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Algorithmes de mise en grappes pour une adaptation dynamique des chaînes de 
services 

 
Imane El MENSOUM 

 
RÉSUMÉ 

 
La virtualisation des fonctions réseau est l’un des paradigmes les plus adoptées dans les 
architectures réseau d’aujourd’hui, car elle offre entre autres une meilleure gestion des 
ressources, ainsi qu’une maintenance flexible des services déployés sur des ressources 
partagées dans des environnements en nuage. 
 
Les fonctions réseau traditionnellement hébergées sur du matériel dédié sont désormais 
fournies comme des composantes logicielles, pouvant s'exécuter soit sur des machines 
virtuelles, soit sur des conteneurs. L'avantage majeur de cette transition c’est qu'elle facilite 
le déploiement des nouveaux services tout en optimisant le temps de gestion et 
d’administration des architectures réseau. Il est beaucoup plus facile de créer une nouvelle 
machine virtuelle/conteneur qui hébergera une fonction de réseau /service ou une application 
spécifique décrite sous forme de chaîne de services que de déployer un nouvel équipement 
matériel et de vérifier sa compatibilité avec le reste de l’architecture mise en place. 
 
Avec tous les avantages qu’offre ce nouveau paradigme se présente un ensemble de défis 
principalement liés à : 1) l’optimisation de la consommation de ressources sur l'infrastructure 
partagée 2) la prise des meilleures décisions d'ordonnancement et de placement des fonctions 
virtuelles tout en respectant les exigences des clients ainsi que les ressources disponibles sur 
le réseau physique exprimées par différentes métriques (ex., CPU, mémoire, latence, bande 
passante, etc.) 
 
Ce concept de la virtualisation des fonctions réseau (Network Function Virtualization –
NFV), et plus spécifiquement du placement des chaines de services (Service Function Chains 
- SFC) a été traité dans de nombreux travaux de recherche proposant des approches 
garantissant un placement et un routage optimaux des fonctions de réseau virtualisées 
(Virtual Network Function – VNF) dans des réseaux physiques partagés, mais comme 
l’adoption de la virtualisation prend de plus en plus d’envergure et vu les exigences de plus 
en plus strict des applications d’aujourd’hui (ex., applications hautement sensibles à la 
latence, à la disponibilité de service, etc.), il est toujours important de considérer tous les 
paramètres ayant un impact sur la gestion du réseau dans les environnements Infonuagique. 
 
Dans la cadre de ce projet de recherche, nous avons développé de nouvelles approches, pour 
le placement et le routage des fonctions réseau virtuelles dans des environnements 
Infonuagique. La première approche permet de former à la demande des grappes de serveurs 
déployés dans une l'infrastructure physique. Ces serveurs sont regroupés en fonction 
d'attributs similaires (ex., serveur à usage intensif en CPU, serveur efficace en énergie, etc.).  
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Ce processus constitue une mesure proactive permettant de s'assurer que les SFCs sont 
hébergées dans des serveurs garantissant leurs exigences en termes de métriques spécifiques 
(CPU, mémoire, disque…). Il utilise une méta-heuristique appelée CRO (Chemical Reaction 
Optimization)  pour décider du meilleur placement des VNF garantissant une consommation 
de ressources optimale en termes de CPU / mémoire mais assurant également les latences les 
plus faibles lors du routage entre les différentes VNF, ce qui est un aspect important à 
considérer, car la plupart des applications actuelles demandent des latences faibles et des 
temps d’exécution les plus courts possible. Dans la deuxième approche, les grappes sont 
formées à l'aide d'algorithmes basés sur des méta-heuristiques, notamment le CRO, 
permettant d’améliorer la qualité des grappes constituées en termes de similarité, densité et 
modularité.  
 
 
Mots-clés : virtualisation des fonctions réseau, chaines de services, méta-heuristique, 
allocation des ressources. 
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ABSTRACT 

 
Network function virtualization is a pillar-stone of today’s network architectures as it offers 
better management and elasticity and allows also a flexible maintenance of services running 
on shared resources over cloud environments. 
 
Network functions traditionally hosted on dedicated hardware are now provided over 
software based components that might run either on virtual machines or on containers. The 
major advantage of this transition is that it makes the deployment of new services easier 
while optimizing the management and administration of network architectures. It is much 
easier to spin up a new virtual machine/container hosting a network function or a specific 
application described as a service function chain, than to deploy a new hardware based 
equipment and checking its compatibility with the rest of the architecture.  
 
With all the advantages that this new paradigm offers comes a set of challenges related 
mainly to: 1) optimizing the resource consumption on the shared infrastructure 2) making the 
best decision of placing the virtual functions that respects at the same time clients’ 
requirements and also leverages the available resources on the substrate network in terms of 
different metrics (e.g., CPU, memory, latency, bandwidth). 
 
This aspect of Network Function Virtualization-NFV and Service Function Chains-SFC 
placement have been treated in so many research works that propose approaches ensuring 
optimal placement and chaining of VNFs in virtualized networks, but as the adoption of these 
technologies gets more important in real network setups, and given the strict restrictions of 
today’s’ applications (e.g. latency highly-sensitive applications, or availability highly-
sensitive service, etc.), it is always important to consider all the parameters impacting the 
network management in cloud environments. 
 
In this research project, we develop new approaches for placement and chaining of virtual 
network functions in cloud-based environments. The first approach allows forming on-
demand clusters of servers deployed in a physical infrastructure. These servers are grouped 
according to their similar attributes (e.g., CPU-intensive server, energy-efficient server, etc).  
 
This process is a proactive measure to ensure that SFCs are hosted in servers that meet their 
specific metrics requirements (CPU, memory, disk, etc.). It employs a meta-heuristic called 
CRO (Chemical Reaction Optimization) to decide of the best VNF placement guaranteeing 
optimal resource consumption in terms of CPU / memory. We employ CRO also to ensure 
the lowest latencies during the routing between the different VNFs. In fact, the E2E delay is 
an important aspect to consider, as most current applications require low latencies and 
shortest run times. In the second approach, the clusters are formed using algorithms based on 
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meta-heuristics, including the CRO, allowing to improve the quality of clusters formed in 
terms of similarity, density and modularity. 
 
 
Keywords:  Network function virtualization, Service function chains, metaheuristic, resource 
allocation. 
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INTRODUCTION 

 
0.1 Context: 

Today’s networks are getting more complex due to the increasing demand of 

connectivity and speed rates by the consumers. The diversity of offered applications and 

services that are bandwidth intensive and that require important computation capabilities 

implies important evolutions in the network’s architecture. 

 

 Networks today should be able to support multiple protocols, access technologies and 

different service layers. With all these complex needs and demands, it is getting harder for 

legacy networks to satisfy all these requirements along with ensuring an effective network 

management. Therefore, the adoption of virtualization techniques and software based 

networks becomes a must. 

 

Network function virtualization (NFV) is an emerging concept that attracts increasing 

attention in the industry. NFV offers much more agility and flexibility to the network 

allowing easier software updates, resource adjustment and scalable changes in the 

configuration of the services. Network functions traditionally delivered on hardware and 

purpose-built platforms can now be provided through virtual resources which are called 

Virtual Network Functions (VNFs) and are hosted over shared physical network 

infrastructures.  

 

Moreover, functions built on proprietary dedicated hardware are usually hard to upgrade, 

integrate and deploy over already built-up environments. This complexity is mainly due to 

compatibility issues coming from the use of different equipment manufacturers and vendors. 

Thus, using network functions as software components would help to improve the process of 

VNF deployment and the management cycle.  
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It would avoid having to check whether or not a function is compatible with the rest of the 

network’s physical parts. In fact, VNFs are hardware independent which helps to reduce the 

maintenance costs that can increase drastically in case of major upgrades in the network 

infrastructure. 

As defined by the European Telecommunications Standards Institute (ETSI) in Figure 0.1, 

the overall framework for NFV is composed of three main domains: 

 

• The NFV infrastructure represents the combination of hardware and software resources 

which form the platform on which the VNFs would be deployed and run. The physical 

resources can be either storage nodes (servers) or network nodes like switches and 

routers providing the processing, storage and connectivity requirements to ensure the 

good functioning of virtual components. 

 

• VNFs Virtual Network Functions: representing the software entities that implement the 

network functionalities over the NFV infrastructure. A network block might be 

instantiated over a single VM or multiple ones, a VNF can also have as many replicas as 

needed for resiliency constraints and to ensure the continuity of the service in case of 

hardware (servers) breakdown. 

 

• NFV MANO Management and orchestration: This domain is responsible of the 

orchestration and management of the physical resources allocation as well as the virtual 

entities management during their lifecycles. 
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Figure 0.1 Network Functions Virtualization Framework  
Taken from ETSI GS NFV 002 (2012, p.10) 

 

With all the benefits that this framework offers, shifting to virtual based networks faces an 

important number of challenges. The main concerns are in terms of placing those virtual 

components, ensuring their interoperability and maintaining the quality of service at a good 

level. Hereby, we refer mainly to the NFV MANO orchestration and management, which is 

the targeted layer in this research project.  

 
0.2 Problem Definition: 

Combining Network Function Virtualization (NFV) and Software Defined Networks (SDN) 

concepts can bring many benefits in terms of automation, flexibility and agility in network 

management which justifies the keen interest they’re getting in the IT sector. However, these 

new paradigms are a doubled-edged sword because they also come with serious challenges. 

 

Shifting from legacy networks where every component of the network is a hardware entity to 

a virtual environment where functions are bricks of software programs is challenging. This 

transition requires a good management over the hosting servers so as to avoid wasting 

computation  resources, storage capacity and energy consumption. The concrete deployment 
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of these virtual instances is a delicate task that is hindered by a set of technical issues some of 

them are related to: 1) how to efficiently place, readjust and schedule the VNFs of a certain 

network and 2) how to ensure that while doing this placement we make sure of the effective 

use of resources in the substrate network, whether in terms of storage and processing 

capacity, Service Level Objective (SLO) and/or energy consumption. 

 

So, it comes back to finding a tradeoff between ensuring that all the VNFs instances are 

deployed with respect to the client requests and requirements. It is also important to optimize 

the use and the exploitation of the physical resources, so as to guarantee this promise of 

NFV/SDN paradigm to reduce the costs of network deployment and management. 

 

These issues are considered as intriguing research questions and many contributions in the 

literature have been  made to address them, which mainly focus on: 1) the placement of 

VNFs where the goal is to find the optimal set of servers to host all the incoming VNFs 

requests along with optimizing the consumption of hardware resources; 2) the service chains 

routing which is more related to the chaining between the set of VNFs composing a single 

SFC (both joint and non-joint placement and chaining might be considered). The chaining 

process guarantees low latencies, reduces the execution time to find the paths and minimizes 

the response time to clients’ requests. 

 

Even though many research works ((Mechtri et al.2016), (Pham et al.2018), (Khebbache et 

al.2018), (Draxler et al.2018), (Wang et al.2017)) have targeted this matter, there is still room 

for improvement and to overcome the limitations of existing solutions described in the 

literature. 

 

Given the different parameters that may impact the quality of the placement and chaining 

decisions, it is usually hard to find a certain tradeoff between these several metrics (e.g. 

Energy, Memory, CPU, Delay, bandwidth, etc). The actual contributions reduce the 

complexity of this optimization problem by only selecting few metrics and do not take them 

all into account. Another aspect in the research works we have studied is that usually the 
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resource status is considered to be a static value, while in real case scenarios, the available 

resources in the network dynamically change, the same goes for the workload that evolves 

also continuously. The dynamic aspect of resource adaptation and traffic rates are important 

aspects that should also be considered while placing and chaining the virtual network 

functions. 

 

To tackle these problematics, we defined two main sets of approaches: The 1st is related to 

clustering the substrate network into a set of on demand group of servers that are optimized 

in terms of energy, memory, or CPU. The clustering process is also dynamic and groups 

servers while optimizing similarity, modularity and density in these groups. This step is a 

pre-processing phase that helps not only to include several optimized metrics in the process 

of embedding SFCs, but also to reduce the search space for the 2nd set of approaches, which 

is related to placement and chaining. This 2nd track of our research is about the joint or non-

joint placement and chaining of VNFs using evolutionary heuristics like the chemical 

reaction optimization and the genetic algorithms, these techniques will be further explained 

in the present report. 

 

To the best of our knowledge none of the actual research works apply CRO-based joint (that 

optimizes both placement and chaining at the same time) or non-joint (that performs 

placement first then chaining after) algorithms on a set of pre-clustered substrate network to 

optimize resource consumption and reduce Service Level Agreement (SLA) violations as 

well. Moreover, no research work has been done actually to apply graph-based clustering 

technique in cloud-based environments and all the graph-based clustering papers we studied 

are more related to data analysis or community detection in social networks. 

 

0.3 Objectives: 

The main objectives of this research project are to develop two algorithms that might be 

integrated in the NFV management layer in order to classify the network in terms of physical 
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resources and optimally place and chain incoming SFC requests. The output of these 

algorithms should provide: 

 

1. Homogenous groups of servers clustered together and have high similarities between 

them in terms of the selected attributes (e.g. Energy, Memory, CPU…) and with no 

outliers (servers that are not assigned to any cluster). 

 

2. Dense clusters that are highly connected to ensure low latencies within the same group 

of servers and avoid violating the agreement in terms of delay/bandwidth. 

 

3. Continuous adaptation of the clustering based on the variations of the resources on the 

servers and the workload state. 

 

4. Optimal placement of the virtual network functions that ensure the respect of the clients’ 

requests in terms of physical resources as well as avoiding resource wastage and over-

provisioning in the physical infrastructure. 

 

5. Optimal chaining of VNFs in the same SFC so as to respect the agreements in terms of 

delays and reduce the SLO violation. 

 

0.4 Methodology: 

As explained in the previous section, this project is divided into two major research tracks: 

 

a. SFC Placement and chaining: 
 

The first track concerns the definition of a heuristic approach for placement and chaining of 

virtual functions in cloud-based environments. The overall procedure for placement and 

chaining is is composed of three main steps. We start by classifying the network into groups 

of servers that are similar in terms of their attributes (which could be either energy, memory, 
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CPU, etc) using Integer Linear Programming (ILP) model adapted from the model proposed 

in (Abdul Wahab et al. (2019)). This proactive step ensures that the SFC requests will be 

placed on the servers responding to their specified conditions in terms of CPU, energy, etc. 

The clustering helps not only to satisfy the clients’ requests, but also to reduce the search 

space for both phases of placement and chaining and thus reduce the overall execution time 

for our algorithm. Once this pre-processing phase is performed, we execute the CRO and GA 

heuristics to place the VNF components in a way that guarantees the SFC request but also 

optimizes the physical resource consumption in the provider’s physical network. The last 

step is to ensure the chaining between the set of VNFs belonging to the same SFC, we used 

also CRO and GA heuristics for this step. The goal of the chaining is to ensure that the 

minimum end to end delay specified as an input by the client is respected. This is a non-joint 

placement and chaining approach. We also develop a CRO-based joint placement and 

chaining approach that is out of the scope of this thesis. 

 

b. Clustering of the substrate network: 
 
The second track is related to the dynamic clustering of the substrate networks. The aim of 

this work is to classify the servers in the substrate graph not only based on their attributes 

(e.g. CPU, Energy, memory...), but also based on the connectivity and the links between 

them. In this way, we ensure that not only servers in the same cluster are optimized in terms 

of the selected attributes, but their connectivity avoids violating the clients’ requirements in 

terms of delay once the SFCs are deployed.  

 

We developed a CRO-based approach to solve this graph-based clustering problem. We 

compared it with Game theory approach as well with optimal solution that considers the 

similarity between servers as well as the modularity which is the measure that ensures high 

density and connectivity between servers in the same cluster. 
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The clustering procedure is to be applied at the initialization phase of substrate network 

deployment but should be invoked at regular basis as the resources on the physical servers 

are continuously changing. 

 

0.5 Technical Contributions: 

The main motivations behind this work are to improve the management of resources in 

cloud-based environments while guaranteeing SLO as well as efficient and effective 

consumption of physical resources. 

 

The project was divided in two major sets like we described in the Methodology section. The 

main contributions of this thesis are then: 

 

1. Development of a multi-stage technique for SFCs placement and chaining: This was the 

subject of our first article entitled “MuSC: A Multi-Stage Service Chains Embedding 

Approach” accepted for publication in Journal of Network and Computer Applications, 

October 2019. In this joint research work, the main contribution of Miss Imane 

ElMensoum is the definition of ILP model adapted from the model defined in (Abdul 

Wahab et al. (2019)) and the development of non-joint CRO-based and GA-based 

placement and chaining approaches. The detailed description of this approach is 

presented in Chapter 2. A joint CRO-based and GA-based placement and chaining 

approaches have been also developed by Miss Imane El Mensoum. This contribution 

was submitted to IEEE Transactions on Services Computing. This work is out of the 

scope of  this report.  

 

2. Our second research contribution studies the graph-based clustering of substrate 

networks in order to host service functions chains. This second track was the subject of 

our second article entitled “VALKYRIE: A suite of topology-aware clustering 

approaches for cloud-based virtual network services” submitted to IEEE 

TRANSACTIONS ON CYBERNETICS Journal in October 2019. In addition, this 
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second approach was subject to a provisional patent application filled by the Patent Unit 

of Ericsson Canada to the United States Patent and Trademark Office (USPTO) in 

October 2019. In this joint research work, the contribution of Miss Imane El Mensoum is 

the development of CRO-based clustering technique that was compared to Game theory-

based approach and optimal solution. You will find the article describing this approach 

in Chapter 3. 

 

El Mensoum, I., Abdul Wahab, O., Kara, N., & Edstrom, C. (2019). MuSC: A Multi-Stage 
Service Chains Embedding Approach. Accepted for publication in Journal of Network 
and Computer Applications. 

 
Lahlou, L., El Mensoum, I., Kara, N., & Edstrom, C. (2019). ARTIMIS: A chemical 

Reaction OptiMization approach for delay sensitive virtual network services. Submitted 
to IEEE Transactions on Services Computing, October 2019.  

 
El Mensoum, I., Lahlou, L., A. Khasawneh, F., Kara, N., & Edstrom, C. (2019). 

VALKYRIE: A suite of topology-aware clustering approaches for cloud-based virtual 
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0.6 Thesis Organization: 

The present thesis is structured by article, so we start first by a general literature review and 

then we include two distinct chapters to describe each of the pre-mentioned contributions. 

In each of these chapters, we present a more detailed literature review related to the research 

tracks followed by the approach description, the used algorithms and the obtained results and 

their analysis. Chapter 4 is dedicated to an overall discussion of the results for both 

considered research matters, and last the conclusion and future work are discussed in the last 

section.  

 



 

 
 

 





 

CHAPTER 1 
 
 

LITERATURE REVIEW 

Virtualization   of network functions is a promising concept that attracts both cloud providers 

and also industry stakeholders, as it allows them to gain more flexibility to deploy new 

service function chains and also reduces the costs of instantiating and maintaining the overall 

quality of the offered service. With the arise of new technologies like 5G and IoT, it is of a 

great importance to ensure that this swap to virtualized infrastructures will be capable of 

respecting the requirements in terms of physical resources as well as SLO which are key 

performance indicators for every client’s request. 

 

Given all these challenges, many research works have targeted this field to tackle the 

resource management issue in cloud-based environments, and proposed approaches to deploy 

these SFCs with respect to the clients’ requirements while at the same time optimizing the 

overall consumption of resources. 

 

In this section, we will describe some of the previous research works that have treated the 

issue of service function chains embedding in cloud-based environments and analyze the 

proposed approaches aiming to optimize the resource consumption and improve the overall 

QoS of the offered service. 

 

Most of the studies focus mainly on the optimal placement and chaining of virtual 

components of SFCs. The proposed works usually first apply the placement of VNFs 

followed by their chaining (non-joint placement and chaining). 

This non-joint approach impacts the execution time of the full process, we propose in our 

approach to apply clustering as a pre-processing phase that helps us optimize the execution 

time as the substrate network is divided into a set of efficient clusters which makes the search 

space smaller for our metaheuristic-based algorithms designed for placement and chaining. 
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For instance, (Pham et al, 2018) proposes a non-joint placement and chaining approach to 

solve the problem using sampling-based Markov approximation combined with matching 

theory. To consider both operational and traffic costs (meaning physical resources 

consumption and bandwidth/delay costs). The authors propose a weighted summation as an 

objective function where the weight set for each cost is defined by the provider and can be 

adjusted to achieve the targeted tradeoff. The approach presented in this article is based on a 

two-stage algorithm where the first step consists of finding the optimal set of servers to host 

the VNFs and then the second consists of placing them in a way to minimize the total cost, 

which means that the placement and chaining are performed in a sequential scheme and not 

in parallel. 

 

In (Khebbache et al 2018), the authors propose a metaheuristic based on genetic algorithm 

NSGA-II to find Pareto optimal fronts that respect the considered metrics and find near 

optimal tradeoffs. As objective functions, the authors consider both the mapping cost in 

terms of resource utilization on hosting nodes as well as link resource consumption.  

 

In (Khebbache et al 2017), the authors formulate the same problem in two approaches. The 

first one considers an exact mathematical model to solve the case of hosting SFCs composed 

of a maximum of 3 VNFs, the model considers resource consumption in terms of link 

utilization only. Obviously, this model cannot scale well with larger SFCs which is why the 

authors propose a heuristic-based approach to solve bigger instances and improve the runtime 

of the placement process of SFCs. 

 

In (J.Pei et al 2018), the authors formulate the VNF chains placement problem as a Binary 

Integer Programming model (BIP) where the objective is to minimize the embedding cost 

that the authors define as the total of resource and placement costs. The resource cost 

represents the remaining resources on links, nodes and VNF instances while the placement 

cost represents the computing power, licenses fees and network utilization. As this problem 

is widely known to be NP-hard, the authors propose two algorithms to optimize the VNF 

placement. The first one is called SFC embedding Algorithm (SFC-MAP) used to place the 
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SFC requests with a minimum cost. The 2nd proposed algorithm is the VNF-DRA (VNF 

Dynamic Release Algorithm). As the network load has a dynamic nature it is important to 

consider this aspect so as to release redundant instances and reduce both resource 

consumption and running time. The VNF-DRA algorithm runs periodically and calculates the 

rate of resource usage on each VNF if it is lower than a defined threshold, then the 

considered VNF is either released or redirected, the threshold is computed based on the 

network load. Moreover, the authors include the lifetime of instances to drive a decision, for 

short lifetime SFC requests they’re left to expire by their own and thus release the previously 

allocated resources to them. For long lifetime SFCs that are below the defined threshold, the 

algorithm first checks if they’re not used at all they will be released and if they are lightly 

used their corresponding workload will be redirected to another instance of the same VNF. 

 

Although, the problem of placement and chaining of SFCs has been widely addressed in the 

research area. The proposed approaches do not consider all the metrics that may impact the 

quality of the placement. Research works tend to reduce the complexity of the problem by 

defining objective functions only for specific metrics, and few of the studied works addressed 

the dynamic aspect of resources, while in real network scenarios the workload as well as the 

availability of resources are constantly changing and are also subject to peaks in some cases. 

That is why this aspect is to be taken considerably when developing new techniques for SFCs 

placement and chaining. 

 

One way to reduce the complexity of the placement and chaining problem while at the same 

time considering several metrics for optimization is to include the clustering in the process. 

That is why we propose in our non-joint approach for placement and chaining of SFCs to use 

the clustering as it helps to cover a set of metrics that are treated prior to receiving new 

requests and reduce the runtime for the mapping of VNFs and their chaining.  

 

Our approach is then capable of covering several metrics when performing the placement and 

chaining of VNFs while at the same time optimizing the run-time of this process which is an 
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important factor especially in cloud environments, where the resources are constantly 

changing, and decisions should be made as fast as possible. 

 

To the best of our knowledge none of the actual proposed work has combined clustering 

techniques to form highly connected and similar groups of servers in terms of their attributes 

(energy, memory, CPU, etc,)  with the placement and chaining procedures to cover more 

metrics in the optimization process and reduce the resource consumption on the substrate 

physical network. This is the reason why we were not able to compare our results to previous 

research works and we made the comparisons only between our adopted heuristics (Genetic 

Algorithm- GA, Chemical Reaction Optimization- CRO). 

 

Moreover, most of the graph-based clustering techniques proposed in the literature are more 

related to data analysis or community detection in social networks. Therefore, and to the best 

of our knowledge, none of the actual research work define graph-based clustering technique 

for SFC placement and chaining in NFV environments. 

 

The next two chapters are dedicated to each of the proposed contributions described in 

section 0.5. In each chapter, a more detailed literature review is described. The state-of-the-

art section of Chapter 2 reviews research works related to the placement and chaining 

approaches while the literature review of Chapter 3 focuses on existing clustering 

approaches. 
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2.1 Abstract 

Network function virtualization is an emerging concept that is attracting increasing attention 

in the industry because it offers high levels of agility and flexibility to the network allowing 

easier software updates, resource adjustment and scalable changes in the configuration of the 

services. Network functions traditionally delivered on hardware and purpose-built platforms 

in legacy networks can now be provided through shared virtual resources called VNFs 

(Virtual network functions) hosted over shared physical network infrastructures. Using 

network functions as absolute software components would certainly improve the deployment 

process and the management of the VNF life cycle. Since VNFs are hardware-independent, 

there is no need to check whether or not a network function is compatible with the rest of the 

network’s physical parts; this also helps reduce the maintenance costs, which can increase 

drastically in the case of major upgrades to the network infrastructure. Along with all these 

benefits, shifting to virtual-based networks comes with a significant number of challenges, 

especially in terms of placing such virtual components, ensuring their interoperability and 

maintaining the quality of service at a level that is at least as good as what is offered by 

hardware based architectures. In this paper, we propose a cluster-based placement and 

chaining solution. The overall proposed approach consists of: 1) formulating an Integer 

Linear Programming (ILP) model aimed at finding an optimal tradeoff between multiple 
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objective functions that might be sometimes conflicting (e.g. hardware resource and energy 

consumption minimization, transmission delays, bandwidth usage, etc.), 2) classifying the 

substrate network into a set of on-demand clusters that are efficient for a predefined set of 

metrics, and 3) using meta-heuristic-based algorithms to find near-optimal solutions for the 

formulated ILP. 

 

Keywords: Network Function Virtualization, Service function chains, Virtual functions 

placement and chaining, Genetic algorithm, Chemical Reaction Optimization. 

 

2.2 Introduction 

Network Function Virtualization (NFV) is based on the concept of moving network functions 

(e.g., routing, intrusion detection, etc.) from expensive physical hardware to software-

oriented modules that are executed on top of commodity hardware in the form of Virtual 

Network Functions (VNFs). This approach has proven efficient in reducing both the Capital 

Expenditures (CapEx) and Operational Expenditures (OpEx) due to its resulting reduced 

equipment costs and reduced power consumption (Yi et al.(2018)). It also contributes in 

increasing the flexibility of scaling up, scaling down, and updating network services. 

However, the concrete deployment of NFV is hindered by a set of technical issues, relating 

mainly to the efficient placement and chaining of VNFs across physical nodes in the 

substrate network in order to minimize hardware resource consumption (Gil-Herrera et 

al.(2016)), while simultaneously respecting the dependencies among the VNFs composing a 

given network service. These objectives may be conflicting where, for example, the 

placement strategy that preserves the dependencies does not guarantee minimal hardware 

resource consumption or violates end-to-end delay requirements. 

 

2.2.1 Problem Statement 

There have been many efforts in the literature to address the VNF management issue, with 

contributions focusing mainly on two important aspects: the placement of the VNFs and their 

chaining. The first set of the proposed approaches (Xia et al.(2015), Mehraghdam et 
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al.(2014); Ghaznavi et al. (2015); Su et al.(2016)), seek to find the optimal set of servers on 

which to place each new incoming VNF, taking into consideration the optimization of several 

factors, such as hardware resource, and energy consumption. The second set (Alleg et 

al.(2017); Khebbache et al.(2018); Eramo et al. (2017)), for their part focus more on Service 

chains routing, and try to ensure that the chaining between the set of VNFs composing an 

SFC (assuming that the placement is already done) is realized in a way that guarantees low 

latencies, reduces run time to find the paths, and of course, minimizes the response time to 

clients’ requests. One of the main limitations of these approaches stems from their static 

deployment scheme, which does not account for variations that are likely to occur at the level 

of server resources availability. These changes include sudden spikes or drops in the 

available resources on some servers, failure of some nodes, and changes in the SFC users’ 

locations and needs. This leads to a degraded performance in dynamic settings wherein the 

status of the servers and the users’ needs are continuously changing. For example, some 

servers that are the closest to some events (e.g. media servers used in festivals hosted by a 

city) in some time periods may experience unexpectedly high loads on their resources. 

 

Therefore, incorporating dynamism into placement strategies is of prime importance to 

guarantee optimal Quality of Service (QoS) and resource consumption under changing 

environments. Another challenge faced in the proposed solutions is dealing with the 

complexity of the SFC placement and chaining problem; defining an optimal trade-off 

between multiple objective functions is usually hard to perform. Current research works 

reduce then the complexity of the problem, by defining their objective functions for few 

metrics (Energy/CPU consumption, latency, throughput, etc.) depending on the service chain 

priorities and its field of application. To address these challenges, our solution adopts a 

proactive approach in which the network is a priori divided into a set of efficient clusters to 

facilitate the placement and chaining processes in real-time. The clustering step helps not 

only to reduce the complexity of the problem, but also to cover a set of metrics, guaranteeing 

that the SFCs are placed based on their priorities among the predefined metrics, which could 

be either energy or memory, for instance. Once the clusters are formed, we employ our 
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heuristic-based solution to place and chain the requests in a dynamic scheme, taking into 

account variations in the network’s available resources. 

 

2.2.2 Contributions 

We propose in this paper a cluster-based placement and chaining approach whose main 

premise is splitting the substrate network into a set of on-demand clusters that optimize some 

particular metrics (e.g., energy, memory, etc.). To perform the clustering, we employ the k- 

medoids clustering approach, while integrating statistical technique on top of it to improve 

the selection of the initial clusters. Thereafter, cluster-based placement and chaining 

algorithms are designed. Genetic Algorithm (GA) and Chemical Reaction Optimization 

(CRO) techniques are proposed to solve the placement and chaining problems, while 

considering several conflicting objectives, such as minimizing delays, CPU, energy, and 

memory consumption. This has the advantage of considerably reducing the solution space 

that CRO and GA meta-heuristics need to explore, thus accelerating both the placement and 

chaining processes. 

 

The main contributions of this paper can be summarized in the following points: 

 

• We formulate an Integer Linear Programming (ILP) to model the VNF placement and 

chaining problem, while taking into account the minimization of several metrics, such as 

hardware resource utilization, Service-Level Objective (SLO) violation cost and latency. 

• We employ a modified k-medoids clustering approach to divide the substrate network 

into a set of on-demand clusters. The proposed clustering approach operates ina 

proactive manner to minimize the setup latency and decrease the complexity of 

placing/chaining VNFs. 

• We develop cluster-based placement and chaining algorithms that employ meta-heuristic 

techniques such as GA and CRO to efficiently derive the appropriate VNF placement 

and chaining strategies. Two GA-based placement and chaining strategies are defined 
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and compared with CRO strategies: Classical-GA and Priority-based GA. These 

approaches are described in section 4.3. 

• We perform experimental comparisons between the proposed algorithms to determine 

the advantages and limitations of each technique under different network scenarios. 

 

Proceeding as such allows us to provide network administrators with a comprehensive view 

on what technique to use and under which conditions. 

 

The rest of the paper is organized as follows: In the next section, we review research 

contributions that tackle the same problem of VNFs placement and chaining, and also 

highlight the particular features that distinguish our approach from the already proposed 

approaches in previous research works. In Section 3, we present our ILP model where we 

formulate the placement and chaining problem. Section 4 is where we discuss the different 

used algorithms and heuristics we use for clustering, placement and chaining. In Section 5, 

we present the simulations’ setup, the results interpretation and discussion. Finally, in 

Section 6 we conclude our work and evaluate the performance of our proposed approach. 

 

The rest of the paper is organized as follows: In the next section, we review research 

contributions that tackle the same problem of VNFs placement and chaining, and also 

highlight the particular features that distinguish our approach from the already proposed 

approaches in previous research works. In Section 3, we present our ILP model where we 

formulate the placement and chaining problem. Section 4 is where we discuss the different 

used algorithms and heuristics we use for clustering, placement and chaining. In Section 5, 

we present the simulations’ setup, the results interpretation and discussion. Finally, in 

Section 6 we conclude our work and evaluate the performance of our proposed approach. 

 

2.3 Related Work: 

In this section, we carry out a detailed discussion of the major contributions that have been 

proposed concerning the VNF placement and chaining problem, and we highlight the unique 
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features of our solution in comparison with the state-of-the-art. Moreover, we provide an 

overview of some contributions in which CRO and GA have also been employed. 

 

2.3.1 VNF Placement and Chaining approaches: 

In (Mehraghdam et al. (2014)), the problem of optimally placing VNFs in the substrate 

network has been formulated as a Mixed Integer Quadratically Constrained Program 

(MIQCP) to derive the optimal placement and chaining of network functions, while 

considering the limited network resources and functional requirements. In (Cohen et al. 

(2015)), the authors formulate the VNF placement problem as an integer linear programming 

model with the aim of minimizing both the deployment and connection (between VNFs) 

costs and propose some approximation algorithms to solve it. In (Khebbache et al. (2018)), 

the authors formulate the VNF placing problem as a multi objective optimization problem 

aimed at minimizing two major metrics: the mapping cost and physical link utilization. A 

meta-heuristic based on the Non-Dominated Sorting Genetic Algorithm II (NSGA-II) is 

proposed by the authors to find near-optimal solutions respecting the considered metrics and 

ensuring acceptable performance trade-offs. In (Pham et al. (2017)), the authors propose a 

joint placement and chaining approach to solve the problem using sampling-based Markov 

approximation combined with matching theory. In order to consider both operational and 

traffic costs, i.e., physical resource consumption and bandwidth/delay costs, the authors 

propose a weighted summation as an objective function in which the weights set for each 

cost function are defined by the provider and can be adjusted to achieve the desired tradeoff.  

 

In (Ghaznavi et al. (2015)), the authors formulate an Elastic Virtual Network Function 

Placement (EVNFP) problem and derive a solution to minimize the operation cost, while 

considering the minimization of elasticity overhead and the trade-off between bandwidth and 

host resource consumption. Thereafter, a heuristic solution called Simple Lazy Facility 

Location (SLFL) is advanced to derive the appropriate placement of VNFs. The authors 

consider four challenges related to NFV, namely: (1) where to place Virtual Network 

Function Instances (VNFIs), (2) how many resources should be assigned to each VNFI, (3) 
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how to convey SFC requests to the adequate VNFIs in the right order, and (4) how to readjust 

VNFIs to cope with the sudden changes in SFC requests concentration. To tackle these 

challenges, they proposed a three-phase solution whose objectives are to (1) minimize the 

SFC bandwidth rejection, and (2) minimize the energy consumption by reducing the number 

of running servers. In (Alleg et al. (2017)), the authors proposed a delay-aware placement 

and chaining model formulated as a Mixed Integer Quadratically Constrained problem 

(MIQCP). The presented approach aims at ensuring a flexible allocation of resources in the 

substrate network. The main idea behind this work is to ensure that the proposed solutions 

are capable of answering the SFC requests in terms of end to end delay, without having to 

allocate unnecessary physical resources on the hosting nodes, causing an over-dimensioning 

of the virtual network and thus leading to a significant increase in operational costs for the 

service provider. In (Liu et al. (2017)), the authors address the challenge of jointly optimizing 

the placement of new incoming SFCs and readjusting in service ones. These cases are 

modeled as an integer linear programming model that aims to minimize both the operational 

overhead and readjustment cost. To solve this problem, a column generation approach is 

employed. In (Draxler et al. (2018)), the authors introduce new scheme to formulate the SFC 

request, unlike the common representation of an SFC request consisting of a directed 

weighted graph composed of a set of VNF linked to each other. In this work, the authors 

consider that each SFC is described by a template, containing information about the 

components and the interconnection between them only, while for resource requirements 

they are considered as a function of the incoming data rates on each component. This 

representation allows the adaptation of resources according to the flow rates variation. While 

this approach may be considered dynamic, it doesn’t scale well with large networks. 

According to the simulations, the authors argue that it can be used for geographically 

distributed architectures where each node represents a whole data center. In (Lange et al. 

(2017)), a multi objective heuristics proposed to solve the VNF chains placement problem, 

the adopted approach is based on the simulated annealing algorithm. This technique aims to 

find feasible solutions that respect the set of objectives in terms of CPU use and link resource 

consumption. The proposed algorithm solves the VNF placement problem in two stages: 

assigning the requests to adequate nodes, and then routing of the demands. Most of the 
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contributions above focus on the optimization of VNFs placement and chaining on the 

substrate network, while considering different objective functions. Still, most of these works 

either ignore the dynamic aspect of resources in cloud-based environments or do not consider 

large substrate networks, but use relatively small architectures for their simulations. 

However, in order to benefit from the advantages offered by NFV, these challenges must be 

considered. In fact, the resource consumption and availability of the servers in datacenters 

are continuously changing depending on the adopted placement strategy, the number of 

served users and their locations. Moreover, VNFs should be continuously adjusted to 

guarantee service continuity as users are constantly changing their locations over large-scale 

network topologies. 

 

To deal with these problems, our approach adopts a proactive process in which the network is 

a priori divided into a set of on-demand clusters optimized for certain defined metrics (e.g. 

energy, memory, etc.,), and that aims to facilitate the placement and chaining process. 

Network resource status may be monitored by an SDN controller to keep track of resource 

variations. This information is provided to our heuristic-based solutions as an input to ensure 

efficient initial placement and chaining, and may also be used for readjustment purposes. 

 

2.3.2 CRO and GA Based Approaches: 

In (Xu et al. (2011)), the authors tackle the problem of task scheduling in grid computing 

systems. To this end, they formulate an optimization problem aimed at minimizing the Make 

span and Flow time of the scheduling process, while accounting for resource reliability. To 

solve the problem efficiently, they employ several versions of CRO to derive effective 

scheduling solutions. In (Lam et al. (2010)), the authors take advantage of CRO to address 

the problem of allocating the available channels to unlicensed users in cognitive radio 

scenarios. They formulated an optimization problem with three utility functions that aims to 

minimize hardware utilization, while guaranteeing the fairness of the allocation process 

among users. Genetic algorithms have been extensively used in the context of NFV. For 

example, in (Dezhabad et al. (2018)), the authors discuss a method to achieve dynamic auto-
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scalability of virtual firewalls. The objective is to determine the number of active virtual 

firewalls needed at each time period, based on the density of the incoming load and the 

portion of requests that should be assigned to each single firewall. The problem is solved 

using a hybrid method, which combines a genetic algorithm and reinforcement learning. The 

authors of (Yala et al. (2018)) propose a placement strategy for Multi-access Edge 

Computing (MEC) in NFV environments. They formulate the problem as an optimization 

problem with two conflicting objectives, i.e., maximizing service availability and minimizing 

access latency. A genetic algorithm is then advanced to solve the optimization problem. 

Although CRO and GA have been widely used to model a variety of solutions, this work is, 

to the best of our knowledge, the first that combines them in a cluster based environment to 

tackle the problem of placing and chaining SFCs. 

 

2.4 Problem formulation: 

We consider an undirected graph Gs(Vh,E) to represent the substrate network, where Vh 

represents the set of substrate nodes, while E is the set of links connecting these nodes. The 

substrate nodes can be categorized in two different sets, namely, host servers and 

middleboxes. Host servers are high-volume servers used to host Virtual Machines (VMs) or 

containers that may belong to one or different users. Middleboxes are physical network 

components providing various network functions, like Wide Area Network (WAN) 

optimizers, multimedia caches or Intrusion Detection Systems (IDSs) and Intrusion 

Prevention Systems (IPSs). Gv(Vv;Ev) is a directed acyclic graph that represents an SFC 

composed of a sequence Vv of VNFs and a set Ev of virtual links connecting the VNFs. In 

this section, we formulate our proposed ILP to model the VNF placement and chaining 

problem adapted from the model proposed in (Abdul Wahab et al. (2019)). Table 2.1 

summarizes the different notations used throughout the paper. 
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                    Table 2.1 Notations 
 

Symbol Significance 

Vh Set of host servers in the substrate network. 

Vv Set of virtual network functions in a certain SFC. 

E Set of physical links in the substrate network. 

Ev Set of virtual links in a certain SFC. 𝑅௩௛௠௔௫ Amount of hardware resource capacity on physical server vh∈Vh 𝑅௠௣  Amount of hardware resources consumed by VNF of type p∈P on server m 𝛼௡,௠௣  Decision variable whose value is equal to 1 if VNF n of type p is hosted in server m 

and 0 otherwise. 

βi,j Decision variable whose value is 1 if the virtual link i is mapped into physical link j 

and 0 otherwise. 𝜉௡,௠ Monetary weight of adding a new VNF n of physical server m. Υ௫,௬௔,௕ Monetary weight of the service delay penalty between each pair of hosted VNFs a 

and b hosted on physical servers xand y respectively. d௫,௬௔,௕ሺ𝑡ሻ The propagation delay between the pair (a, b) of VNFs hosted on physical servers x 

and y respectively. 𝑁|௏௩| Number of VNFs |Vv| hosted on physical server m. 𝑙௫,௬௔,௕ Maximum delay cost that a flow of pair a and b of VNFs hosted on topof physical 

servers x and y respectively can tolerate. 

Π Set of metrics to be minimized. 

hθ Cluster-head h that is efficient in terms of metrics θ (where θ⊆∏ is a single 

combination subset of the set ∏). 𝜙௏௩௞ (௦) Set of VNFs 𝑉௩௞ hosted on physical server 

ΨEv(e) Set of virtual links Ev hosted on substrate link e 
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Cost Functions: 
 
Operational Cost: The operational cost in our case represents the cost of adding new VNFs 

since the last service time. Specifically, the operational cost can be computed using Eq. (2.1) 

 

𝐶௢௣௥(𝑡) = ෍ ෍ ௔,௫௣ (𝑡). 𝜉௡,௠(𝑡). ൣ𝑁௠|௏௩|(𝑡) −  𝑁௠|௏௩|(𝑡 − 1)൧,|௏௛|
௠ୀଵ

|௏௩|
௡ୀଵ ∀ 𝑝 ∈ 𝑃 

(2.1) 

 

 

This function aims at minimizing the resource consumption at the substrate level and thus 

reduces the monetary costs of adding new VNFs. 

 

Penalty Cost: The cost of traffic transmission of an accepted SFC through a physical link in 

the substrate network is formulated in Eq.(2.2) 

 

𝐶௣௘௡௔௟௧௬(𝑡) = ෍෍෍෍ ௔,௫௣ (𝑡).௕,௬௣ (𝑡). d௫,௬௔,௕(𝑡).Υ௫,௬௔,௕(𝑡) ,∀ 𝑝 ∈ 𝑃|௏௛|
௬ୀଵ

|௏௩|
௕ୀଵ

|௏௛|
௫ୀଵ

|௏௩|
௔ୀଵ  

(2.2) 

 

This function aims at minimizing the total delay  between VNFs of the same SFC to avoid 

exceeding the limit set by the clients request. 

 

Objective Functions: 
 

The cost function C(t) of the provider at a certain time moment t can then be defined as the 

sum of the two previous costs: the operational and penalty costs at that time period, i.e., 

 𝐶(𝑡) =  𝐶௢௣௥(𝑡) +  𝐶௣௘௡௔௟௧௬(𝑡) (2.3) 

  

 

  



 16

Thus, the objective of the providers is to: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ෍ 𝐶(𝑡)௧௡
௧ୀ௧ଵ  

(2.4) 

 

VNF Assignment and Chaining Constraints: 
 
Constraint (2.5) ensures that the hardware resources consumed by the VNFs cannot exceed 

the physical server’s hardware resources capacity. 

 

෍෍ ෍ ௡,௠௣ (𝑡). R௠௣ (𝑡) ≤ R௠௠௔௫(𝑡) ,|௏௛|௠ୀଵ|௏௩|௡ୀଵ
௧௡
௧ୀ௧ଵ ∀ 𝑝 ∈ 𝑃 

(2.5) 

 

Constraint (2.6) ensures that the total operational cost at each time moment in the time 

interval [t1, tn] does not go beyond an upper limit Omax defined by the provider in order to 

optimize its own profit. 

෍ 𝐶௢௣௥(𝑡) ≤ 𝑂௠௔௫(𝑡)௧௡
௧ୀ௧ଵ  

(2.6) 

 

Constraint (2.7) defines the penalty cost to guarantee that the delay of the flow of each pair of 

VNFs, cannot exceed the maximum limit that this flow can tolerate. 

෍ 𝐶௣௘௡௔௟௧௬(𝑡) ≤ 𝑙௫,௬௔,௕(𝑡),∀ 𝑎, 𝑏 ∈ 𝑉𝑣 𝑎𝑛𝑑 𝑥, 𝑦 ∈ 𝑉ℎ௧௡
௧ୀ௧ଵ  

(2.7) 

 

Constraint (2.8) guarantees that each virtual link ev in Ev is mapped to only one single link on 

the substrate network e in E. 

෍෍ ෍ 𝛽௘௩,௘(𝑡) = 1௘௩∈ா௩௘∈ா
௧௡
௧ୀ௧ଵ  

(2.8) 
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Constraint (2.9) guarantees that each VNF instance n in Vv of type p is mapped to only one 

single server in the substrate network m in Vh. 

 

෍ ෍ 𝛼௡,௠௣௠∈௏௛ (𝑡) = 1,∀ 𝑛 ∈ 𝑉𝑣௧௡
௧ୀ௧ଵ  

(2.9) 

2.5 Algorithms: 

2.5.1 K-medoids Clustering process: 

The clustering process consists of two principal steps: The first step enables selecting cluster 

heads, while the second allows distributing the substrate nodes to their corresponding 

clusters. The proposed method to optimize the selection of the initial set of cluster heads is a 

statistical technique. The main idea of this technique is to exclude the outliers (e.g., in terms 

of energy) that are too far from the central region, which have high variance values. Once the 

initial cluster heads are defined, the remaining servers are then assigned to the closest cluster-

head (in terms of the considered attributes). After that, for each cluster, the server which 

minimizes the distance from the other servers in the same cluster is selected as a replacement 

cluster-head. Consequently, each server is assigned again to the closest newly appointed 

cluster-head and the new clustering cost is computed once again. If the new clustering cost is 

equal to the previous one, the algorithm stops and the clustering topology remains the same. 

Otherwise, the procedure is repeated until reaching a stable clustering topology. The distance 

we are referring to in this clustering phase can be calculated in terms of different metrics 

depending on the SFCs’ requests and priorities. In our approach simulation, we will tackle 

clustering in terms of energy and memory, but these metrics can be easily adapted to include 

other substrate servers’ parameters. The full procedure for clustering is summarized in 

appendix A. 

 

2.5.2 Overall Cluster-based SFC Placement and Chaining: 

The clustering phase reduces the complexity of our objective functions defined in Equation 

(4). The next step is then to execute VNF placement and chaining processes, while taking 
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advantage of the clustering results. Placement and chaining processes are distributed on each 

of the selected cluster heads formed according to Algorithm A-1, which reduces the search 

space (i.e., the number of servers and links) of the problem. More specifically, instead of 

having a single central module responsible for placing and chaining all of the VNFs on the 

total set of servers and links, each cluster head would only be executing these steps for a 

subset of the original substrate network. The cluster-based placement and chaining process is 

described in Algorithm 2.1. Each incoming SFC will be assigned to its appropriate cluster, 

and the corresponding cluster head will solve the ILP described in Section 3 using 

metaheuristic approaches described in sections 4.3 and 4.4 (using Algorithm 2.17 for 

placement and Algorithm 2.7 for chaining) - only for its cluster members -in order to 

determine the VNF-to-Server mappings. Based on the results obtained by the solution of the 

ILP, the VNFs composing the underlying SFC are placed on the servers chosen by the 

feasible solution (Algorithm 2.1 - Steps 6-11) and the virtual links among the VNFs are 

mapped as well to the corresponding physical links as well. 
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Algorithm 2.1 Placement and chaining algorithm 
 

Input: Set ∏= set of metrics to be minimized (e.g., {energy, memory 
,CPU, delay} . 

Cluster-head hθ that is efficient in terms of metrics θ(whereθ⊆∏is a 
single combination subset of the set ∏) and responsible for 
executing the Algorithm. 

Service function chain composed of a set V୴୩ = ሼv୴ଵ, … . , v୴୬ሽof VNFs 
Set ϕ୚౬ౡ (ୗ୧)of VNFs V୴୩ hosted on each server Si 

Set ΨEv(e)of virtual links Ev hosted on substrate link e. 
 

Output: Updated setϕ′୚౬ౡ (ୗ୧) of VNFs V୴୩ hosted on each server Si 
Updated set Ψ’Ev(e) of virtual links E v mapped to link e 
 

Procedure PLACEMENT & CHAINING 
 
1. Run Algorithm 2.17 and 2.7 to solve the ILP in Eq. (2.4) for the metrics Π = Π\Π ∩  
2. for each server Si∈Vh 

3. for eachVNFvv∈Vv 
if 𝐯𝐯,𝐒𝐢𝐩 == 1 then 

Assign v୴୧ to server Si, i.e., ϕ୚౬ౡ (ୗ୧) = ϕ୚౬ౡ (ୗ୧) ∪ v୴୧  
end if 

4. end for 
5. end for 
6. for each link e∈E 
7. for eachvirtual link ev∈Ev 

If βev,v==1then 
Assign ev to link e ,i.e., ୉୴(e) = ୉୴(e) ∪  e୴ 

end if 
8. end for 
9. end for 
10.       𝝓′𝑽𝒗𝒌 (𝑺𝒊) = 𝝓𝑽𝒗𝒌 (𝑺𝒊) 
11.  ′𝑬𝒗(𝒆) = 𝑬𝒗(𝒆) 
12. end procedure 

 



 20

2.5.3 Metaheuristic Chaining approaches: 

2.5.3.1 Chemical Reaction Optimization approach: 

CRO is a nature-inspired approach that tries to map chemical reactions to optimization 

problems. The base unit in CRO is the molecule. Each molecule represents a possible 

solution to the underlying optimization problem and enjoys several attributes such as the 

molecular structure w, the potential energy PE, the Kinetic energy (KE), and the number of 

hits (Num-Hits). Next, we explain each of these attributes in detail: 

 

Molecular structure w: represents a solution (i.e., number, vector, or matrix) of the 

underlying problem. 

 

Potential energy (PE): represents the value of the objective function of the solution 

represented by w, i.e., PEw =f(w), with f being the objective function. 

 

Kinetic energy (KE): quantifies the indulgence of the system in accepting a solution that is 

worse than the existing one. 

 

Number of hits (Num-Hits): is a counter of the total number of hits (also known as 

collisions) that a certain molecule has undergone so far. 

 

A chemical system, composed of a set of molecules, experiences a chemical reaction if it 

happens to hold excessive energy. In other words, the chemical system releases the excessive 

energy in order to stabilize itself. This change is triggered by a collision. A collision can be 

of one of two types: uni-molecular and intermolecular. Uni-molecular collisions occur when 

a molecule hits an external material (e.g., a wall of the container). Inter-molecular collisions, 

on the other hand, occur when molecules collide with each other. Every collision results in a 

corresponding reaction change referred to as an elementary reaction. Four types of 

elementary reactions can be exploited to manipulate solutions (i.e., explore the solution 

space): 
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On-Wall Ineffective Collision: This type of reactions occurs when a certain molecule hits a 

wall of the container and then bounces away resulting in one single unit. In this type of 

collisions, the existing molecular structure w is perturbed and becomes w’. 

 

Decomposition: This type of reactions occurs when a certain molecule hits a wall, resulting 

in the molecule breaking into several parts, i.e., w = w1 +w2  

 

Inter-Molecular Ineffective Collision: This type of reactions occurs when several 

molecules collide with one another, and then bounce away. In such collisions, the structure of 

the involved molecules (say w1 and w2) is perturbed and becomes w’1 and w’2 , i.e., 

w1 +w2 = w’1+w’2  

 

Synthesis: The effect of this type of reactions is the opposite of that of the decomposition 

phase. Specifically, the synthesis occurs when several molecules collide with each other and 

agglomerate into one molecule, i.e., w1 +w2 = w’ 

 

Next, we explain how we employed the CRO to solve our ILP described in Section 3. The 

molecule encoding, we used for our CRO-based algorithm is illustrated in Figure 2.1, with 

the path represented by an array containing the set of nodes representing the flow path to go 

from the source node S to the destination node D (where our VNFs are hosted).  

 

The Algorithm 2.2 allows generating a set of initial solutions for the delay minimization 

problem. This is done by starting the construction of the path from the intended source node 

and then continuously picking a random node from the neighborhood, provided that this node 

is different from the destination node, and was not previously selected in the path. This 

process is repeated continuously while changing the index of the source node after each 

addition of a new member until reaching the destination node. 

 



 22

 
 

Figure 2.1 CRO Molecule Encoding 
 

Algorithm 2.2 Molecules Generation 
 

Input: Set Si of all the nodes that are adjacent to the node i 

Source node Src 

Destination node Dst 

Output: Path vector P 

Procedure GENERATE MOLECULES 

1. Initialize index i = 0 

2. Construct the path P starting from the source node, i.e., P[i] = Src 

3. While P[i]≠Dst do 

Randomly pick a neighbor node n from 

If n ∈P 

Randomly pick another neighbor such that n'∈SP[i] and n'≠ n 

else 
increment i, i.e., i++ 

P[i] = n 

end if 
4. end while 
5. Return P 
6. end procedure 
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In Algorithm 2.3, we describe the synthesis reaction. The inputs to this algorithm are two 

molecules P1 and P2 representing two possible solutions, and the output is another molecule 

Ps representing a possible solution after some manipulations. In the first step of the 

algorithm, the common nodes between the two input molecules are retrieved and saved into 

C (Steps 1-4 - Algorithm 2.3). Thereafter, a new molecule is constructed by bringing together 

parts from both P1 and P2 i.e., Ps = P1[1 : C1] U P2[C2 +1 : length(P2)]. Finally, the delay 

entailed by the newly formed molecule Ps is compared with that of the initial molecules P1 

and P2 (Step 8 -Algorithm 2.3). If the delay of Ps is lower than that of the two initial solutions 

P1 and P2, then these two latter molecules are destroyed and only Ps is kept as the output of 

the Algorithm; otherwise, Ps is destroyed and P1 and P2 are kept in the population. 

 

Algorithm 2.3 Synthesis 
 

Input: Two molecules P1 and P2 

 
procedure Synthesis 
 

1. for i: length (P1) 
2. for j: length(P2)  

if P1[i] is equal to P2[j]  
Construct potential intersection nodes C = {i,j} 

end if 
3. end for 
4. end for 
5. Randomly choose a couple of nodes {C1 ,C2 } from C 
6. Construct the set Ps such that Ps=P1[1: Ci] UP2[C2+1: length(P2)] 
7. Compute thetotal delay of Ps 
8. If delay (Ps)< delay (P1)|| delay (Ps)< delay (P2)  
9. Destroy the molecules P1 and P2 
10. Add Ps to the population 
11. else 
12. Destroy the molecule Ps 
13. end if 
14. end procedure 

 

 



 24

The inter-molecular ineffective collision process is illustrated in Algorithm 2.4. The inputs to 

the Algorithm are two molecules P1 and P2 representing two possible solutions and the 

outputs are two other molecules representing two other possible solutions after some 

manipulations. In the first step, a node Nk1 is randomly selected form the molecule P1 (Step 1 

- Algorithm 2.4). A new path P’ is then constructed using Algorithm 2.2 starting from the 

randomly chosen node (Step 2 - Algorithm 2.4), and new molecule P3 is generated such that  

P3 = P1[1 : Nk1] U P’ (Step 3 - Algorithm 2.4). 

 

Similarly, another node Nk2 is randomly selected form the molecule P2 (Step 5 - Algorithm 

2.4), another new path P’’ is constructed using Algorithm 2 starting from Nk2 (Steps 6 - 

Algorithm 2.4), and a new molecule P4 is generated such that P4 = P2[1: Nk2]U P’’ (Step 

7 - Algorithm 2.4). The delay of the newly generated molecules is then compared against that 

of the initial molecules (Step 9 -Algorithm 2.4). If the delay of the newly generated 

molecules is lower than that of the initial ones, then those initial molecules are destroyed and 

the new ones are returned by the algorithm (Step10 - Algorithm 2.4). Otherwise, the new 

molecules are destroyed, and the initial ones are returned by the algorithm (Step 13 – 

Algorithm 2.4).  

Algorithm 2.4 Inter-Molecular Ineffective Collision 
 

Input: Two molecules P1 and P2 
Procedure Inter-Molecular Ineffective Collision 

1. Randomly select a node from the molecule A 
2. Generate a path P' starting from node to destination node using Algorithm 2 
3. Construct the molecule 𝑃ଷ = 𝑃ଵ[1:𝑁௞ଵ] ∪ 𝑃′ 
4. Calculate total delay for 𝑃ଷ 
5. Randomly select one node 𝑁௞ଶ from 𝑃ଶ 
6. Generate a path P" starting from node 𝑁௞ଶto destination node usingAlgorithm 2 
7. Construct the set 𝑃ସ = 𝑃ଶ[1:𝑁௞ଶ] ∪ 𝑃′′ 
8. Calculate total delay for 𝑃ସ 
9. if delay (P3)< delay (P1) and delay (P4)< delay (P2) 
10. Destroy the molecules P1 and P2 
11. Add the molecules P3 and P4 to the population 
12. else 
13. Destroy the molecules P3 and P4 
14. end if 
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In Algorithm 2.5, the on-wall ineffective collision process for the delay maximization 

problem is described. The input to this Algorithm is a molecule P1 representing a possible 

solution to the problem and the output is another molecule P2 which represents the possible 

solution after some perturbations. In the first step of the algorithm, a node Nk from the input 

molecule is randomly chosen (Step 1 - Algorithm 2.5). Then, a new molecule is partially 

constructed such that P2 = P1[1 :Nk]. The rest of the molecule is then populated using 

Algorithm 2.2. If the delay of the newly created molecule is lower than that of the initial 

molecule, then the initial molecule is destroyed and the newly created molecule is returned 

by the algorithm (Steps 4-6 - Algorithm 2.5). Otherwise, the new molecule is destroyed and 

the initial molecule is kept as the output of the algorithm (Step 8 - Algorithm 2.5). 

 

Algorithm 2.5 On-Wall Ineffective Collision 
 
Input: Molecule P1 

procedure On-Wall Ineffective Collision 

1. Randomly select a node Nk from the molecule P1 

2. Construct the molecule P2 = P1 [1: Nk] and calculate the rest of the path using 

Algorithm 2 

3. Calculate total  delay of P2 

4. if delay(P2) < delay(P1) 

5. Destroy P1 

6. Add P2 to the population 
7. else 
8. Destroy P2 

9. end if 

 

The decomposition process for the delay maximization problem is described in Algorithm 

2.6. The inputs to this Algorithm are a molecule P1 representing a possible solution to the 

problem and its length L, and the outputs are two molecules P2 and P3 generated through the 

decomposition of P1. First, the algorithm randomly selects a node Nk from the input molecule 
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(Step 1 -Algorithm 2.6). A new path P’ is then constructed using Algorithm 2.2 starting from 

the randomly chosen node Nk to the destination node (Step 2 - Algorithm 2.6). Thereafter, a 

new molecule P2 is constructed such that P2 = P1[1 :Nk]U P’ (Step 3 - Algorithm 2.6). 

Similarly, a new molecule P3 is constructed using Algorithm 2 starting from the source to 

node Nk and then a new molecule P3 is constructed where P3 = P’’ U P1[Nk + 1 : L] (Step 5 – 

Algorithm 2.6) The delays entailed by the newly generated molecules are then compared 

with the delay entailed by the initial molecule(Step 7 - Algorithm 2.6). If the delay of the 

initial molecule is greater than that of the newly generated ones, then the initial molecule is 

destroyed and the offspring of this reaction is added to the population (Step 9 - Algorithm 

2.6). Otherwise, the newly generated molecules are destroyed (Step 11 - Algorithm 2.6) and 

the population remains the same.  

 

Algorithm 2.6 Decomposition 
 
Input: A molecule P1 
l the length of molecule P1 

 
Output: Two molecules P2 and P3 
procedure  Decomposition 
 

1. Randomly select a node Nk from the molecule P1 
2. Generate a new path P' starting from node Nk to the destination node using 

 Algorithm 2 
3. Construct the molecule P2 = P1 [1 :Nk] U P' 
4. Generate a new path P" starting from node the source node to node Nk using 

Algorithm 2 
5. Construct the molecule P3= P" U P1 [Nk + 1 :l] 
6. Calculate total delay for P3 
7. if delay(P2) < delay (P1) or delay (P3)< delay (P1) 
8. Destroy the molecule P1 
9. Add P2 and P3 to the population 
10. else 
11. Destroy the molecules P2 and P3 
12. end if 
13. end procedure 
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The step-wise process to execute the cluster-based CRO meta-heuristics approach to solve 

the ILP is illustrated in Algorithm 2.7. The following steps are repeated until the maximum 

number of iterations (specified by network administrators) is attained. Molecules are 

generated as per Algorithm 2.2. 

 

While the number of hits is smaller than the maximum number of iterations, two new 

numbers b and mol are randomly generated from the range [0;1]. If the value of molecule b is 

higher than that of molecule mol, then one molecule is selected from the set generated by 

Algorithm 2.2. If the number of hits is higher than the value of α (specified by network 

administrators as an input to the algorithm), then the decomposition process (Algorithm 2.6) 

is executed. Otherwise, the on-wall ineffective collision process (Algorithm 2.5) is executed. 

On the other hand, if the value of molecule b is lower than that of molecule mol, then two 

molecules are randomly generated and the amount of kinetic energy is decremented. 

 

 If the kinetic energy of the selected molecules is lower than the value of β (specified by 

network administrators as an input to the algorithm), then the synthesis process (Algorithm 

2.3) is executed. Otherwise, the inter-molecular ineffective collision process (Algorithm 2.4) 

is executed. Finally, the number of hits is incremented and the solution minimizing the delay 

is computed and returned by the algorithm. It is worth stating here that the proposed 

algorithm, computes the optimal chaining between a pair of VNFs. As SFC requests usually 

tend to be composed of more than only two VNFs, we execute this algorithm in a parallel 

way between each pair of the same request, to ensure a sub-optimal solution for all the SFC 

components. 
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Algorithm 2.7 Min-Delay CRO 
 
Input: Network size, Delay matrix D[i] [j], Population size 
PopSize, Num -Hits= 0, Maxlteration, Source node S, Destination 
node D,α= 0.6 * Maxlteration, β= 0.3 * Maxlteration 
Kinetic energy KE = Maxlteration 
 
Output: Final solution O 
 

procedure CHEMICAL REACTION OPTIMIZATION 
 

1. while PopSize has not yet been attained 
2. Generate molecules by executing Algorithm 2 
3. Randomly generate mol ∈ [0,1] 
4. while Num- Hits <Maxlteration 
5. Generate b∈[0,1] 
6. if b >mol then 

Randomly select one molecule 
if Num-Hits >α then 
Execute Algorithm 6 
else 

Execute Algorithm 5 
end if 

          else 
Randomly select two molecules 
If KE<β then 

Execute Algorithm 3 
                    else 

Execute Algorithm 4 
end if 
KE --  

end if 
7. Num-Hits++ 
8. end while 
9. Check for a new minimum solution 
10. end while 
11. Return final solution and its objective function 
12. end procedure 
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2.5.3.2 Genetic Algorithm optimization approach: 

One of the most critical issues regarding chromosome encoding in the genetic algorithm 

framework is its feasibility, i.e. whether or not the decoded chromosome would result in a 

valid solution for the considered problem. As a first intuition, we used the same encoding 

presented in the CRO approach to implement classic genetic algorithm (C-GA). 

 

Nonetheless, what limits the performance of C-GA is the condition of the size imposed on 

the generated paths as specified in the GA framework; this size should remain the same from 

parents to children, and this limits the search space and increases the probabilities of having 

the algorithm stuck in a local optimum. Moreover, if the initial solution did not contain a path 

with the exact same size as the optimal solution, the algorithm would never converge to the 

optimal, and would be stuck on near-optimal or even bad solutions. To avoid this problem, 

we decided to adopt a priority-based encoding. The proposed encoding uses the chromosome 

not to represent the solution (path) itself, but rather, assigns for each node a priority that 

would help in constructing the path. The size of chromosomes with this encoding is set to the 

number of nodes in the initial graph, and any permutation-based operator would work for 

crossover and mutation since the order of genes would not affect the feasibility of the 

decoded solution. Algorithm 2.8 is introduced to generate priority values for the nodes in the 

substrate network. This is done by randomly choosing a number between 1 and N, with N 

being the size of the network. 

 

Algorithm 2.8 Genetic Algorithm-Chromosome generation 
 

Input: Network size N 

procedure GENERATE CHROMOSOMES 

1. For i=0 to N 
2. P[i] : a random number in the range [0,N] representing the priority value of node i. 

3. end for 
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Algorithm 2.9 illustrates the crossover process of the priority based GA. Crossover is a 

genetic operator that is based on merging the genetic information of two parents to produce 

new offspring. In other words, it is useful for stochastically producing new solutions from an 

existing population. In the first step of Algorithm 2.9, a random cut point n is applied on two 

input parent chromosomes (Step 1 - Algorithm 2.9). A new child chromosome C3 is then 

created by partially populating its priority values with the priority values of one parent C1 

from the index range [1;n] (Step 2 -Algorithm 2.9). The remaining priority values are 

populated from the second parent chromosome C2 such as to not overlap with the priority 

scores obtained from the first parent.  

 

The same process is repeated to create another child chromosome C3, while changing the 

order of the populating chromosomes (i.e., starting from C2 then going on to C1) (Step 5- 

Algorithm 2.9). Finally, the number of hits is incremented after each crossover operation. 

Algorithm 2.10, explains the mutation process of the priority based GA is explained. 

Mutation simulates the biologic mutation phenomenon and is important for preserving 

diversity from one generation of chromosomes to the next. The input to Algorithm 2.10 is a 

parent chromosome C1 and the output is a child chromosome C2. The mutation process is 

implemented by randomly selecting two node indexes n1 and n2 from the parent 

chromosome and then swapping their priority values. Finally, the number of hits is 

incremented after each mutation operation. The decoding process is illustrated in Algorithm 

2.11.  

 

The inputs to the algorithm are a chromosome C, a source node, a destination node, and an 

adjacency matrix recording each node’s neighbors list. The output is a decoded chromosome 

obtained after some manipulations. The first step consists in determining the source node’s 

neighbor having the highest priority value and storing it into chromosome P. This process is 

repeated until the intended destination node is reached and the full decoded path P is formed. 
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Algorithm 2.9 Priority-based Genetic Algorithm Crossover 
 

Input: Two parent paths C1 and C2 

Output: Two child paths C3 and C4 

procedure Crossover 

1. Randomly choose a cut point n on both C1 and C2 

2. Copy the priority values from C1[0] to C1[N] into C3 

3. while length(C3) <N do 

for i = 0 to length(C2) 

if C2[i]∉C3 

Add C2[i] to C3 

end if 
end for 

4. end while 
Copy the priority values from C2 [0] to C2[N] into C4 

5. while length(C4)<N do 

for i = 0 to length(C1) 

if C1 [i]∉C4 

Add C1 [i]to C4 

end if 
end for 
end while 
Increment Num-Hits++ 

6. end procedure 
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Algorithm 2.10 Genetic Algorithm-Mutation 
 

Input: One parent path C1 

Output: One child path C2 

procedure Mutation 

1. Randomly select two node indexes n1and n2 from C1 

2. Swap priority values between the selected nodes 

3. Num-Hits++ 

4. end procedure 

 

Algorithm 2.11 Genetic Algorithm Decoding 
 
Input: Chromosome C, Si. set of node i’s neighbors, Source node 
src_node, Destination node dst_node 
 
Output: Decoded chromosome P 
 
procedure Decoding 
 i = src_node 

 k = 0 
 n = max{C[i], i∈Si} 

 P[k] = n 
 k++ 
 while P[k]! = dst_node do 
 i = P[k-1] 
 n= max{C[i], iE Si} 
 if n∉ P 
 P[k] = n 
 k++ 
 else 
 Si= Si\n 
 end if 
 end while 

end procedure 

 

Algorithm 2.12 describes the stepwise methodology to execute the different steps of the 

priority-based GA process. First, a number of chromosomes that is equal to the desired 

population size is generated using Algorithm 2.8 (Step 2 - Algorithm 2.12). These 
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chromosomes then undergo the decoding process using Algorithm 2.11 (Step 3 - Algorithm 

2.12). The delay of the decoded chromosomes is compared with the minimum tolerable delay 

decided by network administrators as an input to the algorithm. If the delay of the decoded 

chromosomes falls below the minimum tolerable delay, the decoded chromosomes are 

retained and are added to the population. Otherwise, the chromosomes are discarded (Steps 

4- 5 - Algorithm 2.12). Then, the following steps are repeated as long as the number of hits 

(which is updated after each mutation and crossover process) is lower than the maximum 

number of iterations specified as an input to the algorithm. A number is randomly generated 

(Step 9 - Algorithm 2.12). If the generated number is lower than the crossover rate (an input 

to the algorithm), then two chromosomes are randomly selected (Step 10 – Algorithm2.12), 

the crossover process is executed on those chromosomes using Algorithm 2.9 to generate two 

new child chromosomes, the decoding process is executed on the parent and child 

chromosomes using Algorithm 2.11, and the delay entailed by the child chromosomes is 

compared with those entailed by the parent chromosomes.  

 

If the delays of the child chromosomes are lower than those of the parent chromosomes, the 

child chromosomes are retained in the population and the parents are destroyed. If the 

randomly generated number in Step 15 is lower than the mutation rate (an input to the 

algorithm), then one parent chromosome is randomly, the mutation process is applied on this 

chromosome using Algorithm 2.10 to generate a child chromosome, the decoding process is 

applied on both parent and child chromosomes, and the delay entailed by both the child 

chromosome and parent chromosome are compared. If the delay of the child chromosome is 

lower than that of the parent chromosome, the child chromosome is retained in the 

population and the parent is destroyed. 
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Algorithm 2.12 Min-Delay Priority based GA 
 
Input: Network size, Delay matrix D[i] [j], Population size PopSize, 
Num -Hits = 0, Maxlteration, Source node S, Destination node D, 
Mutation rate MuRate = 0.2, Crossover rate CrossRate = 0.8,  
SFC minimum tolerable delay Ds 

 

procedure Chemical Reaction Optimization 
1. while PopSize has not been reached yet do 
2. Execute Algorithm 8 to generate a chromosome and store it in P 
3. Execute Algorithm 11 with P being the input chromosome to generate the decoded 

chromosome P' 
4. if delay(P') < Ds then 
5. Add P to the population 
6. end if 
7. end while 
8. while Num-Hits <Maxlteration 
9. Randomly generate r ∈ [0,1] 
10. if r <CrossRate then 

Randomly select two chromosomes 𝐶ଵᇱand 𝐶ଶᇱ  
Execute the crossover on 𝐶ଵᇱand 𝐶ଶᇱ  using Algorithm 9 togenerate two child 
chromosomes 𝐶ଵᇱᇱand 𝐶ଶᇱᇱ 
Execute the decoding process on the parent chromosomes𝐶ଵᇱand 𝐶ଶᇱand child 
chromosomes 𝐶ଵᇱᇱand 𝐶ଶᇱᇱusing Algorithm 11 

if delay(𝐶ଵᇱᇱ)< delay(𝐶ଵᇱᇱ) or delay(𝐶ଶᇱᇱ) < delay(𝐶ଶᇱ) 
Add 𝐶ଵᇱᇱand 𝐶ଶᇱᇱto the population and destroy 𝐶ଵᇱand 𝐶ଶᇱ  
end if 

11. end if 
12. if r <MuRate then 

Select one parent chromosome C' 
Execute the mutation process on C' using Algorithm 10 to generate another child 
chromosome C" 

Execute the decoding process on the parent chromosome C' and child chromosome 
C" using Algorithm 11 

if delay(C") < delay(C')then 
Add C" to the population and destroy C 
end if 

13. end if 
 

14. end while 
15. Check for a new optimal solution 
16. <= final solution and its objective function 
17. end procedure 
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2.5.4 CRO Based Placement Algorithm: 
 

In this section, we will explain how we employed the CRO algorithm to solve our ILP for the 

second objective function. We considered CPU for our implementation, but it can be easily 

adapted to optimize the problem in terms of other metrics. The objective of Algorithm 2.17 is 

to provide a set of solutions for the placement phase that ensure a high consolidation of 

physical resources on the hosting nodes, which thus means a minimum number of servers 

will need to be used to host the incoming requests. 

 

2.5.4.1  Solution Representation and Molecule generation: 
 

The molecule encoding for this part of the algorithm is represented in Figure 2.3. The 

placement phase is similar to the bin packing problem, which is why we adopted a grouping 

technique to encode our molecule. Each group represents a server and the content of the 

groups represents the indexes of their hosted VNFs. The index of each VNF is specified in 

the SFC request like illustrated in Figure 2.2. To generate a set of initial solutions, we 

adopted the First Fit (FF) algorithm. The main idea underlying this heuristic is that for each 

VNF, the FF algorithm attempts to place it in the first server that can still host it based on its 

residual CPU capacity. If all the used servers are full, the algorithm starts up a new server 

and puts the VNF in it. To make sure that we have different solutions in the initial 

population, the order for placing the VNFs is chosen randomly at each molecule generation. 

Once we generate our initial population, those molecules will undergo the elementary 

reactions defined by the CRO framework to find a near optimal solution. 
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Figure 2.2 Input Requests 
 

 

 
 

Figure 2.3 Molecule Encoding 
 
 

Algorithm 2.13 CRO Placement Molecule Generation 
 

Input: SFC Request, Servers Capacity, Count=Request.size 

Output: P: Placement Solution 

procedure Generate Molecules 

While count !=0 

Pick a random VNF V from the SFC request. 

if (V is not already placed) 

Apply first fit algorithm to host V based on the servers’ available capacities 

Update the hosting server’s capacity 

Count-- 

else 
Pick another VNF from the request 

end while 
Return P 
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2.5.4.2 Elementary Operation for CRO: 
 
Decomposition:  
 
This procedure results in two molecules C1 and C2 from a molecule P chosen from the 

current population. In this elementary reaction, we maintain the server with the maximum 

used capacity from P and we copy its content into two new solutions. The remaining VNFs 

that are not contained in this server are placed again using the first fit algorithm on both new 

solutions. The order adopted for placing the remaining VNFs is random on C1 and C2, to 

ensure that the offspring is different. The procedure for this reaction is described in 

Algorithm 2.14. 

 
Algorithm 2.14 CRO Placement Decomposition 

 
Input: One Molecule P1 
Output: Two Molecules C1and C2 

 
procedure Decomposition 
 
for each server inP 

Calculate the sum of allocated CPU 
Rank the servers in a descending order based on their used 
CPU 

end for 
 

Choose the server with maximum used CPU S1 
Initialize a new solution C1 
Copy the content of S1in the first server of C1 
Reallocate the remaining VNFs in the new solution C1 by using the first fit algorithm //The 
order of the VNFs to be placed is random 
Initialize a new solution C2 
Copy the content of S1 in the first server of C2 
Reallocate the remaining VNFs in the new solution C1 by using the first fit algorithm 
if Fitness(C1) > Fitness(P) Or Fitness(C2) > Fitness(P) 
Remove P from population 
Add C1and C2 to the population 
else 
Discard C1and C2 

end procedure 
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On-wall ineffective collision: 
 

This procedure represents a corrective action where we attempt to improve the quality of a 

selected solution. Unlike decomposition, this elementary reaction starts with one molecule P 

and results in one molecule C. The main idea is to choose the weakest server S1 on solution P 

with the least used CPU capacity. The next step is to empty the selected server S1 and 

redistribute its VNFs on the currently used servers, as they may still have enough CPU 

available to host the VNFs previously hosted on S1. The procedure for this reaction is 

described in Algorithm 2.15. 

 

Algorithm 2.15 CRO Placement On Wall Ineffective Collision 
 

Input: One Molecule P 

Output: One molecule C 

procedure ON-WALL COLLISION 

Copy the solution P into C 

For each server inC 

Calculate the sum of allocated CPU 

Rank the servers in a descending order based on their used CPU 

end For 
Choose the server with minimum used CPU S1 

Empty the selected server S1 
Redistribute the previously hosted VNFs on S1using first fit algorithm 

 if Fitness(C)> Fitness(P) 

 Remove P from population 

 Add C to the population 

 else 
 Discard C 

end procedure 
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Synthesis: 
 

This procedure results in one solution C starting from two molecules P1 and P2. The aim of 

this elementary reaction is to copy the best features from selected molecules P1 and P2 into 

the offspring C. The first step is to look for the fullest servers on both solutions P1 and P2 

and then copy their content into the offspring solution C. Before proceeding with the rest of 

the VNFs, it is mandatory to remove potential VNF duplicates in S1 and S2. Once we are 

sure of the unicity of placed VNFs, we host the remaining VNF requests using the first fit 

algorithm. Details of the procedure are explained in Algorithm 2.16. 

 

Algorithm 2.16 CRO Placement-Synthesis 
 

Input: Two Molecule P1 and P2 
Output: One molecule C 
 
procedure On-wall Collision 

 for each server in P1 
 Calculate the sum of allocated CPU 
 Rank the servers in a descending order based on their used CPU 

 Choose the server with maximum used CPU S1 
       end for 
 
 for eachserver in P2 

 Calculate the sum of allocated CPU 
Rank the servers in a descending order based on their used CPU 

 Choose the server with maximum used CPU S2 
 end For 
 
 Initialize a new empty solution C 
 Copy the placed VNFs in S1 and S2 in two new servers of C 
 Eliminate VNF duplicates between S1 and S2 
 Look for the remaining unplaced VNFs in the SFC request 
 Place those VNFs using First Fit algorithm in the solution C 
 if Fitness(C)>Fitness(P1) Or Fitness(C) > Fitness(P2) 

 Remove P1 and P2from population 
 Add C to the population 

 else 
 Discard C 

end procedure 
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Inter-molecular ineffective collision: 
 

This procedure starts with two molecules P1 and P2 and results in two solutions C1 and C2. 

Since each new solution is constructed independently from the other, we use the on wall 

ineffective operator twice to generate new solutions. C1=ON-WALL COLLISION(P1) and 

C2=ON-WALL COLLISION(P2). 

Fitness function:  
 

As our aim in the placement phase is to optimize the operational cost, we must maximize the 

hardware resource consolidation and use the minimum number of servers to host all 

incoming requests. That’s why we define our fitness function for CRO based placement by 

Eq.(2.13). Maximizing this fitness function along the CRO iterations allows favoring the 

most-filled servers and thus avoids hardware resource waste by having the maximum number 

of inactive servers. 

 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠௣௟௔௖௘௠௘௡௧ = 1|𝑉௛|෍ ෍ (𝛼௡,௠௣ .𝑅௠௣𝑅௏௛௠௔௫ )ଶ|௏೓|
௠ୀଵ

|௏ೡ|
௡ୀଵ  

(2.13) 

 

The stepwise process to execute the CRO-based placement approach to solve the ILP in 

terms of operational cost and CPU consolidation is illustrated in Algorithm 17. 
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Algorithm 2.17 CRO based placement 
 
Input: Network size, Scap: Servers’ capacities, SFC requests, Num-Hits = 0, Maxlteration, 
Popsize: Initial population size, α= 0.6 * Maxlteration, β=0.3 * Maxlteration, Kinetic energy 
KE = Maxlteration 
 
Output: Final solution O 
 
Procedure CHEMICAL REACTION OPTIMIZATION 
 
While Popsize has not yet been attained  

Generate molecules by executing Algorithm 13 
Randomly generate mol∈ [0,1] 
while Num-Hits <Maxlteration then 
Generate b∈ [0,1] 
If b >mol 

Randomly select one molecule 
If Num-Hits >α then 
Execute Algorithm 14 
else 

Execute Algorithm 15 
else 

Randomly select two molecules 
If KE <β 

Execute Algorithm 16 
else 

Execute Algorithm 15 on both selected molecules 
                   end if 

KE -  -- 
end if 

Num-Hits++ 
end while 

end while 
Check for a new minimum solution 
O <= final solution and its objective function 
end procedure 
 

2.6 Experimental Setup and Results: 

In this section, we provide the details of the used environment, the conducted scenarios and 

we discuss the obtained results. We classify our simulations into two separate sets: 
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• The first part consists of testing the chaining phase to decide which of the heuristics 

presented in section 4.3 to adopt and also determining the limit of network size to decide 

when to apply clustering. 

• The second part of our simulations shows the overall results for our proposed approach for 

VNF placement and chaining. 

 

2.6.1 SFCs chaining without clustering: 

We consider a substrate network composed of 30 nodes that are either middleboxes or host 

servers. The delay on the edges of the network is set randomly between [30,250] us, while 

the SFC request tolerates a maximum delay of 450us between two adjacent VNFs. Our 

proposed algorithm returns the optimal path between a pair of VNFs that we assume, in a 

first step, are already placed. 

 

Heuristic parameters: 
 

• For the classic version of GA (C-GA), we used a high rate for mutation (0.9) as it is more 

likely to improve the offspring than crossover which is limited to the condition of having a 

crossing point between the two parents to ensure having a valid solution (Crossover rate 

0.1). 

• For the priority-based GA (P-GA), we used the default settings for mutation and crossover 

rates which are respectively 0.2 and 0.8; 

• For CRO the parameters were set based on a trial and error process: α=0.6×MaxIteration, 

β=0.3×MaxIteration 

 

To define the maximum number of iterations needed to find optimal solutions for each of the 

proposed algorithms, we ran them on the same substrate graph on which we already know the 

optimal path from a source to destination node. Figure 4 shows the evolution of the End-to 

End (E2E) delay when the algorithm is run a single time. The priority-based GA (P-GA) 

converges to the optimal solution in less iterations than CRO and the classic GA. C-GA, and 
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because of the limitations explained in section 2.5.3.2 gets stuck in a local optimum at around 

300 iterations and might not converge to the optimal path if the quality of the initial 

population is not good enough. Moreover, since the path generation procedure is totally 

random at first, the probability of not finding a good solution increases for CGA. On another 

hand CRO manages to find the optimal path with an average of 350 to 400 iterations. 

 

 
 

Figure 2.4 Comparison of E2E evolution for CGA, PGA and CRO 
 

Now, to evaluate the performance of the proposed algorithms, we rely on two metrics, the 

quality of the solution in terms of the E2E delay as well as the run time needed to find a near 

optimal solution. 

 

E2E Delay: 
 
Based on the previous results of Figure 2.4, we fixed the iteration number for both CRO and 

CGA to 400 while for PGA we set it to 300. We run each of the algorithms 10 times to 

compute the E2E delay as well as the average execution time needed for each approach. The 
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considered network topology is always composed of 30 nodes (middleboxes and servers 

included). In Figure 2.6 we present the best, the worse and the average solution cost for each 

of the algorithms. As we can see that in the best case, all algorithms manage to find the 

optimal path. As we consider the average cost delay, the worst performance is that of C-GA 

and that is due to the sizing condition imposed on the chromosomes. Because, if the 

initialization did not contain a path of the exact same size of the optimal one, the C-GA 

algorithm would never be able to converge to better solutions. CRO and P-GA perform 

similarly in terms of the solution quality but as we mentioned earlier, since the run time is a 

critical criterion when it comes to latency critical applications such video conferencing and 

voice-over-IP, we compare our solutions also in terms of execution time. 

 

 
 

Figure  2.5 Average E2E Delay for C-GA, P-GA and CRO 
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Run time: 
 
The number of needed iterations is not directly correlated with the run time as we can see in 

Figure 2.7 showing a comparison of the execution time for the three studied algorithms (P-

GA, C-GA and CRO). Based on the obtained results, we can see that C-GA have the shortest 

execution time compared to CRO and P-GA but as previously explained is more likely to 

result in bad solutions. On another note, P-GA takes more time to converge to optimal 

compared to CRO, even if he needs less iterations. This is an expected result as the P-GA 

procedure requires an extra processing phase, which is to decode the chromosome into a 

valid path, while for CRO a molecule represents actually a valid solution we don’t need 

another procedure to transit from the search to solution space. 

 

 
 

Figure 2.6 Average run-time for C-GA, P-GA and CRO 
 

According to the obtained results both in Figures 2.6 and 2.7, it is obvious that the C-GA is 

not the heuristic to adopt for our chaining problem, which led us in the following simulations 

to compare just CRO and P-GA.  

To decide which of the two algorithms to adopt, we doubled the substrate graph size to 60 

nodes to see how this parameter impacts the efficiency of our proposed solutions. Here again 
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we run each one of the algorithms 10 times with the same parameters used for the previous 

simulation. 

 

 
 

Figure  2.7 Average E2E delay for P-GA and CRO 
 
To evaluate the run time, we increase the size of the network from 20 to 120 nodes. We can 

conclude based on results of Figure 2.8 that the average E2E delay found by P-GA is slightly 

better than that of CRO. But when considering the execution time, we can clearly see in 

Figure 2.9 that as we increase the size of the input graph, the execution time increases also 

for both approaches but the gap between CRO and P-GA gets more important. Given the fact 

that we consider time sensitive applications and based on our results, we decided to adopt the 

CRO for the chaining phase of our overall approach for SFC embedding. 
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Figure 2.8 Average Runtime for PGA and CRO by network size 
 
The proposed CRO based chaining finds the optimal path for a pair of VNF, but in real case 

scenarios SFCs are usually composed of more than just two VNFs, that’s why we 

parallelized the proposed procedure in Algorithm 2.7 to find the optimal path between each 

pair of VNFs composing the same SFC. We tested our parallelized algorithm using the 

parameters presented in Table 2.1. 

 

Table 2.1 Simulation Setup for chaining 
 

Simulation parameters for chaining 

Total SFC requests 

SFC size 

E2E delay requirements 

Delay on substrate links 

Substrate network size 

20 

2 to 10 VNFs 

Set randomly between [200,500] us 

Set randomly between [30,250] us 

30,60,90,120 
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As we can see in Figure 2.9, for the same number of VNFs in the SFC requests, the E2E 

delay increases as we increase the size of the network. It is an expected result as there are no 

restrictions on where to place the VNFs which means that a pair of VNFs are not mandatorily 

placed near each other as we increase the size of the network.  

 

 
 

Figure 2.9 Average E2E Delay by network size for parallel CRO 
 
 

 
 

Figure 2.10 Rejection rate of SFC requests 
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We can see in Figure 2.10 that not only does the E2E delay increases but also the rejection 

rate of chaining a given SFC. Even if the network has enough physical resources to host all 

the VNFs but in terms of latency the probability of violating the delay requirements of SFCs 

keeps increasing as we consider larger substrate networks.  

 

This result is explained by the fact that all SFC requests are placed simultaneously, which 

increases the probability of having VNFs belonging to the same SFC but hosted on extreme 

nodes in the substrate graph. Moreover, if the link delays are too high the request would not 

be fulfilled in terms of E2E delay and would thus be rejected. To avoid having a high 

rejection rate, clustering can be a helping process to reduce the placement and chaining 

search space. For a clustered network, using the same approach we can make sure that the 

whole SFC is hosted on a relatively small network, which guarantees that its components 

would be closer to each other and thus avoid violating the SFCs’ latency requirements. 

 

2.6.2 SFCs Placement and chaining with clustering: 
 
The simulations in this section were conducted on a 120 nodes substrate graph, this choice is 

based on the obtained results in Figure 2.10 as the rejection rate starts getting higher starting 

from 80 nodes which is the limit of the network size to apply clustering. 

 

Clustering: 
 
Using the k-medoids based algorithm we form a set of energy efficient clusters as well as 

memory efficient clusters. The parameters used to simulate our clustering are presented in 

Table 2.2. 
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Table 2.2 Simulation Setup for clustering 
 

Simulation parameters for clustering 

Number of nodes in physical graph 

Available energy per node 

Available memory per node 

120 

Set randomly between [3000,5000] Joules 

Set randomly between [100,2000] Go 

 
In Figure 2.11, we can see how the clustering process classifies the substrate nodes based on 

their energy capacities. Each cluster stands for a level of efficiency here in terms of energy 

and in terms of memory in Figure 2.12. The SFC requests are then assigned to the according 

cluster, based on their preferences whether they prioritize energy or memory and their 

requirements for each of these metrics. 

 

 
 

Figure  2.11  Node distribution according to Energy availability 
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Figure 2.12  Node distribution according to Memory availability 
 

Placement: 
 
We compare here the results of CPU consumption and resource consolidation in two network 

scenarios: with and without clustering. To simplify our simulations, we consider that all 

VNFs are of the same type, meaning they request the same type of clusters (energy or 

memory efficient). The servers’ capacity is also set to the same value but in realistic 

environments these capacities are dynamically monitored and given as input to our placement 

algorithm. The used parameters are described in Table 2.3. 

 

Table 2.3 Simulation setup for placement 
 

Simulation parameters for placement 

Number of nodes in physical graph 

Number of clusters 

Servers’ initial capacity 

Number of SFC requests 

SFC size 

VNF CPU core requirements 

120 

4 

30 cores per server 

15,20,30,40 

2 to 10 VNFs 

1 to 15 cores 
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Figure 2.13 shows the comparison of used servers when the network is considered without 

clustering and in the second case when we apply the clustering.  

 

 
 

Figure  2.13  Comparison of number of used servers 
 

Based on the results, we can see that up to a total of 120 VNFS only one cluster is enough to 

host the requests and the total number of used servers is the same in both scenarios. As we 

increase the number of requested VNFs to 200, we can see in this case that 2 clusters are 

needed to fulfill the SFC requests and the total number of used servers starts to improve 

slightly starting from 250 VNFs as a total request. As we increase the SFC request, the 

clustering allows us to reduce the number of used servers and thus to consolidate our 

physical resources. This result is explained by the fact that the placement algorithm does not 

move to a second cluster unless the 1st one is fully used, while if the whole network is 

considered the placement algorithm has a larger search space and might place the requests 

not necessarily in the most optimal way. 
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Chaining: 
 
In this part of the simulation we fix the total number of VNFs to be hosted to 200, and 

compare the quality of the CRO solutions in both cases: with and without clustering the 

substrate network. 

 

 
 

Figure 2.14 E2E delay comparison with and without clustering 
 

We can see based on Figure 2.14, that the average E2E delay found in the case of a network 

without clustering is considerably higher than that of a clustered substrate network. This 

result is expected principally due to the placement phase, as we place SFCs on their 

dedicated cluster, this increases the probability of having VNFs belonging to the same SFC 

hosted relatively close to each other and thus resulting on a better E2E delay. As we consider 

the worst-case scenario, we can see that for a network without clustering, the E2E delay is 

practically twice the case where the network is clustered. Not only does the clustering helps 

improve the quality of the SFCs chaining, but it also ensures that all the requests are placed 

and chained according to their initial requirements, contrary to the case where we consider 



 54

the whole network as we’ve seen in Figure 2.10 the rejection rate keeps increasing as we 

consider larger substrate networks. 

 

Execution time: 
 
After we’ve analyzed how the clustering technique helps improve the quality of the proposed 

solutions, in this section we will analyze its impact on the overall run time of the proposed 

approach. In the Figure 2.15, we compare two schemes of clustering: 

 

• Static clustering where its executed at the start of the algorithm and not updated again, in 

this case it wouldn’t have a big impact on the overall execution time. 

• Dynamic clustering updated periodically as the resources vary on the network topology, 

in this case it should be considered in the execution time. 

 

For both cases and based on the results of Figure 2.15, we can clearly see that the clustering 

technique improves considerably the run time of both placement and chaining, that is due 

mainly to the fact that the search space is reduced and therefore the complexity of the 

problem also. 

 

 
 

Figure 2.15  Run-time comparison of placement and chaining with and without clustering 
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2.6.3 Results analysis: 
 
The following section summarizes the results for the different stages of our approach: 

 

Chaining: 
 

Table 2.4 presents our obtained results for a substrate graph composed of 30 nodes, based on 

the obtained results we can see that the C-GA performs bad compared to the two other 

approaches: P-GA and CRO, which made us discard this solution. Considering execution 

time also as an important factor we can see that even CRO and P-GA might perform 

similarly in terms of solution quality, the run time is better for CRO. As we increased the 

number of nodes to 60 we can see as presented in Figure 2.9 that the gap keeps increasing as 

the network size increases so we decided to adopt CRO for our chaining phase. 

 
Table 2.4  Heuristic comparison for chaining 

 
Heuristic Average E2E Delay (ms) Execution time (ms) 

CRO 198 33.9 

P-GA 205 39.1 

C-GA 237 23.4 

Optimal 175 -- 

 

Placement and chaining: 
 

Table 2.5 presents our obtained results for both placement and chaining as we consider two 

case scenarios: a substrate network without clustering and the second case is where we apply 

the K-medoids clustering approach. The heuristic used in this phase is CRO for both stages: 

placement and chaining, while the substrate network is here composed of 120 nodes. 
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Table 2.5 SFC embedding performance comparison 
 
 Average E2E Delay 

(sec) 
Average number of 

used servers 
Execution time (sec) 

With Clustering 0.213 81 0.57 

Without Clustering 0.36 84 1.32 

 

As previously explained and following the presented results, we can see that the clustering 

phase helps not only to include other performance metrics (e.g. energy, memory, storage...) 

but can help optimize the execution time of the embedding procedure and also improve the 

quality of the resource consolidation and the E2E delay values. 

 

2.7 Conclusion 

In this chapter, we propose a multi stage approach to ensure an optimized placement and 

chaining of service function chains by minimizing the operational, transmission and penalty 

costs. Our formulated approach uses the heuristic algorithm CRO to find sub optimal 

solutions, it also offers many advantages compared to the proposed solutions in the literature 

as it: 

 

• Takes many metrics into account in the optimization process more specifically energy and 

CPU consumption as well as the end to end delay. It is worth stating here that the 

approach is generic enough to be adapted to consider other metrics depending on the 

priorities of the SFC requests. 

• Scales well with large network topologies, thanks to the pre-processing phase of clustering 

that helps reducing the space search and thus the complexity of the problem. 

• Acts in a dynamic scheme as we update the clustering periodically depending on the 

resources and depending on the incoming SFC requests and their resource consumption. It 

allows network administrators to decide of the most efficient placement and adjustment 

policies as the resources in the cloud datacenters are constantly changing. 
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Our simulations show that our approach proves to be efficient for the SFCs placement and 

chaining problem. Using the CRO, results prove that this heuristic outperforms genetic 

algorithm especially in the chaining phase as it offers a good trade-off between the quality of 

its solutions as well as the run-time. Results shows also that Clustering help not only to 

include other objective functions making the placement more optimized, but it also helps 

reducing the space search for our adopted heuristic. Clustering allows also optimizing the run 

time of the whole process, which is an important factor as we consider time sensitive 

applications and real-time services like in 5G networks. Consolidating resources on the 

substrate level and also ensuring this efficient chaining between VNFs allows optimizing the 

operational and penalty costs we defined in section 2.4 

 

As future work, we plan on extending our work in two principle axes: 
 
• Investigating other clustering techniques to improve the quality of the formed clusters and 

also the execution time. 

• Defining a joint placement and chaining approach for SFCs using metaheuristic 

algorithms, which will also allow us to improve the overall execution time of the 

procedure along with ensuring an optimal tradeoff between the set of metrics we want to 

optimize. (e.g energy, delay, CPU, memory...) 
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3.1 Abstract 

Complex networks are formal and effective tools for modeling, studying and analyzing 

complex interactions between objects with non-trivial features in different domains. 

Examples are computer communication networks, brain networks and social networks.  

In computer networks, these tools play an important role in understanding applications, end-

users and interactions between compute nodes and their behaviors. Nowadays, computer 

networks are undergoing significant expansion due to the proliferation of network devices 

(legacy and/or virtualized), compute nodes and the number of relationships/inter 

dependencies between network nodes. One of the main challenges in computer 

communication networks lies in categorizing these compute nodes into communities/clusters 

and detecting clusters/communities of connected compute nodes within these large-scale 

structures sharing similar features of different types (e.g., CPU, memory, disk, etc.).  

 

In this paper, we propose a set of novels, dynamic and proactive topology-aware 

unsupervised machine learning (i.e., clustering) approaches, namely, a mixed integer linear 
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program, a chemical reaction optimization meta-heuristic and a game theory approach, to 

form clusters based on the compute nodes’ features and their topological structures. Our 

solutions are tailored to meet the requirements of the fields of Network Function 

Virtualization and Cloud based Communication Networks. In this regard, the solutions aim to 

help decision makers facing issues related to scalability and computational complexities of 

their mechanism to deploy their cloud- and non-cloud-based virtual network services in an 

effective manner.  

 

To the best of our knowledge, we are the first to consider the problem in the above contexts 

and to propose a solution. Experimental results demonstrate the effectiveness of the proposed 

approaches and their suitability, given their polynomial time complexities, which make them 

easy to deploy and integrate into cloud providers’ orchestration systems. 

 

Keywords: Network function virtualization, attributed network infrastructures, clustering, 

multi-objective optimization, topological structure, attribute similarity. 

 

3.2 Introduction 

Complex networks (Bothorel et al. (2015)) are formal and effective tools for modeling, 

studying and analyzing complex interactions between objects with non-trivial features in 

different domains. Examples are computer communication networks, brain networks and 

social networks. In computer networks, these tools play an important role in understanding 

applications, end-users and interactions between compute nodes and their behaviors. These 

tools essentially make use of the graph theory framework, where nodes represent objects and 

edges represent the interaction between nodes. In the context of computer networks, nodes 

represent commodity servers, compute nodes, network devices(legacy/virtualized), whereas 

edges embody their relationships, which can be diverse (e.g., dependencies, bandwidth 

capacity or latency) with respect to the context in which they are defined. 
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Clustering is a useful and important unsupervised learning technique widely used in the 

literature (Alessandro et al. (2017), Yang et al. (2009), Hong et al. (2011), Chen et al. 

(2004)). It aims at grouping similar objects into one cluster while keeping dissimilar objects 

in separate clusters. Clustering has broad applications, including fraud detection and analysis 

of financial, time series, spatial and astronomical data, etc. 

Clustering of attributed graphs (Yang et al. (2009)), represents an interesting challenge, 

which has recently started a lot of attention. Graph clustering applications include areas such 

as community detection in social networks, etc. 

 

Several approaches have been proposed to cluster attributed graphs. These approaches can be 

classified into two categories: parameter-free and parameter-dependent approaches. In a 

parameter-dependent approach, the number of clusters to be formed is given by the user as 

input for the clustering algorithm, in contrast to the parameter-free approach, where no such 

input is required. In addition to the aforementioned classification, many existing clustering 

methods either perform clustering only considering the nodes’ properties and/or topological 

structure. 

 

The choice of an approach depends mainly on the nature of the problem at hand and the 

desired goal. This choice is dictated by the nodes and/or by the links between them (i.e., 

focused on the structural part). 

 

Generally, the clusters are formed by computing a similarity function considering either the 

node attributes and/or structural attributes. This similarity function is the key to building 

clusters since cluster members are grouped together only when being similar. In our 

clustering, we will consider the quality of the clustering during the formation process, in 

addition to other cost functions to evaluate. Most existing approaches (Bothorel et al. (2015), 

Yang et al. (2009), Alessandro et al. (2017), and Hong et al. (2011)) for the clustering of 

attributed graphs evaluate the quality of clustering once clusters are built. This is indeed how 

things are done by most traditional clustering approaches as well i.e. the quality of the 
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clustering is evaluated at the end of the process, instead of quality being considered during 

the actual clustering. 

 

However, in our approaches, our aim is to attempt to form clusters by assessing or 

continuously improving them, considering both structural and node properties. 

 

In the present chapter, we fill existing gaps in the research literature with the following main 

contributions: 

• We provide the first formulation for the joint server and network attributes for the 

dynamic and proactive clustering problem tailored for service function chains, and 

broadly, for virtual network services, in the context of NFV, 5G and network slicing. 

• The problem is formulated as a Quadratic Constrained Integer Linear Program, 

implemented and solved in line with Gurobi, to find optimal solutions for small-scale 

networks. 

• We design a fast and scalable Chemical Reaction Optimization approach to handle 

medium and large-scale instances of the problem, leveraging the same ILP structure 

(cost functions and constraints) for reliable benchmarking. 

• A game theory-based approach similar to item 3 above is also suggested for forming 

clusters. 

• Moreover, our proposed solutions may be integrated into orchestration systems 

following NFV MANO thanks to their low computational complexities. 

• VALKYRIE’s performance in terms of solution quality and scalability is assessed using 

real-world topologies: small, medium and large-scale enterprise networks. 

 

The rest of this chapter is organized as follows. Section 3.2 presents the context, motivation 

and system architecture. The related works is discussed in Section 3.3. Section 3.4presents 

the system model and state the clustering problem. Our clustering techniques (Chemical 

reaction optimization and game theory) are presented in section 3.5 and 3.6 respectively. 

Section 3.7 discusses their asymptotic analysis. Results are presented in Section 3.8, followed 

by the discussion in Section 3.9. Finally, Section 3.10 concludes this chapter. 
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3.3 Context, motivation and system architecture 

Attributed graphs model real networks by augmenting their nodes with a set of attributes. In 

the field of networking, these attributes pertain to CPU, Memory, Storage capacity, Energy 

level, etc. Thus, our clustering approach of an attributed graph is devoted to the service 

function chaining problem and broadly to cloud-based virtual network services where the 

goals are: 

 

• Reducing the search space from an algorithmic perspective to help find faster solutions for 

the algorithms we have developed to deploy a service request. 

• Build on-demand clusters such as CPU intensive clusters, bandwidth efficient clusters… 

 

Figure 3.1 shows the VALKYRIE architecture we designed for the clustering of 

cloud/enterprise network topologies. It comprises a control plane and a data plane. 

 

VALKYRIE builds clusters based on on-demand requirements, which could relate to the 

number of clusters we want to form, as well as their nature; i.e., we may want the clusters to 

be CPU-intensive, delay/bandwidth-efficient, single metric or multi-metric efficient clusters. 

Once the decision makers choose an option, they may invoke a CRO-based clustering 

procedure, a Game Theory based procedure, or even the ILP solution, to build the desired 

clusters. This is done according to the size of the underlying network topology (small-scale, 

medium-scale and large-scale networks). 

 

Another important task worth mentioning is the preprocessing task the network topology 

undergoes. Like any unsupervised learning technique, a.k.a clustering, the data must always 

be cleaned beforehand, with the links connecting the servers filtered in terms of bandwidth 

and latency according to the on-demand clusters’ requirements. 

 

For example, if a link connecting two servers is congested, we will not consider it during the 

clustering process. All these approaches and pre-processing tasks take place on the control 
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plane. All the three approaches leverage information (available CPU cores, memory, storage 

capacity, power consumption, bandwidth and latency) provided by the data plane, which is 

fetched on a periodic basis using analytic tools such as Grafana, as well as the current 

network infrastructure topology(the available servers with their inter-connectivity). 

 

 
 
Figure  3.1  VALKYRIE for building virtual clusters for cloud and virtual network services 

 
3.4 Related work 

In this section, we review the existing and most relevant approaches that have thus far been 

proposed in the research literature concerning the clustering of networks for service function 

chaining. Although, only very few articles have proposed forming virtual clusters of the 

physical servers, we will detail the state of the art regarding clustering in cloud environments, 

especially with respect to virtual machines clustering which aims at optimizing the resource 

consumption and management of the physical infrastructure. Moreover, we present the 

techniques adopted for community detection in social networks, which is also an application 

of clustering in attributed graphs like our considered context. 
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Clustering in cloud environments:  
 
Chen et al. (2018), propose a topology aware approach to host virtual machines clusters on a 

compute pool composed of a set of physical machines. The virtual machine cluster is defined 

as a group of virtual machines hosting a distributed application or service, the challenge here 

is to place these VMs on top of physical machines in a manner which guarantees that two 

VMs belonging to the same cluster are not deployed far away from each other to avoid high 

bandwidth consumption and low performance in terms of the service offered. The authors 

represent the VM cluster as a directed graph where nodes are the VMs and links between 

them represent the links. To solve this placement problem, the authors propose a greedy 

algorithm, which first attempts to host the entire VM cluster on the same physical server if it 

has enough capacity. Otherwise, it starts with the node having the least connectivity weight 

and places this VM on the physical machine with the minimum available capacity to host the 

VM. Once placed, this VM is omitted from the initial graph and the algorithm follows the 

same procedure to host the remaining VMs. The authors compare their approach to their 

previous work in (Chen et al. (2015)), where the connectivity between VMs was not 

considered. They also compare it to two basic approaches: the first-come-first-serve and the 

round-robin (Sefraoui et al. (2012), Jackson et al. (2013)), approaches which are both used 

for VM scheduling. The results show that this topology aware technique improves the 

bandwidth consumption versus the yield with the three other approaches. 

 

Chavan et al. (2014), propose a technique to cluster virtual machines in order to facilitate 

their placement over a shared pool of physical machines, as well as reduce the complexity of 

their placement, reconfiguration or migration. The goal of this proposed approach is to 

ensure effective resource sharing between VMs which will provide higher resource 

availability to end-users. The clustering technique leverages the similarity between VMs in 

terms of different attributes such as the RAM, the OS or the hardware configuration. K-

means was adopted in this paper to perform the clustering. The authors develop also a 

mathematical model based on linear programming to ensure a better usage of the clustered 

VMs and enhance their performance. 
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Pongsakorn et al. (2013), propose a technique to create virtual clusters composed of virtual 

machines dedicated to high performance computing applications. The authors introduce 

multi-site clustering, since virtual clusters are usually hosted on the same site to avoid 

performance degradation and keep the QoS offered at a high level. To ensure better 

management, higher resource availability and shared resources between many end users, the 

proposed approach focuses more on the connectivity between the VMs over distant sites. An 

overlay network is used to separate the network of each virtual cluster and ensure that VMs 

can communicate with one another, even if they are not hosted on the same physical pool of 

servers. While this approach may offer higher resource availability and greater computational 

and processing power to clients, it however has a significant effect on the connectivity level: 

if the same application is distributed across two VMs hosted on different sites, longer delays 

and higher bandwidth consumption rates are all but a given. 

 

Mahmoud et al. (2017), examine the security aspect in IaaS platforms (Infrastructure as a 

service), where it is highly important to ensure the isolation between the virtual machines 

serving different clients. The authors employ a modified sequential k-means algorithm-based 

approach to detect abnormal behavior and anomalies in resource consumption trends across 

specific virtual machines. Should the algorithm detect abnormal resource consumption peaks, 

it means the system then may be encountering an external attack from a third malicious party. 

The clustering is performed on groups of virtual machines based on multiple attributes (e.g. 

CPU, memory, disk, network throughput.).The k-means approach presented here also 

considers the application’s architecture and characteristics. The resulting clusters (web 

cluster, database cluster, applications cluster, etc.) are grouped based on the nature of the 

received traffic. A VM is then labeled as malicious if its resource consumption is far from the 

centroid of its cluster, this labeling decision is based on a threshold fixed by the cloud 

provider. The algorithm was tested on an Openstack setup and was proven to be efficient in 

detecting malicious VMs, thus enhancing the security and monitoring over distributed cloud 

environments and IaaS platforms. 
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A.Wahab et al. (2019), the authors propose a cluster-based placement approach for virtual 

network functions. The clustering is considered as a pre-processing phase where the substrate 

network is divided into a set of coherent groups in terms of specific metrics (Energy, 

memory, CPU, etc.). The authors used a k-medoids-based approach, and the results proved 

that this approach helps reduce the overall placement phase length, as well as any needed 

migration. It is worth mentioning here that the proposed solution takes into account only the 

servers attributes, while in real case scenarios, we must also consider the delays over the 

links in the substrate network and their available bandwidth. Moreover, if the clustering is 

based only on the nodes characteristics it is possible to end up with two servers belonging to 

the same cluster, with the delays between them being too high, which may in turn increase 

the SLA/SLO violation percentage in terms of the requested delay and severely degrade the 

service performance. 

 

Community detection in social networks: 
 
Community detection consists in finding groups of individuals sharing some common 

characteristics, but also have links with one another that could for example, mean that they 

are friends on a social network. In our case, these individuals may be considered as servers 

with common attributes, and that are linked together in the substrate network. 

 

Liu et al. (2017), study the problem of community detection in the data analysis and 

processing field. The aim of their work is to improve the quality of clustering over traditional 

methods, which suffer from high complexity and long execution times. The authors propose 

to use the genetic algorithm heuristic to form the communities. In this study, the objective 

function considers only the modularity. While this measure does not take into account the 

nodes’ attributes, by simulation, it is shown that the proposed approach manages to obtain 

acceptable results as compared to the ground truth included in the data-set used. However, no 

indication is given with regard to the run-time of the algorithm and there was no comparison 

of the proposed approach to the classical clustering techniques described in the literature. 
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Jami et al. (2016) compare a set of evolutionary algorithms to form communities in the 

context of social networks. Three main heuristics are considered: particle swarm 

optimization, cat swarm optimization and the genetic algorithm combined with simulated 

annealing. Here again, the authors consider modularity as an objective function. The social 

network is represented by a weighted graph in which nodes represent individuals and the 

edges represent the relationships linking them. The comparison of the proposed heuristics is 

tested on classical data-sets like the Zachary’s karate club data-set, and the results show that 

the number of communities found by each algorithm, as well as the modularity, is different, 

but the genetic algorithm approach coupled with simulated annealing exhibits the best trade-

off between the quality of the returned solution and also the overall execution time. 

 

Aylani et al. (2017), propose a k-means-based approach to detect communities in social 

networks. The authors lay emphasis on the interactions between individuals, and take into 

account their common interests and activities, unlike in classical clustering techniques, where 

the focus is mainly made on profile similarities (e.g., age, gender, education, etc.). To 

leverage this aspect of connections between people sharing a social network, the authors 

introduce a factor called the “common social activity”, which considers both similarities in 

terms of attributes and of the nature of interactions between individuals. Although, the 

approach points to a significant shortage in actual clustering techniques, the adoption of k-

means also carries major deficiencies, mainly related to the random initial phase, which 

consists in choosing random first seeds or centroids, and may result in poor solutions. 

Moreover, k-means do not scale well when the number of attributes considered is high, 

which is the case in the social networks’ context. 

 

Many research works employ clustering techniques to form similar groups of items 

indifferent fields of application, such as social networks or in cloud computing environments. 

Most of the works presented above, employ classical approaches based on k-means or k-

medoids, for example. Some research papers also adopt evolutionary algorithms, such as 

genetic algorithm or simulated annealing. In the present paper, we propose clustering 

algorithms applied to data-centers to form homogeneous groups of servers in terms of 
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selected attributes. This pro-active measure helps reduce the complexity of SFC placement 

and allows better management of resources on the physical infrastructure, which is important 

for service providers. To the best of our knowledge, no existing research work has studied 

topology aware clustering in the context of a dynamic and proactive approach tailored to 

NFV, 5G and network slicing. 

 

3.5 System model and problem statement 

In this section, we start by providing formal definitions of physical and virtual network 

services and listing the terms pertaining to the scope of our work. Then, we present the 

problem statement before diving into the mathematical model used both for the ILP solution 

and the meta-heuristic based approach. 

 

3.5.1 Definitions and notations 

We now introduce our formal description of the proposed mathematical model, along with 

the notations used. Formally, attributed graphs extend the concept of graphs by enriching 

nodes with a set of attributes. An attributed graph G=(V, E, A) consists of a set of V nodes, a 

set of links interconnecting them (E), and the set of node attributes (A). 

 

3.5.2 Problem statement 

We formulate the problem of clustering of attributed graphs in Network Function 

Virtualization as a Quadratic Assignment Problem, which is recognized in the literature 

(Bothorel et al.2015) to be one of the most challenging optimization problems. In its formal 

form, the goal is to assign n facilities to n locations, with the cost of being proportional to the 

flow between the facilities times the distances between the locations, plus eventually the cost 

for placing facilities at their respective locations. Thus, the objective is to allocate each 

facility to a location such that the total cost is either minimized or maximized, depending on 

the intrinsic nature of the considered problem. In our context, the facilities are the servers and 

the locations represent the clusters we want to form.  
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In summary, we put together facilities that are similar into the same location, while we 

separate distinct facilities into different locations. The cost functions we use are F1 and F2, 

which are defined in the next section. Since the Quadratic Assignment Problem is NP-Hard 

and our model reduces to its form then clustering of attributed graphs in Network Function 

Virtualization is also NP-Hard. 

 

Our goal is to propose a set of clustering techniques tailored to the service function chaining 

problem, as well as cloud-based virtual network service orchestration using the concept of 

attributed graphs. The clustering approach attempts to extract non-overlapping clusters using 

a combined distance that accounts for node features and exploits the characteristics of the 

underlying networking topologies. Finding a good clustering of an attributed graph requires 

the optimization of at least two objective functions (Bothorel et al. (2015), (Yang et al. 

(2009))). There will always be a tradeoff between compositional and structural dimensions. 

These dimensions pertain to the nodes and links, respectively. For node attributed graphs the 

objectives are: 

 

• The structural quality of the clusters. We consider the modularity function (Clauset et al. 

(2004)), where a higher modularity corresponds to better clustering. Thus, here we need to 

maximize this measure as an objective function. 

• The intra-cluster homogeneity of the node attributes. Here, we consider the similarity-

based measure (Bothorel et al. (2015)), which is the key to building clusters since cluster 

members are grouped together only when being similar. 

 

Thus, we need to maximize this measure (i.e., maximize homogeneity) as an objective 

function as well. 

The justification for these two objectives is purely technical in that these measures are easy 

to compute and do not require additional information other than that provided by features of 

the servers and the network topology itself, in terms of number of servers and links. They are 

thus not computational time-consuming since their growth is linear. 
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Moreover, as explained in the survey (Bothorel et al. (2015)), for node-attributed graphs, at 

least two optimization objectives need to be considered. There will be a trade-off between 

compositional and structural dimensions. 

 

3.5.3 VALKYRIE clustering model 

Table 3.1 summarizes the different notations used throughout the paper. 

 
Table 3.1 Notation table 

 
C Set of clusters. 

Sim(i,j) Entropy of a cluster Γc. 

δ(C) Density function of a partition C. 

V Set of servers. 

A Set of servers’ attributes. 

E Set of links. 

E(Ci) Set of links inside cluster Ci. 𝑥௜ௗ Vector of attributes associated to the server i. 𝛾௜௖ ∈ {0,1} 𝛾௜௖= 1 if server i belongs to cluster c. 

 

Objective functions: 
 

Our aim is to build clusters that are similar, while taking into account not only their 

topological distance, but also the capacity of the links interconnecting them to communicate 

with each other while within the same clusters. 

 

• F1 stands for the assignment of the servers in the clusters. The aim is to build clusters with 

similar servers in terms of attributes. Therefore, F1 will maximize the similarity. Yet, 

clusters with different characteristics may be formed, having either one or multiple 
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attributes in common. For instance, we may use CPU-intensive clusters, energy-efficient 

clusters, or even a combination of several attributes to form multi-attribute clusters. 

 𝐹1 = 12 × ෍ 𝑆𝑖𝑚(𝑖, 𝑗)∀௖∈஼,∀௜∈௏,∀௝∈௏  
(3.1) 

Where,   𝑆𝑖𝑚(𝑖, 𝑗) = 𝛾௜௖𝛾௝௖[ 11 + ට∑ (𝑥௜ௗ − 𝑥௝ௗ)ଶ∀ௗ ] 
 

 

• F2 tries to maximize the modularity for a better clustering (Clauset et al. (2004)). 
 𝐹2 = 12|𝐸| ෍ [𝐴௜௝ − 𝑘௜𝑘௝2|𝐸| 𝛿(𝑖, 𝑗)]∀௜∈௏,∀௝∈௏,∀௖∈஼  

(3.2) 

 
 
Where, 𝐴௜௝ = 1 i,j if i and j are directly connected and otherwise, 𝐴௜௝  i,jis the adjacency 

matrix of the network and ki the degree of server i. The degree refers to the number of 

connections each server has to its neighbors.  

 𝛿(𝑖, 𝑗) is the Kronecker delta which returns 1 if i and j belong to the same cluster, and 0 

otherwise. In our problem formulation, we replace it with the product of the decision 

variables which is equivalent to the Kronecker delta.  

Thus, F2 becomes: 

 𝐹2 = 12|𝐸| ෍ [𝐴௜௝ − 𝑘௜𝑘௝2|𝐸| 𝛾௜௖𝛾௝௖]∀௜∈௏,∀௝∈௏,∀௖∈஼  
(3.3) 
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Constraints 
 ∀𝑐 ∈ 𝐶: ෍𝛾௜௖௜∈௏ = 1 (3.4) 

∀ 𝑖 ∈ 𝑉: ෍𝛾௜௖௖∈஼ ≥ 2 (3.5) 

∀ 𝑐 ∈ 𝐶,∀ 𝑖 ∈ 𝑉: 𝛾௜௖ ∈ 0,1  (3.6) 

 

Constraint (3.4) ensures that each server belongs to only one cluster. Thus, the model is 

outlier-free. Constraint (3.5) ensures that the clusters that are formed have more than two 

servers inside them. In fact, this parameter can be specified as a different value, depending on 

the needs of the decision maker or of the network administrator in charge of executing the 

model/approaches. Constraint (3.6) specifies that the decision variable is binary (its value is 

either 1 or 0). 

 

3.6 CRO-based clustering approach 

3.6.1 CRO approach description 

Chemical reaction optimization is a population-based metaheuristic that mimics the nature of 

chemical reactions to solve complex optimization problems. The key component in CRO is 

the molecule which represents a potential solution of the considered problem. Each molecule 

in the population is characterized by its potential energy which is the equivalent of the 

objective functions in the optimization diction. 
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CRO consists of a series of reactions aimed at enhancing the quality of the population over 

the iterations. These reactions are divided into two primary sets: uni-molecular reactions and 

multi-molecular reactions: 

 

• Uni-molecular reactions: These reactions include only one molecule as an initial input, 

and may result in a single new molecule, in which case we talk of an On-wall ineffective 

collision. Alternatively, it may also result in two different solutions. Here, we will be 

dealing with decomposition because a single molecule splits into two new molecules 

having different potential energies. 

• Multi-molecular reactions: This set consists of two initial molecules, which after the 

reaction may result in a single molecule, if synthesis occurs, or in two new solutions, if 

there is an inter-molecular reaction. The synthesis here consists of two molecules colliding 

with each other and resulting in a different molecule, while with the inter-molecular 

ineffective collision, two molecules hit each other and then bounce back, and each one of 

them is slightly changed, but independently from the other. 

 

Both types of ineffective collisions allow intensifying the population by performing a local 

search in the solution space, while decomposition and synthesis act more as diversification 

procedures. We thus have a balanced number of operations that includes all these reactions, 

thereby ensuring an effective search in the solution space and allowing near optimal solutions 

to be found for the considered optimization problem (Lam et al. (2012)). The overall CRO 

approach is driven by the following parameters: 

 

• Potential Energy: This is a quality measure that measures the objective function of a given 

solution/ molecule. 

• Kinetic Energy KE: This measure quantifies the tolerance of the whole system to 

accepting solutions that are worse than the initial ones. 

• Decomposition rate A: At each iteration, this value determines the uni-molecular reactions 

to be applied: decomposition or on-wall ineffective collision. 
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• Synthesis rate B: At each iteration, this value determines the multi-molecular reaction to 

be applied: synthesis or inter-molecular ineffective collision. 

• Maximum number of iterations: This is a counter that is used as a stopping criterion. Once 

the maximum number of iterations is attained, the CRO heuristic converges to the most 

optimal solution available in the current population. 

 

These values are set by the network administrators as inputs and should be tuned to obtain 

the best optimal solution depending on the optimization problem considered. In the following 

section, we will describe how we used the chemical reaction optimization meta-heuristic for 

our clustering problem. We also define the molecule encoding as well as the operators we 

used for each of the elementary reactions. 

 

3.6.2 Molecule encoding 

One possible way to encode the solution is to use the grouping technique as defined in (El 

Mensoum et al. (2019)) where each cluster will represent the group of servers it contains as 

described in Table 3.2. 

 

Table 3.2  First Molecule encoding 
 

Cluster ID 1 2 3 4 
Included nodes 1,3,7 2,4,6 5,8, 9,10 

 

Table 3.2 shows a topology of 10 nodes distributed on three different clusters. Using this 

encoding, if we apply the usual operator used for the chemical reaction optimization or 

genetic algorithm we may end up with overlapping clusters which will violate the constraint 

(3.3) which requires that each node should belong to only one cluster. To avoid this problem, 

we decided to go with the encoding shown in Table 3.3. 
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Table  3.3 Adopted molecule encoding 
 

Server ID 1 2 3 4 5 6 7 8 9 10 
Cluster ID 1 2 1 2 3 2 1 3 4 4 

 
This encoding consists of an N size array where N is the number of nodes in the substrate 

graph; each server is assigned to a selected cluster which has a specific label. 

 

3.6.3 Initial population 

Our CRO approach consists of a centroid-based clustering where we specify a set of points in 

the dataset and then assign the rest of our servers to one of the defined centroids based on the 

similarity measure, we defined in section 3.5.2. 

 

Prior to executing the different CRO operators, the choice of the initial k centroids is a 

critical step. The challenge in this phase consists in ensuring that these centroids are spread 

out enough to reflect the distribution of our servers in the dataset in order to allow us to 

distinguish the different clusters/groups that we have in the studied network topology. 

 

Inspired by k-means++, we decided to use the variance of our considered servers in terms of 

their attributes and define the initial centroids accordingly. This ensures that the initialization 

phase would not be totally blind or random, and that the centroids chosen would be 

representative of the variety of our servers, which would then allow us to enhance the quality 

of our initial population members: that is a key part of every meta-heuristic approach. The 

step-wise process to generate the molecules is described in Algorithm 3.1. 
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Algorithm 3.1 Molecule generation 
 
Input: Number of clusters K, Servers attributes, Population size Popsize 

Output: Initial population 

1: Initialize counter count = 0 

2: Generate a random vector V [0] of K points in the range of servers’ attributes 

3: while count != Popsize do 

4: Assign each data point in the space to the closest centroid in vector V [count] 

5: Add the formed molecule to population 

6: increment count, i.e., count + + 

7: Create a new vector V [count] = V [count − −] + dataset variance; this step allows to  

initialize new centroids shifted from the previous ones using the dataset variance. 

8: end while 

 

3.6.4 Elementary reactions 

In this section, we will describe how we used each of the CRO operators to enhance the 

quality of the formed solutions present in the initial population. As we previously explained 

in section 5.1 the operators of CRO consist of two major sets: 

 

• Uni-molecular reactions: 
 

The first reaction in this set is called the On-wall ineffective collision. This operator 

consists of a single input molecule representing a potential solution called M1 in 

Algorithm 3.2 and then results in a new solution that we call Mo. We select a set of 

nodes that have low similarities within their assigned clusters, re-compute their 

similarities to the updated centroids and then re-assign them to the cluster to which they 

are the most similar in terms of the selected attributes (steps 1 to 3 in Algorithm 3.2). 

This way will allow us to correct the misplaced nodes and re-enforce the homogeneity of 

the formed clusters. Once the new solution is formed, we compute its modularity. If it is 
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higher than the initial input solution M1, we destroy this later and add Mo to the 

population; otherwise; we keep M1 and destroy the resulting Mo. 

 
Algorithm 3.2 On-wall ineffective collision 

 
Input: One initial molecule M1, Servers attributes 

1: Select the set of nodes with low similarity to their clusters 

2: Compute the similarity of these nodes to the centroids of M1 

3: Re-assign each node to its closest centroid based on similarity 

4: Compute the modularity of the new formed solution Mo 

5: If Modularity(Mo) >Modularity(M1) 

  6: Destroy M1 

  7: Add Mo to the population 

8: else 

  9: Destroy Mo 

 10: end If 

 
The second operator in this category is the Decomposition. This reaction also starts with a 

single molecule M1 but results in two distinct solutions D1 and D2. We select a random node 

in the initial solution M1 which ranges between 0 to N where N is the number of nodes in our 

data-set. We keep the first part of this molecule M1 in the first resulting solution D1 meaning 

we copy the clustering from Server[0] to Server[R] (step 2 Algorithm 3.3) and then assign 

the rest of nodes to their closest centroids based on similarity (step 3 Algorithm 3.3). 

 The second solution is constructed from the second part of M1 but this time we keep nodes 

from Server[R+1] to Server [N] (step 4 Algorithm 3.3) and assign servers 0 to R to their 

closest cluster again based on similarity (step 5 Algorithm 3.3). Once the new offspring is 

formed, we compute the modularity of both D1 and D2 if one of them is higher than that of 

the initial solution M1 we destroy this later while adding D1 and D2 to the population; 

otherwise; the new solutions are destroyed and the population remains unchanged. 

 



79 

Algorithm 3.3 Decomposition 
 
Input: One initial molecule M1 , Servers attributes, Number of servers N 

1: Select a random integer R ranging from 0 to N 

2: Copy M1[0:R] in D1[0:R] 

3: Assign nodes from R+1 to N to their closest centroids based on similarity to form 

D1[R+1:N] 

4: Copy M1[R+1:N] in D2[R+1:N] 

5: Assign nodes from 0 to R to their closest centroids based on similarity to form D2[0:R] 

6: Compute the modularity of D1 and D2 

7: If Modularity(D1) >Modularity(M1) OR Modularity(D2) >Modularity(M1) 

  8: Destroy M1 

  9: Add D1 and D2 to the population 

 10: else 

 11: Destroy D1 and D2 

 12: end If 

 

• Multi-molecular reactions: 
 

The first operator in this category is the Synthesis, and its full process is described in 

Algorithm 3.4. We have as an input two molecules representing two potential solutions 

chosen randomly from the current population M1 and M2, the collision between these two 

elements results in single output molecule Ms which is also a probable solution of our 

optimization problem. This reaction consists of choosing a random point on both parents 

M1 and M2 and populating the offspring solution with elements from the 1st parent 

ranging from server[0] to server[R] and then the rest of Ms is formed by the 2nd  parent 

ranging from server[R+1] to server[N] where is the number of servers considered in our 

dataset (step 2 in Algorithm 3.4). If the resulting modularity of the new formed solution 

Ms is higher than that of the initial molecules M1 and M2 then these two are later 

discarded while Ms is added to the population, otherwise, the population  remains the 
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same and both M1 and M2 are kept in the population, while Ms is destroyed (steps 4 to 8 

in Algorithm 3.4). 

 

The second operator in this category is the Inter molecular ineffective collision. This 

reaction also starts with two molecules M1 and M2 and results in two potential solutions 

C1 and C2. In this reaction each new molecule is generated from its parent independently 

from the second one, so we use the on-wall ineffective collision defined in Algorithm 3.2 

in order to generate two distinct solutions: C1=ON-WALLCOLLISION (M1) and 

C2=ON-WALL COLLISION (M2). 

 
Algorithm 3.4 Synthesis 

 
Input: Two initial molecule M1 and M2 , Number of servers 

1: Define a random integer R ranging from 0 to N 

2: Construct the new solution Ms= M1[1:R] U M2[R+1:N] 

3: Compute the modularity of Ms 

4: If Modularity(Ms) >Modularity(M1) OR Modularity(Ms) >Modularity(M2) 

5: Destroy M1 and M2 

6: Add Ms to the population 

7: else 

8: Destroy Ms 

9: end If 

 

3.6.5 Over all CRO-based clustering Algorithm 

In Algorithm 3.5 we describe the step-wise methodology to execute the overall steps of the 

CRO-based clustering approach process. The first step consists in generating a set of feasible 

solutions that is equal to the population size which we define as an input using Algorithm 1. 

We start first by generating a random number B between [0,1] (step 4 Algorithm 3.5) if B is 

higher than Mol then we randomly select one Molecule from the initial population generated 

by Algorithm 3.1. The next step is to verify the number of hits attained if it is higher than the 
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value of A (specified as an input to the Algorithm 3.5), then we apply the decomposition 

Algorithm 3.3. Otherwise, the on-wall ineffective collision Algorithm 3.2 will be executed. 

The other scenario is for the case where the generated number B is lower than the input Mol. 
Here, we apply the multi-molecular operators. We first check if the set kinetic energy is 

lower than the value of B (specified as an input to the Algorithm 3.5), then the synthesis 

operator (Algorithm 3.4) is executed. Otherwise, we apply the inter-molecular ineffective 

collision process and we decrement the kinetic energy. This process of CRO operators will 

be repeated as long as the total number of iterations has not been attained, which is the 

stopping criterion for this algorithm. Once the population reaches the maximum number of 

iterations set as an input, the optimal solution is chosen with respect to modularity as defined 

in section 3.5.3. The solution that returns the highest modularity is selected as the optimal 

solution. 

  



 82

Algorithm 3.5 Over-all CRO algorithm for clustering 
 
Input: Number of servers, Servers attributes, 
 Population size, MaxIteration,A=0.6*MaxIteration, 
 B=0.3*MaxIteration, KineticEnergy=MaxIteration, 

Num-Hits=0 
 

Output: Final Solution O 
 
1: Generate randomly a number Mol in the range [0,1] 
2: Generate initial molecules by executing Algorithm 3.1 
3: while Num-Hits <MaxIteration do 
4: Generate randomly B in the range [0,1] 
5: If B >Mol do 
6: Randomly select one molecule 
7: If Num-hits >A do 
8: Execute Decomposition Algorithm 3.3 
9: else 

10: Execute On-wall ineffective collision Algorithm 3.2 
11: end If 
12: else 
13: Randomly select two molecules from the population 
14: If KE <B do 
15: Execute Synthesis Algorithm 3.4 
16: else 
17: Execute Inter-molecular ineffective collision 
18: end If 
19: KineticEnergy– 
20: end If 
21: Num-Hits ++ 
22: end while 
 
23: Check for a new optimal solution returning the highest 

modularity 
24: return Final Solution O and its modularity 

 

 

3.7 Game Theory based approach 

In this approach, the Stable Roommate (SR) algorithm was used to find what are known as 

stable matching pairs between servers, such that no two non-matched servers prefer 

each other more than their actual matching. This algorithm comprises two phases: the 

preference list computation phase and the preference cycle elimination phase. In the first 
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phase, the attributes of each server were given, along with the list of servers in the topology. 

The preference table was then built by calculating the similarity between each server Si and 

every other server Sj in the substrate network. The similarity values calculated were ranked in 

descending order and formed the preference table as shown in Algorithm 3.6. 

 
Algorithm 3.6 Preference list computation 

 
Input: Set of attributes for all servers SA, list of servers S 

Output: Preference List 

1. for each Si ∈S 
2.     for eachSj∈S 
3.       Calculate the similarity between servers’ Si and Sj and store them in sim array. 

4.       Sort sim array in descending order to form 2dimensional sim array. 

5.      end for 
6. end for 
7. return Preference List 

 
After the preference table is built, each server should be uniquely paired with only one other 

server in the substrate, which is accomplished by applying the Irving Algorithm (R.W.Irving, 

1985). The inputs of this algorithm are the preference table, along with the list of servers in 

the substrate topology, with their respective attributes, as briefly described in Algorithm 3.6. 

The Irving algorithm matches each server to only one other server. Each server Si sends its 

proposal to the most preferable server Sj as computed in the previous algorithm and specified 

in the preference table. If any server has more than one proposal at a time, it will keep the 

best one and discard the others. This process is repeated until each server has only one 

proposal. Based on the position of the current proposal for each server in the preference 

table, all the servers that are less preferable will then be discarded from the preference table. 

This generates a shortlisted preference table, such as the one in Figure 3.2.  
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Figure 3.2 Preference cycle elimination process 
 
The last step in the Irving algorithm is to eliminate all the preference cycles existing in the 

shortlisted preference table. 

 
Algorithm 3.7 Irving Algorithm 

 
Input: The servers set S and their attributes. 

Input: The preference list. 

Output: The stable matching. 

1. Matching-pairs = Irving(S, PreferenceList) 

2. Return matching pairs 
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This process is performed by checking all the rows in the shortlisted preference table, which 

has more than one preference. For instance, as shown in Figure 3.2, server A has two 

preferences, namely, are B and F (B is more preferable). 

 

 In order to detect the existing preference cycles, starting from the first row, the second 

choice (server A) and the last choice (second choice (server A)) are noted, and this step is 

repeated until the preference cycle is detected, as shown in the Figure 3.2. Once this cycle is 

detected, the following preferences between (A and B), (E and C) and (D and F) are 

discarded. This process is repeated until each server has only one preference in the table, 

which is called the stable matching solution. 

 

The initial clusters are formed by pushing portions of the generated pairs into different 

clusters based on similarity characteristics. This clustering is improved by checking if adding 

one of the servers to a specific cluster would improve the modularity value for the whole 

partition. If this is the case, the server is added to one of the clusters.  

 

This process is performed iteratively in order to maximize the modularity value for the whole 

partition while minimally affecting the similarity value for each formed cluster, as shown in 

Algorithm 3.8. 

 

The centroid value of each cluster is updated dynamically at each time the server is added or 

removed from the cluster. Two flavors of the game theory approach are proposed in this 

paper, one of which focuses more on maximizing the modularity, with the existence of 

outliers, while the other one has no outliers with a reduced value of modularity. If Algorithm 

3.8 generates clusters with outliers and the cloud provider prefers to have no outliers, then 

our solution will force each server that does not belong to any cluster to join one of the 

clusters based on the similarity value between this server and the centroid of this cluster. 
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Algorithm 3.8 Clusters improvement and forming 
 
Input: Matching pairs, Clusters 

Output: Clusters of servers 

1. For each Cluster in Clusters 

2. For each pair in matching pairs 

3.        Check the similarity between each server in pair and the centroid of the cluster 

4. if (Similarity exists) then 

5. if (already in cluster) then 

6.              keep the server inside the cluster 

7. else 
8. if (adding this pair to the cluster maximizes modularity) then 

9.                   join the cluster 

10.                   remove the pair from the matching pairs 

11. else 
12.                   do not join the cluster 

13.                   check the next pair from the matching pairs 

14. end if 
15. end if 
16.        end if 
17.     end for 
18. end for 

Return clusters of servers 

 

3.8 Asymptotic analysis : 

We will now describe the algorithmic complexity of our proposed suite of VALKYRIE 

approaches. It is worth mentioning this complexity analysis is performed for the worst-case 

scenario. It is clear that the way our mathematical model is described is NP-Hard since it 

embodies the form of the well-known Quadratic Assignment Problem (Sahni et al. (1976)). 
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CRO-based approach: 
 

Our CRO-based approach consists of four algorithms, as described in section 3.6. We detail 

the complexity of each one as follows: 

 

• Algorithm 3.1 runs in O(Popsize × V ) 

• Algorithm 3.2 runs in O(V2+ V ) 

• Algorithm 3.3 also runs in O(V2 + V ) 

• Algorithm 3.4 runs in O(V2) 

 

Based on this analysis, Algorithm 3.5 (CRO-based approach) complexity is  

O(MaxIteration × (V2 + V )) 
 
Game theory-based approach: 

 

Similarly, three algorithms were employed and their complexities are computed as follows: 

 

• Algorithm 3.6 runs in O (V3×Log(V )) as we use TimSort algorithm to sort the similarity 

array which runs in O(V × Log(V )) (Cormen et al. (2009)) 

• Algorithm 3.7 runs in O(V2) 

• Algorithm 3.8 runs in O(V3) 

 

Based on this analysis, the Game Theory-based approach complexity is  

O(V 2+ V3 ×Log(V )) 
 
3.9 Evaluation: 

In this section, we evaluate VALKYRIE. We assess our chemical reaction optimization 

algorithm both on small and large-scale networks. We evaluate the quality and effectiveness 

of the solution with and without the presence of ground truth. 
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3.9.1 Setup 

We implemented the mathematical model using Python 2.7 and solved it thanks to Gurobi 

7.5.1, to get the optimal solution. Our chemical reaction optimization and game theory 

procedures were implemented using Python 3.7. The experiments and implementations were 

carried out on a physical machine composed of 8 CPU cores. 

Two types of network infrastructures were considered to evaluate VALKYRIE. We 

generated the topologies using the NetworkX  library. We report the average values from the 

experiments which were repeated 10 times. 

 

3.9.2 Performance metrics 

We evaluate VALKYRIE according to the following metrics to assess its effectiveness: 

 

Runtime:  we calculate the time taken by the different approaches to partition the network 

into the number of desired clusters. 

 

Similarity:  we evaluate the average similarity of all the clusters. 

 

Modularity: we evaluate how dense the connections between the nodes are within the 

clusters and how sparse they are while in different clusters. 

 

Density: we compute the proportion of edges that lie within the clusters, and a higher density 

corresponds to a better clustering. It is defined as follows: 

 𝛿(𝐶) = 1|𝐸| ෍ |𝐸(𝐶௜)|∀஼೔∈஼  

 

Where E(Ci) is the set of edges that are inside the ith cluster. 

 

Outliers: we compute the number of servers that do not belong to any cluster. 
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It is worth mentioning that Density is the validation technique we used to assess our 

clustering approaches. 

 

3.9.3 Scenarios 

Our approaches are evaluated under a set of scenarios, which we define hereunder. 

 

Scenario 1 
In this scenario, we assume that the topology is modular, and we consider it as the ground 

truth. In such a scenario, the distribution of CPU cores per module is defined as follows: 4-11 

for the first module, 12-24 for the second one, and 25-36 for the third one. 

 

Scenario 2 
In this scenario, we assume different topologies in terms of the number of servers with fixed 

connectivity degree for each server. The servers in this topology are randomly connected 

with each other, and they are not modular, as in the case with the previous scenario. The 

distribution of CPU cores is drawn between 4 and 64 units. 

 
Table 3.4 Degrees of connectivity in our scenarios 

 
Network size scenario 1 scenario 2 scenario 3 
20 2 5 3 
50 7 7 3 
100 14 13 3 
200 29 25 3 
300 44 35 3 
500 74 75 3 
1000 149 150 3 
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3.10 Discussion and observations: 

In this section, an analysis of the results is presented for three different topologies to test our 

approaches. It is worth mentioning that for all the evaluations, regarding ILP, we do not 

report the results for network sizes more than 200 as the runtime is exponentially increasing 

and takes several hours. Instead, we devised a sub optimal version of ILP which we denote 

by ILP subopt by tuning the optimality gap parameter to obtain quick solutions. 

 

3.10.1 Modular topology with variable connectivity degree 

Based on Figure 3.3, it can be seen that the clustering time for the ILP increases 

exponentially as the network size increases. For example, it takes hours once the number of 

servers exceed 200. This behavior is expected as the ILP attempts to find the exact solution 

that justifies the adoption of one of the developed heuristics. With regard to the other 

heuristics approaches that were considered, it can be seen that CRO increases from 0.6 

seconds for 20 servers to 71 seconds for a topology of 1000 servers. For the two flavors of 

Game Theory approaches, the value of runtime ranges from 0.2 to 67 seconds for GT and 

from 0.03 to 68 seconds for EGT, while for ILP subopt, it ranges from 0.11 to 29 seconds. 

 

Although ILP subopt has the minimum runtime, all the heuristics approaches are still in an 

acceptable range to be considered as a clustering solution by a cloud provider since clustering 

is done on a periodic basis and in a proactive way. 
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Figure 3.3 Clustering time for modular topology 
 

Another metric that requires evaluation is the similarity, as shown in Figure 3.4, the ILP 

identifies the best value in terms of similarity compared to the other approaches for a small-

scale environment (up to 200 servers).When CRO and the two flavors of GT heuristics are 

compared, it can be seen that the values are close, with GT and E-GT demonstrating slightly 

better results in terms of similarity. This may be attributed to the fact that the GT approach 

has outliers and although E-GT has slightly better similarity values, it compares unfavorably 

to CRO in terms of modularity. 
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Figure 3.4 Similarity values for modular topology 
 

With regard to the Game Theory approach, not all servers are included in the formed clusters, 

which explains the difference in similarity, albeit that this difference is fairly small at an 

average of 0.05. Figure 3.5 shows the differences between the considered approaches in 

terms of modularity. The ILP and ILP subopt solutions find the lowest values for all type of 

topologies compared to CRO and the two flavors of GT, which is mainly due to the simplex 

algorithm that finds the optimal tradeoff between both considered objective functions. As 

shown in Figure 3.4, ILP finds the best similarity but Figure 3.5 illustrates that this has an 

impact on the modularity.  
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Figure 3.5 Modularity values for modular topology 
 
As for the heuristics CRO and the two flavors of GT, it can be seen that GT finds better 

results for small topologies ranging from 20 to 50 servers and CRO takes the lead for 

medium topologies of 100 servers; the latter have quite similar values for large topologies of 

more than 200 servers, with an advantage to the GT approach. 

 

The difference in modularity can be attributed to the outliers that GT approach returns. As 

shown in Table 3.5 that the number of outliers increases in a linear manner as the network 

size increases. This only occurred in the GT approach, as none of the other approaches has 

outliers and all of them are respecting all the constraints defined in the mathematical model. 

Some outliers are sacrificed in order to achieve better values for similarity and modularity, 

which could benefit a cloud provider since there could be certain cases where the Service 



 94

Function Chain (SFC) request has a specific requirement and preference for a cluster to be 

deployed with higher modularity and similarity values. 

 

The density is an internal validation measure that is used to evaluate the quality of the 

clustering when the ground truth is not known in advance, meaning that the clusters are not 

known before the algorithms are applied. Based on Figure 3.6, it can be seen that CRO and 

E-GT have almost the same density values which are better than the other approaches. This is 

mainly because they do not return any outliers. The clusters formed by CRO and E-GT 

include more servers and are denser compared to those returned by GT, where the number of 

outliers jumps up to 25% of the substrate for large topologies composed of 1000 servers. 

Although ILP-Subopt exhibit the highest density, it is not deployable since some clusters 

contain only two servers, which is not a preferable cluster for the network administrator to 

have. 

 

 
 

Figure 3.6 Density values for modular topology 
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3.10.2 Random topology with fixed connectivity degree 

Like the previously tested topologies, and as shown in Figure 3.7 the ILP solution takes a 

considerable amount of time to converge to optimal and increases sharply as the network size 

grows. The two Game Theory flavors approaches take less time to converge to the sub-

optimal compared to the CRO and ILP Subopt approaches and all of them except the ILP 

Subopt solution have a lower runtime compared to the previous topology, where the degree 

of each node varies.  

 

 
 

Figure 3.7 Clustering time for random topology with fixed connectivity degree 
 
This is an expected result because the substrate network is less complex when the degree is 

fixed compared to varying connectivity degree, as the latter not only means a higher number 

of edges and more computational time but also a greater cost to compute the values of 
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modularity. There is not a big difference for the behavior of CRO, GT and E-GT approaches 

when the degree is fixed because this measure is more related to the servers’ attributes rather 

than the connectivity between them. GT finds a slightly better result compared to CRO but 

again with an existence of outliers which explains this difference.  

 

In Figure 3.8, ILP and ILP subopt solutions exhibits the highest values of similarity for the 

small-scale environment (up to 200 servers) and finally GT and E-GT have close values to 

each other. There is no major difference between the behaviors of the CRO, GT and E-GT 

approaches in terms of similarity when the degree is fixed because this measure is more 

related to the servers’ attributes than to the connectivity between them. GT finds slightly 

better results than does CRO, but again, with the existence of outliers, which explains this 

difference.  

 

 
 

Figure 3.8 Similarity values for random topology with fixed connectivity degree 
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The difference of modularity is higher in this topology between GT and all the other 

approaches as shown in Figure 3.9. We can see that GT find better results for topologies 

composed of above 20 servers, but the number of outliers also jumps in this topology which 

explains again this gap. 

 

The ILP and ILP subopt solutions have the same behavior compared to other topologies, it 

still finds poor values for modularity but the best results for similarity. 

 

 
 

Figure 3.9 Modularity values for random topology with fixed connectivity degree 
 

For this type of topologies CRO is the best in terms of density compared to GT and E-GT. 

However, E-GT has better values compared to GT since it does not have any outliers and the 

number of edges inside each formed cluster is higher. ILP subopt solution shows the best 

value in terms of density, although it puts the servers among the clusters unevenly. In fact, 
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one cluster may be formed only with two servers which is not ideal and appropriate for a 

cloud provider. 

 

 
 

Figure 3.10 Density values for Random topology with fixed connectivity degree 
 
In Table 3.5, the number of outliers is increasing linearly as the network size is increasing 

only in GT approach, all other approaches do not have outliers and respecting all the 

constraints defined in the mathematical model.  

 

We sacrifice having some outliers in order to have a better value for similarity and 

modularity. This could be beneficial for cloud provider since there might be some use cases 

where SFC request has a specific requirements and preference to be deployed a cluster with 

higher modularity and similarity values. 
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Table 3.5 Number of outliers in modular topology 
 

Approach GT (Scenario 1) GT (Scenario 2) 

20 7 11 

50 23 19 

100 22 29 

200 45 76 

300 113 139 

500 104 207 

1000 242 454 

 

Based on the presented results we can draw the following conclusions: 

 

• The clustering time is influenced by the number of servers, the number of links and the 

connectivity degree of each server. 

• Game Theory based approach is better in terms of modularity compared to other proposed 

approaches, but it suffers from outliers. It is calculated only with the clustered servers as 

the others are outliers. 

• ILP solution has the best value of similarity for small scale environment (≤ 200 servers), 

whereas GT has slightly better values compared to other heuristics but with the existence 

of outliers. 

• If cloud provider prefers no outliers when performing the substrate clustering, then CRO 

is best heuristic solution to choose since it has a close similarity values compared to other 

heuristics and with the highest values of modularity in all kind of topologies. Although 

ILP subopt might have a higher similarity values compared to CRO, but the servers are 

not evenly distributed between clusters and you might have two servers inside some 

clusters. 

• Cloud provider could choose to perform clustering using ILP subopt solution if clusters 

with high similarity values are needed, which could be the case in some scenarios. 
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• Density shows that CRO is better compared to the two flavors of Game Theory approach 

only in random topologies but not in the modular one, where E-GT has a higher value. 

Although CRO has less density value compared to ILP subopt solution in all kinds of 

topologies but in most of the cases it can be preferable to be chosen by the cloud provider 

to have clusters which are almost having even number of servers inside them. 

• ILP is better for small scale networking topologies. 

• However, for large scale networks CRO and Game Theory are a better choice because 

they exhibit reasonable clustering runtime and a good tradeoff between similarity and 

modularity. 

 

3.11 Conclusion  

In this chapter, we presented VALKYRIE, a suite of solutions for the clustering and 

partitioning of large attributed graphs for virtualized and non-virtualized environments. This 

was in a bid to help decision makers get rid of scalability and computational time burdens 

when deploying their services (cloud and non-cloud) in cases where each end user’s 

requirements could be completely different from those of others. We first defined the system 

architecture, formalized the problem, and then we presented the system model. 

 

The problem was formulated using a Mixed-Integer Linear Program to get the optimal 

solution for small scale sizes, while a chemical reaction-based meta-heuristic and a game 

theory-based approach were proposed to handle the scalability issues in the mathematical 

program. Our approaches consider the attributes on the nodes and the network jointly by 

optimizing the similarity and modularity, respectively, as cost functions.  

 

Experiments with different infrastructures have shown that our solutions achieve reasonable 

clustering time with respect to their size and are able to find a good tradeoff between density, 

modularity, similarity and cost functions, in addition to being outliers-free. One of the 

solutions may be chosen by the cloud/service provider, as it lends them more flexibility, 

depending on the desired use case and the requirements of the service function chains in the 
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context of NFV, 5G and network slicing. Finally, given their low computational 

complexities, our solutions could be integrated into orchestration systems following the NFV 

MANO framework. 





 

CHAPITRE 4CHAPTER 4 
 
 

DISCUSSION OF THE RESULTS 

 

In this thesis, we proposed two main approaches for service functions chains placement and 

chaining for clustering of substrate networks which are intended to improve the management 

of resources in the NFV platforms. 

 

The first proposed tool for placement and chaining of SFCs consists of a multi-stage 

approach to ensure an optimal embedding technique minimizing the provider’s costs whether 

in term of operational, transmission or penalty costs. To achieve this goal, we used a set of 

metaheuristics mainly the chemical reaction optimization algorithm as well as the genetic 

algorithm. The experimental analysis shows that our proposed approach is efficient for VNF 

placement and chaining as it allows taking many metrics into account in the optimization 

process (CPU, memory, energy, delay…). The results also show that the proposed algorithms 

scale well with large network architectures and take also into account the dynamic aspect of 

resources in cloud-based environments where the available resources are constantly 

changing. 

 

However, the proposed approach can still be improved by considering also the dependencies 

between VNFs when making the decision of placement and chaining. For example, if two 

VNFs belonging to the same SFC require a lot of CPU of memory they should probably not 

be placed on the same server, because in high load traffic they might result in some 

bottlenecks over that hosting server. So, one way to improve the proposed approaches is to 

consider also the relationships between VNFs prior to placing and chaining them. Moreover, 

one of the most used orchestration tools actually is Kubernetes and the way it places 

containers/VNFs does not consider this aspect of dependencies between VNFs which leaves 

the door wide open to work on this aspect in the research field.  
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Our second approach proposes a CRO-based clustering technique that allows dividing the 

substrate network into a set of on demand clusters or group of servers. This pro-active 

measure helps to prepare a set of efficient servers in terms of selected attributes like CPU, 

memory or energy. The solution helps also to reduce the search space for other operation like 

placement, scaling or migration of VNF components. The experimental tests that we 

conducted on different network topologies prove that the quality of the formed clusters is 

good when using metaheuristic such as those based on CRO and Game-theory techniques. 

The results also give the cloud provider the choice to use one of those techniques according 

to the optimization goal and also depending on the nature of the networking set on the 

physical substrate. 

 

The techniques proposed in our second contribution help improving the quality of the formed 

clusters. In fact we consider multi-attribute clusters, contrary to what we proposed in the first 

article using k-medoids clustering, where we only considered one attribute at the time and 

each formed cluster is efficient only in terms of that single attribute. In some cases, the cloud 

provider would like to have cluster that are both efficient in terms of CPU and memory for 

example, so our second proposed approach is tailored to serve these use cases also. 

Apart from the multi-dimension aspect, our second approach based on CRO and Game-

theory algorithms leverages also the connectivity between servers which was not considered 

in the k-medoids clustering. The nature of the set networking on the substrate infrastructure 

has a major impact on the quality of the formed clusters, because it ensures that servers 

belonging to the same clusters are connected enough between them to avoid resource 

wastages in terms of bandwidth and guarantee low latencies for the hosted SFCs. 



 

CONCLUSION and RECOMMANDATIONS 
 
In the present thesis, we proposed two main approaches that are complementary for the 

placement and chaining of virtual network functions in cloud environments. Both solutions 

resulted in one journal paper accepted for publication, one submitted journal paper and one 

provisional application patent for the clustering technique. 

 

In Chapter 2, we described the first proposal which uses a clustering-based approach to 

reduce the search space and perform the most optimal placement and chaining of virtual 

network functions over shared physical infrastructures. The experimental analysis showed 

that our proposed algorithms are efficient to consider multi-objective optimization problems 

as we managed to perform the placement in short execution time and we also proved that our 

approaches ensure a good optimization level in terms of the physical resources in the 

substrate network topologies as well as better latencies and delay values. We didn’t make any 

comparisons to the already proposed solutions in the literature, as to the best of our 

knowledge, there was no CRO-based placement and chaining approaches proposed in the 

previous research works. 

 

In Chapter 3, we present our second contribution that consists in clustering the substrate 

network. This process helps to prepare the network and divide it into a set of efficient groups 

in terms of selected attributes that could be either memory, CPU or Energy. Once these 

homogenous groups of servers are formed, they guarantee that the requested resources by the 

incoming SFC requests are available and ensure that the placement will be performed in a 

fast manner. During the experimental phase, we stressed our proposed techniques with 

different network topology sizes, with servers having different attributes. Results show that 

the adopted algorithms scale very well with large topologies and return well partitioned 

clusters. Moreover, as we propose different solutions based on different meta-heuristic 

algorithms, our paper gives cloud providers a large choice to decide which of the techniques 

to adopt based on their targeted optimization metrics and depending on the nature of the 

physical network and its networking. 
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The combination of these two proposals ensure better resource management and enhance the 

functionalities of the NFV MANO platform, as the clustering pre-process the network 

topology which reduces the search space and guarantees the availability of resources on the 

chosen cluster. The placement and chaining are then performed on the processed network to 

improve the quality of service deployment and provisioning in cloud-based environments. 

 
As perspectives for future work, we intend to extend our evaluations for the placement and 

chaining to consider other types of SFCs, in the first paper we tested our proposed approach 

on linear SFCs only, so it is interesting also to evaluate the behavior of our metaheuristics 

with other types of SFCs (non-linear, with replicas, etc.). It is also important to analyze the 

inter-dependencies and relationships between VNFs of the same SFC which has a major 

impact on the placement decisions, VNFs with high resource-consumption rates should not 

be placed on the same server, to avoid having bottlenecks when the traffic loads get higher. 

Another enhancement to our proposed placement and chaining solution, could be to include 

other objective functions and consider other metrics in the optimization process like 

bandwidth, reliability or availability, etc. 

 

For the clustering approach, as we didn’t have any inputs from the industry on how data 

centers are designed and how the networking is set on them, we run our proposed approaches 

on random topologies but if we manage to get significant descriptions of a real cloud data 

center we would like to re-run the tests to evaluate the accuracy of our proposed solutions on 

a real case scenario. As future improvements, we also consider testing an approach where the 

number of clusters is dynamically updated depending on the state of resources on the 

substrate network. We also plan to explore other metaheuristic algorithms to solve the 

formulated problem. From the experimental results we concluded that each of the proposed 

approaches (CRO or Game theory based) performs well in terms of either similarity or 

modularity, but it is interesting to test other metaheuristics that may find better tradeoffs 

between these two objective functions and of course in reasonable execution time. 
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APPENDIX A 
 

K-MEDOIDS CLUSTERING PROCESS: CLUSTERHEAD SELECTION AND 
CLUSTER FORMATION 

 
 
A.1 K-medoids Clustering process 
 
A.1.1 Initial Cluster-heads Selection 
 

In the following, we present the proposed method to optimize the selection of the initial set 

of cluster-heads which is a statistical technique. The main idea is to compute the variance 

between each server in the substrate network and all the remaining servers, in terms of a set 

of metrics that we aim at optimizing (e.g., energy, bandwidth), the 2nd step consists of 

computing the variance of the whole set of servers. Based on these values, the servers whose 

variance (with respect to the other servers in the network) is less than the whole servers’ set 

variance are pre-selected as eligible candidates to act as cluster heads. The main idea of this 

technique is to exclude the outliers (e.g., in terms of energy) that are too far from the central 

region, which have high variance values. Once the set of servers that are eligible to act as 

cluster-heads is obtained, we can filter the defined set of candidates even more. To achieve 

this, we compute the (Euclidean) distance between each pair of servers by respect of some 

pre-set attributes and choose the server which minimizes the distance to all other servers in 

the substrate network as the first cluster-head. To ensure the coherence of our clustering 

technique and avoid forming overlapping clusters, the server that maximizes the distance 

from the first cluster-head is chosen as the second cluster-head. Having selected two initial 

cluster-heads, we then need to increase the number of cluster heads up to k (the value of k is 

specified by the network administrators). This is achieved through a continuous search 

process (for k times) for the servers that maximize the distance from the previously selected 

cluster heads. This process, along with the mathematical formulas, is explained in what 

follows: 
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Step 1: Compute the Euclidean distance d(si;sj) between each pair (si;sj) of servers based to 

a defined set of K attributes using Eq. (A A-1). 

 

𝑑൫𝑠௜ , 𝑠௝൯ = ඩ෍(𝑠௜௞ − 𝑠௝௞)ଶ௄
௞ୀଵ  

(A A-1) 

 

Step 2: Compute the variance of all the servers, i.e., the variance among all servers and their 

mean using Eq. (A A-2). 

𝜎 = ඩ 1𝑛 − 1෍𝑑(𝑠௜ − 𝑠̅)ଶ௡
௜ୀଵ  

𝑠̅ = ෍𝑠௜𝑛௡
௜ୀଵ  

 

 

(A A-2) 

 

Step 3: Compute the variance between each server si and all other servers using Eq.(A A-3) 

 

𝜎௜ = ඩ 1𝑛 − 1෍𝑑(𝑠௜ , 𝑠௝)ଶ௡
௜ୀଵ  

 

(A A-3) 

 

 

Step 4: Determine the set P of cluster-head candidates as the ones having variance that is less 

(or equal) than the whole server set’s variance proportionally to a stretch factor ω as depicted 

in Eq. (A A-4) 

 𝑃 = {𝑠௜|𝜎௜ ≤ 𝜔𝜎, 𝑖 = 1, … ,𝑛} (A A-4) 
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Step 5: Compute the distance di of each server si (from all other servers) using  Eq(A A-5): 

 𝑑௜ = ෍𝑑(𝑠௜ , 𝑠௝)௡
௝ୀଵ  

 

(A A-5) 

 

Step 6: Select the first cluster-head p1 as the one that minimizes the distance with all other 

servers using Eq. (A A-6): 

 𝑝ଵ = 𝑎𝑟𝑔𝑚𝑖𝑛 {𝑑௜|𝑖 = 1, . .𝑛} (A A-6) 

 

Step 7: Select the second cluster-head p2 in such a way to maximize the distance with the 

previously selected cluster head p1 as depicted in Eq. (A A-7): 

 𝑝ଶ = 𝑎𝑟𝑔𝑚𝑖𝑛௦೔∈ು  {𝑑(𝑠௜ ,𝑝ଵ)|𝑖 = 1, . .𝑛} (A A-7) 

 

Step 8: Select k new cluster-heads within each cluster as the ones that are the farthest from 

their current medoid (p1 or p2) using Eq. (A A-8): 

 𝑝ᇱ = 𝑎𝑟𝑔𝑚𝑖𝑛௦೔∈೎∈ು  {𝑑(𝑠௜ ,𝑝௜)|𝑖 = 1, . .𝑛} (A A-8) 

 

Once the first initial set of k cluster-heads is elected, the following step consists of 

optimizing the selection process to ensure an improved clustering performance and quality. 

In the following section, we present the complete clustering algorithm and discuss its details. 
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A.1.2 Cluster Formation Algorithm 
 
The stepwise process to execute the clustering is described in Algorithm A-1. Defining the 

set of initial cluster-heads is described is Steps (7) to (13) which implement the statistical 

technique we described in the previous section. Once the initial cluster-heads are defined, the 

following steps are repeated until no change occurs in the selected cluster-heads. The 

remaining servers are then assigned to the closest cluster-head (in terms of the considered 

attributes) (Step 15). Then, we compute in step 16 the clustering cost D1 (i.e., sum of 

distances from each cluster-head to its cluster members) is computed as per Eq. (A A-9) 

 ෍ ෍ 𝑑(𝑝௞ , 𝑧)ଶ௭∈஼ೖ
௄
௞ୀଵ  

 

(A A-9) 

 

After that, for each cluster, we select the server which minimizes the distance from the other 

servers in the same cluster as are placement cluster-head (Steps 17-18). Consequently, each 

server is assigned again to the closest newly appointed cluster-head (Step 19) and the new 

clustering cost D2 is computed. In case the new clustering cost D2 is equal to the previous 

one D1 (Step 21), the algorithm stops and the clustering topology remains the same. 

Otherwise, Steps 15-21 are repeated until reaching a stable clustering topology. 
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Algorithm A-1 K-medoids substrate network clustering 
 

1: Input: Set of physical servers 
2: Input: Number K of clusters 
3: Input: Set II = {energy, bandwidth, CPU, delay} of metrics to be 

minimized. 
 
4: Output: Set Cn = {C1,. . ,Ck) of clusters 
5:Output: Set H = {h1,... ,hk} of cluster-heads such that each 

cluster-head h∈H is efficient in terms of metricsθ∈∏. 
 
6: procedure CLUSTERING 
7: Compute the distance between each pair of servers using Eq. (A.A-1) 
8: Compute the variance of the whole set of servers using Eq. (A.A-2) 
9: Compute each server’s variance with regards to all other servers 

using Eq. (A.A-3) 
 

10: Define the set of candidate cluster-heads using Eq. (A.A-4) 
11: Choose two initial cluster-heads H = {h1, h2} using Eqs. (A.A-6) and 

(A.A-7) 
12: Allocate each server to the closest cluster-head and compute the total clustering cost 
using Eq. (A.A-9). 
13: Increase the number of clusters up to k using Eq. (A.A-8). 
14: Repeat 
 
15: Assign each server to the closest cluster-head 
16: Compute the sum D1of distances from all cluster members to their cluster-head 
using Eq. (A.A-9). 
17: Select a new cluster-head of each cluster as the one that minimizes the total 
distance from the other servers in its cluster. 
18: Update the current cluster-head in each cluster by substituting it with the newly 
chosen cluster-head. 
19: Assign each server to the closest cluster-head. 
20: Compute the sum D2of distances from all cluster members to their cluster-head 
using Eq. (A.A-9). 

 
21: If D2= D1, stop the algorithm; otherwise go back to step 16. 
22: end 
 
23: end procedure 
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