
Event-Driven Multi-tenant Intrusion Detection System

by

Mohamed HAWEDI

MANUSCRIPT-BASED THESIS PRESENTED TO ÉCOLE DE
TECHNOLOGIE SUPÉRIEURE

IN PARTIAL FULFILLMENT FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

Ph.D.

MONTREAL, "OCTOBER,09, 2019 "

ÉCOLE DE TECHNOLOGIE SUPÉRIEURE
UNIVERSITÉ DU QUÉBEC

Mohamed Hawedi, 2019

This Creative Commons license allows readers to download this work and share it with others as long as
the author is credited. The content of this work cannot be modified in any way or used commercially.

BOARD OF EXAMINERS

THIS THESIS HAS BEEN EVALUATED

BY THE FOLLOWING BOARD OF EXAMINERS

M. Chamseddine Talhi, Thesis Supervisor
Département de génie logiciel et des TI,École de technologie supérieure ÉTS

Mrs. Hanifa Boucheneb, Co-supervisor
Department of Computer Engineering and Software Engineering, Polytechnique Montréal

M. Chakib Tadj, President of the Board of Examiners
Département de génie électrique, École de technologie supérieure ÉTS

M. Mohamed Faten Zhani, Member of the jury
department of software and IT engineering, École de technologie supérieure ÉTS

M. Jamal Bentahar, External Independent Examiner
Concordia Institute for Information Systems Engineering, Concordia University

THIS THESIS WAS PRESENTED AND DEFENDED

IN THE PRESENCE OF A BOARD OF EXAMINERS AND THE PUBLIC

ON "DEFENSE DATE"

AT ÉCOLE DE TECHNOLOGIE SUPÉRIEURE

FOREWORD

This thesis presents my research that was work has carried out between 2014 and 2019

under the supervision of Professor Chamseddine Talhi and Professor Hanifa Boucheneb.

The main goal of the research is to address and provide solutions to the security issues

related to cloud tenants.

The dissertation is organized in form of integrated articles. The articles are included in

their original published and submitted form; no changes have been added to them.

For this research work, three articles are included. The articles are inter-related as

they describe related solutions for different aspects of multi-tenant IaaS cloud. Separate

chapters are devoted to the background and the literature review. The three journals are

represented in Chapters 2, 3, and 4. Furthermore, in each article, a separate section is

devoted to the background and the related work. Also, a special review is presented on

the research problems and the contributions relevant to that particular work.

ACKNOWLEDGEMENTS

I would like to extend my sincere and heartfelt gratitude to everyone who has contributed

to making my dreams come true by making this thesis possible. Indeed, without their

support, this thesis would not have been achieved.

First of all, I would like to express my special appreciation to my advisors Professor

Chamseddine Talhi and Professor Hanifa Boucheneb for their continued support of my

Ph.D. studies and the related research. I am very grateful to you all. You gave me

enthusiasm, motivation, guidance and patience. You also helped me with immense

knowledge that enabled me to progress and to complete this thesis.

My special appreciation and thanks to Professor Chamseddine Talhi for providing his

tremendous guidance throughout this research. I also would like to express my sincere

gratitude for encouraging and guiding my research. Your immense knowledge and advice

on both my research as well as on my career have been invaluable. Dear Talhi, your deep

insights and fruitful discussions assisted me in reaching this stage. I will never forget

your constant encouragement and wonderful smile that left a deep impression on me and

always made me able to move forward and not give up. Really, you have been a great

mentor.

My deepest sense of gratitude to Professor Hanifa Boucheneb for all what she has done for

me. I really appreciate your integrated perspectives on research, motivation and support.

Thanks for inspiring me with positive words and blessings.

Many thanks also go out to Libyan Ministry of Higher Education and Scientific Research

for providing the financial support that made this work possible.

I would like to express my deep gratitude to the committee, Professor Chakib Tadj,

Professor Mohamed Faten Zhani, and Professor Jamal Bentaha, for their efforts and

insightful comments.

VIII

I am deeply indebted to my wife for everything she has given me and without her sincere

prayers, understanding and dedication this Ph.D. would not have been possible. Special

Thanks to my beloved children for cheering me up and bringing happiness to me.

I am deeply indebted to my beloved mother, father, brother and sisters for their sincere

prayers and unconditional support during these years.

Finally, a special thanks to all my friends. The time we spent together and the uncondi-

tional support are always remembered.

SYSTÈME DE DÉTECTION D’INTRUSION MULTI-LOCATAIRE
ORIENTÉ ÉVÉNEMENT

Mohamed HAWEDI

RÉSUMÉ

En raison de ses services créatifs offerts sur demande avec un bon rapport coût-efficacité
et fiabilité, le « cloud computing » a été utilisé par des multi-locataires. Ces locataires se
partagent, en effet, les ressources du Cloud, par exemple l’IaaS, le PaaS, le SaaS. Bien que
ces services soient facilement fournis aux locataires à la demande avec des investissements
d’infrastructure mineurs, ils sont considérablement exposés aux tentatives d’intrusion
parce que les services sont offerts sous l’administration d’une supervision diverse sur
Internet. Il est donc nécessaire d’avoir un mécanisme de sécurité capable de protéger
les Cloud multi-locataire. Dans ce contexte, le fournisseur de Cloud s’est sérieusement
efforcé de fournir des mécanismes de sécurité capables de protéger les ressources des
locataires. Cependant, avec toute la sécurité offerte, malheureusement, les exigences des
locataires ont été négligées. À partir de ces prémisses, nous proposons dans cette thèse un
nouveau mécanisme de sécurité appelé Système de détection d’intrusion multi-locataire
qui cible principalement l’IaaS du Cloud. La solution proposée comprend : (1) fournir un
système IDS optimisé qui, d’une part, permet aux locataires de sélectionner les services
de sécurité qui répondent à leurs besoins et, d’autre part, s’adapte automatiquement aux
changements (activation/désactivation des services de sécurité) qui se produisent dans les
environnements des locataires. (2) fournir un système de détection d’intrusion d’anomalie
capable de détecter les attaques intrusives et d’assurer l’extraction d’informations pré-
cieuses du réseau surveillé, qui seront utilisées pour générer automatiquement de nouvelles
signatures personnalisées. (3) fournir un IDS d’anomalie en temps réel orienté événement
capable de surmonter les limites de l’IDS traditionnel en permettant une mise à jour
continue de l’IDS d’anomalie pour détecter de nouvelles menaces. Il permet aux locataires
ayant les mêmes intérêts de partager les nouveaux classificateurs IDS générés, chose qui
permet d’optimiser les ressources et d’améliorer l’efficacité.

Mots-clés: Multi-locataire, exigences des locataires, système de détection d’intrusion
(IDS), optimisation de l’IDS, Orienté événement, génération de règles ou de signatures,
IDS d’anomalie, IDS en temps réel.

EVENT-DRIVEN MULTI-TENANT INTRUSION DETECTION SYSTEM

Mohamed HAWEDI

ABSTRACT

Due to the creative services offered on-demand with cost-efficiency and reliability, cloud
computing has been used by multi-tenant providers. The tenants share cloud resources,
for instance, the IaaS, PaaS, and SaaS. Although these services are easily provided to
tenants on-demand with minor infrastructural investment, they are significantly exposed
to intrusion attempts because the services are offered under the administration of diverse
supervision over the internet. Thus, there is a need to have a security mechanism that is
able to protect multi-tenant clouds. With this context, a cloud provider has to provide
security mechanisms capable of protecting the tenant’s resources. However, with all
existing security approaches, tenants’ requirements have been largely neglected. From
these premises, in this thesis, we propose a novel security mechanism named Multi-tenant
Intrusion detection System that targets primarily the IaaS cloud. The proposed solution
involves: (1) providing an optimized IDS system that first enables tenants to select
the security services that meet their needs and second, that automatically adapts to
the changes (activating/deactivating the security services) that occur in the tenants’
environments. (2) providing an anomaly-intrusion detection system that is capable of
detecting intrusive attacks and ensuring the extraction of valuable information from the
monitored network that is used to automatically generate new customized signatures. (3)
providing an event-driven real-time anomaly IDS that is able to overcome the limitation
of the traditional IDS by enabling continuous update to the anomaly IDS to detect new
threats. It enables tenants who have same interests to share new generated anomaly IDS
classifiers, which they use to detect new threats.

Keywords: Multi-tenant, Tenant Requirements, Intrusion Detection System (IDS),
Optimize IDS, Event-driven, Signatures or Rules generation, Anomaly IDS, Real-time
IDS

TABLE OF CONTENTS

Page

INTRODUCTION .. 1
0.1 Overview . 1
0.2 Problem Statement .4
0.3 Research Aims and Objectives .6
0.4 Research Scope .7
0.5 Methodology .7
0.6 Technical Contributions . 10
0.7 Publications . 11
0.8 Thesis Organization . 12

CHAPTER 1 BACKGROUND AND LITERATURE REVIEW 13
1.1 Cloud Computing . 13

1.1.1 Fundamental concept of Cloud computing . 13
1.1.2 Definition of Cloud Computing . 13
1.1.3 Related Technologies . 13
1.1.4 The architecture of cloud computing . 14
1.1.5 Cloud Computing Business Model . 16
1.1.6 The deployment models of Cloud Computing: . 17
1.1.7 Features of the Cloud Computing . 18
1.1.8 Cloud Services Providers . 19

1.2 Security Challenges . 23
1.2.1 Availability . 23
1.2.2 Confidentiality . 24
1.2.3 Privacy . 25
1.2.4 Data Integrity . 25
1.2.5 Audit . 26

1.3 Attacks Classification . 26
1.4 Intrusion Detection System(IDS) . 28

1.4.1 Types of intrusion detection system . 28
1.4.2 Intrusion detection techniques . 30
1.4.3 IDS Components and Architecture . 31
1.4.4 IDS Signatures Rules . 32

1.5 Cloud orchestration . 33
1.6 Machine Learning Algorithms . 33
1.7 Literature Review . 34

1.7.1 Signature based Detection Approaches . 35
1.7.2 Collaborative Approaches . 38
1.7.3 Anomaly based Detection Approaches . 42
1.7.4 Hybrid Detection Approaches . 45

XIV

CHAPTER 2 ARTICLE 1: MULTI-TENANT INTRUSION DETECTION
SYSTEM FOR PUBLIC CLOUD TENANTS(MTIDS) 49

2.1 Introduction . 50
2.2 Motivation . 53
2.3 Background and Related Work . 56

2.3.1 Fundamental concept of Cloud computing . 57
2.3.2 Intrusion detection system(IDS) . 58

2.3.2.1 Intrusion detection techniques . 60
2.3.3 Related Work . 60

2.4 Cloud Tenants Requirements and Perspectives . 65
2.5 Cloud Tenant Topology Scenarios . 66
2.6 MTIDS Architecture . 68

2.6.1 MTIDS Mechanism . 73
2.6.2 OIDS Process Flows . 75

2.6.2.1 Definition of sets . 75
2.6.2.2 Definition of relations . 76

2.6.3 Optimized IDS (OIDS)algorithms . 78
2.7 Implementation and evaluation results . 81

2.7.1 Network Architecture Setup . 82
2.7.2 Workload . 84
2.7.3 Finding . 86

2.8 Discussion and Future Work . 90
2.9 Conclusion . 92

CHAPTER 3 ARTICLE 2: MULTI-TENANT ANOMALY INTRUSION
DETECTION SYSTEM(MAIDS) . 95

3.1 Introduction . 95
3.2 Related Work . 99
3.3 Cloud Tenant Requirements . 102
3.4 MAIDS Architecture . 104

3.4.1 The MAIDS Mechanism . 110
3.5 Implementation and Evaluation Results . 112

3.5.1 Anomaly IDSs Training and Validation . 112
3.5.2 Network Setup Scenarios . 114
3.5.3 Finding . 118
3.5.4 Discussion . 124

3.6 Conclusion and Future Work . 125

CHAPTER 4 ARTICLE 3: COLLABORATIVE REAL-TIME INTRUSION
DETECTION SYSTEM (CRIDS) . 127

4.1 Introduction . 127
4.2 Related Work . 131

4.2.1 Anomaly Based Detection Approaches . 131

XV

4.2.2 A hybrid IDS Approaches (Anomaly-Based & Signatures-Based
Detection) . 132

4.2.3 Collaborative IDS Approaches . 133
4.3 Cloud Tenant Requirements . 135
4.4 Proposed Approach . 137

4.4.1 CRIDS Mechanism . 142
4.5 System Evaluation . 143

4.5.1 Environment setup . 144
4.5.2 Data-Set Creation and Labeling . 145

4.5.2.1 Labeling Data Set Traffic . 146
4.5.3 Performance Metrics . 148
4.5.4 Experimental Results . 149

4.5.4.1 Experiments1 : Evaluate the performance of CRIDS
and then compare the performance with that of an
anomaly IDS . 149

4.5.4.2 Experiments2: Measuring the Latency . 153
4.6 Discussion . 153
4.7 Conclusion and Future work . 154

CONCLUSION AND RECOMMENDATIONS . 155

BIBLIOGRAPHY .. 158

LIST OF TABLES

Page

Table 2.1 Ex.MTIDS Activation/Deactivation Policies . 74

Table 2.2 Ex.Security Services . 75

Table 2.3 Description of Virtual instances deployed on AWS.. 84

Table 2.4 Rules Sets . 84

Table 3.1 Broker Policy. 109

Table 3.2 Description of the Deployed AWS instances . 111

Table 3.3 (CIDDS Set Attributes) Ring et al. (2018) . 114

Table 3.4 Traffic Time . 119

Table 4.1 Broker Policy to achieve sharing interests between tenants. 141

Table 4.2 Data sets Traffic Type. 145

LIST OF FIGURES

Page

Figure 0.1 Multi-tenant Intrusion Detection System(MTIDS) Architecture8

Figure 0.2 MAIDS Architecture . 10

Figure 0.3 CRIDS Architecture . 11

Figure 1.1 Cloud Computing Architecture Overview.(Zhang et al., 2010) 15

Figure 1.2 GrepTheWeb on AWS .. 20

Figure 1.3 OpenStack Architecture. 21

Figure 1.4 Mosaic API . 22

Figure 1.5 Cloud Computing Models . 30

Figure 1.6 IDS Components and Architecture . 31

Figure 2.1 AWS instance cost . 54

Figure 2.2 AWS Access Control List Example . 57

Figure 2.3 Cloud computing Models . 58

Figure 2.4 Cloud Scenarios (AWS based vision) . 67

Figure 2.5 Multi-tenant Intrusion Detection System(MTIDS) architecture 69

Figure 2.6 Optimized IDS Controller Process. 69

Figure 2.7 MTIDS Mechanism . 72

Figure 2.8 Network Architecture. 82

Figure 2.9 Network Architecture. 86

Figure 2.10 Compares CPU Consumption between Snort vs OIDS 87

Figure 2.11 Compares CPU Consumption between Snort vs OIDS 88

Figure 2.12 CPU Consumption of the OIDS vs Snort . 91

Figure 3.1 Cloud Tenant Security Preferences . 102

XX

Figure 3.2 MAIDS Architecture . 104

Figure 3.3 Broker Mechanism . 110

Figure 3.4 The MAIDS Mechanism. 111

Figure 3.5 Network Architecture Set-up Scenario-1 . 113

Figure 3.6 Network Architecture Setup Scenario-2 . 115

Figure 3.7 Comparison of latency 1 subscriber and 1 publishers 121

Figure 3.8 Comparison of latency 1 subscriber and 3 publishers 122

Figure 3.9 Broker CPU Consumption . 123

Figure 3.10 Broker Latency Performance . 123

Figure 4.1 Tenant Security Requirement . 136

Figure 4.2 The Architecture of CRIDS . 138

Figure 4.3 DC Process in collaboration with Data Transmitter 139

Figure 4.4 Classifiers Model Broker Mechanism . 141

Figure 4.5 The mechanism of the CRIDS . 142

Figure 4.6 Network Architecture Set up. 143

Figure 4.7 Comparison of Accuracy between CCRIDS based (SVM, DT,
and RF) and traditional anomaly IDS . 150

Figure 4.8 Comparison of Recall between CCRIDS based (SVM, DT, and
RF) and traditional anomaly IDS . 151

Figure 4.9 Comparison of Latency of CRIDS Models . 152

LIST OF ALGORITHMS

Page

Algorithm 2.1 Tenant-Security-Requirements MSR < Key,V alue >, SRQt
) . 78

Algorithm 2.2 ActivateAdaptationR (MSR, SRQt,SRt). 79

Algorithm 2.3 DeactivateAdaptationR (MSR, SRQt,SRt, ReqPriod) 79

LIST OF ABREVIATIONS

ETS École de Technologie Supérieure

ASC Agence Spatiale Canadienne

IDS Intrusion Detection System

VMM Virtual Machine Monitor

VM Virtual Machine

NIDS Network Intrusion Detection System

HIDS Host-based Intrusion Detection System

AWS Amazon Web Services

VPC Virtual Private Cloud

TC Traffic Classifier

ML Machine Learning

NN Neural Network

DOS Denial-of-service

DDOS Distributed Denial-of-service

CIDDS Coburg Intrusion Detection Data Sets

CSP Cloud Service Providers

DT Decision Tree

RF Random Forest

SVM Support Vector Machine

XXIV

MTIDS Multi-tenant Intrusion Detection System

OIDSC Optimized IDS Controller

OIDS Optimized Signature IDS

TSRS Tenant Security Requirements Supervisor

OAE Optimized Analyzer Engine

AID Anomaly IDS

NBA Network Behavior Analyzer

OIDS Optimized Intrusion Detection System

MAIDS Multi-tenant Anomaly-based Intrusion Detection System

RP Rule Publisher

RG Rule Generator

TC Traffic Classifier

RH Rule Handler

INTRODUCTION

0.1 Overview

Cloud computing has emerged as the technology that enables access to computing resources

such as networks, servers, storage, applications and service on-demand. Cloud computing

changes the perspective toward inventing, deploying, scaling, updating, maintaining, and

paying for information technology (IT) services. As a result, it has grown rapidly along

with the trend of IT services. Cloud services are elastically offered over the Internet,

enabling tenant to comfortably perform their daily jobs wherever they are. Tenant is

a term that is commonly used to denote a client that uses a particular service from a

cloud computing environment to satisfy an information technology (IT) need. The client

might be an individual, an organization, or a business unit (Magar, 2012). With this

regard, multi-tenancy concerns the concept of sharing or using the same set of resources

by multiple clients. For instance, different companies use Cumulus to host a number of

instances for deploying a number of customer-facing applications. In this case, Cumulus

is considered a multi-tenant environment (Magar, 2012). These companies might have

different units or branches (e.g., sales, and marketing business units) where they provide

different services; hence, deploying different IaaS topologies.

Cloud computing allows tenants to decrease the cost, through pay-per-us as well as raises

efficiency by offering different ways of consuming services by utilizing infrastructures of

computing in a useful supplementary manner and a business paradigm for marketing the

computing resources (Ficco et al., 2012). In other words, the cloud computing model

infrastructure-as-a-Service (IaaS) has become an acceptable solution that allows tenants

to rent their hardware in the form of virtual machines (VMs)(Almorsy et al., 2011). Thus,

in the cloud, tenants are not required to purchase physical hardware, but only pay for

use of the services.

2

Despite the significant advantages of cloud computing, security is a big challenge due to

the distributed nature of the cloud computing environments. In addition, cloud resources

become more vulnerable as they are presented over Internet, which, unfortunately makes

them an attractive target for abuse; and thus an area of vulnerability (Zaman, 2009).

Simultaneously, the tools used by the intruders or exploiters have been substantially

improved along with advances in information technology.

This raised many questions for organizations regarding the safety of information when

their data is transferred to the cloud.

Tenants need an adequate security safeguard to satisfy their needs or requirements. From

a tenant’s perspective, the security offered by the cloud provider is not well-trusted as the

same hardware and hypervisor software are shared by all the VMs, which opens up the

possibility for a compromised and exploited VM to compromise the other hosted VMs

or even the hypervisor Ibrahim et al. (2011). In addition, tenants are not well-informed

on the actual security protection level assured by the cloud provider to the hosted VMs.

Also, since price is considered as an important aspect for choosing a security service

provider, cloud security providers need to provide a security mechanism that is capable of

delivering better security along with the cost reduction feature.

The cloud providers themselves do not have information about the contents of the VMs,

because those VMs are run, controlled, and owned by the tenant. In simple terms, because

cloud providers are not conscious of the architecture of the hosted services, they are not

able to provide effective security controls. Therefore, from providers’ perspectives, the

hosted VMs cannot be trusted to host their supported security software, since the VMs

can be compromised and exploited.

3

Collaboration, which is a way of allowing cloud providers to communicate with their

tenants, is imperative to build trust as well as to improve the security. Collaboration

allows both cloud providers and tenants to exchange knowledge regarding security, which

will result in reducing the impact of security threats. Moreover, collaboration enhances

the capability of the provider to meet the security requirements of their tenants efficiently.

Thus, a new framework aiming at enhancing cloud computing security by taking into

consideration the perspectives of both the cloud tenants and cloud providers is required.

Information security in the cloud plays a vital role in attracting more and more tenants

to migrate their resources to the cloud as it is mainly targeted at preventing unauthorized

users from accessing, using, disclosing, destructing, modifying or disrupting companies’

data.

Because of this, intrusion detection systems (IDS) has been proposed, developed and

used by both academic researchers and industrial groups to monitor networks and to

raise alarms over suspicious activities; hence, to combat the rising number of attacks and

to safeguard sensitive information. An IDS collects and analyzes incoming/out-going

traffic within a host or a network to identify potential security breaches that can include

attacks from outside/inside an organization. The IDS is designed to provide a defense

layer against illegitimate users by sensing attacks and raising alerts. IDS-based systems

have become essential security mechanisms for securing cloud computing environments

since it is not possible to prevent all cyber-attacks (Tan et al., 2014).

Although several innovative approaches and new models based on IDS have been proposed

recently; they are still unable to provide an appropriate security mechanism that is able

to overcome many shortcomings including: meeting the tenant’s security requirements,

reducing the cost, generating customized detection signatures, and enabling advance detec-

tion by sharing signatures between tenants based on their preferences. Furthermore, cloud

4

tenants want to have an optimized security arrangement that meets their requirements as

they deploy or have different architectures on top of the cloud.

In this thesis, we aim to overcome the aforementioned shortcomings by developing a multi-

tenant intrusion-detection framework that enables cloud tenants to exchange relevant

information based on their interests by sharing their findings in real-time. Consequently,

they can adapt their respective infrastructures and mechanisms to better reach their

security objectives. These extensions are designed and implemented as collaboration

functionality that will be integrated into the selected framework.

0.2 Problem Statement

Cloud providers (CPs) fail to deliver a high-quality security control as they are not

aware of the architecture of the hosted service (Almorsy et al., 2016). Since CPs provide

their services to different tenants, they are faced with a lot of changes to their security

requirements. The communication between CPs and tenants should be established based

on negotiation and agreement before applying any security properties. This communication

is a major challenge as there is no standard regulation in terms of the notations for security

specifications that can be employed by both CPs and tenants to represent their offered or

required security properties.

Basically, the security provided by cloud providers is very limited to securing cloud

infrastructure and cloud platform services including the physical security of the data-

center, network infrastructure, virtualization platform and infrastructure (Demchenko

et al., 2017). As an example, Amazon Web Service (AWS), an IaaS provider, states that

tenants are responsible for securing their VMs as they are allowed to run any operating

system (OS) or modify its services (Shawish & Salama, 2014). In the AWS public

cloud, tenants are responsible for securing amazon machine instances (AMI), the OS,

5

applications, and data including data in motion, data at rest, and data stores as well as

credentials, policies and configuration. Additionally, the tenant is specifically responsible

for complying with the acceptable use policy (AUP), ensuring the correct use of the

cloud platform, updating security, and patching the guest OS and installed applications

(Demchenko et al., 2017).

This raises many questions around the security provided by CPs. One critical issue

is when an insider attacks occur; for example, when a cloud client abuses the cloud

computing power and storage capacity or attempts to attack outside the cloud. According

to (Patel et al., 2013), Amazon Elastic Compute (EC2) was used by an attacker — an

AWS customer — to attack Sony’s online entertainment systems. Millions of customer

accounts were compromised, which is considered as the biggest breach of data in the

United States.

Meeting the tenant’s security requirements is a serious impediment for CPs. As mentioned

earlier, the security mechanisms offered by CPs do not take into consideration the different

needs of the tenants as they provide the same security mechanism for all the tenants.

For instance, some providers use a firewall to block external attacks while others use

Access Control Lists (ACLs) on gateway routers (Adil & Ijaz, 2015). In fact, each tenant

needs security policies based on his/her requirement. Thus, a network security system is

individually needed for each tenant which secures them based on their needs. Another

critical issue is cost management in terms of the security offered to the tenant. In some

cases, the requested security may not be used for a period of time. As an example,

let us assume that a tenant requests some protection against DoS, DDOS, and SQL.

After a period of time, this tenant has changed his network topology by terminating the

database server or it has been discovered that the traffic related to the database was

not received. Therefore, based on this situation, the SQL security mechanism should be

6

temporally suspended to reduce resource consumption costs. Tenants impose their own

special requirements to protect their VMs.

0.3 Research Aims and Objectives

This research is aimed toward proposing some security services in IaaS cloud. In particu-

larly, it provides an adaptive intrusion-detection system for cloud tenants. The main aim

of this study is to design and build a multi-tenant intrusion-detection-system framework

that reduces overhead cost and provides a robust defense mechanism. The proposed work

can cope with the dynamic nature of the cloud networks where information and the data

within them are continuously changing. This enables an accurate and prompt intrusion

detection. The proposed research will have a significant influence on the security of cloud

computing industry through which we can expect increasing trust and paving the way for

attracting more organization to migrate their resources to the cloud.

To summarize, we seek to meet the following sub-objectives:

- Present and implement a multi-tenant IDS as a service (MTIDS), which is an efficient

framework that is aimed at reducing cost and meeting the tenants’ requirements. The

MTIDS should enable a higher-precision detection consensus by supplying advanced

traffic analysis. Based on this analysis, a decision is taken to provide the desired security.

Hence, tenants can make substantial gains in terms of efficiency, cost reduction, and

security as it offers a flexible and adaptive security mechanism.

- Present an anomaly IDS that is trained based on the tenant’s security requirements.

For instance, a tenant who is interested in DOS protection will get a DOS anomaly-IDS

model while a tenant that is interested in, for example, SQL injection protection, will

7

get a trained a SQL anomaly-IDS model. A tenant can have an anomaly IDS that has

been trained for all attacks too.

- Extend traditional IDS with new rules that play a vital role in increasing the detection

of the attacks that cause damage to the tenant’s resources. Hence, automatically

generate a customized set of rules that can significantly improve the efficiency of the

IDS and ensure the extraction of valuable information from the monitored network.

- Enable cloud entities — which include tenants, CPs, and others — to work in collab-

orative manners and exchange relevant information which can be new signatures or

classification models based on their shared preferences. This enables advance attack

detection; it also reduces cost resulting from training the classification model and

generate new rules.

0.4 Research Scope

This research focuses on designing a multi-tenant intrusion detection system that provides

a low-cost SaaS framework for cloud tenants to deploy in order to protect their own cloud

infrastructure. The multi-tenant intrusion detection system is an hybrid-based IDS (rule

and anomaly-based) network intrusion detection system that offers appropriate security

features for cloud tenants. It proposes to monitor the activities of tenants, capture

abnormal activities, examine them to evaluate the probability of being an intrusion,

and maintains the consistency of the security strategy. Furthermore, it is enabling a

higher-precision detection consensus by supplying advanced traffic analysis. Based on

this analysis, a decision is taken to provide the desired security.

0.5 Methodology

To achieve our objectives, we use the following methodology:

8

(a) Study the main solutions of infrastructure-as-a-service and the associated security

approaches. We first identified the enforcement limitations of the existing security

mechanisms managed by the providers and those managed by the tenants. We

started with a comparative study of the existing multi-tenant IDS to identify their

strength and weaknesses.

(b) Develop a security-as-a-service solution that targets cloud tenants. The proposed

security service offered to cloud tenants and service providers and their infrastructure

to restrain security intrusions. Throughout this work, various research questions

have arisen and hence several objectives had to be set, which are highlighted

throughout the articles presented in the following chapters:

Figure 0.1 Multi-tenant
Intrusion Detection System(MTIDS) Architecture

The aim of the first article (Chapter 2) is to provide a flexible, on-demand, scalable,

and pay-as-you-go multi-tenant intrusion detection system as a service that targets

the security of the public cloud. Further, it is designed to deliver appropriate

9

and optimized security taking into consideration the tenants’ needs in terms of

security service requirements and budget. In this regard, we introduce Multi-tenant

Intrusion detection System for Public cloud (MTIDS) as shown in Figure 0.1. It is

proposed to monitor the activities of tenants, capture abnormal activities, examine

them to evaluate the probability of being an intrusion, and maintain the consistency

of the security strategy. The security strategy would be automatically changed

based on the analyzed activities. The MTIDS would be able to activate/deactivate

a set of rules, generate new rules, and automatically update the set of rules. Such

services are regularly presented within a service-level agreement (SLA) context,

which is aimed at ensuring the requested service quality.

(c) Developing security mechanisms allowing cloud tenants to detect intrusive attacks

and that can automatically generate new signatures from the attacked system.

Therefore in the second article (Chapter 3), we aim to answer the important

research question that arises regarding the limitation of the signature IDS in

detecting attacks; and updating the tenants with customs signatures. Accordingly,

we propose Multi-tenant Anomaly Intrusion Detection System (MAIDS) as shown in

Figure 0.2 with the following sub-objectives: Monitoring the tenant system activities

and classifying them as either normal or abnormal; based on this, generating customs

signatures.

(d) Developing security mechanism that is able to overcome the lack and the limitation

of the traditional anomaly IDS by providing new anomaly-based IDS that is capable

of adapting to changes occurring in network intrusion characteristics and patterns.

Therefore in the third article (Chapter 4), we introduce a real-time anomaly-based

intrusion detection, designed as a micro-services framework as shown in Fig 0.3.

The aim of this work is to constantly train the classification model to overcome

the mentioned problems and to detect the anomalies. It provides a light-weight,

10

Figure 0.2 MAIDS Architecture

portable, reproducible and declarative security framework that is able to share more

system resources. This results in cost reduction. The framework also minimizes

the time and effort related to framework management. In addition to recognizing

unseen attacks, the framework allows the generation of new classification models.

These classification models will be shared between tenants based on their interests.

0.6 Technical Contributions

Through this thesis, we offer the following contributions:

- Adaptable and optimized intrusion detection framework for multi-tenant public cloud.

- Cost-effective anomaly intrusion-detection system that targets multi-tenant cloud

providers.

- Safeguard security mechanism offering real-time intrusion-detection and enabling

exchanging of relevant information.

11

Figure 0.3 CRIDS Architecture

0.7 Publications

- Hawedi Mohamed, Chamseddine Talhi, and Hanifa Boucheneb. "Security as a service

for public cloud tenants (SaaS)." Procedia computer science 130 (2018): 1025-1030.

- Hawedi Mohamed, Chamseddine Talhi, and Hanifa Boucheneb. "Multi-tenant intrusion

detection system for public cloud (MTIDS)." The Journal of Supercomputing 74.10

(2018): 5199-5230.

- Hawedi Mohamed, Abdi Ramy, Chamseddine Talhi, and Hanifa Boucheneb. " Multi-

tenant Anomaly Intrusion Detection System." Journal of Computers & Security.: Under

Review.

- Hawedi, Mohamed, Abdi Ramy, Chamseddine Talhi, and Hanifa Boucheneb. "Collabo-

rative Real time Intrusion Detection System(CRIDS) ." The Journal of Supercomput-

ing.: Under Review.

12

0.8 Thesis Organization

Since this work is articles-based, we begin by discussing the general background and

literature review. Thereafter, we provide details on each of our publications in dedicated

chapters. Finally, in the last part, we conclude the thesis and draw some future directions

out of the remaining open research questions.

CHAPTER 1

BACKGROUND AND LITERATURE REVIEW

1.1 Cloud Computing

1.1.1 Fundamental concept of Cloud computing

Cloud computing can be defined as a way of storing data or information permanently on

servers over the internet and temporarily caching them on the client’s side via laptops,

sensors, computers, etc (Shawish & Salama, 2014).

1.1.2 Definition of Cloud Computing

According to the U.S. National Institute of Standards and Technology (NIST)," cloud

computing can be defined as a model for enabling convenient, on-demand network access

to a shared pool of configurable computing resources (e.g., networks, servers, storage,

applications, and services) that can be rapidly provisioned and released with minimal

management effort or service provider interaction" (Mell & Grance, 2011). As an example,

users are able to use an application that runs on a remote data-center, which is named

cloud, instead of installing the application on their system as is usually the case with the

traditional technology.

1.1.3 Related Technologies

Cloud computing has not been created from scratch. There are many technologies that

have paved the way to its development, and they have shared formal aspects (Zhang

et al., 2010):

- Utility Computing: it represents the provision of resources model upon request and

charging the customers based on the consumption and not on a fixed price. With this

14

regard, cloud computing can be recognized as a implementation of utility computing as

it has entirely adopt a scheme , utility-based pricing, for economic intents. In the cloud,

service providers can truly scale up the utilization of the resource and reduce their

operating costs through on-demand resource provisioning and utility-based pricing

features.

- Virtualization: It plays an essential role in terms of designing the cloud (Modi & Acha,

2017). This is a technology that provides an abstraction of the physical hardware

and virtualized resource details for high-level applications (Zhang et al., 2010); and

it is one of the most significant technologies utilized in IaaS. Virtualization increases

efficiency in terms of performance, maintenance, and cost reduction for the computing

services provided to users. This technology is used by different Cloud Service Providers

(CSP) such as Amazon and Microsoft. In cloud computing, hardware and platform

level resources are provided as services on-demand (Zhang et al., 2010).

- Autonomic Computing In 2001, IMB invented autonomic computing. its main goal

is building computing systems that are able to provide self-management include

responding to internal/external surveillance without human intervention).Autonomic

computing is developed to tackle the complexity of management issues of today’s

computer systems.

1.1.4 The architecture of cloud computing

This subsection designates three elements, as shown in Figure 1.1: the cloud computing

layered models, business, as well as the deployment model of cloud computing. (Zhang

et al., 2010).

- Cloud Computing Layered Model

(i) The hardware layer: it aims at managing the cloud physical resources: physical

servers, routers, switches, power and cooling systems. Typically this layer is

15

Figure 1.1 Cloud Computing Architecture Overview.(Zhang
et al., 2010)

implemented in data centers, which is commonly comprised of thousands of

servers that are systematized in racks and interconnected through switches,

routers or other devices.

(ii) The infrastructure layer: it is also acknowledged as the virtualization layer.

Through partitioning the physical resources using virtualization technologies,

the infrastructure layer creates a pool of storage and computing resources, for

instance, Xen (XEN, 2018), and VMware (VMWARE, 2018). The infrastructure

layer is a key component of cloud computing, as many crucial features, such as

dynamic resource allocation, are merely made obtainable through virtualization

technologies.

(iii) The platform layer: it is built on top of the infrastructure layer. It contains

both the operating systems (OS) and the application frameworks. It aims

at reducing the burden of deploying applications precisely into containers or

virtual machines. For instance, Google App Engine uses the platform layer to

provide API support that intends to implement storage, database and business

logic of idealistic web applications.

(iv) The application layer: the application layer contains the real cloud applica-

tions. Contrary to the conventional applications, cloud applications are able to

16

take advantages of the characteristic ,automatic scaling feature, for achieving

availability, better performance, and lower operating charges.

1.1.5 Cloud Computing Business Model

Cloud computing uses a service-driven business paradigm. Straightforwardly, cloud

computing provides the hardware and platform-level resources as services based on

demand. Conceptually, every layer of the architecture explained in the previous section

could be employed as a service. Conversely, a scientific point, three services are offered

by clouds: software as a service (SaaS), platform as a service (PaaS), and infrastructure

as a service (IaaS):

1. Infrastructure as a Service(IaaS):

The first model — Infrastructure as a service — is considered the foundation for

the cloud computing environment and the tenants do not have first-hand access

to it (Zargar et al., 2011). IaaS is referring to the provisioning of infrastructural

resources on- demand, normally with regard to virtual machines. The concept

behind the IaaS is that servers, network, and storage are arranged to be available

to end users as a service based on their needs. Basically, IaaS refers to the allocated

infrastructural resources on demand in the form of VMs. IaaS provider refers to

the cloud proprietor who offers IaaS. For instance, Amazon EC2 (Amazon, 2015),

Microsoft Windows Azure(Azure, 2018).

2. Platform as a Service(PaaS) Platform as a Service(PaaS) refers to providing the

platform layer resources that include OS and software frameworks (Rosado, 2012).

Thus, the main objective of PaaS is to decrease the cost of the platform, such as

OS or the development framework, that applications and services are developed or

deployed (Oktay & Sahingoz, 2013). Azure Platform and Google App Engine are

considered examples of PaaS (Alharkan & Martin, 2012).

3. Software as a Service(SaaS)

17

Software as a Service (SaaS) refers to offering applications on-demand on the inter-

net such as SaaS providers (Zhang et al., 2010). Here, the IaaS provider is respon-

sible for infrastructure, platform, and service maintainability (Oktay & Sahingoz,

2013) while cloud users or customers are only allowed access to the application

setting. In simple terms, users are only using applications that are running in

the cloud (Almorsy et al., 2011). The software is available in the cloud instead of

a software installment in your computer; for instance, Google, Microsoft Word,

etc. Whereas building a cloud-based information system involves matching the

selection of the deployment model to the requirements; for example tanacy, security,

performance, management and privacy (Oktay & Sahingoz, 2013).

1.1.6 The deployment models of Cloud Computing:

The deployment models of cloud computing are categorized with regard to the man-

agement and usage of the resources to private, community, public and hybrid cloud

(Oktay & Sahingoz, 2013).

(a) Private Cloud is offered for the individual organization. The infrastructure

could be situated in either the organization or in a third-party data center. In

addition, they are responsible for the maintenance.

(b) Community Cloud: this kind of cloud is offered to more than one individual

organization from a particular community that shares the same concerns. In the

cloud community, the Infrastructure is typically placed in the diverse organization

either in third party’s data center or the community cloud. The data center

organizations and the third party share responsibilities in terms of management

and operational tasks.

(c) Public Clouds: public clouds are global as they are deployed over the Internet,

by which they can serve users. A third party provides all the provisioning

infrastructure, platform, and software. Users and providers provision and share

18

the management, operational and security requirements based on a Service Level

Agreement (SLA).

(d) Hybrid Clouds: Hybrid Clouds are the combination of more than one

cloud deployment model among those listed above. In this type of cloud, the

infrastructure, platform, and software have flexible and transportable features

that enable them to switch between the deployment models in the hybrid

architecture that is consistent with its requirements.

1.1.7 Features of the Cloud Computing

Many significant features are offered by the cloud computing model to attract more

and more enterprises towards transferring their existing IT assets to the cloud. Indeed,

end-users can benefit from one or more cloud features based on their application domain

regardless of the cloud deployment model. These features are designed to achieve fast

development of applications, self managing workload adjustments, and financial cost

saving.

- Elastic Scalability Scalability and elasticity are core capabilities needed to handle the

change in a service workload. In particular, scalability is the capability of a service to

maintain a changeable workload by meeting the quality of service (QoS) requirements,

probably through consuming a variable amount of underlying resources while elasticity

is the capability of a service to rapidly provision and de-provision the underlying

resources on the fly (Ferry et al., 2014).

- High-Availability In cloud, tenants are able to initialize, relocate, and cancel large

number of virtual resources based on their demand. This reinforces the need for

having a stable and reachable services. One of the key feature of the cloud is ensuring

accessibility even with failure of some of its assets. In some cases, there could be a

fail in the individual services for one or more customer, but the system continues to

function for other services or a different set of tenants.

19

- Utility-based Service Utility-based service has its most important advantage in terms

of financial cost saving. Cloud offers pay-as-you-go subscription. This enable the cloud

tenants to meet their demands in terms of getting the functionality on a powerful

infrastructure and solely pay for what they consume.

1.1.8 Cloud Services Providers

This section lists some cloud providers including the private and public cloud and the

existing cloud computing technologies.

1. Amazon Web Services (AWS) AWS presents a compute power, content delivery,

storage, and other functionality that allow companies to deploy applications, and

services cost-efficiently with elasticity, expandability, and dependability. AWS is

a dynamic, rising business element in Amazon.com. AWS started proposing IT

infrastructure services to companies in web services since 2006. Currently, it is

universally recognized as cloud computing platform. Due to the elasticity of AWS,

customers can design their application architecture as they deem fit. Figure 1.2 shows

the architecture of AWS. The first component is Amazon Elastic Compute Cloud

(Amazon EC2). It is a web service interface that enables customers to gain and

form capability with a slight effort, and this web service offers innovative compute

capability in the cloud. Second, Amazon Simple Queue Service (Amazon SQS) is a

message queuing service that is rapid, reliable, resizable, and entirely manageable.

Using SQS, customers are able to transfer any volume of data, at any throughput

level, without dropping messages or demanding other services to ensure availability.

Third, Amazon Simple Storage Service (Amazon S3) is created to make the developer

satisfied with web-scale computing, and it is used as a storage for the Internet. A

simple web services interface is offered by Amazon S3, which can store and retrieve

any volume of data (Mathew, 2014).

2. OpenStack

20

Figure 1.2 GrepTheWeb on AWS

Zhang (Zhang et al., 2013) states that OpenStack refers to an open-source IaaS

projects provided and established via both NASA and Rackspace. Yadav (Yadav,

2013) defines OpenStack as a group of open-source software projects that enable

developers and technologists of cloud computing to set up and operate their cloud

compute and storage infrastructure. Nebula platform, which is created by NASA, and

object storage component, which is originally the Rackspace cloud files platform, are

the OpenStack computing components. As is demonstrated in figure 1.3, OpenStack

contains three main components: Glance (image service component), Nova (computing

component), and Swift (object storage component) (Zhang et al., 2013).

3. Eucalyptus

EUCALYPTUS refers to an acronym for Elastic Utility Computing Architecture used

for linking your Program to the useful system. It is an open-source software that

the University of California, Santa Barbara established for cloud computing in order

to employ Infrastructure as a Service. It is compatible with Amazon Web Service

API for deploying on-premise private cloud. Eucalyptus consists of five high-level

components. The first is Cloud Controller (CLC), which is the login point for the

end user, administrator project developers and manager into the private cloud and

its aims in run-virtualized resources. The second is Cluster Controller (CC), which

21

Figure 1.3 OpenStack Architecture.

is the component that is responsible for managing the network of virtual machines.

The third is Storage Controller (SC) that offers block-level network storage, it even

includes support for Amazon Elastic Block Storage (EBS) semantics. The fourth is

Node Controller (NC), which is placed in each node for controlling the activities of

the virtual machines, including the implementation, examination, and VM instances

termination (Yadav, 2013).

4. OpenNebula

In 2005, Ignacio M. Liorente and Ruben S. Montero created Open Nebula as a research

project and, in March 2008, released it to the public. Open Nebula could be used

as a virtualization tool in order to run virtualized infrastructure in the data center

or cluster, which is commonly signified by a private cloud. It can support hybrid

cloud, merge local infrastructure with public cloud-based infrastructure, which enables

22

extremely scalable hosting environment. Also, it supports public cloud by providing

cloud interfaces to expose its functionality to the virtual machines, and to storage as

well as to the network management (Yadav, 2013).

Figure 1.4 Mosaic API

5. mOSAIC

The mOSAIC solution is a consequence of a multi-national team effort as part of

a funding contract with the European Commission in the frame of the FP7-ICT

programmer. In September 2010, the execution of the project had begun and in

March 2013, the complete software was released (Petcu et al., 2013). The mOSAIC

proposes to offer an open framework and APIs, which together aids cloud applications

to be developed and deployed. Cloud application is designated as a set of components

that have the ability to interact, as well as act as consumer cloud. As shown in Figure

1.4, the architecture of mOSAIC is comprised of two separate principal components,

namely Software Platform and Cloud Agency. The software platform facilitates the

implementation of applications that are created by employing mOSAIC APIs while

Cloud Agency handles provisioning and brokering resources from a cloud provider’s

23

federation. The mOSAIC application is a set of components that build blocks capable

of connecting each other via communication resources of cloud (e.g., queues), for

instance, AMQP, Amazon SQS (Ficco et al., 2013).

1.2 Security Challenges

In spite of the advantages of cloud computing, organizations are still reluctant to

embrace it because of security issues and challenges that are associated with cloud

computing. A cloud computing environment offers its services including software as a

service, platform as a service, and infrastructure as service on the Internet. Offering these

services over the Internet potentially opens the door to hackers to attack the system. For

instance, distributed denial of service attacks (Kulkarni et al., 2012). Security is a major

concern that is limiting the adoption of cloud in the industry. A cloud supplier offers the

public cloud computing environments and it is responsible for ensuring that a resolution

of cloud computing meets an organization’s security and privacy needs (Ficco et al., 2013).

The following subsection highlights some cloud computing security issues and threats.

1.2.1 Availability

The objective of cloud computing availability is to guarantee the use of cloud computing

resources including computing infrastructure and applications anytime and anywhere.

Hardening and redundancy are two strategies used to improve the cloud system’s avail-

ability or the availability of the applications hosted on it. Based on virtual machines,

numerous cloud computing system sellers offer cloud infrastructure and platforms. Virtual

machines can provide on-demand services — regarding consumers’ individual resource

requirements — to an enormous number of users (Ashktorab et al., 2012). Several motives

should be considered by the users with regard to the availability of their valued assets

in the cloud. Firstly, most cloud providers do not own the computing and data-center

infrastructure; they lease them from other providers. Hence, if the cloud infrastructure

gets affected and becomes unavailable, most possibly, other providers will be affected as

24

well, thus making the resources unavailable to the wider users. The isolated traditional IT

networks suffer less from this issue. Secondly, the possibility that a cloud provider can file

for insolvency and close the business is another issue to consider; when this happens, the

cloud resources become unavailable. Finally, in the cloud, the infrastructure and services

are shared by multiple tenants; this makes the entire system more vulnerable, which, in

turn, can affect the availability of the resources (Onwubiko, 2010). Denial of services is an

example of a security issue regarding the availability in the cloud computing environment.

1.2.2 Confidentiality

Confidentiality can be defined as saving the sensitive information from unauthorized

disclosure; this means that unauthorized users cannot access the sensitive information

(Zaman, 2009). Cloud providers should ensure that users’ data are always protected to

ensure their confidentiality. The standard ISO/IEC 27018 (The International Organization

for Standardization (ISO)) was developed to create a uniform, universal approach to

data confidentiality. The aim is to protect the confidentiality of personal data that is

stored in the cloud. Through ISO/IEC 27018, enterprises will be able to guarantee robust

confidentiality protection across geographies and vertical manufacturing zones. ISO 27018

ensures the protection of privacy of customer information by several methods. First,

it allows the customer to control their data by merely processing personally different

information based on the instructions that the customer provided. Second, it ensures the

transparency of the policies provided relating to the return, transmission, and removal

of personal information that the customer stores in the data centers. Consequently, the

tenants would be able to know what is going on with their data by informing them who

has access to the data, and in the case of loss, disclosure or alteration of customer’s

information. Third, ISO 27018 is committed to not advertise the consumer’s data. Finally,

in the policy of ISO 27018, the consumer will be informed when the government accesses

his/her data (Microsoft, 2015).

25

1.2.3 Privacy

Privacy is an essential issue for cloud computing from the legal obligation and users’

concern perspectives. This need should be considered at every design stage. Reducing

privacy risk and ensuring legal compliance are the major challenges that software engineers

face in designing cloud services. More and more data is placed in the cloud for which

the privacy is impacted. For instance, the best database buyers are using cloud support

for their databases, such as Oracle using Amazon’s cloud service platform EC2 to run

and consequently more data is being transferred to the cloud. Concerns over privacy will

keep growing as these databases often store secret and private information belonging to

enterprises and persons (Pearson, 2009). Privacy concerns in the existing cloud computing

offerings are observable and real.

Since users’ personal data is placed in unknown locations — data centers — that are

controlled by third party cloud providers, the cloud infrastructure may not be adjustable,

and could transcend geographical boundaries that influence both statutory and regulatory

requirements of the data being transmitted or stored. This concern is legitimate and

faithful (Onwubiko, 2010).

1.2.4 Data Integrity

Data integrity in the cloud refers to the preservation of information integrity, which means

unauthorized users are not allowed to modify or delete the data (Ashktorab et al., 2012).

Protecting data integrity should be considered when outsourcing data services from cloud

providers. Outsourcing data services seems attractive from an economical point of view,

especially, in the long term and for large-scale storage, it does not assure data integrity

and availability. Therefore, this issue should be suitably addressed to avoid impeding

a successful cloud architecture deployment (Ren et al., 2012) The technique commonly

used for examining data integrity is digital signage. The regularly adopted distributed

file systems normally split large data volumes precisely into a set of blocks with a default

26

size. A digital signature is attached to a block of the data when it is physically stored.

Hence, the digital signature can be tested for data integrity, and can be used to recover

from a fraud (Ashktorab et al., 2012).

1.2.5 Audit

Audit refers to the observation of events in the cloud system. Audit-ability is a kind

of an additional layer that might be added above the virtualized operation system, or

virtualized application environment, which is hosted on the virtual machine for providing

services to watch the activities occurred in the system. It is better to place an additional

layer on virtual machines than on the applications or in the software themselves. By

following such a procedure, more ability to watch the entire accesses will be available.

Nevertheless, the monitoring should not be invasive; and it should be finite with regard

to the cloud provider needs (Ashktorab et al., 2012). With this regard, every transaction

of data has to be recorded for ensuring data integrity in cloud computing. Therefore,

cloud providers should implement internal monitoring controls specifically designed for an

external audit process. Despite cloud computing environment presenting new challenges

from both perspectives of an audit and agreement, the current solutions for outsourcing

and audit might be sufficient (Ren et al., 2012)

1.3 Attacks Classification

An intrusion can be defined as any set of activities attempts at compromising the

confidentiality, integrity, or availability of the resources by obtaining privilege to access to

confidential data. This is can be done by either exploiting vulnerabilities of the system

to access sensitive data, or by relying on an authorized user to break or compromise the

the system. In deed, the increasing skills of the intruders in regard to understanding of

how systems work make intruders a professional at figuring the weaknesses of the systems

and exploiting them to make system resources access-able. The intrusion patterns used

by intruders are not easy to be traced and identified as they uses set of feints before

27

compromise or breach the target systems and rarely indulge in sudden bursts of suspicious

or abnormal activity. In addition, another important activity for the intruders is covering

their tracks so that their activity is difficult to be discovered on the penetrated system

(Zaman, 2009).

Generally, attack are categoried into four main types :

- Probing: surveillance.

- U2Su/U2R: Unauthorized access to Local Super user root privileges.

- DoS: Denial of Service.

- R2L: Unauthorized access from a Remote machine

(i) Probing: it is a category of attack that is used to scan a network to collect

information or to identify known vulnerabilities. The probes fall into different

types including the some that abuse the system by taking advantages of the

legitimate features and others that use social engineering techniques. IPsweep,

Saint, and Satan are an example of this kind of attack.

(ii) DoS Attacks : it is a category of attack that overloaded the computing or memory

resource and make them unable to handle legitimate requests, consequently denying

authorized users to access to a resources or machines. it is a category of attack

that overloaded the computing or memory resource and make them unable to

handle legitimate requests, consequently denying authorized users to access to a

resources or machines. DDoS, Pingflood, SYN flood are examples of DoS attack.

(iii) U2Su Attacks : User to root (U2Su) exploit. This category of attack begins to

access to legitimate users accounts and then exploits a system vulnerabilities to

obtain root access privilege . Buffer overflows is considered as the most common

exploits in this kind of attack. Eject, Fdformat, Loadmodule, and Perl are examples

of the U2Su Attacks.

28

(iv) R2L attacks : in this category of attack, the attackers attempts to exploits the

system’s vulnerabilities to illegally obtain local access as a user by sending packets

over the network to a machine . FTP-write, Sendmail, and Xlock are examples of

this category of attack.

1.4 Intrusion Detection System(IDS)

Intrusion detection refers to the process used for monitoring the events that occur in a

computing system. It is used to monitor computers and networks and inspecting them

for signs of the potential occurrence of accidents, which are violations or impending

violation threats of computer security policies, appropriate-use policies, or standard

security practices. An intrusion-detection system (IDS)can also be used to function

as an Intrusion Detection and Prevention System (IDPS). Intrusion prevention refers

to the process used for performing intrusion detection and for attempting to stop the

detected potential incidents (Scarfone & Mell, 2007). Intrusion detection systems (IDS)

can be either software, hardware or a hybrid collection of both of them that gathers

data from the protected system, and send alarms to the administrators in diverse ways

either through logging, emailing or preventing the system against the detected intrusion.

Though there are different kinds of IDS, host-based, network-based are the main types

(Oktay & Sahingoz, 2013).

1.4.1 Types of intrusion detection system

- Network-based intrusion detection system (NlDS): NIDS is used for observing, ex-

amining and analyzing certain components for precise and predefined divisions of

network traffic (Oktay & Sahingoz, 2013). NIDS observes network traffic for certain

network segments or devices and inspects the activities of the network to detect any

suspicious activities. It is usually located at the networks’ borders, that is, close to

firewalls or behind routers, virtual private network, remote access servers, and wireless

networks (Scarfone & Mell, 2007). Network-based IDSs can overcome the weaknesses

29

of host-based IDSs. Configuring and managing every host is not required as a single

IDS sensor in a network segment can be responsible for performing all the analyses.

Furthermore, if one host in the network is attacked, IDS would not be affected as it is

deployed outside the hosts. Finally, network-based IDS do not use the hosts’ resources,

as it utilizes private resources for its functionality (Zarrabi & Zarrabi, 2012). As an

example of network-based IDSs in cloud, NIDS deployed on AWS monitors all VMs

that belong to the virtual private cloud.

- Host-based intrusion detection system (HIDSs): Host-based intrusion detection system

(HIDSs): HIDS is used for observing and analyzing the host system’s characteristics

once an incident happens such as suspicious activity like system calls, processor threads,

entity and configuration access or modification. Usually, the HIDS is placed in the

most important host that is used to store private and vital information. Also, it is

possible for the host to perform some of the NIDSs’ functions if it is placed in one host

and configured to detect network behaviors (Oktay & Sahingoz, 2013). For example, in

the AWS cloud (Amazon, 2015), host-based IDSs are deployed in each of the launched

VMs. Host-based IDSs can use both system logs and operating system audit trails

for system state monitoring such as detecting a particular program that accesses

specific resources. Despite the fact that host-based IDSs provide many benefits, some

drawbacks limited their adoption (Zarrabi & Zarrabi, 2012):

• Information has to be configured and managed for every host monitored, which

make managing host-based IDSs very hard.

• Host-based IDs’ information sources and analysis engines are placed in the same

monitoring targeted virtual machines, which can cause them to be exposed or to

be controlled or disabled by attacks.

• Host-based IDSs influence performance cost on the monitored systems as they

employ the computing resources of the hosts they are monitoring.

30

Figure 1.5 Cloud Computing Models

1.4.2 Intrusion detection techniques

Different techniques can be used to analyze and detect attacks. These techniques are

categorized into various principal categories (Oktay & Sahingoz, 2013), as described in

the following section:

- Signature-based IDSs: Signature-based techniques are also known as knowledge-based

or misused-based techniques

(Keegan et al., 2016).

Misuse detectors aim at analyzing system activities by searching for an event or a

group of events that match the signature that identifies known attack types. Patterns

that match known-attack types are referred to as signatures. Misuse detection is

occasionally known as signature-based detection. This technique is used to determine

intrusion attempts based on pre-defined rules against known attacks(Oktay & Sahingoz,

2013). Its main goal aims at detecting intrusion attempts by searching for the pattern of

the known attacks. One key features of the Signature-Based is the ability of producing

a low volume of false positives alerts.

31

- Anomaly-based IDSs: IDSs particularly focus on monitoring and analyzing system

behavior. Anomaly detectors aim at identifying unusual and abnormal behavior in the

host and network. They assume that abnormal activities are different from authorized

activities. Hence, these activities can be detected using systems, which can distinguish

normal from abnormal activities. Anomaly detectors learn themselves by constructing

profiles representing the habitual behavior of users, hosts, and the network. The

profiles are made from data gathered for a period of time and over a stage of normal

operation. The anomaly detector function then collects data events and employs

several measurements to determine when monitored activity moves away from the

common habit (Zarrabi & Zarrabi, 2012). In contrast to the signature-based IDSs,

anomaly-based IDSs can detect unknown attacks like, a new and evolving malware,

which consumes computing resources through originating processes or multiple logs on

the network (Petcu et al., 2013).

- Stateful protocol: This technique uses the characteristics of the known protocols as a

detection mechanism. Therefore, it’s akin to the signature-based types as its intrusion

detection with defined formations of protocols.

Figure 1.6 IDS Components and Architecture

1.4.3 IDS Components and Architecture

There are four main elements that all Intrusion detection systems share regardless of

their nature. These components include the sensors or agent, storage, the analysis

and the knowledge-based components as shown in Figure 1.6. The first element,

that is, the sensor is designed to collect the network traffic and store them in the

32

storage component. In particular, sensors or agents are responsible for monitoring

and analyzing activities. Sensors are usually used for IDSs that aim at monitoring

networks, comprising network-based, wireless, and analysis technologies of network

behavior. Storage is a central component that receives information from the sensors or

agents and manages the received information. The analysis component analyzes all the

gathered events stored in the storage component. The Knowledge-based encompasses

some sets of signatures or rules that are used by the analysis component to identify or

detect any suspicious activities.

1.4.4 IDS Signatures Rules

IDS rules used to define the patterns and criteria that are employed to examine potentially

known malicious traffic on the network. The following Example 2 illustrates Snort IDS

signature rules.

Example 1. alert tcp EXTERNAL_NET 80 − > HOME_NET 7070 (msg:“ICMP test”

sid:1000001; rev:1; classtype:icmp-event;)

- This is explained below: the rule examines any traffic directed toward the network

and it will generate an alert whenever the IDS detects traffic headed inbound from the

outside to the network over the port (Source) 80. Basically, Snort rule contains two

parts: namely Rule header and Rule Options. The syntax of the rule is explained as

follows:

• Rule Header: In the rule header (alert tcp EXTERNAL_NET 80 -> HOME_NET

7070), alert represents the rule action to be taken by the IDS. The IDS will

generate an alert if the condition is met; the string EXTERNAL_NET represents the

source IP and 80 is the port number. All the external traffic from the source IP

over port number 80 will be considered by the IDS. The arrow (->) indicates the

direction from the source to the destination. The HOME_NET 7070 refers to the

destination IP (HOME_NET) and its port number (7070).

33

• Rule Option: In this example, the rule option is represented as (msg:ICMP test;

sid:1; rev:1; classtype:icmp-event;), where the message (msg:) is (ICMP test),

will be included with the generated alert. The string sid:1; represents the rule number

or ID, which should be unique. The string rev:1 gives the revision number. This option

facilitates the maintenance of the rule. Lastly, the classtype:(icmp-event), in this

example, is used to classify the rule as an ’icmp-event’. This classification helps in the

organization of the rules.

1.5 Cloud orchestration

Cloud orchestration refers to the automation that is involved with organizing and man-

aging of complicated cloud-enabled software and services. Cloud orchestration is about

automating the software configuration, coordination, management, and interactions within

the cloud environments. Cloud application orchestration or tools and specifications are

used to express the service topologies. Many tools — such as CAMP, TOSCA, Cloud-

Formation, and Heat — can be used in a cloud environment to deal with cloud application

orchestration (Katsaros et al., 2014).

1.6 Machine Learning Algorithms

This section provides a general overview on the machine learning algorithms that are used

to detect novel attacks that the signature-based IDS are unable to detect.

1. Decision Tree (DT): DT is a type of supervised learning algorithm that significantly

is used in data mining, more specifically in classification problems, as a predictive

model that can be used for representing classifiers. In DT, data is represented in

form of a hierarchical tree that involves a group of nodes that describes a problem

with various solutions. DT encompasses of three elements: nodes, edges, and leaves.

First, DT repetitively splits the training data set into subsets based on its attributes

until the stopping conditions are satisfied. Since the decision nodes has the same

34

data set, it is possible to specify the attribute that best splits the data set into its

classes. In fact, each decision tree node contains various edges whose main purpose is

to specify the potential value ranges or values of the selected attributes on the node.

The specification of the edges play a role in splitting the data node into subsets. a

child node is created by the DT for each subset. The splitting process is repeated and

it is terminated whenever the node satisfies the stopping rules or no future unique

attributes can be determined. Finally, a node is labeled by DT and after labelling it

called a leaf.

2. Neural Network (NN): NN is a collection of connected units that follow a particular

topology. Each neuron is described by a unit that contains an input and an output.

Two neurons are connected such that the output of one of the neurons is connected to

the input of the other. In a neural network, each connection has a weight correlated

to it. The topology of the neural network, the training methodology for weight

adjustment and the connections between the different neurons are the main aspects

that define the kind of the corresponding neural network (Bouzida & Cuppens, 2006).

3. Random Forest (RF): RF is a supervised machine learning classification algorithm

that is used to overcome problems related to classification and regression. It uses

multiple decision-tree-learning models to get better predictive results. Simply, the

RF model creates a forest with the number of decision trees to get the best solution.

1.7 Literature Review

Security in cloud computing environment is considered as the most significant challenge

that makes many researchers propose security as a service for either cloud provider, tenant

or service provider.

This section illustrates an overview literature review of the research topic in relation

to the adoption of the traditional intrusion detection system (IDS) for enhancing security

in cloud computing. Each work focused on various cloud service modules or various

35

objectives. Essentially, an intrusion detection system encompasses a verifying process

that examines the entity’s behavior looking for attack signatures that are precise patterns

which indicate malicious or suspicious intent.

1.7.1 Signature based Detection Approaches

A lot of the proposed research concentrates on providing security as a service for cloud

providers as part of their infrastructure which they can offer to tenants.

Alharkan and Martin (Alharkan & Martin, 2012) proposed a scalable intrusion-detection

system as a service (IDSaaS), which can detect malicious or suspicious intent. IDSaaS

is a network-based IDS that targets use to protect IaaS. It is built on top of the AWS

cloud and is used to monitor and log suspicious activities of the network between tenant

VMs. This framework uses the signature-based technique to determine the validity of

events. Particularly, the traffic is captured and analyzed based on signatures that have

been pre-defined and can be updated on a systematic basis. IDSaaS consists of two main

components namely:IDSaaS Manager, and IDS Core . The IDSaaS Manager acts as a

security administrator access point for performing various supervision tasks. While the

IDS core is a network IDS deployed on the public subnet and acts as a goal keeper to

the private VMs. It is mainly inspects all incoming traffic using the Intrusion Engine

component.

(Nikolai & Wang, 2014) proposed a Hypervisor-based Cloud Intrusion Detection System

(HCIDS) to detect denial of service attacks within a cloud environment. The main

goal is to improve performance over data residing in a VM by taking advantages of the

hyper-visor capabilities. In their work, they examine system metrics of the cloud instances

directly from the Virtual Machine Monitor (VMM) or hyper-visor, which hosts the virtual

machines to find any potential misuse patterns. And these metrics include, network data

transmitted and received , and CPU utilization, etc. The framework consists of three

high level components namely: a controller node, end point nodes, and a notification

36

service. firstly, the end point nodes component retrieves or gather data in near real-time

intervals(each second) from the virtual machine hyper-visor and then dispatches the

data to the to the controller node where it does real time analysis of the received data

to confirm whether there exists an attack or not. if any potential attack is discovered,

controller component sends an alert to a notification service.

Similarly, Patel, and Sonker (Patel & Sonker, 2016), proposed a rule-based NIDS designed

to detect Dos attacks and to generate Port scan detection rules. The proposed approach

enables safeguarding networks from any illegitimate access. In this rule-based detection

system, network traffic which are passed over the network are captured and then inspected

looking for any suspicious activities (intrusions). The system generates an alarm if any

packet matches the signature.

Varadharajan and Tupakula (Varadharajan & Tupakula, 2014) have proposed safeguarded

security as a service model based on the intrusion detection system that targets the

infrastructure and is offered by the cloud provider to its tenants . The proposed service

model provides baseline security to the cloud provider for protecting its cloud infrastructure.

It also offers some flexibility: tenants can specify their security functionality that is tailored

to their needs. The main aim of the approach is to protect a tenant from internal attacks

by deploying the proposed mechanism on the hypervisor (that is, at the highest privilege

level), making it possible to monitor the VMs. Their proposed approach’s architecture

contains different defense components:

The Host-Based Security Tools (HBST) acts as the primary defense layer; the layer allows

tenants to run their own HBST on the VMs provided by the cloud provider. The Service

Provider Attack Detection (SPAD) and the Tenant Specific Attack Detection (TSAD)

components are the other important defense layer that are proposed to augment the first

layer of defense. SPAD receives the tenant VM’s traffic and then enforces the security

baseline policies required by the cloud service providers. The tenant’s virtual machine is

isolated. An alert is generated if a tenant VM’s traffic violates any of the security policies

37

in the SPAD. If a tenant requires more traffic investigation, TSAD is available on-demand

as an additional defense layer. Whenever such a request is made, the traffic is forwarded

by SPAD to TSAD; TSAD enforces the tenant’s specific security policies on the received

tenant’s traffic. The security policies in TSAD are decided by the tenant at the time of

registration. TSAD forwards the traffic to its destination if the traffic does not violate

any of the security policies enforced by TSAD. This approach is effective: it drops errant

traffic. However, due to a lack of a mechanism for regular updates of the rule database

by the approach, the system may be subjected to kernel manipulation attacks.

Gul and Hussain (Gul & Hussain, 2011) introduced a distributed multi-threaded paradigm

IDS that targets the security of cloud computing. The multi-threaded IDS model is

designed to handle a huge flow of network traffic. The traffic is then analyzed and an

alert is raised if there is any suspicious activity. This approach suggests that the raised

alert should be sent to a third party. The third party is responsible for sending alert

reports to a cloud user in case there is an intrusion attempt, as well as advice to the cloud

provider regarding the occurred intrusion. It is composed of three components including:

Capture and Queuing, Analysis and Reporting. The first component captures the traffic.

Next is queuing and then the traffic is sent for analysis. A signature technique is used

for detecting any suspicious activity. If the traffic violates the signature, an alert will be

generated and sent to the report component. Hereafter, the Report component will send

the generated report to the third party. Then, it will be sent to the cloud user and cloud

provider.

A network intrusion detection system (NIDS) was presented by Gupta (Gupta & Kumar,

2017) aiming at securing Cloud resource against distributed denial of service attacks.

TheCloud Manger is the main component where it is centrally controlled and manage

the NDDS instance that deployed at the client environment.The cloud manager manages

configuration files and shares the client VMs log files at the client VMs. Particularly,

tenant VM profile is used for predicting the DDOS. In essence, The profile of the tenant

is used for classifying DDoS the signatures of the attack as well as for performing back

38

off based detection of signatures. Various important processes phase were proposed in

this approach. The first phase is initialization and rule update, which is created to

set the threshold for the attack signature existing in a client virtual machines profile.

In detection phase, packets are examined for detection attack that meet the signature.

In Alert and Response Generation phase, alerts with will be send to the VM client if

suspicious activities were detected.

1.7.2 Collaborative Approaches

Other researchers concentrate on deploying the intrusion detection system in a collaborative

manner for detecting suspicious activities.

(Ficco et al., 2013) proposed Intrusion-detection architecture. It is designed for detecting

distributed attacks in cloud computing environments. Their approach is based on the

observation of the cloud computing and aims at detecting when a computing resource

has been compromised. It is capable of detecting distributed attacks. They developed a

framework that is composed from three components: probe, agent, and security engine.

A probe represents the component for detecting intrusions. It does this by monitoring

some security configuration parameters at different cloud architectural levels. It can

monitor the hypervisor, the entire infrastructure, the platform, and the applications. An

agent is a piece of software that is responsible for forwarding the security-related data

collected by probes to the security engine. In addition, agents perform a normalization

process to enable different types of probes to generate events using a domain-specific

language. A security engine correlates multiple streams of event data in real-time and

decides whether the information received represents a potential attack pattern based on

some specific correlation rules. In their approach, security engines are organized into an

hierarchy using three architectural layers. The engines perform different correlation tasks

at different levels of abstraction, forwarding the aggregated data to a higher layer. At the

base layer, the security engines are responsible for correlating the unprocessed security

data collected by probes that can be offered as a service by the cloud provider. The

39

service can be IDSs (e.g. Snort), log analyzers (for syslog); it could also be some specific

security arrangement provided by the cloud platform. The probes can be configured to

collect data tailored to the security requirements of the customer. At the highest level,

the cloud provider is responsible for enabling additional IDSs and for attaching them

to independent VMs or physical machines. For instance, in a network-based IDS, the

provider can enable probes for monitoring the infrastructure and platform layers. In a

host-based IDS, an IDS is attached to each physical machine; so a probe can be enabled

at each host machine. Specific probes that collect complementary information — such as

access to the hypervisor — can also be enabled in the specific cloud environment.

The work introduced by (Zargar et al., 2011), proposed a framework (DCDIDP) which

focuses on coping with an attack using intrusion detection and prevention systems (IDPSs).

The proposed intrusion detection framework (DCDIDP) allows all cloud service providers

to cooperate in a distributive way at different operational levels to reply to attacks and

offer universal IDPSs. Global databases are shared among cloud providers on which

they can detect sophisticated cooperative intrusion. DCDIDP encompasses of three level

architectures including: network, host and global infrastructure. The Network and host

architecture maintain local database of policy and rules and contribute to global database.

The global database shares information regarding intrusions among different clouds. The

main features of DCDIDP include being distributed (policies are distributed among hosts),

collaborative (hosts collaborate with each other to stay synchronized for information

sharing) and data driven (dynamic evaluation of rules and access list). DCDIDP can be

implemented in IaaS, PaaS and SaaS and provides effective intrusion prevention.

Chi-Chun Lo et al (Lo et al., 2010) proposed an intrusion-detection system for monitoring

cloud computing regions. In their approach, IDSs are deployed in each cloud region to

detect intrusion attempts. The IDSs send alerts to each other whenever an intrusion is

detected. They also assess the reliability of the received alerts. In the approach, many

components are involved in detecting an intrusion. Some of the components are: alert

clustering, threshold check, intrusion response agent, intrusion blocking agent, intrusion

40

collaborative agent. Alert clustering module gather alerts generated in other regions;

the collaborative agent in different regions exchange the alerts gathered by the alert

clustering component. The riskiness of the alerts are estimated to determine whether

they true or false alerts. If the alerts are considered true, a new blocking rule is added

to the blocking table. This enables an early intrusion detection and provides a means

for the IDSs deployed in the cloud computing region to resist an attack, even from a

victim IDS. Each IDS has three modules. The first is the block module; the second is the

communication module; and the third is the cooperation module. The block module is

used to drop bad packets sent out from the source node. The communication module

sends warning messages on some specific attack detected by the IDS to the other IDSs in

the region. The cooperation module gathers alert messages, which could be either true or

false alerts.

The authors of (Alruwaili & Gulliver, 2014) suggested the concept of a collaborative IDS

for protecting the cloud infrastructure layer against known and unknown threats with

a combination of a signature-based technique and an anomaly-based technique. Their

proposed approach is for protecting service providers and their tenants against loss of

services that are caused by known or unknown threats. They developed a framework

that enables cloud service providers to improve the performance, reliability, accuracy of

their intrusion detection and prevention system in the SaaS and PaaS service models.

The framework can work in a global, collaborative manner to achieve a sophisticated

monitoring of the cloud resources. The architecture of the framework is composed of

several modules including:

Threat Detection Agent (TDA), Intrusion Detection Sensor (IDS), Data Collector Agent

(DCA), Data Inspection Analysis (DIA), Security and Network Management (SNM),

Keep-Alive (KA), Cooperative Agent (CA), and Administrative Interface Console (AIC).

The sensor is an integral part of every component of the IaaS model; it aggregates the

activity logs and can be placed in different layers. It can be placed in: 1) the network

layer — where it will be responsible for monitoring the incoming, outgoing, and local

41

network activities; 2) the storage layer — where it will monitoring the file integrity and

unauthorized access to files to provide protection; 3) the server layer — for monitoring

CPU usage, process activities, memory, and input/output (I/O) utilization; and 4) the

virtualization layer (hypervisor) — for monitoring configuration files and all process

instances and the activities of the VMs. DCA receives all packets from the deployed IDSs

in the IaaS components based on some predefined scheduling intervals. The aggregated

data is then passed to DIA for inspection and auditing. DIA receives packets collected

by DCA; processes them using the anomaly and signature databases. The combined

analysis and inspection process is separated from the detection engine via some dedicated

resources for improved performance. The results are passed to TDA for decision making.

AIC is the interface that enables the CCIPS administrator to manage and access all the

CCIPS components. AIC enables access to the activity monitors, system logs, and the

threat patterns in the anomaly database. CA is responsible for the coordination and

collaboration of the CCIPS signature and anomaly databases among all connected or

participating CCIPSs.

(Roschke et al., 2009) proposed virtual machine (VM) IDS architecture which is an

extensible IDS management architecture that build based on a novel mechanism of event

gatherer component. The main goal is preventing the VMs from being compromised. The

architecture consists of several IDS sensors deployed on each VM as well as a remote

controller that performs the management task of these sensors. Each deployed sensor

is responsible for detecting and reporting any abnormal behavior and to dispatch the

triggered events to the event gatherer component, whose main function is to collect the

anomalies and store them in the event storage unit or a database for an additional analysis.

In this approach, IDMEF standard were utilized for sharing the the alarm information.

Furthermore, the authors design a standardized interface enables to users to view the

result reports. By combining the system-level virtualization technology and some known

VM Monitor (VM) approaches, the new IDS management system can be used to handle

most of VM-based IDSs

42

1.7.3 Anomaly based Detection Approaches

The authors, (Velmurugan & Thirukumaran, 2012), have proposed an anomaly IDS

to overcome the limitations of the traditional IDSs. In their work, they proposed two

approaches based on two key ideas: Performance and Information. The performance

approach is built on artificial neural network algorithms. Its main aim is to detect any

attempts to exploit system vulnerabilities. It contributes to automatic discovery of new

attacks. The performance approach has an event auditor. It receives profiles that include

user behaviors captured by the event auditor node. It also classifies the received data; any

deviation observed is considered an anomaly. The information approach uses a database,

which consists of pre-configured rules or information regarding specific vulnerabilities

and attacks. Hence, the information approach can have a high discovery rate of known

attacks.

An anomaly detection system was proposed by (Pandeeswari & Kumar, 2016). It works at

the hypervisor — Virtual Machine Monitor(VMM) — layer and is thus named hypervisor

detector. It is designed to detect abnormal behaviors on virtual networks by analyzing

network events within the virtual machines. The main goal of this approach is to improve

the accuracy of the intrusion detection system by using an hybrid algorithm, which is a

combination of Artificial Neural Network (ANN) and Fuzzy C-Means clustering (FCM)

algorithms. The proposed approach follows three stages. In the first stage, the data-set

is split into training subsets by using a fuzzy clustering technique. For the experiments,

DARPA’s KDD cup data-set 1999 was used. In the second stage, different ANNs are

trained based on the data sets that were obtained after the splitting in the first stage.

Then, the fuzzy aggregation module is used for re-learning and combining the generated

ANN modules into a single ANN module to eliminate the errors at different ANNs. In the

third phase, the fuzzy aggregation module is again used to aggregate the ANN module’s

results into a unique module by which it will be able to eliminate the detected errors.

43

Wang, Zhijian and Zhu, Yanqin (Wang & Zhu, 2017), propose a centralized host-based

Intrusion detection system to enable cloud users or tenants to decrease the resource

utilization. Generally, the Framework uses agents to collect the virtual machines’ logs.

Then it stores them in a centralized location for analysis purpose. The detected results,

obtained after logs analyses, are then sent to each virtual machine. The proposed

framework is built on OpenStack (Openstack), which is an open source source cloud

platform used to built a private cloud environment. The framework encompasses of

four main modules including:Data collection , Data pre-prosing , Data detection , and

Alarm report module . Data Collection Module utilizes agents(Logstash) to collect

data information from virtual machines. Thereafter, the collected data is stored into

Elasticsearch cluster for farther analysis by the detection center.Data Pre-Prosing Module

is used to prepossess the collected logs by prepares unified and effective data for Data

Detection Module, which uses a decision tree (DT) for classifying the data and send an

alert to the victim virtual machine If an abnormal events are detected.

(Roschke et al., 2009) proposed virtual machine (VM) IDS architecture which is an

extensible IDS management architecture that build based on a novel mechanism of event

gatherer component. The main goal is preventing the VMs from being compromised. The

architecture consists of several IDS sensors deployed on each VM as well as a remote

controller that performs the management task of these sensors. Each deployed sensor

is responsible for detecting and reporting any abnormal behavior and to dispatch the

triggered events to the event gatherer component, whose main function is to collect the

anomalies and store them in the event storage unit or a database for an additional analysis.

In this approach, IDMEF standard were utilized for sharing the the alarm information.

Furthermore, the authors design a standardized interface enables to users to view the

result reports. By combining the system-level virtualization technology and some known

VM Monitor (VM) approaches, the new IDS management system can be used to handle

most of VM-based IDSs

44

Similarly, (Ganeshkumar & Pandeeswari, 2016), proposes an anomaly-detection-system

framework that targets the hypervisor level. The framework is also named hypervisor

detector. Its main purpose is to detect abnormal activities in the cloud. The proposed

work was developed to minimize the false negative rate and to provide high detection

accuracy. The hypervisor detector model is built on adaptive neuro-fuzzy inference

system (ANFIS). This is an integration of fuzzy systems with the adaptation and learning

proficiency of neural network. It was developed to monitor the activities of the virtual

machines and to provide flexibility in terms of detection. It detects abnormal activities

belonging to a host and network.

From the foregoing review of some previous work in intrusion detection, the following

research gaps and shortcomings have been identified:

- The approaches that deploy security solution at the hypervisor layer have an issue on

making the security solutions cloud architecture and platform dependent. Placing the

IDS solution in the hypervisor as a centralized IDS may cause bottleneck when traffic

flow increases. In addition, assigning the security control to the cloud provider may

lead to a loss of security control as the same hardware and the hypervisor software are

shared by VMs, which opens the possibility of a compromised and exploited VM to

affect the other hosted VMs or even the hypervisor itself.

- The security approaches that are based on signatures are not effective: it is not capable

of detecting unknown attacks. Moreover, relying on attack signatures in detecting

attacks is not resource-efficient. This is because some attacks, DDOS, for instance,

can cause an enormous amount of signature packets in a very short period of time.

Further, the discussed signature-based approaches do not take into the consideration

signature maintenance (updating the signatures).

- Collaborative security solutions are developed to provide an advance detection as they

enable exchanging of alerts that help in recognizing and avoiding similar attacks at

other cloud nodes. They are not, however, capable of identifying unknown attacks as

45

they are signature-based dependent. They suffer from the limitations of the signature-

based approaches mentioned earlier. They do not have adequate mechanisms for

sharing alerts between nodes. First, the alerts needed to be pre-processed before

shared. Second, the mechanism does not include clustering of the IDS nodes based on

their security functionality and needs. For instance, some IDSs target the DOS attacks

while others target SQL-injection attacks. In this case, any DOS alerts triggered by

the nodes needed to be sent to only the IDS nodes that targeted DOS; this is also true

for the SQL injection. If this happens, it will reduce the number of the alerts shared

between nodes. And, as a result, causes a reduction in the cost since the security

model will not require a large amount of computational and network communication

resources.

- In anomaly-based and hybrid intrusion-detection approaches, various algorithms have

been proposed. They concentrate on detecting attacks, more specifically, they focus

on detection rates and with less focus on generating new signatures and measuring the

latency in terms of sharing the new signatures. The discussed approaches do not take

into consideration faster generation of signatures in automated manners. Furthermore,

updating the detection model by continuously training the model so that it can learn

new threats and update the model is not considered.

1.7.4 Hybrid Detection Approaches

Modi, Chirag and Patel, Dhiren (Modi & Patel, 2018) proposed a new IDS framework

for detecting intrusion in virtual networks for a cloud environment. In their work, they

present an hybrid NIDS to examine and detect intrusion in network traffic and in a cloud

environment. They deployed the hybrid-NIDS sensors at each cloud host machine and

region to monitor the traffic coming from external networks to the VMs, as well as, to

monitor the traffic between the VMs. This security arrangement can help in monitoring

simultaneously multiple VMs deployed at the same host. It also ensures the protection of

the host machine and the VMs from network intrusions. In this approach, a centralized

46

location is used to collect and store the alerts generated by the deployed sensors. The

alerts are then used to identify the distributed attacks. The hybrid-NIDS sensor has

several components including a packet capture component, a signature-based detection

component, the network-traffic feature extractor, an anomaly-detection component, a

score calculation and an alert system. The packet capture component captures the

inbound or outbound network traffic of the VMs and the host machine. It inspects them

in real time using a signature-based-detection technique. The signature-based detection

component uses both the signature-based techniques and the derived-attack rule database,

which is generated using the signature Apriori algorithm that takes the captured packets

and known attack rules as an input and generates derived-attack rules to check these

packet. If an intrusion is detected, the signature-based-detection component determines

the nature of the attack and sends an alert to the score-calculation component. Afterword,

the captured packets are then applied to the network traffic feature extractor; it is the

responsibility of the extractor to generate network traffic profiles from the captured

network packets. The generated network traffic profiles are sent to the anomaly detection

components where three classifiers including Bayesian, associative and decision tree are

trained and used to predict the class label (intrusion or normal) of the given network traffic

profile. The results are sent to the score-calculation component. The score-calculation

component determines whether the intrusion detected by any classifier is also detected by

other classifiers; the information is used for the making final decision. The alert system

component generates for an intrusion that has been determined either by Snort or by

score calculation. Information on the intrusive connection (e.g., the IP of the attacker,

IP of the victim VM, source port, destination port, protocol, and detection result) is

included in the alert message. The alerted intrusion is stored in the central log.

(Tupakula et al., 2011) targeted security cloud IaaS by integrating the signature-intrusion-

detection approach with the anomaly-intrusion-detection technique. They deployed their

hybrid-intrusion-detection systems on top the Virtual Machine Monitor (VMM) to be

47

able to monitor all incoming/out-going packets and to identify the malicious entity that

attempts to compromise the virtual machines.

(Modi & Patel, 2013) merge the traditional signature-based intrusion detection system

with the anomaly-based intrusion detection system to enhance the detection accuracy and

consequently enhancing the capability of detecting the network attacks. Their approach

uses different machine-learning approaches including Bayesian, associative, and decision

tree to build the framework. In their work, the incoming/out-going traffic passing through

the signature IDS is forwarded to an anomaly IDS for classification.

(Aljawarneh et al., 2018) proposed a hybrid classification-based intrusion detection model

and a feature selection to help in detecting attacks over the network. First, the feature

selection method is applied to NSL-KDD data set. Later, the n-intrusion detection model

based on machine learning approach is built and used to find attacks. Moreover, the

captured data is used to improve intrusion detection.

After study of previous work discussed above these research gaps has been identified

- the collaboration among different clouds requires an extensive trust management, which

does not exist in the current DCDIDP framework. It does not provide approaches to

promote trust among cloud users beyond what is stated in SLA. Information sharing

among different clouds is also dependent on the structure of each cloud. Finally,

DCDIDP has not been evaluated and verified through practical implementations.

- the discussed collaborative approaches architectures have many shortcomings; firstly,

central management and processing of the data which represents a single point of

failure.

CHAPTER 2

ARTICLE 1: MULTI-TENANT INTRUSION DETECTION SYSTEM FOR
PUBLIC CLOUD TENANTS(MTIDS)

Mohamed Hawedi1, Chamseddine Talh1, Boucheneb, Hanifa 2

1 Department of Software Engineering and IT, École de Technologie Supérieure
1100 Notre-Dame Ouest, Montréal, Québec, Canada H3C 1K3

2 Department of Computer Engineering and Software Engineering, Polytechnique
Montréal

2900 Edouard Montpetit Blvd, Montreal, QC H3T 1J4

Article Published « The Journal of Supercomputing (Springer) » 1 September 2018.

Abstract:

Cloud computing is an innovative paradigm technology that is known for its versatility.

It provides many creative services as requested and it is both cost efficient and reliable.

More specifically, cloud computing provides an opportunity for tenants to reduce cost and

raise effectiveness by offering an alternative method of service utilization. Although these

services are easily provided to tenants on demand with minor infrastructure investment,

they are significantly exposed to intrusion attempts since the services are offered under the

administration of diverse supervision over the internet. Moreover, the security mechanisms

offered by cloud providers do not take into consideration the variation of tenants’ needs

as they provide the same security mechanism for all tenants. So, meeting tenants’

security requirements are still a major challenge for cloud providers. In this paper, we

concentrate on the security service offered to cloud tenants and service providers and their

infrastructure to restrain intruders. We intend to provide a flexible, on-demand, scalable,

and pay as you go Multi-tenant Intrusion Detection System (MTIDS) as a service that

targets the security of the public cloud. Further, it is designed to deliver appropriate

and optimized security taking into consideration the tenants’ needs in terms of security

service requirements and budget.

50

2.1 Introduction

A new phenomenon that paves the way to change the perspective towards deploying,

scaling, updating, maintaining, and paying for information technology (IT) services is

universally acknowledged as cloud computing. It is deemed as a new economic paradigm

in the computing environment. Peter Mell and Timothy Grance (Mell & Grance, 2011),

define cloud computing as " a model for enabling ubiquitous, convenient, on-demand

network access to a shared pool of configurable computing resources (e.g., networks,

servers, storage, applications, and services) that can be rapidly provisioned and released

with minimal management effort or service provider interaction". Cloud computing

provides various services that are elastically offered to users over the internet. This

enables users to comfortably perform their daily jobs regardless of their locations. The

significant advantages of cloud computing have attracted a number of companies such as

(Amazon, 2015), (Azure, 2018), (Rackspac, 2018), (Arba, 2018) to get involved in this

market.

However, the number of cyber-attacks against enterprises has grown tremendously, which

impacts cloud computing negatively in terms of cloud resource protection. This has

warned companies about the safety of their information when their data is transferred to

the cloud. It has raised the following questions: 1) Does the security provided by Cloud

Providers (CPs) meet the tenants’ requirements?

2) Can tenants have full control over the security of their virtual infrastructure?

Despite the fact that CPs offer some security services, depending on these services can

lead to serious security issues. Moreover, cloud providers fail to deliver high quality

security control as they are not aware of the architecture of the hosted service (Almorsy

et al., 2016). Since CPs provide their services to different tenants, CPs are faced with

a lot of changes to their security requirements. The communication between CPs and

tenants should be established based on negotiation and agreement before applying any

security properties. This communication is a major challenge as there is no standard

regulation in terms of notations of security specifications that can be employed by both

51

CPs and tenants to represent their offered or required security properties. Basically,

the security provided by cloud providers is very limited to securing cloud infrastructure

and cloud platform services including the physical security of the data-center, network

infrastructure, virtualization platform and infrastructure (Demchenko et al., 2017). As

an example, Amazon Web Service (AWS), an IaaS provider, states that tenants are

responsible for securing their VMs as they are allowed to run any operating system (OS)

or modify its services (Shawish & Salama, 2014). In the AWS public cloud, tenants are

responsible for securing Amazon Machine Instances (AMI), OS, applications, and data

including data in motion, data at rest, and data stores as well as credentials, policies and

configuration. Additionally, the tenant is specifically responsible for complying with the

Acceptable Use Policy (AUP), ensuring the correct use of the cloud platform, updating

security, and patching the guest OS and installed applications (Demchenko et al., 2017).

This raises many questions around the security provided by CPs. One critical issue is

when an insider attack such as a cloud client abuses the cloud computing power and

storage capacity or attempts to attack outside the cloud. According to (Patel et al., 2013),

Amazon Elastic Compute (EC2) was used by the attacker, an AWS customer, to attack

Sonys online entertainment systems. Millions of customer accounts were compromised

which is considered as the biggest breach of data in the United States.

Meeting tenants’ security requirements is still a major challenge for CPs. The security

mechanisms offered by CPs do not take into consideration the different tenants’ needs as

they provide the same security mechanism for all tenants. For instance, some providers

use a firewall to block external attacks while others use Access Control Lists (ACLs) on

gateway routers (Adil & Ijaz, 2015). In fact, each tenant needs security policies based

on their requirement. Thus, a network security system is individually requested for

each tenant which secures them based on their requisites. Another critical issue is cost

management in terms of the security offered to the tenant. In some cases, the requested

security may not be used for a period time. Let’s assume that a tenant requests protection

against DoS, DDOS, and SQL. After period of time, this tenant has changed his network

52

topology by terminating the database server or it has been discovered that the traffic

related to the database was not received. Therefore, based on this situation, the SQL

security mechanism should be temporally suspended to reduce resource consumption costs.

Tenants impose their own special requirements to protect their VMs. Thus, adopting

traditional protection mechanisms like Intrusion Detection Systems protect the cloud

environment. The intrusion detection system is the most significant technology that has

recently been used to monitor networks and detect cyber-attacks. The IDS is designed

to provide a defense layer against illegitimate users by sensing attacks and raising alerts.

The IDS has become an essential security mechanism for securing cloud computing

environments since it is not possible to prevent all cyber-attacks (Tan et al., 2014).

Based on the aforementioned problems, we strongly believe that tenants should have a

new security as a service mechanism (SaaS) that can tackle these issues. In this paper,

we propose an elastic, scalable, and efficient multi-tenant intrusion detection system

framework that reduces overhead cost and provides a robust defense mechanism. The

primary contribution of this paper is a multitenant intrusion detection system that provides

a flexible, efficient, and low-cost SaaS framework for public cloud tenants to deploy in

order to protect their own cloud infrastructure. Third party security service providers

can offer this framework to their tenants too. The MTIDS is a hybrid-based IDS (rule

and anomaly-based) network intrusion detection system that offers appropriate security

features for cloud tenants. It proposes to monitor the activities of tenants, capture

abnormal activities, examine them to evaluate the probability of being an intrusion,

and maintain the consistency of the security strategy. The security strategy would be

automatically changed based on the analyzed activities. The MTIDS would be able to

activate/deactivate a set of rules, generate new rules, and automatically update the set

of rules. Such services are regularly presented within a Service Level Agreement (SLA)

context, which is aimed at ensuring the requested service quality. In a nutshell, we will

seek to meet the following objectives:

53

- Presenting and implementing a Multi-tenant IDS as a service (MTIDS), which is an

efficient, agile, scalable framework that aimed to reducing cost and meeting the tenants’

requirements

- Enabling a higher precision detection consensus by supplying advanced traffic analysis.

Based on this analysis, a decision is taken to provide the desired security.

- Enabling tenants to make substantial gains in terms of efficiency, cost reduction, and

security as it offers a flexible and adaptive security mechanism.

The remainder of the paper is organized as follows. We demonstrate the motivation

in section 2.2. We give a brief background and discuss related work in section 2.3. In

Section 2.4, we describe the cloud tenants’ requirements. In section 5, we assume different

scenarios where public cloud tenants build their topology. The architecture of MTIDS

is described in detail in section 2.6. Section 2.7 explains the experiment setup and

demonstrates the results of our experiments. We conclude the paper and present future

work in section 2.8, and 2.9.

2.2 Motivation

Basically, tenants choose their security mechanism after they evaluate different require-

ments. This includes risks such as knowing what type of attack they are against, budget

in terms of how much they are able to pay for obtaining security, network topology and

the type of traffic they could receive. These requirements change permanently as more

and more users with different access rights are using the tenant’s environment. The

following list explains these requirements extensively.

- Infrastructure network topology can help tenants specify their security requirements

as it illustrates all the entry points where security should be located. Different

languages can be used for designing the topology such as TOSCA (Oasis, 2017), Cloud

formation...etc. However, tenants’ topology can change for many reasons. For instance,

54

Figure 2.1 AWS instance cost

a tenant needs to scale VMs up and down as the number of users increases or decreases.

In this case, the topology of the tenant will change in terms of design. They might

have to delete or add subnets and change the configuration of traffic flows. Moreover,

migration can be a significant reason for changing the tenants’ security requirements.

- The tenant’s budget helps to determine the security mechanism and limitation. Saving

money while receiving the security mechanism is one of the tenants’ requirements.

This makes it imperative for security service providers to give a service that meets the

tenants’needs. Service security providers can give an estimate of the cost for security

if they can figure out resource consumption for the security provided. For instance,

since it is possible to know the CPU consumption of each set of rules, security service

providers could determine the feature of VM that is suitable for certain situations. This

allows tenants to be informed about advanced information regarding the service cost.

The MTIDS would be able to reduce the cost as it is designed to stop overspending on

security. As we can see in figure 2.1, hosting an instance in a public cloud with one

55

core costs about 199$ a year and 400$ for a two-core CPU. This is a significantly high

cost for the same period of time. Security service cost reduction can be achieved by

using VMs with the least amount of resources when possible.

- Tenants’ resources are exposed to different and changeable activities or traffic including

inbound/outbound traffic such FTP, HTTP, SMTP, etc. The firewall provided by

the CP could be used as input for determining which security mechanism should be

applied. Figure 2.2 depicts an example of AWS ACL configuration in terms of accepted

and denied services. The optimized IDS can build its decision in providing the security

mechanism that meets the tenant’s needs based on the ACL. Moreover, the Optimized

Intrusion Detection System(OIDS) cloud feeds the ACL within the illegitimate traffic

should be blocked after the traffic is analyzed.

To sum up, a traditional security mechanism such as IDS is still unable to provide

adequate security as it is incapable of adapting to the changes occurring in the tenant’s

environment. Moreover, the traditional IDS has limited capabilities in terms of handling a

large volume of traffic. In fact, IDS starts ignoring the packets if the traffic volume exceeds

its capabilities. Here, we point out that each set of rules contains a number of rules that

have unique signatures that characterize the patterns of attacks. Thus, as the number of

rules in the set increases, the utilization increases, and the system becomes overloaded.

Subsequently, this results in an exhaustion of resources allocated to the tenants as each

inbound/outbound packet needs to be compared to the signatures specified in each rule.

EX. 2 shows an example of rules. Moreover, having an optimized IDS that can adapt

with the occurred changes in the tenant’s environment would strengthen the security

mechanism and encourage more tenants to move their environment to cloud. To this end,

having knowledge of these factors helps the MTIDS to take the right decision in terms of

determining the following:

1. Which security mechanism should be assigned to the tenant?

2. When set the security mechanism should be activated/deactivated?

56

3. Where should we place the security mechanism?

4. What will happen if the requested security is not used for a long time?

5. Is the tenant’s budget enough to get appropriate security?

Example 2. alert tcp EXTERNAL_NET 80 − > HOME_NET 7070 (msg:”ICMP test”;

sid:1000001; rev:1; classtype:icmp-event;)

Generally, this rule examines any traffic directed toward the network and it will generate

an alert whenever the IDS detects traffic headed inbound from outside to the network

over the port (Source) 80. Basically, Snort rule contains two parts: namely Rule header,

and Rule Options. The syntax of the rule is explained as follows:

- Rule Header: Rule Header: (alert tcp $EXTERNAL_NET 80 -> $HOME_NET

7070). Alert which represents the rule action and the alert will be generated in case

of the condition met. $EXTERNAL_NET 80 represent the source IP and the

Port Number receptively. The IDS will consider all external traffic(source IP) over

port number 80. The direction from the source to destination is represented by ->

. ($HOME_NET 7070) refer to the destination IP($HOME_NET) and its port

number which is 7070 .

- Rule Option: (msg:ICMP test; sid:1000001; rev:1; classtype:icmp-event;) Msg:

Message will be included with the generated alert(ICMP test). Sid::1000001 represents

the rule number or ID. rev:1 Represents the Revision number. Using such option

enables easier maintain for the rule. classtype:icmp-event – it basically used to

categorize the rule as an “icmp-event”. This categorization helps with the organizations

of the rules.

2.3 Background and Related Work

This section discusses the existing studies related to our proposed approach.

57

Figure 2.2 AWS Access Control List Example

2.3.1 Fundamental concept of Cloud computing

Cloud computing can be defined as the way to store data or information permanently

on servers over the internet and temporarily caching them on the client side via laptops,

sensors, computers, etc (Shawish & Salama, 2014). In fact, cloud computing has not

been created from scratch and several technologies have paved the way for the cloud.

Virtualization plays an essential role in terms of designing the cloud (Modi & Acha, 2017).

This is a technology that provides an abstraction of the physical hardware and virtualized

resource details for high-level applications (Zhang et al., 2010)], and it is one of the most

significant technologies utilized in IaaS. It increases efficiency in terms of performance,

maintenance, and cost reduction for the computing services provided to users. This

technology is used by different Cloud Service Providers (CSP) such as Amazon and

Microsoft Azure etc. In cloud computing, hardware and platform level resources are

provided as services on-demand (Zhang et al., 2010). Basically, these services can be

categorized into three models (Osanaiye et al., 2016), (Park et al., 2016): Software as

a Service (SaaS), Platform as a Service (PaaS), and Infrastructure as a Service (IaaS).

Infrastructure as a Service (IaaS) refers to the allocated infrastructural resources on

58

demand in the form of VMs. The concept behind the IaaS is that the servers, network

and storage are arranged to be available to the end user on-demand, as a service. An IaaS

provider refers to the cloud proprietor who offers IaaS such as Amazon EC2 (Amazon,

2015), Microsoft Windows Azure(Azure, 2018). Platform as a Service(PaaS) refers to

providing platform layer resources that include OS and software frameworks (Rosado,

2012). For example, Microsoft Windows Azure. Software as a Service (SaaS) refers to

offering applications on-demand on the internet such as SaaS providers (Zhang et al.,

2010). Salesforce (salesforce, 2017) is an example of SAAS. Figure 2.3 shows these services.

Figure 2.3 Cloud computing Models

2.3.2 Intrusion detection system(IDS)

IDS can be used to function as an Intrusion Detection System or Intrusion Detection and

Prevention System (IDPS). Intrusion detection refers to the process used for monitoring

all events that occur in a network or computer system. It also includes inspecting them

for signs of potential accidents, which are violations or impending threats to the computer

59

security strategy, policies, or standard security practices. Further, IDPS refers to the

process utilized for performing intrusion detection and it makes an effort to stop detected

potential incidents (Scarfone & Mell, 2007). Thus, we can define the intrusion detection

system (IDS) as a software that provides automation of the intrusion detection process.

IDS is categorized into two types: Host-based and Network-based (Oktay & Sahingoz,

2013).

- Network-based intrusion detection system (NlDS): NIDS is employed for observing,

examining and analyzing certain components for precise and predefined divisions of

network traffic (Oktay & Sahingoz, 2013). NIDS observes network traffic for certain

network segments or devices and inspects the activities of the network to figure out

any suspicious activities. It is usually located at networks’ borders, asinas in closeness

to boundary firewalls or behind routers, virtual private network, remote access servers,

and wireless networks (Scarfone & Mell, 2007).

- Host-Based intrusion detection system (HIDSs): Host-based intrusion detection system

(HIDSs): HIDS is used for observing and analyzing the host system’s characteristics

once an incident happens such as suspicious activity like system calls, processor threads,

entity and configuration access or modifications. Usually, the HIDS is placed on the

most important host that is used to store private and vital information. Also, it is

possible for the host to perform some of the NIDSs functions if it is placed on one host

and configured to detect network behaviors (Oktay & Sahingoz, 2013). For example,

in the AWS cloud (Amazon, 2015), host-based IDSs should be deployed in each of

the launched VMs. Host-based IDSs can use both system logs and OS audit trails for

system state monitoring such as detecting a particular program that accesses specific

resources.

60

2.3.2.1 Intrusion detection techniques

Indeed, different techniques can be used to analyze and detect attacks. These techniques

are categorized into various principal categories (Oktay & Sahingoz, 2013), as described

in the following section:

- Signature-based lDSs: Signature-based techniques are also known as knowledge-based

or misused-based techniques (Keegan et al., 2016). Misuse detectors aim to analyze

system activities by searching for an event or a group of events that match the signature

that identifies known attack types. As identical match-patterns to known attacks

type are called as signatures, misuse detection is occasionally named signature based

detection. The commercial product is the most common form of rule-based IDS. This

technique is used to determine intrusion attempts based on pre-defined rules against

known attacksOktay & Sahingoz (2013).

- Anomaly-based IDSs: IDSs particularly focus on monitoring and analyzing system

behavior. Anomaly detectors aim at identifying unusual and abnormal behavior on the

host and network. They assume that abnormal activities are different from authorized

activities. Hence, these activities can be detected using systems, which can determine

normal or abnormal activities. Anomaly detectors learn themselves by constructing

profiles representing the habitual behavior of users, hosts, and the network. Also, the

profiles are made from data gathered for a period of time and over a stage of normal

operation. The anomaly detector function then collects data events and employs

several measurements to determine when monitored activity moves away from common

habit (Zarrabi & Zarrabi, 2012).

2.3.3 Related Work

In this section, we review relevant work that adopted the traditional intrusion detection

system (IDS) for enhancing security in cloud computing. Each work focused on various

61

cloud service modules or various objectives. Essentially, an intrusion detection system

encompasses a verifying process that examines the entity’s behavior looking for attack

signatures that are precise patterns which indicate malicious or suspicious intent.

A lot of the proposed research concentrates on providing security as a service for cloud

providers as part of their infrastructure which they can offer to tenants.

Varadharajan and Tupakula (Varadharajan & Tupakula, 2014) have proposed safeguarded

security as a service model based on the intrusion detection system that targets the

infrastructure and is offered by the cloud provider to its tenants . The proposed service

model provides baseline security to the cloud provider for protecting its cloud infrastructure.

It also offers elasticity to tenants for gaining further security functionalities that match

their security needs. Basically, this approach aims at protecting the tenant from internal

attacks by deploying the proposed security mechanism on the hypervisor in privilege 0 by

which they have the ability to monitor the VMs that are gained.

Alharkan and Martin (Alharkan & Martin, 2012) proposed a scalable intrusion detection

system as a service (IDSaaS), which can detect malicious or suspicious intent. IDSaaS is

a network-based IDS that targets to protect IaaS. It is built on top of the AWS cloud

and it is used to monitor and log suspicious activities of the network between tenant

VMs. This framework used the signature based technique to determine the validity of

events. Particularly, the traffic is captured and analyzed based on signatures that have

been pre-defined and can be updated on a systematic basis.

Gul and Hussain (Gul & Hussain, 2011) introduced a distributed multi-threaded paradigm

IDS that targets the security of cloud computing. The multi-threaded IDS model is

designed to handle a huge flow of network traffic. This traffic is then analyzed and an

alert is raised if there is any suspicious activity. This approach suggests that the raised

alert should be sent to a third party. This third party is responsible for sending alert

reports to a cloud user in case there is an intrusion attempt as well as advice to the cloud

provider regarding the occurred intrusion. It is composed of three components including

62

capture and queuing, analysis and reporting. The first component captures traffic. Next is

queuing and then it is sent for analysis by the analysis component. A signature technique

is used for detecting any suspicious activity. If the traffic violates the signature, an alert

will be generated and sent to the report component. Hereafter, the report component will

send the generated report to the third party. Then, it will be sent to the cloud user and

cloud provider.

Patel, S.K., Sonker (Patel & Sonker, 2016), proposed a rule-based NIDS designed to

detect Dos attacks and to generate Port scan detection rules. The proposed approach

enables safeguarding networks from any illegitimate access. In this rule-based detection

system, network traffic which are passed over the network are captured and then inspected

looking for any suspicious activities (intrusions). The system will generate an alarm if

any packet matches the signature.

A network intrusion detection system (NIDS) was presented by Gupta, S., Kumar, P

(Gupta & Kumar, 2017) aiming at securing Cloud resource against distributed denial

of service attacks. In this approach, a tenant Virtual Machine(VM) profile is used for

predicting the DDOS. In essence, The profile of the tenant is used for classifying DDoS the

signatures of the attack as well as for performing back off based detection of signatures.

Various important processes phase were proposed in this approach. The first phase

is initialization and rule update, which is created to set the thresholds for the attack

signatures existing in a client VM profile. In detection phase, packets are examined

for detection attack that meet the signature. In Alert and Response Generation phase,

alerts with will be send to the Virtual Machine of the client if suspicious activities were

detected. Wang, Zhijian and Zhu, Yanqin (Wang & Zhu, 2017), propose a centralized

host-based Intrusion detection system to enable cloud users or tenants to decrease the

resource utilization. The proposed framework uses agents to collect the virtual machines’

logs. Then it stores them in a centralized location for analysis purpose. The detected

results, obtained after logs analyses, are then sent to each virtual machine.

Modi, Chirag and Patel, Dhiren (Modi & Patel, 2018) s suggested a new IDS framework

63

aims at detecting intrusion in virtual networks for cloud environment. In this paper,

the researches presented a Hybrid-NIDS to examine and detect intrusion in the network

traffic and in cloud environment. They have deployed the Hybrid-NIDS sensors on each

cloud host machine and region to monitor traffic coming from external networks to VMs,

as well as, traffic between VMs. This kind of deployment aids monitoring multiple VMs

deployed on the same host simultaneously, and to ensure protecting the host machine and

VMs from network intrusions. In this approach, a centralized location is used to collect

and store alerts generated by the deployed sensors to identify the distributed attacks.

Other researchers concentrate on deploying the intrusion detection system in a collaborative

manner for detecting suspicious activities.

The authors of (Alruwaili & Gulliver, 2014) propose the concept of a collaborative IDS

for protecting the cloud infrastructure layer against known and unknown threats by using

signature based and anomaly techniques. Notably, the proposed approach is aimed at

protecting service providers and their tenants against loss of services caused by both

known and unknown threats. Moreover, the framework can work in a global, collaborative

manner to achieve comprehensive monitoring of the cloud resources.

The work done by Ficco et al. (Ficco et al., 2013) presented a distributed architecture

to provide intrusion detection in cloud computing. The proposed approach helps to

observe the CP and detects if certain CP resources have been compromised by other

providers. It also identifies scalable distributed attacks as opposed to the federated cloud

systems. A collaborative IDS distributed in the cloud layers including the infrastructure

level, the platform level, and the application level to help in detecting coordinate attacks

was introduced in (Gul & Hussain, 2011). This framework allows cloud providers to

implement distributed IDSs for detecting intrusion attempts and it enables cloud tenants to

monitor their applications. Moreover, network intrusion detection named multi-threaded

distributed IDS deployed in the cloud computing environment (Gul & Hussain, 2011)

was developed to deal with widespread network access traffic, and administrative data

control and applications in the cloud. The proposed IDS can manage a huge flow of data

64

packets, and then produce reports after analyzing those data packets. Also, the proposed

model suggested that cloud users should buy the third party for managing and monitoring.

This third party is responsible for sending warning reports to cloud users in case there is

an intrusion attempt as well as giving advice to cloud providers regarding the occurred

intrusion.

The work introduced by Taghavi Zargar et al. (Zargar et al., 2011), proposed a framework

(DC- DIDP) which focuses on coping with an attack using intrusion detection and

prevention systems (IDPSs). The proposed intrusion detection framework (DC- DIDP)

allows all cloud service providers to cooperate in a distributive way at different operational

levels to reply to attacks and offer universal IDPSs. Global databases are shared among

cloud providers on which they can detect sophisticated cooperative intrusion.

Chi-Chun Lo et al. (Lo et al., 2010) proposed an intrusion detection system based on the

cloud computing framework to monitor cloud regions. In this approach, IDSs are deployed

in each cloud-computing region for detecting intrusion attempts. They send alerts to each

other in case intrusions are detected, and judge the honesty of these alerts. The proposed

architecture consists of many components that involve intrusion detection, alert clustering,

threshold check, intrusion response and blocking and cooperative agent. The concept

beyond proposing the alert clustering module component is to gather alerts generated via

other regions and then through collaborative agent component alert messages that are

exchanged among IDSs. The judgment regarding whether these alerts are true or false is

determined by estimating the riskiness of the gathered alerts.

Overall, all reviewed studies have some drawbacks. Most of the proposed approaches

suggest that the security offered for tenants should be controlled by the CPS. Hence, this

will not help to meet the tenant’s security requirements. In addition, many reviewed

studies propose deploying their security mechanisms on top of the VMM. This imposes

many risks to the tenants’ VMs as the VMM can be compromised. Moreover, some of

the revised researches merely target detecting all known attacks. For the approaches that

propose the collaborative IDSs, they are limited to exchanging information between CSPs.

65

In fact, tenants’ security requirements are not considered.

Our proposed approach fills the gap of the aforementioned work. In fact, there are several

aspects that differentiate our work from the discussed work.

- In our work, we take into consideration meeting the tenant’s needs regarding security

by providing Optimized IDS as a service. This is fully controlled by the cloud tenant

and it is adaptable to the tenants’ environment. Multi-tenant IDS(MTIDS) is an

efficient, flexible and scalable solution that offers different security levels to meet the

tenant’s needs.

- Unlike the aforementioned work, which solely concentrated on providing security

solution without considering the cost reduction, the MTIDS contributes to the cost re-

duction, which results from optimizing the resources consumption. And this considered

as a significant feature in this proposed approach.

- Besides the anomaly detection, the proposed approach success in providing adaptable

or optimized signature IDS where the security services (Set of rules) or signatures

are activated/deactivated based on the traffic. The incoming/out coming packet got

analyzed looking for the port number that meets the MTIDS policies which illustrated

in Table 2.1 . Indeed, the anomaly IDS is designed to be offered as a service that

capable to meet the tenants requirements as it provides different classification models.

- Unlike the other approaches which rely on a set of generic rules or signatures, our

approach offer an automatic creation of custom rules based on tenants’ environment.

2.4 Cloud Tenants Requirements and Perspectives

Due to heterogeneity of the cloud architecture and different security perspectives of

the tenants, the security requirements tend to vary. This variation in points of views

is definitely possible since each tenant has own infrastructure typologies, policies, and

services for users. Details of these differences are listed as follows:

66

- As cloud tenants utilize and pay for the services offered by the cloud provider, tenants

should obtain a robust security mechanism that meets their needs to monitor their

virtual resources against attacks such as SQL injection and DoS/DDoS. As we have

previously mentioned , the existing security provided by cloud providers does not

meet the tenant’s needs as cloud providers offer a standard security mechanism for all

tenants.

- Some tenants have a lack of trust for the existing security mechanisms provided by

cloud mechanisms as these mechanisms are configured and managed by the cloud

provider. Thus, enabling the tenant to even partially manage and identify their own

customized security strategies for each component being monitored will ensure more

trust.

- Tenant needs to know whether their VMs and services are being employed to attack

other victims. Hence, the security mechanism offered to cloud tenants must provide a

more transparent information about attacks.

- The tenant requires the cloud provider to ensure that attacks are detected on their

cloud infrastructure and offered services. However, as we have mentioned above, cloud

providers are given the responsibility to protect the tenant’s environment.

To sum up, offering a reliable security mechanism that meets the requirements of the

tenants enhances trust and encourages more tenants.

2.5 Cloud Tenant Topology Scenarios

As we discussed above, since different tenants deploy their environment on top of the

cloud, the security perspective tends to be distinct. In fact, each tenant has different

cloud architecture, which is composed of topology policies and so on. Hence, the ability

of understanding and categorizing the tenant’s needs can determine how and where to

provide support for tenants in the underlying designed architecture. Figure 2.4 depicts

67

Figure 2.4 Cloud Scenarios (AWS based vision)

how tenants deploy their cloud resources on top of the public cloud (i.e. AWS) (Amazon,

2015). In this proposal, we assume that some tenants have a single account while others

possess many accounts. This can only occur when tenants own large organizations where

a large number of machines need to be operated. Tenants can have complete control over

their compute resources using Elastic Compute Cloud, EC2. EC2 is a web service that

provides re-sizable compute capacity in the cloud [30]. Each AWS account has a single

EC2 where a tenant is able to deploy their compute environment. With this assumption,

we contemplate multiple scenarios for cloud resource deployment. In the first scenario, we

assume that Tenant 1 represents a small organization that has a few departments (i.e.

sales, finance and hospitality), each of which want to deploy an infrastructure on top of a

single AWS account. These departments can be isolated as VMs are deployed on different

virtual private clouds (VPC). Tenants are able to share information by connecting these

VPCs. As can be seen in figure 2.4 , the web and application tier are delivered into

different subnets to all architecture designs. In the second scenario, we stipulate that

one of our tenants may have a large organization consisting of several branches. These

branches need multiple accounts to ensure high availability of the service. Hence, Tenant2

deploys its infrastructure on top of two AWS accounts. The third scenario targets conjoint

68

organizations. In this case, we assume that Tenant3 and Tenant4 have a joined account

to deploy and manage their resources. In this infrastructure, isolation is accomplished

at different tiers of the architecture. As we can see in figure 2.4, for each tenant, the

application tiers and databases are isolated whereas the web tier is delivered as a shared

subnet. Based on this assumption, there is a need to provide a new security mechanism

for the public cloud tenant. Our approach enables tenants to make substantial gains

in terms of efficiency, cost reduction, as well as security. In addition to that, it assists

tenants to ensure proper cost allocation as they receive optimized security protection

that meets their needs and adapts to the changes of the tenants’ requirements over time.

Moreover, the proposed security framework presents flexibility in terms of monitoring

the tenants’ resources and it automatically changes the security mechanism based on

actions or events facing the tenants’ resources. These features provide significant gains for

tenants who manage multiple public accounts. Our framework, in general, enables cloud

tenants to define their needs. It enables tenants to define their requirements by which

it determines and categorizes the Optimized IDS that meets the tenants’ needs. Based

on this requirement, the OIDS will assign an appropriate optimized IDS that meets the

needs. Moreover, the Optimized IDS(OIDS) is designed to be able to adapt to change

occurs in the tenant’s environments.

2.6 MTIDS Architecture

This section presents the architecture of the MTIDS. The main idea is to build a framework

that takes into account the tenants’ security requirements and offers a flexible security

mechanism with a reduction in cost. As depicted in figure 2.55, the MTIDS consists of

multiple main components: the Optimized IDS Controller (OIDSC), Packet Analyzer,

Optimized Signature IDS (OIDS), and Anomaly Intrusion detection component (AID).

These components are complimentary to each other.

1. Optimized IDS Controller(OIDSC) consists of two component including:

69

Figure 2.5 Multi-tenant Intrusion Detection System(MTIDS) architecture

Figure 2.6 Optimized IDS Controller Process

- The Tenant Security Requirements Supervisor(TSRS). This component is respon-

sible for receiving the tenants’ security requirements, topology, and orchestration

of the tenant application by which the (OIDSC) can assign a specific Optimized

IDS that meets the tenants’ requirements. This component allows public cloud

tenants to specify the security requirements and the underlying topology of their

virtual infrastructures. The optimized IDS will be assigned based on these security

70

requirements. This provides benefits to the tenants in terms of cost reduction

and receiving an efficient security mechanism. Figure 6 illustrates the process of

security specification that a tenant can follow to meet their need. The second

element of OICDS is a multi-tenant IDS database 2.6.

- The multi-tenant IDS database uses a multi-tenancy concept for saving information

regarding the tenants including tenant activities, login info, and so on. The saved

information could be used to identify the behavior of each tenant by using machine

learning techniques.

2. Network Behavior Analyzer(NBA): this component is responsible for analyzing network

traffic which enables the Optimized IDS (OIDS) component to assign or activate the

optimal security service. Various attributes including port numbers, services name

are used to distinguish between different services that run over different transport

protocol (iana, 2016). Based on the attributes, the OIDS can adapt to changes

occur on the tenant environment. The NBA component is complementary to OIDS.

Algorithm 2.2, and 2.3 demonstrate how these components work together to satisfy

the tenants’ needs.

3. The Optimized IDS (OIDS) is built on top of each tenant’s public cloud environments.

OIDS is a hybrid-based IDS. Rule based and anomaly based techniques apply all

known attacks’ signatures. They monitor system activity and classify it as either

normal or anomalous. The OIDS is in charge of targeting a specific threat to meet

the needs of the tenants. Moreover, the OIDS is designed to adapt to the changes of

tenants’ security requirements. The following example represents different scenarios

of tenant security requirements. In the first scenario, Tenant A predicts an attack

occurrence (i.e. SYN flood protection attack) in their environment.Tenant A requests

the IaaS attack protection service against the predicted attack. In the second scenario,

Tenant B requests security service against a SQL injection only. In this case, the

OIDSC will assign the OIDS with SQL Injection to Tenant B. Nevertheless, these

tenants will still have the right to change their requirements at any time and they

71

will still be able to have the security mechanism that meets their needs. Afterwards,

Tenant B changes the IaaS topology. Hence, the security mechanism should adapt

to this change. We have other scenarios where tenants are not aware of what security

service to choose. In this case, the OIDSC will assign an IDS loaded with all known

attack signature detection and anomaly detection. Subsequently, based on the network

behavior analyzer’s monitored activities, the OIDS will activate/deactivate a security

mechanism. The optimized intrusion detection system consists of:

a. Optimized Analyzer Engine Component (OAE): It functions to deter- mine

the threat level by analyzing the captured traffic based on certain rule-sets or

pre-defined signatures. It then generates an alert in case the captured traffic

matches the activity. The OAE is in constant communication with a central

controller to keep the signature set updated. The set of rules of the OIDS

are activated/deactivated automatically based on the traffic compromising the

tenants’ infrastructure.

b. Alert Dashboard: The Alert Dashboard is developed to allow tenants to gain

information about the monitored VMs. It is used as a graphical user interface

(GUI), which allows tenants to look into the generated alerts and correlate them.

Tenants can generate reports with different characteristics including time/date,

the attack source, or type of threat...etc.

c. The signature Database: The signature Database contains up-to-date attack

signatures either through downloading them from public community services

or through a subscription service including the Sourcefire VRT (Snort, 2017).

Moreover, this database will be updated new rules generated by the anomaly

IDS.

4. Warning storage: t is responsible for gathering the warning events generated by the

Analyzer Engine Component. This facilitates the tracking process for the notification

source and offers flexible management. Further, it is responsible for gathering the

alerts generated by the Anomaly IDS component.

72

5. Anomaly IDS(AID) Component: this component is considered as a part of the OIDS.

The main goal of this component is to classify the network traffic forwarded from

the OIDS as normal or anomalous. Different methods including heuristics or rules

instead of signatures are used to accomplish this classification. Machine learning such

as Random Forest (Breiman, 2001) ,Decision tree(DT) (Kevric et al., 2017) will be

used to build the anomaly IDS. This component is used to find the beneficial patterns

that can describe the behavior of the cloud tenants and use these patterns to build

classifiers to acknowledge normal and anomaly intrusion. Hence, it will enhance the

performance of the IDS in terms of the detection rate and speed processing.

Figure 2.7 MTIDS Mechanism

73

2.6.1 MTIDS Mechanism

The main purpose for creating the intrusion detection system (IDS) is to monitor incoming

and outgoing network traffic and look for any suspicious activity that is probably an

indicator of an attack that will compromise the system. Signature IDS refers to the method

of comparing predefined rules against captured events to detect any intrusion attempts.

The rules consist of information that allows the IDS to take a precise decision including

sending an alert. The IPS is responsible for blocking an attack or dropping illegal packets.

Rule based systems are considered as the most extensively deployed IDSs. In the rule

based system, an accurate signature information improves attack detection. Nevertheless,

the rule based IDS is unable to detect unknown attacks. Hence, anomaly-based detection

becomes indispensable to detect zero attacks and to generate new rules (Man & Huh,

2012).

In section 2.6, we discussed the architecture of the MITDS process. This subsection

provides detail of the MTIDS process. It discusses how MTIDS components work to

mitigate the attack. As we previously mentioned, the MTIDS uses signature and anomaly

based techniques in order to provide better attack detection. The MTIDS provides a

flexible security mechanism that is able to automatically adapt to the change based

on tenants’ variable security strategies. Different constraints such as tenant security

requirements, topology, tenant activities and budget can play an important role in

providing the security mechanism. Hence, it is extremely important for the tenant

to accurately weigh their security requirement considering these constraints. In the

proposed mechanism, we conducted two different scenarios. The first scenario is where

the Optimized IDS required by the tenant receives traffic as expected. The OIDS will

work normally in case the constraints explained above have not been violated. As we

discussed, tenants should identify their requirements to receive a particular Optimized

IDS (OIDS) that meets their specific needs. There are a lot of languages that can be used

to perform this task. However, OASIS Topology and Orchestration Specification of Cloud

Applications (TOSCA) (Oasis, 2017) have been used as a language for the Topology

74

and Orchestration Specification. As it is demonstrated in Figure 2.7, the optimized IDS

examines the incoming/outgoing traffic and then generates alerts. In the second scenario,

the OIDS signature does not recognize the attack pattern. In this case, an anomaly based

mechanism should be involved to evaluate traffic activities in order to identify the traffic

pattern and detect malicious activity. Thereafter, a new rule will be generated based on

this detection. The existing set of rules will be updated subsequently. In this work, we

have proposed an algorithm as illustrated in subsection 2.6.3 to cope with these scenarios.

This algorithm uses the hash tables technique (Yan et al., 2008) to speed up the execution

of rule set management.

Table 2.1 Ex.MTIDS Activation/Deactivation Policies

Service Protocol Port Number Set of rules
ftp TCP 21 ftp
sql TCP 139/1433/53/445/1434 mysql & sql
tulent TCP 23 tulnet
tftp UDP 69 tftp
virus TCP 25 virus
dos Ip/UDP/TCP/ICMP 7070/8080/161/6004/80/2048 dos

/515/179/135:139/6789:6790
dns TCP/UDP 53/any dns
delete UDP/TCP 79/80/143/2140/60000/21/111 delete
snmp UDP/TCP 161-162 snmp
ddos TCP/UDP/TCP 18753/20433/31335/27665 ddos

/27444/6838/10498/12754
backdoor TCP/UDP/ICMP 16959/27374/20034/2140/80 backdoor

/146 /666/34012
chat TCP 6666/1863 chat
netbios TCP/UDP 135/445/139 netbios
p2p TCP/UDP 8888/6699/7777/5555/1214 p2ps

/4242/41170
smtp TCP 25 smtp
imap TCP/UDP 220/143 Internet protocol

75

Table 2.2 Ex.Security Services

Key Value
DOS DOS SR
DDOS DDOS, SQL SR
SQL SQL SR

2.6.2 OIDS Process Flows

Providing security services to meet the requirements of the cloud tenant would encourage

more users towards the use of cloud. Thus, the main objective of the proposed MTIDS is

to provide a security mechanism that is intended to meet tenants’ requirements in terms

of the quality of offered security service and the cost. MTIDS is a Multi-tenant IDS as

a service that is intended to enable cloud tenants to specify their security requirements.

Moreover, it provides an optimized IDS(OIDS) that capable to adapt with the changes

occurs in the tenant’s environment such as inbound/outbound traffic changes.

This section presents some formal description to represent the semantic scheme of the

OIDS. The process of OIDS rely on important constraints, which are the tenants, their

security requirements, the traffic they are facing, and the security service polices. In this

context, various sets including The Set of Rules, Set of Tenants, Set of Packets, and Set

of Security are defined. Moreover, the mathematical relation between them is clarified.

2.6.2.1 Definition of sets

In this subsection, various sets will be defined as the following:

(i) Set of Rules R: Represents the all rules that can be used by IDS.

(ii) Set of Tenants T : Represents the set of all tenants.

(iii) Set of Packets P : Represents inbound/outbound packets in the network.

76

(iv) Set of Security Services SS: Represents the security services like SQL, DOS,

DDOS, ICMP, etc.

2.6.2.2 Definition of relations

This sub-subsection demonstrates the mathematical relations(mathematical function1)

between the defined sets aforementioned in sub-subsection 2.6.2.1.

- Security Requirement of the tenant(SRQt):

SRQt :N → P (Service)

i → SRQt(i) (2.1)

This mathematical function defines the security requirements of the tenant i. For

instance, the tenant 1 can has the following security requirements:

SRQt(i) = {Dos,DDOS,SQL}

where, P(Service) is the powerset 2 of the set Service.

For simplicity, we consider the departure set is natural number which represent the id

of tenants.

1 "A function is a process or a relation that associates each element x of a set X, the domain of
the function, to a single element y of another set Y (possibly the same set), the codomain of
the function" (Wikipedia, 2018a).

2 "The power set (or powerset) of any set S is the set of all subsets of S, including the empty
set and S itself of the set R" (Wikipedia, 2018b).

77

- Activated Set of Rules of the tenant(SRt):

SRt :N → SR

i → SRt(i) (2.2)

This mathematical function gets the set of activated rules for the tenant i.

- Packet Type(PacketType):

PacketType : P → SS

p → PacketType(p) (2.3)

This mathematical function defines that each packet has type which corresponds to

a service that is an element of the security requirements SS. Here, the type of the

packet is defined based on the port number. For instance, the SQL requests are likely

to be received on TCP Port numbers (139/1433/53/445/1434). Table 2.1 , depicts

the policies in terms of defining the port number and their corresponding security

service. Basically, OIDS would examine the port number of the captured packet; then

it matches them to OIDS policies. If the packet triggers the policies, the security

service would be either activated or deactivated.

- Set of Rules of Service(SRS):

SRS : Service → P (R)

Pt �→ SRS(Pt) (2.4)

78

This mathematical function defines the set of the rules corresponding to the services.

where, P(R) is the powerset of the set of the rules R.

- The Security Service Targeted by Rule(STR):

STR : R → SS

r �→ STR(r) (2.5)

This mathematical function defines the services(DOS, SQL. etc) of the rule r. An

example of rule was mentioned in Example 2 where it shows the port number as an

important element of the rule structure.

Algorithm 2.1 Tenant-Security-Requirements MSR < Key,V alue >, SRQt)

1 SRt = φ
2 t ← Now
3 begin
4 foreach SRQi ∈ SRQt do
5 SRt ← SRt ∪ MSR.getValue(SRQi);
6 end
7 Activate (SRt)
8 end

2.6.3 Optimized IDS (OIDS)algorithms

This Subsection presents the optimized algorithms, which are based on the defined function

discussed in Section 2.6.2.1,in further details. This algorithm is designed to provision

security services based on tenants’ demand. It also adapts to the changes of tenants’

requirements, which alter as the topology changes. Moreover, this algorithm monitors the

traffic activities and then provides an appropriate security service based on the monitored

activities.

79

Algorithm 2.2 ActivateAdaptationR (MSR, SRQt,SRt)

1 newSR = φ
2 while True do
3 pk=CapturePacket()
4 typePk ← PacketType(pk)
5 if typePk /∈ SQRt then
6 NewSR ← MSR.getValue(typePk)
7 SRt ← SRt ∪ NewSR
8 Activate(NewSR)
9 SRQt ← SRQt ∪ {typePk}

10 end
11 end

Algorithm 2.3 DeactivateAdaptationR (MSR, SRQt,SRt, ReqPriod)

1 � t
2 timecapture Map < Key,V alue >
3 initiate(timecapture)
4 t ← now()
5 while True do
6 pk ←CapturePacket()
7 typePk ← packetType(pk)
8 Timecapture.update(typePk, now())
9 if now()−t > �t then

10 foreach SRQi ∈ timeCapture.getkey() do
11 time ← timeCapture.getValue()
12 if | now() - t | > ReqPeriod.getValue(SRQi) then
13 dSR ← MSR.getvalue(SRQi)
14 SRt ← SRt\dSR
15 SRQt ← SRQt\SRQi
16 deactivate(dSR)
17 end
18 end
19 end
20 t ← now()
21 end

Overall, the three Algorithms 8, 2.2, 2.3 are complementary to each other. Algorithm 8 is

designed to offer security service based on the tenant’s requirements whereas Algorithm

80

2.2 and Algorithm 2.3 are designed to enable turning on/off the given security services

based on the activities that OIDS faces.

Algorithm 8Tenant-Security-Requirements Description:

This Algorithm is designed to meet the security requirement of the tenant by activating a

set of rules corresponding to their requirements. First of all, the algorithm input maps

composed of MSR(key, value). While the key donates to the security service, the value

represents the corresponding set of rules. Table 2.2 illustrates an example of the MSR.

In addition, SRQT which is based on the formula 2.1, represents the service security

requirements of the tenant. While, SRT(line 1), encompasses of rules that is intended to

be activated by the tenant security requirements. Lines (3 to 5) check the list of tenant

security requirements (SRQT) and get the corresponding Set of rules from the map by

using getValue function call. Finally, the algorithm would activate the set of rules as

explained in line 7.

performed either by being activated (line10) or by being deactivated (line16). Then, the

index is updated (lines 11 and 17).

Algorithm 2.2 ActivateAdaptationR Description: As aforementioned this algo-

rithm activates the security services based on the monitored traffic. In this algorithm,

MSR and SRQt are inputs which are also defined as input for the algorithm refAlgo:Security

requirment. Furthermore, SRt(tenant’s set of rule) is also input which is based on the

forumla 2.2. The set newSR will contain of the new set of rules that will be added to

tenant’s set of rule (SRt). As shown in lines 2, and 3, the algorithm starts monitoring

the incoming/outcoming traffic(packets) based on Packet function defined on formula 2.3.

It will mainly concentrate on an attributes in each monitored packet which is the port

number as each port number corresponds to a security service as revealed in Table 2.1.

For instance, the SQL security service is linked to ports (139/1433/53/445/1434). Based

on this context, the SQL security service will be activated if the algorithm discovers a

new packet with such ports. Before activating any set of rules, the algorithm will double

81

check whether the set of rules is listed in the activated set of rules defined by tenant as

shown in line 5. If not, the algorithm will get the set of rules corresponding to the type

of packet and the MTIDS policies 2.1 as explained in the formula 2.3. Then this set of

rule/rules would be activated.

Algorithm 2.3 DeactivateAdaptationSR Description:

This algorithm is designed to deactivate unnecessary security services. To achieve this

task, the algorithm monitors and classifies the inbound/outbound traffic and maps the

protocol and the port numbers to MTIDS policies presented in Table 2.1 to figure-out

which set(s) of rules should be deactivated. In this algorithm, MSR SRQt,SRt, and

ReqPriod, are used as inputs, as shown in line 1. ReqPriod depicts the deactivation time

which is configurable. Hence, tenant can set run-time to deactivate the unneeded security

services(Set of Rules). In this algorithm, Δt serve as a timer to determine the period of

time for regular checking. For example, let’s assume that Δt is configured to 24 hours.

This means that the algorithm will do the regular checking each 24 hours. timeCapture,in

line 2, will contain the recent time of captured packets. Line 3, is intended to capture the

actual the time. After recording the time, the algorithm starts capturing the packet as

shown in Line 5. While in Line 7, the update enables the timeCapture map to update

the time of the entry that its key has the value of typePk and it will add new element,

the element has a key which is the value of typePk, in case this the entry point is not

listed. Lines 8, and 11, the algorithm compares the recent time by the time determined

for checking. Finally, in lines 12 to 15, the security services will be deactivated if the

condition or policy

2.7 Implementation and evaluation results

The main objective is to evaluate the performance of the OIDS by examining its capabilities

in terms of CPU consumption.

82

Figure 2.8 Network Architecture

2.7.1 Network Architecture Setup

Our MTIDS is deployed on top of a public cloud. Deploying the instances on top of

the AWS cloud goes through several stages including the deployment of Virtual Private

Clouds (VPCs), choosing an Amazon Machine Image (AMI), creating security groups,

subnets etc. As it is depicted in figure 2.9, the targeted application contains a number

of VMs (VMs) namely: a web server and database server deployed in different private

subnets. First, we have created a virtual private cloud (VPC) (Amazon, 2016b), which is

an isolated virtual network reserved for AWS tenant accounts. Second, on top of the VPC,

83

we create two subnets (private and public subnets) to launch EC2 instances. A web server

(Apache 2.0 and database server (MySQL) are deployed in the private subnet. OIDS is

located in the public subnet. The OIDS is a network intrusion detection system that acts

as a gateway for the application deployed on the public subnet. Third, a security group

acts as a virtual firewall that controls the traffic for at least an instance and determines

the permitted network services that can run on each VM. It is also used to enforce the

inbound/outbound traffic to pass through the Optimized IDS, which is connected to

the instances located in the private subnets. The OIDS can span across different VPCs,

regions, and availability zones. Hence, it can provide a collaborative OIDS. Fourth, the

internet gateway will enable internet access for the public subnet. Elastic IP is assigned

for the OIDS. This allows the instance placed in the public subnet to be accessed from

the internet through an internet gateway. We use an open source intrusion detection

system called Snort (Snort, 2015) to build the Optimized IDS’ Analyzer Engine of the

Optimized IDS. Snort is used as a packet sniffer to monitor network traffic in real time.

It then carefully inspects each incoming/outgoing packet carefully to detect any serious

payload or suspicious anomalies. Microsoft SQL Server (microsoft, 2016) is used to build

the warning storage. Snorby is used as a graphical interface to demonstrate different

information and statistics about the detected attacks. TOSCA (Oasis, 2017) is used to

build the (TSRS) which allows tenants to specify their security requirements and create

their topology. The specifications of all VMs as well as the attacker’s machine that is

used in our trials are both shown in Table2.3.

The main objective of our approach is to reduce the cost and to meet the tenants’ needs

in terms of security. Indeed, understanding the performance of the IDS resources is very

valuable for managing both the IDS capacity and cost. Since we are seeking to meet

the variety of the tenant in terms of security requirements, we compared the default

snort,where all set of rules are activated, with our OIDS loaded with a set of rule at time.

The names of the used sets of rules are illustrated in Table 2.4. Python Code is written

for computing the CPU utilization and for illustrating these differences.

84

Table 2.3 Description of Virtual instances deployed on AWS

Software OS Ubuntu Type Memory Storage(GB) vCPU
OIDS 16.04 LTS t2.small 1 32 1
OIDS 16.04 LTS t2.medium 1 32 2
Snort 16.04 LTS t2.small 1 32 1
Snort 16.04 LTS t2.medium 1 32 2
Web Servers 16.04 LTS t2.micro 1 32 1
DB Servers 16.04 LTS t2.micro 1 32 1
Kali 16.04 LTS t2.micro 1 80 1
Traffic-Generator 16.04 LTS t2.micro 1 80 1
TRSM(ODISC) 16.04 LTS m3.medium 3.75 80 2

Table 2.4 Rules Sets

Rules Sets Name
DOS IMAP DDOS ftp ICMP
Dns p2p Misc Netbois nntp
Delete Tftp Virus Sql
Multimedia Web-cgi Telnet Snmp

Moreover, since the price of instances (VMs) relies on the number of CPU cores in within

the instance, two different instances were used to demonstrate how our approach reduces

the cost. Table 2.3 demonstrates the features of the two different VMs that are used on

our trails. As it can be seen, t2.small instance is designed as a core machine and provides

a computational power that is less, compared to the power provided by the dual core

machines (t2.medium).

2.7.2 Workload

Workload is employed to evaluate the monitoring performance overhead of the IDS. In

our experimentation, three scenarios were conducted for evaluating the MTIDS, more

specifically, the OIDS. Overall, we used both normal traffic and combination of normal

traffic and malicious traffic to evaluate the performance overhead of the optimized

IDS(OIDS) by loading different services (sets of rules)

85

- First Scenario(Sending Normal traffic): in this scenario, a legitimate traffic was

generated. Iperf3 (Iperf, 2016), which is a tool used for measuring the network

performance (mainly used for measuring achievable bandwidth on IP networks), was

employed for generating a background traffic. Iperf3 is installed on both the server

and client, where the server receives packets sent from the client on a fixed port. The

traffic generator is used to to evaluate the optimized IDS with various sets of rules

individually loaded at time. The gained results are compared with Snort IDS where

all rules sets are activated).

- Second Scenario (Sending a combination traffic): In this scenario, the optimized IDS

is exposed to a mixed traffic (legitimate and Malicious traffic). The CPU utilization

is then monitored and plotted to be compared with the first scenario. A traffic was

generated using iperf3. Afterwards, the attacks are randomly generated after an IDS is

started. Kali Linux is used as a tool for SYN- flooding the Web server with a malicious

traffic. According to (Chapade et al., 2013), servers are exposed to the thread of SYN

floods as a result of an attack that sends SYN packets sourced by fake IP address.

This leads to the servers to handlinge these packets as real connection requests. Thus,

servers are triggered to initiate a half-open connection by sending back a SYN-ACK

packet (Acknowledgement), and then wait for a reply from the sender’s address. In

this case,; since the IP used for the attack is a fake one, the server is likely to never

receive a response, which prevents it from responding to the legitimate users’ requests.

- Third Scenario: (Generating different types of traffic): In this scenario, we generated

different traffic in order to validate the effectiveness of the OIDS that are used a

novel mechanism taking into account classifying traffic in which allows offering better

security mechanism. After generating the traffic, flow logs are used to identify the

traffic type, and based on that, an algorithm activates the appropriate security service.

In essence, OIDS analyzes the network packet to determine whether these packets

matches the MTDIS policies, discussed in Table 6.1. Based on these policies, the OIDS

either activate or deactivate security services.

86

Figure 2.9 Network Architecture

2.7.3 Finding

As previously mentioned, various experiments were conducted to justify our proposed

approach. The first experiment is to compare the default Snort with the OIDS loaded with

individual Set of rules at time. Through this experiment, we have proven that increasing

the number of set of rules does not necessary leads to increasing the efficiency of the

security mechanism; rather it increases the resource consumption as shown in Figures

2.10a , 2.10b and 2.11a, 2.11b. Generally, these figures present the result of our experiment

with the OIDS and Snort in AWS. They reveal a CPU consumption comparison between

the OIDS, which loaded by an individual set of rules and Snort IDS simultaneously, while

they are sniffing a normal and malicious traffic.

87

a) CPU Utilization t1.small Normal Traffic

b) CPU Utilization t1.small Malicious Traffic

Figure 2.10 Compares CPU Consumption between Snort vs OIDS

As shown in Figure 2.10a and 2.10b, the p2p set of rules utilizes the CPU the least

among all other sets by around 13 % for the normal traffic and around 22 % for the

88

a) CPU Utilization t2.medium Normal Traffic

b) PU Utilization t2.medium Malicious Traffic

Figure 2.11 Compares CPU Consumption between Snort vs OIDS

mixed traffic(normal and malicious traffic). OIDS with Dos, web-cgi and nntp set of rules

89

consumes a bit more by around 14 % compared to the p2p for the normal traffic and

29 % when a mixed traffic is generated. The Ftp, ICMP, and IMAP set of rules loaded

to the OIDS recorded more CPU consumption by around 19 % for the normal traffic;

whereas the CPU shows more increase roughly from 30 %to 33 % in the malicious traffic.

The consumption of CPU for the OIDS loaded with DDOS, dns, telnet,snmp,multimedia,

tftp, and virus set of rules computed from 22% to 27% for the normal traffic while it

recorded from 35 % to 37 % for the mixed traffic . The CPU consumption increased when

the OIDS loaded with Sql, Netbois approximately 46 and 60 for the normal and the mixed

traffic respectively. On the other hand, in Snort the CPU consumption is the highest as

it reaches slightly over 80% usage for the normal traffic and 100% for the mixed traffic.

The consumption of CPU for the OIDS loaded with DDOS, dns, telnet,snmp,multimedia,

tftp, and various set of rules computed from 22% to 27% for the normal traffic while it

recorded from 35 % to 37 % for the mixed traffic . The CPU consumption increased when

the OIDS loaded with Sql, Netbois approximately 46 and 60 for the normal and the mixed

traffic respectively. On the other hand, in Snort the CPU consumption is the highest as

it slightly reaches over 80% usage for the normal traffic and 100% for the mixed traffic.

The same experimentation was conducted similarly; but with more powerful instances of

type t2 medium instances. As shown in Figure 2.11a, 2.11b, Snort IDS exposes the highest

CPU consumption rate when normal and mixed traffic was sniffed by snort. Whereas the

OIDS loaded with p2p set of rules records the lowest CPU consumption rate. While the

OIDS that individually loaded with Dos, and web-cgi concurrently utilizes around 11%

and 14 % of the CPU for normal and mixed traffic respectively. The CPU consumption

illustrates a bit increase with Ftp, ICMP, and IMAP set of rules by around 13 % for the

normal traffic and around 17 % for the mixed traffic. Moreover, OIDS with DDOS, dns,

telnet,snmp,multimedia, tftp, and virus set of rules exhibits a CPU consumption ranges

from 13% to 15 % for the normal traffic. While in the mixed traffic it goes from 19 % to

25 %. In case of OIDS with solely Sql, Netbois set of rules at time, the recorded CPU

utilization ranges from 25 % to 32 % in the normal traffic and from 41 % to 46 % in mixed

90

traffic. The highest CPU consumption was recorded for Snort IDS with both normal and

mixed traffic. Overall, Pre-defined OIDS loaded with several set of rules simultaneously

consumes fewer resources compared to Snort IDS. Hence, the smaller number of rules,

the less resource consumption will be. To accomplish the third test scenario discussed

on subsection 2.7.2, various type of traffic was generated for a 120 seconds. Figure 2.12

illustrates the CPU utilization of the OIDS(green line) compared to Snort(red line-points).

In the figure, the x-axis represents the time per second whereas the Y-axis represents the

percentage of CPU consumption.

In the beginning of the trial, by default all OIDS security services are turned on. We

generated a traffic that is not included in the OIDS policy. After this traffic being

examined, OIDS keeps all security services activated. This leads to overloading the CPU

as shown in Figure 2.12. Then after 19 second, we changed the behavior of the traffic by

generating traffic at port 80 over tcp protocol. As a result, the OIDS turns off all set of

rules except the DOS security Service as it is matches the OIDS policy illustrated in Table

2.1. As a result, the CPU consumption decreases to roughly 30 %. The same process

of generating traffic is repeated again. The CPU consumption increased and becomes

overloaded from second 62 to 90. Afterwards, it decreases to 30% from second 90 to 100.

On the other hand, there were no changes for Snort CPU consumption; so it remains

overloaded.

2.8 Discussion and Future Work

In this paper, we have introduced the tenants’ requirements in terms of a security service

and the current security level provided by cloud providers. We showed the advantage of

employing our approach as a service as it overcomes the shortcomings of the traditional

IDS. In fact, several factors encouraged us to introduce a new model of security. Firstly,

there is the network architecture or topology as the cloud tenant can deploy their VMs

in different locations. Secondly, the tenant’s budget can be limited. Therefore, security

services should be provisioned to meet various requirements including tenants’ budget.

91

Figure 2.12 CPU Consumption of the OIDS vs Snort

For example, a tenant may need a specific security service. Hence, instead of provisioning

a full package of security, providing part of the package for an affordable service fee would

attract more tenants to adopt the proposed security framework. The experimental results

show the value of the adaptable MTIDS as it proved that it is a cost-efficient framework

compared to existing approaches. As the number of cloud tenants increases every passing

day, such an approach is immensely needed to meet the tenants’ requirements in terms

of security service level as well as cost. This approach also allows the security service

provider to maximize their gain as well as utilize their resources more efficiently. The

obtained result gives us a hint about the CPU consumption which leads to the following

benefits:

- Taking appropriate action in terms of the time needed to scale up/down instances.

92

- The CPU consumption of each sets of rules. Hence, if the OIDS consumes more

resources, OIDS administrator can predict the CPU consumption issues in advance.

Therefore, an immediate action can be taken to fix the issue.

As it is demonstrated in our experimental results, MTIDS is able to achieve re- source

consumption reduction. This benefits the service provider as the number of instances is

decreased. The experimental results showed that our approach can use an affordable small

VM of t2. small type, which costs around $200 instead of using a more powerful VM of

t2. medium type, which costs around $400. As our results also demonstrated, when IDS

is deployed and launched with all of its features, the resources are over-utilized instead of

functioning efficiently. The increase of resource consumption results in scaling up and

deploying more VMs to process the traffic as the IDS will drop a large number of packets

due to high CPU consumption incurred by passing by all sets of rules. Consequently,

tenants ought to pay more for the increased number of instances. Our proposed solution

solves these issues by selectively opting out the unneeded security services. It is able to

reduce the resource consumption of the tenant while providing better security services. In

our approach, we only concentrated at 20 sets of rules among all IDS rule sets. We will

further analyze the remaining sets of rules in our future work. Additionally, we are currently

considering different data mining techniques as well as pattern recognition to recognize

anomalies and known intrusions. Hence, different machine learning techniques including

,for example Decision Tree(DT), Random Forest(RF), Support Vector Machine(SVM)

will be used to accomplish this.

2.9 Conclusion

Adopting cloud computing as a new technology and a paradigm for the new era of

computing has recently become widespread and intriguing within enterprises. The number

of end-users is growing tremendously every day as users move their personal data to

cloud storage services. For some, security remains a major concern without bearing in

mind the high cost for security service provided by cloud service providers. In this paper,

93

we introduced a scalable, elasticity, on-demand pay as you use Multi-tenant IDS as a

service framework that is offered for cloud tenants and security service providers. This

proposed framework aims at reducing the security service cost for the tenants (end-users)

and maximizes the security service providers’ profit. It also enables them to efficiently

manage their resources. MTIDS is designed to meet the tenants’ needs by enabling them

to specify their security requirements. Our framework is able to automatically activate

and deactivate the sets of rules based on the tenants’ needs. We validated the features

of MTIDS through extensive trials on AWS. Our results showed that MTIDS effectively

reduces the cost and meets the budget of tenants.

CHAPTER 3

ARTICLE 2: MULTI-TENANT ANOMALY INTRUSION DETECTION
SYSTEM(MAIDS)

Mohamed Hawedi1, Abdi Ramy 1 , Chamseddine Talhi 1 , Hanifa Boucheneb 2

1 Department of Software Engineering and IT, École de Technologie Supérieure
1100 Notre-Dame Ouest, Montréal, Québec, Canada H3C 1K3

2 Department of Computer Engineering and Software Engineering, Polytechnique
Montréal

2900 Edouard Montpetit Blvd, Montreal, QC H3T 1J4

Article Submitted « Computers & Security (Elsevier) » April 2019.

The internet enables the provision of cloud services, and, as it is continually under attacks,

cloud services are being exposed to an increasing number of attacks. New and sophisticated

attacks have become endless. Consequently, there is a need for developing more flexible and

adaptive security approaches to preventing attacks. Anomaly intrusion-detection systems

(IDS) are considered valuable for protecting critical infrastructure against suspicious

activities and theft of data. Different approaches have been proposed. They are, however,

still unable to provide an appropriate security mechanism. In this paper, we present

a new anomaly intrusion detection paradigm — the Multi-tenant Anomaly Intrusion

Detection System (MAIDS) — that is capable of detecting intrusive attacks and that

can automatically generate new signatures from the attacked system. The proposed

approach uses a tenant’s environment configuration to automatically generate customized

set of rules. This can significantly improve the efficiency of the IDS and can ensure the

extraction of valuable information from the monitored network.

3.1 Introduction

Cloud computing is a model for enabling ubiquitous and convenient access to a shared

pool of computing resources — networks, servers storage, applications, and other services

— with minimal configuration or management efforts Mell & Grance (2011). It facilitates

96

access to persistent data and information on remote servers. The growth of the internet and

the ever increasing demands of the users continue to drive advancements in information

technology. This is contributing to making cloud computing a useful and desirable

technology to tenants. It has encouraged many organizations worldwide to adopt cloud

computing.

Cloud computing offers many benefits. It provides flexibility and scalability of services;

it enables organizations to save cost; and it improves operational efficiency, agility, and

environmental sustainability Chou (2015).

Infrastructure as a Service (IaaS) refers to the provision of dedicated computing infras-

tructure in the form of virtual machine (VM) deployment. The idea behind IaaS is to

make the servers, networks, as well as the storage, available on demand to the cloud users.

Amazon EC2 Amazon (2015) and Microsoft Windows Azure Azure (2018) are examples

of the cloud service providers. Platform as a Service (PaaS) aims at providing computing

platform-layer resources such as operating systems and software frameworks; an example

is Microsoft Windows Azure. Software as a Service (SaaS) targets offering applications on

demand on the internet Hawedi et al. (2018a). Salesforce salesforce (2017) is an example

of SaaS providers.

All of these services — SaaS, PaaS, and IaaS — can be consumed without the need for

any specialized knowledge of the various underlying technologies. In addition to providing

different services, cloud computing offers different deployment models: private, public,

community, and hybrid models exist Mishra et al. (2018). However, securing the cloud is

still a major challenge. Indeed, as the systems run over the Internet, services provided by

cloud providers are prone to different attacks (e.g. Denial of Service (DoS), Distributed

Denial of Service (DDoS), and SQL injection) Hawedi et al. (2018b). Intrusion detection

system (IDS) is used to monitor the inbound/outbound traffic and to analyze them for

potential attacks. The IDSs are categorized based on their detection signature or rule

and anomaly-based detection systems. In the signature-based technique, the system’s

97

activities are analyzed by examining the events that match the signature that identifies

the attack types. This kind of technique uses pre-defined rules against known attacks.

In contrast, however, anomaly-based IDSs concentrate on monitoring and analyzing the

behavior of the system, identifying the unusual and abnormal behavior. They assume that

abnormal activities are different from authorized activities. Hence, these activities can be

detected using systems that can distinguish between normal and abnormal activities. By

constructing profiles representing the habitual behavior of users, hosts, and the network,

anomaly detectors learn themselves Hawedi et al. (2018a). Anomaly detection aims

at identifying the event that seems to be abnormal with respect to the normal system

behavior Modi et al. (2013).

To summarize, anomaly detection systems rely on the expected behavior of the system

to detect abnormality; and it is signaled any deviation from the expected behavior as

anomalous. In anomaly-based approach, data relating to the behavior of legitimate users

over a period of time is collected; then, statistical tests are applied on the collected data

to determine whether that behavior is legitimate or not. This allows a tenant to detect

attacks that have not been found previously. Thus, enabling the detection of an unknown

or zero-day attack — the vulnerability that has not been known previously. One of the

key elements of these techniques is the ability to efficiently generate rules in such a way

that it can lower the false alarm rate for unknown, as well as, for known attacks Modi

et al. (2013). With this regard, IDS becomes very important in terms of securing the

cloud environment. Thus, Intrusion Detection System (IDS) has been proposed as a

solution to cope or mitigate the security issues for both cloud tenants and providers.

However, in numerous cases, traditional IDS failed to detect a new attack. The existing

IDSs have limitations in terms of extensibility and adaptability as they are not able

to detect sequential behavior. Furthermore, the existing IDS rules are not effective for

unique networks or organizations because they are designed for generic environments.

98

Creating custom rule set in an automated manner based on each tenant environment can

help in improving the effectiveness of the IDS. Additionally, automation rule creation

requires less knowledge and time consumption compared to the manual rule creation

where the number of administrators who create rule sets are large. Hence, administrators

would face many difficulties regarding valuable information extraction. By gathering the

custom rules with the standard rules, the IDS can be customized to the unique networks

or organization requirements. This results in increased security of the assets that are

considered valuable and can be utilized to prevent data breaches that the existing IDS

deployment could not.

In this paper, we propose Multi-tenant Anomaly-based Intrusion Detection System

(MAIDS) that is designed to monitor the tenant system activities and classify them as

either normal or abnormal. The MAIDS is capable of meeting the tenant’s requirements.

This is because MAIDS offers the flexibility and the freedom to select the IDS that fits its

requirements. The proposed approach enables the generation of custom rules that resulted

from the classification done by the anomaly IDS. Indeed, tenants who deploy the same

application are more likely to get similar attacks. Hence, they have interests in sharing

their findings in real-time. Consequently, the generated rules would be shared between

tenants based on their interests. Exchanging or sharing the custom rules among tenants

helps in decreasing the influence of the attacks. Moreover, working in a collaborative

manner can help tenants to increase the ability to avoid new attacks by adding the

detected attacks to the blocking rule table.

The remainder of the paper is organized as follows. We discuss the related work in Section

3.2. In Section 3.3, the cloud tenants’ requirements are described. The architecture of

MAIDS is described in detail in Section 3.4. In Section 3.5, we explain the setup of the

experiments and discuss the results. We conclude the paper and present the future work

in Section 3.6.

99

3.2 Related Work

In the previous section, we highlighted the problems and challenges to detecting attacks.

Here, we review some work based on intrusion-detection systems that have been proposed

by researchers to detect intrusions in the cloud. Many of the researchers proposed defense

mechanisms based on misuse-intrusion detection systems.

Nikolai & Wang (2014) propose a Hypervisor-based Cloud Intrusion Detection System

(HCIDS) to detect denial of service attacks within a cloud environment. In their work,

they examine system metrics of the cloud instances directly from the Virtual Machine

Monitor (VMM) or hypervisor, which hosts the virtual machines to find any potential

misuse patterns. And these metrics include, network data transmitted and received , and

CPU utilization, etc.

Lo et al. (2010) proposed a federation defense based on IDS that is deployed in each

cloud computing region. The deployed IDSs work in collaboration by exchanging the

alerts (messages) to decrease the influence of the DoS attack. The authors proposed

a cooperative agent whose main task is to receive alert messages from the other IDSs

deployed in each region. The accuracy of the exchanged alerts are determined by agents

through an election: agents vote on the alerts. If the alerts are accepted by an agent, a

new blocking rule is added into the block table against this type of packet attacks on the

cloud regions by the system. This new blocking rule can provide advance attack detection

to other cloud computing regions, except the victim.

Roschke et al. (2009) proposed an extensible IDS architecture that consists of several IDS

sensors deployed on each VM as well as a remote controller that performs the management

task of these sensors. Each deployed sensor is responsible for detecting and reporting any

abnormal behavior and to dispatch the triggered events to the event gatherer component,

whose main function is to collect the anomalies and store them in the event storage unit

or a database for an additional analysis.

100

Other researchers proposed a hybrid intrusion detection by integrating anomaly and

signature IDSs. Tupakula et al. (2011) targeted security cloud IaaS by integrating the

signature-intrusion-detection approach with the anomaly-intrusion-detection technique.

They deployed their hybrid-intrusion-detection systems on top the Virtual Machine

Monitor (VMM) to be able to monitor all incoming/out-going packets and to identify the

malicious entity that attempts to compromise the virtual machines. Ullah & Mahmoud

(2017b) proposed a hybrid model that is built using machine-learning and data-mining

techniques for anomaly-based intrusion detection. In their work, they targeted enhancing

the capability of detecting network attacks, more specifically, by enhancing the accuracy,

increasing the detection rate, through developing a feature-selection model for an anomaly-

based intrusion detection. Modi & Patel (2013) merge the traditional signature-based

intrusion detection system with the anomaly-based intrusion detection system to enhance

the detection accuracy and consequently enhancing the capability of detecting the network

attacks. Their approach uses different machine-learning approaches including Bayesian,

associative, and decision tree to build the framework. In their work, the incoming/out-

going traffic passing through the signature IDS is forwarded to an anomaly IDS for

classification. Aljawarneh et al. (2018) proposed a hybrid classification-based intrusion

detection model and a feature selection to help in detecting attacks over the network.

First, the feature selection method is applied to NSL-KDD data set. Later, the n-intrusion

detection model based on machine learning approach is built and used to find attacks.

Moreover, the captured data is used to improve intrusion detection.

An anomaly IDS based on a feature selection algorithm was proposed by Ambusaidi et al.

(2016). The proposed algorithm is a mutual-information-based algorithm that analytically

chooses the optimal feature for classification.

The proposed feature-selection algorithm is used to build and train an anomaly IDS named

Support Vector Machine based IDS (LSSVM-IDS). KDD Cup 99, Kyoto 2006+, and NSL-

KDD data sets were used to evaluate LSSVM-IDS. In a similar context, Ullah & Mahmoud

(2017a) proposed an anomaly IDS based on a filter-based feature-selection model. The

101

proposed classification model targets removing irrelevant and redundant features and

improving the accuracy rate.

Most of the approaches proposed in the current literature have not considered meeting

the tenant’s requirements and updating the tenant IDS database signature with new

custom rules that meet their requirements. In addition, the discussed approaches have

solely concentrated on addressing the performance of the anomaly IDS in terms of the

accuracy of the detection rate.

To conclude this section, none of the above discussed approaches is completely satisfactory

in terms of providing a better security mechanism that is able to meet the tenant’s

requirements. Thus, there is still a need to develop a new framework that is able to fill the

gap of the work discussed above. In a nutshell, our proposed approach provides several

aspects that differentiate it from the work discussed earlier. The following are some of

the unique contributions of our approach:

- Our approach is designed to meet the tenants’ requirements. The security mechanism

— an anomaly IDS — is trained based on the tenant’s security requirements. For

instance, a tenant who is interested in DOS protection will get a DOS anomaly-IDS

module while a tenant that is interested in, for example, SQL injection protection, will

get a trained a SQL anomaly-IDS module. A tenant can have an anomaly IDS that

has been trained for all attacks too.

- In our approach, we use a new data set that contains network traces of modern attacks

for training and evaluating the anomaly IDS. CIDDS Ring et al. (2017b) would be

used in this approach to train and validate the anomaly IDS.

- We extend the traditional IDS with new rules that play a vital role in increasing the

detection of the attacks that cause damage to the tenant’s resources. Thus, unlike the

previous work, generating custom rules are a very important aspect of our approach.

102

- We provide an advance protection for the tenants as our approach encourages the

tenants to work in collaboration in terms of changing the information regarding the

source of an attack.

- Beside generating custom rules, the latency of the framework is also a vital aspect of

this approach. We consider the time starting from the classification till the time new

rules are dispatched to the tenant.

Figure 3.1 Cloud Tenant Security Preferences

3.3 Cloud Tenant Requirements

Tenant is a term commonly used to denote a client that uses a particular service from a

cloud computing environment to satisfy an information technology (IT) requirement. The

client might be an individual, an organization or a business unit Magar (2012). Multi-

103

tenant concerns the concept of sharing or using the same set of resources by multiple

clients. For instance, different companies use Cumulus to host a number of instances for

deploying a number of customer-facing applications . In this case, Cumulus is considered

a multi-tenant environment Magar (2012). These companies might have different units

or branches (sales, and marketing business units, as an example) where they provide

different services; hence, deploying different IaaS topology. Thus, cloud tenants want to

have the optimized security arrangement that meet their requirements as they deploy or

have different architectures on top of the cloud. The capability of understanding and

classifying the tenant’s needs enables the provision of a security mechanism with a low

cost. Based on the architecture deployment in the cloud, each tenant requires a specific

security mechanism. Based on this context, we assume that we have different tenants

who need to deploy different security mechanisms to protect their cloud resources. As

shown in Figure 3.1, TenantA requires DOS, SQL protection while TenantB wants to

protect his/her cloud resources from DOS and Telent. TenantC shares the same security

interest with TenantA, as DOS and SQL injection are their main concerns.

Based on this assumption, there is a need to provide a security mechanism that takes into

consideration the tenants’ preferences in terms of the security that meets their deployment

architectural perspectives. Our approach allows cloud tenants to make substantial gains

in terms of the reduction of cost, security, and update times. Our approach provides

a real-time anomaly IDS that is designed to monitor the activities of the system and

then classify them as either normal or abnormal (anomalous). Moreover, the proposed

approach offers a trained anomaly IDS to tenants based on their demands. In this context,

as illustrated in the Figure 3.1, TenantA and TenantC will get a trained DOS, and SQL

anomaly IDSs. While, TenantC will receive a trained DOS, and Telnet anomaly IDSs.

Our approach offers the flexibility to the cloud tenants to choose one or more anomaly

IDSs that meet their needs. Indeed, our approach uses different algorithms including

Decision Tree (DT), Random Forest (RF), and Neural Network (NN) algorithms to enable

offering the various anomaly IDSs.

104

Our approach offers the tenant the possibility of automatic creation of custom rules based

on tenants’ environment which can be added to a set of generic rules or signatures. These

rules are sent quickly to tenants based on their security preferences or subscriptions. Our

approach enables the communication between tenants based on their security interests.

For instance, in Figure 3.1, TenantA, and TenantC shared the same security interest:

they are both looking for DoS and SQL protection. In this case, each time tenant

activates/deactivates a security service (DoS), a subscription message will be sent to Rule

Handler indicating that these tenants are activating/deactivating DoS set of rules. Based

on this, the tenants will be able to receive new rules generated based on the classification.

Figure 3.2 MAIDS Architecture

3.4 MAIDS Architecture

The existing security solutions are far from satisfactory to stop the rapid growth in the

number of cyber-attacks. Meeting the tenants’ requirements in terms of security and

105

budget helps in providing better security Hawedi et al. (2018a). Thus, in our previous

work, we proposed a multi-tenant intrusion detection system, MTIDS, as a service that

targets the security of the public cloud, where it is designed to provide an appropriate

and optimized security that considers the tenants’ needs in terms of the security service

requirements and budget. MTIDS provides an optimized signature IDS that is designed

to adapt to changes in the tenant’s environment. It follows certain important policies to

activate/deactivate the IDS signatures. The mechanism of MTIDS is briefly explained in

the following:

(i) A tenant select its security service interest using the Tenant Security Manager com-

ponent. For instance, some tenants may be interested in Denial-of-service attack

(DOS) protection while others are looking for SQL injection attack protection.

(ii) MTIDS analyzes the traffic looking for any change that occurs on the traffic.

(iii) If a change in traffic is detected, MTIDS activates/deactivates the security service

based on the change.

MTIDS is a rule-based IDS. It is unable to detect new types of attacks or even any known

attacks with a small change in their signatures. Thus, there is a need to provide a security

approach that is able to detect an unknown attack. This approach is an extension to

the previous approach (MTIDS) as it offers various anomaly IDSs that considered the

tenants’ requirements.

This section presents the architecture of MAIDS. The main idea is to build a comprehensive

security mechanism that is able to protect a company’s data and critical infrastructure

against unknown suspicious activities, loss and manipulation by unauthorized parties. As

depicted in figure 3.2, MAIDS consists of four main components: Traffic Sniffer, Traffic

Handler, Rule Handler, and Subscriber.

106

1. Traffic Sniffer: The main task of Traffic Sniffer is network monitoring; that is, to

capture packets without losses and to provide accurate time-stamps. Thus, software

based on hardware packet capturing systems are required to ensure that all traffic

is captured and stored. The packet sniffing or capturing is an important procedure

to many network applications. In this step, the network traffic is sniffed and then

dumped straight into a storage to be analyzed Traffic Classifier.

2. Traffic Handel: This component contains three important elements namely: Traffic

Classifier, Rule Handler, and Rule Publisher.

a. Traffic Classifier (TC) : Traffic Classifier is the main component that cate-

gorises network packets into either normal or abnormal. It is an anomaly IDS

that uses various machine-learning algorithms that enable tenants to meet their

requirements in terms of choosing the anomaly IDS that fits their cases. In our

approach, three supervised machine-learning algorithms including Random Forest

(RF), Decision Tree (DT), and Neural Network (NN) were used individually to

build different classification models. These selected techniques (DT, RF, and NN)

were chosen as they give the best average performance Caruana & Niculescu-Mizil

(2006). Decision Tree (DT) is a type of supervised learning algorithm that is

commonly used in data mining, more specifically, in classification problems as

predictive model that can be used for representing classifiers. RF is a supervised

machine learning classification algorithm that is used to overcome problems

related to classification and regression.

b. Rules Generator (RG): As known, cloud providers offer different services to

different tenants. Thus, using the general rules, as most existing IDS systems

do, created for a generic environment to secure the tenant resources is not very

effective. This necessitates the creation of custom rules in an automated manner

based on each tenant’s environment.

In our approach, RG is designed to generate customs rules based on the traffic

classification obtained for the classifier component discussed on Subsection a..

107

The main objective is to generate up-to-date new rules to overcome the limitations

of the existing IDS systems.

Indeed, the IDS use signature or rule matching on the traffic of the network. The

structure of the IDS rules such as Snort IDS, for example, is split into two parts:

rule header, which describes the packets’ attributes and rule option, which alerts

a message about the matched packets. The rule header contains different parts

including, the action (e.g., alert, drop, etc), protocol (IP, UDP, TCP, ICMP),

and other relevant data that define the network packets.

Example 3 Hawedi et al. (2018a) reveals more details regarding the IDS rules

where the rule header and the rule options are discussed in details:

Example 3. alert tcp EXTERNAL_NET 80 − > HOME_NET 8080 (msg:"ICMP

test"; sid:1000001; rev:1; classtype:icmp-event;)

This rule examines any traffic directed toward the network and will generate

an alert whenever the IDS detects traffic headed inbound from outside to the

network over the port (source) 80. Snort rule contains two parts: the rule header

and the rule option. The syntax of the rule is explained below SNORT (2018).

1. Rule Header: In the rule header (alert tcp EXTERNAL_NET 80 -> HOME_-

NET 8080), alert represents the rule action to be taken by the IDS. The

IDS will generate an alert if the condition is met; the string EXTERNAL_NET

represents the source IP and 80 is the port number. All the external traffic

from the source IP over port number 80 will be considered by the IDS. The

arrow (->) indicates the direction from the source to the destination. The

HOME_NET 8080 refers to the destination IP (HOME_NET) and its port number

(8080).

2. Rule Option: In this example, the rule option is represented as (msg:ICMP

test; sid:1; rev:1; classtype:icmp-event;), where the message (msg:) is

(ICMP test), will be included with the generated alert. The string sid:1;

represents the rule number or ID, which should be unique. The string rev:1 gives

the revision number. This option facilitates the maintenance of the rule. Lastly,

108

the classtype:(icmp-event), in this example, is used to classify the rule as an

’icmp-event’. This classification helps in the organization of the rules.

c. Rules Publisher (RP): In multi-tenant intrusion detection system environ-

ments, the requirements of the tenants on their security services are totally

different and are distributed. Moreover, the collaboration or communication

among the tenants in terms of sharing common events (rules) is fundamental.

Our approach provides a significant advantage in terms of instant notifications

of events for these different and distributed security systems. It is considered

as a powerful model for disseminating the events from the publishers (which is

the data-event producer, which cloud be tenant or security-service providers) to

subscribers (which is data-event tenants). Indeed, MAIDS provides an event-

driven feature that is represented in the Rule Publisher, Broker, and Subscriber

components. This feature provides increased performance, reliability, and scal-

ability for the security services. In our approach, RP can be either tenants

or security service providers that generated rules based on the classification

model. The RP components receive all new rules that are generated by the

RG component. The task of RP is limited to publishing or generating the stream

of newly generated rule events.

3. Rule Handler (RH): The RH component can be centralized or federated and its

responsibility is to deliver the rules sent by the publisher to the right tenant. It

comprises of two component named Broker and Storage.

a. Broker: Broker is used to route the messages of the generated rules from

the tenant publisher component to the tenant subscriber. Figure 3.3 gives

the important information required by the broker to route the generated rules

between the tenants. First, TenantA, and TenantC share the same interest

in terms of deploying DOS and SQL anomaly detection. Hence, both tenants

will send a subscription notification to the broker as well as generate new

rules after classifying the traffic. TenantB deployed DOS, ICMP anomaly IDS.

109

Consequently, it will send a notification message to the broker with a DOS-and-

ICMP subscription. Based on this information, the broker builds a policy table

that has the name of the tenants (SubscriberNa) and the security preferences

(Topic) to facilitate the transfer of the rules to the right tenant.

Table 3.1 Broker Policy

SubscriberNa Security Preferences (Topic)
TenantA DOS SQL
TenatB DOS ICMP
TenantC DOS SQL

In this assumption, first, TenantA has activated DoS set of rule publisher, and

it subscribes to DOS. Furthermore, TenantA will publish any newly generated

rules as well as receive any DOS rules published by other tenants. TenantB is

interested in protecting its environment from SQL; while TenantD’s main task is

to publish events related to SQL rules. TenantC is interested in receiving all the

rules generated by RG . It is clear that Broker can be centralized or federated:

it has all of the chains of events including the topic (set rule names) and the

subscriber (tenant name) that are used within the event flow.

b. Storage : The storage acts as a repository that allows the broker to store all the

information of a subscriber (tenant), publisher (a tenant or a security provider),

including their rule-set types.

4. Subscriber: A subscriber is deployed at each tenant’s environment and listens to

the event streams of the generated rules and then process these events by storing

them based on their topic’s name, and eventually generates notifications when the

stream of rule events are received.

110

Figure 3.3 Broker Mechanism

3.4.1 The MAIDS Mechanism

In the previous sections, we mentioned that our approach is designed to enable tenants to

prevent unknown attacks by generating custom rules and by quickly updating the tenants

— who share the same interest — with the newly generated rules. Here, we provide a

comprehensive illustration of MAIDS’s process by describing how the components of

MAIDS interact to provide a powerful security approach.

As shown in Figure 3.4, the incoming traffic is captured by the traffic sniffer (see message

(1)). This traffic is handled as follows: (2) sends the captured traffic to the classifier

model; (3) tenant selects one of the classifier models that is responsible for determining

the status of the traffic, which can either be normal or abnormal; (4) new rules will be

generated based on the result of the classification model; (5) the newly generated rules are

saved in a storage; (6) the new rules are published by the rule publisher and the publisher

dispatches these rules to the broker that has the lists of the information concerning the

publisher and the subscriber; (7) rules are received by Broker ; (8) Tenant_Subscriber

111

sends its security interests to Broker ; (9) Broker sends or delivers the generated rules to

tenants based on their security preferences.

Figure 3.4 The MAIDS Mechanism

Table 3.2 Description of the Deployed AWS instances

Software Type Memory Storage(GB) vCPU
TS (Bro) t2.small 1 32 1
Traffic Classi-
fier (TC)

t2.small 1 32 1

Rule Genera-
tor (RG)

t2.small 1 32 1

Rule Pub-
lisher (RP)

t2.small 1 32 1

Broker t2.small 1 32 1
Subscriber t2.micro 1 32 1
Storage t2.micro 1 64 1

112

3.5 Implementation and Evaluation Results

Security service updates play a vital role in protecting the tenants’ resources from latest

threats. Generally, harmful attacks attempt to take advantage of the vulnerabilities in a

security service. Signature-based intrusion detection systems have been used by different

entities to overcome this issue. However, its weaknesses in terms of the inability to detect

unknown or abnormal attacks justifies the need for the anomaly-based IDSs. An anomaly

IDS improves the effectiveness of the system as its able to distinguish between a normal

and abnormal activity, thereby increasing the ability of generating new rules. These

generated rules need to be sent to tenants who share the same interest as some of them do

not have an anomaly-based detection or might use a different machine-learning algorithm.

Delaying the update of the security service keeps the door open for attackers to penetrate

the system. Our approach provides some very significant features in terms of providing

various an anomaly IDS based on the needs of the tenant. Furthermore, it provides a

fast, automated, and up-to-date system to keep the security service safe and stable. Our

proposed approach considers the time taken to update the security service because this is

very critical in order to keep the security service safe and stable, and thus be trusted.

3.5.1 Anomaly IDSs Training and Validation

As previously mentioned, our approach uses a recent data set, which includes, the network

traces of modern attacks, to train and validate the classification models used to build the

anomaly IDSs.

CIDDS Ring et al. (2016) data sets were used to train our classification models and to

evaluate the proposed anomaly intrusion detection system. CIDDS (Coburg Intrusion

Detection Data Sets) is a labelled flow-based data set Ring et al. (2017b). The data

set was created for evaluation purposes, specifically, for evaluating the anomaly-based

network intrusion detection systems. To create this data set, they simulated a small

business environment, including several clients and typical servers, like an e-mail server

113

Figure 3.5 Network Architecture Set-up Scenario-1

or a web server by using Open-stack. Moreover, some Python scripts were written to

simulate normal user behaviour at the clients. The CIDDS contains 14 attributes as

shown in Table 3.3. The labeled attribute number 14, namely Class, demonstrates the

status of the given instances whether a normal connection instance or an attack. We have

ignored two features including the attack ID and description since they are mainly used

to explain the information about the attacks. The data sets were split into training and

test data sets.

114

Table 3.3 (CIDDS Set Attributes) Ring et al. (2018)

No Attribute Name Attribute Description
1 Src IP IP address of the source node
2 Src Port Port of the source node
3 Dest IP IP address of the destination node
4 Dest Port Port of the destination node
5 Proto Transport protocol (e.g. ICMP, TCP, or UDP)
6 Date first seen Start time flow is first seen
7 Duration Flow duration
8 Bytes Transmitted bytes
9 Packets Transmitted packets
10 Flags TCP Flags
11 AttackDescription Additional information about an attack
12 AttackType Type of an attack (portScan, dos.)
13 AttackID Unique attack ID :

(All flows which belong to the same attack
carry the same attack id)

14 Class Category or label of the instance

3.5.2 Network Setup Scenarios

Our approach can be deployed on top of a private or a public cloud. However, in this

work, Amazon Web Service Amazon (2015), which is a public cloud, is used to deploy

the proposed framework. As shown in Figure 3.6 and Figure 3.5, our MAIDS framework

provides some flexibility in terms of offering the ability to choose the classification model

that meets the tenant’s requirements as well as the ability to deploy in the private and

public cloud. The proposed approach can be easily adapted to multi-tenant environments

where the public cloud tenants can have or own an account or multiple accounts. In our

experimentation, we implemented our approach on top of AWS cloud. We created several

Virtual Private Clouds (VPCs) where each VPC represents a cloud tenant resource.

Two different scenarios were considered to evaluate our proposed approach; more specif-

ically, to illustrate the efficiency of the proposed approach. Figure 3.6 and Figure 3.5

present these scenarios:

115

Figure 3.6 Network Architecture Setup Scenario-2

- 1 Tenant (Subscriber) and 1 Tenant (Publisher): In the first scenario, we

consider two tenants: TenantA is a publisher that deployed the component of Traffic

Handler and TenantD is the subscriber that share the same interest as TenantA in

terms of the type of the security service. Thus, TenantD will receive any new rules

generated by TenantA.

As shown in Figure 3.5, a tenant subscriber (TenantD) who has interest in protecting

their cloud resource from DOS attack mainly will send a DOS subscription request to

RH that is deployed in the subnet with range 10.0.4.0/24. The subscriber component

is implemented using Python. Moreover, a tenant publisher (TenantA) is a tenant that

receives a traffic from different sources; deploys (Traffic Sniffer and Traffic Handler

116

that includes Traffic Classifier, Rule Generator and Rule Publisher) to classify the

traffic and to generate new rules if abnormal packets are detected.

As previously mentioned, three different classification models including Random For-

est(RF), Decision Tree (DT) and Neural Network (NN) were used to build Traffic

Classifier. This gives some flexibility to the tenants in terms of choosing the classifica-

tion model that meets their demands. The classification models were trained using

CIDDS data set Ring et al. (2017b). Then, Traffic Classifier updates its signature IDS

as well as other tenants’ IDSs by dispatching the new rules — which were generated

by the RG component based on the classification model — to Traffic Handler (TH).

Rule Handler is deployed in the subnet 10.0.3.0/24.

Traffic classification is a critical part or task performed by the MAIDS framework.

Hence, to evaluate the trained classification model, both the normal and malicious traffic

are generated using Iperf3 Iperf (2016) and Kali Linux Kali (2018) tools respectively.

The malicious traffic includes port-scan (nmap) and dos (smurf).

The traffic is generated three times in three periods: 2, 5, and 10 minutes. In each

period, Bro IDS is used to sniff the traffic and log it into a storage to be classified by

Traffic Classifier. In the second and the third times, the percentage of the malicious

traffic is increased to ensure that more malicious traffic are generated; thus, triggering

the generation of more new rules.

The Bro IDS or the TS deployed in TenantA subnet is used to sniff and log the

traffic into a buffer (storage). Then, the captured or sniffed traffic is classified by the

classifier component (TH) to determine whether the traffic is normal or malicious.

We implemented the Traffic Handler components, including Traffic Classifier, Rule

Generator and Rule Publisher using Python. Thereafter, we run the scripts of the

subscriber and the publisher on their respective instance based on the scenario described

earlier. The malicious traffic is stored in a file and then sent to Rule Generator to

generate new rules. These rules are dispatched by Rule Publisher. The rules are

received by Rule Handler (RH) and then sent to Broker, which we implemented using

117

Python. The RH component delivers the rules to their destination (TenantD) based

on its subscription policy mentioned in 3.; in this case, DoS. All the tenants used

the same instance specification. Table 3.2 illustrates the specifications of the AWS

instances used in our experiments.

- Second Scenario: A Tenant (Subscriber) and 3 Tenants (Publisher): In

multi-tenant environments, multiple tenants attempt to dispatch data to Broker who

is responsible for sending these data to the subscriber tenants. Hence, there is a

need to investigate the capability of the framework in terms of the latency when the

number of publishers is increased. As it is illustrated in the Figure 3.6, we assumed

that we have four tenants (TenantA, TenantB, TenantC, and TenantD). These tenants

deployed different Virtual Private Cloud (VPC). On top of each VPC, public subnets

were created to enable the deployment of MAIDS instances. (TenantA creates a

subnet with range (10.0.1.0/24), TenantB (10.0.2.0/24), TenantC (10.0.5.0/24).

In these subnets, Traffic Sniffer and Traffic handler were deployed on top of each

tenant’s subnet. While Rule handler (RH) were deployed on the subnet with the

range (10.0.3.0/24). TenantD which is a subscriber creates a subnet with the range

(10.0.4.0/24).

We conducted this experiment to demonstrate the efficiency of Rule Handler in terms

of its capability to handle multi-tenant environment. First, TenantA, TenantB, and

TenantC are assigned the same copy of the trained models built for classifying the

incoming/out-going traffic. Second, all the tenants, that is, TenantA, TenantB, and

TenantC, receive the traffic at the same time and for the same period mentioned in the

previous experiment. Moreover, all of the tenants used Bro IDS Zeek (2019) as TS to

sniff the traffic sent to TH. The captured or sniffed traffic is classified by the classifiers

to determine whether it is normal or abnormal. The malicious traffic is stored in a

file and then sent to RG to generate new rules. The new rules are dispatched by Rule

Publisher and then are received by Rule Handler (RH), which then delivers them to

TenantD.

118

3.5.3 Finding

As aforementioned, updating the time plays a vital role in keeping the tenant resources

safe and stable. Thus, in contrast to other approaches where they concentrate mainly

on calculating the performance of an anomaly IDS in terms of accuracy, our proposed

approach takes into account the time needed to update the tenant IDS. Hence, we consider

the classification time, the time for rule generation, the time of publishing the rules, as

well as, the number of the tenants.

To measure the latency (L) as illustrated in Equation 4.3, let Tclass denotes the classification

time; Ttrans denotes the time of transferring a classified file to RG; we denote the rule

generation time with Tgen, and Tpubl denotes the time taken to dispatch a rule till it is

received by a tenant.

L = Tclass +Ttrans +Tgen +Tpubl (3.1)

A typical use-case scenario for the multi-tenant public cloud, where many tenants are

publishing data to the middle-ware manger (broker) and then the broker delivers the data

to its destination. For the purpose of our experiment, we measured the latency and the

CPU consumption of the broker where there is a tenant, and where there are multiple

tenants, specifically, where two, three, and five tenants are simultaneously publishing rules.

We expect the latency and CPU consumed by the broker to be low for the case when

there is a-tenant subscriber and a-tenant publisher, and high when there are four-tenant

publishers and one tenant-subscriber. The following illustrates the scenarios used in our

trials in details.

- Our first experiment was to compare the latency in terms of the time of the classification

of the three models including the time needed to generate and deliver new rules to the

subscriber tenant. In this experiment, we considered two tenants, TenantA acts as a

publisher and TenantC as a subscriber. We illustrate this in Figure 3.5.

119

- In our second experiment, we increased the number of the publishers to identify how

our approach behaves when the amount of data is increased.

- In the third experiment, we measured the CPU consumption of the broker in cases

where one-, two-, three-, and four-tenant publishers are constantly publishing new

rules.

- In the fourth experiment, our focus was on Broker performance (measuring the latency)

by forcing Broker to send a thousand rules to different number of tenants. We measured

the latency in the case where a publisher sends 1000 rules to different number of

tenants: five, ten, fifteen, and twenty tenants. This experiment are different from the

previous experiments as the time of rule classification, and the time of rule generation

were not considered.

Figure 3.7 and Figure 3.8 present the result of our experiments. They show the latency of

our proposed approach as described by Equation 4.3. In general, Traffic Classifier based

on Decision Tree (DT) shows the lowest latency the while the Traffic Classifier based on

Random Forest (RF) presents the highest latency. Hence, the classification time and the

time needed to generate and deliver the new rules to their destinations are different.

Because the traffic was generated in the three periods: PeriodA lasts for 2 minutes;

PeriodB lasts for five minutes; and finally, for PeriodC, the time doubled that of PeriodB;

it lasts for ten minutes. Table 3.4 presents the generated traffic time specification including

the size of the captured traffic needed to be classified. These files get classified using the

Traffic classifier models and then the classified data is sent to RG for garnering new rules.

Table 3.4 Traffic Time

Period Name Time(Ms) File Size(MB)
PeriodA 2 50
PeriodB 7 150
PeriodC 10 250

120

Figures 3.7a, Figure 3.7b, and Figure 3.7c present the latency of our approach based on

the first scenarios where one tenant (publisher) is considered. Figure 3.7a demonstrates

the latency based on the PeriodA file where 10 rules were generated. It can bee seen

that DT provides better latency by allowing the tenant to receive the new rules within

0.51690545s, while the latency of NN increases to 0.56090545s. Moreover, RF takes more

time — about 0.610990545s. The latency increased when the traffic was increased. 3.7b

shows the latency where the size of the file being classified is increased as the amount of

the traffic is increased. It can be seen, however, that, as the latency is increased, the size

of the file needed to be classified is increased. This makes the classification model takes

more time for classifying the captured packets. Hence, the number of the new rules goes

to 100. DT gives better latency by classifying, generating, and dispatching, new rules

within 1.6157883s, while the latency of NN goes to 1.7485718s. Moreover, RF takes more

time — it takes 1.8957883s. Figure 3.7c shows gives a higher latency for DT of around

3.26457098s while RF recorded around 3.73457098s. The NN registered 3.4857098s.

Figures 3.8a, 3.8b 3.8c compares the latency when there are three tenants simultaneously

classifying traffic using different classifier models, generating new rules and publishing

the new rules to the subscribers tenants.

As shown in the Figure 3.8a, the latency recorded was low when DT is used for the

classification while RF recorded the highest. The latency recorded was 0.52440255s when

DT was used while was recorded 0.56840255s with NN. Rf recorded a slight increase to

roughly 0.61840255s We increased the size of the file to 150Mb. This file was classified

using the three models and then 100 rules were generated after the classification as shown

in Figure 3.8b. DT still registered the smallest latency of around 1.6187058s. However,

the latency when RF is used was high at approximately 1.8987058s. Moreover. the latency

was around 1.7507058s when NN was used. The size of classified file increased to 250Mb

in order to generate more malicious packets and therefore generate more rules. Figure

3.8c compares the latency of three tenants simultaneously using different classification

models and sending the new rules. It can be seen that the tenant latency while using DT

121

was low at around 3.46457098s. The tenants needed a few seconds of around 3.82980098s

to complete the entire process while they need more time of 4.07980098s to finish the

whole process when RF is used.

a) Latency of 10 Rules Latency(One publisher and
one subscriber

b) 100 Rules Latency(One
publisher and one

subscriber)

c) 150 Rules Latency (One
publisher and one

subscriber)

Figure 3.7 Comparison of latency 1 subscriber
and 1 publishers

Figure 3.9 compares the CPU consumption of Broker when there are different tenants

simultaneously dispatching new generated rules to the broker for the period of 140s. The

CPU consumption of Broker is the lowest at around 26% in case of 1-tenant publisher

and 1-tenant subscriber while the highest CPU consumption of roughly 40% was recorded

122

a) [Latency of 10 Rules Latency(Three publishers
and one subscriber

b) 100 Rules Latency(Three
publishers and one

subscriber)

c) 150 Rules Latency (Three
publisher tenants and a

subscriber)

Figure 3.8 Comparison of latency 1 subscriber
and 3 publishers

when the number of the publishers reached 4. The CPU consumption was 28% and 30%

in the cases with two- and three-tenant publishers respectively.

Figure 3.10 shows the latency where a thousand rule were sent by a publisher to the

different number of the tenants. Here, the measured latency are limited to measuring

the time starting from the time of sending the rules by the publisher to the time when

the rules are received by the tenants. As it can be seen, 0.32523s is considered a good

performance as it takes 0.162615s, 0.32523s to deliver the rules to five and ten tenants

respectively. Furthermore, Broker still functions very well even when the number of the

123

Figure 3.9 Broker CPU Consumption

Figure 3.10 Broker Latency Performance

tenants are increased. We recorded 0.487845s in the case of fifteen tenants and 0.65046s

in the case of twenty tenants. Our experimental results show that our proposed approach

can provide a very high security mechanism as it enables tenants to detect some intrusions

124

that can not be detected by the signature detection. Moreover, it demonstrates that the

approach has low latency and CPU consumption.

3.5.4 Discussion

As illustrated in the experiments, our framework is able to provide new custom rules

that can be added to the standard rule baseline by enabling the existing IDS deployed

at the tenant environment to be tailored to the requirements of a unique cloud tenant

environment or to the unique business a deployment needs. Our proposed approach

enables tenants to choose the classification model that meets their requirements as it

offers three classification models: DT, NN, and RF. As is it shown in Subsection 3.5.3,

finding different factors, including the size of captured file, the classification time, the

time needed to send the classified file to RG, the rule generation time, and the process of

dispatching the rule to its tenants based on some set of rules. Topic subscription plays

vital roles in providing better latency. Our results show that the latency of the framework,

which takes into consideration the time for the traffic classification and the time for the

generation of new rules including the time for publishing till the rules are received by the

subscribers (tenants), is extremely valuable in both scenarios. For the latency in the first

scenario (a-tenant subscriber and a-tenant publisher), tenants were able to receive the

new custom rules in a few seconds.

Another important aspect of our experiments is the performance of the broker in terms of

its capability of handling the rules published by the tenant with low instance features

including CPU and other important performance characteristics of the hardware. Overall,

the CPU consumption was low for the case with one subscriber and one publisher, but

increased with multiple publishers and a subscriber. The results show that small instance

with 1-core CPU makes Broker able to handle large streams of rules.

125

3.6 Conclusion and Future Work

Security service updates play a vital role in protecting the tenants’ resources from latest

threats. Indeed, harmful attacks generally attempt to take advantage of the vulnerabilities

in the security services. Thus, a delay in updating the security services keeps the door

open for the attackers to penetrate the system. Our approach provides very crucial

features: it provides fast, automated, and up-to-date system for updating the security

services to keep them safe and stable. The proposed approach is tailored to meeting the

requirements of the tenants implementing the generation of custom rules that can be

added to the existing IDS standard rules. In the future, we will consider different network

set-ups such as distributing the framework components into the cloud regions or accounts.

In addition, we will consider the effect of increasing the number of the subscribers and

publishers to identify the maximum number of the tenants that the broker can handle

gracefully in terms of publishing the rules.

CHAPTER 4

ARTICLE 3: COLLABORATIVE REAL-TIME INTRUSION DETECTION
SYSTEM (CRIDS)

Mohamed Hawedi1, Abdi Ramy 1 , Chamseddine Talhi 1 , Hanifa Boucheneb 2

1 Department of Software Engineering and IT, École de Technologie Supérieure
1100 Notre-Dame Ouest, Montréal, Québec, Canada H3C 1K3

2 Department of Computer Engineering and Software Engineering, Polytechnique
Montréal

2900 Edouard Montpetit Blvd, Montreal, QC H3T 1J4

Article Submitted « The Journal of Supercomputing » August, 3, 2019.

A cloud environment is composed of a set of computing resources that provide services

on-demand and as pay-as-you-go to cloud tenants. The services are offered over the

Internet, which facilitates easy access by the users as well as by the intruders to the data

stored in the cloud. Detecting intrusion attempts, however, has become very critical; it

has also become more difficult. Hence, the traditional anomaly intrusion-detection systems

for detecting cloud intrusions have been proposed. But they are largely ineffective as they

fail to detect anomalies behavior and new attacks because the attack characteristics and

patterns continue to change. Therefore, the traditional anomaly IDS that is trained with

a data set can offer high accuracy rate at a point in time. It may lose its accuracy at a

later time because of changes in the characteristics and the patterns of attacks. Thus, we

propose a new Collaborative Real-time Anomaly Intrusion Detection System (CRIDS)

that trains the classification model in real-time to provide improved anomaly detection in

the cloud.

4.1 Introduction

Cloud computing has been developing rapidly recently due to its distinctive characteristics,

which include broadband-network access, provision of on-demand services, rapid elasticity,

resource pooling and measured service. Indeed, cloud uses the internet to provide its

128

services. This enables the cloud users to perform their daily jobs or tasks regardless

where they are (Hawedi et al., 2018a). Cloud computing provides various services that are

elastically offered to users over the internet. This enables users to comfortably perform

their daily jobs regardless of their locations. Consequently, more and more users deploy

and develop high computation-intensive applications and lightweight applications in the

cloud. The security of the cloud resources encompasses the CIA triad(confidentiality,

availability, and integrity) of the data in the cloud. Hence, ensuring these aspects of the

cloud security has become very challenging. An attacker can exploit the cloud computing

vulnerabilities to gain unauthorized access and perform malicious activities that affect the

CIA triad of the cloud resources and the services. Because of this, the security of cloud

computing has gradually become the main obstacle to further development. Therefore, the

security of critical information systems in the cloud should be considered very important

and thus be provided to the tenants (Xing et al., 2018). Tenant resources must be

protected from attacks, unauthorized disclosure of information and the modification or

destruction of data.

Indeed, different requirements play vital role in terms of selecting the best security that

meets the tenants’ needs. Among different requirements, detecting known and abnormal

activities and recognizing normal traffic are an important aspect. Cloud IaaS, for instance,

are exposed to attacks including DoS, port scanning, password guessing, or buffer overflow

by both internal and external intruders. This motivates the need to provide a new security

mechanism that is able to provide better security and integrity of the information systems.

Among different security mechanisms, intrusion detection system (IDS) is a very important

mechanism; it applies several rules to distinguish between legitimate and illegitimate

events (Elhag et al., 2019). It plays an important role in network protection by assisting

the security service provider in detecting malicious behaviors. IDSs are classified into

two main sets: network-based IDSs target detecting attacks in the network traffic, while

host-based IDSs target detecting attacks at the host itself.

129

In terms of techniques, IDSs are classified into various groups: anomaly detection is

used to detect unknown attacks and signature detection (misuse) is able to detect known

attacks. Indeed, a signature-based IDS detects the attacks by looking for some specific

patterns. Because this technique (signature detection) relies on simple-rule systems and

string comparison, it is very prone to spoofing: the flow classifier can be mislead by

intruders that inject appropriate flags or tags into its own traffic (Tsilimantos et al., 2018).

The traditional anomaly intrusion-detection system was used by different entities including

researchers, academicians, and practitioners as a solution to overcoming spoofing. Never-

theless, the traditional anomaly intrusion-detection systems cannot detect new unknown

attacks as the patterns of attacks are changing rapidly. Thus, there is a need to develop a

unique and novel anomaly IDS that is able to keep track of changing attack patterns.

Collaboration is a way of allowing communication between entities — tenants who have the

same applications, cloud providers, cloud security providers, cloud providers and tenants,

or cloud security providers and tenants. Hence, collaboration is considered as a very

important and imperative aspect in building trust and improving the security as it enables

exchange of knowledge regarding security between entities. This reduces the impact of

security threats and enhances the capability of meeting the security requirements.

This paper focuses on providing an anomaly detection as a security service designed to

enable the monitoring and protection of the tenants’ virtual environments. The main

contribution of this work is to provide a Collaborative Real-time Anomaly Intrusion

Detection Systems (CRIDS) — that takes the tenant’s security requirements into consid-

eration. The proposed approach provides a portable, and declarative security framework

that is able to share more system resources. This helps to achieve cost reduction. The

framework also minimizes the time and effort related to the framework management. In

addition, to recognize unseen attacks, the framework generates new models and updates

the tenants with the new generated security mechanism (classification model) by working

in a collaborative manner. Among the various machine learning techniques, Decision Tree

130

(DT), Support Vector Machine (SVM), and Random Forest (RF) have been used to build

our anomaly IDSs as they have better ability to recognize normal network traffic and to

detect unknown intrusion attacks.

In short, we will pursue the following objectives:

- Overcoming the lack and the limitation of the traditional anomaly IDSs by providing

a new anomaly-based IDS that is capable of adapting to the changes that occur in

the network-intrusion characteristics and patterns. We do this by developing and

introducing an up-to-date anomaly IDS that continuously trains the IDS model or

classifier to detect new attacks.

- Providing a light-weight, portable, reproducible and declarative framework that is

able to share more system resources. We take into consideration, cost reduction

and minimizing the time and effort related to framework management by offering

automated management features.

- Minimizing the additional resources and maximizing resource sharing between the

framework components by achieving further resource efficiency; the sharing is a very

important aspect and it is imperative to build trust as well as to improve the security

as it enables the exchange of knowledge regarding security. This results in reducing

the impact of the security threats and enhances the capability of the provider to fulfill

the security requirements.

- Enable cloud entities such as tenants to get advance and collaborative security mech-

anism framework. With the collaboration features, entities are enabled to exchange

knowledge regarding attack; hence, build trust.

The remainder of the paper is organized as follows. We introduce our approach in Sect.

4.1. We discuss the related work in Sect. 4.2. In Sect. 4.3, we describe the cloud tenants’

requirements. The architecture of CRIDS is described in detail in Sect. 4.4. In Sec 4.5,

131

we describe the evaluation of our system and discuss the results of our experiments. We

conclude the paper and present the future work in Sects. 4.6 and 4.7.

4.2 Related Work

There are numerous work proposed on anomaly-based IDS in cloud that we have been

studied; we discuss them in detail as follows:

4.2.1 Anomaly Based Detection Approaches

Various anomaly detection approaches for detecting new attacks were suggested in the

literature.

The authors, (Velmurugan & Thirukumaran, 2012) proposed an anomaly IDS to overcome

the limitations of the traditional IDS. In their work, they proposed two main approaches:

performance and information approaches. The performance approach is based on an

artificial neural network algorithm. It aims at detecting any attempts to exploit the

vulnerabilities of the system and also, to contribute to the automatic discovery of new

attacks. The performance approach receives a profile that includes user behaviors that

are captured by the event auditor node. The performance approach classifies the received

data; any deviation observed is detected as an anomaly. The information approach

has a database that consists of pre-configured rules or information regarding specific

vulnerabilities and attacks. Thus, the information approach enables a high discovery rate

of known attacks.

An anomaly detection system was proposed by (Pandeeswari & Kumar, 2016). The

work targets the hypervisor (virtual machine monitor) layer and aptly named hypervisor

detector. Its main idea is to detect abnormal behaviors on virtual network by analyzing

the network events on VMs. In addition, this work is designed to improve the accuracy of

intrusion detection systems by using a hybrid algorithm which is a mix of artificial neural

network (ANN) and fuzzy C-Means clustering (FCM) algorithms. The proposed approach

132

follows three stages: In the first stage, the large data-set is split into training subsets

using a fuzzy clustering technique. For the experiment, DARPA’s KDD cup data-set 1999

was used. In the second stage, different ANNs are trained using the trained sets obtained

after splitting in the first stage. Finally, fuzzy aggregation module is used for re-learning

and combining the generated ANN modules into a single ANN module to eliminate the

errors of different ANNs. In the third phase, fuzzy aggregation module is introduced to

aggregate the ANN module’s results into a unique module through which it can eliminate

the detected errors.

Similar to this work is an anomaly detection system framework proposed by (Ganeshku-

mar & Pandeeswari, 2016). It is designed to detect abnormal activities in the cloud with

high detection accuracy and minimum false negative rate. The proposed anomaly hyper-

visor detector model is built based on adaptive neuro-fuzzy inference system (ANFIS),

which is an integration of fuzzy systems with adaptation and learning proficiency of neural

network. It was developed to monitor the activities of the virtual machines. In this work,

anomalous activities belonging to a host and network can be detected without deploying

the model in the virtual machines.

4.2.2 A hybrid IDS Approaches (Anomaly-Based & Signatures-Based De-
tection)

A hybrid approach that combine signature-based and anomaly-based IDSs have been

proposed to overcome the detection issues.

Modi, Chirage and Patel, Dhiren (Modi & Patel, 2018) presented a new IDS framework

whose aim is to detect abnormal events in cloud virtual networks.

The Hybrid-NIDS aims at examining and detecting intrusion in the network traffic and in

the cloud environment. To enable the monitoring of traffic inbound from external networks

to the VMs or the internal VMs traffic, Hybrid-NIDS sensors are deployed on each cloud

host machine and region. Such deployment facilitates the capability of monitoring multiple

133

VMs that are deployed on the same host simultaneously, and guarantees the protection of

the host machine and VMs from penetration.

(Tupakula et al., 2011) targeted security cloud IaaS by integrating the signature-based

intrusion-detection approach with the anomaly-based intrusion-detection technique. They

deployed their hybrid intrusion-detection systems on top of the virtual machine monitor

(VMM) to be able to monitor all the incoming and out-going packets, and to identify the

malicious entity that attempts to compromise the virtual machines.

(Modi & Patel, 2013) merge the traditional signature-based

intrusion-detection system with the anomaly-based intrusion-detection system to improve

the detection accuracy and consequently enhance the capability of detecting the network

attacks. Their approach uses different machine-learning approaches including Bayesian,

associative, and decision tree to build the framework. In their work, the incoming or

out-going traffic passing through the signature IDS is forwarded to an anomaly IDS for

classification.

(Aljawarneh et al., 2018) proposed a hybrid classification-based intrusion detection model

that uses a feature selection to help in detecting attacks over the network. In this work,

the feature selection method is first applied to NSL-KDD data set. Later, the n-intrusion

detection model based on machine-learning approach is built and used to find attacks. At

the end, the captured data is used to improve intrusion detection.

4.2.3 Collaborative IDS Approaches

Some work in the literature present intrusion-detection system that are deployed and work

in a cooperative manner in which IDS signatures are exchanged between cloud tenants or

providers for detecting suspicious activities.

(Alruwaili & Gulliver, 2014) proposed a collaborative IDS framework that aims to protect

the cloud infrastructure layer against known and unknown threats. Further, they target

134

the protection of providers and its tenants from the loss of services that are mainly

caused by known and unknown attacks. In their work, both the signature-based and

anomaly-based techniques are used for enabling known and unknown threats detection.

A distributed architecture aims at providing intrusion detection in cloud computing was

presented by Ficco et al.

(Ficco et al., 2013). Their approach targets providing protection for the cloud providers.

They developed a framework, which monitors the cloud resources and identifies the

resources of the cloud providers that have been compromised by other providers. This

framework is designed to detect scalable distributed attacks.

A collaborative IDS framework that targets cloud layers including the infrastructure, the

platform, and the application levels was introduced by

(Gul & Hussain, 2011). This work targets coordinated attacks. It is done by allowing

cloud providers to implement distributed IDSs to detect any intrusion attempts and

enable cloud tenants to monitor their applications.

Taghavi Zargar et al. (Zargar et al., 2011) introduce a distributed, collaborative, and

data-driven intrusion detection and prevention framework (DCDIDP) for cloud computing

environments that targets coping with an attack using intrusion detection and prevention

systems (IDPSs). The proposed framework allows cloud service providers to collaborate

in a distributive way by which it can reply to attacks and offer universal IDPSs. The

collaborative IDS deployed by the cloud providers shares global databases that they use

to detect sophisticated cooperative intrusion.

However, all the discussed approaches have not taken into consideration the aspect of

meeting the requirements of the tenants and providing the tenants who share same interest

with rapid advance attack detection. To conclude this section, the approaches discussed

earlier are not entirely satisfactory with regard to the provision of a security mechanism

that is capable of satisfying the tenant’s requirements. The following are some of the

unique contributions of our approach that differentiate it from the work discussed earlier:

135

- The proposed real-time anomaly IDS is designed to meet the requirements of the

tenants. The security mechanism — a real-time anomaly IDS — is first trained based

on the tenant’s security requirements. For instance, a tenant who is interested in DOS

protection will get a DOS anomaly-IDS model while a tenant that is interested in, say,

SQL injection protection, will get a trained a SQL anomaly-IDS model. A tenant can

have an anomaly IDS that has been trained for all attacks too.

- We extend the traditional anomaly IDS with continuous update mechanism in which it

plays a vital role in increasing the rate of the attack detection (detecting new unknown

attacks) that can cause damage to the tenant’s resources. In this regard, unlike the

previous work, generating custom real-time anomaly IDSs is a very fundamental feature

of our approach.

- Our proposed approach provides an advance protection for the tenants with privacy

guarantee as our approach encourages the tenants to work in collaboration with regard

to new generated classification models.

- Since the latency of the framework is also a vital aspect of this approach, the time

starting from building the new anomaly IDS classification model till the time new

model/models are dispatched to the tenant is also considered by our approach.

4.3 Cloud Tenant Requirements

Tenant security requirements tend to be different as they have different IaaS, topology,

and deployed applications. Hence, there is the need to provide a security mechanism

that is able to meet their security requirements Hawedi et al. (2018b). In our previous

work, we assume that we have different tenants who need to deploy different security

mechanisms to protect their cloud resources. As shown in Figure 4.1 , TenantA requires

DOS and SQL protection while TenantB wants to protect his/her cloud resources from

DOS and Telnet. TenantC shares the same security interest as TenantA, since DOS and

SQL injection are their main concerns.

136

Figure 4.1 Tenant Security Requirement

Based on this assumption, there is a need to develop a security mechanism that takes

into account the tenants’ preferences. The implemented security should meet the tenants’

deployment architectural perspectives. With this context, our proposed approach allows

cloud tenants to obtain significant gains regarding cost reduction, security, and update

times.

In our previous work, we provided an anomaly IDS that is designed to monitor the

activities of the system and then classify them as either normal or abnormal (anomalous).

Moreover, the proposed approach offers a trained anomaly IDS to tenants based on their

demands. In this context, as illustrated in Figure 4.1, TenantA and TenantC will get a

trained DOS, and SQL anomaly IDSs. While TenantC will receive a trained DOS and

Telnet anomaly IDSs. Our approach offers certain flexibility that allows cloud tenants to

choose one or more anomaly IDSs that meet their needs.

Based on the classification of attacks, we enable the tenant to automatically create custom

rules tailored to their environment, which can be added to a set of generic rules or

137

signatures. These rules are sent quickly to tenants based on their security preferences or

subscriptions as the proposed approach enables communication between tenants based

on their security interests. For instance, in Figure 4.1, TenantA and TenantC shared

the same security interest: they are both looking for DoS and SQL protection. In this

case, each time a tenant activates or deactivates a security service (DoS), a subscription

message is sent to indicate that these tenants are activating or deactivating DoS set of

rules. Based on this, the tenants will be able to receive the new rules generated based on

the classification.

However, some concerns have risen with the regard to the ability of the Anomaly IDS to

classify and detect new threats.

Therefore, in this work, we propose a real-time anomaly IDS, which continuously updates

the classification model based on the newly captured threats. Our approach offers the

tenant the possibility to automatically generate new classification models and shares these

models based on the environment. Theses models are sent to other tenants based on their

security requirements, interests or subscriptions. For instance, in Figure 4.1, TenantA

and TenantC shared the same security interest: they are both looking for DoS and SQL

protection. In this case, each time a tenant activates or deactivates a security service

(DoS), a subscription message will be sent to Model Manager indicating that these tenants

are activating or deactivating DoS security services. Consequently, the tenants will be

able to receive the new classification model.

4.4 Proposed Approach

The proposed Collaborative Real-time Intrusion Detection System (CRIDS) framework is

designed to enable a cloud tenant to get a security mechanism that is able to provide high

accuracy rates and low false positive rates. The proposed framework is a light-weight,

portable and scalable framework that is able to share system resources. This framework

not only provides known/unknown attack detection, but also updates the anomaly IDS

138

Figure 4.2 The Architecture of CRIDS

by continuously training the IDS model or the classifier to be able to detect new threats.

Our proposed approach encompasses of two main layers namely: the front-end detection

layer and back-end detection layer. The layers are shown in Fig 4.2.

1. Front-End Detection Layer:

This layer is composed of IDS Collector (IC), Buffer, Data Transmitter, and Anomaly

IDS (AI).

a. IDS Collector (IC): IC aims at collecting summaries of the incidents and keeping

track of data of attacks. It collects the traffic passing through the network and

then stores them in a buffer.

b. Buffer is a temporary storage used to store packets captured by the IC component.

The captured packet flow has some attributes including start time and end time

of the flow, number of packets, the IP addresses and port number of the source,

the IP addresses and port number of the destination, transport protocol, size,

TCP flags, and relative timestamp. In our approach, we adjust the buffer size to

4000 packets to enable rapid training data-set generation. Each time the buffer

139

reaches 4000 packets, a new data session is generated and then transferred by

Data transmitter to Data Controller.

c. Data Transmitter(DT): dispatches the temporary data (network activities) stored

by Buffer to Data Controller for clustering and labeling.

d. Anomaly IDS (AI): the main task of AI is to detect anomalies. The AI is a

real-time anomaly IDS that is continuously trained so that it can detect new

anomalies.

Figure 4.3 DC Process in collaboration with Data Transmitter

2. Back-end Detection Layer:

This layer is composed from Data Controller, New Data Set Storage, Historical Data

Set Storage, and IDS Classifiers, and Model Dispatcher.

a. Data Controller (DC): The DC is the core component of the back-end detection

Layer and is responsible for generating train and test data-set sessions. It

performs its functions by interacting with the DT component.

Figure 4.3 illustrates the process that DC follows to generate a new data-set

session. (1) DC receives the new events (traffic) captured by the IC component.

(2) Later, IC pre-processes the received events; it analyzes and classifies the

captured traffic to determine whether or not it is normal. Based on this, it labels

140

each connection on the data-set (as either normal or attack) and generate a new

data-set.

(3) The new data-set is combined with the historical data-set to build a compre-

hensive training and testing data-sets; hence, building an accurate model.

b. IDS Classifiers Model (ICM): its main task is to classify the network traffic into

either normal or abnormal. Various supervised machine-learning algorithms can

be used to build ICM. Hence, the model would be trained and validated based

on the labeled data-set generated by the DC component. ICM is designed to

build and generate up-to-date classifier model that overcomes the limitations of

the existing anomaly IDS in terms of detecting new threats.

c. Model Dispatcher (MD): The security requirements of the tenants tend to be

different and distributed in multi-tenant environments. Thus, sharing infor-

mation regarding the security are very vital. Our proposed approach provides

a fundamental advantage in terms of instant notifications of events for these

different and distributed security systems. It is considered a powerful model

for disseminating the events from the publishers (i.e., the data-event model

producer, which could be tenants or security-service providers) to the subscribers

(i.e., data-event tenants who share the same interest as the publisher). The MD

component is responsible for dispatching the generated model (ICM) to Model

Manger.

The Security Service Providers (SSP) perform an important task in meeting the need

of the tenants who share the same interest. Thus, the Model Manger (MM) component

plays an important role in achieving this goal. The MM component can be centralized or

federated; its responsibility is to deliver the model sent by MD to the right tenant. It

consists of two components named Broker and Storage.

1. Broker: Broker is used to route the new generated model from the MD component to

the tenant subscriber. As shown in Figure 4.4, TenantA and TenantC have the same

141

Figure 4.4 Classifiers Model Broker Mechanism

security requirements: they are both seeking the DOS and SQL anomaly detection

while TenantB deploys DOS and ICMP anomaly IDS.

A subscription notification includes security requirement (DOS, SQL) and a new

generated model (ML-DOS, ML-SQL) will be sent to Broker by TenantA and TenantC.

On the other hand, TenantB is seeking (DOS, ICMP) protection; hence, he/she

deploys (DOS, ICMP) anomaly IDS. As a result, a notification message (with a

DOS-and-ICMP subscription) will be sent to the broker. Accordingly, a policy table

that includes the name of the tenants (SubscriberNa) and the security preferences

(Topic(Security interests) will be created to facilitate the transfer of the classification

models to the right tenant.

Table 4.1 Broker Policy to achieve sharing interests between tenants

SubscriberNa Security Classification Model Preferences (Topic)
TenantA DOS SQL
TenatB DOS ICMP
TenantC DOS SQL

142

In this assumption, first, TenantA has activated DOS set of rule publisher, and it

subscribes to DOS. Furthermore, TenantA will publish any new generated classification

model as well as receive any DOS model published by other tenants. TenantB is

interested in protecting its environment from SQL; while TenantD’s main task is to

publish models related to SQL. TenantC is interested in receiving all the classification

models generated by ICM. It is clear that Broker can be centralized or federated: it

has all of the chains of events including the topic (classification model names) and

the subscriber (tenant name) that are used within the event flow.

2. Storage : allows the broker to store all the information regarding a subscriber

(tenant), publisher (a tenant or a security provider), including their classification

model types.

Figure 4.5 The mechanism of the CRIDS

4.4.1 CRIDS Mechanism

In the previous sections, we mentioned that our approach is designed to enable tenants

to prevent unknown attacks by generating custom rules and by quickly updating the

tenants — who share the same interest — with the new generated rules. Here, we provide

143

a detailed illustration of CRIDS’s process by describing how the components of CRIDS

interact to provide a powerful security approach.

As shown in Figure 4.5, the incoming traffic is captured by the traffic sniffer and stored

in a buffer (see message (1)). (2) The data buffer is sent to Data Controller (DC) by

Data Transmitter (TD). (3) DC uses determines if the network data traffic is normal

or abnormal. Consequently, a new data set is generated and then combined with the

historical data set. With this scheme, the new data now has more knowledge about old

and new threats; thus contributing to the generation of a more accurate model. (4) The

new data-set is split to a training and testing data-sets to build the classification model.

(5) Update or replace the old classification model (anomaly IDS) with the new model.

(6) The Dispatcher sends the new model to Broker, who then sends the model to the

subscriber (tenant).

4.5 System Evaluation

Figure 4.6 Network Architecture Set up

144

The main goal of our proposed work is to propose a real-time anomaly IDS that is

continuously trained with recent malicious data to improve the detection accuracy. In

this section, we explain our approach to evaluating the proposed work.

4.5.1 Environment setup

This work uses the micro-service technology. It allow us to develop a light-weight, portable

framework that is able to share system resources. It also enables us to the minimize the

framework management time and effort through automated management features.

We use Docker Container Docker (2019) — a lightweight virtualization technology — to

implement our framework. The Container allows us to partition the physical machine

resources and to provide isolated instances for resource management.

Figure 4.6 shows the deployment of the CRIDS component on top of Docker running on

Ubuntu 16.04.4 LTS Linux operating system. We created two subnets for the deployment

of the framework. The components of the front-end detection layer were deployed on

a subnet range (10.10.2.0/24) while the (10.10.1.0/24) subnet range was used for the

back-end detection layer. Bro IDS images were used to create the IDS collector (IC)

container to collect or capture incoming and out-going traffic passing through the network;

MySQL Docker image was used to build the Buffer that was used to store the data

captured by IC as discussed earlier. We created a container for the Data Transmitter

(DT), which is responsible for transferring captured data to DC.

Although our approach can be implemented with different MLs, in this work, we used the

following well-known machine-learning algorithm (ML) classifiers to build the AI model.

1. Decision Tree (DT): In DT, data is represented in the form of a hierarchical tree

that consists of a group of nodes that describes a problem with various solutions.

In this approach, a complex problem is divided into simpler problems; then same

strategy is applied recursively to the sub-problems. The solutions of sub-problems are

145

combined in the form of a tree to yield the solution of the complex problem Gama

et al. (2003).

2. Support Vector Machines (SVM): finds the best hyper-plane separating the data

points of different classes Tsilimantos et al. (2018).

3. Random Forest (RF): RF is used to overcome the problems related to classification

and regression. It builds multiple decision trees to get better predictive results. It

also creates a forest with a number of decision trees to get the best solution.

Table 4.2 Data sets Traffic Type

Iteration Type of traffic Number of Packet Normal Attacks

It1-
DT1

Normal Traffic,
smurf Attack 4000 70 % 30 %

It2-
DT2

Normal Traffic,
Nmap Attack,
Smurf Attack

8000 47 % 53 %

It3-
DT3

Normal Traffic,
Nmap attacks,
Smurf Attacks ,
Pod Attacks

12000 32 % 68%

4.5.2 Data-Set Creation and Labeling

To create our data sets, we use a buffer methodology that enables our proposed framework

to maintain newly added data for continuous training of the network stream. Each time

the buffer reaches 4000 packets, we save the content of the buffer into the database and

clear the buffer. With this context, we simulated different traffic containing normal and

malicious packets.

Consequently, we obtained different data-sets that enable us to evaluate the performance

and the feasibility of our real-time anomaly IDS.

146

The normal and malicious traffic were simulated using different tools — Iperf Iperf (2019)

and Kali Linux Kali (2019) respectively. To improve the quality of CRIDS, different

experimental scenarios based on the traffic types were conducted to study the performance

of CRIDS. We obtained different data-sets from these scenarios. Table 4.2 illustrates the

types of the data-sets created and the type of the traffic that corresponds to each data-set

as well as the number of the packets and their proportional percentage.

The first scenario, Data-Set (Ds1): Ds1 contains normal traffic and malicious traffic

(distributed denial of service) that were generated to overwhelm the system. Basically,

distributed denial of service (DDoS) flooding can cause devastating attack on the victim’s

computer. Therefore, we simulated Smurf (DDos) attack. The ‘Smurf’ attack is a kind

of denial-of-service attack where the attacker sends large number of Internet Control

Message Protocol (ICMP) packets to the victim computer Kumar et al. (2006).

The second scenario, Data-Set (Ds2): This set is a combination of the data collected in

Ds1 that includes ‘normal’ traffic as well as ‘Smurf’ with a new simulated ‘nmap’ attack.

For Ds2, we first simulated ‘nmap’ attack: a port scanning attack that is used to detect

vulnerabilities. When the buffer reaches buffer size, the collected data was added to those

collected for Ds1.

The third scenario, Data-Set (Ds3): This set is composed of ‘normal’ traffic as well as

‘Smurf’ and ‘nmap’ attacks that were gathered in Ds2 and new simulated ‘pod’ attacks.

For Ds3, we first simulated a ping-of-death (‘pod’) attack, which is a kind of denial of

service (DoS) attack where the attacker sends large IP packet to the victims. We later

added the collected data to Ds2.

4.5.2.1 Labeling Data Set Traffic

Labeling is the second step after collecting the data sets. In the literature, a variety of

algorithms have been proposed for creating and labeling data-set traffic.

147

Zheng et al. (2011) proposed an anomaly intrusion detection called IDCPSO (Clustering

and PSO). The IDCPSO model aims at: (1) modeling the normal behavior of a user by

creating clusters from unlabeled training data-sets; (2) labeling a cluster as either ‘normal’

or ‘abnormal’.

The application on intrusion detection using K-means cluster algorithm was introduced

Jianliang et al. (2009). In this work, K-means algorithm was used to cluster and analyze

the data by looking for patterns in a set of unlabeled data. Lin et al. (2015) proposes

an intrusion detection system based on combining cluster centers and nearest neighbors

(CANN). The CANN uses K-means clustering algorithm to extract cluster centers of each

pre-defined category; then the nearest neighbor of each data sample in the same cluster is

identified.

Pamukov et al. (2018) proposed Negative Selection Algorithm (NSA) for creating training

data-set by relying on the normal behavior of the network traffic only. NSA is capable of

performing unsupervised learning; It identifies any deviations as anomalies. According

to Igawa & Ohashi (2009), NSA algorithm involves a number of detectors whose main

task is to detect the abnormal data. Generally, NSA has two stages: generation sage and

detection stage. In the generation stage, the candidate detector is randomly produced and

then tested to know if it is able to recognize the self-samples. The detector is removed if

it recognizes any sample or is added to the detector set in case it is unable to recognize

self-samples at all. In the detection stage, the performance of the detector set is validated

to see if it is able to recognize the input data. The recognized data are considered as

abnormal while the unrecognized data are considered as normal Igawa & Ohashi (2009).

The foregoing approaches can be used to label our data-sets.However, in this evaluation,

we are not experimenting labeling algorithms since we are generating normal as well

abnormal traffic. The generated packets are dumped using Bro IDS and then additional

pre processing steps are performed. Later, each data set is split into a training set (68%)

148

and a testing set (32%). The classifying process, which uses supervised machine learning,

is divided into two phase: training and validation.

4.5.3 Performance Metrics

The goal of this work is to provide a new collaborative real-time anomaly intrusion-

detection system that constantly trains its classification model to detect anomalies and

to overcome issues related to the change in the attack patterns. Furthermore, the

proposed approach enable tenants who share the same interest to work in collaboration by

exchanging their generated anomaly IDS models. This subsection describes the metrics

used to evaluate the performance of the framework. The evaluation is presented in two

steps:

- Step1 : Evaluating the performance of the classifiers in terms of accuracy, etc., for each

experimental scenario discussed earlier. Our aim is to evaluate the effectiveness of the

classifier in predicting the class label of the instances.

The following formulas define these metrics Weng & Poon (2008):

Recall = TP
TP+FN (4.1)

Accuracy = TN +TP/(TN +TP +FN +FP) (4.2)

Step2 : Measuring the latency — the time needed to update the tenant with the new

generated anomaly IDS model. This is because updating the tenants security system

plays a vital role in keeping the tenant resources safe and stable. Based on this, we

derived Equation 4.3 to measure the latency.

Let TBuilding denotes the time taken to build the anomaly IDS, including training and

validation times; while TP ubl denotes the time taken to dispatch a rule until it has

been received by a tenant.

149

Latency = TBuilding +TDispatch (4.3)

4.5.4 Experimental Results

4.5.4.1 Experiments1 : Evaluate the performance of CRIDS and then com-
pare the performance with that of an anomaly IDS

To achieve this, data-sets were gathered as discussed in the Subsection 4.5.2.

In our first experiment, our aim is to understand the need for updating the training set.

This is to enable us to address the concern of the importance of updating the repository

of malicious and normal data.

Here, we are more specifically aimed at evaluating the performance of the CRIDS. To

archive this goal, we created different data sets using the approach discussed in Subsection

4.5.2. These were used to build different anomaly-based IDSs.

Figures 4.7a,4.7b, and 4.7c show the overall accuracy of CRIDS compared to the traditional

anomaly IDS. As shown in the figure, CRIDS-based SVM, DT, and RF show notable

superiority in terms of the attack detection rate compared to the traditional anomaly

IDS. Furthermore, CRIDS-DT gives a better result compared to the others CRIDS types.

As shown in Fig 4.7a. CRIDS-SVM performs well over time as it keeps learning and

the accuracy stays at roughly 96% over buffer iterations. While the traditional anomaly

IDS-based SVM proves unreliable; it also shows a lack of the ability to discover the new

threats as the accuracy goes down to around 73% for the second iteration and 70% for

the third iteration session.

Additionally, CRIDS-based decision tree (CRIDS-DT), as shown in Fig 4.7b, posts clear

superiority in terms of accuracy standing at over 97% in Iteration 1 (It1), Iteration 2

(It2), and Iteration 3 (It3) compared to the traditional anomaly IDS-based Decision Tree,

150

a) Comparison of the accuracy of traditional IDS vs
CRIDS-based support vector machine (SVM)

b) Comparison of the accuracy of
traditional IDS vs CRIDS-based decision

tree (DT)

c) Comparison of the accuracy of
traditional IDS vs CRIDS-based random

forest (RF)

Figure 4.7 Comparison of Accuracy between CCRIDS based (SVM, DT, and RF)
and traditional anomaly IDS

where the performance deteriorates to about 71% in Iteration 3. Furthermore, traditional

Random Forest posts low accuracy over time at around 72% for IT2, IT3 as shown in

Fig 4.7c. The CRIDS-based Random Forest (CRIDS-RF) proves to be more reliable in

detecting attacks; its posts accuracy of over 98% for all the iterations; the accuracy of

the traditional anomaly IDS-based RF recorded were 74% and 74% for the It2, and IT3

respectively

It is very important for a ML algorithm to return relevant results most of the times. Thus,

in this approach Recall is measured. As shown in Figures 4.8a, Fig 4.8b, and Fig 4.8c ,

151

a) Comparison of the Recall of traditional IDS vs CRIDS-based support
vector machine (SVM)

b) Comparison of the Recall of traditional
IDS vs CRIDS-based decision tree (DT)

c) Comparison of the Recall of traditional
IDS vs CRIDS-based random forest (RF)

Figure 4.8 Comparison of Recall between CCRIDS based (SVM, DT, and RF)
and traditional anomaly IDS

the CRIDS-based SVM, DT, and RF show clear superiority compared to the traditional

anomaly IDS. Furthermore, CRIDS-DT performs better than other CRIDS.

It is shown in Fig 4.8a, Fig 4.8b, and Fig 4.8c, the classifiers for the CRIDS and the

traditional anomaly IDS show a similar trend and perform better when the data-set in

Iteration 1 is used. The performance of the traditional IDS dropped significantly at It2,

and IT3. In contrast, however, the CRIDS performance is stable at around 97% for CRIDS-

SVM, 98% for CRIDS-DT, while it records 98% for CRIDS-RF. While the performance of

the traditional anomaly IDS based SVM was 73% for the first iteration, and 70% for the

152

a) CRIDS Latency comparison(1 publishers and 1
subscriber)

b) CRIDS Latency comparison(1 publishers and five
subscriber)

Figure 4.9 Comparison of Latency of CRIDS Models

second iteration (It2). Also, the performance of the traditional anomaly IDS-based DT

reduces in It2, and It3 to around 74% and 71%. Furthermore, the traditional anomaly

IDS-based RF registered a decrease in It2, and It3 to around 73% and 71%. This can be

explained by the fact that the CRIDS models are continuously trained so that they are

able to detect new unknown threats.

153

4.5.4.2 Experiments2: Measuring the Latency

In our second experiment, we addressed the latency of CRIDS in updating the tenants

who share same interest in terms of the security mechanism.

Figure 4.9a, and 4.9b presents the latency of our proposed approach as described by

Equation 4.3. Generally, the CRIDS based on DT posts the lowest latency the while the

CRIDS based on SVM presents the lowest latency. Notably, CRIDS demonstrated some

reliability in terms of updating the tenants with new generated models.

Figure 4.9a presents the latency of our approach based on the first scenario where one

tenant (publisher) and one (subscriber) are considered. It can be seen that CRIDS-DT

provides better latency by enabling tenants to receive the model within 1.11s while the

latency of CRIDS-RF records a slight time increase to approximately 1.18s in delivering

the mode . The CRIDS-SVM takes more time in delivering the model where the latency

recorded is around 42.7s. Number of tenants can impact the latency.

Figure 4.9b shows the latency of our approach based on the scenarios where one tenant

(publisher) and five tenants (subscribers) are considered. It can seen that CRIDS-DT

provides better latency by enabling tenants to receive the model within roughly 5s, while

the latency of CRIDS-RF is increased to about 5.18s. The CRIDS-SVM takes more time

– about 47s.

4.6 Discussion

In this work, we introduced a novel machine real-time anomaly IDS framework to classify

network traffic in real time. The core of our approach is providing an anomaly IDS

that classifies network traffic, and provides advance attack detection by exchanging the

anomaly IDSs’ models. The proposed framework offers better privacy as it mainly shares

the new generated ML models with other tenants. Furthermore, it enables the tenants

to select the best CRIDS model that fits their individual needs. Based on the results

154

obtained, we can conclude that our CRIDS is superior to the traditional IDS; our CRIDS

enables the traditional IDSs to keep learning and updating their models as it incrementally

adds new buffers (captured traffic) to the existing model. Hence, it is able to detect

new threats. Furthermore, our purposed approach shows better latency in updating the

tenants who shares the same interest with a new generated model. This provides an

advance attack detection as the received model can be combined with the existing model.

Whereas comparing different scenarios, the CRIDS loaded with DT is better at detecting

new attacks. Moreover, it has better latency regrading dispatching the model to different

tenants.

4.7 Conclusion and Future work

Cloud computing vulnerabilities can exploited by an attacker to perform unauthorized

activities that affect the cloud resources’ integrity, availability, and confidentiality. Thus,

maintaining the confidentiality, integrity, and availability of the cloud computing resources

is a fundamental requirement that needs to be considered. Traditional anomaly IDSs have

been used to detect malicious attacks. However, the continued evolution of attacks hinders

the capability of traditional anomaly intrusion-detection system to detect new attacks.

Thus, we introduced a new real-time intrusion-detection system based on micro-services

monitors and classifies network traffic in real time to detect anomalies. The proposed

approach offers some flexibility in that tenants can choose the anomaly IDS that fits their

individual needs. The proposed approach ensures privacy and advance attack detection as

it enables the cloud tenants who share the same interest to exchange the new generated

anomaly IDS model. For future work, we will complete the full architecture by integrating

the generated models with the existing model and then evaluate the performance of new

integrated model.

CONCLUSION AND RECOMMENDATIONS

Despite the remarkable advantages of cloud computing, security remains a major challenge

due to the distributed nature of the cloud computing environments as well as its cloud

resources are provided on the internet, which unfortunately, makes them an attractive

target for abuse; and hence, an area of vulnerabilities. With this regard, cloud tenants

need security mechanisms that are capable of meeting and fulfilling their requirements

and needs.

Thus, addressing cloud security problems have been the essential aims of this thesis. More

specifically, these security barriers and their implications have been studied and addressed

using various models.

At different stages in this research, many questions have arisen and numerous sub-goals

had to be identified in order to accomplish the main goal. Hence, we began by investigating

the tenants’ requirements in terms of security that can be impacted by different factors

such as the type of the deployed application, topology, etc. After studying the main

existing solutions and their associated security approaches, we were able to identify the

limitations of the security mechanisms offered to the tenants by the cloud providers.

Based on this investigation, we started to build our solution.

In the first article (Chapter 2), we have proposed a novel IDS framework — Multi-tenant

Intrusion Detection System (MTIDS) as a service that targets the security of the public

cloud —. In particular, the MTIDS delivers appropriate and optimized security taking

into consideration the tenants’ needs in terms of their security service requirements and

budget.

In the second article (Chapter 3), we proposed a new anomaly intrusion detection paradigm

— the Multi-tenant Anomaly Intrusion Detection System (MAIDS) — that is capable of

156

detecting intrusive attacks and that can automatically generate new signatures from the

attacked system. The proposed approach is able to automatically generate customized

set of rules. This can significantly improve the efficiency of the IDS and can ensure the

extraction of valuable information from the monitored network.

Finally, in the third article (Chapter 4), we highlighted the need for real-time intrusion

detection System in detecting abnormal behavior and new attacks that its characteristics

and patterns continue to change. Further, we highlighted the need for providing an

advance intrusion detection that enables tenants who share the same security interests

to collaborate by exchanging new generated anomaly IDSs. Thus, we propose a new

Collaborative Real-time Anomaly Intrusion Detection System (CRIDS) that trains the

classification model in real-time to provide improved anomaly detection in the cloud and to

enable cloud tenants to collaborate in terms of exchanging newly generated classification

models.

In a nutshell, the proposed solutions were conducted after a deep investigation regarding

the existing security offered to the tenants. The results have demonstrated the efficiency

of each of the proposed approaches.

Future Research Directions

In this thesis, our proposed solution targets providing a security mechanism that is

capable of meeting the cloud tenants’ security requirements. The proposed security

enables cloud tenants to have an advance-attack detection by enabling them to exchange

relevant information regarding the security defense. This security information includes

new generated rules and classification models that are gathered from each tenant to be

shared with other tenants on-demand by which they provide advance attack detection.

157

Nevertheless, we still believe there are many considerable and interesting suggestions that

can be tracked in the future. We highlight some of them below:

- Testing the proposed framework based on diverse collaborative forms: between tenants

belonging to different regions; between various service/IaaS providers. This will enable

gathering of large security information.

- Optimizing the broker’s capabilities: it can be through evaluating the relevance

of the new rules and classification models before publishing and/or broadcasting

them. This will enable reducing the overload of the broker. Hence, increasing its

availability. Furthermore, overcoming the redundancy issues resulted from sending the

same information to the tenants.

- Performing scalability: testing by deploying the solution on a large-scale test bed

where the number of tenants applications is very large. This will allow us to test the

broker, which is responsible for performing different tasks with regards to managing

the events shared between the tenants. This investigation will enable to measure the

capabilities of the Manger and Broker in terms of the number of tenants’ requests that

they can manage.

BIBLIOGRAPHY

Adil, M. & Ijaz, I. (2015). IDS in Cloud Computing to Secure Virtual Environment.
International Journal of Enhanced Research in Science Technology & Engineering,
4(3), 199–207.

Alharkan, T. & Martin, P. (2012). Idsaas: Intrusion detection system as a service in
public clouds. Proceedings of the 2012 12th IEEE/ACM International Symposium
on Cluster, Cloud and Grid Computing (ccgrid 2012), pp. 686–687.

Aljawarneh, S., Aldwairi, M. & Yassein, M. B. (2018). Anomaly-based intrusion detection
system through feature selection analysis and building hybrid efficient model.
Journal of Computational Science, 25, 152–160.

Almorsy, M., Grundy, J. & Müller, I. (2016). An analysis of the cloud computing security
problem. arXiv preprint arXiv:1609.01107.

Almorsy, M., Grundy, J. & Ibrahim, A. S. (2011). Collaboration-based cloud comput-
ing security management framework. Cloud Computing (CLOUD), 2011 IEEE
International Conference on, pp. 364–371.

Alruwaili, F. F. & Gulliver, A. (2014). CCIPS: A cooperative intrusion detection and
prevention framework for cloud services. International Journal of Latest Trends in
Computing, 4(4).

Amazon. (2015, January, 30). Amazon Web Services (AWS). Consulted at https:
//aws.amazon.com.

Amazon. (2016a, January, 1). Amazon EC2 [Format]. Consulted at https://aws.amazon.
com/ec2/?nc2=h_m1.

Amazon. (2016b, May, 1). Amazon Virtual Private Cloud (VPC) [Format]. Consulted
at https://aws.amazon.com/vpc.

Ambusaidi, M. A., He, X., Nanda, P. & Tan, Z. (2016). Building an intrusion detection
system using a filter-based feature selection algorithm. IEEE transactions on
computers, 65(10), 2986–2998.

Arba. (2018, January, 30). Aruba Cloud. Consulted at https://www.arubacloud.com.

Ashktorab, V., Taghizadeh, S. R. et al. (2012). Security threats and countermeasures in
cloud computing. International Journal of Application or Innovation in Engineering
& Management (IJAIEM), 1(2), 234–245.

Azure. (2018). Microsoft Azure: Cloud Computing Platform & Services. Consulted
at https://azure.microsoft.com.

160

Bouzida, Y. & Cuppens, F. (2006). Neural networks vs. decision trees for intrusion
detection. IEEE/IST Workshop on Monitoring, Attack Detection and Mitigation
(MonAM), pp. 81–88.

Breiman, L. (2001). Random forests. Machine learning, 45(1), 5–32.

Caruana, R. & Niculescu-Mizil, A. (2006). An empirical comparison of supervised learning
algorithms. Proceedings of the 23rd international conference on Machine learning,
pp. 161–168.

Chapade, S., Pandey, K. & Bhade, D. (2013). Securing cloud servers against flooding
based DDoS attacks. Communication Systems and Network Technologies (CSNT),
2013 International Conference on, pp. 524–528.

Chou, D. C. (2015). Cloud computing: A value creation model. Computer Standards &
Interfaces, 38, 72–77.

Debar, H., Curry, D. A. & Feinstein, B. S. (2007). The intrusion detection message
exchange format (IDMEF).

Demchenko, Y., Turkmen, F., Slawik, M. & de Laat, C. (2017). Defining Intercloud
Security Framework and Architecture Components for Multi-Cloud Data Inten-
sive Applications. Cluster, Cloud and Grid Computing (CCGRID), 2017 17th
IEEE/ACM International Symposium on, pp. 945–952.

Docker. (2019). Enterprise Container Platform for High-Velocity Innovation. Consulted
at https://www.docker.com/.

Elhag, S., Fernández, A., Altalhi, A., Alshomrani, S. & Herrera, F. (2019). A multi-
objective evolutionary fuzzy system to obtain a broad and accurate set of solutions
in intrusion detection systems. Soft Computing, 23(4), 1321–1336.

Ferry, N., Brataas, G., Rossini, A., Chauvel, F. & Solberg, A. (2014). Towards Bridging
the Gap Between Scalability and Elasticity. CLOSER, pp. 746–751.

Ficco, M., Venticinque, S. & Di Martino, B. (2012). Mosaic-based intrusion detection
framework for cloud computing. OTM Confederated International Conferences" On
the Move to Meaningful Internet Systems", pp. 628-644.

Ficco, M., Tasquier, L. & Aversa, R. (2013). Intrusion detection in cloud computing. P2P,
Parallel, Grid, Cloud and Internet Computing (3PGCIC), 2013 Eighth International
Conference on, pp. 276–283.

FSabahi & AMovaghar. (2008). Intrusion detection: A survey. Proc. - The 3rd Int. Conf.
Systems and Networks Communications, ICSNC 2008-Includes I-CENTRIC 2008:
Int. Conf. Advances in Human-Oriented and Personalized Mechanisms, Technologies,
and Services, (January 2008), 23–26.

161

Gama, J., Rocha, R. & Medas, P. (2003). Accurate decision trees for mining high-speed
data streams. Proceedings of the ninth ACM SIGKDD international conference on
Knowledge discovery and data mining, pp. 523–528.

Ganeshkumar, P. & Pandeeswari, N. (2016). Adaptive neuro-fuzzy-based anomaly
detection system in cloud. International Journal of Fuzzy Systems, 18(3), 367–378.

Gul, I. & Hussain, M. (2011). Distributed cloud intrusion detection model. International
Journal of Advanced Science and Technology, 34(38), 135.

Gupta, S. & Kumar, P. (2017). Profile and back off based distributed NIDS in cloud.
Wireless Personal Communications, 94(4), 2879–2900.

Hawedi, M., Talhi, C. & Boucheneb, H. (2018a). Multi-tenant intrusion detection system
for public cloud (MTIDS). The Journal of Supercomputing, 74(10), 5199–5230.

Hawedi, M., Talhi, C. & Boucheneb, H. (2018b). Security as a Service for Public Cloud
Tenants (SaaS). Procedia computer science, 130, 1025–1030.

iana. (2016). Service Name and Transport Protocol Port Number Registry.
Consulted at https://www.iana.org/assignments/service-names-port-numbers/
service-names-port-numbers.xhtml.

Ibrahim, A. S., Hamlyn-Harris, J., Grundy, J. & Almorsy, M. (2011). Cloudsec: a
security monitoring appliance for virtual machines in the iaas cloud model. 2011
5th International Conference on Network and System Security, pp. 113–120.

Igawa, K. & Ohashi, H. (2009). A negative selection algorithm for classification and
reduction of the noise effect. Applied Soft Computing, 9(1), 431–438.

Iperf. (2016, October, 2). iPerf-The ultimate speed test tool for TCP, UDP and SCTP
[Format]. Consulted at https://iperf.fr/iperf-download.php/.

Iperf. (2019). iPerf-The ultimate speed test tool for TCP, UDP and SCTP. Consulted
at https://iperf.fr/iperf-download.php/.

Jamil, D. & Zaki, H. (2011). Security issues in cloud computing and countermeasures.
International Journal of Engineering Science and Technology (IJEST), 3(4), 2672–
2676.

Jianliang, M., Haikun, S. & Ling, B. (2009). The application on intrusion detection
based on k-means cluster algorithm. 2009 International Forum on Information
Technology and Applications, 1, 150–152.

Kali. (2018). Our Most Advanced Penetration Testing Distribution, Ever. Consulted
at https://www.kali.org/.

162

Kali. (2019). Our Most Advanced Penetration Testing Distribution, Ever. Consulted
at https://www.kali.org/.

Katsaros, G., Menzel, M., Lenk, A., Rake-Revelant, J., Skipp, R. & Eberhardt, J. (2014).
Cloud Service Orchestration with TOSCA, Chef and Openstack. Proceedings of the
IEEE International Conference on Cloud Engineering (IC2E), pp. 34.

Keegan, N., Ji, S.-Y., Chaudhary, A., Concolato, C., Yu, B. & Jeong, D. H. (2016).
A survey of cloud-based network intrusion detection analysis. Human-centric
Computing and Information Sciences, 6(1), 19.

Kevric, J., Jukic, S. & Subasi, A. (2017). An effective combining classifier approach using
tree algorithms for network intrusion detection. Neural Computing and Applications,
28(1), 1051–1058.

Kulkarni, G., Gambhir, J., Patil, T. & Dongare, A. (2012). A security aspects in
cloud computing. 2012 IEEE International Conference on Computer Science and
Automation Engineering, pp. 547–550.

Kumar, S., Azad, M., Gomez, O. & Valdez, R. (2006). Can microsoft’s Service Pack2
(SP2) security software prevent SMURF attacks? Advanced Int’l Conference on
Telecommunications and Int’l Conference on Internet and Web Applications and
Services (AICT-ICIW’06), pp. 89–89.

Lin, W.-C., Ke, S.-W. & Tsai, C.-F. (2015). CANN: An intrusion detection system based
on combining cluster centers and nearest neighbors. Knowledge-based systems, 78,
13–21.

Lo, C.-C., Huang, C.-C. & Ku, J. (2010). A cooperative intrusion detection system
framework for cloud computing networks. Parallel processing workshops (ICPPW),
2010 39th international conference on, pp. 280–284.

Magar, A. (2012). Data Protection in Multi-Tenant Cloud Environments.

Man, N. D. & Huh, E.-N. (2012). A collaborative intrusion detection system framework for
cloud computing. Proceedings of the International Conference on IT Convergence
and Security 2011, pp. 91–109.

Mathew, S. (2014). Overview of Amazon Web Services. (November).

Mell, P. & Grance, T. (2011). The NIST Definition of Cloud Computing Recommendations
of the National Institute of Standards and Technology. Nist Special Publication,
145.

Microsoft. (2015, July). Microsoft adopts first international cloud privacy
standard. Consulted at https://blogs.microsoft.com/on-the-issues/2015/02/16/
microsoft-adopts-first-international-cloud-privacy-standard/.

163

microsoft. (2016, January, 30). Microsoft SQL Server [Format]. Consulted at https:
//www.microsoft.com.

microsoft. (2017). Official Home Page. Consulted at https://www.microsoft.2.

Mishra, N., Sharma, T. K., Sharma, V. & Vimal, V. (2018). Secure Framework for
Data Security in Cloud Computing. In Soft Computing: Theories and Applications
(pp. 61–71). Springer.

Modi, C. & Patel, D. (2018). A feasible approach to intrusion detection in virtual network
layer of Cloud computing. Sādhanā, 43(7), 114.

Modi, C., Patel, D., Borisaniya, B., Patel, H., Patel, A. & Rajarajan, M. (2013). A
survey of intrusion detection techniques in cloud. Journal of network and computer
applications, 36(1), 42–57.

Modi, C. N. & Acha, K. (2017). Virtualization layer security challenges and intrusion
detection/prevention systems in cloud computing: a comprehensive review. the
Journal of Supercomputing, 73(3), 1192–1234.

Modi, C. N. & Patel, D. (2013). A novel hybrid-network intrusion detection system
(H-NIDS) in cloud computing. Computational Intelligence in Cyber Security (CICS),
2013 IEEE Symposium on, pp. 23–30.

Nikolai, J. & Wang, Y. (2014). Hypervisor-based cloud intrusion detection system. Com-
puting, Networking and Communications (ICNC), 2014 International Conference
on, pp. 989–993.

Oasis. (2017). OASIS Topology and Orchestration Specification for Cloud Applications
(TOSCA) TC. Consulted at https://www.oasis-open.org/committees/tosca/faq.
php.

Oktay, U. & Sahingoz, O. K. (2013). Proxy network intrusion detection system for
cloud computing. Technological Advances in Electrical, Electronics and Computer
Engineering (TAEECE), 2013 International Conference on, pp. 98–104.

Onwubiko, C. (2010). Security issues to cloud computing. In Cloud Computing (pp. 271–
288). Springer.

Openstack. Open source software for creating private and public clouds. Consulted
at https://www.openstack.org/.

Openstack. (2015, Mar, 1). Open source software for creating private and public clouds
[Format]. Consulted at "ww.openstack.org".

Osanaiye, O., Choo, K.-K. R. & Dlodlo, M. (2016). Distributed denial of service (DDoS)
resilience in cloud: review and conceptual cloud DDoS mitigation framework.
Journal of Network and Computer Applications, 67, 147–165.

164

Pamukov, M. E., Poulkov, V. K. & Shterev, V. A. (2018). Negative Selection and Neural
Network Based Algorithm for Intrusion Detection in IoT. 2018 41st International
Conference on Telecommunications and Signal Processing (TSP), pp. 1–5.

Pandeeswari, N. & Kumar, G. (2016). Anomaly detection system in cloud environment
using fuzzy clustering based ANN. Mobile Networks and Applications, 21(3), 494–
505.

Park, H., Lee, E.-J., Park, D.-H., Eun, J.-S. & Kim, S.-H. (2016). PaaS offering for
the big data analysis of each individual APC. Information and Communication
Technology Convergence (ICTC), 2016 International Conference on, pp. 30–32.

Patel, A., Taghavi, M., Bakhtiyari, K. & JúNior, J. C. (2013). An intrusion detection and
prevention system in cloud computing: A systematic review. Journal of network
and computer applications, 36(1), 25–41.

Patel, S. K. & Sonker, A. (2016). Rule-based network intrusion detection system for port
scanning with efficient port scan detection rules using snort. International Journal
of Future Generation Communication and Networking, 9(6), 339–350.

Pearson, S. (2009). Taking account of privacy when designing cloud computing services.
2009 ICSE Workshop on Software Engineering Challenges of Cloud Computing,
pp. 44–52.

Petcu, D., Di Martino, B., Venticinque, S., Rak, M., Máhr, T., Lopez, G. E., Brito, F.,
Cossu, R., Stopar, M., Šperka, S. & Stankovski, V. (2013). Experiences in building
a mOSAIC of clouds. Journal of Cloud Computing, 2(1), 1–22.

Rackspac. (2018, January, 30). Rackspac [Format]. Consulted at https://www.rackspace.
com.

Ren, K., Wang, C. & Wang, Q. (2012). Security Challenges for the Public Cloud. IEEE
Internet Computing, 16(1), 69-73. doi: 10.1109/MIC.2012.14.

Ring, M., Wunderlich, S., Grüdl, D., Landes, D. & Hotho, A. (2016).
The CIDDS Concept. Consulted at https://www.hs-coburg.de/
forschung-kooperation/forschungsprojekte-oeffentlich/ingenieurwissenschaften/
cidds-coburg-intrusion-detection-data-sets.html.

Ring, M., Wunderlich, S., Grüdl, D., Landes, D. & Hotho, A. (2017a). Creation of
Flow-Based Data Sets for Intrusion Detection. Journal of Information Warfare, 16,
40–53.

Ring, M., Wunderlich, S., Grüdl, D., Landes, D. & Hotho, A. (2017b). Flow-based
benchmark data sets for intrusion detection. In Proceedings of the 16th European
Conference on Cyber Warfare and Security (ECCWS) (pp. 361–369). ACPI.

165

Ring, M., Wunderlich, S., Grüdl, D., Landes, D. & Hotho, A. (2018). Tech-
nical Report CIDDS-001 data set. 2018-6-30, Consulted at https:
//www.hs-coburg.de/forschung-kooperation/forschungsprojekte-oeffentlich/
ingenieurwissenschaften/cidds-coburg-intrusion-detection-data-sets.html.

Rosado, D. G. (2012). Security Engineering for Cloud Computing: Approaches and Tools:
Approaches and Tools. IGI Global.

Roschke, S., Cheng, F. & Meinel, C. (2009). An extensible and virtualization-compatible
IDS management architecture. Information Assurance and Security, 2009. IAS’09.
Fifth International Conference on, 2, 130–134.

salesforce. (2017, Mar, 19). The Customer Success Platform To Grow Your Business
[Format]. Consulted at https://www.salesforce.com.

Scarfone, K. & Mell, P. (2007). Guide to intrusion detection and prevention systems
(idps). NIST special publication, 800(2007), 94.

Shawish, A. & Salama, M. (2014). Cloud computing:paradigms and technologies. Inter-
cooperative collective intelligence:Techniques and applications, pp. 39–67.

Snort. (2015). Snort-Network Intrusion Detection & Prevention System. Consulted
at https://www.snort.org/.

Snort. (2017, May, 1). Official Snort Ruleset covering the most emerging threats [Format].
Consulted at https://www.snort.org/products.

SNORT. (2018). SNORT @R Users Manual. Consulted at https://www.snort.org/
documents.

Tan, Z., Nagar, U. T., He, X., Nanda, P., Liu, R. P., Wang, S. & Hu, J. (2014). Enhancing
big data security with collaborative intrusion detection. IEEE Cloud Computing,
1(3), 27–33.

Tsilimantos, D., Karagkioules, T. & Valentin, S. (2018). Classifying flows and buffer state
for YouTube’s HTTP adaptive streaming service in mobile networks. Proceedings
of the 9th ACM Multimedia Systems Conference, pp. 138–149.

Tupakula, U., Varadharajan, V. & Akku, N. (2011). Intrusion detection techniques for
infrastructure as a service cloud. 2011 IEEE Ninth International Conference on
Dependable, Autonomic and Secure Computing, pp. 744–751.

Ullah, I. & Mahmoud, Q. H. (2017a). A filter-based feature selection model for anomaly-
based intrusion detection systems. Big Data (Big Data), 2017 IEEE International
Conference on, pp. 2151–2159.

166

Ullah, I. & Mahmoud, Q. H. (2017b). A hybrid model for anomaly-based intrusion
detection in SCADA networks. Big Data (Big Data), 2017 IEEE International
Conference on, pp. 2160–2167.

Varadharajan, V. & Tupakula, U. (2014). Security as a service model for cloud environment.
Network and Service Management, IEEE Transactions on, 11(1), 60–75.

Varia, J. (2010). Architecting for the Cloud : Best Practices. Amazon Web Service, 1,
1–23.

Velmurugan, N. & Thirukumaran, S. (2012). Effective Analysis of Cloud Based Intrusion
Detection System. Int J Comput Appl Inform Technol.

VMWARE. (2018, Sep). VMware – Official Site. Consulted at https://www.vmware.com/.

Wang, Z. & Zhu, Y. (2017). A centralized HIDS framework for private cloud. Software
Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing
(SNPD), 2017 18th IEEE/ACIS International Conference on, pp. 115–120.

Weng, C. G. & Poon, J. (2008). A new evaluation measure for imbalanced datasets.
Proceedings of the 7th Australasian Data Mining Conference-Volume 87, pp. 27–32.

Wikipedia. (2018a). Function mathematics. Consulted at https://en.wikipedia.org/wiki/
Function_mathematics".

Wikipedia. (2018b). Power set. Consulted at https://en.wikipedia.org/wiki/Power_set.

XEN. (2018). VS16 Video Spotlight with Xen Project’s Lars Kurth. Consulted at https:
//www.xenproject.org.

Xing, J., Zhou, H., Shen, J., Zhu, K., Wangt, Y., Wu, C. & Ruan, W. (2018). AsIDPS:
Auto-Scaling Intrusion Detection and Prevention System for Cloud. 2018 25th
International Conference on Telecommunications (ICT), pp. 207–212.

Yadav, S. (2013). Comparative study on open source software for cloud computing plat-
form: Eucalyptus, openstack and opennebula. International Journal Of Engineering
And Science, 3(10), 51–54.

Yan, Y., Xu, B. & Gu, Z. (2008). Automatic service composition using and/or graph.
E-Commerce Technology and the Fifth IEEE Conference on Enterprise Computing,
E-Commerce and E-Services, 2008 10th IEEE Conference on, pp. 335–338.

Zaman, S. (2009). A collaborative architecture for distributed intrusion detection system
based on lightweight modules.

Zargar, S. T., Takabi, H. & Joshi, J. B. (2011). DCDIDP: A distributed, collaborative,
and data-driven intrusion detection and prevention framework for cloud computing
environments. Collaborative Computing: Networking, Applications and Worksharing
(CollaborateCom), 2011 7th International Conference on, pp. 332–341.

167

Zarrabi, A. & Zarrabi, A. (2012). Internet intrusion detection system service in a cloud.

Zeek. (2019). The Zeek Network Security Monitor. Consulted at https://www.zeek.org/.

Zhang, J., Zhang, J., Ding, H., Wan, J., Ren, Y. & Wang, J. (2013). Designing and
applying an education iaas system based on openstack. Appl. Math, 7(1L), 155–160.

Zhang, Q., Cheng, L. & Boutaba, R. (2010). Cloud computing: state-of-the-art and
research challenges. Journal of internet services and applications, 1(1), 7–18.

Zheng, H., Hou, M. & Wang, Y. (2011). An efficient hybrid clustering-PSO algorithm for
anomaly intrusion detection. Journal of Software, 6(12), 2350–2360.

