
 

Optimization of Furnace Residence Time and Ingots 
Positioning during the Heat Treatment Process of Large Size 

Forged Ingots  
 
 
 
 

by 
 

Nima BOHLOOLI ARKHAZLOO 
 
 
 
 

MANUSCRIPT-BASED THESIS PRESENTED TO ÉCOLE DE 
TECHNOLOGIE SUPÉRIEURE IN PARTIAL FULFILLMENT  

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY 
Ph.D. 

 
 
 
 

MONTREAL, JANUARY 28TH 2020 
 
 
 
 

ÉCOLE DE TECHNOLOGIE SUPÉRIEURE 
UNIVERSITÉ DU QUÉBEC 

 
 
 

 

  Nima Bohlooli Arkhazloo, 2020 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 
This Creative Commons licence allows readers to download this work and share it with others as long as the 

author is credited. The content of this work can’t be modified in any way or used commercially. 

 
 
 
 
 



 

BOARD OF EXAMINERS  
 

THIS THESIS HAS BEEN EVALUATED 
 

BY THE FOLLOWING BOARD OF EXAMINERS 
 
 
 
 
 
 
Prof. Mohammad Jahazi, Thesis Supervisor 
Department of Mechanical Engineering at École de technologie supérieure 
 
Prof. Farzad Bazdidi-Tehrani, Thesis Co-supervisor 
School of Mechanical Engineering at Iran university of science and technology 
 
 
Prof. Vahé Nerguizian, President of the Board of Examiners 
Department of Electrical engineering at École de technologie supérieure 
 
 
Prof. Henri Champliaud, Member of the jury 
Department of Mechanical Engineering at École de technologie supérieure 
 
 
Prof. Louis Gosselin, External Evaluator 
Department of Mechanical Engineering at Université Laval 
 
 
 
 
 
 
 
 
 
 

THIS THESIS WAS PRENSENTED AND DEFENDED 
 

IN THE PRESENCE OF A BOARD OF EXAMINERS AND PUBLIC 
 

JANUARY 22 ND 2020 
 

AT ÉCOLE DE TECHNOLOGIE SUPÉRIEUR





 

ACKNOWLEDGEMENT  
 

I would like to convey my earnest gratitude to my supervisor, Prof. Mohammad Jahazi, 

whose support, guidance, expertise and patience added considerably to my research 

experience and without him none of this would have been possible to achieve. I am thankful 

to him for believing in my accomplishments and providing me with every opportunity to 

assimilate. I would also wish to thank Prof. Farzad Bazdidi-Tehrani (my co-supervisor) for 

his kind support, guidance and conveying numerical simulation expertise during my Ph.D. 

program. He has helped me at all times during my presence in Iran University of Science and 

Technology (IUST) and after that. I also extend my earnest gratitude to Dr. Mohammad 

Jadidi, a post-doctoral researcher at IUST, for the fruitful discussions I held with him. He 

enthusiastically helped me throughout my term with respect to CFD simulation and 

numerical approaches. 

 

Particular thanks are given to our Industrial partner, Finkl Steel, especially the R & D, 

Metallurgy and Engineering Departments, for providing real-scale instrumentation and 

measurements and their collaboration in this project. 

 

Gratitude is also expressed for all CM2P members for their cooperation during the entire 

journey of my Ph.D.  

 

My utmost gratitude is given to my parents for their outstanding support, kindness, love and 

constant motivation throughout this journey. 

 

 

 

 

 

 

 



VI 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Optimisation du temps de résidence dans le four ainsi que le positionnement de lingots 
forgés de grande taille lors du processus de traitement thermique  

 
Nima BOHLOOLI ARKHAZLOO 

 
RÉSUMÉ 

 
Les pièces forgées de grande taille sont communément utilisées dans les industries de 
l’énergie et du transport (arbres de turbines, trains d’atterrissage, etc.). Ces pièces acquièrent 
leurs propriétés mécaniques supérieures (par exemple, la dureté) grâce à un processus de 
traitement thermique appelé trempe et revenu. Le processus de revenu (incluant le chauffage 
et le maintien en chauffe) a lieu dans des fours à gaz et a un impact direct sur les propriétés 
finales du produit en raison des modifications microstructurales majeures induites par l’effet 
de la température. Une fois que les paramètres de revenu sont contrôlés (temps et 
température) les propriétés des matériaux peuvent être généralement optimisées. Distribution 
non uniforme de la température autour des pièces qui résulte  des  interactions thermiques à 
l'intérieur du four ou du positionnement des brames, peut causer une variation dans les 
propriétés mécaniques d'une extrémité à l'autre de la pièce, une modification de la 
microstructure ou même initier des fissurations. Par contre, une optimisation du temps de 
séjour dans le four de traitement thermique peut réduire la consommation d’énergie et éviter 
les changements microstructuraux indésirables. Cependant, la production industrielle repose 
principalement sur des corrélations empiriques qui ne sont pas toujours fiables. La prédiction 
précise de la température en fonction du temps des pièces forgées de grande taille dans les 
fours de traitement thermique à gaz nécessite un examen quantitatif exhaustif de 
l'échauffement par la compréhension des interactions thermiques conjuguées complexes à 
l'intérieur du four. Les limites des études analytiques et la complexité et le coût des 
expérimentations ont rendu les simulations numériques une solution efficace pour analyser 
les problèmes de la dynamique des fluides (CFD) dans ce domaine d'étude. Cependant, parmi 
les études publiées sur les fours à gaz, les fours à petite échelle ou ceux avec un temps de 
fonctionnement plus court ont été principalement considérés (en utilisant différentes 
simplifications comme les calculs à l'état stationnaire) et ce principalement en raison de la 
complexité des phénomènes et des temps de calcul élevés. Par la suite, très peu d’études ont 
été consacrées à l’amélioration des modèles de chargement des pièces de grande taille dans 
les fours à gaz et à l’optimisation de leur temps de résidence. De plus, peu d’information est 
disponible dans la littérature sur les limites et particularités des différentes approches 
numériques permettant de calculer les interactions thermiques dans le flux réactif turbulent 
des fours de grande taille chauffés au gaz. À cet égard, l'objectif principal de ce projet est de 
fournir une analyse quantitative complète de la période transitoire du chauffage et une 
compréhension des interactions thermiques à l'intérieur du four afin d'optimiser, le temps de 
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séjour et l'uniformité de la température pendant le traitement thermique. Pour atteindre cet 
objectif, les étapes ci-après ont été suivies: 

La première partie de cette étude, fournit une analyse transitoire complète des 
caractéristiques de chauffage des pièces forgées de grande taille dans un four à gaz, en 
utilisant des températures mesurées expérimentalement et des simulations CFD. Un modèle 
CFD 3D du four à gaz a été généré, incluant, la chambre de traitement thermique, et les 
brûleurs à gaz. Les interactions entre la chaleur et l’écoulement du fluide, incluant la 
turbulence, la radiation et la combustion, ont été simultanément considérées dans le modèle 
en utilisant respectivement les modèles DO et EDM. En outre, l'applicabilité du modèle de 
radiation S2S a été évaluée pour quantifier l'effet du produit de combustion dans le four et le 
facteur de forme dû à la radiation durant le transfert de chaleur. Des mesures 
de températures ont été réalisées à plusieurs endroits grâce à l’instrumentation d’un bloc 
forgé de grande taille et l'intérieur du four, pour l'analyse expérimentale du processus de 
chauffage et aussi pour la validation du modèle CFD. Un bon accord a été obtenu avec une 
erreur maximale d’environ 7% entre les prédictions numériques et les mesures 
expérimentales. Les résultats ont montré qu'en dépit de l'uniformité de la température du four 
sans chargement, chaque surface du bloc présentait des vitesses 
de chauffage différentes après le chargement (chargement simple) ; des différences 
de température allant jusqu’à 200 k. L’analyse des résultats a également révélée la fiabilité 
du modèle S2S et a mis en évidence l’importance du facteur de forme du rayonnement pour 
des besoins d’optimisation pour cette application. Les résultats ont été corrélés avec la 
géométrie du four, la formation de structures tourbillonnaires et les circulations 
du fluide autour de la pièce. Les données expérimentales et les prévisions du modèle CFD 
pourraient être directement utilisées pour l’optimisation du processus de traitement thermique 
forgées de grande taille. 

La deuxième partie de cette étude vise à déterminer l’effet de la configuration du chargement 
(configuration des chargements multiples) sur la distribution de la température des pièces 
forgées lors du traitement thermique, afin d’obtenir une meilleure uniformité de température; 
qui par la suite favorise l’obtention de propriétés mécaniques homogènes. Cette partie vise 
également l’optimisation du temps de séjour des lingots forgés de grande taille dans un four 
de revenu, proposant une nouvelle méthodologie hybride combinant des simulations 
numériques CFD et une série de mesures expérimentales à base d’un dilatomètre à haute 
résolution. Des simulations transitoires CFD 3D validées par des mesures expérimentales 
de températures  ont été utilisées pour évaluer l’impact des modèles de chargement et du 
calage (positionnement des cales) sur l’uniformité de la température et le temps de résidence 
des pièces forgées dans le four. Une analyse transitoire complète des caractéristiques de 
chauffage des pièces forgées (y compris une analyse des modes de transfert de chaleur) en 
utilisant quatre configurations de chargement différents a permis de quantifier l’impact des 
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calages et leurs dimensions sur l’uniformité de la répartition de la température ainsi que sur 
le temps de séjour des produits. Les résultats ont montré que la non-uniformité de 
température peut aller jusqu'à 331 K pour un modèle de chargement conventionnel (non 
optimisé). L'influence positive de l'utilisation des cales  et des espaceurs (cales entre les 
brames) a été approuvée et quantifiée à l'aide de l'approche développée. Il a été possible de 
réduire les non-uniformités identifiées jusqu'à 32% en modifiant la configuration du 
chargement à l'intérieur du four de traitement thermique. Cette approche hybride a permis de 
déterminer le temps de séjour optimal pour les lingots, et aussi permettre son amélioration 
jusqu’à peu près de 15,5% par rapport à la configuration classique (non optimisée). Cette 
approche a été validée et pourrait s’appliquer directement à l’optimisation de différents 
cycles de traitement thermique de pièces forgées de grande taille. 

Enfin, la troisième partie de l'étude aborde les détails de la simulation numérique du procédé 
de traitement thermique de pièces forgées de grande taille dans des fours à gaz à échelle 
réelle. Plus précisément, l'évaluation du modèle de combustion non-premix avec l'équilibre 
chimique pour prévision précise de la température des pièces forgées, ainsi que les 
performances de six modèles de turbulence différents de RANS pour les projections 
d'analyse thermique sont discutés. À cet égard, les interactions thermiques à différents 
endroits du bloc forgé et dans des régions critiques telles que la région du brûleur, la 
stagnation et la région de sillage ont été réalisées à l'aide d'un modèle 3D périodique du four 
puis validé par des mesures expérimentales. Les résultats ont montré que le modèle 
périodique avec combustion non-premix est fiable pour l'analyse thermique du processus de 
traitement thermique avec un écart maximal d'environ 3% par rapport aux mesures 
expérimentales. Il a également été révélé que le choix du modèle de turbulence avait un effet 
significatif sur la prévision de la combustion et du transfert de chaleur autour du bloc. La 
prédiction du rapport ɛ/𝑘 par différents modèles de turbulence a montré une relation 
significative avec la combustion turbulente (telle que la longueur de la flamme du brûleur) et 
les prévisions de température du bloc, autour de la région de stagnation. Les modèles 𝑘 − ɛ 
Standard et réalisable en raison d'une prévision irréaliste de l'énergie cinétique de turbulence 
(sous-prévision du rapport ɛ/𝑘) ont entraîné une longueur de flamme plus courte et une sous-
prévision de la température du bloc forgé autour de la région de stagnation. En suite, le 
modèle SST 𝑘 − 𝜔 a montré des prévisions raisonnables dans cette région. Le modèle RSM 
s'est révélé être le modèle de turbulence le plus fiable par rapport aux mesures 
expérimentales. De plus, un modèle 𝑘 − ɛ réalisable, mis à part une sous-prédiction sur la 
région de stagnation et la longueur de la flamme, pourrait efficacement prédire la température 
globale des pièces forgées lourdes avec une précision comparable à celle des données 
expérimentales et des prévisions du RSM. 

Mots-clés: Traitement thermique, simulation CFD, four à gaz, mesures de température, 

uniformité de la température, modélisation du rayonnement, configuration du chargement, 
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temps de résidence, mesures expérimentales, approche hybride, modélisation de la 

turbulence, modélisation de la combustion,  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 

Optimization of furnace residence time and ingots positioning during the heat 
treatment process of large size forged ingots  

 
Nima BOHLOOLI ARKHAZLOO  

 
ABSTRACT 

 

High-strength large size forgings which are widely used in the energy and transportation 
industries (e.g., turbine shaft, landing gears etc.) acquire significant mechanical properties 
(e.g., hardness) through a sequence of heat treatment processes, called Quench and Temper 
(Q&T). The heating process (tempering) that takes place inside gas-fired furnaces has a 
direct impact on the final properties of the product due to several major microstructural 
changes taking place at this step. Therefore, material properties are usually optimized by 
controlling the tempering process parameters such as time and temperature. A non-uniform 
temperature distribution around parts, as a result of thermal interactions inside the furnace or 
loading pattern, may result in the parts property variations from one end to another, changes 
in microstructure or even cracking. On the other hand, improvement of large products 
residence time inside the heat treatment furnace can minimize energy consumption and avoid 
undesirable microstructural changes. However, at the present time, the industrial production 
is mainly based on available empirical correlations which are costly and not always reliable. 
Accurate time-dependent temperature prediction of the large size forgings within gas-fired 
heat treatment furnaces requires a comprehensive quantitative examination of the heating 
process and an in-depth understanding of complex conjugate thermal interactions inside the 
furnace. Limitations in analytical studies and complexity and cost of experimentations have 
made numerical simulations such as computational fluid dynamics (CFD), effective methods 
in this field of study. However, among the rarely found studies on gas-fired furnaces, small-
scale furnaces or those with shorter operation times were mainly considered (using different 
simplifications like steady-state calculations) because of complexity of the phenomena and 
large calculation times. Subsequently, there are very few studies on the improvement of the 
loading patterns of large-size steel parts inside the gas-fired furnaces and their relevant 
residence time optimization. Moreover, the limitation and strength of different numerical 
approaches to calculate thermal interactions in the turbulent reactive flow of the large size 
gas-fired batch type furnaces were addressed by few researchers in the literature. In this 
regard, the main objective of the present thesis is to provide a comprehensive quantitative 
analysis of transient heating and an understanding of thermal interactions inside the furnace 
so as to optimize the residence time and temperature uniformity of large size products during 
the heat treatment process. To attain this objective, the following milestones are pursued.  
 
The first part of this study provides a comprehensive unsteady analysis of large size forgings 
heating characteristics in a gas-fired heat treatment furnace employing experimentally 
measured temperatures and CFD simulations. A three-dimensional CFD model of the gas-
fired furnace, including heat treating chamber and high momentum natural gas burners, was 
generated. The interactions between heat and fluid flow consisting of turbulence, combustion 
and radiation were simultaneously considered using the -k ε , EDM and DO models, 
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respectively. The applicability of S2S radiation model to quantify the effect of participating 
medium and radiation view factor in the radiation heat transfer was also assessed. 
Temperature measurements at several locations of an instrumented large size forged block 
and within the heating chamber of the furnace were performed for experimental analysis of 
the heating process and validation of the CFD model. Good agreement with a maximum 
deviation of about 7% was obtained between the numerical predictions and the experimental 
measurements. The results showed that despite the temperature uniformity of the unloaded 
furnace, each surface of the product experienced different heating rates after loading (single 
loading) resulting in temperature differences of up to 200 K. Analysis of the results also 
revealed the reliability of the S2S model and highlighted the importance of radiation view 
factor for the optimization purposes in this application. Findings were correlated with the 
geometry of the furnace, formation of vortical structures and fluid flow circulations around 
the workpiece. The experimental data and CFD model predictions could directly be 
employed for optimization of the heat treatment process of large size steel components.  
 
The second part of this study aims to determine the effect of loading pattern (in the multiple 
loading configurations) on the temperature distribution of large size forgings during the heat 
treatment process within a gas-fired furnace to attain more temperature uniformity and 
consequently homogenous mechanical properties. This part also focuses on the improvement 
of residence time of large size forged ingots within a tempering furnace proposing a novel 
hybrid methodology combining CFD numerical simulations and a series of experimental 
measurements with high-resolution dilatometer. Transient 3D CFD simulations validated by 
experimental temperature measurements were employed to assess the impact of loading 
patterns and skids on the temperature uniformity and residence time of heavy forgings within 
the furnace. Comprehensive transient analysis of forgings heating characteristics (including 
heat transfer modes analysis) at four different loading patterns allowed quantifying the 
impact of skids and their dimensions on the temperature distribution uniformity as well as 
products residence time. Results showed that temperature non-uniformities of up to 331 K 
persist for non-optimum conventional loading pattern. The positive influence of skids and 
spacers applications was approved and quantified using the developed approach. It was 
possible to reduce the identified non-uniformities of up to 32 % through changing the loading 
pattern inside the heat treatment furnace. This hybrid approach allowed to determine an 
optimum residence time of large size slabs improving by almost 15.5 % in comparison with 
the conventional non-optimized configuration. This approach was validated and it could be 
directly applied to the optimization of different heat treatment cycles of large size forgings.  
  

The third part of the study addresses the details of the numerical simulation of heat treatment 
process of large size forgings within real scale gas-fired furnaces. Specifically, assessment of 
chemical equilibrium non-premix combustion model for accurate temperature prediction of 
heavy forgings, as well as performance of six different RANS based turbulence models for 
predictions of turbulent phenomenon were discussed in this context. In this regard, thermal 
interactions at different locations of the forged block as well as critical regions such as burner 
area, stagnation and wake region were performed using a one-third periodic 3D model of the 
furnace and validated by experimental measurements. Results showed that the one-third 
periodic model with chemical equilibrium non-premix combustion is reliable for the thermal 
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analysis of the heat treatment process with a maximum deviation of about 3% with respect to 
the experimental measurements.  It was also revealed that the choice of the turbulence model 
has a significant effect on the prediction of combustion and heat transfer around the block. 
Prediction of ɛ/k ratio by different turbulence models showed a significant relation to the 
turbulent combustion (such as burner flame length) and block temperature predictions, 
around the stagnation region. Standard and realizable 𝑘 − ɛ models, due to an unrealistic 
over prediction of turbulence kinetic energy (under-prediction of ɛ/k ratio), resulted in shorter 
flame length and under-prediction on the temperature of the forged block around the 
stagnation region; While, SST 𝑘 − 𝜔 model showed reasonable predictions in this region. 
RSM model was found as the most reliable turbulence model compared to the experimental 
measurements. Meanwhile, realizable 𝑘 − ɛ model apart from some under-prediction on the 
stagnation region and flame length could effectively predict the overall temperature of the 
heavy forgings with reasonable accuracy with respect to the experimental data and RSM 
predictions.  
 

Keywords: Heat treatment, CFD simulation, Gas-fired furnace, Temperature measurements, 
Temperature uniformity, Radiation modeling, Loading pattern, Residence time, Experimental 
measurements, Hybrid approach, Turbulence modeling, Combustion modeling   
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INTRODUCTION 

A significant number of high-strength steel parts such as medium-carbon low-alloy steel used 

for different critical applications in energy and transportation, such as turbine shafts and 

landing gears, acquire their required properties through a sequence of heat treatment 

processes often called Quench and Temper (Q&T) (Bhadeshia & Honeycombe, 2017). This 

is to attain some important properties such as hardness, toughness, corrosion resistance and 

so on. Optimum process, which is an operation including the controlled heating and cooling 

of metals and alloys in the solid state to obtain specific mechanical characteristics, is a 

critical point and one of the most important parts of metallurgical engineering procedures. 

The Tempering (a heating process after the initial casting and open die forgings) is one of the 

most vital steps of the heat treatment having a direct influence on final delivered mechanical 

properties of the products (Totten, 2006).  

 

Generally, gas-fired furnaces are used in the steel plants to carry out the tempering process. 

Heat transfer to the products primarily depends on temperature distribution inside the furnace 

and it significantly affects the quality of the final part. Besides, the time of tempering directly 

affects the acquired mechanical properties after the process. Hence, temperature and time are 

usually used to optimize the final material properties of the products. The problem becomes 

more acute and critical when it comes to the heat treatment of large size products for energy 

and transportation industries (Bohlooli Arkhazloo et al., 2019).  

 

A non-uniform temperature distribution may result in the property variation from one end to 

another of the part, changes in microstructure, or even cracking. Different locations of blocks 

inside the furnace, considering their mutual heat transfer and also between the blocks and the 

heat sources may experience non-uniform heat transfer and consequently a non-uniform heat 

treatment. Improvement of the loading patterns within the furnace can significantly increase 

the temperature uniformity of the product during the process. Besides, it can also reduce the 

residence time of products by increasing the heating rates of the work piece as a result of 

changing in the heat transfer pattern.  
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On the other hand, reduction of residence time of large products inside the heat treatment 

furnace can minimize energy consumption and avoid undesirable microstructural changes. 

Required time for only one step of different stages of heat treating process can be more than 

62 hours in the case of large size products (Gur & Pan, 2008). Therefore, optimization of 

forgings ingots residence time inside gas-fired heat treating furnaces is of great importance in 

the steel making industry. This improvement not only provides a better treatment, but also 

leads to a cost effective production. The importance of residence time is more notable where 

a significant number of large size ingots should be treated every day. In other words, even a 

small reduction in the residence time of one product can lead to a considerable energy 

savings. Thus, predicting and controlling the products’ transient temperature is an essential 

task in the heat treatment process both from the performance and the cost points of view. 

 

 The current practice in industry for the heating cycle schedule is based on empirical 

correlations and is mostly limited to monitoring of the furnace temperature as a function of 

the furnace load (Zhang, Wen, Bai, Chen, & Long, 2009). Empirical correlations, however, 

cannot be used to accurately predict temperature distribution in the products and very often 

large deviations with the loading pattern or furnace configurations, are observed (Gur & Pan, 

2008; Hao, Gu, Chen, Zhang, & Zuo, 2008; Wang et al., 2008).  

 

Therefore, accurate time-dependent temperature prediction of the large size parts inside the 

gas-fired heat treatment furnaces necessitates a quantitative examination of the transient 

heating and comprehending of thermal interactions within the furnace. This analysis can 

deliver information about the temperature evolution of products and improvement of 

temperature uniformity, residence time and loading pattern of large-size steel parts in gas-

fired heat treating furnaces. However, understanding the complexities of the thermal 

interactions along with the turbulent flow field as well as combustion and radiation within the 

gas-fired heat treatment furnace is very challenging. These phenomena imposing strong non-

linear thermal boundary conditions make the analytical studies, which are generally limited 

to linear problems, very complex and insufficient for accurate predictions (Gao, Reid, Jahedi, 

& Li, 2000). On the other hand, experimentation of large-size products in the large scale 
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furnaces and reliable data acquisition is very challenging and expensive. Recently, 

computational fluid dynamics (CFD) offering simultaneous analysis of turbulent fluid flow, 

combustion and conjugate heat transfer has been employed to study large size industrial 

furnaces (Chattopadhyay, Isac, & Guthrie, 2010). Different furnaces such as electrically 

heated or gas quenching ones have been studied using CFD. However, very few studies focus 

on the simulation of large-size heat treatment inside gas-fired batch-type furnaces due to their 

complexity, as a result of reactive flow combined with turbulent transport process and 

conjugate heat transfer including absorbing and emitting hot combustion products and long 

processing. Hence, the number of published papers in the case of heat treatment furnaces is 

few and most of the limited numerical studies have been devoted to one aspect of the process 

(i.e., furnace chamber and its details such as burners or product heating characteristics, 

solely) rather than simultaneous analysis of furnace thermal interactions (such as turbulent 

combustion and radiation heat transfer) and its details including the product.  

 

Considering the importance of accurate transient temperature prediction of large-size 

products inside the gas-fired heat treatment furnaces and the lack of relevant information, the 

first objective of the present thesis was on the experimental analysis and CFD simulations of 

large-size products’ heat treatment inside gas-fired furnaces. Comprehensive analysis of the 

conjugate heat transfer in the heat treatment process as well as identification of a correlation 

between non-uniformity sources including furnace geometrical parameters (size, location of 

burners and skids), loading pattern and vortical structures inside the furnace was other 

secondary objectives of this study.   

 

There are few studies on the improvement of large-size steel parts loading patterns inside the 

gas-fired furnaces and their relevant residence time optimization. Therefore, investigation of 

the loading patterns effect on temperature uniformity of large size forged ingots as well as 

reduction of residence time inside the large size gas-fired furnaces, were other objectives of 

the present thesis.  

 



4 

Due to the lack of enough systematic evaluation of the strengths and limitations of different 

CFD approaches for the prediction of thermal interactions within the furnace, including 

turbulence and combustion, the fourth objective of the present study was set to address this 

limitation in the literature. In other words, finding an accurate combination of CFD models 

that could deliver reliable prediction of burner domain (flow field) and product temperature 

(scalar) with reasonable computational cost was the fourth objective of the present study. A 

detailed analysis of turbulent combustion phenomena in the furnace was another secondary 

objective of this part. 

 

The present thesis is organized, as follows: 

1. The thesis starts with an overview on the heat treatment process of large-size forgings 

inside gas-fired furnaces in chapter 1. Different thermal interactions involved in the 

heat treatment and their relative numerical approaches to be predicted by the CFD 

simulation are discussed. Finally, the state-of-the-art on the analysis of heat treatment 

of large size products inside gas-fired furnaces, their loading pattern and residence 

time as well as numerical approaches to predict the process are identified.  

 

2. Chapter 2 presents the details of the numerical approaches employed for simulating 

the thermal interactions inside the gas-fired furnace. After a mathematical description 

of each model, strengths and limitations of different approaches are discussed.  

 

3. The elaboration of the industrial and laboratory scale experimental measurements are 

presented in chapter 3. Details of instrumentations and measurements in a real scale 

gas-fired heat treatment furnace (loaded large size forged ingots), as well as 

laboratory scale experimentations are presented. Also, details of a calibration test 

process to evaluate the measurement accuracy and employed thermo-physical 

properties are discussed in this chapter. 

 

4. Chapter 4 focuses on the experimental and numerical analyses of large size forgings 

transient heating inside the gas-fired heat treatment furnace in the single loading 
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configuration. Heat transfer histories of different locations of the parts inside the 

furnace as well as temperature uniformity analysis of the forgings based on the 

analysis of conjugate heat transfer are presented. Details of the cause of temperature 

non-uniformities including furnace geometrical design, loading pattern and fluid flow 

circulation and their correlation with heat transfer modes (radiation, convection) are 

discussed.  

 

5. Chapter 5 discusses the effect of loading pattern on the temperature homogeneity of 

the large-size products during the heat treatment process. The chapter also proposes a 

new hybrid methodology (including CFD simulation and experimental 

measurements) to optimize the residence time of large size forgings inside the heat 

treatment furnace during different stages of tempering.  

 

6. Chapter 6 presents details of CFD simulation of a gas-fired furnace comparing 

different numerical approaches to predict the thermal interactions inside the gas-fired 

heat treatment furnace. Details of turbulence and combustion modeling and their 

relative strengths and limitations in this particular application are discussed. Finally, 

after comprehensive analysis of numerical techniques, a computationally effective 

methodology to predict the heat treatment process of large-size forgings inside gas-

fired heat treatment furnaces is proposed.   

 

A summary covering all the concluding remarks concerning chapters 4 to 6 is presented in 

the Conclusions section to link the outcomes of the thesis and present original contributions 

of the study toward the thesis initial objectives. 
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CHAPTER 1        
 

LITERATURE REVIEW  

1.1 Steel Heat Treatment 

Heat treatment is a process that encompasses the controlled heating and cooling of metals 

and alloys in the solid state to achieve certain mechanical characteristics such as hardness, 

strength, flexibility, machinability and reduction of residual and internal stresses. The heat 

treatment process takes place based on the steel microstructural transformation as a function 

of temperature and chemical composition of an alloy (Bhadeshia & Honeycombe, 2017) (See 

Fig. 1.1).  

 

 

Figure 1.1 Iron-Carbon phase diagram (Pollack, 
1988). 

 
1.2 Tempering Process 

Tempering is a thermal treatment process that is often carried out in gas-fired heat treatment 

furnaces (for large-size product) after the quench. The aim is to modify the microstructure of 
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the quenched part to acquire desired mechanical properties such as hardness, toughness, 

ductility and dimensional stability (Speich & Leslie, 1972). The main two parameters that 

control the tempering process are temperature and time at temperature. Depending on 

chemical composition of a specific steel, its primary microstructure, and heating rate, 

different microstructural changes takes place during certain temperature intervals and time. 

Inaccurate selection of time and temperature of tempering can affect final mechanical 

properties and can even produce cracks in the part (Canale, Yao, Gu, & Totten, 2008). There 

are several methods to determine proper time and temperature of the tempering process. 

Methods like Liščić and Filetin’ correlation (Liščić & Filetin, 1987) using linear regression 

analysis for a specific temperature range of tempering have been used to calculate the 

tempering temperature-time condition. Other methods like Holloman-Jaffe equation (Totten, 

2006) were developed to predict the hardness of tempered steel parts. In all these equations, 

having an accurate prediction of parts’ temperature during the heating up to the target 

temperature (non-isothermal tempering) and soaking at the temperature (isothermal 

tempering) is important.  

 

1.3 Heat Treatment Furnaces 

Heat treatment furnace that provides the heat treatment medium inside, is one of the most 

vital equipment of heat treatment procedure which should be comprehensively studied to 

achieve optimum heat treatment of metals. There are several types of heat treatment furnaces 

that can be categorized based on their shape and movement of products within them (such as 

box furnaces, pit furnaces or tip-up furnaces) or the energy used in them (like electrical 

heated furnace or gas-fired heat treatment furnaces). Among different types of furnaces Gas-

fired heat treatment furnaces are extensively used for large-size high-strength steel products 

such as medium-carbon low-alloy steels for different critical applications in the energy and 

transportation industries. Natural gas usage in these furnaces provides the increased heat 

treatment rate and reliable burning (Totten, 2006). Final material properties are usually 

optimized by tempering parameters modification (such as temperature, time, etc.) in these 

heat treatment furnaces (Yan, Han, Li, Luo, & Gu, 2017). To analyze these furnaces, burners 
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which provide the heat input as a result of combustion of the natural gas by oxygen should be 

studied comprehensively (Purushothaman, 2008). 

 

 

 Figure 1.2 (Right): Car-bottom gas-fired heat treatment furnace and (Left): 
electrically heated box type heat treatment furnace. 

 
1.4   Tempering of Large Size Parts 

Large-size products, due to the significant temperature variation between their surface and 

center, contain different microstructures which in turn response differently to the tempering 

process (Talebi, Ghasemi-Nanesa, Jahazi, & Melkonyan, 2017). Besides, non-uniform 

temperature distribution in such parts within gas-fired furnaces may result in non-uniform 

properties in different locations of the final product or even cracking. Therefore, temperature 

distribution uniformity is of great importance for the quality of the final products (Gao et al., 

2000; Gur & Pan, 2008). Further, due to their large sizes a lot of energy is used in these 

furnaces (Kang & Rong, 2006; B. Mayr, Prieler, Demuth, Moderer, & Hochenauer, 2017). 

Therefore, predicting, controlling and subsequently optimizing the temperature distribution 

of such parts is a necessary task to increase the product quality and reduce the production 

cost (Hao et al., 2008). However, an exact prediction of the furnace temperature distribution 

and, consequently, the temperature experienced by the product is difficult and the heating 

cycle schedules are mainly based on the available empirical correlations (Kang & Rong, 

2006). These correlations are usually valid for specific ranges of temperature and defined as 

a function of the furnace load and simple loading patterns of the parts inside the furnace 
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(Canale et al., 2008; Korad, Ponboon, Chumchery, & Pearce, 2013). Hence, large deviations 

in the case of large-size products multiple loading patterns are observed (Cheng, Brakman, 

Korevaar, & Mittemeijer, 1988; Gao et al., 2000; Primig & Leitner, 2011).  On the other 

hand, most of the metallurgical studies assume a constant heating rate in different locations 

of the part, which is far from the reality and proves the need for accurate determination and 

prediction of temperature evolution inside the gas-fired heat treatment furnaces and 

subsequent analyses based on these temperature profiles.  

 

An accurate temperature prediction of parts necessitates a quantitative analysis of thermal 

interactions and their subsequent roles on the transient heating of large size parts inside gas-

fired heat treatment furnaces as detailed in the following sections.  

 

1.5 Thermal Interactions inside a Gas-Fired Furnace 

Heat is a form of energy that exchanges between several mediums due to temperature 

differences. This transfer of energy which always takes place from the higher temperature 

field to the lower one, according to the first law of thermodynamics, is the basis of the heat 

transfer (Incropera, Lavine, Bergman, & DeWitt, 2007). Gas-fired heat treatment furnaces 

transfer heat to the different location of parts through the three modes of heat transfer: 

radiation, convection and conduction. As it can be seen in the schematic view of interactions 

inside a heat treating furnace (Fig. 1.3) the three modes of heat transfer are playing their role 

in a conjugate situation. Therefore, any analytical, experimental or numerical study should 

consider the conjugate heat transfer to analyze the heat transfer rates. It should be noted that 

these heat transfer modes take place in combination with the two main fluid flow related 

interactions (combustion and turbulence) which will be discussed in the following sections.  
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Figure 1.3 Thermal interactions and conjugate heat transfer 
within a gas-fired heat treatment furnace. 

  
1.5.1 Conduction 

The conduction heat transfer is the most significant mode in a solid medium. The heat 

transfer rate through a planar layer according to the Fourier’s law is: 

dTQ kA
dx

= −&  (1.1) 

In this equation, k, as thermal conductivity, is the material property that represents the ability 

to conduct the heat in a material whether solid or fluid flow. Thermal conductivity of many 

materials changes with temperature. This is also true for other thermo-physical properties of 

material like specific heat. For instance, Fig. 1.4 shows the variation of a carbon steel thermal 

conductivities and specific heats over a wide range of temperatures used by Tang et al. (Tang 

et al., 2017) in their study. JMatPro software (Danon, Cho, De Jong, & Roekaerts, 2011) was 

reported to be a reliable tool for the calculation of temperature dependent thermal 

conductivities of different alloys (B. Mayr, Prieler, Demuth, Moderer, et al., 2017; Prieler, 

Mayr, Demuth, Holleis, & Hochenauer, 2016; Tang et al., 2017). 
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Figure. 1.4 Temperature dependant thermal conductivity of a steel 
slab (Tang et al., 2017). 

 

1.5.2 Convection 

The Newton’s rule of cooling describes the rate of convection heat transfer (the heat transfer 

that is actuated by the flow motion usually takes place with the mass transfer), convQ& , based 

on the temperature gradient, the differences between the hot surface ( hT ) and the ambient 

fluid temperature ( )aT  and the heat transfer area, sA are as below: 

( )conv o s h ah A T TQ = −&  (1.2) 

In this equation oh is the convection heat transfer coefficient. Several investigations in the 

heat treatment field show that the convection heat transfer plays an important role in the heat 

transfer in this process (Bhadeshia & Honeycombe, 2017; Totten, 2006). Although in some 

furnaces such as electrically heated vacuum furnaces (Gao et al., 2000) the convection heat 

transfer can be neglected, in majority of the furnaces the convection can be considered as a 

significant phenomenon in the process. This heat transfer mode is dominant, especially at 

low temperatures where the furnace undergoes the heating to reach to the soaking 

temperature. The convection heat transfer is highly correlated with turbulence in turbulent 

fluid flow. 



13 

1.5.3 Radiation 

Radiation heat transfer is the energy emitted by the matter (photons) in the form of 

electromagnetic waves due to changes in the electronic configuration of atoms as a result of 

temperature in vacuum (without the presence of matter) or transparent mediums (solid and 

fluid). The Stefan-Boltzmann law for a black surface, calculates the total radiated energy per 

unit surface area per unit time ( bE ) as a function of the fourth power of object’s (black body) 

temperature as follows (Howell, Menguc, & Siegel, 2015): 
4 bE Tσ=  (1.3) 

Where the temperature is in Kelvin and -8 -1 -2 -45.67 10 Js m Kσ = ×  is the Stefan-Boltzmann 

constant. For the gray body which does not absorb or emit the full amount of radiation and 

normally radiates a small amount of that, the total energy, considering the emissivity, 

becomes (Incropera et al., 2007): 

( )4 4 a bA TQ Tεσ= −&  (1.4) 

The radiative transfer equation (RTE) in a medium that participates in the radiation heat 

transfer (a medium with absorption, emission, and scattering effect) can be formulated as 

follows (Danon et al., 2011): 
44

2

0

( , ) ( ) I( , ) I( , ) ( , )
4

s
s

dI r s Ta r s an r s s s d
ds

πσσσ φ
π π

′ ′+ + = + Ω
r r r r r r r ur

 (1.5) 

Where I is the radiation intensity and ( sa σ+ ) represents the optical thickness of the medium. 

The definition of all the variables and related units are provided in the nomenclature section.  

 

1.5.4 Combustion 

Hydrocarbon fuel sources such as methane or natural gas can react with oxygen to provide 

combustion and subsequently thermal energy or heat.  

4 2 2 22 2CH O CO H O+ → +   (1.6) 
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The oxygen availability and operating temperature can change the combustion efficiency and 

also the combustion products. Incomplete combustion and CO production will take place in 

combustion with insufficient oxygen content. Besides, the excess air, which means excess 

oxygen, can affect the ratio of available heat. Combustion in any gas-fired heat treatment 

furnaces plays the most important role in the system because: 

• Combustion facilitator devices such as burners can be considered as the inlet boundary 

condition for the main system such as a furnace. 

• Combustion has a direct interaction with the radiation, convection and turbulence 

which have their own impacts on the final goal. 

 

Therefore, the combustion prediction in any combustion included application such as gas-

fired heat treatment furnaces should be thoroughly investigated. 

 

1.5.5 Turbulence 

Almost all fluid flows which we encounter in the world are turbulent. Turbulent flows can be 

usually observed in numerous natural and industrial cases like impingement flows or burner 

combustions (Fig. 1.5). The boundary layers and the wakes around and after bluff bodies 

such as cars, airplanes, buildings and large-size steel parts in the heat treatment furnaces are 

turbulent. In the turbulent flow field of study, the parameters such as velocity are 

decomposed in two parts of a time-averaged, 𝑈ഥ௜, which is independent of time (when the 

average flow is steady), and a fluctuating part, �́�௜, which means that 𝑢௜ = 𝑈ഥ௜ + �́�௜. There is 

no exact definition of turbulent flow, but it has a number of characteristic features such as 

irregularity, continuity, diffusivity, large Reynolds numbers, a three-dimensional nature 

(Cant, 2001; Tennekes, Lumley, & Lumley, 1972). These characteristics can be found in 

several gas-fired heat treatment furnaces which are designed to have a self-induced 

turbulence. The high momentum of combustion products, with a large Re number, are in 

continuum interactions and provide 3D circulation inside the furnace. 



15 

 

Figure 1.5 Turbulent combustion visualized by 
numerical simulation (Vicquelin, 2010). 

 
1.6 Thermal Interactions Analyses inside Heat Treatment Furnaces  

1.6.1 Analytical and Semi-Analytical Studies 

Thermal interactions inside the gas-fired heat treatment furnaces importing strong non-linear 

thermal boundary conditions to the loads make the thermal analysis of heat treatment process 

very difficult. In the literature Chapman et al. (Chapman, Ramadhyani, & Viskanta, 1990) in 

a semi-analytical study, assessed various material properties on the efficiency of heat treating 

process in a direct fired batch reheating furnace. Gao et al. (Gao et al., 2000) using heat 

conduction rule in solids, developed an analytical, practical virtual sphere method to estimate 

the equilibrium time and heating/cooling rate in heat treatment furnaces. Their results proved 

that the convection heat transfer rate could significantly differ from the empirically 

calculated h values for specific furnaces. Singh et al. (Singh, Talukdar, & Coelho, 2015) in 

their semi-analytical studies developed a heat-flow model to estimate temperature evolution 

of products in different heat treatment processes such as heating in electrically furnaces, air 

and water quenching. However, analytical analyses are generally limited to linear problems 
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and they become very complicated in gas-fired furnaces where strong non-linear transient 

condition and interactions are present.  

 

 

Figure 1.6 Prediction of heating and cooling rates with different 
convection heat transfer coefficients (Gao et al., 2000). 

 

Although the advantage of these types of studies is in their simplicity and applicability in 

different case studies, the fact that the today’s industry needs reliable and optimal data for 

optimization of product quality and product price, illustrates the need for studies with more 

details and accuracy. The need for specification of real convection heat transfer coefficient, 

accurate combustion prediction and suitable radiation simulation to provide a better 

optimization of time residency and positioning plan, specify the value of high order 

numerical simulations in this field of study.  

 

1.6.2 CFD Studies 

In this context, major advances have been made in development of high performance 

computational facilities allowing for the simulation of large size furnaces. Studies such as 

those of Jaklic et al. (Jaklič, Glogovac, Kolenko, Zupančič, & Težak, 2002) and Tagliafico et 
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al. (Tagliafico & Senarega, 2004) using finite-difference and finite element based methods 

added more details to the analysis of load-furnace heating characteristics. Recently, 

computational fluid dynamics (CFD) offering simultaneous analysis of turbulent fluid flow, 

combustion and conjugate heat transfer has been used to simulate thermal flow field in 

various metallurgical processes  (Szajnar, Bartocha, Stawarz, Wróbel, & Sebzda, 2010; S. F. 

Zhang et al., 2009; Zhou, Yang, Reuter, & Boin, 2007) (See Fig. 1.7). Yang et al. (Yang et 

al., 2006) using the ANSYS Fluent software (ANSYS, 2016) performed CFD evaluation of 

various metallurgical applications including: melting of aluminum scrap in a rotary furnace, 

molten hot metal flow in a coke-bed blast furnace, electric arc furnace and gas-fired heat 

treating furnaces. They used 𝑘 − ɛ turbulence model alongside with the EDM combustion 

model. Several radiation models including, P-1, DTRM and Monte Carlo model (MCM) 

have been evaluated in different industrial furnaces. The capability of these approaches to 

predict the thermal interactions inside the furnace has been confirmed by the authors. They 

also presented several data, including temperature evolution, melting curves and gas 

consumption profiles proving the CFD applicability in predicting flow, temperature, mass 

fraction and reaction distribution. Wang et al. (J. Wang et al., 2008) predicted the 

temperature field of a gas quenching furnace using CFD simulation and Cosentino et al. 

(Cosentino, Warnken, Gebelin, & Reed, 2013) investigated the non-uniform quenching effect 

on the product properties. 

 

 

Figure 1.7 Right) pressure and left) temperature distribution prediction by            
CFD in the submerged arc furnace (Yang et al., 2006). 
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1.6.3 CFD Analysis of Heat Treatment Furnaces without Combustion 

One of the most basic investigations of heat treatment process using CFD is the study of 

Elkatatny et al. (Elkatatny, Morsi, Blicblau, Das, & Doyle, 2003) who presented a CFD 

simulation of high-pressure gas quenching of H13 die in a vacuum heat treatment furnace 

(See Fig. 1.8). They suggested that a steady state simulation can be effectively used instead 

of complete transient simulation in order to reduce the computational cost. It has been 

reported that the CFD results were in good agreement with the experimental data and the 

steady state solution was capable of accurate prediction of quenching treatment.  

 

 

Figure 1.8 Temperature distribution prediction of H13 
die using CFD simulation (Elkatatny et al., 2003). 

 
Gongfa et al. (Gongfa et al., 2014) investigated the air quenching of heavy rail-head U71Mn 

in both internal and external fields product using CFD. They could establish the flow 

distribution, streamlines and temperature contours in internal and external fields. Using the 

cooling rate calculation, provided by CFD simulation, they reported phase transformation on 

the basis temperature gradient. Bergman (Bergman, 2012) provided a 2D simulation of a heat 

treatment furnace, including the gas fluid flow and heat transfer into the product (turbine 

structure). The significant impact of Reynolds number and buoyancy on the heat transfer rate 

was reported. Besides, in the case of turbulence modeling, according to the authors, -k ω  

model was proved to be a more reliable model in comparison to the standard -k ε and the 

realizable -k ε  models to predict the heat flux for highly turbulent fluid flow. Wang et al. (J. 
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Wang, Chen, & Shan, 2006) employed CFD, validated by experimental data, in a gas 

nitriding furnace. Using the -k ε  turbulence modeling in various fan motor velocities, fan 

locations and pressures, they reported fairly acceptable results in comparison to the 

experimental data. 

 

 

Figure 1.9 Right) temperature contour of air quenched rail head 
and left) flow field of quenching medium (Gongfa et al., 2014). 

 
1.6.3.1 Loading Pattern and Residence Time Analyses 

There is little data on the assessment of loading pattern concerning the uniformity of heat 

treatment process and simultaneous analysis of furnace-load interactions to improve the 

loading patterns inside the heat treatment furnaces. Among the rarely found data, Lior (Lior, 

2004) presenting a comprehensive analysis of the gas quenching furnace fluid flow and the 

heat transfer discussed convective cooling over rectangular and circular bluff bodies with 

various flow characteristics and flow directions on the basis of thermo-chromic liquid crystal 

(R. Wiberg, 2001) and PIV measurement techniques (R. Wiberg & Lior, 2003). Besides, 

various positioning plans of the species with several configurations were discussed in this 

study. It should be noted that the configuration of bluff buddies positioning has been 

discussed widely in the fluid flow examinations; however, in the case of heat treating 

application, this study can be considered as one of the first efforts to evaluate the 

configuration impact on the uniformity of heat treatment (Lior, 2004). Wiberg in his 

experimental study (R. Wiberg & Lior, 2003) showed that separated flow over a bluff 
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cylinder in axial flow can lead to variations in the Nusselt number, or in other words 

convection heat transfer, up to 125%.  

 

Mcchion’s study (Macchion, 2005; Macchion, Lior, & Rizzi, 2004)  is another investigation 

of charge  influence on the gas quenching (heat treating) procedure. It has been concluded 

that the thermal flow field and temperature uniformity of the product are affected by chamber 

geometry, loads positioning configuration, their shapes and the gas mixture composition in 

the chamber. They stated that thermal field is significantly affected by the piece position. 

Products that had been placed in the central area of the furnace (with relatively equal distance 

to the furnace walls) experienced more uniform heat treatment. Besides, the large eddy 

simulation capability to simulate the gas quenching chamber has been evaluated in Macchion 

et al.’s numerical study (Macchion, Zahrai, & Bouwman, 2006). 

 

 

Figure 1.10 Streamwise velocity contours of a gas quenching chamber 
loaded by plates and rectangular ingots (Macchion et al., 2004). 

 

Wang and Shang (Wang & Shang, 2010) investigated the flow and heat exchange in the 

high-pressure gas quenching chamber using the ANSYS Fluent software and evaluated their 

data on the basis of hot wire anemometer (for the velocity measurement in the gas quenching 

nozzles) and thermocouples measurements. They reported the flow circulation regime, 

including the streamlines of fluid circulation and temperature evolution on their case study. 

According to the author presence of a big eddy at the corner of the furnace where the cooling 
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rate was slower than other position was confirmed showing the importance of vortical 

structure in the present field of study. They also reported various cooling rates (with the 

approximately 7.9% relative error) in different zones of the chamber according to the 

location of products within the furnace.  

 

  

Figure 1.11 Left) velocity distribution and right) temperature in the gas quenching chamber 
(Z. J. Wang & Shang, 2010).  

 
X. Hao et al (Hao et al., 2008) in their case study, which was a vacuum electrically heated 

furnace, using some simplification and optimization could propose a new heat treating time-

table. Based on several heating rates for different locations of the product they used North 

American Die Casting Association (NADCA) suggestion to optimize the residence time of 

the block inside an electrically heated furnace. This suggestion states that heating stage can 

be started as soon as the temperature difference between surface and the center is less than 

30°C (Hao et al., 2008). 
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Figure 1.12 Contours of temperature evolution in the a) electricaly heated 
furnace and b) heat treated block (Hao et al., 2008). 

 

In Fig. 1.13, T1, T2 and T3 represent the corner, surface and the core of the workpiece and 

TF is the furnace temperature. Heating curves and their mutual temperature differences 

between the locations show a considerable extra residence time in products initial schedule.  

As it can be seen in each heating stage bt which is the optimized residence time is shorter 

than the t which had been used in their initial process. Their new proposed heat treating 

procedure, considering the new heating rates and some simplifications, decreased the 

residence time of the workpiece up to five hours. Although they just considered the 

temperature as the main criterion (without considering the material microstructural changes 

and mechanical properties based on various heating rates), their study proved the possible 

contributions for the residence time improvement in the steel making industry.  

 

Kang and Rong (Kang & Rong, 2006) studied the effect of small products loading patterns 

on their heat treatment process within an electrically heated furnaces. Fig. 1.14 depicts the 

comparison of loading pattern influence on temperature evolution of samples in their 

numerical study. In this picture old and new are two different positioning plans and points 3 

and 4 are two different locations of parts. As it can be seen there is a visible difference 

between the two methods of product positioning temperature evolution. This difference is 

more notable at low temperatures where the convection heat transfer is dominant. This study 
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and other similar analytical and numerical works demonstrate the importance of loading 

pattern optimization.  

 

 

Figure 1.13 Optimization of furnace resicence time based on 
a) heating curves and b) temperature difference curves 
inside electretically heated furnace (Hao et al., 2008).  
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Figure 1.14 Comparison of two different products loading 
patteren effects on the heat treatment process inside an 

electercally heated furnace (Kang & Rong, 2006).  
 
 

1.6.4 Gas-Fired Furnaces  

Among the different types of industrial furnaces, gas-fired ones are commonly applied to 

applications with large size products (Totten, 2006). Natural gas combustion can be found in 

various furnaces including box and continuous ones such as pusher type and walking beam 

reheating furnaces (Totten, 2006). Simulation of these furnaces is more complex due to the 

existence of reactive flow combined with turbulent transport process and conjugate heat 

transfer including absorbing and emitting hot combustion products. Little data is available in 

the literature, probably due to above difficulties and the large volume of industrial furnaces 

and large size products, which requires significant computational and experimental resources.  

However, these challenges lately attracted researchers’ attention to this field of study. 

Different gas-fired furnaces such as crucible or continues furnaces have been studied by 

several researchers (Govardhan, Rao, & Narasaiah, 2011; B. Wu et al., 2008; C. Zhang, Ishii, 

Hino, & Sugiyama, 2000).  

 

Continuous reheating furnaces such as pusher type and walking beam furnaces, as gas-fired 

furnaces, have also been the subject of several investigations. For example, Harish and Dutta 
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(Harish & Dutta, 2005) concentrated on the radiation simulation of slab reheat furnace. 

Zhang et al. (Ishii, Zhang, & Hino, 2002) focused on the combustion modeling, provided 

insight into the temperature distribution and thermal interactions inside gas-fired furnaces. 

Recently, Liu et al. (Y. J. Liu, Li, Misra, Wang, & Wang, 2016) using CFD proposed a basic 

model for increasing the temperature uniformity in reheating furnaces. Mayr et al. (B Mayr, 

Prieler, Demuth, Potesser, & Hochenauer, 2017) proposed a one-step steady state CFD 

approach and Tang et al. (Tang et al., 2017) with a combination of 3D CFD and 2D finite 

difference methods (validated by experimental measurements) proposed time saving 

approaches for optimization purposes (See Fig. 1.15). However continuous gas-fired 

furnaces, due to their shorter processing time (regularly 2 hours (Tang et al., 2017)) in 

comparison with the large size heat treating furnaces (24-48 hours in the case of large size 

products (Gur & Pan, 2008)), require lower computational time for transient simulation.  

Besides, the relatively simple geometry of these furnaces, which allow for simplification 

such as steady state calculation in length or periodic transient simulation (B. Mayr, Prieler, 

Demuth, Moderer, et al., 2017) made these furnaces an interesting case study for several 

investigators. Employing models such as steady flame-let combustion model (SFM) (B. 

Mayr, Prieler, Demuth, Moderer, et al., 2017) and numerical techniques such as 2D 

interpolation (Tang et al., 2017) different methods have been proposed to reduce the 

computational cost. Recently Garcia et al. (García, Colorado, Obando, Arrieta, & Amell, 

2019) investigated the effect of burner locations on the performance of walking-beam type 

reheating furnace using 3D steady state CFD calculation. According to the authors, burner 

types and positions have significant impact on the performance of the furnace and product 

quality. 
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Figure 1.15 Volume average temperature of a billet and its averaged 
heat flux over the length of furnace (B. Mayr, Prieler, Demuth, 

Moderer, et al., 2017). 
 

Gas-fired heat treatment furnaces on the other hand are usually subjected to longer operation 

times especially, in the case of large size products. This longer operation times need more 

attention in the instrumentation for the experimental measurements and also more 

computational cost for the complete transient simulation of the process. Besides, the entire 

furnace experiences completely transient phenomena in contrast to continuous furnaces with 

different zones with semi-steady-state situation. Hence, the number of published papers in 

the case of batch-type heat treatment furnaces is few and most of the limited numerical 

studies have been devoted to one aspect of the process (i.e., furnace chamber or only its 

details such as burners or product heating characteristics). For instance, Danon et al. (Danon 

et al., 2011) evaluated burner positioning effects on the performance of multi-burner 

combustion furnace and Galletti et al. (Galletti, Coraggio, & Tognotti, 2013) mainly focused 

on different combustion models for the burner simulation inside a semi-industrial furnace. Tu 

et al. (Tu et al., 2015) recently investigated the furnace room shape on the gas burner 

combustion. They used the standard 𝑘 − ɛ model for turbulence simulation and evaluated the 

applicability of EDC and EDM combustion models for various chamber configurations using 

experimental data to validate their simulations. Therefore, studies on simultaneous analysis 

of all the components of the furnace have been limited small-scale furnaces with simple 

geometrical details. Besides, on the experimental studies, measurements have been used 
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mostly as a validation tool rather than for analysis. For example, Yang et al. (Yang, De Jong, 

& Reuter, 2007) concentrating on the numerical simulation validated by experimental 

measurement, studied the performance of small-scale gas-fired mobile heat treatment 

furnaces. They studied several fuel supply systems and the influence of excess air on the 

performance of a heat treating mobile furnace. Transient temperature evolutions of products 

and furnace were discussed in their study (Fig. 1.6). 

 

  
 (a)                                                                     (b) 

Figure 1.16 Temperature evolution of: a) the heat treating furnace and, b) the dredging 
impeller (Yang et al., 2007). 

 

The CFD evaluation of oscillating combustion using the commercial code, ANSYS (ANSYS, 

2016), in a crucible furnace is presented in Govardhan et al.’s (Govardhan et al., 2011) 

investigation. They employed standard 𝑘 − ɛ model, P-1 model and EDM for turbulence, 

radiation and combustion simulations, respectively. To validate the CFD results, temperature 

measurements in three probing points (T1, T2, and T3) using type K thermocouples were 

made. Temperature predictions validation indicated that the CFD results were in good 

agreement with the experimentally measured temperatures. However, some inconsistencies 

specifically in case of oscillating combustion with the highly turbulent medium, was 

reported. According to the authors, the over-prediction of turbulence and radiation models, 
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inaccurate inlet boundary conditions and not sufficiently enough grid resolution were 

considered as inaccuracy sources. 

 

 

Figure 1.17 Schematic sketch of circular furnace 
employed by Govardhan et al. (Govardhan et al., 2011). 

 
Table 1.1 Temperature validation reported by J. Govardhan et al. (Govardhan et al., 2011) 

Time 
(min) 

T1 (K) T2 (K) T3 (K) 

Exp CFD Exp CFD Exp CFD 

10 575 594 621 871 735 871 

20 778 843 791 1040 1043 1080 

30 921 912 977 1150 1051 1150 

40 974 938 1053 1170 1123 1222 

 

In another work, Mayr et al. (Bernhard Mayr, Prieler, Demuth, Potesser, & Hochenauer, 

2015) employing experimental validation evaluated the applicability of steady state CFD 

simulation for combustion modeling of flat burners, using steady laminar flame let model 

(SFM), in a lab-scale heat treatment furnace; and reported on the performance of the furnace 

as a function of fuel/oxidizer ratio.  
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Figure 1.18 The lab-scale gas-fired furnace 

studied by Mayr et al. ( Mayr et al., 2015). 

 
Mayr et al. (B Mayr, Prieler, Demuth, Potesser, et al., 2017) recently presented a steady state 

computational analysis of semi-industrial gas-fired furnace validated by experimental 

measurements.  

 

 

Figure 1.19 Semi industrial gas-fired furnace and its relative 
measurement points used in Mayr et al. numerical study ( Mayr, 

Prieler, Demuth, Potesser, & Hochenauer, 2017). 
 

The main goal was the determination of reliable combustion models with lower 

computational demand for future optimization purposes. Detail analysis of the combustion 

phenomena in different fuel/gas ratios and the subsequent heat transfer to the surface of the 

quarrel is presented in their paper. Temperature measurement at some points in the furnace 
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and at the surface of the quarrel was used to validate the numerical simulations. Authors 

proposed an efficient model, from the computational cost point of view, for further 

optimization. According to the authors, the predicted temperature of the furnace wall showed 

a considerable deviation from the measurements but also showed a good level of accuracy. 

The high over prediction of model in one of the fuel/gas ratio case studies (Fig. 1. 20 (c)) was 

accounted for the instabilities occurred during the experimental measurements. 

 

 

Figure 1.20 Comparison between CFD results and experimental 
measurements in a semi-industrial size gas-fired furnace (Mayr, Prieler, 

Demuth, Potesser, et al., 2017).  

 
1.7 Challenges and Objectives 

The literature review provided a large number of studies on different approaches used for 

developing accurate heat treatment processes using experimental and/or numerical 

investigations. However, among works concerning the simulation of gas-fired furnaces, only 

small-scale furnaces or those with a shorter operation time have been mainly considered. 
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Data on simultaneous analyses of thermal interactions inside industrial heat treatment 

furnaces along with large size products heating characteristics are very rare. The majority of 

the studies covered one part of the process, i.e. heating chamber and its details such as 

burners, or products heating characteristic solely. Moreover, experimental measurements due 

to technical challenges have been generally devoted to validating numerical results rather 

than being used as tools to heat transfer analysis. Detail experimental analysis, especially for 

the large size products, that encompasses high temperature gradient in their different 

locations is in demand considering the state of literature. Thus, the first objective of the 

present study is to comprehensively analyze the heat transfer in the heat treatment process of 

large size ingots in full scale gas-fired furnaces using both experimental measurements and 

CFD simulations. This part of the present thesis is aimed to address several missing links to 

the scientific as well as industrial communities. Temperature uniformity of the large size 

parts as a crucial parameter to evaluate the process efficiency was chosen to analyze the 

transient history of large size forged ingots within an industrial gas-fired furnace. 

Experimental measurement results and unsteady CFD predictions were used to analyze the 

temperature evolution of a large size forged ingot in a single loading configuration during the 

heat treatment process based on heat transfer modes in the furnace, fluid flow circulation, and 

vortical structures.  

 

Optimization of furnace residence time inside heat treatment furnaces can significantly affect 

the production cost and fuel usage in the steel industry. On the other hand, this optimization 

along with loading pattern improvement of steel parts in heat treatment furnaces can 

guarantee the uniformity of heat treatment and consequently final products’ quality. 

Residence time and loading pattern improvement were rarely addressed in the literature. 

Among the few reported works, electrical furnaces and small products’ loading patterns were 

only discussed. Therefore the second objective of the study is to carry out a thermal analysis 

on furnace residence time and loading pattern of large size forgings inside gas-fired heat 

treatment furnaces. Specifically, quantification of temperature non-uniformity in a non-

optimized loading pattern and possible improvement using skids and spacers were the 

secondary objectives of this part. A novel hybrid experimental-numerical approach is 
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proposed to improve the residence time of large size steel parts inside gas-fired heat 

treatment furnace.  

 

Different numerical and experimental studies on the heat treatment process inside industrial 

and laboratory scale furnaces were discussed in the presented literature review. However, 

these studies were performed with different research purposes, like product temperature 

prediction, combustion simulation, non-uniformity identification and loading pattern or 

residence time optimization. This makes it difficult to evaluate the strength and limitations of 

numerical approaches in CFD simulations for the prediction of thermal interactions like 

turbulent convection or combustion within the gas-fired furnace. However, little data is 

available on the systematic investigation of CFD results sensitivity to the numerical 

approaches used in the modeling of gas-fired batch heat treatment furnaces. Therefore, the 

third main objective of the present study is to assess the sensitivity of CFD predictions to 

employed numerical techniques in order to have reliable and cost effective simulations of the 

heat treatment process inside large size heat treatment furnaces. To this end, several 

turbulence models as well as combustion modeling approaches were examined both for the 

flow field and scalar predictions (temperature) near the burner and steel parts.  
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CHAPTER 2 
 
 

 NUMERICAL DETAILS FOR THERMAL ANALYSIS OF HEAT TREATMENT 
PROCESS IN GAS-FIRED FURNACE  

2.1 Introduction 

In the present chapter, the principal elements of the numerical approaches that will be 

considered in the thesis will be presented. Specifically, the numerical models for radiation, 

combustion, and turbulence modeling that will be assessed in the present study will be 

introduced. An overall comparison of models for each phenomenon will be presented from 

both computational cost and accuracy points of view.   

 

2.2 Computational Fluid Dynamics (CFD) 

Computational fluid dynamics (CFD) is a branch of mechanical engineering widely used in 

various fluid dynamics and heat transfer phenomena. It has attracted many scientific 

disciplines when dealing with the complicated applications where the conventional 

experimental techniques are difficult to execute or expensive. Although CFD fundamentally 

requires reliable experimental data to validate its predictions with, it can provide valuable 

insight into the nature of fluid dynamics and the phenomena that the available experimental 

facilities cannot capture. Typically a CFD code or software such as ANSYS FLUENT 

(ANSYS, 2016)  contains four main components (Ashgriz & Mostaghimi, 2002): 

•  Partial differential equations which are discretized to supply a numerical set of 

equations that identify and describe the fluid flow, heat transfer, combustion or any 

other flow related interactions.  

• Grid generators that divide the flow domain into small grids or control volumes where 

the equations are solved.  

• Initial and boundary conditions describing the flow pattern that should be defined by 

the user to obtain the reliable data. This part of CFD code is extremely dependent on 

experimental data.  
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• Procedures that control the accuracy, and convergence of the solution.  

 

Due to the wide range of CFD approaches and formulations, in the following sections the 

most important numerical details that take part in the present project will be discussed. The 

topics are selected based on the project demands and the literature review presented in the 

previous chapter.  

 

2.3 Navier-Stokes Equations 

The most important set of equations to predict, describe and simulate the fluid flow, the 

Navier-Stokes equations provide mathematical foundations of fluid flow, heat transfer, mass 

transfer and any other fluid related phenomena. Basically, for an accurate and exact 

prediction and description of all flows, the mass and momentum equations called as, 

continuity and momentum equations should be solved. For the flows that deal with the heat 

transfer or compressibility an additional equation, energy equation, should be considered. If 

the target flow encompasses mixing of the species, the species conservation equation should 

also be solved. Moreover, in the case of reacting flow model, the conservation equation for 

the mixture reaction should be added. Finally in the case of turbulent flow, other additional 

transport equations must be solved to consider the impact of turbulence on the fluid flow 

field (Constantin & Foias, 1988; Patankar, 2018). 

• Conservation of mass: 

In general, for both compressible and incompressible fluid flows, the conservation of mass 

equation called also continuity equation is given by (Patankar, 2018): 

( ) . ρv mS
t
ρ∂ + ∇ =

∂
  (2.1) 

The definition of all the variables and related units are provided in the nomenclature page. 

 

 

• Conservation of Momentum 
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Momentum equation, states that the algebraic summation of all the active forces on a control 

volume should be equal to zero. The differential form of momentum equation is (Patankar, 

2018): 

( ) ( ) ( ) . ρv p . τ
v

v g F
t

ρ
ρ

∂
+ ∇ = −∇ + ∇ + +

∂
  (2.2) 

The stress tensor, τ, is defined as: 

( ) 2 .
3

Tµ v v vIτ  = ∇ + ∇ − ∇  
  (2.3) 

• Energy Equation 

The general differential energy equation or energy conservation equation is: 

( ) ( )( ) ( ). . v . Teff j j eff h
j

E E p k h J v S
t

ρ ρ τ
 ∂ + ∇ + = ∇ ∇ − + + ∂  

   (2.4) 

In this equation effk is the effective conductivity (summation of molecular and turbulent 

conductivities), jJ is the diffusion flux of species j , and effτ is the effective stress tensor. 

Turbulent thermal conductivity which can be determined using turbulence model should be 

considered in case of turbulent flow. The first term of the right-hand side of Eq. 2.4 

represents the conduction energy transformation in the fluid while the second and third ones 

indicate the energy transfer caused by species diffusion and viscous dissipation, respectively 

(Tennekes et al., 1972). Finally, the term Sh represents the chemical reaction heat and any 

other volumetric heat sources such as radiation sources. In the above equation, the 

relationship between the energy, E, and the sensible enthalpy, h, is (Incropera et al., 2007): 
2

 
2

p vE h
ρ

= − +
  

(2.5) 

Where for an ideal fluid on the basis of mass fraction of species j , jY : 

 j j
j

h Y h=
  

(2.6) 

• Solid Regions Energy Equation 

The energy transport in the solid medium is described by the following equation (Incropera et 

al., 2007): 
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( ) .( ) .( ) hh v h k T S
t

ρ ρ∂ + ∇ = ∇ ∇ +
∂

  (2.7) 

The above equation terms are energy storage’s change with time, the energy convection 

transfer due to motion in rotation or movement of solid, (the term v , is calculated from the 

specific movement in the solid zone), conduction heat fluxes (first term in the right hand side 

of the equation) and the volumetric heat sources in the solid medium, respectively. 

 

2.4 Species Transport 

To solve and model the mixing reactions such as combustion in the burners and the transport 

of combustion products inside the furnace the conservation equation of species that includes 

convection, diffusion and reaction source, should be considered for each component 

(Bennett, 1962; Incropera et al., 2007). In the case of heat treatment, the species transport 

with reaction is the objective approach. The species transport formulation for the local mass 

fraction species of, Y୧, for the ith species is (B. Magnussen, 1981): 

( ) ( ) . .i i i i iY vY J R S
t

ρ ρ∂ + ∇ = −∇ + +
∂

  (2.8) 

In which iR is the net rate of the production of thi  component by chemical reaction and iS  

encompasses the other types of sources. The term iJ  is the diffusion flux of species i, which 

depends on the gradient of concentration and temperature. For the turbulent regime the mass 

diffusion can be computed as follows: 

, , t
i i m i T i

t

Tj D Y D
Sc T
μρ

  ∇= − + ∇ − 
 

  (2.9) 

where 𝑆𝑐௧, 𝜇௧, and 𝐷௧ are the turbulence Schmidt number, turbulence viscosity and the 

turbulent diffusivity, respectively. To achieve the exact simulation of mass transfer or species 

transport equation, all the terms and their modeling approaches should be considered and 

evaluated alongside with the geometry. However, the most important term and the key 

parameter to start the mass transfer solution is the reaction modeling. To determine the 

reaction rates in equation (2.8) the three well-known approaches are: 

• Laminar Finite-rate model 
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• Eddy-dissipation model 

• Eddy-dissipation-concept (EDC) 

 

In the first model, the effect of turbulent fluctuations is neglected in the laminar finite-rate 

approach and the reaction rates are specified by Arrhenius kinetic expression. While, in the 

eddy-dissipation approach, the reaction rates are assumed to be dominated by turbulence and 

the computationally expensive Arrhenius chemical kinetic calculations are ignored. The third 

model includes the detailed Arrhenius chemical kinetics in turbulent flames which means 

high computational cost. Since, the eddy-dissipation model has been used in similar studies; 

therefore, this technique will be presented in detail in the next section. Non-premix 

combustion model with equilibrium model will also be illustrated as the model with lower 

computational cost which will be employed in the present study. 

 

2.4.1 The Eddy-Dissipation Model 

As it is mentioned the most important term and the key parameter to start the mass transfer 

solution is the reaction modeling. In the eddy-dissipation model, based on the Magunssen 

and Hjertager study (B. Magnussen, 1981), the net rate of production of thi  species in the 

reaction r , ,i rR  can be calculated as below: 

'
, , , '

, , 

 min R
i r i r w i R

R r w R

YR v M
v

P
k M
ερ

 
=  

  
   (2.10) 

'
, , , ''

, , 

 
pp

i r i r w i N
j r w jj

Y
R v M

k v M
PQ ερ

 
 =
 
 




  (2.11) 

where PY  is the mass fraction of any product species, RY  is the mass fraction of the particular 

reactant, and  P and Q are empirical constants equal to 4.0 and 0.5, respectively. As it can be 

seen in these equations the reaction rate is calculated on the basis of eddy mixing scale, ɛ 𝑘⁄ , 

and the eddy-break up of Spalding (Spalding, 1971).  
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2.4.2 Non-premixed Combustion   

The basic assumption of this combustion modeling is that the thermochemistry of 

combustion can be reduced to a local mass mixture fraction of burnt and unburnt fuel stream 

elements (Poinsot & Veynante, 2005). Using this method, the combustion is simplified to a 

mixing problem. In other words, this modeling approach includes transport equation solution 

for one or two mixture fraction scalars. The mixture fraction, 𝑓, to which the instantaneous 

thermochemical state of the fluid is dependent on, can be determined as a function of mass 

fraction for element 𝑖, 𝑀௜ as follow (Ishii et al., 2002): 

,

, ,

 i i ox

i fuel i ox

M M
f

M M
−

=
−

  (2.12) 

The term 𝑓 can be used to calculate the instantaneous values of density, temperature and 

enthalpy of any mixture components: 

 ( )i i fφ φ=   (2.13) 
In case of second stream presence, the sum of all three mixture fractions in the system is 

always equal to 1: 

sec 1 fuel oxf f f+ + =   (2.14) 
If the diffusion coefficients for all reactant species are equal, the species equations can be 

simplified to one equation written for the mixture fraction. This assumption is acceptable, 

especially for turbulent flow. The transport equation for density averaged application goes as 

follows (Poinsot & Veynante, 2005): 

( ) .( ) . l t
s

t

f v f f S
t

μ μρ ρ
σ

 +∂ + ∇ = ∇ ∇ + ∂  

r
  (2.15) 

Where lμ , tμ and sS  are the laminar viscosity, the turbulent viscosity and the source terms, 

respectively. Besides, the mixture fraction variance ( '2 -f f f= ) equation should be solved 

to predict the exact non-premixed combustion (Poinsot & Veynante, 2005): 

'2 '2 '2 2 '2( ) .( ) . .( )l t
g l d

t

f v f f C f C f S
t k

μ μ ερ ρ μ ρ
σ

 +∂ + ∇ = ∇ ∇ + ∇ − + ∂  

r
  (2.16) 
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In many industrial applications, the combustion does not occur under chemical equilibrium. 

According to the reports in the literature (Bowman, 1991; Sivathanu & Faeth, 1990) for lean 

combustion, as the present work’s case study where the 5% excess air was inputted to the 

burners, thermodynamic equilibrium could be used to describe the process. Therefore, 

equilibrium chemistry with Rich Flammability Limit (RFL) (ANSYS, 2016) should be used 

to accommodate chemical non-equilibrium for the combustion simulation. A β shape 

probability density function (PDF) of turbulence-chemistry interactions is used in the 

software to relate instantaneous values to the averaged mixture fractions (ANSYS, 2016). It 

should be pointed out that the non-premix combustion with equilibrium model requires these 

conditions to be fulfilled: 

• Turbulent flow field 

• A diffusion chemical system that encompasses the discrete fuel and oxidizer entrances.  

• The equal diffusion coefficient for all species (in other words Lewis number in the flow 

field, must be unity), which is a good assumption in turbulent combustion  

• The same type of fuel composition in multi-inlet applications. 

 

In the present study, the applicability of non-premix combustion along with the EDM model 

will be evaluated.  

 

2.5 Radiation 

In the heat treatment process, where the radiant heat flux due to the high temperature of the 

heat treatment furnace, is one of the most important mode of heat transfer; the radiation 

modeling has a great impact on the final simulation result. The equation of radiation 

considering absorption, emission and scattering is as follows (Howell et al., 2015): 
44

2

0

( , ) ( ) ( , ) ( , ) ( , )
4

s
s

dI r s Ta I r s an I r s s s d
ds

πσσσ φ
π π

′ ′+ + = + Ω
r r r r r r r ur

  (2.17) 

Where r
r

, s
r

, s′
ur

and s are position vector, direction vector, scattering direction vector and path 

length respectively. Besides, a , n, sσ and σ denote the absorption coefficient, refractive 

index, scattering coefficient and Stefan-Boltzmann constant, respectively. The terms I, T and 
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φ  refer to radiation intensity, local temperature and phase function. The term( )sa σ+

represents the optical thickness capacity of the medium, which is calculated on the basis of 

the medium gas mixture and the operating conditions. 

 

2.5.1 P-1 Radiation Model  

This model belongs to the general P-N model which is based on the expansion of the 

radiation intensity, I , into an orthogonal series of spherical harmonics (Howell et al., 2015). 

For the P-1 radiation equation the radiation flux can be expressed as follows (Howell et al., 

2015): 
2 4. 4rq aG an Tσ−∇ = −   (2.18) 

Where rq and G are the radiation flux and incident radiation; and the expression . rq−∇ is the 

heat source term. Although the above equation can be modified in the case of non-gray 

radiation applications, the non-gray model assumes a constant absorption coefficient for 

wavelength and constant spectral emissivity at walls. The P-1 model solves equation (2.17) 

as a diffusion equation which means that this model needs a lower amount of CPU usage. 

Besides, it considers also scattering and provides results with a good prediction for the 

combustion applications. The P-1 model specifically provides reliable results for the cases 

where the optical thickness ((𝑎 + 𝜎) × 𝐿) is larger than unity. Optical thickness parameter 

encompasses the simultaneous effect of absorption, scattering and size of the domain. The 

other advantage of this model is its compatibility with complex geometry and curve line 

coordinates (Sazhin, Sazhina, Faltsi-Saravelou, & Wild, 1996). Although this low 

computational cost can be considered as an advantage for the P-1 model, inaccuracies are 

unavoidable due to the fact that this model assumes all the surfaces as a diffusive one, or in 

other words it assumes the isotropic reflection of incident radiation at the surfaces (Howell et 

al., 2015).  
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2.5.2 Discrete Ordinates Radiation Model (DO) 

The DO radiation model (Chui & Raithby, 1993) modifies equation (2.17) to a transport 

equation of radiation intensity by solving the equation for finite numbers of discrete solid 

angles. This solution method is similar to the fluid flow equation’s solution. In the DO 

coupled energy and intensity equations are solved simultaneously in each control volume. 

This model considers the radiation equation in the direction sr  as a field equation and for the 

spectral intensity ( , )I r sλ
r r

 using a gray-band model: 

42

0
.( ( , ) ) ( ) ( , ) ( , ) ( , )

4
s

s bI r s s a I r s a n I I r s s s d
π

λ λ λ λ λ
σσ φ
π

′ ′ ′∇ + + = + Ω
r r r r r r r r r

  (2.19) 

Whereλ , aλ and bI λ is the wavelength, spectral absorption and black body intensity, 

respectively. This model divides the radiation spectrum to m wavelengths band and integrates 

the above equation over each interval. This integration results in transport equations for the 

quantity Iλ λΔ . Therefore, total intensity in each direction and position will be: 

( , ) ( , )k k
k

I r s I r sλ λ= Δr r r r
  (2.20) 

2.5.3 Surface to Surface (S2S) Model 

In this model, the radiation heat transfer between two surfaces is a direct function of the 

radiation view factor, also called the shape factor. This model which requires lower 

computational costs in comparison with the DO model, ignores absorption, emission or 

scattering effect of radiation by the medium. Therefore, the radiation energy balance is 

calculated, as follows (Howell et al., 2015):  

4
, ,

1
 

k

N

out k k k kj out j
j

q T F qε σ ρ
=

= +    (2.21) 

In this equation, Fkj is the radiation view factor between surface k and surface j which is 

calculated based on the size, separation distance and orientation of the surfaces.  
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2.6 Turbulence 

Studies on turbulence can be divided into analytical solutions, experimental investigations 

and numerical simulations. As a result of the highly nonlinear nature of turbulence, 

including, analytical solutions are limited to very fundamental and simple applications such 

as flow over a flat plate, etc. (Davidson, 2011). On the other hand, experimental 

investigations have a significant role not only on the released information about various 

applications, but also on the data production for numerical simulations. Although, high-tech 

measurement techniques and facilities support the experimental investigations, the cost of 

measurement in experimental trials and also the limitation of measurement in these 

applications such as steel heat treatment highlight the role of numerical simulation in 

turbulence determination. Development of the computational equipment over the last 20 

years has led to wide employment of CFD for the simulation of turbulence problems from 

simple applications to highly turbulent flow fields such as combustor simulations, turbine 

blade film cooling and heat treatment industries (Bazdidi-Tehrani, Bohlooli, & Jadidi, 2015). 

There are different approaches to solve the turbulent nature of fluid flows. The most well-

known and common methodology in turbulence area is the Reynolds Averaged Navier-

Stokes (RANS) models which are highly compatible with different phenomena, complex 

geometries and different grid resolutions. Based on the literature review and the research 

scope these models have been selected for the present study and discussed briefly in the next 

sections.   

 

2.6.1 Reynolds Averaged Navier-Stokes (RANS) 

In the RANS based models the variables are usually decomposed into mean (time-averaged) 

and fluctuating parts. The mean values can be achieved by Reynolds averaging (including the 

time averaging, volume averaging and ensemble averaging) that has been introduced by 

Reynolds in 1895. Time averaging which is the most common Reynolds averaging method 

can be used when the turbulent flow has a steady or stationary nature which means that the 
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flow parameters do not vary in time average. The time averaging can be defined as (Bazdidi-

Tehrani, Hatami, & Abouata, 2017): 

1( ) lim ( , )
t T

T
t

F r f r t dt
T

+

→∞

 
=  

 
   (2.22) 

Using this formula, the parameters can be written as follows: 

u U u
p P p
T T T

′= +
′= +
′= +

  (2.23) 

Where ,u p , and T  are the instantaneous velocity, pressure and temperature, respectively. 

The terms ,U P , and T (also can be written as ,U P  and T) represent the time-averaged parts 

while the terms ,u p′ ′ , and T ′ are the fluctuating parts of velocity, temperature and pressure, 

respectively. In should be noted that according to the continuity equation: 

0

0

i

i

i

i

U
x
u
x

∂ =
∂
∂ =
∂

  (2.24) 

By imposing this decomposition to the Navier-Stokes equations, we have (Davidson, 2011): 

( ) 0i
i

U
t x
ρ ρ∂ ∂+ =

∂ ∂
  (2.25) 

( )( ) 2i
ij i j

i j

D U P S u u
Dt x x
ρ μ∂ ∂ ′ ′= − + −

∂ ∂
  (2.26) 

i
i i

DT T u T
Dt x x

α
 ∂ ∂ ′ ′= − ∂ ∂ 

  (2.27) 

Where: 

1
2

ji
ij

j i

UUS
x x

 ∂∂= +  ∂ ∂ 
  (2.28) 

The Eq. (1.8) also can be written as follows: 

( )1 1i
i ij i j i

j i j

U PU u u F
x x x

τ ρ
ρ ρ

∂ ∂ ∂ ′ ′= − + − +
∂ ∂ ∂

  (2.29) 
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As it can be seen the difference between the fundamental Eq. (2.2) and the time-averaged Eq. 

(2.29) is the term i ju uρ ′ ′ which is called Reynolds stress because it has the dimensions of 

stress (Davidson, 2011). This term describes the effect of turbulent diffusion of momentum 

which is stronger than the molecular viscosity in a fully turbulent flow. To close the set of 

equations the Reynolds stress term should be modelled. One of the basic approaches is 

Boussinesq hypothesis, called as constant eddy viscosity, which provides a relation between 

the i ju uρ ′ ′  and the average velocity gradient, as follows (Schiestel, 1983): 

2
3

ji i
i j t t ij

j i i

UU Uu u k
x x x

ρ μ ρ μ δ
 ∂  ∂ ∂′ ′− = + − +    ∂ ∂ ∂  

  (2.30) 

 Where k or turbulence kinetic energy is given by: 

( )2 2 21 ' ' '
2

k u v w= + +   (2.31) 

There are several turbulence models for the description of i ju u′ ′ , that have various degrees of 

complexity on the basis of extra partial differential (or transport) equations that must be 

solved in addition to the three conservation equations. These models can be found from the 

simplest algebraic or zero-equation model to the full Reynolds stress model (FRSM) and 

nonlinear eddy viscosity models (Bazdidi-Tehrani, Mohammadi-Ahmar, Kiamansouri, & 

Jadidi, 2015).  

 

2.6.2 Two-Equation Turbulence models 

Generally, the two-equation turbulence models employ the definition of the turbulence 

viscosity as a function of velocity scale ( sV ) and length scale ( sl ) (Davidson, 2011). 

t s sC V lμμ ρ=   (2.32) 

Where, the velocity scale is usually equal to 1/2k  (or root mean square of turbulence kinetic 

energy). On the other hand, the specification of length scale is different in various models 

which in turn, provide several choices. For instance, the well-known 𝑘 − ɛ (Launder & 

Spalding, 1972) turbulence model assumes that the length scale is proportional to the 3/2 /k ε , 
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where ε  is the turbulence dissipation rate. While, the -k ω  model (Wilcox, 1998) uses the 
1/2 /k ω . 

 

2.6.2.1 𝒌 − 𝜺  Turbulence Model 

The turbulence kinetic energy ( k ) and the turbulence dissipation rate (ε ) equations are the 

two additional transport equations that the standard 𝑘 − ɛ model employs to close the 

Reynolds averaged Navire-stokes equations (Davidson, 2011).  

( ) ( ku ) t
i k b M k

i j k j

kk G G Y S
t x x x

μρ ρ μ ρε
σ

  ∂ ∂ ∂ ∂+ = + + + − − +  ∂ ∂ ∂ ∂   
  (2.33) 

2

1 3 2( ) ( u ) ( )t
i k b

i j j

C G C G C S
t x x x k kε ε ε ε

ε

μ ε ε ερε ρε μ ρ
σ

  ∂ ∂ ∂ ∂+ = + + + − +  ∂ ∂ ∂ ∂   
 (2.34) 

Where kG and bG are the turbulence kinetic energy generations due to the velocity gradients 

and buoyancies. MY  and S represent the compressibility effect and the other source terms, 

respectively. The ANSYS FLUENT (ANSYS, 2016) Commercial code uses the following 

values for the constants in the above equations:  

 

Table 2.1 The values of the 𝑘 − ɛ model constants (ANSYS, 2016). 

Cμ  1C ε  2C ε  kσ  εσ  

0.09 1.44 1.92 1 1.3 

  

These values have been determined on the basis of various numerical simulations. However, 

for special cases there are some corrections to these values such as those reported by Crasto 

et al. (Crasto, 2007) for the atmospheric boundary layer applications. It should be noted that 

the other branch of 𝑘 − ɛ models such as realizable and RNG 𝑘 − ɛ, were introduced on the 

basis of the standard model and were employed in various applications such as heat treatment 

furnaces (Bernhard Mayr et al., 2015). The major difference for realizable model after 

modification of the standard model constants for more complex flow field, is the calculation 
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of eddy viscosity and dissipation rate (Shih, Zhu, & Lumley, 1993). Re-normalization group 𝑘 − ɛ model, also called RNG model, using analytical re-normalization technique with scale 

expansions for the Reynolds stress provides modified constants of standard 𝑘 − ɛ model. 

Besides, 1C ε in this model is replaced by *
1C ε which is calculated from an auxiliary function 

(Yakhot, Orszag, Thangam, Gatski, & Speziale, 1992).   

 

2.6.2.2 𝒌 − 𝝎 Turbulence Model 

The -k ω  (Wilcox, 1998) is a two-equation turbulence model that uses the correlation 

between the length scale and the turbulence viscosity in terms of turbulence kinetic energy 

(TKE) and specific dissipation rate (ω ). This model was reported to present reliable results 

in far wakes, mixing layers and more importantly wall-bounded flows and free shear flows 

which correspond to the conditions observed in heat treatment furnaces.  The standard -k ω  

is determined by the following two transport equations (Wilcox, 1998): 

( ) ( ku )i k k M k
i i i

kk G Y S
t x x x

ρ ρ
 ∂ ∂ ∂ ∂+ = Γ + − + ∂ ∂ ∂ ∂ 

  (2.35) 

( ) ( u )i
i i i

G Y S
t x x xω ω ω ω

ωρω ρω
 ∂ ∂ ∂ ∂+ = Γ + − + ∂ ∂ ∂ ∂ 

 (2.36) 

Where kG , Gω , Y , and S  are the TKE production due to velocity gradient,ω  production 

due to velocity gradient , dissipation term and other source terms. Also, the terms kΓ  and ωΓ  

are the diffusion coefficients, which can be calculated as follows: 

t
k

k

μμ
σ

Γ = +   (2.37) 

t
ω

ω

μμ
σ

Γ = +  (2.38) 

Whereμ , tμ , kσ , and ωσ  are the molecular viscosity, turbulence viscosity, TKE Prandtl 

number and Prandtl number for ω , respectively.  

*
t

kρμ α
ω

=   (2.39) 
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Where α* has the same role and meaning as Cµ in Eq. (2.32). In the -k ω  model, α* is 

calculated dynamically to provide a better compatibility with low Reynolds regions. Another 

-k ω  model that is modified to account for the transport of the principal turbulent shear 

stress, is Shear-stress transport (SST) 𝑘 − 𝜔 model (Menter, 1994). This model has a 

blending function to use the capabilities of near wall region of standard 𝑘 − 𝜔 model with 

the free-stream independence of the 𝑘 − ɛ model in the far field. The definition of turbulent 

viscosity as well as modeling constant is modified in SST 𝑘 − 𝜔 model with respect to 

standard 𝑘 − 𝜔 model (Menter, 1994).  

 

2.6.2.3 Reynolds Stress Model (RSM) 

The Reynlods stress model (Cant, 2001; Launder, Reece, & Rodi, 1975) is one of the most 

elaborate turbulence models and is the most physically sound RANS based model. In two 

equation models, the turbulent viscosity is calculated using empirical or theoretical 

correlations between turbulence kinetic energy and eddy dissipation rate for specific flow 

conditions. The RSM model, on the other hand, solves all Reynolds stresses and turbulence 

dissipation instead of using eddy-viscosity concept. Thereby, RSM solves seven turbulence 

transport equations for three dimensional flows, considering the turbulence anisotropy (in 

contrast to two equation models which assume isotropic turbulence field). This model is 

more accurate for prediction of complex flows involving swirl, rotation and rapid changes 

that correspond to the gas-fired heat treatment furnaces which use high momentum burners 

and have a self-induced turbulence in the treatment chamber (Cant, 2001). 

 

2.6.3 Comparison between Turbulence Modeling Approaches 

Fig. 2.1 presents an overall illustration of comparison between above mentioned turbulence 

modeling approaches from the computational cost point of view.  
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Figure 2.1 Comparison of computational cost per iteration for 
different available RANS models (ANSYS, 2016). 

 

As it can be seen in Fig. 2.1, the computational cost per iteration increases from 𝑘 − ɛ group 

to Reynolds stress model. On the other hand, as briefly mentioned, each model has specific 

features and capabilities that should be considered for proper selection of the models and 

application to the thesis objectives and results interpretations. Below is a summary of each 

model capabilities and specifications (ANSYS, 2016; Davidson, 2011):   

 

Standard 𝒌 − ɛ: In this model, coefficients are calculated based on experiments on simple 

fully turbulent flows. This model has been widely used for thermal analysis of gas-fired 

furnaces (Denison, Borodai, Fox, & Bockelie, 2009; Y. J. Liu et al., 2016; C. Zhang et al., 

2000). However, this model has limitations in complex flow including strong streamline 

curvature, separation or severe pressure gradient.  

 

RNG 𝒌 − ɛ: This model is a modified form of standard 𝑘 − ɛ model used for complex 

flows. It shows better results for flows involving, boundary layer separation, bluff bodies, 

moderate swirl and strong curvature making it a good candidate for the thermal analysis of 

gas-fired heat treatment furnace. However, the applicability of the model considering the 

flow field should be evaluated in the simulation of gas-fired heat treatment furnaces.  

 

Realizable 𝒌 − ɛ: This model theoretically performs similar to RNG 𝑘 − ɛ in a wide range 

of applications. This model is generally easier to converge in comparison to RNG and has 
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been reported to provide accurate results in continoues gas-fired furnace simulations (B 

Mayr, Prieler, Demuth, Moderer, & Hochenauer, 2017; Rezazadeh, Hosseinzadeh, & Wu, 

2019; Tang et al., 2017). Therefore, this model along with other two equation 𝑘 − ɛ models 

will be assessed in the present context.  

 

Standard 𝒌 − 𝝎: Standard 𝑘 − 𝜔 model has better performance for boundary-layer and 

free shear flows that can be found in several industrial flows like gas-fired furnaces 

(Denison et al., 2009). Regarding the fact that the main objective of the present research is to 

accurately predict the large size block temperature, this model is considered as one of the 

RANS based models.  

 

SST 𝒌 − 𝝎: This model that combines shear layer capabilities of the standard 𝑘 − 𝜔 and 

away from wall of standard 𝑘 − ɛ has provided several reliable results in industrial 

applications including flow over a bluff body and impingement jets. However, its 

applicability based on the Re number and flow field in the gas-fired furnaces should be 

evaluated.   

 

RSM: In this model, Reynolds stresses are solved using seven equations without an 

isotropic assumption of eddy viscosity. It makes this model as the most sound RANS model. 

However, extra CPU time and stability (due to closing several coupling equations) issues are 

the main concerns of RSM. It has been reported that RSM gives reliable results in complex 

3D flows with strong streamline curvatures, swirl combustors and rotating flows such as 

gas-fired continuous furnaces (B Mayr, Prieler, Demuth, Potesser, et al., 2017; Prieler et al., 

2016). Therefore, the RSM along with other numerical models will be evaluated in the 

thermal analysis of large size forgings heat treatment within gas-fired furnaces.  
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CHAPTER 3 
 

EXPERIMENTAL MATERIALS AND METHODS 

3.1 Introduction 

The present chapter contains the details of the conducted industrial and laboratory scale 

measurements of the thesis. It will start with the details of furnace and temperature 

measurements in an industrial scale setup. Then, a calibration process of measurements as 

well as estimated thermo-physical properties will be presented. The laboratory physical 

simulation of the heat treatment process and its subsequent evaluation will be provided in the 

last section of the present chapter.  

 

3.2 Furnace Description 

The present investigation was conducted on an industrial gas-fired heat treatment furnace 

located at Finkl steel, St-Joseph-de-Sorel, Quebec (Finkl Steel Inc). The furnace medium 

drawings, including the dimensions are provided in Fig. 3.1.  

 

  

Figure 3.1 Dimensions and geometry of the car bottom gas-fired furnace in the (a) front 
view and (b) side view sketches (Bohlooli Arkhazloo et al., 2019). 

 

  



52 

Internal dimensions of the furnace in 𝑋, 𝑌 , and 𝑍 directions were 3.05 (m), 3.28 (m), and 

8.83 (m), respectively. The furnace has 18 high-velocity Tempest cup burners (Fives North 

American Combustion, Inc.) located on the two sides of the furnace, along the Z direction 

with nine burners on the upper section of the furnace left wall, (upper burners) and the nine 

other in the lower section of the right wall (lower burners). This asymmetric arrangement 

improves temperature uniformity by self-induced recirculation and turbulence. Nine skids are 

positioned between the burners for placing the forged blocks.  

 

  

Figure 3.2 Self-induced turbulence within the gas-fired 
furnace (Pyradia Inc.). 

 
 The furnace temperature during the experimental measurements was controlled using 

a Honeywell UDC 2500 PID controlling system. PID controller divided the furnace length 

into three similar zones and by controlling the gas flow rate in each zone balanced the 

geometrical effects (door or back-wall) on the temperature variations in these zones. It 

allowed considering the one-third Periodic modeling of the furnace which is discussed in 

chapter 6. Fig. 3.3 shows the three zones of the furnace and periodic lines considered in the 

methodology of chapter 6.  
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Figure 3.3 Schematic view of three zones of the furnace.  
 

3.3 Temperature Measurements 

Temperature measurements were divided into two steps of loaded and unloaded furnace to 

evaluate the loading effect on the temperature distribution inside the furnace and within the 

workpiece.  

  

Firstly, sixteen standard sheathed K type thermocouples (TC) were installed at various 

positions of the empty furnace and a heating cycle consisting of different temperatures of the 

heat treatment process was applied (See Fig. 3.4). A ceramic material was used to 

encapsulate the thermocouples in the furnace medium. The results were interpreted not only 

to confirm the temperature uniformity of the furnace and its capability for the research study, 

but also to provide a cornerstone for the heat transfer analysis of the loaded furnace.  
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Figure 3.4 Experimental setup for temperature measurements 
of unloaded furnace in different locations of the furnace during 

the uniformity test. 
The uniformity test results of the unloaded furnace are reported in Fig. 3.5. All of 16 TCs 

showed nearly the same temperature (conforming to the set temperatures) during the process. 

Therefore, only 4 of TCs (marked with red circles) are presented here. Also, the time history 

of the standard deviation of all the 16 thermocouple measurements is depicted in this Figure. 

The maximum standard deviation value during the heating history was 5.28°C and time 

averaged value of the deviation was 2.49°C. It is clear that the furnace medium has an 

acceptable uniformity at different operating temperatures. Maximum deviations were 

observed in the ramp stages, where the furnace increases its temperature to reach to the next 

target temperature.  
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Figure 3.5 Temperature profile of furnace uniformity test and associated 
standard deviation. 

 
In the loaded furnace, step of the temperature measurements, transient temperature evolution 

of a 1.4 × 0.89 ×2.72 (m3) forged ingot was recorded by placing 11 K-type thermocouples at 

different locations of the block. TCs were installed at different surfaces of the forged block to 

evaluate and analyze the heating pattern around the workpiece. To ensure a solid attachment 

of all TCs, small holes (with the depth of 1(cm)) were drilled and thermocouples were solidly 

embedded at the bottom of the holes. The empty space of the hole was filled with iron 

powder of the same steel and the top of the hole was sealed with iron cement and a fixing 

screw (See Fig. 3.6). The standard accuracy of the K-type thermocouples with a stainless 

steel sheath according to ISA Standard is equal to ± 6.63 K (ISA Standard, 1982), for the 

furnace operating temperature ranges. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 3.6 Procedure of thermocouples embedding on the forged block: a) filling the drilled 

hole with iron powder, b) sealing, c) screw fixing and d) wire locating 

 

Six other TCs on the left and the right walls of the furnace and two TCs in the furnace 

medium were positioned to track the average furnace temperature. Moreover, to evaluate the 

heat loss through the furnace exhausts three thermocouples were installed at the center line of 

the chimneys (see section 3.5). The results were used both to confirm the CFD simulation 

results and heat balance analysis of the gas-fired furnace (see section 3.5).  
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Figure 3.7 Installed thermocouples in the furnace chimneys 
for exhasut heat analysis. 

 

A schematic view of the thermocouple positions on the large size forge block different 

surfaces is presented in Fig. 3.8. These positions were selected after preliminary simulation 

of the process and identification of the critical regions around the block. The center point of 

each surface of the block was instrumented by thermocouples. Besides, TC-1 was installed to 

record the stagnation area’s temperature (the region where the combustion products were 

blocked by the forged ingot’s surface). TC-2 recorded the skid affected area; while TC-9 and 

TC-4 were installed to quantify and analyze the non-uniformities on the same surfaces of the 

block considering their orientations with respect to the burners and block edges. 
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Figure 3.8 Schematic views of 11 thermocouples locations on the instrumented forged ingot. 
 

Due to the large size of the furnace and workpiece, extensive care was taken to insure 

accurate installation of thermocouples and exact positioning and alignment of the block on 

the car-bottom furnace. However, a 1–2 (cm) error was estimated in the determination of 

probes positioning (see Fig. 3.8 and Fig. 3.9). Two other forged blocks with 1.4 × 0.79× 2.72 

(m3) dimensions were located in the front and back of the block to simulate the actual 

industrial practice. Fig. 3.9 shows two pictures of the forged ingots before and after 24 hours 

of the heat treatment process.  

 

 

Figure 3.9 Forged ingots including test block: (a) before and (b) after the heat 
treatment and opining of the furnace door. 
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3.4 Flow Measurements 

In the present study, gas flow metering were conducted using three pressure transducers 

along with a mini-max Honeywell electronic gas volume correctors installed on the furnace. 

Also, three pressure transducers were installed in three different zones of the furnace to 

measure the air usage for the burners’ combustion. During the heat treatment process, the 

furnace was working under 5% excess air.  

 

 

Figure 3.10 Installed flow metering devices on the gas-fired furnace burners 
to measure gas consumption. 

 

3.5 Calibration Test 

A set of calibration test was conducted on a small size block before the real scale 

measurements of the present study. The aim was to calibrate the measurement devices as 

well as measurement procedure. Besides, evaluation of thermo-physical properties predicted 

by the JMatPro software (Saunders, Guo, Li, Miodownik, & Schillé, 2003) and furnace 

performance (through calculation of wall and chimney’s heat losses) were other objectives of 

this set of experimental measurements.  

 

Due to the difficulties in temperature measurement of the large size block’s center with the 

elaborated measurement techniques (vulnerability to cracks), a small size forged ingot was 

selected for this setup. The studied test block was a 0.51×0.77×1.03 (m3) forged ingot with 

the same chemical composition of the project’s steel. The chemical composition of the high-
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strength medium carbon steel of the present study was (Wt. %) C: 0.35 – V: 0.15 – Mn: 0.99 

– Si: 0.41- Ni: 0.5 – Cr: 1.86 – Mo: 0.53 – Cu: 0.16.  

 

Seventeen TCs were used to record the temperature evolution of the test block. This number 

included thirteen TCs installed on different surfaces of the block (as depicted in Fig. 3.11) as 

well as three TCs that were located to track the quarter and center of the workpiece. Two 

other large size blocks with 1.4 × 0.79× 2.72 (m3) dimensions were loaded on the furnace to 

simulate the actual industrial practice (See Fig. 3.12). During the calibration test, gas flow 

metering as well as exhaust temperature measurements were conducted. 

 

 

Figure 3.11 Schematic sketches of 17 thermocouples locations on the 
instrumented test block. 
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Figure 3.12 Instrumented test block loaded on the  car-bottom 
furnace. 

 
 

3.5.1 Block Measurements and Conductivity Calibration 

To calibrate the measurement procedure and also validate the thermo-physical properties 

estimated by JMatPro software a 3D thermal transient FEM model of the test block was 

generated in ANSYS software. The experimentally measured temperatures at the surface of 

the test block were imposed as the boundary conditions to the model including 129406 

tetrahedron elements. Thermo-physical properties estimated by the JMatPro software 

(depicted in Fig. 3.13) were used in the material properties specification of the model. 

Results of the numerically predicted transient temperature history of the test block’s center 

and corresponding experimentally measured temperature in the calibration test are presented 

in Fig. 3.14. 
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Figure 3.13 Temperature dependant thermo-physical properties of 
the ingot estimated by JMatPro.  

 
 

 

Figure 3.14 Comparison between numerically predicted and 
measured temperature evolution of test block’s center point. 

 

Results showed a good agreement between the FEM predictions and experimental 

measurements with a maximum deviation of 2.3%. The difference between the experimental 



63 

and numerical results is reasonable considering the dimensions of the block and limited 

number of TCs on the surface. Therefore, further investigations could be carried out using 

developed measurement procedure and estimated thermo-physical properties.  

 

3.5.2 Furnace Refractories Heat loss Calibration 

In the present study the refractories heat loss was calculated based on two different methods. 

The first approach was to calculate the heat loss using approach proposed by Hadala et al. 

(Hadała et al., 2017). To do so temperature-dependent thermal conductivities of furnace 

refractories (along with the JMatPro software’s estimations for the forged block) should be 

defined to analyze the transient heat transfer in the heat treatment furnaces. Thermal 

conductivity of furnace refractories, on the basis of the technical documentations of the 

material used in the furnace, was available as it can be seen in Table 3.1.  

 

Table 3.1 Thermal conductivity of the gas-fired furnace refractories                                       
(Morgan thermal ceramics, 2015). 

Average Temperature 260o C  538o C  816o C  1093o C  

 (W/m.K) 0.08 0.16 0.28 0.43 
 

This calculation resulted in an average value of 594 (w/m2) heat losses for the furnace 

refractories. The second approach was to evaluate the refractories heat loss through zero 

dimension heat balance analysis of the furnace. The heat balance in a typical natural gas-fired 

furnace can be expressed as depicted in Fig. 3.15.  
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Figure 3.15 General energy balance in industrial furnaces            
(Mallela et al., 2019). 

 
In the present study the effect of minor heat losses like opening losses or fixture losses and 

all other losses was added to the refractory losses to achieve a heat balance. Therefore, using 

the average temperature of the test block (predicted by the FEM model) and extrapolation of 

its results to the other two large size forged ingot (located on the furnace during the 

calibration test), the useful output of the gas combustion to the load was estimated. On the 

other hand, the available heat (see Fig. 3.15) in the furnace was calculated using computer 

based charts of the furnace manufacturer (Five Group Inc.). In these charts the amiable heat 

is calculated based on the furnace exhaust temperature and excess air used in the combustion. 

To do so, experimentally measured temperatures of the furnace chimneys were used 

considering the 5% excess air of the combustion. The difference between the calculated 

useful heat to the load (by FEM) and available heat (by thermal balance analysis) resulted in 

an averaged value of 622.5 (w/m2) heat losses through furnace refractories. Considering the 

size of the furnace and accuracy of the measurement devices as well as employed 

correlations the calculated difference of 4.5% was reasonable. It should be noted that the 

calculated heat loss using furnace heat balance analysis also contains other types of furnace 

losses which is not considered in the approach of Hadala et al. (Hadała et al., 2017). 

Therefore, this analysis further confirmed that the experimental measurement procedure as 
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well as estimated thermo-physical properties are valid and further investigations can be 

carried out using the developed approach.  

 

3.6 Laboratory Measurements 

As a part of the present study, a numerical-experimental hybrid approach was developed to 

improve the furnace residence time of the large size block inside the gas-fired heat treatment 

furnace (see chapter 5). In this hybrid approach a series of laboratory experimental 

measurements was conducted using high resolution dilatometer machine (as the physical 

simulator of the furnace medium), and hardness measurements. Several non-isothermal and 

isothermal tempering cycles were physically simulated using the high resolution TA DIL 

805A/D dilatometer machine. The heating rates using CFD results were adjusted to simulate 

that of actual heating cycle of forgings during heat treatment inside the furnace. To do so 

cylindrical samples 10 (mm) in length and 4 (mm) in diameter were cut from near the surface 

and central zones of the slab with the same chemical composition of the industrial scale 

forged block, which had underwent open-die forging at around 1260oC.  Rockwell C 

hardness measurements were conducted according to ASTM E18-19 on the polished surfaces 

of the heat treated samples to determine the impact of the heat treatment conditions on 

mechanical properties. A minimum of 25 measurements were used for all the tests with a 

load of 1 kg and a dwell time of 10 s. 

 

3.7 Project Approach 

A summary of project approach including sequences of different numerical/experimental 

steps of the research (discussed in chapters 2 and 3) is illustrated through in Fig. 3.16. Also, 

the flowchart of simulations and subsequent optimizations including numerical details 

(modeling, grid generation, numerical approaches, validation and post process) is shown in 

Fig. 3.17 (see also methodology sections of chapters 4, 5 and 6). 
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Figure 3.16 Successive numerical/experimental steps of the research through optimization 
objective 
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Figure 3.17 CFD simulations and subsequent optimization flowchart 
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Abstract 
 
Comprehensive unsteady analysis of large size forged blocks heating characteristics in a gas-

fired heat treatment furnace was carried out employing experimentally measured 

temperatures and computational fluid dynamics (CFD) simulations. Heat and fluid flow 

interactions, consisting of turbulence, radiation and combustion, were simultaneously 

considered using 𝑘 − ɛ, DO and EDM models in a three dimensional CFD model of the 

furnace, respectively. Applicability of the S2S radiation model was also evaluated to quantify 

the effect of participating medium and radiation view factor in the radiation heat transfer. 

Temperature measurements at several locations of an instrumented large size forged block 

and the furnace chamber were performed. A maximum deviation of about 7% was obtained 

between the model predictions and the experimental measurements. Results showed that 

despite the unloaded furnace had uniform temperature distribution, after loading, product 

surfaces experienced different heating rates, resulting in temperature differences up to 200 K. 

Findings were correlated with furnace geometry, vortical structures and flow circulations 

around the workpiece. Besides, S2S model demonstrating reliable results highlighted the 
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importance of radiation view factor optimization in this application. The study could directly 

be employed for optimization of the heat treatment process of large size steel components. 

 

Keywords: Heat treatment, CFD simulation, Gas-fired furnace, Temperature measurement, 

Heating uniformity, Radiation modeling 

 
Nomenclature   
 
Latin symbols 
 
a  Absorption coefficient  𝐸 Energy 
Fkj View factor between surface 𝑘 and surface j 
g Gravity ( 2/m s ) 

z
iJ  Diffusive flux of chemical species 

h  Enthalpy ( /J kg ) 
I Radiation intensity 
k  Turbulence kinetic energy ( 2 2/m s ) 
keff Effective conductivity 𝑚ሶ  Mass flux ( 2/ m .kg s ) 
n  Refractive index 
p  Pressure (Pa) 

iq , The generic source term  

rq  Reaction heat term 𝑟 Position vector 
zR  Production rate of thz  component  

,z rR  Production rate of thz  component in the reaction 

Re Reynolds number (ud μ ) 
Sc  Schmidt number 

zS  Source term of thz  component  
s  Path length 
sr   Direction vector 
s′r   Scattering direction vector 
t  Time (s) 

Tt  Total heat treatment time (s) 



71 

T  Temperature (K) 
iu  Reynolds-averaged velocity in tensor notation 
iu′  Resolved fluctuating velocity components 

Y  Mass fraction of species 
X, Y, Z Direction of coordinate axes 
  
Greek symbols 
ε  Turbulence dissipation rate ( 2 3/m s ) 

kε  Surface emissivity  
′Ω  Solid angle 

ijτ  Viscous stress tensor  

tμ  Turbulence eddy viscosity( . /kg m s ) 
σ  Stefan-Boltzmann constant  

sσ  Scattering coefficient 
ρ  Density ( 3/kg m ) 

kρ  Surface reflectivity 
' '
i ju uρ  Reynolds stress ( 2/ m.kg s ) 

  
Superscripts 
' Fluctuations with respect to a Reynolds  averaging 
  
Subscripts  
eff Effective 
, ,i j k  Tonsorial indices 

z  thz species  
  
Abbreviation 
3D Three dimensional 
CFD Computational Fluid Dynamics 
DO Discrete ordinates model 
S2S Surface to surface 
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4.1 Introduction 

A significant number of high strength steel parts used for critical applications in energy and 

transportation industries acquire their required properties through a sequence of heat 

treatment processes often called Quench and Temper (Q&T) (Totten, 2006). The heating 

process is one of the most important steps since major microstructural changes (grain 

refinement, phase transformation, etc.) take place, that have a direct impact on the final 

mechanical properties (Kang and Rong, 2006). Hence, heat transfer from the furnace to the 

work piece, which fundamentally depends on the temperature distribution inside the furnace, 

significantly influences the quality of the final product (Gao et al., 2000). The process 

becomes more critical when it comes to the heat treatment of large size parts, such as turbine 

shafts. Specifically, a non-uniform temperature distribution may result in local changes in the 

microstructure, leading to non-uniform properties in different locations of the final part. 

Therefore, accurate temperature prediction of the parts necessitates a quantitative analysis of 

the transient heating and an understanding of thermal interactions within the furnace.  

 

Comprehending the complexities of the thermal field, along with the turbulent fluid flow 

inside the heat treatment furnace is very challenging. Complicated load-gas-furnace thermal 

interactions, including transient convection-radiation heat transfer, impose strong non-linear 

thermal boundary conditions to the load. Chapman et al. (Chapman et al., 1990) employed 

analytical and Gao et al. (Gao et al., 2000) used semi analytical methods, to develop general 

correlations for the heat treatment schedule and temperature evolution of products. However, 

analytical studies are generally limited to linear problems and become very complex when 

non-linear transient conditions or interactions between phenomena are included. On the other 

hand, experimental measurements in this particular field of study are very challenging; 

especially, in the case of large size products, reliable data acquisition during the process is 

more complex. 

 

Therefore, numerical methods such as computational fluid dynamics (CFD) offering 

simultaneous analysis of turbulent fluid flow, combustion and conjugate heat transfer could 
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be an excellent tool for simulating and subsequently optimizing the heat treatment process. 

3D full scale numerical models are critical in the implementation process of smart 

manufacturing technology’s (Industry 4.0) practices. Different furnaces such as electrically 

heated or gas quenching furnaces have been studied using CFD (Cosentino et al., 2013; Hao 

et al., 2008; J. Wang et al., 2008). However, among the above furnaces, the simulation of the 

heat treatment in gas-fired furnaces are more complex due to reactive flow combined with 

turbulent transport and conjugate heat transfer including absorbing and emitting hot 

combustion products. Inherently, the problem is more acute when it comes to large size 

furnaces and therefore little data is available in the scientific literature. Recently, Liu et al. 

(Y. J. Liu et al., 2016) using CFD, proposed a basic model for increasing the uniformity in 

continues gas-fired furnaces. Mayr et al. (B Mayr, Prieler, Demuth, Moderer, et al., 2017) 

used a one-step steady state CFD approach and Tang et al. (Tang et al., 2018) a combination 

of 3D CFD and 2D finite difference methods to predict temperature evolution in pusher type 

gas-fired furnaces. However, very little data is available on large size batch type furnaces. 

Besides, most of the experimental studies have been used as a validation tool of the 

simulation. The limited published studies have been devoted to one aspect of the process 

(i.e., burner positions, furnace chamber, or product heating characteristics). For example, 

Danon et al. (Danon et al., 2011) assessed burner positioning effects on the performance of 

multi-burner combustion furnace and Galletti et al. (Galletti et al., 2013) mainly focused on 

different combustion models for the burner simulation inside a semi-industrial furnace. 

Prieler et al. (Prieler et al., 2015) employing experimental validation demonstrated the 

applicability of CFD for combustion modeling of flat burners in a lab-scale heat treatment 

furnace. Recently, Mayr et al. (B. Mayr, Prieler, Demuth, Potesser, et al., 2017) presented a 

combustion model, with lower computational demand, for semi-industrial gas-fired furnaces. 

 

The objective of the present study is therefore to carry out a comprehensive analysis of heat 

transfer in the heat treatment process of forged blocks in a large size gas-fired furnace 

employing both experimental measurements and CFD simulation. The experimental data was 

generated through the instrumentation of the furnace chamber (loaded and unloaded) as well 

as the different surfaces of the block during the heat treatment process. Unsteady CFD 
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analysis using a combination of 𝑘 − ɛ, EDM and DO models was employed to identify the 

effects of different geometrical and process related parameters on corresponding heat transfer 

modes. In addition, S2S radiation model was employed to assess its applicability in this type 

of heat treatment furnaces and to quantify the effect of radiation heat transfer parameters on 

the temperature evolution of the product.  

 

4.2 Experimental procedures 

The instrumented furnace was a 3.05×3.28 ×8.83 (m3) car bottom gas-fired furnace equipped 

with 18 high-velocity cup burners (Baukal Jr, 2003) located on the two sides of the furnace, 

along the Z direction with nine burners on the upper section of the furnace left wall, (upper 

burners) and the nine other in the lower section of the right wall (lower burners).  

 

 

 

Figure 4.1 Dimensions and geometry of the car bottom gas-fired furnace and (b) 
Schematic views of  thermocouples locations on the instrumented forged ingot. 
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Under ideal operational conditions, the burner flame length and the combustion product 

velocity at the exit of burner should be 0.508 (m) and 107 (m/s), respectively. Nine fixing 

bars with a cross section of 0.25 (m) × 0.25 (m) and a length of 2.60 (m) are positioned 

between the burners for placing the forged ingots. The furnace was operated under a positive 

pressure of approximately 0.2 (mbar) to minimize any air entry. The furnace medium 

drawings, including the dimensions are provided in Fig. 4.1 (a). Experimental measurements 

were divided into two steps of loaded and unloaded furnace to evaluate the loading effect on 

the temperature distribution inside the furnace and on the forged block. Sixteen-standard 

sheathed K-type thermocouples (TC) were installed at different positions of the unloaded 

furnace; and temperature evolution during an entire heat treatment cycle (i.e. heating, 

isothermal holding, and cooling). The results were used both to confirm the temperature 

uniformity of the furnace and to provide a basis for the heat transfer analysis of the loaded 

furnace.  

 

Also, temperature evolution in the loaded furnace was recorded by placing 11 K-type TCs at 

different locations of a 1.4 × 0.89 ×2.72 (m3) forged block. These thermocouples were fixed 

to the different surfaces of the block to evaluate the heating pattern around the workpiece 

(See Fig. 1(b)). To ensure a solid attachment of all TCs, small holes were drilled and TCs 

were solidly embedded at the bottom of the holes. The empty space of the hole was filled 

with iron powder of the same steel and the top of the hole was sealed with iron cement and a 

fixing screw. The standard accuracy of the K-type thermocouples with a stainless steel sheath 

is equal to 0.75 T± × (ISA Standard, 1982), which corresponds to an accuracy of ±6.63 (K) 

for the furnace operating temperature ranges. Considering the large size of the furnace and 

workpiece, extensive care was taken to insure accurate installation of the 11 TCs and exact 

positioning and alignment of forged ingot on the car-bottom furnace; however, a 1–2 (cm) 

error was estimated in the determination of probes positioning. In order to simulate heat 

transfer conditions, as close as possible to real operational conditions, two other forged 

blocks with 1.4 × 0.79× 2.72 (m3) dimensions were also placed in the front and back of the 

instrumented block. 
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4.3 Computational Details 

4.3.1 Flow simulation 

A transient CFD simulation applying a pressure-based solver was employed to solve the 

density weighted Reynolds-averaged Navier-Stokes (RANS) equations, as follows (ANSYS, 

2016): 
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∂ ∂
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where, the stress tensor, 𝜏௜௝, is given by: 
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and the diffusive flux of combustion product species is defined by the Fick’s law:  
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z
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r
 

(4.5)  

The definition of all the variables and related units are provided in the nomenclature page. 

According to the literature (Liu et al., 2014) the two-equation standard -k ε turbulence model 

(Launder & Spalding, 1972), could be reliably used to determine the turbulence associated 

with the gas combustion in the gas-fired furnaces by solving the additional turbulence kinetic 

energy (𝑘) and dissipation rate (ɛ) equations (Launder & Spalding, 1972).  
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4.3.2 Radiation modeling 

In the present work, the discrete ordinates (DO) model (Chui & Raithby, 1993) was used to 

solve the radiative transfer equation (RTE), Eq. (4.6), considering the absorption and 

emission effects. 

d I (௥⃗,௦⃗)
ds

( )sa Iσ+ + (𝑟, 𝑠) 4
2n

4
sTa σσ

π π
= +

4

0

I
π

 (𝑟, 𝑠) (𝑟, 𝑠) d ′Ω  (4.6) 

I is the radiation intensity and ( )sa σ+ is the optical thickness of the medium. Due to the 

presence of combustion products the weighted-sum-of-gray-gases model (WSGGM) using 

the coefficients provided by Smith et al. (Smith, Shen, & Friedman, 1982) was employed to 

compute the radiative properties inside the furnace. For WSGGM model, the domain-based 

approach was employed to calculate the mean beam length (ANSYS, 2016).  

 

The applicability of the S2S model, as a computationally effective method in the optically 

thin medium, was also evaluated in the present work along with the DO model. The S2S 

model assumes any absorption, emission, or scattering of radiation by the medium can be 

ignored; thereby, reducing the computational cost by only considering the surface-to-surface 

radiation. In this model, the radiation heat transfer to a surface from another surface is a 

direct function of the surface-to-surface view factor. Therefore, the radiation energy balance 

for each surface follows Eq. (4.7). 
4

, ,1

N
out k k k k kj out jj

q T F qε σ ρ
=

= +    (4.7) 

kjF is the view factor between surface 𝑘 and surface j. 

 

4.3.3 Combustion modeling 

Combustion inside the burner and furnace domains was modeled using the eddy-dissipation 

model (EDM). It should be noted that, because in the gas-fired furnace the burners create 

high velocity combustion products, the Arrhenius chemical kinetic calculations were not 

considered thereby the computational cost is significantly reduced. In EDM, the species 
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transport formulation for the local mass fraction species (Y୸), for the zth species, was solved 

assuming that the reaction rates were dominated by turbulence (B. F. Magnussen & 

Hjertager, 1977) Therefore, the species transport equation becomes as follows (ANSYS, 

2016): 

( ) ( ) . .z z z z zY vY J R S
t

ρ ρ∂ + ∇ = −∇ + +
∂

&&   (4.8) 

where, zR&represents the net production rate of the zth component. In the above equation, the 

reaction rate is calculated on the basis of eddy mixing scale, 𝑘/ɛ, and the eddy-break 

(Launder & Spalding, 1972). 

 

4.3.4 Numerical simulation procedure and boundary conditions 

CFD simulations were carried out using the finite-volume based ANSYS-FLUENT software 

(ANSYS, 2016). The unsteady SIMPLE algorithm (H K Versteeg & Malalasekera, 2007) 

was applied to 15,155,000 hexahedral non-uniform computational grids as illustrated in Fig. 

4.2. Grid value includes 356,000 non-uniform cells in each burner domain (6,408,000 in total 

for 18 burners) and finer grids near the burner exit to capture the combustion phenomenon 

and heat and fluid flow coming from burners to the furnace domain. Non-uniformly 

distributed grids with finer grid sizes near the walls and burner interfaces were employed to 

consider the effects imposed by velocity and thermal boundary layers. Also, second order 

discretization is used for the simulations. Averaged heat loss of 594 (W/m2), calculated based 

on the approach  proposed by Hadata et al. (Hadała et al., 2017), was applied to the furnace 

walls. The emissivity of the furnace refractories and the steel workpiece were set to 0.75 and 

0.8 (corresponding to an oxidized steel surface), respectively. The mass flow inlet boundary 

conditions with averaged values of 0.018 (kg/s) and 0.516 (kg/s) were considered for the gas 

and air inlets, respectively, while pressure outlet was considered for the chimney exhaust. 

Calculations at each time step continued up to a convergence criterion (residual) of 10-5, 10-6, 

and 10-9 for the continuity, energy and radiation equations, respectively. 
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Figure 4.2 Computational domain, including: (a) boundary conditions and 
(b) computational grids. 

Table 4.1 Chemical analysis of the test forged ingot used for                                             
thermo-physical properties calculation % weight (Finkl Steel Inc.) 

C Mn Si Mo Cr Ni Other 

0.35 0.85 0.4 0.45 1.85 0.47 Micro-alloying 

 

4.4 Results and Discussion 

4.4.1 Experimental Analysis 

The uniformity test results of the unloaded furnace showed a very conformity with the 

predefined heating pattern with a maximum standard deviation value of 5.28°C during the 

ramp stage with the furnace increasing its temperature to reach the target temperature. 
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Therefore, it can be considered that the unloaded furnace presents a good temperature 

uniformity over its entire volume during the entire heat treatment cycle. 

 

The measured temperature histories of different locations of the forged block are illustrated 

in Fig. 4.3. The results reveal a clear difference in temperature evolution as a function of the 

location of the TCs (i.e. considered face and TCs position on the surface).  

 

 

 

Figure 4.3 Experimentally measured temperature evolution of TCs on: (a) different 
surfaces of the forged ingot, (b) left, top and side surfaces, (c) right surface and (d) 

their relative temperature differences. 
 

Usually, severity and continuity of the temperature gradient between the surface and the 

center of the workpiece is one of the main concerns of steel making industries, as it directly 
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impacts the quality of the final product (Totten, 2006). However, Fig. 4.3 (a) shows that apart 

from the temperature gradient inside the workpiece, differences in temperature can also be 

found on the surfaces themselves (see Fig. 4.1 for locations of TCs). Although, temperatures 

of all TCs on the surfaces ultimately converge to the target pre-defined temperature at the 

end of the process, the temperature histories of different points of the forged ingot are not 

identical. This variability in the heating history could affect the microstructural 

transformations from one end to another end of the product (subsequently its properties), and 

needs to be taken into consideration when developing microstructure based models of phase 

transformation. 

 

As indicated in Fig. 4.3, it is clear that the TC on the right surface (TC.1), located at a shorter 

distance to the burner (lower burners) had higher temperatures in comparison to those of the 

left and the top surfaces. Besides, TCs of the side surfaces (TC.10 and TC.11) had the 

minimum temperatures during the process. These surfaces, due to their relative positions in 

the furnace, were faced with adjacent forged blocks instead of furnace walls or burners; i.e., 

they had limitations regarding any direct thermal radiation from the furnace and due to the 

small gap between the blocks, they had relatively smaller radiation view factors from the 

furnace parts. Fig. 4.3(b) also shows that among the thermocouples on the other surfaces, 

those that are closer to the right surface or product edges (TC.5, TC.8, and TC.9) had higher 

values. The edge effect is also visible in Fig. 4.3(c) where it can be seen that TC.4 has 

relatively higher temperatures as compared with the TC.3 and TC.2 on the same surface. 

Another interesting finding is the relatively lower temperatures of the TC.2, which was 

located above the fixing bar on the right surface. Although TC.2 had a relatively short 

distance to the burner, in comparison with TC.4 and TC.3, it experienced lower temperatures. 

 

Finally, the temperature differences between selected thermocouples in different faces are 

presented in Fig. 4.3(d). It can be seen that the maximum difference between TC.1 (on the 

right surface) and TC.10 (on the side surface) could reach up to 200 K.  Further, this 

difference for TC.1-TC.6 and TC.1-TC.7 could reach up to 140 K and 120 K, respectively. 

Considering the previously discussed initial temperature uniformity of the unloaded furnace 
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at different temperatures, the observed non-uniformity could be correlated to the presence of 

the forged ingots. Therefore, the transient heating history should be analyzed by considering 

both convection and radiation heat transfer modes. 

 

4.4.2 CFD Analysis 

To comprehensively analyze the heating patterns, temperature non-uniformities and the share 

of each heat transfer mode during the heat treatment process, CFD simulations results are 

discussed in this section. 

 

4.4.2.1 Validation 

Table 2 shows the distribution of the available heat in different parts of the furnace, obtained 

from the CFD analysis. The furnace efficiency was defined by the ratio of the net heat 

received by the forged blocks and the available heat input to the furnace (78 GJ) as follows 

(B Mayr, Prieler, Demuth, Moderer, et al., 2017): 

ingot
furnace

available

Q
Q

η =    (4.9) 

Based on the measurements made on the gas flow meters installed on the furnace, furnace 

efficiency was estimated to be 36.6%, while the CFD simulation predicted a value of 40.1%, 

which are quite close considering the large size of the furnace. The observed difference is 

probably due to a combination of factors such as air leakage into the furnace and difference 

in the exact location of the TCs between the experimental and modeled conditions, which 

cannot be really predicted by the model. 

Table 4.2 Predicted heat distribution within the furnace. 

Item Ingots Walls Flue Gas Fixing Bars Other 
Absorbed/lost heat (GJ) 28.08 7.65 25.74 9.2 5.42 
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Results of the numerically predicted and experimentally measured temperatures at different 

locations of the block are presented in Fig. 4.4(a). The CFD model predicts the temperature 

evolution fairly well with a maximum deviation of about 7%, which is mostly related to the 

initial heating stage. As mentioned above, the differences between the experimental and 

simulation results are reasonable considering the large dimensions of the furnace and the 

blocks. Although some over-predictions can be observed for the surface temperatures, Fig. 4. 

4(a) shows that the simulation results are valid and further investigation can be carried out 

using the present CFD model. Therefore, models such as standard -k ε with a relatively 

lower computational cost in comparison with the more complex ones (such as the RSM 

turbulence model) can be employed effectively in this application for furthered detailed 

studies or optimization purposes. Nonetheless, employment of more sophisticated models 

such as RSM and their related boundary conditions for turbulence modeling or increasing the 

mesh size could result in better accuracy. Also, increasing the number of control angles in the 

angular discretization of the DO model could result in more accurate predictions of the local 

thermal radiation, where strong variations of spatial temperatures exist (i.e., the burner area). 

However, these recommendations will add to the computational costs in the solution 

procedure and therefore, computational cost/benefit analysis needs to be carried out on a case 

by case basis. 

 

  

Figure 4.4 Comparison between numerically predicted and measured temperatures of the 
workpiece. 
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Radiation view factor of the workpiece surfaces and participating medium are the two main 

active parameters for the analysis of the radiation heat transfer, in the present application. 

The influence of participating medium on the final temperature history was evaluated using 

the S2S model and the results are reported in Fig. 4.4(b). It can be seen that, neglecting the 

effect of combustion products participation in the absorbed radiation of the workpiece, 

characteristic of the S2S model, produces about 1.5% over prediction in comparison to the 

DO model. Thus, although DO model provides more accurate predictions, S2S model with 

lower computational cost, can be effectively used in this application. Furthermore, because 

98.5% of radiation heat transfer is controlled by the radiation view factor of the surfaces, 

loading pattern optimization for this type of furnaces can be done only by view factor 

optimization when the radiative heat transfer is considered. 

 

4.4.2.2 Analysis of the heating process of the loaded furnace 

Transient contours of temperature evolution of the loaded furnace (in an x-y plane) and ingot 

surfaces during the heating process are depicted in Fig. 4.5. The simulation results clearly 

confirm a non-uniform temperature distribution during the heating process as observed 

during the experimental phase (Fig. 4.3). Ingot transient temperature history shows that the 

side surfaces have relatively lower temperatures in comparison with the other surfaces. 

Gradual heating from the right surface to the left and top surfaces and finally side surfaces is 

evident. A maximum temperature difference of about 262 K exists from one side of the 

product to the other.  

 

Results of furnace heating history show that the temperature of the furnace starts increasing 

from regions close to the burners, and then gradually extends to the center. Similarly, an 

increase in temperature begins rapidly on the right side of the block where the lower burners 

are located; while the left and side surfaces are heated latterly. Results also indicate that the 

fluid in the vicinity of the left surface and the top surface was also heated with delay in 

comparison with the right surface where the lower part of the right surface hindered the fluid 
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flow circulation (Fig. 4.5(e)). These findings further confirm the results reported in 

experimental measurements. 

 

    

    

Figure 4.5 Transient contours of temperature evolution of the forged ingot surfaces and 
furnace central cross section in 2D and 3D views, respectively.  

 
Fig. 4.6 shows the transient history of average total heat flux, average radiation heat flux and 

average surface heat transfer coefficient on the right, left and side surfaces of the workpiece 

during the heat treatment process. A considerable difference between the total heat flux rates 

in the first period of the process is revealed, which is in direct relation to the identified non-

uniformities (see Figs. 4.3 and 4.4). Both radiation and convection heat transfers modes show 

the same identified differences in their transient histories. However, as it can be seen, the 

right surface due to the high velocity of burner product, is mainly heated by the convection 

heat transfer at the beginning of the process, while for the left surface, radiation heat transfer 

plays the most important role due to the blockage of the fluid flow by the workpiece. The 

results indicate that heat transfer coefficient in the first part of the process for the side surface 

is less than those on the right and left surfaces and in the peak zone its value is 0.32 of the 
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one for the right surface. On the other hand, the radiation heat flux at this surface in the first 

period of the process was about 12% and 17% of the left and the right surfaces fluxes, 

respectively. Due to the small gap between the blocks, side surfaces have lower radiation 

view factors and convection heat transfer coefficients. Therefore, the loading effect by 

reducing both heat transfer modes (mainly the radiation heat flux) affects the temperature 

history of the side surface, whilst for the right and left ones it mainly changes the heat 

transfer modes and heating pattern. 

 

  

 

Figure 4.6 Transient history of a) total heat flux, b) radiation heat flux, and c) heat 
transfer coefficient for different surfaces. 

 

Local temperature distributions (contours) on the right surface and the bottom surface of the 

forged ingot are presented in Fig. 4.7. Three significant temperature gradients (red regions), 
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equal to the number of burners facing the block, are observed. The high temperature region 

in the middle of the right surface (Fig. 4.7(a)) has higher temperatures in comparison to the 

side ones. This could be due to the fact that the side surfaces are affected by gaps between 

the blocks. High temperatures are also visible near the edges of this surface as shown in Fig. 

4.7(a). Usually, the temperature on the edges is higher relative to the other points due to more 

radiative heat flux in these regions (more surfaces to absorb radiation from furnace walls and 

combustion products (B Mayr, Prieler, Demuth, Moderer, et al., 2017)). However, the results 

indicate that the edge effect on the temperature distribution of the right surface is not as 

strong as the burner effect. The temperature gradient on the right surface could reach up to 

159 K which shows the importance of burner locations inside the heat treatment furnaces. 

 

  

Figure 4.7 Contours of temperature distribution on a) right surface, and b) bottom surface 
of the forged ingot at 𝑡 = 𝑡T/6. 

 
The effect of the fixing bars on temperature distribution of the product is illustrated in Fig. 

4.7(b). Two blue colored areas near to the fixing bars at the right surface confirm the 

measured temperature of the TC.2 in Fig. 4.3. In addition, Fixing bars covering part of the 

bottom surface prevent the active radiation and convection heat transfer of the furnace (i.e., 

these areas are heated by conduction only). The shadow effect of the fixing bars can also 

have a major effect on temperature distribution inside the forged block. A combination of 

burner’s effect (higher temperatures) and fixing bars shadows (lower temperatures) on the 

bottom surface is probably the origin of the significant thermal gradient on this surface (up to 

251 K). Therefore, the geometrical effect of the furnace such as burner’s location and the 
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position of the fixing bars should be carefully taken into account for an accurate and reliable 

analysis of the heat treatment within large size furnaces. 

 

4.4.2.3 Analysis of fluid flow structures 

The local convection heat transfer to the forged ingot in the context of objects facing with 

flow stream, called as bluff body, should also be analyzed based on the formation of flow 

structures (also called as vortical structures or vortices) around the object (Ničeno, Dronkers, 

& Hanjalić, 2002). It should be noted that the formation of vortical structures around can 

cause non-uniform temperature distributions on the forged block surfaces (Ničeno et al., 

2002). Vortical structures are characterized by different parameters such as size, scale, 

shape, velocity, vorticity and energy. It has been reported that one of the main characteristics 

of the vortical structures is the formation of coherent circulation in parts of the flow field 

(Hussain, 1983). Therefore, fluid flow circulation inside the furnace is visualized in Fig. 4.8, 

using time-averaged streamlines at x-y planes. Streamlines show a blockage of fluid flow by 

the load in the impingement zone (creation of stagnation point) and the formation of a wake 

region in the downstream (existence of a wake vortex in the vicinity of the left surface). This 

behavior can be seen in the formation of vortical structure around a typical bluff body 

(Ničeno et al., 2002). Fig. 4.8 shows that there is a clockwise circulation of fluid flow inside 

the furnace at each section, which is in correlation with the heating trend in the furnace. Fig. 

4.8 also, shows the presence of a strong vortex at the center of the furnace in both planes 

(perpendicular to the lower burner and between fixing bars). Further, a detachment of fluid 

from the block near the left side of the top surface and the upper side of the left surface is 

clear. The coexistence of wake vortices and detachment of fluid near the left surface of the 

forged ingot and the presence of a cold area in this zone shows the interrelation between the 

convection heating pattern and the fluid flow structures inside the furnace. A similar behavior 

can also be observed on the top surface and its adjacent vortex. Moreover, creation of a small 

vortex near the right surface where the burner products faced directly with the forged ingot 

surface (stagnation point) also indicates the interrelation between forged ingot heating and 

the vortical structures. Therefore, tracking the vortical structures within the furnace should be 
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considered as an important parameter for the process optimization and multiple loading 

scenarios. The effect of these structures is expected to be more significant at lower 

temperatures, where the convective heat transfer mode could dominate the radiation one and 

the maximum non-uniformity identified.  

 

  
 

Figure 4.8 Streamlines of planes at a) between fixing bars and perpendicular to down 
burner face and b) center of fixing bars.  

 
4.4.2.4 Assessment of heating process inside the large size forgings 

Investigation of the temperature distribution inside the block can help to quantify the impact 

of the non-uniform heating of the surfaces on the temperature evolution inside the forging. It 

can be seen in Fig. 4.9 that the central planes also affected by non-uniform heating of the 

surface and the same pattern of heating from the bottom and right side of the forged block to 

the left, top and finally side surfaces is visible inside the workpiece. Cold area is mainly 

extended longitudinally between two side surfaces. Fig. 4.9(c) also shows that the coldest 

point in the lateral plane is actually not located at the center of the forged block and shifted 

toward the left and top surfaces. The results clearly demonstrate that product loading, 
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geometrical parameters and fluid flow circulation around the forged block influence the 

heating pattern inside the product. However, the strength of the above-mentioned parameters 

is more visible on the surface temperature distribution, as compared with the inside of the 

workpiece. Generally, it is assumed that the differentiation in the mechanical properties of 

the forged ingot mainly varies as a function of the distance from the surface. However, 

considering the temperature gradient from one side to the other and different temperatures at 

the same depth of the forged block, the above assessment should be relativized and a more 

precise approach should consider the heating pattern and its directions. 

 

 

  

Figure 4.9 Temperature contours of cross-sectional planes at the center of the 
forged ingot in: (a) longitudinal, (b) transversal and (c) lateral planes at 𝑡 = 𝑡T/6. 
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4.5 Conclusions 

Comprehensive analysis of heat transfer in the heat treatment process of forged blocks in a 

large size gas-fired heat treatment furnace was investigated in the present work. 

Experimental temperature measurement and unsteady CFD simulations were employed for 

simultaneous analysis of fluid flow interactions inside the furnace including turbulent 

combustion, fluid flow structures and also conjugate heat transfer during the heating. 

Concluding remarks are summarized as follows: 

1. The developed 3D CFD model provided good agreement with experimentally 

measured data.  

 

2. Both DO and S2S radiation models could be reliably used for this application. An 

over-prediction of less than 2% was predicted when using the S2S model in 

comparison with the DO model, which indicates that the computationally effective 

S2S model can be employed for this type of gas-fired heat treatment furnaces. The 

analysis of the results also showed that radiation view factor has a higher contribution 

than participating medium when analyzing radiation heat transfer during heat 

treatment of large size components. 

 

3. Analysis of experimental temperature measurements showed that the unloaded 

furnace domain was uniform during the test. However, after loading, temperature 

non-uniformities, up to 200 K, were found during the heating process, which could 

affect microstructure evolution. 

 

4. The influence of geometrical effects such as burner locations and fixing bars as 

sources for temperature non-uniformities must be taken into consideration for 

optimizing the heat treatment process of large size components. 

 

5. The formation of vortical structures in the turbulent flow field results in significant 

changes in the convection heat transfer of the affected area, which demonstrates the 
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interrelation between the heating pattern and the fluid flow structures inside the 

furnace. 

 

6. The developed CFD model was validated using experimental measurements. The 

obtained data could be directly applied for the optimization of the operational 

conditions and loading patterns of large size gas-fired heat treatment furnaces. 
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Abstract 

A combination of unsteady 3D CFD simulations and experimental temperature 

measurements was employed to determine the effect of loading patterns on the temperature 

distribution within large size heavy steel forgings inside a gas-fired heat treatment furnace. 

This was aimed to obtain a more homogenous temperature distribution. Besides, a hybrid 

methodology using 3D numerical simulations and a high resolution dilatometer allowed 

improving residence time of forgings inside the heat treatment furnace. The influence of the 

loading patterns and skids on temperature distribution and residence time of forgings was 

examined using four different loading patterns. Comprehensive unsteady thermal analysis of 

the products heating allowed quantifying the impact of skids usage and their dimensions on 

the extent of the uniformity of temperature distribution. The results were interpreted in terms 

of the inter-relationship between the skids usage, their geometry, absorbed radiation and 

convective heat fluxes. The analysis showed that temperature non-uniformities of up to 331K 

could be produced for non-optimum loading patterns. Using the developed CFD approach it 

was possible to reduce the temperature non-uniformity of different sizes of blocks up to 32% 

via changing the loading pattern inside the furnace. Further, the large size slab’s residence 
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time was improved by almost 15.5% when employing the proposed hybrid approach. This 

approach could directly be applied to the optimization of different heat treatment cycles of 

large size forgings.  

 

Keywords: Thermal analysis, Loading pattern, Temperature uniformity, Residence time, 

Hybrid approach, Experimental measurements, Numerical simulation 

 
Nomenclature   
 
Latin symbols 
 
a  Absorption coefficient  

d Characteristic dimension  (m) 𝐸 Energy (J) 

g Gravity ( 2/m s ) 
z
iJ  Diffusive flux of chemical species 

h  Enthalpy ( J/ kg ) 

k  Turbulence kinetic energy ( 2 2/m s ) 

effk  Effective thermal conductivity 

p  Pressure (Pa) 

zR  Production rate of thz  component  

,z rR  Production rate of thz  component  

zS  Source term of thz  component production 

Sc  Schmidt number 

mg
  Mass flux ( 2/ m .kg s ) 

sq  The generic source term 

Re  Reynolds number ( ud ν )  

t  Time (s) 

T  Temperature (K) 
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Tt  Total heat treatment time 

iu  Reynolds-averaged velocity in tensor notation 

iu′  Resolved fluctuating velocity components 

Y  Mass fraction of species 
, ,x y z  Direction of coordinate axes 

Greek 

symbols 

 

ε  Turbulence dissipation rate ( 2 3/m s ) 

ijτ  Viscous stress tensor  

ν  Kinematic Viscosity ( 2 /m s ) 

tμ  Turbulence eddy viscosity ( . /kg m s ) 

ρ  Density ( 3/kg m ) 

' '
i ju uρ  Reynolds stress ( 2/ m.kg s ) 

  

Superscripts  

' Fluctuations with respect to a Reynolds  averaging 

  

Subscripts  

, ,i j k  Tonsorial indices tensor  

z  thz species  

  

Abbreviation  

3D Three dimensional 

CFD Computational Fluid Dynamics 

DO Discrete ordinates model 

DSK Double Skid 

DSKC Double skid + Central spacer skid 

HRC Rockwell C hardness 
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SK  Single Skid 

SKC Single Skid + Central spacer skid 

RTE Radiative transport equation 
 

5.1 Introduction  

Gas-fired furnaces are extensively used in the steel industry in the heat treatment process. 

Specifically, in the case of heavy forgings made of high strength steels, a heat treatment 

process called Quench and Temper (Q&T) is used to obtain the desired mechanical 

properties (e.g., hardness). The Q&T process is carried out in two steps: initially the parts are 

heated to a certain temperature and hold for a period of time before being quenched in water. 

In the second step (tempering) the parts are heated to a lower temperature (non-isothermal 

tempering) and kept for a period of time (isothermal tempering) before being air cooled. It is 

of paramount importance to ensure a high quality heat treatment operation as major 

microstructural changes (grain refinement, phase transformation, etc.) take place at this stage 

which have a determining effect on the final mechanical properties (Canale et al., 2008; Kang 

& Rong, 2006). According to the literature final mechanical properties and microstructural 

features are affected significantly by tempering temperature and holding time inside the 

furnace (Janjušević, Gulišija, Mihailović, & Patarić, 2009). Therefore, uniformity of the 

heating process, in other words, the temperature distribution’s uniformity during the non-

isothermal tempering up to the target temperature is of great importance for the quality of 

final products (Gao et al., 2000; B. Wu, Arnold, Arnold, Downey, & Zhou, 2007) specifically 

for the large-size products (Bohlooli Arkhazloo et al., 2019; Gur & Pan, 2008). However, 

considering that parts, are rarely single loaded in the furnace, their loading pattern (e.g., 

distances between the parts, stacking mode, etc.) as well as furnace geometry (burners’ and 

skids’ positions),  will influence temperature evolution within their volume resulting in non-

uniform temperature distribution that may affect the final properties. The possible use of 

longer holding times is not a viable solution as it will bring other microstructural damages 

and is not energy friendly (Hao et al., 2008). Hence, predicting, controlling and consequently 

optimizing the heating process or the transient temperature of the part as a function of the 

furnace temperature and the related thermal interactions and subsequently possible reduction 
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in the tempering process time, is a necessary task for energy saving and quality control (Hao 

et al., 2008). 

 

However, an exact prediction of the furnace temperature distribution and, consequently, the 

temperature experienced by the product would require a more fundamental understanding of 

the interactions between heat transfer parameters, process parameters and parts 

configurations within the furnace. At the present time such data in thermal analysis of large 

size products heating characteristics is not available and therefore often empirical 

correlations are used to estimate the heat treatment cycle parameters (Kang & Rong, 2006). 

These correlations are usually defined as a function of the total furnace load and selected 

loading patterns of the parts inside the furnace (Korad et al., 2013). Hence, they show large 

deviations in the case of multiple loadings and complex furnace configurations (Hao et al., 

2008). On the other hand, in most of the studies and evaluations in the field of metallurgy 

(Cheng et al., 1988; Primig & Leitner, 2011; Talebi et al., 2017), the non-isothermal 

tempering procedure was simplified assuming a constant heating rates rather than a variable 

one which is actually experienced by the products in the real production cycle. The problem 

is more acute in the case of large size products (that encompass high temperature gradient 

from one end to another) at high temperatures due to operational difficulties and high costs of 

experimentation. Therefore, employing a constant temperature and time in the correlations 

such as Hollomon-Jaffe (Janjušević et al., 2009) may result in deviation from what is really 

experienced by the large size forgings during the whole tempering process. 

 

While both analytical and numerical methods could be used to study the problem, limitations 

of analytical methods in solving coupled non-linear phenomena (i.e., turbulent combustion 

along with conjugate heat transfer and fluid flow) do not allow their effective use in these 

cases (Chapman et al., 1990; Gao et al., 2000). Computational fluid dynamics (CFD) 

comprising various numerical methods has become in recent years a very cost effective and 

reliable technique to study the thermal interactions inside the heat treatment furnaces. Several 

studies such as those of Wang et al.(J. Wang et al., 2008), Hao et al. (Hao et al., 2008), Kang 

and Rong (Kang & Rong, 2006) and Defaee et al. (Rad, Ashrafizadeh, & Nickaeen, 2017) 
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employing CFD, investigated flow and heat distributions inside electrically heated, gas 

quenching and hot air treating furnaces. 

 

Due to the complexity of the reactive flow analysis inside the gas-fired furnaces, the long 

operating time of the heat treatment process and the totally transient conditions of the 

process, little information is available regarding the transient studies of the real-scale gas-

fired heat treatment furnaces. The existing studies have been focused either on small- to 

medium-scale gas-fired furnaces (Galletti et al., 2013) or simplified steady-state simulations 

(Danon et al., 2011; García et al., 2019; B. Mayr, Prieler, Demuth, Moderer, et al., 2017; 

Prieler, Demuth, Spoljaric, & Hochenauer, 2015; Prieler et al., 2016).  For instance, Yang et 

al. (Yang et al., 2007) studied the performance of small-scale mobile heat treatment furnaces 

and Prieler et al. (Prieler, Mayr, et al., 2015) and Mayr et al. (B Mayr, Prieler, Demuth, 

Potesser, et al., 2017) investigated the oxy fired laboratory-scale and semi-industrial gas-fired 

furnaces heat distribution in a single loading configuration using steady-state assumption, 

respectively.  

 

Recently, Bohlooli et al. (Bohlooli Arkhazloo et al., 2019) reported on the experimental and 

numerical analyses of the heating process of large size forged ingots inside a gas-fired 

furnace. Comprehensive experimental analysis of instrumented large size ingot and gas-fired 

furnace temperature’s history proved that large-scale products can affect the furnace 

temperature’s uniformity and consequently products’ heating uniformity. A full-scale three-

dimensional (3D) model of the process revealed that the identified non-uniform heating of 

the large-scale products had a relationship with the fluid flow structure, geometrical 

parameters of the furnace (including burner locations) and loading patterns of ingots 

(including their relative locations and distances). The effect of vortical structures and loading 

pattern on the heat treatment process and temperature history of small scale products had 

been mentioned in the numerical study of Wang and Shang (Z. J. Wang & Shang, 2010) who 

investigated the flow and heat exchange in the high-pressure gas quenching chamber. 

Macchion et al (Macchion, Zahrai, & Bouwman, 2005) Kang and Rong (Kang & Rong, 

2006) and Korad et al. (Korad et al., 2013) also analyzed the loading pattern’s effect on the 
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heating and cooling rates of products in different furnaces. Concentrating on the 

metallurgical aspects and toward reducing the process cost, the steady state CFD simulations 

of indirect fired homogenization furnace (used for aluminum billet treatment) in Korad et 

al.’s (Korad et al., 2013) study showed that different billets stacked in the furnace 

experienced different temperature distributions (temperature non-uniformity) as a result of 

loading pattern inside the furnace during the non-isothermal tempering. Macchion et al. 

(Macchion et al., 2004) in a CFD simulation of gas quenching chamber of small parts pointed 

out that the position of parts inside the furnace could significantly affect the temperature 

uniformity of products during the heat treatment furnaces. Also, Kang and Rong (Kang & 

Rong, 2006) using CFD simulations investigated the heating history (non-isothermal 

tempering) of two different loading patterns of small size parts inside an electrically heated 

furnace. Their study revealed that the loading pattern even in small size products could 

change the heating history of the parts and furnace performance. However, up to now, little 

data is available on the interactions between heat transfer parameters, stacking strategy, heat 

treatment process variables (specifically temperature uniformity and heating time in non-

isothermal tempering) in relation to loading pattern of large size forgings inside gas-fired 

furnaces. Besides, most of the studies investigating the effect of constant heating rates (rather 

than a series of a variable heating rates resulting in real temperature history experienced by 

the products inside the furnace) and subsequent certain holding times on the mechanical 

properties of the steels (Ray, Ganguly, & Panda, 2003; Revilla, López, & Rodriguez-Ibabe, 

2014; Talebi et al., 2017; B. B. Wu, Chen, Shang, Xie, & Misra, 2019; Zou, Ying, Zhang, & 

Fang, 2010). Simultaneous analysis of isothermal and non-isothermal tempering history of 

large size forgings inside gas-fired furnaces in order to reduce the residence time of the 

products has not been addressed in the literature. 

 

The present paper reports on an investigation aiming to address the above challenges using 

3D CFD modeling complemented with experimental validation. Four possible loading 

patterns of heavy forgings in a gas-fired furnace were analyzed. This is not only aimed to 

have maximum temperature distribution’s uniformity and similar heating rates, but also to 

reduce the time to reach the target temperature during the non-isothermal tempering stage. 
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Besides, a hybrid methodology combining 3D CFD numerical predictions and high 

resolution dilatometer machine was introduced and used to further reduce the residence time 

of the forgings during the isothermal tempering based on the real-life temperature experience 

of steel parts in the large-size gas-fired furnaces. 

 

5.2 Loading Patterns 

The studied furnace was a 3.05× 3.28 × 8.83 (m3) batch type gas-fired furnace. The furnace 

was heated by 18 high-velocity cup burners (Baukal Jr, 2003) including 9 upper burners 

(located on the uppers section of the furnace left wall) and 9 lower burners (installed in the 

lower section of the furnace right wall). Fig. 5.1 illustrates the furnace and four different 

loading patterns used for the CFD simulations (See also Fig. 5.3). A total weight of 130 

metric tons, corresponding to the loading capacity of a large size furnace, was fixed in all the 

four patterns. Two types of forgings, called large size block and slab, with dimensions of 1.4 

× 0.89 ×2.72 (m3) and 1.1×0.5×2.25 (m3), were used in different configurations. Blocks were 

mounted on oxidized steel skids in car-bottom furnace. The following denominations were 

used to characterize each of the four configurations: 

  

Single Skid (SK): A combination of one large size block and one slab stacked on its 

top.  

 

DSK (Double skid): The second case study was used to see the effect of double 

height skids in the gas-fired furnaces. According to the Bohlooli et al. (Bohlooli 

Arkhazloo et al., 2019), lower burners in the furnace are one of the main root causes 

of non-uniform temperature distributions. Therefore, this simulation will allow 

quantifying the impact of the skid height. 

 

SKC (Single skid + Central spacer): The third case study was aimed to evaluate the 

effect of spacing skids (made of steel with an oxidized surface) on the stacking 

patterns and subsequent uniformity and residence time of blocks in the heat treatment 
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furnaces. Two sizes of spacers with the cross-sectional dimensions of 0.254×0.245 

(m2) and 0.127×0.127 (m2) were used. 

 

DSKC (Double skid + Central spacer skid): A combination of double skids at the 

bottom and center spacers between the large block and the slab was the fourth loading 

pattern used for the simulations. 

 

  

  

Figure 5.1 Four different loading patterns of forgings using skids inside 
gas-fired heat treatment furnace: a) SK, b) DSK, c) SKC and d) DSKC. 
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5.3 Methodology 

5.3.1 Computational Details 

The previously developed and validated CFD model in the authors’ study (Bohlooli 

Arkhazloo et al., 2019) was employed as the basis for the numerical simulation. The transient 

CFD simulations employing a pressure-based solver were carried out using the finite-volume 

based ANSYS-FLUENT software (ANSYS, 2016) to solve the Reynolds-averaged Navier-

Stokes (RANS) equations, as follows (ANSYS, 2016). 
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where, the stress tensor, ijτ , in the above momentum and energy equations (Eq. 5.2 and Eq. 

5.3, respectively) is given by: 
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and the diffusive flux of combustion product species (in Eq. 5.2) is defined by the Fick’s law: 
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The turbulent combustion and fluid flow were simulated using the standard 𝑘 − ɛ turbulence 

model proposed by Spalding (Spalding, 1971). It must be noted that, the above model has 

already been applied to gas-fired furnaces and its reliability had been approved (Ishii et al., 

2002; Y. Liu et al., 2014). Due to the high velocity of the combustion products coming from 

the burner outlet, Arrhenius chemical kinetic calculations were not taken into account and the 

eddy dissipation model (EDM) (B. F. Magnussen & Hjertager, 1977) was used to simulate 
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the combustion phenomenon. In this model, assuming that the reaction rates are dominated 

by the turbulence, the species transport formulation (Eq. 5.6) for the local mass fraction 

species (Yz) is solved (ANSYS, 2016). 

( ) ( ) . .z z z z zY vY J R S
t

ρ ρ∂ + ∇ = −∇ + +
∂

&&   (5.6) 

where, zR&represents the net production rate of the 𝑧th component. The unsteady SIMPLE 

algorithm (Henk Kaarle Versteeg & Malalasekera, 2007) was applied for pressure-velocity 

coupling in a computational domain including 15,155,000 hexahedral non-uniform grids, as 

depicted in Fig. 5.2.  

 

 

 

Figure 5.2 Computational domain, including: (a) boundary conditions of SK 
case study and (b) computational grids in SKC loading pattern. 

 

Finer cells with low growth rate were used near the burners to resolve significant variations 

of the complex flow in this region (in the range of high temperature and species 
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concentration gradient). The grid size includes 6,408,000 non-uniform cells in the burner 

domains (356,000 cells in each burner). Grid independency tests were performed using two 

other meshes including 10,597,900 and 19,712,100 cells. The difference between results of 

the mesh with 15,155,000 and the fine mesh were negligible (See Fig. 5.3). Therefore the 

medium mesh with 15,155,000 cells was used in the simulations. Further details of the 

simulations procedure and boundary conditions specifications were discussed by Bohlooli et 

al. (Bohlooli Arkhazloo et al., 2019). The discrete ordinates model DO (Raithby & Chui, 

1990) using the weighted-sum-of-gray gases model (WSGGM) (Smith et al., 1982) was also 

employed to solve the radiative transfer equation (RTE) considering the absorption and 

emission effects of the furnace medium. 

 

5.3.2 Forgings Temperature Measurements 

This part of experimentations includes temperature measurements at the surface of the 

forgings in the gas-fired heat treatment furnace. Measurements were conducted in a gas-fired 

furnace at Finkl steel-Sorel (Finkl steel Inc.). The furnace with three relatively similar zones 

was loaded with a total weight of 130 tons. Six K type thermocouples were embedded in 

different locations of the parts in the central zone of the furnace. Details regarding other 

characteristics of the furnace and the methods developed for reliable installation and 

temperature reading are provided in a recent publication by Bohlooli et al. (Bohlooli 

Arkhazloo et al., 2019). 

 

5.3.3 Hybrid Approach 

A hybrid methodology combining the CFD simulation results and experimental dilatometer 

tests was used to determine the minimum heat treatment time that is required to achieve the 

desired mechanical properties. Specifically, the transient temperature histories of the hottest 

and coldest regions of the parts were first predicted by the developed CFD model. These two 

points were then used as the critical points to evaluate and optimize the isothermal stage of 

the heat treatment cycle. This methodology includes laboratory physical simulations of the 
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tempering cycle during the isothermal and non-isothermal tempering (acquired through the 

CFD simulation) and subsequent hardness measurements of the steel for the critical points. It 

was started with finding the hardness of samples after applying non-isothermal tempering 

history of the critical points. Then several isothermal tempering were carried out to find an 

equivalent isothermal tempering times leading to the measured hardness in step one and 

desired hardness at the end of the tempering process. The difference between these two times 

was considered as the optimum holding time in the isothermal part of the tempering process. 

 

The chemical composition of the investigated high-strength low-alloy steel is provided in 

Table 5.1. Cylindrical samples 10 mm in length and 4 mm in diameter were cut from near the 

surface and central zones of the slab, which had underwent open-die forging at around 

1260oC.  

Table 5.1 Chemical analysis of the  investigated steel - Wt. % (Finkl Steel Inc.).  

Fe C Mn Si Mo  Cr Ni Other 
Bal. 0.35 0.85 0.4 0.45 1.85 0.47 Micro-alloying 

 

The initial tempering process of the present slabs with dimensions of 1.1×0.5×2.25 (m3) was 

around 60 hours to achieve a nominal final hardness between 31-34 HRC (in the case of 

multiple loading). This heat treatment cycle includes a nominal 24 hours of heating stage up 

to 855 K (non-isothermal tempering) and 38 hours of holding at this temperature (isothermal 

tempering). All the heat treatment cycles applied to the parts in the furnace were physically 

simulated using the high-resolution TA DIL 805A/D dilatometer machine (TA instruments, 

New Castle, DE, USA). The heating rates using the validated CFD results were adjusted to 

simulate that of actual heating cycle of forgings during non-isothermal tempering. A prior 

austenitization process (including heating up to 870oC, followed by 10 minutes holding at 

this temperature for homogenization) and subsequent cooling rate of 3oC to produce a 

martensitic microstructure resembling the expected microstructure on the surface of an actual 

forging after water quenching (i.e., before starting the tempering process in the heat treatment 

furnace) was considered for the sample preparations. Dilatometry tested samples were then 

cut along their longitudinal axis and then polished according to standard metallography 
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preparation methods. Finally, Rockwell C hardness measurements were made according to 

ASTM E18-19 on the polished surfaces to determine the impact of the heat treatment 

conditions on mechanical properties. A minimum of 25 measurements with a load of 1kg and 

a dwell time of 10s were used. 

 

5.4 Results and Discussion 

5.4.1 Validation  

Comparison between the present numerical prediction and the experimental measurement of 

transient temperature of the ingot at the upper surface of the large size forged block in the SK 

configuration is represented in Fig. 5.3. Although a slight over-prediction (maximum value 

of 3%) can be observed, the validity of the CFD model is therefore confirmed and further 

investigations could be carried. 

 

 

Figure 5.3 Validation of CFD simulations in fully 
loaded furnsce configurations. 
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5.4.2 Loading Pattern Analysis 

Temperature evolutions of different locations of the large size forged block and the slab in 

the conventional SK loading pattern (first case study) are shown in Fig. 5.4. There is a 

considerable temperature difference between the forgings maximum temperature and the 

interface of the large size block and the slab, hereafter called stacking point. This point which 

is actually at the surface of the large block is heated after the center of the block. The 

difference is also observed for the slab where the stacking point at the surface of the slab has 

noticeably lower temperatures in comparison with the center of the block (on the contrary to 

the expectation of a regular heat treatment from surface to center). In this figure center 

modified represents the minimum temperature of the whole loadings during the heat 

treatment (i.e., center of the whole geometry). 

 

 

Figure 5.4 Temperature evolutions of forgings in 
conventional SK loading pattern. 

 
Fig. 5.5 illustrates transient histories of maximum temperature difference (i.e., maximum 

non-uniformity) of the large size block and slab surfaces for the four different loading 

patterns.  
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Figure 5.5 Comparison of maximum identified temperature non-uniformities for different 
loading patterns at the surface of: a) large size, block and b) slab. 

 
Analysis of the data in Fig. 5.5 showed that a maximum non-uniformity of 331 K was 

produced in the single skid (SK) case study in the large size block. This severe non-

uniformity could probably be related to the loading pattern of the blocks and geometrical 

parameters of the furnace including the burners’ positions which were located on opposite 

side of the furnace close to the bottom or top of the walls (Bohlooli Arkhazloo et al., 2019). 

For example, the bottom right of the large block surface near the lower burners was very 

rapidly heated while the upper surface, intersection of the stacked slab on the large size block 

experienced lower heating rates and subsequently leaded to the identified non-uniformity. 

However, it can be seen that the use of spacers as well as double-height skids in the DSK, 

SKC and DSKC patterns (the second to fourth case studies) could reduce maximum non-

uniformity down to 293 K, 294 K and 246 K (approximately 11.4%, 11.1% and 25.6% 

reductions), respectively. Besides, in Fig. 5.5 the area under each curve represents the total 

non-uniformity of block during the heat treatment. Therefore, the differences from one case 

to another would be representing the difference in total non-uniformities. Fig. 5.5 also shows 

that shrinkage of the total non-uniformity (area under each curve) was clearly affected when 

skids and spacers were used. As shown in Table 5.2, the combination of double-height skids 

and central spacers in DSKC could lower the temperature non-uniformity of the large size 

block up to 32%, which is a very significant gain. The effects of spacers and double-height 
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skids are also interpreted by using Fig. 5.5 and Table 5.2. The SKC case study giving a 

reduction in the temperature non-uniformity of almost 21%, as compared with the 12% of 

DSK, demonstrates a higher effectiveness of the central spacers in reducing temperature non-

uniformities.  

 

Fig. 5.5 (b) and Table 5.2 summarize the trends observed for the slab. Specifically, the 

maximum non-uniformity and total non-uniformity for the SKC case study were reduced by 

7% and 18%, respectively. However, in contrast to the large block, under the DSK 

configuration the maximum and total temperature non-uniformity increased compare to the 

SK configuration. It is also interesting to know that for the DSKC case, while approximately 

the same reduction in the total non-uniformity was observed; however, the maximum 

temperature non-uniformity (pack of the curve) of the slab slightly increased by 2.6%. This 

reverse effect could be related to the fact that the spacers in SKC loading pattern increasing 

the treatment height, reduced the distance between the upper surface of the slab and upper 

burners, leading to a higher temperature at this surface (see Fig. 5.6). 

Table 5.2 Total temperature non-uniformity reduction of forgings                                         
for different loading patterns in comparison with conventional SK loading. 

Forgings DSK SKC DSKC 

Large-size block 12% 21% 32% 

Slab -1% 18% 19% 

 

Contours of the temperature distributions in the central cross-section of the forging blocks for 

the four different loading patterns, 𝑡 = 𝑡T/6, are represented in Fig. 5.6. These are for when 

the maximum temperature non-uniformity occurred in the SK case study (see Fig. 5.5). It 

should be noted that a distance of 0.5 cm was considered (with a layer of air) between the 

forged ingots corresponding to the real experience of forged block stacking due to their shape 

which is not completely flat. However, in the case of existence of spacers a perfect contact 

was considered due to the weight of blocks. It can be seen that in the SK configuration 

considerable irregular temperature non-uniformities existed in the blocks from one end to 
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another.. The cross-section of the large size forged ingot encompass three high temperature 

regions facing with the down burners and very cold region at the upper surface where the 

slab was positioned on the top of the large size block. As shown in Fig. 5.6 (a), the coldest 

part of the large block in the conventional SK case study is not at the center of the block and, 

on the contrary to the general expectation, it occurs in the upper quarter of the block near the 

upper face (see also the curve of center modified in Fig. 5.4). The same behaviour can be 

seen for the slab where the minimum temperature occurs near the bottom surface rather than 

at the center of the block. This finding is of significant impact from a practical point of view 

for the steel industry. That is, that part loading configurations need to be taken into account 

as they could introduce important temperature non-uniformities, and hence, non-uniform 

properties through the volume of the part even though the total heat treated mass is identical.  

Analysis of the results reported in Fig. 5.6 (c) and Fig. 5.6 (d), demonstrate that the use of 

central spacing’s between the forgings in the SKC and DSKC increased the temperature of 

the upper surface of the large size block and the bottom surface of the slab. This resulted in 

21% reduction in temperature non-uniformity for the case of SKC in comparison to the 

conventional SK loading pattern. The results also show that when double height skids were 

used (Fig. 5.6 (b) and Fig. 5.6 (d)), the high temperature zones located in the lower part of 

the block were eliminated, resulting in a 12% reduction in temperature non-uniformity in the 

case of DSK and a total drop of 31% when double height skids alongside central spacers 

were used (Fig. 5.6 (d)). However, the double-height skids could not affect the temperature 

uniformity of slabs and these blocks are mainly affected by the central spacers.  
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Figure 5.6 Contours of temperature distribution in central cross sections of 
forgings at 𝑡 = 𝑡்/6. a) SK, b) DSK, c) SKC, and d) DSKC. 

 
5.4.2.1 Influence of spacer skids size on heat transfer modes 

The above results clearly demonstrated that the inclusion of the spacers in the analysis 

affected the severity and distribution of temperature non-uniformity. Although, convection 

and radiation are the two most important heat transfer mechanisms during the heat treatment 

process of large size forgings in gas-fired furnaces (Totten, 2006), both from fundamental 

and application points of view it is however important to quantify the role of each mode in 

the presence of spacers. To this end, two different spacers with the cross-sectional areas of 

0.254×0.245 (m2) (SKC) and 0.127×0.127 (m2), half-size SKC or SKHC, were considered 

for the analysis and the results are reported in Fig. 5.7 (a-d). The results of Fig. 5.7 (a) show 

that interestingly despite doubling the height and the width of the spacers, the total 

temperature non-uniformity decreased by the same amount (about 21%). In Fig. 5.7 (b), the 
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total heat fluxes are compared for the two conditions. The convection heat transfer 

coefficients were calculated for both cases, and as reported in Fig. 5.7 (c), the values are 

quite similar while the radiation heat fluxes are different (Fig. 5.7 (d)). This could be 

explained in terms of the differences in radiation view factors of the surfaces for these two 

different spacer sizes. Taking into account the approximately similar total heat flux and the 

same temperature non-uniformity distribution, it can be said that the spacers affect mainly the 

convection heat transfer mode and therefore the temperature distribution uniformity is 

controlled by a convection based mechanism rather than a radiation one. 

 

  

  

Figure 5.7 Transient history of a) maximum non-uniformity of forgings, b) total heat flux, c) 
convection heat transfer coefficient, and d) radiation heat flux on forgings surfaces with two 

different sizes of spacer skids. 
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5.4.2.2 Influence of loading patterns on the non-isothermal tempering residence time 

The evolution of transient average temperature of the forgings and derivation of temperature 

with respect to time (heating rate) for the different loading patterns are presented in Fig. 5.8.   

 

  

 

Figure 5.8 Forgings average temperature evolution: a) large size block, b) slab and 
derivative of temperature evolution with respect to time, c) large size block, and d) slab in 

different loading pattrens. 
 

It can be seen that positioning of skids and spacers inside the furnace and between the blocks 

could affect the average transient temperature evolution of the forgings (Fig. 5.8 (a) and Fig. 
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5.8 (b)) as well as their experienced heating rates in the non-isothermal part of the tempering 

process (Fig. 5.8 (c) and Fig. 5.8 (d)). It resulted in faster heating rates for both blocks in the 

SKC and DSKC configurations in comparison with the conventional SK case study leading 

to higher transient temperature experienced by the blocks (Fig. 5.8 (a) and Fig. 5.8 (b)). 

Specifically, the slab is more affected by the central spacer skids usage (see also Table 5.3). 

However, the DSK method resulted in slightly lower heating rates for the large size block 

(Fig. 5.8 (c)) and subsequently lower temperatures (Fig. 5.8 (a)) because it increased the 

distance between the block and lower active burners. It should be noticed that although 

doubling the size of the skid did not reduce the non-uniformity of the slab effectively (see 

Fig. 5.5 (b)); however, it increased the total height and therefore augmented the contribution 

of the upper burners to the heating process. This leads to higher heating rates under the DSK 

and DSKC conditions (Fig. 5.8 (d)). 

 

The relative time reduction (in the heating stage) to reach the target temperature for different 

loading patterns in comparison with the conventional SK loading is presented in Table 5.2. 

Results indicated that the DSKC configuration could reduce the heat treatment process by 0.5 

hours for the large block and 3 hours for the slab. Besides, the SKC configuration could 

reduce the process time by 2.5 hours and 3.5 hours for the large the size block and the slab, 

respectively. Therefore, the SKC loading pattern is more effective to reduce the non-

isothermal tempering residence time of the blocks, while, the DSKC pattern is more effective 

with the view to obtain more homogenous temperature distribution within the large size 

block (See Fig. 5.5 (a) and Table 5.2).  

Table 5.3 Residence time reduction of forgings at different loading patterns                                        
in comparison with conventional SK loading pattern. 

Forgings DSK SKC DSKC 

Large-size block -1 (h) 2.5 (h) 0.5 (h) 

Slab 0.5 (h) 3.5 (h) 3 (h) 
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5.4.3 Residence time improvement of forgings during isothermal tempering process 

The heat treatment process consists of a non-isothermal heating (i.e., the time to reach the 

target temperature in the loaded furnace) and an isothermal part (i.e., holding at the target 

temperature for a specified time). As shown in Table 5.3, the effective usage of skids and 

spacers could reduce the heating time (i.e. the non-isothermal heating step) by about 10% and 

14.5% in comparison with the conventional SK non-isothermal tempering for large size 

block and slab, respectively. This would mean that the isothermal part could be reduced 

without affecting the final properties. To do so the hybrid methodology was used to reduce 

the unnecessary holding time of large size forgings inside the gas-fired heat treatment 

furnace. According to the simulations results the hottest and coldest points at the surface of 

the slab in the SKC case study reaches the target temperature of 582oC after 24.5 and 31 

hours, respectively (i.e., 6.5 hours of extra isothermal treatment for the hottest point). The 

dilatometer experiments were carried out with the two above non isothermal heating times 

and the material hardness (Rockwell C scale, HRC) values were determined. The initial 

hardness of 54 HRC (after austenitizing and quenching) was reduced to 37.5 ± 0.1 HRC and 

37.4 ± 0.1 HRC for 24.5 and 31 hours of non-isothermal tempering, respectively. Thus, an 

isothermal tempering should be designed to reduce these hardness values to the final desired 

34 HRC (within the acceptable range of 31-37 HRC).   

 

Fig. 5.9 represents the detail of the conducted isothermal tempering cycles and their relevant 

acquired hardness. 20 hours and 46 hours of isothermal tempering at 582oC resulted in 37.6 ± 

0.1 HRC (equivalent to the hottest point hardness after the non-isothermal tempering) and 

34.1 ± 0.1 HRC (desired hardness after the tempering process), respectively. Therefore, the 

present results indicated that a total time of 50.5 hours including 24.5 hours of non-

isothermal and 26 hours (equal to the subtraction of 20 from 46 hours) of isothermal holding 

was needed to reach the target hardness value of 34 HRC. 
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Figure 5.9 Hardness measurements after isothermal tempering 
at 582oC for different holding times. 

 

The proposed hybrid approach was validated by using two other tests where the proposed 

heating cycle was examined for the slab hottest and coldest points.  In these experiments, the 

non-isothermal heating cycle taken from the CFD results followed by the optimal calculated 

isothermal tempering, resulted in 33.9 ± 0.1 and 34.6 ± 0.1 HRC hardness values which are 

in the acceptable range for this product. 

 

On the basis of the obtained results, the total residence time of the parts inside the heat 

treatment furnace could be reduced by 9.5 hours (i.e., 15.5% reduction). Considering the 

excessive energy consumption of this type of furnaces and the very large number of the heat 

treated parts, such a time saving along with improving the temperature uniformity, and hence 

properties, of the final product could significantly contribute to the production cycle from 

both cost and quality points of view. 

 

5.5 Conclusions     

The loading pattern effect on the forgings temperature uniformity and their residence time 

inside the gas-fired heat treatment furnaces was investigated using the CFD simulation and 
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experimental temperature measurements. Besides, a hybrid numerical-physical simulation 

approach was introduced and performed to optimize the residence time of large size slabs 

inside gas-fired heat treatment furnaces. The following conclusions can be drawn from the 

present work:  

1) Large size forgings in the non-optimized conventional loading pattern experienced 

temperature non-uniformities up to 331 K due to furnace geometry and loading 

pattern. 

2) Using double size skids and central spacers reduced the temperature non-uniformity 

of large size forgings inside the gas-fired furnace up to 32%. 

3) Convection heat transfer was the dominant mechanism in the presence of central 

spacers to affect the temperature uniformity of the heavy steel parts. 

4) It was possible to reduce the total residence time of large size slabs (including non-

isothermal and isothermal tempering) by about 15.5% in the gas-fired heat treatment 

furnace. 

5) A hybrid methodology was proposed and validated for residence time optimization of 

large size forging. The proposed approach could be applied to other furnace types or 

part geometries. 
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Abstract 

In this study transient computational fluid dynamics (CFD) simulations of a batch type gas-

fired heat treatment furnace were carried out in order to investigate the applicability of 

equilibrium non-premix combustion model and the effect of different turbulence models on 

the thermal interactions inside the furnace. A one-third periodic 3D model of the furnace, 

employed for tempering of large size forgings, was used as the domain for the simulations. 

The performances of several transient RANS based turbulence models along with the non-

premix combustion with equilibrium model approaches were evaluated. To do so, thermal 

interactions analyses based on temperature measurements on an instrumented large size 

block were performed in different locations of the forged blocks as well as critical regions in 

the burner area, stagnation and wake regions. Results indicated that non-premix combustion 

with chemical equilibrium could effectively be employed for combustion modeling of high-

momentum cup burner combustion and subsequently temperature prediction of the products. 

A very good agreement, with a maximum deviation of about 4%, was obtained using the 
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periodic model indicating the reliability of the developed model. Prediction of ɛ 𝑘⁄  ratio 

using different turbulence models could significantly affect mixture fraction variance and 

subsequently flame length and product temperature at the stagnation point. RSM was found 

as the most reliable turbulence model compared to the experimental measurements. 

Furthermore, it was found that the realizable 𝑘 − ɛ model reasonably predicted the global 

block temperature during the heat treatment process. However, it under-predicted the flame 

length and block temperature in the stagnation region. While, the SST 𝑘 − 𝜔 model could 

not capture the flow recirculation behind the block and over-predicted the block temperature 

near the wake region and inside the block, it showed reasonable results in the stagnation 

region which can be used for process optimization.  

 
Keywords: Gas-fired furnace, Computational fluid dynamics (CFD), Turbulence modeling, 

Equilibrium non-premix combustion, Flame length, Mixture fraction variance 

 

Nomenclature   
 
Latin symbols 
 
d Characteristic dimension  (m) 

C1ɛ ,C2ɛ ,C3ɛ Constants in k − ɛ equations 

Cg, Cd Constants in mixture fraction variance transport equation 𝐸 Energy (J) 

f   Mean Mixture fraction 
2f ′  Mixture fraction variance 

g Gravity ( 2/m s ) 

z
iJ  Diffusive flux of chemical species 

h  Enthalpy ( /j kg ) 

H Block height  

k  Turbulence kinetic energy ( 2 2/m s ) 

effk  Effective thermal conductivity 
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L  Furnace length in longitudinal direction 

mg
  Mass flux ( 2/ m .kg s ) 

OH Hydroxide 
p  Pressure (Pa) 

iq , The generic source term  

rq  Reaction heat term respectively 

sq  The generic source term 

zR  Production rate of thz  component  

,z rR  Production rate of thz  component  

Re  Reynolds number ( ud μ ) 

zS  Source term of thz  component production 

Sc  Schmidt number 

t  Time (s) 

T  Temperature (K) 

Tt  Total heat treatment time 

iu  Reynolds-averaged velocity in tensor notation 

iu′  Resolved fluctuating velocity components 

, Y, ZX  Direction of coordinate axes 

  

Greek 

symbols 

 

ε  Turbulence dissipation rate ( 2 3/m s ) 

ν  Kinematic Viscosity ( 2 /m s ) 

tμ  Turbulence eddy viscosity ( . /kg m s ) 

ρ  Density ( 3/kg m ) 

,k εσ σ  
Prenatal number for the kinetic energy and dissipation rate, 

respectively 
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tσ  Constant in mixture fraction variance equation 

, sσ σ  Stefan-Boltzmann constant and scattering coefficient 

' '
i ju uρ  Reynolds stress ( 2/ m.kg s ) 

′Ω  Solid angle 

ijτ  Viscous stress tensor  

  

Superscripts  

' Fluctuations with respect to a Reynolds  averaging 

  

Subscripts  

, ,i j k  Tensorial indices 

z  thz species  

gas Gas 

  

Abbreviation  

3D Three dimensional 

CFD Computational Fluid Dynamics 

DO Discrete ordinates model 

EDM Discrete ordinates model 

RANS Reynolds-averaged Navier–Stokes equations 

RNG Re-normalization group 

RSM Reynolds stress model 

RFL Rich Flammability Limit 

RTE Radiative transfer equation 

RTE Radiative transport equation 

SST Shear stress transport 

TKE Turbulence kinetic energy 
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6.1 Introduction  

Steel industry extensively employs gas-fired heat treatment furnaces to raise the temperature 

of steel parts to desired levels at which different metallurgical processes such as phase 

transformation and carbide precipitation take place. This is to allow for achieving the 

targeted mechanical properties (Totten, 2006). Final material properties are usually optimized 

by tempering parameters modification (such as temperature, time, etc.) in the gas-fired heat 

treatment furnaces (Kang & Rong, 2006; Yan et al., 2017). Therefore, accurate heat transfer 

and temperature distribution prediction of the parts necessitates a comprehensive analysis of 

thermal interactions and their subsequent effects on the transient temperature evolution of the 

product within the furnace. This analysis should consider furnace operation complexities 

including combustion, heat exchange within furnace, turbulence, flame, furnace 

characteristics (geometry, bottom skids, etc.), the composition of the steel products, and their 

internal heat conduction. However, due to the high temperatures, experimental measurements 

in gas-fired furnaces are complex and expensive to perform (Gao et al., 2000). Measurements 

and data acquisition become more difficult when it comes to the analysis of large size steel 

parts’ heat treatment inside such furnaces. Besides, analytical studies due to their limitation 

in non-linear transient applications show large deviations with the real thermal experiences of 

the products (Gao et al., 2000). Therefore, due to the lack of such data, the current practice 

for the heating cycle schedule is based on empirical correlations and is mostly limited on 

monitoring of the furnace temperature as a function of the furnace load (Kang & Rong, 2006; 

S. F. Zhang et al., 2009). Empirical correlations, however, cannot be used precisely to predict 

products temperature and show large deviations with the loading pattern or furnace 

configurations (Gur & Pan, 2008; Hao et al., 2008).  

 

Recently, computational fluid dynamics (CFD) has been used for the evaluation of different 

industrial furnaces and their relative thermal interactions (B Mayr, Prieler, Demuth, Moderer, 

et al., 2017; Yang et al., 2006). Several studies such as those of Hao et al. (Hao et al., 2008), 

Lior (Lior, 2004), Kang and Rong (Kang & Rong, 2006) and Wang et al. (J. Wang et al., 

2008) employed CFD to analyze the flow and thermal interactions  within electrically heated 
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or gas quenching furnaces. However, due to the complexity of reactive flow, little data is 

available for gas-fired heat treatment furnaces where the products are subjected to long 

transient heating cycles. Gas-fired furnaces are mostly heated by high momentum gas-fired 

burners. Owing to the high momentum of burner products and working temperatures, both 

radiation and convection heat transfer modes are active in the heating process. Such furnaces, 

aside from the existence of turbulent reactive flows inside the system, contain absorbing and 

emitting hot combustion product gases which make the radiation simulation more complex. 

Besides, probably due to the high computational cost of batch type gas-fired furnaces’ 

simulation, most of the studies have been focused on simplified cases. Specifically, steady-

state simulation of continoues heat treatment furnaces (Tang et al. (Tang et al., 2017) and 

Mayr et al. (B Mayr, Prieler, Demuth, Moderer, et al., 2017)) or small scale or laboratory 

scale heat treatment furnaces (such as those of Yang et al. (Yang et al., 2007), Prieler et al. 

(Prieler, Mayr, et al., 2015), Govardhan et al. (Govardhan et al., 2011) and Mayr et al.(B 

Mayr, Prieler, Demuth, Potesser, et al., 2017)) or only one part of the process rather than 

simultaneous analysis of furnace domain and products heating (like Galletti et al, (Galletti et 

al., 2013) and Danon et al. (Danon et al., 2011)) can be found in the literature. However, the 

above studies have been performed with different research purposes, namely, product 

temperature prediction, combustion simulation, non-uniformity identification and loading 

pattern or residence time optimization. This makes it difficult to evaluate the strengths and 

limitations of different CFD approaches for the prediction of thermal interactions such as 

turbulent convection heat transfer within the furnace. Besides, a good agreement with CFD 

simulations for temperature (scalar) is not necessarily the result of a correct flow-field 

computation.  

 

The accuracy of CFD predictions of the flow field are significantly affected by the applied 

numerical modeling approaches (Tominaga & Stathopoulos, 2013). For example, 

determination of proper turbulence modeling and combustion modeling approaches is of 

great importance since they form the cornerstones of a CFD simulation and directly affect the 

conjugate heat transfer (convection and radiation heat transfer to the load) and fluid flow 

regime inside the furnace. Besides, such flow-field data provide complementary information 
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to the combustion evaluation in the gas-fired furnaces. Regions with high gradient of 

velocity, rotation and mixing like wake region, flame region or stagnation region need to be 

considered in a systematic approach. Therefore, high performance turbulence models are 

required to capture the physics of the problem, while maintaining simplicity in the 

formulation, stability in convergences and competitive computational time. However, very 

few studies have systematically investigated the sensitivity of the results to these 

computational approaches in large size furnaces. Among the few studies published on gas-

fired furnaces, Prieler et al. (Prieler, Demuth, et al., 2015) investigated the steady-state heat 

transfer in oxygen enriched combustion environment in lab-scale and semi-industrial heat 

treatment furnaces emphasizing on the application of steady flamelet model (SFM) for 

combustion of oxy-fired burners. Three 𝑘 − ɛ group models as well as the RSM model were 

compared and according to the authors, the realizable 𝑘 − ɛ along with RSM model showed 

very similar results regarding temperature and flame length predictions. In another study 

(Prieler et al., 2016), the same authors investigated the  turbulence modeling of the process in 

a walking hearth type reheating furnace and found that the realizable 𝑘 − ɛ model predicted 

similar flame shape and temperature but a longer flame length in the vicinity of the burner 

when compared to the RSM model. This resulted in 30-50 K over-prediction of furnace wall 

temperature by the realizable 𝑘 − ɛ. However, there is no available data for the transient 

simulation of large size steel parts inside batch type industrial heat treatment furnaces with 

high momentum gas-fired burners. An accurate transient simulation requires a simultaneous 

analysis of turbulence and combustion modeling in different critical points of the furnace and 

the product. 

 

The present paper aims to address the above challenges and uses different numerical 

approaches to simulate the heat treatment process of large size steel parts inside a gas-fired 

heat treatment furnace. In this regard, a one-third 3D CFD model of a large size gas-fired 

furnace in a periodic configuration was proposed as the computational domain. Details of the 

numerical simulations, including boundary conditions were specified and the model 

predictions were experimentally validated by instrumenting the blocks with K type 

thermocouples and recording temperature evolution during the heat treatment process. Then, 
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six different RANS based turbulence modeling approaches were assessed to determine the 

most reliable predictions of turbulent flow field inside the gas-fired heat treatment furnace. 

Besides, the applicability of a non-premix combustion model with a chemical equilibrium 

model to simulate the combustion of high-momentum cup burner in the excess air mode was 

assessed. Analysis of different critical points from turbulence and combustion points of view 

was performed for the assessments. The results were analyzed and interpreted in terms of the 

temperature predictions in critical regions inside the furnace and around the block, namely, 

stagnation point, wake region etc. Analyses of flame length, vortical structures and 

turbulence characteristics were considered for the analyses. 

 

6.2 Furnace Description 

The present investigation was conducted on a large size batch- type gas-fired heat treatment 

furnace with the internal dimensions of 3.05 (m), 3.28 (m), and 8.83 (m), in the 𝑋, 𝑌 and 𝑍 directions, respectively. The furnace was heated by 18 high-momentum Tempest cup-

burners (Baukal Jr, 2003) located in an asymmetric arrangement. Nine burners were located 

along the Z direction of the furnace on the upper section of the furnace left wall, and the 

other nine burners were installed on the lower section of the furnace right wall. Nine skid 

bars with the rectangular cross section of 0.25 (m) × 0.25 (m) were positioned between the 

burners for placing the large size forged blocks. An approximately 0.2 (mbar) positive 

pressure was considered in the design of the furnace to minimize air entry.   

 

The combustion process in the Tempest burner was done in two steps; the primary air flow 

(20% of total air) was mixed with gas before the ignition (at the primary chamber) and the 

secondary air flow (80% of total air) was added to the mixture, afterward. The primary and 

secondary chambers were fed by air swirls with a 45o angle slope. According to the 

manufacturer, the flame length was 0.508 (m) and the combustion product velocity at the exit 

of burner was 107 (m/s) for the nominal air pressure of 110 (kPa) at the burner inlet.  
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6.3 Numerical Details 

6.3.1 Flow and Energy modeling   

The Reynolds averaged Navier-Stokes (RANS) equations including continuity, momentum 

and energy equations are defined as in Eq. 6.1 to Eq. 6.3. The solution to these equations in 

the transient CFD simulations (i.e., to predict the time-dependent thermal interactions inside 

the furnace) employing a double precision pressure-based solver, was carried out in the 

finite-volume based ANSYS-FLUENT software (ANSYS, 2016), as follows.  
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where, ρ, u, p, F, h, qi ,and keff represent fluid density, fluid velocity, pressure, body forces, 
enthalpy, generic source and effective heat conduction coefficient, respectively. In Eq. 6.2 
and Eq. 6.3 ijτ is the stress tensor given by: 
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and zJ
r

is the diffusive flux of combustion product species defined by the Fick’s law:  
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(6.5)  

The group of two equation 𝑘 − ɛ models (standard, RNG and realizable) as well as the 𝑘 − 𝜔 

models (standard and SST 𝑘 − 𝜔) along with  RSM were assessed in the present study. The 

standard 𝑘 − ɛ model, proposed by Launder and Spalding (Launder & Spalding, 1972), using 

the Boussinesq’s isotropic linear eddy-viscosity concept, showed good agreement with the 

experimental measurements according to the literature  (Bohlooli Arkhazloo et al., 2019; Y. 
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Liu et al., 2014; J. Zhang, Prationo, Zhang, & Zhang, 2013). In this model the following two 

additional transport equations for the turbulence kinetic energy, 𝑘, and turbulence dissipation 

rate, ɛ, are solved: 

( ) ( ) t
i k b

j j k j

kk ku G G
t x x x
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where 1C ε , 2C ε  and 3C ε as well as the mean turbulent Prandtl number for the kinetic energy 

(σK) and  dissipation rate (σɛ) are constant according to Launder and Spalding (Launder & 

Spalding, 1972). While, kG and bG are related to turbulence kinetic energy due to the velocity 

gradient and buoyancy effect, respectively. In above equations, ( )t kμ μ σ+ and ( )t εμ μ σ+  

are also called as effective diffusivity of 𝑘 and ɛ, respectively. The realizable 𝑘 − ɛ model 

has been tested in several applications such as curvature streamlines and steady state 

simulations of lab scale gas-fired furnaces (Kim, Choudhury, & Patel, 1999; Bernhard Mayr 

et al., 2015). The major difference after tuning the equation constants for more complex flow 

field, with respect to the standard 𝑘 − ɛ, is the calculation of eddy viscosity and dissipation 

rate (Shih et al., 1993). The re-normalization group 𝑘 − ɛ model, also called the RNG model, 

using analytical re-normalization technique with scale expansions for the Reynolds stress, 

provides modified constants of the standard 𝑘 − ɛ model. Besides, 1C ε in this model is 

replaced by *
1C ε which is calculated from an auxiliary function (Yakhot et al., 1992).  

 

The standard 𝑘 − 𝜔 model based on the Wilcox 𝑘 − 𝜔 model (Wilcox, 1998) is an empirical 

model that solves the transport equations for 𝑘 and ω, which can also be considered as the 

ratio of ɛ/𝑘. This model was reported to present reliable results in far wakes, mixing layers 

and more importantly wall-bounded flows and free shear flows (Wilcox, 1998). Shear-stress 

transport (SST) 𝑘 − 𝜔 (Menter, 1994) has a blending function to use the capabilities of near 

wall region of the standard 𝑘 − 𝜔 model with the free-stream independence of the 𝑘 − ɛ 
model in the far field. The definition of turbulent viscosity as well as modeling constant is 
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modified in the SST 𝑘 − 𝜔 model with respect to the standard 𝑘 − 𝜔 model (Menter, 1994). 

In the two equation models, the turbulent viscosity is calculated using empirical or theoretical 

correlations between turbulence kinetic energy and eddy dissipation rate for the specific flow 

conditions. The RSM model, on the other hand, solves all Reynolds stresses and turbulence 

dissipation instead of using eddy-viscosity concept. In this respect, RSM solves seven 

turbulence transport equations for 3D flows considering the turbulence anisotropy. This is in 

contrast to the two equation models which assume isotropic turbulence field (Cant, 2001). 

 

6.3.2 Combustion and radiation modeling 

In the present study, the equilibrium non-premix combustion model was used to predict the 

natural gas combustion inside the burner and furnace domains. The applicability of the eddy-

dissipation model (EDM) (B. F. Magnussen & Hjertager, 1977) for an accurate prediction of 

the temperature distribution in large size forgings within gas-fired furnaces was recently 

reported (Bohlooli Arkhazloo et al., 2019). Considering that in the Tempest burner natural-

gas and oxidizer enter into the reaction zone in distinct streams (20% of air with the gas 

reacts in the primary chamber and 80% of air reacts in the secondary chamber) the 

applicability of non-premix combustion with the chemical equilibrium model using β-shape 

probability-density function (PDF) was assessed in the present investigation. The non-premix 

with PDF model was developed for the turbulent diffusion flame with a fast chemistry 

assuming that the reaction in the turbulent combustion is sufficiently rapid to reach 

equilibrium resulting in lower computational cost in comparison with the EDM model 

(Ismail, Ng, & Gan, 2012). 

 

In the non-premix model, combustion is simplified to a mixing problem by assuming equal 

diffusivities for all the species and species concentration is derived from the predicted 

mixture fraction fields stored in a table (ANSYS, 2016). Therefore, computations of non-

linear reaction rates are avoided. The mixture fraction is defined as (Ishii, Zhang, & 

Sugiyama, 1998): 
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Where iz is the elemental mass fraction of species z. In the case of secondary stream 

(including fuel or oxidizer) the sum of all three mixture fractions (ffuel, fsec  and fox) is equal to 

unity. The density averaged solved mixture fraction is then, as follows: 
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Further conservation equation for the mixture fraction variance, 2f ′ , should also be solved 

(ANSYS, 2016).  
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According to the experimental studies and reviews in the literature (Bowman, 1991; 

Sivathanu & Faeth, 1990) for lean combustion conditions, as in the present study, where 5% 

excess air was entered to the burners, the generalized state relationships approximate the 

thermodynamic equilibrium. Therefore, an equilibrium chemistry with a rich flammability 

limit (RFL) of 0.1 to accommodate chemical non-equilibrium was employed for the 

combustion simulation.  According to Bohlooli et al. (Bohlooli Arkhazloo et al., 2019) the 

discrete ordinates model (DO) (Raithby & Chui, 1990) can effectively be used in the 

simulation of the present gas-fired heat treatment furnace. The absorption and emission 

effects of the furnace medium in the solution of the radiative transfer equation (RTE) were 

taken into consideration by using the weighted-sum-of-gray gases model (WSGGM), as 

reported in (Smith et al., 1982).  

 

6.3.3 Simulation procedure 

A pressure-velocity coupling was carried out using the SIMPLE algorithm (Henk Kaarle 

Versteeg & Malalasekera, 2007) in a computational domain consisting of 4,842,940 

hexahedral non-uniform grids, as shown in Figs. 6.1 and 6.2. Due to the significant variations 

in the range of high temperature and gradient in species concentration near the burner 

regions, finer grids with low growth were used in those regions. Enhanced wall treatment 
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with 1y+ <  criteria was considered for the simulations. An averaged heat loss of 594 (W/m2) 

was applied to the furnace wall (covered by refractory ceramic fibers with a typical thickness 

of 0.254 (m)) in accordance with the approach proposed by Hadala et al. (Hadała et al., 

2017). The mass flow inlet boundary condition for the natural-gas (with a typical methane 

mole fraction of 0.94) and air inlets was employed at the burner inlets.  

 

 

Figure 6.1 Computation model boundary conditions. 

 
The furnace temperature during the experimental measurements was controlled using a 

Honeywell UDC 2500 PID controlling system. PID controller divided the furnace length into 

three similar zones and by controlling the gas flow rate in each zone balanced the 

geometrical effects (door or back-wall) on the temperature variations in these zones. 

Therefore, the large size blocks in the three zones experienced almost the same heating 

history along the length of the furnace and the middle zone can be a reliable representative of 

the three zones. Thus, a one-third model of the furnace was specified for the simulations. In 

this respect, periodic boundary conditions were applied in the 𝑍 direction (refer to Fig. 6.1). 

The convergence criteria for the continuity, energy and mean mixture fraction equations at 

each time step were 10-5, 10-9 and 10-6, respectively. 
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Figure 6.2 Grid resolution of furnace domain and its details 
including gas-fired burner. 

 
Due to the high amount of temperature variance during the heat treatment process, 

temperature dependent thermo-physical properties were taken into account in the present 

simulations. These properties were estimated using JMatPro software (JMatPro Users Guide 

6.2.1.), as shown in Fig. 6.3 (a). The chemical compositions of the steel parts used in this 

computation are presented in Table 6.1. The emissivity of steel parts, as oxidized steel 

surface, was set to 0.8 while, refractories’ emissivity was set to 0.75.  The pressure outlet 

boundary conditions were assumed for the chimneys’ exhaust. 

Table 6.1 Chemical Analysis of the test Ingot - Weight % (Finkl Steel Inc). 

Fe C Mn Si Mo  Cr Ni Other 
Bal. 0.35 0.85 0.4 0.45 1.85 0.47 Micro alloying 

 

6.4 Experimental measurements 

Transient temperature measurements of the block as well as gas and air flow metering of the 

burners were carried out during the heat treatment process. Specifically, a 1.4×0.89×2.72 

(m3) forged block and a 1.09×0.50×2.25 (m3) slab, placed on its upper surface, were 

considered as the case study. The two other sets of blocks were positioned with the same 

relative distance, so as not to disturb the uniformity in the 𝑍 direction. The K type 

thermocouples were embedded at different locations of the block including the stagnation 
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region, side walls and wake region in the central zone of the furnace. Details of the 

temperature measurement procedure including installation and positioning are provided in 

the recent publication of Bohlooli et al. (Bohlooli Arkhazloo et al., 2019). Gas and air flow 

rates were measured using high precision orifice plate flow meters. Fig. 6.3 (b) illustrates the 

transient history of the furnace gas consumption during the heat treatment process. As it can 

be seen, at the early stages of the process, the gas consumption is high and gradually 

decreases until it stabilizes at a certain level which corresponds to the target holding 

temperature. 

 

 

 

Figure 6.3 CFD model inputs a) temperature dependent thermo-physical 
properties of steel parts estimated by JMatPro software, and b) measured 

furnace gas consumption. 
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6.5 Results and Discussion 

6.5.1 Validation of periodic CFD model and combustion approach  

A comparison between the CFD model predictions and the transient measured temperature is 

presented in Fig. 6.4. The CFD model, consisting of the one-third periodic domain and 

adopting the non-premix combustion with the equilibrium model together with the standard 𝑘 − ɛ model was used for the validation. It can be observed that the present CFD model 

predicts the transient temperature history of the steel parts in the gas-fired furnace reasonably 

well with a maximum over-prediction of 4%. Therefore, the chemical equilibrium non-

premix combustion model which requires a lower computational cost, as compared with 

EDM, was employed as the basis for the assessment of turbulence modeling in the 

investigated application. 

 

 

Figure 6.4 Periodic CFD model including equilibrium 
non-premix combustion model validation. 
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6.5.2 Assessment of turbulence models 

6.5.2.1 Temperature predictions of forged block 

Accurate prediction of the temperature of bluff bodies and the corresponding flow fields in a 

turbulent fluid flow is a challenging task (Ničeno et al., 2002). The thermal analysis of the 

forged block mounted on the skid bars facing with burners’ flow stream, share several 

similarities to the typical bluff bodies flow field such as stagnation point, wake region and 

flow around the block (Bohlooli Arkhazloo et al., 2019). Therefore, these similarities were 

used to analyze the thermal interactions in the present application. Fig. 6.5 represents the 

temperature predictions by six various RANS based turbulence models at three different 

locations of the forged block. Also, the measured data at the point in time (𝑡 = 𝑡்/6), where 

the maximum temperature non-uniformity of the product was found (Bohlooli Arkhazloo et 

al., 2019), are illustrated.   

 

Accurate prediction of the stagnation point is one of the critical points when analyzing flow 

over a bluff body and an impingement jet. Different turbulence models have been used to 

predict the stagnation point’s temperature with various levels of accuracy, as reported by 

Ničeno et al. (Ničeno et al., 2002) and Murakami (Murakami, 1993). In the present study, the 

flow coming from the lower burners is faced with the right surface of the large block, 

resulting in a stagnation point having similarities to an impingement jet application. Figure 

6.5 (a) depicts the comparison between the measured temperature at a point (perpendicular to 

the burner center line and 5 (cm) above the lower face of the block) in the stagnation region 

and the corresponding predictions by the turbulence models. It can be seen that the standard 

and realizable 𝑘 − ɛ models under-predicted by about 3.5% the temperature of the stagnation 

region. This finding is in agreement with the results reported by Pulat et al. (Pulat, Isman, 

Etemoglu, & Can, 2011) who also found that 𝑘 − ɛ group under-predicts the temperature of 

the stagnation point in a typical impingement flow field.  
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Figure 6.5 Comparison of temperature predictions by various 
turbulence models and experiment at different locations of forged 
block: a) stagnation point, b) side wall, and c) wake region at 𝑡 =𝑡்/6. 
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On the other hand, the standard 𝑘 − 𝜔 and RNG 𝑘 − ɛ models showed a significant over-

prediction of the stagnation temperature, while, SST 𝑘 − 𝜔 and RSM lead to better 

agreements with the experimental data. The capability of the SST 𝑘 − 𝜔 model in the 

accurate prediction of the stagnation region regarding an impingement jet application has 

been reported by several researchers (Ortega-Casanova & Castillo-Sanchez, 2017; 

Zuckerman & Lior, 2006) and the present work confirms this for the application to gas-fired 

furnaces. The better performance of SST 𝑘 − 𝜔 is probably due to the fact that the influence 

of the viscous sub-layer is considered in this model. This allows for taking into account large 

gradients of velocities, temperature and turbulence scalar quantities that are present near the 

wall region and therefore provide a better representation of the actual conditions. Fig. 6.5 (a) 

also shows that the RSM model solving all Reynolds stresses and turbulence dissipation and 

considering turbulence anisotropy exhibited reliable predictions compared to the 

experimental measurements.  

 

Fig. 6.5 (b) displays the temperature predictions of different models for the region located at 

the center of the block’s side wall (front and back walls). It should be noted that the 

difference between temperature measurements on the side walls was less than 0.5% and, 

therefore, only those for the front wall are illustrated. It can be seen that there is an 

acceptable consistency between all the predictions and the experimental data with a 

maximum deviation being about 3% for the RNG 𝑘 − ɛ model. 

 

Furthermore, Fig. 6.5 (c) shows clearly that the wall in the wake region plays a critical role in 

the selection process of the turbulence model. For instance, it can be seen that the realizable 𝑘 − ɛ model had more consistency with the measured data (2.3% under-prediction) among 

the 𝑘 − ɛ group and the SST 𝑘 − 𝜔 model (about 3% over-prediction) from the 𝑘 − 𝜔 group 

showed better predictions. The RSM model with 2.1% under-prediction concerning the 

temperature prediction of the wall in the wake region showed reasonable consistency with 

the measured data. On the basis of the above analysis and the temperature predictions of the 

three different walls of the block, the RSM model can be considered as the most accurate 

model in the context of the present study.     
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6.5.2.2 Combustion flow field predictions 

Fig. 6.6 depicts the contours of time-averaged temperature around the high momentum 

burner in the lateral plane perpendicular to the lower burners’ central cross-section.  

 

 

Figure 6.6 Time averaged temperature contours of a high 
momentum lower burner predicted by a) Standard 𝑘 − ɛ, b) 

Realizable 𝑘 − ɛ, c) standard 𝑘 − 𝜔, d) SST 𝑘 − 𝜔, e) RNG, 
and f) RSM models. 

 

Results reveal that the standard and realizable 𝑘 − ɛ models (Figs. 6.6 (a) and 6.6 (b)) under-

predicted the flame temperature, as compared with the RSM model. Lower temperatures 

were experienced around the stagnation line regarding these models’ predictions, while 

standard 𝑘 − 𝜔 predicted the highest level of contour near the stagnation line (Fig. 6.6 (c)). 

However, it should be mentioned that the standard and realizable 𝑘 − ɛ models could predict 

the flame temperature fairly well in the lateral direction, whereas a thin flame is revealed as a 

result of the simulation by standard 𝑘 − 𝜔 model. This is because the 𝑘 − 𝜔 model is 

originally developed to solve the near-wall region. On the other hand, the standard 𝑘 − ɛ 

model, which is well suited for high Reynolds number flows, is more reliable to solve the 

turbulent core region of the flow near the burners. An over-prediction of the time-averaged 
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temperature around the burner region is also visible for RNG and SST 𝑘 − 𝜔 simulations, as 

compared with the RSM model. However, the same temperature range was experienced near 

the stagnation line by SST 𝑘 − 𝜔 and RSM, as also illustrated in Fig 6.5 (a). The RNG model 

also predicts higher temperatures in the flow field and near the stagnation line, as shown in 

Fig. 6 (e), which further confirms the discussion of Fig. 6.5. 

 

Contours of the time-averaged temperature distribution in the lower burner region and around 

the stagnation point on the forged block at 𝑡 = 𝑡்/6, as predicted by the different turbulence 

models, are demonstrated in Fig. 6.7. The highest value of the temperature concerning all the 

models was predicted inside the furnace and after the burner’s nozzle exit. It can be seen that, 

that the flame as well as the stagnation point for the standard 𝑘 − 𝜔 and RNG models 

showed higher range of temperatures in comparison with the other models, in agreement with 

the results reported in Figs. 6.5 and 6.6. The results reported in Fig. 6.7 show also that an 

over-prediction of the flame temperature in the longitudinal direction by the standard 𝑘 − 𝜔 

and RNG models resulted in higher temperatures in the stagnation region. Meanwhile, 

standard 𝑘 − ɛ predicted the lowest values around the stagnation line and flame direction, 

when compared to RSM. Furthermore, although SST 𝑘 − 𝜔 over-predicted the flame 

temperature in the longitudinal direction, in absolute terms, this value was however lower 

compared to those predicted by standard 𝑘 − 𝜔 and RNG. It should be mentioned that the 

group of 𝑘 − 𝜔 models over-predicted the temperature of flow field and the block in the 

wake region. 
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Figure 6.7 Mean temperature contours of lower burner as predicted by a) standard 𝑘 − ɛ, b) realizable 𝑘 − ɛ, c) standard 𝑘 − 𝜔, d) SST 𝑘 − 𝜔, e) RNG 𝑘 − ɛ, and f) 
RSM turbulence models. 

 
Considering the results depicted in this sub-section, it can be concluded that the RSM model 

could predict the stagnation region’s temperature in good agreement with the measured data. 

The SST 𝑘 − 𝜔 could also predict the scalar field in that region with a reasonable accuracy, 

while the group of 𝑘 − ɛ models under-predicted the scalar field both in the furnace and on 

the large block. In order to study the impact of the selection of a turbulence model on the 

accurate predictions of combustion and temperature evolution during the heat treatment 

process, a detailed analysis of  the thermal interactions was carried out with a focus on three 

specific models: 1) RSM as the most sound RANS based model, 2) Realizable 𝑘 − ɛ as the 

most referred and suggested model in the literature (Prieler, Demuth, et al., 2015), and 3) 

SST 𝑘 − 𝜔 which could deliver consistent results, as compared with the measured 

temperatures on the stagnation side of the block. 
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6.5.2.3 Turbulence modeling effect on combustion simulation 

Distributions of the OH (hydroxide) mass fraction in the axial direction (𝑋/𝐿), as a 

representation of the flame length (main reaction zone), predicted by the three turbulence 

models, are displayed in Fig. 6.8. For all the models, the maximum OH fraction is near the 

burner exit (𝑋/𝐿 < 0.1). However, lower radical concentrations in the furnace were 

predicted by the realizable 𝑘 − ɛ model, as compared with RSM, which further confirms the 

shorter flame length reported in Figs. 6.6 and 6.7. On the other hand, the SST 𝑘 − 𝜔 model 

shows more OH fractions in the furnace both in the peak region and in the flame direction 

(𝑋/𝐿 > 0.2), resulting in a longer flame length. 

 

 

Figure 6.8 Distribution of OH mass fraction in burner’s 
axial direction. 

 

The above findings can be analyzed in terms of the mixture fraction variance ( 2f ′ ) 

calculation in the non-premix combustion model. The ratio of eddy dissipation rate to 

turbulence kinetic energy (ɛ/𝑘), calculated by the different turbulence models, directly 
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affects the term '2 ( / k)dC fρ ε  (see Eq. (6.10)). The term '2 ( / k)dC fρ ε  imposes the effect 

of turbulence modeling to the reaction flow simulation (ANSYS, 2016). 

 

Figs. 6.9 (a) and 6.9 (b) depict the mean mixture fraction and the mixture fraction variance of 

the combustion along a lower burner centerline, respectively. Mixture fraction depends on 

the fuel mass with the maximum value inside the burner (𝑋/𝐿 = −0.1) and it is very small 

when the entire fuel is consumed (i.e., far from the flame region). After initiation of the 

combustion in the primary and secondary chambers, its value decreases until the end of the 

flame within the furnace. Results in Fig. 6.9 also show that realizable 𝑘 − ɛ predicted lower 

mean mixture fraction along the burner centerline both inside the burner and the furnace, as 

compared with the other two models. The SST 𝑘 − 𝜔 model also under-predicted the mixture 

fraction inside the burner. However, it gives more consistent predictions relative to RSM in 

the furnace region which indicates that the identified differences in the flame length should 

be mostly related to mixture fraction variances. Fig. 6.9 (b) shows on the other hand that SST 𝑘 − 𝜔 over-predicted the mixture fraction variance when compared to RSM, while realizable 𝑘 − ɛ under-predicted it. Fig. 6.9 (c) shows the axial variations of the flame scalar dissipation 

rate along the centerline of the burner for the three different turbulence models. The scalar 

dissipation rate is zero except in the flame region and it is maximum where the maximum 

rate of chemical reactions takes place, as a result of turbulence and flame strain (Bazdidi-

Tehrani, Mirzaei, & Abedinejad, 2017). It can be seen that the realizable 𝑘 − ɛ model 

predicted lower scalar dissipation rate values compared to the RSM model both in the burner 

region (𝑋/𝐿 < 0) by up to 50%, and furnace medium (𝑋/𝐿 > 0) by up to 42%. However, 

both models provided approximately the same value near the burner exit (𝑋/𝐿 ≈  0). In 

other words, the identified flame length should be related to the scalar dissipation rate in the 

furnace region. Meanwhile, the SST 𝑘 − 𝜔 over-predicted the scalar dissipation rate by about 

32%, as compared with RSM in the burner exit (𝑋/𝐿 = 0).  

 

Comparison of the ɛ/𝑘 ratios regarding Fig. 6.9 (d) shows that the observed trends in Figs. 

6.9 (a) and 6.9 (b) have a direct relation with the prediction of the ɛ/𝑘 ratio. Specifically, the 

under-prediction made by the realizable 𝑘 − ɛ model and the over-prediction by the SST 𝑘 −
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𝜔 model clarifies the identified relation. Similar values of the ɛ/𝑘 ratio was observed by SST 𝑘 − 𝜔 and RSM, in the range of 0.04<𝑋/𝐿<0.08, leading to comparable results for the scalar 

dissipation rate. However, the over-prediction of the ɛ/𝑘 ratio after 𝑋/𝐿 > 0.1 is probably 

the root cause for observing higher values for the mixture fraction variance by the SST 𝑘 − 𝜔 

model in comparison with RSM. 

 

  

  

Figure 6.9 Influence of turbulence modeling on axial distribution of a) mean mixture 
fraction, b) mixture fraction variance, c) scalar dissipation rate, and d) ɛ/k ratio            

at burner centerline. 
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The observed trends in the ɛ/𝑘 ratio can be interpreted by analyzing the results of Fig. 6.10, 

where the contours of the turbulence kinetic energy near the lower burner region are 

depicted.  

 

 

Figure 6.10 Turbulence kinetic energy contours of lower burner region by 
a) realizable 𝑘 − ɛ, b) SST 𝑘 − 𝜔, and c) RSM turbulence models. 

 

It is revealed that the turbulence kinetic energy, TKE, was highly over-predicted near the 

nozzle exit (0<𝑋/𝐿<0.1) and along the centerline by the realizable 𝑘 − ɛ model in 

comparison with the other two models. This excessive TKE prediction could be related to an 

over-estimation of the turbulence production term, because in realizable 𝑘 − ɛ an isotropic 

eddy viscosity condition is assumed, which is a significant over-simplification for the present 

case where a highly anisotropic flow field is present. The over-prediction of TKE by the 

group of 𝑘 − ɛ models has already been mentioned in several turbulence included 

applications pointing out the fact that the 𝑘 − ɛ models fail to resolve the normal stress 

anisotropy (Leschziner, 2006; Tominaga & Stathopoulos, 2013). It should be noted that the 

eddy viscosity models have some limitations in systems with rotation, swirl secondary 

strains, large strain rates and impingement which should be taken into consideration in the 

analysis (Tominaga & Stathopoulos, 2013). It can be seen that SST 𝑘 − 𝜔 gave a reasonably 

similar range of TKE compared to RSM at the burner exit (𝑋/𝐿<0.1) which is in agreement 
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with the findings in Fig. 6.9 (d). Considering the negligible difference in the results of the 

eddy dissipation predictions by different models, it can be concluded that the TKE prediction 

has a direct impact on the ɛ/𝑘 ratio and, subsequently, on the scalar dissipation rate and the 

mixture fraction variance.  

 
6.5.2.4  Turbulence modeling impact on block’s temperature distribution 

Investigation of the temperature distribution inside the forged block can help quantifying the 

impact of turbulence modeling on the overall temperature distribution of the products within 

gas-fired heat treatment furnaces. In this regard, Fig. 6.11 displays the temperature 

distributions inside the forged block along three lateral lines, 𝑋/𝑊 (W indicates the width of 

block), at the heights of 𝑌/𝐻= 0.25, 0.5, and 0.75.  Increasing the height resulted in the 

reduction of the temperature levels, which could be related to the presence of heating sources 

(i.e., combustion of lower burners) adjacent to the bottom surface. Apart from the stagnation 

point (see also Fig. 6.5), the three turbulence models provided similar predictions of the 

temperature on the wall of the stagnation side. However, a slight over-prediction of the 

temperature (a maximum of 2.6%) on the stagnation side was found for SST 𝑘 − 𝜔 at 𝑌/𝐻=0.75 (Fig. 6.11 (c)). Results indicate that all the models predicted almost the same 

temperatures around the block center (𝑋/𝑊=0) at 𝑌/𝐻=0.25 and 0.5. However, the SST 𝑘 −𝜔 over-predicted the block temperature by about 7% in the center of the block, at 𝑌/𝐻=0.75. 

In addition, SST 𝑘 − 𝜔 over-predicted the temperature of the wake region wall (by up to 9% 

at 𝑌/𝐻=0.75) in comparison with RSM.  On the other hand, Realizable 𝑘 − ɛ showed good 

consistency with RSM, not only on the stagnation side, but also inside the block.  

 

The above results demonstrate that the realizable 𝑘 − ɛ model could reasonably predict the 

temperature evolution of the block within the gas-fired furnace. This particular model 

characterized with a lower computational cost per iteration, as compared with RSM, could be 

a reliable model for the block temperature predictions. Although, SST 𝑘 − 𝜔 showed 

reasonable results on the stagnation line and computation of the maximum temperature of the 

block (which can be used for the residence time optimization of the products inside the 
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furnace) it has limitations regarding the temperature predictions of the wake region. 

However, an accurate prediction of the wake region behind the block is of great importance 

for the temperature prediction as well as evaluation of turbulence modeling in applications 

where large size parts are used. 

 

  

 

Figure 6.11 Temperature distribution of large size block predicted by three turbulence 
models at non-dimensional heights of a) 𝑌/𝐻=0.25, b) 𝑌/𝐻=0.5, and c) 𝑌/𝐻=0.75. 
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6.5.2.5 Analysis of vortical structures 

The influence of the vortical structures formation on the transient temperature history of the 

forged block inside the furnace was discussed in a recent publication by Bohlooli et al. 

(Bohlooli Arkhazloo et al., 2019). Fig. 6.12 represents the streamlines of flow field as 

predicted by the three various turbulence models.  

 

Although, inconsistencies can be observed on the upper side of the furnace, realizable 𝑘 − ɛ 
and SST 𝑘 − 𝜔 fairly captured the streamlines attached to the top surface of the slab. 

However, realizable 𝑘 − ɛ could not capture the vortical structure on the top of the block. An 

over-prediction of the turbulence kinetic energy by the group of 𝑘 − ɛ models results in a 

high value of the eddy viscosity computation. Consequently, an excessive mixing effect 

reduced the reversed flow on the top surface of the block. Besides, SST 𝑘 − 𝜔 and realizable 𝑘 − ɛ could not accurately predict the locations and strength of vortical structures on the 

wake region. For example, the location of a strong recirculating vortex on the wake region 

was not consistent for the three models. This may be related with the fact that the velocity 

fluctuation induced by the vortices cannot be produced by the two equation models. A 

similar behavior was reported by Tominaga and Stathopoulos (Tominaga & Stathopoulos, 

2013) in the simulation of flow and dispersion around a cubic model building. According to 

reference (Tominaga & Stathopoulos, 2013), the two equation RANS based models can not 

accurately reproduce the vortex shedding velocity fluctuation behind the bluff body. This 

inconsistency in the local prediction of the flow recirculation could be the reason for the 

over- and under-prediction of the temperature at the wake side of the block by the SST 𝑘 − 𝜔 

and the realizable 𝑘 − ɛ, respectively. The recirculating part was formed on the bigger 

heights for SST 𝑘 − 𝜔, as compared with RSM, which could be related to the over-prediction 

of the temperature at 𝑌/𝐻=0.75 in Fig. 6.11 (c), as a result of a reattachment of the high 

temperature fluid to the block wall. On the other hand, although the realizable 𝑘 − ɛ could 

not accurately predict the location of the vortical structure in comparison with the RSM, it 

resulted in a similar attachment of the fluid flow near the wake region wall giving similar 

temperatures in this region (see Fig. 6.11).  
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Figure 6.12 Streamlines at a plane along with lower burner centerline by a) realizable 𝑘 − ɛ, 
b) SST 𝑘 − 𝜔, and c) RSM models 𝑡 = 𝑡்/6. 

6.6 Conclusions 

A comprehensive evaluation of the turbulence and combustion modeling, employing a one-

third periodic 3D model of a gas-fired heat treatment furnace, was performed for both the 

scalar and flow field predictions. The following main conclusions may be drawn from the 

present transient CFD simulations: 

 

1. The periodic one-third CFD model including chemical equilibrium non-premix 

combustion model could be a reliable representative of the present gas-fired furnace 

revealing good agreement with the presently measured data.  
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2. The present work showed that the choice of a turbulence model has a significant effect on 

the prediction of combustion and heat transfer phenomena around the block and the burners.  

 

3. Prediction of the ɛ/𝑘 ratio in the mean mixture fraction variance transport equation, which 

changes the scalar dissipation rate in the combustion zone could directly affect the flame 

length and heat transfer rates to the block. The 𝑘 − ɛ group of models by providing an over-

prediction of the turbulence kinetic energy and consequently under-prediction of the ɛ/𝑘 

ratio, under- estimated the flame length and heat transfer rates around the burner compared to 

the RSM and SST 𝑘 − 𝜔 models, as well as temperature measurements..   

 

4. The RSM model could predict the most accurate results, as compared with the measured 

data in the context of the present study.  

 

5. Although some under-predictions were observed for the flame length and stagnation 

region’s temperature predictions, the realizable 𝑘 − ɛ provided the block temperature history 

and the wake region turbulence flow field with an acceptable consistency, as compared with 

RSM. 

 

6. The 𝑘 − 𝜔 group of models over-predicted the temperature field inside the large size 

block, mainly due to a failure in capturing the wake region. 
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CONCLUSION 

The work presented in this thesis focused on the numerical/experimental analysis of large 

size forgings heat treatment process inside gas-fired furnaces. Thermal interactions inside the 

furnace were analyzed to reduce temperature non-uniformity distribution of forgings as well 

as reduction of their residence time inside large size gas-fired heat treatment furnaces. Details 

of thermal interactions including combustion, radiation, and turbulence inside the furnace 

were discussed. Also, a systematic investigation of strength and limitations of different 

numerical models to simulate radiation, combustion and turbulence in the present context 

was presented. Enlisted are the drawn conclusions from this research. 

 

1. 3D CFD models including one-third periodic configuration covering practical details 

of the furnace such as high momentum burners and fixing bars was capable enough to 

capture the experimentally measured temperature evolution of the forged ingot.  

 

2. Analysis of experimental temperature measurements showed that the unloaded 

furnace domain was uniform during the test. However, after loading temperature non-

uniformities on the forged ingot surfaces (up to 200 K and 331 K for the conventional 

single and multiple loading, respectively) were found during the process. Findings 

indicate the forged ingots loading and their sizes, could affect the uniformity 

performance of the furnace and subsequently the final product properties. 

 

3. The identified temperature distribution non-uniformities were affected by influence of 

geometrical effects (such as burner locations and fixing bars), turbulence flow field 

(formation of vortical structures), and loading patterns inside the furnace. These items 

should be taken into consideration for optimizing the heat treatment process of large 

size components. 

 

4. Taking the advantages of skids and spacers usage in the multiple loading 

configurations can effectively help the process optimization. It could reduce the 
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temperature non-uniformity of large size forgings inside the gas-fired furnace up to 

32%. 

5. The hybrid methodology proposed and validated for residence time optimization of 

large size forging in this work could be applied to other furnace types or steel alloys. 

It was possible to reduce the total residence time of large parts by about 15.5% for the 

process of this investigation. 

 

6. It was found that the convection heat transfer was the dominant heat transfer 

mechanism in the presence of central spacers to affect the temperature uniformity of 

the heavy steel parts in gas-fired furnaces.  

 

7. Analysis of results showed that the radiation view factor had a higher contribution 

than participating medium in the radiation heat transfer mode during the process as 

both DO an S2S model resulted in predictions with less than 2% differences. 

Therefore, S2S model which is characterized by lower computational cost model 

compared with DO, can be effectively used in the heat treatment analysis of large size 

components.  

 

8. Applicability of non-premix combustion with equilibrium model as a computationally 

effective combustion model was approved along with EDM model for the context of 

the present study. 

 

9. The choice of the turbulence model in the present application had a significant effect 

on the combustion and heat transfer phenomenon around the block and the burners. 

Specifically, prediction of ɛ/𝑘 term by different models could directly affect the 

mean mixture fraction variance and change the scalar dissipation rate in the 

combustion zone, leading to changing in the flame length and heat transfer rates to 

the block. 
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10. RSM model was approved as the soundest RANS based turbulence model in the 

context of present study to accurately predict the thermal interactions in critical 

regions around the block using standard suggested coefficients for the simulations.  

 

11. The SST 𝑘 − 𝜔 model could also predict the scalar field in this region with a 

reasonable accuracy. 

 

12. It could be concluded that apart from some under-predictions observed for the flame 

length and stagnation region’s temperature predictions by realizable 𝑘 − ɛ model, this 

model could illustrate global block temperature history with an acceptable 

consistency, as compared with RSM model and measurements.  

 

13. Although the SST 𝑘 − 𝜔 model failed to capture the wake regions revealed an over-

predicted temperature field inside the large size block temperature, it resulted in 

reasonable predictions in the stagnation point and burner combustion (which can be 

used for the process optimization using developed hybrid technology). It should be 

mentioned that the standard 𝑘 − 𝜔 model and the RNG 𝑘 − ɛ could not accurately 

predict the thermal interactions, neither in the stagnation region, nor on the wake 

region.  

 

14. The developed CFD model and its data as well as experimental measurements 

including hybrid methodology could be directly applied for the optimization of the 

operational conditions and loading patterns during the heat treatment process of large 

size forged ingots within gas-fired furnaces. 
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RECOMMENDATIONS  
 
The main purpose of present study was to carry out a comprehensive analysis of thermal 

interactions during the heat treatment of large size forgings within gas-fired furnaces; and 

subsequently to improve product’s residence time and loading pattern in this context. Apart 

from directly applicable information to the real scale heat treatment of heavy forgings 

provided by the present study, the following future investigations are suggested: 

 

1) Application of hybrid methodology for other grades of steels for residence time 

optimization of different large size heavy forgings. It is suggested to investigate 

different metallurgical aspects (like residual stresses, microstructural transformations) 

along with the hardness measurements for the further optimization. 

 

2) In the present study natural gas and air at room temperature were employed for the 

combustion. It is recommended to carry out an investigation on the pre-heated air 

combustion effectiveness.  

 

3) It was approved in this study that the radiation view factor was the dominant 

parameter for accurate simulation of radiation heat transfer in the gas-fired furnace. It 

is suggested to make analytical-numerical study on the optimization of radiation view 

factor between large size forgings to further optimize the loading pattern within gas-

fired furnaces.  

 

4) In the present study, temperature measurements of blocks were used as the main 

criterion for the validation of numerical simulations. It is suggested to use particle 

image velocimetry (PIV) measurement technique for further validation of combustion 

process in the high-momentum gas-fired burner and subsequently investigate the 

combustion products distributions within the furnace. 
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