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POLITIQUES CONJOINTES DE PRODUCTION, DE CONTRÔLE DE QUALITÉ 
ET DE MAINTENANCE SOUMISES À UNE DEMANDE DE QUALITÉ  

 
SAEED KHADANGI 

 
RÉSUMÉ 

 
Cette thèse vise à trouver une solution appropriée en utilisant les moyens de contrôle 

stochastiques optimaux pour un système de production non-fiable avec un contrôle de la qualité 

du produit et une demande dépendant de la qualité. Le système consiste en une seule machine 

produisant un seul type de produit (M1P1) sujet à des pannes et à des réparations aléatoires et 

devant satisfaire un taux de demande client non constant, qui répond à la qualité des pièces 

reçues. Étant donné que la machine produit avec un taux de produits non conformes, une 

inspection des produits est effectuée afin de réduire le nombre de pièces défectueuses pouvant 

être livrées au client. Cela se fait en continu et consiste à contrôler une fraction de la 

production. Les produits approuvés sont remis sur la chaîne de production, tandis que les 

mauvais produits sont jetés. 

L’objectif visé par cette étude est de fournir un contrôle de la qualité et une politique de 

production optimale, qui maximise le revenu net composé du revenu brut, du coût des stocks, 

du coût des pénuries, du coût de l’inspection, du coût de la maintenance et du coût des pièces 

sans qualité. Les principales variables de décision sont le taux d'échantillonnage du système 

de contrôle de la qualité ainsi que seuil d'inventaire de produit fini. La fonction de demande 

réagit au niveau de qualité moyen sortant (AOQ) des produits finis. Dans le troisième chapitre 

de cette étude, les stratégies de maintenance préventive et de tarification dynamique sont 

ajoutées à la stratégie optimale, citée ci-dessus. 

Pour atteindre les points optimaux de la politique, qui maximisent nos revenus de production 

nets, une approche de simulation est mise en œuvre à titre expérimental et ses résultats sont 

utilisés dans la méthodologie de la surface de réponse. 

Pour mettre en œuvre le plan d’expérience (approche de la simulation) reflétant parfaitement 

les considérations du modèle, telles que son caractère continu et sa variété, une variable 

continue a été introduite pour la probabilité de défectuosité, fonctionnant avec l’âge de la 

machine jusqu’à la prochaine maintenance. Deuxièmement, afin de refléter l’effet du processus 
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de contrôle qualité qui se traduit par une qualité moyenne sortante plutôt que par une simple 

possibilité de défectuosité, cette fonction (AOQ) a été construite sur la base du comportement 

instantané de la fonction mentionnée ci-dessus en tant que variable indépendante. 

Troisièmement, en raison de l’utilisation des hypothèses de la théorie des clients potentiels 

pour créer une fonction de demande répondant au niveau de défectuosité fournie par le client 

(AOQ), une fonction continue réactive a été créée pour la demande, réagissant au niveau de 

qualité du produit en déterminant son taux. Finalement. Pour illustrer la politique de fabrication 

de la machine basée sur Hedging Point, une variable d’inventaire du produit fini a été introduite 

dans la conception de l’expérience. 

En résumé, nous avons un système de production conçu de manière à ce que, en augmentant 

son âge (At), il soit possible d'accroître les possibilités de défectuosité et de réduire la demande 

en unités de temps. Cette manière de procéder continue jusqu'à la prochaine action de 

maintenance du système, ce qui restaure tous les facteurs dans leurs conditions initiales. En 

utilisant l'approche de simulation d'optimisation, une expérience est conçue et mise en œuvre 

pour contrôler les variables de décision de la politique et maximiser la fonction objective du 

revenu net moyen (ANR). Les variables de décision sont statistiquement et pratiquement prises 

en compte, telles que le niveau d’inventaire (Z), la proportion d’inspection (F) et les seuils de 

PM (Mk ou Pk). 

 

Mots-clés:  Production system, optimal stochastic control, quality control, simulation, 

experimental design, response surface methodology, quality dependent demand, prospect 

theory



 

JOINT PRODUCTION, QUALITY CONTROL AND MAINTENANCE POLICIES 
SUBJECT TO QUALITY-DEPENDENT DEMAND 

 
SAEED KHADANGI 

 
ABSTRACT 

 
This thesis is a strive to find a proper solution, using the stochastic optimal control means for 
an unreliable production system with product quality control and quality-dependent demand. 
The system consists of a single machine producing a single product type (M1P1) subject to 
breakdowns and random repairs and must satisfy a non-constant rate of customer demand, 
which response to the quality of parts received. Since the machine produces with a rate of non-
compliant products, an inspection of the products is made to reduce the number of bad parts 
that would deliver to the customer. It is done continuously and consists of controlling a fraction 
of the production. Approved products are put back on the production line, while bad products 
are discarded. 
The intended objective of this study is to provide optimal quality control and production policy, 
which maximize the net revenue consisting of the gross revenue, the cost of inventory, the cost 
of shortage, the cost of the inspection, the cost of maintenance and the cost of no-quality parts. 
Main decision variables are the sampling rate of the quality control system as well as the 
threshold of finished product inventory. The demand function reacts to the average outgoing 
quality level (AOQ) of finished products. In the third chapter of this study, preventive 
maintenance and dynamic pricing policies are added up to the optimal policy, cited above. 
To achieve the optimal points of the policy, which maximize our net production revenue, a 
simulation approach is implemented as an experimental design and its results were used in 
response surface methodology. 
To implement the experiment design (simulation approach) which thoroughly reflects model 
considerations such as its continuous nature and the variety, first, a continuous variable for the 
probability of defectiveness was introduced, functioning with the age of machine up until its 
next breakdown maintenance. Second, so as to reflect the effect of quality control process that 
results in Average Outgoing Quality rather than simple defectiveness possibility, this function 
(AOQ) was built based on instant behavior of mentioned function above as its independent 
variable. Third, due to the use of prospect theory assumptions in building a demand function 
that responds to the level of client delivered defectiveness (AOQ), a responsive continuous 
function was created for the demand, reacting to the level of product quality by determining 
it's needed per time amount. Finally. To illustrate the machine’s manufacturing policy based 
on Hedging Point, finished product inventory variable was introduced in the experiment 
design. 
In a nutshell, we have a production system that has been designed in a way that by raising its 
age (At), leads to more possibility of defectiveness and less demand in time units. This manner 
continuous up until the next maintenance action of the system, which restores all factors to 
their initial conditions. By use of the simulation approach of optimization an experiment is 
designed and implemented to control decision variables of the policy and maximize the 
objective function of average net revenue (ANR). Decision variables are statistically and 
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practically in the matter of consideration such as finished product inventory threshold (Z), the 
proportion of inspection (F) and PM thresholds (Mk or Pk). 
 
Keywords:  Production system, the simulation approach of optimization, quality control, 
simulation, experimental design, response surface methodology, quality-dependent demand, 
prospect theory
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INTRODUCTION 
 
These days, manufacturing companies are experiencing real changes that have a significant 

impact on their competitiveness, investment and improved production capacity. In the era of 

communication and information revolution, social media and other means of technology are 

making clients more aware of product features, which would result to less loyalty and more 

responsiveness toward product and service quality. Since the new generation of clients such as 

baby boomers and generation X are far sensitive than their predecessor, manufacturers are 

expected to face considerable challenges in quality, managing the production and maintenance 

of increasingly complex manufacturing systems. In fact, the frequency of breakdowns 

continues to increase over time, disrupting production activities and thus directly influencing 

the ability of businesses to respond to customer demand that is not constant anymore. 

In order to adapt to the varying demand of consumers, manufacturing companies must be 

flexible and responsive. In an increasingly competitive economic environment, financial issues 

are crucial. The selling price of the products, which depends on the cost of manufacture, 

remains very much influenced by the competition. To remain competitive and above all to 

guarantee a suitable profit margin on the sale of products, the main objective of manufacturing 

companies is to maintain their product demand in its feasible level. 

 

The existence of varying and dependent demand for product quality requires the establishment 

of a good quality control policy. This requires rigorous maintenance of production equipment, 

proper product quality control and production planning that takes into account hazards and 

good inventory management. In this work, we will address the issues of production 

management and quality control by asking the following main question: 

 

In the existence of responsive demand, how could we predict and manage non-quality costs 

and quality control investments in a way to maximize corporate benefits? 

 

To answer the question above, it is important to consider below sub-questions: 
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• What quality control policy should be implemented? 

• What production control policy should be implemented? 

• What repair and maintenance policy should be considered? 

 

All these aspects will be studied in this thesis to maximize the average net revenue. 

 

Given the importance of production planning and quality control for companies, several 

authors have studied the subject. one of the closest efforts to this study is done by  Bouslah, 

Gharbi et al. (2016) who have developed a new joint approach to production policy, continuous 

quality control, and a preventive maintenance policy, in order to minimize costs. 

 

The approach used in this thesis for quality control is done by controlling a fraction of the 

production. In other words, the operator will control each time just a percentage of the parts 

produced. This approach is suitable for companies that have a continuous production system. 

The objective will initially be to find a production policy that takes into account outages and 

that will determine the rate of production depending on the stock, and then find the percentage 

of products to control. 

 

This thesis is organized into three chapters. The first chapter is a review of literature that 

introduces some theoretical notions that will be addressed in this thesis and allows us to 

position our work in relation to others. In the second chapter, we will propose a production and 

quality control policy with a simulation approach, experimental designs and response surface 

methodology. In this chapter, we will discuss two cases. In the first case, we will consider a 

quality control policy with a fraction of continuous sampling and in next two cases, we will 

verify its efficiency with two other cases, 100% sampling plan, and no sampling plan 

measurements. The second case is an evolved version of production and quality control policy 

with a simulation approach, experimental designs and response surface methodology, which 

considers a delay in demand response based on an average in AOQ. In chapter 3, the system 

will be studied in the existence of preventive maintenance policy in order to increase the 

availability of the system and have less amount of costs, resulting from unavailability. In the 



3 

second case of this chapter, we propose a policy of production, quality control and corrective 

maintenance for an unreliable production system with a variable price offer to the demand so 

as to get a more realistic sense of M1P1 supply chain in real-life. Finally, a general discussion 

of the study along with a conclusion of the thesis and some future work perspectives is provided 

at the end of the chapter 3.





 

CHAPITRE 1 
 

LITRATURE REVIEW 

1.1 Introduction 

In this chapter, we will first focus on the structure of production systems by presenting the 

particular case of unreliable systems. Then we will present the critical threshold policy, 

statistical quality control techniques, and the simulation-based approach to solve such 

problems. After explaining some applications of prospect theory in related contexts, we will 

then carry out a critical review of the literature in relation to our subject and will position our 

work in relation to previous research. After having presented the research question addressed 

in our study, we will elucidate the objective of our research work. Finally the selected 

methodology to solve the problem will be presented before concluding. 

 

1.2 Structure of unreliable production systems 

In order to understand the structure of unreliable production systems, it is important to define 

certain terms and concepts in advance. 

 

1.2.1 Production system components in a supply chain context 

The so-called "supply chain" is a supply chain made up of suppliers, manufacturers and 

distributors whose objective is to allow the flow of information, financial resources and 

products from the ordering of raw materials to the supplier up to the delivery of finished 

products to the customer (Nakhla 2006). 

Accordingly, studied production system involves three main actors: the supplier, the 

manufacturer and the client. In the context of our work, we will only focus on last two, which 

are, the manufacturer and the customer, assuming that the supply of raw material is always 

available. 

 

CHAPTER 1 
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1.2.2 Production system concepts 

In the manufacturing domain, a production system is a set of material resources (production 

assets) and human resources (managers, managers, operators) aiming to transform the raw 

material into finished products that satisfy customer requirements. These resources interact 

with each other through physical flows (products) and information flows (quantity, quality, 

production plan) (Benedetti 2002). Several criteria are used to classify manufacturing 

enterprises according to their mode of operation. We can name three main type of classification 

of production units, in particular, according to the volume of production, the policy of 

management of production and the nature of production. 

 

I. Production volume 

 

According to this categorizing criterion, (Hounshell 1985)manufacturing companies are 

classified into three categories of unit production, batch production and mass production 

enterprises. (Sethi, Zhang et al. 1997) 

 

II. Production Management Policy 

 

There are three (3) modes of production management (Nodem and Inès 2009) either build to 

stock production, where the management is in push flows, or on-demand production, where 

the management is done in pull flows or production of hybrid nature as the third type. In push 

production, production planning is based on forecasts of customer demand; we produce, even 

if the client is not clearly identified. The pull management policy has been used in the work of 

Hajji, Gharbi et al. (2011), Lavoie, Gharbi et al. (2010). In other words, their implemented 

production management policy has been based on an specific customer demand. 
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III. Nature of production 

 

According to this criterion, we can distinguish three sorts of production starting with 

continuous flow production systems (for instance metal production, refinery), batch flow 

systems where products in the form of separate parts are manufactured (automotive industry) 

(Elhafsi and Bai 1996). Based on this categorizing logic, there are also hybrid systems where 

both types of continuous and discrete flows are used simultaneously (Bhattacharya and 

Coleman 1994) . 

 

1.2.3 Process variation factors affecting production system 

According to Benedetti (2002), production events are of two types (External and Internal). 

External process variations are those that do not depend on the company itself. Among these 

external process variations, we can consider the variation of delivery times of suppliers, the 

uncertainty of the quality of raw materials delivered by the supplier, the fluctuation of customer 

demand. 

Internal process variations are those that appear within the company and always manages have 

no power of avoiding them. Among these internal process variations, we can consider machine 

failures as well as their repairs, the quality of manufactured products that must have a minimum 

tolerable threshold before being accepted by the customer. Minimum quality is one of the 

important constraints that allows retaining the customer of a company in addition to adhering 

minimum order quantity, the delivery time, the place of delivery and the cost of sale (Benedetti 

2002). 

 

1.2.4 System degradation 

The modeling of quality and reliability degradation in manufacturing systems is a key element 

that determines to what extent one can imitate the reality of the complex dynamics of these 

systems, but also to what extent the policies developed with such modeling could be put into 

practice. In the literature, almost all production control, quality, and maintenance integration 

models are based on a number of simplistic and unrealistic assumptions in modeling of 
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manufacturing system degradations. In this section, some important aspects of quality and 

reliability degradation are discussed that have been demonstrated from several real-life case 

studies, thought they have been overlooked in the literature. 

 

1.2.4.1 Modeling of quality degradation 

Quality degradation is an inherent phenomenon of manufacturing systems. The most widely 

used mode of quality degradation in the literature is that of describing the production process 

by two states: the 'under-control' state at the beginning of each new production cycle where all 

manufactured products conform , and the 'out-of-control' state from the moment the process 

starts generating nonconforming products. The transition from the 'under-control' state to the 

'out-of-control' state is assumed to be random, often following an exponential distribution for 

reasons of simplification of the modeling(Bouslah, Gharbi et al. 2014). 

Rosenblatt and Lee (1986) are among the first researchers to study different forms of quality 

degradation in production planning. These authors proposed four modes of degradation when 

the system gets out-of-control, namely: 

1. production of a constant proportion of non-compliant products (no degradation) 

2. linear degradation of quality over time 

3. exponential degradation of quality over time 

4. Multi-level degradation of quality with a random transition from one level to another 

higher level. 

This study, which determines the impact of these different modes of quality degradation on the 

Economic Quantity of Production, has been the subject of several extensions in the literature. 

Yet most of these extensions are based on Rosenblatt and Lee (1986) first model, which ignores 

the dynamic aspect of quality degradation. However, there are some exceptions as below: 

Khouja and Mehrez (1994) considered that the rate of production is flexible and it can affect 

the intensity of quality degradation (transition from 'under control' to 'out of control'). In fact, 

this hypothesis is based on several industrial studies that have shown the acceleration of the 

production rate increases the degradation of quality. For instance, in the case of robotic 

assembly systems, Offodile and Ugwu (1991) have shown that increasing the speed of 
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movement of a robot's joining arm results in a decrease in repeatability. Repeatability is defined 

by the robot's ability to return to the same target point at the beginning of each assembly cycle. 

This measure is criticized in terms of  product quality: Albertson (1983) and Mehrez and Felix 

Offodile (1994) have shown that degradation of repeatability leads to an increase in the 

percentage of non-compliant items produced by the robot. The direct effect of the production 

rate on product quality has also been observed in other industrial contexts such as in the 

automotive industry and in the machining and cutting processes of metals(Owen and 

Blumenfeld 2008). Although the effect of the production rate on the intensity of quality 

degradation has been demonstrated in several industrial studies, the majority of integration 

models in the literature have completely neglected this type of dependence. 

 

1.2.4.2 Modeling of reliability degradation 

In the literature, the reliability degradation a machine is defined to either be dependent on 

production operations (that is, depending on the use of machine) or time dependent (regardless 

of the use of machine). Hence, machine breakdowns have often been classified into two 

categories: 

1. Operational breakdowns: Failure of this type can occur only when the machine is 

operational. The breakdown usually occurs because of machine wear, which depends 

on the production rate, the production volume during a given cycle or the number of 

production cycles. 

2. Time-dependent breakdowns: Failure of this type can occur even during periods of 

forced machine shutdown (locked or unpowered machine). The failure rate increases 

with the advancement of time and is due to phenomena other than wear. 

In a thorough industrial study of production line shutdowns in the automotive industry by 

Buzacott and Hanifin (1978) (Chrysler Corporation case), it is demonstrated that 84% of 

outages are operation dependent and only 16% of outages are time dependent. Thus, according 

to the study mentioned above, it is more realistic to use operation-dependent failure models to 

model the reliability of production systems, since these failures occur much more frequently 



10 

in practice than time-dependent failures. Yet, most integrated operations management models 

in the literature use time-dependent failure models for simplification purposes. 

In fact, it is much more complex to model the operational-dependent failures than the time-

dependent ones as in the first type of breakdowns, it is necessary to count, in particular, only 

the times when the machine is operational in the modeling of reliability degradation(Matta and 

Simone 2016). In a comparative analysis of the two failure models, Mourani, Hennequin et al. 

(2007) have shown that modeling a machine subject to outages dependent on operations in a 

production line by a time-dependent failure model can lead to significant underestimation of 

overall production capacity (up to more than 16% in some cases). 

 

1.2.5 Category of the studied system 

This research project considers a pull and batch production system, that is, firms whose 

production policy is dependent on customer quality dependent demand as shown in Figure 1.1. 

We have an unreliable production system that is subject to breakdowns and random repairs 

and produces non-compliant parts. The possibility of defectiveness (non-compliant 

production) is depended on the age of production system and continuous until next breakdown 

event.  An inspection policy is put in place to reduce the rate of non-compliant products after 

production. 

We also have an inventory used to store finished products before delivery to customers. 
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The system above proceeds with only one type of finished products. To meet customer 

demand, the system produces with a variable production rate. The behavior of the system is 

described by a continuous variable (finished product inventory) and a discrete component 

(status of machine, on, off).To carry out this work, we will consider the following hypotheses 

that are commonly used in the literature: 

• The machine is subject to breakdowns and random repairs. 

• The mean time of malfunction (MTTF) and the average time of repair (MTTR) of the 

machine are constant and known. 

• The different costs are constant and known. 

• The demand rate for finished products is quality dependent and decreases from its 

initial as long as age of machine raises. 

• Demand rate restores to its initial value when machine is repaired. 

• The maximum production rate of the machine is known. 

 

1.3 Critical threshold control policy 

Introduced for the first time by Kimemia and Gershwin (1983), the critical threshold control 

policy is to maintain a security stock of the finished product inventory at an optimal level called 

a critical threshold. This stock is maintained during production periods to prevent potential 

hazards that could occur (production system failure, scheduled shutdown). They modeled the 

control problem using dynamic and stochastic programming, a heuristic allowed them to 

Figure 1.1 Illustration of the manufacturing system under review 
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approximate the critical threshold that minimizes the total cost of inventory and out of stock. 

Akella and Kumar (1986) found an analytical solution to the Hamilton-Jacobi-Bellman 

equations for a control problem of a single machine and a product type, according to 

breakdowns and random repairs. They have determined the optimal critical threshold which is 

called hedging point that minimizes the total cost. This control policy has been formulated as 

follows: 

 

 𝑢௧ = ൞𝑢௠௔௫            𝑖𝑓 𝑥௧ழ௭𝐷                  𝑖𝑓 𝑥௧ୀ௭0                   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

(1.1) 

 

Knowing that 𝑢௧ is the rate of production depending on the stock and mode of the machine if 

status variable=1 the machine is in operation, status variable = 0 if the machine is down. For 

considering preventive maintenance mode of operation, status variable=2. This condition will 

be studied in chapter 3. 

This policy has been confirmed by  Bielecki and Kumar (1988). It allows controlling the rate 

of production according to the instantaneous state of the inventory. When 𝑥௧ is below the 

critical threshold z, the rate of production is maximum, when the level of inventory is 

maintained at the level of the critical threshold it is equal to the rate of the demand. If the level 

is above the critical threshold, production stops to avoid additional inventory costs. 

 

1.4 Quality control 

In order to satisfy the quality demanded by customers, companies are obliged to inspect 

(control) the products manufactured before delivery to the customer. At the end of the 

inspection or control, the manufactured products can be qualified as compliant when they meet 

previously defined specifications, otherwise they are qualified as non-compliant (Baillargeon 

1999). In order to guarantee a good quality of products sent to their customers, manufacturing 

companies have developed several techniques for controlling or inspecting their production. In 
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the literature, there are several types of quality control, 100% control and acceptance sampling 

plans. 

 

1.4.1 Hybrid continuous sampling plan 

Continuous sampling plans were introduced by Dodge (1943) to control product quality for 

continuous production systems. A continuous production system is a system dedicated to 

producing a very narrow range of standardized high volume sales products. In some companies 

with a complex production process, it is difficult to perform batch control, such as companies 

producing electronic equipment such as computers or vehicles (the process is done in an 

assembly line). The best-known continuous sampling plan in industry is Plan CSP-1; this 

inspection method is carried out according to the following three steps: 

• Step 1 

100% inspect consecutively manufactured products and continue until a number of compliant 

products are obtained. This number is the number of permissions still called the clearing 

interval. 

• 2nd step 

Once a consistent number of compliant products have been obtained, the 100% inspection is 

halted; only a fraction f of randomly taken production is inspected at 100% (0 ≤ f ≤ 1). 

• Step 3 

At this stage, when a defective product is detected in a sample, then a 100% inspection is 

immediately applied (Step 1) (Dodge 1943). 

Since in our case, sampled defective products do not return to the production line we only 

consider having a fraction of randomly taken parts from production line. Therefore, resulted 

average outgoing quality of this hybrid continuous sampling plan will be as following: 

 

1.4.1.1 Average Outgoing Quality (AOQ) 

According to Dodge (1943), he considers that during the inspection, the products are rectified 

and re-introduced in the production process. The total quantity of products available after 
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production remains unchanged. In our system, we considered that during the inspection, the 

defective products are not rectified, they are discarded, as it is the case for companies whose 

rectification is impossible or takes too much time or so cost very expensive. 

 𝐴𝑂𝑄 = ሺ1 − 𝑓ሻ.𝑝1 − (𝑓. 𝑝) 
(1.2) 

 

According to the formula above, by removing sampled defectives from the system, remaining 

un-sampled defective parts ((1 − 𝑓). 𝑝) are divided on total remained manufactured parts in 

order to calculate a precise percentage of remaining defectiveness which is called AOQ. 

 

1.5 Preventive maintenance policy 

In manufacturing context, all equipment under production process will get out of service. These 

events without any preparation or expectation occur sometimes at their worst possible time. In 

order to control effects of such undesired moments, companies implement preventive 

maintenance policies in order to minimize Mean Time Between Failures (MTBF) and 

maximise Mean Time to Failure (MTTF) (Gross 2002). 

Considering only Corrective Maintenance (CM) in order to restore machine status after each 

break down, in chapter 2 and 3 of this thesis, the time of machine breakdown is submitted to 

an exponential distribution which is subjected to average age of machine as its mean. When 

machine breaks down, a corrective maintenance action will be proceeded, restoring machine 

status to the condition, which is as good as beginning. 

However, there is no preventive maintenance action in first two chapters, in order to have a 

better realistic approach, in chapter 3 machine failures are subjected to the cumulative number 

of manufactured parts since the latest maintenance. Cumulative number of manufactured parts 

is referred as `virtual age` of machine in the literature. We account break down of machine 

follows two-parameter Weibull distribution (EL CADI, Gharbi et al. 2017).  By using virtual 

age as break down estimator, preventive maintenance actions can be determined based on 

threshold consideration in number of cumulative manufactured parts (virtual age). In this 

manner, PM actions will occur after passing `MAge` threshold, turning system status to PM 

mode.  
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1.6 Prospect theory 

 Individuals choosing behaviours under risk is not consistently explainable with the 

assumptions of utility theory in a persuasive manner. In general, people weight outcomes 

below their exact value that come from probability-outcome compared by outcomes, obtained 

with 100% certainty. Such type of tendency, which is defined as the certainty effect, leads to 

risk aversion behaviour in choices with 100% gains to risk seeking behaviour in choices with 

100% losses (Kahneman and Tversky 2013). In other words, when people face in gain 

opportunities, prefer to choose certain options rather than any other probable choice (which 

may have more gain but equal utility). In reverse, in case of loosing, people try to go for options 

with more uncertainty to maybe avoid expected losses. 

The value function as presented in figure 1.2, has the shape of concave in gain area however, 

in loss area due to loss averse behaviour explanation, it has became steeper (Tversky and 

Kahneman 1992). Illustrating that people are afraid of losing far more than joy of winning. 

Figure 1.2 A hypothetical value function (Tversky and 
Kahneman 1992) 

 



16 

In addition, there is a tendency in this theory called isolation. According to isolation effect, 

individuals have a tendency toward discarding of some shared components of a prospect under 

their considerations. Isolation effect will lead individual to have changeable preferences facing 

with the same choice, presented in other ways (Kahneman and Tversky 2013).  

Kahneman (1979) also has illustrated another aspect of individual decision making by a 

probability scale which is nonlinear and explains its transformation by overweighting small 

probabilities and moderating/ underweighting high probabilities. In other words, the 

probability weighting function shows that individuals do not respond to probabilities in a linear 

manner and this is proven by the study of Gonzalez and Wu (1999).  

 

The weighting function proposed by Kahneman (1979) was not defined near the end points 

however it has shown underweighting of large scale probabilities (Gonzalez and Wu 1999) and 

overweighting of small ones. For instance, according ECONOMIST, there is a very small risk 

of die in an aircraft crash less than 1 in 5.4 million. Accordingly, this little possibility is big 

enough for passengers to purchase travel insurance, showing how considerably this risk is 

Figure 1.3 The weighting function 
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overweighed for individuals. This approach is widely used by gambling and insurance industry 

during centuries (Kahneman and Tversky 2013). 

In above figure, the probability weighting function is denoted by π (p), this function maps the 

interval of 0 and 1 onto itself. Tversky and Kahneman (1992) then developed above weighting 

function as they believed that changes in probability appear more dramatic in the neighborhood 

of end points rather than middle. This reversed S shape got later proved by empirical studies 

(Gonzalez and Wu 1999). 

According to prospect theory, an alternative theory of choice has ben developing during last 

40 years by assigning values to gains and losses rather than simply defined final assets. 

Decision weights are replaced with probabilities of utility theory to better address behaviour 

of individuals. 

 

Figure 1.4 Evolved weighting function 
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1.6.1 Prospect theory applications  

During recent years, applications of standard microeconomics tools in order to have precise 

assumptions of human behavior which is imported from psychology has begun and vastly 

developed which according to Rabin (2002), this has shaped `second-wave behavioral 

economics` (Rosenkranz and Schmitz 2007).  In this regard, one of the most prominent 

economic paradigms, which has helped to comprehend reference-based behavior of people in 

utility, is prospect theory (Rosenkranz and Schmitz 2007). In general, applications of prospect 

theory could be segmented in 3 major, general groups as below: 

 

1.6.1.1 Reference points 

Based on prospect theory, reference point is a measure of outcome perception by people. 

People verify utilities by comparing with reference points(Kahneman 1979). It is to say that 

factors who determine the reference point are not specified in the context (Werner and Zank 

2019).  This point acts as a boundary to distinguish gains and losses from each other(Tversky 

and Kahneman 1992). 

Among recent publications, reference point is vastly utilized in major subjects such as pricing 

in the studies of Hsieh and Dye (2017) for optimal dynamic approaches by considering 

reference price as a basis of comparison for customers deepening on their degree of 

remembrance. Also in finance, reference point is considered as the risk-free rate and in 

insurance industry is referred to expectations of future outcomes (Barberis 2013). 

 

1.6.1.2 Risk aversion/seeking 

As mentioned in figure above, people has risk aversion attitudes in gain occasions though in 

loss occasions they prefer to be risk-seeking(Kahneman 1979). This type of behavior has been 

studied in terms of extend of gains, implying that people tend to take risks of smaller monetary 

gains rather than big ones (Weber and Chapman 2005) or the fact that risk aversion has a rising 

tendency between infancy and adulthood (Levin and Hart 2003). 
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According to Kahneman (1979), individuals are not particularly risk averse or seeking in every 

situation that incorporate two different functions in mentioned loss and gain areas. This 

inconstant type of respond has been taken into account in demand studies during recent years. 

Research in mid 90s illustrates that tolerance of risk changes among different groups of 

individuals (Sewell 2009). For instance, the cluster of high educated, rich, drinkers, people 

with no insurance immigrants, Jewish individuals and races such as Asians are risk seekers 

while the second cluster, comprising of average wealth and source of income, those with health 

insurance and middle education level plus people who are in their sixties is risk averse (Barsky, 

Juster et al. 1997). 

Accordingly, Hsieh and Dye (2017) has considered three different comportments of customer 

demand based on prospect theory assumptions. Their aim of study was to propose an optimal 

dynamic pricing policy for a demand with three different characteristics (following prospect 

theory assumptions) in relation with stock inventory, selling price and deterioration. According 

this study, penetration strategy is suitable in the case that reference price is lower than market 

(case of risk seeking demand type) and skimming strategy best suits for risk averse type of 

demand behavior. 

Assuming risk averse attitudes in times of loss and risk seeking one in comparison with the 

reference point, Swinyard and Whitlark (1994) has applied customer satisfaction and 

dissatisfaction in store return intentions. Proving findings of prospect theory, they found that 

dissatisfaction affects two times more store returns intentions than satisfaction.  

Briefly and based on our best of knowledge, risk averse approach in times of loss has generally 

used in majority of reviewed research. 

 

1.7 Problem Statement 

To the best of our knowledge, according to the law of demand, customer demand of certain 

commodity has always been assumed to be directly affected by price, in the context of demand 

and supply (Marshall 1892). This sort of inverse relationship between price and demand can 

be affected by other factors such as quality improvement or degradation, considering shift of 

demand curve. In other words, accordingly, demand curve shifts may be caused by a variety 
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of reasons such as income raise of customers, unexpected changes in product’s quality, its 

substitutes or complements (Marshall 1892). On the other hand, utility is another factor that 

deals with levels of demand. Utility is the degree of satisfaction in costumers by committing 

an actions in decision making, individuals tend to increase their utilities (Kapteyn 1985). 

Higher levels of utility curves imply better provided satisfaction for customers, however these 

are not clearly explainable without consumer behavior theories(Kapteyn 1985). 

Since better quality in product could be referred to better satisfaction and higher utilities, there 

is no specific function introduced in economics and marketing literature to estimate demand 

degree of response to improvement/degradation in quality. Even by assuming the fact that the 

non-quality amounts affects the demand in a negative way, the extend of this response needs 

to be well- addressed in a way to conform to known demand dynamics. This study is a strive 

to find a proper direct deal between quality measurements in quality dependent demand with 

the use of prospect theory for demand response measurement. In this work, the amount of 

demand response to any non-quality will be determined and an integrated policy for a 

production system with quality and reliability degradation needs to be defined, optimizing its 

average net revenue. 

 

1.8 Research objectives 

The main objective of this research is to implement a proper production control, maintenance 

and pricing policy while there is responsive demand comportment toward non-quality output 

of the system. Therefore, to reach the main objective above, following sub-objectives are 

considered as well:  

1. To maximize total profit function rather than minimizing total cost of production 

regarding to the context of study in demand area. 

2. To adequately model the complex dynamics of product quality degradation and 

machine reliability like real manufacturing systems. This involves modeling 

dependency relationships between quality and reliability degradation, machine aging, 

and production rate. 
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3. To develop a new approach to design sampling plans in the context of integration with 

production and preventive maintenance policies. 

 

The objectives above are based on five main assumptions to be validated as part of this study, 

below: 

1. It is possible to use sampling plans for production systems with a degradation of quality 

by ensuring the fulfillment of imposed requirements on after-control quality(Bouslah, 

Gharbi et al. 2018). 

2. The level of final quality after-control is the result of the configuration of all the 

parameters of production control, quality and maintenance of the manufacturing 

system. In other words, the level of quality, perceived by client does not depend only 

on the quality control parameters(Lavoie, Gharbi et al. 2010). 

3. Demand of client reacts to the level of perceived level of final quality after control and 

this behavior is considered to be loss-averse according to prospect theory. 

4. There is no rectification plan estimated in quality control part of system. All inspected 

defectives items get out of the production process(Hajji, Gharbi et al. 2011). 

5. Any delivered defectives items to clients will be collected and taken out of production 

system with no rectification (EL CADI, Gharbi et al. 2017). 

 

1.9 Thesis’s structure 

The research work carried out as part of this thesis in the form of two scientific articles. These 

two articles are presented in chapters 2 and 3. 

In article one, which is presented in chapter 2, responsive demand comportment in the 

existence of quality and production control systems is taken into consideration. This article has 

contributed to two types of responsive demand behavior, instant and delayed when degradation 

and maintenance policies are implemented based on real-time units and exponential 

distribution for the reliability of the production system. 

The second article is about the intervention of preventive maintenance policies into the 

relationship of responsive demand and production system, considered in article one. The 
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approach is to increase net corporate revenue in the existence of operation caused failures of 

the production system based on an accumulated number of production. Later, this article 

considers pricing policies in the context of competition to reflect a better image of reality by 

use of prospect theory assumptions, this time in price, quality and demand relationship. 

 

1.10 Research methodology 

The adopted approach in this study has been about modeling and solving problems of joint 

design and optimization of some integrated models, proposed in two articles. These steps are 

summarized by the following methodology: 

1. Definition of the objective and assumptions of the problem under study: This step 

consists of understanding the problematics and objectives of the study and modeling of 

determined assumptions. 

2. Mathematical formulation of the problem under study: This step is about identifying 

decision variables and formulating the objective function along with the constraints of 

the problem. 

3. Using a simulation-based optimization approach: This step consists of two sub-steps: 

The first is to develop and validate a simulation model with the ARENA software, 

based on the analytical modeling of the problem. Next, to use simulation-based 

optimization techniques, such as Response Surface Methodology, meta-heuristics, and 

gradient-based search methods to determine the optimal solution. 
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CHAPITRE 2 

The policy of joint quality and production control for an unreliable manufacturing 

system subject to quality-dependent demand 

2.1 Abstract 

In this chapter, a joint production control policy comprising of quality and production decision 

variables has been developed for unreliable production units with an age-based quality 

degradation and a quality-dependent demand, which responds to the quality levels of delivered 

products. Using hedging point policy that uses a certain amount of stock in the finished product 

inventory, the production rate of the machine gets controlled to avoid the excessive cost of 

shortages during the stop time of production such as maintenance and breakdown and change 

in demand amounts. The principal objective of this study is to maximize the total profit of the 

manufacturing system by setting a certain amount of safety stock quantity and a fraction of 

production output as the sampling of the quality control. By using response surface 

methodology based on gathered results of the simulation, a simulation-optimization approach 

for the developed stochastic mathematical model is developed. Results of the study clearly 

show some very strong ties between safety stock levels and percentage of sampling as the 

decision variables. This confirms the need for jointly and simultaneously application of 

policies in this integrated model. Altogether, a joint production and quality control policy in 

the presence of quality-dependent demand is proposed. Moreover, it is illustrated that setting 

periods during the machine’s available times for computing average outgoing quality and 

getting demand reactions, will result in more total profits, comparing with the initial 

assumption. 

 

CHAPTER 2 
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2.2 Introduction 

In today’s world, enterprises are paying more and more attention to their product’s quality 

through their supply chain to increase their customer satisfaction which literally results into 

higher demand (Modak, Panda et al. 2015). Except for quality consideration, demand 

satisfaction in today’s modern world really matters and the consequences of unsatisfied 

demand such as losing market share, brand and reputation damage, loss of sales and service 

level reduction are really significant (Jabbarzadeh, Fahimnia et al. 2017). Although demand 

and quality are getting closer, over past years of manufacturing and quality studies there have 

been three approaches towards demand. 

 

2.2.1 Constant demand approach 

In the first group, it is assumed to have a constant rate of demand under certain circumstances. 

For instance, Hlioui, Gharbi et al. (2015) have considered the demand rate stable and constant 

factor and they proposed a hybrid policy which always outperforms the 100% screening or 

discarding policies. In another work by Hlioui, Gharbi et al. (2017) in the same context of 

manufacturing and quality control, a dynamic supplier selection policy has been proposed, 

assuming the demand rate is unchanged in all time. Again, This assumption has  been used in 

the work of Bouslah, Gharbi et al. (2018) in the case of finding a policy, covering production, 

quality, and maintenance control in a set of two machines which the reliability of the second 

machine is affected by the output of the first machine. The quality management system has 

been generally considered as an element of motivating and penalizing suppliers in the study of 

Starbird (2001) in an inspection policy to deliver better products based on determined quality 

targets of customer. However, in this study demand is deterministic and remains unchanged. 

To the best of our knowledge, in such simultaneous production and quality control policy 

design during recent years, there has not been any other demand assumption but constant and 

continuous. 
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2.2.2 Demand uncertainty approach 

In the second approach, which is generally popular in the supply chain network, demand 

uncertainty is due to the existence of some factors. Callarman and Hamrin (1984) have 

examined tree different lot sizing rules in the presence of stochastic demand. Another study 

which considers market demand as a random variable and a probability density function (PDF) 

for this is done by Mukhopadhyay and Ma (2009) to address quality and demand uncertainties 

in production and procurement decision making. Generally, a stochastic behavior has been 

taken into account this behavior as Van Donselaar, Van Den Nieuwenhof et al. (2000) used a 

uniform distribution in a simulation-based experiment design to verify how wrong demand 

assumptions could affect supply chain planning. This study has analyzed the case of a truck 

manufacturer in the Netherlands and used its historical demand data. One year later, Caridi and 

Cigolini (2001) have proposed a buffering strategy to control uncertainty of market demand, 

using safety stock. Their main objective was to make corporate able to monitor in real-time the 

amount of demands however, this study does not support any mathematical model for demand 

behavior.  

 

2.2.3 Dependent demand approach 

In the third approach, despite the assumptions of mentioned production and quality based 

works, nowadays, customers are engaged with those products, offering better quality at a 

reasonable price and business demand which is derived from individual demand is, even more, 

fluctuating (Armstrong, Adam et al. 2014). Gurnani and Erkoc (2008) have taken into account 

a decentralized distribution channel of manufacturer and retailer, considering a level of quality 

that is chosen by the manufacturer and particularly, this quality level determines the product 

demand along with selling efforts that are chosen by retailer. Supposing that quality and price 

specifications delivered by suppliers directly affect potential market demand. Yu and Ma 

(2013) have studied demand behavior affected by the pricing of the manufacturer and direct 

delivered quality of the suppliers in an optimal decision sequence with three different 

scenarios. In this study, all three decisions models with separated decision sequences are 

implemented to maximize the profit of each player (manufacturer, supplier). In a closed-loop 
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supply chain framework, Maiti and Giri (2015) have assumed to have a quality and price 

dependent demand for two completely different manufacturing and remanufacturing process 

lines. The supply chain in this study includes a manufacturer, retailer and third party for 

remanufacturing process. In other contexts rather than above, quality responsive demand has 

been studied enough. In the study of Modak, Panda et al. (2015), the demand of retailer is 

related to three factors of quality, selling price and warranty by considering profit function 

optimization for both manufacturer and retailer in the context of two layers supply chain. 

According to this interactive relationship which is modeled using Stackelberg game, the 

retailer is focused on maximizing its margin based on provided price, quality and warranty 

while the wholesale price of goods of the manufacturer is depended to its produced level of 

quality, however, demand and quality factors are assumed to be following stochastic behavior. 

Swinyard and Whitlark (1994) have used prospect theory with the idea that dissatisfaction of 

customers results more in their store return intentions than their satisfaction. Accordingly, 

customers who were dissatisfied tended to not be back two times less than those satisfied 

customers who were willing to be back. 

Following prospect theory application in demand area, some studies have worked on framing 

effect as a tendency to avoid any risk when people face with positive options with exact gain 

and to be risk seeker when a negative option is presented beside exact loss (Kahneman 1979). 

In other words, Tversky and Kahneman (1981) have explained that the attractiveness of 

choices to choose, changes when the decision problem gets framed in other manners. 

According to this, Wu and Cheng (2011) have verified the impact of framing bias on decision-

making attitude of internet buyers to see how information presentation stimulate demand of 

online customers with different product knowledge. In a nutshell, the current study has aimed 

the third approach, using prospect theory applications to well address demand responses in the 

context of manufacturing and quality consideration which is the case of first explained 

approach. 
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2.3 Problem statement 

Considering an imperfect production unit, illustrated in figure 2.1, operating under a stochastic 

type of failures and repairs throughout its operation. This unavailability usually leads to having 

interruptions during the production process, resulting in shortages in satisfying demand rate 

and lost sales. Failure incidents will be repaired by implementing corrective maintenance 

measurements and bring back the system status to its initial condition (as good as new) with 

minimum defectiveness possibility since such actions normally are about replacements of 

broken components in a real context (Bouslah, Gharbi et al. 2018). The amount of time spent 

on corrective maintenance follows a random distribution. In addition, the production system is 

subject to aging which results in degradation of the quality in the percentage of manufactured 

products. As long as the machine is not broken and its age is raising, degradation of quality 

increases in the proportion of defectiveness until a predefined maximum limit, set to prevent 

having negative values of demand in responding to the quality level. Quality and reliability 

degradation of the intended production system is not dependent to its operation scale however, 

this manufacturing system produces with a flexible rate between 0 and maximum production 

capacity. Such production line feeds a quality-dependent demand, which decreases its rate 

upon receiving defective items by measuring the proportion of delivered no quality products. 

Because of mentioned demand dynamics dealing with quality, a quality control policy is 

designed to conduct a continuous checking over a portion of production output ሼ0 ≪ 𝑓 ≪ 1ሽ  
and remove out of range items as scrap. Production line does not rectify non-conforming parts, 

after quality control inspection. Unsatisfied demands in terms of quantity will not be back-

ordered and all remaining no-quality items, passed to the customer will be returned and scraped 

with a rejection cost. Raw material stream in this study is considered to be constant and infinite 

to satisfy the production unit. The objective is to maximize the total net revenue function, 

comprising of average gross revenue, the average cost of inventory and shortage, the average 

cost of inspections, the average cost of CM and the average cost of no-quality product returns. 
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2.3.1 Degradation model 

The production unit status is described by two different variables. The first variable is a 

discrete-state for showing the operational condition of the production unit at time t. This 

discrete variable (𝑠(𝑡)) takes only two values ሼ0,1ሽ. In other words, if 𝑠(𝑡) = 0 it means that 

the system is out of order and under corrective maintenance. If 𝑠(𝑡) = 1 the system is under 

operation. The second descriptive variable records systems age from the last corrective 

maintenance until time t. This variable (𝐴(𝑡)) will determine the age of the production system 

such that in time of being out of service will keep its latest amount and not increase, following 

2.1 equation: 

  

 𝜕𝐴(𝑡)𝜕𝑡 = 0 
(2.1) 

 

It is considered that the state variable follows an exponential distribution. Therefore, failure of 

the production system is not dependent on the extent of the operation and no preventive 

maintenance is taken into account. Although the reliability of the system has no tie with the 

scope of operations, quality degradation of the system augments during system’s available time 

(𝑠(𝑡) = 1). Hence, degradation of quality is defined as increase in the proportion of 

defectiveness in intended production system. This is calculated, using 2.2 equation: 

 p(A) = p଴ ൅ η൫1 − eି஛.஺೟ം೜൯ (2.2) 

Figure 2.1 Manufacturing system subject to degradation and quality-dependent demand 
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Above equation represents the possibility of defectiveness in the production rate. This 

percentage is dependent on the age of the system. Hence, in order to show degradation, as time 

goes on, defective percentage augments. P0 is defined as the quality level of the system in its 

“as new” condition. It is a very small percentage of defectives items produced by the 

manufacturing system at its initial state.  The sum P0 ൅ η determines the peak percentage of 

defectives items.  

 

Figure 2.2 Quality degradation over time in correlation with the system age 

Because demands amounts might face huge drops such as zero or negative without having any 

control on this factor, the degradation factor is designed in a way that takes a constant amount 

toward infinity. Figure 2.2 clearly illustrates the effects of changing factors on the shape of 

drawn functions. It is also assumed that coming raw material into the system is defect-free. 

2.3.2 Quality-dependent demand nature 

In this study, the possibility of defectiveness has been interpreted as a perceived loss of a 

customer who treats according to a loss-averse behavior in prospect theory. Based on Tversky 

and Kahneman (1992) findings, there are two different functions that describe customer 
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responses. Function f(x) for the explanation of perceived gains and function g(x) for the loss 

area. 

 f(x) = ቐ𝑥ఈ                          𝑖𝑓 𝛼 > 0log(𝑥)                𝑖𝑓 𝛼 = 01 − (1 + 𝑥)ఈ    𝑖𝑓 𝛼 < 0  
(2.3) 

 g(x) = ቐ−(−𝑥)ఉ                          𝑖𝑓 𝛽 > 0− log(−𝑥)                   𝑖𝑓 𝛽 = 0(1 − 𝑥)ఉ − 1              𝑖𝑓 𝛽 < 0  (2.4) 

As mentioned, the possibility of defectiveness is accounted for a loss for people. Therefore, 

following findings of Tversky and Kahneman (1992), function g(x) will build the response of 

demand to such existing imperfection.  To have precise values of 𝛽, the empirical results of 

Tversky and Kahneman (1992) are used as our benchmark the quality-dependent demand is 

built in equation 2.5 as below: 

 𝐷 = 𝐷଴(1 − ൫𝜆 ∗ 𝐴𝑂𝑄ఉ൯) (2.5) 

Where 𝛽 is benchmarked as 0.88 and 𝜆 is equal to 2.25 that show customer sensitivity and 

scale of response to any received percentage of defectiveness that refers to average outgoing 

quality (AOQ) explained in section 1.4.1.1. 

Briefly, the above demand function determines the extent of the customer response to any 

detected level of defects, delivered to the customer as average outgoing quality. Upon having 

AOQ level, demand function decreases its initial rate of 𝐷଴to a less rate, affected by the power 

of 𝛽 and multiplied by𝜆. 
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Figure 2.3 Demand function 

In other words, demand function penalizes any scale of non-quality by reducing its determined 

rate even more than the exact amount of defects. 

2.3.3 Production policies 

The efficient mean of performing production policy is known as the production rate (𝑢(𝐴)) of 

this unreliable manufacturing system which is constrained between its zero and maximum 

capacity (0 ≤ 𝑢(𝐴) ≤ 𝑈௠௔௫). As one of the most well-known production policies for 

continuous flow and unreliable systems is presented by Akella and Kumar (1986), we use this 

hedging point policy (HPP) in order to reach to an efficient rate of production subject to system 

availability and inventory levels. 

 𝑢௧ = ൞𝑢௠௔௫            𝑖𝑓 𝑥௧ < 𝑧        𝑎𝑛𝑑 𝑠(𝑡) = 1𝐷                  𝑖𝑓 𝑥௧ = 𝑧        𝑎𝑛𝑑 𝑠(𝑡) = 10                   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒   

(2.6) 
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The dynamic of mentioned HPP policy is illustrated in equation 2.6 such that it sets production 

rate on its maximum (𝑢௠௔௫) when finished product inventory level is less than HPP’s 

threshold, named z. In case of reaching finished-product inventory level to threshold level of 

z, the system tries to keep its maximum value of z in inventory levels by choosing to produce 

as much as the demand rate. According to HPP, the system stops its production in case of 

having excessive amounts in its finished-product inventory or failure. Due to the presented 

HPP policy, there are three system phases: the first phase leads the system to produce in its 

maximum rate to build its safety stock of z. However, such safety stock building is not linear 

and it depends on the proportion of defectives items, detected by the inspection and failure of 

the machine which affects such increase toward reaching to maximum z threshold. In the 

second HPP phase, the system production rate is adjusted to the demand rate in order to keep 

maximum amounts of safety stock z. It is to say that sometimes second phase doesn’t occur if 

system faces any failure in phase one because it takes time again to provide the maximum 

finished-product inventory of z and as system failure comportment is exponential, production 

policy will take place between phase one and three. In the last phase (three), the system is 

under reparation due to corrective maintenance. In this period of operation, the system rate is 

null, facing finished product inventory drop with the rate of demand. 

 

2.3.4 Quality control policies 

Explained quality-dependent demand reacts to the fraction of received defective items by 

reducing its rate. Therefore, it is crucial to avoid facing high percentage of non-quality in 

delivered orders by verifying an optimized fraction of production as the quality control. 

Otherwise, high percentage of non-quality in the system this will result in a very low rate of 

demand. 
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Figure 2.4 Quality degradation behaviour in correlation with the system age 

 

Figure 2.2 is a sample of the degradation behavior of the system as fully presented in section 

2.3.1. When the system is reset to its as good as new condition, the possibility of defectives is 

small and around 2.5%. According to the figure 2.4, as long as the system continues to produce 

and its age increases, quality degradation starts increasing. The rate of defects reaches its peak 

of around 34% when age reaches around 2. At this time, the degradation will grow very slightly 

and stops later. Further, the main objective of quality control policy is to reduce mentioned 

proportion of defectives by a dynamic and unceasing sampling unit, which takes a fraction of 

production output and puts any detected non-conforming part out of the system. Hence, the 

new rate of the defect will be less because of the operations by the quality control unit, modeled 

in equation 2.7: 

  

 𝐴𝑂𝑄 = (1 − 𝑓).𝑝1 − (𝑓. 𝑝) 
(2.7) 

It is to say that f value in equation 2.7 is free to take any fraction of the production output in 

the interval of ሼ0,1ሽ . Since one of the main two decision variables of this study is factor f, 

putting values around 1 will result in 100% inspection of all producing materials with high 
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expected cost and process time. On the other hand, taking 0 or very low value of f will not be 

helpful in quality improvement and results as it makes the AOQ metric close to the rate of 

defects. Therefore, it is crucial to proceed with an optimum fraction of production output for 

inspection. Therefore, such a fraction of production inspection will be set to become optimal, 

based on the state of the production system in terms of degradation scale, failure dynamics and 

demand response to defectives items. 

2.4 Resolution approach 

The formulated problem for optimization is highly stochastic because of its failure 

comportment based on statistical distributions that makes nonlinear relationships of factors. 

For instance, CM and PM actions follow general distributions, facing random occurrences for 

a body of events. Also, computing a total number for approaching costs such as those of 

inventory and quality in an analytical approach is so challenging that makes impossible to 

overcome their complexity. Furthermore, it is not possible to derive the closed form analytical 

expressions. Thus, classical mathematical programing methods cannot be used. Therefore, an 

experimental approach is adopted to solve the problem by defining a simulation-based 

approach of optimization, which comprises a simulation model, experimental design and the 

response surface methodology.   

 

2.4.1 Simulation-based approach of optimization 

The simulation based approach of optimization has been widely used in the literature of 

manufacturing systems in recent years, combining mathematical formulation, simulation, 

experimental design and statistical analysis such as regression and response surface 

methodology. This optimal strategy is used in the work of Gharbi and Kenné (2000) and 

Bouslah, Gharbi et al. (2018) which are highly related to the context of this study. Mentioned 

approached is consist of below steps to proceed: 

• Step 1- Problem formulation: The optimal solution is introduced by two factors: the 

finished product level Z to maintain and the fraction of unceasing production inspection 
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F. In order to develop this optimal strategy and maximizing average net revenue 

(ANR), following optimization problem is solved with its objective and constraints: 

 𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒         𝐴𝑁𝑅 (𝑍,𝐹) ANR= ׬ (௣௥௜.஽)೅బ ்  -൝ቈ𝐶௜௡௩ ∗ ׬ (௎೟ି஽)೅బ ் 𝑖𝑓 𝑢௧ > 𝐷቉ + ቈ𝐶௦ ∗ ׬ (஽ି௎೟)೅బ ் 𝑖𝑓 𝑢௧ < 𝐷቉ +
ቈ𝐶௥௘௧ ∗ ׬ (஺ைொ∗஽)೅బ ் ቉ + ൥𝐶௜௦௡௣ ∗ ׬ ൫௎೔೙ೞ೛൯೅బ ் + ቈ𝐶௡௤ ∗ ׬ ൫௣∗௨೔೙ೞ೛൯೅బ ் ቉ + ቂ𝐶௥௘௣ ∗ ∑ ஻்ቃ൩ൡ 
 𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:               0 ≤ 𝐹 ≤ 1 

(2.8) 

• Step 2- Simulation modeling: A combination of a discrete and continuous simulation 

model is built and modeled, using ARENA Simulation software that utilizes SIMAN 

simulation language along with Visual Basic for Applications (VBA). In this 

simulation experiment, continuous aging of the production system, increase of the 

defectives proportion and inspection quality control policy which results in AOQ 

metric are implemented beside failure of the system and its corrective maintenance 

actions, finished product inventory control policy and responsive demand  nature. In 

this step, inputs of the system are considered as finished product inventory threshold 

(Z) and a fraction of unceasing inspection in quality control (F) which result in gross 

revenue as the output of the simulation model.  
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Figure 2.5 Implementation logic chart of the joint control policy of production and quality 

Figure 2.5 illustrates all steps of the simulation model in terms of implementation. In block 0, 

It allows initializing all the variables of the model such as decision variables (Z, F), demand 

rate, maximum production rate (Umax), average times of breakdowns/repairs (MTTF, MTTR). 

This step sets progress over time for the integration of cumulative variables. In block 1, the 

production rate of the system is getting control, considering failure and corrective maintenance 

actions of the system. Further, this block communicates with block 5 to completely receive 

needed information about HPP and the optimized rate of production. Block 2, proceeds for 
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calculation of quality degradation with regard to the age of the production system. The 

proportion of defects is the output of this block which communicates with block 3. By taking 

a fraction of production rate to verify, block 3 updates AOQ value. In this block, verified parts 

get separated into finished product inventory or become scrap. The output of this module in 

the number of scraps will be used for calculating net revenue function. Block 4, uses the 

updated value of AOQ from previous module and proceeds for generating next demand rate 

according to received quality level of the client. This block determines all dynamics of 

responsive demand and sends its output (revised demand rate) to finished product inventory 

(block 5). The main task in block 5 is calculating a real-time inventory level of the finished 

product, regarding demand rate, production rate and incoming stream of good products from 

block 3. Scrap module in block 6 receives all rejected parts from customer according to AOQ 

and also those of non-conforming parts from quality control section (block 3). The output of 

this block will be used in net revenue calculations in the main function. Finally, block 7 does 

run-time control of the simulation by verifying predefined run-time of the system (T∞) with 

current simulation time (Tnow). 

• Step 3- Optimization: In this step, using STATGRAPHICS software, first the scale of 

experiment gets defined which is consist of experimental space of independent 

variables (Z, F) and the number of total experiments to execute. Next, obtained results 

of the dependent variable (net revenue) will be verified with defined values of 

independent variables as inputs of the experiment, using analysis of variance 

(ANOVA) and Response Surface Methodology. Accordingly, effects and quadratic 

effects of main factors will be examined by ANOVA to see if they have significant 

interactions with the main function (dependent variable) and later, response surface 

methodology determines the relationship of main significant factors on total net 

revenue. In such way, optimal values of the design factors and optimal net revenue will 

be estimated with pre-defined percentage of uncertainty. 
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2.4.2 Simulation model validation 

In order to confirm that the defined simulation model portraits precisely the system under 

study, dynamics of production, quality and responsive demand are graphically in figure 2.6 to 

find out if simulation runs correctly coincide according to designed equations of demand, 

Hedging Point Policy, quality degradation and Average Outgoing Quality (AOQ). 

The first part of the figure above represents tracking of the evolution of the system quality 

degradation in relationship with the system age. As long as the system is on, its possibility of  

defectives heads up and this remains constant in correction maintenance periods. As soon as 

repairing the system, defect rate is reset to its initial value, which confirms as good as new 

assumption of CM actions in terms of maintenance. By tracking system quality degradation, 

the demand rate keeps lowering its rate in order to penalize production system for mentioned 

degradation. Note that demand amounts stay unchanged during CM actions and reset to its 

initial value as soon as the system is repaired. As it is illustrated in the figure, the production 

rate is changing following HPP assumptions. Since the finished product inventory has reached 

its threshold, the production rate follows demand values and adjusts itself by some minor 

reductions in a periodic review manner.  Mentioned minor production drops are pointed on the 

graphic. Also, the production rate is well following breakdowns by turning to zero and this 

immediately reacts to system repairs and available time by setting maximum capacity of the 

system on production as finished product inventory has dropped from the Z level. 
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2.5 Experimental Design and Response Surface methodology 

In order to illustrate how the designed resolution approach functions with data, a numerical 

example is presented in this section. Furthermore, a sensitivity analysis is done to give better 

insights into the dynamics of optimal production and quality control policies, dealing with the 

responsive nature of demand. 

Figure 2.6 Evolution of system age, AOQ, production rate and demand rate during the 
simulation run 
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2.5.1 Response surface methodology and numerical example 

We have performed experiments for different possible combinations of decision variables (Z, 

F) and the observed behavior of the response, which is the total net revenue, has been verified. 

In order to consider interactions of variables, two decision factors are varied at three levels 

each. Therefore, for a complete experiment, this has led to performing 3ଶ, or 9 tests. For better 

accuracy and ensuring that the steady-state is reached in the simulation run, 4 replications are 

performed, leading to a total of 36 tests of 240 000 time units of time (hour) each that are 

simulated with Arena simulation software. Note that the order of the experiments is entirely 

random. The inputs used to calculate the total net revenue and parameters of the simulation are 

shown in the table 2.1 as below. 

 

Table 2.1 Numerical example of the experiment 

Umax D0 P0 Pr MTTF MTTR Cinv Cs Cins Crej Cnq Ccm 

190 150 0.075 100 30 10 2 50 10 5 400 1000 
    Exponential       

 

 

Responsive demand function is tailored with P0= 0.075, 𝛾௤= 2.0, λ௤=2*10-2 and η = 0.315. 

Therefore, the defect proportion is implemented in a way that produces the minimum 

possibility of defectives (7.5%) when the machine is repaired or new. Further, according to 

below, without any fraction of quality inspection (if F, as a decision variable is equal to zero) 

this proportion will reach no more than 39% when the machine is aging, making sure demand 

function has always positive amounts. 

 lim୲→ஶ ቀ0.075 + 0.315൫1 − eି୲మ൯ቁ = 0.39 

 

(2.9) 



41 

By using exponential failure behavior in this study, we have disregarded any relationship 

between operations and quality/reliability of the system. Different levels of the decision factors 

(F, Z) used in the experiment design are presented in the table 2.2 as below: 

 

Table 2.2 Levels of decision factors in the experiment 

Factor Low Middle High 

Factor_A (F) 0,05 0.1 0,15 

Factor_B (Z) 250,0 375,0 500,0 
 

 

According to the ANOVA analysis of fitting models for all acceptance number, the linear and 

quadratic effects of the factors (F, Z) and their interactions with each other are significant for 

the response variable at a 0.05 level of significance. As below, figure 2.7 illustrates the Pareto 

chart of standardized effects when the acceptance number is equal to 2. 

 

Figure 2.7 Pareto chart of standardized effects 

 

As a statistical measure of determining estimation power, R-squared of this experiment is equal 

to 98.64 percent with Standard error of estimate = 173,063 and Average absolute error = 

131,736. In addition, referring to the output of STATGRAPHICS software, and in order to find 

Graphique de Pareto standardisé pour Var_1

0 2 4 6 8 10 12
Effet standardisé

BB

B:Facteur_B

AA

A:Facteur_A

AB +
-



42 

out optimal net revenue of the experiment as our main objective, respond surface function is 

equal to below: 

NetRevenue = 7560,24 + 16046,5*F - 1,06708*Z - 209152, *F2 + 92,7959*F*Z-  

0,0160131*Z2 

Accordingly, the response surface equivalent to this function is shown in the figure 2.8: 

Figure 2.8 Estimated respond surface contours 

 

The total maximum net revenue obtained from the above quadratic function is equal to $ 

8139.57 with the optimal production parameters of F=8.66% and Z=217.57. In other words, 

the production system has to consider an inspection plan with a complete verification in 8.66% 

of its output and holding 217.57 of its finished product stock as HPP threshold to be able to 

reach an average 8139.57$ per time unit. As it is traceable on the figure above, there are several 

local maximums around the global optimum point. 

 

2.5.2 Sensitivity analysis 

In this section, sensitivity analysis by modifying the parameters of the model (Sensitivity of 

demand, cost of no-quality, cost of shortage, cost of inventory and cost of inventory) is 

conducted to verify how such changes affect two principal decision variables of the model (F, 

Z) that determine production and quality policies. Therefore, seven series of experiments are 
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done to find out how the optimal control parameters (F*, Z*) react to newly defined conditions 

of the model parameters. In other words, this sort of sensitivity analysis also shows the 

functionality of the proposed resolution approach in case of having different system 

parameters. 

 

Table 2.3 Sensitivity analysis of parameters 

Sets Z Umax F 
% 

D P MTTF Pri Cins Cinv Cs Cnq 𝝀 ANR 

Basic 247,27 19 11,95 
% 

15
0 

7,5
% 

30 100 10 2 50 400 2.25 8110,53 

  290,59 19 18,03 
% 

15
0 

7,5
% 

30 100 10 2 50 400 4 7615,02 

2 198,29 19 6,25 
% 

15
0 

7,5
% 

30 100 10 2 50 400 0,5 8888,37 

3 286,64 19 16,4 
% 

15
0 

7,5
% 

30 100 10 2 50 430 2,25 7875,05 

4 210,63 19 7,82 
% 

15
0 

7,5
% 

30 100 10 2 50 370 2,25 8354,24 

5 294,86 19 7,51 
% 

15
0 

7,5
% 

30 100 10 2 55 400 2,25 8118,74 

6 209,73 19 17,58 
% 

15
0 

7,5
% 

30 100 10 2 45 400 2,25 7766,75 

7 136,71 19 1,5 % 15
0 

7,5
% 

30 100 10 3 50 400 2,25 7824,92 

8 290,09 19 17,15 
% 

15
0 

7,5
% 

30 100 10 1 50 400 2,25 7986,21 

9 155,84 19 1,61 
% 

15
0 

7,5
% 

30 100 15 2 50 400 2,25 7924,92 

10 297,98 19 17,9 
% 

15
0 

7,5
% 

30 100 5 2 50 400 2,25 8386,21 

11 25,66 19 0% 15
0 

7,5
% 

30 100 10 2 50 400 2,25 6360,17 

12 714,78 19 100% 15
0 

7,5
% 

30 100 -10 2 50 400 2,25 4583,79 

 

 

All results are brought in Table 2.3 in a way that the responses of the optimal decision variables 

(F*, Z*) and the optimal expected average net revenue (ANR) can be traceable in relationship 

with modified, highlighted model parameters. Any reaction of decision and dependent 

variables is highlighted by green and red which refers to increase or decrease in order. 
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• Variation of demand sensitivity (𝜆): By increasing 𝜆 factor in demand function, its 

sensitivity to the proportion of delivered nonconforming parts raises and demand 

penalizes the production system more by dropping its next orders. In this case, the 

system has tried to increase its inspection around 7% to produce less non-conforming 

parts and backlog inventory is increased in a way to compensate delays of inspection 

to avoid shortages. On the contrary, the system finds less restrictive demand behavior 

and tries to decrease its inspection measurements along with reducing backlog levels 

in order to slash the cost of inspection and inventory. As a result, average net revenue 

has increased.  

• Variation of cost of non-quality (Cnq): When production system faces with more cost 

of non-quality, related to return and scrap of non-conforming, delivered parts it tries to 

invest more on inspection to avoid these excessive penalties. Since such action spends 

more process time and may face shortages in finished product inventory, the system 

tries to increase its backlog stock of Z. In a more convenient state, in terms of non-

quality costs, the system reduces its investment in quality control and inventory to bring 

more net revenue through costs savings. As a result, average net revenue is bringing 

more profits than the basic set. 

• Variation of cost of shortage (Cs): When the cost of shortage is higher than normal, the 

system tries to bring more stock in its inventory to avoid expected shortages. 

Consequently, with the aim of bringing more products into the inventory, the system 

reduces its inspection plan. However interactions of F and Z is positive in Pareto chart 

and this has been positive in other sensitivity analysis cases, in this set, the negative 

effect of the factor A which has the second strong effect is needed, leading the system 

to maintain its net revenue level. In contrary, as the system intends to reduce its backlog 

investments and find it possible to have more restricted quality actions. In consequence 

and according to Pareto chart, the increase in F measurements has caused negative 

effects on net revenue. 

• Variation of cost of inventory (Cinv): When the inventory cost increases, the system 

tries to reduce its inventory levels by decreasing its Z and the optimal sampling plan 

becomes reduced in order to avoid shortages. On the other hand, the system looks for 
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more inventory levels and finds possible to have better quality investments as inventory 

levels would compensate shortages. 

• No inspection plan (F=0): In order to better understand the effect of responsive demand 

on the net revenue function, in this case, control policy is omitted. Consequently, the 

system has dropped its backlog inventory as it finds no major shortages. Also, the 

increase in cumulated no-quality costs due to having no quality control has caused a 

complete net revenue drop in this case. 

• 100% inspection plan (F=100): In contrast with the above case, the effect of a complete 

100% inspection is examined. In this situation, inspection delays have made production 

system to have a massive buffer of Z to be able to control shortages. Results in terms 

of net revenue are even worse than the previous set. This implies the effect of shortages 

in lost sales. 

 

2.6 Comparative Study with periodic time bases 

In previous parts, it was assumed that demand instantly reacts to any amount of defectives by 

decreasing its order rate. This assumption does not seem to reflect real-life cases because there 

is always a delay for non-conforming part verifications and reacting to that. Therefore, in this 

part a delay in demand response is considered such that demand reacts to the average of 

received non-conformation in periodic time bases (𝜟𝑻) as below: 

 𝐴𝐴𝑂𝑄 = ׬ 𝐴𝑂𝑄஺೛଴ 𝛥𝑇  
(2.10) 

Accordingly, demand function will react to such new level of defectives in equation 2.11 as 

below: 

 𝐷 = 𝐷଴(1 − ൫𝜆 ∗ 𝐴𝐴𝑂𝑄ఉ൯) (2.11) 

The dynamic of such periodic functionality in the simulation plan is presented in the figure 

2.9. According to this, demand will react based on the average value of AOQ in every period 

of 𝛥𝑇 and determines its next order as a fixed rate for the next period. In this way, expected 

real-life demand delays in terms of reactions to the quality are considered by watching levels 

of average outgoing quality in fixed periods of time. It is to note that the efficiency of this 
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approach in terms of net revenue improvements should be studied during system available 

time. If determined periods violate availability of the system, the random number of 

breakdowns will affect any conclusion about the efficiency of this case. Therefore: 

 𝛥𝑇 ≤ 𝑀𝑇𝑇𝐹 (2.12) 

 

Figure 2.9 Evolution of the simulation run in periodic time bases 

 

An experiment design is conducted, considering all assumptions of section 2.5. Hence, 

numerical data is presented in table 2.4: 
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Table 2.4 Numerical example in the periodic review case 

Umax D0 P0 Pr MTTF MTTR Cinv Cs Cins Crej Cnq Ccm 

190 150 0.075 100 30 10 2 50 10 5 400 1000 

Quality-dependent demand function is tailored with P0= 0.075, 𝛾௤= 2.0, λ௤=2*10-2 and η =0.315. To reflect real-life situation, 𝛥𝑇 is considered to be 6, 12 and 18 hours. 

By implementing the experiment design on STATGRAPHICS software for three cases with 

different𝛥𝑇, optimal values are obtained. It is to mention that in order to keep the experiment 

comparable, the level of this experiment in terms of factors has remained intact as below. 

 

 

Table 2.5 Different levels of the decision factors 

Factor Low Middle High 

Factor_A (F) 0,05 0.1 0,15 

Factor_B (Z) 100,0 175,0 250,0 
 

 

Obtained results are compared with the instant case, discussed before to find the effect of 

considering time bases. 

 

 

Table 2.6 Comparative analysisi of ANR response in correlation with ΔT increase 

Sets Z Umax F 
% 

D P
% 

MT
TF 

ΔT Pri Cins Cinv Cs Cnq 𝝀 ANR 

Basic 171,2 190 7,11 150 7,5 30 6 100 5 2 500 400 2.25 8170,04 
1 179,9 190 7,27  150 7,5 30 12 100 5 2 500 400 2.25 8289,34 
2 203,3

7 
190 9,63 150 7,5 30 18 100 5 2 500 400 2.25 8568,4 

3 247,2 190 11,9 150 7,5 30 Instant 100 5 2 500 400 2.25 8110,5 
 

 

As it is illustrated in the table 2.6, augmenting periods of time will provide more time to 

respond to demand, making the system to bring more parts to sell in every period of time. In 
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this way, as long as time base raises, system inspects more and keeps more amount of buffer 

in its inventory. Hence, the mentioned increase in F and Z influence the net revenue function 

in a positive way as it is illustrated in below Pareto chart. Comparing time base units with 

discussed instant case proves mentioned interpretation in a better way. 

Figure 2.10 Pareto chart of the second case on  

standardized effects 

2.7 Conclusion 

The joint policies of production control and statistical quality control measurements have not 

been enough studied in the presence of quality-dependent demand, which is the essence of 

customer and vendor relationship. Hence, this study contributes to research on the joint design 

of production and quality control in unreliable manufacturing systems, where the production 

control policy comprises of a modified hedging point policy and quality control is performed 

by unceasing inspection plan. A mathematical model has been developed to explain the 

dynamic of production, inventory, quality control, degradation and demand, and system 

constraints were defined to calculate the overall incurred cost. Because the optimal solution 

cannot be reached due to the stochastic complexity of the model, a resolution approach based 

on experimental Design with simulation and Response Surface methodology is proposed to 

optimize hedging point level and inspection fraction. By performing experiments and through 

sensitivity analysis, an important impact of integrated inventory levels and inspection fractions 
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on average net revenue function in the existence of quality-responsive demand and its penalty 

function has been proved. An interesting outcome of this study, when customer’s demand faces 

delays, it leads to more net revenue due to the functionality of the system in response to average 

outgoing quality. Future research could be undertaken to investigate the studied context in the 

presence of operation-dependent degradation and preventive maintenance actions. Another 

area for future consideration is how to deal with dependent demand to other factors such as 

price and deterioration.  
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CHAPITRE 3 
 

The policy of integrated preventive maintenance, quality and production, Subject to 

quality-dependent demand and dynamic pricing 

3.1 Abstract 

With the aim of slashing unavailability costs of production in the presence of quality-dependent 

demand, this chapter addresses the problem of preventive maintenance policy, integrated with 

quality and production control policies. Further, since real-life production systems may be 

subjected to more complex failure consequences, particularly caused by their operation 

procedures, we considered the system’s reliability and quality degradation as an operation-

dependent factor. In other words, we deal with of an unreliable production unit with quality 

degradation caused by its operation duties and a quality-dependent demand, which responds to 

the delivered quality of finished products. In addition, different levels of quality in the real-life 

will make manufacturers or retailers to have discounts and promotions on their inventories, 

persuading clients to keep buying and not losing corporate market shares. Therefore, in order 

to reflect such dynamic of pricing that deals with levels of quality, pricing policy is built based 

on prospect theory assumptions in individual's behavior. Applying hedging point policy that 

maintains a certain level of the finished product in the inventory, will make an under control 

production rate. This results in less cost of shortages during the stop time of production such 

as maintenance and breakdown and fluctuation in demand rates. The principal objective of this 

study is to maximize the total profit of the manufacturing system by determining a proper point 

to activate preventive maintenance and setting a certain amount of safety stock and a fraction 

of production output, for quality control. By applying response surface methodology based on 

extracted simulation data, a simulation-optimization approach for the developed stochastic 

mathematical model is designed. This study is developed in two different cases, in the first 

one, the effect of preventive maintenance policy on production availability improvement is 

CHAPTER 3 
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practiced while in the second case, the preventive maintenance interactions on quality and 

dynamic pricing are taken into account. Results of the study clearly show a significant 

difference in preventive maintenance application in terms of average net revenue, compared 

with the non-applied case. Furthermore, it is shown that the use of preventive maintenance 

policy can play an important role in the reduction of quality control resources in both two 

different scenarios.  

 

3.2 Introduction 

The integration of production planning and preventive maintenance with quality control using 

control charts has been widely studied in the past. Ben-Daya and Makhdoum (1998) have 

studied the effect of a variety of preventive policies in a joint optimization scheme, comprising 

of economic production quantity and control charts. As a result, PM actions reduced out of 

control status rate of the system. A year after, Daya (1999) developed the model by adding a 

general probability distribution in the context of increasing hazard rate and in 2000, the work 

has been extended by considering that preventive maintenance is able to affect the increasing 

hazard rate, previously introduced (Ben-Daya and Rahim 2000). Yeung, Cassady et al. (2007) 

brought an age-based preventive policy along with an initial control chart idea. With the goal 

of getting maintenance management and statistical process control closer to each other, Zhou 

and Zhu (2008) have worked on the integration of these two concepts by use of cost analysis 

and grid search approaches for optimizing. In another study done by Chen (2011) and with the 

aim of considering a multi-state Markov chain which is time-dependent for probability 

transitions and   aging of the system, the maintenance policy is not state-dependent. By relaxing 

multiple failures among system degradation, Liu, Li et al. (2013) developed a condition-based 

maintenance policy, specified for systems with stochastic degradation process. This work 

aimed to find the optimum maintenance threshold, maximizing production system availability. 

By developing ten scenarios for the production process, Yin, Zhang et al. (2015) have built an 

integrated model with the regard of statistical process control and maintenance decision 

making by taking delayed monitoring policy into account. After reviewing all related literature, 

it comes to light that there are very little models in this context that simultaneously integrate 
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production, preventive maintenance, and quality control with sampling plans. It is important 

to mention that this lack of research is in contrast with the reality of industry since sampling 

plans have been widely used there for a long time to reduce excessive costs of 100% control 

(Montgomery 2007). Note that Sampling plans have very specific statistical properties 

(Schilling and Neubauer 2009). These kinds of statistical properties directly affect the overall 

performance of manufacturing companies such as level of perceived quality by customers, 

which is referred as an average outgoing quality, in hand inventory, cost of quality and 

productivity (Cao and Subramaniam 2013). One of the attempts in this area of research is done 

by Bouslah, Gharbi et al. (2016) to fill the literature gap by assuming a deteriorating production 

process which despite regularly considered production systems is not statistically in-control 

and therefore it is not possible to apply control charts over that. This article has compared two 

different CSP-1 sampling plans in the existence of preventive maintenance for an unreliable 

production system with quality degradation. In another article, by the same author Bouslah, 

Gharbi et al. (2016) have again supposed all three major aspects of preventive maintenance, 

production, and a sampling-based quality control system in the context of degradation of the 

manufacturing system. In this study, CSP-1 is replaced with an acceptance sampling plan and 

a constraint for average outgoing quality is considered to reflect better essence of customer 

and manufacturer relationship. The result of this study has illustrated a 20% reduction in cost 

due to the proposed integrated model. 

Considering vast markets that are full of products and rivals with narrow product differences 

and very close pricing patterns, companies have to gain competitive advantages to attract 

customers. In this context, manufacturers of products and services must comprehend to have 

marketing plans that can provide more value to their customers who are exposed to other 

competitors (Armstrong, Adam et al. 2014).   In this intensive and complex competition era, 

customers are in touch with product quality and price very repeatedly which leads them to have 

a reference process of each product. This will be explained as internal standards that are made 

based on previous prices and user experience of customers to evaluate new pricing schemes 

(Kalyanaram and Winer 1995). In other words, customers have an expectation of products of 

each company such as quality and price. A psychological trade-off for customers is defined as 

perceived value. This back-and-forth happens in the mind of customers between what they 
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could gain (quality) and whatever they lose (price) or sacrifice in any purchase (Monroe and 

Chapman 1987, Monroe 2002). According to Levy, Weitz et al. (1998), every customer 

considers its merchandise purchasing condition as an equation that value=quality/price. 

Therefore, decision-makers are able to affect this equation with the aim of raising customer 

perceptions by increasing quality and keeping the same price. Porter and Helm (2008) have 

tried to evaluate such an equation by reducing price and keeping the same quality. For instance, 

IKEA has taken the advantage of this novelty in its advertising brochure by claiming “new 

lower prices, same great quality” to keep quality and drop the price or claiming “improved 

sound quality, same price”(Callarman and Hamrin 1984). In a comprehensive research, 

conducted by Yoon, Oh et al. (2014) to verify which of above-mentioned means are more 

useful, five particular works are taken into account. The first study has illustrated that 

perceptions about the reputation of brand influence such preference among price and quality 

as the promotion type. The second study has found that the level of value perception by 

customers is effective in this balance. In the third one, the brand image of the retailer about 

reflecting luxury and prestigious (case of Nordstrom .co) or being cost-saving and thrifty (case 

of Walmart) are significant. Level of price perception by the customer is considered in fourth 

work and the last study implies the quality level has an independent moderating effect on store 

image rather than perceived value. This paper concludes however enterprises tend to increase 

customer value perception through both price and quality means, all five research results are 

suggesting that customers are better affected by price promotions rather than high qualities 

(Yoon, Oh et al. 2014). 

According to the fact of customer reference points, retailers widely use price promotions in 

different ways and for a variety of objectives and among them, the most fundamental reason 

is to provide more profits for companies (Greenleaf 1995). By defining price promotion 

strategies based on prospect theory applications in customer reactions patterns,  Greenleaf 

(1995) has examined a series of interacting factors in order to maximize corporate profit.  

To the best of our knowledge, in all previous research involving PM, quality and production 

integration, the demand rate is considered to be constant despite the fact that product quality 

and price affect its demand (Banker, Khosla et al. 1998). Maiti and Giri (2015) have 

approached price and quality dependent demand with no PM action in a closed-loop supply 
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chain where demand varies with market price and quality output of the system. In another 

study, done by Xie, Yue et al. (2011) however the demand is not responsive to quality and 

price, it is assumed to have it uncertain and risk-averse based on suggested behaviors of 

prospect theory. This study has extended assumptions of Banker, Khosla et al. (1998) about 

demand, depending on quality and price. Based on prospect theory assumptions by (Kahneman 

1979) people have loss aversion attitude. In other words, they are more afraid of losing values 

rather than the joy of gaining the same value. A similar problem formulation is applied in the 

work of Hsieh and Dye (2017) in order to build a price-dependent demand function for an 

optimal dynamic pricing model which considers deterioration. In this study, reference prices 

are considered as adaption levels, which are relative to a neutral reference point in the mind of 

customers. Any change in prices toward more or less than reference prices are accounted as 

perceived gain and loss that results in intentions of more or less purchase. Further, following 

three different customer demand scenarios of risk-averse, risk-neutral and loss seeking, 

responding to difference in current and reference price, Hsieh and Dye (2017) established a 

dynamic pricing strategy. This approach has applied prospect theory assumptions in terms of 

the way individuals convince loss. 

 

3.3 Problem statement 

In this study, as it is illustrated in figure 3.1, an imperfect production unit is subject to aging 

that leads the system to augmentation of both defectiveness percentage (quality degradation) 

up to a level and failure rate (reliability degradation). There is a constant and infinite flow of 

raw material as the input of the production and system will never face a lack of raw material 

during its operation. As clock time age is not a realistic consideration of production systems in 

real-life contexts because it does not reflect the extent of production system usage differing 

between its maximum capacity and idle time, age of this manufacturing unit is a continuous 

variable depending on its operation, representing the cumulative number of produced items 

(Cassady and Kutanoglu 2005). This production unit has a discrete state cycle in terms of its 

status (status variable) in each time, taking values of {0,1,2}. Briefly, if the system is out of 

order and under corrective maintenance, the status variable is equal to 0. In times of being 
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under preventive maintenance, the status variable is equal to 2 and the value of 1 is when the 

machine is available for production. Intended production line supplies a quality-dependent 

demand, which has a maximum demand rate in case of having a perfect production without 

defectiveness. The demand responds to the level of defectiveness by decreasing its value rate 

upon verifying average outgoing quality (AOQ) metric which is the overall quality output of 

the system after affecting quality control policies.  Due to the existence of the quality-

dependent demand in this model, the production line cannot satisfy its demand rate except 

having control activities of quality. To keep the quality level of production output ensure a 

high rate of demand, a quality control unit with a continuous sampling scheme is taken into 

account. This section verifies a fraction of the system output 0 ≪ 𝑓 ≪ 1 and proceeds to 

decrease defectiveness possibility by removing observed defectives from the system without 

rectification process. The customer will examine all delivered items and non-complaints will 

be returned and discarded from the system according to AOQ metric and without rectification. 

Unsatisfied demand in a time of corrective or preventive maintenance will be considered as a 

lost sale. The objective is to maximize the total net revenue function, including average gross 

revenue, the average cost of inventory and shortage, the average cost of inspections, the 

average cost of PM and CM and the average cost of no-quality product returns. 
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Figure 3.1 Manufacturing system subject to degradation, responsive demand and prevantive 

maintenance 

 

3.4 Quality-dependent demand 

In the present paper, we have used fundamentals of prospect theory by Kahneman (1979) to 

generate a penalizing function in the presence of defectiveness in quality of finished-products.  

Risk-averse attitude says that people think in terms of expected utility relative to a reference 

point (e.g. current wealth) rather than absolute outcomes. Therefore, if customers have loss 

aversion attitude (according to prospect theory assumptions) and find out the current quality is 

less than its reference-quality or any expected level, it would result to decrease their purchase 

more than the time they increase their purchase when they find the price less than their in-mind 

reference price as equation 3.1 suggests: 

 𝐷 = 𝐷଴(1 − ൫𝜆 ∗ 𝐴𝑂𝑄ఉ൯) (3.1) 

Effectively, presented demand function simulates risk-averse respond of the customer by 

watching levels of average outgoing quality as the delivered rate of defects from the production 

system to customer. By a continuous AOQ level verification, demand function reduces the 

initial rate of D0 to some lower levels, considering β and λ values. Mentioned values are 

benchmarked from empirical work of Tversky and Kahneman (1981). 

Furthermore, reliability of the production system has a direct effect on amounts of demand 

since after each maintenance action either it is corrective or maintenance, state of the system 

rolls back to its as good as new condition and because such state has better quality output, it 

results to a higher amount of demand rates. Hence, in every reparation, system quality level, 
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and demand rate return to their initial values (𝑝଴,𝐷଴) and due to the degradation, the demand 

rate decreases with explained dynamic. 

 

3.5 Demand-dependent price 

In the real-life, retailers set different price based on a variety of product qualities they have, 

called price lining. The same context is implemented for products with low moving in terms 

of shelf life, making price promotions inevitable in order to keep market share and get 

customers used to mentioned products (Armstrong, Adam et al. 2014).   In the second part of 

this work, as much as demand drops in terms of quality degradation, the manufacturer tries to 

keep selling and saving its customer by reducing its price, assuming customer behavior is risk-

averse. In other words, the manufacturer is considering interactive market factors such as 

competitors, price and quality and trying to provide a price-lining policy for its continuous 

quality fluctuations.  

 𝑃𝑟 = 𝑃𝑟଴(1 − ቆ𝜆 ∗ ൬𝐷଴ − 𝐷𝐷଴ ൰ఉቇ) 

 

(3.2) 

Regarding the above equation, price dynamics is depended to demand changes. Since this 

behavior reflects a risk-averse attitude, any change in demand will result more on price. In 

other words, the customer is persuaded to keep its relationship if the manufacturer gives more 

discount percentage, comparing with the occurred percentage of the shift in quality. Hence, in 

general, a system is assumed with quality degradation, resulting to demand reductions and 

price drop. In such a case, quality control measurements and PM actions play a crucial role in 

terms of providing an optimum operation estate, maximizing net profit. In this case, the system 

will continue producing until a reasonable level of price and demand. 

 

3.6 Degradation model 

By reviewing related literature in terms of degradation model, it becomes known that the 

quality and system availability dependency on time is repeatedly and highly overused during 

past years. This general assumption is not effectively reflecting real-life cases because the way 
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of system operates in terms of production rate or its duration of idle times does not result in 

constant degradation rates (Van Horenbeek, Scarf et al. 2013). In manufacturing systems 

operations directly affect quality degradation of the system (Bouslah, Gharbi et al. 2018). It is 

to mention that many authors have studied the effect of operations on quality. For instance, 

repeatability and accuracy of robots as their significant quality deterioration element have been 

studied in assembly lines by Khouja, Rabinowitz et al. (1995). Also, Owen and Blumenfeld 

(2008) have studied this context in relation with operations pace of metal cutting procedures 

and surface milling. In our study, quality degradation is dependent on the age of the system. 

Bouslah, Gharbi et al. (2018) have used quality degradation approach in relation to an 

accumulative number of manufactured pieces as systems age variable. Hence, production rate 

better reflects how the machine is operated as it does change by any difference in the state of 

production systems such as speed and stops while the time-dependent assumption does not. By 

increasing the production rate, in most the manufacturing systems, failure possibility of 

machines increase and quality degradation accelerates which seems to be more realistic. 

Therefore, in this article, an operation-dependent approach is assumed to shape quality and 

reliability imperfection of the system under study. Instead of having a clock time, the age of 

the machine is a function of its yielded pieces.  Therefore, any modification in system operation 

such as idle times, speed and downtimes will be taken into account of degradation. 

The state of the production system unit is described by a discrete-state stochastic variable, 

displaying its operational situation at time t.  

 𝑠(𝑡) = ൞1                  𝑠𝑦𝑠𝑡𝑒𝑚 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒2                  𝑝𝑟𝑒𝑣𝑎𝑛𝑡𝑖𝑣𝑒 𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒0                  𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑣𝑒 𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒   (3.3) 

This discrete variable (𝑠(𝑡)) gets values of collectionሼ0,1,2ሽ. If 𝑠(𝑡) = 0, the system is broken 

and corrective maintenance is set to renew its initial state status. 𝑠(𝑡) = 2 refers to preventive 

maintenance mode, resulting in the same initial condition of the production and 𝑠(𝑡) = 1 

demonstrate an available system during production and degradation progress. The second 

variable records system`s age from the last corrective maintenance until time t, however, this 

age is not clock time and is referred as the cumulative number of produced parts from the last 

maintenance either it is CM or PM: 



60 

  

 𝐴(𝑡) = න 𝑢௧௧
೘்  

(3.4) 

 

Equation 3.4 calculates the age of production system between the current time and latest 

maintenance action time (𝑇௠). For this reason, failure consequence of the production system 

will be tied to the extent of the operation, which let us proceed for preventive maintenance 

measurements. In this study, the reliability of the system can be described by the following 

Weibull distribution function: 

 F(A(t)) = ൬1 − eି(஺೟஛ )ೖ൰ (3.5) 

Above parameters of Weibull distributions in equation 3.5 could be derived from real-life data, 

shaping the cumulative possibility of system failure in each time unit. Applying operation 

dependent age function, quality degradation of the system raises during its available time 

(𝑠(𝑡) = 1).  

 p(A(t)) = p଴ + η൫1 − eି஛.஺೟ം೜൯ (3.6) 

Equation 3.6 represents the possibility of defectiveness in the production rate. The resulted 

percentage depends on the operation scale of the system, which is referred to its age (A(t)). As 

the production starts and the system is in its initial condition, it has a very small proportion of 

defective, shown as P0.  P0 + η determines the peak defective proportion during the system`s 

on-time. This peak can be calculated as below limit sequence: 

Following the formula in equation 3.6, the possibility of defectives will be bounded between 

P0 and the maximum amount of the same function toward positive infinity as below: 

 lim୲→ஶ ቀp଴ + η൫1 − eି஛.௔೟ം೜൯ቁ = 𝑃0 + ηk 
(3.7) 

Therefore:   p଴ ≤ p(a) ≤ lim୲→ஶ ቀp଴ + η൫1 − eି஛.௔೟ം೜൯ቁ 

It has to be taken into account that in real-life, operations affects the possibility of machine 

failure that is called operation-dependent failure (Buzacott and Hanifin 1978).  

The reason for choosing such degradation function with peak point is to make sure excessive 

proportion of defectiveness resulted from any long periods of system availability or weak 



61 

quality control do not result in huge demand drops. Demand drops Such as zero or negative 

values does not make any sense in a responsive demand context. That is to say with no quality 

control policy or by experiencing longer available times of productions system, the proportion 

of defectives will not reach from a determined level and it is aimed in a way to have constant 

amounts of defectiveness in terms of percentage, after a while since the system starts its 

operations. Further, since this study has considered demand dynamics of a production system, 

dealing with manufacturing and finished-product quality control policies coming raw material 

of the system is assumed defect-free just to have better concentration and provide less 

complexity into the system. 

 

3.7 Production policy 

The production rate of such continuous flow system (0 ≤ 𝑢(𝐴) ≤ 𝑈௠௔௫) is controlled by 

hedging point policy (HPP), presented by Akella and Kumar (1986). This policy is known as 

a very efficient mean of performing production control in unreliable manufacturing systems, 

subjected to quality degradation.  HPP regulates the production rate between its zero and 

maximum capacity with regard to finished product inventory levels and the availability of the 

system. Its dynamic is summarized by the following equation: 

 𝑢௧ = ൞𝑢௠௔௫            𝑖𝑓 𝑥௧ < 𝑧        𝑎𝑛𝑑 𝑠(𝑡) = 1𝐷                  𝑖𝑓 𝑥௧ = 𝑧        𝑎𝑛𝑑 𝑠(𝑡) = 10                   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒   

(3.8) 

HPP sets production rate on its maximum (𝑢௠௔௫) capacity when finished product inventory 

level is less than HPP`s threshold, named z. By reaching the finished-product inventory level 

to the threshold, the system produces equal to demand rate with regard to its responsive nature 

to the quality and tries to keep its maximum value of z in inventory levels. It is important to 

mention that a variety of studies have set production rate on ஽ଵି௙(஺)∗௣(௔) or ஽ଵି஺ைொ when 

inventory level reaches to z. The reason is to feed an exact amount of conforming items to the 

client which in this case (quality responsive demand) is not necessarily the case. The system 

stops its production upon passing the HPP threshold or conducting CM or PM actions. 
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3.8 Quality policy 

As stated in the nature of quality degradation in the model under study, the proportion of the 

defective starts from a very small level, augments slightly and continues in an upper level until 

next CM or PM action arrives. For this reason and because of having a continuous degradation 

in quality, an unceasing quality inspection is considered to verify between 0 to 100% of 

production output (0 ≪ 𝑓 ≪ 1). It is to mention that 100% inspection is expensive and 

sometimes impossible to proceed in production systems due to the nature of products such as 

explosive military equipment or products line constraints. Moreover, no quality inspection in 

the presence of responsive demand does not make any sense with the objective of such models. 

Therefore, implemented quality control policy in this work has to reduce the proportion of 

defectives by verifying a part of production output and posing any non-conforming part out of 

the system. According to this, a new rate of the defect will be calculated by the below equation: 

  

 𝐴𝑂𝑄 = (1 − 𝑓).𝑝1 − (𝑓. 𝑝) 
(3.9) 

The fraction of production inspection (f) in equation 3.9  is free to take between the intervals 

of ሼ0,1ሽ. 
 

3.9 Maintenance policy (case one) 

In the first case, the production system is subjected to an operation-based (aged based) 

preventive policy. According to this PM policy, the system is maintained upon break down or 

by getting through a determined age (cumulative number of produced parts). According to this 

maintenance policy, both PM and CM (corrective maintenance) roll back the system to its 

initial condition which is considered as good as new state. A threshold in terms of system’s 

age conducts PM policy, denoted by 𝑚௞. Therefore, the discrete-state stochastic variable of 

PM can be defined in equation 3.10 az below: 
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 𝑃𝑀 = ൞𝑁𝑜                   𝑖𝑓 𝐴௧ < 𝑚௞𝑌𝑒𝑠                 𝑖𝑓 𝐴௧ = 𝑚௞  

(3.10) 

According to the above function, the passing threshold will make the system to conduct PM 

policy. For the age of less than 𝑚௞, the system would experience CM actions, denoted by 0 or 

availability, denoted by 1.  

 

3.9.1 Resolution approach (case one) 

The formulated problem of this study is highly stochastic, dealing with statistically distributed 

failures of the production system and along with quality and reliability degradation, which 

makes nonlinear relationships of decision and dependent variables. Hence, an experimental 

design approach is set to answer the problem by bounding a simulation-based approach to 

optimization. This problem-solving methodology is comprising of a simulation model, 

experimental design and the response surface methodology.   

3.9.1.1 Simulation-based approach of optimization 

Over recent years, Simulation-based approach of optimization has been extensively employed 

in the literature of manufacturing systems. This methodology combines mathematical 

formulation and simulation in experimental design and takes advantage of statistical analysis 

such as regression and response surface methodology. Mentioned resolution strategy is used 

in the work of Gharbi and Kenné (2000) , Hlioui, Gharbi et al. (2015) Bouslah, Gharbi et al. 

(2018) which have strong ties with the context of the current study. Stated approached pursues 

below measures in order to reach to the optimized outcome: 

• Step 1- Problem formulation: For the purpose of establishing an optimal strategy, the 

following optimization problem is formulated and solved with below objective and 

constraints: 
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 𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒         𝑁𝑒𝑡 𝑅𝑒𝑣𝑒𝑛𝑢𝑒 (𝑍,𝐹,𝑀 ) 𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:               0 ≤ 𝐹 ≤ 1 

 

(3.11) 

The optimal solution is introduced by three factors: the finished product level Z to 

maintain, the fraction of unceasing production inspection F and the maintenance 

threshold expressed as age (cumulative number of produced parts) of production 

system when it is available. 

• Step 2- Simulation modeling: A combination of the discrete and continuous simulation 

model is structured. In this fashion, two programming languages of SIMAN simulation 

and Visual basic Applications are developed on ARENA Simulation software. In this 

simulation experiment, aging of the production system, augmentation of the defectives 

proportion and inspection quality control policy which results in AOQ metric are 

implemented beside failure of the system and its corrective/ preventive maintenance 

procedures. Further, finished product inventory control policy and demand-responsive 

nature are considered as well. In this step, inputs of the system are considered as 

finished product inventory threshold (Z), the fraction of unceasing inspection in quality 

control (F) and the threshold of preventive maintenance (Mk) which result in gross 

revenue as the output of the simulation model.  
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Figure 3.2 Implementation logic chart of the integrated control policy in case one. 

 

Figure 3.2 demonstrates all followed measures of the simulation model. In block 0, It defines 

all the variables of the model such as decision variables (Z, F, Mk), demand rate, maximum 

production rate (Umax), average times of breakdowns/repairs (MTTF, MTTR). Step zero sets 

progress over time for the integration of cumulative variables. In block 1, the system controls 

production rate through communication with block 4 and block 5 to have updates of downtimes  

and demand rate. In this way, the system has complete data of corrective and preventive 

maintenance along with demand progress. Block 2, conducts quality degradation of the system 

with regard to the age of production system which is the cumulative number of produced parts 
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since the last breakdown. It is to add that the proportion of defects is considered as the output 

of this block which makes a way to block 3 for quality examination. Block 3 proceeds for 

updating AOQ value by considering the F value as one of three decision variables. Considering 

a process capability of inspection as a maximum value, verified parts split up into either 

finished product inventory or scrap, as a waste. In block 4, the cumulative number of produced 

parts with regard to the latest production stop (downtime) get calculated. This cumulative value 

is considered as the age of the system. Block 4 stops the production after reaching to a 

determined threshold of the system (Mk) to proceed for preventive maintenance action. Block 

5, uses the updated value of AOQ from the previous module and proceeds for calculating an 

instant demand rate according to the received quality level of the client. All aspects of 

responsive demand behavior, modeled above, get generated in this block. Revised demand rate 

goes as an output to block 6, calculating the finished product inventory. The major duty of 

block 6 is about calculating a real-time inventory level of the finished product, regarding 

demand rate, production rate and incoming stream of good products from block 3. Scrap 

module in block 7 receives all rejected parts from customer according to AOQ and also those 

of non-conforming parts from quality control section (block 3). The output of this block will 

be used in net revenue calculations in main function. Finally, block 8 does run-time control of 

the simulation by verifying predefined run-time of the system (T∞) with the current simulation 

time (Tnow). 

• Step 3- Optimization: In this measure, using the STATGRAPHICS software, first of 

all, the scale of the experiment is defined. This first step leads to having the 

experimental space of independent variables (Z, F, and Mk) and the number of total 

experiments to carry out. Afterward, obtained values of the dependent variable (net 

revenue) which is the result of the simulation will be verified with the beginning, 

defined values of independent variables (inputs of the simulation). This progress is 

done, using analysis of variance (ANOVA) and Response Surface Methodology. As a 

result, effects and quadratic effects of the main factors are examined by ANOVA to 

find out if they have significant interactions with the main function (dependent 

variable). Subsequently, the response surface methodology defines the relationship of 

main significant factors on total net revenue. In such a way, optimal values of the design 
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factors and optimal net revenue will be estimated with a pre-defined percentage of 

uncertainty. 
 

3.9.1.2 Validation of the simulation 

To validate that the outlined simulation model is able to describe the system under study, the 

dynamics of production, quality, and responsive demand are illustrated graphically as shown 

in figure 17. This figure verifies the total functionality of the system in a traceable manner. 

The aim is to find out if the simulation is functioning correctly based on all assumed conditions 

of responsive demand and quality degradation. In essence, it will be shown that assumptions 

about Hedging Point Policy, dealing with corrective and preventive maintenance 

measurements are working in their predetermined manner. 

Figure 17 represents first the status of the system its simulation time. As it coincides with status 

variable (s (t)) and has taken values of 2 in PM times. This value turns to 1 when the production 

system is not ceased however it gets 0 values when it is in CM mode. Further, as the quality 

degradation of the production system is dependent on the system age, in second and third 

graphs this evolution over time is represented. Briefly, when the system is not available due to 

CM or PM modes, its age stays unchanged. The same dynamic is programmed for its defective 

proportion and this remains on each value at the time when the system is stopped. The 

possibility of defectives continuous to raise and stays around its maximum over time when the 

system status is equal to one. As soon as the system gets repaired, defect and demand rates step 

down and return to their initial value. This behavior is pointed out on the figure and confirms 

as good as the new assumption for both CM and PM actions with regard to maintenance. 

Following quality degradation in respect of the proportion of defectives, the demand rate reacts 

to perceived no-quality rates by lowering its rate to penalize the production system for such 

quality degradation. It should be pointed out that demand amounts stay unchanged during 

production interruptions (CM or PM) measures. 
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Figure 3.3 Evolution of system during simulation run in case one 

 

As it is illustrated in figure 3.3, the production rate is changing based on HPP assumptions. 

Since the finished product inventory is not reached to its threshold after PM action, the 

production rate hits the system’s maximum capacity. By compensating whatever has been 

consumed in the finished product inventory during the maintenance period and having the level 

of Z in the inventory, the system starts to produce as much as demand values. Production 
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system adjusts itself by some minor reductions in a periodic review manner. Mentioned minor 

production drops are pointed on the graphic as Adjusted Demand. In addition, the production 

rate is well-chasing breakdowns by turning to zero. It immediately reacts to the system’s 

unavailability, and available time by setting maximum capacity of the system on production as 

finished product inventory has dropped from the Z level. 

3.9.1.3 Experimental Design and Response Surface methodology 

With the intention of showing how the designed resolution approach functions with real data, 

a numerical example is presented in this section. Furthermore, this numerical example is 

compared with the case of no preventive maintenance manufacturing to distinguish its 

contributions in a better way. Mentioned comparison has measured the reaction of the 

production system in terms of its average net revenue and likewise, its extent of reaction in Z 

and F metrics.  

 

3.9.1.4 Response surface methodology and numerical example 

In the present part, the experiments for various possible combinations of decision variables (Z, 

F, Mk) are performed and the observed behavior of the response, which is the total net revenue, 

has been verified. With the aim of examining the interactions of decision variables, three 

decision factors are varied at three levels each. Therefore, for a complete experiment, this has 

led to performing 3ଷ, or 27 tests. 

To have better accuracy and secure that the steady-state of the experiment is reached in the 

simulation run, 2 replications are performed, leading to a total of 54 tests of 240 000 units of 

time (hour) each simulated by with Arena software of simulation. It is important to point out 

that the order of the experiments is executed in an absolute random manner. The inputs used 

to calculate the total net revenue and parameters of the simulation are shown in the table 3.1. 
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Table 3.1 Numerical example of the experiment for the case one 

Umax D0 P0 Pr MTTF MTTR MTPR Cinv Cs Cins Crej Cnq Ccm Cpm 

190 150 7.5% 100 96 10 5 2 50 10 5 400 1000 900 
    Weibull Exponential        

 

 

The quality degradation function is tailored with P0= 0.075, 𝛾௤= 2.0, λ௤=2*10-2 and η = 0.315. 

Therefore, while the production system is now or repaired by CM or PM actions, the defect 

proportion is implemented in a way that produces a minimum 7.5 % possibility of defectives. 

Further, according to equation 3.11, without any fraction of quality inspection (In the case of 

having F, as a decision variable, equal to zero) this proportion will reach no more than 39% 

when the machine is aging, making sure demand function has always positive amounts. 

 lim୲→ஶ ቀ0.075 + 0.315൫1 − eି୲మ൯ቁ = 0.39 

 

(3.12) 

With the aim of displaying the relationship between operations and quality/ reliability of the 

system in this study, Weibull distribution is utilized to describe failures of the production 

system. According to Bouslah, Gharbi et al. (2018), mentioned distribution is among the most 

compatible statistical models for fitting nonlinear patterns. Therefore, the Weibull distribution 

is tailored with the scale parameter (λ) of 160000 to have less concentration and the shape 

parameter (k) of 2, resulting in the mean of 96. In other words, the production system faces 

breakdowns (MTTF) with an average of every 96 time units (hours in this case). 

Different levels of the decision factors (F, Z, Mk) used in the experimental design are presented 

in the table 3.2 as below: 

Table 3.2 Levels of decision factors in the experiment of case one 

Factor Low Middle High 

Factor_A (F) 0,08 0.19 0,3 
Factor_B (Z) 100,0 150,0 200,0 

Factor_C (Mk) 500,0 750,0 1000,0 
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In the analysis step and by considering a 5% level of significance, the analysis of variance 

(ANOVA) is conducted and for all acceptance number, the linear and quadratic effects of the 

decision variables (F, Z, Mk) and their interactions for the response variable (Average net 

revenue). 

 

 

Table 3.3 Analysis of variance for the PM condition in case one 

Source Sum of squares DDL Quadratic mean F Report Proba. 
A:Facteur_F 3,16746E7 1 3,16746E7 542,57 0,0000 
B:Facteur_Z 4,11385E7 1 4,11385E7 704,68 0,0000 

C:Facteur_ Mk 342007, 1 342007, 5,86 0,0198 
AA 1,04862E7 1 1,04862E7 179,62 0,0000 
AB 3,06079E7 1 3,06079E7 524,30 0,0000 
AC 395539, 1 395539, 6,78 0,0126 
BB 6,34239E6 1 6,34239E6 108,64 0,0000 
BC 227517, 1 227517, 3,90 0,0478 
CC 4035,04 1 4035,04 0,07 0,7939 

blocs 3563,22 1 3563,22 0,06 0,8060 
Total error 2,51031E6 43 58379,2   

 

 

Figure 3.4 illustrates the Pareto chart of standardized effects when the acceptance number is 

equal to 2. Considering quadratic factors, 8 factors out of 9 are statistically significant among 

with all 3 main decision variables. 
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Figure 3.4 Standardized Pareto chart for Average net revenue 

As a statistical measure of determining estimation power, R-squared of this experiment is equal 

to 97.97 percent with Standard error of estimate = 241,618 and Average absolute error = 

187,29. In addition, referring to the output of STATGRAPHICS software, and in order to find 

out optimal net revenue of the experiment as our main objective, respond surface function is 

equal to below: 

NetRevenue = 7234,42+13961,6*F+2,96376*Z 0,543817* Mk -77256,1*F2+ 103,18*F*Z - 

4,66827*F* Mk - 0,0734327*Z2 + 0,00391415*Z* Mk - 0,000293396*Mk2 

Accordingly, the response surface equivalent to this function is shown in the figure 3.5. 
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Figure 3.5 Contours of the estimated response area 

The total maximum net revenue obtained from the above quadratic function is equal to $ 

963.486 with the optimal production parameters of F=12.58%, Z=163.39, and M=565,622. 

that is to say, the production system has to execute an inspection plan with a complete 

verification in 12.58% of its manufacturing output and holding 163.39 of its finished product 

stock based on HPP threshold as well as doing a preventive maintenance job every 565.622 

produced parts to be able to reach an average 8903.4$ per hours. It is to mention that based on 

the figure above, there are some other local maximum points around the global optimum point. 

 

3.9.2 Comparative Study with no preventive maintenance execution (case one) 

In the previous section, it was assumed that PM policy is set to execute in periodic time bases 

to control operation dependent degradation of quality and reliability, taking place in the 

production system. Preventive maintenance maintains the initial system status based on 

determined stop periods to help the system acquire more in terms of revenue by slashing its 

costs. Mentioned costs are caused by excessive amounts of finished product inventory and 

fraction of the production output to inspect as both F and Z metrics attempt to control system 

unavailability and quality deterioration.  That is to say that preventive maintenance has to 

demonstrate its effectiveness when compared with the case that it doesn’t exist.  Thus an 
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experiment with the same assumptions but no M factor to execute PM policy is run to compare 

results as below: 

In order to be able to compare results, an experiment with 36 tests of 240000-time for 2 

decision variables (Z, F) is designed and executed with all significantly accepted factors both 

decision variables and their quadratic and other interacted factors. Compared results with the 

basic scenario are presented in table 3.4 as below: 

 

 

Table 3.4 Compared study summaries of case one 

Scenario Z Umax F D P0 MTTF Pr PM? Cins M Cinv Cs Cnq ANR 

Base 163,3 190 12,58 
% 150 7.5% 96 100 Yes 10 565,6 2 50 400 8903,4 

1 551,7 190 18,23 
% 150 7.5% 96 100 No 10 - 2 50 400 7643,8 

 

 

Just to make sure the results are significantly different in terms of average net revenue 

(dependent variable of the experiments) a t-test for difference of means is conducted for a 

sample of 30 for each scenario and H0 refused, indicating that obtained results are distinct. 

Thus, as the table clearly illustrates, by implementing PM policy, system invests less on 

keeping excessive stocks in finished product inventory. More interestingly, it consumes less 

amount of time and endeavor in inspection because PM actions make system condition better 

in terms of output quality. Furthermore, as the system faces less time of unavailability by dint 

of age-dependent PM audits, which take less time, the Z threshold is slashed dramatically. In 

summary, the above-obtained results have well justified the necessitate of having PM policies 

in such production systems which are subjected to quality and reliability degradation. 

3.10 Extended maintenance policy with respect to demand-responsive price (case 
two) 

On the contrary to the production system, discussed in the first case, preventive maintenance 

in the second case is subjected to a demand-dependent price function. According to this PM 

policy, the system is maintained upon getting through a determined price threshold. The price 
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function keeps reducing the price as much as demand drops in terms of quality degradation. 

According to this maintenance policy, both PM and CM (corrective maintenance) roll back the 

system to its initial condition which is considered as good as new state. A threshold in terms 

of system`s price conducts PM policy, denoted by 𝑝௞. Therefore, the discrete-state stochastic 

variable of PM can be defined in the equation 3.13 as below: 

 𝑃𝑀 = ൞𝑁𝑜                   𝑖𝑓 𝑝௥௜ < 𝑝௞𝑦𝑒𝑠                 𝑖𝑓 𝑃௥௜ = 𝑝௞  

(3.13) 

According to the above function, the passing threshold will make the system to conduct PM 

policy. For the prices less than 𝑝௞, the system would experience CM actions, denoted by 0 or 

being available which is denoted by 1 in system status variable.  

3.10.1 Resolution approach 

Following the approach utilized in case one, current problem-solving methodology comprises 

a simulation model, experimental design and the response surface methodology as well.  

 

3.10.1.1 Simulation based approach of optimization 

Likewise to all three chased steps of the case one, the approach of optimization starts with 

problem formulation as below: 

 𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒         𝑁𝑒𝑡 𝑅𝑒𝑣𝑒𝑛𝑢𝑒 (𝑍,𝐹,𝑃௞ ) 𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:               0 ≤ 𝐹 ≤ 1 

 

(3.14) 

Thereby, the optimal solution is reached with three factors of the finished product inventory to 

hold, the percentage of non-stop inspection and finally the price threshold for PM execution. 

As the second step, simulation modeling is presented as below figure to distinguish minor 

differences of the current discrete-continuous model with the one explained in case one. Since 

both cases carry out preventive maintenance approaches with two different regards toward the 

system age and the system dynamic pricing, block 4 in the current case (figure 3.6) has been 
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modified to well address dynamic pricing matter by updating its value in block 4 and ordering 

for the next PM when it attains to Pk threshold. However, quality and reliability degradation 

are still dependent on the cumulated number of produced parts since the latest breakdown. 

Consequently, such assumptions are remained intact in blocks 1, 2 and 5. It should be 

emphasized that either HPP or uneased inspection policies are functioning the same way case 

one does in blocks 3 and 6, making sure the only difference between the functionality of 

systems is about their PM comportment. 
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For the purpose of adhering step 3 in so far explained simulation-based approach of 

optimization, optimization is accomplished by launching Response surface methodology. 

Through this way, first decision variables were defined in STATGRAPHICS software along 

with the total number of experiments and later, the designed experiment of variables was 

evaluated with the main function to see if they have any significant interactions or not. 

Figure 3.6 Implementation logic chart of the integrated control policy in case two 
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3.10.2 Simulation validation in case two 

A sample of some important simulation run metrics are brought in the figure below to ensure 

all intended functionalities in terms of quality and reliability degradation, quality-responsive 

demand, demand-dependent sort of dynamic pricing, HPP and maintenance policies are 

running in a proper way. 

According to figure 3.7, the system status is well following what has assumed previously. It 

has taken 0 values in a time of CM breakdowns and 2 while the system is under PM 

maintenance measurements. At the same time, the production rate in the last graph is well 

responding to the system status with regard to demand and inventory positions during the time. 

Production rate gets demand values and adjusts itself to its decreasing rate when Z is reached 

in finished product inventory and at some points compensates any amount below Z by 

producing in maximum capacity for short time units (it is shown by u(t)= uMax). Additionally, 

as the quality degradation of the system is operation dependent, the evolution of AOQ as the 

final quality output of the system is well traced. This metric gets increased as long as system 

status is 1 (on time) and rolls back to its minimum (depending on F value) after each CM/PM 

action. For this reason, demand dynamic responds in a real-time way to AOQ amounts, 

decreasing its rate over time. Finally, by tracking demand degradation in respect of the 

proportion of defectives, the price function reacts to perceived demand reductions and lowers 

its price in a dynamic way to penalize the production system for such demand shortage, resulted 

from its quality degradation. Moreover, as such a way of price drops should guarantee the 

feasibility of production, the system just continuous until a determined threshold of price with 

the aim of recovering the system into its initial quality state. In other words, the system decides 

to choose between price reduction and preventive maintenance investments by determining its 

Pk threshold and then it commands for PM actions as they are well illustrated in the first graph. 

For CM actions, it could be interpreted that however system price is not reached to its minimum 

threshold, the system has faced breakdowns. 
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Figure 3.7 Evolution of factors during simulation run in case two 

 

3.10.3 Experimental Design and Response Surface methodology 

The functionality of resolution approached is examined, in this part, in order to well reveal 

how this approach deals with real data. Following the stated way in case one, a numerical 

example is conducted for various possible combinations of decision variables (Z, F, Pk) and 
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then the observed behavior of the response, which is the total net revenue, has been audited. 

To achieve what mentioned above, three decision variables are varied at three levels each. 

Therefore, for having a thorough experiment, this has led to performing 3ଷ, or 27 tests. 

Also, with the aim of having better accuracy and to make sure that the steady-state of the 

experiment is reached in the simulation run, 2 replications are performed, making a total 

number of 54 tests that each one has 240 000-time units (hour). All designed tests then got 

simulated by Arena software of simulation. The order of the experiments is conducted in an 

absolute random way. Below are the parameters of simulation tests: 

 
 

Table 3.5 Numerical example of the experiment for the case two 

Umax D0 P0 Pr MTTF MTTR MTPR Cinv Cs Cins Crej Cnq Ccm Cpm 

190 150 7.5% 100 96 10 2 2 50 10 5 400 1000 500 
    Weibull Exponential       

 

 

For responding functions of demand and price below, parameters are customized: 

 

 

Table 3.6 Sensivity metrics of the demand and price functions 

Kind 𝝀 𝜷 

Demand Function 2.25 0.88 

Price Function 1.1 0.99 
 

 

The quality degradation function is tailored with P0= 0.075, 𝛾௤= 2.0, λ௤=2*10-2 and η = 0.315. 

Therefore, the proportion of defectives will reach no more than 39% when the machine is 

aging, making sure demand function has always positive amounts. The proof is as below: 

 lim୲→ஶ ቀ0.075 + 0.315൫1 − eି୲మ൯ቁ = 0.39 
(3.15) 
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Identical to the first case, Weibull distribution is utilized to describe failures of the production 

system. This distribution is tailored with the scale parameter (λ) of 160000 to have less 

concentration and the shape parameter (k) of 2, resulting in the mean of 96. 

Three different levels of the decision factors (F, Z, Mk) used in the experiment are brought in 

the table 3.7: 

 

 

Table 3.7 Levels of decision factors in the experiment of case two 

Factor Low Middle High 

Factor_A (F) 0,01 0.08 0,15 
Factor_B (Z) 100,0 350,0 600,0 
Factor_C (Pk) 50,0 64,5 79,0 

 

 

For determining which decision variables are significant to the response variable (average net 

revenue) of the experiment, an ANOVA is conducted by considering a 5% level of 

significance. The intended analysis is conducted for all acceptance number, the linear and 

quadratic effects of the decision variables (F, Z, Pk) and their interactions.  
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Table 3.8 Analysis of variance for the PM condition in case two 

Source Sum of squares DDL Quadratic mean F Report Proba. 
A:Facteur_F 2,27725E7 1 2,27725E7 51,34 0,0000 
B:Facteur_Z 9,55865E7 1 9,55865E7 215,51 0,0000 

C:Facteur_ Pk 1,88242E6 1 1,88242E6 4,24 0,0455 
AA 9,81541E6 1 9,81541E6 22,13 0,0000 
AB 1,07029E8 1 1,07029E8 241,31 0,0000 
AC 1,56714E6 1 1,56714E6 3,53 0,0669 
BB 3,30541E7 1 3,30541E7 74,52 0,0000 
BC 39316,6 1 39316,6 0,09 0,7673 
CC 1,7724E6 1 1,7724E6 4,00 0,0493 

blocs 77,1373 1 77,1373 0,00 0,9895 
Total error 1,90719E7 43 443532,   

 

 

The figure 3.8 exhibits the Pareto chart of standardized effects for the Box-Behnken design. 

The acceptance number is equal to 2. Taking into consideration the quadratic factors, 7 factors 

out of 9 are statistically significant among with all 3 main decision variables. This is also 

traceable in the ANOVA table above with demonstrated probability columns.  

To statistically measure how strong our estimation is determining the response variable, the R-

squared of this experiment is calculated and is equal to 93.48 %. 

 

Figure 3.8 Standardized Pareto chart for Average net revenue 

 in case two 
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Besides, in reference to the analysis performed by STATGRAPHICS software, predicted 

response surface function is equal to below: 

NetRevenue = -1554,52 - 28337,6*F + 9,10348*Z + 202,69* Pk - 184573,*F2 +100,728*F*Z  

+ 251,757*F*Pk - 0,0185024*Z2 - 0,00932004*F* Pk - 1,82791* Pk 2 

Above function is able to estimate the optimal maximum point for the response variable by 

putting the optimized value of decision variables. As a consequence, the respond surface 

equivalent to this function is shown in the figure 3.9 as below: 

 

Figure 3.9 Contours of the estimated response area in case- 

two 

 

It is apparent that the total maximum net revenue attained, is equal to $ 5546.23 with the 

optimal parameters of F=10.9%, Z=528,43 , and M=61,63. Put another way, the production 

system has to run an inspection plan with 12.58%  complete verification of what produces and 

retain 528.43 of its finished product inventory as well as performing a periodic preventive 

maintenance job after meeting the dropped price of 61.63$. The explained policy is able to 

provide an average net revenue of 5546.23$ per hours.  Above figure has demonstrated global 

optimal point and other local optimums in its vicinity.  
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3.10.4 Comparative Study with no preventive maintenance implementation (case 
two) 

In this part, with the aim of evaluating estimated contributions of case two, a PM excluded 

case with identical input and functionality is examined to find out if discussed resolution 

approach and especially PM actions are statistically able to make any sense in terms of 

contribution or not.  To carry out this comparison, an experiment with 36 tests of 240 000-time 

for 2 decision variables (Z, F) in three different levels is designed and executed. Accordingly, 

this experiment is conducted with the explained simulation based approach of optimization. It 

is to note that all factors (decision variables and their quadratic and other interacted factors) 

have been statistically significant, resulting to a policy with Z=591.1 and f=14.41% as a case 

with the demand-responsive function of pricing but no PM measurements. Compared results 

with the basic scenario are presented in the table 3.9 as below: 

 

 

Table 3.9 Compared study summaries of case one 

Scenario Z Umax F D P0 MTTF Pr PM? Cins M Cinv Cs Cnq ANR 

Base 528,4 190 10,9
% 150 7.5% 96 100 Yes 10 61,63 2 50 400 5546,2 

1 591,1 190 14,47 
% 150 7.5% 96 100 No 10 - 2 50 400 4786,7 

 

 

To do so, a t-test for difference of means is conducted for a sample of 30 for each scenario and 

H0 refused, indicating that obtained results are distinct in terms of average net revenue.  

According to summarized information in the table above, implementing PM policy in the 

system results in less maintaining of excessive stocks in finished product inventory. More 

interestingly, by executing PM actions, the system consumes less amount of time and endeavor 

in inspection because PM actions bring systems as good as new condition, sooner. Further, as 

the system faces less time of unavailability by dint of price-dependent PM audits, which take 

less time Z threshold is slashed dramatically. Finally, the difference in average net revenue can 

be interpreted with the nature of the price threshold as it blocks any sales less than Pk during 
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run times. However, it is possible to go below Pk in no PM case.  In summary, the above-

obtained results have well justified the necessitate of having PM policies in demand-dependent 

pricing schemes. 

 

3.11 Conclusion 

The joint policies, concerning production-inventory control and preventive maintenance 

measurements, have not been enough studied in the presence of quality-dependent demand and 

dynamic pricing, which are absolutely essential in today`s customer and vendor relations. 

Hence, this study has contributed on relaxing constant demand and age based quality and 

reliability degradation assumptions by introducing a quality dependent demand dynamic and 

operation dependent degradation. In other words it is a study on the joint design of two separate 

cases in production, quality control and preventive maintenance in unreliable manufacturing 

systems subject to operation-dependent degradation, where the production control policy 

comprises of a modified hedging point policy and quality control is performed by a fraction of 

the production output. Two mathematical models have been developed to explain the dynamic 

of production, inventory, quality control, degradation, demand, and pricing. System constraints 

were defined to calculate the overall incurred cost. Because the optimal solution cannot be 

reached due to the stochastic complexity of the model, a resolution approach based on 

experimental design with simulation and Response Surface methodology is proposed to 

optimize hedging point level and inspection fraction. By presenting two numerical examples 

and comparing them with an excluded condition, important impact of developed integrated 

policies in production, quality, and PM on average net revenue function illustrated. Demand-

dependent nature of pricing as a promotional mean of gaining customer in a competitive market 

extended in the second case, along with quality-dependent demand. As an interesting result, 

conducting PM actions leads to more net revenue due to the functionality of the system in 

response to resulting in less inspection and stock holding investments. Future research could 

be undertaken to investigate the studied context in the presence of absolute finished product 

inventory values. Another area for future consideration is about depending demand to more 

affecting factors such as deterioration in the context of lot-sizing and rectification actions.  
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CONCLUSION 

This research work made it possible to deal with the problem of control of unreliable 

production systems with quality-dependent demand. The main contribution of this study could 

be about introducing one of the very rare research studies in the context of manufacturing, 

concerning the dynamics of quality dependent demand in the existence of quality and reliability 

degradation in production systems. The objective was to find an optimal production policy 

which makes it possible to maximize the average net revenue (ANR) consisting of the gross 

revenue, the cost of holding inventory, the cost of shortage, the cost of inspection, the cost of 

no-quality and the cost of parts returned by the customer. This system consists of a single 

machine producing a single type of product with a rejection rate, subject to breakdowns and 

random repairs and a continuous quality control station where a fraction of production is 

controlled.  

The first chapter, devoted to a literature review, made it possible to situate our work in relation 

to others. In this chapter, we also discussed production systems and quality control techniques 

in general and presented the prospect theory fundamentals that was the focus of our study in 

the demand and price behaviour. We presented the problem statement, the research objectives 

and the adopted methodology which are a combination of the research approach. 

In Chapter 2, the production unit consists of a single machine producing a single type of part. 

No preventive maintenance action was considered in this chapter and the system was subject 

to the quality degradation and a quality-dependent demand which reacts to it. 

The mathematical model has been developed considering finished product inventory threshold 

(Z) and inspection proportion (F) rates and must satisfy a quality-dependent demand rate. We 

have shown that the optimal solution is of the critical threshold type, after having solved 

numerically the simulation-based approach of optimization. A sensitivity analysis validated 

these results. Also, considering delays in demand response, leaded the system obtain more in 

terms of the average net revenue. 

In the final chapter, we first implemented a mathematical model, considering preventive 

maintenance actions which deal with the quality-dependent demand behaviour. Then we used 

a simulation approach combined with experimental designs, variance analysis and response 
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surface methodology, to obtain the significant values that maximize the average net revenue. 

In the second case of this chapter, the production system is subject to preventive maintenance 

actions based on a dynamic price, effecting from the demand dynamics. In both mentioned 

cases, using PM policies resulted in less finished product inventory holding and quality control 

measurements. 

This research work has made it possible to deal with the production and quality control of 

unreliable production systems with the quality-dependent demand. We have also shown the 

importance of different PM policies on decreasing the quality and inventory investments. 

However, the field is open to extending this research work for example by considering a 

variable supply rate for the raw materials, using non constant levels of finished product 

threshold (Z), having rectification procedures, considering product deterioration integrating or 

adding series of two machines for one or two products. 

 

 



 

ANNEXE I 
 
 

SIMULATION MODEL OF A PRODUCTION SYSTEM, CASE OF CHAPTER 1 
WITH QUALITY RESPONSIVE DEMAND AND NO PREVANTIVE 

MAINTENANCE MEASUREMENTS 

 

 

Figure-A I.1 Simulation model with no preventive maintenance 
 

Figure-A II.1 Simulation model with no preventive maintenance 
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ANNEXE II 
 
 

SIMULATION MODEL OF A PRODUCTION SYSTEM, CASE OF CHAPTER 2 
WITH QUALITY RESPONSIVE DEMAND AND PREVANTIVE MAINTENANCE 

MEASUREMENTS BASED ON CUMULATIVE PRODUCED PARTS, CASE 1 

 
Figure-A III.1 Simulation model with age-based preventive maintenance 



 

ANNEXE III 
 
 

SIMULATION MODEL OF A PRODUCTION SYSTEM, CASE OF CHAPTER 2 
WITH QUALITY  RESPONSIVE DEMAND AND DEMAND RESPONSIVE PRICE, 

CASE 2 

s 
Figure-A IV.1 Simulation model with price-based preventive maintenance 
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