needed to reach the best prediction results. The parameters are chosen based on trial and error
as there is no fixed rule to select them. The optimization for the ANN presented in this paper
involved changing the number of hidden layers, the number of neurons in the hidden layer and
the learning rate. The learning rate is a coefficient that determines how quickly a network
updates its parameters to minimize the prediction error. A small learning rate of 0.0001 was
found to produce the best results. The number of neurons in the input and output layers are
governed by the number of input variables introduced to the network and the number of
expected output from the network. The network was tested with 6, 8, 10 and 20 hidden neurons.
The network showed significant improvement in accuracy when two hidden layers were used

instead of one.
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5.5 Results and discussion

Figure 5.6 compares the FEM drag force on small particles with the results of the CGM-V and
CGM-S methods for the SC packing. All forces presented in this section are normalized by the
total force on the packing (Fparticte/ Fsample). The box plots represent the 3 quartiles of the FEM
drag force values that were obtained for different small particle positions. The CGM-S values
are systematically higher than the CGM-V values. For d/D>0.52, only the CGM-S values give
a drag force that is consistent with the FEM results. For particle size ratios between 0.44-0.52,
the drag force values from the CGM-S method correspond to the maximum FEM values, while
the CGM-V values fall below or close to the minimum FEM values. The variability of the
FEM drag force values on the small particles increases progressively with decreasing d/D
ratios. This implies that the acceleration and velocity of small particles vary considerably as
they move through the pore space compared to the larger particles. In the case of particle size
ratios that are smaller than 0.44, the median FEM drag force is close to the CGM-S value but
the maximum and minimum FEM drag force values fall outside of the range defined by the
CGM-V and CGM-S values. The CGM-S and CGM-V methods cannot replicate the variability
of the FEM drag force.

Figure 5.6 Distribution of the drag force values on the small particle in
the Simple Cubic. The box plots shows the FEM values
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For a given d/D ratio and packing, the drag force depends on the position of the small particle
with respect to other particles. Figure 5.7 shows the relationship between the normalized drag
force and particle position in the x-y plane for a small particle with a radius of 0.0001 m (d/D
=0.02) and SC packing for the large particles. The drag force can be seen to decrease when
the particle is displaced from the center of the box (x = 0.005 m, y = 0.005 m and z = 0.005 m,
Figure 5.1) toward areas with a slower fluid velocity between the two particles (x = 0.0075 m,
y=10.005 m and z = 0.005 m). On the other hand, the drag force reaches its maximum values
when the small particle is placed in the constriction that faces the flow direction (x = 0.005 m,

y=0.0075 m and z = 0.005 m).

Figure 5.7 Normalized drag force on a small
particle (d = 0.0001 m, d/D = 0.02) with respect
to its position. The two quadrants correspond to

the outline of the large particles (SC packing)

on the x-y plane at z=0.005 m
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Fewer particle ratios and positions could be studied for the BCC and CCP packings due to their
higher density. For both of these packings, the CGM-V and CGM-S drag force values were
mostly lower than the FEM values (Figure 5.8a-b). The CGM-V method systematically
underestimated the drag force compared to the FEM results for both BCC and CCP packings.
The CGM-S method fared better. Nevertheless, it predicted values that were among the lowest

quartile of the FEM results for 6 out of 7 particle size and packing combinations.

Figure 5.8 Distribution of the drag force values on the small particle in the Body-Centered
Cubic (a) and the Face-Centered Cubic (b) packings. The box plots shows the FEM values

The results on Figures 5.6-8 clearly show that coarse grid methods, especially the CGM-V
method, tend to underestimate the drag force on small particles in a porous material. For loose
packings (e.g., SC structure with 47.7% porosity), the CGM-S values might be used to predict
the drag force, as long as the particle size ratio is larger than 0.52. An average between the
CGM-V and CGM-S values might be used to predict the drag force for the particle size ratios
between 0.44-0.52. The maximum error between CGM-S and the FEM results is 146% while
it is 77% between an average of the CGM-V and CGM-S values and the FEM results. The
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coarse-grid method should not be considered as an accurate technique to predict the drag force
for smaller particle size ratios and in the case of denser assemblies such as BCC and CCP. This
observation is particularly important for the modelling of internal erosion and particle transport
in porous media as these applications generally involve particle size ratios that are smaller than

0.44.

Performance of the ANN Levenberg-Marquardt algorithm (ANN-LMA) in terms of epoch
number is shown in Figure 5.9. The training was stopped after 240 epochs while the training
parameters such as weights and biases from iteration number 234 were applied for the final
trained model. The best performance based on MSE on the normalized drag force for the

validation set is 3.64 x 10 at epoch 234.

Figure 5.9 Evaluation of training algorithm per epoch

The performance of the trained model on the training, validation and testing sets is summarized
in Figure 5.10. Sometimes a trained model shows very convincing performance during

training, but it cannot predict properly on testing dataset. The nearly similar correlation
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coefficient R? of the three datasets and speed of convergence to the best accuracy proves the
right choice of the ANN architecture and training algorithm.

A comparative analysis of the ANN-LMA and two surface and volume methods against the
FEM results is presented in Figure 5.11. The line of best fit compares the predicted drag forces
with the desired values. The trained ANN algorithm could predict the drag force with a high
degree of accuracy (RMSE = 0.000038). However, the Mean RMSE for the CGM-S and CGM-
V were 0.0028 and 0.0032, respectively. There is an approximately perfect agreement between
the ANN predictions and observed data (R? = 0.999) while CGM-S (R? = 0.8704) and CGM-
V (R?=0.8307) showed relatively poor correlations with the best fit line.

Figure 5.10 Performance of trained ANN on training,
validation and testing datasets
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Figure 5.11 Comparison between the FEM and predicted drag forces

The ANN-LMA showed an excellent generalization for the small and noisy dataset. It could
successfully estimate wide variations of the force regarding the positions for all particle size

ratios. However, the model accuracies smoothly declined as the particle size ratios decreased.

The predicted results from ANN showed that the ANN could provide a better performance
than the coarse-grid methods. A trained ANN might be replaced with the costly FEM and
inaccurate coarse-grid methods to predict the drag force on particles in porous media. This
method could eventually lead to quick and precise hydrodynamic forces for the coupled fluid-

DEM codes.

For bidisperse sphere assemblages, the implementation of the ANN method in a DEM-FEM
code such as ICY (Pirnia et al. 2019) is relatively straightforward. The total drag force can be
calculated with the FEM code based on the Kozeny-Carman (Chapuis and Aubertin 2003),
Ergun (1952) or Wen and Yu (1966) relationships. The weighting of the total drag force on
smaller particles can be conducted in the DEM code using bounding volumes centred on each

small particle. These bounding volumes allow the porosity and the specific surface around each
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small particle to be calculated. The distance between the small particle and each larger particle
within the bounding volume can be computed to find the smallest distance. These parameters
and the total drag force allow the CGM-V and CGM-S drag force values to be calculated with
Egs. 9 and 12. The required input can then be fed to the ANN. The ANN training can be
conducted using a dataset similar to the one presented in this paper. Alternatively, a dataset
could be built from FEM simulations based on a large number of randomly selected bounding
volumes. For the larger particles, based on the results presented in this paper, the CGM-S drag

force can be used directly.

5.6 Conclusions

The coarse grid method is commonly used in geotechnical engineering to apply drag forces on
polydispersed particle systems. The first objective of the paper was to compare the drag forces
derived from Darcy’s law and the CGM-V and CGM-S weighting methods for polydisperse
assemblages, with the drag forces derived from the Navier-Stokes equations solved at the pore
scale using the FEM. Three unit cells of 1 cm corresponding to maximum porosity values of
47.7, 31.9 and 25.9 % were simulated. Each unit cell consisted of a fixed coarse-grained
skeleton and a smaller particle in the pore space. The CGM drag forces were applied on the
smaller particles proportionally to their volume (CGM-V) or surface (CGM-S). A constant
pressure difference of 1 Pa was applied across the unit cells. 2712 combinations of packing,
small particle size and small particle position were simulated using COMSOL’s JAVA

programming interface.

The results show that in a loose particle packing (47.7% porosity), the CGM-S could provide
results that were close to the more accurate FEM results for large size ratios (0.72-0.54), in
other words for relatively uniform grain size distributions. For intermediate size ratios (0.52-
0.44), the mean of the CGM-V and CGM-S values gave drag forces that were close to the
median FEM drag force. The CGM-V and CGM-S methods generally did not produce accurate

drag forces for smaller particle size ratios, especially since the variability of the FEM drag
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forces increased with decreasing size ratios. The CGM results generally underestimated the

drag force for the denser packings compared to the FEM results.

The second objective of the paper was to look at the applicability of ANN for drag force
predictions. A back-propagation neural network was developed to examine the capability of
ANN s to predict the drag force on smaller particles in a coarse-grained skeleton. The database
containing the results of the 2712 FEM simulations was used for training, validating and
testing the network. The ANN predictions agreed well with the target FEM values. The trained
network showed a reliable prediction capability for all particle size ratios and packings. ANNs

are thus a promising tool to calculate drag forces in polydispersed materials.



CHAPTER 6

CONCLUSIONS AND RECOMMENDATIONS

6.1 Conclusions

The introduction explained the necessity of analysing internal erosion in embankment dams.
Internal erosion and overtopping are considered as two of the main causes of embankment dam
failure. Internal erosion changes the hydraulic and mechanical characteristics of materials as a
result of particle transportation in porous media. The phenomenon has been studied for about

one century.

The literature review has presented experimental and numerical methods for the study of
internal erosion. Numerical modelling can lead to a better insight into the internal erosion
occurring inside the dam as it allows several factors and parameters to be considered in the
process. DEM has been widely used to study the mechanics of the motion and interaction of
dry granular and discontinuous materials. Fluid effects are now also included in an increasing

number of DEM simulations.

A major drawback of DEM is the limited number of discrete bodies that can be included in a
numerical model. As a consequence, DEM cannot be used for the modelling of large scale
assemblies and must be coupled with continuum models in a multiscale analysis where small
scale DEM simulations are conducted for selected nodes in the model. A multiscale model is
inherently needed to model internal erosion because the continuum and particle scale models

have a mutual feedback on each other.

There is currently no multiscale algorithm available for modelling internal erosion in soil
mechanics. On the other hand, a great number of applications in soil mechanics could benefit

from multiscale models that consider both the particle and continuum scales. Contact erosion
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at the interface of core and filter in embankment dams is a case in point. Some of the gaps to

reach a multiscale FEM-DEM were addressed in this dissertation. The following points list the

main contributions for the three papers:

e A versatile and multipurpose interface was developed between COMSOL Multiphysics
(FEM) and YADE (DEM) to allow the coupling of any partial differential equations
(PDESs) with a discrete element simulation.

e A YADE interface was programmed to apply drag force on particles based on a coarse-
grid method (CGM) using Darcy’s law.

e A multiscale computational algorithm was implemented for the interface and YADE script.

e Inthe multiscale scheme, a partial differential equation was defined in the COMSOL model
to verify particle conservation and predict porosity along the geometry for future time steps.
A second variable was implemented in the permeability equation (Kozeny-Carman) to
update the specific surface based on the new value of porosity.

e The accuracy of drag force values derived from Darcy’s law and CGM was evaluated based
on FEM results obtained by solving the Navier-Stokes equations at the pore scale.

e An improved method was proposed to predict the drag force on particles as quickly as

CGM and accurately as FEM.

The first objective of the study was developing an interface based on a series of Java classes
to couple the finite element code COMSOL and the discrete element code YADE. The
interface enables researchers to utilize the features of both continuum and DEM approaches.
The interface, named ICY, is designed to be versatile for different geoscience applications.
The nature of the coupling can vary between applications. For example, the verification and

application examples involve very different couplings.

The performance of interface was verified with the classic example of a sphere falling in water
according to Stokes’ law. It involves the exchange of two variables that are respectively used

in a boundary condition in the FEM engine and as a force in the DEM engine. The particle
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motion was simulated using YADE. Drag force on the particle was calculated by solving the
Navier-Stokes equations in COMSOL. The framework could replicate exactly the analytical
results obtained from Stokes’ law. The validation test has shown that ICY can be employed to
model fluid-particle interaction by solving the Navier-Stokes equations. An advantage of ICY is
that COMSOL can be used to solve virtually any partial differential equations and that the data
exchanged between COMSOL and YADE can vary between applications. Another advantage of
the JAVA interface is that more COMSOL users can use the software without purchasing the
COMSOL “Matlab LiveLink add-on.

The simulation of an internal erosion test presented by Tomlinson and Vaid (2000) is then used
as an application example for ICY. The test consists in a small permeameter test that involves
two layers of monodisperse spherical glass beads. The motion and the contact forces for
particles were calculated by means of YADE, while fluid flow was solved with COMSOL
based on the FEM. The example involves the exchange of drag force values that are applied as
constants in 5 DEM cells and hydraulic conductivity values that are used in a linear

interpolation in the FEM model.

There are currently two pore scale approaches available in YADE for the computation of drag
force: the lattice Boltzmann method (Sibille et al., 2015) and pore network flow method
(Chareyre et al., 2012). With sub-particle methods, frictional losses are calculated by solving
the Navier-Stokes equations at the microscale. The grain arrangement from the DEM
simulation is considered explicitly. This causes a significant computational cost even for small-
scale particle systems. Therefore, to minimize the computational cost, drag force on particles
were calculated using the coarse-grid method. In this method, the fluid cell embraces several
particles. Fluid flow derives from average pressures and velocities in several pores in each cell.
The microscale grain arrangement is not considered explicitly for coarse-grid methods. This
approach can significantly reduce the hydrodynamic computational costs.

In this study, the frictional losses were calculated based on Darcy’s law and macroscale

permeability values. The relationship between outflow (m?/s) and hydraulic gradient in the
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experimental tests is linear. It means that fluid flow in the permeameter test follows Darcy’s
law. According to the definition presented by Tsuji et al. (1993), the Reynolds numbers were
in the 0.7 to 2 range for the five sections during the simulation. This shows that the flow regime
is mostly laminar or transitional. If the flow regime was turbulent, different equations could be
used in COMSOL to model the flow. The new equations could be selected using the graphical
user interface. It is one of the advantages of ICY with respect to other FEM-DEM interfaces.

Tomlinson & Vaid (2000) present the relationship between the mean permeability value for
both the base soil and filter layers, and time elapsed for each test. The mean permeability at
the beginning of the test can be compared with the mean permeability in our numerical model.
For the application example, the initial permeability for Tomlinson & Vaid (2000) and our
numerical model are respectively 0.042 and 0.04 cm/s. It is more difficult to compare the
permeability later in the test as our COMSOL model assumes a constant thickness for the base

soil layer. This thickness decreases during the Tomlinson & Vaid (2000) tests.

The friction angle between particles and walls is the same as for interactions between particles
because the numerical sample is representing the middle part of the experimental specimen. A
sensitivity analysis was also performed on the wall friction angle. When the wall friction angle
was increased to twice the interparticle friction angle (17.2°), the total erosion mass was

constant at 2.41 g in 48 s.

There was a 100 kPa confining pressure in the experimental test that was not taken into account
in the numerical model. It had a negligible effect for the stress range observed in the model
that is presented in this paper. However, the confining pressure showed a significant effect for
higher confining pressures (higher than 300 kPa) and smaller grain size ratios. Pressure can be

applied on the specimen using a wall.

A comparison of the coupled model results with the experimental results confirms that drag

force values calculated from pressure gradients derived from the continuum model can be
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appropriate for a fully saturated medium. The coarse grid method could be an appropriate

substitute for costly pore scale approaches.

The objective of the application test was not to reproduce perfectly the permeameter test, but
to show the capabilities of the interface in modelling fluid-particle systems. Nevertheless, there
are many parameters that could be modified to have a better calibration. For instance, the effect
of boundaries should be studied. The number of particles in the horizontal sections is relatively

small. This could lead to preferential paths between particles and walls.

The application test presented in this study is a simplified form of internal erosion that
considers fine particles movement only in the vertical direction (z). The influence of drag
forces in the lateral directions (X, y) on the particles and the total drag force weighting method

need to be investigated with the results obtained from a pore-scale model.

The DEM-FEM model does not constitute a multiscale model, but a hybrid model. The
interface can be seen as the first step in the development of a multiscale model for simulating
complex geotechnical issues, such as internal erosion, to be studied. The number of particles
involved in DEM simulations restrict application of the FEM-DEM model for small laboratory
tests due to the heavy computational cost associated with the number of particles.

A multiscale algorithm is first needed to limit the number of particles in the DEM simulation.
Hierarchical multiscale algorithm can be used to tackle this problem. In this method, the large-
scale model uses the information from a discrete model as an input to model macroscopic
behaviour of porous media. However, all existing hierarchical multiscale models aimed at
monitoring soil deformation problem and there is no example of hierarchical multiscale DEM-

FEM models for the internal erosion in the literature.

Chapter 4 presents a multiscale computational algorithm aimed at stimulating fluid-particle
interaction for large scale applications in soil mechanics. The multiscale model in this research

was developed based on ICY. It aims at limiting the number of particles in the DEM simulation
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and to eventually allow the modelling of internal erosion for large structures. With the
multiscale algorithm, smaller DEM subdomains are generated to simulate particle
displacements at the microscale. Particles in these small subdomains are subjected to body and
contact forces for small time steps. Drag force was applied on each discrete body in YADE
based on the same coarse-grid method using Darcy's law. The continuum model uses particle
flux distributions from the DEM subdomains to evaluate variations in porosity, hydraulic
conductivity and hydraulic gradient for longer time steps and at a larger scale. The updated
hydraulic gradients from the continuum model provide the DEM subdomains with updated

hydrodynamic forces based on a coarse grid method.

The algorithm was verified by simulating a numerical suffusion test with 5 cm height and by
comparing the multiscale model results with numerical results based on a DEM model
incorporating the full sample. Five small separat subdomains along the full sample represent
the microscopic behaviour of the discrete body. The flux of small particles in the subdomains
is solved for a short time-step in YADE. These values were set to the centre of subdomains in
a 1D COMSOL model at the beginning of each time-step. The COMSOL model extracts
porosity and specific surface for longer time-steps using a particle conservation equation. In
the next global time-step, these values are sent to DEM to update the porosity of subdomains.

The DEM subdomains represent 100% of the total thickness.

A good agreement was found between the multiscale model and the full-scale model in terms
of porosity and flux values. The multiscale model results are depended on magnitude of the
COMSOL time-step. It needs to be justified based on the time variation of porosity in the
specimen. The performance of the multiscale method was also verified with three subdomains.
It avoids generating the full sample as a DEM model. The model with three subdomains could
successfully predict the porosity and flux changes through the specimen. However, it was not

accurate as the five subdomains model in predicting porosity of the absent subdomains.
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For simplicity, HMM developed in this study consider the mass flux of particles solely in
vertical direction (z). Particles could not leave the subdomains from lateral boundaries. Drag

force on the particles are also assumed to be 1D and parallel to the water flow direction.

The assumption of isotropic hydraulic conductivity values (Kx = K, = K:) is true for a
subdomain with spherical particles. Real soils are anisotropic medium with different K values

depending on the direction of water flow through the porous media.

YADE might be unable to update the subdomains for very low porosity values because the
code adds new particles in voids without interacting with existing objects. Furthermore,
choosing a representative subspecimen will be challenging if particles are non-uniform with

different properties.

Another restrictive parameter to use the HMM model for large-scale applications is that the
porosity of the lower subdomains was simultaneously affected from the porosity changes of
upper subdomains in the COMSOL model. The effect of porosity changes in upper subdomains

should be transferred with a delay to lower subdomains.

Discrete element simulations are used increasingly often to model phenomena involving fluid

particle interactions, such as liquefaction and internal erosion. Drag is often the main force
resulting from fluid-particle interactions with the discrete element method (DEM). Several
methods are employed for drag calculations depending on the desired accuracy and the number
of particles involved. Solving the Navier-Stokes equations at the pore scale is one of these
methods. In geotechnical engineering, the fluid motion is not typically solved at the pore scale
for large particle assemblies due to the heavy computational cost. Coarse-grid methods are
often used to compute the drag force on particles because of their low computational cost. It
involves solving an averaged form of the Navier—Stokes equations at the continuum scale. The
total drag force derived from CGM can be applied to the particles proportionally to their
volume (CGM-V) or surface (CGM-S).
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However, the accuracy of coarse-grid methods has not been systematically studied in the
literature. The paper presented in Chapter 5 compares the CGM-V and CGM-S drag forces
obtained using coarse-grid methods with finite element (FEM) drag forces obtained by solving
the Navier-Stokes equations at the pore scale. Three unit cells (simple cubic, body-centered
cubic and face-centered cubic) corresponding to different porosity values (respectively 0.477,
0.319 and 0.259) were simulated. Each unit cell consisted of a fixed coarse-grained skeleton
and a smaller particle in the pore space. A large number of simulations (2712) were conducted
by changing the position and diameter of a small particle in the unit cells. Our comparison
clearly shows that coarse grid methods perform very poorly unless the particle size distribution

is relatively uniform.

Another objective of this study was to look at the applicability of ANN for drag force
predictions. An Artificial Neural Network (ANN) was trained using the FEM results to predict
the drag force on small particles based on their size and their location with respect to the closest
large particle and the flow direction. An excellent agreement was obtained between the ANN
and FEM results for all particle size ratios and packings. The trained ANN is found to be a
promising method to improve the computational efficiency of drag force calculations in

polydispersed materials.

6.2 Recommendations

This chapter recommends further lines of research in line with the research presented in this

thesis.

e Improve the coupling used for the contact erosion example.

There are some parameters that could be modified to have a better calibration for the application
of contact erosion tests in Chapter 3. For example, the drag force could be based on polynomial
interpolations of the pressure from COMSOL model instead of being assumed constant

average pressure differential in each cell. Another important parameter to investigate is the
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effect of boundaries and walls although the influence of the horizontal section was verified to

some extent by changing the friction angle for interactions between walls and particles.

e Make the interface more user-friendly.

A new version of the interface, specially designed for internal erosion applications, can be
made more user-friendly by bypassing the client-server agent between the JAVA interface and
YADE Python interface. Moreover, a graphical user interface (GUI) should be added to make

ICY simpler for users who are not experienced in JAVA or Python programming.

We propose to employ simple application examples to extent the interface and show the
capabilities of ICY in the modelling of internal erosion. An example could be the modelling
of volume and permeability changes in a sand boil or during sand filter backwash as a function
of the hydraulic gradient. COMSOL would be used to model the water flow based on a water
conservation equation. YADE would be used to model the porous media expansion based on

the drag force values calculated from the COMSOL model.

e Compare some erosion modelling results with the continuum-based internal erosion theory

first proposed by Vardoulakis et al. (2001).

Numerical models of internal erosion tests could be used to compare the results from our
hierarchical multiscale model with results obtained solely with COMSOL and the Vardoulakis
et al. (2001) theory. For this example, the interface would combine water and particle
conservation equations at the continuum scale, with particle flux calculations at the particle
scale.

e Applicability of the ANN drag force for large particles systems.

The ANN trained in Chapter 5 was only applied to predict the drag force on particles through
a MATLAB script and it is not yet incorporated in a DEM code. In a DEM simulation, particles
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position and consequently the particle size ratios of neighboring particles vary with time. The
YADE interface could be extended to update the drag force on each particle using the trained
ANN at each time step. The sand boil test, for instance, could be employed to evaluate the

ANN performance in comparison with pore-scale simulations (e.g., LBM).

e Embedding machine learning algorithms to improve the contact model efficiency in the

DEM simulations.

The calculation of contact forces is the most time consuming part of DEM simulations. It
comprises almost 90% of the simulation time (Sutmann, 2002). Calculating the contact forces
might be more efficient by including machine learning algorithms in the DEM simulations. A
large database needs to be generated by DEM simulations in which contact forces vary
regarding the physical and mechanical properties of particles in contact. This would allow the

number of particles in simulations to be increased.
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Introduction

ICY is an interface between COMSOL Multiphysics and YADE. COMSOL Multiphysics is a
finite element engine. It can model multiple physical phenomena simultaneously, such as flow,
seepage, chemical reactions, stress-strain behaviour and heat transfer. Solving coupled systems
of partial differential equations (PDESs) is the key feature of COMSOL. YADE (“’Yet Another
Dynamical Engine”) is an open-source discrete-element code. Simulations in YADE are
described and controlled by Python scripts. ICY is programmed in a JAVA class.

Two project folders named Verification and Applicationtest are provided by the authors (Pirnia
et al., 2018). The Verification project simulates a particle falling in water according to Stokes’
law. The Applicationtest project simulates an internal erosion test. The project files include
JAVA classes (ICY.java, Clientcaller.java, Readerjava), property files (define.properties),
YADE interface scripts (test.py), client-server scripts (client.py and server.py), mesh file
(4.mesh), test0.yade (including initial specimen composed of two layers of glass beads: a finer
layer on top and a coarser layer at the bottom) and COMSOL models (test.mph). The two
projects involve the exchange of different data between COMSOL and YADE. The files that
differ for the two projects are test.py (YADE model), test.mph (COMSOL model) and the
ICY.java class (main interface code). These are also the file that should be modified to create
new applications for the interface.

Prerequisites

YADE and ICY are only executable on Linux operating systems. YADE, COMSOL and a JAVA
integrated development environment (IDE) need to be installed before using the interface. The
codes have been tested under Linux Ubuntu version 14.04 using YADE version 1.14.1 and
COMSOL version 5.2. The JAVA classes were compiled and run using the NetBeans IDE
version 8.0.2. The JAVA classes and Python scripts could have to be adapted if ICY is run with
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different versions of YADE and COMSOL, and under a different JAVA IDE.
Preparing the COMSOL model

The COMSOL file (test.mph) contains information on geometry, materials, fluid properties,
boundary conditions, and mesh. The easiest way to edit these parameters or to define new ones
is through COMSOL’s graphical user interface (GUI). The main JAVA class can also modify
the parameters of the COMSOL model, for example the particle velocity in the verification
example, and the permeability values (k/, k2, k3, k4 or k5) or hydraulic head at the top of the
specimen (Hupstream) in the application example.

Figures 1-4 show how to prepare the GUI for the application test. Figure A I-1 shows how to
define parameters using the COMSOL GUI. For the application example, the initial parameter
values are arbitrary as they are controlled by the interface. Figure A I-2 shows how to define
the points were the pressure values at the top and bottom of each cell will be obtained from the
COMSOL model. Figure A I-3 shows how the relationship between hydraulic conductivity and
the z coordinate (x in COMSOL) is defined using the parameters defined in Figure A I-1. The
GUI can also be used to modify any other parameter on the FEM side of the model, such as
the finite-element mesh (Figure A 1-4).

Figure-A I-1 Parameter definition in COMSOL
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Figure-A I-2 Definition of the points where p values will be obtained

Figure-A I-3 Definition of the hydraulic conductivity function and assignment to the domain
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Figure-A I-4 Mesh definition in COMSOL
Preparing the projects in NetBeans

After creating an IDE project folder, the COMSOL plugins have to be added to the project
through:

Properties ---> Libraries ---> Add JAR/Folder ---> add all .jar files in plugins folder in
COMSOL installation folder




141

For running the examples, the COMSOL file (test.mph), YADE script (test.py), client-server
(client.py and server.py), mesh file (4.mesh), pressure file (pressure.txt including arbitrary
initial pressures for the Application test), dragforce.txt (including drag force for the verification
test), test0.yade (including initial specimen) and the JAVA source packages (src folder
including ICY.java, Clientcaller.java, Reader.java, define.properties) need to be added to the
IDE project folder (Figure A I-5).

Figure-A I-5 Required files and folder for running the a) Verification example and b)
Application test

The project's files ICY.java, Reader.java, Clientcaller.java and define.properties have first to
be opened in NetBeans. The directories (MainPath and SavingFolder) in the property file
(define.properties) have to be changed to correspond to the project directories on the computer,
an example of the Application test was presented in Figure A 1-6.
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# Java Project directory

MainPath=/home/user/NetBeansProjects/Applicationtest/

# Directory where the Yade output files are saved

SavingFolder=/home/user/NetBeansProjects/Applicationtest/results/ <

User sets the number

of iterations

Figure-A I-6 Setting variables and directories in the property file

Users do not need to change anything in Readerjava and clientcaller.java files for the
application test. The command lines only need the YADE model and output files names which
are taken from the property file (Figure A I-7).
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Figure-A I-7 Names in Reader.java and clientcaller.java files taken from the property file
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Figure 8 shows the tasks are performed in the ICY.java class for the application test.

Here, ICY load the COMSOL
model created by the GUI

The dataset (Cut point) created
previously in the model is set for

the results feature.

ICY reads parameters

from property file.

The for loop controls the

A

simulation between YADE and

COMSOL.

The constant hydraulic head needs to
be defined by the user. It could also be
assigned from the property file in this

example.

Parameters (permeability and
porosity  values) taken  from

Reader.java are set in the COMSOL

model.

Figure-A I-8 Main tasks in the ICY.java class script
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Preparing the YADE script

Parameters could be modified in the YADE script for the application example presented in
Figure A I-9.

Users can introduce their own
% | materials and mechanical

properties to the YADE model.

Particles color

The box and mesh prepared
before by Gmsh are defined into

Set the Contact model

A

Time step can be set by O.dt

Figure-A I-9 Components in the YADE script for the Application example
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Running the interface

Before compiling ICY in NetBeans, the COMSOL server and the python client-server need to
be launched. To start the COMSOL server manually, a terminal window is opened and the
following command is typed in the COMSOL installation directory:

$ . / comsol mphserver

For connecting the client to the server, a second terminal window is opened. The following
command is typed in the directory containing the server.py file (MainPath directory):

$ python server.py
At this point, ICY can be compiled and run. The simulation progress is printed step by step on

the NetBeans screen. It lets users follow the YADE and COMSOL outputs during the
simulation.
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VERIFICATION CODES

<JAVA codes>

<define.properties>
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<ICY.java>
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<Reader.java>
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<Clientcaller.java>
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<YADE Python script — test.py>
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<client-server >

Client.py
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<Server.py>
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APPLICATION EXAMPLE CODES

JAVA codes

<define.Properties>
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<ICY.java>
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<Clientcaller.java>
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<Reader.java>
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<YADE Python script — test.py>
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<Cleinet-server>

<client.py>



178

<server.py>
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