

Clustering Algorithms for Dynamic Adaptation of Service
Function Chains

by

Imane EL MENSOUM

MANUSCRIPT-BASED THESIS PRESENTED TO ÉCOLE DE
TECHNOLOGIE SUPÉRIEURE IN PARTIAL FULFILLMENT FOR A

MASTER’S DEGREE WITH THESIS IN CONCENTRATION
TELECOMMUNICATION NETWORKS

M.A.Sc

MONTRÉAL, DECEMBER 5, 2019

ÉCOLE DE TECHNOLOGIE SUPÉRIEURE
UNIVERSITÉ DU QUÉBEC

 Imane EL MENSOUM, 2019

This Creative Commons allows readers to download this work and share it with others as long as the author is

credited. The content of this work cannot be modified in any way or used commercially.

BOARD OF EXAMINERS

THIS THESIS HAS BEEN EVALUATED

BY THE FOLLOWING BOARD OF EXAMINERS

Mrs. Nadjia Kara, Thesis Supervisor
Département de génie logiciel et des TI, École de technologie supérieure

M. Aris Leivadeas, President of the Board of Examiners
Département de génie logiciel et des TI, École de technologie supérieure

M. Abdelouahed Gherbi, Member of the jury
Département de génie logiciel et des TI, École de technologie supérieure

THIS THESIS WAS PRESENTED AND DEFENDED

IN THE PRESENCE OF A BOARD OF EXAMINERS AND THE PUBLIC

ON DECEMBER 2, 2019

AT ÉCOLE DE TECHNOLOGIE SUPÉRIEURE

Algorithmes de mise en grappes pour une adaptation dynamique des chaînes de
services

Imane El MENSOUM

RÉSUMÉ

La virtualisation des fonctions réseau est l’un des paradigmes les plus adoptées dans les
architectures réseau d’aujourd’hui, car elle offre entre autres une meilleure gestion des
ressources, ainsi qu’une maintenance flexible des services déployés sur des ressources
partagées dans des environnements en nuage.

Les fonctions réseau traditionnellement hébergées sur du matériel dédié sont désormais
fournies comme des composantes logicielles, pouvant s'exécuter soit sur des machines
virtuelles, soit sur des conteneurs. L'avantage majeur de cette transition c’est qu'elle facilite
le déploiement des nouveaux services tout en optimisant le temps de gestion et
d’administration des architectures réseau. Il est beaucoup plus facile de créer une nouvelle
machine virtuelle/conteneur qui hébergera une fonction de réseau /service ou une application
spécifique décrite sous forme de chaîne de services que de déployer un nouvel équipement
matériel et de vérifier sa compatibilité avec le reste de l’architecture mise en place.

Avec tous les avantages qu’offre ce nouveau paradigme se présente un ensemble de défis
principalement liés à : 1) l’optimisation de la consommation de ressources sur l'infrastructure
partagée 2) la prise des meilleures décisions d'ordonnancement et de placement des fonctions
virtuelles tout en respectant les exigences des clients ainsi que les ressources disponibles sur
le réseau physique exprimées par différentes métriques (ex., CPU, mémoire, latence, bande
passante, etc.)

Ce concept de la virtualisation des fonctions réseau (Network Function Virtualization –
NFV), et plus spécifiquement du placement des chaines de services (Service Function Chains
- SFC) a été traité dans de nombreux travaux de recherche proposant des approches
garantissant un placement et un routage optimaux des fonctions de réseau virtualisées
(Virtual Network Function – VNF) dans des réseaux physiques partagés, mais comme
l’adoption de la virtualisation prend de plus en plus d’envergure et vu les exigences de plus
en plus strict des applications d’aujourd’hui (ex., applications hautement sensibles à la
latence, à la disponibilité de service, etc.), il est toujours important de considérer tous les
paramètres ayant un impact sur la gestion du réseau dans les environnements Infonuagique.

Dans la cadre de ce projet de recherche, nous avons développé de nouvelles approches, pour
le placement et le routage des fonctions réseau virtuelles dans des environnements
Infonuagique. La première approche permet de former à la demande des grappes de serveurs
déployés dans une l'infrastructure physique. Ces serveurs sont regroupés en fonction
d'attributs similaires (ex., serveur à usage intensif en CPU, serveur efficace en énergie, etc.).

 VI

Ce processus constitue une mesure proactive permettant de s'assurer que les SFCs sont
hébergées dans des serveurs garantissant leurs exigences en termes de métriques spécifiques
(CPU, mémoire, disque…). Il utilise une méta-heuristique appelée CRO (Chemical Reaction
Optimization) pour décider du meilleur placement des VNF garantissant une consommation
de ressources optimale en termes de CPU / mémoire mais assurant également les latences les
plus faibles lors du routage entre les différentes VNF, ce qui est un aspect important à
considérer, car la plupart des applications actuelles demandent des latences faibles et des
temps d’exécution les plus courts possible. Dans la deuxième approche, les grappes sont
formées à l'aide d'algorithmes basés sur des méta-heuristiques, notamment le CRO,
permettant d’améliorer la qualité des grappes constituées en termes de similarité, densité et
modularité.

Mots-clés : virtualisation des fonctions réseau, chaines de services, méta-heuristique,
allocation des ressources.

Clustering Algorithms for Dynamic Adaptation of Service Function Chains

Imane El MENSOUM

ABSTRACT

Network function virtualization is a pillar-stone of today’s network architectures as it offers
better management and elasticity and allows also a flexible maintenance of services running
on shared resources over cloud environments.

Network functions traditionally hosted on dedicated hardware are now provided over
software based components that might run either on virtual machines or on containers. The
major advantage of this transition is that it makes the deployment of new services easier
while optimizing the management and administration of network architectures. It is much
easier to spin up a new virtual machine/container hosting a network function or a specific
application described as a service function chain, than to deploy a new hardware based
equipment and checking its compatibility with the rest of the architecture.

With all the advantages that this new paradigm offers comes a set of challenges related
mainly to: 1) optimizing the resource consumption on the shared infrastructure 2) making the
best decision of placing the virtual functions that respects at the same time clients’
requirements and also leverages the available resources on the substrate network in terms of
different metrics (e.g., CPU, memory, latency, bandwidth).

This aspect of Network Function Virtualization-NFV and Service Function Chains-SFC
placement have been treated in so many research works that propose approaches ensuring
optimal placement and chaining of VNFs in virtualized networks, but as the adoption of these
technologies gets more important in real network setups, and given the strict restrictions of
today’s’ applications (e.g. latency highly-sensitive applications, or availability highly-
sensitive service, etc.), it is always important to consider all the parameters impacting the
network management in cloud environments.

In this research project, we develop new approaches for placement and chaining of virtual
network functions in cloud-based environments. The first approach allows forming on-
demand clusters of servers deployed in a physical infrastructure. These servers are grouped
according to their similar attributes (e.g., CPU-intensive server, energy-efficient server, etc).

This process is a proactive measure to ensure that SFCs are hosted in servers that meet their
specific metrics requirements (CPU, memory, disk, etc.). It employs a meta-heuristic called
CRO (Chemical Reaction Optimization) to decide of the best VNF placement guaranteeing
optimal resource consumption in terms of CPU / memory. We employ CRO also to ensure
the lowest latencies during the routing between the different VNFs. In fact, the E2E delay is
an important aspect to consider, as most current applications require low latencies and
shortest run times. In the second approach, the clusters are formed using algorithms based on

 VIII

meta-heuristics, including the CRO, allowing to improve the quality of clusters formed in
terms of similarity, density and modularity.

Keywords: Network function virtualization, Service function chains, metaheuristic, resource
allocation.

TABLE OF CONTENT

Page

INTRODUCTION …………………………………………………………………………..1

CHAPTER 1 LITERATURE REVIEW ..0

CHAPTER 2 MuSC: A Multi-Stage Service Chains Embedding Approach5
2.1 Abstract ..5
2.2 Introduction ..6

2.2.1 Problem Statement .. 6
2.2.2 Contributions... 8

2.3 Related Work: ..9
2.3.1 VNF Placement and Chaining approaches: .. 10
2.3.2 CRO and GA Based Approaches: ... 12

2.4 Problem formulation: ...13
2.5 Algorithms: ..17

2.5.1 K-medoids Clustering process: ... 17
2.5.2 Overall Cluster-based SFC Placement and Chaining: 17
2.5.3 Metaheuristic Chaining approaches: ... 20

2.6 Experimental Setup and Results: ...41
2.7 Conclusion ...56

CHAPTER 3 VALKYRIE: A suite of topology-aware clustering approaches for
cloud-based virtual network services ..59

3.1 Abstract ..59
3.2 Introduction ..60
3.3 Context, motivation and system architecture ...63
3.4 Related work ..64
3.5 System model and problem statement ...69

3.5.1 Definitions and notations .. 69
3.5.2 Problem statement ... 69
3.5.3 VALKYRIE clustering model .. 71

3.6 CRO-based clustering approach ..73
3.6.1 CRO approach description .. 73
3.6.2 Molecule encoding .. 75
3.6.3 Initial population ... 76
3.6.4 Elementary reactions ... 77
3.6.5 Overall CRO-based clustering algorithm .. 80

3.7 Game Theory based approach ..82
3.8 Asymptotic analysis : ...86
3.9 Evaluation: ...87

3.9.1 Setup ... 88
3.9.2 Performance metrics ... 88

 X

3.9.3 Scenarios ... 89
3.10 Discussion and observations: ...90

3.10.1 Modular topology with variable connectivity degree 90
3.10.2 Random topology with fixed connectivity degree 95

3.11 Conclusion and future work ...100

CHAPTER 4 DISCUSSION OF THE RESULTS ..103

CONCLUSION and RECOMMANDATIONS ...105

APPENDIX A ……. ..117

BIBLIOGRAPHY ……. ..113

LIST OF TABLES

Page

Table 2.1 Simulation Setup for chaining ..47

Table 2.2 Simulation Setup for clustering ..50

Table 2.3 Simulation setup for placement ..51

Table 2.4 Heuristic comparison for chaining ...55

Table 2.5 SFC embedding performance comparison ...56

Table 3.1 Notation table ...71

Table 3.2 First Molecule encoding ...75

Table 3.3 Adopted molecule encoding ...76

Table 3.4 Degrees of connectivity in our scenarios ..89

Table 3.5 Number of outliers in modular topolgy ..99

LIST OF FIGURES

Page

Figure 0.1 Network Functions Virtualization Framework defined by ETSI3

Figure 2.1 Notations ...15

Figure 2.2 CRO Molecule Encoding ..22

Figure 2.3 Input Requests ...36

Figure 2.4 Molecule Encoding ...36

Figure 2.5 Comparison of E2E evolution for CGA, PGA and CRO43

Figure 2.6 Average E2E Delay for CGA, PGA and CRO ..44

Figure 2.7 Average run-time for CGA, PGA and CRO ...45

Figure 2.8 Average E2E delay for PGA and CRO ...46

Figure 2.9 Average Runtime for PGA and CRO by network size47

Figure 2.10 Average E2E Delay by network size for parallel CRO48

Figure 2.11 Rejection rate of SFC requests ..48

Figure 2.12 Node distribution according to energy levels ..50

Figure 2.13 Node distribution according to memory levels ...51

Figure 2.14 Comparison of number of used servers ...52

Figure 2.15 E2E delay comparison with and without clustering53

Figure 2.16 Run-time comparison of placement and chaining with and …………………

 without clustering ... 54

Figure 3.1 VALKYRIE for building virtual clusters for cloud and virtual network

 services .. 64

Figure 3.2 Preference cycle elimination process ..84

Figure 3.3 Clustering time for modular topology ...91

 XIV

Figure 3.4 Similarity values for modular topology ..92

Figure 3.5 Modularity values for modular topology ..93

Figure 3.6 Density values for modular topology ..94

Figure 3.7 Clustering time for random topology with fixed connectivity degree95

Figure 3.8 Similarity values for random topology with fixed connectivity degree96

Figure 3.9 Modularity values for random topology with fixed connectivity degree97

Figure 3.10 Density values for Random topology with fixed connectivity degree98

LIST OF ALGORITHMS

Page

Algorithm 2.1 Placement and chaining algorithm ..29

Algorithm 2.2 Molecules Generation ...22

Algorithm 2.3 Synthesis ...23

Algorithm 2.4 Inter-Molecule Ineffective Collision ...24

Algorithm 2.5 On-Wall Ineffective Collision ...25

Algorithm 2.6 Decomposition ..26

Algorithm 2.7 Min-Delay CRO ..28

Algorithm 2.8 Genetic Algorithm-Chromosome generation ..29

Algorithm 2.9 Priority-based Genetic Algorithm Crossover ..31

Algorithm 2.10 Genetic Algorithm-Mutaion ..32

Algorithm 2.11 Genetic Algorithm Decodning ..32

Algorithm 2.12 Min-Delay Priority based GA ...34

Algorithm 2.13 CRO Placement Molecule Generation ..36

Algorithm 2.14 CRO Placement Decomposition ...37

Algorithm 2.15 CRO Placement On-Wall Ineffective Collision38

Algorithm 2.16 CRO Placement-Synthesis ..40

Algorithm 2.17 CRO based plcement ...41

Algorithm 3.1 Molecule generation ..77

Algorithm 3.2 On-wall ineffective collision ...78

Algorithm 3.3 Decomposition ..79

 XVI

Algorithm 3.4 Synthesis ...80

Algorithm 3.5 Over-all CRO algorithm for clustering ...82

Algorithm 3.6 Preference list computation ...83

Algorithm 3.7 Irving algorithm ..84

Algorithm 3.8 Clusters improvement and forming ...86

LIST OF ABREVIATIONS AND ACRONYMS

CPU Central processing unit

CRO Chemical Reaction optimization

DC Data Center

DS Data Set

E2E End to End delay

E-GT Enhanced Game theory

GA Genetic Algorithm

GT Game Theory

ILP Integer Linear Programming

MANO Management and Orchestration

NFV Network Function Virtualization

SDN Software Defined Networks

SFC Service Function Chain

SLA Service Level Agreement

SLO Service Level Objective

VNF Virtual Network Function

LIST OF SYMBOLS AND UNITIES OF MEASURE

ms millisecond

us microsecond

s second

CHAPITRE 1

INTRODUCTION

0.1 Context:

Today’s networks are getting more complex due to the increasing demand of

connectivity and speed rates by the consumers. The diversity of offered applications and

services that are bandwidth intensive and that require important computation capabilities

implies important evolutions in the network’s architecture.

 Networks today should be able to support multiple protocols, access technologies and

different service layers. With all these complex needs and demands, it is getting harder for

legacy networks to satisfy all these requirements along with ensuring an effective network

management. Therefore, the adoption of virtualization techniques and software based

networks becomes a must.

Network function virtualization (NFV) is an emerging concept that attracts increasing

attention in the industry. NFV offers much more agility and flexibility to the network

allowing easier software updates, resource adjustment and scalable changes in the

configuration of the services. Network functions traditionally delivered on hardware and

purpose-built platforms can now be provided through virtual resources which are called

Virtual Network Functions (VNFs) and are hosted over shared physical network

infrastructures.

Moreover, functions built on proprietary dedicated hardware are usually hard to upgrade,

integrate and deploy over already built-up environments. This complexity is mainly due to

compatibility issues coming from the use of different equipment manufacturers and vendors.

Thus, using network functions as software components would help to improve the process of

VNF deployment and the management cycle.

 2

It would avoid having to check whether or not a function is compatible with the rest of the

network’s physical parts. In fact, VNFs are hardware independent which helps to reduce the

maintenance costs that can increase drastically in case of major upgrades in the network

infrastructure.

As defined by the European Telecommunications Standards Institute (ETSI) in Figure 0.1,

the overall framework for NFV is composed of three main domains:

• The NFV infrastructure represents the combination of hardware and software resources

which form the platform on which the VNFs would be deployed and run. The physical

resources can be either storage nodes (servers) or network nodes like switches and

routers providing the processing, storage and connectivity requirements to ensure the

good functioning of virtual components.

• VNFs Virtual Network Functions: representing the software entities that implement the

network functionalities over the NFV infrastructure. A network block might be

instantiated over a single VM or multiple ones, a VNF can also have as many replicas as

needed for resiliency constraints and to ensure the continuity of the service in case of

hardware (servers) breakdown.

• NFV MANO Management and orchestration: This domain is responsible of the

orchestration and management of the physical resources allocation as well as the virtual

entities management during their lifecycles.

3

Figure 0.1 Network Functions Virtualization Framework
Taken from ETSI GS NFV 002 (2012, p.10)

With all the benefits that this framework offers, shifting to virtual based networks faces an

important number of challenges. The main concerns are in terms of placing those virtual

components, ensuring their interoperability and maintaining the quality of service at a good

level. Hereby, we refer mainly to the NFV MANO orchestration and management, which is

the targeted layer in this research project.

0.2 Problem Definition:

Combining Network Function Virtualization (NFV) and Software Defined Networks (SDN)

concepts can bring many benefits in terms of automation, flexibility and agility in network

management which justifies the keen interest they’re getting in the IT sector. However, these

new paradigms are a doubled-edged sword because they also come with serious challenges.

Shifting from legacy networks where every component of the network is a hardware entity to

a virtual environment where functions are bricks of software programs is challenging. This

transition requires a good management over the hosting servers so as to avoid wasting

computation resources, storage capacity and energy consumption. The concrete deployment

 4

of these virtual instances is a delicate task that is hindered by a set of technical issues some of

them are related to: 1) how to efficiently place, readjust and schedule the VNFs of a certain

network and 2) how to ensure that while doing this placement we make sure of the effective

use of resources in the substrate network, whether in terms of storage and processing

capacity, Service Level Objective (SLO) and/or energy consumption.

So, it comes back to finding a tradeoff between ensuring that all the VNFs instances are

deployed with respect to the client requests and requirements. It is also important to optimize

the use and the exploitation of the physical resources, so as to guarantee this promise of

NFV/SDN paradigm to reduce the costs of network deployment and management.

These issues are considered as intriguing research questions and many contributions in the

literature have been made to address them, which mainly focus on: 1) the placement of

VNFs where the goal is to find the optimal set of servers to host all the incoming VNFs

requests along with optimizing the consumption of hardware resources; 2) the service chains

routing which is more related to the chaining between the set of VNFs composing a single

SFC (both joint and non-joint placement and chaining might be considered). The chaining

process guarantees low latencies, reduces the execution time to find the paths and minimizes

the response time to clients’ requests.

Even though many research works ((Mechtri et al.2016), (Pham et al.2018), (Khebbache et

al.2018), (Draxler et al.2018), (Wang et al.2017)) have targeted this matter, there is still room

for improvement and to overcome the limitations of existing solutions described in the

literature.

Given the different parameters that may impact the quality of the placement and chaining

decisions, it is usually hard to find a certain tradeoff between these several metrics (e.g.

Energy, Memory, CPU, Delay, bandwidth, etc). The actual contributions reduce the

complexity of this optimization problem by only selecting few metrics and do not take them

all into account. Another aspect in the research works we have studied is that usually the

5

resource status is considered to be a static value, while in real case scenarios, the available

resources in the network dynamically change, the same goes for the workload that evolves

also continuously. The dynamic aspect of resource adaptation and traffic rates are important

aspects that should also be considered while placing and chaining the virtual network

functions.

To tackle these problematics, we defined two main sets of approaches: The 1st is related to

clustering the substrate network into a set of on demand group of servers that are optimized

in terms of energy, memory, or CPU. The clustering process is also dynamic and groups

servers while optimizing similarity, modularity and density in these groups. This step is a

pre-processing phase that helps not only to include several optimized metrics in the process

of embedding SFCs, but also to reduce the search space for the 2nd set of approaches, which

is related to placement and chaining. This 2nd track of our research is about the joint or non-

joint placement and chaining of VNFs using evolutionary heuristics like the chemical

reaction optimization and the genetic algorithms, these techniques will be further explained

in the present report.

To the best of our knowledge none of the actual research works apply CRO-based joint (that

optimizes both placement and chaining at the same time) or non-joint (that performs

placement first then chaining after) algorithms on a set of pre-clustered substrate network to

optimize resource consumption and reduce Service Level Agreement (SLA) violations as

well. Moreover, no research work has been done actually to apply graph-based clustering

technique in cloud-based environments and all the graph-based clustering papers we studied

are more related to data analysis or community detection in social networks.

0.3 Objectives:

The main objectives of this research project are to develop two algorithms that might be

integrated in the NFV management layer in order to classify the network in terms of physical

 6

resources and optimally place and chain incoming SFC requests. The output of these

algorithms should provide:

1. Homogenous groups of servers clustered together and have high similarities between

them in terms of the selected attributes (e.g. Energy, Memory, CPU…) and with no

outliers (servers that are not assigned to any cluster).

2. Dense clusters that are highly connected to ensure low latencies within the same group

of servers and avoid violating the agreement in terms of delay/bandwidth.

3. Continuous adaptation of the clustering based on the variations of the resources on the

servers and the workload state.

4. Optimal placement of the virtual network functions that ensure the respect of the clients’

requests in terms of physical resources as well as avoiding resource wastage and over-

provisioning in the physical infrastructure.

5. Optimal chaining of VNFs in the same SFC so as to respect the agreements in terms of

delays and reduce the SLO violation.

0.4 Methodology:

As explained in the previous section, this project is divided into two major research tracks:

a. SFC Placement and chaining:

The first track concerns the definition of a heuristic approach for placement and chaining of

virtual functions in cloud-based environments. The overall procedure for placement and

chaining is is composed of three main steps. We start by classifying the network into groups

of servers that are similar in terms of their attributes (which could be either energy, memory,

7

CPU, etc) using Integer Linear Programming (ILP) model adapted from the model proposed

in (Abdul Wahab et al. (2019)). This proactive step ensures that the SFC requests will be

placed on the servers responding to their specified conditions in terms of CPU, energy, etc.

The clustering helps not only to satisfy the clients’ requests, but also to reduce the search

space for both phases of placement and chaining and thus reduce the overall execution time

for our algorithm. Once this pre-processing phase is performed, we execute the CRO and GA

heuristics to place the VNF components in a way that guarantees the SFC request but also

optimizes the physical resource consumption in the provider’s physical network. The last

step is to ensure the chaining between the set of VNFs belonging to the same SFC, we used

also CRO and GA heuristics for this step. The goal of the chaining is to ensure that the

minimum end to end delay specified as an input by the client is respected. This is a non-joint

placement and chaining approach. We also develop a CRO-based joint placement and

chaining approach that is out of the scope of this thesis.

b. Clustering of the substrate network:

The second track is related to the dynamic clustering of the substrate networks. The aim of

this work is to classify the servers in the substrate graph not only based on their attributes

(e.g. CPU, Energy, memory...), but also based on the connectivity and the links between

them. In this way, we ensure that not only servers in the same cluster are optimized in terms

of the selected attributes, but their connectivity avoids violating the clients’ requirements in

terms of delay once the SFCs are deployed.

We developed a CRO-based approach to solve this graph-based clustering problem. We

compared it with Game theory approach as well with optimal solution that considers the

similarity between servers as well as the modularity which is the measure that ensures high

density and connectivity between servers in the same cluster.

 8

The clustering procedure is to be applied at the initialization phase of substrate network

deployment but should be invoked at regular basis as the resources on the physical servers

are continuously changing.

0.5 Technical Contributions:

The main motivations behind this work are to improve the management of resources in

cloud-based environments while guaranteeing SLO as well as efficient and effective

consumption of physical resources.

The project was divided in two major sets like we described in the Methodology section. The

main contributions of this thesis are then:

1. Development of a multi-stage technique for SFCs placement and chaining: This was the

subject of our first article entitled “MuSC: A Multi-Stage Service Chains Embedding

Approach” accepted for publication in Journal of Network and Computer Applications,

October 2019. In this joint research work, the main contribution of Miss Imane

ElMensoum is the definition of ILP model adapted from the model defined in (Abdul

Wahab et al. (2019)) and the development of non-joint CRO-based and GA-based

placement and chaining approaches. The detailed description of this approach is

presented in Chapter 2. A joint CRO-based and GA-based placement and chaining

approaches have been also developed by Miss Imane El Mensoum. This contribution

was submitted to IEEE Transactions on Services Computing. This work is out of the

scope of this report.

2. Our second research contribution studies the graph-based clustering of substrate

networks in order to host service functions chains. This second track was the subject of

our second article entitled “VALKYRIE: A suite of topology-aware clustering

approaches for cloud-based virtual network services” submitted to IEEE

TRANSACTIONS ON CYBERNETICS Journal in October 2019. In addition, this

9

second approach was subject to a provisional patent application filled by the Patent Unit

of Ericsson Canada to the United States Patent and Trademark Office (USPTO) in

October 2019. In this joint research work, the contribution of Miss Imane El Mensoum is

the development of CRO-based clustering technique that was compared to Game theory-

based approach and optimal solution. You will find the article describing this approach

in Chapter 3.

El Mensoum, I., Abdul Wahab, O., Kara, N., & Edstrom, C. (2019). MuSC: A Multi-Stage
Service Chains Embedding Approach. Accepted for publication in Journal of Network
and Computer Applications.

Lahlou, L., El Mensoum, I., Kara, N., & Edstrom, C. (2019). ARTIMIS: A chemical

Reaction OptiMization approach for delay sensitive virtual network services. Submitted
to IEEE Transactions on Services Computing, October 2019.

El Mensoum, I., Lahlou, L., A. Khasawneh, F., Kara, N., & Edstrom, C. (2019).

VALKYRIE: A suite of topology-aware clustering approaches for cloud-based virtual
network services Submitted to IEEE TRANSACTIONS ON CYBERNETICS Journal,
November 2019.

El Mensoum, I., Lahlou, L., A. Khasawneh, F., Kara, N., & Edstrom, C. (2019).

VALKYRIE: A suite of topology-aware clustering approaches for cloud-based virtual
network services, Application Patent reference number P79104, October 2019

0.6 Thesis Organization:

The present thesis is structured by article, so we start first by a general literature review and

then we include two distinct chapters to describe each of the pre-mentioned contributions.

In each of these chapters, we present a more detailed literature review related to the research

tracks followed by the approach description, the used algorithms and the obtained results and

their analysis. Chapter 4 is dedicated to an overall discussion of the results for both

considered research matters, and last the conclusion and future work are discussed in the last

section.

CHAPTER 1

LITERATURE REVIEW

Virtualization of network functions is a promising concept that attracts both cloud providers

and also industry stakeholders, as it allows them to gain more flexibility to deploy new

service function chains and also reduces the costs of instantiating and maintaining the overall

quality of the offered service. With the arise of new technologies like 5G and IoT, it is of a

great importance to ensure that this swap to virtualized infrastructures will be capable of

respecting the requirements in terms of physical resources as well as SLO which are key

performance indicators for every client’s request.

Given all these challenges, many research works have targeted this field to tackle the

resource management issue in cloud-based environments, and proposed approaches to deploy

these SFCs with respect to the clients’ requirements while at the same time optimizing the

overall consumption of resources.

In this section, we will describe some of the previous research works that have treated the

issue of service function chains embedding in cloud-based environments and analyze the

proposed approaches aiming to optimize the resource consumption and improve the overall

QoS of the offered service.

Most of the studies focus mainly on the optimal placement and chaining of virtual

components of SFCs. The proposed works usually first apply the placement of VNFs

followed by their chaining (non-joint placement and chaining).

This non-joint approach impacts the execution time of the full process, we propose in our

approach to apply clustering as a pre-processing phase that helps us optimize the execution

time as the substrate network is divided into a set of efficient clusters which makes the search

space smaller for our metaheuristic-based algorithms designed for placement and chaining.

1

For instance, (Pham et al, 2018) proposes a non-joint placement and chaining approach to

solve the problem using sampling-based Markov approximation combined with matching

theory. To consider both operational and traffic costs (meaning physical resources

consumption and bandwidth/delay costs). The authors propose a weighted summation as an

objective function where the weight set for each cost is defined by the provider and can be

adjusted to achieve the targeted tradeoff. The approach presented in this article is based on a

two-stage algorithm where the first step consists of finding the optimal set of servers to host

the VNFs and then the second consists of placing them in a way to minimize the total cost,

which means that the placement and chaining are performed in a sequential scheme and not

in parallel.

In (Khebbache et al 2018), the authors propose a metaheuristic based on genetic algorithm

NSGA-II to find Pareto optimal fronts that respect the considered metrics and find near

optimal tradeoffs. As objective functions, the authors consider both the mapping cost in

terms of resource utilization on hosting nodes as well as link resource consumption.

In (Khebbache et al 2017), the authors formulate the same problem in two approaches. The

first one considers an exact mathematical model to solve the case of hosting SFCs composed

of a maximum of 3 VNFs, the model considers resource consumption in terms of link

utilization only. Obviously, this model cannot scale well with larger SFCs which is why the

authors propose a heuristic-based approach to solve bigger instances and improve the runtime

of the placement process of SFCs.

In (J.Pei et al 2018), the authors formulate the VNF chains placement problem as a Binary

Integer Programming model (BIP) where the objective is to minimize the embedding cost

that the authors define as the total of resource and placement costs. The resource cost

represents the remaining resources on links, nodes and VNF instances while the placement

cost represents the computing power, licenses fees and network utilization. As this problem

is widely known to be NP-hard, the authors propose two algorithms to optimize the VNF

placement. The first one is called SFC embedding Algorithm (SFC-MAP) used to place the

 2

SFC requests with a minimum cost. The 2nd proposed algorithm is the VNF-DRA (VNF

Dynamic Release Algorithm). As the network load has a dynamic nature it is important to

consider this aspect so as to release redundant instances and reduce both resource

consumption and running time. The VNF-DRA algorithm runs periodically and calculates the

rate of resource usage on each VNF if it is lower than a defined threshold, then the

considered VNF is either released or redirected, the threshold is computed based on the

network load. Moreover, the authors include the lifetime of instances to drive a decision, for

short lifetime SFC requests they’re left to expire by their own and thus release the previously

allocated resources to them. For long lifetime SFCs that are below the defined threshold, the

algorithm first checks if they’re not used at all they will be released and if they are lightly

used their corresponding workload will be redirected to another instance of the same VNF.

Although, the problem of placement and chaining of SFCs has been widely addressed in the

research area. The proposed approaches do not consider all the metrics that may impact the

quality of the placement. Research works tend to reduce the complexity of the problem by

defining objective functions only for specific metrics, and few of the studied works addressed

the dynamic aspect of resources, while in real network scenarios the workload as well as the

availability of resources are constantly changing and are also subject to peaks in some cases.

That is why this aspect is to be taken considerably when developing new techniques for SFCs

placement and chaining.

One way to reduce the complexity of the placement and chaining problem while at the same

time considering several metrics for optimization is to include the clustering in the process.

That is why we propose in our non-joint approach for placement and chaining of SFCs to use

the clustering as it helps to cover a set of metrics that are treated prior to receiving new

requests and reduce the runtime for the mapping of VNFs and their chaining.

Our approach is then capable of covering several metrics when performing the placement and

chaining of VNFs while at the same time optimizing the run-time of this process which is an

3

important factor especially in cloud environments, where the resources are constantly

changing, and decisions should be made as fast as possible.

To the best of our knowledge none of the actual proposed work has combined clustering

techniques to form highly connected and similar groups of servers in terms of their attributes

(energy, memory, CPU, etc,) with the placement and chaining procedures to cover more

metrics in the optimization process and reduce the resource consumption on the substrate

physical network. This is the reason why we were not able to compare our results to previous

research works and we made the comparisons only between our adopted heuristics (Genetic

Algorithm- GA, Chemical Reaction Optimization- CRO).

Moreover, most of the graph-based clustering techniques proposed in the literature are more

related to data analysis or community detection in social networks. Therefore, and to the best

of our knowledge, none of the actual research work define graph-based clustering technique

for SFC placement and chaining in NFV environments.

The next two chapters are dedicated to each of the proposed contributions described in

section 0.5. In each chapter, a more detailed literature review is described. The state-of-the-

art section of Chapter 2 reviews research works related to the placement and chaining

approaches while the literature review of Chapter 3 focuses on existing clustering

approaches.

CHAPTER 2

MUSC: A MULTI-STAGE SERVICE CHAINS EMBEDDING APPROACH

Imane El Mensouma, Omar Abdel Wahabb, Nadjia Karac, Claes Edstromd

a b c Department of Software Engineering and IT, École de Technologie Supérieure,

1100 Notre-Dame Ouest, Montréal, Québec, Canada H3C 1K3
dEricsson Canada, 8275 Route Transcanadienne, Ville Saint-Laurent, Québec,

Canada H4S 0B6

Paper accepted for publication in Elsevier Journal of Network and Computer
Applications, October 2019

2.1 Abstract

Network function virtualization is an emerging concept that is attracting increasing attention

in the industry because it offers high levels of agility and flexibility to the network allowing

easier software updates, resource adjustment and scalable changes in the configuration of the

services. Network functions traditionally delivered on hardware and purpose-built platforms

in legacy networks can now be provided through shared virtual resources called VNFs

(Virtual network functions) hosted over shared physical network infrastructures. Using

network functions as absolute software components would certainly improve the deployment

process and the management of the VNF life cycle. Since VNFs are hardware-independent,

there is no need to check whether or not a network function is compatible with the rest of the

network’s physical parts; this also helps reduce the maintenance costs, which can increase

drastically in the case of major upgrades to the network infrastructure. Along with all these

benefits, shifting to virtual-based networks comes with a significant number of challenges,

especially in terms of placing such virtual components, ensuring their interoperability and

maintaining the quality of service at a level that is at least as good as what is offered by

hardware based architectures. In this paper, we propose a cluster-based placement and

chaining solution. The overall proposed approach consists of: 1) formulating an Integer

Linear Programming (ILP) model aimed at finding an optimal tradeoff between multiple

 6

objective functions that might be sometimes conflicting (e.g. hardware resource and energy

consumption minimization, transmission delays, bandwidth usage, etc.), 2) classifying the

substrate network into a set of on-demand clusters that are efficient for a predefined set of

metrics, and 3) using meta-heuristic-based algorithms to find near-optimal solutions for the

formulated ILP.

Keywords: Network Function Virtualization, Service function chains, Virtual functions

placement and chaining, Genetic algorithm, Chemical Reaction Optimization.

2.2 Introduction

Network Function Virtualization (NFV) is based on the concept of moving network functions

(e.g., routing, intrusion detection, etc.) from expensive physical hardware to software-

oriented modules that are executed on top of commodity hardware in the form of Virtual

Network Functions (VNFs). This approach has proven efficient in reducing both the Capital

Expenditures (CapEx) and Operational Expenditures (OpEx) due to its resulting reduced

equipment costs and reduced power consumption (Yi et al.(2018)). It also contributes in

increasing the flexibility of scaling up, scaling down, and updating network services.

However, the concrete deployment of NFV is hindered by a set of technical issues, relating

mainly to the efficient placement and chaining of VNFs across physical nodes in the

substrate network in order to minimize hardware resource consumption (Gil-Herrera et

al.(2016)), while simultaneously respecting the dependencies among the VNFs composing a

given network service. These objectives may be conflicting where, for example, the

placement strategy that preserves the dependencies does not guarantee minimal hardware

resource consumption or violates end-to-end delay requirements.

2.2.1 Problem Statement

There have been many efforts in the literature to address the VNF management issue, with

contributions focusing mainly on two important aspects: the placement of the VNFs and their

chaining. The first set of the proposed approaches (Xia et al.(2015), Mehraghdam et

7

al.(2014); Ghaznavi et al. (2015); Su et al.(2016)), seek to find the optimal set of servers on

which to place each new incoming VNF, taking into consideration the optimization of several

factors, such as hardware resource, and energy consumption. The second set (Alleg et

al.(2017); Khebbache et al.(2018); Eramo et al. (2017)), for their part focus more on Service

chains routing, and try to ensure that the chaining between the set of VNFs composing an

SFC (assuming that the placement is already done) is realized in a way that guarantees low

latencies, reduces run time to find the paths, and of course, minimizes the response time to

clients’ requests. One of the main limitations of these approaches stems from their static

deployment scheme, which does not account for variations that are likely to occur at the level

of server resources availability. These changes include sudden spikes or drops in the

available resources on some servers, failure of some nodes, and changes in the SFC users’

locations and needs. This leads to a degraded performance in dynamic settings wherein the

status of the servers and the users’ needs are continuously changing. For example, some

servers that are the closest to some events (e.g. media servers used in festivals hosted by a

city) in some time periods may experience unexpectedly high loads on their resources.

Therefore, incorporating dynamism into placement strategies is of prime importance to

guarantee optimal Quality of Service (QoS) and resource consumption under changing

environments. Another challenge faced in the proposed solutions is dealing with the

complexity of the SFC placement and chaining problem; defining an optimal trade-off

between multiple objective functions is usually hard to perform. Current research works

reduce then the complexity of the problem, by defining their objective functions for few

metrics (Energy/CPU consumption, latency, throughput, etc.) depending on the service chain

priorities and its field of application. To address these challenges, our solution adopts a

proactive approach in which the network is a priori divided into a set of efficient clusters to

facilitate the placement and chaining processes in real-time. The clustering step helps not

only to reduce the complexity of the problem, but also to cover a set of metrics, guaranteeing

that the SFCs are placed based on their priorities among the predefined metrics, which could

be either energy or memory, for instance. Once the clusters are formed, we employ our

 8

heuristic-based solution to place and chain the requests in a dynamic scheme, taking into

account variations in the network’s available resources.

2.2.2 Contributions

We propose in this paper a cluster-based placement and chaining approach whose main

premise is splitting the substrate network into a set of on-demand clusters that optimize some

particular metrics (e.g., energy, memory, etc.). To perform the clustering, we employ the k-

medoids clustering approach, while integrating statistical technique on top of it to improve

the selection of the initial clusters. Thereafter, cluster-based placement and chaining

algorithms are designed. Genetic Algorithm (GA) and Chemical Reaction Optimization

(CRO) techniques are proposed to solve the placement and chaining problems, while

considering several conflicting objectives, such as minimizing delays, CPU, energy, and

memory consumption. This has the advantage of considerably reducing the solution space

that CRO and GA meta-heuristics need to explore, thus accelerating both the placement and

chaining processes.

The main contributions of this paper can be summarized in the following points:

• We formulate an Integer Linear Programming (ILP) to model the VNF placement and

chaining problem, while taking into account the minimization of several metrics, such as

hardware resource utilization, Service-Level Objective (SLO) violation cost and latency.

• We employ a modified k-medoids clustering approach to divide the substrate network

into a set of on-demand clusters. The proposed clustering approach operates ina

proactive manner to minimize the setup latency and decrease the complexity of

placing/chaining VNFs.

• We develop cluster-based placement and chaining algorithms that employ meta-heuristic

techniques such as GA and CRO to efficiently derive the appropriate VNF placement

and chaining strategies. Two GA-based placement and chaining strategies are defined

9

and compared with CRO strategies: Classical-GA and Priority-based GA. These

approaches are described in section 4.3.

• We perform experimental comparisons between the proposed algorithms to determine

the advantages and limitations of each technique under different network scenarios.

Proceeding as such allows us to provide network administrators with a comprehensive view

on what technique to use and under which conditions.

The rest of the paper is organized as follows: In the next section, we review research

contributions that tackle the same problem of VNFs placement and chaining, and also

highlight the particular features that distinguish our approach from the already proposed

approaches in previous research works. In Section 3, we present our ILP model where we

formulate the placement and chaining problem. Section 4 is where we discuss the different

used algorithms and heuristics we use for clustering, placement and chaining. In Section 5,

we present the simulations’ setup, the results interpretation and discussion. Finally, in

Section 6 we conclude our work and evaluate the performance of our proposed approach.

The rest of the paper is organized as follows: In the next section, we review research

contributions that tackle the same problem of VNFs placement and chaining, and also

highlight the particular features that distinguish our approach from the already proposed

approaches in previous research works. In Section 3, we present our ILP model where we

formulate the placement and chaining problem. Section 4 is where we discuss the different

used algorithms and heuristics we use for clustering, placement and chaining. In Section 5,

we present the simulations’ setup, the results interpretation and discussion. Finally, in

Section 6 we conclude our work and evaluate the performance of our proposed approach.

2.3 Related Work:

In this section, we carry out a detailed discussion of the major contributions that have been

proposed concerning the VNF placement and chaining problem, and we highlight the unique

 10

features of our solution in comparison with the state-of-the-art. Moreover, we provide an

overview of some contributions in which CRO and GA have also been employed.

2.3.1 VNF Placement and Chaining approaches:

In (Mehraghdam et al. (2014)), the problem of optimally placing VNFs in the substrate

network has been formulated as a Mixed Integer Quadratically Constrained Program

(MIQCP) to derive the optimal placement and chaining of network functions, while

considering the limited network resources and functional requirements. In (Cohen et al.

(2015)), the authors formulate the VNF placement problem as an integer linear programming

model with the aim of minimizing both the deployment and connection (between VNFs)

costs and propose some approximation algorithms to solve it. In (Khebbache et al. (2018)),

the authors formulate the VNF placing problem as a multi objective optimization problem

aimed at minimizing two major metrics: the mapping cost and physical link utilization. A

meta-heuristic based on the Non-Dominated Sorting Genetic Algorithm II (NSGA-II) is

proposed by the authors to find near-optimal solutions respecting the considered metrics and

ensuring acceptable performance trade-offs. In (Pham et al. (2017)), the authors propose a

joint placement and chaining approach to solve the problem using sampling-based Markov

approximation combined with matching theory. In order to consider both operational and

traffic costs, i.e., physical resource consumption and bandwidth/delay costs, the authors

propose a weighted summation as an objective function in which the weights set for each

cost function are defined by the provider and can be adjusted to achieve the desired tradeoff.

In (Ghaznavi et al. (2015)), the authors formulate an Elastic Virtual Network Function

Placement (EVNFP) problem and derive a solution to minimize the operation cost, while

considering the minimization of elasticity overhead and the trade-off between bandwidth and

host resource consumption. Thereafter, a heuristic solution called Simple Lazy Facility

Location (SLFL) is advanced to derive the appropriate placement of VNFs. The authors

consider four challenges related to NFV, namely: (1) where to place Virtual Network

Function Instances (VNFIs), (2) how many resources should be assigned to each VNFI, (3)

11

how to convey SFC requests to the adequate VNFIs in the right order, and (4) how to readjust

VNFIs to cope with the sudden changes in SFC requests concentration. To tackle these

challenges, they proposed a three-phase solution whose objectives are to (1) minimize the

SFC bandwidth rejection, and (2) minimize the energy consumption by reducing the number

of running servers. In (Alleg et al. (2017)), the authors proposed a delay-aware placement

and chaining model formulated as a Mixed Integer Quadratically Constrained problem

(MIQCP). The presented approach aims at ensuring a flexible allocation of resources in the

substrate network. The main idea behind this work is to ensure that the proposed solutions

are capable of answering the SFC requests in terms of end to end delay, without having to

allocate unnecessary physical resources on the hosting nodes, causing an over-dimensioning

of the virtual network and thus leading to a significant increase in operational costs for the

service provider. In (Liu et al. (2017)), the authors address the challenge of jointly optimizing

the placement of new incoming SFCs and readjusting in service ones. These cases are

modeled as an integer linear programming model that aims to minimize both the operational

overhead and readjustment cost. To solve this problem, a column generation approach is

employed. In (Draxler et al. (2018)), the authors introduce new scheme to formulate the SFC

request, unlike the common representation of an SFC request consisting of a directed

weighted graph composed of a set of VNF linked to each other. In this work, the authors

consider that each SFC is described by a template, containing information about the

components and the interconnection between them only, while for resource requirements

they are considered as a function of the incoming data rates on each component. This

representation allows the adaptation of resources according to the flow rates variation. While

this approach may be considered dynamic, it doesn’t scale well with large networks.

According to the simulations, the authors argue that it can be used for geographically

distributed architectures where each node represents a whole data center. In (Lange et al.

(2017)), a multi objective heuristics proposed to solve the VNF chains placement problem,

the adopted approach is based on the simulated annealing algorithm. This technique aims to

find feasible solutions that respect the set of objectives in terms of CPU use and link resource

consumption. The proposed algorithm solves the VNF placement problem in two stages:

assigning the requests to adequate nodes, and then routing of the demands. Most of the

 12

contributions above focus on the optimization of VNFs placement and chaining on the

substrate network, while considering different objective functions. Still, most of these works

either ignore the dynamic aspect of resources in cloud-based environments or do not consider

large substrate networks, but use relatively small architectures for their simulations.

However, in order to benefit from the advantages offered by NFV, these challenges must be

considered. In fact, the resource consumption and availability of the servers in datacenters

are continuously changing depending on the adopted placement strategy, the number of

served users and their locations. Moreover, VNFs should be continuously adjusted to

guarantee service continuity as users are constantly changing their locations over large-scale

network topologies.

To deal with these problems, our approach adopts a proactive process in which the network is

a priori divided into a set of on-demand clusters optimized for certain defined metrics (e.g.

energy, memory, etc.,), and that aims to facilitate the placement and chaining process.

Network resource status may be monitored by an SDN controller to keep track of resource

variations. This information is provided to our heuristic-based solutions as an input to ensure

efficient initial placement and chaining, and may also be used for readjustment purposes.

2.3.2 CRO and GA Based Approaches:

In (Xu et al. (2011)), the authors tackle the problem of task scheduling in grid computing

systems. To this end, they formulate an optimization problem aimed at minimizing the Make

span and Flow time of the scheduling process, while accounting for resource reliability. To

solve the problem efficiently, they employ several versions of CRO to derive effective

scheduling solutions. In (Lam et al. (2010)), the authors take advantage of CRO to address

the problem of allocating the available channels to unlicensed users in cognitive radio

scenarios. They formulated an optimization problem with three utility functions that aims to

minimize hardware utilization, while guaranteeing the fairness of the allocation process

among users. Genetic algorithms have been extensively used in the context of NFV. For

example, in (Dezhabad et al. (2018)), the authors discuss a method to achieve dynamic auto-

13

scalability of virtual firewalls. The objective is to determine the number of active virtual

firewalls needed at each time period, based on the density of the incoming load and the

portion of requests that should be assigned to each single firewall. The problem is solved

using a hybrid method, which combines a genetic algorithm and reinforcement learning. The

authors of (Yala et al. (2018)) propose a placement strategy for Multi-access Edge

Computing (MEC) in NFV environments. They formulate the problem as an optimization

problem with two conflicting objectives, i.e., maximizing service availability and minimizing

access latency. A genetic algorithm is then advanced to solve the optimization problem.

Although CRO and GA have been widely used to model a variety of solutions, this work is,

to the best of our knowledge, the first that combines them in a cluster based environment to

tackle the problem of placing and chaining SFCs.

2.4 Problem formulation:

We consider an undirected graph Gs(Vh,E) to represent the substrate network, where Vh

represents the set of substrate nodes, while E is the set of links connecting these nodes. The

substrate nodes can be categorized in two different sets, namely, host servers and

middleboxes. Host servers are high-volume servers used to host Virtual Machines (VMs) or

containers that may belong to one or different users. Middleboxes are physical network

components providing various network functions, like Wide Area Network (WAN)

optimizers, multimedia caches or Intrusion Detection Systems (IDSs) and Intrusion

Prevention Systems (IPSs). Gv(Vv;Ev) is a directed acyclic graph that represents an SFC

composed of a sequence Vv of VNFs and a set Ev of virtual links connecting the VNFs. In

this section, we formulate our proposed ILP to model the VNF placement and chaining

problem adapted from the model proposed in (Abdul Wahab et al. (2019)). Table 2.1

summarizes the different notations used throughout the paper.

 14

 Table 2.1 Notations

Symbol Significance

Vh Set of host servers in the substrate network.

Vv Set of virtual network functions in a certain SFC.

E Set of physical links in the substrate network.

Ev Set of virtual links in a certain SFC. 𝑅௩௛௠௔௫ Amount of hardware resource capacity on physical server vh∈Vh 𝑅௠௣ Amount of hardware resources consumed by VNF of type p∈P on server m 𝛼௡,௠௣ Decision variable whose value is equal to 1 if VNF n of type p is hosted in server m

and 0 otherwise.

βi,j Decision variable whose value is 1 if the virtual link i is mapped into physical link j

and 0 otherwise. 𝜉௡,௠ Monetary weight of adding a new VNF n of physical server m. Υ௫,௬௔,௕ Monetary weight of the service delay penalty between each pair of hosted VNFs a

and b hosted on physical servers xand y respectively. d௫,௬௔,௕ሺ𝑡ሻ The propagation delay between the pair (a, b) of VNFs hosted on physical servers x

and y respectively. 𝑁|௏௩| Number of VNFs |Vv| hosted on physical server m. 𝑙௫,௬௔,௕ Maximum delay cost that a flow of pair a and b of VNFs hosted on topof physical

servers x and y respectively can tolerate.

Π Set of metrics to be minimized.

hθ Cluster-head h that is efficient in terms of metrics θ (where θ⊆∏ is a single

combination subset of the set ∏). 𝜙௏௩௞ (௦) Set of VNFs 𝑉௩௞ hosted on physical server

ΨEv(e) Set of virtual links Ev hosted on substrate link e

15

Cost Functions:

Operational Cost: The operational cost in our case represents the cost of adding new VNFs

since the last service time. Specifically, the operational cost can be computed using Eq. (2.1)

𝐶௢௣௥(𝑡) = ෍ ෍ ௔,௫௣ (𝑡). 𝜉௡,௠(𝑡). ൣ𝑁௠|௏௩|(𝑡) − 𝑁௠|௏௩|(𝑡 − 1)൧,|௏௛|
௠ୀଵ

|௏௩|
௡ୀଵ ∀ 𝑝 ∈ 𝑃

(2.1)

This function aims at minimizing the resource consumption at the substrate level and thus

reduces the monetary costs of adding new VNFs.

Penalty Cost: The cost of traffic transmission of an accepted SFC through a physical link in

the substrate network is formulated in Eq.(2.2)

𝐶௣௘௡௔௟௧௬(𝑡) = ෍෍෍෍ ௔,௫௣ (𝑡).௕,௬௣ (𝑡). d௫,௬௔,௕(𝑡).Υ௫,௬௔,௕(𝑡) ,∀ 𝑝 ∈ 𝑃|௏௛|
௬ୀଵ

|௏௩|
௕ୀଵ

|௏௛|
௫ୀଵ

|௏௩|
௔ୀଵ

(2.2)

This function aims at minimizing the total delay between VNFs of the same SFC to avoid

exceeding the limit set by the clients request.

Objective Functions:

The cost function C(t) of the provider at a certain time moment t can then be defined as the

sum of the two previous costs: the operational and penalty costs at that time period, i.e.,

 𝐶(𝑡) = 𝐶௢௣௥(𝑡) + 𝐶௣௘௡௔௟௧௬(𝑡) (2.3)

 16

Thus, the objective of the providers is to:

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ෍ 𝐶(𝑡)௧௡
௧ୀ௧ଵ

(2.4)

VNF Assignment and Chaining Constraints:

Constraint (2.5) ensures that the hardware resources consumed by the VNFs cannot exceed

the physical server’s hardware resources capacity.

෍෍ ෍ ௡,௠௣ (𝑡). R௠௣ (𝑡) ≤ R௠௠௔௫(𝑡) ,|௏௛|௠ୀଵ|௏௩|௡ୀଵ
௧௡
௧ୀ௧ଵ ∀ 𝑝 ∈ 𝑃

(2.5)

Constraint (2.6) ensures that the total operational cost at each time moment in the time

interval [t1, tn] does not go beyond an upper limit Omax defined by the provider in order to

optimize its own profit.

෍ 𝐶௢௣௥(𝑡) ≤ 𝑂௠௔௫(𝑡)௧௡
௧ୀ௧ଵ

(2.6)

Constraint (2.7) defines the penalty cost to guarantee that the delay of the flow of each pair of

VNFs, cannot exceed the maximum limit that this flow can tolerate.

෍ 𝐶௣௘௡௔௟௧௬(𝑡) ≤ 𝑙௫,௬௔,௕(𝑡),∀ 𝑎, 𝑏 ∈ 𝑉𝑣 𝑎𝑛𝑑 𝑥, 𝑦 ∈ 𝑉ℎ௧௡
௧ୀ௧ଵ

(2.7)

Constraint (2.8) guarantees that each virtual link ev in Ev is mapped to only one single link on

the substrate network e in E.

෍෍ ෍ 𝛽௘௩,௘(𝑡) = 1௘௩∈ா௩௘∈ா
௧௡
௧ୀ௧ଵ

(2.8)

17

Constraint (2.9) guarantees that each VNF instance n in Vv of type p is mapped to only one

single server in the substrate network m in Vh.

෍ ෍ 𝛼௡,௠௣௠∈௏௛ (𝑡) = 1,∀ 𝑛 ∈ 𝑉𝑣௧௡
௧ୀ௧ଵ

(2.9)

2.5 Algorithms:

2.5.1 K-medoids Clustering process:

The clustering process consists of two principal steps: The first step enables selecting cluster

heads, while the second allows distributing the substrate nodes to their corresponding

clusters. The proposed method to optimize the selection of the initial set of cluster heads is a

statistical technique. The main idea of this technique is to exclude the outliers (e.g., in terms

of energy) that are too far from the central region, which have high variance values. Once the

initial cluster heads are defined, the remaining servers are then assigned to the closest cluster-

head (in terms of the considered attributes). After that, for each cluster, the server which

minimizes the distance from the other servers in the same cluster is selected as a replacement

cluster-head. Consequently, each server is assigned again to the closest newly appointed

cluster-head and the new clustering cost is computed once again. If the new clustering cost is

equal to the previous one, the algorithm stops and the clustering topology remains the same.

Otherwise, the procedure is repeated until reaching a stable clustering topology. The distance

we are referring to in this clustering phase can be calculated in terms of different metrics

depending on the SFCs’ requests and priorities. In our approach simulation, we will tackle

clustering in terms of energy and memory, but these metrics can be easily adapted to include

other substrate servers’ parameters. The full procedure for clustering is summarized in

appendix A.

2.5.2 Overall Cluster-based SFC Placement and Chaining:

The clustering phase reduces the complexity of our objective functions defined in Equation

(4). The next step is then to execute VNF placement and chaining processes, while taking

 18

advantage of the clustering results. Placement and chaining processes are distributed on each

of the selected cluster heads formed according to Algorithm A-1, which reduces the search

space (i.e., the number of servers and links) of the problem. More specifically, instead of

having a single central module responsible for placing and chaining all of the VNFs on the

total set of servers and links, each cluster head would only be executing these steps for a

subset of the original substrate network. The cluster-based placement and chaining process is

described in Algorithm 2.1. Each incoming SFC will be assigned to its appropriate cluster,

and the corresponding cluster head will solve the ILP described in Section 3 using

metaheuristic approaches described in sections 4.3 and 4.4 (using Algorithm 2.17 for

placement and Algorithm 2.7 for chaining) - only for its cluster members -in order to

determine the VNF-to-Server mappings. Based on the results obtained by the solution of the

ILP, the VNFs composing the underlying SFC are placed on the servers chosen by the

feasible solution (Algorithm 2.1 - Steps 6-11) and the virtual links among the VNFs are

mapped as well to the corresponding physical links as well.

19

Algorithm 2.1 Placement and chaining algorithm

Input: Set ∏= set of metrics to be minimized (e.g., {energy, memory
,CPU, delay} .

Cluster-head hθ that is efficient in terms of metrics θ(whereθ⊆∏is a
single combination subset of the set ∏) and responsible for
executing the Algorithm.

Service function chain composed of a set V୴୩ = ሼv୴ଵ, … . , v୴୬ሽof VNFs
Set ϕ୚౬ౡ (ୗ୧)of VNFs V୴୩ hosted on each server Si

Set ΨEv(e)of virtual links Ev hosted on substrate link e.

Output: Updated setϕ′୚౬ౡ (ୗ୧) of VNFs V୴୩ hosted on each server Si
Updated set Ψ’Ev(e) of virtual links E v mapped to link e

Procedure PLACEMENT & CHAINING

1. Run Algorithm 2.17 and 2.7 to solve the ILP in Eq. (2.4) for the metrics Π = Π\Π ∩ 
2. for each server Si∈Vh

3. for eachVNFvv∈Vv
if 𝐯𝐯,𝐒𝐢𝐩 == 1 then

Assign v୴୧ to server Si, i.e., ϕ୚౬ౡ (ୗ୧) = ϕ୚౬ౡ (ୗ୧) ∪ v୴୧
end if

4. end for
5. end for
6. for each link e∈E
7. for eachvirtual link ev∈Ev

If βev,v==1then
Assign ev to link e ,i.e., ୉୴(e) = ୉୴(e) ∪ e୴

end if
8. end for
9. end for
10. 𝝓′𝑽𝒗𝒌 (𝑺𝒊) = 𝝓𝑽𝒗𝒌 (𝑺𝒊)
11.  ′𝑬𝒗(𝒆) = 𝑬𝒗(𝒆)
12. end procedure

 20

2.5.3 Metaheuristic Chaining approaches:

2.5.3.1 Chemical Reaction Optimization approach:

CRO is a nature-inspired approach that tries to map chemical reactions to optimization

problems. The base unit in CRO is the molecule. Each molecule represents a possible

solution to the underlying optimization problem and enjoys several attributes such as the

molecular structure w, the potential energy PE, the Kinetic energy (KE), and the number of

hits (Num-Hits). Next, we explain each of these attributes in detail:

Molecular structure w: represents a solution (i.e., number, vector, or matrix) of the

underlying problem.

Potential energy (PE): represents the value of the objective function of the solution

represented by w, i.e., PEw =f(w), with f being the objective function.

Kinetic energy (KE): quantifies the indulgence of the system in accepting a solution that is

worse than the existing one.

Number of hits (Num-Hits): is a counter of the total number of hits (also known as

collisions) that a certain molecule has undergone so far.

A chemical system, composed of a set of molecules, experiences a chemical reaction if it

happens to hold excessive energy. In other words, the chemical system releases the excessive

energy in order to stabilize itself. This change is triggered by a collision. A collision can be

of one of two types: uni-molecular and intermolecular. Uni-molecular collisions occur when

a molecule hits an external material (e.g., a wall of the container). Inter-molecular collisions,

on the other hand, occur when molecules collide with each other. Every collision results in a

corresponding reaction change referred to as an elementary reaction. Four types of

elementary reactions can be exploited to manipulate solutions (i.e., explore the solution

space):

21

On-Wall Ineffective Collision: This type of reactions occurs when a certain molecule hits a

wall of the container and then bounces away resulting in one single unit. In this type of

collisions, the existing molecular structure w is perturbed and becomes w’.

Decomposition: This type of reactions occurs when a certain molecule hits a wall, resulting

in the molecule breaking into several parts, i.e., w = w1 +w2

Inter-Molecular Ineffective Collision: This type of reactions occurs when several

molecules collide with one another, and then bounce away. In such collisions, the structure of

the involved molecules (say w1 and w2) is perturbed and becomes w’1 and w’2 , i.e.,

w1 +w2 = w’1+w’2

Synthesis: The effect of this type of reactions is the opposite of that of the decomposition

phase. Specifically, the synthesis occurs when several molecules collide with each other and

agglomerate into one molecule, i.e., w1 +w2 = w’

Next, we explain how we employed the CRO to solve our ILP described in Section 3. The

molecule encoding, we used for our CRO-based algorithm is illustrated in Figure 2.1, with

the path represented by an array containing the set of nodes representing the flow path to go

from the source node S to the destination node D (where our VNFs are hosted).

The Algorithm 2.2 allows generating a set of initial solutions for the delay minimization

problem. This is done by starting the construction of the path from the intended source node

and then continuously picking a random node from the neighborhood, provided that this node

is different from the destination node, and was not previously selected in the path. This

process is repeated continuously while changing the index of the source node after each

addition of a new member until reaching the destination node.

 22

Figure 2.1 CRO Molecule Encoding

Algorithm 2.2 Molecules Generation

Input: Set Si of all the nodes that are adjacent to the node i

Source node Src

Destination node Dst

Output: Path vector P

Procedure GENERATE MOLECULES

1. Initialize index i = 0

2. Construct the path P starting from the source node, i.e., P[i] = Src

3. While P[i]≠Dst do

Randomly pick a neighbor node n from

If n ∈P

Randomly pick another neighbor such that n'∈SP[i] and n'≠ n

else
increment i, i.e., i++

P[i] = n

end if
4. end while
5. Return P
6. end procedure

23

In Algorithm 2.3, we describe the synthesis reaction. The inputs to this algorithm are two

molecules P1 and P2 representing two possible solutions, and the output is another molecule

Ps representing a possible solution after some manipulations. In the first step of the

algorithm, the common nodes between the two input molecules are retrieved and saved into

C (Steps 1-4 - Algorithm 2.3). Thereafter, a new molecule is constructed by bringing together

parts from both P1 and P2 i.e., Ps = P1[1 : C1] U P2[C2 +1 : length(P2)]. Finally, the delay

entailed by the newly formed molecule Ps is compared with that of the initial molecules P1

and P2 (Step 8 -Algorithm 2.3). If the delay of Ps is lower than that of the two initial solutions

P1 and P2, then these two latter molecules are destroyed and only Ps is kept as the output of

the Algorithm; otherwise, Ps is destroyed and P1 and P2 are kept in the population.

Algorithm 2.3 Synthesis

Input: Two molecules P1 and P2

procedure Synthesis

1. for i: length (P1)
2. for j: length(P2)

if P1[i] is equal to P2[j]
Construct potential intersection nodes C = {i,j}

end if
3. end for
4. end for
5. Randomly choose a couple of nodes {C1 ,C2 } from C
6. Construct the set Ps such that Ps=P1[1: Ci] UP2[C2+1: length(P2)]
7. Compute thetotal delay of Ps
8. If delay (Ps)< delay (P1)|| delay (Ps)< delay (P2)
9. Destroy the molecules P1 and P2
10. Add Ps to the population
11. else
12. Destroy the molecule Ps
13. end if
14. end procedure

 24

The inter-molecular ineffective collision process is illustrated in Algorithm 2.4. The inputs to

the Algorithm are two molecules P1 and P2 representing two possible solutions and the

outputs are two other molecules representing two other possible solutions after some

manipulations. In the first step, a node Nk1 is randomly selected form the molecule P1 (Step 1

- Algorithm 2.4). A new path P’ is then constructed using Algorithm 2.2 starting from the

randomly chosen node (Step 2 - Algorithm 2.4), and new molecule P3 is generated such that

P3 = P1[1 : Nk1] U P’ (Step 3 - Algorithm 2.4).

Similarly, another node Nk2 is randomly selected form the molecule P2 (Step 5 - Algorithm

2.4), another new path P’’ is constructed using Algorithm 2 starting from Nk2 (Steps 6 -

Algorithm 2.4), and a new molecule P4 is generated such that P4 = P2[1: Nk2]U P’’ (Step

7 - Algorithm 2.4). The delay of the newly generated molecules is then compared against that

of the initial molecules (Step 9 -Algorithm 2.4). If the delay of the newly generated

molecules is lower than that of the initial ones, then those initial molecules are destroyed and

the new ones are returned by the algorithm (Step10 - Algorithm 2.4). Otherwise, the new

molecules are destroyed, and the initial ones are returned by the algorithm (Step 13 –

Algorithm 2.4).

Algorithm 2.4 Inter-Molecular Ineffective Collision

Input: Two molecules P1 and P2
Procedure Inter-Molecular Ineffective Collision

1. Randomly select a node from the molecule A
2. Generate a path P' starting from node to destination node using Algorithm 2
3. Construct the molecule 𝑃ଷ = 𝑃ଵ[1:𝑁௞ଵ] ∪ 𝑃′
4. Calculate total delay for 𝑃ଷ
5. Randomly select one node 𝑁௞ଶ from 𝑃ଶ
6. Generate a path P" starting from node 𝑁௞ଶto destination node usingAlgorithm 2
7. Construct the set 𝑃ସ = 𝑃ଶ[1:𝑁௞ଶ] ∪ 𝑃′′
8. Calculate total delay for 𝑃ସ
9. if delay (P3)< delay (P1) and delay (P4)< delay (P2)
10. Destroy the molecules P1 and P2
11. Add the molecules P3 and P4 to the population
12. else
13. Destroy the molecules P3 and P4
14. end if

25

In Algorithm 2.5, the on-wall ineffective collision process for the delay maximization

problem is described. The input to this Algorithm is a molecule P1 representing a possible

solution to the problem and the output is another molecule P2 which represents the possible

solution after some perturbations. In the first step of the algorithm, a node Nk from the input

molecule is randomly chosen (Step 1 - Algorithm 2.5). Then, a new molecule is partially

constructed such that P2 = P1[1 :Nk]. The rest of the molecule is then populated using

Algorithm 2.2. If the delay of the newly created molecule is lower than that of the initial

molecule, then the initial molecule is destroyed and the newly created molecule is returned

by the algorithm (Steps 4-6 - Algorithm 2.5). Otherwise, the new molecule is destroyed and

the initial molecule is kept as the output of the algorithm (Step 8 - Algorithm 2.5).

Algorithm 2.5 On-Wall Ineffective Collision

Input: Molecule P1

procedure On-Wall Ineffective Collision

1. Randomly select a node Nk from the molecule P1

2. Construct the molecule P2 = P1 [1: Nk] and calculate the rest of the path using

Algorithm 2

3. Calculate total delay of P2

4. if delay(P2) < delay(P1)

5. Destroy P1

6. Add P2 to the population
7. else
8. Destroy P2

9. end if

The decomposition process for the delay maximization problem is described in Algorithm

2.6. The inputs to this Algorithm are a molecule P1 representing a possible solution to the

problem and its length L, and the outputs are two molecules P2 and P3 generated through the

decomposition of P1. First, the algorithm randomly selects a node Nk from the input molecule

 26

(Step 1 -Algorithm 2.6). A new path P’ is then constructed using Algorithm 2.2 starting from

the randomly chosen node Nk to the destination node (Step 2 - Algorithm 2.6). Thereafter, a

new molecule P2 is constructed such that P2 = P1[1 :Nk]U P’ (Step 3 - Algorithm 2.6).

Similarly, a new molecule P3 is constructed using Algorithm 2 starting from the source to

node Nk and then a new molecule P3 is constructed where P3 = P’’ U P1[Nk + 1 : L] (Step 5 –

Algorithm 2.6) The delays entailed by the newly generated molecules are then compared

with the delay entailed by the initial molecule(Step 7 - Algorithm 2.6). If the delay of the

initial molecule is greater than that of the newly generated ones, then the initial molecule is

destroyed and the offspring of this reaction is added to the population (Step 9 - Algorithm

2.6). Otherwise, the newly generated molecules are destroyed (Step 11 - Algorithm 2.6) and

the population remains the same.

Algorithm 2.6 Decomposition

Input: A molecule P1
l the length of molecule P1

Output: Two molecules P2 and P3
procedure Decomposition

1. Randomly select a node Nk from the molecule P1
2. Generate a new path P' starting from node Nk to the destination node using

 Algorithm 2
3. Construct the molecule P2 = P1 [1 :Nk] U P'
4. Generate a new path P" starting from node the source node to node Nk using

Algorithm 2
5. Construct the molecule P3= P" U P1 [Nk + 1 :l]
6. Calculate total delay for P3
7. if delay(P2) < delay (P1) or delay (P3)< delay (P1)
8. Destroy the molecule P1
9. Add P2 and P3 to the population
10. else
11. Destroy the molecules P2 and P3
12. end if
13. end procedure

27

The step-wise process to execute the cluster-based CRO meta-heuristics approach to solve

the ILP is illustrated in Algorithm 2.7. The following steps are repeated until the maximum

number of iterations (specified by network administrators) is attained. Molecules are

generated as per Algorithm 2.2.

While the number of hits is smaller than the maximum number of iterations, two new

numbers b and mol are randomly generated from the range [0;1]. If the value of molecule b is

higher than that of molecule mol, then one molecule is selected from the set generated by

Algorithm 2.2. If the number of hits is higher than the value of α (specified by network

administrators as an input to the algorithm), then the decomposition process (Algorithm 2.6)

is executed. Otherwise, the on-wall ineffective collision process (Algorithm 2.5) is executed.

On the other hand, if the value of molecule b is lower than that of molecule mol, then two

molecules are randomly generated and the amount of kinetic energy is decremented.

 If the kinetic energy of the selected molecules is lower than the value of β (specified by

network administrators as an input to the algorithm), then the synthesis process (Algorithm

2.3) is executed. Otherwise, the inter-molecular ineffective collision process (Algorithm 2.4)

is executed. Finally, the number of hits is incremented and the solution minimizing the delay

is computed and returned by the algorithm. It is worth stating here that the proposed

algorithm, computes the optimal chaining between a pair of VNFs. As SFC requests usually

tend to be composed of more than only two VNFs, we execute this algorithm in a parallel

way between each pair of the same request, to ensure a sub-optimal solution for all the SFC

components.

 28

Algorithm 2.7 Min-Delay CRO

Input: Network size, Delay matrix D[i] [j], Population size
PopSize, Num -Hits= 0, Maxlteration, Source node S, Destination
node D,α= 0.6 * Maxlteration, β= 0.3 * Maxlteration
Kinetic energy KE = Maxlteration

Output: Final solution O

procedure CHEMICAL REACTION OPTIMIZATION

1. while PopSize has not yet been attained
2. Generate molecules by executing Algorithm 2
3. Randomly generate mol ∈ [0,1]
4. while Num- Hits <Maxlteration
5. Generate b∈[0,1]
6. if b >mol then

Randomly select one molecule
if Num-Hits >α then
Execute Algorithm 6
else

Execute Algorithm 5
end if

 else
Randomly select two molecules
If KE<β then

Execute Algorithm 3
 else

Execute Algorithm 4
end if
KE --

end if
7. Num-Hits++
8. end while
9. Check for a new minimum solution
10. end while
11. Return final solution and its objective function
12. end procedure

29

2.5.3.2 Genetic Algorithm optimization approach:

One of the most critical issues regarding chromosome encoding in the genetic algorithm

framework is its feasibility, i.e. whether or not the decoded chromosome would result in a

valid solution for the considered problem. As a first intuition, we used the same encoding

presented in the CRO approach to implement classic genetic algorithm (C-GA).

Nonetheless, what limits the performance of C-GA is the condition of the size imposed on

the generated paths as specified in the GA framework; this size should remain the same from

parents to children, and this limits the search space and increases the probabilities of having

the algorithm stuck in a local optimum. Moreover, if the initial solution did not contain a path

with the exact same size as the optimal solution, the algorithm would never converge to the

optimal, and would be stuck on near-optimal or even bad solutions. To avoid this problem,

we decided to adopt a priority-based encoding. The proposed encoding uses the chromosome

not to represent the solution (path) itself, but rather, assigns for each node a priority that

would help in constructing the path. The size of chromosomes with this encoding is set to the

number of nodes in the initial graph, and any permutation-based operator would work for

crossover and mutation since the order of genes would not affect the feasibility of the

decoded solution. Algorithm 2.8 is introduced to generate priority values for the nodes in the

substrate network. This is done by randomly choosing a number between 1 and N, with N

being the size of the network.

Algorithm 2.8 Genetic Algorithm-Chromosome generation

Input: Network size N

procedure GENERATE CHROMOSOMES

1. For i=0 to N
2. P[i] : a random number in the range [0,N] representing the priority value of node i.

3. end for

 30

Algorithm 2.9 illustrates the crossover process of the priority based GA. Crossover is a

genetic operator that is based on merging the genetic information of two parents to produce

new offspring. In other words, it is useful for stochastically producing new solutions from an

existing population. In the first step of Algorithm 2.9, a random cut point n is applied on two

input parent chromosomes (Step 1 - Algorithm 2.9). A new child chromosome C3 is then

created by partially populating its priority values with the priority values of one parent C1

from the index range [1;n] (Step 2 -Algorithm 2.9). The remaining priority values are

populated from the second parent chromosome C2 such as to not overlap with the priority

scores obtained from the first parent.

The same process is repeated to create another child chromosome C3, while changing the

order of the populating chromosomes (i.e., starting from C2 then going on to C1) (Step 5-

Algorithm 2.9). Finally, the number of hits is incremented after each crossover operation.

Algorithm 2.10, explains the mutation process of the priority based GA is explained.

Mutation simulates the biologic mutation phenomenon and is important for preserving

diversity from one generation of chromosomes to the next. The input to Algorithm 2.10 is a

parent chromosome C1 and the output is a child chromosome C2. The mutation process is

implemented by randomly selecting two node indexes n1 and n2 from the parent

chromosome and then swapping their priority values. Finally, the number of hits is

incremented after each mutation operation. The decoding process is illustrated in Algorithm

2.11.

The inputs to the algorithm are a chromosome C, a source node, a destination node, and an

adjacency matrix recording each node’s neighbors list. The output is a decoded chromosome

obtained after some manipulations. The first step consists in determining the source node’s

neighbor having the highest priority value and storing it into chromosome P. This process is

repeated until the intended destination node is reached and the full decoded path P is formed.

31

Algorithm 2.9 Priority-based Genetic Algorithm Crossover

Input: Two parent paths C1 and C2

Output: Two child paths C3 and C4

procedure Crossover

1. Randomly choose a cut point n on both C1 and C2

2. Copy the priority values from C1[0] to C1[N] into C3

3. while length(C3) <N do

for i = 0 to length(C2)

if C2[i]∉C3

Add C2[i] to C3

end if
end for

4. end while
Copy the priority values from C2 [0] to C2[N] into C4

5. while length(C4)<N do

for i = 0 to length(C1)

if C1 [i]∉C4

Add C1 [i]to C4

end if
end for
end while
Increment Num-Hits++

6. end procedure

 32

Algorithm 2.10 Genetic Algorithm-Mutation

Input: One parent path C1

Output: One child path C2

procedure Mutation

1. Randomly select two node indexes n1and n2 from C1

2. Swap priority values between the selected nodes

3. Num-Hits++

4. end procedure

Algorithm 2.11 Genetic Algorithm Decoding

Input: Chromosome C, Si. set of node i’s neighbors, Source node
src_node, Destination node dst_node

Output: Decoded chromosome P

procedure Decoding
 i = src_node

 k = 0
 n = max{C[i], i∈Si}

 P[k] = n
 k++
 while P[k]! = dst_node do
 i = P[k-1]
 n= max{C[i], iE Si}
 if n∉ P
 P[k] = n
 k++
 else
 Si= Si\n
 end if
 end while

end procedure

Algorithm 2.12 describes the stepwise methodology to execute the different steps of the

priority-based GA process. First, a number of chromosomes that is equal to the desired

population size is generated using Algorithm 2.8 (Step 2 - Algorithm 2.12). These

33

chromosomes then undergo the decoding process using Algorithm 2.11 (Step 3 - Algorithm

2.12). The delay of the decoded chromosomes is compared with the minimum tolerable delay

decided by network administrators as an input to the algorithm. If the delay of the decoded

chromosomes falls below the minimum tolerable delay, the decoded chromosomes are

retained and are added to the population. Otherwise, the chromosomes are discarded (Steps

4- 5 - Algorithm 2.12). Then, the following steps are repeated as long as the number of hits

(which is updated after each mutation and crossover process) is lower than the maximum

number of iterations specified as an input to the algorithm. A number is randomly generated

(Step 9 - Algorithm 2.12). If the generated number is lower than the crossover rate (an input

to the algorithm), then two chromosomes are randomly selected (Step 10 – Algorithm2.12),

the crossover process is executed on those chromosomes using Algorithm 2.9 to generate two

new child chromosomes, the decoding process is executed on the parent and child

chromosomes using Algorithm 2.11, and the delay entailed by the child chromosomes is

compared with those entailed by the parent chromosomes.

If the delays of the child chromosomes are lower than those of the parent chromosomes, the

child chromosomes are retained in the population and the parents are destroyed. If the

randomly generated number in Step 15 is lower than the mutation rate (an input to the

algorithm), then one parent chromosome is randomly, the mutation process is applied on this

chromosome using Algorithm 2.10 to generate a child chromosome, the decoding process is

applied on both parent and child chromosomes, and the delay entailed by both the child

chromosome and parent chromosome are compared. If the delay of the child chromosome is

lower than that of the parent chromosome, the child chromosome is retained in the

population and the parent is destroyed.

 34

Algorithm 2.12 Min-Delay Priority based GA

Input: Network size, Delay matrix D[i] [j], Population size PopSize,
Num -Hits = 0, Maxlteration, Source node S, Destination node D,
Mutation rate MuRate = 0.2, Crossover rate CrossRate = 0.8,
SFC minimum tolerable delay Ds

procedure Chemical Reaction Optimization
1. while PopSize has not been reached yet do
2. Execute Algorithm 8 to generate a chromosome and store it in P
3. Execute Algorithm 11 with P being the input chromosome to generate the decoded

chromosome P'
4. if delay(P') < Ds then
5. Add P to the population
6. end if
7. end while
8. while Num-Hits <Maxlteration
9. Randomly generate r ∈ [0,1]
10. if r <CrossRate then

Randomly select two chromosomes 𝐶ଵᇱand 𝐶ଶᇱ
Execute the crossover on 𝐶ଵᇱand 𝐶ଶᇱ using Algorithm 9 togenerate two child
chromosomes 𝐶ଵᇱᇱand 𝐶ଶᇱᇱ
Execute the decoding process on the parent chromosomes𝐶ଵᇱand 𝐶ଶᇱand child
chromosomes 𝐶ଵᇱᇱand 𝐶ଶᇱᇱusing Algorithm 11

if delay(𝐶ଵᇱᇱ)< delay(𝐶ଵᇱᇱ) or delay(𝐶ଶᇱᇱ) < delay(𝐶ଶᇱ)
Add 𝐶ଵᇱᇱand 𝐶ଶᇱᇱto the population and destroy 𝐶ଵᇱand 𝐶ଶᇱ
end if

11. end if
12. if r <MuRate then

Select one parent chromosome C'
Execute the mutation process on C' using Algorithm 10 to generate another child
chromosome C"

Execute the decoding process on the parent chromosome C' and child chromosome
C" using Algorithm 11

if delay(C") < delay(C')then
Add C" to the population and destroy C
end if

13. end if

14. end while
15. Check for a new optimal solution
16. <= final solution and its objective function
17. end procedure

35

2.5.4 CRO Based Placement Algorithm:

In this section, we will explain how we employed the CRO algorithm to solve our ILP for the

second objective function. We considered CPU for our implementation, but it can be easily

adapted to optimize the problem in terms of other metrics. The objective of Algorithm 2.17 is

to provide a set of solutions for the placement phase that ensure a high consolidation of

physical resources on the hosting nodes, which thus means a minimum number of servers

will need to be used to host the incoming requests.

2.5.4.1 Solution Representation and Molecule generation:

The molecule encoding for this part of the algorithm is represented in Figure 2.3. The

placement phase is similar to the bin packing problem, which is why we adopted a grouping

technique to encode our molecule. Each group represents a server and the content of the

groups represents the indexes of their hosted VNFs. The index of each VNF is specified in

the SFC request like illustrated in Figure 2.2. To generate a set of initial solutions, we

adopted the First Fit (FF) algorithm. The main idea underlying this heuristic is that for each

VNF, the FF algorithm attempts to place it in the first server that can still host it based on its

residual CPU capacity. If all the used servers are full, the algorithm starts up a new server

and puts the VNF in it. To make sure that we have different solutions in the initial

population, the order for placing the VNFs is chosen randomly at each molecule generation.

Once we generate our initial population, those molecules will undergo the elementary

reactions defined by the CRO framework to find a near optimal solution.

 36

Figure 2.2 Input Requests

Figure 2.3 Molecule Encoding

Algorithm 2.13 CRO Placement Molecule Generation

Input: SFC Request, Servers Capacity, Count=Request.size

Output: P: Placement Solution

procedure Generate Molecules

While count !=0

Pick a random VNF V from the SFC request.

if (V is not already placed)

Apply first fit algorithm to host V based on the servers’ available capacities

Update the hosting server’s capacity

Count--

else
Pick another VNF from the request

end while
Return P

37

2.5.4.2 Elementary Operation for CRO:

Decomposition:

This procedure results in two molecules C1 and C2 from a molecule P chosen from the

current population. In this elementary reaction, we maintain the server with the maximum

used capacity from P and we copy its content into two new solutions. The remaining VNFs

that are not contained in this server are placed again using the first fit algorithm on both new

solutions. The order adopted for placing the remaining VNFs is random on C1 and C2, to

ensure that the offspring is different. The procedure for this reaction is described in

Algorithm 2.14.

Algorithm 2.14 CRO Placement Decomposition

Input: One Molecule P1
Output: Two Molecules C1and C2

procedure Decomposition

for each server inP

Calculate the sum of allocated CPU
Rank the servers in a descending order based on their used
CPU

end for

Choose the server with maximum used CPU S1
Initialize a new solution C1
Copy the content of S1in the first server of C1
Reallocate the remaining VNFs in the new solution C1 by using the first fit algorithm //The
order of the VNFs to be placed is random
Initialize a new solution C2
Copy the content of S1 in the first server of C2
Reallocate the remaining VNFs in the new solution C1 by using the first fit algorithm
if Fitness(C1) > Fitness(P) Or Fitness(C2) > Fitness(P)
Remove P from population
Add C1and C2 to the population
else
Discard C1and C2

end procedure

 38

On-wall ineffective collision:

This procedure represents a corrective action where we attempt to improve the quality of a

selected solution. Unlike decomposition, this elementary reaction starts with one molecule P

and results in one molecule C. The main idea is to choose the weakest server S1 on solution P

with the least used CPU capacity. The next step is to empty the selected server S1 and

redistribute its VNFs on the currently used servers, as they may still have enough CPU

available to host the VNFs previously hosted on S1. The procedure for this reaction is

described in Algorithm 2.15.

Algorithm 2.15 CRO Placement On Wall Ineffective Collision

Input: One Molecule P

Output: One molecule C

procedure ON-WALL COLLISION

Copy the solution P into C

For each server inC

Calculate the sum of allocated CPU

Rank the servers in a descending order based on their used CPU

end For
Choose the server with minimum used CPU S1

Empty the selected server S1
Redistribute the previously hosted VNFs on S1using first fit algorithm

 if Fitness(C)> Fitness(P)

 Remove P from population

 Add C to the population

 else
 Discard C

end procedure

39

Synthesis:

This procedure results in one solution C starting from two molecules P1 and P2. The aim of

this elementary reaction is to copy the best features from selected molecules P1 and P2 into

the offspring C. The first step is to look for the fullest servers on both solutions P1 and P2

and then copy their content into the offspring solution C. Before proceeding with the rest of

the VNFs, it is mandatory to remove potential VNF duplicates in S1 and S2. Once we are

sure of the unicity of placed VNFs, we host the remaining VNF requests using the first fit

algorithm. Details of the procedure are explained in Algorithm 2.16.

Algorithm 2.16 CRO Placement-Synthesis

Input: Two Molecule P1 and P2
Output: One molecule C

procedure On-wall Collision

 for each server in P1
 Calculate the sum of allocated CPU
 Rank the servers in a descending order based on their used CPU

 Choose the server with maximum used CPU S1
 end for

 for eachserver in P2

 Calculate the sum of allocated CPU
Rank the servers in a descending order based on their used CPU

 Choose the server with maximum used CPU S2
 end For

 Initialize a new empty solution C
 Copy the placed VNFs in S1 and S2 in two new servers of C
 Eliminate VNF duplicates between S1 and S2
 Look for the remaining unplaced VNFs in the SFC request
 Place those VNFs using First Fit algorithm in the solution C
 if Fitness(C)>Fitness(P1) Or Fitness(C) > Fitness(P2)

 Remove P1 and P2from population
 Add C to the population

 else
 Discard C

end procedure

 40

Inter-molecular ineffective collision:

This procedure starts with two molecules P1 and P2 and results in two solutions C1 and C2.

Since each new solution is constructed independently from the other, we use the on wall

ineffective operator twice to generate new solutions. C1=ON-WALL COLLISION(P1) and

C2=ON-WALL COLLISION(P2).

Fitness function:

As our aim in the placement phase is to optimize the operational cost, we must maximize the

hardware resource consolidation and use the minimum number of servers to host all

incoming requests. That’s why we define our fitness function for CRO based placement by

Eq.(2.13). Maximizing this fitness function along the CRO iterations allows favoring the

most-filled servers and thus avoids hardware resource waste by having the maximum number

of inactive servers.

𝐹𝑖𝑡𝑛𝑒𝑠𝑠௣௟௔௖௘௠௘௡௧ = 1|𝑉௛|෍ ෍ (𝛼௡,௠௣ .𝑅௠௣𝑅௏௛௠௔௫)ଶ|௏೓|
௠ୀଵ

|௏ೡ|
௡ୀଵ

(2.13)

The stepwise process to execute the CRO-based placement approach to solve the ILP in

terms of operational cost and CPU consolidation is illustrated in Algorithm 17.

41

Algorithm 2.17 CRO based placement

Input: Network size, Scap: Servers’ capacities, SFC requests, Num-Hits = 0, Maxlteration,
Popsize: Initial population size, α= 0.6 * Maxlteration, β=0.3 * Maxlteration, Kinetic energy
KE = Maxlteration

Output: Final solution O

Procedure CHEMICAL REACTION OPTIMIZATION

While Popsize has not yet been attained

Generate molecules by executing Algorithm 13
Randomly generate mol∈ [0,1]
while Num-Hits <Maxlteration then
Generate b∈ [0,1]
If b >mol

Randomly select one molecule
If Num-Hits >α then
Execute Algorithm 14
else

Execute Algorithm 15
else

Randomly select two molecules
If KE <β

Execute Algorithm 16
else

Execute Algorithm 15 on both selected molecules
 end if

KE - --
end if

Num-Hits++
end while

end while
Check for a new minimum solution
O <= final solution and its objective function
end procedure

2.6 Experimental Setup and Results:

In this section, we provide the details of the used environment, the conducted scenarios and

we discuss the obtained results. We classify our simulations into two separate sets:

 42

• The first part consists of testing the chaining phase to decide which of the heuristics

presented in section 4.3 to adopt and also determining the limit of network size to decide

when to apply clustering.

• The second part of our simulations shows the overall results for our proposed approach for

VNF placement and chaining.

2.6.1 SFCs chaining without clustering:

We consider a substrate network composed of 30 nodes that are either middleboxes or host

servers. The delay on the edges of the network is set randomly between [30,250] us, while

the SFC request tolerates a maximum delay of 450us between two adjacent VNFs. Our

proposed algorithm returns the optimal path between a pair of VNFs that we assume, in a

first step, are already placed.

Heuristic parameters:

• For the classic version of GA (C-GA), we used a high rate for mutation (0.9) as it is more

likely to improve the offspring than crossover which is limited to the condition of having a

crossing point between the two parents to ensure having a valid solution (Crossover rate

0.1).

• For the priority-based GA (P-GA), we used the default settings for mutation and crossover

rates which are respectively 0.2 and 0.8;

• For CRO the parameters were set based on a trial and error process: α=0.6×MaxIteration,

β=0.3×MaxIteration

To define the maximum number of iterations needed to find optimal solutions for each of the

proposed algorithms, we ran them on the same substrate graph on which we already know the

optimal path from a source to destination node. Figure 4 shows the evolution of the End-to

End (E2E) delay when the algorithm is run a single time. The priority-based GA (P-GA)

converges to the optimal solution in less iterations than CRO and the classic GA. C-GA, and

43

because of the limitations explained in section 2.5.3.2 gets stuck in a local optimum at around

300 iterations and might not converge to the optimal path if the quality of the initial

population is not good enough. Moreover, since the path generation procedure is totally

random at first, the probability of not finding a good solution increases for CGA. On another

hand CRO manages to find the optimal path with an average of 350 to 400 iterations.

Figure 2.4 Comparison of E2E evolution for CGA, PGA and CRO

Now, to evaluate the performance of the proposed algorithms, we rely on two metrics, the

quality of the solution in terms of the E2E delay as well as the run time needed to find a near

optimal solution.

E2E Delay:

Based on the previous results of Figure 2.4, we fixed the iteration number for both CRO and

CGA to 400 while for PGA we set it to 300. We run each of the algorithms 10 times to

compute the E2E delay as well as the average execution time needed for each approach. The

 44

considered network topology is always composed of 30 nodes (middleboxes and servers

included). In Figure 2.6 we present the best, the worse and the average solution cost for each

of the algorithms. As we can see that in the best case, all algorithms manage to find the

optimal path. As we consider the average cost delay, the worst performance is that of C-GA

and that is due to the sizing condition imposed on the chromosomes. Because, if the

initialization did not contain a path of the exact same size of the optimal one, the C-GA

algorithm would never be able to converge to better solutions. CRO and P-GA perform

similarly in terms of the solution quality but as we mentioned earlier, since the run time is a

critical criterion when it comes to latency critical applications such video conferencing and

voice-over-IP, we compare our solutions also in terms of execution time.

Figure 2.5 Average E2E Delay for C-GA, P-GA and CRO

45

Run time:

The number of needed iterations is not directly correlated with the run time as we can see in

Figure 2.7 showing a comparison of the execution time for the three studied algorithms (P-

GA, C-GA and CRO). Based on the obtained results, we can see that C-GA have the shortest

execution time compared to CRO and P-GA but as previously explained is more likely to

result in bad solutions. On another note, P-GA takes more time to converge to optimal

compared to CRO, even if he needs less iterations. This is an expected result as the P-GA

procedure requires an extra processing phase, which is to decode the chromosome into a

valid path, while for CRO a molecule represents actually a valid solution we don’t need

another procedure to transit from the search to solution space.

Figure 2.6 Average run-time for C-GA, P-GA and CRO

According to the obtained results both in Figures 2.6 and 2.7, it is obvious that the C-GA is

not the heuristic to adopt for our chaining problem, which led us in the following simulations

to compare just CRO and P-GA.

To decide which of the two algorithms to adopt, we doubled the substrate graph size to 60

nodes to see how this parameter impacts the efficiency of our proposed solutions. Here again

 46

we run each one of the algorithms 10 times with the same parameters used for the previous

simulation.

Figure 2.7 Average E2E delay for P-GA and CRO

To evaluate the run time, we increase the size of the network from 20 to 120 nodes. We can

conclude based on results of Figure 2.8 that the average E2E delay found by P-GA is slightly

better than that of CRO. But when considering the execution time, we can clearly see in

Figure 2.9 that as we increase the size of the input graph, the execution time increases also

for both approaches but the gap between CRO and P-GA gets more important. Given the fact

that we consider time sensitive applications and based on our results, we decided to adopt the

CRO for the chaining phase of our overall approach for SFC embedding.

47

Figure 2.8 Average Runtime for PGA and CRO by network size

The proposed CRO based chaining finds the optimal path for a pair of VNF, but in real case

scenarios SFCs are usually composed of more than just two VNFs, that’s why we

parallelized the proposed procedure in Algorithm 2.7 to find the optimal path between each

pair of VNFs composing the same SFC. We tested our parallelized algorithm using the

parameters presented in Table 2.1.

Table 2.1 Simulation Setup for chaining

Simulation parameters for chaining

Total SFC requests

SFC size

E2E delay requirements

Delay on substrate links

Substrate network size

20

2 to 10 VNFs

Set randomly between [200,500] us

Set randomly between [30,250] us

30,60,90,120

 48

As we can see in Figure 2.9, for the same number of VNFs in the SFC requests, the E2E

delay increases as we increase the size of the network. It is an expected result as there are no

restrictions on where to place the VNFs which means that a pair of VNFs are not mandatorily

placed near each other as we increase the size of the network.

Figure 2.9 Average E2E Delay by network size for parallel CRO

Figure 2.10 Rejection rate of SFC requests

49

We can see in Figure 2.10 that not only does the E2E delay increases but also the rejection

rate of chaining a given SFC. Even if the network has enough physical resources to host all

the VNFs but in terms of latency the probability of violating the delay requirements of SFCs

keeps increasing as we consider larger substrate networks.

This result is explained by the fact that all SFC requests are placed simultaneously, which

increases the probability of having VNFs belonging to the same SFC but hosted on extreme

nodes in the substrate graph. Moreover, if the link delays are too high the request would not

be fulfilled in terms of E2E delay and would thus be rejected. To avoid having a high

rejection rate, clustering can be a helping process to reduce the placement and chaining

search space. For a clustered network, using the same approach we can make sure that the

whole SFC is hosted on a relatively small network, which guarantees that its components

would be closer to each other and thus avoid violating the SFCs’ latency requirements.

2.6.2 SFCs Placement and chaining with clustering:

The simulations in this section were conducted on a 120 nodes substrate graph, this choice is

based on the obtained results in Figure 2.10 as the rejection rate starts getting higher starting

from 80 nodes which is the limit of the network size to apply clustering.

Clustering:

Using the k-medoids based algorithm we form a set of energy efficient clusters as well as

memory efficient clusters. The parameters used to simulate our clustering are presented in

Table 2.2.

 50

Table 2.2 Simulation Setup for clustering

Simulation parameters for clustering

Number of nodes in physical graph

Available energy per node

Available memory per node

120

Set randomly between [3000,5000] Joules

Set randomly between [100,2000] Go

In Figure 2.11, we can see how the clustering process classifies the substrate nodes based on

their energy capacities. Each cluster stands for a level of efficiency here in terms of energy

and in terms of memory in Figure 2.12. The SFC requests are then assigned to the according

cluster, based on their preferences whether they prioritize energy or memory and their

requirements for each of these metrics.

Figure 2.11 Node distribution according to Energy availability

51

Figure 2.12 Node distribution according to Memory availability

Placement:

We compare here the results of CPU consumption and resource consolidation in two network

scenarios: with and without clustering. To simplify our simulations, we consider that all

VNFs are of the same type, meaning they request the same type of clusters (energy or

memory efficient). The servers’ capacity is also set to the same value but in realistic

environments these capacities are dynamically monitored and given as input to our placement

algorithm. The used parameters are described in Table 2.3.

Table 2.3 Simulation setup for placement

Simulation parameters for placement

Number of nodes in physical graph

Number of clusters

Servers’ initial capacity

Number of SFC requests

SFC size

VNF CPU core requirements

120

4

30 cores per server

15,20,30,40

2 to 10 VNFs

1 to 15 cores

 52

Figure 2.13 shows the comparison of used servers when the network is considered without

clustering and in the second case when we apply the clustering.

Figure 2.13 Comparison of number of used servers

Based on the results, we can see that up to a total of 120 VNFS only one cluster is enough to

host the requests and the total number of used servers is the same in both scenarios. As we

increase the number of requested VNFs to 200, we can see in this case that 2 clusters are

needed to fulfill the SFC requests and the total number of used servers starts to improve

slightly starting from 250 VNFs as a total request. As we increase the SFC request, the

clustering allows us to reduce the number of used servers and thus to consolidate our

physical resources. This result is explained by the fact that the placement algorithm does not

move to a second cluster unless the 1st one is fully used, while if the whole network is

considered the placement algorithm has a larger search space and might place the requests

not necessarily in the most optimal way.

53

Chaining:

In this part of the simulation we fix the total number of VNFs to be hosted to 200, and

compare the quality of the CRO solutions in both cases: with and without clustering the

substrate network.

Figure 2.14 E2E delay comparison with and without clustering

We can see based on Figure 2.14, that the average E2E delay found in the case of a network

without clustering is considerably higher than that of a clustered substrate network. This

result is expected principally due to the placement phase, as we place SFCs on their

dedicated cluster, this increases the probability of having VNFs belonging to the same SFC

hosted relatively close to each other and thus resulting on a better E2E delay. As we consider

the worst-case scenario, we can see that for a network without clustering, the E2E delay is

practically twice the case where the network is clustered. Not only does the clustering helps

improve the quality of the SFCs chaining, but it also ensures that all the requests are placed

and chained according to their initial requirements, contrary to the case where we consider

 54

the whole network as we’ve seen in Figure 2.10 the rejection rate keeps increasing as we

consider larger substrate networks.

Execution time:

After we’ve analyzed how the clustering technique helps improve the quality of the proposed

solutions, in this section we will analyze its impact on the overall run time of the proposed

approach. In the Figure 2.15, we compare two schemes of clustering:

• Static clustering where its executed at the start of the algorithm and not updated again, in

this case it wouldn’t have a big impact on the overall execution time.

• Dynamic clustering updated periodically as the resources vary on the network topology,

in this case it should be considered in the execution time.

For both cases and based on the results of Figure 2.15, we can clearly see that the clustering

technique improves considerably the run time of both placement and chaining, that is due

mainly to the fact that the search space is reduced and therefore the complexity of the

problem also.

Figure 2.15 Run-time comparison of placement and chaining with and without clustering

55

2.6.3 Results analysis:

The following section summarizes the results for the different stages of our approach:

Chaining:

Table 2.4 presents our obtained results for a substrate graph composed of 30 nodes, based on

the obtained results we can see that the C-GA performs bad compared to the two other

approaches: P-GA and CRO, which made us discard this solution. Considering execution

time also as an important factor we can see that even CRO and P-GA might perform

similarly in terms of solution quality, the run time is better for CRO. As we increased the

number of nodes to 60 we can see as presented in Figure 2.9 that the gap keeps increasing as

the network size increases so we decided to adopt CRO for our chaining phase.

Table 2.4 Heuristic comparison for chaining

Heuristic Average E2E Delay (ms) Execution time (ms)

CRO 198 33.9

P-GA 205 39.1

C-GA 237 23.4

Optimal 175 --

Placement and chaining:

Table 2.5 presents our obtained results for both placement and chaining as we consider two

case scenarios: a substrate network without clustering and the second case is where we apply

the K-medoids clustering approach. The heuristic used in this phase is CRO for both stages:

placement and chaining, while the substrate network is here composed of 120 nodes.

 56

Table 2.5 SFC embedding performance comparison

 Average E2E Delay

(sec)
Average number of

used servers
Execution time (sec)

With Clustering 0.213 81 0.57

Without Clustering 0.36 84 1.32

As previously explained and following the presented results, we can see that the clustering

phase helps not only to include other performance metrics (e.g. energy, memory, storage...)

but can help optimize the execution time of the embedding procedure and also improve the

quality of the resource consolidation and the E2E delay values.

2.7 Conclusion

In this chapter, we propose a multi stage approach to ensure an optimized placement and

chaining of service function chains by minimizing the operational, transmission and penalty

costs. Our formulated approach uses the heuristic algorithm CRO to find sub optimal

solutions, it also offers many advantages compared to the proposed solutions in the literature

as it:

• Takes many metrics into account in the optimization process more specifically energy and

CPU consumption as well as the end to end delay. It is worth stating here that the

approach is generic enough to be adapted to consider other metrics depending on the

priorities of the SFC requests.

• Scales well with large network topologies, thanks to the pre-processing phase of clustering

that helps reducing the space search and thus the complexity of the problem.

• Acts in a dynamic scheme as we update the clustering periodically depending on the

resources and depending on the incoming SFC requests and their resource consumption. It

allows network administrators to decide of the most efficient placement and adjustment

policies as the resources in the cloud datacenters are constantly changing.

57

Our simulations show that our approach proves to be efficient for the SFCs placement and

chaining problem. Using the CRO, results prove that this heuristic outperforms genetic

algorithm especially in the chaining phase as it offers a good trade-off between the quality of

its solutions as well as the run-time. Results shows also that Clustering help not only to

include other objective functions making the placement more optimized, but it also helps

reducing the space search for our adopted heuristic. Clustering allows also optimizing the run

time of the whole process, which is an important factor as we consider time sensitive

applications and real-time services like in 5G networks. Consolidating resources on the

substrate level and also ensuring this efficient chaining between VNFs allows optimizing the

operational and penalty costs we defined in section 2.4

As future work, we plan on extending our work in two principle axes:

• Investigating other clustering techniques to improve the quality of the formed clusters and

also the execution time.

• Defining a joint placement and chaining approach for SFCs using metaheuristic

algorithms, which will also allow us to improve the overall execution time of the

procedure along with ensuring an optimal tradeoff between the set of metrics we want to

optimize. (e.g energy, delay, CPU, memory...)

CHAPITRE 3CHAPTER 3

VALKYRIE: A SUITE OF TOPOLOGY-AWARE CLUSTERING APPROACHES
FOR CLOUD-BASED VIRTUAL NETWORK SERVICES

Imane El Mensouma, Laaziz Lahloub, Fawaz A.Khasaznehc, Nadjia Karad, Claes Edstrome

a b c dDepartment of Software Engineering and IT, École de Technologie Supérieure,

1100 Notre-Dame Ouest, Montréal, Québec, Canada H3C 1K3
e Ericsson Canada, 8275 Route Transcanadienne, Ville Saint-Laurent, Québec,

Canada H4S 0B6

Paper Submitted to the journal “IEEE Transaction on Cybernetics” in October 2019

Provisional patent application P79104 filled by Ericsson Patent Unit Canada to the United
States Patent and Trademark Office (USTPO) in October 2019

3.1 Abstract

Complex networks are formal and effective tools for modeling, studying and analyzing

complex interactions between objects with non-trivial features in different domains.

Examples are computer communication networks, brain networks and social networks.

In computer networks, these tools play an important role in understanding applications, end-

users and interactions between compute nodes and their behaviors. Nowadays, computer

networks are undergoing significant expansion due to the proliferation of network devices

(legacy and/or virtualized), compute nodes and the number of relationships/inter

dependencies between network nodes. One of the main challenges in computer

communication networks lies in categorizing these compute nodes into communities/clusters

and detecting clusters/communities of connected compute nodes within these large-scale

structures sharing similar features of different types (e.g., CPU, memory, disk, etc.).

In this paper, we propose a set of novels, dynamic and proactive topology-aware

unsupervised machine learning (i.e., clustering) approaches, namely, a mixed integer linear

 60

program, a chemical reaction optimization meta-heuristic and a game theory approach, to

form clusters based on the compute nodes’ features and their topological structures. Our

solutions are tailored to meet the requirements of the fields of Network Function

Virtualization and Cloud based Communication Networks. In this regard, the solutions aim to

help decision makers facing issues related to scalability and computational complexities of

their mechanism to deploy their cloud- and non-cloud-based virtual network services in an

effective manner.

To the best of our knowledge, we are the first to consider the problem in the above contexts

and to propose a solution. Experimental results demonstrate the effectiveness of the proposed

approaches and their suitability, given their polynomial time complexities, which make them

easy to deploy and integrate into cloud providers’ orchestration systems.

Keywords: Network function virtualization, attributed network infrastructures, clustering,

multi-objective optimization, topological structure, attribute similarity.

3.2 Introduction

Complex networks (Bothorel et al. (2015)) are formal and effective tools for modeling,

studying and analyzing complex interactions between objects with non-trivial features in

different domains. Examples are computer communication networks, brain networks and

social networks. In computer networks, these tools play an important role in understanding

applications, end-users and interactions between compute nodes and their behaviors. These

tools essentially make use of the graph theory framework, where nodes represent objects and

edges represent the interaction between nodes. In the context of computer networks, nodes

represent commodity servers, compute nodes, network devices(legacy/virtualized), whereas

edges embody their relationships, which can be diverse (e.g., dependencies, bandwidth

capacity or latency) with respect to the context in which they are defined.

61

Clustering is a useful and important unsupervised learning technique widely used in the

literature (Alessandro et al. (2017), Yang et al. (2009), Hong et al. (2011), Chen et al.

(2004)). It aims at grouping similar objects into one cluster while keeping dissimilar objects

in separate clusters. Clustering has broad applications, including fraud detection and analysis

of financial, time series, spatial and astronomical data, etc.

Clustering of attributed graphs (Yang et al. (2009)), represents an interesting challenge,

which has recently started a lot of attention. Graph clustering applications include areas such

as community detection in social networks, etc.

Several approaches have been proposed to cluster attributed graphs. These approaches can be

classified into two categories: parameter-free and parameter-dependent approaches. In a

parameter-dependent approach, the number of clusters to be formed is given by the user as

input for the clustering algorithm, in contrast to the parameter-free approach, where no such

input is required. In addition to the aforementioned classification, many existing clustering

methods either perform clustering only considering the nodes’ properties and/or topological

structure.

The choice of an approach depends mainly on the nature of the problem at hand and the

desired goal. This choice is dictated by the nodes and/or by the links between them (i.e.,

focused on the structural part).

Generally, the clusters are formed by computing a similarity function considering either the

node attributes and/or structural attributes. This similarity function is the key to building

clusters since cluster members are grouped together only when being similar. In our

clustering, we will consider the quality of the clustering during the formation process, in

addition to other cost functions to evaluate. Most existing approaches (Bothorel et al. (2015),

Yang et al. (2009), Alessandro et al. (2017), and Hong et al. (2011)) for the clustering of

attributed graphs evaluate the quality of clustering once clusters are built. This is indeed how

things are done by most traditional clustering approaches as well i.e. the quality of the

 62

clustering is evaluated at the end of the process, instead of quality being considered during

the actual clustering.

However, in our approaches, our aim is to attempt to form clusters by assessing or

continuously improving them, considering both structural and node properties.

In the present chapter, we fill existing gaps in the research literature with the following main

contributions:

• We provide the first formulation for the joint server and network attributes for the

dynamic and proactive clustering problem tailored for service function chains, and

broadly, for virtual network services, in the context of NFV, 5G and network slicing.

• The problem is formulated as a Quadratic Constrained Integer Linear Program,

implemented and solved in line with Gurobi, to find optimal solutions for small-scale

networks.

• We design a fast and scalable Chemical Reaction Optimization approach to handle

medium and large-scale instances of the problem, leveraging the same ILP structure

(cost functions and constraints) for reliable benchmarking.

• A game theory-based approach similar to item 3 above is also suggested for forming

clusters.

• Moreover, our proposed solutions may be integrated into orchestration systems

following NFV MANO thanks to their low computational complexities.

• VALKYRIE’s performance in terms of solution quality and scalability is assessed using

real-world topologies: small, medium and large-scale enterprise networks.

The rest of this chapter is organized as follows. Section 3.2 presents the context, motivation

and system architecture. The related works is discussed in Section 3.3. Section 3.4presents

the system model and state the clustering problem. Our clustering techniques (Chemical

reaction optimization and game theory) are presented in section 3.5 and 3.6 respectively.

Section 3.7 discusses their asymptotic analysis. Results are presented in Section 3.8, followed

by the discussion in Section 3.9. Finally, Section 3.10 concludes this chapter.

63

3.3 Context, motivation and system architecture

Attributed graphs model real networks by augmenting their nodes with a set of attributes. In

the field of networking, these attributes pertain to CPU, Memory, Storage capacity, Energy

level, etc. Thus, our clustering approach of an attributed graph is devoted to the service

function chaining problem and broadly to cloud-based virtual network services where the

goals are:

• Reducing the search space from an algorithmic perspective to help find faster solutions for

the algorithms we have developed to deploy a service request.

• Build on-demand clusters such as CPU intensive clusters, bandwidth efficient clusters…

Figure 3.1 shows the VALKYRIE architecture we designed for the clustering of

cloud/enterprise network topologies. It comprises a control plane and a data plane.

VALKYRIE builds clusters based on on-demand requirements, which could relate to the

number of clusters we want to form, as well as their nature; i.e., we may want the clusters to

be CPU-intensive, delay/bandwidth-efficient, single metric or multi-metric efficient clusters.

Once the decision makers choose an option, they may invoke a CRO-based clustering

procedure, a Game Theory based procedure, or even the ILP solution, to build the desired

clusters. This is done according to the size of the underlying network topology (small-scale,

medium-scale and large-scale networks).

Another important task worth mentioning is the preprocessing task the network topology

undergoes. Like any unsupervised learning technique, a.k.a clustering, the data must always

be cleaned beforehand, with the links connecting the servers filtered in terms of bandwidth

and latency according to the on-demand clusters’ requirements.

For example, if a link connecting two servers is congested, we will not consider it during the

clustering process. All these approaches and pre-processing tasks take place on the control

 64

plane. All the three approaches leverage information (available CPU cores, memory, storage

capacity, power consumption, bandwidth and latency) provided by the data plane, which is

fetched on a periodic basis using analytic tools such as Grafana, as well as the current

network infrastructure topology(the available servers with their inter-connectivity).

Figure 3.1 VALKYRIE for building virtual clusters for cloud and virtual network services

3.4 Related work

In this section, we review the existing and most relevant approaches that have thus far been

proposed in the research literature concerning the clustering of networks for service function

chaining. Although, only very few articles have proposed forming virtual clusters of the

physical servers, we will detail the state of the art regarding clustering in cloud environments,

especially with respect to virtual machines clustering which aims at optimizing the resource

consumption and management of the physical infrastructure. Moreover, we present the

techniques adopted for community detection in social networks, which is also an application

of clustering in attributed graphs like our considered context.

65

Clustering in cloud environments:

Chen et al. (2018), propose a topology aware approach to host virtual machines clusters on a

compute pool composed of a set of physical machines. The virtual machine cluster is defined

as a group of virtual machines hosting a distributed application or service, the challenge here

is to place these VMs on top of physical machines in a manner which guarantees that two

VMs belonging to the same cluster are not deployed far away from each other to avoid high

bandwidth consumption and low performance in terms of the service offered. The authors

represent the VM cluster as a directed graph where nodes are the VMs and links between

them represent the links. To solve this placement problem, the authors propose a greedy

algorithm, which first attempts to host the entire VM cluster on the same physical server if it

has enough capacity. Otherwise, it starts with the node having the least connectivity weight

and places this VM on the physical machine with the minimum available capacity to host the

VM. Once placed, this VM is omitted from the initial graph and the algorithm follows the

same procedure to host the remaining VMs. The authors compare their approach to their

previous work in (Chen et al. (2015)), where the connectivity between VMs was not

considered. They also compare it to two basic approaches: the first-come-first-serve and the

round-robin (Sefraoui et al. (2012), Jackson et al. (2013)), approaches which are both used

for VM scheduling. The results show that this topology aware technique improves the

bandwidth consumption versus the yield with the three other approaches.

Chavan et al. (2014), propose a technique to cluster virtual machines in order to facilitate

their placement over a shared pool of physical machines, as well as reduce the complexity of

their placement, reconfiguration or migration. The goal of this proposed approach is to

ensure effective resource sharing between VMs which will provide higher resource

availability to end-users. The clustering technique leverages the similarity between VMs in

terms of different attributes such as the RAM, the OS or the hardware configuration. K-

means was adopted in this paper to perform the clustering. The authors develop also a

mathematical model based on linear programming to ensure a better usage of the clustered

VMs and enhance their performance.

 66

Pongsakorn et al. (2013), propose a technique to create virtual clusters composed of virtual

machines dedicated to high performance computing applications. The authors introduce

multi-site clustering, since virtual clusters are usually hosted on the same site to avoid

performance degradation and keep the QoS offered at a high level. To ensure better

management, higher resource availability and shared resources between many end users, the

proposed approach focuses more on the connectivity between the VMs over distant sites. An

overlay network is used to separate the network of each virtual cluster and ensure that VMs

can communicate with one another, even if they are not hosted on the same physical pool of

servers. While this approach may offer higher resource availability and greater computational

and processing power to clients, it however has a significant effect on the connectivity level:

if the same application is distributed across two VMs hosted on different sites, longer delays

and higher bandwidth consumption rates are all but a given.

Mahmoud et al. (2017), examine the security aspect in IaaS platforms (Infrastructure as a

service), where it is highly important to ensure the isolation between the virtual machines

serving different clients. The authors employ a modified sequential k-means algorithm-based

approach to detect abnormal behavior and anomalies in resource consumption trends across

specific virtual machines. Should the algorithm detect abnormal resource consumption peaks,

it means the system then may be encountering an external attack from a third malicious party.

The clustering is performed on groups of virtual machines based on multiple attributes (e.g.

CPU, memory, disk, network throughput.).The k-means approach presented here also

considers the application’s architecture and characteristics. The resulting clusters (web

cluster, database cluster, applications cluster, etc.) are grouped based on the nature of the

received traffic. A VM is then labeled as malicious if its resource consumption is far from the

centroid of its cluster, this labeling decision is based on a threshold fixed by the cloud

provider. The algorithm was tested on an Openstack setup and was proven to be efficient in

detecting malicious VMs, thus enhancing the security and monitoring over distributed cloud

environments and IaaS platforms.

67

A.Wahab et al. (2019), the authors propose a cluster-based placement approach for virtual

network functions. The clustering is considered as a pre-processing phase where the substrate

network is divided into a set of coherent groups in terms of specific metrics (Energy,

memory, CPU, etc.). The authors used a k-medoids-based approach, and the results proved

that this approach helps reduce the overall placement phase length, as well as any needed

migration. It is worth mentioning here that the proposed solution takes into account only the

servers attributes, while in real case scenarios, we must also consider the delays over the

links in the substrate network and their available bandwidth. Moreover, if the clustering is

based only on the nodes characteristics it is possible to end up with two servers belonging to

the same cluster, with the delays between them being too high, which may in turn increase

the SLA/SLO violation percentage in terms of the requested delay and severely degrade the

service performance.

Community detection in social networks:

Community detection consists in finding groups of individuals sharing some common

characteristics, but also have links with one another that could for example, mean that they

are friends on a social network. In our case, these individuals may be considered as servers

with common attributes, and that are linked together in the substrate network.

Liu et al. (2017), study the problem of community detection in the data analysis and

processing field. The aim of their work is to improve the quality of clustering over traditional

methods, which suffer from high complexity and long execution times. The authors propose

to use the genetic algorithm heuristic to form the communities. In this study, the objective

function considers only the modularity. While this measure does not take into account the

nodes’ attributes, by simulation, it is shown that the proposed approach manages to obtain

acceptable results as compared to the ground truth included in the data-set used. However, no

indication is given with regard to the run-time of the algorithm and there was no comparison

of the proposed approach to the classical clustering techniques described in the literature.

 68

Jami et al. (2016) compare a set of evolutionary algorithms to form communities in the

context of social networks. Three main heuristics are considered: particle swarm

optimization, cat swarm optimization and the genetic algorithm combined with simulated

annealing. Here again, the authors consider modularity as an objective function. The social

network is represented by a weighted graph in which nodes represent individuals and the

edges represent the relationships linking them. The comparison of the proposed heuristics is

tested on classical data-sets like the Zachary’s karate club data-set, and the results show that

the number of communities found by each algorithm, as well as the modularity, is different,

but the genetic algorithm approach coupled with simulated annealing exhibits the best trade-

off between the quality of the returned solution and also the overall execution time.

Aylani et al. (2017), propose a k-means-based approach to detect communities in social

networks. The authors lay emphasis on the interactions between individuals, and take into

account their common interests and activities, unlike in classical clustering techniques, where

the focus is mainly made on profile similarities (e.g., age, gender, education, etc.). To

leverage this aspect of connections between people sharing a social network, the authors

introduce a factor called the “common social activity”, which considers both similarities in

terms of attributes and of the nature of interactions between individuals. Although, the

approach points to a significant shortage in actual clustering techniques, the adoption of k-

means also carries major deficiencies, mainly related to the random initial phase, which

consists in choosing random first seeds or centroids, and may result in poor solutions.

Moreover, k-means do not scale well when the number of attributes considered is high,

which is the case in the social networks’ context.

Many research works employ clustering techniques to form similar groups of items

indifferent fields of application, such as social networks or in cloud computing environments.

Most of the works presented above, employ classical approaches based on k-means or k-

medoids, for example. Some research papers also adopt evolutionary algorithms, such as

genetic algorithm or simulated annealing. In the present paper, we propose clustering

algorithms applied to data-centers to form homogeneous groups of servers in terms of

69

selected attributes. This pro-active measure helps reduce the complexity of SFC placement

and allows better management of resources on the physical infrastructure, which is important

for service providers. To the best of our knowledge, no existing research work has studied

topology aware clustering in the context of a dynamic and proactive approach tailored to

NFV, 5G and network slicing.

3.5 System model and problem statement

In this section, we start by providing formal definitions of physical and virtual network

services and listing the terms pertaining to the scope of our work. Then, we present the

problem statement before diving into the mathematical model used both for the ILP solution

and the meta-heuristic based approach.

3.5.1 Definitions and notations

We now introduce our formal description of the proposed mathematical model, along with

the notations used. Formally, attributed graphs extend the concept of graphs by enriching

nodes with a set of attributes. An attributed graph G=(V, E, A) consists of a set of V nodes, a

set of links interconnecting them (E), and the set of node attributes (A).

3.5.2 Problem statement

We formulate the problem of clustering of attributed graphs in Network Function

Virtualization as a Quadratic Assignment Problem, which is recognized in the literature

(Bothorel et al.2015) to be one of the most challenging optimization problems. In its formal

form, the goal is to assign n facilities to n locations, with the cost of being proportional to the

flow between the facilities times the distances between the locations, plus eventually the cost

for placing facilities at their respective locations. Thus, the objective is to allocate each

facility to a location such that the total cost is either minimized or maximized, depending on

the intrinsic nature of the considered problem. In our context, the facilities are the servers and

the locations represent the clusters we want to form.

 70

In summary, we put together facilities that are similar into the same location, while we

separate distinct facilities into different locations. The cost functions we use are F1 and F2,

which are defined in the next section. Since the Quadratic Assignment Problem is NP-Hard

and our model reduces to its form then clustering of attributed graphs in Network Function

Virtualization is also NP-Hard.

Our goal is to propose a set of clustering techniques tailored to the service function chaining

problem, as well as cloud-based virtual network service orchestration using the concept of

attributed graphs. The clustering approach attempts to extract non-overlapping clusters using

a combined distance that accounts for node features and exploits the characteristics of the

underlying networking topologies. Finding a good clustering of an attributed graph requires

the optimization of at least two objective functions (Bothorel et al. (2015), (Yang et al.

(2009))). There will always be a tradeoff between compositional and structural dimensions.

These dimensions pertain to the nodes and links, respectively. For node attributed graphs the

objectives are:

• The structural quality of the clusters. We consider the modularity function (Clauset et al.

(2004)), where a higher modularity corresponds to better clustering. Thus, here we need to

maximize this measure as an objective function.

• The intra-cluster homogeneity of the node attributes. Here, we consider the similarity-

based measure (Bothorel et al. (2015)), which is the key to building clusters since cluster

members are grouped together only when being similar.

Thus, we need to maximize this measure (i.e., maximize homogeneity) as an objective

function as well.

The justification for these two objectives is purely technical in that these measures are easy

to compute and do not require additional information other than that provided by features of

the servers and the network topology itself, in terms of number of servers and links. They are

thus not computational time-consuming since their growth is linear.

71

Moreover, as explained in the survey (Bothorel et al. (2015)), for node-attributed graphs, at

least two optimization objectives need to be considered. There will be a trade-off between

compositional and structural dimensions.

3.5.3 VALKYRIE clustering model

Table 3.1 summarizes the different notations used throughout the paper.

Table 3.1 Notation table

C Set of clusters.

Sim(i,j) Entropy of a cluster Γc.

δ(C) Density function of a partition C.

V Set of servers.

A Set of servers’ attributes.

E Set of links.

E(Ci) Set of links inside cluster Ci. 𝑥௜ௗ Vector of attributes associated to the server i. 𝛾௜௖ ∈ {0,1} 𝛾௜௖= 1 if server i belongs to cluster c.

Objective functions:

Our aim is to build clusters that are similar, while taking into account not only their

topological distance, but also the capacity of the links interconnecting them to communicate

with each other while within the same clusters.

• F1 stands for the assignment of the servers in the clusters. The aim is to build clusters with

similar servers in terms of attributes. Therefore, F1 will maximize the similarity. Yet,

clusters with different characteristics may be formed, having either one or multiple

 72

attributes in common. For instance, we may use CPU-intensive clusters, energy-efficient

clusters, or even a combination of several attributes to form multi-attribute clusters.

 𝐹1 = 12 × ෍ 𝑆𝑖𝑚(𝑖, 𝑗)∀௖∈஼,∀௜∈௏,∀௝∈௏
(3.1)

Where, 𝑆𝑖𝑚(𝑖, 𝑗) = 𝛾௜௖𝛾௝௖[11 + ට∑ (𝑥௜ௗ − 𝑥௝ௗ)ଶ∀ௗ]

• F2 tries to maximize the modularity for a better clustering (Clauset et al. (2004)).
 𝐹2 = 12|𝐸| ෍ [𝐴௜௝ − 𝑘௜𝑘௝2|𝐸| 𝛿(𝑖, 𝑗)]∀௜∈௏,∀௝∈௏,∀௖∈஼

(3.2)

Where, 𝐴௜௝ = 1 i,j if i and j are directly connected and otherwise, 𝐴௜௝ i,jis the adjacency

matrix of the network and ki the degree of server i. The degree refers to the number of

connections each server has to its neighbors.

 𝛿(𝑖, 𝑗) is the Kronecker delta which returns 1 if i and j belong to the same cluster, and 0

otherwise. In our problem formulation, we replace it with the product of the decision

variables which is equivalent to the Kronecker delta.

Thus, F2 becomes:

 𝐹2 = 12|𝐸| ෍ [𝐴௜௝ − 𝑘௜𝑘௝2|𝐸| 𝛾௜௖𝛾௝௖]∀௜∈௏,∀௝∈௏,∀௖∈஼
(3.3)

73

Constraints
 ∀𝑐 ∈ 𝐶: ෍𝛾௜௖௜∈௏ = 1 (3.4)

∀ 𝑖 ∈ 𝑉: ෍𝛾௜௖௖∈஼ ≥ 2 (3.5)

∀ 𝑐 ∈ 𝐶,∀ 𝑖 ∈ 𝑉: 𝛾௜௖ ∈ 0,1 (3.6)

Constraint (3.4) ensures that each server belongs to only one cluster. Thus, the model is

outlier-free. Constraint (3.5) ensures that the clusters that are formed have more than two

servers inside them. In fact, this parameter can be specified as a different value, depending on

the needs of the decision maker or of the network administrator in charge of executing the

model/approaches. Constraint (3.6) specifies that the decision variable is binary (its value is

either 1 or 0).

3.6 CRO-based clustering approach

3.6.1 CRO approach description

Chemical reaction optimization is a population-based metaheuristic that mimics the nature of

chemical reactions to solve complex optimization problems. The key component in CRO is

the molecule which represents a potential solution of the considered problem. Each molecule

in the population is characterized by its potential energy which is the equivalent of the

objective functions in the optimization diction.

 74

CRO consists of a series of reactions aimed at enhancing the quality of the population over

the iterations. These reactions are divided into two primary sets: uni-molecular reactions and

multi-molecular reactions:

• Uni-molecular reactions: These reactions include only one molecule as an initial input,

and may result in a single new molecule, in which case we talk of an On-wall ineffective

collision. Alternatively, it may also result in two different solutions. Here, we will be

dealing with decomposition because a single molecule splits into two new molecules

having different potential energies.

• Multi-molecular reactions: This set consists of two initial molecules, which after the

reaction may result in a single molecule, if synthesis occurs, or in two new solutions, if

there is an inter-molecular reaction. The synthesis here consists of two molecules colliding

with each other and resulting in a different molecule, while with the inter-molecular

ineffective collision, two molecules hit each other and then bounce back, and each one of

them is slightly changed, but independently from the other.

Both types of ineffective collisions allow intensifying the population by performing a local

search in the solution space, while decomposition and synthesis act more as diversification

procedures. We thus have a balanced number of operations that includes all these reactions,

thereby ensuring an effective search in the solution space and allowing near optimal solutions

to be found for the considered optimization problem (Lam et al. (2012)). The overall CRO

approach is driven by the following parameters:

• Potential Energy: This is a quality measure that measures the objective function of a given

solution/ molecule.

• Kinetic Energy KE: This measure quantifies the tolerance of the whole system to

accepting solutions that are worse than the initial ones.

• Decomposition rate A: At each iteration, this value determines the uni-molecular reactions

to be applied: decomposition or on-wall ineffective collision.

75

• Synthesis rate B: At each iteration, this value determines the multi-molecular reaction to

be applied: synthesis or inter-molecular ineffective collision.

• Maximum number of iterations: This is a counter that is used as a stopping criterion. Once

the maximum number of iterations is attained, the CRO heuristic converges to the most

optimal solution available in the current population.

These values are set by the network administrators as inputs and should be tuned to obtain

the best optimal solution depending on the optimization problem considered. In the following

section, we will describe how we used the chemical reaction optimization meta-heuristic for

our clustering problem. We also define the molecule encoding as well as the operators we

used for each of the elementary reactions.

3.6.2 Molecule encoding

One possible way to encode the solution is to use the grouping technique as defined in (El

Mensoum et al. (2019)) where each cluster will represent the group of servers it contains as

described in Table 3.2.

Table 3.2 First Molecule encoding

Cluster ID 1 2 3 4
Included nodes 1,3,7 2,4,6 5,8, 9,10

Table 3.2 shows a topology of 10 nodes distributed on three different clusters. Using this

encoding, if we apply the usual operator used for the chemical reaction optimization or

genetic algorithm we may end up with overlapping clusters which will violate the constraint

(3.3) which requires that each node should belong to only one cluster. To avoid this problem,

we decided to go with the encoding shown in Table 3.3.

 76

Table 3.3 Adopted molecule encoding

Server ID 1 2 3 4 5 6 7 8 9 10
Cluster ID 1 2 1 2 3 2 1 3 4 4

This encoding consists of an N size array where N is the number of nodes in the substrate

graph; each server is assigned to a selected cluster which has a specific label.

3.6.3 Initial population

Our CRO approach consists of a centroid-based clustering where we specify a set of points in

the dataset and then assign the rest of our servers to one of the defined centroids based on the

similarity measure, we defined in section 3.5.2.

Prior to executing the different CRO operators, the choice of the initial k centroids is a

critical step. The challenge in this phase consists in ensuring that these centroids are spread

out enough to reflect the distribution of our servers in the dataset in order to allow us to

distinguish the different clusters/groups that we have in the studied network topology.

Inspired by k-means++, we decided to use the variance of our considered servers in terms of

their attributes and define the initial centroids accordingly. This ensures that the initialization

phase would not be totally blind or random, and that the centroids chosen would be

representative of the variety of our servers, which would then allow us to enhance the quality

of our initial population members: that is a key part of every meta-heuristic approach. The

step-wise process to generate the molecules is described in Algorithm 3.1.

77

Algorithm 3.1 Molecule generation

Input: Number of clusters K, Servers attributes, Population size Popsize

Output: Initial population

1: Initialize counter count = 0

2: Generate a random vector V [0] of K points in the range of servers’ attributes

3: while count != Popsize do

4: Assign each data point in the space to the closest centroid in vector V [count]

5: Add the formed molecule to population

6: increment count, i.e., count + +

7: Create a new vector V [count] = V [count − −] + dataset variance; this step allows to

initialize new centroids shifted from the previous ones using the dataset variance.

8: end while

3.6.4 Elementary reactions

In this section, we will describe how we used each of the CRO operators to enhance the

quality of the formed solutions present in the initial population. As we previously explained

in section 5.1 the operators of CRO consist of two major sets:

• Uni-molecular reactions:

The first reaction in this set is called the On-wall ineffective collision. This operator

consists of a single input molecule representing a potential solution called M1 in

Algorithm 3.2 and then results in a new solution that we call Mo. We select a set of

nodes that have low similarities within their assigned clusters, re-compute their

similarities to the updated centroids and then re-assign them to the cluster to which they

are the most similar in terms of the selected attributes (steps 1 to 3 in Algorithm 3.2).

This way will allow us to correct the misplaced nodes and re-enforce the homogeneity of

the formed clusters. Once the new solution is formed, we compute its modularity. If it is

 78

higher than the initial input solution M1, we destroy this later and add Mo to the

population; otherwise; we keep M1 and destroy the resulting Mo.

Algorithm 3.2 On-wall ineffective collision

Input: One initial molecule M1, Servers attributes

1: Select the set of nodes with low similarity to their clusters

2: Compute the similarity of these nodes to the centroids of M1

3: Re-assign each node to its closest centroid based on similarity

4: Compute the modularity of the new formed solution Mo

5: If Modularity(Mo) >Modularity(M1)

 6: Destroy M1

 7: Add Mo to the population

8: else

 9: Destroy Mo

 10: end If

The second operator in this category is the Decomposition. This reaction also starts with a

single molecule M1 but results in two distinct solutions D1 and D2. We select a random node

in the initial solution M1 which ranges between 0 to N where N is the number of nodes in our

data-set. We keep the first part of this molecule M1 in the first resulting solution D1 meaning

we copy the clustering from Server[0] to Server[R] (step 2 Algorithm 3.3) and then assign

the rest of nodes to their closest centroids based on similarity (step 3 Algorithm 3.3).

 The second solution is constructed from the second part of M1 but this time we keep nodes

from Server[R+1] to Server [N] (step 4 Algorithm 3.3) and assign servers 0 to R to their

closest cluster again based on similarity (step 5 Algorithm 3.3). Once the new offspring is

formed, we compute the modularity of both D1 and D2 if one of them is higher than that of

the initial solution M1 we destroy this later while adding D1 and D2 to the population;

otherwise; the new solutions are destroyed and the population remains unchanged.

79

Algorithm 3.3 Decomposition

Input: One initial molecule M1 , Servers attributes, Number of servers N

1: Select a random integer R ranging from 0 to N

2: Copy M1[0:R] in D1[0:R]

3: Assign nodes from R+1 to N to their closest centroids based on similarity to form

D1[R+1:N]

4: Copy M1[R+1:N] in D2[R+1:N]

5: Assign nodes from 0 to R to their closest centroids based on similarity to form D2[0:R]

6: Compute the modularity of D1 and D2

7: If Modularity(D1) >Modularity(M1) OR Modularity(D2) >Modularity(M1)

 8: Destroy M1

 9: Add D1 and D2 to the population

 10: else

 11: Destroy D1 and D2

 12: end If

• Multi-molecular reactions:

The first operator in this category is the Synthesis, and its full process is described in

Algorithm 3.4. We have as an input two molecules representing two potential solutions

chosen randomly from the current population M1 and M2, the collision between these two

elements results in single output molecule Ms which is also a probable solution of our

optimization problem. This reaction consists of choosing a random point on both parents

M1 and M2 and populating the offspring solution with elements from the 1st parent

ranging from server[0] to server[R] and then the rest of Ms is formed by the 2nd parent

ranging from server[R+1] to server[N] where is the number of servers considered in our

dataset (step 2 in Algorithm 3.4). If the resulting modularity of the new formed solution

Ms is higher than that of the initial molecules M1 and M2 then these two are later

discarded while Ms is added to the population, otherwise, the population remains the

 80

same and both M1 and M2 are kept in the population, while Ms is destroyed (steps 4 to 8

in Algorithm 3.4).

The second operator in this category is the Inter molecular ineffective collision. This

reaction also starts with two molecules M1 and M2 and results in two potential solutions

C1 and C2. In this reaction each new molecule is generated from its parent independently

from the second one, so we use the on-wall ineffective collision defined in Algorithm 3.2

in order to generate two distinct solutions: C1=ON-WALLCOLLISION (M1) and

C2=ON-WALL COLLISION (M2).

Algorithm 3.4 Synthesis

Input: Two initial molecule M1 and M2 , Number of servers

1: Define a random integer R ranging from 0 to N

2: Construct the new solution Ms= M1[1:R] U M2[R+1:N]

3: Compute the modularity of Ms

4: If Modularity(Ms) >Modularity(M1) OR Modularity(Ms) >Modularity(M2)

5: Destroy M1 and M2

6: Add Ms to the population

7: else

8: Destroy Ms

9: end If

3.6.5 Over all CRO-based clustering Algorithm

In Algorithm 3.5 we describe the step-wise methodology to execute the overall steps of the

CRO-based clustering approach process. The first step consists in generating a set of feasible

solutions that is equal to the population size which we define as an input using Algorithm 1.

We start first by generating a random number B between [0,1] (step 4 Algorithm 3.5) if B is

higher than Mol then we randomly select one Molecule from the initial population generated

by Algorithm 3.1. The next step is to verify the number of hits attained if it is higher than the

81

value of A (specified as an input to the Algorithm 3.5), then we apply the decomposition

Algorithm 3.3. Otherwise, the on-wall ineffective collision Algorithm 3.2 will be executed.

The other scenario is for the case where the generated number B is lower than the input Mol.
Here, we apply the multi-molecular operators. We first check if the set kinetic energy is

lower than the value of B (specified as an input to the Algorithm 3.5), then the synthesis

operator (Algorithm 3.4) is executed. Otherwise, we apply the inter-molecular ineffective

collision process and we decrement the kinetic energy. This process of CRO operators will

be repeated as long as the total number of iterations has not been attained, which is the

stopping criterion for this algorithm. Once the population reaches the maximum number of

iterations set as an input, the optimal solution is chosen with respect to modularity as defined

in section 3.5.3. The solution that returns the highest modularity is selected as the optimal

solution.

 82

Algorithm 3.5 Over-all CRO algorithm for clustering

Input: Number of servers, Servers attributes,
 Population size, MaxIteration,A=0.6*MaxIteration,
 B=0.3*MaxIteration, KineticEnergy=MaxIteration,

Num-Hits=0

Output: Final Solution O

1: Generate randomly a number Mol in the range [0,1]
2: Generate initial molecules by executing Algorithm 3.1
3: while Num-Hits <MaxIteration do
4: Generate randomly B in the range [0,1]
5: If B >Mol do
6: Randomly select one molecule
7: If Num-hits >A do
8: Execute Decomposition Algorithm 3.3
9: else

10: Execute On-wall ineffective collision Algorithm 3.2
11: end If
12: else
13: Randomly select two molecules from the population
14: If KE <B do
15: Execute Synthesis Algorithm 3.4
16: else
17: Execute Inter-molecular ineffective collision
18: end If
19: KineticEnergy–
20: end If
21: Num-Hits ++
22: end while

23: Check for a new optimal solution returning the highest

modularity
24: return Final Solution O and its modularity

3.7 Game Theory based approach

In this approach, the Stable Roommate (SR) algorithm was used to find what are known as

stable matching pairs between servers, such that no two non-matched servers prefer

each other more than their actual matching. This algorithm comprises two phases: the

preference list computation phase and the preference cycle elimination phase. In the first

83

phase, the attributes of each server were given, along with the list of servers in the topology.

The preference table was then built by calculating the similarity between each server Si and

every other server Sj in the substrate network. The similarity values calculated were ranked in

descending order and formed the preference table as shown in Algorithm 3.6.

Algorithm 3.6 Preference list computation

Input: Set of attributes for all servers SA, list of servers S

Output: Preference List

1. for each Si ∈S
2. for eachSj∈S
3. Calculate the similarity between servers’ Si and Sj and store them in sim array.

4. Sort sim array in descending order to form 2dimensional sim array.

5. end for
6. end for
7. return Preference List

After the preference table is built, each server should be uniquely paired with only one other

server in the substrate, which is accomplished by applying the Irving Algorithm (R.W.Irving,

1985). The inputs of this algorithm are the preference table, along with the list of servers in

the substrate topology, with their respective attributes, as briefly described in Algorithm 3.6.

The Irving algorithm matches each server to only one other server. Each server Si sends its

proposal to the most preferable server Sj as computed in the previous algorithm and specified

in the preference table. If any server has more than one proposal at a time, it will keep the

best one and discard the others. This process is repeated until each server has only one

proposal. Based on the position of the current proposal for each server in the preference

table, all the servers that are less preferable will then be discarded from the preference table.

This generates a shortlisted preference table, such as the one in Figure 3.2.

 84

Figure 3.2 Preference cycle elimination process

The last step in the Irving algorithm is to eliminate all the preference cycles existing in the

shortlisted preference table.

Algorithm 3.7 Irving Algorithm

Input: The servers set S and their attributes.

Input: The preference list.

Output: The stable matching.

1. Matching-pairs = Irving(S, PreferenceList)

2. Return matching pairs

85

This process is performed by checking all the rows in the shortlisted preference table, which

has more than one preference. For instance, as shown in Figure 3.2, server A has two

preferences, namely, are B and F (B is more preferable).

 In order to detect the existing preference cycles, starting from the first row, the second

choice (server A) and the last choice (second choice (server A)) are noted, and this step is

repeated until the preference cycle is detected, as shown in the Figure 3.2. Once this cycle is

detected, the following preferences between (A and B), (E and C) and (D and F) are

discarded. This process is repeated until each server has only one preference in the table,

which is called the stable matching solution.

The initial clusters are formed by pushing portions of the generated pairs into different

clusters based on similarity characteristics. This clustering is improved by checking if adding

one of the servers to a specific cluster would improve the modularity value for the whole

partition. If this is the case, the server is added to one of the clusters.

This process is performed iteratively in order to maximize the modularity value for the whole

partition while minimally affecting the similarity value for each formed cluster, as shown in

Algorithm 3.8.

The centroid value of each cluster is updated dynamically at each time the server is added or

removed from the cluster. Two flavors of the game theory approach are proposed in this

paper, one of which focuses more on maximizing the modularity, with the existence of

outliers, while the other one has no outliers with a reduced value of modularity. If Algorithm

3.8 generates clusters with outliers and the cloud provider prefers to have no outliers, then

our solution will force each server that does not belong to any cluster to join one of the

clusters based on the similarity value between this server and the centroid of this cluster.

 86

Algorithm 3.8 Clusters improvement and forming

Input: Matching pairs, Clusters

Output: Clusters of servers

1. For each Cluster in Clusters

2. For each pair in matching pairs

3. Check the similarity between each server in pair and the centroid of the cluster

4. if (Similarity exists) then

5. if (already in cluster) then

6. keep the server inside the cluster

7. else
8. if (adding this pair to the cluster maximizes modularity) then

9. join the cluster

10. remove the pair from the matching pairs

11. else
12. do not join the cluster

13. check the next pair from the matching pairs

14. end if
15. end if
16. end if
17. end for
18. end for

Return clusters of servers

3.8 Asymptotic analysis :

We will now describe the algorithmic complexity of our proposed suite of VALKYRIE

approaches. It is worth mentioning this complexity analysis is performed for the worst-case

scenario. It is clear that the way our mathematical model is described is NP-Hard since it

embodies the form of the well-known Quadratic Assignment Problem (Sahni et al. (1976)).

87

CRO-based approach:

Our CRO-based approach consists of four algorithms, as described in section 3.6. We detail

the complexity of each one as follows:

• Algorithm 3.1 runs in O(Popsize × V)

• Algorithm 3.2 runs in O(V2+ V)

• Algorithm 3.3 also runs in O(V2 + V)

• Algorithm 3.4 runs in O(V2)

Based on this analysis, Algorithm 3.5 (CRO-based approach) complexity is

O(MaxIteration × (V2 + V))

Game theory-based approach:

Similarly, three algorithms were employed and their complexities are computed as follows:

• Algorithm 3.6 runs in O (V3×Log(V)) as we use TimSort algorithm to sort the similarity

array which runs in O(V × Log(V)) (Cormen et al. (2009))

• Algorithm 3.7 runs in O(V2)

• Algorithm 3.8 runs in O(V3)

Based on this analysis, the Game Theory-based approach complexity is

O(V 2+ V3 ×Log(V))

3.9 Evaluation:

In this section, we evaluate VALKYRIE. We assess our chemical reaction optimization

algorithm both on small and large-scale networks. We evaluate the quality and effectiveness

of the solution with and without the presence of ground truth.

 88

3.9.1 Setup

We implemented the mathematical model using Python 2.7 and solved it thanks to Gurobi

7.5.1, to get the optimal solution. Our chemical reaction optimization and game theory

procedures were implemented using Python 3.7. The experiments and implementations were

carried out on a physical machine composed of 8 CPU cores.

Two types of network infrastructures were considered to evaluate VALKYRIE. We

generated the topologies using the NetworkX library. We report the average values from the

experiments which were repeated 10 times.

3.9.2 Performance metrics

We evaluate VALKYRIE according to the following metrics to assess its effectiveness:

Runtime: we calculate the time taken by the different approaches to partition the network

into the number of desired clusters.

Similarity: we evaluate the average similarity of all the clusters.

Modularity: we evaluate how dense the connections between the nodes are within the

clusters and how sparse they are while in different clusters.

Density: we compute the proportion of edges that lie within the clusters, and a higher density

corresponds to a better clustering. It is defined as follows:

 𝛿(𝐶) = 1|𝐸| ෍ |𝐸(𝐶௜)|∀஼೔∈஼

Where E(Ci) is the set of edges that are inside the ith cluster.

Outliers: we compute the number of servers that do not belong to any cluster.

89

It is worth mentioning that Density is the validation technique we used to assess our

clustering approaches.

3.9.3 Scenarios

Our approaches are evaluated under a set of scenarios, which we define hereunder.

Scenario 1
In this scenario, we assume that the topology is modular, and we consider it as the ground

truth. In such a scenario, the distribution of CPU cores per module is defined as follows: 4-11

for the first module, 12-24 for the second one, and 25-36 for the third one.

Scenario 2
In this scenario, we assume different topologies in terms of the number of servers with fixed

connectivity degree for each server. The servers in this topology are randomly connected

with each other, and they are not modular, as in the case with the previous scenario. The

distribution of CPU cores is drawn between 4 and 64 units.

Table 3.4 Degrees of connectivity in our scenarios

Network size scenario 1 scenario 2 scenario 3
20 2 5 3
50 7 7 3
100 14 13 3
200 29 25 3
300 44 35 3
500 74 75 3
1000 149 150 3

 90

3.10 Discussion and observations:

In this section, an analysis of the results is presented for three different topologies to test our

approaches. It is worth mentioning that for all the evaluations, regarding ILP, we do not

report the results for network sizes more than 200 as the runtime is exponentially increasing

and takes several hours. Instead, we devised a sub optimal version of ILP which we denote

by ILP subopt by tuning the optimality gap parameter to obtain quick solutions.

3.10.1 Modular topology with variable connectivity degree

Based on Figure 3.3, it can be seen that the clustering time for the ILP increases

exponentially as the network size increases. For example, it takes hours once the number of

servers exceed 200. This behavior is expected as the ILP attempts to find the exact solution

that justifies the adoption of one of the developed heuristics. With regard to the other

heuristics approaches that were considered, it can be seen that CRO increases from 0.6

seconds for 20 servers to 71 seconds for a topology of 1000 servers. For the two flavors of

Game Theory approaches, the value of runtime ranges from 0.2 to 67 seconds for GT and

from 0.03 to 68 seconds for EGT, while for ILP subopt, it ranges from 0.11 to 29 seconds.

Although ILP subopt has the minimum runtime, all the heuristics approaches are still in an

acceptable range to be considered as a clustering solution by a cloud provider since clustering

is done on a periodic basis and in a proactive way.

91

Figure 3.3 Clustering time for modular topology

Another metric that requires evaluation is the similarity, as shown in Figure 3.4, the ILP

identifies the best value in terms of similarity compared to the other approaches for a small-

scale environment (up to 200 servers).When CRO and the two flavors of GT heuristics are

compared, it can be seen that the values are close, with GT and E-GT demonstrating slightly

better results in terms of similarity. This may be attributed to the fact that the GT approach

has outliers and although E-GT has slightly better similarity values, it compares unfavorably

to CRO in terms of modularity.

 92

Figure 3.4 Similarity values for modular topology

With regard to the Game Theory approach, not all servers are included in the formed clusters,

which explains the difference in similarity, albeit that this difference is fairly small at an

average of 0.05. Figure 3.5 shows the differences between the considered approaches in

terms of modularity. The ILP and ILP subopt solutions find the lowest values for all type of

topologies compared to CRO and the two flavors of GT, which is mainly due to the simplex

algorithm that finds the optimal tradeoff between both considered objective functions. As

shown in Figure 3.4, ILP finds the best similarity but Figure 3.5 illustrates that this has an

impact on the modularity.

93

Figure 3.5 Modularity values for modular topology

As for the heuristics CRO and the two flavors of GT, it can be seen that GT finds better

results for small topologies ranging from 20 to 50 servers and CRO takes the lead for

medium topologies of 100 servers; the latter have quite similar values for large topologies of

more than 200 servers, with an advantage to the GT approach.

The difference in modularity can be attributed to the outliers that GT approach returns. As

shown in Table 3.5 that the number of outliers increases in a linear manner as the network

size increases. This only occurred in the GT approach, as none of the other approaches has

outliers and all of them are respecting all the constraints defined in the mathematical model.

Some outliers are sacrificed in order to achieve better values for similarity and modularity,

which could benefit a cloud provider since there could be certain cases where the Service

 94

Function Chain (SFC) request has a specific requirement and preference for a cluster to be

deployed with higher modularity and similarity values.

The density is an internal validation measure that is used to evaluate the quality of the

clustering when the ground truth is not known in advance, meaning that the clusters are not

known before the algorithms are applied. Based on Figure 3.6, it can be seen that CRO and

E-GT have almost the same density values which are better than the other approaches. This is

mainly because they do not return any outliers. The clusters formed by CRO and E-GT

include more servers and are denser compared to those returned by GT, where the number of

outliers jumps up to 25% of the substrate for large topologies composed of 1000 servers.

Although ILP-Subopt exhibit the highest density, it is not deployable since some clusters

contain only two servers, which is not a preferable cluster for the network administrator to

have.

Figure 3.6 Density values for modular topology

95

3.10.2 Random topology with fixed connectivity degree

Like the previously tested topologies, and as shown in Figure 3.7 the ILP solution takes a

considerable amount of time to converge to optimal and increases sharply as the network size

grows. The two Game Theory flavors approaches take less time to converge to the sub-

optimal compared to the CRO and ILP Subopt approaches and all of them except the ILP

Subopt solution have a lower runtime compared to the previous topology, where the degree

of each node varies.

Figure 3.7 Clustering time for random topology with fixed connectivity degree

This is an expected result because the substrate network is less complex when the degree is

fixed compared to varying connectivity degree, as the latter not only means a higher number

of edges and more computational time but also a greater cost to compute the values of

 96

modularity. There is not a big difference for the behavior of CRO, GT and E-GT approaches

when the degree is fixed because this measure is more related to the servers’ attributes rather

than the connectivity between them. GT finds a slightly better result compared to CRO but

again with an existence of outliers which explains this difference.

In Figure 3.8, ILP and ILP subopt solutions exhibits the highest values of similarity for the

small-scale environment (up to 200 servers) and finally GT and E-GT have close values to

each other. There is no major difference between the behaviors of the CRO, GT and E-GT

approaches in terms of similarity when the degree is fixed because this measure is more

related to the servers’ attributes than to the connectivity between them. GT finds slightly

better results than does CRO, but again, with the existence of outliers, which explains this

difference.

Figure 3.8 Similarity values for random topology with fixed connectivity degree

97

The difference of modularity is higher in this topology between GT and all the other

approaches as shown in Figure 3.9. We can see that GT find better results for topologies

composed of above 20 servers, but the number of outliers also jumps in this topology which

explains again this gap.

The ILP and ILP subopt solutions have the same behavior compared to other topologies, it

still finds poor values for modularity but the best results for similarity.

Figure 3.9 Modularity values for random topology with fixed connectivity degree

For this type of topologies CRO is the best in terms of density compared to GT and E-GT.

However, E-GT has better values compared to GT since it does not have any outliers and the

number of edges inside each formed cluster is higher. ILP subopt solution shows the best

value in terms of density, although it puts the servers among the clusters unevenly. In fact,

 98

one cluster may be formed only with two servers which is not ideal and appropriate for a

cloud provider.

Figure 3.10 Density values for Random topology with fixed connectivity degree

In Table 3.5, the number of outliers is increasing linearly as the network size is increasing

only in GT approach, all other approaches do not have outliers and respecting all the

constraints defined in the mathematical model.

We sacrifice having some outliers in order to have a better value for similarity and

modularity. This could be beneficial for cloud provider since there might be some use cases

where SFC request has a specific requirements and preference to be deployed a cluster with

higher modularity and similarity values.

99

Table 3.5 Number of outliers in modular topology

Approach GT (Scenario 1) GT (Scenario 2)

20 7 11

50 23 19

100 22 29

200 45 76

300 113 139

500 104 207

1000 242 454

Based on the presented results we can draw the following conclusions:

• The clustering time is influenced by the number of servers, the number of links and the

connectivity degree of each server.

• Game Theory based approach is better in terms of modularity compared to other proposed

approaches, but it suffers from outliers. It is calculated only with the clustered servers as

the others are outliers.

• ILP solution has the best value of similarity for small scale environment (≤ 200 servers),

whereas GT has slightly better values compared to other heuristics but with the existence

of outliers.

• If cloud provider prefers no outliers when performing the substrate clustering, then CRO

is best heuristic solution to choose since it has a close similarity values compared to other

heuristics and with the highest values of modularity in all kind of topologies. Although

ILP subopt might have a higher similarity values compared to CRO, but the servers are

not evenly distributed between clusters and you might have two servers inside some

clusters.

• Cloud provider could choose to perform clustering using ILP subopt solution if clusters

with high similarity values are needed, which could be the case in some scenarios.

 100

• Density shows that CRO is better compared to the two flavors of Game Theory approach

only in random topologies but not in the modular one, where E-GT has a higher value.

Although CRO has less density value compared to ILP subopt solution in all kinds of

topologies but in most of the cases it can be preferable to be chosen by the cloud provider

to have clusters which are almost having even number of servers inside them.

• ILP is better for small scale networking topologies.

• However, for large scale networks CRO and Game Theory are a better choice because

they exhibit reasonable clustering runtime and a good tradeoff between similarity and

modularity.

3.11 Conclusion

In this chapter, we presented VALKYRIE, a suite of solutions for the clustering and

partitioning of large attributed graphs for virtualized and non-virtualized environments. This

was in a bid to help decision makers get rid of scalability and computational time burdens

when deploying their services (cloud and non-cloud) in cases where each end user’s

requirements could be completely different from those of others. We first defined the system

architecture, formalized the problem, and then we presented the system model.

The problem was formulated using a Mixed-Integer Linear Program to get the optimal

solution for small scale sizes, while a chemical reaction-based meta-heuristic and a game

theory-based approach were proposed to handle the scalability issues in the mathematical

program. Our approaches consider the attributes on the nodes and the network jointly by

optimizing the similarity and modularity, respectively, as cost functions.

Experiments with different infrastructures have shown that our solutions achieve reasonable

clustering time with respect to their size and are able to find a good tradeoff between density,

modularity, similarity and cost functions, in addition to being outliers-free. One of the

solutions may be chosen by the cloud/service provider, as it lends them more flexibility,

depending on the desired use case and the requirements of the service function chains in the

101

context of NFV, 5G and network slicing. Finally, given their low computational

complexities, our solutions could be integrated into orchestration systems following the NFV

MANO framework.

CHAPITRE 4CHAPTER 4

DISCUSSION OF THE RESULTS

In this thesis, we proposed two main approaches for service functions chains placement and

chaining for clustering of substrate networks which are intended to improve the management

of resources in the NFV platforms.

The first proposed tool for placement and chaining of SFCs consists of a multi-stage

approach to ensure an optimal embedding technique minimizing the provider’s costs whether

in term of operational, transmission or penalty costs. To achieve this goal, we used a set of

metaheuristics mainly the chemical reaction optimization algorithm as well as the genetic

algorithm. The experimental analysis shows that our proposed approach is efficient for VNF

placement and chaining as it allows taking many metrics into account in the optimization

process (CPU, memory, energy, delay…). The results also show that the proposed algorithms

scale well with large network architectures and take also into account the dynamic aspect of

resources in cloud-based environments where the available resources are constantly

changing.

However, the proposed approach can still be improved by considering also the dependencies

between VNFs when making the decision of placement and chaining. For example, if two

VNFs belonging to the same SFC require a lot of CPU of memory they should probably not

be placed on the same server, because in high load traffic they might result in some

bottlenecks over that hosting server. So, one way to improve the proposed approaches is to

consider also the relationships between VNFs prior to placing and chaining them. Moreover,

one of the most used orchestration tools actually is Kubernetes and the way it places

containers/VNFs does not consider this aspect of dependencies between VNFs which leaves

the door wide open to work on this aspect in the research field.

 104

Our second approach proposes a CRO-based clustering technique that allows dividing the

substrate network into a set of on demand clusters or group of servers. This pro-active

measure helps to prepare a set of efficient servers in terms of selected attributes like CPU,

memory or energy. The solution helps also to reduce the search space for other operation like

placement, scaling or migration of VNF components. The experimental tests that we

conducted on different network topologies prove that the quality of the formed clusters is

good when using metaheuristic such as those based on CRO and Game-theory techniques.

The results also give the cloud provider the choice to use one of those techniques according

to the optimization goal and also depending on the nature of the networking set on the

physical substrate.

The techniques proposed in our second contribution help improving the quality of the formed

clusters. In fact we consider multi-attribute clusters, contrary to what we proposed in the first

article using k-medoids clustering, where we only considered one attribute at the time and

each formed cluster is efficient only in terms of that single attribute. In some cases, the cloud

provider would like to have cluster that are both efficient in terms of CPU and memory for

example, so our second proposed approach is tailored to serve these use cases also.

Apart from the multi-dimension aspect, our second approach based on CRO and Game-

theory algorithms leverages also the connectivity between servers which was not considered

in the k-medoids clustering. The nature of the set networking on the substrate infrastructure

has a major impact on the quality of the formed clusters, because it ensures that servers

belonging to the same clusters are connected enough between them to avoid resource

wastages in terms of bandwidth and guarantee low latencies for the hosted SFCs.

CONCLUSION and RECOMMANDATIONS

In the present thesis, we proposed two main approaches that are complementary for the

placement and chaining of virtual network functions in cloud environments. Both solutions

resulted in one journal paper accepted for publication, one submitted journal paper and one

provisional application patent for the clustering technique.

In Chapter 2, we described the first proposal which uses a clustering-based approach to

reduce the search space and perform the most optimal placement and chaining of virtual

network functions over shared physical infrastructures. The experimental analysis showed

that our proposed algorithms are efficient to consider multi-objective optimization problems

as we managed to perform the placement in short execution time and we also proved that our

approaches ensure a good optimization level in terms of the physical resources in the

substrate network topologies as well as better latencies and delay values. We didn’t make any

comparisons to the already proposed solutions in the literature, as to the best of our

knowledge, there was no CRO-based placement and chaining approaches proposed in the

previous research works.

In Chapter 3, we present our second contribution that consists in clustering the substrate

network. This process helps to prepare the network and divide it into a set of efficient groups

in terms of selected attributes that could be either memory, CPU or Energy. Once these

homogenous groups of servers are formed, they guarantee that the requested resources by the

incoming SFC requests are available and ensure that the placement will be performed in a

fast manner. During the experimental phase, we stressed our proposed techniques with

different network topology sizes, with servers having different attributes. Results show that

the adopted algorithms scale very well with large topologies and return well partitioned

clusters. Moreover, as we propose different solutions based on different meta-heuristic

algorithms, our paper gives cloud providers a large choice to decide which of the techniques

to adopt based on their targeted optimization metrics and depending on the nature of the

physical network and its networking.

 106

The combination of these two proposals ensure better resource management and enhance the

functionalities of the NFV MANO platform, as the clustering pre-process the network

topology which reduces the search space and guarantees the availability of resources on the

chosen cluster. The placement and chaining are then performed on the processed network to

improve the quality of service deployment and provisioning in cloud-based environments.

As perspectives for future work, we intend to extend our evaluations for the placement and

chaining to consider other types of SFCs, in the first paper we tested our proposed approach

on linear SFCs only, so it is interesting also to evaluate the behavior of our metaheuristics

with other types of SFCs (non-linear, with replicas, etc.). It is also important to analyze the

inter-dependencies and relationships between VNFs of the same SFC which has a major

impact on the placement decisions, VNFs with high resource-consumption rates should not

be placed on the same server, to avoid having bottlenecks when the traffic loads get higher.

Another enhancement to our proposed placement and chaining solution, could be to include

other objective functions and consider other metrics in the optimization process like

bandwidth, reliability or availability, etc.

For the clustering approach, as we didn’t have any inputs from the industry on how data

centers are designed and how the networking is set on them, we run our proposed approaches

on random topologies but if we manage to get significant descriptions of a real cloud data

center we would like to re-run the tests to evaluate the accuracy of our proposed solutions on

a real case scenario. As future improvements, we also consider testing an approach where the

number of clusters is dynamically updated depending on the state of resources on the

substrate network. We also plan to explore other metaheuristic algorithms to solve the

formulated problem. From the experimental results we concluded that each of the proposed

approaches (CRO or Game theory based) performs well in terms of either similarity or

modularity, but it is interesting to test other metaheuristics that may find better tradeoffs

between these two objective functions and of course in reasonable execution time.

107

APPENDIX A

K-MEDOIDS CLUSTERING PROCESS: CLUSTERHEAD SELECTION AND
CLUSTER FORMATION

A.1 K-medoids Clustering process

A.1.1 Initial Cluster-heads Selection

In the following, we present the proposed method to optimize the selection of the initial set

of cluster-heads which is a statistical technique. The main idea is to compute the variance

between each server in the substrate network and all the remaining servers, in terms of a set

of metrics that we aim at optimizing (e.g., energy, bandwidth), the 2nd step consists of

computing the variance of the whole set of servers. Based on these values, the servers whose

variance (with respect to the other servers in the network) is less than the whole servers’ set

variance are pre-selected as eligible candidates to act as cluster heads. The main idea of this

technique is to exclude the outliers (e.g., in terms of energy) that are too far from the central

region, which have high variance values. Once the set of servers that are eligible to act as

cluster-heads is obtained, we can filter the defined set of candidates even more. To achieve

this, we compute the (Euclidean) distance between each pair of servers by respect of some

pre-set attributes and choose the server which minimizes the distance to all other servers in

the substrate network as the first cluster-head. To ensure the coherence of our clustering

technique and avoid forming overlapping clusters, the server that maximizes the distance

from the first cluster-head is chosen as the second cluster-head. Having selected two initial

cluster-heads, we then need to increase the number of cluster heads up to k (the value of k is

specified by the network administrators). This is achieved through a continuous search

process (for k times) for the servers that maximize the distance from the previously selected

cluster heads. This process, along with the mathematical formulas, is explained in what

follows:

 108

Step 1: Compute the Euclidean distance d(si;sj) between each pair (si;sj) of servers based to

a defined set of K attributes using Eq. (A A-1).

𝑑൫𝑠௜ , 𝑠௝൯ = ඩ෍(𝑠௜௞ − 𝑠௝௞)ଶ௄
௞ୀଵ

(A A-1)

Step 2: Compute the variance of all the servers, i.e., the variance among all servers and their

mean using Eq. (A A-2).

𝜎 = ඩ 1𝑛 − 1෍𝑑(𝑠௜ − 𝑠̅)ଶ௡
௜ୀଵ

𝑠̅ = ෍𝑠௜𝑛௡
௜ୀଵ

(A A-2)

Step 3: Compute the variance between each server si and all other servers using Eq.(A A-3)

𝜎௜ = ඩ 1𝑛 − 1෍𝑑(𝑠௜ , 𝑠௝)ଶ௡
௜ୀଵ

(A A-3)

Step 4: Determine the set P of cluster-head candidates as the ones having variance that is less

(or equal) than the whole server set’s variance proportionally to a stretch factor ω as depicted

in Eq. (A A-4)

 𝑃 = {𝑠௜|𝜎௜ ≤ 𝜔𝜎, 𝑖 = 1, … ,𝑛} (A A-4)

109

Step 5: Compute the distance di of each server si (from all other servers) using Eq(A A-5):

 𝑑௜ = ෍𝑑(𝑠௜ , 𝑠௝)௡
௝ୀଵ

(A A-5)

Step 6: Select the first cluster-head p1 as the one that minimizes the distance with all other

servers using Eq. (A A-6):

 𝑝ଵ = 𝑎𝑟𝑔𝑚𝑖𝑛 {𝑑௜|𝑖 = 1, . .𝑛} (A A-6)

Step 7: Select the second cluster-head p2 in such a way to maximize the distance with the

previously selected cluster head p1 as depicted in Eq. (A A-7):

 𝑝ଶ = 𝑎𝑟𝑔𝑚𝑖𝑛௦೔∈ು {𝑑(𝑠௜ ,𝑝ଵ)|𝑖 = 1, . .𝑛} (A A-7)

Step 8: Select k new cluster-heads within each cluster as the ones that are the farthest from

their current medoid (p1 or p2) using Eq. (A A-8):

 𝑝ᇱ = 𝑎𝑟𝑔𝑚𝑖𝑛௦೔∈೎∈ು {𝑑(𝑠௜ ,𝑝௜)|𝑖 = 1, . .𝑛} (A A-8)

Once the first initial set of k cluster-heads is elected, the following step consists of

optimizing the selection process to ensure an improved clustering performance and quality.

In the following section, we present the complete clustering algorithm and discuss its details.

 110

A.1.2 Cluster Formation Algorithm

The stepwise process to execute the clustering is described in Algorithm A-1. Defining the

set of initial cluster-heads is described is Steps (7) to (13) which implement the statistical

technique we described in the previous section. Once the initial cluster-heads are defined, the

following steps are repeated until no change occurs in the selected cluster-heads. The

remaining servers are then assigned to the closest cluster-head (in terms of the considered

attributes) (Step 15). Then, we compute in step 16 the clustering cost D1 (i.e., sum of

distances from each cluster-head to its cluster members) is computed as per Eq. (A A-9)

 ෍ ෍ 𝑑(𝑝௞ , 𝑧)ଶ௭∈஼ೖ
௄
௞ୀଵ

(A A-9)

After that, for each cluster, we select the server which minimizes the distance from the other

servers in the same cluster as are placement cluster-head (Steps 17-18). Consequently, each

server is assigned again to the closest newly appointed cluster-head (Step 19) and the new

clustering cost D2 is computed. In case the new clustering cost D2 is equal to the previous

one D1 (Step 21), the algorithm stops and the clustering topology remains the same.

Otherwise, Steps 15-21 are repeated until reaching a stable clustering topology.

111

Algorithm A-1 K-medoids substrate network clustering

1: Input: Set of physical servers
2: Input: Number K of clusters
3: Input: Set II = {energy, bandwidth, CPU, delay} of metrics to be

minimized.

4: Output: Set Cn = {C1,. . ,Ck) of clusters
5:Output: Set H = {h1,... ,hk} of cluster-heads such that each

cluster-head h∈H is efficient in terms of metricsθ∈∏.

6: procedure CLUSTERING
7: Compute the distance between each pair of servers using Eq. (A.A-1)
8: Compute the variance of the whole set of servers using Eq. (A.A-2)
9: Compute each server’s variance with regards to all other servers

using Eq. (A.A-3)

10: Define the set of candidate cluster-heads using Eq. (A.A-4)
11: Choose two initial cluster-heads H = {h1, h2} using Eqs. (A.A-6) and

(A.A-7)
12: Allocate each server to the closest cluster-head and compute the total clustering cost
using Eq. (A.A-9).
13: Increase the number of clusters up to k using Eq. (A.A-8).
14: Repeat

15: Assign each server to the closest cluster-head
16: Compute the sum D1of distances from all cluster members to their cluster-head
using Eq. (A.A-9).
17: Select a new cluster-head of each cluster as the one that minimizes the total
distance from the other servers in its cluster.
18: Update the current cluster-head in each cluster by substituting it with the newly
chosen cluster-head.
19: Assign each server to the closest cluster-head.
20: Compute the sum D2of distances from all cluster members to their cluster-head
using Eq. (A.A-9).

21: If D2= D1, stop the algorithm; otherwise go back to step 16.
22: end

23: end procedure

BIBLIOGRAPHY

B. Yi, X. Wang, K. Li, M. Huang et al., “A comprehensive survey of network function
virtualization,” Computer Networks, 2018.

J. Gil-Herrera and J. F. Botero, “Resource allocation in nfv: A comprehensive survey,” IEEE

Transactions on Network and Service Management, vol. 13, pp. 518–532, 2016.

M. Xia, M. Shirazipour, Y. Zhang, H. Green, and A. Takacs, “Network function placement for

nfv chaining in packet/optical datacenters,” Journal of Lightwave Technology, vol. 33,
no. 8, pp. 1565–1570, 2015.

S. Mehraghdam, M. Keller, and H. Karl, “Specifying and placing chains of virtual network

functions,” in Cloud Networking (CloudNet), 2014 IEEE 3rd International Conference
on. IEEE, 2014, pp. 7–13.

M. Ghaznavi, A. Khan, N. Shahriar, K. Alsubhi, R. Ahmed, and R. Boutaba, “Elastic virtual

network function placement,” in Cloud Networking (CloudNet), 2015 IEEE 4th
International Conference on. IEEE, 2015, pp. 255–260.

X. Sun and N. Ansari, “Primal: Profit maximization avatar placement for mobile edge

computing,” in Communications (ICC), 2016 IEEE International Conference on. IEEE,
2016, pp. 1–6.

A. Alleg, T. Ahmed, M. Mosbah, R. Riggio, and R. Boutaba, “Delay aware vnf placement and

chaining based on a flexible resource allocation approach,” in Network and Service
Management (CNSM), 2017 13th International Conference on. IEEE, 2017, pp. 1–7.

S. Khebbache, M. Hadji, and D. Zeghlache, “A multi-objective non dominated sorting genetic

algorithm for vnf chains placement,” in Consumer Communications & Networking
Conference (CCNC), 2018 15th IEEE Annual. IEEE, 2018, pp. 1–4.

V. Eramo, E. Miucci, M. Ammar, and F. G. Lavacca, “An approach for service function chain

routing and virtual function network instance migration in network function
virtualization architectures,” IEEE/ACM Transactions on Networking, vol. 25, no.
4, pp. 2008–2025, 2017.

R. Cohen, L. Lewin-Eytan, J. S. Naor, and D. Raz, “Near optimal placement of virtual network

functions,” in Computer Communications (INFOCOM), 2015 IEEE Conference on.
IEEE, 2015, pp. 1346–1354.

C. Pham, N. H. Tran, S. Ren, W. Saad, and C. S. Hong, “Traffic-aware and energy-efficient vnf

placement for service chaining: Joint sampling and matching approach,” IEEE
Transactions on Services Computing,2017.

 114

J. Liu, W. Lu, F. Zhou, P. Lu, and Z. Zhu, “On dynamic service function chain
deployment and readjustment,” IEEE Transactions on Network and Service
Management, vol. 14, no. 3, pp. 543–553, 2017.

S. Draxler, H. Karl, and Z. ¨ A. Mann, “Jasper: Joint optimization of ´scaling, placement,

and routing of virtual network services,” IEEE Transactions on Network and Service
Management, 2018.

S. Lange, A. Grigorjew, T. Zinner, P. Tran-Gia, and M. Jarschel, “A multi objective

heuristic for the optimization of virtual network function chain placement,” in
Teletraffic Congress (ITC 29), 2017 29th International,vol. 1. IEEE, 2017, pp. 152
160.

J. Xu, A. Y. Lam, and V. O. Li, “Chemical reaction optimization for task scheduling in

grid computing,” IEEE Transactions on Parallel and Distributed Systems, vol. 22,
no. 10, pp. 1624–1631, 2011.

A. Y. S. Lam and V. O. K. Li, “Chemical reaction optimization for cognitive radio

spectrum allocation,” in IEEE Global Telecommunications Conference GLOBECOM.
IEEE, 2010.

N. Dezhabad and S. Sharifian, “Learning-based dynamic scalable load balanced firewall

as a service in network function-virtualized cloud computing environments,” The
Journal of Supercomputing, pp. 1–30,2018.

L. Yala, P. A. Frangoudis, and A. Ksentini, “Latency and availability driven VNF

placement in a MEC-NFV environment,” in GLOBECOM2018, IEEE Global
Communications Conference 9-13 December 2018,Abu Dhabi, UAE, Abu Dhabi,
UNITED ARAB EMIRATES, 12 2018.

G. L. M. G. Yu, Donghua and X. Liu, “An improved k-medoids algorithm based on step

increasing and optimizing medoids,” Expert Systems with Applications, vol. 92, pp.
464–473, 2018.

L. Lin and M. Gen, “Priority-based genetic algorithm for shortest path routing problem in

ospf,” in Intelligent and Evolutionary Systems.Springer, 2009, pp. 91–103.

E. Falkenauer, “A hybrid grouping genetic algorithm for bin packing,”Journal of

heuristics, vol. 2, no. 1, pp. 5–30, 1996.

C. Bothorel et al. Clustering attributed graphs: models, measuresand methods. Network

Science, 3(03): 408-444, 2015.

Alessandro. B et al. Efficiently Clustering Very Large Attributed Graphs.

arXiv:1703.08590v2.

115

Yang. Z et al. Graph Clustering based on Structural/Attribute Similarities. Proceedings of

the VLDB Endowment 2.1 (2009): 718-729.

Hong. C et al. Clustering Large Attributed Graphs: A Balance between Structural and

Attributes Similarities. ACM Transactions on Knowledge Discovery from Data
(TKDD) 5.2 (2011): 12.

A. Clauset, M. E. Newman, and C. Moore. Finding community structure in very large

networks. Physical review E 70.6 (2004):066111.

C. Chen, Y. Du, S. Chen and W. Wang, ”Partitioning and Placing Virtual Machine

Clusters on Cloud Environment,” 2018 1st International Cognitive Cities
Conference (IC3), Okinawa, 2018, pp. 268-270.

S.-J. Chen , C.-C. Chen , H.-L. Lu and W.-J. Wang, ”Efficient Resource Provisioning for

Virtual Clusters on the Cloud,” in 2015International Conference on Platform
Technology and Service, Jeju,Korea, 2015.

O. Sefraoui, M. Aissaoui, and M. Eleuldj, ”OpenStack: Toward an Open-Source Solution

for Cloud Computing,” International Journal of Computer Applications, vol. 55, pp.
38-42, 2012.

K. Jackson and C. Bunch, OpenStack Cloud Computing Cookbook- Second Edition, 2

edition ed. Birmingham, UK: Packt Publishing,2013.

V. Chavan and P. R. Kaveri, ”Clustered virtual machines for higher availability of

resources with improved scalability in cloud computing,” 2014 First International
Conference on Networks &Soft Computing (ICNSC2014), Guntur, 2014, pp. 221-
225.

P. U-chupala, P. Uthayopas, K. Ichikawa, S. Date and H. Abe, ”An implementation of a

multi-site virtual cluster cloud,” The 2013 10thInternational Joint Conference on
Computer Science and Software Engineering (JCSSE), Maha Sarakham, 2013, pp.
155-159.

M. Abdelsalam, R. Krishnan and R. Sandhu, ”Clustering-Based IaaS Cloud Monitoring,”

2017 IEEE 10th International Conference on Cloud Computing (CLOUD),
Honolulu, CA, 2017, pp. 672-679.

Wahab, O. A., Kara, N., Edstrom, C., & Lemieux, Y. (2019).MAPLE: A machine learning

approach for Efficient Placement and Adjustment of Virtual Network Functions.
Journal of Network and Computer Applications.

 116

S. Liu and Z. Li, ”A modified genetic algorithm for community detection in complex
networks,” 2017 International Conference on Algorithms, Methodology, Models
and Applications in Emerging Technologies (ICAMMAET), Chennai, 2017, pp. 1-3.

V. Jami and G. R. M. Reddy, ”A hybrid community detection based on evolutionary

algorithms in social networks,” 2016 IEEE Students’ Conference on Electrical,
Electronics and Computer Science(SCEECS), Bhopal, 2016, pp. 1-6.

Zachary, W. W., An information flow model for conflict and fission in small groups”,

Journal of Anthropological Research 33 (1977),452-473.

A. Aylani and N. Goyal, ”Community detection in social network based on user as social

activities,” 2017 International Conference onI-SMAC (IoT in Social, Mobile,
Analytics and Cloud) (I-SMAC),Palladam, 2017, pp. 625-628.

Lam, A. Y., & Li, V. O. (2012). Chemical reaction optimization: Atutorial. Memetic

Computing, 4(1), 3-17.

El Mensoum, I., Abdul Wahab, O., Kara, N., & Edstrom, C.(2019). MuSC: A Multi-Stage

Service Chains Embedding Approach. Submitted to Journal of Network and
Computer Applications.

Lam, A. Y., & Li, V. O. (2012). Chemical reaction optimization: Atutorial. Memetic

Computing, 4(1), 3-17.

R. W. Irving, “An efficient algorithm for the ‘stable roommates ‘problem,” J. Algorithms,

vol. 6, no. 4, pp. 577–595, 1985.

Sahni, Sartaj, and Teofilo Gonzalez. ”P-complete approximation problems.” Journal of the

ACM (JACM) 23.3 (1976): 555-565.

J, P., Hong, P., Xue, K., & Li, D. (2018). Efficiently Embedding Service Function Chains

with Dynamic Virtual Network Function Placement in Geo-distributed Cloud
System. IEEE Transactions on Parallel and Distributed Systems, 1-1. doi:
10.1109/TPDS.2018.2880992.

Khebbache, S., Hadji, M., &Zeghlache, D. (2018). A multi-objective non-dominated

sorting genetic algorithm for VNF chains placement. Dans2018 15th IEEE Annual
Consumer Communications & Networking Conference (CCNC) (pp. 1-4). doi:
10.1109/CCNC.2018.8319250

ETSI GS NFV. (2013). Network Functions Virtualization (NFV) Architectural

Framework. Norm ETSI 002 v1.1.1 (2013-10).

