
Towards Automatic Context-Aware Summarization of Code
Entities

by

Elmira MOHSENZADEH KORAYEM

THESIS PRESENTED TO ÉCOLE DE TECHNOLOGIE SUPÉRIEURE

IN PARTIAL FULFILLMENT FOR THE DEGREE OF A MASTER’S

DEGREE

M.Sc.

MONTREAL, AUGUST 2019

ÉCOLE DE TECHNOLOGIE SUPÉRIEURE
UNIVERSITÉ DU QUÉBEC

Elmira Mohsenzadeh Korayem, 2019

This Creative Commons license allows readers to download this work and share it with others as long as the

author is credited. The content of this work cannot be modified in any way or used commercially.

BOARD OF EXAMINERS

Professor Latifa Guerrouj, Thesis Supervisor

Département de génie logiciel et des TI, École de technologie supérieure

Professor Carlos Vazquez, President of the Board of Examiners

Département de génie logiciel et des TI, École de technologie supérieure

Professor Sègla Jean-Luc Kpodjedo, Member of the jury

Département de génie logiciel et des TI, École de technologie supérieure

ACKNOWLEDGEMENTS

First and foremost, I would like to express my sincere gratitude to my advisor Prof. Latifa

Guerrouj for her unbelievable help and support during my Master. It has been a great plea-

sure working with Prof. Latifa. She inspired me all the time by her patience, enthusiasm,

motivation, and immense knowledge. I am honoured to be part of her research team.

I cannot express enough thanks to my jury members, Professor Carlos Vazquez and Professor

Sègla Jean-Luc Kpodjedo who accepted to evaluate this thesis. I offer my sincere appreciation

for their time and insightful feedback.

I would like also to thank my family for their unconditional love, support, and guidance. Their

encouragement when the times got rough is much appreciated. They are my ultimate role mod-

els. This accomplishment would not have been possible without them. Thank you.

I express my gratitude to my friends and lab mates for sharing their knowledge, opinion, and

for all their encouragements.

VERS UNE SYNTHÈSE AUTOMATIQUE CONTEXTUELLE DES ENTITÉS DE
CODE

Elmira MOHSENZADEH KORAYEM

RÉSUMÉ

Les développeurs de solutions informatiques utilisent différentes classes et méthodes dans

l’accomplissement de leurs tâches quotidiennes. Dans cette perspective, ils doivent synthétiser

une quantité importante d’information pour comprendre celles qui font parties de leurs tâches.

Produire des résumés de qualités des dites informations permettrait d’aider les développeurs

à accomplir leurs tâches de maintenance et d’évolution logicielle. Dans le but de fournir de

l’information synthétisée sur l’utilisation des éléments de code, la documentation informelle

comme les rapports de bugs peuvent être une source d’information pertinente.

Dans ce travail, nous proposons une approche basée sur une technique de machine learning,

afin de produire des résumés pour les éléments de code (méthodes ou classes) présents dans

les rapports de bogues. Dans l’approche suggérée, les éléments de code sont extraits en se

basant sur une appraoche d’identification de code dans la documentation informelle, ensuite

le résultat avec le contenu des bogues est utilisé par une technique de machine learning afin

de générer un ensemble de phrase formant le résumé. Dans notre approche, noous appliquons

l’algorithme d’apprentissage machine « logistic regression » pour classifier les phrases par im-

portance. Le but est de construire un corpus de phrases pertinentes relatives aux éléments de

code. En dernier lieu, une étude a été mené afin d’évaluer la qualité des résumés proposés.

Pour finir, nous discuterons de l’utilité des résumés produits à partir de rapports de bugs en

utilisant un algorithme de machine learning ainsi que des limitations de notre approche. Les

résultats nous indiquent que les résumés peuvent réduire le temps et l’effort nécessaires à la

compréhension des éléments de code. En effet, 43,5% trouvent que les résumés sont utiles

pour réduire le temps de compréhension du code. En outre, 39,1% trouvent que les résumés

sont utiles pour réduire l’effort de compréhension du code.

Dans le future, les résumés peuvent être produits à partir d’autres documentation. De plus,

cette approche peut être appliquée dans des configurations pratiques. Par conséquent, il peut

être utilisé dans un environnement de développement intégré tel que Eclipse pour aider les

développeurs lors de leurs tâches de maintenance et d’évolution des logiciels.

Mots-clés: Résumé du code, Entités de code, Rapport de bogue, Apprentissage Automatique,

Documentation informelle, Documentation formelle

TOWARDS AUTOMATIC CONTEXT-AWARE SUMMARIZATION OF CODE
ENTITIES

Elmira MOHSENZADEH KORAYEM

ABSTRACT

Software developers are working with different methods and classes and in order to understand

those that perplex them and–or that are part of their tasks, they need to tackle with a huge

amount of information. Therefore, providing developers with high-quality summaries of code

entities can help them during their maintenance and evolution tasks.

To provide useful information about the purpose of code entities, informal documentation

(Stack Overflow) has been shown to be an important source of information that can be lever-

aged.

In this study, we investigate bug reports as a type of informal documentation and we apply

machine learning to produce summaries of code entities (methods and classes) in bug reports.

In the proposed approach, code entities are extracted using a technique in a form of an island

parser that we implemented to identify code in bug reports. Additionally, we applied machine

learning to select a set of useful sentences that will be part of the code entities’ summaries.

We have used logistic regression as our machine learning technique to rank sentences based on

their importance. To this aim, a corpus of sentences is built based on the occurrence of code

entities in the sentences belonging to bug reports containing the code entities in question.

In the last step, summaries have been evaluated using surveys to estimate the quality of pro-

duced summaries.

The results show that the automatically produced summaries can reduce time and effort to un-

derstand the usage of code entities. Specifically, the majority of participants found summaries

extremely helpful to decrease the understanding time (43.5%) and the effort to understand the

code entities (39.1%).

In the future, summaries can be produced by using other informal documentation such as mail-

ing lists or stack overflow, etc. Additionally, the approach can be applied in practical settings.

Consequently, it can be used within an IDE such as Eclipse to assist developers during their

software maintenance and evolution tasks.

Keywords: Code summarization, code entities, Bug report, Machine learning, Informal doc-

umentation, Formal documentation

TABLE OF CONTENTS

Page

INTRODUCTION . 1

CHAPTER 1 RELATED WORK . 3

1.1 Previous works on code summarization . 3

1.2 Code summarization using informal documentation . 6

CHAPTER 2 TECHNICAL BACKGROUND AND PROPOSED APPROACH 11

2.1 Technical Background . 11

2.1.1 Overview of machine learning approaches . 11

2.1.2 Logistic regression . 12

2.2 Proposed Approach . 13

2.2.1 Overview of the approach . 13

2.2.2 Mining and filtering the data . 15

2.2.3 Extracting code entities discussed in bug reports . 16

2.2.4 Code Summarization using machine learning . 22

2.2.4.1 Creation of the corpus for code summarization 24

2.2.4.2 Training the logistic regression model for the

classification task . 26

2.2.4.3 Feature selection . 27

2.2.4.4 Sentence classification . 28

2.3 Limitations of the developed approach . 29

CHAPTER 3 EMPIRICAL EVALUATION . 31

3.1 Definition and planning . 31

3.2 Research questions . 32

3.3 Context of the experiment . 32

3.3.1 Design of the experiment . 36

3.3.2 Pre-questionnaire . 38

3.3.3 Questionnaire . 38

3.3.4 Post-questionnaire . 39

3.3.5 Participants . 40

3.4 Analysis method . 40

CHAPTER 4 RESULTS AND DISCUSSION . 43

4.1 Findings of our study . 43

4.1.1 Accuracy of the produced summaries . 43

4.1.2 Conciseness of the produced summaries . 44

4.1.3 Relevance of the produced summaries . 45

4.1.4 Expressiveness of the produced summaries . 45

4.1.5 Adequacy of the produced summaries . 46

XII

4.1.6 Readability of the produced summaries . 47

4.1.7 Usefulness of the produced summaries . 47

4.1.8 Usefulness of the approach in terms of efforts to understand code

entities . 49

4.2 Threats to the validity . 50

4.3 Future Work . 51

4.4 Conclusion . 52

APPENDIX I LINKS TO THE 5 QUESTIONNAIRES FOR 5 GROUPS 55

APPENDIX II QUESTIONNAIRES PRESENTED TO PARTICIPANTS 57

BIBLIOGRAPHY . 67

LIST OF TABLES

Page

Table 2.1 A sample of the extracted data using our developed island parser. 21

Table 2.2 Characteristics of the corpus of each studied project. 25

Table 2.3 A Sample of produced summaries by the proposed approach. 29

Table 3.1 The characteristics of the studied projects. 33

Table 3.2 Characteristics of the studied projects in terms of the number of bugs

and code entities. 34

Table 3.3 Code entities examined by Group 1 of participants.. 35

Table 3.4 Code entities examined by Group 2 of participants.. 35

Table 3.5 Code entities examined by Group 3 of participants.. 36

Table 3.6 Code entities examined by Group 4 of participants.. 36

Table 3.7 Code entities examined by Group 5 of participants.. 37

Table 3.8 Experimental design.. 37

Table 3.9 Sample of pre-questionnaire questions. 39

Table 3.10 Sample of post-questionnaire questions. 40

Table 3.11 Characteristics of the participants. 41

LIST OF FIGURES

Page

Figure 2.1 Different machine learning approaches (Chen et al. (2009)). 11

Figure 2.2 Using different sources of information for the code entities

summarization. 14

Figure 2.3 Overview of our proposed methodology. 14

Figure 2.4 An example of software artifact : Eclipse bug report.. 15

Figure 2.5 An example of page source in bug reports. 16

Figure 2.6 An example of summarized title in the bug report. 17

Figure 2.7 An example of code entities in a report. 18

Figure 2.8 Sample of extracted bug reports. 18

Figure 2.9 Sample of extracted comments in bug reports. 19

Figure 2.10 Sample of extracted code entities.. 20

Figure 2.11 An example showing the number of code entities found for Eclipse. 22

Figure 2.12 Sample input as sentences for the machine learning technique. 24

Figure 2.13 An example of input of our machine learning-based approach. 26

Figure 2.14 An example with different code entities discussed in the same

report. 30

Figure 4.1 Participants answers to the question "Is this description accurate?" 43

Figure 4.2 Participants answers to the question of "Does this description

contain all the information about the class/method?" . 44

Figure 4.3 Participants answers to the question of "Does this description

contain only the necessary information?" . 45

Figure 4.4 Participants answer to the question "Does this description contain

information that helps understand how to use the class/method?" 46

XVI

Figure 4.5 Participants answers to the question "Does this description contain

information that helps understand the implementation of the

class/method?" . 47

Figure 4.6 Participants answers to the question "Is this description easy to read

and understand?" . 48

Figure 4.7 Participants feedback about the reducing the time to understand the

code entity purpose by produced summaries. 48

Figure 4.8 Participants feedback about efforts to understand code entities.. 49

Figure 4.9 Participants answer to the question "Do you find bug reports useful

to understand classes/methods?" . 50

Figure 4.10 Participants answer to the question of which part(s) of bug reports

they find the most useful. 50

LIST OF ABREVIATIONS

ETS École de Technologie Supérieure

API Application Programming Interface

LR Logistic Regression

AST Abstract Syntax Tree

BR Bug Report

SC Source Code

SVM Support Vector Machine

KNN K-Nearest Neighbors

TBCNN Tree-Based Convolutional Neural Network

ARENA Automatic Release Notes Generator

STSS Short Text Semantic Similarity

RNN Recurrent Neural Network

SVO Subject, Verb and Object

RQ Research Question

INTRODUCTION

A huge amount of information related to various software projects is produced at daily basis;

subsequently, software developers and managers need to deal with this information in order to

perform their software tasks. As part of this information, we find the source code. In effect,

developers need to understand the code that is part of their tasks and to be able to achieve

this goal, they have to read a substantial amount of information coming from different data

sources such as source code, documentation, etc. Reading long codes and texts is tedious

and time-consuming. As a result, code summarization has been suggested to facilitate and

shorten this process. Generally, the most recent works like (Moreno & Marcus (2012); Moreno

et al. (2013); Ying & Robillard (2014); Moreno et al. (2014); Moreno et al. (2015); McBur-

ney & McMillan (2016); Armaly & McMillan (2016); Badihi & Heydarnoori (2017)) lack

integration with various types of informal documentation and leverage source code for gen-

erating summaries of code entities. According to the experts in the field, including informal

documentation can be important to augment formal documentation such as the official Java

documentation Treude & Robillard (2016); Guerrouj et al. (2015). Additionally, researchers

have proven that using source code (only) has the problem of lacking completeness and clarity

(Treude & Robillard (2016)). In recent investigations, Guerrouj et al. (2015), have covered

the possibilities of using Stack Overflow for summarizing code entities. Inspired by previous

works on code summarization and in order to overcome shortcomings by previous alternatives,

we propose an automatic approach that uses machine learning and that leverages informal doc-

umentation, in particular bug reports, with the aim of gaining insightful information about code

entities from this kind of source of information, bug reports.

To reach this general objective, three different contributions have been achieved: i) Finding

code entities in informal documentation using an island parser, ii) Leveraging relevant sources

of information to summarize code entities by applying appropriate machine learning tech-

2

niques, iii) Evaluating our approach in terms of the usefulness of the produced summaries

through an empirical evaluation.

CHAPTER 1

RELATED WORK

There are numerous research projects about software summarization. The majority of studies

cover formal documentation and source code; while using the informal documentation for code

summarization is suffering from insufficient consideration. In our work, we evaluate the effect

of using informal documentation like bug reports when summarizating code entities, classes

and methods.

This chapter consists of two sections: The first section concerns approaches that use of source

code for code summarization, while the second section provides an overview of recent works

that attempted to leverage informal documentation when summarizing code.

1.1 Previous works on code summarization

A large body of work has been done in the field of code summarization. For example, Sawant & Bac-

chelli (2015) focused on the history of different projects to evaluate the usage of different code

entities. The focus of their approach was on classes and methods in the Java language and one

specific tool: Maven. In our study, we attemot to summarize the purpose and usage of code

entities in informal documentation in several open-source Java projects.

Several research studies have used machine learning algorithms for the classification of source

code. For example, Phan et al. (2017) suggested two models of tree-based convolutional neural

network (TBCNN), k-Nearest Neighbors (kNN-TED), and SVM for source code classification.

In their work, the input structure of the model is presented as a tree. The Result of their tree-

based approach illustrated a great enhancement in the classification performance and execution

time. The model was evaluated on 52,000 C programs and the results showed that the tree-

based classifiers had the great performance in comparison with the sequence-based or metrics-

based classifiers. In our thesis, we also leverage machine learning to select relevant sentences

that will be part of summaries.

4

Moreno et al. (2013) introduced a way to produce natural language summaries of Java classes

automatically. They proposed three different factors (indicative, abstractive, and generic) for

code summarization. They also considered evaluated properties in three parts of adequacy, con-

ciseness and, expressiveness. While previous summarization approaches were only based on

the class relationships, they divided class stereotypes into 13 different classes and used respon-

sibility as a factor for summarization. Unlike this paper, that similarly to most recent works, is

based on the source code, we leverage informal documentation to produce our automatic code

summaries.

To apply a summary of edited parts of source code to version systems and issue trackers,

ARENA (Automatic Release Notes Generator) was suggested by Moreno et al. (2014). For

the evaluation part, they recruited 58 participants for four different empirical studies and the

result showed that ARENA automatically produced summaries that were so similar to gold

summaries, which were suggested by participants. The inclusion of necessary editing parts is

the most fundamental part of the ARENA. This could potentially enable developers to fully

understand the latest edits and fixed bugs. On the other hand, it also specifies the current bugs

in the source code.

As an example of a different study, an eye-tracking study with 10 professional Java software

developers has been conducted by Rodeghero et al. (2015) and led to a new word-based finding

summarization tool. In the evaluation part, the comparison was between their words and words

extracted with VSM tf/idf approach. Differently from this work, our approach is not based on

the use of eye-tracking and it handles other types of information using different algorithms.

A new approach for the automatic generation of Java methods was suggested by McBur-

ney & McMillan (2016). They summarized the context surrounding the method instead of

using information which is internal of the methods. They designed a new system to produce

natural language text. The output of the system is about how to use the method and why this

method exists in a particular program. Results show that the suggested approach improves the

5

quality of summarization. Like this appraoch, we consider the context surrounding the code

entities in bug reports. However, we do not leverage source code to summarize code entities.

McBurney et al. (2016) found four different summarization tools for Java projects. All tools

are selecting sentences to make a feature list. The results of the evaluation part show that

none of these tools satisfy expectations and more practices are required to improve tools. As

mentioned before, due to the lack of accurate summarization approaches, we contribute to this

area by suggesting a novel automatic code summarization approach.

Moreno et al. (2015) proposed an approach, called MUSE, to find and extract a method. The

results illustrate similarities with what developers have found. Their approach consists of four

steps of the client’s downloader, the example extractor, the example evaluator and the example

injector. The results also present that the MUSE approach helps developers to achieve more

complete implementation, which is so useful for their tasks. At the final step, an experiment

was conducted to understand how MUSE benefits a developer during his/her task. The sug-

gested approach is limited to methods in the source code.

Ying & Robillard (2014) conducted a research to infer an algorithm for summarization us-

ing experienced programmers, while focusing on selection and presentation. their study was

conducted by 16 participants who have at least one year of experience in Java programming.

Regarding the selection part, some developers considered that method signature should be part

of the summaries, while others not. Also, some highlighted that at least two statements of a

method should be considered, while most developers suggested to remove exception handling

blocks. What parts to include when summarizing code entities is therefore still an open ques-

tion, which depends on the context, experience of developers, etc. As researchers, our aim is

to provide in a short and concise way, relevant information about code entities.

A tool that can classify methods and classes based on the stereotypes and according to their

intent in a software system was suggested by Moreno & Marcus (2012). In their approach,

methods are divided into 15 different classes and they also defined 13 different categories for

classes. Their approach is based on a set of predefined rules. One of the main advantages of

6

this approach is the fact that developers can evaluate their changes since it keeps track of the

history of different stereotypes of classes in design time. Unlike this work, we focus on code

entities discussed in informal documentation, and we do not handle the notion evolution.

McBurney & McMillan (2016) conducted an empirical study to evaluate to what extent a sum-

mary reader and author agree for what concerns the evaluation part. They used short text

semantic similarity (STSS) for this purpose. The findings show that users often use summaries

more than authors and that STSS can be leverage to provides an estimation on the accuracy of

summarization. Once again, the focus of researchers was on the source code in this work.

Armaly & McMillan (2016) proposed a technique to reuse functions in C and C++ programs.

They used execution record and replay technology and empirically evaluated their techniques.

Participants agreed on the fact that using the suggested approach is much easier than manually

reusing code, and also code is simpler and smaller (by up to a factor of six). Unlike this

approach, our work do no investigate reuse.

Badihi & Heydarnoori (2017) proposed a crowd summarizer using crowdsourcing, gamifica-

tion, and language processing. They implemented a web-based code summarization game in

a form of Eclipse plug-in. The results showed that the proposed crowd summarizer is able to

extract most critical keywords in comparison with the eye-following methodology in question.

Rodeghero et al. (2017) suggested an approach to extract important information about the

meetings taken place between developers and clients. They used an artificial dataset, called

AM, to this aim. Their approach showed a precision of 70.8%. Differently from this work, we

do not summarize conversations but rather code entities discussed in informal documentation.

1.2 Code summarization using informal documentation

Few recent research works have attempted to investigate informal documentation for code sum-

marization:

7

Trivedi & Dey (2016) evaluated different classifiers and a combination of various classifiers

for emails. They examined three datasets: Enron, SpamAssassin and, LingSpam, and multiple

algorithms to find the best boosting algorithm on Naive Bayes and Bayesian. The result of

their work show that Adaboost is the best algorithm. Additionally, their evaluation of several

classifiers illustrates that using a combination of classifiers improves accuracy and decreases

false-positive rate. In our work, we use logistic regression for the classification since it has

been proven to be among the best for sumamrization tasks (Rastkar et al. (2010)).

Rastkar et al. (2010) suggested an approach to summarize bug reports. In their study, they

compared the effectiveness of different classifiers in terms of precision, recall, and F-measure.

They examined and compared three classifiers: Bug Report Classifier (BRC), Email Classifier

(EC) and Email and Meetings Classifier (EMC). The results show that BRC is the best classifier

among the three different classifiers. For the classification task, they used liblinear and applied

logistic regression. Unlike this work, we do not summarize bug reports but rather code entities

discussed in bug reports. We take advantage from the findings of this research for what con-

cerns the best classifiers and we therefore apply the logistic regression for our summarization

task as well.

Guerrouj et al. (2015) investigated the utilization of the context which is surrounded by the

code entities in the Stack Overflow. Results illustrated that the approach has an R-Precision of

54%. Similarly to this work, we consider the context around the code entities as an important

component in our proposed approach. Although they investigated the stack overflow as a source

of information, their results inspired us since informal documentation, in general, can contain

important information about code entities.

Nguyen & Nguyen (2017) suggested a new summarization framework, called SoRTESum,

which in spite of other methods, uses social information of a web document like tweets from

twitter. The summarization consists of two parts: scoring and ranking. According to the

results, utilizing social information enhances the quality of summaries. In our suggested work,

machine learning is used to give a priority to different sentences to be included in the summary.

8

Tayal et al. (2017) suggested an approach for document summarization that is based on train-

ing and SVO (object, verb, and subject) rules and a data processing that involves steps such

as sentence combination, NLP parser, sentence reduction, semantic representation, ambiguity

removal, and POS tagger. This approach has revealed an F-score that ranges from 0.112561 to

0.4036. The approach has been evaluated with five language specialists and 20 random partic-

ipants. Unlike this work, we do not investigate text documentation but we aim to summarize

code entities trapped in documentation by applying machine learning techniques.

Jiang & McMillan (2017) worked on the automatic generation of short summaries of commits

since most developers need concise ideas on commit messages that may be so long sometimes.

They compared commits messages from users and automatically generated commits. Results

have shown that most produced comments by users (82%) are short (just a line) while the

latest automated approaches produced multi-lines messages. The authors studied several ways

to shorten commits messages. They used (verb + object) format to generate messages and

considered different batches for verbs, which are more important in commits like add, create,

and make. Additionally, they applied the Naive Bayes classifier to classify them. Similarly to

this work, we leverage machine learning for our summarization task. However, we deal with a

totally different problem, that is the summarization of code entities discussed in bug reports.

Treude & Robillard (2016) suggested SISE, a machine learning based-approach for computing

the similarity between features of sentences in Stack Overflow and APIs. An evaluation was

done with eight developers and achieved an accuracy of 0.64. Results show that Stack Overflow

meta-data along with machine learning could be useful for extracting features. Unlike this

work, we focus on summarizing code trapped in bug reports.

Panichella et al. (2016) suggested an approach that automatically produces summaries for test

cases. The goal is to improve the understandability of test cases. The approach consists of a

summary aggregation, test coverage analysis, summary generation, and test case generation.

Their empirical evaluation’s results have shown that developers can find twice as many bugs

and that this approach highly increases the understandability of test cases. Unlike this work,

9

our aim is not to summarize test cases but rather the purpose and possibly of code entities

discussed in informal documentation.

CHAPTER 2

TECHNICAL BACKGROUND AND PROPOSED APPROACH

2.1 Technical Background

2.1.1 Overview of machine learning approaches

The automated text classification has seen a huge enthusiasm in recent years. Researches show

that using the machine learning techniques is the predominant way to deal with the automated

text classification. When machine learning techniques have been used, a classifier is built by

learning from a set of pre-classified documents (Sebastiani (2002)). Figure 2.6 shows various

machine learning algorithms for different purposes.

Figure 2.1 Different machine learning approaches (Chen et al. (2009)).

To classify sentences into important and non-important classes, various algorithms for the text

12

classification can be applied. As an example, Lewis (1998) described the Bayesian classifi-

cation as the probability of the document P(c j|si) for each class of c j by a vector of words

d j = w1
j ,w

2
j , ...,w

n
j as follows:

P(c j|si) =
P(si|c j) ·P(c j)

P(si)

In this context, a text is represented with a |N| dimensional vector of words (Chen et al. (2009)).

To tackle the problem of the high dimension of the data vector, the Naive Bayes assumption

was suggested. Naive Bayes classifier also uses Bayes rules for the text classification but it

considers that features are independent of each other. The probability of a sentence si for a

class c j is calculated as:

P(si|c j) =
n

∏
1=1

P(wl
j|c j)

Researches also show that the logistic regression was beneficial for the text classification (Al-

Tahrawi (2015); Rastkar et al. (2010)). For example, Al-Tahrawi (2015) examined three algo-

rithms of Support Vector Machine, Naïve Bayes, and Logistic Regression for the Arabic text

categorization. The results show that logistic regression has the highest performance compar-

ing to the other two algorithms.

2.1.2 Logistic regression

Logistic regression (LR) is a statistical algorithm and it provides the probability model for

various machine learning applications. LR estimates the probability that each input x can be

categorized as a class label y.

P(y | x) =
1

1+ exp(-yαT x)
(2.1)

In the formula above, the alpha is known as the model parameter (Al-Tahrawi (2015)).

For example, in the context of our problem, when detecting informative sentences and words

13

that are part of the summaries of code entities, when its value is high, the term is considered

to be important. The model can be used as a classifier if a threshold is chosen (Antoniol et al.

(2008)).

In our case, we use the logistic regression because it has been proven from past research on

summarization Rastkar et al. (2010), that it is one the most suitable algorithms for the summa-

rization task. The output of the logistic regression provided different probabilities for sentences

that can be part of summaries of code entities.

Rastkar et al. (2010) summarized the whole bug reports, while in this study, we apply logistic

regression to produce summaries for the code entities mentioned in bug reports. As an output

of the logistic regression algorithm, the sentences will be ranked based on the probability value.

2.2 Proposed Approach

2.2.1 Overview of the approach

For different software projects, a huge amount of information is archiving in various sources of

information. To help software developers find code entities easily and to facilitate their work

especially when dealing with complex and–or large software systems, we suggest a novel sum-

marization approach that unlike past research, leverage bug reports to summarize the purpose

of code entities trapped in bug reports. This approach can be applied using other sources of

informal documentation such as Stack Overflow, emails, etc. (Figure 2.2).

In existing studies, summarization is effective in many applications such as code change, du-

plicate bug detection, bug report digestion, traceability link recovery, document generation,

summary visualization, source-to-source summaries, etc. (Nazar et al. (2016)).

In this chapter, we describe our proposed methodology for building an automatic context-aware

summarization approach that summarize code entities discussed in informal documentation.

Our methodology consists of three main steps:

- Step 1: an island parser to extract code entities in informal documentation is utilized.

14

Figure 2.2 Using different sources of information for the code entities

summarization.

- Step 2: a novel machine learning based approach is applied.

- Step 3: the usefulness of the novel approach is empirically evaluated through an empirical

study. The evaluation step assesses whether the summaries provided by the new approach

are pertinent to software developers or not (Figure 2.3).

Figure 2.3 Overview of our proposed methodology.

15

2.2.2 Mining and filtering the data

The first step in the methodology is related to mining and filtering of the data. Figure 2.4 shows

an example of report from the bug reports of Eclipse. In the suggested approach, the required

data is extracted from the page source of the various bug reports. To this aim, the page source

of reports is searched and data is extracted by using tags on each page. Figure 2.5 shows the

details of different tags in the page source of one example from Eclipse’s bug reports. As it

can be noticed, information such as bug id, the title of the report, date of report, etc. can be

extracted from the page source.

Figure 2.4 An example of software artifact : Eclipse bug report.

Due to the structure of the aforementioned documentation, different extraction strategies have

been considered for mining bug reports of the different software systems that we dealt with.

Figure 2.6 shows the details of the report in the bug report. As we can see, the summary of

the report which mostly includes useful information is specified. Figure 2.6 shows the details

of the report in the bug report. In this step, all needed information is extracted by using the

specific tags of each value.

16

Figure 2.5 An example of page source in bug reports.

2.2.3 Extracting code entities discussed in bug reports

In this study, code entities are extracted from the bug reports using an island parser that iden-

tifies terms like code in informal documentation. Indexes of each extracted class and method

are kept to identify code entities for which we generate summaries. Figure 2.7 shows an exam-

ple of code entities: org.netbeans.swing.tabcontrol.TabbedContainer.paint is a fully qualified

name utilized in different positions of the bug report. To produce a proper summary for the

aforementioned code entity all the related posts in the bug report will be considered. We

should also consider that one big challenge in documentation processing is that most docu-

mentation is not well organized. For example, many sentences are not complete or some users

put URL addresses in their sentences. To tackle this problem, we considered a pre-processing

step and all unusable words and parts like URLs have been removed.

After that, we extract code entities in informal documentation using an island parser to pro-

vide proper input for our classifiers. By using island parser, we parse structured information in

17

Figure 2.6 An example of summarized title in the bug report.

natural language. Our island parser is an implementation of Bacchelli et al. (2010b) approach

that we have customized for bug reports. In this approach, the authors identified code in emails

by applying naming conventions and using regular expressions to recognize methods, which

seems to be an effective technique (Bacchelli et al. (2010a)).

Figure 2.8 shows an example of a bug report extracted from Bugzilla1 for the Eclipse system.

As it can be seen, the bodies of the extracted reports include HTML tags. We have removed

all tags and cleaned versions of comments are stored in the comments table (Figure 2.9). The

pk field in the figure is the key of each comment and the report-pk is the key of each related

report.

1 https://www.bugzilla.org/

18

Figure 2.7 An example of code entities in a report.

Figure 2.8 Sample of extracted bug reports.

19

Figure 2.9 Sample of extracted comments in bug reports.

Since the main focus of this research is related to code entities, all the code entities in com-

ments are found (Figure 2.10). The ’start’ and ’end’ fields in the figure are the starting and

ending positions of the code entities. The comment_pk is the key of the related comment and

the matched_text column shows the code entities. Table 2.1 shows a sample of extracted code

entities by the developed island parser. Each report itself has a sentence as a title in bug reports.

The titles of bug reports have also been stored in separated fields because they include signifi-

cant information about code entities and thus they will be considered as important sentences.

20

Figure 2.10 Sample of extracted code entities.

21

Table 2.1 A sample of the extracted data using our developed island

parser.

Bug Report ID Title of the bug report code entity

1917 Multi-page editor support for

separate property and outline pages

pageChange

11233 Add error icon to InputDialog class IInputValidator.isValid

22782 Need API to draw disabled

text in native platform way

GC.drawText

2713 Feature request: API

to traverse tree viewer

CP.getChildren

20054 Unable to register ruler context

menu for MultiPageEditorPart

AbstractRulerActionDelegate.

setActiveEditor

28306 Data loss when disk is full org.eclipse.core.internal.

filesystem.Policy.error

28317 Support for blit operations within Image Data SWT.error

Finally, the number of comments and the number of existing code entities in each report are

stored as comments_num and findings_num fields in the database. By using this table, all

reports without a code entity will be not considered as part of the input of the machine learning

technique (Figure 2.11). Since each bug report consists of a huge amount of comments and

data, by sorting comments of bug reports based on the number of found code entities, only

reports with at least one code entity will be used.

22

Figure 2.11 An example showing the number of code entities

found for Eclipse.

2.2.4 Code Summarization using machine learning

Machine learning techniques and its applications have been widely considered by researchers

in various fields both in academia and industry. A vast application of machine learning al-

gorithms related to pattern recognition, image processing, text mining, etc. has made these

algorithms crucial in science and industry-related projects. In our work, a new approach that

summarizes code entities discussed in bug reports is implemented. The approach uses the code

entities trapped in documentation as the input for the machine learning techniques.

Using binary classification is one way to produce summaries by distinguishing between signif-

icant and insignificant sentences. To implement binary classification, supervised or unsuper-

vised techniques can be used and it should be considered that each mechanism has its advan-

tages and disadvantages. To illustrate, while in unsupervised learning, classification is based

on the input document and there is no obligation to provide a predefined annotated corpus, the

23

supervised technique needs an annotated corpus (Rastkar (2013)), but the advantage of choos-

ing supervised techniques is to specify various features which are not possible in unsupervised

mechanisms (Trivedi & Dey (2016)).

In recent years, various summarization techniques have been suggested. Some of the popular

summarization techniques are graph-based approaches, machine learning based-approaches,

cohesion based-approaches, etc.

Summary production techniques can be abstractive and extractive. Produced abstractive sum-

maries need natural language generation techniques and require to rewrite the sentences. In

extractive summaries, sentences would be selected and sentence rewriting is not needed (Kha-

tri et al. (2018)). In our work, extractive summaries are produced.

To rank sentences in the produced summaries, we applied the logistic regression classifier. The

logistic regression algorithm belongs to the supervised learning algorithms. For each code en-

tity, all related sentences are extracted and prioritized based on the probability of being a part

of a summary. The logistic regression classifier gives a probability instead of zero or one value

(Rastkar (2013)). The suggested approach provides an extractive summary, keywords in the

sentences are selected based on their priority.

To train the statistical classifier, a corpus of important and non-important sentences sampled

from bug reports is made, and each sentence is labeled based on its importance. One problem

in this step is related to the existence of code snippets. Researches show that users of various

sources of information like Stack Overflow are using <pre><code>...</pre></code> tag for

code snippet in posts. Therefore to tackle this problem, we removed the code snippets parts

(Ahasanuzzaman et al. (2018)) since our goal is not to summarize code snippets but rather

classes and methods trapped in the natural language parts of bug reports. Once we filtered and

cleaned our data and kept only the code entities and natural language text that surround them,

we applied the following steps:

24

2.2.4.1 Creation of the corpus for code summarization

To be able to train our applied classifier to learn the model to classify important and non-

important sentences to be included in our final descriptions of code entities, a corpus of labeled

sentences is needed.

Figure 2.12 Sample input as sentences for the machine learning technique.

Since the island parser provides a text for each code entity that includes both important and

non-important sentences, extracting sentences and specifying proper classes becomes crucial.

The title field of reports already saved in our database is added as the first sentence of the body.

Thereafter, one program has been developed by C# to assign the proper class to each sentence.

The first sentence of each text which is the title of each bug report is considered as an important

sentence and we give it label 1. The second important class of sentences are those sentences

surrounding classes and–or methods in bug reports. Our definition of important sentences

was inspired by previous works (Dagenais & Robillard (2012); Guerrouj et al. (2015)) that

25

considered term proximity and local contexts when dealing with summarizing code trapped in

informal documentation.

Figure 2.12 shows a sample of the initial corpus. The fields api_pk, sentence, matched_text,

and calassname are respectively the keys of the table, the extracted sentences, the code entities,

and the label of each sentence. The initial corpus incorporates conversational data which does

not bring useful information, and which can take time to read. Additionally, sentences are

presented in the form of a set of keywords. Since our goal in this thesis is to produce summaries

in the form of keywords, we have removed all useless words including stop words and informal

words such as the names of developers, greetings-related words, etc. Figure 2.13 shows an

example of a corpus. The matched text field shows the code entities name and the class field

has a binary value of zero for non-important sentences and one for important sentences. Unlike

past research Rastkar et al. (2010) that summarizes entire bugs, we created a corpus for each

code entity since each class or method is discussed in a specific set of bug reports, which

constitutes its context. Table 2.2 shows the number of sentences with labels for each studied

project.

Table 2.2 Characteristics of the corpus of each studied

project.

Project #Sentences #Important sentences #Not-Important sentences

Eclipse 71,957 16,275 55,682

NetBeans 9,400 2,275 7,125

KDE 5,799 1,716 4,083

Apache 17,614 3,318 14,296

Since some sentences consist of many conversational forms which are not helpful, to provide

one abstract explanation about the code entities, a list of useful keywords has been produced

instead of sentences. An example of a list of keywords is presented in figure 2.13.

26

Figure 2.13 An example of input of our machine learning-based approach.

2.2.4.2 Training the logistic regression model for the classification task

To train a model to recognize a sentence that will be part of the produced summaries, we

apply machine learning. Firstly, to be able to work with WEKA (Holmes et al. (1994)) to

train the model, the data from the corpus is converted to the ARFF (Attribute-Relation File

Format), which is actually the input format of WEKA. The document text is presented as a

“string” attribute and the document class is considered as a “nominal attribute” (le Cessie & van

Houwelingen (1992)). In our work, we also deal with two attributes, that are the text and class

attributes. The first attribute is the text attribute which, in our case, includes the sentences from

the corpus of the code entity in question. The second attribute consists of the label of classes,

which has two values, zero or one.

In the training step, sentences are considered as the input for the used classifier. The "String-

ToWordVector" in filter of WEKA is applied to transform the string attributes to a number

representation.

We have used "StringToWordVector" (weka.filters.unsupervised.attribute.StringToWordVector)

filter; it is an unsupervised filter that has options for the binary occurrence of words to cre-

ate a bag of words. The dictionary of words is formed using the data of the training set.

27

Thereafter, we performed a five folds cross validation to split our data into test and train-

ing data sets. After training the model using the logistic regression, the evaluation class

(weka.classifiers.Evaluation) is utilized for the evaluation of the machine learning model.

Based on the probability value of each sentence, all sentences will be prioritized. There are

different approaches for choosing the number of sentences that will be included in the final

summary. To give an example, McBurney & McMillan (2016) selected six sentences to gen-

erate code summaries. The first six sentences with higher probabilities have been chosen as

important sentences. Rastkar et al. (2010) selected sentences for the summary up to reach

25% of the bug report word count because the percentage is so close to the value of their gold

standard summaries sentences. In our case, we selected all sentences because most of our

produced summaries were short. We therefore believe that considering all generated ranked

sentences, ordered based on their importance will be not overwhelming and help gain a better

understanding of code entities.

2.2.4.3 Feature selection

In various sources of information, we can define different groups of features. For example in

Stack Overflow, features can be considered as title features, body features, and answer features.

For instance, for the title features, the title of the informal documentation can be considered

as an important class if it includes the words of code entities or "issue", "bug", "error" and

"exception" word (Ahasanuzzaman et al. (2018)).

In text classification, each text can be used as a bag of words and words in sentences would be

the features. Therefore, the sentences will be converted to the vector of words (Boulis & Os-

tendorf (2005)).

In the suggested approach, the presence of code entities in sentences is considered as features.

Therefore, the lexical features which are about the occurrence of code entities are important

in our project. In our study, we will leverage the sentences that include the code entities and

those that surrounded it, as in recent works like (Dagenais & Robillard (2012); Guerrouj et al.

28

(2015)), these sentences represent useful information for summaries. To simplify, below is the

list of features in the suggested approach.

• The occurrence of code entities (they are being recognized by the methods and classes

patterns using regular expression and naming conventions).

• Is the sentence a title of a bug report or not?

We remove stop words since we want to provide summaries with important keywords and

words like "and," or "a," are nor useful neither informative.

2.2.4.4 Sentence classification

In our work, we first apply the logistic regression algorithm to the set of sentences related to

each code entity to be summarized, the output provides different probability values for each

sentence. Then, sentences will be ranked based on the probability values in a form of a list.

For instance, the first sentence in the composed list would be the most important sentence for

the summary. In Table 2.3, we show a sample of produced summaries for various code entities.

Some machine learning techniques such as decision tree algorithms prefer to work with discrete

attributes. Discretization is the way toward changing over a real-valued attribute into an ordinal

attribute. Discrete attributes depict nominal attributes category and nominal attributes have an

ordering of the variables (Eibe et al. (2016)).

For the implementation of logistic regression, an instance filter can be used to discretize a range

of attributes in the dataset into nominal attributes. Discretize is an unsupervised filter in Weka

(Eibe et al. (2016)).

One problem related to data is informal discussions in bug reports. Many sentences include

conversational words that are not informative at all. Also, some contains a lots of informal

words exchanged between developers. Therefore, to obtain summaries with better quality,

many uninformative words, such as stop words and informal ones have been removed.

29

Table 2.3 A Sample of produced summaries by the

proposed approach.

Project code entity Summary

Eclipse BrowserInformationControl.isAvailable "hovering default information

control wrapping error tabs"

Eclipse Dispaly.asyncExec "application window active runnable
runs immediately problems display
async exec partly fixed suppose
problem inactive application window"

NetBeans ALD.atomicLock "extract document manipulation editorlib"

NetBeans EntityManager.joinTransaction "solved moding eclipse link
target database property file
correctly references database"

KDE linkProviders.add "bluetooth device link"

KDE ViewportParamsTest.cpp "optimized returns line string holds
detail level information optimized
returns line string holds"

Apache directory.mkdirs "task apache ant discards parts files"

Apache parser.parse "entered comp ld xml
document created passed tree
walker sparse filter works exponential times"

2.3 Limitations of the developed approach

Although the produced summaries can provide valuable information about the code entities,

the process of creating summaries faced some challenges.

We observed similar summaries for some different code entities. The source of this problem

is originated from the fact that developers mention several code entities when discussing one

that perplex them. Since our approach considers as a context, the sentences that surrounds a

code entity, the context is the same for code entities discussed together, which results in similar

or almost similar summaries for different code entities. Figure 2.14 shows an example of this

phenomenon.

30

Figure 2.14 An example with different code entities discussed in the same

report.

Another challenge is related to the amount of handled data for machine learning. In effect,

to provide significant results, machine learning algorithm needs a significant amount of data,

which is not always the case in our context since some code entities are discussed in very few

bug reports. Additional studies are needed to investigate whether other sources of information

such as emails and Stack Overflow posts, etc. contain a high number of discussions of code

entities in comparison with bug reports. If this is the case, the same approach can be applied to

another type of information that may lead to better performances in terms of the quality of the

produced summaries for each code entity, or a combination of different types of information

may be also considered. Overall, we could gain some valuable information about code entities,

their purpose from bug reports. However, this information can be enriched by the use of other

sources of information to yield to better results.

CHAPTER 3

EMPIRICAL EVALUATION

During the final step of the methodology, the summary provided by the novel approach has

been examined to assess its usefulness for software developers. The main goal of the novel

approach is to generate an accurate code entity summary for developers to assist them during

their maintenance and evolution tasks.

To investigate the accuracy of our machine learning based summarization approach, we evalu-

ated our approach based on the usefulness via an online survey with 23 human participants.

The evaluation of effectiveness of the proposed approach is the main goal of this section. This

section consists of three different parts: (i) definition, (ii) design and (iii) analysis method for

the experiment. Firstly, we describe the definition of the experiment based on Basili et al.

(1994). The second part is about the experiment design and procedure, participants, etc. Fi-

nally, in the third part, we present the analysis method.

3.1 Definition and planning

In this part, the objective, context, and object of the experiment are presented. Data sources for

the experiment are four open-source projects: Eclipse1, NetBeans2, KDE3, and Apache4.

The objective of the experiment is to evaluate the effectiveness of the summarization approach

for summarizing methods and classes in bug reports.

The context consists of 23 participants, students from the Software Engineering and IT De-

partment of École de technologie supérieure, as well as software developers from industry.

Prior to running our survey, we applied for ethics committee’s approval to conduct such type

of research. Once, we had their approval, we invited participants by email, while attaching

the consent to the invitation. Participants who accepted to participate, filled in the consent

1 https://bugs.eclipse.org/bugs/

2 https://netbeans.org/bugzilla/

3 https://bugs.kde.org

4 https://bz.apache.org/bugzilla

32

and signed it. Then, they received a follow-up email from us containing three distinct ques-

tionnaires. The pre-questionnaire is to collect demographic data, participants’ characteristics,

background, level of education and programming experience, etc. The questionnaire which

contains all the tasks. And the post-questionnaire to gain insights and feedback about the

study. There was no restrictions on the time allocated to the experiment. It was compulsory

however that participants have a basic programming knowledge and skills to be able to deal

with code and informal documentation.

The object of the experiment consists of 25 different classes and methods chosen from four

different open-source Java projects (Eclipse, NetBeans, KDE, and Apache).

The quality focus is the accuracy and usefulness of the automatically produced summaries.

3.2 Research questions

By analyzing the data collected from participants in the survey, we asked two main questions:

RQ: Can our context-aware automatic summarization approach be useful for software devel-

opers?

3.3 Context of the experiment

The context of our experiment consists of code entities and bug reports from four open-source

projects:

• Eclipse

• NetBeans

• KDE

• Apache

33

The table 3.1 represents the characteristics of the studied projects. We present, for each ana-

lyzed project, the number of commits, the number of sub-projects it contains, the number of

lines of code, as well as the total of bug reports.

Table 3.1 The characteristics of the studied projects.

Projects #Commits #Projects #Lines of code #Bugs

Eclipse 2,000,000 75 68,100,000 88,950

NetBeans 535,000 - 6,000,000 65,187

KDE 2,000,000 - 10,000,000 138,715

Apache 3,022,836 350 + 1,058,321,099 18,890

We extracted, using our island parser code entities from Eclipse5, NetBeans6, KDE7, and

Apache8 bug reports. The prototype of the island parser has been developed by one of the

lab members as part of the lab’s infrastructure and we customized it to parse data of the afore-

mentioned projects.

The characteristics of the four examined open-source Java projects in terms of the number of

code entities are shown in table 3.2. We also extracted the name of the authors, the report date

and the position of code entities from in the bug reports since we needed this information for

the machine learning part. As an example, 88,950 comments of the Eclipse bug reports have

been considered, and 152,738 code entities have been extracted from the comments of the bug

reports (Cf. Table 3.2).

5 https://eclipse.org.

6 https://netbeans.org.

7 https://kde.org/.

8 https://www.apache.org/.

34

Table 3.2 Characteristics of the studied projects in terms of the

number of bugs and code entities.

Bug Report Name #Reports #code entities

Eclipse 88,950 152,738

NetBeans 65,187 59,466

KDE 138,715 93,110

Apache 18,890 26,703

We have examined 25 different code entities from the four different Java projects (Eclipse,

NetBeans, KDE, and Apache). The selection of code entities was as follows: We first formed

a pool of code entities that excludes code entities with empty summaries since we cannot eval-

uate the empty summaries. Then, we excluded code entities for which similar summaries have

been produced. As explained earlier in the thesis, these code entities are those co-occurred

frequently with a set of other code entities. We consider that our approach is still not equiped

and mature enough to deal with such complicated cases. This is a challenge that we are still

investigating and will be addressed as part of our future work. From these pool that excludes

particular cases, we randomly selected 25 code entities for examination.

Based on the number of participants we had, that is 23 participants who confirmed their partic-

ipation, we constituted five different groups of participants. Each group acting on five different

code entities.

Tables 3.3, 3.4, 3.5, 3.6, and 3.7 provide the lists of code entities on which each group has

worked. For each group, one of the four projects has two code entities. Table 3.3 presents the

five code entities on which the first group has worked.

The five code entities provided to the second group are presented in table 3.4. code entities have

been selected from different packages and two code entities are considered form the Eclipse

project.

35

Table 3.3 Code entities examined by Group 1 of

participants.

Project code entities

Eclipse BrowserInformationControl.isAvailable

NetBeans ALD.atomicLock

NetBeans org.netbeans.swing.tabcontrol.TabbedContainer.paint

KDE linkProviders.add

Apache directory.mkdirs

Table 3.4 Code entities examined by Group 2 of

participants.

Project code entities

Eclipse Dispaly.asyncExec

NetBeans EntityManager.joinTransaction

Eclipse Collections.synchronizedMap

KDE ViewportParamsTest.cpp

Apache parser.parse

Table 3.5 represents the five code entities on which group number 3 has worked. As it can be

noticed, the selected code entities can be fully or partially qualified names.

Table 3.6 shows the selected code entities for group 4 where the Apache project has two code

entities in this group.

The code entities for the last group are presented in table 3.7. The last three participants worked

on the five code entities because we had 23 participants.

36

Table 3.5 Code entities examined by Group 3 of

participants.

Project code entities

Eclipse column.pack

NetBeans mockery.mock

Apache PDFRenderer.renderText

KDE window.navigator.userAgent.indexOf

Apache evaluator.evaluateFormulaCell

Table 3.6 Code entities examined by Group 4 of

participants.

Project code entities

Eclipse resource.createMarker

NetBeans DatabaseRuntime.managesRuntimeStatus

Apache ExceptionUtils.handleThrowable

KDE node.nextSibling

Apache XSSFFormulaEvaluator.evaluateAllFormulaCells

3.3.1 Design of the experiment

We produced five various tasks of code entities for five groups and each participant should

perform each task based on the dedicated group.

We followed a Block Randomized Design when designing our study. In effect, we have blocked

participants based on their knowledge of Java and experience, which resulted in groups such

37

Table 3.7 Code entities examined by Group 5 of

participants.

Project code entities

Eclipse resource.createMarker

NetBeans DatabaseRuntime.managesRuntimeStatus

Apache ExceptionUtils.handleThrowable

KDE node.nextSibling

Apache XSSFFormulaEvaluator.evaluateAllFormulaCells

Table 3.8 Experimental design.

code entity1 code entity2 code entity3 code entity4 code entity5

Task1 rnd(Mi/Cj
rnd(Pk)

) rnd(Mi/Cj
rnd(Pk)

) rnd(Mi/Cj
rnd(Pk)

) rnd(Mi/Cj
rnd(Pk)

) rnd(Mi/Cj)
rnd(Pk)

Task2 rnd(Mi/Cj
rnd(Pk)

) rnd(Mi/Cj
rnd(Pk)

) rnd(Mi/Cj
rnd(Pk)

) rnd(Mi/Cj)
rnd(Pk)

rnd(Mi/Cj)
rnd(Pk)

...

Task5 rnd(Mi/Cj
rnd(Pk)

) rnd(Mi/Cj
rnd(Pk)

) rnd(Mi/Cj
rnd(Pk)

) rnd(Mi/Cj
rnd(Pk)

) rnd(Mi/Cj)
rnd(Pk)

Mi Represents the method 1<i<5

Cj Represents the class 1<j<5

Pk Represents the project 1<k<4

as a group of participants with a high level of experience in Java, a group of participants with

a basic level of experience in Java, etc. Then, we have randomly selected from each block

equal (whenever possible) proportions of participants and generated new groups where we

38

made sure there is no bias due to a dominant characteristic of participants. To perform a block

randomized design study, we asked participants to fill in a pre-questionnaire (along with the

consent) when we sent them the invitation email the first time. This enabled us to create our

blocks and generate our final groups of participants. Table 3.8 shows the experimental design

that we have followed along with the given tasks. In this table, the parameters Mi, Cj, and Pk

represent respectively the method, class, and project. The function rnd in rnd(Mi/Cj)rnd(Pk)

means that, for each task, we randomly selected methods and classes in the examined projects.

As an example, the cell for the code entity 1 and Task 1 has the rnd(Mi/Cj)rnd(Pk) value. It

means that the first selected code entity for the first task can be method i or class j from project

k.

3.3.2 Pre-questionnaire

Participants start the experiment with the pre-questionnaire form, which includes information

about their background, expertise, and experiences in programming. Table 3.9 shows the ques-

tions asked and information gathered from the pre-questionnaire:

3.3.3 Questionnaire

Each participant evaluated summaries of five unique code entities in the experimental question-

naire. Therefore, we have 25 distinct summaries for 25 code entities. The set of experimental

tasks of each participant has been presented in the form of a questionnaire, which we refer

to as the survey questionnaire. This questionnaire consists of five questions on the quality of

produced summaries. The quality of summaries has been measured in terms of criteria includ-

ing conciseness, relevance, and understand ability. We were inspired by previous work like

Moreno et al. (2013) who used these criteria to evaluate their summaries. The main questions

related to these criteria and asked in the questionnaire are as follows:

− Is this description (produced summary) accurate?

− Does this description contain all the information about the class/method?

39

Table 3.9 Sample of pre-questionnaire questions.

ID Question

1 Gender

2 The age range

3 How many years of active programming experience do you have?

4 What is your level of expertise in the Java programming language?

5 Please select all the degrees you have and are currently enrolled in.

6 Current positions (student, working in industry, etc.)

7 How many years of work experience do you have in the industry?

8 Are you familiar with using bug reports?

9 Have you contributed (code and/or documentation) to an open source project?

− Does this description contain only the necessary information about the class/method?

− Does this description contain information that helps understand how to use the class/method?

− Does this description contain information that helps understand the implementation of the

class/method?

− Is this description easy to read and understand?

We provide in the appendix, an example of the questionnaire provided to participants.

3.3.4 Post-questionnaire

After completing the pre-questionnaire and the questionnaire survey, participants have been

invited to answer the post-questionnaire to obtain additional information about the collected

data during the experiment (Cf. Table 3.10).

40

Table 3.10 Sample of post-questionnaire questions.

ID Question

1 Are you familiar with the following projects?

2 Can the given descriptions be used in the context of any software maintenance and

evolution tasks to help reduce the time for developers?

3 Can the given descriptions be used in the context of any software maintenance and

evolution tasks to help reduce the efforts of software developers?

4 Do you find bug reports useful to understand classes/methods?

5 Which part(s) of bug reports did you find the most useful?

6 Overall, how difficult did you find the study?

7 What is your idea about the results of survey?

8 Comments

3.3.5 Participants

We conducted a study involving software developers and graduate students. Students are from

École de technologie supérieure, while developers belong to various companies such as Infor-

matics Services Corporation, TID Development Co, F. Ménard, etc. Table 3.11shows the main

characteristics of the participants.

3.4 Analysis method

Participants judged the quality of the produced summaries, based on the above-mentioned

criteria, using on a 4-point Likert scale (Joshi et al. (2015)). The collected data were then

analyzed by producing charts related to each question. We believe that at these level, we do

not need advanced statistical tests since we seek a general overview of how useful would be

41

Table 3.11 Characteristics of the participants.

Characteristic Level Number of Participants

Program of Studies Bachelor

Master

Ph.D.

Post-doc

14

16

4

1

Number years of programming experience Less than 1 year

Between 1 and 2 years

Between 3 and 6 years

Between 6 and 10 years

More than 10 years

1

4

10

3

5

Number years of industry experience None

Less than 1 year

Between 1 and 2 years

Between 3 and 6 years

Between 6 and 10 years

More than 10 years

4

3

4

6

3

3

Expertise in Java Poor

Basic

Good

Very Good

4

10

5

4

Using bug reports Yes

No

15

8

Open source projects contribution Yes

No

9

14

the produced summaries instead of how accurate are. Once our approach would be mature

enough, we will compute other measures such as the precision, recall, and F-measure and

perform advanced statistical tests for comparison purposes.

CHAPTER 4

RESULTS AND DISCUSSION

In this chapter, we first present the results obtained from the analysis of the data collected.

Then, we identify the threats to the validity of our study. Thereafter, we discuss future works,

and finally we conclude our work.

4.1 Findings of our study

In the following we present the results obtained from the collected data in terms of the criteria

that we have used as measures to quantify the usefulness of our approach.

4.1.1 Accuracy of the produced summaries

Figure 4.1 Participants answers to the question "Is this description accurate?"

44

Figure 4.1 presents the feedback of participants about the accuracy of the produced summaries.

As it can be noticed, the results show that participants mostly agree that the automatically

produced summaries for the code entities they evaluated are accurate.

4.1.2 Conciseness of the produced summaries

Figure 4.2 shows the answers of participants to the question of whether the provided summaries

contain all the information about the classes or methods.

The chart indicates that only 32% of participants strongly agree that the produced summaries

contain all the information. Therefore, our automatically produced summaries still needs to

be improved to include all pertinent information about classes and methods. It suffers from

this problem because some bug reports are really almost empty and do not contain information

about the purpose of a code entity even thought they mention it.

Figure 4.2 Participants answers to the question of "Does this description

contain all the information about the class/method?"

45

4.1.3 Relevance of the produced summaries

To investigate the relevance of the information contained in the produced summaries, we asked

the following question "Do the summaries contain only the necessary information?"

The results reported in 4.3 show that 12% of participants believe that summaries did not contain

only the necessary information. As a result, there are some information that are not useful in

the provided descriptions of methods and classes. We are aware of that and consider to tackle

this problem as part of our future work.

Figure 4.3 Participants answers to the question of "Does this description

contain only the necessary information?"

4.1.4 Expressiveness of the produced summaries

Another criteria for the evaluation is the expressiveness of the produced summaries. We asked

participants about the existence of information that helps understand how to use classes or

methods.

Figure 4.4 shows that 44% of participants strongly agree that the summaries contain informa-

tion about code entities.

46

Figure 4.4 Participants answer to the question "Does this description contain

information that helps understand how to use the class/method?"

4.1.5 Adequacy of the produced summaries

For the sake of evaluating the produced summaries based on their adequacy, we asked a ques-

tion related to the information about the implementation of methods and classes.

Figure 4.5 shows that the majority of participants stated that the summaries include information

about the implementation of methods and classes that they were part of their tasks.

47

Figure 4.5 Participants answers to the question "Does this description contain

information that helps understand the implementation of the class/method?"

4.1.6 Readability of the produced summaries

The last criteria for the assessment of our automatically produced summaries is related to the

readability factor. We asked the participants whether summaries are readable.

The feedback of participants in figure 4.6 reveals that the provided descriptions of code entities

are, in general, easy to read and understand.

We also analyzed data gained from the post-questionnaire. In the following we present results

related to the usefulness of the approach in terms of reducing time and efforts to developers.

4.1.7 Usefulness of the produced summaries

It is important to mention that we cannot rigorously assess the usefulness of our proposed

automatic approach unless we perform a controlled experiment where we provide it to an ex-

perimental group that do maintenance and–or evolution tasks using our approach. However,

in the following, we present insights on this aspect from the feedback we collected from the

participants.

48

Figure 4.6 Participants answers to the question "Is this description easy to read

and understand?"

Figure 4.7 presents the participants’ feedback about the reduction of time spent to understand

the purpose of code entities. As you can notice, 43.5% of participants found summaries ex-

tremely helpful to decrease the understanding time of code entities.

Figure 4.7 Participants feedback about the reducing the time to understand the

code entity purpose by produced summaries.

49

4.1.8 Usefulness of the approach in terms of efforts to understand code entities

Figure 4.8 implies the participants’ feedback about the reduction of time spent to understand

the purpose of code entities by the suggested approach. As shown in Figure 4.8, 39.1% of par-

ticipants found that the summaries are extremely helpful to decrease the efforts to understand

the code entities.

Figure 4.8 Participants feedback about efforts to understand code entities.

By examining bug reports as a type of informal documentation to produce our automatic sum-

maries, we were also interested to find out whether using bug reports is useful to understand

the methods and classes or not. The results in the figure 4.9 show that approximately half of

the participants (47.8%) rated the bug reports as useful.

In the survey, we also asked participants which parts of bug reports they find the most useful.

The findings in Figure 4.10 indicate that the code examples are the best part to find the solution

in the bug reports. We believe such an information is important for the research community

interested in knowing the type of information to leverage when building summarization tools

using bugs as a source of information.

50

Figure 4.9 Participants answer to the question "Do you find bug reports useful

to understand classes/methods?"

Figure 4.10 Participants answer to the question of which part(s) of bug reports

they find the most useful.

Overall, even though our study is still preliminary and our proposed approach is still not mature,

we believe that the results attained so far are promising and can be a foundation for further

research works that aim to build summarizers using informal documentation.

4.2 Threats to the validity

In this section, we present the threats to the validity of our approach. We mainly focus on those

that are significant such as the external and internal threats to validity.

51

• External validity : One of the primary threats to external validity is the generalization of

our work. To reduce this threat, we have randomly chosen from a large pool of code entities

25 different code entities belonging to various open-source projects: Eclipse, NetBeans,

KDE, and Apache. We also examined four different open-source projects from different

application domains. We are also aware that the number of participants is important to be

able to generalize our results. However, we believe that 23 participants for this preliminary

empirical investigation is reasonable.

• Internal validity : The first threat to internal validity is about the variation of participants’

performance in the experimental tasks, we divided participants into blocks of participants

having the same level of experience and–or skills, and then sampled in a stratified manner

participants to ensure that their experience is uniformly distributed across the five groups of

participants in the experimental design.

Another threat related to the internal validity is associated with the learning and fatigue

effects. We mitigated such a threat by giving a reasonable number of tasks to participants.

Specifically, we gave only five code entities and their summaries to participants to evaluate.

4.3 Future Work

In this section, we discuss possible research directions that can lead to the enhancement of the

quality of our summaries.

• As part of our future work, we first aim to resolve and overcome the limitations of our

approach. As discussed in the thesis, we had several code entities for which we could

not generate a summary. This is due to the fact that the code entities in question were

most likely discussed in very few bug reports and the machine learning algorithm failed

to function properly in this case. Also, when several code entities frequently co-occur

together, our approach generate similar summaries for these code entities. Consequently,

we need to reflect on how to work on the data improvement part so that our approach can

provide summaries and better summaries.

52

• We also plan to conduct a large-scale study to evaluate our approach by investigating more

code entities and more projects. We also plan to examine other artifacts such Stack Over-

flow, mailing lists and–or the combination of different sources of information.

• Comparing different machine learning algorithms for code entity summarization: While we

apply logistic regression as a classifier, we can also examine other algorithms for the clas-

sification task. For example, based on recent studies, Bayesian and Naive Bayes algorithms

can provide proper results for conversational documentation such as emails, which we can

apply for comparison purposes (Trivedi & Dey (2016)). It is important to note that we did

not perform any comparisons in this work. However, we plan to create a baseline against

which we can compare our summaries. For example, we can generate summaries in a ran-

dom way by selecting, using a proper algorithm, random words from bug reports to be parts

of the summaries and then compare our automatic summaries with this kind of summaries,

to see if we at least outperform the random.

4.4 Conclusion

Source code summarization has always been a topic of attention in software engineering. Re-

searchers have greatly contributed to this area with a focus on source code. Unlike past re-

search, we propose to summarize code entities, that are classes and methods, using other types

of information. As an example, we examined bug reports.

Extracting useful data from different information sources can be considered as a big challenge

in the area of code summarization. The utilization of machine learning for the classification of

information is becoming increasingly popular and is quite common especially with the use of

large data sets. In this work, we also leverage machine learning to classify relevant words/sen-

tences that should be part of the summaries of code entities.

To answer our research question, we have set up a process for extracting, filtering and collect-

ing data from four well-known open-source projects of Eclipse, NetBeans, KDE, and Apache

53

that have already been widely-investigated in the state of the art.

The results of our study show that 43% of participants found that summaries are accurate.

Regarding the conciseness of our produced summaries, 57% of participants agreed that the

summaries contain all information about the examined classes and methods. Additionally,

46% of participants strongly agreed that the automatically produced summaries are readable.

The feedback of participants in the post-questionnaire revealed that 43.5% of participants

agreed that the produced summaries can be useful to reduce the time of understanding the

purpose of a code entity. Additionally, 39.1% of participants agreed that the generated sum-

maries can reduce the effort of understanding code entities.

The results of this work can be exploited by researchers and practitioners who are interested

in building automatic code summarization tools in natural language processing. They can

leverage such tools within their Integrated Development Tools to assist developers during their

software maintenance and evolution tasks.

APPENDIX I

LINKS TO THE 5 QUESTIONNAIRES FOR 5 GROUPS

Table I-1 shows the links to each survey.

Table-A I-1 Links to the main questionnaires for each

group.

#Group Links to the main questionnaires

1 https://docs.google.com/forms/d/e/1FAIpQLSfIGC52Fup8iZI55Uut-

_TdSQ_PiZnqPueIDwpv9ojjawS2yA/viewform

2 https://docs.google.com/forms/d/e/1FAIpQLSdt25ZRQrfBsT

AkYRaszzFJCuiOskdxki09DAeOV-NuwT2TmA/viewform

3 https://docs.google.com/forms/d/e/1FAIpQLSexCpRRqfAyyOTjFwk9u

b21YITh3POOe6H4t3KttWa4RsDjRQ/viewform

4 https://docs.google.com/forms/d/e/1FAIpQLSdleTkjfNhJ01

VyFJ2_C8IJ9f_hvo_PLcU2zhTQQBelCthyqQ/viewform

5 https://docs.google.com/forms/d/e/1FAIpQLSdoQrMjVx1AjtJQ2DYrW3L

uQPGR__5otEbwr6Q_fJrtvm6EcQ/viewform

APPENDIX II

QUESTIONNAIRES PRESENTED TO PARTICIPANTS

1. Pre-questionnaire

Figure-A II-1 Sample of pre-questionnaire.

58

Figure-A II-2 Sample of pre-questionnaire.

59

Figure-A II-3 Sample of pre-questionnaire.

60

Figure-A II-4 Sample of pre-questionnaire.

61

2. Questionnaire

Figure-A II-5 Sample of questionnaire.

62

Figure-A II-6 Sample of questionnaire.

63

Figure-A II-7 Sample of questionnaire.

64

3. Post-questionnaire

Figure-A II-8 Sample of post-questionnaire.

65

Figure-A II-9 Sample of post-questionnaire.

66

Figure-A II-10 Sample of post-questionnaire.

BIBLIOGRAPHY

Ahasanuzzaman, M., Asaduzzaman, M., Roy, C. K. & Schneider, K. A. (2018). Classify-

ing stack overflow posts on API issues. 2018 IEEE 25th International Conference on
Software Analysis, Evolution and Reengineering (SANER), pp. 244–254.

Al-Tahrawi, M. M. (2015). Arabic text categorization using logistic regression. International
Journal of Intelligent Systems and Applications, 7(6), 71.

Antoniol, G., Ayari, K., Di Penta, M., Khomh, F. & Guéhéneuc, Y.-G. (2008). Is it a bug

or an enhancement?: a text-based approach to classify change requests. CASCON, 8,

304–318.

Armaly, A. & McMillan, C. (2016). Pragmatic source code reuse via execution record and

replay. Journal of Software: Evolution and Process, 28(8), 642–664.

Bacchelli, A., D’Ambros, M. & Lanza, M. (2010a). Extracting source code from e-mails.

Program Comprehension (ICPC), 2010 IEEE 18th International Conference on, pp. 24–

33.

Bacchelli, A., Lanza, M. & Robbes, R. (2010b). Linking e-mails and source code artifacts.

Proceedings of the 32Nd ACM/IEEE International Conference on Software Engineering-
Volume 1, pp. 375–384.

Badihi, S. & Heydarnoori, A. (2017). CrowdSummarizer: Automated Generation of Code

Summaries for Java Programs through Crowdsourcing. IEEE Software, 34(2), 71–80.

Basili, V. R., Caldiera, G. & Rombach, H. D. (1994). Experience factory. Encyclopedia of
software engineering.

Boulis, C. & Ostendorf, M. (2005). Text classification by augmenting the bag-of-words repre-

sentation with redundancy-compensated bigrams. Proc. of the International Workshop
in Feature Selection in Data Mining, pp. 9–16.

Chen, J., Huang, H., Tian, S. & Qu, Y. (2009). Feature selection for text classification with

Naïve Bayes. Expert Systems with Applications, 36(3), 5432–5435.

Dagenais, B. & Robillard, M. P. (2012). Recovering traceability links between an API and

its learning resources. Proceedings of the 34th International Conference on Software
Engineering, pp. 47–57.

Eibe, F., Hall, M. & Witten, I. (2016). The WEKA Workbench. Online Appendix for Data

Mining: Practical Machine Learning Tools and Techniques. Morgan Kaufmann.

Guerrouj, L., Bourque, D. & Rigby, P. C. (2015). Leveraging informal documentation to sum-

marize classes and methods in context. Software Engineering (ICSE), 2015 IEEE/ACM
37th IEEE International Conference on, 2, 639–642.

68

Holmes, G., Donkin, A. & Witten, I. H. (1994). Weka: A machine learning workbench.

Jiang, S. & McMillan, C. (2017). Towards automatic generation of short summaries of com-

mits. Proceedings of the 25th International Conference on Program Comprehension,

pp. 320–323.

Joshi, A., Kale, S., Chandel, S. & Pal, D. (2015). Likert scale: Explored and explained. British
Journal of Applied Science & Technology, 7(4), 396.

Khatri, C., Singh, G. & Parikh, N. (2018). Abstractive and Extractive Text Summariza-

tion using Document Context Vector and Recurrent Neural Networks. arXiv preprint
arXiv:1807.08000.

le Cessie, S. & van Houwelingen, J. (1992). Ridge Estimators in Logistic Regression. Applied
Statistics, 41(1), 191-201.

Lewis, D. D. (1998). Naive (Bayes) at forty: The independence assumption in information

retrieval. European conference on machine learning, pp. 4–15.

McBurney, P. W. & McMillan, C. (2016). Automatic source code summarization of context

for java methods. IEEE Transactions on Software Engineering, 42(2), 103–119.

McBurney, P. W., Liu, C. & McMillan, C. (2016). Automated feature discovery via sentence

selection and source code summarization. Journal of Software: Evolution and Process,

28(2), 120–145.

Moreno, L. & Marcus, A. (2012). Jstereocode: automatically identifying method and class

stereotypes in java code. Proceedings of the 27th IEEE/ACM International Conference
on Automated Software Engineering, pp. 358–361.

Moreno, L., Aponte, J., Sridhara, G., Marcus, A., Pollock, L. & Vijay-Shanker, K. (2013).

Automatic generation of natural language summaries for java classes. Program Com-
prehension (ICPC), 2013 IEEE 21st International Conference on, pp. 23–32.

Moreno, L., Bavota, G., Di Penta, M., Oliveto, R., Marcus, A. & Canfora, G. (2014). Auto-

matic generation of release notes. Proceedings of the 22nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering, pp. 484–495.

Moreno, L., Bavota, G., Di Penta, M., Oliveto, R. & Marcus, A. (2015). How can I use

this method? Software Engineering (ICSE), 2015 IEEE/ACM 37th IEEE International
Conference on, 1, 880–890.

Nazar, N., Hu, Y. & Jiang, H. (2016). Summarizing software artifacts: A literature review.

Journal of Computer Science and Technology, 31(5), 883–909.

Nguyen, M.-T. & Nguyen, M.-L. (2017). Intra-relation or inter-relation?: exploiting social

information for web document summarization. Expert Systems with Applications, 76,

71–84.

69

Panichella, S., Panichella, A., Beller, M., Zaidman, A. & Gall, H. C. (2016). The impact of

test case summaries on bug fixing performance: An empirical investigation. Software
Engineering (ICSE), 2016 IEEE/ACM 38th International Conference on, pp. 547–558.

Phan, A. V., Chau, P. N., Le Nguyen, M. & Bui, L. T. (2017). Automatically classifying source

code using tree-based approaches. Data & Knowledge Engineering.

Rastkar, S. (2013). Summarizing software artifacts. (Ph.D. thesis, University of British

Columbia).

Rastkar, S., Murphy, G. C. & Murray, G. (2010). Summarizing software artifacts: a case

study of bug reports. Proceedings of the 32nd ACM/IEEE International Conference on
Software Engineering-Volume 1, pp. 505–514.

Rodeghero, P., Liu, C., McBurney, P. W. & McMillan, C. (2015). An eye-tracking study of

java programmers and application to source code summarization. IEEE Transactions on
Software Engineering, 41(11), 1038–1054.

Rodeghero, P., Jiang, S., Armaly, A. & McMillan, C. (2017). Detecting user story information

in developer-client conversations to generate extractive summaries. Software Engineer-
ing (ICSE), 2017 IEEE/ACM 39th International Conference on, pp. 49–59.

Sawant, A. A. & Bacchelli, A. (2015). A dataset for api usage. Proceedings of the 12th
Working Conference on Mining Software Repositories, pp. 506–509.

Sebastiani, F. (2002). Machine learning in automated text categorization. ACM computing
surveys (CSUR), 34(1), 1–47.

Tayal, M. A., Raghuwanshi, M. M. & Malik, L. G. (2017). ATSSC: Development of an ap-

proach based on soft computing for text summarization. Computer Speech & Language,

41, 214–235.

Treude, C. & Robillard, M. P. (2016). Augmenting api documentation with insights from stack

overflow. Software Engineering (ICSE), 2016 IEEE/ACM 38th International Conference
on, pp. 392–403.

Trivedi, S. K. & Dey, S. (2016). A novel committee selection mechanism for combining

classifiers to detect unsolicited emails. VINE Journal of Information and Knowledge
Management Systems, 46(4), 524–548.

Ying, A. T. & Robillard, M. P. (2014). Selection and presentation practices for code example

summarization. Proceedings of the 22nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering, pp. 460–471.

