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ABSTRACT 

 

The application of metaheuristic approaches in addressing the reliability of systems 
through optimization is of greater interest to researchers and designers in recent years. 
Reliability optimization has become an essential part of the design and operation of large-
scale manufacturing systems. This thesis addresses the optimization of system-reliability for 
series–parallel systems to solve redundant, continuous, and combinatorial optimization 
problems in reliability engineering by using metaheuristic approaches (MAs). The problem is 
to select the best redundancy strategy, component, and redundancy level for each subsystem 
to maximize the system reliability under system-level constraints. This type of problem 
involves the selection of components with multiple choices and redundancy levels that yield 
the maximum benefits, and it is subject to the cost and weight constraints at the system level. 
These are very common and realistic problems faced in the conceptual design of numerous 
engineering systems. The development of efficient solutions to these problems is becoming 
progressively important because mechanical systems are becoming increasingly complex, 
while development plans are decreasing in size and reliability requirements are rapidly 
changing and becoming increasingly difficult to adhere to. An optimal design solution can be 
obtained very frequently and more quickly by using genetic algorithm redundancy allocation 
problems (GARAPs). In general, redundancy allocation problems (RAPs) are difficult to 
solve for real cases, especially in large-scale situations. In this study, the reliability 
optimization of a series–parallel by using a genetic algorithm (GA) and statistical analysis is 
considered. The approach discussed herein can be applied to address the challenges in system 
reliability that includes redundant numbers of carefully chosen modules, overall cost, and 
overall weight.  

 
Most related studies have focused only on the single-objective optimization of RAP. 

Multiobjective optimization has not yet attracted much attention. This research project 
examines the multiobjective situation by focusing on multiobjective formulation, which is 
useful in maximizing system reliability while simultaneously minimizing system cost and 
weight to solve the RAP. The present study applies a methodology for optimizing the 
reliability of a series–parallel system based on multiobjective optimization and multistate 
reliability by using a hybrid GA and a fuzzy function. The study aims to determine the strategy 
for selecting the degree of redundancy for every subsystem to exploit the general system 
reliability depending on the overall cost and weight limitations. In addition, the outcomes of 
the case study for optimizing the reliability of the series–parallel system are presented, and 
the relationships with previously investigated phenomena are presented to determine the 
performance of the GA under review. Furthermore, this study established a new 
metaheuristic-based technique for resolving multiobjective optimization challenges, such as 
the common reliability–redundancy allocation problem. Additionally, a new simulation 
process was developed to generate practical tools for designing reliable series–parallel 
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systems. Hence, metaheuristic methods were applied for solving such difficult and complex 
problems. In addition, metaheuristics provide a useful compromise between the amount of 
computation time required and the quality of the approximated solution space. The industrial 
challenges include the maximization of system reliability subject to limited system cost and 
weight, minimization of system weight subject to limited system cost and the system 
reliability requirements and increasing of quality components through optimization and 
system reliability. Furthermore, a real-life situation research on security control of a gas 
turbine in the overspeed state was explored in this study with the aim of verifying the proposed 
algorithm from the context of system optimization. 

 
 
 

Keywords: Genetic algorithm, optimization, reliability, statistical analysis, redundancy 
allocation problem, multi-objective optimization, multi-state reliability, fuzzy function, gas 
turbine, reliability-redundancy allocation, hybrid genetic algorithm 
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RÉSUMÉ 
 

L'application des approches métaheuristiques pour améliorer la fiabilité des systèmes par 
l'optimisation est devenue pratique pour les chercheurs ces dernières années. L’optimisation 
de la fiabilité est devenue un élément essentiel de la conception et de l’exploitation de systèmes 
de fabrication à grande échelle. Cette thèse aborde l'optimisation de la fiabilité système pour 
les systèmes série–parallèle afin de résoudre des problèmes d'optimisation redondants, 
continus et combinatoires en ingénierie de la fiabilité en utilisant des approches 
métaheuristiques (AM). Le problème consiste à sélectionner la meilleure stratégie de 
redondance, le composant et le niveau de redondance pour chaque sous-système afin 
d'optimiser la fiabilité du système sous des contraintes au niveau du système. Ce type de 
problème implique la sélection de composants à choix multiples et de niveaux de redondance 
offrant le maximum d'avantages. Il est soumis aux contraintes de coût et de poids au niveau du 
système. Ce sont des problèmes très courants et réalistes rencontrés dans la conception de 
nombreux systèmes d'ingénierie. La mise au point de solutions efficaces à ces problèmes 
devient de plus en plus importante à mesure que les systèmes mécaniques deviennent de plus 
en plus complexes, que les plans de développement diminuent de taille et que les exigences de 
fiabilité évoluent rapidement et deviennent de plus en plus difficiles à respecter. Une solution 
de conception optimale peut être obtenue très fréquemment et plus rapidement en utilisant des 
problèmes d'allocation de redondance d'algorithme génétique (PARAG). En général, les 
problèmes d'allocation de redondance (PAR) sont difficiles à résoudre dans des cas réels, en 
particulier dans des situations de grande envergure. Dans cette étude, l'optimisation de la 
fiabilité d'une série parallèle en utilisant un algorithme génétique (AG) et une analyse 
statistique a été considérée. L'approche décrite dans le présent document peut s'appliquer aux 
problèmes de fiabilité des systèmes, notamment le nombre redondant de modules 
soigneusement choisis, le coût global et le poids total. 

 
La plupart des études connexes se sont concentrées uniquement sur l'optimisation à objectif 

unique du PAR. L’optimisation multiobjectif n’a pas encore attiré beaucoup d’attention. Ce 
projet de recherche a examiné la situation multiobjectif en se concentrant sur la formulation 
multiobjectif, ce qui est utile pour optimiser la fiabilité du système tout en minimisant son coût 
et son poids pour résoudre le PAR. La présente étude applique une méthodologie permettant 
d'optimiser la fiabilité d'un système série–parallèle basé sur une optimisation multiobjective et 
une fiabilité multi-états en utilisant un AG hybride et une fonction floue. Les objectifs de 
l'étude à déterminer la stratégie de sélection du degré de redondance de chaque sous-système 
afin d'exploiter la fiabilité générale du système en fonction des limites globales de coût et de 
poids. En outre, les résultats de l'étude de cas visant à optimiser la fiabilité du système série–
parallèle sont présentés, ainsi que les relations avec les phénomènes précédemment étudiés, 
afin de déterminer la performance de l'AG examinée. En outre, cette étude a mis au point une 
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nouvelle technique basée sur les métaheuristiques pour résoudre les problèmes a mis 
d’optimisation multiobjectifs, telle que le problème commun d’allocation fiabilité-redondance. 
En outre, un nouveau processus de simulation a été développé pour générer des outils pratiques 
permettant de concevoir des systèmes parallèles série-fiables. Par conséquent, des méthodes 
métaheuristiques ont été appliquées pour résoudre ces problèmes difficiles et complexes. De 
plus, les métaheuristiques offrent un compromis utile entre la durée de calcul requise et la 
qualité de l’espace de solution approché. Les défis industriels incluent la maximisation de la 
fiabilité du système sous réserve d'un coût et d'un poids système limités, la minimisation de 
son poids sous le coût système limité et les exigences de fiabilité du système, ainsi que 
l'augmentation des composants de qualité via l'optimisation et la fiabilité du système. Par 
conséquent, une étude de situation réelle sur le contrôle de sécurité d'une turbine à gaz en état 
de survitesse a été explorée dans cette étude dans le but de vérifier l'algorithme proposé du 
point de vue de l'optimisation du système. 

 
 
 

Mots clés: Algorithme génétique, optimisation, fiabilité, analyse statistique, problème 
d'allocation de redondance, optimisation multi-objectif, fiabilité multi-états, fonction floue, 
turbine à gaz, allocation de fiabilité-redondance, algorithme génétique hybride 



 

TABLE OF CONTENTS 
 

Page 
 

INTRODUCTION  ....................................................................................................................1 

CHAPTER 1 RESEARCH OUTLINES AND OBJECTIVES ........................................5 
1.1            Problem Statement and Motivation ..........................................................................5 
1.2            Problem Description .................................................................................................7 
1.3            Objectives and Scope of the Study ...........................................................................9 

1.3.1       Objectives .................................................................................................. 9 
1.3.2       Scope ......................................................................................................... 9 

1.4            Literature Review ....................................................................................................10 

CHAPTER 2 METHODOLOGY ...................................................................................19 
2.1           Previously used Methodologies ...............................................................................19 
2.2           Methodologies used in this thesis ............................................................................20 
2.3           Difference between Approaches ..............................................................................25 

CHAPTER 3 SERIES–PARALLEL SYSTEMS RELIABILITY OPTIMIZATION 
USING GENETIC ALGORITHM AND STATISTICAL ANALYSIS ..29 

3.1           Abstract ....................................................................................................................29 
3.2           Introduction ..............................................................................................................29 
3.3           Methodology ............................................................................................................31 
3.4           Results and Discussion ............................................................................................37 
3.5           Conclusion ...............................................................................................................43 

CHAPTER 4 MULTI-OBJECTIVE OPTIMIZATION OF MULTI-STATE 
RELIABILITY SYSTEM USING HYBRID METAHEURISTIC 
GENETIC ALGORITHM AND FUZZY FUNCTION FOR 
REDUNDANCY ALLOCATION ...........................................................45 

4.1            Abstract ...................................................................................................................45 
4.2            Introduction .............................................................................................................46 
4.3            Literature review .....................................................................................................46 
4.4            Methodology Framework........................................................................................48 
4.5            Problem Modeling ..................................................................................................52 
4.6            Gearbox Case Study ................................................................................................56 
4.7            Results and Discussion ...........................................................................................59 
4.8            Conclusion ..............................................................................................................62 

CHAPTER 5 MULTIPLE-OBJECTIVE OPTIMIZATION AND DESIGN OF  
SERIES–PARALLEL SYSTEMS USING NOVEL HYBRID     
GENETIC ALGORITHM META-HEURISTIC APPROACH ...............65 

5.1            Abstract ...................................................................................................................65 
5.2            Introduction .............................................................................................................65 



XII 

5.3            Literature Review ....................................................................................................66 
5.4            Reliability-Redundancy Allocation Problems (RRAPs) .........................................69 
5.5            Mathematical Formulation of the Problem .............................................................70 
5.6            Methodology Framework........................................................................................72 
5.7            Hybrid Genetic Algorithm (HGA) for Multi-Objective Optimization ...................79 
5.8            A Case Study: Overspeed Protection System for a Gas Turbine ............................79 
5.9            Computational Results and Discussion ...................................................................81 
5.10          Conclusions .............................................................................................................88 

CONCLUSION  ..................................................................................................................91 

RECOMMENDATIONS .........................................................................................................95 

ANNEX I  SUPPLEMENTARY EXPLANATIONS CONCERNING THE 
RESULTS OBTAINED AND PRESENTED IN CHAPTER 3 ..............97 

ANNEX II SUPPLEMENTARY EXPLANATIONS CONCERNING THE 
RESULTS OBTAINED AND PRESENTED IN CHAPTER 4 ..............99 

ANNEX III  SUPPLEMENTARY EXPLANATIONS CONCERNING THE 
RESULTS OBTAINED AND PRESENTED IN CHAPTER 5 ............103 

LIST OF REFERENCES .......................................................................................................107 
 

 
 

 

 

 
 



 

LIST OF TABLES 
 

 Page 
 
Table 3.1 Input data for RAP (Zhao et al., 2007) ........................................................ 32

Table 3.2 
 

The nomenclature and notation used to state the mathematical model ........ 32

Table 3.3 
 

Certain system constraints value used ......................................................... 34

Table 3.4 
 
 

GA results of the design of experiments points is used for applying    
statistical analysis data ................................................................................. 38

Table 3.5 
 

The Results Obtained by GA ....................................................................... 42

Table 3.6 
 
 

The Comparison of (Zhao et al., 2007) Ant Colony System (ACS)         
Result and our GA Result ............................................................................ 43

Table 4.1 
 

Notations used in our mathematical model. ................................................. 52

Table 4.2 
 

Input data for RAP (Zhao et al., 2007). ....................................................... 58

Table 4.3 
 

System constraint values used. .................................................................... 58

Table 4.4 
 

Optimization results for different cost and weight constraints. ................... 62

Table 5.1 Simulation results for single-objective function using fmincon     
optimization method .................................................................................... 75

Table 5.2 Simulation results for single-objective function using fminimax   
optimization method .................................................................................... 75

Table 5.3 Simulation results for single-objective function using GA optimization 
method .......................................................................................................... 77

Table 5.4 
 
 

Simulation results for single-objective function using hybrid          
optimization method .................................................................................... 77

Table 5.5 
 
 

Simulation results using fmincon optimization method when system 
reliability Rs=A ............................................................................................ 78

Table 5.6 
 
 

Simulation results using fminimax optimization method when system 
reliability Rs=A ............................................................................................ 78



XIV 

Table 5.7 
 
 

Simulation results using GA optimization method when system        
reliability Rs=A ............................................................................................ 78

Table 5.8 
 
 

Simulation results using hybrid optimization method when system   
reliability Rs=A ............................................................................................ 79

Table 5.9 
 
 

Design values of different parameters used in overspeed protection       
system of gas turbine ................................................................................... 81

Table 5.10 
 
 
 

Comparison of simulation results of optimal solutions of single- and      
multi-objective function for series–parallel system using HGA with         
other results presented in the literature ........................................................ 82

Table 5.11 
 
 

Optimum solutions of HGA for multi-objective optimizations when             
Rs = 0.990–0.9990 ....................................................................................... 86

Table 5.12 
 
 
 

Optimum solutions of HGA for multi-objective optimizations when             
Rs = 0.990-0.9990 after approximating the values of ri to four decimals 
places and adjusting the values of ni to integer values ................................ 86

Table 5.13 
 

Explained variable with parameters when Rs = 0.9900–0.9990 .................. 87

 



 

LIST OF FIGURES 
 

Page 
 

Figure 1.1 The structure of parallel-series system .......................................................... 7

Figure 1.2 
 

Research framework .................................................................................... 10

Figure 2.1 
 

Framework of research implementation methodology ................................ 25

Figure 3.1 
 

Series–parallel system .................................................................................. 35

Figure 3.2 
 

Series–parallel system case study ................................................................ 35

Figure 3.3 
 

Flow chart of the proposed GA for optimizing system reliability ............... 36

Figure 3.4 
 

Model ANOVA result .................................................................................. 39

Figure 3.5 
 

Display observed, predicted, and residual values ........................................ 39

Figure 3.6 
 

Contour plot of average reliability versus WPen, CPen .............................. 39

Figure 3.7 
 

3D Surface plot of average reliability versus CPen and WPen .................... 40

Figure 3.8 Maximum and mean reliability .................................................................... 41

Figure 3.9 Maximum and mean fitness ......................................................................... 41

Figure 3.10 Minimum and mean cost .............................................................................. 41

Figure 3.11 
 

Minimum and mean weight ......................................................................... 42

Figure 4.1 
 

Flowchart of the proposed algorithm. .......................................................... 49

Figure 4.2 
 

Series–parallel system. ................................................................................. 56

Figure 4.3 
 

Modeling of gear train system of series–parallel system. ............................ 57

Figure 4.4 
 

Equivalent scheme for gear train system. .................................................... 57

Figure 4.5 
 
 

Overall best Pareto front obtained by multi-objective optimization and   
fuzzy function: cost vs. reliability. ............................................................... 60

Figure 4.6 
 

Convergence of reliability, cost, and weight. ............................................... 61



XVI 

Figure 4.7 
 

Optimal trade-off point for reliability vs. weight vs. cost in 3D space. ....... 61

Figure 4.8 
 
 

Nondominated solutions obtained from the proposed algorithm for        
weight vs. cost vs. reliability in 3D space. ................................................... 61

Figure 5.1 
 

General series–parallel redundancy system ................................................. 71

Figure 5.2 
 

Flowchart of proposed simulation procedure. ............................................. 74

Figure 5.3 
 
 

Block diagram of overspeed protection system for gas turbine with four 
valves ........................................................................................................... 80

Figure 5.4 
 

Equivalent circuit: four-stage series–parallel system ................................... 80

Figure 5.5 
 

Best fitness and mean fitness of the system cost ......................................... 82

Figure 5.6 
 

Best fitness and mean fitness of the system weight ..................................... 82

Figure 5.7 
 

Best fitness and mean fitness of the multi-objective functions .................... 82

Figure 5.8 
 
 

Overall best Pareto front obtained by multi-objective optimization and 
HGA: cost vs weight and distance of individuals ........................................ 83

Figure 5.9 
 

Average distance between individuals ......................................................... 83

Figure 5.10 
 

Scatter plot of r1, r2, r3, r4, Cs, Ws, and Vs vs. Rs - (Rs) = 0.9900–0.9990 .. 85

Figure 5.11 
 

Scatter plot of r1, r2, r3, and r4 versus number of simulations (n) ................ 89

 



 

LIST OF ABBREVIATIONS 
 

ACS  Ant colony system 

EBMHSA Elitism Box-Muller harmony search algorithm 

EP    Evolutionary Programming 

Fmincon Find minimum of constrained 

Fminimax Solve minimax constraint problem   

GA  Genetic algorithm 

HAS  Harmony search algorithm 

HGA  Hybrid genetic algorithm 

ICA  Imperialist competitive algorithm 

LCCs               Life cycle costs 

MINLP Mixed-integer nonlinear programming 

MOO  Multi-objective optimization 

MVGA Modified version of the genetic algorithm 

NSGA-II Nondominated sorting genetic algorithm II 

OSR  Optimization of system reliability 

PBCs               Performance-based contracts 

RAP  Redundancy allocation problem 

RBCs              Resource-based contracts  

RRAP  Reliability redundancy allocation problem 





 

LIST OF SYMBOLS 
 

Abbreviations                             Details 

aj Constraint limit #j  

Ci(x) Total system cost of the ith subsystem 

cij Cost of the jth available component type in the ith subsystem 

Cmax Limit of the cost constraint of the series–parallel system 

Cs Total cost of the series–parallel system 
f1 
 Objective function for system reliability 
f2 
 Objective function for system cost 
f3 
 Objective function for system weight 
gi(.) Constraint function #j  

i Index of subsystem, i∈ (1, 2,…, s) 

j Index of component type in each subsystem 

k Index of redundancy level 

m Number of constraints 

mi Total number of available component types in the ith subsystem 

N Number of subsystems in the system 

n(x) Set of ni (n1, n2,…, ns) 

Ni Set of component types, Ni = [1, 2,…, mi] 

ni(x) Total number of redundant components used in the ith subsystem 

Pi 
Minimum number of components in parallel required 

for the ith subsystem to function 

PN 
Maximum number of components in parallel that can be used in the ith 

subsystem (user defined) 

r, n Vectors of ri and ni  

ri Reliability of component in subsystem i 

Ri(x) Reliability components of the ith subsystem 

rij Reliability of the jth available component type in the ith subsystem 



XX 

Rs Total reliability of the series–parallel system 

s Number of subsystems in the system 

Wi(x) Total weight of the ith subsystem 

wij Weight of the jth available component type in the ith subsystem 

Wmax Limit of the weight constraint of the series–parallel system 

Ws Total weight of the series–parallel system 

x System configuration matrix 

xki 
Number of component types assigned at position k of the ith subsystem,  

xki∈ (1, 2,…, mi,mi+1) 



 

INTRODUCTION 

System reliability optimization has become a very important subject matter in industry 

design and operation of large-scale manufacturing systems. The problem of reliability 

optimization of mechanical systems is complicated because of the presence of multicriteria 

constraints, the optimal solution of which is generally a compromise. Presently, reliability is a 

matter of greater concern than in the past because the increasing complexity of modern 

engineering and service systems has led to a dramatic rise in their susceptibility to faults. This 

study focused on the optimization of reliability of mechanical series–parallel systems. Based 

on the genetic algorithm redundancy allocation problems (GARAPs), a new approach is 

presented that optimizes the overall reliability of the system while satisfying the constraints in 

terms of cost, weight, and volume. The advantages of precision, effectiveness, and capacity of 

the new approach are illustrated through the comparative results of the new technique and other 

approaches. One of the goals of a reliability engineer is to find the best method to increase 

system reliability. Recently, system reliability and the need to improve the reliabilities of 

products and system are increasingly gaining importance. The overall system reliability can be 

improved by methods, such as the improvement of component reliability, use of redundancy 

for the less reliable components, repair maintenance of failed components, replacement of 

substitutable components, and better arrangement of exchangeable components.  

In real-world problems, system reliability optimization is a critical issue, which has 

recently attracted increasing attention in academia and applied engineering research. 

Generally, reliability optimization problems are categorized into two: (a) the redundancy 

allocation problem (RAP) and (b) the reliability–redundancy allocation problem (RRAP). 

When redundancy is used to improve the system reliability and find the optimal number of 

redundant components in each subsystem to maximize the overall system reliability, subject to 

some constraints, the corresponding problem is known as RAP. When system reliability is 

maximized through component reliability choices and component redundancy, the 

corresponding problem is known as RRAP (Zoulfaghari et al., 2014 and Ardakan et al., 2014). 

The objective for solving this problem is to find the number of redundant components 

maximizing system reliability under several given constraints. It is one of the most researched 
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upon problems in reliability optimization since the 1950s because of its potential for broad 

applications. When it is difficult to improve the reliability of unreliable components, system 

reliability can easily be enhanced by adding redundancies to those components. However, 

design engineers generally prefer improving component reliability over the addition of 

redundancy because in many cases, redundancy is difficult to add to real systems owing to 

technical limitations and requirement of relatively large quantities for constraints such as 

weight, volume, and cost. 

The main issue addressed in this study is the reliability optimization of a series–parallel 

system by using a GA by implementing solutions for the RAP. The goal of this investigation 

is to improve the dependability of the arrangement of a parallel framework on a GA by solving 

an RAP. The repetition level for every subsystem and part must be set and the best excess 

methodology must be selected considering the end goal of boosting the framework quality and 

ensuring that the quality is consistent for different targets and framework level imperatives, 

including the cost and weight. The finding of solutions for addressing the issue of framework 

dependability is vital because mechanical and electrical frameworks and items are becoming 

increasingly complex, even as development schedules are decreasing in size and reliability 

requirements are becoming very stringent. This implies a corresponding need to increase the 

efficiency of the equipment. Frameworks must accomplish their objectives under given 

working conditions in a specific manner.  The level of framework dependability is identified 

in a straightforward manner with respect to framework cost. Therefore, models must be 

improved in order to develop a viable and effective system that satisfies the reliability, cost, 

and weight requirements of the system under investigation. In this study, we applied a GA as 

a productive strategy to address the optimization of system reliability and related concerns. 

 

Organization of the Thesis 
 

This project presents a manuscript-based thesis and is divided into five chapters. The first 

chapter provides the requisite information regarding the problem, outlines the research, and 

states the objectives from an introductory perspective. This chapter also defines the scope of 

the study and a discussion on the background to this research. In addition, it briefly includes 
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the problem statement and motivation, problem description, study scope and objectives, and 

literature review. The second chapter describes the methodology developed in this study, 

emphasizing major assumptions and considerations for each model. Furthermore, it presents a 

review of the relevant literature. Finally, it lists a number of industrial benefits resulting from 

the application of the algorithms presented in the subsequent chapters. 

The third chapter presents a journal article on the research topic, in which a new approach 

is presented to optimize the reliability of a series–parallel system by using a GA and statistical 

analysis that considers system reliability constraints involving the redundant number of 

selected components, total cost, and total weight. 

The fourth chapter presents a journal article that demonstrates the proposed multiobjective 

optimization of a multistate reliability system for an RAP involving a series–parallel system 

using a GA and fuzzy function. This chapter first describes the modeling of the proposed 

methodology, followed by a critical explanation of the formulation of the optimization process 

and solution using HGA. The findings indicate that the proposed approach can enable 

designers to determine the number of redundant components and their reliability in a subsystem 

to develop a system that effectively satisfies the reliability, cost, and weight criteria.  

The final chapter presents a journal article that describes an optimal design for control and 

overspeed protection of a gas turbine by using multiobjective optimization (MOO) on the 

proposed control to achieve the optimal solution for an RRAP under nonlinear constraints. In 

this study, the simulation approach and results (curves) can be used as a tool for optimal design 

of reliability systems for a level of system reliability. Chapters 3, 4, and 5 present published 

articles of investigations of system reliability optimization using various methodologies and 

their comparisons. 

Finally, concluding remarks are provided from all these studies and some recommendations.  





 

CHAPTER 1  
 

RESEARCH OUTLINES AND OBJECTIVES 
 

1.1 Problem Statement and Motivation 
 

The optimization of a system’s reliability requires consideration of the system’s reliability 

constraints, which include the redundant numbers of particular components, overall cost, and 

overall weight. Modern systems are becoming increasingly complex and automated, and their 

reliability is a measure of effectiveness that cannot be compromised. Reliability has become a 

mandatory requirement for customer satisfaction and plays an increasingly important role in 

determining product competitiveness. Therefore, system-reliability optimization is important 

in any system design. Essadqi, Idrissi and Amarir (2018) stated that the main goal in the design 

of industrial systems is to improve system reliability. Hence, in the current thesis, a reliable 

optimized system was constructed in a manner so as to achieve a consistent quality and address 

the issues of system-reliability optimization and entangled framework, considering the 

dependability of every segment as an interim esteemed number. In many practical system 

designs, the overall system is partitioned into a specific number of subsystems according to 

the function requirement of the system. Each subsystem comprises different component types 

with varying reliability, costs, weight, volume, and other characteristics. The overall system 

reliability depends on the reliability of each subsystem. To maximize system reliability, the 

approaches used in this research can be considered using more reliable components, adding 

redundant components in parallel, or a combination of both. For the systems designed using 

off-the-shelf components, with known cost, reliability, weight, and other attributes, system 

reliability design can be formulated as a combinatorial optimization problem. The best-known 

reliability design problem of this type is the reliability and redundancy allocation problem 

(RRAP). The diversity of system structures, resource constraints, and options for reliability 

improvement has led to the construction and analysis of several optimization methods with 

multiple constraints, to find a feasible solution for the RRAPs (Chern, 1992); this can then be 

identified as the selection of optimal combination of component type and redundancy level for 

each subsystem to meet various objectives, given constraints on the overall system. The 
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problem can become complicated because of the presence of multiple conflicting objectives, 

such as minimizing system cost and system weight or volume, while simultaneously 

maximizing system reliability. The generalized formulation of RAP can be written as 

 𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒   𝑅  =  𝑓(𝑟, 𝑛) 
 

Subject to 𝑔(𝑟, 𝑛) ≤ 𝑙, 
 0 ≤ 𝑟 ≤ 1,      𝑟 ∈ ℜ , 𝑛 ∈ 𝑍 , 1 ≤ 𝑖 ≤  𝑚 

 

where Rs is the system reliability; g is the set of constraint functions usually associated with 

system weight, volume, and cost; r= (r1, r2, r3,…, rm) is the vector of component reliabilities 

of the system; n = (n1, n2, n3,…, nm) is the vector of the redundancy allocation for the system; 

ri and ni are the reliability and number of components in the ith subsystem, respectively; f(·) is 

the objective function for the overall system reliability; l is the resource limitation; and m is 

the number of subsystems in the system. The most studied design configuration of RAP is a 

series system of s independent k-out-of-n: G subsystems. Our goal was to propose an 

optimization model for the structure of a series–parallel system to determine the number of 

components and the reliability in each system for maximizing the overall system reliability. 

 

To outline the models, some numerical cases were considered, and their outcomes were 

examined. As an exceptional case, this manuscript provides an understanding of the related 

issues and contrasting outcomes, considering the lower and upper limits of the interim 

esteemed reliabilities of the segment to be the same. Finally, to verify the dependability of the 

proposed GAs and the diverse GA parameters (such as populace size, crossover rate, and 

mutation rate, and number of generations), affectability examinations were conducted. Certain 

GA calculations are simply pursuit calculations to perceive that sexual multiplication and the 

rule of survival of the fittest empower an organic species to adjust to their condition and 

successfully contend for their assets. While it is moderately direct, the calculation is a 

successful stochastic pursuit strategy and is demonstrated as a vigorous critical thinking 

method that produces superior to irregular outcomes. This perception was first numerically 

detailed by John Holland in his work titled “Adjustment in Natural and Artificial Systems". 
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Normally the calculation breeds a foreordained number of ages and each age is populated by a 

foreordained number of settled length paired strings.     

    The research problem addressed in the present work can be summarized as follows: 

 To investigate an optimization model for determining the structure of a series–parallel 

system.  

 To propose the optimization model for the structure of a series–parallel system to 

determine the number of components and the reliability of each component in each 

system to maximize overall system reliability. 

 To propose a new simulation process for design of the entire system with the desired 

level of reliability that enables the designer to determine the reliability of each 

component corresponding to any value of system reliability Rs (e.g., control of a gas 

turbine in the overspeed mode).  
 

1.2            Problem Description 
 

Global optimization challenges, in which the assessment of the objective function is a 

costly operation, have recurrently emerged in fields such as engineering, decision-making, and 

optimum control (Sergeyev, Kvasov and Mukhametzhanov, 2018). The main concern is the 

optimization of system reliability by using the metaheuristic approach (MA) to solve 

redundancy, continuity, and combinatorial optimization problems in reliability engineering.  

 
 

 

 

 

 

 

 

 

 
Figure 1. 1 The structure of parallel–series system 
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This type of reliability-optimization problem determines the nature and value of decision 

variables such that the system objective function is optimized and all constraints are met. The 

criterion may be reliability, cost, weight, or volume, and one or more criteria may be 

considered in an objective function, while the others may be considered as constraints. 

Although reliability allocation is usually easier than redundancy allocation, the improvement 

of component reliability is more expensive than the addition of redundant units. Redundancy 

allocation results in increased design complexity and increased costs through the addition of 

more components, increased weight, a large amount of space, etc. It also increases the 

computational complexity of the problem and is classified as NP-hard in literature (Chern 

1992). Misra (1975) was the first to introduce the formulation of mixed types of redundancies 

in the optimal reliability design of a system. The design of new products involves the 

specification of performance requirements, evaluation and selection of components to perform 

clearly defined functions, and determination of system-level architecture. Detailed engineering 

specifications prescribe minimum levels of reliability, maximum weight, maximum volume, 

etc. If the design must be produced economically or within some specified budget, numerous 

design alternatives must be considered, resulting in a complex combinatorial optimization 

problem. In this study, we considered the RAP on a parallel–series system, which has already 

received intensive investigations (Chern,1992; Kim et al., 1993; Ravi et al., 1997). Figure 1.1 

illustrates a typical structure of a parallel–series system, which consists of s independent 

subsystems, and the maximal number of components hold for the ith subsystem is ni. Subsystem 

i can work properly if at least one of its components is operational. Moreover, for each 

subsystem, more than one component may also work in parallel.  

The system reliability optimization can be broadly classified into continuous function, 

combinatorial, and mixed-integer programming optimization problems. The generic tasks 

involve the evaluation of (1) the global optimum cost of complex systems subject to constraints 

on system reliability; (2) optimum number of redundancies, which maximize the system 

reliability based on constraints on cost, weight, and volume in a multistage mixed system; or 

(3) optimum number of redundant units and reliability at each stage in the system to maximize 

total reliability based on constraints on cost, weight, volume, and stage reliability. The 

configuration model in the system-design problem usually is the series–parallel system with k-



9 

out-of-n: G subsystems. This is because many systems can be conceptually represented as 

series–parallel, and because such a configuration can often serve as a bound for other types of 

system configuration, it has many practical usages. For example, in a gas turbine, the electrical 

and mechanical system continuously provides overspeed protection to the turbine, as shown in 

Figure 5-3. That is, when overspeeding occurs, the fuel supply should be cut-off by closing the 

four stop valves, modeled as four subsystems. To increase the reliability of each subsystem, 

we can use highly reliable components or/and add redundant components in parallel. Then, 

such a system becomes a typical series–parallel system with k-out-of-n: G subsystems. 

 

1.3           Objectives and Scope of the Study 
 

1.3.1        Objectives 
The objectives of this study include the following:  

a) To focus on determining the optimal approach using metaheuristic techniques for the 

solution of the system reliability optimization problem. The exploitation of 

metaheuristic approaches (MAs) for addressing dependability and repetition 

assignment issues redundancy allocation problem (RAP) has recently gained interest 

of analysts. The advances demonstrated in Chapter 3 focus on improving the consistent 

quality of the framework. The model tends to enhance the framework plan and upkeep 

exercises during working periods. The computational outcomes were compared to 

determine which approach is more fitting for understanding complex frameworks that 

yield enhancement models with consistent quality. 

b) To develop a mathematical or technical tool for the best design of the reliability system. 

c) To develop a new simulation process based on the hybrid genetic algorithm (HGA) so 

that alternative solutions required to generate application tools for the optimal design 

of a reliable series–parallel system are obtained. 

 

1.3.2        Scope 
The scope of the research study is as follows:  

a) A new mathematical model and formulation for the reliability optimization problem 

was developed. Ruiz-Rodriguez, Gomez-Gonzalez, and Jurado (2015) presented a 
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method of optimizing the reliability of an electric power system through distributed 

generation. Additionally, the system’s reliability index was calculated and given as the 

failure probability of the system. The effectiveness of the metaheuristic calculations 

can be credited to the manner in which they mirror the best highlights in nature, 

particularly the determination of the appropriate inorganic frameworks that are 

improved through characteristic choices. 

b) To develop a hybrid approach based on genetic algorithm and HGA, which are used to 

solve similar problems. Wan and Birch (2013) claimed that GAs perform better as a 

global search method; however, they might frequently take a relatively long amount of 

time to reach global optimum. Local search (LS) methods have been integrated into 

GAs to increase their performance as a learning process. A model was simulated using 

MATLAB in the implementation phase.  

c) To apply the results from industrial cases to validate the performance of the proposed 

approach. A different case study approach will be used to demonstrate the application 

and reliability study of the optimization using a multiobjective metaheuristic.  

d) The results thus obtained would be used to design the optimal configuration of the 

electromechanical system. Figure 1.2 shows the research framework. 

 

 

 

 

 

 

 
 

Figure 1. 2 Research framework 
 

1.4            Literature Review 
 

Modern society is largely dependent on technological systems. There is no doubt that these 

systems have improved our collective productivity, health and affluence; however, our 

 



11 

increasing dependence on modern technological systems requires complex operation and 

sophisticated management. In complex or complicated systems, system reliability plays an 

important role. The reliability of any system is very important to manufacturers, designers and 

users alike. During the design phase of a product, reliability engineers and designers are called 

upon to measure the product’s reliability. They may desire to modify the product to improve 

its reliability in a way that also raises the item’s production cost; the increase in production 

costs, in turn, negatively affects the user’s budget. In such a case, the question arises of how to 

meet the system reliability goal. Therefore, the design reliability optimization problem can be 

phrased as the problem of providing a reliability improvement at a minimum cost (Zavala et 

al., 2005). One widely known method for improving the reliability of a system is to introduce 

several redundant components (Najafi et al., 2013). To better design a system using 

components with known cost, reliability, weight and other attributes, the corresponding 

problem can be formulated as a combinatorial optimization problem, where either the system 

reliability is maximized or the system cost is minimized (Coit & Smith, 1996a; Lyu et al., 

2002). Both formulations generally involve constraints on allowable weight, cost, and/or a 

minimum targeted system reliability level. The corresponding problem is known as the RRAP). 

The primary objective of the RRAP is to select the best combination of components and levels 

of redundancy to maximize system reliability and/or to minimize the system cost, subject to 

several constraints. The RAP is one of the most important reliability optimization problems in 

the design phase of parallel-series systems, network systems and other systems with various 

structures. RAP is a complex combinatorial optimization problem that has broad real-world 

applications, such as in computer network design (Altiparmak et al., 2003), consumer 

electronics (Painton, and Campbell, 1995), software systems design (Berman, and Ashrafi, 

1993), and network design (Deeter and Smith, 1998). 

 

The main goal of reliability design is to improve system reliability. Redundancy allocation 

is an effective method for maintaining a high level of reliability in the system design phase. 

While redundancy improves system reliability, it also increases product cost, weight and 

volume. Thus, it is an important topic for system decision-makers to determine the optimal 

number of redundant elements under certain system constraints. To address the traditional 
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redundancy optimization problem, several kinds of optimization models have been proposed 

under the assumption that the lifetimes of the product elements are random variables. Zhao and 

Liu (2005) proposed three redundancy optimization models that presents the lifetimes of the 

elements as fuzzy variables. Wang and Watada (2009) developed two fuzzy random 

redundancy allocation models for a parallel-series system in which the lifetimes of the elements 

are treated as fuzzy random variables. Recently, researchers have begun to address the 

reliability optimization designs of some systems by considering interval-valued component 

reliability in uncertain environments. Roy et al. (2014) applied the symmetrical form of 

interval numbers via an interval-valued parametric functional form to evaluate the optimum 

system reliability and system cost of the RAP. Zhang and Chen (2016) investigated an interval 

multi-objective optimization problem for reliability redundancy allocation of a series–parallel 

system. Other researchers have concentrated on hybrid uncertainty optimization problems for 

system reliability (Li et al., 2015; Huang et al., 2017). 

 

Generally, there are two approaches that can be used to optimize system reliability: 

increasing component reliability (reliability allocation) or using redundant components in 

parallel (redundancy allocation) (Huang et al., 2019). Unfortunately, these two approaches do 

not always yield competitive results. For example, reliability allocation may incur large costs 

for only minor improvements to system reliability because of difficulties in design, verification 

and production. Redundancy allocation not only increases costs, but also adds undesirable 

extra volume and weight to the system. The RRAP aims overcome these problems (Kuo and 

Prasad, 2000; Coit and Smith, 1996a). The RRAP is usually formulated as a non-linear 

optimization problem, which determines the reliability and redundancy levels of components 

to maximize system reliability under design constraints on, for example cost, volume, or 

weight. RRAP presents a powerful and attractive method for system reliability optimization; 

at the same time, it is known as one of the most challenging problems in reliability 

optimization, due to its high dimension and complexity. Several techniques, especially 

intelligent optimization algorithms, have been suggested to solve the optimization model 

arising in RRAP in recent years. For example, artificial bee colony algorithms (Yeh, and Hsieh, 

2011; Garg et al.  2013; Ghambari and Rahati, 2018), cuckoo search algorithms (Valian and 
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Valian, 2013; Kanagaraj et al., 2013), genetic algorithms (Kim et al., 2017) and simulation 

optimization methods (Chang et al., 2018). Muhuri et al. (2018) proposed a novel formulation 

of the RRAP with fuzzy uncertainty. In Peiravi et al. (2018), cold-standby strategies for 

redundant components are used to model the RRAP. Chatwattanasiri et al. (2016) studied 

RRAPs with uncertain stress-based component reliability. Feizabadi and Jahromi (2017) 

proposed a new model for reliability optimization of series–parallel systems with 

nonhomogeneous components. 

 

The utilization of redundancy plays an important role in enhancing the reliability of a 

system. The RAP involves the selection of components and a system-level design 

configuration to simultaneously optimize some objective functions, such as system reliability, 

cost and weight, given certain design constraints. The integration of redundant components 

improves system reliability, but can also increase system cost, weight, etc. Thus, a RAP 

frequently encounters trade-offs between the maximization of system reliability and the 

minimization of system cost and weight. Traditionally, the RAP has been solved as a single-

objective optimization problem with the goal of maximizing system reliability subject to 

several constraints. Various methodologies have been proposed to handle it, e.g., 

heuristic/meta-heuristic approaches such as genetic algorithm (Ardakan and Hamadani, 2014), 

bacterial-inspired evolutionary algorithm (Hsieh, 2014), swarm optimization (Yeh, 2014; 

Huang, 2015; Wang and Li, 2014; Kong et al., 2015), and hybrid algorithm (Kanagaraj et al., 

2013) methods. 

 

In the last few years a growing number of papers put forward reliability optimization 

models within the context of service contracts. Jin and Wang (2012) proposed a model to 

minimize lifecycle costs (LCCs) and maximize the service profit margin under performance-

based contracts (PBCs) in the presence of uncertain system usage. Jin and Tian (2012) 

developed a model to optimize reliability design and inventory level. They minimize LCCs 

under a nonstationary demand rate and consider a dynamic stocking policy. Jin et al. (2015) 

integrated a spare part inventory, maintenance and repair capacity into one model. They 

maximize the utility of both the supplier and the customer within a game-theoretic framework, 



14 

using a gradient-based heuristic and a hybrid algorithm to solve the problem for a single- and 

multi-item systems, respectively. Kim et al. (2017) build a game-theoretic model to study the 

trade-off between investing in reliability improvement and spare assets under traditional 

resource-based contracts (RBCs) and PBCs. However, they only incorporated supply chain 

costs, rather than LCCs. Some papers have jointly optimized the reliability and spare parts 

inventory of single-component or multi-component systems by minimizing the LCCs or 

service costs (Öner et al., 2010; Selçuk and A ğralı, 2013; Öner et al., 2013). 

 

The lack of reliability of a product can lead to a number of consequences, such as lack of 

safety, competitiveness, higher costs of maintenance and repair, and brand name problems. 

The improvement of reliability is critical in the industrial design. Paganin and Borsato (2017) 

reported that adopting a design for reliability during new product development is fundamental 

to ensure the reliability of an item at all stages of its life cycle. The number of studies on 

reliability design is not very extensive and is relatively dispersed. Solid frameworks are 

necessary for economic efficiency and aggressiveness in the current industry. To augment 

profitability, modern frameworks, such as manufacturing frameworks, must be accessible and 

operational as much as possible. Additionally, as mechanical frameworks comprise various 

segments, the definitive likelihood of a framework survival specifically relies upon the 

qualities of the constituent segments. Consequently, the failure of a framework is unavoidable. 

Therefore, the consistent quality of the framework must be improved through reasonable 

dependability streamlining techniques to enhance its general efficiency. 

 

The application of a GA for system optimization is similar to a heuristic search method 

used in artificial intelligence and computing inspired by the process of natural selection 

belonging to a larger class of evolutionary algorithms (EAs). McCall (2005) states that GAs 

are a heuristic search and optimization method motivated by natural evolution and have been 

effectively used in a wide range of real-world applications for solving problems of substantial 

complexity. As numerous motivations exist, a wide range of calculations could also exist. Each 

of these calculations tends to apply certain qualities to determine a refreshing formula. For 

instance, GA calculations were propelled by the Darwinian development qualities of organic 



15 

frameworks and hereditary administrators, the hybrid transformation and determination of the 

survival of the fittest are utilized. Numerous variations are currently available and new 

metaheuristic calculations have been produced. For example, although GA calculations can be 

exceptionally helpful, they have a few limitations in managing multimodal advancements. GA 

has successfully been applied to optimization problems in different fields, such as engineering 

design, optimal control, transportation and assignment problems, job scheduling, inventory 

control, and other real-life decision-making problems. The most fundamental idea of a GA is 

to artificially imitate the natural evolutionary process, in which populations undergo 

continuous changes, through genetic operators such as crossover, mutation, and selection. A 

GA can easily be implemented with the help of computer programming. In particular, it is very 

useful for solving complicated optimization problems, which cannot easily be solved using 

direct or gradient-based mathematical techniques. Large-scale, real-life, discrete, and 

continuous optimization problems can be effectively managed without making unrealistic 

assumptions and approximations. By considering the imitation of natural evolution as the 

foundation, a GA can be designed appropriately and modified to exploit special features of the 

problem to solve. A GA makes uses of techniques inspired from evolutionary biology such as 

selection, mutation, inheritance, and recombination to solve a problem. The most commonly 

employed method in GAs is to randomly create a group of individuals from a given population. 

The individuals thus formed are evaluated using the evaluation function provided by the 

programmer. Individuals are then provided with a score, which indirectly highlights the fitness 

to the given situation. The best two individuals are then used to create one or more offspring, 

after which random mutations are performed on the offspring. Depending on the needs of the 

application, the procedure continues until an acceptable solution is derived or until a certain 

number of generations have passed.  

 

Duan (2013) highlighted the emerging need for an inventory control model for practical 

real-life applications. The extensively exploited conventional optimization procedures 

normally necessitate an unequivocal mathematical model expressed based on some 

assumptions. According to the author, the proposed framework for any effective metaheuristic 

can function as the optimizer to logically look for the solution space by using a suitable 
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simulation inventory model that functions as the evaluation component. Mechanical 

frameworks are planned with a few constraints, including cost, weight, and volume of the 

assets. With restricted assets, exchange dependability and other asset imperatives must be 

discovered. One of the possible courses is to expand the framework dependability through 

repetition and segmented consistent quality decisions. Nevertheless, when outlining a quality 

framework, the fundamental issue is to discover an exchange between dependability 

improvement and asset utilization. This requires the application of a reasonable multicriteria 

approach. Data mining has been implemented in several studies by using methods such as 

statistical regressions, induction decision tree, neural networks, and fuzzy sets and etc. Kou et 

al. (2003) promoted a multiple-criteria linear programming approach to data mining in relation 

to linear discriminant analysis. In reality, streamlining issues of system reliability comprise 

various vulnerabilities and challenges. Since the advent of the enhancement approach, various 

techniques and applications have been proposed to tackle improvement issues, including 

unclearness and uncertainty. These methodologies treat parameters (coefficients) as uncertain 

numerical information.  

 

Khorshidi and Nikfalazar (2015) compared two MAs for addressing the reliability 

optimization of a complex system. They acknowledged that the application of MAs for solving 

RRAPs has become an attractive approach to researchers in recent years. They presented an 

optimization model aimed at maximizing system reliability and minimizing the system cost 

concurrently for “multistate weighted k-out-of-n systems” (p. 1). The model used in the study 

tends to enhance the system design and maintenance activities more than the functioning 

periods, thus offering a dynamic modeling technique. A newly developed metaheuristic 

method, called the imperialist competitive algorithm (ICA) together with a GA were applied 

to improve the resolution of the model’s problem. The computational results were assessed 

with the aim of ascertaining a more suitable approach for resolving complex-system reliability 

optimization models. They revealed that although the GA can determine a better answer, the 

ICA is faster. Additionally, an examination was conducted on various parameters of the ICA. 
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In contrast to the inconsistent quality of the framework, the nearness of clashing, nonlinear, 

and questionable destinations further complicates the issue. In such a case, with numerous 

goals, the synchronous consistent quality boost and cost minimization requires a mindful trade-

off approach. The determination of an ideal arrangement is relatively inconceivable. Kuo and 

Prasad (2000) presented an overview of the approaches established since 1977 as solutions for 

different reliability-optimization challenges. The authors also explored applications of these 

approaches to different design challenges. They further addressed concerns on “heuristics, 

metaheuristic algorithms, exact methods, reliability redundancy allocation, multiobjective 

optimization, and assignment of interchangeable components in reliability systems” (Kuo and 

Prasad 2000, p. 31). In relation to other types of applications of system-reliability-optimization 

methods such as in software development, in a system with common-cause failures, and for 

maintenance, the exact answers to reliability-optimization challenges are not necessary 

because the exact solutions are challenging to determine, and even when found, their utility is 

minimal. Their article reports that modern studies in the field are focused on the development 

of heuristic and metaheuristic algorithms for resolving optimal redundancy allocation 

challenges. Therefore, the MA is a potential application strategy for complex issues that a 

suitable system can implement to locate an arrangement of GA principles. Google’s search 

engine was used to find different databases. During this search, it was discovered that different 

articles on batch calculation were either simply acknowledged or gathering introductions. This 

justifies the rationale of the current research to bridge the existing gap in literature regarding 

system optimization using an MA. 

 

 

 





 

CHAPTER 2  
 

METHODOLOGY 
 
2.1           Previously used Methodologies 
 

Different methodologies have been used in the past in an effort to investigate the aspect of 

system optimization. In the past two decades, many researchers have solved reliability and 

redundancy problems under multiobjective formulation. For an overview of the trend of 

research in this area, readers may refer to the works of Zhao et al., (2007), who designed an 

ant colony algorithm (ACS) with a multiobjective metaheuristic formulation to optimize the 

reliability of the system to solve the redundancy allocation problem (RAP) of series–parallel 

k-out-of-n:G subsystems (denoted by ACSRAP). This problem couples a dynamic penalty 

function with a global objective function and a simple local search strategy to obtain efficient 

solutions for generalized problems such as those of gearbox reliability designs. The algorithm 

offers distinct advantages compared with the alternative optimization methods and has been 

mainly used on combinatorial optimization problems. Therefore, the importance of this work 

lies in its attempt to adapt continuous ant colonies to multiobjective problems. The objectives 

considered herein were the maximization of system reliability and the minimization of system 

cost. This study aimed at determining the number and type of the redundant components 

required for optimizing the objective function under several constraints such as the overall 

system weight and total number of the components used in all redundancies; the reliability of 

a system depends on the reliability of each subsystem.  

 

In a related study, Quy (1998) developed a new method to optimize a multiobjective model 

in certain mechanical systems by using the fuzzy multiobjective method. His approach was 

based on the algorithm proposed by Rao and Dhingra (1992), and Quy applied it to the 

modeling and analysis of the overspeed control system of a gas-turbine engine. A system must 

be designed not only to meet its functional requirement but also to perform its function 

successfully. A general reliability-design problem involves the determination of both the 

component reliabilities and number of redundancies required to achieve the best overall 

reliability. In other words, a multiobjective optimization problem is based on the context of 
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reliability and redundancy apportionment of multiple stages and is subject to several 

constraints (cost, weight...). The consideration of multiple objective functions is an important 

aspect in the design of complex engineering systems, particularly a mechanical system. In a 

design problem, the designer is often forced to state a problem in precise mathematical terms 

rather than real-world terminology, which is usually imprecise in nature. The impreciseness is 

not due to the randomness but the inherent fuzziness in the system. Consequently, for a 

problem involving fuzziness in the design data, the objectives and constraints must be defined 

or modelled with fuzzy boundaries. The fuzzy objective functions and constraints are 

characterized according to their membership functions, which are described by a continuous 

range of values (instead of Boolean values) between 0 and 1. In the design of mechanical 

systems, particularly complex systems, the relationships and statements used for problem 

description are normally imprecise or vague. In modeling a real-world design problem, the 

precise expression of objectives and constraints may not be possible but they may be expressed 

in a fuzzy way. The multiobjective fuzzy optimization problem can be solved through a four-

step procedure similar to solving a single-objective optimization problem, that is, by 

determining the “best” and “worst” solutions possible for each of the objective functions, using 

these solutions as boundaries of the optimization problem, and solving the resulting fuzzy 

optimization problem. In this study, the fuzzy approach was used to solve the optimization 

problem. 

 

2.2           Methodologies used in this study 
 

Different methodologies were used in the three studies presented in this thesis. The first used 

a reliability optimization method of a series–parallel system along with a genetic algorithm 

(GA) and statistical analysis. The GA, inspired by metaheuristics, was used because it searches 

parallel to various points and is capable of evading being locked into a local optimal solution, 

as in the case of conventional approaches that launch their searches from a single point. In this 

investigation, penalty factors were optimized using a reliability fitness function. Different 

ranges of values were determined for these penalty factors by using a full factorial design with 

three levels of optimal values of GA reliability. The authors report that following its previous 



21 

successful applications in solving related real-life RAP challenges, probabilistic searches in GA 

can resolve the shortcomings of using conventional approaches. In terms of multipoint 

capability, in the study described in Chapter 3, 10 simulations were performed for each point of 

the experimental design. From the findings, the average of the 10 reliability values was used to 

increase the accuracy of the subsequent statistical analysis. The authors determined the best 

configuration of every point matching the largest value of reliability in terms of cost and weight; 

thus, this was a better approach. As a result, GAs can be used to solve real-life complex 

combinatorial problems with exceedingly large search fields. The method used in the first study 

is important for determining the best combination and redundancy level in research aiming to 

solve optimization issues through statistical analysis. GA parameters were successfully 

improved, leading to the best reliability and configuration when using specialized software in 

the experimental analysis. The first approach in this work uses the GA and statistical analysis 

based on the redundancy allocation problem to obtain the number of redundant components that 

either maximize reliability or minimize cost under numerous resource constraints. Our 

statistical analysis experiment allowed us to choose the penalty factor values that most improved 

the GA parameters. The important contribution of this work is the decision to use the design 

and statistical analysis of experiments to optimize two penalty factors in the reliability fitness 

function of the GA. Therefore, we determined the best combination and the redundancy level 

for the series–parallel system reliability optimization problem and improved the GA 

implementation using statistical analysis. The industrial application possibilities of this study 

include the development of multispeed gearboxes that use different gear pairs in each stage to 

obtain better solutions for maximizing the overall system reliability, which is subject to total-

cost and total-weight constraints.   

In this study, we determined the strategy choices for the redundancy level for each subsystem 

to maximize overall system reliability subject to total cost and total weight constraints, which 

means that we have to determine the number of components in each subsystem and the values 

of reliability. Further, we create a tool based on the metaheuristic approach to find the best 

design with different cost and weight constraints (for example, gearbox). With this tool, we can 

decide how many gear pairs to use in each stage to maximize the reliability of the gearbox with 
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respect to cost and weight at system levels; this technique provides good results for optimization 

of redundancy allocation problems (RAPs). 

Owing to the existing redundancy problem, the second study used a mathematical model for 

a series–parallel system as the best approach for optimization. The design and architecture used 

in this study incorporated a hybrid GA (HGA) with a flexible allowance technique used to fix 

the problems prevalent in limited engineering design optimization. Chapter 4 explains that the 

system consists of four subsystems, each of which has a different design component type with 

similar or different characteristics, including reliability, cost, transmission ratio, material, 

dimension, and weight. Zhao, Liu, and Dao (2007) stated that on the minimum gear-pair pi 

value of 2 and maximum gear-pair PN of 5 were specifications for use in the gearbox at all 

stages. The report indicates that every subsystem is represented by PN positions, with each 

component listed according to its reliability index; this highlights the necessity of reliability 

allocation in system design. The allowance of this system enables the design engineers to 

establish the reliability of a vector of subsystems and components to obtain the optimal overall 

reliability. The combinatorial optimization challenges in system design result from the system-

designed parameters such as identified cost, reliability, weight, and volume. A problem was 

exploited by conducting a test to determine the capacity of this algorithm to solve RAP, which 

is considered a gearbox-reliability optimization problem (Zhao, Liu, and Dao, 2007). The 

method used by these authors was based on the assumption that a minimum and maximum of 

two and five components exist, respectively, to apply the method at all stages.  

The second approach in this work uses a fuzzy function in combination with a HGA as the 

basis of multiobjective optimization and uses multistate reliability to find the best possible 

solution for the RAP. This approach enables manufacturers to determine the number and 

reliability of redundant components in a subsystem in order to develop a system that effectively 

satisfies the reliability, cost, and weight criteria. This approach can provide system 

configurations with lower cost or weights without significantly degrading the overall 

reliability. The results also indicate the robustness of the proposed algorithm and highlight its 

potential for future application. The important contribution of this approach is that it examines 

the effectiveness of employing a fuzzy function along with a multiobjective GA for solving 

the RAP. The opportunities for applying this approach to industrial engineering design include 
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the multistage gearbox problem: many high-performance power transmission applications 

(e.g., automotive and aerospace) require gear train system design. The optimization of a 

multispeed gear train system introduces numerous challenges. The main aim of this study is to 

find the maximum reliability, minimum cost, and minimum weight considering an upper bound 

on cost and weight and to optimize the reliability of a series–parallel system on the basis of a 

genetic algorithm (GA) by implementing solutions for the redundancy allocation problem. We 

decided to investigate a multiobjective optimization problem to find better solutions in terms 

of maximum reliability, minimum cost, and weight.  The study in Chapter 4 presents an 

optimization method that can objectively find the solution that represents the optimal 

compromise between the optimization objectives. This is to set the redundancy level for each 

subsystem and component and to select the best redundancy strategy for each subsystem in 

order to maximize the system reliability under multiple objectives and system-level 

constraints, including the cost and weight at the system level. We developed an approach based 

on fuzzy function and the advantage of choosing the optimal solution (trade-off) from the 

Pareto-optimal solutions. Our computational results from this technique confirmed the 

robustness of the proposed algorithm. 

 

In the third study, a nonlinear programming approach was used involving optimal 

allocation of reliability and redundancy in series systems. The main aim was to solve the 

problem of multiobjective fuzzy optimization by using the new hybrid MA, leading to an 

increase in system reliability and a reduction in overall costs. This approach described the use 

of a reliability–redundancy optimization problem due to overspeed protection along with a 

multiobjective approach used to maximize system reliability and minimize consumption of 

resources such as cost, total weight, and volume parameters. According to their report, the 

approach involves a goal-programming formulation and a goal-achievement method for 

generating Pareto optimal solutions, in which control and overspeed protection for a gas 

turbine were nearly the same as those for a steam turbine. Note that a gas turbine operates at a 

higher temperature than a steam turbine; therefore, it requires close control through control 

sequencing. The third approach proposed in this thesis is a novel hybrid GA approach based 

on the RAP for solving the multiobjective optimization design of series–parallel systems to 
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find the number of redundant components that either maximize reliability or minimize cost, 

weight, and volume under various resource constraints. This approach determines the 

converged system reliability value until we obtain the values of the number of redundant 

components ni and the optimal component reliability levels ri corresponding to the maximum 

reliability value. The main advantage of the proposed multiobjective approach is that it offers 

greater flexibility to system designers for testing problems. The results show the superiority of 

the HGA over other algorithms we used in terms of searching for a quality and robust solution. 

The important contribution of this work is the ability to design a new framework for obtaining 

a whole system with a desired level of reliability. To show one practical use case, we 

considered a series–parallel overspeed protection system for a gas turbine. Overspeed detection 

is continuously provided by the electrical and mechanical system. When an overspeed occurs, 

it is necessary to cut off the fuel supply by closing the four or more parallel control stop valves, 

which are modeled as four subsystems. Therefore, we can use highly reliable components 

and/or add redundant components in parallel to increase the reliability of each subsystem.  

 

We proposed a hybrid genetic algorithm and presented a novel system design for the entire 

system with the desired level of reliability and to develop a new metaheuristic-based approach 

to solve a multiobjective optimization problem namely the reliability–redundancy allocation 

problem (RRAP). We evaluated our approach by comparing it with another method in the 

literature. We used this approach to develop a new simulation process for system design. This 

a new simulation process is to generate practical tools for designing reliable series–parallel 

systems and a practical case study regarding security control of a gas turbine in the overspeed 

is presented to validate the proposed algorithm. to design a new system for how can we obtain 

a system for the whole system with a level reliability we want. We obtain reliable regression 

curves, which are of great practical value and enable the designer of the system to determine 

the values of r1, r2, r3, r4, Cs, Ws, and Vs corresponding to the value of Rs. 

 

This technique would allow for easier sequencing and more automatic control of the gas 

turbine. This research, illustrated through studies in Chapters 3–5, used a combination of the 

research methodologies shown in the framework in Figure 2.1  
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Figure 2. 1 Framework of research implementation methodology 

 

2.3           Difference between Approaches 
 

The previously proposed approaches and those presented in the recent study were 

compared with the aim of solving system optimization problems. The first approach uses the 

reliability optimization method of series–parallel systems, whereas the second approach uses 

a mathematical model for the series–parallel systems. In the first approach, a GA and statistical 

analysis were used to solve reliability problems, while an HGA with a flexible allowance 

technique was used in the second approach to solve constrained engineering design 

optimization problems. The second approach was developed to solve redundancy allocation 

problems. For the series–parallel system, 10 simulations were conducted for each point in the 

experimental design, and the average of the 10 reliability values was found to improve the 

accuracy of the subsequent statistical analysis. The cost and weight parameters were the main 

determinants of the best system configuration and showed that GA is effective at solving 

complex combinatorial optimization problems with considerably large and complex search 
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spaces. A previous study proposed the multiobjective ACS, a metaheuristic approach (MA), to 

solve the reliability optimization problem of series–parallel systems. Through a random search, 

constructive local search, and long-term dynamic memory strategy, the proposed method 

efficiently builds good solutions for the RAP. After the ACSRAP was tested, it was compared 

with GA-RAP. ACS outperformed GA in terms of best solution, reduced variation, and great 

efficiency. Further, ACSRAP was compared against ACO-RAP, and the results showed a 

potentially higher efficiency and better capacity by ACS to handle large-scale problems. Thus, 

ACSRAP has a better constructive strategy than other ant colony algorithms. Through the 

combination of probabilistic search, multiobjective formulation of local moves, and the 

dynamic penalty method, the multiobjective ACSRAP allows the obtaining of a frequent and 

fast optimal design solution. Compared with other methods, ACSRAP can be applied to a more 

diverse problem domain. 

 

Moreover, the second approach developed effective multiobjective fuzzy optimization 

techniques for engineering design; it represents an influential approach to solve optimization 

issues by using fuzzy parameters. In contrast, the credibility of using indeterminate information 

for reliability allocation needs additional research because the component risk and cost 

functions have been considered continuously in the past. Therefore, the HGA approach helps 

identify redundancy allocation challenges to maximize reliability and reductions in cost, 

weight, and volume. In the past, different studies have explored various techniques to fix 

redundancy optimization challenges. Nevertheless, the current thesis considers an approach in 

which different aspects that were overlooked in the past are exploited as foundations for system 

optimization solutions. The results from computational techniques were not compared to those 

previously proposed because previous studies did not use a fuzzy function. The mathematical 

model described in this thesis embodies the multiobjective HGA with a constraint handling 

strategy to solve optimization problems. The HGA technique is a metaheuristic method used 

to solve optimization problems efficiently in conjunction with the creation of an initial set of 

random potential solutions. 
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Each particle represents a solution to the problem and has a position and velocity that 

change with each iteration to obtain better solutions. According to Zhao, Liu, and Dao (2007), 

the multiobjective ACS metaheuristic was established as a method to solve the reliability 

optimization problem in series–parallel systems. The problem includes the selection of 

components with multiple choices and redundancy levels that generate many benefits, and is 

dependent on cost and weight limitations at the system level. These are common challenges 

and realistic problems faced during the conceptual design stage of several engineering systems 

in modern technological advancements. The building of efficient solutions to these problems 

is becoming increasingly significant because the complexity of several mechanical and 

electrical systems is increasing even as development plans and timelines decrease and 

reliability requirements seem very strict. 

 

The multiobjective ACS algorithm brings several different benefits to these problems in 

terms of the alternative optimization methods described in previous research, and can be used 

in a more diverse problem sphere with regard to the nature or size of prevailing challenges 

(Zhao, Liu, and Dao, 2007). By using a combination of probabilistic searches, the 

multiobjective formulation of local moves, dynamic penalty method, and currently proposed 

multiobjective techniques quite often help reach an optimal design solution faster than some 

other heuristic techniques. The recommended algorithm was successfully used in an 

engineering design problem involving a gearbox with many stages. The current development 

of a new MA to solve a multiobjective optimization problem, known as the reliability-RAP 

(RRAP) is another milestone differentiating the current approach from the previous 

approaches. 

 

These technicalities, and the fact that RRAP is an NP-hard problem, would make the 

solving of optimization problems in an optimal manner difficult by using conventional 

methods or heuristic approaches. Therefore, it is imperative to build a new simulation process 

to produce the practical tools required to design reliable series–parallel systems. Zhao, Liu, 

and Dao (2007) explained these limitations of the conventional methods, inspiring the 

development of the proposed GA-based hybrid metaheuristic algorithm (HGA) to find an 
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optimum solution, as described in Chapter 5. The previously mentioned application tools were 

generated from HGA simulation processes that can help design optimally reliable series–

parallel systems. A confirmation test was performed for the approach, to enhance the security 

control system of a gas turbine in the overspeed state. Dhingra (1992), Rao and Dhingra (1992), 

and Quy (1998) have also developed an application of the reliability–redundancy optimization 

problem for overspeed protection by using a multiobjective approach. Therefore, no general 

method has yet been developed to solve the component support problem with discontinuous 

risk or cost functions. None of the previous relevant studies of Dhingra (1992), Rao and 

Dhingra (1992), and Quy (1998) used any random-search-based global-optimization method 

in their choice of methodologies. A major drawback of these works is their lack of establishing 

a practical instrument to design various components with different physical characteristics such 

as overall cost, total weight, average volume, and general reliability. As discussed, this 

application was intended to maximize system reliability and minimize consumption of 

resources such as cost, weight, and volume. The proposed model for simulating the overspeed 

control system of a gas-turbine engine allows the emergency reset of the system to be designed 

independent of the overspeed control used in the approach. Different techniques were used in 

the three given studies as no researcher has yet used these techniques. 
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3.1           Abstract 
 

The main objective of this paper is to optimize series–parallel system reliability using 

Genetic Algorithm (GA) and statistical analysis; considering system reliability constraints 

which involve the redundant numbers of selected components, total cost, and total weight. To 

perform this work, firstly the mathematical model which maximizes system reliability subject 

to maximum system cost and maximum system weight constraints is presented; secondly, a 

statistical analysis is used to optimize GA parameters, and thirdly GA is used to optimize 

series–parallel systems reliability. The objective is to determine the strategy choosing the 

redundancy level for each subsystem to maximize the overall system reliability subject to total 

cost and total weight constraints. Finally, the series–parallel system case study reliability 

optimization results are showed, and comparisons with the other previous results are presented 

to demonstrate the performance of our GA. 

 

Keywords: Genetic algorithm, optimization, reliability, statistical analysis. 

 

3.2           Introduction 
 

THE system reliability optimization has become a very important subject matter area in 

industry design and operation of large scale manufacturing systems. The main issue that will 
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be dealt with it in this study is the optimizing reliability of a series–parallel system using GA 

via implementing solutions for the redundancy allocation problem. The problem is to select 

redundancy level for each subsystem, component, and the best redundancy strategy in order to 

maximize the system reliability under system-level constraints. This type of problems includes 

a determination of components with many selections and redundancy levels that create the 

maximum advantages and are subject to the cost and weight constraints at the system level. 

These are extremely common problems confronted in the theoretical design of numerous 

engineering systems. It has become progressively necessary to develop adequate solutions to 

these issues since various mechanical and electrical systems are becoming more complex, even 

as developing plans take smaller and reliability requirements display very hard and fast. It is 

very important that the systems achieve their purpose under circumstances and operating 

conditions in a certain way. Nevertheless, the reliability level is a function of the investment 

amounts of a system. Consequently, using the optimization models is required to make an 

effective decision and perform analysis. The optimization of system reliability (OSR) models 

has been advanced to resolve the problems in whatever reliability is involved as objective 

function or constraint. The problem in this research is to optimize a combinatorial engineering 

design problem by considering the system of reliability constraint, which involves a redundant 

number of selected components to maximize reliability system or minimize cost system under 

numerous resources of the constraints. 

 

The series–parallel system considered (Figure 3.1) has M number of subsystems in series, 

see (Coit et al., 1996a) and (Zhao et al., 2007). In turn, subsystem i contains Ni number of 

active (i.e., operating) units in parallel. If any one of the subsystems fails, the system fails. 

Each block in the diagram represents a unit. Reliability allocation is an essential step in system 

design. It allows determination of the reliability of vector of subsystems and components to 

obtain targeted overall reliability. For a system with identified cost, reliability, weight, volume, 

and other system parameters, the corresponding design problem becomes a combinatorial 

optimization problem, see (Coit et al., 1996b) and (Khorshidi et al., 2015). The best-identified 

reliability design problem of this type is denoted as the redundancy allocation problem.  
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Our goal in this paper is to present GA and statistical analysis approach, based on 

redundancy allocation problem to find the number of redundant components that either 

maximize reliability or minimize cost under numerous resources of the constraints. The 

redundancy allocation problem is fundamentally a nonlinear integer programming problem. 

Most of these problems cannot be answered by direct or indirect or mixed search methods 

because of separate search space. According to (Chern, 1992), redundancy allocation problem 

with multiple constraints is somewhat frequently hard to find feasible solutions. This 

redundancy allocation problem is Non-Deterministic Polynomial-time hard (NP-hard) and it 

has been well discussed in (Chambari et al., 2012; Kuo and Prasad, 2000; Liang et al., 2007; 

Sharifi et al., 2015; Tillman et al., 1977).  

 

The penalty function is used in constrained problems optimization, see (Smith and Coit, 

1997; Kuri-Morales and Gutiérrez-Garcia, 2002; Yeniay, 2005). Some researchers used 

statistical analysis to do this work for evolutionary algorithms, see (François and Lavergne, 

2001; Mills et al., 2015; Castillo-Valdivieso et al., 2002; Petrovski et al., 2005; Bayabatli and 

Sabuncuoglu, 2004). 

In the next section, we present our solving methodology using GA and statistical analysis. 

 

3.3           Methodology 
 

From the study of the references (Bayabatli and Sabuncuoglu, 2004; Castillo-Valdivieso et 

al., 2002; François and Lavergne, 2001; Kuri-Morales and Gutiérrez-Garcia, 2002; Mills et 

al., 2015; Petrovski et al., 2005; Smith and Coit, 1997; Yeniay, 2005), we decided to use the 

design and statistical analysis of experiments to optimize two penalty factors in our reliability 

fitness function using GA. We used a full factorial design with three levels. This classification 

will allow us to determine the ranges of values of these two factors of penalty giving the best 

values of reliability using GA. We did 10 simulations for every point of our design of 

experiments and used the average of the ten reliability values found to improve the accuracy 

of our coming statistical analysis. The best configuration of each point corresponding to the 

biggest reliability value is given with the corresponding cost and weight values. It is known 
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that GA is effective for solving complex combinatorial optimization problems with large, and 

complex search spaces. 

Assumptions 

• All the components rij have different value, and every branch has a different number of 

components in series–parallel. 

• The failure rate of components in each subsystem is constant. 

• Failure rate depends on the number of working elements. 

• Components are not repairable; they are changeable only. 

• Subsystems have internal linking cost. 

• Failed components do not damage the system. 
 

Table 3. 1 Input data for RAP (Zhao et al., 2007) 

Gear 
pair 

Stage 
1 2 3 4 

r1 c1 w1 r2 c2 w2 r3 c3 w3 r4 c4 w4 
1 
2 
3 
4 
5 

0.855 
0.706 
0.931 
0.737 
0.805 

3 
5 
5 
7 
6 

11 
12 
9 
11 
14 

0.743 
0.882 
0.874 
0.783 
0.9114 

5 
6 
2 
7 
5 

9 
11 
14 
11 
7 

0.828 
0.842 
0.779 
0.911 
0.846 

9 
7 
7 
7 
3 

15 
14 
11 
12 
11 

0.74 
0.922 
0.855 
0.864 
0.816 

6 
5 
11 
9 
9 

10 
10 
15 
13 
12 

 
Table 3. 2 The nomenclature and notation used to state the mathematical model 

Rs system reliability 

Cs system cost 

Ws system weight 

Cmax constraint of system cost 

Wmax constraint of system weight 

s number of subsystems in the system 

i index of subsystem, i ∈ (1, 2,…, s) 

j index of component type 
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Table 3. 2 (Continued) 

k index of redundancy level 

mi number of available component types in subsystem i 

Pi 

 

minimum number of components in parallel required for  subsystem i to 

function 

PN maximum number of components in parallel (user define) 

Ni a set of component types, Ni = [1, 2,…,mi] 

xki 

 

a component type is assigned at the position k of subsystem i xki ∈ (1, 

2,…,mi,mi+1) 

x system configuration matrix 

ni(x) total number of redundant components used in subsystem i 

n(x) = [n1, n2,…,ns] 

rij reliability of the jth component type for subsystem i 

cij cost of the jth component type for subsystem i 

wij weight of jth component type for subsystem i 

Ri(x) reliability of subsystem i 

Ci(x) total cost of subsystem i 

Wi(x) total weight of subsystem i 
 

 

The input data for the reliability optimization of series–parallel systems problem are 

summarized in Table 3.1. (Zhao et al., 2007) have provided this example problem. The system 

consists of four subsystems, and each subsystem has different design component type with 

same or different characteristics as reliability, cost, transmission ratio, material, dimension, 

weight, etc. The minimum gear pair pi = 2 and the maximum gear pair PN = 5 will 

 be used in the gearbox for all stages. Each of the subsystems is represented by PN positions 

with each component listed according to their reliability index. The input data in Table 3.1 

contain component reliability, weight, and cost. The objective is to maximize the system 

reliability with k-out-of-n subsystem connected in the series–parallel system under the given 

system requirement constraints. 
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Table 3. 3 Certain system constraints value used 

No. 
System constraint 

Cmax Wmax 

1 40 115 
2 55 125 
3 65 130 
4 60 120 
5 60 130 
6 60 140 
7 60 150 
8 65 120 
9 65 140 
10 65 150 
11 70 120 
12 70 130 
13 70 140 
14 70 150 
15 75 120 
16 75 130 
17 75 140 
18 75 150 

 
 

Figure 3.1 presents a typical example of a series–parallel system configuration with k-out-

of-n subsystem reliabilities. The system is separated into s subsystem indicated by the index i 

(i = 1, 2,…,s). pi number of effective components is required for the function at least in 

subsystem i. Each subsystem involves one or various components organized in parallel, and it 

constitutes the lower bound of the redundancy level for subsystem i. The upper bound of the 

component redundancy level in subsystem i is PN. The system configuration can thus be 

described as a matrix of size PN x s: The column index i (i = 1, 2,…,s) represents subsystem i, 

and the row index k (k =1, 2, …, PN) of the matrix represents the position where a component 

will be used in the subsystem. Redundancy allocation problems (RAP) consist of defining the 

number of components of each type, so that the complete reliability system will be maximized 

by considering the given constraints such as cost and weight. The content of the case study is 

shown in Figure 3.2. The problem used in this test to demonstrate the ability of this algorithm 

for solving RAP is a gearbox reliability optimization problem obtainable in (Zhao et al., 2007). 

The authors in this reference presumed, in order to apply their method for all stages, that the 
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minimum number of components is equal to 2, and the maximum number of components is 

equal to 5. The problem in the reference (Zhao et al., 2007) is to decide how many gear pairs 

and what kind of gear pair selected to be used in each stage to give maximum reliability of the 

gearbox with minimization of both system cost and weight. By assuming that all the gear pairs 

are active components in the stage, then the gearbox is analogous to a series–parallel system 

with k-out-of-n: G subsystems. 

 

 

 

 

 

 

 

 

 

Figure 3. 1 Series–parallel system 
 

 

 

 

 

 

 

 

 

 
 

 
 

Figure 3. 2 Series–parallel system case study 



36 

The studied problem is modeled by (Zhao et al., 2007), and the mathematical model 

formulated as 

          𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒  𝑅  (𝑥) =  ∏ (1 − ∏ (1 − 𝑟 )                              (3.1) 
 

                 Subject to    
 

        𝐶  (𝑥) = ∑ 𝐶  (𝑥) = ∑ ∑ 𝐶   ≤   𝐶   ,                           (3.2) 
 

        𝑊  (𝑥) = ∑ 𝑊  (𝑥) = ∑ ∑ 𝑊   ≤   𝑊   ,                        (3.3) 
 

        𝑃 ≤ 𝑛 ≤ 𝑃𝑁  𝑎𝑛𝑑  ∀𝑖, 𝑖 =  1, 2, … , 𝑠                                                   (3.4) 
 

A technique based on GA to optimize series–parallel systems reliability is developed 

(Figure 3.3) in order to find out the best compromise (optimal) solution of the problem. The 

different steps of the developed technique are given in the chart Figure 3.3. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. 3 Flow chart of the proposed GA for optimizing system reliability 
 
 

We used the fitness function f(i) to do the reliability optimization of the series–parallel 

systems using GA in the following form:  
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where rel(i) is the reliability, c(i) is the cost, w(i) is the weight, Cmax is the maximum cost, and 

Wmax is the maximum weight. CPen is the cost penalty factor, and WPen is the weight penalty 

factor. The range of the values in Table 3.4 for cost penalty factor and weight penalty factor 

was found using trial and error. The dynamic penalty function was defined increasing the 

penalty for infeasible solutions as the search progresses. The GA implementation is doing with 

this experimental procedure for determining the initial population size considering the 

following GA parameters: 

• The population size, which determines the size of the population at each generation is 1000, 

and our maximum number of iteration is 10000. 

•  We used 20 integers to code our chromosomes (maximum of five gear pair and four stages). 

• The value 6 from the configuration means that this position is empty. 

• We used four points of crossover generated randomly corresponding to our four 

subsystems to improve our GA search. 

• We could obtain a better result by increase the population size to enable the GA to search 

for more points.  

• Nevertheless, when the population size is large, the GA will take a long time to compute 

each generation  

• Finally, it is very important to note that we set the population size to be at least the value 

of number of variables, so the individuals in each population span the space being searched.  

 

3.4           Results and Discussion  
 

A numerical application has been demonstrated with the data obtained from test problem 

1 of (Zhao et al., 2007), and the obtained results are presented. 

We used Cmax = 65, and the Wmax = 130 for our GA fitness function cost penalty (CPen), and 

weight penalty (WPen) statistical analysis. We used a 3-level full factorial design. 

 

  ));max W- (i)(w*(WPen - (i)f = (i)f    :then
;max W> (i) wif       ));maxC - (i)(c*(CPen - (i)f = (i)f    :then

;maxC>(i)c if;(i)rel(i)f =
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Our statistical analysis in Figures. 3.4 and 3.5 shows that all the residuals are zero, which 

means that our prediction is very good. 

 
Table 3. 4 GA results of the design of experiments                                                              
points is used for applying statistical analysis data 

 
No.  CPen WPen Average reliability   

 1  0.1 0.1 0.9961 

2  0.1 0.55 0.9965 

3  0.1 1 0.9956 

4  0.55 0.1 0.9967 

5  0.55 0.55 0.9961 

6  0.55 1 0.9967 

7  1 0.1 0.9961 

8  1 0.55 0.9964 

9  1 1 0.9960 

 

The contour plot in Figure 3.6 displays the three-dimensional relationship in two 

dimensions. This plot is on the x-axis and y-axis scales factors by the predictor and the response 

values represented by contours. The contour plot can be used to investigate the possible relation 

between the three variables. We have an average reliability, cost penalty, and weight penalty. 

This plot shows how cost penalty on the x-axis and the weight penalty in y-axis affect the 

quality result. The darker indicates to the higher quality of the average reliability. 

The response surface (Figure 3.7) is obtained using the statistical analysis software 

STATISTICA and it generates the optimal designs. These numbers of the statistical analysis 

obtained are to choose the best GA for the selection of the optimal designs. The techniques for 

experimental model design objective are to optimize the response of the output 

variable (average reliability) which is influenced by cost penalty factor, and weight penalty 

factor. The response can be represented graphically in the contour plots that help us to 

visualize the shape of the response. The darker regions indicate higher quality. The response 

surface plot for the cost penalty strength where the axis x is the redder color, the weight penalty 
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for the axis y is the less red color, and the axis z is the average reliability.  

 

 

 

 

 

 

Figure 3. 4 Model ANOVA result 
 

 

 

 

 

 

Figure 3. 5 Display observed, predicted, and residual values 
 

 
 

 

 

 

 

 

 

 

Figure 3. 6 Contour plot of average reliability versus WPen, CPen 
 

The response curves (Figure 3.6) and response surface (Figure 3.7) show that the best 
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parameters are around the cost penalty CPen = 0.55 and the weight penalty factor WPen = 0.1. 

We show here one of the ten results running our GA on the center of our design of experiments 

(CPen = 0.55, WPen = 0.55): the configuration is      6     3     6     3     3     5     5     6     3     6     

5     6     3     4     5     6     2     2     2     6, the reliability = 0.997743, the cost = 62, the weight 

= 130, and the fitness = 0.997743. The reliability, cost, weight, and fitness graphics of this 

result are showed respectively on Figures. 3.8-3.11. It can be observed that from the plots 

which show that GA has already achieved the maximum score at the iteration of 10000. 

 
 

 

 
 

 

 

 

 

 

 

 

 

Figure 3. 7 3D Surface plot of average reliability versus CPen and WPen 
 

Table 3.5 reports all the allocated components for each subsystem that we have in our 

system. For example, at admissible constraint weight = 115 and constraint cost = 40, the best 

configuration of the 10 simulations that we obtained is = [3, 3, 6, 6, 6, 6, 3, 3, 3, 6, 5, 6, 5, 5, 

6, 6, 2, 2, 6, 6], which means that, from the 20 positions, result is illustrated as: 

• The first subsystem has two components of type 3. 

• The second subsystem has three components of type 3. 

• The third subsystem has three components of type 5. 

• The fourth subsystem has two components of type 2. 

The result obtained in Table 3.5 was just change by the values of the constraints. The cost 
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penalty = 0.55 is constant, and the weight penalty = 0.1 is constant. These results are obtained 

using the maximum possible improvement with the best feasible solution, which improves the 

system reliability, cost, and weight. 

 
 

 

 

 

 

 

 
 

Figure 3. 8 Maximum and mean reliability 
 

 

 

 

 

 

 
 
 

Figure 3. 9 Maximum and mean fitness 
 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. 10 Minimum and mean cost 
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Figure 3. 11 Minimum and mean weight 
 

Table 3. 5 The Results Obtained by GA 

No. CMax WMax 
Our obtaining result using GA 

Best Configuration of 10 simulations Reliability Cost Weight Fitness 
1 40 115 3     3     6     6     6     6     3     3     3     6     5     6     5     5     6     6     2     2     6     6 0.9836 35 113 0.9836 
2 55 125 1     6     3     3     6     5     6     2     6     3     4     5     5     6     6     2     6     2     6     2 0.9954 54 125 0.9954 
3 65 130 3     6     6     3     3     5     6     5     3     1     6     6     4     4     5     2     2     6     2     6 0.9977 64 129 0.9977 
4 60 120 3     3     6     6     3     3     5     6     5     6     4     4     5     6     6     6     2     1     2     6 0.9959 60 120 0.9959 
5 60 130 3     3     6     3     6     5     3     6     5     6     5     5     4     5     6     2     6     6     2     2 0.9979 58 130 0.9979 
6 60 140 3     1     3     6     1     2     6     6     5     5     6     5     5     5     5     6     2     2     6     2 0.9979 59 139 0.9979 
7 60 150 3     6     3     3     6     5     3     5     3     6     4     5     5     5     6     6     6     2     2     2 0.9987 60 144 0.9987 
8 65 120 3     3     6     3     6     5     5     5     6     6     4     6     5     4     6     6     2     2     2     6 0.9973 62 113 0.9973 
9 65 140 3     3     3     1     6     5     5     6     6     5     5     4     5     6     5     6     2     2     6     2 0.9985 64 134 0.9985 
10 65 150 3     3     6     6     3     6     3     3     5     5     6     5     5     5     4     2     6     2     6     2 0.9987 60 144 0.9987 
11 70 120 6     3     3     3     6     6     5     6     2     5     6     4     4     6     4     2     2     2     6     6 0.9976 67 118 0.9976 
12 70 130 3     3     3     6     6     1     5     5     6     5     4     6     4     5     6     6     2     2     6     2 0.9978 67 122 0.9978 
13 70 140 3     1     6     6     3     3     6     5     5     5     6     4     5     3     4     2     6     2     6     2 0.9985 69 140 0.9985 
14 70 150 3     3     1     6     6     3     5     5     5     6     5     6     5     4     5     2     2     1     6     2 0.9988 67 149 0.9988 
15 75 120 6     3     3     3     6     5     6     5     6     5     4     4     6     6     4     2     6     6     2     4 0.9974 70 117 0.9974 
16 75 130 3     3     6     3     6     5     5     3     6     5     4     4     6     4     6     6     6     2     2     2 0.9984 68 128 0.9984 
17 75 140 3     6     6     3     3     5     5     5     3     6     4     6     5     3     4     6     2     2     6     2 0.9988 71 138 0.9988 
18 75 150 3     3     6     3     6     5     5     3     6     1     4     5     6     5     4     2     2     2     6     1 0.9991 73 150 0.9991 
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Table 3. 6 The Comparison of (Zhao et al., 2007) Ant Colony 
System (ACS) Result and Our GA Result 

No. CMax WMax 
Our GA result Zhao, J. H., Liu, Z., & Dao, M. 

T. results using ACS–RAP 
Reliability Cost Weight Reliability Cost Weight 

1 40 115 0.9836 35 113 0.9861 40 114 
2 55 125 0.9954 54 125 0.9973 55 124 
3 65 130 0.9977 64 129 0.9977 58 130 
4 60 120 0.9959 60 120 0.9968 59 120 
5 60 130 0.9979 58 130 0.9977 58 130 
6 60 140 0.9979 59 139 0.9985 60 140 
7 60 150 0.9987 60 144 0.9987 60 149 
8 65 120 0.9973 62 113 0.9968 59 120 
9 65 140 0.9985 64 134 0.9988 65 140 
10 65 150 0.9987 60 144 0.9990 64 150 
11 70 120 0.9976 67 118 0.9968 59 120 
12 70 130 0.9978 67 122 0.9988 66 130 
13 70 140 0.9985 69 140 0.9990 65 140 
14 70 150 0.9988 67 149 0.9992 70 149 
15 75 120 0.9974 70 117 0.9968 59 120 
16 75 130 0.9984 68 128 0.9988 66 130 
17 75 140 0.9988 71 138 0.9992 71 140 
18 75 150 0.9991 73 150 0.9995 70 150 

 
 

3.5           Conclusion 
 

We determined the best combination and the redundancy level for a case study of the 

series–parallel system reliability optimization problem and improved our GA implementation 

using statistical analysis. We used STATISTICA software to do our statistical analysis 

experimental which gave us to choose the best penalty factor values that improved our GA 

parameters. The best configuration of 10 simulations obtained gave us the best reliability as 

one can see in Table 3.5.  
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4.1            Abstract 
 

This paper proposes a methodology for optimizing the reliability of a series–parallel system 

on the basis of multi-objective optimization and multi-state reliability using a hybrid genetic 

algorithm (HGA) and fuzzy function. The considered reliability constraints include the number 

of selected redundant components, total cost, and total weight. First, we describe the modeling 

of the proposed methodology. Second, we explain the formulation of the optimization process 

and the solution using HGA. Most related studies have focused only on single-objective 

optimization of the redundancy allocation problem (RAP); multi-objective optimization has 

not attracted much attention thus far. This study investigates the multi-objective scenario. 

Specifically, multi-objective formulation is considered for maximizing system reliability and 

minimizing system cost and system weight simultaneously in order to solve the RAP. The 

objective is to determine the system configuration that achieves the optimal trade-off between 

reliability, cost, and weight. Finally, the obtained results show that the proposed approach can 

enable manufacturers to determine the number of redundant components and their reliability 

in a subsystem in order to develop a system that effectively satisfies the reliability, cost, and 

weight criteria. 

 

Keywords: Multi-objective optimization; multi-state reliability; hybrid metaheuristic genetic 

algorithm; fuzzy function. 
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4.2            Introduction 
 

Optimizing reliability in the design and operation of large- and small-scale systems is an 

important issue for manufacturers. The objective of this study is to optimize the reliability of 

a series–parallel system on the basis of a genetic algorithm (GA) by implementing solutions 

for the redundancy allocation problem (RAP). The problem is to set the redundancy level for 

each subsystem and component and to select the best redundancy strategy in order to maximize 

–and weight at the system level.  

This problem is extremely common in the theoretical design of various engineering 

systems. Developing robust solutions to address the issue of system reliability is important 

because mechanical and electrical systems and products have become increasingly complex 

over the years. It is crucial for systems to achieve their objectives under given circumstances 

and operating conditions in a certain manner. However, the level of system reliability is 

directly related to system cost. Thus, optimization models are required for effective decision-

making and analysis. This study focuses on optimizing a combinatorial engineering design 

problem, i.e., maximizing the reliability and minimizing the cost and weight of a system that 

involves a redundant number of selected components. The main contribution of this study is 

that it examines the effectiveness of employing a fuzzy function along with a multi-objective 

genetic algorithm for solving the redundancy allocation problem.   

 

4.3            Literature review  
 

This paper focuses on multi-objective optimization and multi-state reliability of a series–

parallel RAP in which the subsystems are designed in series and the components in each 

subsystem are organized in parallel. The series–parallel system considered (Figure 4.2) has M 

subsystems in series (see Coit et al., 1996a), and (Zhao et al., 2007). Further, the ith subsystem 

consists of Ni active (operating) units organized in parallel. If any subsystem fails, the entire 

system fails. Each block in the diagram represents a unit. Reliability allocation is an important 

step in the system design because it allows for the determination of the reliability of a vector 

of subsystems and components in order to obtain the desired overall reliability. For a system 

with identified cost, reliability, weight, volume, and other system parameters, the 
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corresponding design problem becomes a combinatorial optimization problem (see Coit et al., 

1996b), and (Khorshidi et al., 2015). The best identified reliability design problem of this type 

is known as the redundancy allocation problem. This paper proposes multi-objective 

optimization using a hybrid genetic algorithm (HGA)-based optimization methodology for the 

redundancy allocation problem in order to find the number of redundant components that 

achieve the highest possible reliability while maintaining the lowest possible cost and weight 

under numerous resources. The proposed methodology uses a fuzzy function in combination 

with HGA to find the best possible solution for the redundancy allocation problem. The 

redundancy allocation problem is fundamentally a nonlinear integer programming problem. In 

most cases, it cannot be solved by direct, indirect, or mixed search methods because it involves 

separate search spaces. According to (Chern, 1992), it is often difficult to find feasible 

solutions for redundancy allocation problems with multiple constraints. Such redundancy 

allocation problems are non-deterministic polynomial-time hard (NP-hard), and they have 

been discussed extensively by (Chambari et al., 2012; Kuo and Prasad, 2000; Liang et al., 

2007; Sharifi et al., 2015; Tillman et al., 1977). The penalty function is used in constrained 

problem optimization (see Smith and Coit, 1997; Kuri-Morales and Gutiérrez-Garcia, 2002; 

Yeniay, 2005). Some researchers have investigated evolutionary algorithms using statistical 

analysis (see François and Lavergne, 2001; Mills et al., 2015; Castillo-Valdivieso et al., 2002;  

Petrovski et al., 2005; Abatable and Sabuncuoglu, 2004). Mahaparta and Roy (2006) 

considered a multi-objective reliability optimization problem for system reliability, in which 

reliability enhancement involves several mutually conflicting objectives. In this paper, a new 

fuzzy multi-objective optimization method is introduced, and it is used for effective decision-

making with regard to the reliability optimization of series and complex systems with two 

objectives. Salazar et al. (2006) demonstrated a multi-objective optimization technique for 

solving three types of reliability optimization problems: determining the optimal number of 

redundant components (redundancy allocation problem), determining the reliability of 

components (component reliability problem), and determining both the redundancy and the 

reliability of components (redundancy allocation and component reliability problem) using 

nondominated sorting genetic algorithm II (NSGA-II). These problems were formulated as 

single objective mixed-integer nonlinear programming (MINLP) problems with one or several 
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constraints and solved using mathematical programming techniques.  Azaron et al. (2009) used 

a genetic algorithm to solve a multi-objective discrete reliability optimization problem 

involving a non-repairable cold-standby redundant system with k dissimilar units. They 

employed a double string using continuous relaxation based on reference solution updating. 

Wang et al. (2009) proposed RAP as a multi-objective optimization problem, in which the 

reliability of the system and the related designing cost are considered as two different 

objectives. They adopted NSGA-II to solve the multi-objective redundancy allocation problem 

(MORAP) under a number of constraints. Sahoo et al. (2012) formulated four different multi-

objective reliability optimization problems using interval mathematics and proposed order 

relations of interval-valued numbers. Then, these optimization problems were solved using 

advanced GA and the concept of Pareto optimality.  Taboada and Coit (2012) proposed a GA-

based multi-objective evolutionary algorithm for reliability optimization of series–parallel 

systems. They considered three objective functions, namely system reliability, cost, and system 

weight, to solve RAP; however, they did not use a fuzzy function. In the next section, we 

present our methodology for solving RAP using HGA and a fuzzy function. 

 

4.4            Methodology Framework  
 

In our experiments, to implement the proposed optimization methodology, we adopted two 

penalty factors that have been considered by many researchers (Abatable and Sabuncuoglu, 

2004; Castillo-Valdivieso et al., 2002; François and Lavergne, 2001; Kuri-Morales and 

Gutiérrez-Garcia, 2002; Mills et al., 2015; Petrovski et al., 2005; Smith and Coit, 1997; 

Yeniay, 2005). We used a full factorial design with three levels. The fuzzy function allows the 

optimization algorithm to identify the solution of the redundancy problem that achieves the 

optimal trade-off between the optimization objectives from several optimal solutions. We 

performed 10 simulations for every experiment and used the best result of the 10 reliability 

values obtained. The best configuration of each point corresponding to the largest reliability 

value is given with the corresponding cost and weight values. The following assumptions are 

made in the optimization process: 

• All the components rij have different values, and every branch has a different number of 

components in series and parallel. 
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• The failure rate of the components in each subsystem is constant. 

• The failure rate depends on the number of working elements. 

• The components are not repairable; they are changeable only. 

• The subsystems have internal linking costs. 

• The failed components do not damage the system. 

Figure 4.1 shows the flowchart of the proposed algorithm. The HGA and fuzzy function 

procedures developed to implement our methodology are illustrated.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. 1 Flowchart of the proposed algorithm. 
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The proposed method involves the following steps.  

Step 1: Generate a population of random individuals.  

Step 2: Initialize the front counter to 1. 

Step 3: Check the termination condition. If the population is not classified, then identify 

nondominated individuals, assign large dummy fitness values to them, and to maintain 

diversity in the population, share these individuals with their dummy fitness values. After 

sharing, ignore these nondominated individuals temporarily. Then, identify the second 

nondominated front in the rest of the population and assign a dummy fitness value smaller than 

the minimum shared dummy fitness of the previous front. Then, increment the front counter 

by 1.  

Step 4: Continue this process until the entire population is classified into several fronts. If the 

termination condition is satisfied, then reproduction occurs according to the dummy fitness.  

Step 5: Use the crossover and mutation genetic operations to generate a new population.  

Step 6: Check the termination condition of the proposed algorithm, i.e., if the current 

generation number is smaller than the maximum generation number, continue the process by 

going back to the second step until the objectives of the problem are met and increment gen by 

1. If the current generation number is not smaller than the maximum generation number, then 

terminate the generation process. Otherwise, go to the next generation and implement the 

optimal front and fuzzy function; then, select the solution with the best trade-off and stop.  

 

The flowchart follows the same steps as classical GAs except for the classification of 

nondominated fronts and the sharing operation. The sharing in each front is achieved by 

calculating the value of the sharing function between two individuals in the same front. This 

method is based on several layers of classification of the individuals. Nondominated 

individuals are assigned a certain dummy fitness value and are then removed from the 

population, and the process is repeated until the entire population has been classified. To 

maintain the diversity of the population, the classified individuals are shared (in decision 

variable space) with their dummy fitness values.  

The multi-objective genetic algorithm is implemented using MATLAB® Optimization 

ToolboxTM. First, MATLAB code that represents the fitness function and calculates the values 
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of all the objectives (reliability, cost, and weight) is generated as an M-file. Because RAP is 

an integer problem, the creation, mutation, and crossover functions of the GA are adapted to 

generate integer populations that satisfy the problem constraints. The GA is implemented in 

our experimental procedure to determine the initial population size considering the following 

parameters: 

• The population size in each generation is 1000, and the maximum number of iterations is 

10000. 

• We used 20 integers to code our chromosomes (maximum of 5 gear pairs and 4 stages). 

• The value 6 from the configuration implies that this position is empty. 

• We used 4 randomly generated crossover points corresponding to our 4 subsystems to 

improve our GA search. 

• We could obtain better results by increasing the population size in order to enable the GA 

to search for additional points. 

• However, when the population size is large, the GA will take a long time to calculate each 

generation. 

• Finally, it is important to note that we set the population size to be at least the value of a 

number of variables such that the individuals in each population span the space being 

searched. 

 

Optimizing the above-mentioned objective functions using a multi-objective genetic 

algorithm yields a set of solutions that are said to be nondominated or Pareto-optimal. Each of 

these solutions cannot be improved further without degrading one or more of the other 

objective values. The aim of the fuzzy function is to choose the optimal solution (trade-off) 

from the Pareto-optimal solutions. The corresponding linear fuzzy membership function value 

of the 𝑗  objective function, 𝜇 ,  is defined as (Brka et al., 2015) 

 

                𝜇 = 1                                               𝐹 ≤ 𝐹𝐹 − 𝐹 𝐹 − 𝐹      𝐹 < 𝐹 < 𝐹0                                             𝐹 ≥ 𝐹                                  (4.1) 
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Here, for the  𝑗  objective functions, 𝐹  , the minimum value is denoted as  𝐹  and the 

maximum value is denoted as 𝐹 , and j takes a value of 1, 2, or 3 because there are three 

objectives (reliability, cost, and weight). The normalized membership function 𝜇  for each 

non-dominant solution is calculated as  

 
                                            𝜇 =  ∑ 𝜇 ∑ ∑ 𝜇                                                       (4.2)                                     

where 𝑁  is the number of objective functions and 𝑀 is the number of non-dominated 

solutions. 

 

4.5            Problem Modeling  
 

We propose HGA-based multi-objective optimization using a fuzzy function for solving 

multi-state reliability and availability optimization design problems. Considering the system 

design, we require the simultaneous optimization of more than one objective function. In this 

optimization problem, there are three objectives: (1) maximizing the system reliability, (2) 

minimizing the system weight, and (3) minimizing the system cost while satisfying the system 

requirements. All the components and the system considered have a range of different states, 

and the fuzzy function technique is used to obtain the system availability.  The notations used 

in our mathematical model for multi-objective optimization and multi-state reliability of RAP 

are summarized in Table 4.1. 

 
Table 4. 1 Notations used in our mathematical model. 

Abbreviations Details 
Rs Total reliability of the series–parallel system 

Cs Total cost of the series–parallel system 

Ws Total weight of the series–parallel system 

Cmax Limit of the cost constraint of the series–parallel system 

Wmax Limit of the weight constraint of the series–parallel system 

s Number of subsystems in the system 

i Index of subsystem, i ∈ (1, 2,…, s) 
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Table 4. 1 (Continued) 

j Index of component type in each subsystem 

k Index of redundancy level 

mi Total number of available component types in the ith subsystem 

Pi 
Minimum number of components in parallel required 

for the ith subsystem to function 

PN Maximum number of components in parallel that can be used in the ith 
subsystem (user-defined) 

Ni Set of component types, Ni = [1, 2,…, mi] 

xki 
Number of component types assigned at position k of the ith subsystem, 

xki ∈ (1, 2,…, mi,mi+1) 

x System configuration matrix 

ni(x) Total number of redundant components used in the ith subsystem 

n(x) Set of ni (n1, n2,…, ns) 

rij Reliability of the jth available component type in the ith subsystem 

cij Cost of the jth available component type in the ith subsystem 

wij Weight of the jth available component type in the ith subsystem 

Ri(x) Reliability components of the ith subsystem 

Ci(x) Total system cost of the ith subsystem 

Wi(x) Total weight of the ith subsystem 

 

Based on the notations and basic assumptions, the following performance metrics (namely, 

system reliability, designing cost, and system weight) are defined. 

(1) With regard to the system structure, the reliability of a series–parallel system (Rs) can be 

calculated as       

  

  𝑅  (𝑥) =  (1 − (1 − 𝑟 )                                               (4.3) 
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where s is the number of subsystems in the system, PN is the maximum number of components 

that can be used in parallel in the ith subsystem, ri is the reliability of the jth available component 

in the ith subsystem, and xki is the number of component types allocated at position k of the ith 

subsystem xki ∈ (1, 2,…,mi,mi+1). 

(2) The probable total system design cost (Cs) can be calculated as 

 

  𝐶  (𝑥) =  𝐶 (𝑥) = 𝐶                                                (4.4) 

 

where Ci is the cost of each available component in the ith subsystem and xki is the number of 

component types allocated at position k of the ith subsystem, xki ∈ (1, 2,…,mi,mi+1). 

(3) Furthermore, we can calculate the weight of the system (Ws) as 

 

  𝑊  (𝑥) =  𝑊 (𝑥) = 𝑊                                              (4.5) 

 

where Wi is the weight of each available component in the ith subsystem and xki  is the number 

of component types allocated at position k of the ith subsystem, xki ∈ (1, 2,…,mi,mi+1). Multi-

objective optimization refers to the solution of problems with two or more objectives to be 

satisfied simultaneously. Such objectives are often in conflict with each other and are 

expressed in different units. Because of their nature, multi-objective optimization problems 

usually have not one solution but a set of solutions, which are referred to as Pareto-optimal 

solutions or nondominated solutions (see Chankong et al. [19] and Hans [20]). When such 

solutions are represented in the objective function space, the graph obtained is called the Pareto 

front or the Pareto-optimal set. A general formulation of a multi-objective optimization 

problem consists of a number of objectives with a number of inequality and equality 

constraints.  

The mathematical model of the problem studied herein is formulated as a multi-objective 

optimization problem as follows:  
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         𝑀𝑎𝑥    𝑅  (𝑥)                                                                  (4.6) 

              𝑀𝑖𝑛     𝐶   (𝑥)                                                                  (4.7)                   

              𝑀𝑖𝑛     𝑊  (𝑥)                                                                  (4.8)      

                                          Subject to 

       𝐶  (𝑥) ≤   𝐶                                                               (4.9) 

              𝑊  (𝑥) ≤   𝑊                                                           (4.10)                   

              𝑃 ≤ 𝑛 ≤ 𝑃𝑁  𝑎𝑛𝑑                                                     (4.11)  

              ∀𝑖, 𝑖 =  1, 2, … , 𝑠                                                          (4.12)  

 

The first constraint is related to minimizing the system design cost (Cs), while the second 

constraint is related to minimizing the system weight (Ws). Cmax and Wmax are the upper bounds 

of Cs and Ws, respectively.  

Figure 4.2 shows a typical example of a series–parallel system configuration with k-out-

of-n subsystem reliabilities. The system is separated into s subsystems indicated by the index 

i (i = 1, 2,…, s), and each subsystem consists of one or several components organized in 

parallel. Further, Pi is the minimum number of active components required for the ith subsystem 

to function, i.e., the lower bound of the level of component redundancy for the ith subsystem. 

The upper bound of the level of component redundancy for the ith subsystem is denoted by PN. 

Thus, the system configuration can be defined as a PN × s matrix. For this matrix, the column 

index i (i = 1, 2,…, s) denotes the ith subsystem, and the row index k (k =1, 2,…, PN) establishes 

the position where a component will be used in the subsystem. RAP involves defining the 

number of components of each type such that the total system reliability will be maximized 

considering the given constraints, such as cost and weight. The content of the case study is 

shown in Figure 4.3.  

The objective of this test is to demonstrate the ability of the proposed algorithm in solving 

RAP as a gearbox reliability optimization problem, as shown by (Zhao et al., 2007), who 

assumed, in order to apply their method to all stages, that the minimum number of components 

is equal to 2 and the maximum number of components is equal to 5. In their study, the problem 

is to decide how many gear pairs and what types of gear pairs are to be selected for use in each 

stage, which will give the maximum reliability of the gearbox while minimizing both the 
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system cost and the system weight. Because it is assumed that all the gear pairs are active 

components in each stage, the gearbox is analogous to a series–parallel system with k-out-of-

n G subsystems. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. 2 Series–parallel system. 
 

4.6            Gearbox Case Study 
 

Table 4.2 summarizes the input data of component reliability, cost, and weight 

characteristics for gear pairs in each stage for reliability optimization of the series–parallel 

systems considered in this problem. The study is based on work conducted previously by (Zhao 

et al., 2007); however, they considered only one objective. Our system consists of 4 

subsystems, and each subsystem has a different design component type with similar or 

dissimilar characteristics, such as reliability, cost, weight, material, dimension, and 

transmission ratio. Here, we set Pi = 2 and PN = 5 in the gearbox for all stages. Each of the 

subsystems is represented by PN positions, with each component listed according to its 

reliability index. The objective is to maximize the system reliability with k-out-of-n subsystems 

connected in the series–parallel system under the given constraints. Table 4.3 lists the values 

of Cmax and Wmax. The equivalent scheme of this system is shown in Figure 4.4. 
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Figure 4. 3 Modeling of gear train system of series–parallel system. 
 
 

 

 

 

 

 

 

 

 

 

Figure 4. 4 Equivalent scheme for gear train system. 
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Table 4. 2 Input data for RAP (Zhao et al., 2007). 
 

Gear 

pair 

Stage 

Stage no 1 Stage no 2 Stage no 3 Stage no 4 

r1 c1 w1 r2 c2 w2 r3 c3 w3 r4 c4 w4 

1 0.855 3 11 0.743 5 9 0.828 9 15 0.74 6 10 

2 0.706 5 12 0.882 6 11 0.842 7 14 0.922 5 10 

3 0.931 5 9 0.874 2 14 0.779 7 11 0.855 11 15 

4 0.737 7 11 0.783 7 11 0.911 7 12 0.864 9 13 

5 0.805 6 14 0.9114 5 7 0.846 3 11 0.816 9 12 
 
 

 

In Figure 4.4, let Gl, G2, G3, G4,…, G20 represent the number of teeth of each gear. For 

each stage, the following equations are applicable: 

Gl + G4 = G2 + G5 = G3 + G6 (for stage 1 between input shaft 1 and shaft 2).  

G7 + G10 = G8 + G11 = G9 + G12 (for stage 2 between shaft 2 and shaft 3).  

Gl3 + G17 = G14 + G18 (for stage 3 between shaft 3 and shaft 4).  

Gl5 + G19 = G16 + G20 (for stage 4 between shaft 4 and output shaft). 

GP1: Gear pair [G1-G4], GP2: Gear pair [G2-G5], GP3: Gear pair [G3-G6], GP4: Gear pair 

[G7-G10], GP5: Gear pair [G8-G11], GP6: Gear pair [G9-G12], GP7: Gear pair [G13-G17], 

GP8: Gear pair [G14-G18], GP9: Gear pair [G15-G19], GP10: Gear pair [G16-G20]. 
 

Table 4. 3 System constraint values used. 

 Maximum constraint limit of cost and weight 

No. Cmax Wmax  No. Cmax Wmax 

1 40 115  10 65 150 

2 55 125  11 70 120 

3 65 130  12 70 130 

4 60 120  13 70 140 

5 60 130  14 70 150 
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Table 4. 3 (Continued) 

6 60 140  15 75 120 

7 60 150  16 75 130 

8 65 120  17 75 140 

9 65 140  18 75 150 

 

 

4.7            Results and Discussion 
 

In this study, we perform multi-objective optimization of a combinatorial redundancy 

allocation problem for a series–parallel system to solve the formulated reliability optimization 

multi-objective genetic algorithm (ROMO GA). The reliability optimization design using a 

multi-objective genetic algorithm for the redundancy allocation problem is presented to 

determine optimal solutions, where k (k-out-of-n) influences the cost function in series–parallel 

systems with multiple k–out-of-n subsystems. The objectives are to maximize system 

reliability and minimize system cost and system weight subject to cost and weight constraints. 

The constrained k values are considered for all subsystems; some subsystems may require more 

than one component to function, and the component types are also considered for each 

subsystem. By using a multi-objective genetic algorithm for solving optimization problems, 

we can obtain a number of optimal solutions constituting the Pareto-optimal set, and out of 

these solutions, we can evaluate the best one using an appropriate decision-making technique. 

The multi-objective optimization methodology is adopted to solve the RAP. Figure 4.5 shows 

the set of nondominated solutions for the last iteration of the optimization process, where 𝐶 = 40 and 𝑊 = 115. Each point in this figure represents an individual solution that 

has an optimal value of one objective function, and it cannot be improved further without 

deteriorating at least one of the other objectives. The fuzzy function is employed to define the 

solution that guarantees an optimal trade-off between the three objectives, and the result is 

shown in Figure 4.5. The employment of the fuzzy function guarantees consistency and 

optimality of the selected solution. Figure 4.6 shows the convergence between reliability, cost, 

and weight.  
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The optimal trade-off solution shown in Figure 4.7 is [1, 6, 6, 1, 1, 6, 3, 5, 5, 6, 6, 6, 5, 5, 

5, 6, 2, 2, 6, 6], and the number of components of each stage of the series–parallel system 

varies from 2 to 5. Therefore, from the 20 positions, the results are illustrated as follows: 

In the first subsystem, there are 3 components of type 1. 

In the second subsystem, there are 2 components of type 5 and 1 component of type 3. 

In the third subsystem, there are 3 components of type 5. 

In the fourth subsystem, there are two components of type 2. 

It can be seen that the proposed algorithm is able to obtain a set of uniformly distributed 

solutions along the Pareto front, as shown in Figure 4.8. 

Thus, a new hybrid metaheuristic genetic algorithm and fuzzy function have been successfully 

demonstrated in this study. Table 4.4 lists the optimal trade-off solutions obtained when 

different values of the optimization constraints are chosen. From this table, it can be seen that 

our approach is able to find system configurations with lower cost and weight without 

significantly degrading the overall reliability. 

 

 

 

  

 

 

 

 

 

 
Figure 4. 5 Overall best Pareto front obtained by multi-objective optimization and fuzzy 

function: cost vs. reliability. 
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Figure 4. 6 Convergence of reliability, cost, and weight. 
 

 

 

 

 

 

 

 

 

 

 

Figure 4. 7 Optimal trade-off point for reliability vs. weight vs. cost in 3D space. 
 

 

 

 

 

 

 

 

 

 

 

Figure 4. 8 Nondominated solutions obtained from the proposed algorithm for  
weight vs. cost vs. reliability in 3D space. 
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Table 4. 4 Optimization results for different cost and weight constraints. 

 
 

4.8            Conclusion 
 

In this study, we proposed multi-objective optimization of a multi-state reliability system 

for an RAP involving a series–parallel system, based on a genetic algorithm and fuzzy 

function. Unlike other methodologies, our methodology not only optimizes the cost, weight, 

and reliability of the system simultaneously but also objectively defines the system 

configuration that achieves the optimal trade-off between the design objectives. The results 

showed that our methodology can find better solutions in terms of cost and weight without 

significantly degrading the overall reliability. The computational results confirmed the 

robustness of the proposed algorithm and highlighted its potential for future application.  

No. Cmax Wmax 

Results obtained via multi-objective optimization of multi-state reliability system 

using HGA and fuzzy function 

Best configuration of 10 simulations Reliability Cost Weight 

1 40 115 1 6 6 1 1 6 3 5 5 6 6 6 5 5 5 6 2 2 6 6 0.9863 40 114 

2 55 125 3 1 3 6 6 5 6 5 6 5 5 6 5 5 5 2 6 6 2 2 0.9976 55 124 

3 65 130 6 3 6 3 3 5 5 6 5 5 5 5 6 5 5 2 2 2 6 6 0.9986 62 129 

4 60 120 3 3 6 3 6 5 6 3 6 5 6 6 4 5 4 6 2 6 2 2 0.9970 59 120 

5 60 130 3 6 3 6 3 6 5 5 5 6 5 5 6 5 5 6 2 2 6 2 0.9979 57 122 

6 60 140 6 3 6 3 3 5 6 3 5 5 5 6 5 5 5 2 6 2 2 6 0.9985 59 136 

7 60 150 1 3 3 6 1 5 5 5 3 6 5 5 5 5 6 2 6 2 6 2 0.9988 60 149 

8 65 120 1 6 3 6 3 5 6 5 5 6 6 4 4 6 4 2 6 2 2 6 0.9974 64 116 

9 65 140 3 3 6 6 3 5 5 5 6 5 5 5 5 5 5 6 6 2 2 2 0.9990 65 140 

10 65 150 3 3 6 6 3 5 5 5 5 6 5 5 5 5 5 6 6 2 2 2 0.9990 65 140 

11 70 120 3 6 3 3 6 5 5 6 5 6 4 6 4 6 4 6 2 6 2 2 0.9978 66 114 

12 70 130 6 6 3 3 3 5 5 5 6 5 5 5 5 6 4 6 2 2 2 6 0.9988 66 130 

13 70 140 3 3 3 6 6 5 5 6 5 5 5 5 5 5 5 6 2 2 2 6 0.9990 65 140 

14 70 150 3 6 3 3 6 5 5 5 6 5 5 5 5 5 5 6 2 2 2 2 0.9995 70 150 

15 75 120 6 3 3 6 3 5 6 5 5 5 5 6 6 4 4 2 6 6 2 2 0.9979 67 120 

16 75 130 3 6 3 6 3 5 6 5 5 5 5 5 6 5 4 2 2 2 6 6 0.9988 66 130 

17 75 140 6 3 3 3 3 6 5 5 5 5 4 4 5 6 5 6 6 2 2 2 0.9993 75 140 

18 75 150 3 3 3 6 6 5 5 5 5 6 5 5 5 5 5 6 2 2 2 2 0.9995 70 150 
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In the future, the proposed technique may be adopted for solving real-life decision-making 

problems in the form of interval-valued constrained optimization problems. In addition, it can 

be applied to various areas of engineering, management, and manufacturing. 
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5.1            Abstract 
 

In this study, we develop a new meta-heuristic-based approach to solve a multi-objective 

optimization problem, namely the reliability-redundancy allocation problem (RRAP). Further, 

we develop a new simulation process to generate practical tools for designing reliable series–

parallel systems. Because the RRAP is an NP-hard problem, conventional techniques or 

heuristics cannot be used to find the optimal solution. We propose a genetic algorithm (GA)-

based hybrid meta-heuristic algorithm, namely the hybrid genetic algorithm (HGA), to find the 

optimal solution. A simulation process based on the HGA is developed to obtain different 

alternative solutions that are required to generate application tools for optimal design of 

reliable series–parallel systems. Finally, a practical case study regarding security control of a 

gas turbine in the overspeed state is presented to validate the proposed algorithm.  

 
Keywords: Multi-objective optimization, reliability-redundancy allocation, overspeed, gas 

turbine, hybrid genetic algorithm  
5.2            Introduction 
 

Optimization of series–parallel systems is an important aspect of equipment design 

strategies. The optimized system characteristics, such as reliability, cost, weight, and volume, 

contribute toward designing the best machine. This approach is challenging because the 
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reliability needs to be maximized whereas the other objective functions need to be minimized. 

In practice, system reliability optimization is critical, and over the last two decades, 

considerable effort has been devoted toward the development of reliability criteria for 

quantifying the nature of generation, transmission, and circulation in composite system 

frameworks. To improve component reliability and implement redundancy while achieving a 

trade-off between system performance and resources, reliability design that aims to establish 

an optimal system-level configuration has long been considered an important advantage in 

reliability engineering. At present, system reliability is of considerable research significance, 

as engineering fields involve continual advancements in fixed systems and applications with 

increasing levels of complexity. Thus, it is imperative for production systems to perform 

satisfactorily during their expected lifespan. However, failure is an inevitable phenomenon 

associated with technological advancement of the equipment used in various industries. The 

reliability-redundancy allocation problem (RRAP) has been studied to optimize system 

reliability on the basis of the redundancy allocation problem (RAP) (Kuo and Wan, 2007). The 

RRAP has attracted considerable attention from the viewpoint of developing heuristic 

optimization algorithms. This paper focuses on an RRAP with the objective of maximizing 

system reliability under nonlinear constraints, such as system cost, weight, and volume. The 

RRAP has been shown to be an NP-hard problem, and various optimization approaches have 

been proposed to solve it. These methods, which are called meta-heuristic methods, have been 

widely researched and implemented. They can obtain feasible solutions within limited 

computing time. The main goal of RRAPs is to select the levels of redundancy and component 

reliability for maximizing and improving system reliability and performance. RRAPs are 

useful for designing not only systems that are taken together on a large scale but also systems 

produced in large-scale industrial operation using off-the-shelf components. 

 

5.3            Literature Review 
 

A reliability-redundancy optimization problem can be formulated using components and 

levels of redundancy to maximize some objective function, given system-level constraints on 

reliability, cost, and/or weight. The problem of maximizing system reliability through 

redundancy and component reliability selection is called the reliability-redundancy allocation 
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problem (RRAP). Reliability optimization has been the subject of several studies by Kuo et al. 

(2007), (2000), (1978). (Forsthoffer, 2005; Kundur, 1994; Hejzlar, 1993; Seebgrets, 1995) 

conducted studies on overspeed protection, such as analysis of the instability of steam turbines 

and analysis of the reliability of wind turbines. Dhingra (1992) developed an application of the 

reliability-redundancy optimization problem with regard to overspeed protection by using a 

multi-objective approach to maximize system reliability and minimize consumption of 

resources (cost, weight, and volume). This approach involves a goal programming formulation 

and a goal achievement method for generating Pareto optimal solutions. Control and overspeed 

protection for a gas turbine are nearly the same as those for a steam turbine. A gas turbine 

operates at a higher temperature than a steam turbine; hence, it requires closer control, called 

control sequencing. Sequencing allows automatic control of the gas turbine. Fetanat et al. 

(2012) proposed an optimal design for control and overspeed protection of gas turbine by 

means of reliability-redundancy optimization achieved using a new type of harmony search 

algorithm (HSA) known as the elitism Box-Muller harmony search algorithm (EBMHSA). 

Dhingra and Rao (1992) used goal programming and goal attainment formulations under 

fuzziness in a multi-objective reliability apportionment problem subject to several design 

constraints. Rao proposed three methods for finding the optimal solution of each objective 

function: a method for determining reliability, a method for minimizing cost, and a method for 

controlling weight. Rao’s approach has been developed to optimize redundant series–parallel 

systems, all components of which are time-dependent. The proposed model for simulation is 

the overspeed control system for a gas turbine engine. This model, proposed by Dhingra, is a 

combination of mechanical and electrical systems. Overspeed control is the first step against 

excessive speed. In general, the emergency reset of the system is designed independent of the 

overspeed control. Hence, high-reliability operation of control valves is considered. In the 

normal working mode, the control valves are opened sequentially (Kundur, 1994). Luus (1975) 

proposed a new non-linear integer programming method that considers the component 

reliability to be fixed. However, a more general problem is one where the optimal redundancy 

in each stage is determined to obtain the maximum system reliability. To solve the RRAP, 

several global optimization methods as well as heuristic and meta-heuristic methods have been 

proposed in the literature, including the Lagrangian multiplier method, branch and bound 
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method, and linear programming (Kuo and Hwang, 1978; Dhingra, 1992; Hikita et al., 1992; 

Gopal et al., 1978). These approaches do not guarantee exact optimal solutions but achieve 

reasonably good solutions for complex problems with relatively short computing time. 

Heuristic techniques, including genetic algorithms, require derivatives for all non-linear 

constraint functions, which are not derived easily because of the high computational 

complexity. Yokota et al. (1996) and Hsieh et al. (1998) applied genetic algorithms (GA) to 

mixed-integer reliability optimization problems. Zhao et al. (2012) developed a hybrid GA 

with a flexible allowance technique for solving constrained engineering design optimization 

problems. (Kanagaraj et al., 2013; Ghodrati and Lofti, 2012) developed a hybrid cuckoo search 

(CS)/GA algorithm to solve reliability-redundancy optimization problems and global 

optimization problems, respectively. Gen and Yun (2006) developed a soft computing 

approach for solving various reliability optimization problems. This method combines rough 

search techniques and local search techniques to prevent premature convergence of the 

solution. Zou et al. (2011) proposed a global harmony search algorithm for solving bridge and 

overspeed protection system optimization problems by combining the harmony search 

algorithm with concepts from particle swarm optimization. Different programming and 

evolutionary optimization techniques have been adopted to optimize different types of RRAPs, 

e.g., GA (Hsieh et al., 1998) and a new interpretation and formulation of the RRAP (Abouei 

et al., 2016) using a new mixed strategy and a modified version of the genetic algorithm 

(MVGA), which shows distinct advantages compared to traditional approaches. Afonso et al. 

(2013) proposed a modified version of the imperialist competitive algorithm (ICA) and 

demonstrated its capabilities by comparing its results with the best-known results of different 

benchmarks. Quy (1998) developed a new method to optimize a multi-objective model in 

certain mechanical systems by using the fuzzy multi-objective method. His approach is based 

on the algorithm proposed by Rao and Dhingra (1992), and he applied it to the modeling and 

analysis of the overspeed control system of a gas turbine engine. All the components of this 

model are time-dependent. The performance of the algorithm was verified by programmed 

simulation of the above-mentioned model. In summary, Dhingra (1992), Rao and Dhingra 

(1992), and Quy (1998) developed effective multi-objective fuzzy optimization techniques for 

engineering design. In particular, they adopted fuzzy programming, which is a powerful 
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technique for solving optimization problems with fuzzy parameters. However, the use of 

uncertain information for reliability allocation requires further investigation. Moreover, they 

treated component risk/cost functions as continuous. Thus, no general method for solving the 

component reinforcement problem with discontinuous risk/cost functions has been proposed 

thus far. In addition, the three above-mentioned studies did not adopt any random-search-based 

global optimization methods. In other words, the entire family of meta-heuristics that can 

efficiently solve highly nonlinear nonconvex mixed-integer optimization problems has been 

overlooked. The major drawback of these studies is that none of them has developed a practical 

tool for designing actual components with distinct physical properties, such as cost, weight, 

volume, and reliability. In this paper, we present a hybrid GA (HGA) approach based on the 

redundancy allocation problem to find the number of redundant components that either 

maximize reliability or minimize cost, weight, and volume under various resource constraints. 

The computational results of our approach are compared with those of previously proposed 

algorithms. 

 

5.4            Reliability-Redundancy Allocation Problems (RRAPs) 
 

In this study, a reliability-redundancy allocation problem of minimizing the multi-objective 

function [-f1, f2, f3] subject to several nonlinear design constraints can be stated as a nonlinear 

mixed-integer programming model. The multi-objective formulation was obtained by applying 

cost and weight constraints to an objective function. In other words, the general problem of 

reliability and redundancy is assigned to each of the subsystems such that the system reliability, 

cost, and weight are optimized. The problem is overspeed protection of a gas turbine system 

with a time-related cost function, and the multi-objective RRAP model is as follows: 

 𝑀𝑎𝑥. 𝑅𝑠 (𝑟, 𝑛) &  𝑀𝑖𝑛. 𝐶𝑠 (𝑟, 𝑛) &  𝑀𝑖𝑛. 𝑊𝑠 (𝑟, 𝑛)  
              𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:                   𝑔  (𝑟, 𝑛) ≤  𝑎  , 𝑗 = 1, . . . , 𝑚 1 ≤  𝑛   ≤  10 ,   𝑖 = 1, 2, … ,4  ,      𝑛  ∈ 𝑍  0.5 ≤  𝑟   ≤  1 − 10 ,         𝑟  ∈ 𝑟     
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Many designers have attempted to improve the reliability of manufacturing systems or 

product components for greater competitiveness in the market. Typical approaches for 

achieving higher system reliability include increasing the reliability of system components and 

using redundant components in various subsystems of the system (Kuo et al., 2000; Hsieh et 

al., 1998). 

 

5.5            Mathematical Formulation of the Problem  
 

The mathematical model of the optimization problem is given by the equations below. The 

system reliability, cost, weight, and product of weight and volume are constrained by the design. 

The resulting multi-objective reliability apportionment problem is as follows: find n and r that 

minimize the multi-objective function [-f1, f2, f3] subject to gj (r, n) ≤ aj, j =1,..., m. Figure 5.1 

shows a typical example of a series–parallel system configuration with k-out-of-n subsystem 

reliabilities 
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Figure 5. 1 General series–parallel redundancy system 

 

 

 

 

 

 

 

 

 

 

 

 

 

Notation 
ri Reliability of component in subsystem i 
ni Number of redundant components in subsystem i 
r, n Vectors of ri and ni 
Rs System reliability 
N Number of subsystems in the system 
f1 Objective function for system reliability 
f2 Objective function for system cost 
f3 Objective function for system weight 
gi (.) Constraint function #j 
aj Constraint limit #j 
m Number of constraints 
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5.6            Methodology Framework  
 

This study aims to propose a new algorithm that can be applied to optimization problems 

such that system reliability is maximized while system cost and system weight are minimized. 

The reliability, cost, and weight are subject to four nonlinear resource constraints, and the 

optimal levels of the reliability of component, ri, and the number of redundant components, ni, 

are to be determined at each stage i of the mechanical system.  

Before introducing the RRAP, we present the following assumptions and notations that 

have been used throughout the entire paper. The hybrid function allows the optimization 

algorithm to identify the solution of the redundancy problem that achieves the optimal trade-

off between the optimization objectives from several optimal solutions. We performed 10 

simulations for every experiment and used the best result among the 10 reliability values 

obtained. The best configuration of each point corresponding to the largest reliability value is 

given with the corresponding cost, weight, and weight values. 

 

Assumptions  

• The supply of components is unlimited. 

• The weight and volume of the components are known and deterministic. 

• All the redundant components of individual subsystems have different values, and every 

branch of the system has a different number of components. 

• The failure rate of the components in each subsystem is constant. 

• Failed components do not damage the system and are not repaired. 

• All redundancies are active: the hazard function is the same regardless of whether it is in use. 

• Failures of individual components are independent of one another but dependent on the 

number of working elements. 

 

As mentioned above, few studies have reported the use of HGA for reliability allocation 

optimization with time-dependent reliability. We need to check whether our approach of using 

only HGA can guarantee the location of the optimal solution and whether the final solution 

obtained by the proposed HGA is superior to that obtained by existing methods.  



73 

Figure 5.2 shows the flowchart of the proposed algorithm. The HGA procedures that 

implement our methodology are illustrated. The proposed algorithm involves the following 

steps:  

1. Define the functions of the design problem (Rs, Ws, Vs, and Cs). 

2. Define the nonlinear constraints. 

3. Define the lower bound and upper bound for ri and ni. 

4. Chose the optimization algorithm (fmincon, fminmax, GA, and HGA). 

5. Solve the optimization problem.  

6. Calculate the optimal values (Rs, Cs, and Ws). 

 

The hybrid GA is a combination of fmincon and GA. GA is used to find the global optima 

for optimization problems. "Fmincon" uses gradient information to facilitate rapid 

convergence. "HybridFcn" allows the GA to find the valley containing the global minimum. 

Then, fmincon is used to rapidly obtain the minimum of this valley. A hybrid function is an 

optimization function that runs after the GA terminates in order to improve the value of the 

fitness function. The hybrid function uses the final point from the GA as its initial point. 

This study consists of two parts. In the first part, we identify the approach for solving the 

problem by using MATLAB code and compare the results with previous results (Quy, 1998) 

to determine the number of redundant components in stage i and the reliability for each 

component. The second part involves a novel contribution: we develop a model for the entire 

system with the desired level of reliability. Specifically, we develop a simulation procedure 

and implement it with different numbers of components for each stage with different values of 

each component. We use this novel approach to determine the converged value of system 

reliability until we obtain the values of ni and ri corresponding to value of the maximum 

reliability. Toward this end, we need to perform optimization. For the general structure of the 

network, we fixed the system reliability to a certain level, i.e., greater than or equal to 0.95.  

We implemented a single-objective function with nonlinear constraints and tested it using 

two methods (ni is an integer in our problem). The results are summarized in Tables 5.1 and 

5.2. In addition, we implemented a multi-objective function. The initial results were obtained 

for four functions, and ri and ni were randomly set to evaluate each function. 



74 

                                     
 
 

Figure 5. 2 Flowchart of proposed simulation procedure. 
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Table 5. 1 Simulation results for single-objective function using 
fmincon optimization method 

Objective Stage Reliability Component Simulation Result 
Maximize  

System 
Reliability 

1 
2 
3 
4 

0.8998 
0.8680 
0.9439 
0.8728 

5 
6 
4 
6 

Rs= 0.9999 
Cs= 419.2534 
Ws= 541.2671 

Vs= 217 
Minimize  
System 

Cost 

1 
2 
3 
4 

0.5846 
0.5184 
0.6988 
0.5252 

5 
6 
4 
5 

Rs= 0.9439 
Cs= 36.0616 

Ws= 475.1981 
Vs= 195 

Minimize  
System 
Weight 

1 
2 
3 
4 

0.9534 
0.9313 
0.9770 
0.9351 

1 
2 
1 
2 

Rs= 0.9232 
Cs= 422.7688 
Ws= 60.8431 

Vs= 20 
Multi-

objective 
Functions 

1 
2 
3 
4 

0.8493 
0.7980 
0.9147 
0.8060 

3 
3 
2 
3 

Rs= 0.9740 
Cs= 109.3931 
Ws= 147.0485 

Vs= 57 
 
 

Table 5. 2 Simulation results for single-objective function using 
fminimax optimization method 

Objective Stage Reliability Component Simulation Result 
Maximize 
 System 

Reliability 

1 
2 
3 
4 

0.9001 
0.8685 
0.9431 
0.8732 

5 
6 
4 
6 

Rs= 0.9999 
Cs= 420.2802 
Ws= 541.2671 

Vs= 217 
Minimize 
 System 

 Cost 

1 
2 
3 
4 

0.5846 
0.5184 
0.6988 
0.5252 

5 
6 
4 
5 

Rs= 0.9439 
Cs= 36.0616 

Ws= 475.1981 
Vs= 195 

Minimize 
 System  
Weight 

1 
2 
3 
4 

0.9534 
0.9313 
0.9770 
0.9351 

1 
2 
1 
2 

Rs= 0.9232 
Cs= 422.7688 
Ws= 60.8431 

Vs= 20 
Multi-

objective 
Functions 

1 
2 
3 
4 

0.8493 
0.7980 
0.9148 
0.8059 

3 
3 
2 
3 

Rs= 0.9740 
Cs= 109.3850 
Ws= 147.0485 

Vs= 57 
 

First step: We implemented a multi-objective function, and we defined the general objective 

function as follows: 

f= 10 f1+ f2/400+f3/500; (new definition) 

The above-mentioned has three parts: reliability, cost, and weight. This equation 

maximizes reliability but minimizes cost and weight. It is a normalized form of the objective 

function because we consider the upper bound of each objective. We penalized the reliability 
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(with a value of 10) for greater emphasis.  In addition, we set the upper bounds for Cs and Ws 

as 400 and 500, respectively. Therefore, if we divide by these values and take the sum, we will 

always get a number less than one. Thus, we normalized the functions (f1, f2, and f3). 

Second step: We used fmincon and fminmax to solve the objective function. 

Third step: We used the GA toolbox and applied this algorithm to our single- and multi-

objective function problems. The results are summarized in Table 5.3.  

Fourth step: We applied the GA to a new type of multi-objective function and evaluated the 

results.  

Fifth step: We applied the global multi-objective GA to the problem and obtained 70 sets of 

Pareto optimal solutions. 

Last step: We applied HGA optimization to single- and multiple-objective functions on the 

basis of our first approach. The results are summarized in Table 5.4. 

Our multi-objective function aims to minimize cost and weight in the first approach. The 

results of our optimization give us ni and ri for each stage as well as for the entire system, as 

shown in the final result table. In this study, we performed optimization using GA and HGA. 

We used the same approach as that for obtaining a constrained minimum of a scalar function 

of several variables starting at an initial estimate. This is generally referred to as constrained 

nonlinear optimization or nonlinear programming (fmincon). We used different optimization 

approaches and finally used HGA. Specifically, we employed GA and fmincon to implement 

HGA using the first approach. by varying ri and ni to achieve the desired system reliability 

with the objective function. Further, we fixed the system reliability Rs to obtain a system with 

minimum cost and weight in order to determine the structure of our new design in the second 

approach, which minimizes the worst-case value of a set of multivariable functions, starting at 

an initial estimate. The values may be subject to constraints. This is generally referred to as 

the minimax problem (fminmax).  

We also varied the level of system reliability to show how we can select the desired system 

reliability; accordingly, we can change the structure of the entire system. In this step, we used 

GA and MATLAB toolbox. Here, we do not maximize the system reliability Rs but we want 

Rs = A, and we want to determine the system structure for achieving the minimum cost and 

weight. We assumed that ni is a continuous value. In this case, the first method of optimization 
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using fmincon is summarized in Table 5.5. In addition, we can see the result of the second 

approach of optimization, i.e., fminmax.  The results of our contribution are summarized in 

Tables 5.6, 5.7, and 5.8, which show the different values obtained after we fixed the system 

reliability.  

We tested various algorithms to identify the best ones, which were found to be GA or HGA. 

Table 5. 3 Simulation results for single-objective function using 
GA optimization method 

 

 

 

 

 

 

 

 
 

Table 5. 4 Simulation results for single-objective function using 
hybrid optimization method 

Objective Stage Reliability Component Simulation Result 
Maximize  

System 
Reliability 

1 
2 
3 
4 

0.8971    
0.8659    
0.9358    
0.8769 

5 
6 
4 
5 

Rs= 0.9999 
Cs= 381.5582 
Ws= 475.1981 

Vs= 195 
Minimize 
 System 

 Cost 

1 
2 
3 
4 

0.7997 
0.7896 
0.7154 
0.8393 

4 
4 
5 
4 

Rs= 0.9939 
Cs= 133.4582 
Ws= 346.2031 

Vs= 155 
Minimize 

System  
Weight 

1 
2 
3 
4 

0.9668 
0.8715 
0.9572 
0.9382 

2 
2 
2 
2 

Rs= 0.9769 
Cs= 440.5520 
Ws= 89.0309 

Vs= 32 
Multi-

objective 
Functions 

1 
2 
3 
4 

0.8536 
0.7977 
0.9189 
0.8133 

3 
3 
2 
3 

Rs= 0.9757 
Cs= 114.0175 
Ws= 147.0485 

Vs= 57 

 

Objective Stage Reliability Component Simulation Result 
Maximize  

System 
Reliability 

1 
2 
3 
4 

0.8902 
0.8603 
0.9500 
0.8806 

5 
6 
4 
5 

Rs= 0.9999 
Cs= 389.3556 
Ws= 475.1981 

Vs= 195 
Minimize 
 System 

Cost 

1 
2 
3 
4 

0.6106    
0.5550    
0.6509    
0.5465 

5 
5 
5 
5 

Rs= 0.9501 
Cs= 37.4312 

Ws= 471.1963 
Vs= 200 

Minimize  
System 
Weight 

1 
2 
3 
4 

0.8977 
0.9537 
0.9732 
0.8987 

2 
2 
1 
2 

Rs= 0.9511 
Cs= 414.0766 
Ws= 72.9236 

Vs= 23 
Multi-

objective 
Functions 

1 
2 
3 
4 

0.8504 
0.7956 
0.9167 
0.8049 

3 
3 
2 
3 

Rs= 0.9740 
Cs= 109.1462 
Ws= 147.0485 

Vs= 57 
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Table 5. 5 Simulation results using fmincon optimization method 
when system reliability Rs=A 

Objective Stage Reliability Component Simulation Result 
Minimize 
System 

Cost 

1 
2 
3 
4 

0.5846 
0.5184 
0.6988 
0.5252 

5 
6 
4 
5 

Rs= 0.9500 
Cs= 36.0616 

Ws= 475.1981 
Vs= 195 

Minimize  
System 
 Weight 

1 
2 
3 
4 

0.9534 
0.9313 
0.9770 
0.9351 

1 
2 
1 
2 

Rs= 0.9500 
Cs= 422.7688 
Ws= 60.8431 

Vs= 20 
Multi-objective 

Functions 
 (Cost+ 
Weight) 

1 
2 
3 
4 

0.8326 
0.7755 
0.9053 
0.7840 

3 
3 
2 
3 

Rs= 0.9500 
Cs= 91.7003 

Ws= 147.0485 
Vs= 57 

 
Table 5. 6 Simulation results using fminimax optimization 

method when system reliability Rs=A 

Objective  Stage Reliability Component Simulation Result 
Minimize 
System 

Cost 

1 
2 
3 
4 

0.5846 
0.5184 
0.6988 
0.5252 

5 
6 
4 
5 

Rs= 0.9500 
Cs= 36.0616 

Ws= 475.1981 
Vs= 195 

Minimize 
 System 
Weight 

1 
2 
3 
4 

0.9534 
0.9313 
0.9770 
0.9351 

1 
2 
1 
2 

Rs= 0.9500 
Cs= 422.7688 
Ws= 60.8431 

Vs= 20 
Multi-objective 

Functions 
 (Cost + 
weight) 

1 
2 
3 
4 

0.8325 
0.7755 
0.9054 
0.7841 

3 
3 
2 
3 

Rs= 0.9500 
Cs= 91.7228 

Ws= 147.0485 
Vs= 57 

 

Table 5. 7 Simulation results using GA optimization method 
when system reliability Rs=A 

Objective Stage Reliability Component Simulation Result 
Minimize 
System 

Cost 

1 
2 
3 
4 

0.6317 
0.5327 
0.6800 
0.5980 

5 
5 
5 
4 

Rs= 0.9500 
Cs= 37.5962 

Ws= 425.1462 
Vs= 182 

Minimize 
System 
Weight 

1 
2 
3 
4 

0.8925 
0.9369 
0.9720 
0.9440 

2 
2 
1 
2 

Rs= 0.9500 
Cs= 426.6653 
Ws= 72.9236 

Vs= 23 
Multi-objective 

Functions 
(Cost+ 

 Weight) 

1 
2 
3 
4 

0.8179 
0.7812 
0.8894 
0.7656 

3 
3 
2 
3 

Rs= 0.9500 
Cs= 83.8740 
Ws= 47.0485 

Vs= 57 
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Table 5. 8 Simulation results using hybrid optimization method 
when system reliability Rs=A 

Objective Stage Reliability Component Simulation Result 
Minimize 
 System  

Cost 

1 
2 
3 
4 

0.5846 
0.5184 
0.6988 
0.5252 

5 
6 
4 
5 

Rs= 0.9500  
Cs= 36.0616  

Ws= 475.1981 
Vs= 195  

Minimize 
 System  
Weight 

1 
2 
3 
4 

0.9534 
0.9313 
0.9770 
0.9351 

1 
2 
1 
2 

Rs= 0.9500  
Cs= 422.7688  
Ws= 60.8431 

Vs= 20  
Multi-objective 

Functions 
 (Cost + 
Weight) 

1 
2 
3 
4 

0.8326 
0.7755 
0.9053 
0.7840 

3 
3 
2 
3 

Rs= 0.9500 
Cs= 91.7003 

Ws=147.0485 
Vs= 57 

 

5.7            Hybrid Genetic Algorithm (HGA) for Multi-Objective Optimization  
 

Most previous studies have focused on several methods for solving redundancy 

optimization problems. In this study, we develop an approach by considering some aspects that 

have not been considered previously. The mathematical model represents the multi-objective 

HGA with a constraint-handling strategy for solving the proposed model. HGA is a meta-

heuristic method that is used to solve optimization problems efficiently. In this method, first, 

an initial set of random potential solutions including a number of particles is created. Each 

particle represents a solution of the problem and has a position and velocity that change in each 

iteration so that better solutions can be obtained. 

 

5.8            A Case Study: Overspeed Protection System for a Gas Turbine  
 

To evaluate the performance of the HGA in reliability optimization problems, overspeed 

detection continuously provided by the electrical and mechanical systems is considered in a 

case study. The benchmark considered is an overspeed protection system for a gas turbine. 

When overspeed occurs, it is necessary to cut off the fuel supply using control valves, i.e., the 

four valve controllers (V1–V4) must close. The control system is modeled as a four-stage 

series–parallel system, as shown in Figure 5.3.  

Each stage represents a controller that can be considered as a parallel system. All the 

components of the system have the same failure rate. The equivalent circuit of the overspeed 
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control system is shown in Figure 5.4. 

Here, vi is the volume of each component in subsystem i, V is the upper limit on the sum 

of the subsystem products of volume and weight, C is the upper limit on the system cost, and 

W is the upper limit on the system weight. The parameters αi and βi are constants representing 

the physical characteristics of each component in stage i. T is the operating time during which 

a component must not fail. The input parameters of the overspeed protection system for a gas 

turbine are listed in Table 5.9. 

         
Figure 5. 3 Block diagram of overspeed protection system for                                                

gas turbine with four valves           
Figure 5. 4 Equivalent circuit: four-stage series–parallel system 
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Table 5. 9 Design values of different parameters used in 
overspeed protection system of gas turbine 

 

 

 

 

 

 

 

 

 

 

 

 

5.9            Computational Results and Discussion  
 

We compared our solutions with those obtained in a previous study (Quy, 1998). From 

Table 5.10, it is clear that our HGA approach obtains better solutions for the series–parallel 

system compared to the other approaches presented in the literature. The best fitness and mean 

fitness of the system cost, system weight, and multi-objective functions are shown in Figures 

5.5, 5.6, and 5.7, respectively. 

The mathematical model used for calculating the objective function is employed to define 

the solution that guarantees an optimal trade-off between the two objectives, and the result is 

shown in Figure 5.8. Figure 5.9 shows the average distance between individuals. 

These figures show the number of generations in GA. In addition, the values of each 

objective function in each iteration are shown. The toolbox is employed to generate these 

figures, which can be used to determine the most suitable reliability level that minimizes the 

total cost, weight, and volume subject to various constraints. 

The runs of the HGA were continuously monitored throughout the generations (Figures 5.5, 

5.6, and 5.7). These plots show the best and mean fitness values of the fitness functions after 

100, 100, and 300 generations, respectively. For Figure 5.5, the best fitness is in the range of 

Number of stages 4 

Lower limit on Rs 0.95 

Upper limit on cost 400 

Upper limit on weight 500 

Upper limit on volume 250 

Operating time 1000 hours 

Stage 105αi βi vi wi 

1 1.0 1.5 1 6 

2 2.3 1.5 2 6 

3 0.3 1.5 3 8 

4 2.3 1.5 2 7 
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38.787 and the mean fitness is in the range of 38.795. For Figure 5.6, the best fitness is in the 

range of 55.9112 and the mean fitness is in the range of 55.9136. For Figure 5.7, the best fitness 

is in the range of 0.462836 and the mean fitness is in the range of 0.462929. From these plots, 

it can easily be observed that the fitness value converges toward the optimal value from 

generation to generation. 

Table 5. 10 Comparison of simulation results of optimal solutions of single- and multi-
objective function for series–parallel system using HGA with other results presented in the 

literature 
 

 Results given in Ref. (Quy, 1998) 
 

Results given by hybrid genetic 
algorithm 

Objective Stage Reliability Comp- 
onent 

Simulation 
 result 

Reliability Comp- 
onent 

Simulation 
result 

Maximize 
System 

Reliability 

1 
2 
3 
4 

0.866288 
0.850029 
0.918417 
0.913049 

6.0 
6.0 
4.0 
4.0 

Rs = 0.999881 
Cs = 381.12183 
Ws = 485.77850 

Vs= 188.0 

0.8971    
0.8659    
0.9358    
0.8769     

5 
6 
4 
5 

Rs= 0.9999 
Cs= 381.5582 
Ws= 475.1981 

Vs= 195 
Minimize 
System 

Cost 

1 
2 
3 
4 

0.559777 
0.599392 
0.685273 
0.703375 

6.0 
6.0 
4.0 
4.0 

Rs = 0.971340 
Cs = 54.472889 

Ws = 485.778504 
Vs = 188.0 

0.7997 
0.7896 
0.7154 
0.8393 

4 
4 
5 
4 

Rs= 0.9939 
Cs= 133.4582 
Ws= 346.2031 

Vs= 155 
Minimize 
System  
Weight 

1 
2 
3 
4 

0.864883 
0.944821 
0.905934 
0.880399 

3.0 
2.0 
2.0 
2.0 

Rs = 0.971597 
Cs = 295.029388 
Ws = 107.352295 

Vs = 370 

0.9668 
0.8715 
0.9572 
0.9382 

2 
2 
2 
2 

Rs= 0.9769 
Cs= 440.5520 
Ws= 89.0309 

Vs= 32 
Multi- 

Objective 
Optimization 

1 
2 
3 
4 

0.820009 
0.806433 
0.869349 
0.865680 

4.0 
3.0 
3.0 
2.0 

Rs = 0.971641 
Cs = 119.04067 

Ws = 177.234863 
Vs = 69.0 

0.8536 
0.7977 
0.9189 
0.8133 

3 
3 
2 
3 

Rs= 0.9757 
Cs= 114.0175 
Ws= 147.0485 

Vs= 57 
 

 

 

Figure 5. 5 Best fitness and 
mean fitness of the system 

cost 

 
Figure 5. 6 Best fitness and 
mean fitness of the system 

weight 

 
Figure 5. 7 Best fitness and 
mean fitness of the multi-

objective functions  
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Figure 5. 8 Overall best Pareto front obtained by multi-objective optimization and 
HGA: cost vs. weight and distance of individuals 

 

 

 

 

 

 

 

 

 

 

Figure 5. 9 Average distance between individuals 
 

The upper plot function in Figure 5.8 is the HGA Pareto function, which plots the Pareto 

front (limited to any three objectives) at every generation. This plot shows the trade-off 

between the two components of f. It is plotted in the objective function space. The lower plot 

shows the histogram distances of individuals. 

The upper plot in Figure 5.9 shows the average distance between individuals for each 

objective, which is a good measure of the diversity of the initial population that affects the 

performance of the HGA. In general, if the diversity is too high or too low, the HGA might not 
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perform well. Here, it is obvious that the distance does not reach extreme values, so it is 

considered that the performance is good.  The lower plot shows the histogram of the parents, 

which indicates the parents that contribute to each generation of children populated by each 

individual.  

We considered only the case of multi-objective optimization with the HGA technique for 

our contribution, and we generated/calculated the values of Ws, Cs, and Vs for 19 values of Rs 

= A (A = 0.9900, 0.9905, 0.9910, 0.9915, …, 0.9980, 0.9985, and 0.9990). The results are 

summarized in Table 5.11. On the basis of these tables, we plotted the curves ri for each stage 

and Cs, Ws, and Vs as functions of Rs. Further, we determined the mathematical equation of 

each of these curves. We used the nonlinear regression technique. If the utility of these 

equations is good, we can use them to estimate/calculate the values of r1, r2, r3, r4, Cs, Ws, and 

Vs for any value of Rs (Rs = 0.9900 to 0.9990). Thus, from a practical point of view, these 

equations are extremely useful. We also obtained the nonlinear regression fitted line plot, 

which can be used to investigate the relationship between two continuous variables, namely a 

response variable and a predictor variable. Thus, we can derive a regression equation and plot 

the regression line. For the copper expansion data, the method determines the type of 

relationship with these graphs and the line is fitted as per the requirement of data points. 

Minitab uses the Gauss-Newton algorithm, imposes a maximum of 200 iterations, and employs 

a tolerance of 0.00001 to achieve convergence. It displays a plot of the data overlaid with a 

curve illustrating the best-fitting equation based on our expectation function. The plot of the 

copper expansion data indicates that the specified rational polynomial is a good fit for the data. 

The points are fairly close to the curve and follow the curve without any systematic deviations 

from it. If we fit these models, differences will be observed in the desired values as well as in 

the corresponding points in the graph. This is because the fitted value is given, not the original 

one. Therefore, it is called the expected value or return of the model. The values of the 

parameters can be obtained using Minitab. We simply put the values of the parameters in the 

following regression equation.  

 𝐸𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑑 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 = 𝑎 + 𝑏 ∗ 𝑅𝑠 + 𝑐 ∗ 𝑅𝑠 + 𝑑 ∗ 𝑅𝑠 . With the parameter estimates 

in Table 5.13, we obtain r1New, r2New, r3New, r4New, CsNew, WsNew, and VsNew, as with 

each value of Rs obtained previously. Then, we obtain a scatter plot between Rs and r1New, 
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r2New, r3New, r4New, CsNew, WsNew, and VsNew, as shown in Figure 5.10. There will be non-linear parameters when we fit the models given previously.                  

 
 

 

 
 

 

 
 

 

 

Figure 5. 10 Scatter plot of r1, r2, r3, r4, Cs, Ws, and Vs vs. Rs - (Rs) = 0.9900–0.9990 
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Table 5. 12 Optimum solutions of HGA for multi-objective optimizations when                              
Rs = 0.990–0.9990 after approximating the values of ri to four decimals places and    

adjusting the values of ni to integer values 

  Reliability ri for the stage (1,2,3,4) Component ni Simulation Result 

Rs r1 r2 r3 r4 n1 n2 n3 n4 Cs Ws Vs 

0.9900 0.8549 0.8057 0.9178 0.8134 3 4 3 3 133.7041 198.6198 86 
0.9905 0.8555 0.8065 0.9182 0.8142 3 4 3 3 134.6502 198.6198 86 
0.9910 0.8561 0.8073 0.9185 0.8150 3 4 3 3 135.5692 198.6198 86 
0.9915 0.8567 0.8082 0.9189 0.8159 3 4 3 3 136.6158 198.6198 86 
0.9920 0.8574 0.8091 0.9193 0.8168 3 4 3 4 150.4994 230.2647 100 
0.9925 0.8582 0.8101 0.9197 0.8177 3 4 3 4 151.7831 230.2647 100 
0.9930 0.8589 0.8111 0.9201 0.8187 3 4 3 4 153.1025 230.2647 100 
0.9935 0.8597 0.8122 0.9206 0.8198 3 4 3 4 154.608 230.2647 100 
0.9940 0.8606 0.8134 0.9211 0.8209 3 4 3 4 156.2153 230.2647 100 
0.9945 0.8615 0.8146 0.9216 0.8221 3 4 3 4 157.9011 230.2647 100 
0.9950 0.8625 0.8160 0.9221 0.8234 3 4 3 4 159.7984 230.2647 100 
0.9955 0.8636 0.8175 0.9227 0.8248 3 4 3 4 161.912 230.2647 100 
0.9960 0.8648 0.8191 0.9234 0.8264 4 4 3 4 173.4566 257.3974 107 
0.9965 0.8661 0.8209 0.9242 0.8281 4 4 3 4 176.295 257.3974 107 
0.9970 0.8676 0.8229 0.9250 0.8301 4 4 3 4 179.5854 257.3974 107 
0.9975 0.8693 0.8252 0.9260 0.8323 4 4 3 4 183.4539 257.3974 107 
0.9980 0.8714 0.8280 0.9271 0.8350 4 4 3 4 188.3124 257.3974 107 
0.9985 0.8739 0.8314 0.9285 0.8383 4 4 3 4 194.5076 257.3974 107 
0.9990 0.8773 0.8370 0.9304 0.8428 4 4 3 4 204.0998 257.3974 107 

 

 

Table 5. 13 Explained variable with parameters when Rs = 0.9900–0.9990 

Explained 
variable r1N r2N r3N r4N CsN WsN VsN 

Parameter 

a -30601.9 -47481.2 -17136.2 -39862.7 -180794266 -212968023 -88910519 
b 92528.1 143535 51814.3 120529 546466156 643748903 268766970 
c -93254.8 - 144634 -52221.3 -121476 -550583510 -648634663 -270819890 
d 31329.5 48581.2 17544.1 40810.6 184911867 217854114 90963580 

 

The results obtained using multi-objective optimization with the HGA are summarized in 

Table 5.11. It can be seen that the number of components ni and the individual component 

reliability ri in various stages are different. However, in practice, ni must be an integer. 
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Therefore, must approximate the values of ri and adjust the values of ni to integer values. The 

new results with this approximation are summarized in Table 5.12. It can be seen that when 

the numbers of components in different stages, ni, are modified to integer values, the cost, 

weight, and volume of the system are reduced slightly. 

In this study, we must ensure that the number of simulations (n) for each time is sufficient to 

achieve convergence. To this end, we changed the value of n (0, 1, 2, 3, ..., 75), and for the 

simulation with different values of Rs, we can say that for all values of Rs, the simulation 

process converges at n=30, and for the case of Rs=0.9900, the converged values of r1, r2, r3, 

and r4 are 0.8724, 0.9567, 0.8838, and 0.8668, respectively, as shown in the Figure 5.11. In 

summary, we have discussed our novel approach, i.e., design of system reliability using the 

simulation process. The advantage of our approach is that the reliable regression curves have 

been generated using the proposed simulation process (Figure 5.10) and the utility of these 

curves for the system design is that they can help the designer to determine any level of 

reliability ri of the system components, the corresponding value of cost, weight, and volume 

depending on the chosen value of Rs. 

 

5.10          Conclusions  
 

In this study, we proposed a hybrid genetic algorithm and presented a novel system design 

for the entire system with the desired level of reliability. Thus, we achieved two objectives. 

First, we evaluated our approach to determine the robustness of our method by comparing it 

with another method in the literature. The results indicated that our approach yields better 

results. Second, we used this approach to develop a new simulation process for system design. 

We varied Rs and obtained different r1, r2, r3, r4, Cs, Ws, and Vs. Then, we plotted the curves, 

which are of great practical significance because they enable the designer of the system to 

determine the values of r1, r2, r3, r4, Cs, Ws, and Vs corresponding to the value of Rs. Using Rs 

= 0.9904, the designer could directly use the curves to obtain all the required values. Some 

values converge after several iterations in some cases. The performance and robustness of the 

proposed approach can easily be evaluated. Rapid convergence can be achieved using our 

model and approach, as shown in Figure 5.11. Moreover, robustness can be confirmed on the 
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basis of similar results obtained under different initial conditions, as shown in Figure 5.11. In 

addition, Figure 5.10 illustrates the practical utility of our approach, i.e., the designer can 

determine the reliability of each component corresponding to any value of system reliability 

Rs. 

Finally, we fixed the system reliability to obtain a satisfactory system with minimum cost 

and weight. Comparison of the simulation results indicates the superiority of HGA over other 

algorithms in terms of searching quality and robustness of the solution. The main advantage of 

the proposed multi-objective approach is that it offers greater flexibility to system designers 

for testing problems. Our HGA improves the objective function values and gives the best-

known solutions for benchmark suites. Thus, to the best of our knowledge, HGA is an effective 

algorithm for application to the RRAP. It is especially useful when the optimization problem 

under consideration is complex.   

 

 

 

 
 
 
 
 
 
 
 
 
 

Figure 5. 11 Scatter plot of r1, r2, r3, and r4 versus number of simulations (n) 
 

In the future, we will focus on extending our approach to other algorithms, such as hybrid, 

nonlinear, and mixed integer programming, to achieve better results. 

 

 





 

CONCLUSION 
 

With current technological developments in the functioning of systems, the improvement 

of effective solutions to technological problems is gaining importance because of the growing 

complexity of mechanical and electrical systems. Simultaneously, development schedules are 

decreasing in size while reliability requirements are becoming stringent. Several system-

reliability-optimization techniques are available, and these contain various deterministic, 

evolutionary, and metaheuristic approaches. The techniques that result in optimal solutions 

include dynamic, integer, mixed integer, and nonlinear programming, and heuristic methods. 

This thesis showed that different algorithms were applied to optimize system reliability by 

using only given cost and weight constraints. An algorithm was used to solve a difficult design 

problem containing many subsystems and constraint weight and cost, as discussed over five 

chapters in this thesis with the help of three new algorithms.  

 

Chapter 2 presented a new algorithm aimed to design the most effectively optimized system 

by using a multiobjective ant colony system (ACS), which is a metaheuristic approach (MA) 

used to solve reliability optimization challenges in series–parallel systems. The varying 

problems include the process of selecting components with multiple options and degrees of 

redundancies to maximize on benefits; this is dependent on the challenges of cost and weight 

at the system level. The proposed system increased reliability by using an MA to provide 

solutions for the reliability optimization problem in series–parallel and parallel–series systems. 

This method was aimed at solving redundancy, continuance, and combinatorial optimization 

problems in reliability engineering. 

 

Chapter 3 presented the first study, which used a series–parallel system-reliability-

optimization method with a genetic algorithm (GA) and statistical analysis. A metaheuristics-

inspired GA that performed a parallel search from various points was used as it was capable of 

evading being locked into a local optimal solution; this phenomenon typically occurs in 

conventional approaches that launch their searches from a single point. In the new method, 

penalty factors in the investigation were optimized by using a reliability fitness function. The 

article also reported that the shortcomings of conventional approaches can be resolved by using 
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probabilistic GA searches, following their previously successful applications for solving real-

world related RAP challenges. To examine multipoint capability, 10 simulations were 

performed in the study in Chapter 3 for each point in the design of the experiments. The 

findings demonstrated that an average of 10 reliability values were used to increase the 

accuracy of the subsequent statistical analysis. The authors determined the best configuration 

of every point that matched the largest reliability value in terms of cost and weight; thus, this 

approach was an improvement. The determination of the best combination and redundancy 

level was important for solving optimization issues through statistical analyses. GA parameters 

were successfully improved using specialized software used in the experimental analysis, 

leading to the best reliability and configurations. To summarize, we proposed a new approach-

based on metaheuristic technique that provided good results for the optimization of RAPs. 

Through this approach, we designed a practical tool for design of a series–parallel engineering 

system concerning in the level of series–parallel system. 

 

Chapter 4 presented the second study, which used a mathematical model for a series–

parallel system as the best optimization approach. The selected design and architecture 

incorporated a hybrid GA (HGA) with a flexible allowance technique and was used to address 

problems prevalent in limited engineering design optimizations. The system comprised four 

subsystems, each having a different design component type with similar or different 

characteristics, including reliability, cost, transmission ratio, material, dimension, and weight. 

The report indicated that every subsystem is represented by PN positions, with each component 

listed according to their reliability index. This highlighted the necessity of incorporating 

reliability allocation into system design, thus enabling design engineers to establish the 

reliability of a vector of subsystems and components to obtain the optimal overall reliability. 

The challenges of optimizing combinations in system design arise from a system where 

parameters such as cost, reliability, weight, and volume have already been identified. The 

multi-objective optimization methods available in the literature for this study provide a set of 

optimal solutions that cannot be improved further without degrading one or more of the other 

objective values. Generally, the designer chooses the solution that satisfies their needs from 

the optimal solutions set. However, the designer’s choice may not be objective and or the best 
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available solution owing to human nature. Thus, this study addressed this by presenting an 

optimization method that can objectively determine the solution that represents the optimal 

compromise between the optimization objectives. 

 

Chapter 5 presented the third study, which examined a nonlinear programming approach 

involving the optimal allocation of reliability and redundancy in series systems. The primary 

aim of this study was to address the issue of multiobjective fuzzy optimization, leading to an 

increase in system reliability and a reduction of overall costs. This approach described the use 

of reliability–redundancy optimization in overspeed protection by using a multiobjective 

approach to maximize system reliability and minimize the consumption of resources such as 

the cost, total weight, and volume. According to the report, the proposed approach involved a 

goal-programming formulation and a method for generating the Pareto optimal solutions, in 

which control and overspeed protection for a gas turbine are nearly identical to those for a 

steam turbine. A gas turbine operates at a higher temperature than a steam turbine; thus, it must 

be controlled closely using control sequencing. To summarize, we proposed a hybrid genetic 

algorithm and presented a novel system design for the entire system with the desired level of 

reliability. The designer can determine the reliability of each component corresponding to any 

value of system reliability Rs. The curves obtained in this study have great practical value and 

will enable designers of a system to determine the values of r1, r2, r3, r4, Cs, Ws, and Vs 

corresponding to the value of Rs. 

 

The studies in the three chapters examined the optimization of reliability of mechanical 

series–parallel systems. All of these studies face the same type of problem but we applied a 

different category of constraints in each one depending on the physical characteristics of the 

system. The three algorithms presented may have great industrial benefits as they offer greater 

flexibility to system designers for testing problems. The HGA improves the objective function 

values, yields the best-known solutions for benchmark suites, and is an effective algorithm for 

application to RRAPs. The approach is especially useful for complex optimization problems. 





 

RECOMMENDATIONS  

Optimization is important for all systems requiring reliability. This thesis recommends the 

use of an altered batch calculation for the dedupe ratio for recording deduplication as a 

perfection approach and information pressure technique. It is recommended that a changed 

batch calculation has a superior performance compared with a hereditary programming 

approach. The main challenges in system optimization is the selection of the best approach, 

which defines the best redundancy strategy, constituents, and redundancy level for each 

subsystem so as to capitalize on the system reliability under various system-level limitations. 

Mathematical modeling helps in gaining better understanding for GA and EP applications. 

Owing to its complexity, optimally solving reliability problems by applying conventional 

optimization tools is particularly challenging. GAs have the ability to deliver a good and fast 

enough solution, thus making them a good approach for future implementations.  

The scope of this research includes the following research topics that may be explored in 

the future. 

 

i) In this thesis, we addressed the optimization problems using a GA and we used the fitness 

function to perform the reliability optimization of a series–parallel system (Chapter 3). These 

problems can be solved by other evolutionary/hybrid algorithms. A statistical analysis was 

used to optimize the GA parameters and the GA was used to optimize the reliability of the 

series–parallel system. The objective is to determine the strategy of selecting the redundancy 

level for each subsystem to maximize the overall system reliability, subject to total cost and 

total weight constraints. We decided to use the design and statistical analysis of experiments 

to optimize two penalty factors in our reliability fitness function using the GA. A full factorial 

design was used with three levels. This classification allows us to determine the ranges of 

values of these two penalty factors, thereby giving the best values of reliability using GA. 

 

ii) In this thesis, the problem of multiobjective reliability optimization of a multistate system 

was formulated and solved by considering only three objectives: system reliability, cost, and 

weight. The proposed technique in Chapter 4 may be applied to real-life decision-making 
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problems in the form of interval-valued constrained optimization problems. In addition, it can 

be applied to various areas of engineering, management, and manufacturing. 

 

iii) For solving the problem in Chapter 5, we strictly focused on a reliability and 

optimization problem and attempted to solve these problems without extensively considering 

managerial implications in real industries or cases. Our simulation approach and results 

(curves) can be used as a tool for the optimal design of reliability systems for a level of system 

reliability. In the future, we will focus on extending our approach to other algorithms, such as 

hybrid, nonlinear, and mixed integer programming, to achieve better results. In addition, in the 

future, the extension of this work can lead to an integration of benchmark databases to test the 

proposed approach through simulations to determine different parameters of the case study 

used. The benchmark study would allow us to provide a comprehensive overview of various 

approaches to provide clear ideas about their capabilities and limitations and draw useful 

conclusions regarding robustness, efficiency, convergence, and accuracy of the considered 

methods. 

 
 

 



 

ANNEX I 

SUPPLEMENTARY EXPLANATIONS CONCERNING THE RESULTS OBTAINED 
AND PRESENTED IN CHAPTER 3 

 

This section contains additional information concerning article No. 1 in Chapter 3 to explain 

the results obtained from the Genetic Algorithm (GA) for the calculated optimal trade-off 

point. In this information, we present the best configuration results of our approach with the 

obtained optimal trade-off point. 

Maximum cost constraint = 70, maximum weight constraint = 150,  

Configuration =  3  3  6  3  6     5  5  3  6  1     4  5  6  5  4     2  2  2  6  1 

Reliability = 0.9991, Cost = 73, weight = 150, Fitness = 0.9991. 

The number of component designs with 4 stages having the best reliability are as follows: 

 S=4 

 i=1         PN=3 component type 3,  

 i=2         PN=2 component type 5, 1 component type 3, and 1 component type 1 

 i=3         PN=2 component type 4, and 2 component type 5 

 i=4         PN=3 component type 2, and 1 component type 1 

To provide an example, when we say i=1, PN= 3, it indicates the usage of component type 3 
for stage 1 as shown in Table-A I-1, which in this case would be 0.931; furthermore, this 
component must be repeated 3 times in stage 1, as shown in Figures-A I-1 and A I-2. A similar 
notation is used for the other stages. 

Table-A I-1 Series-parallel system input data 

Gear 
pair 

Stage 
1 2 3 4 

r1 c1 w1 r2 c2 w2 r3 c3 w3 r4 c4 w4 
1 
2 
3 
4 
5 

0.855 
0.706 
0.931 
0.737 
0.805 

3 
5 
5 
7 
6 

11 
12 
9 
11 
14 

0.743 
0.882 
0.874 
0.783 
0.9114 

5 
6 
2 
7 
5 

9 
11 
14 
11 
7 

0.828 
0.842 
0.779 
0.911 
0.846 

9 
7 
7 
7 
3 

15 
14 
11 
12 
11 

0.74 
0.922 
0.855 
0.864 
0.816 

6 
5 
11 
9 
9 

10 
10 
15 
13 
12 
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Figure-A I-1 shows the transfer of the gear pair from the gearbox to a series–parallel system, 

and Figure-A I-2 shows the model of the gear train system for a series–parallel system with 

the optimal trade-off. 

 

 

 

 

 

 

 

 
 

Figure-A I-2 Model of the gear train system for a 

series–parallel system with the optimal trade-off 

 
  

Figure-A I-1 Transfer of the gear pair of  

  the gearbox to a series–parallel system 



 

ANNEX II 

SUPPLEMENTARY EXPLANATIONS CONCERNING THE RESULTS OBTAINED 
AND PRESENTED IN CHAPTER 4 

 

This section supplements the results obtained from the Hybrid Genetic Algorithm (HGA) for 

the calculated optimal trade-off point obtained in article No. 2 in Chapter 4. Here, we present 

the best configuration results using Hybrid Genetic Algorithm with fuzzy function for the 

optimal trade-off point obtained.   

Maximum cost constraint = 70, maximum weight constraint = 150,  

Configuration = 3  6  3  3  6     5  5  5  6  5     5  5  5  5  5     6  2  2  2  2 

Reliability = 0.9995, Cost = 70, weight = 150, Fitness = 0.9995. 

The number of component designs with 4 stages having the best reliability are as follows: 

 S=4 

 i=1         PN=3 component type 3, 

 i=2         PN=4 component type 5, 

 i=3         PN=5 component type 5,  

 i=4         PN=4 component type 2. 

 

To provide an example, when we say i=3, PN= 5, it indicates the usage of component type 5 
for stage 3 as shown in Table-A II-1, which in this case would be 0.846; furthermore, this 
component must be repeated 5 times in stage 3 as shown in Figures-A II-1 and A II-2. A similar 
notation is used for the other stages. 

Table-A II-1 Series-parallel system input data 

Gear 
pair 

Stage 
1 2 3 4 

r1 c1 w1 r2 c2 w2 r3 c3 w3 r4 c4 w4 
1 
2 
3 
4 
5 

0.855 
0.706 
0.931 
0.737 
0.805 

3 
5 
5 
7 
6 

11 
12 
9 
11 
14 

0.743 
0.882 
0.874 
0.783 
0.9114 

5 
6 
2 
7 
5 

9 
11 
14 
11 
7 

0.828 
0.842 
0.779 
0.911 
0.846 

9 
7 
7 
7 
3 

15 
14 
11 
12 
11 

0.74 
0.922 
0.855 
0.864 
0.816 

6 
5 
11 
9 
9 

10 
10 
15 
13 
12 
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Figure-A II-1 shows the transfer of the gear pair from the gearbox to a series–parallel system, 

and Figure-A II-2 shows the model of the gear train system of a series–parallel system with 

the optimal trade-off. 

 

 

 

 

                                                   

 

 

 

 

 

 

 

 

Figure-A II-3 Equivalent scheme for gear train system with the optimal trade-off point. 

 

 
 

Figure-A II-1 Transfer of a gear pair of 

the gearbox to a series–parallel system  
 

Figure-A II-2 Model of the gear train system of a 

series–parallel system with the optimal trade-off 
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In Figure-A II-3, let Gl, G2, G3, G4,…, G32 represent the number of teeth of each gear. For 

each stage, the following equations are applicable: 

Gl + G4 = G2 + G5 = G3 + G6 (for stage 1 between input shaft 1 and shaft 2).  G7 + G11 = 

G8 + G12 = G9 + G13 = G10 + G14 (for stage 2 between shaft 2 and shaft 3). Gl5+ G20 = 

G16 + G21 = G17 + G22 = G18+ G23 = G19 + G24 (for stage 3 between shaft 3 and shaft 4).  

G25 + G29 = G26 + G30 = G27 + G31 = G28 + G32 (for stage 4 between shaft 4 and output 

shaft). GP1: Gear pair [G1-G4], GP2: Gear pair [G2-G5], GP3: Gear pair [G3-G6], GP4: Gear 

pair [G7-G11], GP5: Gear pair [G8-G12], GP6: Gear pair [G9-G13], GP7: Gear pair [G10-

G14], GP8: Gear pair [G15-G20], GP9: Gear pair [G16-G21], GP10: Gear pair [G17-G22], 

GP11: Gear pair [G18-G23] , GP12: Gear pair [G19-G24], GP13: Gear pair [G25-G29] , GP14: 

Gear pair [G26-G30], GP15: Gear pair [G27-G31], GP16: Gear pair [G28-G32]. 

 

The program balances three objectives (reliability, cost, and weight) at a time, as shown in 

Figure-A II-4, by finding the convergence of the optimal trade-off point that determines the 

optimal design configuration and maximizes system reliability, minimizes the total cost, and 

minimizes the system weight for a series-parallel system. This optimal trade-off point is shown 

in Figure-A II-5. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure-A II-4 Convergence of optimal trade-off point for reliability, cost, and weight. 
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Figure-A II-5 Optimal trade-off point for reliability vs. weight vs. cost in 3D space. 

 

The optimal trade-off solution shown in Figure-A II-5 is [3, 6, 3, 3, 6, 5, 5, 5, 6, 5, 5, 5, 5, 5, 

5, 6, 2, 2, 2, 2], with a maximum reliability of 0.9995, cost of 70, and weight of 150.  

   

 

 

 

 



 

ANNEX III 
 
 

SUPPLEMENTARY EXPLANATIONS CONCERNING THE RESULTS OBTAINED 
AND PRESENTED IN CHAPTER 5 

Here, we provide supplementary information to further explain the results obtained from the 

Hybrid Genetic Algorithm (HGA) in article No. 3 in Chapter 5. Herein, Figure-A III-1 presents 

the equivalent circuit in greater detail to denote the indexes of the subsystems and the 

component types in each subsystem. 

 

 
 
 
 
 

 

 

                  Figure-A III-1 Equivalent circuit: four-stage series-parallel system 
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Furthermore, we provide a brief explanation of the approaches used in Chapter 3. 
 

 Fmincon: it is used to find the minimum of a constrained nonlinear multivariable 

function of several variables starting from an initial estimate. 

 Fminmax: it is used to find a point that minimizes the maximum of a set of objective 

functions.  

 Genetic algorithm: it is used to solve difficult engineering problems for solving 

combinatorial optimization problems with large and complex search spaces.  

 Hybrid GA: it is a GA combined with fmincon to calculate initial values for the GA. It 

is also used to improve the ability of the GA to solve optimization problems efficiently. 

 
In Table-A III-1, we compared our solutions with those obtained in a previous study by Quy, 

N. (1998). From the table, it is clear that our HGA approach obtains better solutions for the 

series–parallel system than this approach. If we want to obtain the value of the reliability for 

multi-objective optimization in each stage in this table, the system should have 4 stages, as 

shown in Figure-A III-2. The first, second, third, and fourth stages contain 3, 3, 2, and 3 

components having identical reliability values of 0.8536, 0.7977, 0.9189, and 0.8133, 

respectively. 
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Table-A III-1 Comparison of simulation results of optimal solutions of single- and multi-
objective function for series–parallel system using HGA with other results presented in 
the literature 

  Results given in Ref. (Quy, 1998) Results given by hybrid genetic algorithm 

Objective Stage Reliability Component Simulation result Reliability Component Simulation result 

Maximize 
System 

Reliability 

1 
2 
3 
4 

0.866288 
0.850029 
0.918417 
0.913049 

6.0 
6.0 
4.0 
4.0 

Rs = 0.999881 
Cs = 381.12183 
Ws = 485.77850 

Vs= 188.0 

0.8971     
0.8659     
0.9358     
0.8769     

5 
6 
4 
5 

Rs= 0.9999 
Cs= 381.5582 
Ws= 475.1981 

Vs= 195 

Minimize 
System 

Cost 

1 
2 
3 
4 

0.559777 
0.599392 
0.685273 
0.703375 

6.0 
6.0 
4.0 
4.0 

Rs = 0.971340 
Cs = 54.472889 

Ws = 485.778504 
Vs = 188.0 

0.7997 
0.7896 
0.7154 
0.8393 

4 
4 
5 
4 

Rs= 0.9939 
Cs= 133.4582 
Ws= 346.2031 

Vs= 155 

Minimize 
System 
Weight 

1 
2 
3 
4 

0.864883 
0.944821 
0.905934 
0.880399 

3.0 
2.0 
2.0 
2.0 

Rs = 0.971597 
Cs = 295.029388 
Ws = 107.352295 

Vs = 370 

0.9668 
0.8715 
0.9572 
0.9382 

2 
2 
2 
2 

Rs= 0.9769 
Cs= 440.5520 
Ws= 89.0309 

Vs= 32 

Multi- 
Objective 

Optimization 

1 
2 
3 
4 

0.820009 
0.806433 
0.869349 
0.865680 

4.0 
3.0 
3.0 
2.0 

Rs = 0.971641 
Cs = 119.04067 

Ws = 177.234863 
Vs = 69.0 

0.8536 
0.7977 
0.9189 
0.8133 

3 
3 
2 
3 

Rs= 0.9757 
Cs= 114.0175 
Ws= 147.0485 

Vs= 57 

 

 

 

 

 

 

 

      

 

      

        

 

 

 

 

 
 

Figure-A III-2 Multi-objective result for the number of 

components transferred into the series–parallel system 
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            Figure-A III-3 Scatter plot of r4, vs. Rs - (Rs) = 0.9900–0.9990 
 

In Figure-A III-3, the reliability of each component corresponding to any value of system 

reliability Rs can be determined. This value r4 can be obtained from the equation. This can be 

used to aid specific designs; for example, if an engineer would like to obtain a system with an 

RS value of 0.9960, he can determine the value of reliability for r4 in Figure-A III-3 or r1, r2, 

r3, C1, W1, and V1 in Figure 5.10.  
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