
A DO-178C-compliant Model-Driven Approach to Support the
Development and Certification of Safety-Critical Avionics

Software

by

Andrés Felipe PAZ LOBOGUERRERO

THESIS PRESENTED TO ÉCOLE DE TECHNOLOGIE SUPÉRIEURE

IN PARTIAL FULFILLMENT FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Ph.D.

MONTREAL, FEBRUARY 14, 2020

ÉCOLE DE TECHNOLOGIE SUPÉRIEURE
UNIVERSITÉ DU QUÉBEC

© Copyright 2020 reserved by Andrés Felipe Paz Loboguerrero

© Copyright reserved

It is forbidden to reproduce, save or share the content of this document either in whole or in parts. The reader

who wishes to print or save this document on any media must first get the permission of the author.

BOARD OF EXAMINERS

THIS THESIS HAS BEEN EVALUATED

BY THE FOLLOWING BOARD OF EXAMINERS

Mrs. Ghizlane El Boussaidi, Thesis Supervisor

Département de Génie logiciel et des technologies de l’information

École de Technologie Supérieure

Mr. Antoine Tahan, President of the Board of Examiners

Département de génie mécanique

École de Technologie Supérieure

Mr. Abdelouahed Gherbi, Member of the jury

Département de Génie logiciel et des technologies de l’information

École de Technologie Supérieure

Mr. Yvan Labiche, External Independent Examiner

Systems and Computer Engineering

Carleton University

THIS THESIS WAS PRESENTED AND DEFENDED

IN THE PRESENCE OF A BOARD OF EXAMINERS AND THE PUBLIC

ON FEBRUARY 4, 2020

AT ÉCOLE DE TECHNOLOGIE SUPÉRIEURE

to the memory of my beloved grandparents, Cielo and Eduardo

to my dear parents, Cielo and Diego

PREFACE

The research presented hereinafter was conducted in the Laboratoire en Architecture de Sys-

tème Informatiques at École de Technologie Supérieure, Université du Québec. To the best

of my knowledge, this work is original, except where references are made to previous work.

Neither this, nor any substantially similar dissertation has been or is being submitted for any

other degree, diploma or other qualification at any other university.

Parts of this work have been presented in the following publications:

A. Paz, G. El Boussaidi and H. Mili, “checsdm: A Method for Ensuring Consistency in Heterogeneous

Safety-Critical System Design,” in IEEE Transactions on Software Engineering (Early Access), January

2020.

N. Metayer, A. Paz and G. El Boussaidi, “Modelling DO-178C Assurance Needs: A Design Assur-

ance Level-Sensitive DSL,” in Proceedings of the 2019 IEEE International Symposium on Software

Reliability Engineering Workshops (ISSREW), October 2019.

A. Paz and G. El Boussaidi, “Supporting Consistency in the Heterogeneous Design of Safety-Critical

Software,” in Proceedings of the 2019 IEEE 43rd Annual Computer Software and Applications Confer-

ence (COMPSAC), July 2019, pp. 37–46.

A. Paz and G. El Boussaidi, “A Requirements Modelling Language to Facilitate Avionics Software

Verification and Certification,” in Proceedings of the 2019 IEEE/ACM 41st International Conference on

Software Engineering Workshops (ICSEW), May 2019, pp. 1–8.

A. Paz and G. El Boussaidi, “Building a Software Requirements Specification and Design for an Avion-

ics System: An Experience Report,” in Proceedings of the 33rd Annual ACM Symposium on Applied

Computing (SAC’18), April 2018, pp. 1262–1271.

A. Paz and G. El Boussaidi, “On the Exploration of Model-Based Support for DO-178C-Compliant

Avionics Software Development and Certification,” in Proceedings of the 2016 IEEE International Sym-

posium on Software Reliability Engineering Workshops (ISSREW), October 2016, pp. 229–236.

ACKNOWLEDGEMENTS

My deepest thanks go to my supervisor, Ghizlane El Boussaidi, for an enjoyable and motivating

research experience as well as for the trust she placed in me to carry out this work. I am very

grateful to her for guiding, encouraging and supporting me throughout the development of this

thesis with great competence and scientific rigour.

This research was partially supported by the Natural Sciences and Engineering Research Coun-

cil of Canada (NSERC) (CRDPJ 463076-14) and the Consortium for Research and Innovation

in Aerospace in Quebec (CRIAQ) under project AVIO-604. I thank again my supervisor, Ghi-

zlane El Boussaidi, for her financial support throughout the duration of the research. I would

like to thank the team of project AVIO-604, especially Pierre, Claire, Martin, Nicolas and

Alexis, for their comments and feedback throughout the project, and for helping in the evalua-

tion of the research results.

My thanks also go to Hafedh Mili, professor at Université du Québec à Montréal, who was of

such a great assistance in shaping this work.

I thank the members of the board of examiners for agreeing to evaluate this thesis. I am

very thankful to Yvan Labiche, professor at Carleton University, for serving as the external

independent examiner and for his useful and constructive comments and feedback.

I owe a debt of gratitude to my great friend Hugo Arboleda for preparing me for and encour-

aging me into pursuing a Ph.D. I will always treasure the life lessons you gave me during the

time we spent working together. I would like to thank my friend Camilo Valderrama for his

kind words of support.

A huge thank you goes to my parents, Cielo and Diego, and my brother, Gustavo, for their un-

conditional love, support and encouragement. I am extremely grateful to my late grandparents,

Cielo and Eduardo, who always supported my studies and gave me so much. I would have

never gotten this far without any of you.

Une Approche Orientée Modèle et Conforme à la Norme DO-178C pour Appuyer le
Développement et la Certification des Logiciels d’Avionique Critiques

Andrés Felipe PAZ LOBOGUERRERO

RÉSUMÉ

Les systèmes logiciels, de plus en plus complexes à l’heure actuelle, sont conçus pour répondre

aux besoins des domaines dans lesquels la sûreté est cruciale, comme les aéronefs. Cependant,

l’ingénierie de logiciels d’avionique n’est pas une tâche simple. D’un côté, les consomma-

teurs demandent l’intégration des fonctionnalités, souvent complexes, pour les rendre plus in-

telligents. D’un autre côté, leurs environnements opérationnels ont des exigences de sûreté.

Pour cette raison, leur ingénierie est hautement réglementée afin de s’assurer qu’ils seront

développés d’une manière appropriée pour éviter de nuire aux personnes et aux biens dans

leurs environnements opérationnels. Les fournisseurs de systèmes d’avionique doivent fournir

des preuves que leurs systèmes sont conformes à la norme réglementaire applicable DO-178C.

Ces deux facteurs ont mis en évidence le besoin de techniques d’ingénierie permettant de ré-

duire la complexité du développement et d’appuyer les efforts de certification. Dans ce con-

texte, l’ingénierie dirigée par les modèles (IDM) représente une alternative plus économique en

temps et en coûts. Ceci est principalement dû au fait que les modèles représentent l’information

à des niveaux d’abstraction appropriés permettant la manipulation et l’analyse de cette infor-

mation tout au long du cycle de développement logiciel. Néanmoins, il reste encore des défis

importants à relever pour que l’IDM puisse soutenir de manière globale le développement et

la certification des systèmes d’avionique, et aussi pour qu’elle soit l’objet d’une adoption à

grande échelle.

Cette thèse se focalise sur l’investigation de l’IDM pour développer des systèmes hétérogènes

où plusieurs langages de modélisation sont utilisés pour exprimer différents aspects du même

système. Dans ce contexte, nous investiguons l’utilisation de l’IDM pour assurer: 1) la co-

hérence entre les modèles de conception, 2) la traçabilité des élements de ces modèles par

rapport aux exigences, et 3) une relation explicite entre toutes ces informations et les objectifs

réglementaires de la DO-178C. Pour faire face à ces défis, nous proposons une méthode, basée

sur l’IDM, qui supporte la cohérence entre modèles de conception hétérogènes et fournit une

infrastructure de spécification des exigences. Toutes les données produites par cette méthode

sont traçables aux objectifs réglementaires de la DO-178C.

Afin d’arriver à cette contribution, nous avons examiné diverses approches de modélisation

pour la conception hétérogène et la gestion de la cohérence. Nous avons construit une méthode

systématique et automatisée pouvant être appliquée à une variété de scénarios de conception

impliquant différents langages de modélisation et directives de conception. Les méthodes de

modélisation de conception hétérogènes existantes peuvent être utilisées dans la méthode pro-

posée. En outre, nous avons étudié certains langages de modélisation des exigences utilisés

dans le contexte des systèmes critiques. Nous avons analysé le support que ces langages of-

frent pour faciliter la certification et capturer des informations structurées et sémantiquement

XII

riches permettant des analyses et des tests basés sur les exigences. En se basant sur les résultats

de cette étude, nous avons construit un langage de modélisation des exigences qui combine cer-

tain nombre des langages étudiés et qui s’intègre dans notre méthode. À ce propos, nous avons

suivi une approche systématique pour construire un tel langage de modélisation. Nous avons

réalisé des évaluations empiriques de notre méthode par le biais d’études de cas. Nous avons

fait également des ateliers avec des praticiens industriels en vue d’évaluer leurs perceptions de

la méthode proposée.

Les résultats obtenus dans ces évaluations nous permettent de conclure que la méthode pro-

posée dans cette thèse, peut être utilisée efficacement pour appuyer le développement et la

certification des logiciels d’avionique selon la norme DO-178C. En particulier, les praticiens

industriels considèrent qu’elle est facile à comprendre et qu’il y a une forte probabilité qu’ils

l’adoptent dans le contexte de leur travail.

Mots-clés: Ingénierie dirigée par les modèles, systèmes critiques, systèmes d’avionique,

conception hétérogène, spécification des exigences, certification, DO-178C.

A DO-178C-compliant Model-Driven Approach to Support the Development and
Certification of Safety-Critical Avionics Software

Andrés Felipe PAZ LOBOGUERRERO

ABSTRACT

Increasingly complex software is nowadays engineered to cater to safety-critical domains, like

aircraft. However, engineering software for avionics systems is not a straightforward task. On

one hand, consumer demands have spurred the need to pack features in, often intricate ones

that will make systems smarter. On the other hand is the safety-critical nature of their opera-

tional environments. Because of this, their engineering is highly regulated in order to ensure

they are developed appropriately to avoid, or at least mitigate, posing undue harm to any-

one or anything in their operational environments. Avionics systems manufacturers are, thus,

obliged to provide the appropriate software safety assurance in compliance with the applica-

ble regulatory norm DO-178C. These two factors have pointed toward the need of engineering

techniques that aid in reducing development complexities and support certification endeavours.

Model-Driven Engineering (MDE) has been proposed as a cost- and time-effective alternative.

The main rationale behind MDE is that models represent information at the right levels of

abstraction to enable reasoning and ease information manipulation throughout the entire en-

gineering life cycle. Nonetheless, significant challenges must still be overcome for MDE to

comprehensively support the development and certification of avionics systems, and experi-

ence widespread adoption.

This thesis focuses on the investigation of MDE for supporting the use of different modelling

languages for describing the same system while ensuring 1) consistency between the different

system models, 2) traceability of the elements in such models back to requirements, and 3) all

of this information explicitly relates to DO-178C regulatory objectives. Given these challenges,

the main contribution of this thesis is a systematic and automated method, based on MDE, for

assisting engineering teams in ensuring consistency of heterogeneous design models and pro-

viding such teams with a requirements specification infrastructure. All outputs of the method

are explicitly traceable to DO-178C regulatory objectives.

To arrive at this contribution, we reviewed various heterogeneous design modelling and con-

sistency management approaches. We derived a systematic and automated method that can be

applied to various design scenarios involving different modelling languages and different de-

sign guidelines. Existing heterogeneous design modelling approaches can be leveraged within

our proposed method. Furthermore, we studied several requirements modelling languages used

in the context of safety-critical systems and characterized their support toward enforcing infor-

mation for DO-178C certification and capturing structured semantically-rich information to

enable requirements-based analyses and testing. Based on the results from such a survey we

advocated for the combination of several of these languages to build a modelling language that

could be integrated into the proposed method. We followed a systematic approach to build

such a modelling language. We undertook empirical evaluations of our proposal by applying

XIV

it in two case studies. As part of the evaluations we also include assessment workshops with

practitioners from industry to examine their perceptions about it.

The results from the empirical evaluations show that our proposal can be effectively used to

support the development and certification of avionics software in accordance with DO-178C.

Practitioners from industry consider the proposal to be easy to understand and gave it an overall

likelihood of adoption within the contexts of their work.

Keywords: Model-Driven Engineering, safety-critical systems, avionics systems, heteroge-

neous design, requirements specification, certification, DO-178C.

TABLE OF CONTENTS

Page

INTRODUCTION . 1

CHAPTER 1 BACKGROUND AND LITERATURE REVIEW .. 23

1.1 Software Considerations in Airborne Systems and Equipment Certification 23

1.1.1 DO-178C . 24

1.1.2 DO-331 . 28

1.1.3 DO-332 . 29

1.2 Model-Driven Engineering (MDE) . 30

1.2.1 Modelling . 30

1.2.2 Modelling with Simulink and Stateflow . 32

1.2.3 Modelling with AADL . 34

1.2.4 Modelling with UML . 34

1.2.5 Methodology for developing modelling languages for regulation

certification using UML . 36

1.3 Model-Based Approaches Supporting Safety-Critical System Development

and Certification . 37

1.3.1 Approaches supporting certification . 39

1.3.1.1 Meta-approaches . 39

1.3.1.2 Safety assurance cases . 41

1.3.1.3 Certification-compliant system design and analysis 43

1.3.2 Approaches supporting requirements specifications . 46

1.3.2.1 Natural language-based specification . 47

1.3.2.2 Behavioural modelling . 51

1.3.2.3 Hybrid specification . 53

1.3.3 Approaches handling design model heterogeneity . 58

1.3.3.1 Model composition . 59

1.3.3.2 Model integration . 60

1.3.3.3 Consistency management . 63

1.4 Discussion . 64

1.4.1 Approaches supporting certification . 65

1.4.2 Approaches supporting requirements specification in the context

of certifiable safety-critical systems development . 66

1.4.3 Approaches handling design model heterogeneity . 70

1.5 Chapter Summary . 71

CHAPTER 2 THE LANDING GEAR CONTROL SOFTWARE . 73

2.1 Related Work . 74

2.2 Plan for Software Aspects of Certification (PSAC) . 76

2.2.1 System overview . 76

2.2.2 Certification considerations . 79

XVI

2.2.3 Development methodology . 81

2.3 Software Requirements Data . 87

2.4 Design Description . 89

2.4.1 Software architecture . 89

2.4.2 Low-level requirements (LLRs) . 92

2.5 Discussion . 95

2.5.1 Requirements specification . 95

2.5.1.1 Quality and granularity of SRATS . 95

2.5.1.2 Requirements specification language . 96

2.5.2 Design . 97

2.5.2.1 Design modelling language . 97

2.5.2.2 Granularity of LLRs . 97

2.5.2.3 Bidirectional traces in model-based LLRs . 98

2.5.2.4 Consistency of heterogeneous design models 99

2.6 Chapter Summary .100

CHAPTER 3 CHECSDM: CONSISTENCYOFHETEROGENEOUS EMBEDDED

CONTROL SYSTEM DESIGN MODELS .103

3.1 The checsdm Approach .103

3.1.1 Elicitation phase .105

3.1.1.1 Mix of modelling languages .105

3.1.1.2 Mapping rules .107

3.1.1.3 Design guidelines .108

3.1.2 Codification phase .109

3.1.2.1 Metamodelling .110

3.1.2.2 Codification of mapping rules .111

3.1.2.3 Codification of design guidelines .112

3.1.3 Operation phase .113

3.2 checsdm4uss: Concrete Instantiation of checsdm .115

3.2.1 checsdm4uss: Elicitation phase .116

3.2.1.1 Mix of modelling languages .116

3.2.1.2 Mapping rules .117

3.2.1.3 Design guidelines .120

3.2.2 checsdm4uss: Codification phase .124

3.2.2.1 Metamodelling .124

3.2.2.2 Codification of mapping rules .125

3.2.2.3 Codification of design guidelines .126

3.2.2.4 Derived toolchain .128

3.2.3 checsdm4uss: Operation phase .128

3.2.3.1 Step 1: Software specification .128

3.2.3.2 Step 2: Software design .129

3.2.3.3 Step 3: Verification of intra-model design guideline

compliance .129

XVII

3.2.3.4 Step 4: Mapping of design models .129

3.2.3.5 Step 5: Verification of inter-model design guideline

compliance .131

3.3 Chapter Summary .133

CHAPTER 4 SPECML: REQUIREMENTS SPECIFICATION MODELLING

LANGUAGE .135

4.1 Methodology for Developing SpecML .136

4.2 SpecML’s Domain Metamodel .137

4.2.1 Requirements-related concepts .138

4.2.2 Requirement formalization-related concepts .142

4.3 SpecML as a UML Profile .144

4.3.1 Profile organization .144

4.3.2 Profile stereotypes .144

4.3.2.1 Requirement hierarchy .145

4.3.2.2 Requirement interrelationship .151

4.3.2.3 Requirement formalization .152

4.3.2.4 Data dictionary .156

4.4 Reference Implementation .157

4.4.1 Tool support .157

4.4.2 Overview .158

4.5 Chapter Summary .160

CHAPTER 5 EVALUATION .163

5.1 Research Questions .163

5.2 RQ-1: Feasibility of checsdm’s Execution .165

5.2.1 Data collection procedure .165

5.2.2 checsdm4a/ss—Another concrete instantiation of checsdm166

5.2.3 Results and analysis .169

5.3 RQ-2: checsdm4uss vs. Manual Verification .173

5.3.1 Data collection procedure .173

5.3.2 Design models .176

5.3.3 Results and analysis .178

5.4 RQ-3: Feasibility of SpecML’s Use .183

5.4.1 Data collection procedure .183

5.4.2 Results and analysis .184

5.5 RQ-4: Likelihood of industry adoption .190

5.5.1 Data collection procedure .190

5.5.2 Results and analysis .191

5.6 Threats to Validity .197

5.6.1 Internal validity .197

5.6.2 External validity .199

5.7 Chapter Summary .201

XVIII

CONCLUSION AND OUTLOOK .203

APPENDIX I THE CHARACTERIZATION FRAMEWORK .211

APPENDIX II LANDING GEAR CONTROL SOFTWARE REQUIREMENTS

SPECIFICATION AND DESIGN (BASELINE) .217

APPENDIX III MAPPING RULES AND DESIGN GUIDELINES OF CHECS-
DM4USS .257

APPENDIX IV CHECSDM AND CHECSDM4USS DEVELOPER’S AND

USER’S GUIDES .275

APPENDIX V BREEZE THROUGH SAFETY-CRITICAL SYSTEM MODEL-

BASED DESIGN WITH EMF, SIMULINK AND STATEFLOW297

APPENDIX VI SPECML DOMAIN CONCEPTS .307

APPENDIX VII SPECML STEREOTYPES .323

APPENDIXVIIISPECML DEVELOPER’S AND USER’S GUIDES .345

BIBLIOGRAPHY .373

LIST OF TABLES

Page

Table 1.1 Summary of model-based approaches supporting requirements

specification . 68

Table 1.2 Summary of model-based approaches supporting requirements

specification (Continued) . 68

Table 1.3 Summary of model-based approaches supporting requirements

specification (Continued) . 69

Table 2.1 Examples of SRATS for the LGCS. 88

Table 2.2 Examples of HLRs for the LGCS. Adapted from Paz & El Boussaidi

(2018). 89

Table 2.3 Examples of LLRs for the LGCS. Extracted from Paz & El

Boussaidi (2018).. 93

Table 3.1 Summary of mapping rules for checsdm4uss. .118

Table 3.2 Mapping rule mr_us_03 for UML components and Simulink

subsystems. Extracted from Paz et al. (2020). .118

Table 3.3 Mapping rule mr_us_05 for UML input parameters and Simulink

block inputs. Extracted from Paz et al. (2020). .120

Table 3.4 Summary of design guidelines for checsdm4uss. .121

Table 3.5 Design guideline av_us_01: Mixed use of UML, Simulink and

Stateflow. Extracted from Paz et al. (2020). .122

Table 3.6 Design guideline av_us_03: Naming of elements in UML models.

Extracted from Paz et al. (2020). .122

Table 3.7 Design guideline av_us_10: Expression of triggers appearing in

both UML and Stateflow transitions. Extracted from Paz et al.
(2020). .123

Table 5.1 Summary of the mapping rules for checsdm4a/ss. .167

Table 5.2 Mapping rule mr_as_02 for AADL process implementation and

Simulink subsystem. .167

XX

Table 5.3 Summary of design guidelines for checsdm4a/ss. .168

Table 5.4 Design guideline av_as_09: Specification of AADL process as a

Simulink subsystem block. .169

Table 5.5 Summary of the checsdm instantiations. Extracted from Paz et al.
(2020). .170

Table 5.6 Effort involved in the elicitation phases of the checsdm
instantiations. Extracted from Paz et al. (2020).. .171

Table 5.7 Effort involved in the codification phases of the checsdm
instantiations. Extracted from Paz et al. (2020).. .172

Table 5.8 Pre-study survey. Extracted from Paz et al. (2020). .174

Table 5.9 Inconsistency report sheet. Extracted from Paz et al. (2020).175

Table 5.10 Fragment example of a mapping model inspection sheet. Extracted

from Paz et al. (2020). .176

Table 5.11 Post-study survey. Extracted from Paz et al. (2020). .176

Table 5.12 Summary of the design models for the LGCS, FCS and ECS.

Extracted from Paz et al. (2020). .177

Table 5.13 Summary of checsdm4uss’ resulting mapping models for the LGCS,

FCS and ECS. .178

Table 5.14 Summary of checsdm4uss’ resulting mappings for the LGCS, FCS

and ECS. Extracted from Paz et al. (2020). .179

Table 5.15 Summary of inconsistencies manually reported by the control group

for the LGCS, FCS and ECS. Extracted from Paz et al. (2020).181

Table 5.16 Requirements extracted from the LGCS and FCS. .184

Table 5.17 Pre-workshop survey. .191

Table 5.18 GQM model for the assessment workshop. .192

LIST OF FIGURES

Page

Figure 0.1 Suggested DO-178C development life cycle. 4

Figure 0.2 Research methodology. 13

Figure 0.3 Overview of the approach.. 15

Figure 1.1 DO-178C detailed software development workflow. 27

Figure 1.2 Scope of DO-331 within DO-178C. Adapted from Rad (2011b). 29

Figure 1.3 OMG’s four-level modelling framework. Adapted from OMG

(2013). 32

Figure 1.4 Example of the Simulink notation. Extracted from Paz et al.
(2020). 33

Figure 1.5 Example of the Stateflow notation. Extracted from Paz et al.
(2020). 33

Figure 1.6 AADL graphical notation for the example in Listing 1.1. 35

Figure 1.7 Methodology for developing UML-based DSMLs for regulation

certification. Extracted from Metayer et al. (2019). 38

Figure 1.8 Process for managing and collecting certification information.

Adapted from Panesar-Walawege et al. (2013). 40

Figure 1.9 Fragment of an object diagram for a tramway network design.

Extracted from Berkenkötter & Hannemann (2006). 44

Figure 1.10 State machine diagram using OMEGA-RT for an aircraft’s flight

control computer sensor. Adapted from IST (2001). 45

Figure 1.11 Toolchain based on commercially available tools. Adapted

from Eisemann (2016). 46

Figure 1.12 Fragment of the UML profile’s metamodel by Zoughbi et al.
(2011). Adapted from Zoughbi et al. (2011). 49

Figure 1.13 Fragment of the RDAL metamodel. Adapted from Blouin (2013). 51

XXII

Figure 1.14 Fragment of a requirement specification for a sensor using

ReqSpec. Adapted from Feiler et al. (2016). 51

Figure 1.15 High-level RSML specification for the TCAS II. Extracted

from Leveson et al. (1994).. 53

Figure 1.16 UCM behavioural model for a landing gear controller. 54

Figure 1.17 Structure of an HCT (left) and an example (right). Extracted

from Bialy et al. (2015) and Bialy et al. (2017), respectively. 55

Figure 1.18 SpeAR specification for a thermostat. Extracted from Fifarek et al.
(2017). 56

Figure 1.19 Formalization of an HLR for a car’s automatic light system using

STIMULUS. Adapted from Gaucher & Génevaux (2017). 57

Figure 1.20 Architecture of the UML profile for MARTE. Adapted from OMG

(2011). 58

Figure 1.21 Development process for the ATP system in the Metrô Rio.

Extracted from Ferrari et al. (2013). 62

Figure 1.22 Proposed development flow by Tanaka et al. (2017). Extracted

from Kuroki et al. (2016). 62

Figure 1.23 The ARCADIA engineering approach. Extracted from Roques

(2016). 63

Figure 2.1 Illustration of an aircraft’s landing gear system. Adapted

from Paz & El Boussaidi (2017). 77

Figure 2.2 System overview. Extracted from Paz & El Boussaidi (2018). 78

Figure 2.3 Illustration of the main states of a wheel assembly (from left to

right): gear extended, gear in transit and gear retracted. Adapted

from Paz & El Boussaidi (2017). 79

Figure 2.4 General flow for requirements specification and design. Extracted

from Paz & El Boussaidi (2018). 82

Figure 2.5 Expanded view of the Develop HLRs activity. Extracted

from Paz & El Boussaidi (2018). 83

Figure 2.6 Expanded view of the Develop Software Architecture activity.

Adapted from Paz & El Boussaidi (2018). 85

XXIII

Figure 2.7 Expanded view of the Develop LLRs activity for specifying textual

LLRs. Adapted from Paz & El Boussaidi (2018).. 86

Figure 2.8 Expanded view of the Develop LLRs activity for specifying LLRs

as design models. Adapted from Paz & El Boussaidi (2018). 87

Figure 2.9 Architecture for the LGCS as a UML component diagram.

Adapted from Paz & El Boussaidi (2018). 90

Figure 2.10 ControlData interface. Extracted from Paz et al. (2020). 91

Figure 2.11 Excerpt of the architecture for the LGCS as a Simulink block

diagram. 92

Figure 2.12 Excerpt from the UML state machine associated to the

SequenceController component. Adapted from Paz et al. (2020). 94

Figure 2.13 LGCS decomposition as a Simulink block diagram. Extracted

from Paz et al. (2020). 94

Figure 2.14 Excerpt from the Stateflow chart realizing the Sequence-
Controller subsystem block. Extracted from Paz et al. (2020). 95

Figure 3.1 General flow of the checsdm approach. Adapted from Paz et al.
(2020). .104

Figure 3.2 Feature model characterizing the mix of modelling languages.

Extracted from Paz et al. (2020).. .106

Figure 3.3 Mapping rules metamodel. Extracted from Paz et al. (2020).108

Figure 3.4 Mapping metamodel. Extracted from Paz et al. (2020). .108

Figure 3.5 Guidelines metamodel. Extracted from Paz et al. (2020).109

Figure 3.6 The checsdm tool framework. Extracted from Paz et al. (2020).111

Figure 3.7 Flow of the operation phase. Adapted from Paz et al. (2020).114

Figure 3.8 Excerpt from the LGCS design models illustrating the application

of mapping rules mr_us_03, mr_us_05 and mr_us_06. Extracted

from Paz et al. (2020). .119

Figure 3.9 Illustrative example for applying guideline av_us_10. Extracted

from Paz et al. (2020). .123

XXIV

Figure 3.10 Overview of the derived toolchain for checsdm4uss. Extracted

from Paz et al. (2020). .129

Figure 3.11 Screenshot of the resulting checsdm4uss mapping model for the

LGCS and the properties of the selected mapping in line 3.

Extracted from Paz et al. (2020).. .130

Figure 3.12 Excerpts from the UML state machine associated

to the SequenceController component and the Stateflow chart

associated to the SequenceController subsystem block. Adapted

from Figures 2.12 and 2.14. .132

Figure 3.13 Screenshot of design guideline av_us_10’s violation. Extracted

from Paz et al. (2020). .132

Figure 4.1 Methodology for developing SpecML. Adapted from Figure 1.7.137

Figure 4.2 Fragment of SpecML’s domain metamodel showing the

requirements concepts. .139

Figure 4.3 Fragment of SpecML’s domain metamodel showing the

formalization concepts. .143

Figure 4.4 Requirement hierarchy stereotypes. .146

Figure 4.5 Excerpt of the LGCS specification model using SpecML showing

SRATS-2 and HLR-2. .152

Figure 4.6 Requirement interrelationship stereotypes. .153

Figure 4.7 Excerpt of the LGCS specification model using SpecML showing

the interrelationship between SRATS-2 and HLR-2.. .153

Figure 4.8 Requirement formalization stereotypes. .154

Figure 4.9 Excerpt of the LGCS specification model using SpecML showing

one of the formalizations for HLR-2. .155

Figure 4.10 Excerpt of the LGCS specification model using SpecML showing

timed constraint formalizations.. .156

Figure 4.11 Data dictionary stereotypes. .157

Figure 4.12 Excerpt of the LGCS specification model using SpecML showing

two data entries from the data dictionary. .157

XXV

Figure 4.13 Screenshot of the SpecML reference implementation. Extracted

from Paz & El Boussaidi (2019b). .159

Figure 4.14 Fragment of the specification model for the LGCS in the reference

implementation. .160

Figure 4.15 Fragment of the specification model for the LGCS in the reference

implementation’s tabular view. .161

Figure 5.1 Overview of the derived toolchain for checsdm4a/ss. .169

Figure 5.2 Participants’ background. Extracted from Paz et al. (2020).174

Figure 5.3 Example of an injected inconsistency used in the study. Adapted

from Paz et al. (2020). .178

Figure 5.4 Comparison of the consolidated inconsistency recall. Extracted

from Paz et al. (2020). .181

Figure 5.5 Post-study survey results for Q1 and Q2. CG: Control Group. OG:

Operation Group. Extracted from Paz et al. (2020). .182

Figure 5.6 Post-study survey results for Q3, Q4 and Q5. Extracted from Paz

et al. (2020).. .182

Figure 5.7 Post-study survey results for Q6. Extracted from Paz et al. (2020).183

Figure 5.8 Fragment of the specification model for the LGCS. .185

Figure 5.9 Complete formalization of the LGCS’ HLR-2 in SpecML’s

reference implementation. .186

Figure 5.10 Tabular view for the complete formalization of the LGCS’ HLR-2

in SpecML’s reference implementation. .187

Figure 5.11 Fragment of the specification model for the FCS. Extracted from

Paz & El Boussaidi (2019b). .188

Figure 5.12 Screenshot of the specification and formalization of HLR_4 for the

FCS with the SpecML reference implementation. Extracted from

Paz & El Boussaidi (2019b). .188

Figure 5.13 SysML parametric diagram of the CommandLoopControl-
Predicate constraint block. .189

Figure 5.14 Q1. Were (1) checsdm [and] (2) checsdm4uss easy to understand?193

XXVI

Figure 5.15 Q1. [Was] (3) SpecML easy to understand? .193

Figure 5.16 Q2. Would you use (1) checsdm [and] (2) checsdm4uss to help in

your work? .193

Figure 5.17 Q2. Would you use (3) SpecML to help in your work? .194

Figure 5.18 Q3. Do you see value in adopting (1) checsdm and (2) checsdm4uss
for ensuring consistency of heterogeneous design models?194

Figure 5.19 Q4. Do you see value in adopting SpecML for supporting (1)

requirement specification, (2) requirement-based testing, and (3)

certification efforts?. .194

Figure 5.20 Q5. Does the resulting mapping model in the operation phase

provide useful assistance for reviewing and solving consistency

issues in heterogeneous design models? .195

Figure 5.21 Q6. Do you find the resulting requirements specification model

simple enough for use when communicating with a certification

agent? .195

Figure 5.22 Q7. Does the proposed approach provide useful assistance for

adhering to certification compliance needs? .196

LISTINGS

Page

Listing 1.1 Example of the AADL textual notation. 35

Listing 3.1 Codification of mapping rule mr_us_03. Extracted from Paz et al.
(2020). .126

Listing 3.2 Codification of intra-model design guideline av_us_03. Extracted

from Paz et al. (2020). .127

Listing 3.3 Codification of inter-model design guideline av_us_10. Extracted

from Paz et al. (2020). .128

LIST OF ABREVIATIONS

AADL Architecture Analysis and Design Language

API Application programming interface

Breesse Bridge for the Eclipse Modeling Framework ecosystem and the MathWorks

Simulink and Stateflow ecosystem

CFC Contribution to failure condition

checsdm Consistency of Heterogeneous Embedded Control System Design Models

checsdm4a/ss Consistency of Heterogeneous Embedded Control System Design Models

for AADL, Simulink and Stateflow

checsdm4uss Consistency of Heterogeneous Embedded Control System Design Models

for UML, Simulink and Stateflow

CRIAQ Consortium de Recherche et d’Innovation en Aérospatiale au Québec

DSML Domain-specific modelling language

EASA European Aviation Safety Agency

ECL Epsilon Comparison Language

ECS Elevator control system

EMF Eclipse Modeling Framework

EOL Epsilon Object Language

EUROCAE European Organisation for Civil Aviation Equipment

EV hydraulic electro-valve

FAA US Federal Aviation Administration

XXX

FCS Flight control system

GQM Goal-question-metric

HCT Horizontal Condition Tables

HLR High-level requirement

IDM Ingénierie dirigée par les modèles

JWI Java WordNet interface

kPa kilo-Pascal

LGCS Landing gear control software

LGS Landing gear system

LLR Low-level requirement

LTL Linear Temporal Logic

MAAB MathWorks Automotive Advisory Board

MARTE Modeling and Analysis of Real-Time Embedded Systems

MDE Model-Driven Engineering

MOF Meta-Object Facility

MPM Multi-Paradigm Modeling

OCL Object Constraint Language

OEM Original Equipment Manufacturers

OMG Object Management Group

OOT Object-Oriented Technology

XXXI

OSLC Open Services for Lifecycle Collaboration

PBR Property-based requirement

PID Proportional-integral-derivative

PIM Platform-independent model

PLE Product Line Engineering

PSAC Plan for Software Aspects of Certification

PSM Platform-specific model

pw Person week(s)

RAF Reference Assurance Framework

RDAL Requirements Definition and Analysis Language

RQ Research question

RSML Requirements State Machine Language

RTCA Radio Technical Commission for Aeronautics

SACM Structured Assurance Case Metamodel

SH System hazard

SMT Satisfiability modulo theory

SpeAR Specification and Analysis of Requirements

SpecML Requirements Specification Modeling Language

SRATS System requirement allocated to software

SysML Systems Modeling Language

XXXII

TCAS II Traffic Collision Avoidance System level II

TDL Test Description Language

UCM Use Case Map

UI User Interface

UML Unified Modeling Language

VQL Viatra Query Language

V&V Verification and Validation

INTRODUCTION

Over the past decades, safety-critical avionics systems have increasingly grown in size and

complexity. They even have become decisive drivers for innovation in aircraft (acatech, 2011).

The advent of software as the behavioural controller for such systems has, indeed, made this

largely possible (Spitzer, 2007; Sztipanovits, 2007; Huhn & Hungar, 2007). However, engi-

neering avionics software is a complex task. On the one hand, current consumer demands have

spurred the need to pack features in. In recurrent instances, some intricate ones intended to

make the systems smarter. On the other hand, safety is a major concern. Avionics software

must operate in sensitive environments. Therefore, its engineering is highly regulated in order

to ensure it is developed appropriately to avoid, or at least mitigate, undue harm to anyone or

anything in their operational environments. Avionics systems manufacturers are, thus, obliged

to provide the appropriate software safety assurance in compliance with the applicable regula-

tory norm DO-178C.

There has been increasing work around more up-to-date, effective engineering techniques and

technologies to aid avionics systems manufacturers in reducing development complexities and

to support them in their certification endeavors (Pettit et al., 2014; McGregor et al., 2017).

The increased need for automation tools and interoperability have pointed practitioners from

industry, and academics alike, toward Model-Driven Engineering (MDE). Selic (2003) defines

a model as a reduced (i.e. simplified, abstract) representation of some (aspect of a) system

that highlights its properties of interest from a given viewpoint. MDE was developed around

the premise to turn models into first-class artifacts across the entire engineering life cycle in

an attempt at delivering high quality systems in the most productive way (Schmidt, 2006). In

order to keep up with such a premise, MDE makes use of domain-specific modelling languages

(DSMLs) to provide users with a working environment where they can directly manipulate

domain concepts (Kelly & Tolvanen, 2007). MDE’s gained popularity has been due to its cost-

and time-effectiveness (Huhn & Hungar, 2007). The main rationale explaining this is that

2

models represent information at the right levels of abstraction to enable reasoning and ease

information manipulation throughout the entire engineering life cycle. Nonetheless, significant

challenges must still be overcome for MDE to comprehensively support the development and

certification of avionics systems, and experience widespread adoption in such a safety-critical

domain.

The remainder of this chapter presents the precise context of our research, states the research

problem that was addressed, sets out the objectives for this thesis, describes the methodol-

ogy followed to achieve such objectives, and summarizes the contributions made. Finally, it

outlines the organization of the rest of the dissertation.

Research Context

This thesis has been motivated in direct response to the development and certification needs

of two Canadian companies as part of CRIAQ1 project AVIO-604. The companies are large

suppliers of safety-critical systems, many of which are avionics systems subject to certification

compliance with DO-178C (Rad, 2011a), and its DO-331 (Rad, 2011b) and DO-332 (Rad,

2011c) supplements.

The Radio Technical Commission for Aeronautics (RTCA) along with its European counter-

part, the European Organisation for Civil Aviation Equipment (EUROCAE), have issued the

joint DO-178C/ED-12C guideline (Rad, 2011a). The guideline represents best development

and safety practices that have been followed to produce safe avionics software systems (Es-

posito et al., 2011; Areias et al., 2014). Certification authorities around the globe such as the

United States Federal Aviation Administration (FAA), the European Aviation Safety Agency

(EASA) and Transport Canada have adopted DO-178C as the primary—but not the only—

1 Consortium de Recherche et d’Innovation en Aérospatiale au Québec

3

compliance means for approving software airworthiness2. Hence, DO-178C associates an

accredited certification schemata, meaning it establishes a stringent certification process seek-

ing to achieve a high level of confidence in the airborne software’s capabilities under normal

and abnormal operations (Rad, 2011a). In particular, the document defines the development

methodology as well as the proper qualitative and quantitative evidence necessary for assess-

ing the fulfillment of the system’s intended purpose (Esposito et al., 2011; Ceccarelli & Silva,

2013).

The guideline largely suggests following a V-Model life cycle (Huhn & Hungar, 2007; Heim-

dahl, 2007; Ceccarelli & Silva, 2013; Areias et al., 2014; Özçelik & Altilar, 2015; McGregor

et al., 2017). This is on the grounds that its sequential nature and strong emphasis on verifi-

cation and validation activities and traceability for each phase promotes a meticulous design

and implementation in order to build a safe system. Figure 0.1 illustrates the V-Model and

its phases. The downward segment of the V-Model, the development flow, comprises three

major phases or process groups: Requirements, Design, and Source Code and Executable Ob-

ject Code (Rad, 2011a). The upward segment of the V-Model corresponds to Verification

& Validation (V&V). V&V is considered transverse to the system development and must be

requirements-based, meaning verification cases exist for checking and ensuring that the result-

ing system meets its specified requirements (both high-level and low-level). Other transverse

processes (not illustrated) are Planning and Certification Liaison. This thesis focuses on a sub-

set of these life cycle processes, namely Requirements and Design, and part of the V&V related

to the previous two processes.

Roughly speaking, the prescribed V-Model flow is executed as follows. Development begins

with the analysis of system requirements allocated to software (SRATS). Safety and hazard as-

sessments are not performed as part of the scope of DO-178C, although their findings are taken

2 Reliability and safe-to-use in flight.

4

Design
(Low-Level

requirements)

High-Level
Requirements

High-Level
Requirements

Design
(Low-Level

requirements)

Source Code /
Executable Object Code

Verification & Validation flowDevelopment flow

System Requirements
Allocated To Software

Regulatory scope of DO-178C

Figure 0.1 Suggested DO-178C development life cycle.

as inputs in this activity. Such SRATS must be developed (i.e. refined and decomposed) into

high-level software requirements (HLRs). A review of the HLRs validates these against the

system and safety requirements allocated to software to check if their intent is being accurately

captured by the HLRs in a way suitable for directing software design activities. The correct

specification of HLRs initiates the design and, in parallel, the creation of requirements-based

test cases, test vectors and oracles (i.e. expected outputs). The design covers the definition of

the architecture and the specification of low-level requirements (LLRs) (i.e. the detailed de-

sign). LLRs, together with the architecture, are used to guide the coding and building activities.

LLRs and architecture must conform to design standards. Design standards specify methods,

notations, rules, constraints, guidelines, and conventions to be used in the development of the

design models. They can be specific to the company or inferred from DO-178C. Test cases

are used to verify that both the LLRs and the realized software’s behaviour meet the specified

HLRs. In addition, reviews of the software realization itself validate that it meets the design.

5

One of the major changes of DO-178C from its predecessor is the included guidance on modern

development and verification practices such as MDE, Object-Oriented technologies (OOT) and

formal methods. All of these changes are provided as technology supplement documents, DO-

331, DO-332 and DO-333, respectively, adapting the core DO-178C standard for the applicable

technologies. The focus of the industry partners was on using MDE technologies to support

their development and certification efforts. Thus, the DO-331 supplement became applicable.

Although the DO-332 supplement is particularly intended for the software coding and integra-

tion processes, compliance with its guidance also becomes relevant when using object-oriented

modelling languages like UML, which provide constructs for representing OOT features, e.g.,

inheritance, polymorphism, overloading.

MDE has been considered for developing avionics software with different purposes in multiple

ways (e.g., Zoughbi et al. (2011); Wu et al. (2015); de la Vara et al. (2016)). Such approaches

have varying aims, scopes, usages and outputs. They may focus on the following challenges in

one or more of the life cycle’s processes (Nair et al., 2014; de la Vara et al., 2016): 1) overcom-

ing communication and understanding issues among the primary stakeholders, 2) supporting

or automating development activities (e.g., design), or 3) managing and collecting information

for certification or compliance assessments.

Special certification considerations must be taken into account for the second challenge, i.e.

when parts of the system under construction are to be expressed using models (Potter, 2012;

Pettit et al., 2014). Models may be used for software analysis, verification, simulation or

code generation (Potter, 2012). Two types of models are addressed in DO-331: specifica-

tion models and design models. The former represent system requirements and HLRs, and

the latter represent LLRs and architecture. Engineers may leverage these different models

during development, however, they must remain mindful that these models represent require-

ments and therefore must be treated as such under DO-178C (Potter, 2012). Models even have

6

to frequently coexist alongside natural language specifications. Especially, design models of

avionics systems are characterized by the diversity of modelling languages used as a result of

the multiple aspects that need to be captured (e.g., computation, control, physical processes)

(Sjöstedt et al., 2008; Huang et al., 2018).

Problem Statement

The research problem is framed by the conditions set by the industry partners; in essence:

safety-critical avionics systems whose design is represented using different modelling lan-

guages (e.g., UML, Simulink and Stateflow; AADL, Simulink and Stateflow). Thus, we state

the research problem as follows:

Effectively designing avionics systems requires the combination of diverse mod-

elling languages for modelling the entirety of aspects that need to be covered.

However, to be compliant with DO-178C, there must be explicit documentation

that 1) each set of corresponding elements from different design models exhibit

the same features and behaviour, 2) the design models conform to design stan-
dards, and 3) bidirectional traceability exists between requirements and design.

To direct our work we refined this problem into two subproblems:

P-1 Design information that is spread across multiple models and expressed in different

modelling languages must be consistent.

Avionics systems are complex systems combining physical and mechanical components,

networking and software (Lee, 2010). Effectively designing such systems requires a

complex modelling approach that can cope with 1) dealing with diverse components,

including mechanical, electronic and software, each one of these with its own underly-

ing theories and domain vocabularies, and 2) dealing with various aspects of the same

component, such as their function, structure and behaviour. It is already hard enough

to relate information presented in the different software model views, e.g., linking states

7

and transitions in a state machine to classes and methods, or system functions to pack-

ages, classes and methods. It is even harder to relate information that is spread across

multiple models and expressed in different modelling languages (Lee, 2010; Eker et al.,

2003; Yu et al., 2011; Combemale et al., 2014; van den Brand & Groote, 2015). Ensur-

ing consistency between heterogeneous design models is an important problem, in and

of itself. Adding to that are the stringent quality and verification objectives and activities

of certification standards, guidelines and norms. In this regard are the following four

objectives: the detailed design is accurate and consistent, the detailed design conforms

to design standards, the software architecture is consistent, and the software architecture

conforms to design standards.

A number of existing studies have addressed mapping relationships between heteroge-

neous modelling languages (e.g., Farkas et al. (2009); Sakairi et al. (2012); Bombino & S-

candurra (2013); Ferrari et al. (2013); Sjöstedt et al. (2008); Tanaka et al. (2017)).

However, they target pairs of specific modelling languages without devising a general

approach. Other existing studies deal with consistency management in heterogeneous

design models (e.g., Finkelstein et al. (1994); Almeida da Silva et al. (2010); Dijkman

et al. (2008); El Hamlaoui et al. (2018)) but do not explicitly provide the syntactical and

semantical relationships between them. Furthermore, none of these studies tackle the

issue of verifying conformance to design standards.

Establishing model consistency and adherence to design standards are resource-consu-

ming and error-prone activities. While automated design verification and validation tools

can help, they cannot be used in isolation. Indeed, if the output of such tools is not

manually verified by a human being, then the tools themselves need to be qualified, i.e.

they need to be subjected to the same—if not a higher—level of scrutiny as the systems

they are meant to verify (Varró, 2016).

8

P-2 Requirements must be modelled in such a way that they exhibit an explicit rela-

tionship with the objectives and activities of DO-178C and its DO-331 and DO-332

supplements. Furthermore, modelled requirements must support the extraction of

information from which reusable verification cases can be generated.

In all of the development life cycle presented in the previous section, requirements and

requirements-based verification are two of the foremost development concerns for avion-

ics software certification under DO-178C. Indeed, the most stringent compliance needs

of DO-178C are centred around 1) requirements specification, 2) the proper argumenta-

tion and traceability of such requirements to design decisions and certification objectives

and activities, and 3) the verification of the resulting system against the specified require-

ments. The majority of errors found in avionics systems usually have their origin in the

Requirements phase (Feiler, 2010). Nevertheless, over 50% of them are only detected

and corrected in the final phases of development (Feiler, 2010). Verification activities

may end up driving a cost equivalent to seven times that of the other development activ-

ities (Moy et al., 2013).

Current industry practices have requirements specified using constrained natural lan-

guage and managed with the help of textual requirements databases, like IBM DOORS

(Potter, 2012; Blouin, 2013). Although the use of a constrained natural language brings

some discipline and rigour to requirement specifications, this practice is still focused

on writing requirements in human-readable prose. This inevitably raises problems for

satisfying the objectives and activities of DO-178C. Natural language indeed facilitates

communication between stakeholders but it is not a suitable form of specification for

supporting interrelationships, decomposition, requirements-based analyses and testing

(Moy et al., 2013).

Several requirements specification languages were proposed for safety-critical systems

development (e.g., Zoughbi et al. (2011); Stallbaum & Rzepka (2010); Leveson et al.

9

(1994); Micouin (2008); Blouin (2013); Bialy et al. (2015); Fifarek et al. (2017)). Oth-

ers, like SysML (OMG, 2017a) and MARTE (OMG, 2011) were introduced for sys-

tem and real-time system engineering, respectively, but have been employed in safety-

critical systems development. Some of these languages only support the specification of

natural language-based requirements (e.g., OMG (2017a); Zoughbi et al. (2011); Stall-

baum & Rzepka (2010)). Others allow the expression of semantically richer require-

ment statements using formal notations (e.g., Leveson et al. (1994); Micouin (2008);

Bialy et al. (2015); Fifarek et al. (2017)). However, the use of formal notations alone

restrains their adoption even when they can enable requirements-based analyses and

testing. Moreover, none of these languages provides sufficient support for achieving

DO-178C objectives and activities, for instance, by identifying a requirement’s place in

DO-178C’s requirements hierarchy (i.e. SRATS, HLR, LLR).

Research Objectives

Our main goal is to build an approach to support the development and certification of safety-

critical avionics systems. In particular, we want to build on the progress made in MDE tech-

nologies to safeguard consistency of heterogeneous design models and enable requirements-

based analyses and verification of safety-critical avionics systems in a way that yields evidence

for certification. To do so, we refine this main objective as follows:

O-1 Define a systematic and automatedmethod for assisting engineering teams in ensur-

ing consistency of heterogeneous design models of safety-critical avionics systems.

Effective safety-critical avionics system design requires a heterogeneity of modelling

mechanisms focused around specific system aspects (e.g., mechanical, electronic, soft-

ware), each having its own underlying domain theories and vocabularies, as well as with

various aspects of the same component (e.g., function, structure, behaviour). However,

10

the regulated nature of the avionics domain prescribes that all these design models must

be consistent and conformant to design standards. We are concerned with verifying con-

sistency of heterogeneous design models of the system under development and support

evidence-gathering efforts for certification. In this regard, the requirements of the pro-

posed systematic and automated method are the following:

a. The proposed solution shall analyse different design models and determine for each

modelled element appearing in more than one of such design models if the element

exhibits the same properties and behaviour.

b. The proposed solution shall analyse different design models for conformance to

design standards.

O-2 Develop a requirements modelling language that provides a requirements specifi-

cation infrastructure for safety-critical avionics development and certification.

Requirements engineering is a critical phase in avionics development and a prominent

concern for their certification. Thus, we argue that a blended approach driven by DO-

178C could be a suitable solution for expressing requirements while being easy to adopt

by industry. The requirements for such an approach are the following: a. The approach

shall enforce required information (e.g., trace data, decomposition of requirements) for

achieving objectives and activities defined in DO-178C and the DO-331 and DO-332

supplements. b. The approach shall provide facilities to capture requirements in a struc-

tured semantically-rich formalism to enable requirements-based analyses and testing.

c. The approach shall deliver features to smooth the way for its adoption in industry.

O-3 Assess the feasibility and effectiveness of our proposal when used in avionics sys-

tems.

Our intention in this thesis is not a complete, independent path to a technological devel-

opment since the requirements and costs of qualifying it for use by industry cannot be

11

met in academia. Instead, we deliberately focus on small elements of the engineering life

cycle that can seamlessly integrate with existing technologies for filling their gaps as part

of a larger toolchain. Such a result is more welcomed by the industry and seen to create

the more impact to their engineering teams. Hence, we deem it important to analyze our

proposed approach in terms of its feasibility and effectiveness over conventional indus-

try practices in plausible case studies. Also, to examine the perceptions of practitioners

about our approach and the likelihood they will give it for adoption in industry.

Avionics systems development and certification is an active research field. However,

the legal and safety implications that public scrutiny may bring onto industry manu-

facturers make them keen on keeping their projects confidential. This situation hinders

research and education on the engineering and certification of this type of systems. It is,

therefore, necessary to have detailed and open documentation of sample systems that is

readily available for research and education. It is part of this objective to elaborate such

a detailed requirements specification and design for a sample avionics system.

Research Methodology

In order to achieve the objectives set out for this thesis we have used a mixed-methods approach

(Creswell, 2008) combining literature reviews and case studies (Easterbrook et al., 2008; Yin,

2008) over theory-develop-experiment incremental cycles. Regarding the case studies, we have

followed the guidelines for conducting and reporting case study research defined by Rune-

son & Höst (2009).

Our research methodology comprises four phases illustrated in Figure 0.2. The first phase of

the methodology consisted in performing a literature review in the interest of 1) better under-

standing the context of safety-critical avionics development and certification, 2) getting a hold

of the extent of work done around the use of MDE in such a field, as well as in other close-

12

ly-related domains (e.g., rail), and 3) identifying relevant existing approaches related to the

scope of this thesis and sample systems that could be used for experimentation. We reviewed

the current industry practices from the two partner companies in the AVIO-604 project to get

an understanding of what techniques and proposals could deliver improved experiences in the

work of safety-critical avionics systems engineering teams. We performed a detailed analysis

of the DO-178C guideline for avionics software development to acquire a deep awareness of all

the elements involved during the certification process. Later we carried out a broad exploratory

study on existing model-based approaches supporting safety-critical system development and

certification. In particular, we investigated a select subset of approaches having varying aims,

scopes, usages and outputs to gain insight into their intents and capabilities.

The findings from this broad literature review contributed to the comprehension of safety-

critical avionics software development and certification, and the identification of research gaps

towards building a comprehensive MDE support for such purposes. Recall we focus on a

subset of the life cycle processes, namely Requirements and Design as well as the part of

the V&V process related to the verification of outputs from these processes. Thus, we then

reviewed various heterogeneous design modelling and consistency management approaches.

We also studied several requirements modelling languages used in the context of safety-critical

systems and characterized their facilities toward enforcing required information (e.g., trace

data, decomposition of requirements) for achieving objectives and activities defined in DO-

178C, and capturing structured semantically-rich information to enable requirements-based

analyses and testing.

The second phase was derived from coming to the conclusion during the literature review phase

that due to legal and safety implications that may come upon public scrutiny of a safety-critical

system, the industry is keen on keeping their projects confidential. Therefore, detailed and open

documentation of such systems is not readily available for research and education. This phase

13

• DO-178C and supplements
• Existing model-based approaches
• Existing sample safety-critical avionics systems

• Relevant related work

Outcomes:
• Publication

Outcomes:
• Requirements specification of sample system
• Heterogeneous design of sample system
• Publications

Outcomes:
• checsdm
• Publications

Outcomes:
• SpecML
• Publications

• Sample specification and design in line with DO-178C

Literature Review

• Review current industrial practices
• Study DO-178C and its supplements
• Review existing model-based approaches
• Study a select subset of approaches

1

Develop Sample Avionics Software Specification
and Design

• Build relevant sample specification and design for
experimentation
• Validate generated artifacts with industrial
practitioners

2

Heterogeneous Design

• Study a select subset of heterogeneous design
modelling approaches
• Study a select subset of consistency management
approaches
• Propose and develop an approach for ensuring
consistency of heterogeneous design models and
supporting evidence-gathering for certification
• Validate the proposed approach

3

Requirements Specification

• Study a select subset of requirements modelling
languages
• Characterize modelling languages
• Propose and develop a requirements modelling
language
• Validate the proposed requirements modelling
language

4

Figure 0.2 Research methodology.

was tasked with the development of a sample system specification and design for an aircraft’s

landing gear system according with DO-178C. The development was made in an iterative and

incremental way, following an analyze-develop-validate loop. First was the definition of the

system’s scope and requirements, then the development of the required artifacts, and finally the

validation of correctness and completeness of the generated artifacts. Close consultation with

practitioners from industry was kept throughout the process to ensure the creation of a complex

14

and representative system. It took three iterations of SRATS and HLRs development to obtain

a favorable perception about them from the practitioners involved.

The third phase is concerned with heterogeneous design modelling and consistency manage-

ment. Our findings from the literature review phase revealed that there is a lack of systematic

and automated methods for ensuring consistency of heterogeneous design models of safety-

critical systems and supporting evidence-gathering efforts for certification. Hence, we focused

on that particular task. The fourth phase centred its activities on the development of the pro-

posed requirements modelling language. Our analysis over the characterization of existing

requirements modelling languages allowed the identification of relevant features and limita-

tions of these languages and led us to reuse as much as possible the most suitable ones. This

strategy follows the Multi-Paradigm Modeling (MPM) approach (Vangheluwe et al., 2002).

MPM advocates for the combination, coupling and integration of independent, heterogeneous

models. An advantage of MPM is the management of the complexity involved since the models

are built using suitable formalisms and focused around the needed constructs for representing

the targeted aspects.

During both the third and fourth phases, we undertook empirical evaluations by applying the

outcomes from these phases in case studies, which involved the landing gear system developed

as part of the second phase. In addition, we also conducted an assessment workshop with

practitioners from industry to examine their perceptions about the outcomes of phases three

and four.

Proposed Approach – in a nutshell

We propose a model-based approach to support the development and certification of safety-

critical avionics systems. The approach 1) defines checsdm3, a systematic and automated

3 Pronounced "checks them".

15

method for assisting engineering teams in ensuring consistency of heterogeneous design mod-

els, and 2) provides SpecML, a modelling language that features a requirements specification

infrastructure for DO-178C- and DO-331-compliant requirements modelling. Figure 0.3 il-

lustrates the general flow of the approach. The approach comprises an iterative three-phased

process: elicitation, codification and operation.

Operation
Phase 3

Develop
specification model

Develop software
design models

Verify intra-model
design guideline

compliance
Map

design models
Verify inter-model
design guideline

compliance

Review and resolve violations and consistency issues

Elicitation

Elicit the requirements of the heterogeneous design scenario in terms of:
1) Mix of modelling languages
2) Mapping rules between modelling languages
3) Intra-model design guidelines
4) Inter-model design guidelines

Phase 1
Codification

Codify:
1) Metamodels
2) Mapping rules
3) Intra-model design guidelines
4) Inter-model design guidelines

Phase 2

checsdm
Framework

Viatra Query
Language

Viatra
Validation

Framework

Design
Guidelines

Modelling
Languages

Mapping
Rules

Epsilon
Object

Language

Epsilon
Comparison
Language

Custom Model
Importers/Connectors

Epsilon
Execution

Engine

Mapping
Model

Eclipse
Modeling

Framework
(EMF)

1 2 3 4 5

6

Figure 0.3 Overview of the approach.

The approach starts before any development begins, with an elicitation of the heterogeneous

design scenario at hand in terms of 1) the mix(es) of modelling languages that are going to

be used and how to use them depending on the systems’ nature and the languages’ purposes,

2) mapping rules between the different modelling languages, 3) intra-model design guidelines,

i.e. design guidelines specific to models in each language taken separately, and 4) inter-model

design guidelines, i.e. design guidelines that concern cross-model constructs. Afterwards, in

the codification phase, engineers codify using the proposed tool framework, as required, the

metamodels of the various modelling languages used, the mapping rules between the modelling

languages, and the (intra- and inter-model) design guidelines. This will derive a toolchain

16

that will assist engineering teams in ensuring consistency of the heterogeneous design models

during the operation phase.

The operation phase covers the requirements and design processes as well as the part of the

verification process related to the verification of outputs from the design process. During

the requirements specification process, engineers create specification models using SpecML

to capture the system requirements. Those system requirements that are allocated to soft-

ware (SRATS) are then developed (i.e. refined and decomposed) into high-level requirements

(HLRs). In turn, HLRs can be developed into low-level requirements (LLRs) or detailed de-

sign. SpecML offers a vocabulary of constructs that is familiar to DO-178C certification. It also

provides different mechanisms to capture the requirements. We introduce the use of property-

based requirement (PBR) statements, which capture requirements in a structured semantically-

rich formalism to enable requirements-based analyses and testing. A PBR is defined as a

constraint for the system enforcing a property whenever a condition is met: “[when condition

C is met,] the value(s) of property P of object O shall be in the subset D of the set of possi-

ble values for P”. The presence of a condition C is optional as indicated by the presence of

square brackets. PBRs can be bound in time or to triggering events by means of timed domain

constructs provided by SpecML. Design models, which are probably the most used mecha-

nism of expressing LLRs/detailed design can be leveraged within SpecML through specialized

traceability constructs.

During the design process, engineers create design models from a given operational context

and a set of HLRs following the mix of modelling languages and design guidelines estab-

lished during elicitation. The resulting design models are individually verified for intra-model

guideline compliance. Next, correspondences between the heterogeneous design models are

identified and mappings are established between overlapping elements. The analysis results

are stored in a mapping model. The mapping model not only captures the relationships be-

17

tween overlapping elements but also flags consistency issues that were identified. Using this

mapping model, the design models are verified together for inter-model guideline compliance.

Following that, flagged guideline violations and consistency issues are examined and handled

accordingly. This is an activity of the software design process and is intrinsically manual. The

activities of the operation phase can be applied iteratively, until the transition criteria from the

requirements and design processes to the subsequent development activities (e.g., source code)

have been met. Furthermore, the resulting mapping model can be used along the design models

to support the subsequent development activities.

Contributions

This section summarizes the contributions of this thesis. In addition, it gives references to the

publications derived from these results.

C-1 Contributions from the literature review.

Modelling of DO-178C. Based on the review of DO-178C and its supplements (DO-331,

DO-332 and DO-333), we built a metamodel to represent its major elements and their in-

teractions as a domain specific modelling language (DSML). The DSML is implemented

as a UML profile integrating a number of constraints that enforce required information

for achieving objectives and activities defined in DO-178C and its supplements. These

constraints are grouped according with the possible design assurance levels relevant for

certification (i.e. levels A through D). This work was developed with the help of a

masters student and the results are detailed in his masters thesis (Metayer, 2018). The

modelling of DO-178C was also presented at the 9th International IEEE Workshop on

Software Certification (WoSoCer 2019) hosted at the 30th International Symposium on

Software Reliability Engineering (ISSRE 2019) (Metayer et al., 2019).

18

A characterization of model-based support for DO-178C-compliant avionics software

development and certification. We present a review of a set of model-based approaches

to assess their support for software development and certification under the DO-178C

guideline. We built a framework to characterize these approaches according with sev-

eral criteria, specially coverage of DO-178C ’s required information for compliance. We

analyzed the approaches using this framework and highlighted their commonalities, dif-

ferences, strengths and weaknesses. Additionally, we identified open issues on which re-

search may focus. This work has been presented at the 6th International IEEE Workshop

on Software Certification (WoSoCer 2016) hosted at the 27th International Symposium

on Software Reliability Engineering (ISSRE 2016) (Paz & El Boussaidi, 2016).

C-2 Landing Gear Control Software requirements specification and design.

We built on the landing gear system’s (LGS) descriptions given by Boniol & Wiels

(2014) to present the landing gear control software’s (LGCS) requirements specification

and design in compliance with the DO-178C guideline and the DO-331 and DO-332 sup-

plements. We have made efforts to address inconsistencies, ambiguities and confusing

wording found in the work of Boniol &Wiels (2014). We also followed the set of recom-

mended practices on requirements engineering and management from Lempia & Miller

(2009) and the work from Blouin (2013). The LGCS artifacts are accompanied by the set

of methodological insights that guided the requirements specification and design. This

work has been presented at the 33rd ACM Symposium on Applied Computing (SAC

2018) (Paz & El Boussaidi, 2018). The complete artifacts for the LGCS have been made

available online in a technical report (Paz & El Boussaidi, 2017).

C-3 checsdm: Consistency of Heterogeneous Embedded Control System DesignModels.

We defined checsdm, a systematic approach, based on MDE, for assisting engineering

teams in ensuring consistency of heterogeneous design of safety-critical systems and

19

gathering evidence that will show achievement of DO-178C objectives and activities.

The approach is developed as a generic methodology and a tool framework, that can be

applied to various design scenarios involving different modelling languages and differ-

ent design guidelines. The methodology comprises an iterative three-phased process.

The first phase, elicitation, aims at specifying requirements of the heterogeneous de-

sign scenario. Using the proposed tool framework, the second phase, codification, con-

sists in building a particular tool set that supports the heterogeneous design scenario and

helps engineers in flagging consistency errors for review and eventual correction. The

third phase, operation, applies the tool set to actual system designs. The resulting map-

ping model and the successful validation of design guideline compliance help support

evidence-gathering efforts for showing achievement of DO-178C objectives and activi-

ties.

As sub-contributions, we present two executions of the checsdm approach for the spe-

cific cases of a design scenario involving a mix of UML, Simulink and Stateflow (labeled

checsdm4uss), and a design scenario involving a mix of AADL, Simulink and State-

flow (labeled checsdm4a/ss). checsdm4uss has been presented at the 43rd IEEE Annual

Computer Software and Applications Conference (COMPSAC 2019) (Paz & El Bous-

saidi, 2019c). The checsdm framework is open source (Paz & El Boussaidi, 2019f). The

checsdm approach has been submitted and accepted with revisions as a manuscript for

the journal IEEE Transactions on Software Engineering (IEEE TSE) (Paz et al., 2020).

Originating from checsdm4uss and checsdm4a/ss, is another sub-contribution: Breesse.

Both the Eclipse platform and MathWorks have successfully provided entire ecosystems

and tooling for MDE. Leveraging these two MDE ecosystems for safety-critical system

development would be expected. Nonetheless, these two ecosystems rarely interact due

to MathWorks’ closed nature and proprietary file formats. Breesse delivers a bridge for

the Eclipse Modeling Framework ecosystem and the MathWorks Simulink and Stateflow

20

ecosystem. Breesse is open source (Paz & El Boussaidi, 2019a) and has been detailed in

an unpublished manuscript (Paz & El Boussaidi, 2019d) (see Appendix V for an excerpt).

C-4 SpecML: Requirements Specification Modelling Language.

We developed SpecML, a hybrid modelling language extending and combining features,

on the one hand, from SysML and the UML profile for MARTE, and, on the other

hand, from PBR theory. Concretely, SpecML 1) enforces required information (e.g.,

trace data, decomposition of requirements) for achieving objectives and activities defined

in DO-178C, 2) captures requirements in natural language to smooth the way for its

adoption in industry, and 3) provides facilities to capture requirements in a structured,

semantically-rich formalism to enable requirements-based analyses and testing. SpecML

is open source (Paz & El Boussaidi, 2019e). This work has been presented at the 6th

International Workshop on Requirements Engineering and Testing (RET 2019) hosted

at the 41st ACM/IEEE International Conference on Software Engineering (ICSE 2019)

(Paz & El Boussaidi, 2019b).

Thesis Organization

This thesis is organized in six parts: Introduction, Background and Literature Review (Chap-

ter 1), Motivating Example (Chapter 2), Proposal (Chapters 3 and 4), Evaluation (Chapter 5)

and Conclusion. Following this Introduction, the Background and Literature Review chapter

expands the context in which this thesis is framed and provides the state of the art. The next

chapter describes a motivating example of an avionics system that will be used as a running

example throughout the rest of the dissertation to illustrate key elements of our proposal. After-

wards, the two following chapters present and discuss the proposal itself. Then, the Evaluation

chapter discusses the feasibility and effectiveness of our proposal when used on avionics sys-

21

tems. The final chapter draws conclusions and perspectives on this work. The main chapters

of this thesis are described below.

Chapter 1: Background and Literature Review. The problems addressed in this thesis

intersect safety-critical system certification and MDE. Regarding safety-critical system certifi-

cation, this chapter introduces the DO-178C guideline on software considerations in airborne

systems and equipment certification since it is a focal element of our work. Regarding MDE,

this chapter introduces some definitions and key concepts. It also reviews several modelling ap-

proaches for different safety-critical system engineering activities (e.g., requirements, design,

certification compliance).

Chapter 2: The Landing Gear Control Software. There is a lack of reusable and compre-

hensive safety-critical avionics systems references in the literature that can act as benchmarks

for proposals in this research field. This chapter presents a development case study of an air-

craft’s landing gear control software (LGCS) we undertook as part of our research. Two stages

of its development are discussed: the requirement specification and the system’s design. All

documentation has been developed to conform with the DO-178C guideline presented in the

previous chapter. The observations, challenges and issues experienced throughout the pro-

cess are the most interesting to highlight from this work. Thus, these topics are discussed to

motivate the need for our proposed approach.

Chapter 3: checsdm: Consistency of Heterogeneous Embedded Control System Design

Models. This chapter is the first of two chapters dedicated to present our proposed approach.

It starts by presenting checsdm, a generic methodology and a tool framework for verifying

consistency of heterogeneous embedded control system design models. This chapter discusses

these two elements in detail. It then illustrates them through a specific execution for one design

scenario of our industry partners, in essence: avionics systems represented using a mix of

UML, Simulink and Stateflow design models (referred to as checsdm4uss).

22

Chapter 4: SpecML: Requirements Specification Modelling Language. This chapter dives

into the first step of checsdm’s operation phase, which addresses requirements specification.

In this regard this chapter presents SpecML, a requirements specification modelling language

providing a DO-178C-compliant documentation infrastructure. The chapter starts by showing

an overview of the methodology we followed to build SpecML. It then presents the domain

metamodel that stands behind SpecML to support its features. Afterwards, the chapter dis-

cusses how the concepts in this domain metamodel were mapped to the UML metamodel to

build SpecML as a UML profile. The chapter ends with a look at SpecML’s reference imple-

mentation.

Chapter 5: Evaluation This chapter reports on checsdm’s evaluation regarding its feasibility

and benefits. The chapter revisits checsdm4uss and presents an additional execution for another

design scenario involving AADL, Simulink and Stateflow design models (checsdm4a/ss). With

respect to SpecML, the chapter provides an empirical evaluation through two avionics systems

for which their requirements were modelled. One of these systems is the LGCS presented in

Chapter 2. The chapter also includes the results from an assessment workshop with practition-

ers from industry examining their perceptions on our proposed approach.

CHAPTER 1

BACKGROUND AND LITERATURE REVIEW

The problems addressed in this thesis intersect safety-critical avionics system certification and

Model-Driven Engineering (MDE). Hence, this chapter presents fundamental concepts of each

of these fields as related to the scope of this dissertation. Section 1.1 gives an overview of

avionics software certification under DO-178C and its supplements. Section 1.2 presents the

foundational concepts of the MDE paradigm. Section 1.3 analyzes different ways of howMDE

has been applied to support safety-critical software development and certification. Finally,

Section 1.4 concludes this chapter with a discussion on the findings of the previous section and

considerations for reusing these existing approaches or borrowing their relevant features.

1.1 Software Considerations in Airborne Systems and Equipment Certification

Avionics software can be designated as being safety-critical if its failure has a negative effect

on life, property or the environment (Bozzano & Villafiorita, 2010). In order to safeguard the

systems’ operational environments, manufacturers must adopt a proper engineering process

that can achieve and preserve safety. The DO-178C guideline has been proposed to standard-

ize the proper qualitative and quantitative evidence necessary for assessing the fulfillment of

the avionics software’s intended purpose (Esposito et al., 2011; Ceccarelli & Silva, 2013). DO-

178C is associated with an accredited certification schemata, meaning it establishes a stringent

certification process conducted by trusted third parties acting as licensing or regulatory bod-

ies. Such a certification process seeks to achieve a high level of confidence in the avionics

software’s capabilities under normal and abnormal operations (Esposito et al., 2011). Manu-

facturers develop this confidence by satisfying a series of objectives and activities that avoid,

or at least mitigate, the occurrences of the system’s potential contributions to failure conditions

(Nair et al., 2014). In the following subsections we dive into DO-178C to provide a substantial

look into the compliance needs that will be the focus of this thesis.

24

1.1.1 DO-178C

The aim of DO-178C (Rad, 2011a) is to produce software that is validated and verified for its

airworthiness, i.e. reliability and safe-to-use in flight. DO-178C is a conceptual guideline iden-

tifying the set of best practices to take into consideration during the development of software

for airborne systems and equipment. These best practices are stated in the form of objec-

tives, which have to be achieved by carrying out a set of explicitly defined activities that will

output the acceptable evidence (e.g., plans, requirements, design description), known as data

items. The amount of objectives for which compliance must be demonstrated depends on the

software’s design assurance level (software level for short). The software level describes the

severity of the system’s failure conditions to which the software may contribute. DO-178C de-

fines five software levels labeled A through E, with level A being the most rigorous as it requires

all the objectives to be achieved and level E the least rigorous as it requires no objectives.

- Level A is assigned to catastrophic effects, meaning a failure may cause multiple fatalities

and even the loss of the aircraft.

- Level B is assigned to hazardous/severe-major effects, meaning a failure will have a large

negative effect on safety or performance causing harm to the occupants or reducing the

crew’s ability to operate the aircraft.

- Level C is assigned to major effects, meaning a failure will have a significant negative effect

on safety causing inconveniences to the occupants and an increase in the crew’s workload.

- Level D is assigned to minor effects, meaning a failure will have a slightly negative effect on

safety causing some inconvenience to the occupants and an increase in the crew’s workload.

- Level E is assigned when a failure will have no effect on safety.

DO-178C prescribes a software life cycle comprised of the following three process groups:

1) software planning process, 2) software development processes that include software require-

ments, software design, software coding and software integration, and 3) transverse processes

25

that include software verification and validation (V&V), software configuration management,

quality assurance and certification liaison. Each of these processes is responsible for producing

one or more data items.

Data items required by DO-178C include plans, standards, requirements specifications, design

descriptions, and verification and trace data. One of the primary data items is the Plan for

Software Aspects of Certification (commonly referred to as the PSAC). The PSAC is developed

in the planning process, prior to the start of the software development processes. It is an

important data item since certification bodies use it at the end of the life cycle to verify that

the developed software and the process followed to develop the software, fulfilled the PSAC.

Once agreement between the certification body and the applicant has been obtained on the

PSAC the software’s development is kick-started. The Software Development Plan is another

data item specifying all the details regarding the software development process, including,

for instance, development standards, environments (i.e. programming languages, compilers,

debugging tools, and hardware used to develop and execute the software), and procedures.

Software Standards (e.g., requirements standards, design standards, code standards) include

the definitions of methods, notations, rules, constraints, conventions to be used to develop the

software requirements specifications, software architecture and code.

The Software Requirements Data data item corresponds to the specification of high-level re-

quirements (HLRs). Likewise, the Design Description data item communicates low-level re-

quirements (LLRs) and the software architecture. Software Verification Cases and Procedures

data items contain detailed descriptions of the verification activities (e.g., reviews, test case ex-

ecution) that will be carried out as well as the definition of the artifacts that will be used (e.g.,

test cases with their set of inputs, evaluated conditions, expected outputs and pass/fail criteria).

Traces (i.e. bidirectional associations) between the contents of data items are collected as part

of Trace Data data items.

Figure 1.1 presents a graphical view for the reference workflow of the processes in the software

development process group and the transverse software verification and validation process. The

26

requirements process develops (i.e. refines and decomposes) system requirements allocated to

software (SRATS) into HLRs suitable for directing the software design activities. The design

process covers the development of LLRs from the HLRs, and the development of the software

architecture. HLRs and LLRs must be traced to their originating requirement. In such cases

when a requirement cannot be directly traced to an originating requirement (e.g., because it

specifies behaviour beyond that specified by the higher-level requirements) it must be identified

as a derived requirement. Requirements must exist for both normal-range and abnormal-range

(i.e. robustness) inputs and conditions. This helps ensure the software will continue to operate

correctly to some extent in the face of anomalies. For instance, on the one hand, a normal-

range requirement will describe the actuation of a valve when a hydraulic circuit is pressurized

to a value within a given range. On the other hand, a robustness requirement will describe the

software’s behaviour if the pressure value exceeds the maximum defined operational pressure

for the hydraulic circuit.

DO-178C acknowledges that errors may be introduced at any moment during the development

of data items. Hence, V&V is a transverse process responsible for detecting and reporting er-

rors that may have been introduced during any process. Detecting and reporting errors warrants

a set of specific objectives. For this, V&Vmust perform a combination of reviews, analyses and

testing over the processes’ outputs. Reviews and analyses of the outputs from the requirements

and design processes must ensure that HLRs are traceable to SRATS, LLRs are traceable to

HLRs, and HLRs and LLRs exist for both normal-range and robustness inputs and conditions.

Testing involves the creation of specific test cases from the HLRs to test software responses

to normal-range and robustness inputs and conditions. In particular for the verification of the

outputs from the design process, some of DO-178C’s objectives our industry partners must

achieve are: 1) the detailed design is accurate and consistent, 2) the detailed design conforms

to design standards, 3) the architectural design is consistent, and 4) the architectural design

conforms to design standards. Consistency in the previous objectives making reference in-

ternal consistency of the design where a modelled element appears in more than one design

27

Design

Software
Architecture

Develop

Develop

Develop

Build / Compile

Validate

Verify

Verify

Verify

Trace

Trace

Trace

Check
Conformance

Check
Conformance

Check
Conformance

Source Code

Test Cases, Test
Vectors and

Expected Outputs

Create

Using

Using Using

Verify
Using

Test Cases, Test
Vectors and

Expected Outputs

Create

System Requirements Allocated To Software

Functional
Requirements

Safety
Requirements

Other Quality
Requirements

High-Level Software
Requirements

Low-Level Software
Requirements

Executable
Object Code

Trace

Trace

Figure 1.1 DO-178C detailed software development workflow.

model. In such a case, the element must exhibit the same properties and behaviour in all of its

occurrences in the design models.

DO-178C maintains the core text of its predecessor, DO-178B, with some needed corrections

to errors and inconsistencies, and improvements to interpretability, but most importantly, it ad-

dresses new considerations and practices in key areas of contemporary software development.

These areas are MDE, OOT and formal methods. The new considerations and practices have

been produced and published as separate, supplement documents (DO-331, DO-332 and DO-

333, respectively) referring to, or modifying content of the main DO-178C document where

applicable, as well as including additional terminology and content where necessary. The fo-

cus of the industry partners was on using MDE technologies to support their development and

certification efforts. Thus, the DO-331 supplement became applicable. Although the DO-332

28

supplement is particularly intended for the software coding and integration processes, compli-

ance with its guidance also becomes relevant when using object-oriented modelling languages

like UML, which provide constructs for representing OOT features, e.g., inheritance, polymor-

phism, overloading. In the following subsections we briefly present DO-331 and DO-332.

1.1.2 DO-331

DO-331 (Rad, 2011b) is a supplement to DO-178C containing development and verification

guidelines when parts of the software are to be expressed using models. Selic (2003) defines

a model as a reduced (i.e. simplified, abstract) representation of some (aspect of a) system

that highlights its properties of interest from a given viewpoint. With DO-331, models may be

used for software analysis, verification, simulation or code generation. Two types of models

are addressed: specification models and design models. The former represent HLRs and the

latter represent LLRs and/or software architecture. Even though DO-331 supports the use of

models, it does not alleviate the objectives defined in the main document, therefore, as models

represent requirements and/or software design they must be treated as such. For instance, the

verification of design models must, therefore, satisfy the four objectives mentioned previously.

Traceability between models and code is also required; code derived from a model must trace

back to a requirement.

Figure 1.2 shows the scope of the specific guidance provided by DO-331 within DO-178C.

Models may coexist alongside textual requirements specifications. Compliance with the guid-

ance of this supplement is mandatory whenever models are used in the life cycle. Coverage

analysis is meant to be performed in a similar way as with textual requirements since models

are to be treated as equal. All requirements contained in the model(s) must be exercised by test

cases and all model structures must be developed from the requirements.

29

Scope of DO-178C

Scope of DO-331

Executable
Object Code

System Requirements Allocated To Software

Functional
Requirements

Safety
Requirements

Other Quality
Requirements

Textual HLRs Specification
Model (HLRs)

Design Model
(LLRs and / or

Software Architecture)

Textual LLRs
(Possibly Software
Architecture too)

Source Code

Figure 1.2 Scope of DO-331 within

DO-178C. Adapted from Rad (2011b).

1.1.3 DO-332

Object-oriented technologies (OOTs) have existed since before the 1970s, prior to the publi-

cation of DO-178’s first revision. However, at that time OOTs were just gaining attention and

were not in common, universal usage as they are today. This situation led to the creation of

DO-332 (Rad, 2011c). DO-332 contains compliance needs when the software—or parts of it—

are to be coded using object-oriented programming languages and taking advantage of all the

features that have made them so popular, e.g., inheritance, polymorphism, overloading, type

conversion, exception management, dynamic memory management, and virtualization.

DO-332 has various modifications to the main guidelines in DO-178C due to the shift in the

programming paradigm from procedural languages. OOTs are founded on the principle of

strong abstraction where the programming unit, an object (defined by a class), holds both the

30

data and the methods (or procedures) to manipulate such data. Class hierarchies and the in-

teractions among the instantiated objects are what delivers the expected functionality of the

system. DO-332 includes specific development compliance needs covering class hierarchies.

In particular, DO-332 suggests class hierarchies should be derived from HLRs, and bidirec-

tional traces should be defined between HLRs and methods, since it is in the latter where the

former are implemented.

Regarding verification, DO-332 calls for the verification of, among other things, class hier-

archies for consistency with HLRs, and local type consistency. Normal-range and robustness

testing should still be performed.

1.2 Model-Driven Engineering (MDE)

Models, as defined by Selic (2003), are reduced (i.e. simplified, abstract) representations of

some (aspect of a) system that highlights its properties of interest from a given viewpoint.

Model-Driven Engineering (MDE) was developed around the premise to turn models into first-

class artifacts across the entire system development life cycle in an attempt to deliver higher

quality systems in the most productive way possible while reducing their complexity (Schmidt,

2006; Bézivin, 2006). In order to keep up with such a premise, MDE makes use of domain-

specific modelling languages (DSMLs) to provide users with a working environment where

they can directly manipulate domain concepts (Kelly & Tolvanen, 2007).

1.2.1 Modelling

Models are created by using some modelling language. Modelling languages share the com-

mon properties of languages (Kurtev et al., 2006; Arboleda & Royer, 2012), i.e. they have:

1) a concrete syntax or notation for the construction of models, 2) an abstract syntax or vocab-

ulary of the domain concepts they represent, 3) mappings between the abstract and concrete

syntaxes, and 4) an implicit or explicit semantics or the way to create well-formed models with

the defined domain concepts. These properties are usually defined through a metamodel. A

31

metamodel is a model with a higher abstraction level describing the domain concepts, their rela-

tionships and the structural constraints that guide their combination. The relationship between

a model and its defining metamodel is called conformance (Bézivin, 2005). Since metamodels

are also models, they need their own modelling language in order to be described. This lan-

guage is represented by a meta-metamodel. This definition may continue ad infinitum, hence,

the Object Management Group (OMG) introduced its model-driven architecture as a four-level

modelling framework where the highest level contains a unique modelling language called the

Meta-Object Facility (MOF). MOF defines a meta-metamodel that is defined by itself.

Figure 1.3 illustrates the modelling levels of the OMG’s MOF framework (OMG, 2013). The

best-known example of a metamodel (or M2 model) is UML, of which MOF is its meta-

metamodel. An M0 model represents the data that is to be described. The semantics, nonethe-

less, is sometimes more difficult to express through a metamodel alone and usually requires a

helper, formal notation in order to be achieved. For this purpose, the MOF framework uses the

Object Constraint Language (OCL) in modelling languages defined within its context. In the

case of UML, its defined modelling language may be extended through what are called pro-

files, which are particular constructs (i.e. abstract syntax elements, their mappings to UML’s

concrete syntax, and semantics) that augment UML for its use in certain domains.

There is a variety of system aspects that models may represent. Furthermore, models may be

used by different stakeholders. Because of these situations, models can be classified in terms

of two dimensions: 1) the system perspectives or views offered for the system, and 2) their

level of abstraction. Views make reference to the different representations that models may

portray of how aspects of a system are addressed (Rozanski & Woods, 2011). An individual

view is intended to describe a separate aspect of a system, but when taken collectively, the

views are intended to provide a description of the entire system. Some examples of common

views are: functional structure, layering, inter-component communication, deployment. Levels

of abstraction make reference to the amount of implementation details that models are able to

capture. The higher the level of abstraction a model has, the less implementation details it can

represent and, thus, it will be found to be closer to the problem’s space. Models with high

32

MOF

UML, SysML

M3 Meta-metamodel

M2 Metamodel

M1 Model

M0 Information

conforms to

conforms to

conforms to

conforms to

Figure 1.3 OMG’s four-level modelling

framework. Adapted from OMG (2013).

levels of abstraction are said to be platform-independent models (PIMs) since their lack of

implementation details render them technology free. On the contrary, the lower the level of

abstraction a model has, the more implementation details it can represent and, thus, it will be

found to be closer to the solution’s space. Models with lower levels of abstraction are said to

be platform-specific models (PSMs) since the inclusion of implementation details tailor them

to specific systems, infrastructures, platforms or technologies. The following subsections will

glance at how modelling is done in the set of modelling languages used by the industry partners

and then present a methodology to build custom DSMLs for regulation certification.

1.2.2 Modelling with Simulink and Stateflow

Simulink (MathWorks, 2018a) is a graphical block modelling language with predefined and

customizable blocks for describing continuous causal relationships between blocks that deter-

mine system behaviour (see Figure 1.4). The interconnection of blocks expresses calculation

procedures and not the actual system structure. Nevertheless, logical structures can be imposed

by establishing a hierarchy of such blocks. Stateflow (MathWorks, 2018b) extends Simulink

with a state-like formalism variant of Harel’s Statecharts. Stateflow enables the representation

33

of control functions that are dependent on a combination of past and present logical condi-

tions (see Figure 1.5). Since Stateflow is an extension to Simulink, Stateflow models (a.k.a.

Stateflow charts) must reside within a Simulink model.

Figure 1.4 Example of the Simulink notation. Extracted from Paz

et al. (2020).

Figure 1.5 Example of the Stateflow

notation. Extracted from Paz et al. (2020).

The MathWorks Automotive Advisory Board (MAAB), a group of major automotive OEMs

(Original Equipment Manufacturers) and suppliers, created the Control Algorithm Model-

ing Guidelines using MATLAB, Simulink, and Stateflow (MathWorks Automotive Advisory

Board, 2012). The MAAB guidelines are intended to enable model exchange and facilitate the

use of the MathWorks’ tools for MDE. Initially, they were intended for use within the automo-

tive industry but have been adopted by other major industries building safety-critical systems,

like avionics (Erkkinen, 2005).

Simulink models under the MAAB guidelines are mandated to be organized in a hierarchical,

three-layered structure. The top layer describes a control system as a single block performing

a function over a set of input variables to produce a set of output variables. The structure layer

describes the controller of the previous layer as a decomposition of interconnected atomic

subsystem blocks (see Figure 1.4). Stateflow charts may be included as part of this layer if

34

modal logic is required to control a function. Lastly, the data flow layer describes each of the

atomic subsystems in the previous layer as a decomposition of interconnected basic blocks (i.e.

those from the Simulink base library, e.g., arithmetic operators, logical operators, relational

operators) (see the inside previews of the subsystems in Figure 1.4). Stateflow charts may be

included as part of this layer as well, if modal logic is required to control a function.

1.2.3 Modelling with AADL

AADL (SAE, 2017) is a standardized textual and graphical modelling language for describing

a system architecture and its runtime environment in terms of its constituting components. A

component is characterized by five elements (Feiler et al., 2006): 1) identity (i.e. type and

name), 2) interfaces with other components, 3) distinguishing properties, 4) subcomponents,

and 5) interactions between its subcomponents. The dynamics of components can be described

by annotating them with references to other models in other modelling languages (e.g., Simu-

link, Stateflow).

AADL includes three groups of components: software (process, thread, thread group, sub-

program and data), hardware (device, processor, memory and bus) and system. Listing 1.1

present a sample system component made up of three devices and whose dynamics are con-

trolled by a software process. Figure 1.6 presents the graphical equivalent. AADL models

initially represent a high-level architecture through system, process and device components,

and their interactions. Specific quality attributes (e.g., timeliness, fault-tolerance, security) can

be provided to the components as part of such an architectural description. From this represen-

tation, subsequent modelling steps further detail the composition of each high-level component

in much the same way.

1.2.4 Modelling with UML

UML is a standardized general-purpose graphical modelling language for describing a software

system (OMG, 2017b). It is capable of capturing both the structure and the dynamic behaviour

35

Listing 1.1: Example of the AADL textual notation.
1 system implementation sc_system.sample_system
2 subcomponents
3 sample_sensor: device sensor_device.sample_sensor;
4 sample_interface: device user_interface_device.sample_interface;
5 sample_actuator: device actuator_device.sample_actuator;
6 sample_process: process sc_process.sample_process;
7 connections
8 sensor_data_connection: port sample_sensor.sensor_data -> sample_process.

sensor_data;
9 set_parameter_connection: port sample_interface.set_parameter -> sample_process.

set_parameter;
10 actuation_command_connection: port sample_process.actuation_command ->

sample_actuator.command;
11 end sc_system.sample_system;

sc_system.sample_system
sensor_device.sample_sensor

sensor_data

user_interface_device.sample_interface

set_parameter

actuator_device.sample_actuator

command

sc_process.sample_process

sensor_data
set_parameter

actuation_command

Figure 1.6 AADL graphical notation for the example in Listing 1.1.

of the system. Structure is captured as a decomposition of connected discrete objects whose

collective work performs the desired system function. Dynamic behaviour is defined as the his-

tory of such objects over time as they interact with one another to perform the desired system

function. UML structural constructs, like components and classes, and their interconnection

express acausal relationships, meaning there is no predefined direction for such interconnec-

tions. The definition of the calculation procedure is left for the behavioural constructs. UML’s

behavioural semantics is based on a framework that only deals with event-driven or discrete be-

haviour. However, the interval of time separating two events is left unspecified in the standard.

As a result, it can be considered to be as small as needed, which would allow the description

of continuous behaviour (OMG, 2017b).

36

Avionics systems manufacturers, with their heavy reliance on standards, see in UML long term

sustainability and interoperability (Le Sergent et al., 2016). Indeed, popular modelling tools

among them, like SCADE Suite, are UML-based (Le Sergent et al., 2016). Moreover, research

has been carried out in the domain to propose modelling approaches supported by UML (e.g.,

Stallbaum & Rzepka (2010); Zoughbi et al. (2011); Biggs et al. (2016)).

Modelling with UML is somewhat arbitrary as the language and its specification allows to

exercise more freedom in a design than, for instance, Simulink and the MAAB guidelines

permit. Nonetheless, a hierarchical, 3-layered structure can be followed in an analogous way as

with Simulink and Stateflow to simplify syntactical and semantical comparisons between them.

The top layer describes the software as a modular, reusable component providing its specified

functionality through its set of provided interfaces. The component can use other components

by requiring any provided interface. The middle layer decomposes the software into a set

of modular, reusable components providing their functionality through their sets of provided

interfaces. The components may as well use each other by requiring any of the provided

interfaces. Lastly, the bottom layer describes each of the components’ implementation of their

provided interfaces with one or more classes. State machines can be used to capture the internal

state transitions of the realizing classes.

1.2.5 Methodology for developing modelling languages for regulation certification using
UML

As mentioned previously, UML supports the development of domain-specific modelling lan-

guages (DSMLs) through its profile mechanism, which comprises semantic variation points

and special language constructs intended for refinement (e.g., Stereotypes) (Selic, 2007). Selic

(2007) proposed a systematic approach with the purpose of guiding the development of UML

profiles that are technically valid (i.e. do not contravene the UML standard) and of good qual-

ity. The general flow of the approach is: 1) develop the conceptual model of the domain (or

domain metamodel), and 2) map its concepts to elements in the UML metamodel. Depending

on the complexity of the DSML there may be the need to iterate a few times over the process

37

to ensure conformance with UML. Panesar-Walawege et al. (2013) refined this systematic ap-

proach to provide specific guidance for developing DSMLs for the management and collection

of information for certification. The domain metamodel should result from a careful qualitative

analysis of the contents of a given regulatory guideline. The UML profile and its associated

OCL constraints are then created based on the resulting domain metamodel.

Figure 1.7 illustrates the methodology as presented by Metayer et al. (2019). The domain

metamodel specifies what will be represented with the DSML and how. It is strictly defined

considering the needs of the domain (i.e. the regulatory guideline) without concerns about the

UML metamodel. Four elements make up the domain metamodel: 1) the set of fundamental

language constructs, 2) the set of relationships existing between the previous constructs, 3) the

set of constraints for the production of valid models, and 4) the semantics of the language.

Mapping the domain metamodel to the UML metamodel goes through all the domain concepts

and identifies the most suitable UML metaclass for each one. A domain concept is defined as a

stereotype to be applied over a selected UML metaclass. The selection of the UML metaclass

is done by identifying the metaclass with a semantics closest to that of the domain concept,

and checking that the constraints of the selected metaclass and those of its superclasses do not

conflict with the constraints of the domain concept. If necessary, refinements to the attributes

of the selected metaclass are performed. The same is done for the associations of the selected

metaclass to other metaclasses. If there are conflicting associations, these can be constrained

with the constraints defined for the stereotype.

1.3 Model-Based Approaches Supporting Safety-Critical System Development and Cer-
tification

Models have been pushing their way into safety-critical systems development and certification

since around the mid-1960s when computer-aided design first appeared. Despite being particu-

larly interested in avionics software and its development and certification under DO-178C, we

extended our review scope of existing model-based approaches to include safety-critical soft-

ware in general. This is because safety-critical software share various characteristics across

38

act Development of DSML for regulation certification using UML

Develop UML profile

Analyze regulatory guideline and build domain metamodel

Identify
regulatory
concept

Define a domain
metamodel concept

Identify and select a
UML metaclass with
closest semantics

[else]

[additional concepts are required to cover the regulatory guideline]

Define dependencies
and constraints for

the concept

Review metamodel
consistency and
completeness

Select a domain
metamodel concept and

define a stereotype

Check constraints of
selected metaclass
and its superclasses

Check attributes of
selected metaclass

[conflicting constraints with those of the domain metamodel element]

Define constraints for
the stereotype

[else]

Refine attributes of
selected metaclass in

the stereotype

[attributes need to be refined]

Check associations
of selected metaclass

UML
Profile

Domain
Metamodel

[else] Refine/constrain
associations of

selected metaclass

[else]

[associations
need to be

refined/constrained]

Regulatory
Guideline

[else]

[domain
metamodel
concepts
remain to be
mapped]

Domain
Metamodel

Figure 1.7 Methodology for developing UML-based DSMLs for

regulation certification. Extracted from Metayer et al. (2019).

other domains where they are also deployed, such as railway, medical, maritime and energy.

Furthermore, relevant model-based approaches are found to be labeled as domain-independent

solutions.

In recent years, Feiler et al. (2006), Stallbaum & Rzepka (2010), Blouin et al. (2011), Zoughbi

et al. (2011), Panesar-Walawege et al. (2013), Wu et al. (2015) and de la Vara et al. (2016)

have proposed several model-based approaches. There are also toolchains based on propri-

etary modelling languages and tools, such as those from MathWorks (Eisemann, 2016). Ex-

isting approaches can be divided into three groups: 1) approaches supporting certification,

2) approaches supporting requirements specifications in the context of certifiable safety-critical

systems development, and 3) approaches handling design model heterogeneity. The following

subsections present synthesized descriptions of several approaches in each group.

39

1.3.1 Approaches supporting certification

We studied existing MDE approaches in terms of their support to produce and certify avionics

software under DO-178C. The study has been published as part of the proceedings of the Inter-

national Symposium on Software Reliability Engineering (ISSRE 2016) Workshops (Paz & El

Boussaidi, 2016). To carry out the assessment we built a framework to characterize and com-

pare the selected approaches according with several criteria. We defined the following four

groups of criteria: 1) their objectives and targeted stakeholders, 2) the extent to which they sup-

port DO-178C guidelines, 3) the way they handle and present information, and 4) the extent to

which the approach is ready for use. The documentation of our characterization framework can

be found in Appendix I. The reviewed approaches can be divided into those approaches that

are meta-approaches, those for safety assurance cases, and those for certification-compliant

system design and analysis.

1.3.1.1 Meta-approaches

Meta-approaches take a different perspective on model-based support for development and cer-

tification. Their goal is to propose a generic way to build models in a sense that every model

can be considered as the starting point of an approach on its own. Panesar-Walawege et al.

(2013) suggest a methodological approach for guiding the management and collection of in-

formation for certification. They define a four-step process based on Product Line Engineering

(PLE) principles, summarized in Figure 1.8. Such a process starts by a careful qualitative

data analysis of the contents of a given regulatory guideline or standard to create a concep-

tual model of such a guideline or standard. The objective of the conceptual model is to aid

suppliers/manufacturers in creating the evidence necessary for certification according with the

given standard. A UML profile and its associated OCL constraints are then created based on

the conceptual model of the given regulatory guideline or standard and their relationships with

application domain concepts.

40

Construct Conceptual
Model of Standard

Domain Model of System

Define UML profile based
on Conceptual Model

Elaborate Domain Model for
Compliance with Domain
Model of System as input

Create Instance for Specific
Certification

1 2 3 4

Figure 1.8 Process for managing and collecting certification

information. Adapted from Panesar-Walawege et al. (2013).

Other approaches were developed in the context of a European-wide project, the OPENCOSS

project, to produce an open safety certification platform. The OPENCOSS project had two

main goals. On the one hand, reduce the recurring costs of safety (re-)certification. On the

other hand, increase product safety. To achieve these goals the project 1) proposed a common

certification framework that facilitates reuse of assurance artifacts within and across domains

such as railway, avionics and automotive, and 2) established an open-source safety certification

infrastructure. The works of Luo et al. (2013), de la Vara et al. (2016) and Ruiz et al. (2016)

contribute to the OPENCOSS project by introducing more systematic certification practices

based on the modelling of safety compliance needs.

Luo et al. (2013) propose an approach to systematically and objectively model safety standards.

The resulting models can then be used for demonstrating compliance with the safety standards

and for enabling reuse of the developed assurance artifacts. The approach involves the creation

of three types of models: structure model, conceptual model and process model. The structure

and conceptual models help achieve an unambiguous understanding of the safety standards, the

latter playing the role of guideline when complying to the safety standard. The process model

can be used in demonstrating compliance of the project’s process with the process described

by the standards.

41

Ruiz et al. (2016) develop the Common Certification Framework, an approach that assists

on the systematic reuse of compliance justifications and safety certification artifacts across

standards and domains. The Common Certification Framework consists of several languages or

metamodels allowing the representation of safety-related information from two main sources:

the standard for which compliance must be demonstrated and the product for which compliance

is sought. The Reference Assurance Framework (RAF) Metamodel is intended for supporting

the specification of safety compliance needs that have or might have to be considered.

de la Vara et al. (2016) present in greater detail the RAF metamodel. The RAF metamodel

includes the necessary concepts and relationships to tailor safety compliance needs models

to project-specific characteristics. Safety compliance needs may come, for example, in the

form of compliance needs to fulfill, artifacts to manage or activities to execute, and from mul-

tiple sources such as specific safety standards, recommended practices or company-specific

practices. A baseline model will hold the specific compliance needs a project should provide

assurance for. This baseline model typically contains a subset of the compliance needs present

in a particular targeted standard and be complemented with additional needs that are specific to

the project’s characteristics. Project-specific aspects can be captured with a set of metamodels

built for such purposes. The process metamodel captures the process that is to be executed to

create a product. The evidence metamodel captures evidences of safety and of compliance. The

argumentation metamodel captures arguments used to justify the safety-related decisions that

are taken throughout the project. A vocabulary metamodel captures the items of vocabulary

for naming and describing safety assurance terms and concepts. The items of vocabulary may

come from the text of safety standards or be company-, product- or application-specific. The

mappings metamodel serves to specify the degree of equivalence between models conforming

to the previous metamodels.

1.3.1.2 Safety assurance cases

Safety assurance is a fundamental element in safety-critical system certification. Assurance

cases have been in use for such a purpose for a long time (Hawkins et al., 2013). An assurance

42

case is a model capable of communicating a clear, comprehensible and defensible argument

that particular requirements have been satisfied to deem the system safe to operate in a par-

ticular context (Hawkins et al., 2013; OMG, 2018). The model consists of a set of auditable

claims as well as arguments and evidence developed to support such claims (OMG, 2018). The

assurance case should additionally describe the system’s scope and its operational context. The

model starts by defining some high-level claims (also referred to as goals) and braking them

down into lower-level claims until they can be supported by evidence. Claims are stated within

a context. Rationales are captured as assumptions and justifications. Complex assurance cases

may be created by interrelating separate modules of arguments.

Hawkins et al. (2013) provide a comparative examination of assurance cases and compliance

towards DO-178C. They had two objectives. On the one hand, to highlight the advantages and

limitations of assurance cases and the traditional compliance of DO-178C. On the other hand,

to describe the role assurance cases can play when seeking compliance with DO-178C. In the

context of providing assurance for a safety-critical avionics system, Hawkins et al. (2013) pro-

pose to construct an assurance case following these four principles: 1) safety requirements

shall be defined to address the system’s contribution to hazards, 2) the intent of the safety

requirements shall be maintained throughout requirements decomposition, 3) safety require-

ments shall be satisfied, and 4) hazardous behavior shall be identified and mitigated.

The OMG (2018) developed the Structured Assurance Case Metamodel (SACM) to standard-

ize the way of presenting and structuring arguments in an assurance case. The SACM is an

effort to promote the use of assurance cases as a way to help the assurance of safety and its

reuse within and across projects. The SACM specification is divided into three metamodels:

the argumentation metamodel, the artefact metamodel and the terminology metamodel. The

rationale behind this division is to allow the individual exchange of argumentation and evi-

dence while being able to use them in combination. The argumentation metamodel defines the

constructs for building and interchanging structured argumentation statements. The artefact

metamodel defines the constructs for building and interchanging evidence-related statements,

such as describing artifacts (i.e. their properties and associated events), collecting and man-

43

aging evidence (i.e. relationships between participants, activities, resources and associated

evidence artifacts), and structuring of artifacts (i.e. artifact composition). The terminology

metamodel defines constructs that can be used to represent compliance needs associated with

an assurance standard, or project- or system-specific characteristics. However, no relationships

exists between the concepts of the terminology metamodel to those in the argument metamodel

and the artefact metamodel.

1.3.1.3 Certification-compliant system design and analysis

Berkenkötter & Hannemann (2006) propose a UML profile for modelling critical railway con-

trol applications. The approach is intended to connect railway engineering practitioners with

the development techniques of safety-critical software. The profile captures the physical ele-

ments of railway control systems (e.g., sensors, signals, routes, crossings, points, segments),

their physical topology and the composition of the controller’s operations. Figure 1.9 shows

an object diagram representing two sensors on the connection of two bidirectional tramway

track segments. The left side of the figure shows the notation of the network elements and their

relationships as seen by a railway engineering practitioner. The right side of the figure shows

the corresponding instance stereotype for each of the modelling elements and relationships.

The UML profile is complemented by a formal (mathematical) behavioural model. From the

instance model, and based on the formal behavioural model, automated code can be generated

for railway controller systems and for safety compliance verification tasks.

Wu et al. (2015) proposed a modelling language for the architectural design of avionics sys-

tems in accordance with DO-178C. The modelling language’s semantics is based on a set of

safety properties, i.e. requirements derived from the objectives and activities defined in DO-

178C (e.g., “A safety component and its safety interfaces have the same assurance level.”).

Their approach focuses on modelling system components that have a set of associated safety

concerns and their interfaces. Components may interact with one another via a safety channel.

In addition, components should provide a way to detect and handle faults.

44

Sig2
Sig1

S2S1

:<<Segment>>Seg :<<Segment>>Seg

signal
sensor

sensor

e2exit

e1exite2entry
entry
exit entry

e1entry

signal

Sig1:<<Signal>>Sig

Sig2:<<Signal>>Sig

S1:<<Sensor>>Sens

S2:<<Sensor>>Sens

exit

Figure 1.9 Fragment of an object diagram for a tramway network

design. Extracted from Berkenkötter & Hannemann (2006).

Graf et al. (2006) and Hooman et al. (2007) developed OMEGA-RT, a UML profile for mod-

elling real-time embedded systems. It extends UML, particularly class diagrams and state

machine diagrams, with the ability to capture time- and scheduling-related data. Figure 1.10

gives an example state machine diagram for the possible states of a sensor in a flight control

system. The transitions between the states are constrained by OMEGA-RT timed annotations,

which are time stamped UML events. The timeout(timeglobal) event is an example of a time

stamped event. The aim of OMEGA-RT is to support the analysis and verification of the time

and scheduling-related properties characteristic of real-time embedded systems. On the one

hand, OMEGA-RT represents any operational concepts as classes with the different kinds of

object-oriented structures and associations corresponding to them (e.g., polymorphism, inheri-

tance, aggregation) constrained by events described using OCL. On the other hand, behaviour

of such classes is captured in state machine diagrams annotated with time and duration infor-

mation.

Stallbaum & Rzepka (2010) contribute a modelling approach targeted towards the specifica-

tion of test models that can serve both for testing and as supporting evidence in a certification

process. The approach consists of a UML profile to extend UML behaviour diagrams, partic-

ularly activity diagrams, with safety-related information relevant for DO-178B compliance.

Each model element is given a stereotype allowing the definition of test and certification-

relevant information. With this formalism, Stallbaum & Rzepka (2010) focus on including

45

Init

[id >= 0] /
timeglobal.set(0)

Ready

Failed

Acquire Sample

timeout(timeglobal) /
begin timeacquire.set(0);

timeglobal.set(50000) end

[timeacquire >= 500 and timeacquire <= 3000] /
begin timesample.set(0); timeacquire.reset() end

[timesample >= 100 and timesample <= 500] /
begin bus!evWrite(id,0); timesample.reset() end

Figure 1.10 State machine diagram using OMEGA-RT for an

aircraft’s flight control computer sensor. Adapted from IST (2001).

constructs for eight essential testing needs specified in DO-178B: 1) traceability links from test

model elements to requirements, 2) software levels and their rationale, 3) normal and abnormal

test conditions in test cases, 4) testing method (e.g., hardware-software integration, software

integration), 5) hardware/software interfaces and their parameters, 6) traceability links from

test model elements to software components, 7) traceability links from test model elements to

source code, and 8) types of traceability links.

Eisemann (2016) describes a toolchain for DO-178C-compliant avionics software develop-

ment. The toolchain is composed of tools from various well-known and well-established tool

vendors. Among the main components of the toolchain are MathWorks Simulink and dSPACE

TargetLink providing the modelling environment for creating both specification models and

design models according with DO-331 as well as the infrastructure for automatic code gen-

eration. Another main component of the toolchain is BTC EmbeddedTester, which covers

various verification objectives of DO-331 via model-based testing. BTC EmbeddedTester is

capable of automatically creating requirements-based test cases and executing them over the

Simulink models. Figure 1.11 maps the use of all these tools to the DO-178C reference work-

flow of Figure 1.1. HLRs can be specified in the form of specification models with Simulink.

Requirements-based test cases can be automatically generated from those Simulink models

using BTC EmbeddedTester. Specification models in Simulink can drive the software design

to produce design models in Simulink. BTC EmbeddedTester can again take these Simulink

46

design models and automatically generate test cases. Automatically generating source code

is possible with the Simulink environment in order to transform Simulink design models into

ANSI C code. BTC EmbeddedTester comes into play to automatically execute the generated

test cases over both the design models and the implementation code.

Simulink

Compiler

Verify

Test Cases, Test
Vectors and

Expected Outputs

Using

Using

Verify

Test Cases, Test
Vectors and

Expected Outputs

EmbeddedTester

High-Level Software Requirements

Simulink

EmbeddedTester

Simulink

Source Code

Design Model

Specification
Model

System Requirements Allocated To Software

Textual HLRs

Executable
Object Code

Figure 1.11 Toolchain based on commercially available tools.

Adapted from Eisemann (2016).

1.3.2 Approaches supporting requirements specifications

Several requirements modelling languages were proposed for safety-critical systems devel-

opment. They can be divided into three categories: 1) those using natural language-based

specification, 2) those providing a formal notation, mostly through behavioural modelling, and

3) those offering a hybrid specification.

47

1.3.2.1 Natural language-based specification

SysML is a standardized general-purpose graphical modelling language (OMG, 2017a). Al-

though it was introduced for system engineering, it has been widely used for safety-critical

system engineering by practitioners and researchers (e.g., (Sakairi et al., 2012; Biggs et al.,

2016)). SysML, with its requirements diagram, captures natural language requirement state-

ments and their relationships to other requirements (e.g., indicating hierarchical level, copy,

derive) and to other elements as well (e.g., test cases and design blocks). The main structural

concept for requirements modelling with SysML is the Requirement stereotype, which in-

cludes properties to capture a unique identifier and the text of the requirement. Verification

status, priority and other additional properties can also be specified. SysML allows extending

the Requirement stereotype to represent requirements taxonomies (e.g., functional, interface,

performance). A hierarchical tree-like structure of packages can also be defined to contain

and organize all of the requirements. Several types of relationships exist to represent possible

associations of requirements with other elements: composition, derive, refine, satisfy, verify,

and trace. The composition relationship creates a hierarchy of requirements where a require-

ment can be decomposed into simpler child requirements at the same flowdown level, which

can be easier to both satisfy and verify. The derive (deriveReqt) relationship associates a re-

quirement with another requirement with the intent of imposing additional considerations and

constraints based on further analysis of the system. The refine relationship can exist between

a requirement and any other element (can be from a different model) or vice versa. This rela-

tionship expresses how a model element further refines the other model element. The satisfy

relationship is used to describe how design (or implementation) elements satisfy the require-

ments. This association, however, is not intended to constitute a proof that the requirement

is indeed satisfied by the given element, this is the objective of the verify relationship. The

verify relationship can associate a model element, such as a testCase, to verify a requirement.

Finally, the trace relationship is a general-purpose relationship to associate a requirement with

any other element, other requirements included.

48

Zoughbi et al. (2011) propose a UML profile, based on concepts found in DO-178B, for captur-

ing natural language safety-related requirements allocated to software and enabling the mon-

itoring of the design and implementation of the software with regard to the provided safety

requirements. The concepts in this profile are partitioned into five packages (Figure 1.12 de-

picts the structure of the first three): 1) the requirements package, comprised of the necessary

concepts to capture requirements and their refinement as well as the traceability links to code

artifacts and the design rationales, 2) the characteristics package, containing concepts that cap-

ture the elements with a direct impact on safety, identify their respective software level and

associate the design strategies to be followed, 3) the event management package, defining

the concepts that represent events or actions with an impact on safety and the way the sys-

tem should handle them to ensure safety, 4) the configuration package, including concepts for

software configuration, change control and user-modifiable software, and 5) the replication

package, addressing software redundancy. The UML profile by Zoughbi et al. (2011), also

aims to support system design with the event management package. The system is designed by

identifying all the events it receives and the reactions (e.g., algorithms) it performs.

Nejati et al. (2012) address traceability management in the requirements and design phases.

They propose a modelling approach for specifying safety requirements, expressing design ele-

ments, and automatically extracting design fragments relevant for a given safety requirement.

Their work focuses on three fronts: 1) how to express safety requirements, 2) how to express

design, and 3) traceability from requirements to design. The proposed approach captures the

requirements as statements expressed in natural language, and the design as SysML models.

Traceability between requirements and design elements is provided by an information model.

An algorithm extracts the fragment or “slice” of the created designs that is relevant to given

safety requirements. The algorithm relies on a formal notation to denote the associations be-

tween the elements conforming to the information model. The algorithm removes the model

elements that are considered irrelevant to the fulfillment of the safety requirements under anal-

ysis.

49

Requirements

Characteristics

Event management

Rationale
ImplementationStyle

Partition

SafetyCritical

Interface

Requirement

references

*

references
1..*

Style

references
*

BehavioralStyle

is requirement of

*

Measure

Strategy

EnvironmentalModel

is interface of

1..*
quantifies characteristic of

describes strategy of

models

Event

Monitor

Handler

Reaction Concurrent

is partitioned from

1..*

triggers

*

monitors 1..*

triggers
*

notifies

*

performs
1..*

is consequence of

1..*

handles

1..*

detects

1..*

Figure 1.12 Fragment of the UML profile’s metamodel by

Zoughbi et al. (2011). Adapted from Zoughbi et al. (2011).

Biggs et al. (2016) present a SysML profile for modelling safety-related concerns of a system.

They focus on the documentation of hazards for communicating them from safety engineers to

system engineers in order to be considered during system design, and, conversely, for commu-

nicating from system engineers to safety engineers the hazards that the system was designed to

manage. Specification is done mainly in natural language with some properties (e.g., cost, pri-

ority) captured in attributes of the hazard construct. Moreover, their SysML profile includes not

only constructs for software aspects but also for hardware and procedures. Thus, it is intended

as a whole-system design specification modelling language.

Blouin (2013) developed the Requirements Definition and Analysis Language (RDAL). RDAL,

as shown in Figure 1.13, is a modelling language for capturing, validating, analyzing and ver-

ifying system requirements. The modelling language may be used during requirements elic-

itation as a means of communication. RDAL has a minimalist design that focuses only on

50

supporting the modelling and analysis of requirements. Thus, the modelling language is meant

to be coupled with other languages that support the modelling of behavioural aspects, like Use

Case Maps (UCM) (Amyot, 2003), and design elements, like AADL (Feiler et al., 2006). The

SystemOverview concept represents the statement of how the system to be built interacts with

its environment (i.e. a collection of contractual elements representing the external entities the

system to be built interacts with). Interactions between environment entities and the system to

be built are declared by means of InteractionVariables. The relationships functionUsedIn

and globalSystem have the purpose of linking the requirements and system overview to the

design elements that will satisfy them. The SystemOverview concept has a globalSystem

property to identify the AADL system component that represents the modelling of the system

to be built and its environment. AbstractRequirements are decomposed into Requirements

and Assumptions. An Assumption is a special type of requirement satisfied by the envi-

ronment instead of by the system to be built. A Requirement is expressed mainly in natural

language but can be formalized using one of several constraint languages (e.g., OCL, BLESS,

Lute). Both the Requirement and Assumption concepts can be associated to a Verification-

Activity, which is a concept that represents an activity carried out for verification such as a test

case. The VerificationActivity concept can contain references to external artifacts developed

in other languages (e.g., Test Description Language, TDL, for modelling test cases).

ReqSpec (Feiler et al., 2016) is a textual natural language requirement specification language

drawn from RDAL. ReqSpec allows users to define goals (or stakeholder requirements) and

requirements (or system requirements). Goals are expressed by goal declarations and require-

ments by requirement declarations. Goals and requirements can be organized according to the

architecture structure, by associating them with AADL component types or implementations.

Figure 1.14 shows examples of requirements for a system sensor specified using ReqSpec. The

system requirement set declaration represents requirements for a specific architecture compo-

nent and contains a set of system requirement declarations. Users can also declare a set of

reusable requirement declarations through a global requirement set declaration. Such reusable

requirements can then be included in system requirement set declarations.

51

RequirementsPackage
ownedRequirements

1..*
AbstractRequirement

VerificationActivity
verifiedBy

0..*

Requirement Assumption

1
imageRequirement

EObject
functionUsedIn

0..*

RdalOrgPackage Specification
ownedPackages

1..*
SystemOverview

ownedSystemOverview

1

SystemContextEntity

ownedEntities

1..*

InteractionVariable

«enumeration»
InteractionVariableType

MONITORABLE
CONTROLLABLE

ownedSystemBoundary

1..*1..*

entityBoundary

globalSystem

1

Figure 1.13 Fragment of the RDAL metamodel. Adapted from Blouin (2013).

system requirements PassiveSensorReqs for ASSASensors::PassiveTerrainSensor
[
 requirement Req4 : “Passive sensor”
 [
 val EnergyLevel = 0
 description “Passive sensor radiates " EnergyLevel " energy”
 value predicate #JMRMS::EnergyLEvel == EnergyLevel
 see goal MSStakeholderRequirements.SR_27
]
 requirements Req1 : “Spherical terrain awareness for aircrew”
 for TerrainSphere
 [
 description “Spherical SA of terrain within " DesiredObservationRadius " radius for aircrew”
 val DesiredObservationRadius = 5 nm
 compute measuredDistance ; JMRMS::NauticalDistance
 value predicate measuredDistance >= DesiredObservationRadius
 see goal MSStakeholderRequirements.SR_27
]
]

Figure 1.14 Fragment of a requirement specification for a sensor

using ReqSpec. Adapted from Feiler et al. (2016).

1.3.2.2 Behavioural modelling

Leveson et al. (1994) developed RSML to model the required system’s black-box behaviour

including assumptions regarding the behaviour of other system components. Formal analysis

procedures can be applied over the resulting model for ensuring it satisfies the system’s func-

tional and safety goals and constraints. RSML is designed for process control systems, where a

52

function describes the mapping between the inputs (or controlled variables) and the outputs (or

manipulated variables) of the system in the face of disturbances. The function (to be computed

by a controller) is specified using a state machine model. The outputs of the controller are

specified with respect to state changes in the model as information is received about the current

state of the controlled process via the controlled variables. Physically distinct components are

modelled as separate (communicating) state machines. Inter-state machine communication is

modelled as directed messages sent and received over unidirectional channels. Within a state

machine, events are broadcast. Guard conditions of transitions are specified using AND/OR

tables. No statement is made on the kinds of conditions that can be expressed in AND/OR ta-

bles, but seem to be limited to the following: 1) relational expressions among variables, given

values and functions (e.g., equalities, inequalities), 2) macros (i.e. reusable named and param-

eterized AND/OR tables), and 3) substate of a parallel state. Figure 1.15 shows an example

RSML specification for the Traffic alert and Collision Avoidance System level II (TCAS II).

The system specification includes a description of each input and output variable, as well as

the transitions from one state to another. Manipulated variables change value after a triggering

event. Also featured in this figure is RSML’s hierarchical abstraction, a type of information

hiding mechanism to make the specification more readable. The purpose of such an abstraction

is to hide low-level information.

UCM (Amyot, 2003) is a semi-formal modelling language to discover, specify and review re-

quirements. Requirements are described as behavioural scenarios. Figure 1.16 describes the

scenario for extending an aircraft’s landing gear. A scenario collects a set of partially ordered

responsibilities (shown as x’s). A responsibility is something to be performed. Scenarios or

parts of them can be allocated to components, a generic and abstract construct that can repre-

sent a software or a non-software entity (rectangle), which in turn can be nested within larger

components. The scenarios progress along paths from a start point (filled circle) to an end point

(bar). Paths can branch into alternative paths (i.e. OR-fork) upon guard conditions (shown be-

tween square brackets). The concept of concurrency is introduced with AND-forks. Scenarios

can be integrated by using stubs (containers for sub-maps) to represent complex scenarios (not

53

Figure 1.15 High-level RSML specification for

the TCAS II. Extracted from Leveson et al. (1994).

shown). Waiting within paths can be achieved with the definition of waiting places (filled cir-

cle on path). Timers (clock icon) can be dependent on events from the environment or paths in

a scenario. If the connected path never arrives, the timeout path (zigzag path) is followed.

1.3.2.3 Hybrid specification

Bitsch (2001) proposes a pattern-based approach to simplify the specification of system safety

requirements when using formal languages. Patterns provide the advantage of capturing expert

knowledge and experiences to help in the correct formulation of the safety requirements and in

their identification. Furthermore, the approach enables formal verification to be carried out over

the set of requirements. The approach consists of a catalog of pre-specified generic safety re-

quirements. The difference with other similar proposals is that the generic safety requirements

in the approach by Bitsch (2001) are expressed as complete requirements, therefore removing

the need of combining the right pieces to build a requirement. His approach is intended to be

used in two steps. In the first step a pattern is chosen from the catalog of available patterns

54

[Desired Gear
Position is Down,

LGCS has not failed]

[LGCS failed]

[Gears extended]

LGCS – Extend gears

AS failure

[Analogical Switch Status is Closed]

[1s]
Set Feedback

to Amber

Set GEV
to Open

[2s]

GEV failure

Set
Feedback

to Red

Set DOEV
to Open

[Doors Open is True, Doors Closed is False]

[7s]

DOEV failure

Set DOEV
to Close

Set GEEV
to Open

[Gears Extended is True,
Gears Retracted is False]

[10s]

GEEV failure

Set GEEV
to Close

Set DCEV
to Open

[Doors Closed is True,
Doors Open is False]

[7s]

DCEV failure

Set DCEV
to Close

[1s]
Set GEV
to Close

[1.5s]

[Analogical Switch Status is Open]

Set Feedback
to Green

AS failure

[0.2s]

[0.2s]

[0.2s]

[28s]

[30,000 ≤ HCP
< 35,000 kPa]

Evaluate HCP

[HCP < 30,000 kPa]

[10s]
GEV failure

[30,000 ≤ HCP
< 35,000 kPa]

Evaluate HCP

[HCP < 30,000 kPa]

Figure 1.16 UCM behavioural model for a landing gear controller.

for safety requirements. The patterns are organized with a classification scheme that facilitates

their identification. Each pattern is written as a formal formula (in various formalisms) and is

explained in natural language so as to make it easier to understand and learn. In the second

step, the selected pattern is applied to the corresponding system safety requirement. The result

is a safety requirement that is expressed formally using a formal formula and also expressed

with a correct formulation in natural language.

Bialy et al. (2015) propose the use of Horizontal Condition Tables (HCTs). An HCT defines

a single function and, thus, describes a single behaviour that computes a single output. HCTs

are a simplification of Stateflow truth tables. Figure 1.17 shows the structure of an HCT on the

left and an example on the right. Each row of the table can be regarded as a decision, and the

results column as the action section. There is no defined order in which rows are evaluated.

For a table to properly (totally) define a function, two conditions must be satisfied: 1) rows’

disjointness, and 2) completeness (i.e. all cases are covered).

55

fArbRequestFromPark(eDrvrRequest:enum, bUnlocked, bFaulty:bool): enum5

Result

Condition eArbRequest

bFaulty cPark

¬bFaulty
bUnlocked eDrvrRequest

¬bUnlocked cPark

Result
Conditions V ar

Condition1
Condition2 Result1
¬Condition2 Result2

¬Condition1 Result3

Figure 1.17 Structure of an HCT (left) and an example (right).

Extracted from Bialy et al. (2015) and Bialy et al. (2017), respectively.

Fifarek et al. (2017) developed the Specification and Analysis of Requirements (SpeAR) lan-

guage and tool. Figure 1.18 presents an example specification with SpeAR. The language is

designed to read like natural language. It has the formal semantics of Past Linear Temporal

Logic (Past LTL), which supports proofs of critical properties about requirements using model

checking (logical entailment and logical consistency). Logical entailment proves that the spec-

ified properties of the system are consequences of the assumptions and requirements. Logical

consistency aims to identify conflicting assumptions and requirements. Other analyses and val-

idations provided by the tool include type-checking. SpeAR can also capture natural language-

based requirement statements but only for those requirements that cannot or are not intended

to be formalized. SpeAR promotes the following structure for specifications: 1) inputs repre-

sent monitored data from the environment, outputs represent data sent to the environment, state

represent the component’s local data (not visible to the environment), 2) assumptions identify

necessary constraints on the inputs, 3) requirements identify constraints that the component

must guarantee in its implementation, and 4) properties represent constraints that the system

should satisfy when operating in its intended environment,i.e. they validate that the require-

ments define the correct component behaviour and prove that certain undesirable conditions

never arise.

Micouin (2008) proposes the theory of property-based requirements (PBRs) as a method for

solving the problems (e.g., ambiguity, inconsistency, incompleteness) of natural language-

based requirements specifications. A PBR for a system Σ is defined as a constraint over a

property P of an object O in Σ. The constraint enforces that the value of P is located within

56

Heater
O

Heater
On

Error

Am
bient < Target

Am
bient >= Target

Tim
er >Tim

eout

Thermostat

Target Temp.
(config.)

Heater

Ambient Temp.
(controlled)

Heater Cmd
(ON, OFF, ERROR)

Ambient Temp.
(monitored)

Environm
ent

Inputs:
ambient is a temperature
target is a temperature

Outputs:
heater_command is a heater_operating_state

State:
timer is an int

Assumptions:
a0: previous heater_command equal to ON implies

ambient greater than or equal to previous ambient
Requirements:

r0: if ambient less than target and
timer less than or equal to TIMEOUT then

heater_command equal to ON
r1: if ambient greater than or equal to target and

timer less than or equal to TIMEOUT then
heater_command equal to OFF

r2: if timer greater than TIMEOUT then
heater_command equal to ERROR

r3: timer equal to previous(timer) + 1
Properties:

p_heat: if heater_command equal to ON then
ambient less than target

p_off: if heater_command equal to OFF then
ambient greater than or equal to target

p_error: if heater_command equal to ERROR then
timer greater than TIMEOUT

p_elatch: once heater_command equal to ERROR
implies heater_command equal to ERROR

Figure 1.18 SpeAR specification for a thermostat. Extracted

from Fifarek et al. (2017).

a domain D, which is a subset of im(P) (i.e. the domain of possible values of P), when a

condition C is met. Expression 1.1 formalizes the expression of a PBR. The expression reads

as follows: “[when condition C is met,] the value(s) of property P of object O shall be in the

subset D of the set of possible values for P”. The presence of a condition C is optional as

indicated by the presence of square brackets. In the expression, the term Req is a mandatory,

unique requirement identifier. The theory states that the conjunction of a finite set of PBRs

{Reqn} denotes the system Σ.

Req: [when C →]val(O.P) ∈ D ⊂ im(P) (1.1)

Gaucher & Génevaux (2017) present Argosim STIMULUS, a commercial approach to address

the issue of early debugging and validation of requirements. Figure 1.19 illustrates a formal-

ization for an HLR of a car’s automatic light system. STIMULUS provides two key features:

1) expresses requirements and environment assumptions in a formal specification language yet

57

it is close to natural language, and 2) generates observers from such requirements that observe

simulation results to identify requirement satisfaction under environmental assumptions.

When switch is 'Auto'
Initially if lightIntensity is at or below [70%] then headlight shall be 'ON',

afterwards As long as lightIntensity is not above [70%] , headlight should continue to stay 'ON'[] []

[]

When switch is 'Auto'
Initially if lightIntensity is above [70%] then headlight shall be 'OFF',

afterwards As long as lightIntensity is not below [60%] , headlight should continue to stay 'OFF'[] []

[]

When [
switch is 'Auto'

headlight was 'OFF'[[] and

[[
[lightIntensity is below [60%]

] and

]]] during more than 2 [second]] headlight shall be 'ON'

When [
switch is 'Auto'

headlight was 'ON'[[] and

[[
[lightIntensity is above [70%]

] and

]]] during more than 3 [second]] headlight shall be 'OFF'

Figure 1.19 Formalization of an HLR for a car’s automatic light system

using STIMULUS. Adapted from Gaucher & Génevaux (2017).

The UML profile for Modeling and Analysis of Real-Time Embedded Systems (MARTE)

(OMG, 2011) is a standardized graphical modelling language based on UML for describing

real-time and embedded systems. MARTE adds to UML specific support for time and resource

modelling (i.e. performance and schedulability) of both hardware and software. Software

aspects can be allocated onto the hardware architecture. The modelling part of MARTE is in-

tended for the specification of detailed system designs. The analysis part of MARTE concerns

the provision of facilities to annotate the created models with quantitative information and other

system properties to perform different analyses oriented towards system validation and opti-

mization. The UML profile for MARTE is conceived as a hierarchy of subprofiles organized

into four groups, as shown in Figure 1.20. The first group is the foundation for the other three

groups and consists of subprofiles providing constructs for specifying non-functional proper-

ties, time representation (e.g., chronometric, logical, synchronous), sets of resources and their

usage, and the allocation (e.g., time-related, space) of functionality to the entities responsible

for their realization. The second group is dedicated to the model-based design of systems.

58

The third group is dedicated to the model-based analysis of systems. The fourth group holds

annex subprofiles that enable additional facilities for modelling additional system aspects for

contemporary computing platforms and structures.

MARTE foundations

«profile»
NFP

«profile»
Time

«profile»
GRM

«profile»
Alloc

MARTE design model

«profile»
GCM

«profile»
HLAM

«profile»
SRM

«profile»
HRM

MARTE analysis model

«profile»
GCM

«profile»
HLAM

«profile»
SRM

«profile»
HRM

MARTE annexes

«profile»
VSL

«profile»
RSM

«modelLibrary»
MARTE_Library

Figure 1.20 Architecture of the UML profile

for MARTE. Adapted from OMG (2011).

1.3.3 Approaches handling design model heterogeneity

Safety-critical systems are complex systems combining physical and mechanical components,

networking and software (Lee, 2010). Considerable amounts of effort throughout the years

have evolved the engineering of these aspects along siloed trajectories. As Sztipanovits (2007)

remarks, this does not translate into an increased design complexity but, instead, the oppo-

site. Separately describing orthogonal system characteristics is the main strategy for handling

and reducing complexity. However, when parallel development teams are designing such sys-

tems, integration issues may arise leading to inconsistent constructions prone to experience

unintended or emergent behaviour. Thus, ensuring consistency between heterogeneous design

models is an important problem when handling heterogeneity. Several approaches exist that

59

present structured ways of handling model heterogeneity. The following subsections examine

three lines of work in this regard: 1) model composition, where approaches compose a new

model from heterogeneous models, 2) model integration, where approaches bring all models

into participation through an additional model or leveraging one to include references to the

others, and 3) consistency management.

1.3.3.1 Model composition

Eker et al. (2003) propose an approach to compose different, heterogeneous models for the

purposes of design analysis and code generation. The approach follows a hierarchical strategy

to structure a complex model as a tree of smaller, lower-level model compositions. The aggre-

gated compositions form a network of interacting components. Each of these components is

semantically significant in the sense that to the next higher level of the hierarchy they are con-

sidered to be atomic. Atomicity is achieved by specifying both flow of data and flow of control,

which effectively defines how a computation is going to take place within the structured com-

ponents. Yu et al. (2011) propose an approach for composing and integrating heterogeneous

models. In their approach, the system’s functional behaviour is modelled with synchronous

data flow and state machine diagrams. For its part, the system’s architecture is represented

with AADL as an assembly of components. These heterogeneous models are automatically

transformed into a common model that allows for an integrated interpretation and simulation.

The common model is expressed as processes with the SIGNAL language. Yu et al. (2011)

also describe how dynamic analyses can be performed during simulated system executions.

Bozga et al. (2004) propose an environment for modelling and validating heterogeneous real-

time systems. The environment comprises 1) an intermediate language called the IF language,

2) a toolset for transforming input models (described in, e.g., UML) into the IF language

and calculating possible executions to generate test cases, and 3) a methodology for using

the toolset. OpenDo (2011) proposed the Project P framework to 1) verify the semantic con-

sistency of systems described using safe subsets of heterogeneous modelling languages (e.g.,

Simulink, SysML, MARTE, UML), ranging from behavioural to structural languages and pre-

60

senting a synchronous and asynchronous semantic, and 2) generate optimized source code for

multiple programming and synthesis languages. Despite all these interesting features, tools

and documentation other than what has been presented here for the IF language and the Project

P framework are not publicly available.

1.3.3.2 Model integration

Various studies present integrative approaches for safety-critical system design with mixes of

different modelling languages. Commonplace modelling languages like UML, SysML, Simu-

link and Stateflow, gather the most attention in this research area. Farkas et al. (2009) present

an heterogeneous design modelling approach integrating UML and Simulink design models.

They built the approach in an industrial context of automotive software engineering. The ap-

proach handles two aspects. On the one hand, the modelling of embedded software using

different modelling languages. On the other hand, the integration of legacy artifacts into the

design models. The work relies on UML to capture a high-level view of the system and to act

as a master model. A custom-built UML profile supports the latter. The profile’s stereotypes

help collect references to all other models and legacy artifacts defining specific system aspects.

Sakairi et al. (2012) propose an heterogeneous design modelling approach integrating SysML

and Simulink design models to achieve system verification through simulation in MATLAB.

The approach starts with the system design using the different SysML diagrams and then au-

tomatically generate Simulink models from the information captured with SysML. A custom-

built SysML profile supports the generation process and collects references to specific system

aspects for which Simulink is a more appropriate modelling language. Similarly, Bombino & S-

candurra (2013) present an heterogeneous design modelling approach integrating SysML and

Simulink design models with the goal of providing simulation. They propose a co-simulation

framework to balance the strengths of both languages. The approach also starts with the high-

level design of the entire system using the different SysML diagrams. The difference is that

discrete-time behaviour is further designed with SysML while continuous-time behaviour is

further designed with Simulink. Additionally, their technique for co-simulation maps the dif-

61

ferent models at the code level. Thus, code is generated from all the models along with glue

code representing the model interactions.

Ferrari et al. (2013) present the model-based development of the Automatic Train Protection

(ATP) System of the Metrô Rio, in the city of Rio de Janeiro, Brazil (see Figure 1.21). In par-

ticular the system’s design involved the combination of UML, Simulink and Stateflow. Starting

from the system requirements, they developed the system architecture in the form of a UML

component diagram. They then manually translated this UML architecture into Simulink sub-

system blocks, each with its behaviour specified in terms of a set of Stateflow charts. The

UML and Simulink models exhibit a complete overlap. Their work in the UML-to-Stateflow

translation led them to the definition of modelling rules extending the MAAB guidelines in

order to constrain the Simulink modelling language in parts where they considered it is seman-

tically ambiguous. No details are given on the mappings between the models, or on how the

UML components’ provided and required interfaces are mapped onto the Simulink subsystem

blocks’ inputs and outputs.

Sjöstedt et al. (2008) define a procedure for transforming Simulink models into UML compos-

ite structure and activity diagrams in order to facilitate software design. As part of their work,

they investigated structural and behavioural mappings between subsets of these two modelling

languages. Simulink (subsystem and basic) blocks are mapped to UML classes, and Simulink

in and out ports are mapped to UML ports. The behaviour represented by the interconnection

of blocks in the Simulink model is mapped to UML activities. A custom-built UML profile

captures the specific behaviours of the Simulink basic blocks. When a Simulink basic block is

transformed to UML, the corresponding stereotype is applied to the resulting class. Likewise,

Tanaka et al. (2017) propose a model transformation tool to transform Simulink models into

UML composite structure and interaction diagrams (see Figure 1.22). The difference is that

Simulink in and out ports are mapped to UML classes. These classes have accessor and/or

mutator methods depending on if they represent an in or an out port. A controller class calls

the mutator methods to produce the outputs. However, when designing safety-critical software,

UML input and output parameters in operations are preferable to enable static analyses.

62

Figure 1.21 Development process for the ATP system in the Metrô Rio.

Extracted from Ferrari et al. (2013).

Control Logic Design

(MATLAB/Simulink)

Software Design

(Model

Transformation

Tool /

UML Editor /

Verification Tool)

Programming

(Code Generator /

Code Composition Tool)

Source Program

Controller Model

(Simulink Model)

Functional Model

(UML)

Functional

Design

Nonfunctional

Design Implementation Model

(UML)

Figure 1.22 Proposed development flow by

Tanaka et al. (2017). Extracted from Kuroki

et al. (2016).

63

1.3.3.3 Consistency management

A number of approaches addressing the problem of consistency in heterogeneous and multi-

viewpoint design models have been proposed. The ARCADIA/Capella (Roques, 2016) MDE

solution is a successful approach deployed in several industry companies. The approach pro-

vides methodological guidance through successive engineering phases from operational and

system need analyses to system design (see Figure 1.23). It prescribes three interrelated activ-

ities: 1) need analysis and modelling, 2) architecture building and validation, and 3) require-

ments engineering. Four features can be highlighted from the methodological guidance: 1) en-

gineering-wide collaboration through a shared reference architecture, 2) architectural complex-

ity management, 3) trade-off analysis for definition of optimal architectures, and 4) information

refinement with traceability between the different engineering levels. In order for ARCADIA/-

Capella to support all these features, it proposes its own DSML based on SysML.

Figure 1.23 The ARCADIA engineering

approach. Extracted from Roques (2016).

Finkelstein et al. (1994) present an approach for specifying logical rules on how to handle

inconsistencies in multi-viewpoint design models. The approach is based on temporal logic.

64

Logic rules are expressed in the context of potential inconsistencies that can occur in the mod-

els. Almeida da Silva et al. (2010) provide automated methodological support for consistency

management in heterogeneous design models. The approach ensures the software process is

being performed as specified and that process guidelines are not being violated. In order to

process design models, these are forced to be represented as the sequences of actions needed

for their construction. Like with the previous approach, logic rules defined over the model

construction action sequences identify undesired action patterns that (probably) cause incon-

sistencies between the design models. Their implementation monitors the design model’s con-

struction actions to ensure they do not have a negative impact on the other design models.

Dijkman et al. (2008) present an approach with re-usable consistency rules for preserving

consistency in multi-viewpoint design of enterprise information systems. The approach relies

on the abstraction of concepts from the different modelling languages to build a set of basic

concepts over which consistency rules can be defined. El Hamlaoui et al. (2018) propose

an approach aimed at maintaining consistency when design models evolve. The approach

consists of two steps: matching and consistency management. The first step analyzes input

design models to identify correspondences between them. A model of correspondences is

created storing the identified correspondences. The second step defines an observer over every

correspondence. The observers detect changes done to the original model elements. Changes

are then classified, scheduled and prioritized for processing.

1.4 Discussion

In this section we discuss and elaborate on what is observed from our literature review pre-

sented in Section 1.3. We also identify what are the considerations for reusing or borrowing

relevant features from the previous approaches and the opportunities for filling gaps in the

context of developing and providing a comprehensive model-based approach that is compliant

with DO-178C.

65

1.4.1 Approaches supporting certification

An important observation is that DO-178C is represented in natural language, which brings

along several drawbacks: it is open for interpretation and contains inconsistencies and con-

tradictions in its text. As a consequence, its understanding and the clear determination and

communication of the evidence to collect is hindered. Thus, the modelling of DO-178C is

required in order to lead to any form of automation for certification compliance. Although

DO-178C has been modelled in the literature (e.g., Ruiz et al. (2016); de la Vara et al. (2016);

Zoughbi et al. (2011)), such models are only partially available, which limits their reuse. Fur-

thermore, DO-178C belongs to the category of prescriptive safety standards (Hawkins et al.,

2013; Ruiz et al., 2016). This means that satisfying its compliance needs is tightly linked to

following the activities and generating the evidence it requires for the corresponding software

level assigned to the system that is going to be built. The reviewed approaches for modelling

compliance needs (e.g., Ruiz et al. (2016); de la Vara et al. (2016); Zoughbi et al. (2011)) lack

the possibility of parameterizing its constructs to the assigned DO-178C software level for the

software to be built, which is a feature that can help facilitate compliance efforts. A first step

was then to work on the modelling of DO-178C. This was developed with the help of a mas-

ters student and the results are reported in his masters thesis (Metayer, 2018). The modelling

of DO-178C was also presented at the 9th International IEEE Workshop on Software Certifi-

cation (WoSoCer 2019) hosted at the 30th International Symposium on Software Reliability

Engineering (ISSRE 2019) (Metayer et al., 2019).

Hawkins et al. (2013) have made a comparative examination that contributes to the discussion

of the use of assurance cases for safety assurance in the development of DO-178C-compliant

safety-critical avionics software. However, an approach on how to bring the two together is

required. The SACM metamodel OMG (2018) can be used to record the assurance arguments,

but some shortcomings need to be addressed such as the lack of means to bridge its argumen-

tation concepts to DO-178C safety compliance needs. Stallbaum & Rzepka (2010) is able to

bridge test information with compliance needs and assurance, and from which test cases can

be generated. These are relevant features that can be borrowed.

66

A remark to make about traceability is that even though having an active traceability support

is a requirement of most—if not all—software safety-related regulations in order to ensure

an adequate safety-critical software development, the reviewed approaches do not generally

include or highlight elements inside or outside (e.g., tools) their proposal for this purpose. We

note, however, no variability in terms of how traceability links (or traces) are established in

the approaches. We believe that since all the reviewed approaches are in the context of MDE,

they are somewhat constrained in the definition of traces and traceability schemes. All the

reviewed approaches that support traceability limit it to the creation of links among the modeled

elements mostly through explicit (direct) and implicit (transitive) relationships. Traceability,

and specifically traceability in the context of MDE, is an active research field of software

engineering.

The model-based toolchain described by Eisemann (2016), composed of commercially avail-

able tools, seems to be comprehensive. Nonetheless, toolchains of sorts suffer from vendor

lock-in and usually target specific modelling languages. As is the case with such a toolchain,

specification models are limited to be just Simulink models. Modelling constructs provided by

Simulink are restricted to be from electrical and electronic domains, which are not suitable in

all cases for modelling all system aspects (e.g., software). Simulink models are also limited to

block and state machine notations, which are not appropriate to model all requirements.

1.4.2 Approaches supporting requirements specification in the context of certifiable safe-
ty-critical systems development

In all of the DO-178C development life cycle, the requirements and verification phases are two

of the foremost development activities. As Feiler (2010) points out, many of the errors found in

safety-critical systems have their origin in the requirements phase. Requirements are of utmost

importance since they must convey a clear understanding of the problem that will be solved.

The DO-178C certification process acknowledges this and centres its most stringent compli-

ance needs around 1) proper argumentation and traceability of requirements to design and cer-

tification concepts, and 2) requirements-based verification. However, current industry practices

67

have requirements specified using constrained natural language and managed with the help of

textual requirements databases, like IBM DOORS (Potter, 2012; Blouin, 2013). Although the

use of a constrained natural language brings some discipline and rigour to requirement speci-

fications, this practice is still focused on writing requirements in human-readable prose. This

inevitably raises problems for satisfying certification needs. Natural language indeed facil-

itates communication between stakeholders but it is not a suitable form of specification for

supporting interrelationships, decomposition, requirements-based analyses and testing (Moy

et al., 2013).

Tables 1.1, 1.2 and 1.3 provide a summary of the reviewed approaches in this regard. Sev-

eral requirements modelling languages exist that are based on UML. SysML (OMG, 2017a)

adds on top of UML specific constructs for capturing requirements and their interrelationships.

Nonetheless, requirements are expressed with simple natural language statements and the se-

mantics of relationships are ambiguous and open to interpretation. MARTE (OMG, 2011) is

intended for describing real-time and embedded systems. However, MARTE is focused on

non-functional aspects of requirements. Thus, it lacks the necessary constructs to create a

complete requirements specification on its own. SafeML (Zoughbi et al., 2011) extends UML

for capturing safety-related requirements allocated to software and enabling the monitoring of

the design and implementation of the software with regard to the provided safety requirements.

However, it captures requirements in natural language, meaning the safety-related information

must be manually extracted to support their verification. The avionics industry considers that

UML, with profiles such as SysML and MARTE, provide better long term sustainability and

interoperability over completely custom-built domain-specific languages (Le Sergent et al.,

2016). Zoughbi et al. (2011) list the benefits justifying the use of UML for safety-critical

avionics software.

Leveson et al. (1994), Micouin (2008), Amyot (2003), Blouin (2013), Bialy et al. (2015),

Fifarek et al. (2017) allow the expression of semantically richer requirements than natural

language statements. While RSML (Leveson et al., 1994) has been successfully used in the

avionics domain for the specification of the TCAS II, a complete formalization of the language

68

Table 1.1 Summary of model-based approaches

supporting requirements specification

Approach Goal Specification
technique

Scope

SysML Capture

requirements and

their

interrelationships

Natural language Requirement statements, and their

relationships to other requirements and other

elements (e.g., design elements, test cases)

SafeML

Zoughbi

et al. (2011)

Capture

safety-related

requirements

Natural language Requirement statements, requirement

refinement, and relationships to design

elements

Nejati et al.
(2012)

Traceability

management

Natural language Requirement statement and relationships to

design elements

Biggs et al.
(2016)

Model

safety-related

concerns

Natural language Requirement statements and metadata

RDAL

Blouin

(2013)

Requirements

definition and

analysis

Natural language Requirement statements, and relationships to

design elements and verification activities

ReqSpec

Feiler et al.
(2016)

Requirements

specification

language for

AADL

Natural language with

dynamic evaluation of

property values

Requirement statements, relationships to

design elements, and formalized declarations

of requirement statements

was never created and the language is not openly available (Whalen, 2000). Furthermore, the

use of hierarchical abstraction obscures the separation between HLRs and LLRs. The lan-

guage even allows users to include design-level information in the requirements specification,

a practice that is greatly discouraged by DO-178C.

Table 1.2 Summary of model-based approaches

supporting requirements specification (Continued)

Approach Goal Specification technique Scope
UML Create views of requirements Behaviour models Expected behaviour and

modes of operation

RSML

Leveson

et al. (1994)

Model black-box behaviour

and assumptions on external

components

Function mapping inputs

and outputs in the face of

disturbances

Inputs, outputs, expected

behaviour and modes of

operation

UCM

Amyot

(2003)

Discover, specify and review

requirements

Behaviour models Expected behaviour

Recall that with RDAL (Blouin, 2013) requirements can be expressed using both natural lan-

guage statements and by referencing UCMs (Amyot, 2003). Formalizations of the require-

69

ments may also be referenced from their expressions using constraint languages (e.g., OCL).

A major drawback of this is that neither RDAL nor UCM were designed to have explicit trace-

ability to certification concepts. Moreover, UCM, like RSML, is prone to convey design infor-

mation.

Although SpeAR has been developed with certification compliance in mind, it has a very

generic vocabulary that makes it difficult to argument certification compliance. Furthermore,

it does not enforce certain mandatory information (e.g., rationale). HCTs, PBRs and SpeAR

force requirements to be captured in an already structured form, which restrains their adop-

tion in industry. Moreover, they lack constructs for expressing timing constraints and clocks,

interrelationships between requirements, and the identification of derived requirements.

Table 1.3 Summary of model-based approaches

supporting requirements specification (Continued)

Approach Goal Specification technique Scope
Bitsch (2001) Simplify specification

of safety requirements

Pattern-based catalog of

complete, generic safety

requirements written as

formal formulas and in

natural language

Requirement statements

HCTs

Bialy et al. (2015)
Formalize specification

of functional

requirements

Function computing a

single output from given

inputs

Inputs, output, and

mapping function

SpeAR

Fifarek et al. (2017)
Specification and

analysis of requirements

Formal syntax based on

Past LTL that reads like

natural language

Requirement statements

PBRs

Micouin (2008)

Solve the problems of

natural language-based

requirements

Constraints enforcing a

property whenever a

condition is met

Requirement statements

STIMULUS

Gaucher & Génevaux

(2017)

Address the issues of

early debugging and

validation of

requirements

Formal syntax that reads

like natural language

Requirement statements

MARTE Modelling and analysis

of non-functional

requirements

Semi-formal syntax Timing constraints,

resources (hardware and

software), and

allocation of software to

hardware

70

1.4.3 Approaches handling design model heterogeneity

As argued in the previous section, effective system modelling requires a heterogeneity of

modelling mechanisms focused around specific system aspects (Rozanski & Woods, 2011;

Lee, 2010). Regarding model heterogeneity, the previous section identified some relevant ap-

proaches that address model heterogeneity. Despite their offerings, however, there are some

limitations for their use. The approaches proposing model composition (Eker et al., 2003;

Bozga et al., 2004; OpenDo, 2011) do not target certification compliance needs that have to be

taken into account when dealing with model heterogeneity. Furthermore, they do not support

the modelling of evidence for certification. The approaches presenting integrative approaches

for heterogeneous design with UML/SysML, Simulink and Stateflow do not cover the entire

extent of industrial design scenarios. Actually, they are representing different combinations

for what are mixed use cases of these languages. Moreover, they can provide knowledge to be

used as part of heterogeneous design guidelines. In addition to this, is the fact that they do not

provide insight on how consistency is ensured when overlapping elements exist in the mod-

els. Some of these approaches, like the ones by Sakairi et al. (2012), Sjöstedt et al. (2008) and

Tanaka et al. (2017), use model transformations in order to ease the integration of the modelling

languages. Model transformations can be regarded as a mechanism to ensure consistency be-

tween the two models. However, their use has a drawback when it comes to independent model

manipulation, which is desired when developing heterogeneous systems. Manual work may be

required to verify and fix the consistency between models if bidirectional transformations are

not provided.

Despite ARCADIA/Capella’s offerings for consistency management, its major drawbacks are

that 1) it focuses on presenting different system model views created by different engineers

using only its proposed DSML, and 2) it does not verify conformance to design standards. A

consistency management approach could, in fact, be used to complement ARCADIA/Capella

1) when multiple modelling languages are employed for system design, and 2) for providing

verification of conformance to design standards.

71

The major drawback of consistency management approaches like the ones from Finkelstein

et al. (1994) and Almeida da Silva et al. (2010) is that model construction actions and logic

rules are cumbersome to use for the expression of model mapping rules and design guidelines.

Furthermore, the need for a formal background to specify logic rules is a barrier for adoption

in industry. Furthermore, these approaches ensure consistency by construction and, thus, do

not explicitly store mappings between the different design models. Storing mappings is ben-

eficial for supporting verification of design process outputs as well as for supporting further

development activities. Dijkman et al. (2008) present an approach focused on enterprise infor-

mation systems, which have different characteristics than safety-critical systems. Regardless,

the major drawback of this approach is the abstraction of concepts from the different modelling

languages to build a set of basic concepts over which consistency rules can be defined. Such

abstractions are not always possible, as is the case when a modelling language lacks an explicit

construct that is present in another one. The major drawback of the approach by El Ham-

laoui et al. (2018) is that it is directed at maintaining consistency only when the design models

evolve, i.e. after the design models are created, correspondences have been identified and a

corresponding observer is attached to each correspondence. Thus, the approach fails to man-

age consistency while the design models are being created independently, moment at which

changes could be introduced that prevent the identification of correspondences.

1.5 Chapter Summary

This chapter first presented research background relevant to the scope of this thesis. DO-178C

is a conceptual guideline identifying the set of best practices to take into consideration during

the development of software for airborne systems and equipment. These best practices are

stated in the form of objectives, which have to be achieved by carrying out a set of explicitly

defined activities. Activities produce evidence (e.g., plans, requirements, design description),

known as data items, required for certification. DO-178C addresses, in separate supplement

documents, new considerations and practices in two key areas of contemporary software de-

velopment: 1) model-based development and verification (DO-331), and 2) object-oriented

72

technologies and related techniques (DO-332). MDE conceives the system development life

cycle as a process of creation, iterative refinement and integration of models. In order to do

this, MDE makes use of DSMLs to provide users with a working environment where they

can directly manipulate domain concepts. The chapter synthesized how modelling is done in

the set of modelling languages used by the industry partners. It then presented a systematic

methodology to build custom DSMLs for regulation certification.

The remainder of the chapter presented the literature review of this thesis. Existing approaches

can be divided into three lines of work: 1) approaches supporting certification, 2) approaches

supporting requirements specifications in the context of certifiable safety-critical systems de-

velopment, and 3) approaches handling design model heterogeneity. Several requirements

specification languages exist that have been used in the context of certifiable safety-critical

software development. Some of them only support the specification of natural language-

based requirements. Others allow the expression of semantically richer requirement state-

ments than natural language statements. However, all of the latter force requirements to be

captured in an already structured form, which restrains their adoption even when they can en-

able requirements-based analyses and testing. Moreover, none of these languages provides

sufficient support to help meet certification compliance needs. A number of existing studies

have addressed mapping relationships between heterogeneous modelling languages. However,

they target pairs of specific modelling languages under particular design scenarios without de-

vising a general approach. Other existing works present consistency management approaches

for heterogeneous design models but do not explicitly provide the syntactical and semantical

relationships between them. Furthermore, none of them tackled the issue of verifying confor-

mance to design standards.

CHAPTER 2

THE LANDING GEAR CONTROL SOFTWARE

There has been increasing work around more up-to-date, effective software engineering tech-

nologies to aid avionics software providers in reducing software and development complexities

and to support them in their DO-178C certification endeavours (Pettit et al., 2014). However,

the legal and safety implications that public scrutiny may bring onto avionics industry manu-

facturers make them keen on keeping their projects confidential. This situation hinders research

and education on the engineering and certification of avionics software. It is, therefore, nec-

essary to have detailed and open documentation of software for airborne systems that 1) is

readily available for research and education, and 2) can serve as a benchmark for supporting

the evaluation of different (existing and new) model-based approaches.

A number of studies have supported their work with examples and case studies of avionics

systems that involve some piece of software (e.g., Leveson et al. (1994); Zoughbi et al. (2011);

Wu et al. (2015); White & Reza (2012)). Others report on the development of avionics systems

that rely on software for controlling the behaviour of such systems (e.g., Schamai et al. (2015);

Boniol & Wiels (2014)). Apart from most of them not being openly available, the case studies,

as described in the previous works, do not allow for their reuse as comprehensive references

for avionics software development in conformance with DO-178C. Boniol & Wiels (2014),

in particular, introduced a case study of a landing gear system. Their descriptions provide a

detailed view of its structure and inner workings, specially of the hardware elements. Software

requirements are given but are not developed in accordance with DO-178C. Thus, building

on such descriptions, we developed an avionics software case study for a landing gear control

software (LGCS) in compliance with the DO-178C guideline, and the DO-331 and DO-332

supplements.

The LGCS will be used as a running example in the rest of this thesis to illustrate our proposed

approach. In this chapter, the LGCS illustrates the motivations that led us to 1) define a sys-

tematic and automated method for assisting engineering teams in ensuring consistency of het-

74

erogeneous design models of safety-critical systems, and 2) develop a requirements modelling

language that provides a requirements specification infrastructure for software development

and certification according with DO-178C. It is to be noted that the descriptions given in this

chapter are simplified to provide better focus for the context of this thesis. Appendix II contains

the requirements specification and design in textual natural language statements. The complete

version of the specification and design is available online (Paz & El Boussaidi, 2017). The

documentation was built iteratively and verified by domain experts from the industry partners.

It is organized in chapters, each corresponding to one of the DO-178C data items output by

the planning, software requirements and software design processes. It took three iterations to

obtain a favorable perception from the practitioners involved.

Section 2.1 first summarizes related work to motivate the need for the detailed documentation

of an safety-critical avionics software. The next three sections synthesize several DO-178C

data items generated for the LGCS. Section 2.2 presents the Plan for Software Aspects of Cer-

tification (PSAC), going through an overview of the system, its certification considerations,

and development methodology. Section 2.3 presents the Software Requirements Data with the

development of the system requirements allocated to software. Section 2.4 presents the Design

Description, which includes the architecture and specification of low-level requirements. Fi-

nally, Section 2.5 discusses the challenges and issues of building such specification and design.

2.1 Related Work

Existing related work can be divided into 1) generic work in the field of safety-critical soft-

ware requirements engineering and design that support their findings and evaluations with an

example or case study of an avionics system, and 2) existing reports on the development of a

software-intensive avionics system.

A number of studies have supported their work with examples and case studies of avionics

systems that involve some piece of software. Leveson et al. (1994), the proposers of RSML,

apply their proposed language on an aircraft Traffic Collision Avoidance System level II (TCAS

75

II). The resulting requirements model was adopted by the US Federal Aviation Administration

(FAA) as the official requirements specification for TCAS II. The specification, thus, had to be

developed with industrial-grade quality and in accordance with the applicable regulation at the

time (i.e. DO-178B). However, the TCAS II specification is not openly available for research.

Furthermore, the authors do not expand on the aspects of compliance with regulation.

Berkenkötter & Hannemann (2006), Zoughbi et al. (2011) and Wu et al. (2015) illustrate the

capabilities and usage of their proposed UML profiles through case studies of tramway network

and avionics systems. None of these systems is openly available for research. Additionally, the

descriptions given for the case studies are missing important details of system requirements.

Also, the provided system designs lack detailed behavioural specifications.

The work by White & Reza (2012) falls into the first category of related work, although, it

has some elements of the second category as well. They validate their approach on an exam-

ple requirements specification for the display of the fuel quantity in an aircraft. Their HLRs

and LLRs specifications, however, have some shortcomings as some of the LLRs presented

are, in fact, HLRs. Presenting them as LLRs makes the specification of the HLRs go against

the characteristics of good requirements specification since they are incomplete and, thus, the

presented LLRs could not have been developed from them. On the other hand, the authors re-

port on some of the difficulties that arise when developing a requirements specification for an

avionics software under DO-178C. The difficulties they describe are focused on the capturing

of derived requirements, a special type of requirement under DO-178C that is characterized by

not being directly traceable to higher-level requirements because it specifies behaviour beyond

what is specified in the higher-level requirements.

Only a small number of reports on the development of software-intensive avionics systems

were found in the literature. Ferrari et al. (2013) present the model-based development of

the Automatic Train Protection (ATP) System of the Metrô Rio, in the city of Rio de Janeiro,

Brazil. They present an overview of the system and the process followed to develop it. How-

76

ever, most of the details are on code verification and formal verification. The authors do not

mention specific aspects of their compliance with regulation.

Schamai et al. (2015) develop a requirements specification for the design of the secondary

flight system of an aircraft. Particularly, the authors describe the spoiler activation require-

ments. However, the specification is not openly available for research either. Moreover, al-

though the system heavily relies on software for its operation, as it is intended for a fly-by-

wire aircraft, the requirements that are presented are not developed taking into account the

DO-178C guideline. Boniol & Wiels (2014), on their part, introduced the landing gear sys-

tem (LGS). Their descriptions provide a detailed view of a conventional tricycle landing gear

system, and the detailed structure and inner workings of the elements involved, especially the

hardware elements. However, despite being both complex and representative of industry needs,

the software requirements given are not developed following the DO-178C guideline and, thus,

fail to present the detailed reference expected in software development for airborne systems.

Moreover, they fail to give values of key system properties that should be part of system re-

quirements. Nonetheless, these descriptions offer a good starting point to build upon them.

Thus, they have been taken to develop the detailed reference for the LGCS synthesized in this

chapter.

2.2 Plan for Software Aspects of Certification (PSAC)

2.2.1 System overview

The overall system is a landing gear system (LGS) whose undercarriage is retractable and

arranged in a conventional tricycle configuration as illustrated in Figure 2.1. The undercarriage

is composed of two main wheel assemblies situated one under each wing of the aircraft and a

nose wheel assembly at the front of the aircraft. The wheel assemblies, or gears, are retracted

into compartments inside the wings and fuselage of the aircraft and concealed behind doors

after the aircraft has taken off and began the climb phase. Conversely, at the beginning of

the landing phase the gears must be extended for the aircraft to land. The doors covering the

77

wheel compartments need to be open prior to and closed after any retraction or extension is

performed.

Right Main Gear

Right Main Door

Shock
Absorber

Left Main Gear

Left Main Door

Shock
Absorber

Nose Gear

Nose Door

Shock
Absorber

Hydraulic
Actuator

Hydraulic
Actuator

Hydraulic
Actuator

Figure 2.1 Illustration of an aircraft’s landing gear system.

Adapted from Paz & El Boussaidi (2017).

The behaviour of the landing gear system is managed by the landing gear control software

(LGCS) that runs in a digital controller. Figure 2.2 shows an overview of the LGS and the op-

erational context of its constituent entities. The aircraft’s cockpit accommodates the system’s

pilot interface. From it, the pilots provide the desired gear position to the system through a gear

lever. A color-coded light set indicator provides them with information about the state of the

gears and the system itself. All the gears and doors are moved through the sequential actuation

(i.e. opening and closing) of five hydraulic electro-valves (EV) that control the oil pressure

in the hydraulic circuit to which the gears’ and doors’ hydraulic actuators are connected. One

general EV pressurizes the hydraulic circuit and the remaining four specific EVs (i.e. a door

opening, a door closing, a gear retraction and a gear extension EVs) move their attached me-

chanical part. Seventeen sensors are in charge of monitoring the state of the various mechanical

parts (i.e. one analogical switch sensor, one hydraulic circuit pressure sensor, three door open

sensors, three door closed sensors, three gear retracted sensors, three gear extended sensors

and three gear shock absorber sensors). For redundancy purposes, all sensors perform three

independent readings describing simultaneously the same situation. At least two of the three

readings must have an equal value for the LGCS to trust the sensor. To prevent any motion of

the gears without the explicit order of the pilot or copilot, the LGS has an analogical switch

to enable and disable the actuation of the general EV. The analogical switch is mechanically

78

closed each time there is a change in the gear lever’s position. Thus, successful actuation of

the general EV is only possible when the analogical switch is closed.

Landing Gear System

Pilot Interface

Digital Controller
running the

Landing Gear
Control Software

Gear Lever
Gear Position
and System

State Indicator

Feedback

Analogical
Switch

closes

Analogical
Switch Sensor

triggers

Analogical
Switch Status

Gears and
Doors

Gears and
Doors Sensors

move

trigger

Gears and
Doors Statuses

Hydraulic Circuit
Pressure Sensor

triggers

Hydraulic Circuit
Pressure

General Electro-
Valve

Specific Electro-
Valves

Hydraulic
Circuit

pressurizes

Desired Gear Position

Actuation CommandsActuation Commands

Figure 2.2 System overview. Extracted

from Paz & El Boussaidi (2018).

The LGCS focuses on two primary needs: 1) to sequence the commands that actuate the EVs

for the movement of the gears and doors to the given desired gear position taking into account

the inputs from the different sensors, and 2) to display visible cues indicating the state of the

gears and the system through the indicator in the pilot interface. In general, the LGCS controls

the EVs at the beginning of the climb phase and at the beginning of the landing phase, when the

pilots move the gear lever to the Up and Down positions, respectively. The LGCS is idle until

a change in the gear lever position. When the gear lever is switched from the Down position to

the Up position after the aircraft has taken off and has begun the climb phase, the LGCS begins

the retraction sequence. The LGCS displays the amber color in the gear position indicator

and opens the general EV to pressurize the hydraulic circuit. Once the hydraulic circuit is

pressurized, the door opening EV is opened. After all the doors are open, the LGCS closes the

door opening EV. The LGCS evaluates if the gear shock absorbers are relaxed or not. If the

shock absorbers are relaxed, the LGCS opens the gear retraction EV. If the shock absorbers are

not relaxed, the doors are closed and the sequence is aborted. Once all the gears are retracted,

the LGCS closes the gear retraction EV and opens the door closing EV. After all the doors

79

are closed, the door closing EV is closed and the general EV is closed afterwards. The LGCS

turns off the gear position indicator. When the aircraft begins the landing phase and a change

in the gear lever position is sensed, the LGCS performs the extension sequence. The extension

sequence follows the same steps as the retraction sequence except for the evaluation of the

shock absorbers and the LGCS actuates the gear extension EV instead of the gear retraction

EV. When the gears are all extended, the LGCS displays the green color in the gear position

indicator. Figure 2.3 shows the three main states of a wheel assembly.

Gear extended

Gear retracted
Door closed

Door closed

Shock
Absorber

Hydraulic
Actuator

Door
open

Gear in transit

Figure 2.3 Illustration of the main states of a wheel assembly

(from left to right): gear extended, gear in transit and gear

retracted. Adapted from Paz & El Boussaidi (2017).

2.2.2 Certification considerations

The LGCS performs a critical function for the aircraft, however, in the event of a failure condi-

tion the pilots can manually crank the gears into their extended positions. Thus, it is assumed

that the software could cause or contribute to a major failure condition, meaning it would sig-

nificantly reduce safety margins and create a significant increase in crew workload as the LGS

would need to be manually actuated. Additionally, it could cause discomfort to the passengers,

flight crew and cabin crew due to the emergency landing that needs to be attempted. Failure

of the LGCS may also lead to injuries to any person on board the aircraft. Consequently, the

LGCS is considered to be a Level C software.

80

The following relevant System Hazards (SHs) were identified during the safety assessment pro-

cess involving action error analysis, failure modes and effects analysis, hazards and operability

analysis, and interface analysis.

SH-1 A request to retract the gears while the aircraft is on the ground.

SH-2 A failure of a constituent entity in the LGS.

SH-3 The generation of actuation commands without a request.

SH-4 The generation of a wrong actuation command.

SH-5 A failure to generate actuation commands when requested.

From the identified system hazards, the following are the identified potential LGCS Contribu-

tions to Failure Conditions (CFCs).

CFC-1 The LGCS generates actuation commands to retract the gears while the aircraft is on

the ground (from SH-1).

CFC-2 The LGCS generates actuation commands when a sensor is providing invalid data

(from SH-2).

CFC-3 The LGCS generates actuation commands when an EV is not functioning (from SH-

2).

CFC-4 The LGCS generates actuation commands when it is in a failure state (from SH-2).

CFC-5 The LGCS generates actuation commands without a request from the pilots (from SH-

3).

CFC-6 The LGCS generates opposite actuation commands to what was requested by the

pilots (from SH-4).

81

CFC-7 The LGCS generates actuation commands for the gear retraction or extension EVs

when the doors are closed (from SH-4).

CFC-8 The LGCS generates actuation commands for the door closing EVs when the gears

are in transit to the requested position (from SH-4).

CFC-9 The LGCS generates self-blocking actuation commands, i.e. simultaneously gener-

ates actuation commands for either the door opening and closing EVs, or the gear

retraction and extension EVs (from SH-4).

CFC-10 The LGCS fails to generate actuation commands after a request from the pilots and

the LGCS was not in a failure state (from SH-5).

2.2.3 Development methodology

To build the LGCS requirements specification and design we used a methodology encom-

passing the general flow for requirements specification and design as defined in DO-178C. It

consists of three major activities, as illustrated in Figure 2.4: Develop HLRs, Develop Soft-

ware Architecture and Develop LLRs. The activities have a sequential nature as promoted by

DO-178C to allow for a meticulous engineering that builds a safe product. Nevertheless, the

activities have their actions organized to form iterative and incremental cycles that will grad-

ually build their outputs until they yield a software requirements specification and design that

is suitable for directing the following phases in the development process, namely coding and

verification. Furthermore, as a means for quality assurance, several practitioners from avionics

companies with ample experience in avionics software development and DO-178C certification

participated in validating the outputs of the activities throughout the iterations.

As mentioned in previous chapters, avionics systems are routinely specified in natural lan-

guage (Potter, 2012; Blouin, 2013; Schamai et al., 2015). This methodology, thus, consid-

ers system requirements allocated to software (SRATS) and high-level requirements (HLRs)

to be captured using natural language. Moreover, it follows the practices of the FAA’s Re-

quirements Engineering Management Handbook (Lempia & Miller, 2009) and the work from

82

act Software requirements
specification and design

Operational
ContextSRATS

Develop HLRs Develop Software
Architecture Develop LLRs

HLRs

LLRs

Software
Architecture

Potential
CFCs

Figure 2.4 General flow for requirements specification and

design. Extracted from Paz & El Boussaidi (2018).

Blouin (2013) to restrict the grammar and vocabulary used for the textual specification. The

FAA handbook suggests that in order to reduce ambiguities, improve readability, and facilitate

the analysis and review of the requirements, these should be specified as statements of how

the software will change a set of controllable variables (i.e. values in the operational context

the software can directly affect) in response to changes in a set of monitorable variables (i.e.

values in the operational context the software responds to).

Once a set of system requirements is allocated to software, an operational context for the soft-

ware is defined and a set of potential CFCs (identified during the software planning) has been

determined, the software requirements specification, i.e. the Develop HLRs activity, begins.

Figure 2.5 expands the Develop HLRs activity. It is necessary to first perform a manual review

of the SRATS in order to verify them for ambiguities, inconsistencies or undefined conditions.

If the SRATS need any clarification or correction, it is requested to the system processes and

the activity waits for the clarified or corrected SRATS. SRATS may be specified with enough

detail to carry on with the software design; in which case they are redefined as the HLRs. If

the SRATS lack refinement or they do not preclude the CFCs, they are iteratively and incre-

mentally developed into HLRs that accurately capture the intent of the SRATS and preclude

83

the CFCs. Traces between SRATS and HLRs must be established. However, if a trace cannot

be established directly, then the HLR is labeled as a derived requirement.

Develop HLRs

Operational
Context

[SRATS are
detailed
enough

for software
design]

[HLR is detailed enough
for software design]

[additional HLRs are required to capture the SRATS’ intent]

[no additional HLRs
are required to capture

the SRATS’ intent]

SRATS

Review SRATS for
ambiguities, inconsistencies

and undefined conditions

Develop an HLR in terms of
controllable and monitorable
variables, and trace to SRATS

Develop HLR into more
detailed HLR(s) and trace

to SRATS

[SRATS are
not detailed
enough for
software
design]

[HLR is not
detailed
enough

for software
design]

Review completeness

Define SRATS
as the HLRs

Request clarification or
correction to system processes

[else]

[SRATS need
clarification or correction]

Clarification or correction
to HLR(s) requested

Review level
of refinement

Clarified/Corrected
SRATS received

Review HLR for ambiguity,
inconsistencies or undefined

conditions

Clarified/Corrected HLR(s)

[HLR cannot be
traced to SRATS]

[else]
Label HLR as

a derived
requirement

Review
preclusion of

CFCs

Potential
CFCs

Review
preclusion of

CFCs

Develop
rationale

Figure 2.5 Expanded view of the Develop HLRs activity.

Extracted from Paz & El Boussaidi (2018).

The software design in the proposed methodology must produce design models as defined in

DO-331. Hence, to maximize adherence to the guidance provided by both DO-178C, DO-

331 and DO-332, the software design has been segregated as recommended by Sarkis & Dias

(2014) into two different activities, namely Develop Software Architecture and Develop LLRs,

that work at two distinct levels. The first level, the Develop Software Architecture activity rep-

84

resents the architecture as software components and their relationships. Software design under

DO-178C guidelines must enable a black-box verification of the system’s behaviour. For this to

happen, DO-178C highlights the importance of avoiding introduction of complexity during the

design process. Hence, the Develop Software Architecture activity seeks to incorporate princi-

ples of software engineering that help minimize complexity and promote verifiability, such as

modularity and encapsulation (Bialy et al., 2017).

Figure 2.6 expands the Develop Software Architecture activity. The activity starts by iden-

tifying or defining an architectural style in accordance with the expected functionality of the

software to be built and its operational context. Then, the software components that will realize

the functionality expressed in the HLRs, as well as the dependencies between them, are identi-

fied and defined based on such an architectural style. Each component is allocated to a subset

of the HLRs. Software design patterns may be identified too as work progresses. When all

responsibilities have been assigned to components and no additional components are required

to cover the HLRs, the activity continues with the identification of subcomponent hierarchies

realizing each of the components. Every subcomponent must be allocated to its originating

HLRs, which are a subset of the ones associated to its containing component. Clarifications or

corrections to HLRs may be requested to the Develop HLRs activity and the Develop Software

Architecture activity waits for the clarified or corrected HLRs to be returned.

The second level, the Develop LLRs activity, focuses on representing low-level requirements

and the functionalities that the realizing subcomponents will implement. In line with the objec-

tive of developing a benchmark avionics software specification that can be used for evaluating

different model-based approaches, the Develop LLRs activity has two alternate definitions: one

that outputs textual LLRs and another one that outputs LLRs as a DO-331 design model. Fig-

ure 2.7 expands the former and Figure 2.8 expands the latter. This also serves to illustrate how

the methodology can be tweaked to adapt it to different development scenarios.

Having established the architecture initiates the work in the Develop LLRs activity. For every

realizing subcomponent defined in the architecture, LLRs are specified in terms of the sub-

85

Develop Software Architecture
HLRs

[additional components
are required to cover the HLRs]

[no additional components
are required to cover the HLRs]

Operational
Context

Identify/Define
architectural style

Identify and define dependencies
between components in terms of
provided and required interfaces

Define data dictionaryReview completeness

Identify software
components and
allocate to HLRs

Identify additional
software components
and allocate to HLRs

Identify software
design patterns

Identify subcomponent hierarchies
realizing a component and allocate to

the component’s associated HLRs

[clarifications or
corrections
required in HLRs]Request clarification or

correction of HLR(s)

[else]

Clarified/Corrected
HLR(s) received

Allocate components
to HLRs

[no additional subcomponents are
required to realize the component]

[additional subcomponents are
required to realize the component]

Figure 2.6 Expanded view of the Develop Software Architecture
activity. Adapted from Paz & El Boussaidi (2018).

component’s controllable and monitorable variables. Each LLR is allocated to its originating

HLRs, which are a subset of the ones associated to the subcomponent. If the allocation is not

possible due to required clarifications or corrections in the HLRs, these are requested to the

Develop HLRs activity and the Develop LLRs activity waits for the clarified or corrected HLRs

to be returned in order to continue. If the allocation is not possible because the LLR cannot be

traced to HLRs, then the LLR is labeled as a derived LLR. The activity ends when source code

can be directly implemented for all realizing classes without any further refinement, and all of

them have their behaviour specified.

The alternate definition for the Develop LLRs activity that outputs a design model (see Fig-

ure 2.8) has a similar workflow. The difference is that for every realizing subcomponent de-

86

Develop LLRs
Software

Architecture

[Source code can be
directly implemented

without further information]

[additional LLRs are
required for the
subcomponent

or additional
subcomponents

need to be
specified]

[no additional
LLRs are required and no additional subcomponents need to be specified]

Develop an LLR in terms of a realizing
subcomponent’s controllable and monitorable

variables and trace to its associated HLRs

Refine LLR into more
detailed LLR(s) and trace

to HLRs

Review completeness

[LLR cannot be
traced to HLR(s)]

[else]

Review level
of refinement

[Source code cannot
be directly implemented

without further information]

[clarifications or
corrections

required in HLR(s)]

Request clarification or
correction of HLR(s)

Clarified/Corrected
HLR(s) received

Allocate LLR
to HLRs

Label LLR as a
derived LLR

[else]

HLRs

Figure 2.7 Expanded view of the Develop LLRs activity for

specifying textual LLRs. Adapted from Paz & El Boussaidi (2018).

fined in the architecture a UML state machine or a Stateflow chart design model is created

describing its behaviour. The design model’s elements are allocated to their originating HLRs

as well. UML state machines and Stateflow charts were chosen since this was a condition set

by the industry partners. Moreover, the former are an important part of UML for modelling

the behaviour of objects and the latter is commonly used by avionics providers for modelling

real-time/mission critical systems Rozanski & Woods (2011); Lee (2010). DO-178C and the

proposed methodology also prompted a set of essential features for the modelling of LLRs,

which both of these modelling languages are able to cover: 1) layered modelling and hidden

decompositions, 2) factorization of commonalities or reuse of modelled elements, 3) partial

ordering and concurrent flow of control, 4) algorithms, 5) time observation and timing con-

87

Develop LLRs
Software

Architecture

[Source code can be
directly implemented

without further information]

[additional
subcomponents

 need to
be specified]

[no
additional subcomponents need to be specified]

Define behaviour of a
realizing subcomponent

in a design model

Refine behaviour of
subcomponent into more

specific behaviour

Review completeness

Allocate design model
elements to the
subcomponent’s
associated HLRs [element(s) cannot

be traced to HLR(s)]

[else]

Review level
of refinement

[Source code cannot
be directly implemented

without further information]

[clarifications or
corrections

required in HLR(s)]

Request clarification or
correction of HLR(s)

Clarified/Corrected
HLR(s) received

Allocate
element(s) to

HLRs

Label LLR(s)
as a derived

LLR(s)

[else]

HLRs

Figure 2.8 Expanded view of the Develop LLRs activity for specifying

LLRs as design models. Adapted from Paz & El Boussaidi (2018).

straints, 6) interruptions in the flow of control and exception handling, 7) explicit interactions

between distinct system parts, 8) complex trigger conditions and triggered actions, and 9) flow

of data (usage, production and storage).

2.3 Software Requirements Data

Being the LGCS based on the case study presented by Boniol & Wiels (2014), the descriptions

found in such a work relating to the digital controller have been taken as the SRATS. However,

since the SRATS contained ambiguities, inconsistencies and undefined conditions they had to

be corrected and improved before developing the HLRs. It took three iterations of SRATS and

88

HLRs development to obtain a favorable perception about them from the practitioners involved.

Table 2.1 shows a subset of the SRATS while Table 2.2 shows a subset of the HLRs developed

from these SRATS. This subset of HLRs will be used to show some of the LLRs that were

developed from them (see Section 2.4).

Recall from Section 2.2.3 that requirements are specified in terms of controllable and moni-

torable variables. These variables are all described following the practices of the FAA’s Re-

quirements Engineering Management Handbook (Lempia &Miller, 2009). For instance, HLR-

6 in Table 2.2 describes how the software will change the controllable variable General EV

Actuation Command in response to the value of monitorable variable Hydraulic Circuit

Pressure at a given time.

Table 2.1 Examples of SRATS for the LGCS.

ID Description Traces Precluded
CFCs

SRATS-1 When the LGCS receives data from one of the LGS sensors, the

LGCS shall process three sensor readings describing the situation by

a 2 out of 3 voting scheme.

HLR-1 CFC-2

SRATS-2 When the pilots switch the gear lever to Up, the LGS shall retract the

gears in under 28 seconds.

HLR-2 CFC-1

SRATS-4 When the LGCS is currently executing either a retraction or extension

sequence and a new desired gear position is received, the LGCS shall

halt the current sequence and revert all the actions that were executed.

HLR-4

SRATS-6 The LGCS shall consider prior to setting to Open a specific EV that

the Hydraulic Circuit Pressure is greater than or equal to

30,000kpa and less than 35,000kpa after the General EV

Actuation Command is set to Open.

HLR-6

SRATS-7 The LGCS shall consider prior to setting to Open the Door

Opening EV Actuation Command that at least 0.2s have elapsed

since the General EV Actuation Command was set to Open.

HLR-7

SRATS-12 When 2s have elapsed since the General EV Actuation

Command was set to Open and the Hydraulic Circuit Pressure

is still less than 30,000kpa, the LGCS shall detect a failure of the

general hydraulic electro-valve and halt the currently executing

sequence.

HLR-12 CFC-3

89

Table 2.2 Examples of HLRs for the LGCS. Adapted

from Paz & El Boussaidi (2018).

ID Description Traces Precluded
CFCs

HLR-1 When the LGCS receives data from one of the LGS sensors, the

LGCS shall process three Readings associated to the sensor data

and describing the situation with a 2 out of 3 voting scheme.

SRATS-1

LLR-1

LLR-2

LLR-3

LLR-4

LLR-5

. . .

CFC-2

HLR-2 When the LGCS receives an Up value for the Desired Gear

Position, the LGCS shall carry out the retraction sequence in

under 28 seconds.

SRATS-2

LLR-11

LLR-12

LLR-13

LLR-14

LLR-15

. . .

CFC-1

HLR-4 When the LGCS is currently executing a retraction sequence and

a Down value is received for the Desired Gear Position, the

LGCS shall halt the current retraction sequence and revert all the

actions that were executed. Likewise, when the LGCS is

currently executing an extension sequence and an Up value is

received for the Desired Gear Position, the LGCS shall halt

the current extension sequence and revert all the actions that

were executed.

SRATS-4

LLR-35

HLR-6 When the overall value of the Hydraulic Circuit Pressure is

greater than or equal to 30,000kpa and less than 35,000kpa
after the General EV Actuation Command is set to Open,

the LGCS can set to Open the necessary specific EV.

SRATS-6

LLR-14

LLR-43

LLR-44

LLR-45

HLR-7 When at least 0.2s have elapsed since the General EV

Actuation Command was set to Open, the LGCS can set to

Open the Door Opening EV Actuation Command.

SRATS-7

LLR-14

LLR-46

HLR-12 When 2s have elapsed since the General EV Actuation

Command was set to Open and the overall value of the

Hydraulic Circuit Pressure is still less than 30,000kpa, the
LGCS shall detect a failure of the general hydraulic electro-valve

and halt the currently executing sequence.

SRATS-12

LLR-44

LLR-56

LLR-57

CFC-3

2.4 Design Description

2.4.1 Software architecture

The LGCS receives input from the different LGS sensors and acts upon those inputs to drive the

actuation of the LGS’ EVs to move the gears into the desired position. This context of operation

90

matches the Process Control architectural style (Levine, 1996), where a system uses a set of

inputs to determine a set of outputs that will produce a new state of the environment. Thus,

the software architecture for the LGCS follows this architectural style. Figure 2.9 presents

a high-level design model of the software architecture as a UML component diagram. The

figure also illustrates some of the allocations of HLRs to components. In the figure, the LGS

is described as a set of modular components providing its specified functionality through a set

of provided interfaces. Sensor components constantly take readings of their associated system

entity. The LGCS component interfaces with these Sensor components and thePilotInterface

component to pull the sensor readings and output system feedback, respectively. The LGCS

component also continuously monitors thePilotInterface component to identify input of a new

desired gear position. When this occurs, the LGCS computes and transmits the commands to

the corresponding EV component.

«component»
LGCS

«component»
Sensor

«component»
PilotInterface

«component»
EV

«component»
: SensorManager

1

17

1

5

17

«component»
: SequenceController

«component»
: PilotInterfaceManager

«component»
: EVManager

5

«component»
: OperatingModeManager

HLR-6 HLR-12HLR-7

HLR-4

HLR-1

ControlData

Figure 2.9 Architecture for the LGCS as a UML component

diagram. Adapted from Paz & El Boussaidi (2018).

In the UML component diagram from Figure 2.9, the LGCS component was further decom-

posed into smaller components providing simpler functionality. Interfacing with the various

91

sensors is the SensorManager component. The SensorManager component receives the in-

puts from the sensors using pull communication through the interface with the corresponding

Sensor component. The SensorManager component pulls data from the sensors only when

requested by the SequenceController component. The SequenceController component in-

terfaces with the SensorManager component through the ControlData interface (all other

interface names are omitted to keep the figure uncluttered). The ControlData interface is

detailed in Figure 2.10. The SensorManager component performs a validation of the data

received from each sensor before passing it along on to the SequenceController component.

The SensorManager component will report a failure of a sensor to the OperatingModeMan-

ager component when an invalid sensor data is received. The SequenceController component

sequences the actuation commands according with the inputs received from the SensorMan-

ager and the PilotInterfaceManager components. The PilotInterfaceManager component

will continuously monitor the PilotInterface to identify the input of a new desired gear po-

sition and, also, outputs the feedback. The EVManager component interfaces with the EVs

to output the actuation commands. The OperatingModeManager component will place the

LGCS into a failed state if any failure is detected, and the system will remain in such a state

thereafter. All data exchange in the LGCS components’ interfaces is defined in a data dictio-

nary.

«interface»
ControlData

+ fetchAnalogicalSwitchStatus() : AnalogicalSwitchStatus
+ fetchHydraulicCircuitPressure() : HydraulicCircuitPressure
+ fetchDoorsClosedStatus() : DoorClosedStatus[3]
+ fetchDoorsOpenStatus() : DoorOpenStatus[3]
+ fetchGearsRetractedStatus() : GearRetractedStatus[3]
+ fetchGearsExtendedStatus() : GearExtendedStatus[3]
+ fetchGearShockAbsorbersStatus() : GearShockAbsorberStatus[3]

Figure 2.10 ControlData interface.

Extracted from Paz et al. (2020).

The LGCSwas designed twice in its entirety; one time using UML and another one using Simu-

link. The industry partners’ particular interest to have a complete design redundancy with these

92

modelling languages motivated this. The design with Simulink is also analogous as observed

in Figure 2.11. Here, the LGCS was described as a set of subsystem blocks performing their

functions over a set of inputs to produce the set of expected outputs.

Figure 2.11 Excerpt of the architecture for the LGCS as a

Simulink block diagram.

2.4.2 Low-level requirements (LLRs)

Three parallel specifications of LLRs were created, namely a textual specification using nat-

ural language and two model-based specifications using UML and Simulink (alongside with

Stateflow). Table 2.3 shows a subset of the textual LLRs developed from the presented HLRs.

In the case of the design with UML, class diagrams and state machines were used to provide the

detailed design of the subcomponents. An example is given in Figure 2.12. It shows a fragment

of an equivalent model-based specification as a UML state machine for LLR-35, LLR-43, LLR-

44, LLR-45, LLR-56 and LLR-57. The state machine fragment represents the state to which the

SequenceController component transitions into after transmitting a command to the general

hydraulic valve to pressurize the hydraulic circuit. The component will remain in such a state

until the hcp (hydraulic circuit pressure) value is within the system’s operating range. Once

the hcp is within the specified range, the component transitions into another state. If the hcp

does not reach an accepted value within an allotted time (2s) a transition into a failure state

93

Table 2.3 Examples of LLRs for the LGCS. Extracted

from Paz & El Boussaidi (2018).

ID Description Traces Component
LLR-14 If the PressurizationEvent and the

DelayDOEVActuationTimeoutEvent are raised, the Door

Opening EV Actuation Command shall be set to Open and

the waitForDoorsOpen method shall be activated.

HLR-2

HLR-3

HLR-6

HLR-7

Sequence-

Controller

LLR-35 If the waitForHydraulicPressure method is active and the

RevertEvent is raised, all the actions that were previously

executed shall be reverted.

HLR-4 Sequence-

Controller

LLR-43 If the General EV Actuation Command is set to Open, the

waitForHydraulicPressure method shall be activated.

HLR-6 Sequence-

Controller

LLR-44 If the waitForHydraulicPressure method is active and the

overall value of the Hydraulic Circuit Pressure monitorable

variable is less than 30,000kpa, the waitForHydraulicPressure

method shall remain active until the

PressurizationTimeoutEvent is raised.

HLR-6

HLR-12

Sequence-

Controller

LLR-45 If the waitForHydraulicPressure method is active and the

overall value of the Hydraulic Circuit Pressure is greater than

or equal to 30,000kpa and less than 35,000kpa, the
waitForHydraulicPressure method shall end and the

PressurizationEvent shall be raised.

HLR-6 Sequence-

Controller

LLR-46 If the General EV Actuation Command was set to Open, the

DelayDOEVActuation method shall be activated.

HLR-7 Sequence-

Controller

LLR-56 If the waitForHydraulicPressure method is active and 2s have

elapsed since the General EV Actuation Command was set to

Open, the PressurizationTimeoutEvent shall be raised.

HLR-12 Sequence-

Controller

LLR-57 If the waitForHydraulicPressure method is active, the

PressurizationTimeoutEvent is raised and the overall value of

the Hydraulic Circuit Pressure monitorable variables is less

than 30,000kpa, the FailureEvent shall be raised.

HLR-12 Sequence-

Controller

is taken instead. In the event of a reversion, a transition into a reversion state is taken. The

allocation of HLRs to elements of the UML state machine fragments in the figure is done by

means of UML comments.

The LGCS subsystem block, shown in Figure 2.11, was decomposed into smaller, intercon-

nected subsystem blocks. Figure 2.13 presents this decomposition. The detailed design is

provided through Stateflow charts. Figure 2.14 presents an excerpt of the Stateflow chart for

the SequenceController Simulink block (equivalent of Figure 2.12).

94

WaitForHydraulicPressure

after(2 s)failure
detected

exit

close
GHEV
exit

onRevertEvent

Running

[hcp >= 30000 && hcp < 35000]

[else]

VerifyWithinOperatingRange
do/ SensorManager::fetchHydraulicCircuitPressure()

HydraulicPressure
WithinOperating

Range

HLR-6

HLR-4 HLR-12

HLR-6

Figure 2.12 Excerpt from the UML state machine

associated to the SequenceController component.

Adapted from Paz et al. (2020).

In_AnalogicalSwitch
Status
In_HydraulicCircuit
Pressure
In_DoorOpen
Status
In_DoorClosed
Status
In_GearShock
AbsorberStatus
In_GearRetracted
Status
In_GearExtended
Status

Figure 2.13 LGCS decomposition as a Simulink block diagram.

Extracted from Paz et al. (2020).

95

Figure 2.14 Excerpt from the Stateflow chart

realizing the SequenceController subsystem

block. Extracted from Paz et al. (2020).

2.5 Discussion

This section discusses and elaborates on some lessons learned, and challenges and issues expe-

rienced for each of the activities performed to build this requirements specification and design.

This section also highlights some limitations of the documentation and outlines steps to over-

come them and extend it.

2.5.1 Requirements specification

2.5.1.1 Quality and granularity of SRATS

As mentioned in Section 2.3, the SRATS were taken from the descriptions by Boniol & Wiels

(2014). These descriptions, however, were scattered throughout the text, which hindered the

task of developing the HLRs and establishing traceability links between the SRATS and HLRs.

Furthermore, the SRATS’ review in the Develop HLRs activity, found them to contain several

inconsistencies, ambiguities and confusing wording. Hence, the SRATS had to be corrected,

clarified and uniquely identified first before proceeding with the development of the HLRs.

96

The heavy reliance on review actions in the Develop HLRs activity is intended to guarantee the

requirements are clear. It is imperative that both sets of SRATS and HLRs are reviewed to be

at an acceptable quality level.

While working on the SRATS, it was observed that these can be, in fact, very detailed so as

to guide the software’s design without any further refinement into HLRs. Feedback on the

matter from the practitioners involved points out that such a situation is not infrequent in the

industry because the SRATS are intended to give the software development team everything

they need to know to develop the software. The more clear, precise and complete the SRATS

are, the easier the job becomes for the development team. In the LGCS, the SRATS were not

developed to a refinement level that could lead directly to software design, as it was sought to

have a separation between the SRATS and the HLRs in order to make the documentation as

rich as possible.

2.5.1.2 Requirements specification language

Practitioners from industry routinely specify SRATS and HLRs using natural language in Mi-

crosoft Office Word documents or Microsoft Office Excel spreadsheets and manage them with

the help of textual requirements databases like DOORS (Potter, 2012; Blouin, 2013). Thus, in

order for this LGCS documentation to serve as a benchmark specification, the SRATS, HLRs

and LLRs of the LGCS were specified in natural language. However, due to the inherent ambi-

guities of natural language (Moy et al., 2013), a form of controlled natural language was used

for their specification. As suggested by Lempia & Miller (2009), SRATS, HLRs and LLRs

were written using the names of monitorable and controllable variables, and system and soft-

ware architectural elements. Having the requirements formulated in this way brought important

advantages in terms of the properties of a good requirements specification (e.g., consistency,

completeness). Subsequent stages of the development of the LGCS may also see benefits from

this form of specification such as the generation of test cases. Our approach addresses the

creation of specification models using a proposed requirements modelling language to handle

these concerns for HLRs from a model-based perspective in the context of DO-178C.

97

2.5.2 Design

2.5.2.1 Design modelling language

Representing the LLRs in UML state machine models posed its challenges as they stressed

our knowledge and understanding of the UML notation and its semantics, and the notation

and semantics themselves. The UML specification has been criticized for its omissions, in-

consistencies, vaguenesses and comprehensibility problems in the UML metamodel and in the

definition of its semantics (Fecher et al., 2005). Hence, a major lesson here is the UML speci-

fication should not be taken on its own as a design standard for design models under DO-178C,

DO-331 and DO-332. It is necessary that the design standard defines any additional infor-

mation, constraints and specificities that help avoid any notational and semantical unclarities

of UML. For instance, one design guideline that emerged in discussion workshops with in-

dustry partners was related to the amount of layered substates in a UML state machine and

Stateflow chart. These languages do not define a limit to the number of layered substates that

may be added in a design model, which creates comprehensibility and verifiability issues. Fur-

thermore, a long overdue improvement of UML state machines surfaced during the Develop

LLRs activity. UML state machines capture trigger conditions and triggered actions as anno-

tations on the transition arrows. The notation lacked scalability when developing some of the

LLRs (e.g., LLRs developed from HLR-1). Herrmannsdörfer & Berenbach (2008) have sug-

gested the combination of diagrammatic and tabular notations to facilitate the specification and

analysis of such complex trigger conditions. Nevertheless, this requires extending UML with

non-standardized constructs.

2.5.2.2 Granularity of LLRs

In the Develop LLRs activity, it was observed that the operating context of the LGCS originated

a fair amount of intertwined conditions that the software had to respect at any given moment.

Therefore, developing the LLRs for the LGCS with an appropriate level of granularity was

challenging. DO-178C expects LLRs to be very detailed in order to enable source code to

98

be implemented without the need for more information. This may be misleading towards

wanting to express conditions as close as possible to the code, say in pseudocode or in an

action language (e.g., UML Alf). Unlike the situation with SRATS and HLRs where these

could be considered the same, DO-178C requires a greater separation between LLRs and code

than pseudocode / action languages are able to provide. The reason lies with the need to enable

black-box verification of the software’s behaviour.

2.5.2.3 Bidirectional traces in model-based LLRs

Both the Develop Software Architecture and the Develop LLRs activities are required to al-

locate HLRs to the elements of their resulting design models. In the case of UML this was

achieved through the use of UML comments. Sarkis & Dias (2014) recommend maintaining

such traceability links in the design models themselves and that the use of comment blocks is

sufficient for the task. This certainly works for supporting backwards traceability, i.e. linking

LLRs to their source HLRs, when the latter are uniquely identifiable. However, the same can-

not be said for forwards traceability, i.e. linking HLRs to their developed model-based LLRs,

which is also required by DO-178C. In order to enable requirements-based verification of the

software, and give proper visibility to requirements when verifying coverage and assessing the

impact of change, all requirements need to be uniquely identifiable. Identifying what can be

an LLR in UML state machines is not trivial and not possible without an extension to UML.

Two possible solutions were identified through discussion workshops with the industry part-

ners. One solution is to consider an LLR as a 4-tuple made up of an origin state, a destination

state, a transition from the origin state to the destination state, and a set of actions triggered and

completed during such a transition. Such a solution limits the use of the notation. However,

the definition would become more complex if fork, join and choice pseudostates are taken into

account. Another solution, in an attempt to avoid a complex definition like the one just men-

tioned, is to consider an LLR to be a complete UML state machine. This comes with its own

set of issues, especially related to the separation between LLRs and HLRs. The same issue

may appear also in specification models capturing non-text-based HLRs.

99

2.5.2.4 Consistency of heterogeneous design models

Effectively designing the LGS requires a complex modelling approach that can cope with

1) dealing with diverse components, including mechanical, electronic and software, each one

of these with its own underlying theories and domain vocabularies, and 2) dealing with various

aspects of the same component, such as their function, structure and behaviour. It is already

hard enough to relate information presented in different model views, e.g., in software, linking

states and transitions of a state machine to classes and methods, or system functions to pack-

ages, classes and methods. It is even harder to relate information that is spread across multiple

models and expressed in different modelling languages (Lee, 2010; Eker et al., 2003; Yu et al.,

2011; Combemale et al., 2014; van den Brand & Groote, 2015). In the LGS, for instance,

the hydraulic electro-valves (EVs) exist as 1) a physical object, 2) a mechanical engineering

abstraction governed by mathematical equations, and 3) a software abstraction manipulated

by the control software running in the digital controller. Ensuring consistency between het-

erogeneous design models is an important problem, in and of itself. Adding to that is that

safety-critical avionics systems are highly regulated and, thus, their development must adhere

to stringent quality and verification norms, like DO-178C presented in Chapter 1.1.

It is possible that inconsistencies are introduced during the design process of a given safety-

critical software since the different design models created are likely developed independently.

This can be mitigated with the use of design standards. In the case of the LGCS, some incon-

sistencies were deliberately inserted in the design models presented in the previous sections.

In virtue of DO-178C certification, evidence must be gathered to demonstrate the design mod-

els are consistent and conform to design standards. The first step in ensuring consistency is

determining that each model, taken separately, was built in accordance with the established de-

sign standards. These usually comprise the methods, notations, rules, constraints, guidelines,

and conventions defined in the modelling language specifications and are most likely enforced

by default in the modelling environment. However, they can also include particular rules,

guidelines and conventions that further instruct on, or constrain, the use of certain language

constructs according with company-specific practices. Moreover, they can even provide ways

100

of using available constructs to represent certain abstractions for which a modelling language

does not define a precise construct.

The next step is to analyze the different models in search for correspondences between their

elements. Notice that this step requires a pre-established knowledge on how the models them-

selves are related. For example, in the LGCS design models presented, there is a close simi-

larity between the transition in Figure 2.12 from the Running state to the close GHEV exit

point and the transition in Figure 2.14 from the Running state to the CloseGHEVExit state.

The final step is to analyze the identified correspondences to decide if they exhibit the same

features and behaviour and conform to design standards. For example, the two transitions in

the previous correspondence are inconsistent. The trigger on the UML transition is expressed

as an event name (i.e. onRevertEvent), while the equivalent transition trigger in the Stateflow

chart is expressed as a condition on an input Boolean variable called cancel. The analysis

indicates that these transitions must be reviewed and the inconsistency fixed accordingly. All

these steps must be performed manually, in the absence of tools, and for every construct used

in the design models.

Establishing model consistency and adherence to design standards are resource-consuming and

error-prone activities. While automated design verification and validation tools can help, they

cannot be used in isolation. Indeed, if the output of such tools is not manually verified by a

human being, then the tools themselves need to be qualified, i.e. they need to be subjected to the

same—if not a higher—level of scrutiny as the systems they are meant to verify Varró (2016).

It is, therefore, essential to devise a hybrid approach where automated tools aid engineering

teams in flagging errors for review and eventual correction, only to be followed by a more

traditional simulation and testing process.

2.6 Chapter Summary

This chapter presented a detailed requirements specification and design for a landing gear con-

trol software (LGCS). This documentation was developed and organized according with DO-

101

178C guidelines. The chapter also discusses some issues encountered during the development

of the LGCS specification and design. The elements of the LGCS presented in this chapter will

be used as a running example in the rest of this thesis to illustrate the other contributions. It is to

be noted that the descriptions given in this chapter are simplified to provide better focus for the

context of this thesis. The complete version of the specification and design is available in Ap-

pendix II of this dissertation. The documentation has also been made available online (Paz & El

Boussaidi, 2017) for it to be used by other researchers and practitioners as a benchmark for

supporting the evaluation of different (existing and new) model-based approaches.

CHAPTER 3

CHECSDM: CONSISTENCY OF HETEROGENEOUS EMBEDDED CONTROL
SYSTEM DESIGN MODELS

This chapter presents checsdm1 (Consistency of Heterogeneous Embedded Control System

Design Models), a systematic approach, based on MDE, for assisting engineering teams in en-

suring consistency of heterogeneous design of safety-critical avionics systems and supporting

evidence-gathering efforts for certification. In this regard, checsdm ensures that 1) for each

modelled element appearing in more than one design model, the element exhibits the same

properties and behaviour, and 2) the design models conform to design standards. Recall de-

sign standards specify methods, notations, rules, constraints, guidelines and conventions to

be used in the development of the design models. They can be specific to the company or in-

ferred from a given regulation such as DO-178C. Three features of checsdm can be highlighted.

First, it aims to cover more design scenarios than existing related approaches by providing a

design-scenario-independent framework to support verification of heterogeneous design mod-

els. Second, it provides facilities that ease the verification of model consistency and adherence

to design standards. Third, it enforces specific aspects of DO-178C compliance needs (e.g.,

explicitly defining a design scenario and design guidelines, ensuring design consistency) in an

effort to aid the recollection of evidence for certification.

The chapter is organized as follows. Section 3.1 describes in detail the checsdm approach.

Section 3.2 describes a concrete instantiation of checsdm using the LGCS and a mix of UML,

Simulink and Stateflow design models.

3.1 The checsdm Approach

checsdm is developed as a generic methodology and a tool framework, which can be applied

to various scenarios involving different modelling languages and different design guidelines.

The methodology comprises an iterative three-phased process (see Figure 3.1). The first phase

1 Pronounced "checks them".

104

is the elicitation phase, which consists in specifying the requirements of the design scenario

at hand in terms of: 1) determining the mix of modelling languages that are going to be used

and how to use them depending on the system’s nature and the languages’ purposes, 2) iden-

tifying the mapping rules between the different modelling languages, 3) defining intra-model

design guidelines, i.e. design guidelines specific to models in each language taken separately,

and 4) defining inter-model design guidelines, i.e. design guidelines that concern cross-model

constructs. The second phase is the codification phase, which consists in using meta-level func-

tionalities of the proposed tool framework to codify, as required: 1) metamodels of the various

modelling languages used, 2) the mapping rules between the modelling languages, 3) the intra–

model design guidelines, and 4) the inter-model design guidelines. checsdm’s third phase is the

operation phase, where a toolchain derived from the previous phase is applied to actual system

designs. This phase can help refine the mapping rules and guidelines or identify new ones. In-

stantiations of the checsdm approach, using their defined mapping rules and design guidelines,

help support evidence-gathering efforts that will show achievement of objectives and activi-

ties for regulatory certifications. The following subsections describe in detail the three phases,

including the tools and technologies used to support the codification and operation phases.

System
design
models

System
operational context

System requirements
allocated to software

Design guidelinesModelling languages

Modelling languages

Mapping rules

Design guidelines

Tools

Operation
Phase 3

Specify and design the software, and verify the design
models for consistency

Codification

Phase 2

Codify:
1) Metamodels
2) Mapping rules
3) Intra-model guidelines
4) Inter-model guidelines

Elicitation

Phase 1

Elicit the requirements
of the design scenario

Feedback

Figure 3.1 General flow of the checsdm
approach. Adapted from Paz et al. (2020).

105

3.1.1 Elicitation phase

Four steps make up the elicitation phase:

1. Determination of the mix of modelling languages. The combination of modelling lan-

guages that are going to be used is determined based on the type of system at hand and the

languages’ purposes.

2. Identification of mapping rules. Correspondences between the constructs of the different

modelling languages are identified and mapping rules are established.

3. Definition of intra-model design guidelines. Design guidelines specific to models in

each language are introduced to direct the creation of the individual models.

4. Definition of inter-model design guidelines. Design guidelines that concern cross-model

constructs are introduced to instruct on elaborated syntactical and semantical relations

between the modelling languages.

Eliciting requires a careful analysis of the modelling languages’ specifications to acquire a

proper understanding of the type of information they can represent and how to do so. Tools to

help with the elicitation steps are described in the following.

3.1.1.1 Mix of modelling languages

Heterogeneous design scenarios use different mixes of modelling languages. Such scenarios

can be characterized according with 1) the degree of coverage of system elements by the design

models, 2) the perspectives covered by the design models, 3) the level of abstraction at which

the models represent the design, and 4) the degree of overlapping between the elements of

the design models. Figure 3.2 presents this characterization in a feature diagram defining four

dimensions: 1) coverage of system elements (partial, complete), 2) design perspective (struc-

tural, behavioural), 3) level of abstraction (same, different), and 4) overlap of system elements

106

(partial, complete). The dimensions are cloneable features with a minimum cardinality of 2,

since at least two modelling languages are expected to be used in heterogeneous design.

Coverage of
system elements

Design
perspective

Overlap of
system elements

Level of
abstraction

Partial

Complete

Different level

Same level

Behavioural

Structural

Complete

Partial

Mix of modelling
languages

[2..*]

[2..*]

[2..*]

[2..*]

Figure 3.2 Feature model characterizing the mix of

modelling languages. Extracted from Paz et al. (2020).

A design scenario, i.e. a configuration of the mix of modelling languages, needs to be created

and input to the following phases. Over twenty-two scenarios can be derived from the possible

feature combinations. Some examples of common scenarios taking UML and Simulink as the

modelling languages are as follow:

- Simulink to represent a high-level, structural view of the elements that make up a system,

and UML to represent the structural and behavioural aspects at a lower-level of abstraction

for a particular element of the system that will be implemented on software. This combina-

tion will result in a partial overlap of elements at different levels of abstraction.

- In a system that handles both continuous-time and discrete-time inputs, Simulink can be

used to represent the continuous-time parts of the system while UML can focus on describ-

ing the discrete-time parts. This combination will result in a partial overlap of elements,

where two models represent parts of the system, and capture structural and behavioural

aspects at the same levels of abstraction.

107

It is to be noted that developing design models with complete overlap and coverage of system

elements is not a desirable scenario due to the high cost this task implies. Still, a complete

design redundancy can be beneficial, for instance, in multiple version dissimilar software and

in other cases, for instance, when the complete description of an element is scattered throughout

several design models (i.e. every design model represents a partial view of the element) (Lee,

2010; Ferrari et al., 2013; van den Brand & Groote, 2015).

3.1.1.2 Mapping rules

Mapping rules represent requirements on the relationships between the constructs of the dif-

ferent modelling languages. More specifically, a mapping rule relates model constructs from

two or more modelling languages of interest (e.g., UML and Simulink). The mapping rules

must cover the different possible design perspectives and levels of abstraction provided by the

modelling languages. The mapping rules are documented using the metamodel in Figure 3.3.

Each mapping rule is given an identifier (ID) and a name for the relationship between the two

model constructs. The set of when clauses specifies the conditions under which the current

relationship holds. The set of where clauses specifies the relationships (i.e. other mapping

rules) that must also hold whenever elements are participating in the current relationship. As a

result, where clauses may cause the propagation of inconsistencies. Mapping rule codification

is explained as part of the codification phase (see Section 3.1.2). Examples of mapping rules

are given with the motivating example in Section 3.2.1.

When the mapping rules are executed, a mapping model must store the identified correspon-

dences in order to make them explicit. A mapping metamodel is defined for such a purpose. In

addition, the mapping metamodel includes facilities to flag consistency issues between the de-

sign models. Figure 3.4 presents this metamodel. The MappingModel comprises a collection

of Mappings. A Mapping relates two or more model elements (elements) belonging to two

or more given design models. If both elements are consistent, according with the applicable

mappingRule, then the matching flag is set to true, otherwise it is set to false. In this way

consistency issues can be flagged.

108

MappingRulesModel MappingRule

 id : EString
 name : EString

WhereClause

 description : EString

MatchRule
(from ECL)

[0..*] mappingRules

[1..1] codification

[0..*] whereClauses

[1..1] referencedRule

WhenClause

 description : EString

[0..*] whenClauses

Figure 3.3 Mapping rules metamodel.

Extracted from Paz et al. (2020).

MappingModel [0..*]

[1..1]
[1..1]MatchRule

(from ECL)

Mapping

 name : EString
 matching: EBoolean
 elements : EObject [2..*]

explanationsmappingRule

mappings

Explanation

 key : EString
 value: EString

Figure 3.4 Mapping metamodel.

Extracted from Paz et al. (2020).

Mappings between two model elements, whether they are matching or not, are given some

explanations containing the reasons for the obtained result. The explanations attribute is

responsible for capturing explanations. Explanations contain the mapping rule’s failed when or

where clauses. Explanations come in handy when it is time to review two elements that were

mapped but were flagged to be inconsistent. An example of a mapping model is presented later

with the motivating example in Section 3.2.

3.1.1.3 Design guidelines

Design guidelines are intended to direct engineers on the use of the diverse modelling lan-

guages. Since engineers usually work in an independent fashion, the guidelines help ensure

consistency between the design models they create. Guidelines are documented using the

109

metamodel in Figure 3.5, which is derived from the textual template used for the MAAB style

guidelines (MathWorks Automotive Advisory Board, 2012). Each guideline is given an iden-

tifier (ID), a title and one of two possible priorities: mandatory or recommended. The descrip-

tion and the rationale fields provide the textual narrative for the guideline and its justification,

respectively. A guideline is scoped to one or more modelling languages to which its guid-

ance applies. This will categorize the guideline as intra-model or inter-model, respectively. A

guideline may reference other guidelines as prerequisites or as referenced guidelines providing

additional details where applicable. Guideline codification is explained as part of the codifi-

cation phase. For a design model to be regarded as compliant with the design guidelines, all

mandatory guidelines must be met while recommended guidelines can either be met or be sub-

ject to a deviation. In the latter case, the deviation must be properly justified and documented.

Examples of design guidelines are given with the motivating example in Section 3.2.1.

GuidelinesModel [0..*] guidelines

[0..*] codification

[0..*] prerequisites
GraphPattern
(from Viatra)

Guideline

 id : EString
 title : EString
 priority : Priority
 scope : Scope
 description : EString
 rationale : EString

Priority

 Mandatory
 Recommended

[0..*] referencedGuidelines
Scope

 UML
 Simulink
 Stateflow
 SimulinkAndStateflow
 UMLAndStateflow
 UMLSimulinkAndStateflow

Figure 3.5 Guidelines metamodel.

Extracted from Paz et al. (2020).

3.1.2 Codification phase

The codification phase consists in using the proposed tool framework to derive a toolchain that

will assist engineering teams in ensuring consistency of the heterogeneous design models dur-

ing the operation phase. Figure 3.6 presents the high-level components of the tool framework.

110

The framework is based on the Eclipse platform and its modelling technologies. Three steps

make up the codification phase:

1. Metamodelling. Metamodels representing the various modelling languages of the design

scenario are created using the Eclipse Modeling Framework (EMF) (The Eclipse Foun-

dation, 2017a). This step also involves developing custom model importers to transform

original model files into their EMF representations.

2. Codification of mapping rules. Mapping rules are codified using the Epsilon Comparison

Language (ECL) and Epsilon Object Language (EOL) (Kolovos et al., 2018).

3. Codification of design guidelines. Design guidelines (intra-model and inter-model) are

codified using the Viatra Query Language (VQL) (The Eclipse Foundation, 2017c).

Developer’s and user’s guides for checsdm are available in Appendix IV and online (Paz & El

Boussaidi, 2019f).

3.1.2.1 Metamodelling

Modelling languages are codified as Ecore metamodels using EMF (The Eclipse Foundation,

2017a). EMF has been a successful modelling framework used for many modelling technolo-

gies in both academic and industrial contexts. EMF together with the Eclipse platform, pro-

vide an entire ecosystem and tooling for model-driven engineering. EMF provides metamodels

for commonly used modelling languages, like UML and SysML. EMF-based metamodels for

many other modelling languages can be downloaded and added into Eclipse via plug-ins. In

the event no existing metamodel is found for a particular modelling language, EMF supplies all

the tooling necessary to create the metamodel. This activity requires a careful analysis of the

modelling language’s specification in order to develop a technically valid metamodel (i.e. do

not contravene the language specification). If a language specification is not openly available, a

technically valid metamodel may have to be reverse-engineered from specifications. A custom

111

checsdm
Framework

Viatra Query
Language

Viatra
Validation

Framework

Design
Guidelines

Modelling
Languages

Mapping
Rules

Epsilon
Object

Language

Epsilon
Comparison
Language

Custom Model
Importers/Connectors

Epsilon
Execution

Engine

Mapping
Model

Eclipse
Modeling

Framework
(EMF)

Figure 3.6 The checsdm tool framework.

Extracted from Paz et al. (2020).

model importer tool, transforming from the original format into its equivalent EMF model, will

need to be codified as well.

Metamodelling requires that all aspects of the language for which a metamodel is being created

are properly captured. How such a metamodel is defined depends on the expertise of the mod-

eller. checsdm’s feedback loop helps perform this task iteratively. If a language’s metamodel

is not properly capturing all of its aspects, certainly problems during the operation phase will

arise and, therefore, corrections will have to be made.

3.1.2.2 Codification of mapping rules

Mapping rules are codified as MatchRules using ECL (Kolovos et al., 2018). Each mapping

rule is, therefore, associated to a set of ECL MatchRules, as defined in the mapping rules

metamodel (see Figure 3.3). These rules are described at the metamodel (i.e. modelling lan-

112

guage) level. ECL enables the specification of rule-based model comparison algorithms for

identifying overlapping elements in homogeneous and heterogeneous models (Kolovos et al.,

2018). ECL comparison algorithms are expressed using EOL statements. EOL allows the

definition of context-dependent operations that can be called on instances of the types in the

input metamodels as if they were natively defined by the types. This technique provides a sig-

nificantly high readability of the codifications and keeps them close to their natural language

specifications.

When Epsilon’s rule execution engine executes the MatchRules, it stores the identified cor-

respondences in a mapping model conforming to the defined mapping metamodel (see Fig-

ure 3.4). Facilities for viewing and manually editing mappings between the design models’

elements are provided by a mappings editor generated by EMF from the mapping metamodel.

Screenshots can be seen in Section 3.2.3.

ECL produces the cross product between all element instances of the input design models that

coincide with the element types defined in the mapping rules’ signatures. However, a mapping

rule will only return a successful mapping of those instance elements that strictly meet the

conditions defined by its when and where clauses. The degree of fuzziness employed for these

clauses is left to the users of the checsdm approach. Furthermore, not all mappings—whether

they are flagged as consistent or inconsistent—in the resulting mapping model will indeed be

consistent or inconsistent, and could be intentional. As a result, heuristics for cleaning the

mapping model should be codified as part of this step. An example of an heuristic is given in

Section 3.2.2.

3.1.2.3 Codification of design guidelines

Design guidelines must be codified in a way that expresses well-formedness constraints at the

metamodel (i.e. modelling language) level. This is achieved by codifying them as GraphPat-

terns using VQL (The Eclipse Foundation, 2017c). VQL is a graph pattern-based language that

provides a concise, declarative syntax to specify structural model queries. Each design guide-

113

line is associated to a set of GraphPattern queries, as defined in the guideline metamodel

(see Figure 3.5). Furthermore, the GraphPatterns must be annotated with the @Constraint

annotation. These annotations are processed by the Viatra Validation Framework, which will

automatically generate facilities to 1) link the GraphPattern to the given Eclipse editor ID,

2) initiate the execution of GraphPatterns on EMF instance models opened with the linked

Eclipse editors and, 3) upon violations of the constraints, handle the creation and display of

markers to the user in the Eclipse Problem View. Viatra was chosen for its scalability, i.e. its

capacity for evaluating queries on very large size models (Varró, 2016).

3.1.3 Operation phase

The operation phase covers the software specification and design processes, and the part of

the verification process that is related to the verification of outputs from the design process.

Figure 3.7 illustrates the flow of this phase. Six steps make up the operation phase:

1. Software specification. The software’s HLRs are specified from the given SRATS. To

support this step we introduce SpecML, presented in Chapter 4.

2. Software design. The software is designed from a given operational context and the set

of HLRs from the previous step following the mix of modelling languages and design

guidelines established during elicitation.

3. Verification of intra-model design guideline compliance. The resulting design models

are individually verified for intra-model guideline compliance.

4. Mapping of design models. Correspondences between the design models are identified

and mappings are established between overlapping elements.

5. Verification of inter-model design guideline compliance. Using the mappings of the

previous step, the design models are verified together for inter-model guideline compli-

ance.

114

6. Review and resolution of violations and consistency issues. The flagged guideline vio-

lations and consistency issues are examined and handled accordingly.

Requirements process

System requirements
allocated to software

Verification processDesign process

System operational context

Design guidelines

Design models

Design models

Design models

Mapping model
Documented

deviationsSo
ftw

ar
e

de
si

gn

Ve
rifi

ca
tio

n
of

in
tra

-m
od

el
 g

ui
de

lin
e

co
m

pl
ia

nc
e

M
ap

pi
ng

 o
f d

es
ig

n
m

od
el

s

Ve
rifi

ca
tio

n
of

in
te

r-m
od

el
 g

ui
de

lin
e

co
m

pl
ia

nc
e

Violations ViolationsConsistency issues

Review and resolution
of violations and

consistency issues

Tools

2 3 4 5

6

Modelling languages

So
ftw

ar
e

sp
ec

ifi
ca

tio
n1 HLRs

Figure 3.7 Flow of the operation phase. Adapted from Paz et al. (2020).

Step 1 is the development of the software specification, i.e. the HLRs. This step is described

in the following chapter (Chapter 4) with our proposed requirements modelling language,

SpecML. We focus in this chapter on software design and its verification. Step 2 is the creation

of the software design. This comprises both the architecture and the detailed design. Design

processes often vary from one organization to another, thus, it is considered a generic step that

must be duly adjusted with company-specific activities. However, two inputs coming from the

elicitation phase are necessary prior to the start of the design process: the modelling languages

that are to be used and the established design guidelines (both the intra- and inter-model).

Two more inputs are required. These are dependent on the actual system to be designed: the

system’s operational context and the HLRs. Software design models are developed from the

set of HLRs taking into account the given operational context for the system. They must be

developed following the established mix of modelling languages and design guidelines.

It is possible that guideline violations and consistency issues may have been introduced during

the software design process since the different design models are likely developed indepen-

dently following particular practices. Steps 3 through 5 automatically verify the outputs of

the design process and ensure their consistency. These steps make use of the tools built dur-

ing the codification phase. The verification of design guideline compliance is split into two

115

steps. Step 3 verifies compliance of intra-model design guidelines, i.e. design guidelines that

are scoped to a single modelling language. Step 4 involves the analysis of the design models

in search for correspondences between their elements and identifying overlapping elements

that must be consistent. The analysis results are stored in the mapping model. Step 5 verifies

compliance of inter-model design guidelines, i.e. design guidelines that concern cross-model

constructs, after the overlapping elements have been identified.

A feedback loop exists from each one of these steps to the design process when an analysis of

the design models indicates a guideline violation or a consistency issue occurred and needs to

be addressed. In Step 6 the flagged guideline violations and consistency issues are examined

and handled accordingly. This is an activity of the design process and is intrinsically manual. It

requires that the engineers review the outputs of the previous steps and determine the reported

violations and consistency issues that will be handled and how.

The steps of the operation phase can be applied iteratively, until the transition criteria from the

requirements and design processes to the subsequent development activities (e.g., design, cod-

ing, develop verification cases) have been met. Furthermore, the resulting mapping model from

Step 4 can be used along the design models to support the subsequent development activities.

3.2 checsdm4uss: Concrete Instantiation of checsdm

This section describes an instantiation of the checsdm approach to one of the design scenarios

of industry partners; in essence: avionics systems represented using a mix of UML, Simulink

and Stateflow design models. We name this instantiation checsdm4uss2 (checsdm for UML,

Simulink and Stateflow). This section is organized closely following the three phases of the

checsdm approach described in Section 3.1. Subsection 3.2.1 first describes the execution

of the elicitation phase. Subsection 3.2.2 goes over the codification of metamodels, model

importers, modelling tool connectors, the design guidelines and the mapping rules. Afterwards,

Subsection 3.2.3 talks about the operation phase applied to the LGCS running example.

2 Pronounced "checks them for us".

116

3.2.1 checsdm4uss: Elicitation phase

checsdm4uss is motivated in direct response to the industry partners’ needs during their avion-

ics system developments and certification with DO-178C, DO-331 and DO-332. Their design

scenario is characterized by employing different combinations of UML, Simulink and State-

flow design models to describe the different aspects of systems they develop. The elicitation

phase was carried out iteratively. Base sets of mapping rules and design guidelines were ini-

tially developed after careful analysis of the modelling languages and the main guidelines for

their use (i.e. the MAAB style guidelines, the UML specification, DO-178C, DO-331 and

DO-332). Overall, the specified mapping rules and design guidelines target the provisioning of

evidence for achievement of DO-178C verification objectives regarding design process outputs.

These sets were then refined with input from several practitioners within the partner organi-

zations, and, additionally, from their initial applications during the execution of the operation

phase over different avionics systems. Nonetheless, the resulting sets of mapping rules and de-

sign guidelines are not final. The inherent complexity of developing an heterogeneous design

for an embedded control software as well as company-specific practices and the UML, Simu-

link and Stateflow modelling languages themselves, make it hard to determine all possible

mapping rules and design guidelines. The proposed mapping rules and design guidelines cover

the most common overlap cases between elements in the design models that, when not dealt

with a rigorous and systematic approach, lead to consistency issues. Additional guidelines and

mapping rules can be added to expand the range of mapping and guidance.

3.2.1.1 Mix of modelling languages

The elicited mix of UML, Simulink and Stateflow was motivated by the industry partners’ par-

ticular interest to have a complete design redundancy with these modelling languages. This

resulted in the following feature configuration from the feature diagram in Figure 3.2: 1) com-

plete coverage of the system elements, 2) provision of both structural and behavioural per-

spectives, 3) description of elements at the same level of abstraction, and 4) complete overlap

117

of elements. Regarding UML, the industry partners use the minimal set of constructs related

to classes, components and state machines. For Simulink and Stateflow, the minimal set was

made up of Simulink subsystem blocks and Stateflow charts (including the charts’ internal

constructs).

3.2.1.2 Mapping rules

UML and Simulink are fundamentally different modelling languages, yet syntactical and se-

mantical relations can be provided as mapping rules. Given the subset of constructs used by the

industry partners, twenty mapping rules were defined between UML, Simulink and Stateflow.

UML state machines and Stateflow share the same semantic domain and many syntax con-

structs. This close “distance” resulted in the majority of mapping rules being defined between

UML state machine and Stateflow constructs. Table 3.1 lists all the mapping rules defined

between these modelling languages. Mapping rules were established following a top-down

strategy, starting from the high-level constructs (e.g., UML component and Simulink subsys-

tem block) to lower-level ones (e.g., UML input parameter and Simulink block input) in order

to properly capture the relationships.

Table 3.2 shows in detail mapping rule mr_us_03 describing the relationship between UML

components and Simulink subsystem blocks. In Simulink, subsystem blocks gather blocks for

the purpose of model organization and visual simplification, as well as for maximizing design

reuse. Simulink subsystem blocks are semantically equivalent to UML components, which are

considered modular autonomous units with hidden internals but well-defined interfaces that

enable reuse. A UML component and a Simulink subsystem block are related when both of

these elements have similar names. Similarity between names was defined as having an edit

distance of no more than 20 percent3, otherwise, they should be synonyms. However, for this

relationship to hold in its entirety, the inputs, outputs and nested elements of both constructs

should also be related. Thus, other mapping rules (i.e. mr_us_03, mr_us_05, mr_us_06, mr_-

3 This edit distance was set arbitrarily.

118

Table 3.1 Summary of mapping rules for checsdm4uss.

ID Name
mr_us_01 UML class and Simulink subsystem

mr_us_02 UML class and Stateflow chart

mr_us_03 UML component and Simulink subsystem

mr_us_04 UML component and Stateflow chart

mr_us_05 UML input parameter and Simulink block input

mr_us_06 UML output parameter and Simulink block input

mr_us_07 UML input parameter and Simulink block output

mr_us_08 UML output parameter and Simulink block output

mr_us_09 UML state machine and Stateflow chart

mr_us_10 UML composite state and Stateflow composite state

mr_us_11 UML region and Stateflow parallel state

mr_us_12 UML state and Stateflow state

mr_us_13 UML choice pseudostate and Stateflow junction

mr_us_14 UML fork pseudostate and Stateflow composite state

mr_us_15 UML join pseudostate and Stateflow composite state

mr_us_16 UML default transition and Stateflow default transition

mr_us_17 UML transition and Stateflow transition

mr_us_18 UML transition trigger and Stateflow transition trigger

mr_us_19 UML transition guard and Stateflow transition guard

mr_us_20 UML transition actions and Stateflow transition actions

us_07, mr_us_08) further describing such fine-grained relationships are referenced as where

clauses.

Table 3.2 Mapping rule mr_us_03 for UML components and Simulink

subsystems. Extracted from Paz et al. (2020).

Mapping Rule
(ID: Name)

mr_us_03: UML component and Simulink subsystem

When The UML component and the Simulink subsystem have similar names.

Where
(1) Input parameters of operations in the UML component’s provided interface and inputs of

the Simulink subsystem block are matched (referenced rule: mr_us_05, see Table-A III-5).

(2) Output parameters of operations in the UML component’s required interface and inputs of

the Simulink subsystem block are matched (referenced rule: mr_us_06, see Table-A III-6).

(3) Input parameters of operations in the UML component’s required interface and outputs of

the Simulink subsystem block are matched (referenced rule: mr_us_07, see Table-A III-7).

(4) Output parameters of operations in the UML component’s provided interface and outputs of

the Simulink subsystem block are matched (referenced rule: mr_us_08, see Table-A III-8).

(5) Nested components and nested subsystem blocks are matched (referenced rule: mr_us_03).

Simulink blocks receive inputs through inports and then compute them to generate outputs

through outports. In UML, the inputs for a component can come from either input parameters

119

of operations in the component’s provided interfaces, or from output parameters in the compo-

nent’s required interfaces. Figure 3.8 illustrates these situations using excerpts from the LGCS

design models. In the figure, UML component SequenceController (left of the figure) and

Simulink subsystem block SequenceController (right of the figure) are matched by mapping

rule mr_us_03. Both elements have related inputs. The position and ASStatus inputs of the

UML component SequenceController (left of the figure) are matched, respectively by map-

ping rules mr_us_05 and mr_us_06, to the Placement and ASStat inputs of the corresponding

SequenceController Simulink subsystem block (right of the figure). In the case of the UML

component, these two inputs are specified in two separate interfaces, Command and Control-

Data respectively; position being an input parameter of the component’s provided interface

and ASStatus being an output parameter of a required interface. Mapping rules mr_us_05 and

mr_us_06 capture such a semantic equivalence. Similarly, outputs in a UML component can

come from either input parameters of operations in the component’s required interfaces, or out-

put parameters of operations in the component’s provided interfaces. Mapping rules mr_us_07

and mr_us_08 capture such a semantic equivalence.

Simulink block diagram excerptsUML component diagram excerpts

Command

ControlData
«interface»
ControlData

+ getASStatus() :
ASStatus

«interface»
Command

+ moveGears(position :
Position) : void

PilotInterface
Manager

Placement

ASStat

Sequence
Controller

Placement

ASStat

«component»
PilotInterfaceManager

«component»
SequenceController

mr_us_06

mr_us_05

mr_us_03

Figure 3.8 Excerpt from the LGCS design models illustrating

the application of mapping rules mr_us_03, mr_us_05 and

mr_us_06. Extracted from Paz et al. (2020).

Table 3.3 shows mapping rule mr_us_05 describing the relationship between UML input pa-

rameters and Simulink block inputs. A UML input parameter and a Simulink block input are

120

related when both of these elements have similar names and similar data types. The data type

similarity clause was included to help achieve a mandatory DO-332 verification activity. No

additional relationships are required to hold, hence, no mapping rules are referenced as where

clauses.

Table 3.3 Mapping rule mr_us_05 for UML input parameters and

Simulink block inputs. Extracted from Paz et al. (2020).

Mapping Rule
(ID: Name)

mr_us_05: UML input parameter and Simulink block input

When
(1) The input parameter’s name is similar to the block input’s name.

(2) The input parameter’s data type is similar to the block input’s data

type (referenced DO-332 verification activity: OO.6.2.g).

Note: Empty compartments are omitted to keep the table uncluttered.

All checsdm4uss’ mapping rules are presented in Appendix III.

3.2.1.3 Design guidelines

Given the subset of constructs used by the industry partners, twenty-one design guidelines

(intra- and inter-model) were developed in checsdm4uss. Fifteen are set as mandatory and six

are recommended. Sixteen are intra-model design guidelines and five are inter-model design

guidelines. Table 3.4 lists all the design guidelines. The design guidelines are divided into

four categories: 1) suggest an appropriate mix of modelling languages driven by the nature

of the system being modelled and the purposes of the models, 2) instruct on the naming of

elements in the design models, 3) constrain the use of specific modelling language constructs,

and 4) provide semantic equivalences between the constructs of different modelling languages.

Table 3.5 shows design guideline av_us_01 for the mixed use of UML, Simulink and Stateflow

in design. The design guideline describes some usage scenarios for these languages based

on the nature of the system being modelled. It is not feasible to describe in a single design

guideline how to model all possible systems and in a way that is applicable to the design

processes of an organization. Thus, engineers must use their knowledge and experience on

using the modelling languages to represent portions of the system that better suits the nature

121

Table 3.4 Summary of design guidelines for checsdm4uss.

ID Type Title Priority Category
av_us_01 Inter- Mixed use of UML, Simulink and Stateflow Recommended 1

av_us_02 Intra- Definition of a naming convention Mandatory 2

av_us_03 Intra- Naming of elements in UML models Mandatory 2

av_us_04 Intra- Naming of UML fork and join pseudostates Mandatory 2

av_us_05 Intra- Naming of elements in Simulink / Stateflow models Mandatory 2

av_us_06 Intra- Naming of Simulink inport and outport blocks Recommended 2

av_us_07 Intra- Decomposition type for Stateflow chart and composite

state

Recommended 3

av_us_08 Intra- Expression of triggers in UML transitions Mandatory 3

av_us_09 Intra- Expression of triggers in Stateflow transitions Mandatory 3

av_us_10 Inter- Expression of triggers appearing in both UML and

Stateflow transitions

Mandatory 3

av_us_11 Intra- Expression of UML guards in transitions Mandatory 3

av_us_12 Intra- Expression of Stateflow conditions in transitions Mandatory 3

av_us_13 Intra- Expression of UML actions Mandatory 3

av_us_14 Intra- Expression of Stateflow actions Mandatory 3

av_us_15 Inter- Expression of actions appearing in both UML and

Stateflow models

Mandatory 3

av_us_16 Intra- Use of signal receipt and send symbols in UML state

machines

Recommended 3

av_us_17 Intra- Use of UML fork and join pseudostates Mandatory 3

av_us_18 Intra- Data type of Simulink inports and outports Mandatory 3

av_us_19 Intra- Conjugation of a UML port Mandatory 3

av_us_20 Inter- Specification of UML entry and exit points in Stateflow Recommended 4

av_us_21 Inter- Specification of UML fork and join behaviour in

Stateflow

Recommended 4

of those given portions. Since this guideline has no binding effect on consistency of the design

models it is given the recommended priority.

Table 3.6 shows design guideline av_us_03 providing guidance on the naming of elements in

UMLmodels. The guideline makes sure the elements in a UMLmodel have a name. It is worth

noting that UML modelling tools do not constraint the designer to name the model elements.

This guideline is essential for allowing the mapping of design models since finding a match

between elements of the design models by means of the defined mapping rules relies heavily

on naming.

Table 3.7 shows design guideline av_us_10 providing guidance on the expression of triggers in

transitions appearing in both UML state machines and Stateflow charts. The design guideline

122

Table 3.5 Design guideline av_us_01: Mixed use of UML, Simulink and

Stateflow. Extracted from Paz et al. (2020).

Guideline
(ID: Title)

av_us_01: Mixed use of UML, Simulink and Stateflow

Priority Recommended

Scope UML, Simulink and Stateflow

Prerequisites None

Description
The choice of using UML, Simulink or Stateflow, or a mix of them to model all the system

or given portions of it should be driven by the nature of the system being modeled and the

purposes of the models.

• If the system (or the portions of it) primarily involves software, use UML components and

classes to characterize the structure and behaviour of the software.

• If the system (or the portions of it) involves both software and hardware elements, use UML

components and classes to characterize the structure and behaviour of the software, and use

Simulink and Stateflow to characterize the structure and behaviour of the hardware elements.

• If the behaviour of the system (or the portions of it) primarily involves modal logic with a

combination of past and present logical conditions, use UML state machines, Stateflow

charts or a mix of them.

• If a behaviour segment primarily involves behaviour that may execute concurrently, use

UML state machines.

• If the behaviour of the system (or the portions of it) primarily involves if-then-else

statements, use Stateflow truth table charts.

Note: Some compartments are omitted to keep the table uncluttered.

Table 3.6 Design guideline av_us_03: Naming of elements in UML

models. Extracted from Paz et al. (2020).

Guideline
(ID: Title)

av_us_03: Naming of elements in UML models

Priority Mandatory

Scope UML

Prerequisites None

Description
All NamedElements in a UML model must have a name.

Note: Some compartments are omitted to keep the table uncluttered.

determines the notation and contents of a trigger of a transition in both cases. The design

guideline reuses existing knowledge from the study in (Ferrari et al., 2013) for dealing with

verification issues when choosing to use events in Stateflow transitions and advises otherwise.

Figure 3.9 illustrates the application of this design guideline in the context of the LGCS design

models. The guideline states that if a transition appears in a UML state machine (left of the

figure) as well as a Stateflow chart (right of the figure), then the Stateflow transition must

123

be guarded by a condition variable whose name must be a substring of the UML transition’s

trigger event name. An exception applies with regards to relative time event triggers on both

languages, which are denoted with “after” followed by a number and unit of time. This design

guideline is essential for allowing a mapping, by means of the mapping rules, to be established

between triggers in UML state machines and triggers in Stateflow charts. Thus, guideline

av_us_10 is given the mandatory priority.

Table 3.7 Design guideline av_us_10: Expression of triggers appearing in

both UML and Stateflow transitions. Extracted from Paz et al. (2020).

Guideline
(ID: Title)

av_us_10: Expression of triggers appearing in both UML and Stateflow transitions

Priority Mandatory

Scope UML and Stateflow

Prerequisites
• Guideline av_us_08: Expression of triggers in UML transitions

• Guideline av_us_09: Expression of triggers in Stateflow transitions

Description
If a transition appears in a UML state machine as well as a Stateflow chart, then the name of

the Stateflow condition variable must be a substring of the UML trigger event name.

An exception to the previous restriction applies to relative time event triggers, which must be

denoted with “after” followed by the argument values corresponding to the number and unit

of time.

Note: Some compartments are omitted to keep the table uncluttered.

Stateflow chart fragmentUML state machine fragment

onRevertEvent after(20 s)

Running

CloseGHEV FailureDetected

[revert] after(20,sec)

Running

CloseGHEV FailureDetected

1 2

Figure 3.9 Illustrative example for applying guideline av_us_10.

Extracted from Paz et al. (2020).

Design guideline av_us_18 providing guidance on the data types of Simulink Inports and Out-

ports is also essential for allowing mappings, by means of the mapping rules, to be established

124

between inputs and outputs of UML components and Simulink subsystem blocks. This guide-

line was derived from a mandatory DO-332 data type consistency verification activity.

All checsdm4uss’ design guidelines are presented in Appendix III.

3.2.2 checsdm4uss: Codification phase

3.2.2.1 Metamodelling

Creation of UML models is supported by the Eclipse IDE and its EMF-based UML plug-

in. The Eclipse Papyrus plug-in (The Eclipse Foundation, 2017b) was integrated as well to

provide graphical facilities to visualize and edit the UML models. On the contrary, devel-

opment of Simulink and Stateflow models is restricted to MATLAB. Simulink and Stateflow

are proprietary modelling languages of MathWorks limited to the MATLAB environment. A

specification of these languages is also not openly available.

A number of tools have been developed to support Simulink and Eclipse integration (e.g.,

Lyo OSLC Simulink Adapter (Eclipse Lyo, 2014), Massif (IncQuery Labs, 2017)). Others

like Matclipse (Camhy et al., 2013) have focused only on the MATLAB Workbench integra-

tion without providing support for Simulink and Stateflow. Furthermore, most of them are no

longer maintained and, thus, do not work with the most recent releases of the Eclipse platform

and its MDE tools. Massif is the most actively maintained tool. It is a live bridge between

Simulink and Eclipse for enabling MDE workflows. Its main feature in the context of checsdm

is that it provides an EMF-based Simulink metamodel. However, this metamodel lacks sup-

port for Stateflow and certain implementation choices reduce its interoperability with other

Eclipse tools for MDE. The metamodel has been enriched with (Viatra) query-based derived

attributes that, as claimed by Horváth et al. (2015), facilitate both understanding and working

with complex Simulink models. Viatra queries in an EMF metamodel pose an issue when us-

ing a resulting model in other EMF-based Eclipse tools, like Epsilon. Such model queries are

not executed, hence, it results in missing information and interoperability problems. Despite

125

this issue, Massif’s EMF-based Simulink metamodel was taken as the basis for this metamod-

elling step of checsdm’s execution. checsdm4uss’ Simulink and Stateflow metamodel was built

from scratch, using EMF, based onMassif’s metamodel for the Simulink constructs and adding

new constructs corresponding to Stateflow. Development of the metamodel was iterative and

involved practitioners from industry who validated several design models conforming to it.

Processing the contents from Simulink and Stateflowmodels requires their transformation from

the MathWorks format into the developed EMF-based metamodel. Therefore, we developed

Breesse, a bridge for the EMF ecosystem and the MathWorks Simulink and Stateflow ecosys-

tem. Breesse is capable of 1) extracting the information from the Simulink and Stateflow

models opened in MATLAB, and 2) creating new EMF models conforming to the developed

Simulink and Stateflow metamodel. The complete description of Breesse is available in Ap-

pendix V.

3.2.2.2 Codification of mapping rules

Recall from Section 3.1.2, that mapping rules are codified using ECL; each mapping rule being

codified as an ECLMatchRule. Listing 3.1 shows the codification for mapping rule mr_-

us_03 (see Table 3.2) as a MatchRule. Mapping rule mr_us_03 describes the relationship

between UML components and Simulink subsystem blocks (see lines 2 and 3 of the listing).

Instances of these elements are mapped when they have similar names (see line 5 of the listing).

Similarity in element names as defined for the when clauses of the mapping rules is given by a

hybrid strategy. The current codification of the matches operation for string types (see line 5

of the listing) applies first the Jaro–Winkler distance metric to determine their similarity and

rule out word contractions. If the metric equates to a similarity of less than 80 percent, then

the WordNet (Miller, 1995) lexical database is queried using MIT’s Java WordNet interface

(JWI) (Finlayson, 2014). Mapping rules in the where clauses of mapping rule mr_us_03 are

indirectly referenced through a call to ECL’s built-in matches operation (see lines 8, 11 and

14). For instance, where clause 5 states that for the mapping to hold, nested elements from the

mapped elements must also be mapped. Line 12 of the listing, queries the UML component

126

Listing 3.1: Codification of mapping rule mr_us_03. Extracted from Paz et al. (2020).
1 rule MatchUMLComponentAndSimulinkSubsystemBlock
2 match component : UML!Component
3 with subsystem : Simulink!SubSystem {
4 compare {
5 var sameNames : Boolean = component.name.matches(subsystem.name);
6 var componentInputs = component.obtainInputs();
7 var subsystemInputs = subsystem.obtainInputs();
8 var sameInputs : Boolean = componentInputs.matches(subsystemInputs);
9 var componentOutputs = component.obtainOutputs();

10 var subsystemOutputs = subsystem.obtainOutputs();
11 var sameOutputs : Boolean = componentOutputs.matches(subsystemOutputs);
12 var nestedComponents = component.obtainNestedElements();
13 var nestedSubsystems = subsystem.obtainNestedElements();
14 var sameNestedElements : Boolean = nestedComponents.matches(nestedSubsystems);
15 return sameNames and sameInputs and sameOutputs and sameNestedElements;
16 }
17 }

for all its nested components. Line 13 of the listing does the same for the Simulink subsystem

block. In line 14 of the listing, ECL applies mapping rule mr_us_03 to the cross product of the

resulting collections from lines 12 and 13. Codification of other mapping rules is analogous.

Once all the mapping rules are executed, as stated in the description of checsdm, we need to

cleanup the mapping model. In checsdm4uss, we chose a very conservative strategy for the

mapping model clean up heuristics. The mapping model clean up heuristic consists on remov-

ing only mappings with inconsistency flags where one of the involved elements was already

successfully matched (i.e. flagged as consistent) in another mapping. Thus, not all consis-

tency issues identified through the mappings in the resulting mapping model will indeed be

consistency issues and could be intentional. Since the context of usage for checsdm4uss is

safety-critical avionics systems, the preference from the industry partners was to retrieve all

inconsistencies even if the side-effect was the reporting of false inconsistencies. They consid-

ered reviewing all the mappings to be worthwhile.

3.2.2.3 Codification of design guidelines

Recall from Section 3.1.2, that design guidelines are codified using VQL; each design guide-

line being codified as a set of VQL queries. Listing 3.2 presents the codification of intra-model

design guideline av_us_03 (see Table 3.6) as two model queries. The query umlNamedEle-

127

Listing 3.2: Codification of intra-model design guideline av_us_03. Extracted from Paz

et al. (2020).
1 @Constraint(severity = "error", key = {namedElement},
2 message = "The element must have a name.",
3 targetEditorId = "org.eclipse.uml2.uml.editor.presentation.UMLEditorID")
4 pattern umlNamedElementEmptyName(namedElement : NamedElement) {
5 neg find umlNamedElementName(namedElement);
6 }
7 pattern umlNamedElementName(namedElement : NamedElement) {
8 NamedElement.name(namedElement, name);
9 check (name.matches(".+"));

10 }

mentEmptyName (lines 4 through 6) captures the erroneous situation where an element in

a UML model does not have a name. This is accomplished by the negative composition of

another graph pattern umlNamedElementName (lines 7 through 10), which captures ele-

ments in the UML model that have a name. @Constraint annotations, like the one in lines 1

through 3, specify to the Viatra framework that a GraphPattern represents a well-formedness

constraint linked to the UML Eclipse editor (see line 3).

Listing 3.3 shows the codification of inter-model design guideline av_us_10 (see Table 3.7)

providing guidance on the expression of triggers of a transition appearing in both UML state

machines and Stateflow charts. The query matchingTriggerInvalid states that if a transition

appears in a UML state machine as well as a Stateflow chart (lines 4 through 6), then the State-

flow transition must be guarded by a condition variable whose name must be a substring of the

UML transition’s trigger event name (line 10). An exception to the previous restriction applies

with regards to relative time event triggers on both languages, which must be denoted with “af-

ter” followed by the argument values corresponding to the number and unit of time (line 10).

The defined GraphPatterns for these design guidelines are also given the @Constraint an-

notation (lines 1 through 3). Facilities to initiate the validation and display markers on the

instance models are automatically generated when the Viatra Validation Framework processes

the annotations. Codification of other design guidelines is analogous.

128

Listing 3.3: Codification of inter-model design guideline av_us_10. Extracted from Paz

et al. (2020).
1 @Constraint(severity = "error", key = {mapping},
2 message = "The Stateflow trigger must be a substring of the event name of

$umlTrigger$.",
3 targetEditorId = "ca.ets.avio604.mappings.presentation.MappingsEditorID")
4 pattern matchingTriggerInvalid(mapping : Mapping, umlTrigger : Trigger, sfwTrigger :

SFWTrigger) {
5 Mapping.left(mapping, umlTrigger);
6 Mapping.right(mapping, sfwTrigger);
7 Trigger.event(umlTrigger, event);
8 Event.name(event, umlEventName);
9 SFWTrigger.statement(sfwTrigger, sfwTriggerStatement);

10 check(!umlEventName.contains(sfwTriggerStatement.substring(1, sfwTriggerStatement.
length() - 1)) && !(umlEventName.startsWith("after") && sfwTriggerStatement.
startsWith("after")));

11 }

3.2.2.4 Derived toolchain

An Eclipse toolchain was derived with the previous codifications to support the operation phase

of checsdm4uss. Figure 3.10 depicts an overview of the derived toolchain. Eclipse plug-ins

contributing contextual menu options to map two model files in distinct languages selected

from the IDE’s Explorer View have been developed. This menu option provides users with a

simplified way of initiating the mapping of the design models. A screenshot of the checsdm4uss

derived toolchain is presented later with the LGCS running example in Section 3.2.3. Devel-

oper’s and user’s guides for checsdm4uss are available in Appendix IV and online (Paz & El

Boussaidi, 2019f).

3.2.3 checsdm4uss: Operation phase

This subsection presents the results of executing the operation phase of checsdm4uss over the

LGCS example described in Chapter 2.

3.2.3.1 Step 1: Software specification

This step is described and discussed in the following chapter (see Chapter 4). As stated before,

in this chapter we focus on the design and its verification.

129

Simulink
.slx File

UML
Model File

Mapping
Model File

Derived Eclipse Toolchain

Simulink
EMF Model File

Viatra
Framework

Viatra
Framework

Epsilon
Execution Engine

Violation
markers

Violation
markers

Violation
markers

Intra-model
DG in VQL

Mapping Rules
in ECL

Inter-model
DG in VQL

Mapping
Model Editor

Mapping Rules
Menu option

Breesse

Figure 3.10 Overview of the derived toolchain for checsdm4uss.
Extracted from Paz et al. (2020).

3.2.3.2 Step 2: Software design

We followed the design procedure described in Section 2.2.3. Some of the design models were

presented in Section 2.4. Most of the checsdm4uss design guidelines were followed. This was

deliberate in order to insert some violations. Following steps of the operation phase give an

account of design guideline compliance.

3.2.3.3 Step 3: Verification of intra-model design guideline compliance

The design models in Section 2.4 of the LGSwere automatically verified for intra-model design

guideline compliance. This was carried out using the checsdm4uss toolchain, specifically the

design guidelines’ codifications as Viatra queries and the generated facilities by the Viatra

Validation Framework. The design activity resulted in no deviations from the intra-model

design guidelines. An example of a guideline violation is shown later in Step 5.

3.2.3.4 Step 4: Mapping of design models

After the verification of intra-model design guideline compliance, the design models were auto-

matically analyzed in search for correspondences and verified for consistency. This was carried

130

out using the mapping rules codified with ECL and the support tools developed to initiate the

mapping of design models. For instance, mapping rule mr_us_03 presented in Table 3.2 applies

to the UML component diagram in Figure 2.9 and the Simulink block diagrams in Figures 2.11

and 2.13. Figure 3.11 displays a screenshot of the checsdm4uss mapping tool in action. The

left side shows the contextual menu option from which the mapping rules can be invoked over

two design models. The right side shows an excerpt of the resulting mapping model from ap-

plying the proposed checsdm4uss mapping rules to the LGCS UML component diagram and

Simulink block diagram. Each element in the model represents a Mapping. The bottom of the

right side shows an example of the properties in every Mapping. The left property refers to an

element in the UML model and the right property refers to an element in the Simulink model.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

Figure 3.11 Screenshot of the resulting checsdm4uss mapping

model for the LGCS and the properties of the selected mapping in

line 3. Extracted from Paz et al. (2020).

131

Mapping rule mr_us_03 matches the SequenceController component in UML to the Se-

quenceController subsystem block in Simulink (see line 3 of Figure 3.11 right side). The

mappingRule attribute informs this as can be seen in Figure 3.11. Both the UML component

and the Simulink subsystem block have identical names (see line 6 of Figure 3.11 right side).

The other conditions defined in mapping rule mr_us_03 are also met, i.e. inputs, outputs and

nested elements were matched as well. Lines 5, 7 and 8 of Figure 3.11 (right side) show these

results. Lines 16 and 17 of Figure 3.11 (right side) show that the analogicalSwitchStatus

and hydraulicCircuitPressure return parameters expected from requiring the ControlData

interface (Figure 2.10) are matched to the inports In_AnalogicalSwitchStatus and In_Hy-

draulicCircuitPressure (Figure 2.13), respectively.

The Simulink subsystem block PilotInterfaceManager in Figure 3.11 (right side) was re-

named to PIM (see line 9 of Figure 3.11) to deliberately insert a consistency issue. After ap-

plying all the mapping rules, the PilotInterfaceManager component and the PIM subsystem

block were mapped but not matched (shown in the figure with an icon of a white ‘x’ enclosed

in a red circle). The elements have the same inputs, outputs and nested elements as reported in

the explanations in lines 11, 12 and 15. However, they possess distinct names, reason that is

disclosed in the explanation in line 14. Since the design scenario involves a complete coverage

of system elements and a complete overlapping between the UML and Simulink models, then

it is expected that all elements of the UML model are related to a corresponding element of

the Simulink/Stateflow model. Thus, the PilotInterfaceManager component and the PIM

subsystem block are flagged as inconsistent. This caused an inconsistency propagation to the

mapping between the LGCS UML component and the LGCS Simulink subsystem block. This

higher-level mapping is, thus, flagged as inconsistent as well (see line 2 of Figure 3.11).

3.2.3.5 Step 5: Verification of inter-model design guideline compliance

The resulting mapping models from Step 4 were used to automatically verify inter-model de-

sign guideline compliance. In the checsdm4uss instantiation, design guideline av_us_10 (see

Table 3.7) was not followed in order to deliberately insert a design guideline violation. In the

132

UML state machine on the left side of Figure 3.12, the trigger on the transition from the Run-

ning state to the close GHEV exit point is expressed as an event name (i.e. onRevertEvent).

The equivalent transition in the Stateflow chart on the right side of Figure 3.12 is expressed

as a condition on an input Boolean variable cancel instead of revert. Figure 3.13 displays the

error obtained after guideline compliance was verified over the mapping model. Note that in

the Stateflow chart on the right side of Figure 3.12, the relative time event trigger after(2,sec)

on the transition from the Running state to the FailureDetectedExit state is an example of

the exception to the restriction of event names for triggers in Stateflow transitions allowed by

design guideline av_us_10.

Stateflow chart excerptUML state machine excerpt

WaitForHydraulicPressure

after(2 s)failure
detected

exit

close
GHEV
exit

onRevertEvent

Running

[hcp >= 30000 && hcp < 35000]

[else]

VerifyWithinOperatingRange
do/ SensorManager::fetchHydraulicCircuitPressure()

HydraulicPressure
WithinOperating

Range

HLR-6

HLR-4 HLR-12

HLR-6

Figure 3.12 Excerpts from the UML state machine associated to the

SequenceController component and the Stateflow chart associated to the

SequenceController subsystem block. Adapted from Figures 2.12 and 2.14.

Figure 3.13 Screenshot of design guideline av_us_10’s

violation. Extracted from Paz et al. (2020).

133

3.3 Chapter Summary

This chapter presented checsdm4 (Consistency of Heterogeneous Embedded Control System

Design Models). It is a systematic approach, based on MDE, for assisting engineering teams in

ensuring consistency of heterogeneous design of safety-critical avionics software and support-

ing evidence-gathering efforts for certification. Three features of checsdm were highlighted.

First, its aim to cover more design scenarios than existing related approaches by providing a

design-scenario-independent framework to support verification of heterogeneous design mod-

els. Second, its facilities easing the verification of model consistency and adherence to design

standards. Third, its enforcement of specific aspects of DO-178C compliance needs in an

effort to aid the recollection of evidence for certification. The chapter then described a con-

crete instantiation of checsdm targeting one of the design scenarios of the industry partners;

in essence: avionics systems represented using a mix of UML, Simulink and Stateflow design

models. This instantiation was named checsdm4uss5 (checsdm for UML, Simulink and State-

flow). checsdm4uss was presented closely following the three phases of the checsdm approach.

In particular, the operation phase was illustrated with the LGCS running example.

4 Pronounced "checks them".

5 Pronounced "checks them for us".

CHAPTER 4

SPECML: REQUIREMENTS SPECIFICATION MODELLING LANGUAGE

This chapter discusses in greater detail the unfolding and automated support of the first step of

checsdm’s operation phase: the software specification. Recall the development of DO-178C-

compliant avionics software begins when a set of high-level system requirements and system

safety requirements is allocated to software. Such SRATSmust be refined and decomposed into

high-level software requirements (HLRs) and documented in the Software Requirements Data

data item. The software specification step of checsdm’s operation phase encompasses these

activities. Our industry partners were interested in facilitating the step through a modelling

language that 1) is easy to use, 2) enables requirements-based verification, and 3) supports

traceability by integrating with the other tools used for design.

In order to satisfy these needs we developed SpecML, a modelling language that provides a

requirements specification infrastructure for DO-178C-compliant software development. The

language is designed as a UML profile augmenting SysML requirements by integrating con-

structs from several existing approaches. Three features in SpecML can be highlighted. First,

it enforces required information (e.g., trace data, decomposition of requirements) for achiev-

ing objectives and activities defined in DO-178C. Second, it captures requirements in natural

language to smooth the way for its adoption in industry. Third, it provides facilities to capture

requirements in a structured and semantically-rich formalism to enable requirements-based

analyses and testing. The language is open and may be tailored to specific industries and regu-

latory guidelines and standards.

The avionics industry considers UML, with profiles such as SysML and MARTE, provides bet-

ter long term sustainability and interoperability over completely custom-built domain-specific

languages Le Sergent et al. (2016). Zoughbi et al. (2011) compiled a list of benefits justify-

ing the use of UML in the avionics industry. Thus, SysML Requirements was selected as the

starting point to build upon. Chapter 1 presented a number of approaches allowing the ex-

pression of semantically richer requirements than natural language statements. Of these, the

136

SysML specification acknowledges the property-based requirement (PBR) theory, defined by

Micouin (2008), as an improvement to SysML Requirements addressing a formal expression

of requirements in SysML and expanding its ability to support requirements-based analyses

and testing.

The chapter is organized as follows. Section 4.1 presents the methodology we followed to build

SpecML as a UML profile. Section 4.2 explains the domain metamodel behind SpecML. Sec-

tion 4.3 describes SpecML as a UML profile. Section 4.4 presents a reference implementation

for SpecML.

4.1 Methodology for Developing SpecML

As presented in Chapter 1.2, UML supports the development of DSMLs through its profile

mechanism offering semantic variation points and special constructs intended for the lan-

guage’s refinement (e.g., Stereotypes). We specialized the methodology by Selic (2007) and

the extension made by Panesar-Walawege et al. (2013) (see Figure 1.7) to our aims with

SpecML. Figure 4.1 illustrates our methodology for developing SpecML. The general flow

of the methodology remains unchanged: develop the conceptual model of the domain (or do-

main metamodel) and map its concepts to elements in the UML metamodel. Following the

activities proposed by Panesar-Walawege et al. (2013), our domain metamodel resulted from

a careful qualitative analysis of DO-178C’s contents. We introduced a set of activities that

would refine the previous domain metamodel to integrate the concepts from the PBR theory by

Micouin (2008). The UML profile and its associated OCL constraints were then created based

on the resulting domain metamodel. Mapping the domain metamodel to the UML metamodel

goes through all the domain concepts and identifies the most suitable UML metaclass for each

one. A domain concept is defined as a stereotype to be applied over a selected UML metaclass.

We carry out several iterations over the process to ensure coverage of the DO-178C guidelines

and conformance with UML.

137

act Development of SpecML

Develop UML profile

Analyze regulatory guideline and build domain metamodel

Identify
regulatory
concept

Define a domain
metamodel concept

Identify and select a
UML metaclass with
closest semantics

[else]

[additional concepts are required to cover the regulatory guideline]

Define dependencies
and constraints for

the concept

Review metamodel
consistency and
completeness

Select a domain
metamodel concept and

define a stereotype

Check constraints of
selected metaclass
and its superclasses

Check attributes of
selected metaclass

[conflicting constraints with those of the domain metamodel element]

Define constraints for
the stereotype

[else]

Refine attributes of
selected metaclass in

the stereotype

[attributes need to be refined]

Check associations
of selected metaclass

UML
Profile

Domain
Metamodel

[else] Refine/constrain
associations of

selected metaclass

[else]

[associations
need to be

refined/constrained]

Regulatory
Guideline

[else]

[domain
metamodel
concepts
remain to be
mapped]

Study Property-Based Requirements Theory
Domain

Metamodel

Domain
Metamodel

Domain
Metamodel

Identify
PBR

concept [else]

[additional concepts are required]
Define/refine a

domain metamodel
concept

Define/refine
dependencies and

constraints for the concept

Review metamodel
consistency and
completeness

Figure 4.1 Methodology for developing SpecML. Adapted from

Figure 1.7.

4.2 SpecML’s Domain Metamodel

We use the following template to consistently and uniformly describe the concepts in SpecML’s

domain metamodel. An example of its use is presented later; however, some attributes and

empty template parts are omitted to keep the main thesis document uncluttered. All SpecML’s

domain metamodel concepts are presented in Appendix VI.

138

Concept Name

Description

Explains the rationale for the existence of the domain concept.

Generalizations

Lists domain concepts that are specialized by the current concept.

Attributes

Lists and describes the characteristic features of the concept. A name and description are

provided for each attribute.

Relationships

Lists and describes the relationships of the current concept with other concepts. A name and

description are provided for each relationship.

Constraints

Defines the constraints applicable to the concept, its attributes and relationships.

4.2.1 Requirements-related concepts

Figure 4.2 shows a fragment of SpecML’s domain metamodel covering the concepts related to

requirements as per our analysis of DO-178C. Requirements are a prominent and critical con-

cern for DO-178C-compliant avionics development. The requirements process must develop a

prescribed three-level requirements hierarchy. The first level is made up of SystemRequire-

ments allocated to software (SRATS). SRATS are not specified as part of DO-178C’s scope,

139

they are solely taken as inputs of the DO-178C requirements process. Given SRATS must

be refined into the second level of requirements, the HighLevelRequirements (HLRs) (pre-

sented below). A review of the HLRs validates these against the SRATS to check if their intent

is being accurately captured by the HLRs in a way suitable for directing software design ac-

tivities. As mentioned in Chapter 2.5, it was observed during the construction of the LGCS’

requirements specification that SRATS can be very detailed, eliminating the need for any fur-

ther refinement into HLRs. Feedback on the matter from the industry partners pointed out that

although such a situation is not infrequent in the industry, eliminating the second level of the

requirements hierarchy poses a heavy assurance burden when certifying the software. Hence,

the copy relationship in the domain metamodel between HLRs and SRATS.

Requirement

 id : String
 text : String
 type : RequirementType
 source : Source [1..*]
 status : RequirementStatus
 conditionsType : ConditionsType
 isDerived : Boolean
 isStable : Boolean
 isVerifiable : Boolean
 isConsistent : Boolean
 isFormalizable : Boolean
 revision : Integer
 creationDate : Date
 modificationDate : Date

SystemRequirement

 isAllocatedToSoftware : Boolean

HighLevelRequirement

 precludesCFC : Boolean
 describesDesignDetail : Boolean
 describesVerificationDetail : Boolean

LowLevelRequirement

derives

0..1

refines0..*

copies0..1

coupledTo 0..*

Rationale

 text : String
justifies

0..1

«enumeration»
RequirementType

Structural
Behavioural
Mixed

«enumeration»
Source

Acquirer
Operator
CertificationAuthority
Safety
Cost
EnvironmentalCondition
…

«enumeration»
RequirementStatus

PendingReview
ReviewedAndAccepted
ReviewedAndIncorrect

«enumeration»
ConditionsType

NormalRange
AbnormalRange

refinedBy0..*

refinement

coupling derivation

0..* derivedBy *

copy

justifiedBy

0..1justification

Figure 4.2 Fragment of SpecML’s domain metamodel showing

the requirements concepts.

HighLevelRequirement

Description

A HighLevelRequirement (HLR) specifies a capability or condition that must (or should) be

satisfied. An HLR is developed from the analysis of SRATS, safety-related requirements and

140

system architecture. HLRs must be very detailed so as to guide the design activities. HLRs

must not include design nor verification details in accordance with DO-178C.

Generalizations

- Requirement

Attributes

- precludesCFC : Boolean [1]

Indicates if the requirement intends to prevent one or more of the identified contributions to

failure conditions (CFCs).

- describesDesignDetail : Boolean [1]

Indicates if the requirement statement describes design detail. HLRs should not describe

design details except when there is a justified design constraint.

- describesVerificationDetail : Boolean [1]

Indicates if the requirement statement describes verification detail. HLRs should not de-

scribe verification details except when there is a justified constraint.

Relationships

- copy

It could occur that allocated system requirements are, in fact, very detailed so as to guide the

design without any further refinement into HLRs. In this case HLRs must be defined and

related to their corresponding SRATS through the copy relationship. The Copy relationship

goes from the HLR to the SRATS.

141

Constraints

1. A HighLevelRequirement without the isDerived flag must have a refinement or copy

relationship to a SystemRequirement.

This constraint is applicable to ensure traceability to an originating system requirement.

Introduced from DO-178C.

2. A HighLevelRequirement with the describesDesignDetail flag must justify the exis-

tence of the design detail with a Rationale. Introduced from DO-178C.

This constraint is applicable to enforce the inclusion of a rationale for DO-178C certifica-

tion compliance.

3. A HighLevelRequirement with the describesVerificationDetail flag must justify the

existence of the verification detail with a Rationale. Introduced from DO-178C.

This constraint is applicable to enforce the inclusion of a rationale for DO-178C certifica-

tion compliance.

The correct specification of HLRs initiates the design. The design covers the definition of the

software architecture and the refinement of HLRs into LowLevelRequirements (LLRs) (i.e.

the detailed design). LLRs, together with the architecture, are used to guide the coding and

building activities. Although LLRs represent the detailed design, they are still regarded by

DO-178C as being requirements and, thus, share many common properties with HLRs. In fact,

LLRs can be specified using natural language. We decided to include the LLR concept in our

domain metamodel to allow their formalization using SpecML’s constructs for such a purpose

but also to enable their traceability. Indeed, DO-178C states that HLRs and LLRs must be

traced to their originating requirement(s). Whenever a requirement cannot be directly traced

to an originating requirement (e.g., because it specifies behaviour beyond that specified by the

higher level requirements) it must be identified as a derived requirement. Examples of require-

ments are given with the domain metamodel’s mapping to UML stereotypes in Section 4.3.

142

Furthermore, requirements must exist for both normal-range and abnormal-range (i.e. robust-

ness) inputs and conditions. This helps ensure the software will continue to operate correctly

to some extent in the face of anomalies. For instance, on the one hand, a normal-range re-

quirement will describe the actuation of a valve when a hydraulic circuit is pressurized to a

value within a given range. On the other hand, a robustness requirement will describe the soft-

ware’s behaviour if the pressure value exceeds the maximum defined operational pressure for

the hydraulic circuit.

4.2.2 Requirement formalization-related concepts

Figure 4.2 shows a fragment of SpecML’s domain metamodel covering the concepts related to

requirement formalization as per our analysis of the PBR theory. Recall from Chapter 1 that

a PBR for a system Σ is defined as a constraint over a property P of an object O in Σ. The

constraint enforces the value of P to be located within a domain D, which is a subset of im(P)

(i.e. the domain of possible values of P), when a condition C is met. Expression 4.1 formalizes

a PBR.

Req: [when C →]val(O.P) ∈ D ⊂ im(P) (4.1)

The PropertyBasedStatement concept captures a PBR. We use the word statement to avoid

confusion with the different requirement concepts presented above. The conjunction of a finite

set of PropertyBasedStatements denotes the formalization of a Requirement. The term

Req of Expression 4.1 is a mandatory, unique identifier included as the id attribute in the

PropertyBasedStatement concept. We added the text attribute to allow the textual descrip-

tion/reading of the PBR to be captured as well following the template: “[when condition C is

met,] the value(s) of property P of object O shall be in the subset D of im(P)”. The presence of

a conditionC is optional as indicated by the presence of square brackets. This is also evident in

the hasCondition relationship between the PropertyBasedStatement and Constraint con-

cepts. The remaining part of the expression represents the predicate. Both the condition and

predicate constitute Constraints over a set of Parameters, regarded as the properties evalu-

143

Requirement

…

formalizations

0..*
hasCondition

0..1

hasPredicate

1
subconstraints

0..*
Parameter

 interpretation : String [1]
 rationale : String [1]
 displayName : String [1]
 source : Source [1..*]
 creationNotes : String [1]
 maintenanceNotes : String [1]
 usageNotes : String [1]
 creationDate : Date [1]
 modificationDate : Date [1]
 revision : Integer [1]
 expectedRangeValues : String [1..*]
 defaultValue : String [1]
 format : String [1]
 precision : Integer [1]
 units : String [1]
 load : String [1]
 isRequired : Boolean [1]
 isReadOnly : Boolean [1]
 isUnique : Boolean [1]
 encoding : String [1]

DataDictionary

entries 0..*

Constraint

 expression : String [0..1]

parameters 1..*

TimedEvent

 every : String [1]
 repetition : Integer [0..1]
 isRelative : Boolean [1]

TimedDurationConstraint

 interpretation : String

start
Observation 1

end
Observation 1

timedEvent

0..1

TimedInstantObservation

 obsKind : EventKind [0..1]

timedInstantbservation

0..1

formalizedBy

1 formalizes

parent1

PropertyBasedStatement

 id : String
 text : String

1

dataDictionary

1

1

condition predicate

represents

overParameters

specifies

from to

«enumeration»
EventKind

Start
Finish
Send
Receive
Consume

when 1 1 observedEvent

hasSubconstraints

hasEntries

Figure 4.3 Fragment of SpecML’s domain metamodel showing

the formalization concepts.

ated in a PBR. These Parameters make up the entries in the DataDictionary. The essential

metadata for a data dictionary entry were extracted from the DO-178C guideline.

PBR theory lacks constructs for expressing time-dependent behaviour and constraints. In the

LGCS, for instance, the behaviour specified in HLR-2 must be carried out in under 28 sec-

onds. Another instance of time-dependent behaviour in avionics software is, for example,

when a value of a certain property needs to be evaluated repetitively at a set frequency. This

information is part of the PBR but cannot be captured. We added the TimedEvent, Timed-

DurationConstraint and TimedInstantObservation concepts to the domain metamodel for

the expression of such. The TimedEvent concept allows the specification of an annotation to

a PropertyBasedStatement indicating the specified behaviour needs to be performed with

a predetermined frequency for a number of times. The TimedDurationConstraint concept

serves to impose a constraint on the temporal distance between two observed events, repre-

144

sented through the TimedInstantObservation concept. The TimedInstantObservation

concept allows a PropertyBasedStatement to be annotated as an instant in time that will

be observed for an event occurrence. Examples of requirement formalizations are given with

the domain metamodel’s mapping to UML stereotypes in Section 4.3.

4.3 SpecML as a UML Profile

4.3.1 Profile organization

SpecML is designed as a UML profile that augments SysML Requirements with new con-

structs. SysML 1.5 was selected since this version is more open to extensions regarding re-

quirement specification compared to previous versions. SpecML has the common structure

of a UML profile: data types, stereotypes and OCL constraints. No custom data types are

defined, hence, UML primitive types are used to define the attributes owned by the stereo-

types. Specialized stereotypes are defined to capture the concepts of the domain metamodel

described in Section 4.2. OCL constraints are defined to perform the necessary checks regard-

ing the required information for achieving objectives and activities defined in DO-178C. The

stereotypes and OCL constraints in SpecML are divided into four groups: 1) requirement hi-

erarchy, 2) requirement interrelationship, 3) requirement formalization, and 4) data dictionary.

The following subsection describes in detail the stereotypes and constraints belonging to these

groups.

4.3.2 Profile stereotypes

The stereotypes and constraints are documented following a similar layout to the one used

in the SysML specification (OMG, 2017a). For each stereotype we use the following docu-

mentation template. An example of its use is presented later; however, some attributes and

empty template parts are omitted to keep the main thesis document uncluttered. All SpecML’s

stereotypes are presented in Appendix VII.

145

Stereotype Name

Description

Explains the rationale for the existence of the stereotype and its usage.

Extensions

Lists UML metaclasses extended by the current stereotype.

Generalizations

Lists stereotypes that are specialized by the current stereotype.

Attributes

Lists and describes the characteristic features of the stereotype.

Constraints

Defines the constraints applicable to the stereotype and its attributes.

4.3.2.1 Requirement hierarchy

Figure 4.4 shows the stereotypes to represent the requirement hierarchy concepts of the do-

main metamodel. The abstract stereotype Requirement (presented below) extends the SysML

AbstractRequirement stereotype. This inheritance provides the facilities to capture natural

language requirement statements (the text attribute) and specify an identifier (the id attribute).

On top of that, the SpecML Requirement stereotype adds attributes to further characterize a

requirement, like type (structural, behavioural, mixed), source (e.g., acquirer, operator, certi-

fication authority, certification standard) and status (pending review, reviewed and accepted,

146

reviewed and incorrect). The isDerived attribute is used to indicate that the requirement is not

directly traceable to higher level requirements because it specifies behaviour beyond what has

been specified in them.

«stereotype»
Requirement

attributes
+ type : RequirementType
+ source : RequirementSource [1..*]
+ status : RequirementStatus
+ conditionsType : ConditionsType
+ isDerived : Boolean
+ isStable : Boolean
+ isVerifiable : Boolean
+ isConsistent : Boolean
+ isFormalizable : Boolean
+ revision : Integer
+ creationDate : Date
+ modificationDate : Date

«stereotype»
SysML::AbstractRequirement

attributes
+ id : String
+ text : String

«stereotype»
SystemRequirement

attributes
+ isAllocatedToSoftware : Boolean

«stereotype»
HighLevelRequirement

attributes
+ precludesCFC : Boolean
+ describesDesignDetail : Boolean
+ describesVerificationDetail : Boolean

«stereotype»
LowLevelRequirement

attributes

«Metaclass»
UML4SysML::Class

Figure 4.4 Requirement hierarchy stereotypes.

Requirement

Description

A Requirement defines the general attributes and relationships essential for requirements

specification of avionics software. Specifically the stereotype generalizes the different kinds

of requirements described in DO-178C, namely system requirements, high-level software re-

quirements (HLRs) and low-level software requirements (LLRs). A Requirement conveys an

understanding of what needs to be performed by the system of interest.

Extensions

- UML Class

147

Generalizations

- SysML AbstractRequirement

Attributes

- id : String [1]

The unique ID of the requirement. Inherited from AbstractRequirement (see clause

16.3.2.1 AbstractRequirement from the OMG (2017a) SysML 1.5 Specification).

- text : String [1]

The requirement statement as a natural language statement. Inherited from AbstractRe-

quirement (see clause 16.3.2.1 AbstractRequirement from the OMG (2017a) SysML 1.5

Specification).

- type : RequirementType [1]

The type of the requirement. Possible values are (Micouin, 2008): structural, behavioural

or mixed. Structural requirements concern to a structural property (i.e. composition and

structure) of the system being specified. Behavioural or functional requirements concern to

a behavioural/functional property (i.e. observable behaviour) of the system being specified.

Mixed requirements concern to both structural and behavioural properties of the system

being specified.

- source : Source [1..*]

The source who expresses the requirement. Possible values are: acquirer, operator, certi-

fication authority, specialty engineer, other stakeholder, or another source like certification

standard, safety, costs, environmental conditions, design, production, tests, or maintenance.

A requirement may have multiple sources.

- status : RequirementStatus [1]

148

The status of the reviewing and acceptance of the requirement. Possible values are: pending

review, reviewed and accepted, and reviewed and incorrect.

- isDerived : Boolean [1]

Indicates if a requirement is a derived requirement, i.e. a requirement that (a) is not directly

traceable to a higher level requirement, and/or (b) specifies behaviour beyond that which is

specified by the system requirements or the high-level requirements.

Constraints

1. The id must be specified and be unique.

This constraint is applicable to uniquely identify a requirement.

2. A Requirement with the isDerived flag must be justified by a Rationale (see clause

7.3.2.5 Rationale from the OMG (2017a) SysML 1.5 Specification).

This constraint is applicable to understand why the requirement cannot be directly traced

to an originating requirement because it specifies behaviour beyond that specified by the

higher-level requirements.

3. A Requirement, or any of its subclasses, shall not participate as the client in dependencies

stereotyped by Satisfy.

The Satisfy relationship is a dependency between a requirement and a model element that

fulfills the requirement. However, when the model element is stereotyped as a LowLevel-

Requirement the Satisfy relationship takes on the same meaning as the RefineReqt rela-

tionship. In such a case the RefineReqt relationship shall be used. Thus, this constraint is

intended to enforce the use of the RefineReqt relationship over the Satisfy relationship.

4. A Requirement, or any of its subclasses, shall not own any nested classifiers stereotyped

by Requirement.

This constraint is to avoid the creation of compound requirements and subrequirements.

149

The SystemRequirement, HighLevelRequirement and LowLevelRequirement stereotypes

specialize the Requirement stereotype to define the requirement hierarchy described in DO-

178C (see Section 4.2). The SystemRequirement stereotype represents the highest level re-

quirements in the hierarchy. SystemRequirements are system requirements allocated to soft-

ware (SRATS) when the isAllocatedToSoftware attribute is set to true. Recall that SRATS

are the ones developed and refined into software requirements. System requirements are spec-

ified during the system life cycle processes, beyond the regulatory scope of DO-178C. Only

SRATS are considered for software development. However, the SystemRequirement stereo-

type provides the possibility to formalize any system requirement to enable its analysis and

testing as well.

The HighLevelRequirement stereotype (HLR for short, presented in detail below) repre-

sents requirements that are produced directly from the refinement of SRATS. Attributes of

HighLevelRequirement (i.e. precludesCFC, describesDesignDetail and describesVerifi-

cationDetail) support analyses for certification and safety compliance. For instance, OCL

constraints defined over the last two attributes enforce the specification of a rationale when

these attributes are set to true. A rationale is mandatory in these situations for the case of DO-

178C certification. The precludesCFC attribute indicates if the requirement intends to prevent

one or more of the identified contributions to the system’s failure conditions. The LowLevel-

Requirement stereotype (LLR for short) represents the requirements that can be directly im-

plemented/realized without further information, i.e. the detailed design. This stereotype can be

used as a stand-alone element to capture natural language or formal requirement statements, or

be applied onto UML/SysML model elements that represent the design.

HighLevelRequirement

Description

A HighLevelRequirement (HLR) specifies a capability or condition that must (or should) be

satisfied. An HLR is developed from the analysis of SRATS, safety-related requirements and

150

system architecture. HLRs must be very detailed so as to guide the design activities. It could

occur that allocated system requirements are, in fact, very detailed so as to guide the design

without any further refinement into HLRs. In this case HLRs must be defined and related to

their corresponding SRATS using the Copy relationship. The Copy relationship goes from the

HLR to the SRATS. HLRs must not include design details nor include verification details in

accordance with regulations.

Generalizations

- Requirement

Attributes

- precludesCFC : Boolean [1]

Indicates if the requirement intends to prevent one or more of the identified contributions to

failure conditions (CFCs).

- describesDesignDetail : Boolean [1]

Indicates if the requirement statement describes design detail. HLRs should not describe

design details except when there is a justified design constraint.

- describesVerificationDetail : Boolean [1]

Indicates if the requirement statement describes verification detail. HLRs should not de-

scribe verification details except when there is a justified constraint.

Constraints

1. A HighLevelRequirement stereotype must not be applied alongside other stereotypes

that specialize the Requirement stereotype.

151

2. A HighLevelRequirement without the isDerived flag must have a RefineReqt or Copy

dependency to a SystemRequirement.

This constraint is applicable to ensure traceability to an originating system requirement.

3. A HighLevelRequirement with the describesDesignDetail flag must justify the exis-

tence of the design detail with a Rationale (see clause 7.3.2.5 Rationale from the OMG

(2017a) SysML 1.5 Specification).

This constraint is applicable to enforce the inclusion of a rationale for certification com-

pliance.

4. A HighLevelRequirement with the describesVerificationDetail flag must justify the

existence of the verification detail with a Rationale (see clause 7.3.2.5 Rationale from the

OMG (2017a) SysML 1.5 Specification).

This constraint is applicable to enforce the inclusion of a rationale for certification com-

pliance.

Figure 4.5 presents an SRATS, SRATS-2, from the LGCS and its developing HLR, HLR-2,

captured using SpecML’s requirement hierarchy stereotypes. The natural language text and

IDs of both requirements are captured by the text and id attributes. The requirements de-

scribes the behaviour of the LGCS when a desired gear position is given by the pilots, thus, the

BehaviouralRequirement type. HLR-2 is indicated to preclude CFC-1. Other HLR attributes

were set to false.

4.3.2.2 Requirement interrelationship

Figure 4.6 presents the stereotypes for defining the types of relationships that can occur be-

tween requirements. The RefineReqt stereotype is an alias to the SysML DeriveReqt stereo-

type to align it with normative vocabulary. The stereotype represents a bidirectional trace in

which a requirement can be refined into a lower-level requirement. This relationship goes from

152

«HighLevelRequirement»
SequenceControl

attributes
text = “When a Desired Gear
Position is received, the LGCS
shall, in under 28 seconds, …”
id = “HLR-2”
type = BehaviouralRequirement
precludesCFC = “CFC-1”

«SystemRequirement»
Sequence

attributes
text = “…”
id = “SRATS-2”
type = BehaviouralRequirement
isAllocatedToSoftware = true

Figure 4.5 Excerpt of the LGCS specification model using

SpecML showing SRATS-2 and HLR-2.

the refining requirement (e.g., the HLR) to the refined requirement (e.g., the SRATS). Fig-

ure 4.7 presents the use of the RefineReqt stereotype on the example from Figure 4.5 to bind

SRATS-2 with its developing HLR, HLR-2.

The Copy relationship is as defined in SysML but with a more constrained usage. HLRs must

be very detailed so as to guide design. However, it could occur that system requirements are,

in fact, very detailed so as to guide the design without any further refinement into HLRs. In

this case HLRs must be defined and related to their corresponding system requirement using

the Copy relationship, which will indicate that they are a read-only copy of the supplier re-

quirement (i.e. the system requirement). The Derive stereotype is included to make it possible

to trace derived requirements to the requirements from which they were derived. A derived re-

quirement and the requirement from which it was derived stand at the same hierarchical level.

Thus, this relationship enables an indirect trace from the derived requirement to a higher level

requirement. Requirements at the same level of the requirements hierarchy may experience

some interdependence. The Coupled stereotype makes it possible to represent such a relation-

ship between two requirements.

4.3.2.3 Requirement formalization

Figure 4.8 shows the stereotypes to capture requirements in a structured, semantically-rich

formalism. The PropertyBasedStatement stereotype establishes a formalized statement of

a requirement following the domain metamodel from Section 4.2. Expression 4.1 is broken

153

«stereotype»
RefineReqt

«stereotype»
SysML::Trace

«stereotype»
SysML::DeriveReqt

«stereotype»
SysML::Copy

«stereotype»
Coupled

«stereotype»
Copy

«stereotype»
Derive

Figure 4.6 Requirement interrelationship

stereotypes.

«HighLevelRequirement»
SequenceControl

attributes
text = “When a Desired Gear
Position is received, the LGCS
shall, in under 28 seconds, …”
id = “HLR-2”
type = BehaviouralRequirement
precludesCFC = “CFC-1”

«SystemRequirement»
Sequence

attributes
text = “…”
id = “SRATS-2”
type = BehaviouralRequirement
isAllocatedToSoftware = true

«RefineReqt»

Figure 4.7 Excerpt of the LGCS specification model using

SpecML showing the interrelationship between SRATS-2 and

HLR-2.

down to simplify its representation with the profile. The id attribute in PropertyBasedState-

ment captures the Req term of the expression. An additional text attribute can hold a textual

description of the formalization if necessary. The optional subexpression [when C →] is a

condition of actualization in the context of the requirement. This expression can be captured

with a SysML ConstraintBlock and linked to the PropertyBasedStatement with a depen-

dency stereotyped by Condition. The mandatory subexpression val(O.P) ∈ D ⊂ im(P) is

a predicate representing the constraint over the value of a system property. This expression

can be captured as well with a SysML ConstraintBlock and linked to the PropertyBased-

Statement with a dependency stereotyped by Predicate. One property-based statement may

not be sufficient to capture the entire requirement described in the natural language statement.

Thus, additional PropertyBasedStatements may be introduced as part of the requirement’s

154

formalization. A dependency stereotyped by Formalization links each PropertyBasedState-

ment to the requirement. The requirement is, therefore, interpreted as the conjunction of the

specified PropertyBasedStatements.

«stereotype»
PropertyBasedStatement

attributes
+ id : String
+ text : String

«Metaclass»
UML4SysML::Dependency

«stereotype»
Predicate

«stereotype»
Formalization

«stereotype»
Condition

«Metaclass»
UML4SysML::Class

«stereotype»
TimedDomain

«stereotype»
MARTE::Time::TimeRelatedEntities
::TimedElements::TimedDomain

«stereotype»
MARTE::Time::TimeRelatedEntities
::TimedEventModels::TimedEvents

::TimedEvent

«stereotype»
TimedEvent

«stereotype»
MARTE::Time::TimeRelatedEntities

::TimedObservations
::TimedInstantObservation

«stereotype»
TimedInstantObservation

«stereotype»
MARTE::Time::TimeRelatedEntities

::TimedConstraints
::TimedDurationConstraint

«stereotype»
TimedDurationConstraint

«stereotype»
SysML::ConstraintBlock

«stereotype»
MARTE::CoreElements::Causality::Run

TimeContext::EventOccurrence

Figure 4.8 Requirement formalization stereotypes.

The LGCS must perform a series of actions as part of HLR-2 and a single formalization state-

ment is not sufficient to cover the whole behaviour. Thirteen property-based statements formal-

ize this HLR. Figure 4.9 shows the first of these formalization statements (2.1). Formalization

2.1 reads as follows: when the LGCS is functioning normally and is idle, and there is a change

in the desired gear position after it has been validated, then the LGCS shall become active.

The condition upon which a gear movement sequence is initiated is captured with StartSe-

quenceControlCondition ConstraintBlock and linked to the PropertyBasedStatement with

the Condition dependency. The system state that must be observed is captured with Start-

SequenceControlPredicate ConstraintBlock and linked to the PropertyBasedStatement with

the Predicate dependency.

The TimedDomain stereotype indicates a container of clocks and its use is required when

working with MARTE. The stereotype must be applied onto a UML Package. Requirements

in a TimedDomain package may use the clocks contained in it to express behaviour that is

time-dependent. The TimedEvent stereotype is as defined by the MARTE specification but

with a more constrained usage. The stereotype establishes a non-functional annotation on a

PropertyBasedStatement indicating that the specified behaviour needs to be performed with

155

«HighLevelRequirement»
SequenceControl

attributes
text = “When a Desired Gear
Position is received, the LGCS
shall, in under 28 seconds, …”
id = “HLR-2”
type = BehaviouralRequirement

«Formalization»

«PropertyBasedStatement»
StartSequenceControl

attributes
id = “HLR-2.1”
text = “Start sequence
control.”

«Condition»

«Predicate»

«ConstraintBlock»
StartSequenceControlCondition

constraints
{ {OCL} Ctrl@pre = Normal&Idle }
{ {OCL} DesiredGearPositionProcessed@pre ≠
DesiredGearPositionProcessed }

parameters
Ctrl : CtrlMode
DesiredGearPositionProcessed : DGPValue

«ConstraintBlock»
StartSequenceControlPredicate

constraints
{ {OCL} Ctrl = Normal&Active }

parameters
Ctrl : CtrlMode

«SystemRequirement»
Sequence

attributes
text = “…”
id = “SRATS-2”
type = BehaviouralRequirement
isAllocatedToSoftware = true

«RefineReqt»

Figure 4.9 Excerpt of the LGCS specification model using

SpecML showing one of the formalizations for HLR-2.

a predetermined frequency (i.e. it is explicitly bound to a clock). The TimedInstantObser-

vation stereotype is also as defined by the MARTE specification but with a more constrained

usage. The stereotype denotes an instant in time that is associated with an event occurrence

and observed on a given clock. This stereotype is included to allow the observation of event

occurrences and allowing their use in the expression of timing constraints on the specified

behaviour. The stereotype must only be applied to a PropertyBasedStatement. The Timed-

DurationConstraint stereotype imposes a constraint on the temporal distance between two

events. This stereotype is included to allow the expression of timing constraints between spec-

ified behaviour.

The LGCS’ behaviour is time-dependent, for instance, the behaviour expressed in HLR-2 must

be performed in under 28 seconds. In Figure 4.10, the package containing HLR-2 and its for-

malizations is stereotyped byTimedDomain in order to allow the use of SpecML’s stereotypes

for timing constraints. The figure also displays the HLR-2 formalizations in PropertyBased-

Statements 2.1 and 2.13 to be annotated with the TimedInstantObservation stereotype.

The annotations can be visualized as comments in Figure 4.10. The instants in time where the

LGCS transitions from an idle state into an active state and then back into idle will be observed.

These event occurrences represent the start and end of HLR-2’s behaviour. A TimedDura-

tionConstraint of 28 seconds is imposed over both TimedInstantObservations.

156

req LGCS Specification Fragment «TimedDomain»

«HighLevelRequirement»
SequenceControl

attributes
text = “When a Desired Gear
Position is received, the LGCS
shall, in under 28 seconds, …”
id = “HLR-2”
type = BehaviouralRequirement

«Formalization»

«PropertyBasedStatement»
«TimedInstantObservation»

StartSequenceControl

attributes
id = “HLR-2.1”
text = “Start sequence
control.”

«Condition»

«Predicate»

«ConstraintBlock»
StartSequenceControlCondition

constraints
{ {OCL} Ctrl@pre = Normal&Idle }
{ {OCL} DesiredGearPositionProcessed@pre ≠
DesiredGearPositionProcessed }

parameters
Ctrl : CtrlMode
DesiredGearPositionProcessed : DGPValue

«ConstraintBlock»
StartSequenceControlPredicate

constraints
{ {OCL} Ctrl = Normal&Active }

parameters
Ctrl : CtrlMode

«PropertyBasedStatement»
«TimedInstantObservation»
FinishSequenceControl

attributes
id = “HLR-2.13”
text = “Finish sequence
control.”

«Formalization» «ConstraintBlock»
FinishSequenceControlCondition

constraints
{ {OCL} Ctrl@pre = Normal&Active }
{ {OCL} GeneralHEVActuationCommand = Close }
{ {OCL} AnalogicalSwitchStatusProcessed = Open }
{ {VSL} HydraulicCircuitPressureProcessed < (30000, kPa) }

parameters
Ctrl : CtrlMode
GeneralHEVActuationCommand : ActuationCommand
AnalogicalSwitchStatusProcessed : ASValue
HydraulicCircuitPressureProcessed : HCPValue

«Condition»
«ConstraintBlock»

FinishSequenceControlPredicate

constraints
{ {OCL} Ctrl = Normal&Idle }

parameters
Ctrl : CtrlMode

«Predicate»

«TimedDurationConstraint»
{ kind = required, interpretation =
duration, on = idealClk }
{ {VSL} (tSequenceEnd – tSequenceStart
+ tSequenceRevertStart) < (28, s) }

«EventOccurrence»
idle2Active : ChangeEvent

«EventOccurrence»
active2Idle : ChangeEvent

«TimedInstantObservation»
{ name = tSequenceEnd, on = idealClk,
eocc = active2Idle }

«TimedInstantObservation»
{ name = tSequenceStart, on = idealClk,
eocc = idle2Active }

«SystemRequirement»
Sequence

attributes
text = “…”
id = “SRATS-2”
type = BehaviouralRequirement
isAllocatedToSoftware = true

«RefineReqt»

Figure 4.10 Excerpt of the LGCS specification model using

SpecML showing timed constraint formalizations.

4.3.2.4 Data dictionary

Figure 4.11 shows the stereotypes to represent data dictionaries. The DataEntry stereo-

type establishes an entry in the data dictionary. The stereotype must be applied onto a UML

DataType. The stereotype will add to the data type the essential metadata required for DO-

178C certification. Figure 4.12 illustrates the use of the stereotype to define the DGPValue

and HCPValue data types used in the formalizations of HLR-2 (see Figure 4.10). DGPValue

is an enumeration data type for the desired gear position given by the pilots. HCPValue is a

primitive real data type for the hydraulic circuit pressure.

157

«stereotype»
DataEntry

attributes
+ interpretation : String [1]
+ rationale : String [1]
+ displayName : String [1]
+ source : Source [1..*]
+ creationNotes : String [1]
+ maintenanceNotes : String [1]
+ usageNotes : String [1]
+ creationDate : Date [1]
+ modificationDate : Date [1]
+ revision : Integer [1]
+ expectedRangeValues : String [1..*]
+ defaultValue : String [1]
+ format : String [1]
+ precision : Integer [1]
+ units : String [1]
+ load : String [1]
+ isRequired : Boolean [1]
+ isReadOnly : Boolean [1]
+ isUnique : Boolean [1]
+ encoding : String [1]

«Metaclass»
UML::DataType

Figure 4.11 Data dictionary stereotypes.

«DataEntry»
«primitive»
HCPValue

attributes
interpretation = “Current pressure in the
hydraulic circuit.”
rationale = “…”
displayName = “Hydraulic Circuit
Pressure”
expectedRangeValues = “[0.0 .. 40,000.0]”
precision = “±0.1”
units = “kPa”
load = “1000 Hz”

«DataEntry»
«enumeration»
DGPValue

UP
DOWN

attributes
interpretation = “Command to extend
or retract the gears.”
rationale = “…”
displayName = “Desired Gear Position”
defaultValue = “DOWN”

Figure 4.12 Excerpt of the LGCS specification model using

SpecML showing two data entries from the data dictionary.

4.4 Reference Implementation

4.4.1 Tool support

SpecML is tool-independent, any UML modelling tool supporting UML profiles could be used

to implement it. However, the UML modelling tool should: 1) support UML profile creation,

158

2) allow the creation of new diagram types (this is required to support the requirement specifica-

tion and formalization introduced by SpecML), 3) support the validation of profile constraints

to build valid models, and 4) allow the customization of messages that result from constraint

violations. We developed a reference implementation for SpecML with the Eclipse Papyrus

modelling environment (The Eclipse Foundation, 2017b). Papyrus was chosen because it is an

open source tool and it satisfies all of the previous requirements. Furthermore, Papyrus is built

on the Eclipse Modeling Framework (EMF) (The Eclipse Foundation, 2017a), which allows

SpecML’s integration to the checsdm framework. The EMF validation framework provided

the means for specifying the profile’s constraints and customizing the error messages given to

users when a constraint is violated.

4.4.2 Overview

The reference implementation comprises three components: 1) the profile, 2) the validation

rules, and 3) the modelling tooling. The profile component defines the stereotypes for the

language. The validation rules component defines the OCL constraints for the language and

utilizes Papyrus’ model validation framework for their execution by the user while creating a

model. The modelling tooling component provides the user with facilities to create a specifica-

tion model, i.e. editor with palette and context menus, and properties view.

Figure 4.13 displays a screenshot of the SpecML reference implementation. The middle of

the screen shows the model editor with a model being created. On the right of the screen

is the palette with the available language constructs. On the left center of the screen is the

model explorer presenting all the elements currently in the model. At the moment, the model

contains one SRATS (“S” icon) and one HLR (“H” icon). The bottom of the screen displays a

model validation error message indicating a violation of an OCL constraint by one of the model

elements. The element causing the violation is marked in both the model editor and model

explorer. The error message suggests options to the user for fixing the violation. Developer’s

and user’s guides for SpecML’s reference implementation are available in Appendix VIII and

online (Paz & El Boussaidi, 2019e).

159

Figure 4.13 Screenshot of the SpecML reference

implementation. Extracted from Paz & El Boussaidi (2019b).

Figure 4.14 presents the fragment of the specification model for the LGCS presented through-

out this chapter in the reference implementation. The information for every element in the

model can be accessed through Eclipse’s Properties view.

Figure 4.15 shows an alternative tabular view of the specification model fragment for HLR-

2 offered by our reference implementation. However, this is a read-only view automatically

updated whenever a change is done in the specification model. Two-way update between the

graphical/tree and tabular editors is left for future work. The table presented in the figure

contains the reference to HLR-2 (i.e. SequenceControl), the IDs and texts of its formalizations,

and a textual reconstruction following the format of Expression 4.1 for the conditions and

predicates for each formalizing property-based statement. SpecML’s reference implementation

offers two additional tabular views, one of which displays only the modelled SRATS and the

other displays the modelled HLRs without their formalizations but with the traceability links

to their parent SRATS.

160

Figure 4.14 Fragment of the specification model for the LGCS

in the reference implementation.

4.5 Chapter Summary

This chapter presented the unfolding and automated support of the first step of checsdm’s op-

eration phase through SpecML, a modelling language that provides a requirements specifica-

tion infrastructure for DO-178C-compliant avionics software development. SpecML offers a

blended modelling approach by integrating constructs derived from an analysis of DO-178C,

PBR theory, and the expression of timing constraints and clocks. Three features of SpecML

were highlighted: 1) it enforces required information (e.g., trace data, decomposition of re-

quirements) for achieving objectives and activities defined in DO-178C, 2) it captures require-

ments in natural language to smooth the way for its adoption in industry, and 3) it provides

facilities to capture requirements in a structured and semantically-rich formalism to enable

requirements-based analyses and testing. SpecML was developed following an adaptation of

the methodology by Selic (2007) and the extensions made by Panesar-Walawege et al. (2013).

161

Figure 4.15 Fragment of the specification model for the LGCS

in the reference implementation’s tabular view.

The chapter detailed the domain metamodel behind the proposed language. The chapter then

described language’s architecture and the mapping between the domain metamodel’s concepts

and the UML metamodel. The chapter closed with a presentation of SpecML’s reference im-

plementation developed using the Eclipse Papyrus modelling environment. All elements of

SpecML were illustrated with the LGCS running example.

CHAPTER 5

EVALUATION

This chapter reports on the evaluation of our proposed approach for supporting the development

and certification of safety-critical avionics systems.

5.1 Research Questions

The evaluation is targeted at answering the following research questions (RQs).

RQ-1 Is it feasible to execute checsdm?

This research question is concerned with 1) if checsdm can be instantiated for a given

design scenario, and 2) if the required level of effort for its execution to build an in-

stance is acceptable. In particular for the former, the focus is on the challenges and

issues encountered. For the latter, if the required level of effort is considered too high,

practitioners will not adopt checsdm. Hence, achieving a reasonable level of effort is

an important factor for a successful adoption. To answer this question we instanti-

ated checsdm for two design scenarios from the industry partners. One instantiation,

checsdm4uss, targets a design scenario involving UML, Simulink and Stateflow. checs-

dm4uss was already discussed as an example in Chapter 3. The other instantiation tar-

gets a design scenario involving AADL, Simulink and Stateflow. This instantiation is

called checsdm4a/ss (checsdm for AADL, Simulink and Stateflow). These two execu-

tions of checsdm to derive checsdm4uss and checsdm4a/ss are taken as case studies in

Section 5.2. We followed the methodology and guidelines for conducting case studies

defined by Runeson & Höst (2009). A summary of checsdm4a/ss is presented first in

the section to allow a comparison with checsdm4uss.

RQ-2 How does checsdm4uss compare to a conventional manual verification?

This research question is aimed at determining if checsdm4uss, derived from the exe-

cution of checsdm, is able to improve the identification of inconsistencies over a fully

164

manual verification. In particular, the focus is on the recall of inconsistencies. The

answer to this question is drawn from the checsdm4uss case study, specifically, the

execution of checsdm4uss’ operation phase over three avionics systems: the LGCS in-

troduced in Chapter 2, a Flight Control System (FCS) and an Elevator Control System

(ECS) (see Subsection 5.3). The FCS and ECS were presented by Potter (2016) and

Mosterman & Ghidella (2018), respectively.

RQ-3 Is it feasible to use SpecML for capturing natural language requirements, their inter-

relationships and formalizations that can lead to certification-compliant requirement

specifications as well as for requirement-based analyses and testing?

This research question is concerned with 1) if SpecML can capture a structured, se-

mantically rich statement of all the information found in the natural requirement state-

ments, and 2) if required information (e.g., trace data, decomposition of requirements)

for achieving objectives and activities defined in DO-178C can be enforced when build-

ing a requirement specification with the language. To answer this question, we take the

requirements specifications for the LGCS and the FCS (see Section 5.4). The original

requirements specifications for these two systems were written in natural language. We

present the results of capturing such natural language requirements, their interrelation-

ships and formalizations as specifications models to enable further requirements-based

analyses and testing.

RQ-4 Is it likely the proposed approach could be adopted in an industrial context?

Investigating the likelihood of adoption in an industrial context is a key point to evalu-

ate the value of the proposed approach and its instantiations. To answer this question,

we conducted a workshop with the industry partners to assess how domain experts

perceive the proposed approach (see Subsection 5.5).

The following sections describe the setup and present the results and analysis for each research

question.

165

5.2 RQ-1: Feasibility of checsdm’s Execution

5.2.1 Data collection procedure

The data collection procedure for this research question focuses on the instantiation of checsdm,

in particular, the execution of the elicitation and codification phases, for two design scenarios

of the industry partners: 1) UML, Simulink and Stateflow, which we refer to as checsdm4uss

and described in Chapter 3.2, and 2) AADL, Simulink and Stateflow, which we refer to as

checsdm4a/ss (checsdm for AADL, Simulink and Stateflow) and summarize in the following

subsection. The procedure for conducting the checsdm4uss and checsdm4a/ss case studies fol-

lows closely the checsdm approach (see Chapter 3). Recall that in the elicitation phase, the

requirements for the design scenarios of the industry partners were elicited. While in the cod-

ification phase, the support toolchains were derived from the tool framework. The answer to

this research question is drawn from the efforts put in throughout the executions of these two

phases to derive checsdm4uss and checsdm4a/ss. These executions were carried out iteratively.

The outcomes were submitted for review to four domain experts from the industry partners,

and subsequently revised.

In addition, a professional engineer working in safety-critical software development, who had

two years of experience with UML, Simulink, Stateflow and EMF, was recruited to provide

validation by independently executing the same two phases for the design scenario involving

UML, Simulink and Stateflow. A seminar was held with the engineer to go over the elicitation

and codification phases of checsdm, introduce the design scenario and explain the tasks to be

performed. In addition, the engineer had an additional presentation to introduce and demon-

strate checsdm’s tool framework. During the seminar, it was pointed out that keeping track of

the effort put in was imperative. The engineer was then given an open time frame to carry out

the task and come back with a first iteration of generated outcomes. In the course of the elic-

itation phase, the engineer had to record the mapping rules and design guidelines with given

templates like the ones we used to present checsdm4uss in Chapter 3.

166

5.2.2 checsdm4a/ss—Another concrete instantiation of checsdm

We refer to the second instantiation of checsdm as checsdm4a/ss (checsdm for AADL, Simu-

link and Stateflow). In the same way as checsdm4uss, checsdm4a/ss is motivated in direct

response to the industry partners’ needs during their avionics system developments and certifi-

cation with DO-178C, DO-331 and DO-332. This second design scenario is characterized by

employing different combinations of AADL, Simulink and Stateflow design models to describe

the different aspects of systems they develop. In particular, for AADL, Simulink and Stateflow,

the elicited mix was motivated by the industry partners’ interest to describe static system ar-

chitecture in terms of distinct, communicating components with AADL, while using Simulink

and Stateflow to specify each of those components’ source text, i.e. their detailed design. This

resulted in the following feature configuration (recall the feature model characterizing the mix

of modelling languages in Figure 3.2): 1) partial coverage of the system elements, 2) provision

of a structural perspective in AADL, and structural and behavioural perspectives in Simulink

and Stateflow, 3) description of elements at the same and different levels of abstraction, and

4) partial overlap of elements. Regarding AADL, the industry partners use the minimal set of

constructs related to processes, threads, thread groups, subprograms, devices and systems.

AADL and Simulink have a close semantic domain. Fifteen mapping rules were defined be-

tween AADL, Simulink and Stateflow. Table 5.1 lists all the mapping rules defined between

these modelling languages. Similarly to checsdm4uss, mapping rules were established fol-

lowing a top-down strategy, starting from the high-level constructs (e.g., AADL process and

Simulink subsystem block) to lower-level ones (e.g., AADL data port and Simulink block in-

put) in order to properly capture their relationships.

Table 5.2 shows in detail mapping rule mr_as_02 describing the relationship between AADL

process implementations and Simulink subsystem blocks. An AADL process implementation

and a Simulink subsystem block are related when both of these elements have similar names.

Name similarity is taken as defined in checsdm4uss. However, for this relationship to hold

in its entirety, two where clauses must be satisfied. The first where clause, relates the AADL

167

Table 5.1 Summary of the mapping rules for

checsdm4a/ss.

ID Name
mr_as_01 AADL process type and Simulink subsystem

mr_as_02 AADL process implementation and Simulink subsystem

mr_as_03 AADL data port and Simulink port

mr_as_04 AADL connection and Simulink line

mr_as_05 AADL thread implementation and Simulink subsystem

mr_as_06 AADL thread group implementation and Simulink subsystem

mr_as_07 AADL subprogram implementation and Simulink subsystem

mr_as_08 AADL device implementation and Simulink subsystem

mr_as_09 AADL system implementation and Simulink subsystem

mr_as_10 AADL process type and Stateflow chart

mr_as_11 AADL process implementation and Stateflow chart

mr_as_12 AADL data port and Stateflow data

mr_as_13 AADL thread implementation and Stateflow parallel state

mr_as_14 AADL thread group implementation and Stateflow chart

mr_as_15 AADL subprogram implementation and Stateflow chart

process type for the process implementation and the Simulink subsystem block. In this clause,

there is a reference to mapping rule mr_as_01 describing such a fine-grained relationship. The

second where clause, relates the subcomponents of the AADL process implementation and

the nested subsystem blocks of the Simulink subsystem. For this clause, mapping rule mr_-

as_01 is also referenced but, additionally, there is a reference to mapping rule mr_as_02 as

the AADL subcomponents’ implementations should also be related to the nested Simulink

subsystem blocks.

Table 5.2 Mapping rule mr_as_02 for AADL process implementation and

Simulink subsystem.

Mapping Rule
(ID: Name)

mr_as_02: AADL process implementation and Simulink subsystem

When The AADL process implementation and the Simulink subsystem have similar names.

Where
(1) Process type of the AADL process implementation and Simulink subsystem block are

matched (referenced rule: mr_as_01).

(2) Subcomponents of the AADL process implementation and nested subsystem blocks of the

Simulink subsystem block are matched (referenced rules: mr_as_01 and mr_as_02).

Ten design guidelines (intra- and inter-model) were developed in checsdm4a/ss. Five are set

to be mandatory and the remaining five are recommended. Six are intra-model and four are

168

inter-model design guidelines. Table 5.3 lists all the design guidelines. The set of design

guidelines for AADL, Simulink and Stateflow are also divided into the same four categories as

those used in checsdm4uss. Two design guidelines, av_as_04 and av_as_06, were reused from

checsdm4uss’ design guidelines av_us_05 and av_us_18, since they concerned Simulink and

Stateflow models.

Table 5.3 Summary of design guidelines for checsdm4a/ss.

ID Type Title Priority Category
av_as_01 Inter- Mixed use of AADL, Simulink and Stateflow Recommended 1

av_as_02 Intra- Definition of a naming convention Mandatory 2

av_as_03 Intra- Naming of elements in AADL models Mandatory 2

av_as_04 Intra- Naming of elements in Simulink / Stateflow models

(same as av_us_05)

Mandatory 2

av_as_05 Intra- Naming of Simulink subsystem blocks and Stateflow

charts

Recommended 2

av_as_06 Intra- Data type of Simulink inports and outports (same as

av_us_18)

Mandatory 3

av_as_07 Intra- Parallel decomposition type for Stateflow chart and

composite state

Recommended 3

av_as_08 Inter- Expression of thread groups appearing in both AADL

models and Stateflow charts

Mandatory 4

av_as_09 Inter- Specification of AADL process as a Simulink subsystem

block or Stateflow chart

Recommended 4

av_as_10 Inter- Expression of triggers appearing in both UML and

Stateflow transitions

Recommended 4

Table 5.4 shows design guideline av_as_09 providing guidance to facilitate a mapping to be es-

tablished between an AADL process type and Simulink blocks/Stateflow charts. The guideline

makes sure that if an AADL process type is “implemented” through a set of Simulink block-

s/Stateflow charts, then these blocks/charts should be logically organized within a Simulink

subsystem block having the same inputs and outputs as those defined by the AADL process

type.

Regarding the codification phase, AADL modelling capabilities are supported by the Eclipse-

and EMF-based Open Source AADL Tool Environment (OSATE) (Carnegie Mellon Univer-

sity, 2019). However, AADL model processing also required a connector tool and, thus, one

was developed. This was necessary since OSATE is geared mostly towards textual develop-

ment of AADL models. When the textual models are parsed, an in-memory EMF model is

169

Table 5.4 Design guideline av_as_09: Specification of AADL process as

a Simulink subsystem block.

Guideline
(ID: Title)

av_as_09: Specification of AADL process as a Simulink subsystem block

Priority Recommended

Scope AADL, Simulink and Stateflow

Prerequisites None

Description
If an AADL process type is “implemented” through a set of Simulink blocks/Stateflow

charts, then these blocks/charts should be logically organized within a Simulink subsystem

block having the same inputs and outputs as those defined by the AADL process type.

Note: Some compartments are omitted to keep the table uncluttered.

generated. The developed connector tool exports the in-memory EMF model as an XMI file.

Codification of both mapping rules and design guidelines is analogous to those done for checs-

dm4uss. Figure 5.1 depicts an overview of the derived toolchain.

Simulink
.slx File

AADL
Model File

Mapping
Model File

Derived Eclipse Toolchain

Simulink
EMF Model File

Viatra
Framework

Viatra
Framework

Epsilon
Execution Engine

Violation
markers

Violation
markers

Violation
markers

Intra-model
DG in VQL

Mapping Rules
in ECL

Inter-model
DG in VQL

Mapping
Model Editor

Mapping Rules
Menu option

BreesseAADL
Connector

AADL
Textual File

Figure 5.1 Overview of the derived toolchain for checsdm4a/ss.

5.2.3 Results and analysis

Chapter 3 and Section 5.2.2 describe the technical aspects of checsdm4uss and checsdm4a/ss,

respectively. Thus, this subsection concentrates on providing an overview of other outcomes of

the case studies without repeating any technical aspect already discussed. Table 5.5 provides

a summary of checsdm4uss and checsdm4a/ss in terms of the number of mapping rules and

design guidelines developed. The table also presents a summary of the outcomes generated

170

by the recruited engineer for the same design scenario as checsdm4uss. We have labeled this

instantiation checsdm4uss_alt.

Table 5.5 Summary of the checsdm instantiations.

Extracted from Paz et al. (2020).

checsdm4uss checsdm4a/ss checsdm4uss_alt
Number of mapping rules 20 15 12

Number of intra-model design guidelines 16 6 6

Number of inter-model design guidelines 5 4 1

Table 5.6 breaks down the effort involved in performing the elicitation phase for checsdm4uss

and checsdm4a/ss. The table also includes the effort from the recruited engineer (checsdm4uss_-

alt). Regarding this phase, the challenging part was to identify the syntactical and semantical

relationships between the modelling languages. Overall, the effort is reduced with the knowl-

edge and experience of the modelling languages involved. In the case of checsdm4a/ss, the

effort in the definition of intra-model design guidelines was reduced by reusing two design

guidelines (av_us_05 and av_us_18) from checsdm4uss. Effort may increase with a design

scenario involving a larger scope; i.e. a scenario demanding a larger number of modelling

languages constructs to map and/or design guidelines. Iterating over this phase also increases

effort. Contrarily, effort may be lower with a smaller scoped design scenario; which was the

case for checsdm4a/ss when compared to checsdm4uss.

The level of effort put in by the recruited engineer for the checsdm4uss_alt execution was infe-

rior to ours (see last row of Table 5.6). This was due, in part, to the fact that the engineer did not

had to execute all steps from the elicitation and codification phases since the mix of modelling

languages was already determined and only one iteration was expected. The set of mapping

rules and design guidelines identified by the engineer were a subset of those that we identified.

The engineer missed some mapping rules between certain constructs from UML (components,

composite states, regions, fork and join pseudostates) and Stateflow (charts, composite states

and parallel states). Other identified mapping rules referenced multiple constructs at once.

This was the case for the relationships that exist between UML input/output parameters and

Simulink input/output blocks. The bulk of design guidelines defined by the engineer were

171

intra-model. The engineer did, however, identified an inter-model design guideline equivalent

to the inter-model design guideline av_us_10.

Table 5.6 Effort involved in the elicitation phases of the checsdm
instantiations. Extracted from Paz et al. (2020).

checsdm4uss checsdm4a/ss checsdm4uss_alt
Determination of the mix of modelling languages 1pw 0.5pw n/a

Identification of mapping rules 1pw 0.5pw 0.5pw
Definition of intra-model design guidelines 1pw 0.5pw 0.1pw
Definition of inter-model design guidelines 1pw 0.5pw 0.4pw
Refinement of elicitation outputs through iteration 2pw 1pw n/a

Total effort 6pw 3pw 1pw

pw: person week(s)

Table 5.7 breaks down the efforts involved in performing the codification phase. The table also

includes the effort from the recruited engineer. During this phase, it was straightforward to

translate the mapping rules into ECL match rules and the design guidelines into VQL graph

patterns. Nevertheless, while codifying the checsdm4uss and checsdm4a/ss design guidelines

and experimenting with them on the different avionics systems, it was found that mandatory

guidelines av_us_02 and av_as_02, and recommended guidelines av_us_01, av_us_20, av_us_-

21 and av_as_01 are dependent on companies and may even vary from one project to another.

These guidelines are related to company design standards as well as to choices during the de-

sign process. This means they need to be codified independently for each company. Guidelines

av_us_02 and av_as_02, for instance, can be codified once the naming conventions are defined.

Guidelines av_us_01 and av_as_01, for instance, describe some usage scenarios for the mixed

uses of UML, Simulink and Stateflow, and AADL based on the type of system being modelled.

It is not feasible to describe in these guidelines how to model all possible software and in ways

that are applicable to the design processes of all organizations. Designers depend on their

knowledge and past experiences for using modelling languages to represent portions of the

system in ways that better suit the nature of those given portions. Thus, these guidelines are

difficult to codify. For these guidelines, the engineer is more likely required to carry out a

manual verification of compliance.

172

Like in the elicitation phase, effort in the codification phase is reduced with the knowledge

and experience of the modelling languages involved as well as of the tools making up our pro-

posed framework. Effort is also reduced with the availability of metamodels for the languages.

This can be observed for checsdm4a/ss since the metamodels for Simulink and Stateflow were

already made available by checsdm4uss. A minor effort was required to develop the AADL

connector. Depending on the number and complexity of the mapping rules and design guide-

lines, the codification phase may require more—or less—effort. The recruited professional

engineer had no previous experience using ECL and VQL, the two main tools in our codifi-

cation framework. Indeed, mastery of these tools was not expected either after demonstrating

their use during the seminar.

Table 5.7 Effort involved in the codification phases of the checsdm
instantiations. Extracted from Paz et al. (2020).

checsdm4uss checsdm4a/ss checsdm4uss_alt
Simulink/Stateflow metamodelling and importers 2.5pw 0pw n/a

AADL connector n/a 0.5pw n/a

Codification of mapping rules 2pw 1pw 0.7pw
Codification of design guidelines 1.5pw 0.5pw 0.3pw
Refinement of codification through iteration 2pw 1pw n/a

Total effort 8pw 3pw 1pw

pw: person week(s)

The bulk of the effort for checsdm4uss and checsdm4a/ss was spent on the elicitation and cod-

ification phases. These two phases required approximately three and a half person months for

checsdm4uss, and less than one and a half person months for checsdm4a/ss. Most of the effort

for checsdm4uss was spent on analyzing the modelling languages, and defining and refining

the mapping rules and design guidelines. The remaining effort was spent on reviewing and

codifying the Simulink and Stateflow metamodels, importers, mapping rules and design guide-

lines. As it can be observed with checsdm4a/ss, it is anticipated that a proportional amount of

effort is required for other modelling languages as well. However, this is a one-time effort that

needs to be put in once per set of modelling languages. Resulting mapping rules and design

guidelines can then be reused across projects. Moreover, they can be reused on other checsdm

instantiations. It is to be noted that our interest with the report of effort was not to provide a

173

precise record for every activity performed. The amounts of effort we documented were esti-

mated in retrospective and, thus, should be regarded as inflated since they can be higher than

they actually were.

The professional engineer carried out the instantiation in approximately a half person month

(2pw). It is to be noted that the professional engineer only carried out one iteration during the

execution of checsdm4uss_alt, while we carried out several iterations with feedback from the

industry partners. This explains the difference in terms of number of identified mapping rules

and design guidelines. Nevertheless, the set of mapping rules and design guidelines identified

by the engineer were a subset of those that we identified. Missing mapping rules and design

guidelines could be identified in subsequent iterations and through feedback of other members

of an engineering team.

5.3 RQ-2: checsdm4uss vs. Manual Verification

5.3.1 Data collection procedure

The data collection procedure for this research question focuses on the execution of checs-

dm4uss’ operation phase over three software-intensive avionics systems: the LGCS, a Flight

Control System (FCS) and an Elevator Control System (ECS). The LGCS was described in

Chapter 2. The FCS and ECS system descriptions were developed by Potter (2016) andMoster-

man & Ghidella (2018), respectively, and are openly-available. The three systems were con-

sidered by the industry partners to be complex and representative of their needs. We developed

the design models for these systems iteratively. These models were also presented to the four

domain experts from the industry partners and afterwards revised. These models were assumed

to be consistent. The design models are further described in Subsection 5.3.2.

Six professional engineers were recruited to verify the design models for consistency. The

participants were separated into two groups of three engineers. The first group (named the

operation group) performed the verification of the outputs of checsdm4uss’ operation phase

174

on the three avionics systems. The second group (named the control group) performed the

verification of the design models but without the assistance provided by checsdm4uss to act as

a control group. Each participant was asked to complete a brief pre-study survey to characterize

their background (see Table 5.8). Figure 5.2 summarizes the participants’ background. They

all have experience in software design and mostly with UML.

Table 5.8 Pre-study survey. Extracted from Paz et al. (2020).

Q1 Which of the following describes your experience in software design?

(0 - 6 months | 6 months - 1 year | 1 - 3 years | +3 years)

Q2 Which of the following describes your experience with the Eclipse IDE?

(0 - 6 months | 6 months - 1 year | 1 - 3 years | +3 years)

Q3 Which of the following describes your experience with UML?

(0 - 6 months | 6 months - 1 year | 1 - 3 years | +3 years)

Q4 Which of the following describes your experience with Simulink?

(0 - 6 months | 6 months - 1 year | 1 - 3 years | +3 years)

Q5 Which of the following describes your experience with Stateflow?

(0 - 6 months | 6 months - 1 year | 1 - 3 years | +3 years)

Design Experience

Eclipse Experience

UML Experience

Simulink Experience

Stateflow Experience

0 1 2 3 4

0-6 months 6 months - 1 year 1 - 3 years +3 years

Figure 5.2 Participants’ background.

Extracted from Paz et al. (2020).

After the pre-study survey, a seminar was held with the participants to go over the descriptions

of the three avionics systems, explain the tasks they had to perform and give some preliminar-

ies about modelling with UML, Simulink and Stateflow, as well as syntactical and semantical

relationships between them. During this presentation, it was pointed out that when identifying

175

inconsistencies, these had to be propagated to the containing elements. The participants from

the operation group had an additional fifteen-minute presentation to introduce checsdm4uss’

operation phase and demonstrate how to use the support toolchain (see Figure 3.10). During

this additional presentation, it was also pointed out that the toolchain may report false consis-

tent mappings or false inconsistent mappings. Therefore, the participants were encouraged to

perform a rigorous review of the results from the toolchain. Each participant of the two groups

received two sets of design models (one in UML and another one in Simulink and Stateflow)

from one of the avionics systems to be verified for consistency. The avionics systems were

assigned randomly to the participants in each group.

The participants were then given a ninety-minute time frame to inspect the given sets of design

models. For the control group, if an inconsistency was detected during their inspection, the

participant had to record the inconsistency with the inconsistency report sheet in Table 5.9.

For the operation group, each participant received, in addition, the design guidelines and the

resulting mapping model with the flagged inconsistencies for the given set of design models.

They were required to answer some questions for every mapping and inconsistency in the

resulting mapping models to confirm their correctness. Table 5.10 shows a fragment example

of a mapping model inspection sheet.

Table 5.9 Inconsistency report sheet. Extracted from

Paz et al. (2020).

Inconsistency between
UML element:

Simulink/Stateflow element:

Description of the inconsistency

Finally, each participant was asked to complete a brief post-study survey to evaluate the expe-

rience. The survey for the control group included questions to rate the difficulty level of the

verification task. The survey for the operation group included the same questions as the survey

for the control group but it added questions to rate the difficulty level of understanding and the

176

Table 5.10 Fragment example of a mapping model

inspection sheet. Extracted from Paz et al. (2020).

Mapping between
UML input parameter: desiredGearPosition

Simulink input: In_DesiredGearPosition

Inconsistent: Yes

Reasons for the inconsistency:
Distinct types

Q1. If the mapping is marked as an inconsistency, is it correctly marked as

an inconsistency? (Yes | No)

Q2. If you answered Yes in Q1, is the inconsistency due to a design

guideline violation? (Yes | No)

Q3. If you answered Yes in Q2, which design guideline was violated?

Q4. If the mapping is marked as consistent, is it correctly marked as

consistent? (Yes | No)

usefulness of the assistance provided by checsdm4uss and its toolchain. The post-study survey

is presented in Table 5.11.

Table 5.11 Post-study survey. Extracted from Paz et al.
(2020).

Post-study survey for the control and operation groups
Q1 How would you rate the level of difficulty to understand the tasks you were asked to perform?

(Very easy | Easy | Average | Difficult | Very difficult)

Q2 How would you rate the level of difficulty to carry out the verification task?

(Very easy | Easy | Average | Difficult | Very difficult)

Additional questions for the operation group
Q3 How would you rate the level of difficulty to understand checsdm4uss’ design guidelines?

(Very easy | Easy | Average | Difficult | Very difficult)

Q4 How would you rate the level of difficulty to understand checsdm4uss’ support toolchain?
(Very easy | Easy | Average | Difficult | Very difficult)

Q5 How would you rate the level of difficulty to use checsdm4uss’ support toolchain?
(Very easy | Easy | Average | Difficult | Very difficult)

Q6 How would you rate the usefulness of checsdm4uss for ensuring consistency in heterogeneous design?

(Very high | High | Medium | Low | None)

5.3.2 Design models

The sets of design models were created in close consultation with practitioners from the indus-

try partners to achieve an accurate functional representation and were assumed to be consistent.

All the intra- and inter-model design guidelines elicited for checsdm4uss were followed. Ta-

177

ble 5.12 provides a summary of the design models’ contents in terms of the number of model

element types. Before giving the design models to the participants, these were injected with

design inconsistencies of different kinds (e.g., naming, number of inputs/outputs, data types,

source/destination of transitions) at random locations in the design models. Recall that incon-

sistencies in lower-level elements (e.g., UML input parameters) may propagate as inconsisten-

cies in higher-level elements (e.g., UML component). The last two rows of Table 5.12 provide

the number of injected inconsistencies for each system and the total number of inconsisten-

cies taking into account propagation to container/owner elements. Figure 5.3 exemplifies an

injected inconsistency between two design models of the LGCS. There is a correspondence

between the input parameter desiredGearPosition in the UML fragment and both the output

Out_DesiredGearPosition and input In_DesiredGearPosition in the Simulink fragment.

However, these have different types. This inconsistency might be hard to detect. The engineer

verifying the design models needs to go through several inputs and outputs on the different

models and understand the syntactical and semantical relationships between the model ele-

ments.

Table 5.12 Summary of the design models for the

LGCS, FCS and ECS. Extracted from Paz et al. (2020).

LGCS FCS ECS
Number of UML components 10 10 10

Number of UML interfaces 9 8 9

Number of UML input parameters 26 30 27

Number of UML output parameters 33 32 33

Number of UML state machines 3 3 4

Number of UML states 25 6 17

Number of UML transitions 33 7 30

Number of UML choice pseudostates 0 0 2

Number of Simulink subsystem blocks 8 12 8

Number of Simulink inputs 7 31 8

Number of Simulink outputs 7 24 8

Number of Stateflow charts 3 3 6

Number of Stateflow states 23 6 19

Number of Stateflow transitions 31 6 30

Number of Stateflow junctions 0 0 2

Number of injected inconsistencies 37 46 29

Total number of inconsistencies* 84 64 45

* Taking into account propagation to container/owner elements.

178

Simulink design fragmentUML design fragment

«interface»
DesiredGearPositionCommand

+ onDesiredGearPositionChange(desiredGearPosition :
DesiredGearPositionValue) : void

LGCS

In_DesiredGearPosition

⋮

Out_DesiredGearPosition
In_DesiredGearPosition

Outport
Inport

int8
int8

GearLever

Out_DesiredGearPosition

Figure 5.3 Example of an injected inconsistency used in the

study. Adapted from Paz et al. (2020).

Table 5.13 provides a summary of the contents of the resulting mapping models for the three

avionics systems in terms of the total number of mappings and inconsistency flags. Building a

mapping model is a computationally demanding step that depends on the design model sizes.

Computation times to generate the mapping models for the three avionics systems are presented

in the last row of Table 5.13. All computations were performed on a Quad Core Intel Core i7 at

2.8 GHz with 16 GB of RAM. Computation times include applying the mapping rules, building

the mapping model and cleaning up the resulting mapping model.

Table 5.13 Summary of checsdm4uss’ resulting
mapping models for the LGCS, FCS and ECS.

LGCS FCS ECS
Total number of mappings 451 556 261

Number of inconsistency flags 422 546 228

Computation time 6s 4s 6s

5.3.3 Results and analysis

The operation group verified the correctness of the mappings and inconsistency flags of the

resulting mapping models from checsdm4uss. Table 5.14 provides the results of their validation

by the operation group. The table reports the following:

1. The number of mappings (recalled from Table 5.13).

179

2. The total number of inconsistency flags (recalled from Table 5.12).

3. False consistencies, which are mappings that should have been flagged by checsdm4uss as

inconsistent but were not.

4. True consistencies, which are mappings where the elements involved are related and con-

sistent as confirmed by the operation group.

5. False inconsistencies, which are mappings where the elements are not related and were

flagged as inconsistent.

6. True inconsistencies, which are mappings where the elements are related and were flagged

as inconsistent as confirmed by the operation group.

False consistencies and false inconsistencies denote problems in the mapping rules, which may

need further refinement either because some relationship in the design scenario is not being

captured by some mapping rule or the current mapping rules are too restrictive.

Table 5.14 Summary of checsdm4uss’ resulting mappings for the

LGCS, FCS and ECS. Extracted from Paz et al. (2020).

LGCS FCS ECS
Total number of mappings* 451 556 261

Number of inconsistency flags* 422 546 228

Number of false consistencies 2 0 0

Number of true consistencies 27 10 33

Number of false inconsistencies 340 482 183

Number of true inconsistencies 82 64 45

Total number of inconsistencies** 84 64 45

Precision 19% 12% 20%

Recall 98% 100% 100%

* From Table 5.13

** From Table 5.12

Precision= Number of true inconsistencies/(Number of true inconsistencies + Number of false inconsistencies)

Recall= Number of true inconsistencies/(Number of true inconsistencies + Number of false consistencies)

In the LGCS, from a total of 84 inconsistencies, the operation group confirmed the 82 mappings

flagged as inconsistent in the mapping model were indeed inconsistencies. The two missing

inconsistencies were falsely reported in the mapping model as consistencies. These mappings

180

were carried out by the application of mapping rule mr_us_03. The elements involved in the

mappings had name fragments that were shared, although they were unrelated. Thus, the oper-

ation group found these to be false consistencies. This result indicates that the name similarity

clause as it is defined in the mapping rules must be further refined.

Precision and recall was calculated for the tool given the validation from the operation group

(see Table 5.14). There was a 98 percent recall of all inconsistencies for the LGCS, while for

the FCS and ECS there was 100 percent recall. On average, the recall was 99 percent. Pre-

cision, on the other hand, was 17 percent on average. Precision for the FCS was the lowest

due to the higher number of false inconsistencies reported compared to the other two systems.

This result suggests that some mapping rules must be further refined. Due to the safety-critical

nature of the systems, there was an aim to achieve 100 percent recall. Remember that the

mapping model clean up heuristic only removes inconsistent mappings for those elements that

participate in a mapping that is flagged as consistent. Any other inconsistent mapping is not

discarded. This strategy had an impact on precision and caused a very high number of false

inconsistencies. The participants in the operation group were able to go through all the map-

pings within the ninety-minute time frame. This suggests the mapping model makes it easy

to go through the mappings and the number of inconsistencies was not a problem. However,

the mapping rules and the mapping model clean up heuristic can be refined in order to fit spe-

cific design scenarios and ways of modelling the systems and, thus, increase precision. This

will lower the number of false inconsistencies and reduce the effort involved in reviewing false

mappings.

Table 5.15 provides a summary of the inconsistencies reported by the control group. All re-

ported inconsistencies were true inconsistencies. Thus, precision for the control group was

100 percent. However, recall on the control group drops considerably, 24 percent on average.

The lowest recall of the control group was for the LGCS. This system’s design was slightly

larger and more complex than the other two, which may explain the dip. Figure 5.4 presents a

comparative view of the average recall for checsdm4uss mapping model and the manual work

181

from the control group. The figure shows that inconsistencies were identified by checsdm4uss

with a greater recall rate over a fully manual verification.

Table 5.15 Summary of inconsistencies manually reported by

the control group for the LGCS, FCS and ECS. Extracted from

Paz et al. (2020).

LGCS FCS ECS
Number of reported inconsistencies 11 21 12

Number of true reported inconsistencies 11 21 12

Total number of inconsistencies* 84 64 45

Precision 100% 100% 100%

Recall 13% 33% 27%

* From Table 5.12

Precision= Number of true reported inconsistencies/Number of reported inconsistencies

Recall= Number of true reported inconsistencies/Total number of inconsistencies

checsdm4uss

Control Group
0% 20% 40% 60% 80% 100%

Identified Unidentified

Figure 5.4 Comparison of the consolidated

inconsistency recall. Extracted from Paz et al. (2020).

Finally, through the post-study survey, all the participants were asked to evaluate the consis-

tency verification task they had to perform. In particular, they were asked to rate both the level

of difficulty to understand the consistency verification task (Q1 of the post-study survey) and

the level of difficulty to carry it out (Q2 of the post-study survey). Figure 5.5 presents the re-

sults of this survey. Most participants understood easily the verification task to be performed.

However, the control group found the execution of the task to be more difficult than how the

operation group found the task to be.

In a similar analysis, the participants from the operation group were asked to rate the level of

difficulty to understand checsdm4uss’ design guidelines and support toolchain, as well as its

usage (Q3, Q4 and Q5 of the post-study survey). Figure 5.6 presents the results of this survey.

Most of the operation group participants found checsdm4uss’ design guidelines and support

182

CG

OG

CG

OG

0 0.75 1.5 2.25 3

Very easy Easy Average Difficult Very difficult

Understanding
the task

Carrying out
the task

Figure 5.5 Post-study survey results for Q1 and Q2.

CG: Control Group. OG: Operation Group. Extracted

from Paz et al. (2020).

toolchain easy to understand. They, however, found the usage of the support toolchain to have

an average level of difficulty. Participants reported having some difficulties navigating to the

model elements involved in a mapping. Improving user experience is left for future work.

Design Guidelines

Support Toolchain

Usage of
Support Toolchain

0 0.75 1.5 2.25 3

Very easy Easy Average Difficult Very difficult

Figure 5.6 Post-study survey results for Q3, Q4 and

Q5. Extracted from Paz et al. (2020).

To assess checsdm4uss’ usefulness from the perspective of the participants in the operation

group, they were asked to rate its support against a fully manual verification (Q6 of the post-

study survey). Figure 5.7 presents this analysis. Participants found checsdm4uss useful and

highly useful.

183

Very high
High

Medium
Low

None
0 0.5 1 1.5 2

Figure 5.7 Post-study survey results for Q6. Extracted

from Paz et al. (2020).

5.4 RQ-3: Feasibility of SpecML’s Use

5.4.1 Data collection procedure

The data collection procedure for this research question focuses on the expression of the dif-

ferent requirements for the LGCS and the FCS using SpecML. Recall that SpecML captures a

blended specification of requirements: natural language statements and formalized statements

of the former. The latter were created by translating the natural language statements into PBRs

and annotating such PBRs with time-dependent constraints where necessary. The entire pro-

cess of using SpecML to specify the requirements of the LGCS and the FCS was iterative. The

outcomes were reviewed by four domain experts from the industry partners and were subse-

quently revised.

The LGCS was described in Chapter 2. The FCS was developed by Potter (2016) and openly

distributed online. The FCS is the system responsible for providing attitude (i.e. the aircraft’s

orientation about its center of mass) and attitude rate control based on pilot input commands to

keep them within the flight envelope of the aircraft. The FCS controls three hydraulic actuators

that allow the aircraft to pitch up or down, roll right or left, and yaw right or left. The ECS,

which is used during the evaluation of checsdm4uss’ operation phase, was not considered for

this part of the evaluation due to lack of time in the project.

For the LGCS, there are eighteen SRATS (identified by the prefix SRATS- and a unique num-

ber), which have been refined into eighteen HLRs (identified by the prefix HLR- and a unique

number). For the FCS, there are eleven SRATS (identified by the prefix SR_ and a unique

184

number), which have been refined into thirteen HLRs (identified by the prefix HLR_ and a

unique number). The sets of requirements for these two systems cover different kinds of func-

tional elements from one another. For instance, the LGCS includes requirements involving the

sequencing of property evaluations, which the FCS does not. The FCS, instead, includes re-

quirements involving continuous modulated control through a proportional–integral–derivative

loop. For the sake of brevity only one SRATS and its refining HLR are discussed for each

system. Table 5.16 presents the requirements extracted from these systems to illustrate the

requirements modelling using SpecML.

Table 5.16 Requirements extracted from the LGCS and FCS.

System Requirement
Type

Requirement Statement

LGCS SRATS SRATS-2 Retraction Sequence. When the pilots switch the gear lever to Up, the

LGCS shall retract the gears in under 28 seconds.

LGCS HLR HLR-2 Retraction Sequence Control. When the LGCS receives an Up value

for the Desired Gear Position, the LGCS shall carry out the retraction

sequence in under 28 seconds.

FCS SRATS SR_4 Hydraulic Actuator Control Loop Performance. The FCS shall control

the hydraulic actuator position with a minimum bandwidth of 10Hz and a

minimum damping of 0.4.
FCS HLR HLR_4 Hydraulic Actuator Loop Control. Each hydraulic actuator loop shall

be implemented as a PID (proportional-integral-derivative) control loop operating

at a 1ms frame rate. The proportional gain shall be 0.3. The integral gain shall be

0.12. The derivative gain shall be 0.02.

5.4.2 Results and analysis

Figure 5.8 presents a fragment of the LGCS specification model in SpecML using the SysML

notation. Recall HLR-2 describes the behaviour of the LGCS when a desired gear position is

given by the pilots. There are a series of actions the LGCS must perform as part of this require-

ment and a single formalization statement is not sufficient to cover the whole behaviour. Thus,

thirteen property-based statements are introduced to formalize the HLR. The figure shows only

the first and last of these formalization statements (2.1 and 2.13). Formalization 2.1 reads

as follows: when the LGCS is functioning normally and is idle, and there is a change in the

desired gear position after it has been validated, then the LGCS shall become active. Formal-

185

ization 2.13 reads as follows: when the LGCS is functioning normally and is active, the general

hydraulic electro-valve has been set to close, the hydraulic circuit pressure is validated to be

under 30,000kpa, and the analogical switch status is validated to be open, then the LGCS

shall become idle. These two statements are annotated as timed instant observations. A timed

duration constraint is placed on these two timed instant observations to restrict the temporal

distance between the two events to be less than 28 seconds.

req LGCS Specification Fragment «TimedDomain»

«HighLevelRequirement»
SequenceControl

attributes
text = “When a Desired Gear
Position is received, the LGCS
shall, in under 28 seconds, …”
id = “HLR-2”
type = BehaviouralRequirement

«Formalization»

«PropertyBasedStatement»
«TimedInstantObservation»

StartSequenceControl

attributes
id = “HLR-2.1”
text = “Start sequence
control.”

«Condition»

«Predicate»

«ConstraintBlock»
StartSequenceControlCondition

constraints
{ {OCL} Ctrl@pre = Normal&Idle }
{ {OCL} DesiredGearPositionProcessed@pre ≠
DesiredGearPositionProcessed }

parameters
Ctrl : CtrlMode
DesiredGearPositionProcessed : DGPValue

«ConstraintBlock»
StartSequenceControlPredicate

constraints
{ {OCL} Ctrl = Normal&Active }

parameters
Ctrl : CtrlMode

«PropertyBasedStatement»
«TimedInstantObservation»
FinishSequenceControl

attributes
id = “HLR-2.13”
text = “Finish sequence
control.”

«Formalization» «ConstraintBlock»
FinishSequenceControlCondition

constraints
{ {OCL} Ctrl@pre = Normal&Active }
{ {OCL} GeneralHEVActuationCommand = Close }
{ {OCL} AnalogicalSwitchStatusProcessed = Open }
{ {VSL} HydraulicCircuitPressureProcessed < (30000, kPa) }

parameters
Ctrl : CtrlMode
GeneralHEVActuationCommand : ActuationCommand
AnalogicalSwitchStatusProcessed : ASValue
HydraulicCircuitPressureProcessed : HCPValue

«Condition»
«ConstraintBlock»

FinishSequenceControlPredicate

constraints
{ {OCL} Ctrl = Normal&Idle }

parameters
Ctrl : CtrlMode

«Predicate»

«TimedDurationConstraint»
{ kind = required, interpretation =
duration, on = idealClk }
{ {VSL} (tSequenceEnd – tSequenceStart
+ tSequenceRevertStart) < (28, s) }

«EventOccurrence»
idle2Active : ChangeEvent

«EventOccurrence»
active2Idle : ChangeEvent

«TimedInstantObservation»
{ name = tSequenceEnd, on = idealClk,
eocc = active2Idle }

«TimedInstantObservation»
{ name = tSequenceStart, on = idealClk,
eocc = idle2Active }

«SystemRequirement»
Sequence

attributes
text = “…”
id = “SRATS-2”
type = BehaviouralRequirement
isAllocatedToSoftware = true

«RefineReqt»

Figure 5.8 Fragment of the specification model for the LGCS.

Figure 5.9 presents the complete formalization of HLR-2 in SpecML’s reference implementa-

tion. Although we were able to successfully captured all the LGCS’ requirements with SpecML

and using its reference implementation, the figure does put in evidence a scalability problem.

As the number of requirements and their formalizations we had modelled started to grow, we

186

experienced that the graphical view can become unreadable and cumbersome to work with.

Therefore, we developed three tabular views (i.e. modelled SRATS, modelled HLRs without

their formalizations but with traceability links to parent SRATS, and modelled formalizations

for the HLRs) to mitigate such a scalability problem. However, the tabular views are read-only.

Once a tabular view is created it will be automatically updated whenever a change is done in

the specification model. Two-way update between the graphical/tree and tabular editors is left

for future work.

Figure 5.9 Complete formalization of the LGCS’ HLR-2 in

SpecML’s reference implementation.

Figure 5.11 presents the specification of SR_4 and its refinement by HLR_4 from the FCS

using the SysML notation. Figure 5.12 shows its equivalent using the SpecML reference im-

plementation. The system requirement SR_4 is a system requirement allocated to software,

which is refined by HLR_4. HLR_4 describes the behaviour of the hydraulic actuator loop

control. There are three hydraulic actuator loops, however, in this case a single formalization

statement is sufficient to cover the whole behaviour. Thus, only one property-based statement

187

Figure 5.10 Tabular view for the complete formalization of the

LGCS’ HLR-2 in SpecML’s reference implementation.

is introduced to formalize the HLR. The formalization statement reads as follows: the FCS

shall implement the actuator command loop as a PID control loop. The predicate of this state-

ment has nested SysML constraint blocks that defined separately each term of the PID control

loop. Furthermore, the formalization statement is annotated as a timed event that occurs every

1 millisecond for an indefinite number of repetitions.

Producing the requirement specification model of the LGCS and FCS with SpecML is only

an intermediate goal. The requirements are allocated to entities of the design models intended

to satisfy them. SysML parametric diagrams can include usages of the constraint blocks for-

malizing the requirements to constrain the properties of the entities in the design models. For

instance in the FCS, binding the parameters of the CommandLoopControlPredicate con-

straint block to the specific properties of the PitchActuatorLoop, RollActuatorLoop and

YawActuatorLoop design entities (not shown) intended to satisfy HLR_4, will provide the

188

«Predicate»«Formalization»
«HighLevelRequirement»

HydraulicActuatorLoopControl

attributes
id=“HLR_4”
text=“Each hydraulic actuator loop shall be
implemented as a PID control loop operating
at a 1ms frame rate. The proportional gain
shall be 0.3. The integral gain shall be 0.12.
The derivative gain shall be 0.02.”

«PropertyBasedStatement»
CommandLoopControl

attributes
id=“HLR_4_Formal”
text=“Command loop control”

«ConstraintBlock»
CommandLoopControlPredicate

parameters
Command : Real
FeedbackProcessed : Real
CommandOutput : Real

«ConstraintBlock»
PIDController

constraints
{ CommandOutput=P+I+D }

parameters
CommandOutput : Real
P : Real
I : Real
D : Real

«ConstraintBlock»
ProportionalTerm

constraints
{ P=0.3*e }

parameters
P : Real
e : Real

«ConstraintBlock»
IntegralTerm

constraints
{ I=0.12 *⌠t e ∂t }
 ⌡0

parameters
I : Real
e : Real
t : Real

«ConstraintBlock»
DerivativeTerm

constraints
{ D=0.02*∂e/∂t }

parameters
D : Real
e : Real
t : Real

«ConstraintBlock»
Error

constraints
{ e=x-y }

parameters
e : Real
x : Real
y : Real

«SystemRequirement»
HydraulicActuatorLoopControlPerformance

attributes
id=“SR_4”
text=“The FCS shall control the hydraulic
actuator position with a minimum bandwidth
of 10Hz and a minimum damping of 0.4.”
isAllocatedToSoftware=true

«TimedEvent»
{ on=idealClk, every=(1,ms) }

«RefineReqt»

Figure 5.11 Fragment of the specification model for the FCS.

Extracted from Paz & El Boussaidi (2019b).

Figure 5.12 Screenshot of the specification and formalization of HLR_4 for the FCS

with the SpecML reference implementation. Extracted from Paz & El Boussaidi

(2019b).

values for the parameters. This modelling establishes the method of evaluating design compli-

189

ance with the specified requirements. Moreover, the property-based statements can be used to

generate test cases. Figure 5.13 shows a SysML parametric diagram detailing the usage of the

nested constraints for the PID control loop in HLR_4 of the FCS. This parametric diagram can

be used to bind its parameters to the specific properties in a design model.

par [ConstraintBlock] CommandLoopControlPredicate

«Clock»
idealClk : IdealClock

time : s

y

x

FeedbackProcessed

Command

e

e

e

e

P

I

D

D

I

P

CommandOutput

CommandOutput
i : Integral

p : Proportional

pid : PIDControllererror : Error

d : Derivative

Figure 5.13 SysML parametric diagram of the

CommandLoopControlPredicate constraint block.

The analysis of the previous results focuses on the benefits experienced in the process. Four

benefits of using SpecML can be highlighted. The first benefit regards requirement specifi-

cation in accordance with regulation. Using SpecML, all the LGCS and FCS requirements

(SRATS and HLRs) were modelled in a hierarchical way along with their interrelationships

satisfying DO-178C objectives. The second benefit is that SpecML can relieve requirements

engineers from the error-prone and labor-intensive work of manually verifying every require-

ment for compliance with DO-178C objectives. While building the specification model, several

errors related to deviations from DO-178C objectives were detected with the reference imple-

mentation and corrected accordingly. The third benefit pertains to facilitating communication

between stakeholders by capturing requirements in natural language while still allowing re-

quirement formalization to enable analyses and testing. All the HLRs for the LGCS and FCS

were formalized using the specialized stereotypes for such a purpose. As with any model,

190

SpecML does not actually perform requirement analyses or testing, it is intended to provide

facilities that enable requirements-based analyses and testing.

It is to be acknowledged requirements specification standards vary from one company to an-

other. This results in different ways of writing the same requirement statement. The fourth

benefit is that SpecML can accommodate the review efforts already put in place to check com-

pliance with company-defined requirement standards. Requirement statements in SpecML are

first represented in natural language and must be clearly defined. The quality of the require-

ments is dependent on such descriptions since they will be translated into PBR statements and

timing constraints.

5.5 RQ-4: Likelihood of industry adoption

5.5.1 Data collection procedure

The workshop was conducted with the industry partners with the goal of investigating our

proposed approach’s likelihood of being adopted in a real industrial context (RQ-4). This in-

vestigation was carried out following the goal-question-metric (GQM) approach (Basili et al.,

1994). Six practitioners attended the workshop. However, one of them was not present for the

entire workshop. The group was hand-picked by two champions from the industry partners,

who had knowledge of the approach. The group included senior engineers with ample experi-

ence in the development and certification of safety-critical avionics software, who would likely

produce valuable feedback on the approach.

At the beginning of the workshop, each attendee practitioner was asked to complete a brief

pre-workshop survey (see Table 5.17) to characterize their background. Based on the responses

obtained in the pre-workshop survey, all the practitioners had over five years experience with

safety-critical system development. Requirements specifications, software design and verifi-

cation were integral parts of their jobs. For all but one practitioner, certification was also an

important aspect of their jobs.

191

Table 5.17 Pre-workshop survey.

Q1 Which of the following describes your experience in safety-critical software

development?

(0 - 12 months | 1 year - 3 year | 3 - 5 years | +5 years)

Q2 Is requirement specification an important aspect of your job?

(Yes | No)

Q3 Is software design an important aspect of your job?

(Yes | No)

Q4 Is verification an important aspect of your job?

(Yes | No)

Q5 Is certification an important aspect of your job?

(Yes | No)

The workshop then lasted for one hour. It proceeded with an interactive presentation giving a

thorough look into the phases of the checsdm approach, the SpecML modelling language and

providing as example the checsdm4uss concrete instantiation. Afterwards, a demonstration

of the toolchain was given. Throughout the presentation and tool demonstrations the atten-

dees could ask questions to clarify any concerns. Following the presentation session, a post-

workshop survey with the GQMmodel questions was circulated to the practitioners. Responses

were anonymous and were based on the practitioners’ perceived advantages.

Table 5.18 shows the complete GQM model. We divided the questions in the GQM model

into three groups. The first group, Q1 and Q2, was about the characterization of our proposed

approach’s comprehensibility. The second group, Q3 and Q4, was about the evaluation of our

proposed approach’s overall value. The last group, Q5–Q7, was about the evaluation of our

proposed approach’s characteristics that are relevant with respect to the issue (e.g., support for

certification).

5.5.2 Results and analysis

It was found that four attendee practitioners perceived the checsdm approach and its instantia-

tion (checsdm4uss) as being easy to understand (see Figure 5.14). One practitioner thought they

were averagely understandable. No one found them to be difficult to understand. It was found

that all six attendee practitioners perceived SpecML easy to understand (see Figure 5.15). Re-

192

Table 5.18 GQM model for the assessment workshop.

Goal Purpose Assess

Issue the likelihood of adoption of

Object the proposed approach

Viewpoint from the practitioner’s viewpoint

Question Q1. Were (1) checsdm, (2) checsdm4uss and (3) SpecML easy to understand?

Metric M1. Rating score (for each numeral)

(Very easy | Easy | Average | Difficult | Very difficult)

Question Q2. Would you use (1) checsdm, (2) checsdm4uss and (3) SpecML to help in your

work?

Metric M2. Rating score (for each numeral)

(Definitely | Likely | Not sure | Not likely | Definitely not)

Question Q3. Do you see value in adopting (1) checsdm and (2) checsdm4uss for ensuring

consistency of heterogeneous design models?

Metric M3. Rating score (for each numeral)

(Definitely | Likely | Not sure | Not likely | Definitely not)

Question Q4. Do you see value in adopting SpecML for supporting (1) requirement

specification, (2) requirement-based testing, and (3) certification efforts?

Metric M4. Rating score (for each numeral)

(Definitely | Likely | Not sure | Not likely | Definitely not)

Question Q5. Does the resulting mapping model in the operation phase provide useful assistance

for reviewing and solving consistency issues in heterogeneous design models?

Metric M5. Rating score

(Definitely | Likely | Not sure | Not likely | Definitely not)

Question Q6. Do you find the resulting requirements specification model simple enough for use

when communicating with a certification agent?

Metric M6. Rating score

(Definitely | Likely | Not sure | Not likely | Definitely not)

Question Q7. Does the proposed approach provide useful assistance for adhering to certification

compliance needs?

Metric M7. Rating score

(Definitely | Likely | Not sure | Not likely | Definitely not)

garding adoption of the approach to help in their work, five practitioners agreed that checsdm

and checsdm4uss were worth adopting (see Figure 5.16). Regarding adoption of SpecML to

help in their work, four attendees thought there was likelihood while the remaining two were

not sure (see Figure 5.17).

In terms of adopting the approach for the specific task of ensuring consistency of heteroge-

neous design models, three practitioners were definitely in favor of adopting the approach and

one of them thought there was likelihood (see Figure 5.18). One practitioner was not sure. In

terms of value perceived for supporting requirement specification, five practitioners were in

favor of adopting SpecML (see Figure 5.19). One of the attendees thought there was little like-

193

checsdm

checsdm4uss

0 1 2 3 4

Very easy Easy Average Difficult Very difficult

Figure 5.14 Q1. Were (1) checsdm [and] (2) checsdm4uss easy

to understand?

Very easy
Easy

Average
Difficult

Very difficult
0 1.5 3 4.5 6

Figure 5.15 Q1. [Was] (3) SpecML easy to understand?

lihood. About value perceived for supporting requirements-based testing, all six practitioners

were in favor of adopting it (see Figure 5.19). With respect to value perceived for supporting

certification efforts, four participants were in favor of adopting the language (see Figure 5.19).

The remaining two were not sure.

checsdm

checsdm4uss

0 1.25 2.5 3.75 5

Definitely Likely Not sure Not likely Definitely not

Figure 5.16 Q2. Would you use (1) checsdm [and] (2)

checsdm4uss to help in your work?

194

Definitely
Likely

Not sure
Not likely

Definitely not
0 1 2 3 4

Figure 5.17 Q2. Would you use (3) SpecML to help in your

work?

checsdm

checsdm4uss

0 0.75 1.5 2.25 3

Definitely Likely Not sure Not likely Definitely not

Figure 5.18 Q3. Do you see value in adopting (1) checsdm and

(2) checsdm4uss for ensuring consistency of heterogeneous design

models?

Requirement specification

Requirement-based testing

Certification efforts

0 0.75 1.5 2.25 3

Figure 5.19 Q4. Do you see value in adopting SpecML for

supporting (1) requirement specification, (2) requirement-based

testing, and (3) certification efforts?

About the usefulness of the mapping model in assisting the review and resolution of consis-

tency issues in heterogeneous design models, three practitioners definitely perceived its use-

fulness, while the other two saw some usefulness (see Figure 5.20). Reuse across multiple

195

projects following the same design scenario, short execution times of codified design guide-

lines and mapping rules, and higher recall rates than a manual design model verification were

the driving benefits for their responses. Indeed, the one-time overhead introduced by the elici-

tation and codification phases was their main wavering factor.

Definitely
Likely

Not sure
Not likely

Definitely not
0 0.75 1.5 2.25 3

Figure 5.20 Q5. Does the resulting mapping model in the

operation phase provide useful assistance for reviewing and

solving consistency issues in heterogeneous design models?

Concerning the simplicity of the resulting specification model and using it when communicat-

ing with a certification agent, one participant was definitely in favor and two thought there was

likelihood (see Figure 5.21). The remaining three participants were not sure. In the matter of

perceiving useful assistance for adhering to certification compliance needs, all six practitioners

saw usefulness (see Figure 5.22).

Definitely
Likely

Not sure
Not likely

Definitely not
0 0.75 1.5 2.25 3

Figure 5.21 Q6. Do you find the resulting requirements

specification model simple enough for use when communicating

with a certification agent?

We also received some open comments from the participants about our proposed approach.

They see the approach beneficial, in particular, for aiding in dissimilar coding and in an in-

dependent test generation chain branching from the design. For the latter, the practitioner

196

Definitely
Likely

Not sure
Not likely

Definitely not
0 0.75 1.5 2.25 3

Figure 5.22 Q7. Does the proposed approach provide useful

assistance for adhering to certification compliance needs?

explained the design could be done using one modelling language, then an additional indepen-

dent design could be created using a different modelling language consistent with the first (as

verified by a checsdm instantiation) and from which tests could be generated. At the end, the

evidence of consistency (provided by the checsdm instantiation) between both designs along

with the results from the generated tests’ executions could be presented to the certification au-

thority. Regarding specific feedback on SpecML, one practitioner made two feature requests:

1) allowing the import of requirements from IBM DOORS, and 2) allowing the export of re-

quirements as a document. For the practitioner, such features would greatly complement the

tooling to facilitate certification. Another practitioner would like to see SpecML’s support to be

adapted to include support for other norms in addition to DO-178C, like ISO 26262. Extending

the proposed approach in the suggested regards is left for future work.

In summary, the responses from the practitioners suggest an overall likelihood of adopting

the proposed approach in an industrial context as they clearly see advantages in using the

approach within the context of their work. The practitioners took into account several factors

to determine if the efforts involved were acceptable. These were 1) the effort invested in the

elicitation and codification phases for a set of modelling languages, 2) perceived impact on

supporting the satisfaction of DO-178C verification objectives, and 3) side benefits that the

mapping rules, design guidelines and the resulting mapping model could bring, for instance,

to subsequent development activities. The involved practitioners from the industry partners,

overall, considered the efforts for these two phases on checsdm4uss and checsdm4a/ss to be

197

acceptable as they are one-time efforts that can be compensated with the number of projects

making use of them over time.

5.6 Threats to Validity

Certain factors may have influenced the evaluation’s results. This section briefly discusses

these factors and the way they were mitigated.

5.6.1 Internal validity

Threats to internal validity have to do with factors that might affect the results of the evaluation.

One of these factors is establishing checsdm’s feasibility argument on two case studies, checs-

dm4uss and checsdm4a/ss. It is acknowledged that for a different, perhaps more complex,

design scenario there could be a greater number of—and possibly more complex—mapping

rules and design guidelines. Nonetheless, this threat is mitigated by the fact that both checs-

dm4uss and checsdm4a/ss were considered by the industry partners to be representative design

scenarios of their needs.

Another factor that might affect internal validity is the set of design models on which the op-

eration phase of checsdm4uss was executed. This set was small and each design model had to

be manageable in size and complexity in order to carry out the case study with the recruited

professional engineers. However, the design models were validated through in-depth discus-

sions with practitioners from the industry partners, who have ample experience in both avion-

ics software development and DO-178C certification. These practitioners see these models as

representative of their own design models. Inconsistencies injected into these design models

may not simulate entirely those that a designer might introduce when creating a design model.

Nevertheless, this threat was mitigated by injecting various kinds of inconsistencies at random

locations of the design models.

Accuracy of the Simulink and Stateflow metamodel may have an impact on the design models.

In order to lessen this threat, existing knowledge about Simulink constructs was reused from

198

Massif’s (IncQuery Labs, 2017) Simulink metamodel. In addition, metamodelling was carried

out iteratively and with validation from industry practitioners. The effectiveness of the mapping

strategy is also a significant factor affecting the results. The current codification of mapping

rules and mapping model clean-up heuristic result in identifying consistency issues that may

not be consistency issues at all and could, perhaps, be intentional. Codification could have been

implemented differently. Nevertheless, the industry partners find reviewing these mappings to

be worthwhile. Such a situation reinforces the purpose of the elicitation phase.

Selection bias of participants in both case studies and the workshop is a noteworthy factor to

internal validity. Regarding the checsdm4uss case study, professional engineers knowledgeable

about software design were selected. Differences between their levels of experience was used

to direct their assignment to either the operation or the control groups. The intention with this

was to make sure that these two groups could be seen as homogeneous between them as possi-

ble, i.e. have the same balance of experienced and less-experienced engineers. Regarding the

elicitation and codification phases of checsdm4uss_alt, a professional engineer in the field of

avionics software development was recruited. The engineer knew and had experience with the

modelling languages, however, not with all the modelling technologies behind the checsdm tool

framework. Hence, the demonstration of the tool framework during the seminar. Regarding the

workshop with practitioners, engineers knowledgeable about the challenges of heterogeneous

design were selected.

Most participating engineers in the checsdm4uss case study had three years or more in expe-

rience with UML. Their experience with Simulink and Stateflow, however, varied more. In

order to ensure the minimum knowledge about the modelling languages required for the case

study, they were given a briefing seminar. The seminar went over the descriptions of the three

avionics systems, explained the tasks they had to perform and gave the necessary preliminar-

ies about modelling with UML, Simulink and Stateflow, as well as syntactical and semantical

relationships between them. Particularly for the control group, which was asked to manually

analyze the design models, their precision for inconsistency identification was of 100 percent

and a recall rate of 24 percent, on average. Precision and recall would be expected to drop

199

with less experienced participants, while the recall rate would be expected to rise with more

experienced participants.

A factor threatening internal validity for SpecML is establishing its feasibility argument on

two avionics systems. It is acknowledged that for different requirements specifications, more

complex and following different requirements standards could lead to more complex specifica-

tion models. Nonetheless, the LGCS and FCS were considered by involved practitioners from

industry to be complex and representative of their practices.

Another factor that might affect internal validity is that SpecML’s requirement formalization

approach is primarily based on the property-based requirement (PBR) theory (Micouin, 2008).

This is a fairly recent theory of requirement specification and more studies are needed to widely

identify its limitations about the kinds of requirements that can be effectively specified as PBRs.

However, the LGCS and FCS do contain different kinds of functional elements among them-

selves. This was deliberate in order to highlight the capabilities of the language. For instance,

the LGCS includes requirements involving the sequencing of property evaluations, which the

FCS does not. The FCS, instead, includes requirements involving continuous modulated con-

trol through a proportional–integral–derivative loop.

SpecML’s reference implementation is dependent on the Eclipse Papyrus modelling environ-

ment version that was available at the time of development. This version does not support

the targeted versions of SysML and MARTE. However, this by no means limits SpecML’s

reference implementation since adapters were developed to implement the entire SpecML pro-

file. Selection bias of participants in the workshop is a noteworthy factor to SpecML’s internal

validity. However, practitioners knowledgeable about the challenges of requirements specifi-

cation, requirements-based testing and certification were selected.

5.6.2 External validity

Threats to external validity have to do with the generalizability of the results to other design

scenarios and systems. The checsdm approach was instantiated for two specific design sce-

200

narios. One of them involving complete overlap between design models created with a mix

of UML, Simulink and Stateflow. The other one involving a partial overlap between design

models created with a mix of AADL, Simulink and Stateflow. These instantiations resulted

in checsdm4uss, which was then applied over three avionics systems, and checsdm4a/ss. The

results might not completely generalize further. However, it is to be remarked that checsdm’s

elicitation phase is intended to define the requirements of any design scenario in question.

Hence, checsdm should be applicable to any design scenario regardless of domain and mod-

elling languages involved. Moreover, checsdm4uss and checsdm4a/ss should be applicable as

well to other design models that meet their targeted design scenarios. It is worth mentioning

that checsdm4uss and checsdm4a/ss’ mapping rules and design guidelines are not closed sets

and, thus, more mapping rules and design guidelines could be added since the instantiation of

the checsdm approach is an iterative process.

SpecML was applied for the requirements specification modelling of two avionics software

and their results might not completely generalize further. It is to be remarked that SpecML is

intended to capture requirements of avionics software in accordance with DO-178C. However,

the language should be applicable to other domains as well where applicable regulations define

constraints over requirements specifications as restrictive as those included in SpecML. It is

worth mentioning that the set of SpecML constructs is not a closed set and, thus, more stereo-

types and constraints could be added since the methodology followed for building SpecML is

an iterative process.

Finally, the avionics systems used were already discussed in other existing studies and, thus,

are openly-available to allow comparisons and replication. These systems were also considered

by the industry partners to be archetypal of their own manufactured systems. These partners

have ample experience in domains were safety-critical systems operate and deal with the chal-

lenges of requirements specifications, requirements-based testing, heterogeneous design and

certification as part of their work. The goal of this evaluation is not to prove our proposed

approach applies to all safety-critical systems and domains but rather show its application is

feasible and can lead to regulation-compliant requirements specifications as well as to effec-

201

tive requirement analyses and testing. The evaluation results suggest our proposed approach is

likely to provide engineers with potential gains in these regards.

5.7 Chapter Summary

This chapter presented an evaluation of checsdm, its two instantiations and SpecML about

their feasibility and benefits. The evaluation shows the efforts involved in the applications of

checsdm were acceptable. In the case of checsdm4uss, inconsistencies were identified in the

design models of three avionics systems with greater recall rates over fully manual verifications

carried out by engineers. The feasibility argument for SpecML was based on the requirements

specification of two software-intensive safety-critical avionics systems, one of which was the

LGCS presented in Chapter 2. Furthermore, the evaluation also included a workshop conducted

with practitioners from the industry partners involved. The goal of the workshop was to assess

the likelihood of the proposed approach’s adoption in a real industrial context. When presented

with the proposed approach, the practitioners perceived it to be advantageous to use within

the context of their work and gave an overall likelihood of adoption. The results from this

workshop give a good indication of the usefulness and relevance of the approach. The chapter

ended with a discussion of the potential threats to the validity of this evaluation.

CONCLUSION AND OUTLOOK

The salient challenges addressed in this thesis arose from the interest of two industry partners

to take advantage of MDE to support their efforts of compliance with DO-178C. The avionics

systems they manufacture are complex systems combining physical and mechanical compo-

nents, networking and software. In order to design such systems they deal with 1) diverse

components, each one with its own underlying theories and domain vocabularies, and 2) var-

ious aspects of the same component, such as their function, structure and behaviour. There

are no systematic solutions in the literature for ensuring consistency between heterogeneous

design models that cover a wide range of design scenarios and tackle the issue of verifying

conformance to design standards. Furthermore, existing requirements specification languages

proposed for safety-critical systems development either only support the specification of natu-

ral language-based requirements or force requirements to be captured in an already structured

form. On top of that, none of these languages provides sufficient support for achieving DO-

178C objectives and activities.

In view of these limitations, we pursued the goal of providing an approach, built on the

progress made in MDE technologies, to support the development and certification of DO-

178C-compliant safety-critical avionics software. In particular, we proposed checsdm, a sys-

tematic and automated method for assisting engineering teams in ensuring consistency of het-

erogeneous design models of safety-critical systems. checsdm is devised as a hybrid approach

where automated tools aid engineering teams in flagging errors for review and eventual correc-

tion, only to be followed by a more traditional verification process. As a constituting element

of checsdm we provide SpecML, a modelling language that features a requirements specifi-

cation infrastructure for safety-critical avionics software development and certification. The

following section synthesizes our theoretical and practical contributions.

204

Contributions

Three features of checsdm can be highlighted. First, it aims to cover more design scenarios

than existing related approaches by providing a design-scenario-independent framework to

support verification of heterogeneous design models. Second, it provides facilities that ease

the verification of model consistency and adherence to design standards. Third, it enforces

specific aspects of DO-178C compliance needs (e.g., explicitly defining a design scenario and

design guidelines, ensuring design consistency) in an effort to aid the recollection of evidence

for certification.

checsdm is developed as a generic methodology and a tool framework. The methodology com-

prises an iterative three-phased process. The first phase, elicitation, consists on eliciting re-

quirements of the heterogeneous design scenario. Three outcomes are expected from the elic-

itation: a characterization of the mix of modelling languages, a set of mapping rules and a set

of (intra- and inter-)design guidelines. The mix of modelling languages were characterized

in four dimensions (i.e. coverage of system elements, design perspective, level of abstraction

and overlap of system elements), which enable coverage of the range of design scenarios. The

mapping rules represent the requirements on the relationships between overlapping elements

in the different models. The guidelines are intended to help engineers ensure consistency of

the design models, while working independently. The second phase, codification, consists on

deriving a particular toolchain, using the proposed tool framework, that helps engineers in

flagging consistency errors for review and eventual correction. Mappings between overlapping

model elements are recorded in a mapping model, also capable of flagging consistency issues.

The third phase, operation, applies the derived toolchain to actual system designs. Feedback

from this phase back to the previous phases can help refine the mapping rules and guidelines

or identify new ones. The first step of the operation phase relies on SpecML for the require-

ments specification. SpecML offers a blended modelling approach by integrating constructs

205

from several existing languages. Three features can be highlighted: 1) it enforces required

information (e.g., trace data, decomposition of requirements) for achieving objectives and ac-

tivities defined in DO-178C and the DO-331 and DO-332 supplements, 2) it captures require-

ments in natural language to smooth the way for its adoption in industry, and 3) it provides

facilities to capture requirements in a structured and semantically-rich formalism to enable

requirements-based analyses and testing. Heterogeneous design models can be created from

a SpecML requirements specification and, afterwards, automatically verified for compliance

with design standards and for consistency.

As for our practical contributions, we presented two instantiations of the checsdm approach for

the specific cases of a design scenario involving a mix of UML, Simulink and Stateflow (la-

beled checsdm4uss), and a design scenario involving a mix of AADL, Simulink and Stateflow

(labeled checsdm4a/ss). These design scenarios were motivated in response to industry part-

ners’ needs for ensuring consistency between UML, Simulink, Stateflow, and AADL design

models for avionics systems that must comply with DO-178C and DO-331. Originating from

the codification phase of checsdm4uss, is Breesse. Breesse delivers a bridge for the Eclipse

Modeling Framework ecosystem and the MathWorks Simulink and Stateflow ecosystem. Fur-

thermore, we developed a reference implementation for SpecML on top of the Eclipse Papyrus

modelling environment, although the language itself is tool-independent and any UML mod-

elling tool supporting UML profiles could be used to implement it.

An evaluation of the execution of checsdm to derive checsdm4uss and checsdm4a/ss showed the

feasibility and benefits of applying the proposed approach. Furthermore, the evaluation showed

the efforts involved in the applications of checsdm were acceptable. In the case of checs-

dm4uss, inconsistencies were identified in the design models of three safety-critical avionics

systems with greater recall rates over fully manual verifications. We applied SpecML for the

requirements specification of two of those safety-critical avionics systems. This evaluation

206

showed the potential benefits of SpecML for DO-178C- and DO-331-compliant requirements

specification. All the requirements of both systems were modelled and, in addition, checked

for compliance with DO-178C objectives. We also conducted a workshop with practitioners

from the industry partners to assess the proposed approach’s likelihood of adoption in a real

industrial context. When presented with the approach, the practitioners perceived it to be

advantageous to use within the context of their work and gave an overall likelihood of adoption.

The results from this workshop gave a good indication of the usefulness and relevance of the

approach.

Note that different elements of this thesis have been published. Listed in chronological order,

the publications are as follows:

- The modelling of DO-178C was developed with the help of a masters student and the results

are detailed in his masters thesis (Metayer, 2018). The modelling of DO-178C was also pre-

sented at the 9th International IEEE Workshop on Software Certification (WoSoCer 2019)

hosted at the 30th International Symposium on Software Reliability Engineering (ISSRE

2019) (Metayer et al., 2019).

- A characterization of model-based support for DO-178C-compliant avionics software de-

velopment and certification was presented at the 6th International IEEE Workshop on Soft-

ware Certification (WoSoCer 2016) hosted at the 27th International Symposium on Soft-

ware Reliability Engineering (ISSRE 2016) (Paz & El Boussaidi, 2016).

- The LGCS was presented at the 33rd ACM Symposium on Applied Computing (SAC 2018)

(Paz & El Boussaidi, 2018). The complete artifacts for the LGCS have been made available

online in a technical report (Paz & El Boussaidi, 2017).

207

- SpecMLwas presented at the 6th International Workshop on Requirements Engineering and

Testing (RET 2019) hosted at the 41st ACM/IEEE International Conference on Software

Engineering (ICSE 2019) (Paz & El Boussaidi, 2019b).

- checsdm4uss was presented at the 43rd IEEE Annual Computer Software and Applications

Conference (COMPSAC 2019) (Paz & El Boussaidi, 2019c).

- checsdm has been submitted and accepted with revisions as a manuscript for the journal

IEEE Transactions on Software Engineering (IEEE TSE) (Paz et al., 2020).

Limitations and Future Work

We close this thesis by discussing some limitations and logical directions in which this work

can be continued and extended.

Evaluation. We established our feasibility and effectiveness arguments on a minimal set of

experiments that we could carry out with the available time and participants. We acknowledge

the need to expand our experimentation especially in real industrial settings. In fact, we are

already working on this front. The proposed approach, including both SpecML and checsdm

(with its two concrete instantiations checsdm4uss and checsdm4a/ss), is currently deployed at

the industry partners’ premises. As part of this, its use on large scale industry systems should

provide new input data for evaluation and further refinement and improvement.

LGCS specification and design. The requirements specification we built for the LGCS was

defined on the basis of the case study from Boniol & Wiels (2014) and certainly does not cover

all kinds of requirements. Furthermore, the LGCS documentation covers only part of the DO-

178C software development life cycle, namely requirements specification and design. In the

short to medium term, the LGCS requirements specification can be enriched with more require-

ments, for instance, requirements regarding redundant software operation and management. In

208

the medium to long term, the documentation can be extended to include software verification

and validation artifacts, as required by DO-178C, like verification cases derived from the speci-

fied HLRs and the results from their executions against both the design and HLRs. Verification

cases can be developed to target normal-range and robustness conditions, as well as coverage

of all requirements.

checsdm, checsdm4uss and checsdm4a/ss. The tool framework is considered a prototype. In

the short term, improvements can be made to the mapping model and its editor for a more

interactive inspection and editing of mappings and consistency issues. In the medium and long

terms there are several lines of work that should be pursued.

- While formalizing the guidelines and experimenting with the approach on the different

case studies, we found that certain design guidelines can be related to choices in the design

process (e.g., av_us_01) and, thus, may be difficult to codify. Additional exploration of this

kind of design guidelines should be undertaken to better understand them and devise ways

of codifying them.

- Even though DO-178C is considered to be among the group of prescriptive standards, it

does leave some open elements that have to be defined in the internal working procedures

of each specific company. The studies that will be carried out at our industry partners’

premises as part of our approach’s deployment should shed light on the consideration of

design guidelines related to processes.

- Methodologies already defining ways of using selected modelling languages in the context

of embedded control software might exist. These methodologies should be studied and their

consideration in checsdm explored.

209

- The introduction of other heuristics into the current instantiations that can further reduce

the number of false inconsistencies has been discussed. It is, however, worth investigating

their integration into the codification phase so that other instantiations may benefit as well.

SpecML. SpecML’s reference implementation is considered a prototype. Improvements can be

made, in the short term, to its modelling tooling to provide a more interactive inspection and

editing of requirements. The industry partners have expressed their desire to have additional

functionality explored and developed. We devise two additional functionalities for the medium

term: 1) the (semi-)automatic generation of reports from the data that is captured, and 2) the

import of existing requirements from other sources (e.g., Microsoft Office Word, Microsoft

Office Excel, IBM DOORS). The former is necessary to facilitate the collection of evidence

for certification and the latter to enable SpecML’s use in ongoing projects without having to

completely create the requirements specification models from scratch. We devise to other new

functionalities for the long term: 1) the (semi-)automatic translation of the natural language

requirement statements into property-based statements, and 2) the interface with existing test

generation tools. The former can alleviate the burden placed on engineers when using SpecML

to formalize natural language requirements. The latter is intended to satisfy other DO-178C

objectives that were not part of our scope for this thesis.

Generalizability. Our proposed approach might not be general enough for its application in

other safety-critical domains and certification standards. We expect some degree of applica-

bility in a broader scope since the issue of heterogeneity occurs as well for other types of

cyber-physical systems and the DO-178C guideline gathers common best development and

safety practices that have been followed to produce safe systems. However, since we solely

focused on DO-178C and its accompanying supplements, our proposed approach and results

are really based on such analysis. Further work is necessary to analyze other standards, guide-

lines and norms for certification in different domains (e.g., IEC 61508, IEC 60880, ISO 26262,

210

CENELEC EN 50126) and evaluate checsdm’s feasibility and effectiveness for them. Results

from such analysis and evaluation should reveal what other extensions must be done at the

theoretical and practical levels to adapt and extend our proposed approach accordingly.

APPENDIX I

THE CHARACTERIZATION FRAMEWORK

We developed a framework to characterize and compare model-based approaches accord-

ing with: 1) their objectives and targeted stakeholders, 2) the extent to which they support

DO-178C guidelines, 3) the way they handle and present information, and 4) the extent to

which the approach is ready for use. Thus, as shown in Figure-A I-1, our framework defines

four dimensions named: philosophy, DO-178C coverage, information handling and usage. The

following sections present each of these dimensions and the criteria that fall under them.

1. Philosophy

The philosophy of an approach can be divided into objective, object of interest, and targeted

stakeholder group. An approach’s objective collects its main aims and provides an indication

of the vision upon which it has been established. Objectives are grouped into three main cat-

egories: 1) specify, 2) analyze, and 3) generate. Specify objectives indicate the intention of

capturing information describing elements that pertain to an application domain in order to al-

low its understanding, comprehension or communication. Included under the analyze category

are those aims addressing the satisfaction of properties, e.g., model verification. Include under

the generate category are the objectives of transforming models into other work artifacts, be

these other models or text.

The object(s) of interest of an approach gives a clear identification of its modeling interests.

We outline as objects of interest: 1) requirements, 2) architecture, 3) processes, 4) safety in-

formation (e.g., hazards, events and responses), 5) tests, 6) regulation, and 7) reports. The

previous listing is not exhaustive and could incorporate more options as needed. The targeted

stakeholder group criteria captures the descriptions of the stakeholders taken into account by

the modeling approaches, which can be system, software or safety.

2. DO-178C Coverage

212

Model-based
approach

Philosophy

Objective

Specify

Analyze

Generate

Object

Requirements

Architecture

Processes

Safety information

Tests

System
Targeted

Stakeholder
Group

Software

Safety
DO-178C Coverage

Information
Handling

Notation

Textual

Graphical

Mathematical

(Meta-)Modeling
Technology

Expressions

UML profile

SysML profile

Metamodel

View

Structure

Behavior

Data

Deployment

Development

Traceability

Type

Scheme

Explicit

Implicit

Between model
elements

Between
evidence artifacts

Regulation

Planning

Software lifecycle

Data items

Schedule

Environment

Development

Verification

SimulationTransition
criteria

Allocation of system requirements to software

Modes of operation

Software functional requirements

Software quality attributes

Timing

Failure detection

Safety monitoring

Precision and accuracy criteria

Constraints

Interfaces

Type

Characteristics

Hardware

Software

Protocols

Format

I/O frequency
Requirements partitioning

Software level

Requirements allocation to processors and tasks

Data structures

Algorithms

Data flow

Control flow

Resource limitations

Scheduling procedures

Inter-processor/inter-
task communication

Software
architecture

Partitioning

Partitioning

Derived requirements

Rationale of decisions

Traces

System requirements allocated
to software and HLRs

HLRs and LLRs

LLRs and source code

Rationale of design decisions

Requirements

Verification

Procedures

Test cases
Expected

Obtained
Results

Analyses
Coverage

Traceability

Traces

Software requirements and test cases

Test cases and test procedures

Test procedures and test results

Usage

Validation

Context

Method

Impact on certification

Academic

Industrial

Illustrative
example

Case study

Workshop

Survey

Experience

User
support

Tool support
Proposed

Suggested

Tool support

Methodology

Modeling elements

Development

Deviations

Deviations

Deviations

COTS

Previously developed software

Deactivated code

User-modifiable software

Reports

Level of
formality

Informal

Semi-formal

Formal

Documentation

Figure-A I-1 The characterization framework. Extracted

from Paz & El Boussaidi (2016).

The DO-178C coverage dimension provides a description of the coverage extent for DO-

178C’s software life cycle data item contents to which the modeling approach is relevant. We

213

only consider the contents of the data items from a subset of the software life cycle processes

identified in DO-178C, namely, the planning, development and verification processes. We con-

sider incorporating the remaining life cycle processes (i.e. configuration management, quality

assurance and certification liaison) in a future work.

The planning criteria considers modeling support for the software life cycle followed, software

life cycle data or data items that need to be created, development schedule, environments used

(which can be for development, verification or simulation), transition criteria between activ-

ities to allow moving into other activities while the current activity is not yet complete, and

deviations from plans.

In the development process of DO-178C we explore two key elements: requirements (both

HLRs and LLRs) and software architecture. Within requirements we look at assistance for

managing the allocation of system requirements to software, modes of operation (i.e. the dis-

tinct behaviors of the system; e.g., normal, failed), software functional requirements, software

quality attributes (e.g., timing, failure detection, safety monitoring), derived requirements, pre-

cision and accuracy criteria (e.g., latency, allowed deviations of values from their ideal value),

constraints (e.g., timing, memory), interfaces (with their type: hardware, software; and their

characteristics: protocols, format, frequency of inputs and outputs), requirements partitioning,

design assurance level or software level, requirements allocation to processors and tasks, ratio-

nale of decisions, traces (between system requirements allocated to software and HLRs, HLRs

and LLRs, and LLRs and source code), and deviations from requirements. Beneath software

architecture, the criteria focuses around modeling support for data structures, algorithms, data

flow, control flow, partitioning into components or subsystems, resource limitations, schedul-

ing procedures, inter-processor/inter-task communication, rationale of design decisions and

deviations from design. It also considers support at the design level for the use of Commercial

Off-The-Shelf (COTS) software, previously developed software or user-modifiable software and

identifying the presence of deactivated code. Concerning verification, we observe for treatment

of verification procedures (for reviews, analyses, and testing), test cases, verification results

(expected and obtained), verification analyses (coverage and traceability), and traces (between

214

software requirements and test cases, test cases and test procedures, and test procedures and

test results).

3. Information Handling

The way modeling approaches handle and present information is an important aspect to con-

sider since it impacts their ability to automate some tasks and their usability. In this regard,

we are taking into account an approach’s modeling method or notation, which gives a descrip-

tion of the way elements are represented by it (i.e. textual, graphical or mathematical), and

their level of formality (informal, semi-formal or formal). Likewise, we look into the (meta-

)modeling technology the approach is built with, be it UML profile, SysML profile, metamodel

or mathematical expressions. We also evaluate the approaches’ provided views for a descrip-

tion of the aspects that can be represented by the modeling approaches. Views are grouped

into five categories: 1) structure (a topological description of the modeling elements, i.e. the

structural dependencies between the modeling elements), 2) behavior (sequencing or control of

information among the modeling elements), 3) development (high-level structural arrangement

of the modeling elements) 4) deployment (addresses the descriptions of who performs a task,

function or activity and where), and 5) data (structure and dependencies between the data enti-

ties produced or manipulated). In addition, we inquire about active traceability support since it

allows the tracking of evidence artifacts and their contents across the life cycle. We recognize

two types of traceability links: explicit (or direct) and implicit (or transitive). We also examine

the scheme in which these traces are captured, i.e. either between modeled elements or between

evidence artifacts or both.

3.1 Usage

Usage of an approach is a desirable characteristic, yet it is not always possible because it lacks

validation or proper documentation. Validation consists of a description of the context or setting

(academic or industrial), the employed methods for any of the validation activities (example,

case study, workshop, survey or experience), and an indication of any supporting evidence

215

that the modeling approach led to or had any impact on certification. User support involves

descriptions of the support material and tools for using the modeling approaches. Criteria

for user support consist of tool support, i.e. technology, tools and techniques proposed or

suggested for use, and documentation of practical guidance, which may include documentation

of tool support, methodology or modeling elements.

APPENDIX II

LANDING GEAR CONTROL SOFTWARE REQUIREMENTS SPECIFICATION
AND DESIGN (BASELINE)

MV-1 Desired Gear Position. The LGCS shall process the Desired Gear Position moni-

torable variable from the pilot interface.

Name of variable Desired Gear Position

Type Enumeration

Expected Range/Values Up, �Down

Interpretation Command to extend or retract the gears:

• Up: Retract gears.

• Down: Extend gears.

Precision n/a

Units n/a

Load One-time message on pilot input.

Exception Handling Information When no pilot input is given, value is treated as

null.

� denotes initial value

Rationale: This is the specified input received from the pilot interface given the sys-

tem’s operational context.

MV-2 Analogical Switch Status. The LGCS shall process three Analogical Switch Status

monitorable variables from the analogical switch sensor.

Name of variable Analogical Switch Status

Type Enumeration

Expected Range/Values �Open, Closed

Interpretation Status of the analogical switch.

Precision n/a

Units n/a

Load 1000Hz signal

Exception Handling Information n/a

� denotes initial value

Rationale: This is the specified input received from the analogical switch sensor given

the system’s operational context.

MV-3 Hydraulic Circuit Pressure. The LGCS shall process three Hydraulic Circuit Pres-

sure monitorable variables from the hydraulic circuit pressure sensor.

218

Name of variable Hydraulic Circuit Pressure

Type Real

Expected Range/Values [0.0 .. 40,000.0]

Interpretation Current pressure in the hydraulic circuit.

Precision ±0.1
Units kPa

Load 1000Hz signal

Exception Handling Information Out of range values are treated as −1.

Rationale: This is the specified input received from the hydraulic pressure sensor

given the system’s operational context.

MV-4 Door Close Status. The LGCS shall process three Door Close Status monitorable

variables from the door closed sensors in the nose and main wheel assemblies.

Name of variable Door Closed Status

Type Enumeration

Expected Range/Values Not Closed, �Closed

Interpretation Status of the doors:

• Not Closed: Door is not completely closed.

• Closed: Door is completely closed.

Precision n/a

Units n/a

Load 1000Hz signal

Exception Handling Information n/a

� denotes initial value

Rationale: This is the specified input received from the door closed sensors given the

system’s operational context.

MV-5 Door Open Status. The LGCS shall process three Door Open Status monitorable

variables from the door open sensors in the nose and main wheel assemblies.

Name of variable Door Open Status

Type Enumeration

Expected Range/Values �Not Open, Open

Interpretation Status of the doors:

• Not Open: Door is not completely open.

• Open: Door is completely open.

Precision n/a

Units n/a

Load 1000Hz signal

Exception Handling Information n/a

� denotes initial value

219

Rationale: This is the specified input received from the door open sensors in the nose

and main wheel assemblies given the system’s operational context.

MV-6 Gear Retracted Status. The LGCS shall process three Gear Retracted Status mon-

itorable variables from the gear retracted sensors in the nose and main wheel assem-

blies.

Name of variable Gear Retracted Status

Type Enumeration

Expected Range/Values �Not Retracted, Retracted

Interpretation Status of the gears:

• Not retracted: Gear is not fully retracted.

• Retracted: Gear is fully retracted.

Precision n/a

Units n/a

Load 1000Hz signal

Exception Handling Information n/a

� denotes initial value

Rationale: This is the specified input received from the gear retracted sensors in the

nose and main wheel assemblies given the system’s operational context.

MV-7 Gear Extended Status. The LGCS shall process three Gear Extended Status mon-

itorable variables from the gear extended sensors in the nose and main wheel assem-

blies.

Name of variable Gear Extended Status

Type Enumeration

Expected Range/Values Not Extended, �Extended

Interpretation Status of the gears:

• Not extended: Gear is not fully extended.

• Extended: Gear is fully extended.

Precision n/a

Units n/a

Load 1000Hz signal

Exception Handling Information n/a

� denotes initial value

Rationale: This is the specified input received from the gear extended sensors in the

nose and main wheel assemblies given the system’s operational context.

220

MV-8 Gear Shock Absorber Status. The LGCS shall process three Gear Shock Absorber

Status monitorable variables from the gear shock absorber sensors in the nose and

main wheel assemblies.

Name of variable Gear Shock Absorber Status

Type Enumeration

Expected Range/Values �Unrelaxed, Relaxed

Interpretation Status of the gears’ shock absorbers:

• Unrelaxed: Shock absorber is not relaxed.

• Relaxed: Shock absorber is relaxed.

Precision n/a

Units n/a

Load 1000Hz signal

Exception Handling Information n/a

� denotes initial value

Rationale: This is the specified input received from the gear shock absorber sensors

in the nose and main wheel assemblies given the system’s operational context.

CV-1 General Electro-Valve. The LGCS shall output actuation commands to the general

hydraulic electro-valve through the General EV Actuation Command controllable

variable.

Name of variable General EV Actuation Command

Type Enumeration

Expected Range/Values �Close, Open

Interpretation Command to actuate the general electro-valve.

Precision n/a

Units n/a

Load One-time message

Exception Handling Information n/a

� denotes initial value

Rationale: This is the specified output sent to the general electro-valve given the sys-

tem’s operational context.

CV-2 Door Closing Electro-Valve. The LGCS shall output actuation commands to the door

closing hydraulic electro-valve through the Door Closing EV Actuation Command

controllable variable.

221

Name of variable Door Closing EV Actuation Command

Type Enumeration

Expected Range/Values �Close, Open

Interpretation Command to actuate the door closing

electro-valve.

Precision n/a

Units n/a

Load One-time message

Exception Handling Information n/a

� denotes initial value

Rationale: This is the specified output sent to the door closing electro-valve given the

system’s operational context.

CV-3 Door Opening Electro-Valve. The LGCS shall output actuation commands to the door

opening hydraulic electro-valve through the Door Opening EV Actuation Com-

mand controllable variable.

Name of variable Door Opening EV Actuation Command

Type Enumeration

Expected Range/Values �Close, Open

Interpretation Command to actuate the door opening

electro-valve.

Precision n/a

Units n/a

Load One-time message

Exception Handling Information n/a

� denotes initial value

Rationale: This is the specified output sent to the door opening electro-valve given the

system’s operational context.

CV-4 Gear Retraction Electro-Valve. The LGCS shall output actuation commands to the

gear retraction hydraulic electro-valve through the Gear Retraction EV Actuation

Command controllable variable.

Rationale: This is the specified output sent to the gear retraction electro-valve given

the system’s operational context.

222

Name of variable Gear Retraction EV Actuation Command

Type Enumeration

Expected Range/Values �Close, Open

Interpretation Command to actuate the gear retraction

electro-valve.

Precision n/a

Units n/a

Load One-time message

Exception Handling Information n/a

� denotes initial value

CV-5 Gear Extension Electro-Valve. The LGCS shall output actuation commands to the

gear extension hydraulic electro-valve through the Gear Extension EV Actuation

Command controllable variable.

Name of variable Gear Extension EV Actuation Command

Type Enumeration

Expected Range/Values �Close, Open

Interpretation Command to actuate the gear extension

electro-valve.

Precision n/a

Units n/a

Load One-time message

Exception Handling Information n/a

� denotes initial value

Rationale: This is the specified output sent to the gear extension electro-valve given

the system’s operational context.

CV-6 Feedback. The LGCS shall output feedback to the pilot interface through theFeedback

controllable variable.

Rationale: This is the specified output sent to the pilot interface given the system’s

operational context.

SRATS-1 Sensor Validation. When the LGCS receives data from one of the LGS sensors,

the LGCS shall process the three readings associated to the sensor data based on

the following rules:

a. If the three readings are indicating valid values and are equal, then the overall

sensor value is this common value and is considered valid.

223

Name of variable Feedback

Type Enumeration

Expected Range/Values Off, Amber, �Green, Red

Interpretation Indication of the gears’ current position and the

state of the LGCS:

• Off: LGCS is functioning and gears are retracted.

• Amber: LGCS is functioning and gears are in

transit to desired position.

• Green: LGCS is functioning and gears are

extended.

• Red: LGCS has failed.

Precision n/a

Units n/a

Load One-time message

Exception Handling Information n/a

� denotes initial value

b. If the three readings are indicating valid values but are different, then the read-

ings are considered invalid. The overall sensor value is any of the readings’

value and is considered invalid.

c. If the three readings are indicating valid values but one reading is different

from the other two for the first time, then that reading is considered invalid

and is permanently eliminated, i.e. only the two remaining valid readings are

considered in the future. The overall sensor value is the common value of the

two remaining valid readings and is considered valid.

d. If the two remaining readings are indicating valid values but are different,

then these readings are considered invalid. The overall sensor value is any of

the reading’s value and is considered invalid.

e. If one of the readings is indicating an invalid value and the other two readings

are indicating valid values that are equal, then that reading is permanently

eliminated, i.e. only the two remaining valid readings are considered in the

future. The overall sensor value is the common value of the two remaining

valid readings and is considered valid.

f. If at least two readings are indicating invalid values, then the overall sensor

value is any of the reading’s value and is considered invalid.

224

g. If the overall sensor value is invalid, then a failure of such sensor shall be

detected.

Rationale: A sensor should not be trusted if it cannot accurately describe the status

of its associated system entity. For redundancy purposes, all the sensors perform

three independent readings describing simultaneously the same situation. Thus, a

voting strategy is followed to determine the overall value and validity of the sensor.

At least two of the three readings must yield an equal value.

Traceability: Developed into HLR-1.

SRATS-2 Retraction Sequence. When an Up Desired Gear Position is received, the LGCS

shall carry out the following sequence of actions in under 28 seconds:

1. Open the General EV.

2. Open the Door Opening EV.

3. When the Door Open Status for all wheel assemblies is Open and the Door

Closed Status for all wheel assemblies is Not Closed, close the Door Opening

EV.

4. Turn Amber the feedback indicator on the pilot interface.

5. If the Gear Shock Absorber status for all wheel assemblies is Relaxed, Open

the Gear Retraction EV. Else, turn Green the feedback indicator on the pilot

interface and skip to 8.

6. When the Gear Retracted Status for all wheel assemblies is Retracted and the

Gear Extended Status for all wheel assemblies is Not Extended, close the Gear

Retraction EV.

7. Turn Off the feedback indicator on the pilot interface.

8. Open the Door Closing EV.

9. When the Door Closed Status for all wheel assemblies is Closed and the Door

Opening Status for all wheel assemblies is Not Open, close the Door Closing

EV.

225

10. Close the General EV.

Rationale: The system should not perform any functions unless a desired gear

position is received. This is the specified gear retraction sequence to be performed

given the system’s mechanical parts and hydraulic circuit elements. The maximum

time for a gear retraction sequence to be completed is 28 seconds after the gear

lever has changed position.

Traceability: Developed into HLR-2.

SRATS-3 Extension Sequence. When a Down Desired Gear Position is received, the LGCS

shall carry out the following sequence of actions in under 28 seconds:

1. Open the General EV.

2. Open the Door Opening EV.

3. When the Door Open Status for all wheel assemblies is Open and the Door

Closed Status for all wheel assemblies is Not Closed, close the Door Opening

EV.

4. Turn Amber the feedback indicator on the pilot interface.

5. Open the Gear Extension EV.

6. When the Gear Extended Status for all wheel assemblies is Extended and the

Gear Retracted Status for all wheel assemblies is Not Retracted, close the Gear

Extension EV.

7. Turn Green the feedback indicator on the pilot interface.

8. Open the Door Closing EV.

9. When the Door Closed Status for all wheel assemblies is Closed and the Door

Opening Status for all wheel assemblies is Not Open, close the Door Closing

EV.

10. Close the General EV.

226

Rationale: The system should not perform any functions unless a desired gear

position is received. This is the specified gear extension sequence to be performed

given the system’s mechanical parts and hydraulic circuit elements. The maximum

time for a gear extension sequence to be completed is 28 seconds after the gear

lever has changed position.

Traceability: Developed into HLR-3.

SRATS-4 Cancel Sequence. When the LGCS is currently executing a retraction sequence

and a Down Desired Gear Position is received, the LGCS shall halt the current

retraction sequence and revert all the actions that were executed. Conversely, when

the LGCS is currently executing an extension sequence and an Up Desired Gear

Position is received, the LGCS shall halt the current extension sequence and revert

all the actions that were executed.

Rationale: A gear motion can be canceled by the pilot or copilot at any step of

an ongoing sequence. Any action executed of the ongoing sequence has to be

reverted.

Traceability: Developed into HLR-4.

SRATS-5 General EV Actuation. When a Desired Gear Position is received, the LGCS shall

wait for up to 1 second for the Analogical Switch to be Closed to be able to Open

the General EV. Once 1 second has elapsed since a Desired Gear Position was

received and the Analogical Switch is still Open, the LGCS shall detect a failure

of the analogical switch.

Rationale: This is the specified operation to protect the hydraulic circuit from

being operational without the pilot’s command. The analogical switch should be

closed after 0.8 seconds after the landing gear lever has changed positions. The

analogical switch being open after this time is an indication of its failure. The

additional 0.2 seconds provides a hysteresis that prevents transient alarms.

Traceability: Developed into HLR-5.

227

SRATS-6 Hydraulic Circuit Pressure for Specific EV Actuation. Once the Hydraulic Circuit

Pressure is greater than or equal to 30,000 kPa and less than 35,000 kPa after the

General EV is Opened, the LGCS can Open the necessary specific EV (i.e. Door

Opening EV, Door Closing EV, Gear Retraction EV or Gear Extension EV).

Rationale: This is the specified oil pressure for operating the specific electro-

valves.

Traceability: Developed into HLR-6.

SRATS-7 Consecutive EV Actuation Delay. Once at least 0.2 seconds have elapsed since the

General EV was Opened, the LGCS can Open the necessary specific EV (i.e. Door

Opening EV, Door Closing EV, Gear Retraction EV or Gear Extension EV).

Rationale: This is the specified minimum wait time between stimulations of the

general electro-valve and the specific electro-valves due to oil pressure differential

produced by the change in fluid velocity across the hydraulic circuit.

Traceability: Developed into HLR-7.

SRATS-8 Consecutive Specific EV Actuation Delay. Once at least 0.2 seconds have elapsed

since any of the specific EVs (i.e. Door Opening EV, Door Closing EV, Gear

Retraction EV or Gear Extension EV) was Closed, the LGCS can Open any other

specific EV.

Rationale: This is the specified minimum wait time between stimulations of the

specific electro-valves due to oil pressure differential produced by the change in

fluid velocity across the hydraulic circuit.

Traceability: Developed into HLR-8.

SRATS-9 Close General EV Actuation Command. Once at least 1 second has elapsed since

any of the specific EVs (i.e. Door Opening EV, Door Closing EV, Gear Retraction

EV or Gear Extension EV) was Closed, the LGCS can Close the General EV.

228

Rationale: This is the specified minimum wait time between stopping stimula-

tions of the specific electro-valves and the general electro-valve due to oil pressure

differential produced by the change in fluid velocity across the hydraulic circuit.

Traceability: Developed into HLR-9.

SRATS-10 Contrary Specific EV Actuation Delay. Once at least 0.1 seconds have elapsed

since any of the specific EVs (i.e. Door Opening EV, Door Closing EV, Gear Re-

traction EV or Gear Extension EV) was Closed, the LGCS can Open its contrary

EV (i.e. Door Closing EV Actuation Command / Door Opening EV Actuation

Command, or Gear Extension EV Actuation Command / Gear Retraction EV Ac-

tuation Command).

Rationale: This is the specified minimum wait time between contrary stimulations

of the specific electro-valves due to oil pressure differential produced by the change

in fluid velocity across the hydraulic circuit.

Traceability: Developed into HLR-10.

SRATS-11 Analogical Switch Closed Failure. Once 1.5 seconds have elapsed after the 28

second time interval given for the retraction and extension sequences, and no De-

sired Gear Position has been received and the Analogical Switch is still Closed, the

LGCS shall detect a failure of the analogical switch.

Rationale: The analogical switch should be open after 1.2 seconds after the landing

gear lever has changed positions. The analogical switch being closed after this time

is an indication of its failure. The additional 0.3 seconds provides a hysteresis that

prevents transient alarms.

Traceability: Developed into HLR-11.

SRATS-12 Hydraulic Circuit Unpressurized Failure. Once 2 seconds have elapsed since the

General EV was Opened and the Hydraulic Circuit Pressure is still less than 30,000

kPa, the LGCS shall detect a failure of the general hydraulic electro-valve.

229

Rationale: The hydraulic circuit should be pressurized in less than 2 seconds after

the general electro-valve has been stimulated. The hydraulic circuit being unpres-

surized after this time is an indication of its failure.

Traceability: Developed into HLR-12.

SRATS-13 Hydraulic Circuit Pressurized Failure. Once 10 seconds have elapsed since the

General EV was Closed and the Hydraulic Circuit Pressure is still greater than or

equal to 30,000 kPa and less than 35,000 kPa, the LGCS shall detect a failure of

the general hydraulic electro-valve.

Rationale: The hydraulic circuit should be unpressurized in less than 10 seconds

after the general electro-valve has stopped being stimulated. The hydraulic circuit

being pressurized after this time is an indication of its failure.

Traceability: Developed into HLR-13.

SRATS-14 Door Opening Failure. Once 7 seconds have elapsed since the Door Opening EV

was Opened and the Door Closed Status for any wheel assembly is still Closed or

the Door Open Status for any wheel assembly is still Not Open, the LGCS shall

detect a failure of the doors.

Rationale: The doors should be locked open in less than 7 seconds after stimulat-

ing the door opening electro-valve. The doors being closed after this time is an

indication of their failure.

Traceability: Developed into HLR-14.

SRATS-15 Door Closing Failure. Once 7 seconds have elapsed since the Door Closing EV

was Opened and the Door Open Status for any wheel assembly is still Open or the

Door Closed Status for any wheel assembly is still Not Closed, the LGCS shall

detect a failure of the doors.

Rationale: The doors should be locked closed in less than 7 seconds after stim-

ulating the door closing electro-valve. The doors being open after this time is an

indication of their failure.

230

Traceability: Developed into HLR-15.

SRATS-16 Gear Retraction Failure. Once 10 seconds have elapsed since the Gear Retraction

EV was Opened and the Gear Extended Status for any wheel assembly is still Ex-

tended or the Gear Retracted Status for any wheel assembly is still Not Retracted,

the LGCS shall detect a failure of the gears.

Rationale: The gears should be retracted in less than 10 seconds after stimulating

the gear retraction electro-valve. The gears being extended after this time is an

indication of their failure.

Traceability: Developed into HLR-16.

SRATS-17 Gear Extension Failure. Once 10 seconds have elapsed since the Gear Extension

EV was Opened and the Gear Retracted Status for any wheel assembly is still Re-

tracted or the Gear Extended Status for any wheel assembly is still Not Extended,

the LGCS shall detect a failure of the gears.

Rationale: The gears should be extended in less than 10 seconds after stimulating

the gear extension electro-valve. The gears being retracted after this time is an

indication of their failure.

Traceability: Developed into HLR-17.

SRATS-18 Failure Detected. When the LGCS is currently executing a retraction or extension

sequence and a failure is detected, the LGCS shall halt the currently executing

sequence and turn Red the feedback indicator on the pilot interface.

Rationale: The system should not perform any functions after a failure is detected.

Traceability: Developed into HLR-18.

HLR-1 Sensor Validity Check. When the LGCS receives data from one of the LGS sensors,

the LGCS shall process the three monitorable variables associated to the sensor data

based on the following rules:

231

a. If the three monitorable variables are indicating valid values and are equal, then

the overall sensor value is this common value and is considered valid.

b. If the three monitorable variables are indicating valid values but are different,

then the monitorable variables are considered invalid. The overall sensor value

is any of the monitorable variables’ value and is considered invalid.

c. If the three monitorable variables are indicating valid values but one monitorable

variable is different from the other two for the first time, then that monitorable

variable is considered invalid and is permanently eliminated, i.e. only the two

remaining valid monitorable variables are considered in the future. The over-

all sensor value is the common value of the two remaining valid monitorable

variables and is considered valid.

d. If the two remaining monitorable variables are indicating valid values but are

different, then these monitorable variables are considered invalid. The overall

sensor value is any of the monitorable variable’s value and is considered invalid.

e. If one of the monitorable variables is indicating an invalid value and the other

two monitorable variables are indicating valid values that are equal, then that

monitorable variable is permanently eliminated, i.e. only the two remaining

valid monitorable variables are considered in the future. The overall sensor

value is the common value of the two remaining valid monitorable variables and

is considered valid.

f. If at least two monitorable variables are indicating invalid values, then the over-

all sensor value is any of the monitorable variable’s value and is considered

invalid.

g. If the overall sensor value is invalid, then a failure of such sensor shall be de-

tected.

Rationale: A sensor should not be trusted if it cannot accurately describe the status of

its associated system entity. For redundancy purposes, all the sensors perform three

independent readings describing simultaneously the same situation. Thus, a voting

232

strategy is followed to determine the overall value and validity of the sensor. At least

two of the three readings must yield an equal value. The use of the data from a sensor

is dependent on a prior validity check to avoid CFC-2.

Traceability: Developed from SRATS-1. Developed into LLR-1, LLR-2, LLR-3,

LLR-4, LLR-5, LLR-6, LLR-7, LLR-8, LLR-9 and LLR-10.

HLR-2 Retraction Sequence Control. When an Up value is received for the Desired Gear

Position monitorable variable, the LGCS shall carry out the following sequence of

actions in under 28 seconds:

1. Set the General EV Actuation Command controllable variable to Open.

2. Set the Door Opening EV Actuation Command controllable variable to

Open.

3. When the overall value of the Door Open Status monitorable variables for

all wheel assemblies is Open and the overall value of the Door Closed Sta-

tus monitorable variables for all wheel assemblies is Not Closed, set the Door

Opening EV Actuation Command controllable variable to Close.

4. Set the Feedback controllable variable to Amber.

5. If the overall value of the Gear Shock Absorber Status monitorable variables

for all wheel assemblies is Relaxed, set the Gear Retraction EV Actuation

Command controllable variable to Open. Else, set the Feedback controllable

variable to Green and skip to 8.

6. When the overall value of the Gear Retracted Status monitorable variables for

all wheel assemblies is Retracted and the overall value of the Gear Extended

Status monitorable variables for all wheel assemblies is Not Extended, set the

Gear Retraction EV Actuation Command controllable variable to Close.

7. Set the Feedback controllable variable to Off.

8. Set theDoor Closing EV Actuation Command controllable variable toOpen.

233

9. When the overall value of the Door Closed Status monitorable variables for

all wheel assemblies is Closed and the overall value of the Door Open Sta-

tus monitorable variables for all wheel assemblies is Not Open, set the Door

Closing EV Actuation Command controllable variable to Close.

10. Set the General EV Actuation Command controllable variable to Close.

Rationale: The system should not perform any functions unless a desired gear posi-

tion is received. This is the specified gear retraction sequence to be performed given

the system’s mechanical parts and hydraulic circuit elements. The maximum time

for a gear retraction sequence to be completed is 28 seconds after the gear lever has

changed position. If any of the gear shock absorbers is not relaxed it is an indication

that the aircraft is on the ground. The aircraft should maintain the gears extended

when it is on the ground to avoid CFC-1.

Traceability: Developed from SRATS-2. Developed into LLR-11, LLR-12, LLR-13,

LLR-14, LLR-15, LLR-16, LLR-17, LLR-18, LLR-19, LLR-20, LLR-21, LLR-22,

LLR-23, LLR-24, LLR-25, LLR-26, LLR-27 and LLR-40.

HLR-3 Extension Sequence Control. When a Down value is received for the Desired Gear

Position monitorable variable, the LGCS shall carry out the following sequence of

actions in under 28 seconds:

1. Set the General EV Actuation Command controllable variable to Open.

2. Set the Door Opening EV Actuation Command controllable variable to

Open.

3. When the overall value of the Door Open Status monitorable variables for

all wheel assemblies is Open and the overall value of the Door Closed Sta-

tus monitorable variables for all wheel assemblies is Not Closed, set the Door

Opening EV Actuation Command controllable variable to Close.

4. Set the Feedback controllable variable to Amber.

234

5. Set the Gear Extension EV Actuation Command controllable variable to

Open.

6. When the overall value of the Gear Extended Status monitorable variables for

all wheel assemblies is Extended and the overall value of the Gear Retracted

Status monitorable variables for all wheel assemblies is Not Retracted, set the

Gear Extension EV Actuation Command controllable variable to Close.

7. Set the Feedback controllable variable to Green.

8. Set theDoor Closing EV Actuation Command controllable variable toOpen.

9. When the overall value of the Door Closed Status monitorable variables for

all wheel assemblies is Closed and the overall value of the Door Open Sta-

tus monitorable variables for all wheel assemblies is Not Open, set the Door

Closing EV Actuation Command controllable variable to Close.

10. Set the General EV Actuation Command controllable variable to Close.

Rationale: The system should not perform any functions unless a desired gear posi-

tion is received. This is the specified gear extension sequence to be performed given

the system’s mechanical parts and hydraulic circuit elements. The maximum time

for a gear extension sequence to be completed is 28 seconds after the gear lever has

changed position.

Traceability: Developed from SRATS-3. Developed into LLR-11, LLR-12, LLR-13,

LLR-14, LLR-15, LLR-16, LLR-25, LLR-26, LLR-27, LLR-28, LLR-29, LLR-30,

LLR-31, LLR-32, LLR-33 and LLR-40.

HLR-4 Cancel Sequence Control. When the LGCS is currently executing a retraction se-

quence and a Down value is received for the Desired Gear Position monitorable

variable, the LGCS shall halt the current retraction sequence and revert all the actions

that were executed. Conversely, when the LGCS is currently executing an extension

sequence and an Up value is received for the Desired Gear Position monitorable

235

variable, the LGCS shall halt the current extension sequence and revert all the actions

that were executed.

Rationale: A gear motion can be canceled by the pilot or copilot at any step of an

ongoing sequence. Any action executed of the ongoing sequence has to be reverted.

Traceability: Developed from SRATS-4. Developed into LLR-21, LLR-32, LLR-34,

LLR-35, LLR-36 and LLR-37.

HLR-5 General EV Actuation Control. When a Desired Gear Position is received, the

LGCS shall wait for up to 1 second for the overall value of the Analogical Switch

Status monitorable variables to be Closed to be able to set to Open the General

EV Actuation Command controllable variable. Once 1 second has elapsed since a

Desired Gear Position was received and the overall value of the Analogical Switch

Status monitorable variables is still Open, the LGCS shall detect a failure of the

analogical switch.

Rationale: This is the specified operation to protect the hydraulic circuit from being

operational without the pilot’s command. The analogical switch should be closed

after 0.8 seconds after the landing gear lever has changed positions. The analogical

switch being open after this time is an indication of its failure. The additional 0.2

seconds provides a hysteresis that prevents transient alarms.

Traceability: Developed from SRATS-5. Developed into LLR-38, LLR-39, LLR-40,

LLR-41 and LLR-42.

HLR-6 Hydraulic Circuit Pressure for Specific EV Actuation Control. Once the overall value

of the Hydraulic Circuit Pressure monitorable variables is greater than or equal to

30,000 kPa and less than 35,000 kPa after the General EV Actuation Command

controllable variable is set to Open, the LGCS can set to Open the controllable

variable for actuating the necessary specific EV (i.e.Door Closing EV Actuation

Command, Door Opening EV Actuation Command, Gear Retraction EV

Actuation Command or Gear Extension EV Actuation Command).

236

Rationale: This is the specified oil pressure needed in the hydraulic circuit for oper-

ating the specific electro-valves.

Traceability: Developed from SRATS-6. Developed into LLR-14, LLR-43, LLR-44

and LLR-45.

HLR-7 Consecutive EV Actuation Delay Control. Once at least 0.2 seconds have elapsed

since the General EV Actuation Command controllable variable was set to Open,

the LGCS can set to Open the controllable variable for actuating the necessary spe-

cific EV (i.e.Door Closing EV Actuation Command, Door Opening EV Actua-

tion Command, Gear Retraction EV Actuation Command or Gear Extension

EV Actuation Command).

Rationale: This is the specified minimum wait time between stimulations of the gen-

eral electro-valve and the specific electro-valves due to oil pressure differential pro-

duced by the change in fluid velocity across the hydraulic circuit.

Traceability: Developed from SRATS-7. Developed into LLR-14 and LLR-46.

HLR-8 Consecutive Specific EV Actuation Delay Control. Once at least 0.2 seconds have

elapsed since any of the Door Closing EV Actuation Command, Door Opening

EV Actuation Command, Gear Retraction EV Actuation Command and Gear

Extension EV Actuation Command controllable variables was set to Close, the

LGCS can set to Open any other of them.

Rationale: This is the specified minimum wait time between stimulations of the spe-

cific electro-valves due to oil pressure differential produced by the change in fluid

velocity across the hydraulic circuit.

Traceability: Developed from SRATS-8. Developed into LLR-17, LLR-24, LLR-28,

LLR-33 and LLR-47.

HLR-9 Close General EV Actuation Command Control. Once at least 1 second has elapsed

since any of the Door Closing EV Actuation Command, Door Opening EV Ac-

tuation Command, Gear Retraction EV Actuation Command or Gear Exten-

237

sion EV Actuation Command controllable variables was set to Close, the LGCS

can set the General EV Actuation Command controllable variable to Close.

Rationale: This is the specified minimum wait time between stopping stimulations of

the specific electro-valves and the general electro-valve due to oil pressure differential

produced by the change in fluid velocity across the hydraulic circuit.

Traceability: Developed from SRATS-9. Developed into LLR-27 and LLR-48.

HLR-10 Contrary Specific EV Actuation Delay Control. Once at least 0.1 seconds have elapsed

since any of the Door Closing EV Actuation Command, Door Opening EV Ac-

tuation Command, Gear Retraction EV Actuation Command or Gear Exten-

sion EV Actuation Command controllable variables was set to Close, the LGCS

can set its contrary controllable variable (i.e.Door Closing EV Actuation Com-

mand / Door Opening EV Actuation Command, or Gear Extension EV Ac-

tuation Command / Gear Retraction EV Actuation Command) to Open.

Rationale: This is the specified minimum wait time between contrary stimulations of

the specific electro-valves due to oil pressure differential produced by the change in

fluid velocity across the hydraulic circuit.

Traceability: Developed from SRATS-10. Developed into LLR-49 and LLR-50.

HLR-11 Analogical Switch Close Failure Detection. Once 1.5 seconds have elapsed after

the 28 second time interval given for the retraction and extension sequences and no

Desired Gear Position has been received and the overall value of the Analogical

Switch Status monitorable variables is still Closed, the LGCS shall detect a failure

of the analogical switch.

Rationale: The analogical switch should be open after 1.2 seconds after the landing

gear lever has changed positions. The analogical switch being closed after this time

is an indication of its failure. The additional 0.3 seconds provides a hysteresis that

prevents transient alarms.

238

Traceability: Developed from SRATS-11. Developed into LLR-51, LLR-52, LLR-

53, LLR-54 and LLR-55.

HLR-12 Hydraulic Circuit Unpressurized Failure Detection. Once 2 seconds have elapsed

since the General EV Actuation Command controllable variable was set to Open

and the overall value of the Hydraulic Circuit Pressure monitorable variables is

still less than 30,000 kPa, the LGCS shall detect a failure of the general hydraulic

electro-valve.

Rationale: The hydraulic circuit should be pressurized in less than 2 seconds after the

general electro-valve has been stimulated. The hydraulic circuit being unpressurized

after this time is an indication of its failure. This avoids CFC-3.

Traceability: Developed from SRATS-12. Developed into LLR-44, LLR-56 and

LLR-57.

HLR-13 Hydraulic Circuit Pressurized Failure Detection. Once 10 seconds have elapsed since

the General EV Actuation Command controllable variable was set to Close and

the overall value of the Hydraulic Circuit Pressure monitorable variables is still

greater than or equal to 30,000 kPa and less than 35,000 kPa, the LGCS shall detect

a failure of the general hydraulic electro-valve.

Rationale: The hydraulic circuit should be unpressurized in less than 10 seconds after

the general electro-valve has stopped being stimulated. The hydraulic circuit being

pressurized after this time is an indication of its failure. This avoids CFC-3.

Traceability: Developed from SRATS-13. Developed into LLR-58 and LLR-59.

HLR-14 Door Opening Failure Detection. Once 7 seconds have elapsed since the Door

Opening EV Actuation Command controllable variable was set to Open and

the overall value of the Door Closed Status monitorable variables for any wheel

assembly is still Closed or the overall value of the Door Open Status monitorable

variables for any wheel assembly is still Not Open, the LGCS shall detect a failure

of the doors.

239

Rationale: The doors should be locked open in less than 7 seconds after stimulating

the door opening electro-valve. The doors being closed after this time is an indication

of their failure. This avoids CFC-3.

Traceability: Developed from SRATS-14. Developed into LLR-60, LLR-61 and

LLR-62.

HLR-15 Door Closing Failure Detection. Once 7 seconds have elapsed since the Door Clos-

ing EV Actuation Command controllable variable was set to Open and the overall

value of the Door Open Status monitorable variables for any wheel assembly is still

Open or the overall value of the Door Closed Status monitorable variable for any

wheel assembly is still Not Closed, the LGCS shall detect a failure of the doors.

Rationale: The doors should be locked closed in less than 7 seconds after stimulating

the door closing electro-valve. The doors being open after this time is an indication

of their failure. This avoids CFC-3.

Traceability: Developed from SRATS-15. Developed into LLR-63, LLR-64 and

LLR-65.

HLR-16 Gear Retraction Failure Detection. Once 10 seconds have elapsed since the Gear

Retraction EV Actuation Command controllable variable was set to Open and

the overall value of the Gear Extended Status monitorable variable for any wheel

assembly is still Extended or the overall value of the Gear Retracted Status mon-

itorable variable for any wheel assembly is still Not Retracted, the LGCS shall

detect a failure of the gears.

Rationale: The gears should be retracted in less than 10 seconds after stimulating the

gear retraction electro-valve. The gears being extended after this time is an indication

of their failure. This avoids CFC-3.

Traceability: Developed from SRATS-16. Developed into LLR-66, LLR-67 and

LLR-68.

240

HLR-17 Gear Extension Failure Detection. Once 10 seconds have elapsed since the Gear

Extension EV Actuation Command controllable variable was set to Open and

the overall value of the Gear Retracted Status monitorable variable for any wheel

assembly is still Retracted or the overall value of the Gear Extended Status moni-

torable variable for any wheel assembly is still Not Extended, the LGCS shall detect

a failure of the gears.

Rationale: The gears should be extended in less than 10 seconds after stimulating the

gear extension electro-valve. The gears being retracted after this time is an indication

of their failure. This avoids CFC-3.

Traceability: Developed from SRATS-17. Developed into LLR-69, LLR-70 and

LLR-71.

HLR-18 Failure Detected. When the LGCS is currently executing a retraction or extension se-

quence and a failure is detected, the LGCS shall halt the currently executing sequence

and set the Feedback controllable variable to Red.

Rationale: If a failure is detected as specified in HLR-1, HLR-5, HLR-11, HLR-12,

HLR-13, HLR-14, HLR-15, HLR-16 and HLR-17, the system should not be not be

trusted to perform correctly and, therefore, the LGCS shall not be functional to avoid

CFC-2 and CFC-3.

Traceability: Developed from SRATS-18. Developed into LLR-72, LLR-73, LLR-

74, LLR-75 and LLR-76.

LLR-1 If the SensorManager receives data from a sensor, the validateSensorData function

shall be activated.

Traceability: Developed from HLR-1.

Apportioned to: SensorManager.

LLR-2 If the validateSensorData function is active, it shall process the three readings as-

sociated to the sensor data received.

241

Traceability: Developed from HLR-1.

Apportioned to: SensorManager.

LLR-3 If the validateSensorData function is active, the three readings are valid and have

equal values, the overall sensor value shall be this common value and be valid.

Traceability: Developed from HLR-1.

Apportioned to: SensorManager.

LLR-4 If the validateSensorData function is active, the three readings are valid and do not

have equal values, the overall sensor value shall be any of the readings’ value and be

invalid.

Traceability: Developed from HLR-1.

Apportioned to: SensorManager.

LLR-5 If the validateSensorData function is active, the three readings are valid and only

two of them have equal values, the reading with the different value shall be considered

invalid and not considered in the future. The overall sensor value shall be the common

value of the two remaining valid readings and be valid.

Traceability: Developed from HLR-1.

Apportioned to: SensorManager.

LLR-6 If the validateSensorData function is active, one reading was eliminated, and the

two remaining readings are valid and do not have equal values, the overall sensor

value shall be any of the readings’ value and be invalid.

Traceability: Developed from HLR-1.

Apportioned to: SensorManager.

LLR-7 If the validateSensorData function is active, one reading is invalid, and the two

remaining readings are valid and have equal values, the invalid reading shall not be

242

considered in the future. The overall sensor value shall be the common value of the

two remaining valid readings and be valid.

Traceability: Developed from HLR-1.

Apportioned to: SensorManager.

LLR-8 If the validateSensorData function is active and at least two readings are invalid, the

overall sensor value shall be any of the readings’ value and be invalid.

Traceability: Developed from HLR-1.

Apportioned to: SensorManager.

LLR-9 If the overall sensor value is invalid, the FailureEvent shall be raised.

Traceability: Developed from HLR-1.

Apportioned to: SensorManager.

LLR-10 If the overall sensor value is valid, it shall be made available to the SequenceCon-

troller and the SensorManager shall wait to receive data from a sensor.

Traceability: Developed from HLR-1.

Apportioned to: SensorManager.

LLR-11 If the retractGears or the extendGears function becomes active, the GearsInTran-

sitEvent shall be raised.

Traceability: Developed from HLR-2 and HLR-3.

Apportioned to: SequenceController.

LLR-12 If the GearsInTransitEvent is raised, the Feedback controllable variable shall be

set to Amber.

Traceability: Developed from HLR-2 and HLR-3.

Apportioned to: PilotInterfaceManager.

243

LLR-13 If the moveGears function is active, the General EV Actuation Command controllable

variable shall be set to Open.

Traceability: Developed from HLR-2 and HLR-3.

Apportioned to: SequenceController.

LLR-14 If the PressurizationEvent and the OpenGeneralEVDelayTimeoutEvent are rai-

sed, the Door Opening EV Actuation Command controllable variable shall be set

to Open and the waitForDoorsOpen function shall be activated.

Traceability: Developed from HLR-2, HLR-3, HLR-6 and HLR-7.

Apportioned to: SequenceController.

LLR-15 If the waitForDoorsOpen function is active and the overall value of the Door Open

Status monitorable variables for any wheel assembly is Not Open or the overall

value of the Door Closed Status monitorable variable for any wheel assembly is

Closed, the waitForDoorsOpen function shall remain active until the DoorsOpen-

ingTimeoutEvent is raised.

Traceability: Developed from HLR-2 and HLR-3.

Apportioned to: SequenceController.

LLR-16 If the waitForDoorsOpen function is active and the overall value of the Door Open

Status monitorable variables for all wheel assemblies is Open and the overall value

of the Door Closed Status monitorable variables for all wheel assemblies is Not

Closed, the waitForDoorsOpen function shall end and the Door Opening EV

Actuation Command controllable variable set to Closed.

Traceability: Developed from HLR-2 and HLR-3.

Apportioned to: SequenceController.

LLR-17 If the waitForDoorsOpen function ended, the Desired Gear Position is equal to

Up, the overall value of the Gear Shock Absorber Status monitorable variables

244

for all wheel assemblies is Relaxed and the ConsecutiveSpecificEVDelayTime-

outEvent is raised, the Gear Retraction EV Actuation Command controllable

variable shall be set to Open and the waitForGearsRetracted function shall be ac-

tivated.

Traceability: Developed from HLR-2 and HLR-8.

Apportioned to: SequenceController.

LLR-18 If the overall value of the Gear Shock Absorber Status monitorable variables for

any wheel assembly is Not Relaxed, the PlaneOnGroundEvent shall be raised.

Traceability: Developed from HLR-2.

Apportioned to: SequenceController.

LLR-19 If the waitForGearsRetracted function is active and the overall value of the Gear

Retracted Status monitorable variables for any wheel assembly is Not Retracted

or the overall value of the Gear Extended Status monitorable variables for any

wheel assembly is Extended, the waitForGearsRetracted function shall remain

active until the GearsRetractionTimeoutEvent is raised.

Traceability: Developed from HLR-2.

Apportioned to: SequenceController.

LLR-20 If the waitForGearsRetracted function is active and the overall value of the Gear

Retracted Status monitorable variables for all wheel assemblies is Retracted and

the overall value for the Gear Extended Status monitorable variables for all wheel

assemblies is Not Extended, the waitForGearsRetracted function shall end and

the Gear Retraction EV Actuation Command controllable variable shall be set

to Closed.

Traceability: Developed from HLR-2.

Apportioned to: SequenceController.

245

LLR-21 If the waitForGearsRetracted function ended, the GearsRetractedEvent shall be

raised.

Traceability: Developed from HLR-2 and HLR-4.

Apportioned to: SequenceController.

LLR-22 If the GearsRetractedEvent is raised, the Feedback controllable variable shall be

set to Off.

Traceability: Developed from HLR-2.

Apportioned to: PilotInterfaceManager.

LLR-23 If the PlaneOnGroundEvent is raised, the GearsExtendedEvent shall be raised.

Traceability: Developed from HLR-2.

Apportioned to: SequenceController.

LLR-24 If the waitForGearsRetracted function ended or the PlaneOnGroundEvent is

raised, and the ConsecutiveSpecificEVDelayTimeoutEvent is raised, the Door

Closing EV Actuation Command controllable variable shall be set to Open and

the waitForDoorsClosed function shall be activated.

Traceability: Developed from HLR-2 and HLR-8.

Apportioned to: SequenceController.

LLR-25 If the waitForDoorsClosed function is active and the overall value of the Door

Closed Status monitorable variables for any wheel assembly is Not Closed or

the overall value of the Door Open Status monitorable variables for any wheel

assembly is Open, the waitForDoorsClosed function shall remain active until the

DoorsClosingTimeoutEvent is raised.

Traceability: Developed from HLR-2 and HLR-3.

Apportioned to: SequenceController.

246

LLR-26 If the waitForDoorsClosed function is active and the overall value of the Door

Closed Status monitorable variables for all wheel assemblies is Closed and the over-

all value of the Door Open Status monitorable variables for all wheel assemblies is

Not Open, the waitForDoorsClosed function shall end and the Door Closing EV

Actuation Command controllable variable shall be set to Closed.

Traceability: Developed from HLR-2 and HLR-3.

Apportioned to: SequenceController.

LLR-27 If the waitForDoorsClosed function ended and the CloseGeneralEVDelayTime-

outEvent is raised, the General EV Actuation Command controllable variable

shall be set to Closed.

Traceability: Developed from HLR-2, HLR-3 and HLR-9.

Apportioned to: SequenceController.

LLR-28 If the waitForDoorsOpen function ended, the Desired Gear Position is equal to

Down and the ConsecutiveSpecificEVDelayTimeoutEvent is raised, the Gear

Extension EV Actuation Command controllable variable shall be set to Open

and the waitForGearsExtended function shall be activated.

Traceability: Developed from HLR-3 and HLR-8.

Apportioned to: SequenceController.

LLR-29 If the waitForGearsExtended function is active and the overall value of the Gear

Extended Status monitorable variables for any wheel assembly is Not Extended

or the overall value of the Gear Retracted Status monitorable variables for any

wheel assembly is Retracted, the waitForGearsExtended function shall remain

active until the GearsExtensionTimeoutEvent is raised.

Traceability: Developed from HLR-3.

Apportioned to: SequenceController.

247

LLR-30 If the waitForGearsExtended function is active and the overall value of the Gear

Extended Status monitorable variables for all wheel assemblies is Extended and

the overall value of the Gear Retracted Status monitorable variables for all wheel

assemblies is Not Retracted, the waitForGearsExtended function shall end and

the Gear Extension EV Actuation Command controllable variable shall be set to

Closed.

Traceability: Developed from HLR-3.

Apportioned to: SequenceController.

LLR-31 If the waitForGearsExtended function ended, the GearsExtendedEvent shall be

raised.

Traceability: Developed from HLR-3.

Apportioned to: SequenceController.

LLR-32 If the GearsExtendedEvent is raised, the Feedback controllable variable shall be

set to Green.

Traceability: Developed from HLR-3 and HLR-4.

Apportioned to: PilotInterfaceManager.

LLR-33 If the waitForGearsExtended function ended and the ConsecutiveSpecificEVDe-

layTimeoutEvent is raised, the Door Closing EV Actuation Command control-

lable variable shall be set to Open and the waitForDoorsClosed function shall be

activated.

Traceability: Developed from HLR-3 and HLR-8.

Apportioned to: SequenceController.

LLR-34 If the LGCS is currently executing a sequence and a Desired Gear Position is re-

ceived, the RevertEvent shall be raised.

Traceability: Developed from HLR-4.

Apportioned to: PilotInterfaceManager.

248

LLR-35 If the RevertEvent is raised, all the actions that were executed shall be reverted.

Traceability: Developed from HLR-4.

Apportioned to: SequenceController.

LLR-36 If the retraction sequence is reverted, the GearsExtendedEvent shall be raised.

Traceability: Developed from HLR-4.

Apportioned to: SequenceController.

LLR-37 If the extension sequence is reverted, the GearsRetractedEvent shall be raised.

Traceability: Developed from HLR-4.

Apportioned to: SequenceController.

LLR-38 If a Desired Gear Position is received, the waitForAnalogicalSwitchClosed func-

tion shall be activated.

Traceability: Developed from HLR-5.

Apportioned to: SequenceController.

LLR-39 If the waitForAnalogicalSwitchClosed function is active and the overall value of

the Analogical Switch Status monitorable variables is Open, the waitForAnalog-

icalSwitchClosed function shall remain active until the AnalogicalSwitchClosing-

TimeoutEvent is raised.

Traceability: Developed from HLR-5.

Apportioned to: SequenceController.

LLR-40 If the waitForAnalogicalSwitchClosed function is active and the overall value of

the Analogical Switch Status monitorable variables is Closed, the waitForAna-

logicalSwitchClosed function shall end and the moveGears function shall be acti-

vated.

Traceability: Developed from HLR-2, HLR-3 and HLR-5.

Apportioned to: SequenceController.

249

LLR-41 If 1 second has elapsed since a Desired Gear Position was received, the Analogi-

calSwitchClosingTimeoutEvent shall be raised.

Traceability: Developed from HLR-5.

Apportioned to: SequenceController.

LLR-42 If the AnalogicalSwitchClosingTimeoutEvent is raised and the overall value of

the Analogical Switch Status monitorable variables is Open, the FailureEvent

shall be raised.

Traceability: Developed from HLR-5.

Apportioned to: SequenceController.

LLR-43 If the General EV Actuation Command controllable variable is set to Open, the

waitForHydraulicPressure function shall be activated.

Traceability: Developed from HLR-6.

Apportioned to: SequenceController.

LLR-44 If the waitForHydraulicPressure function is active and the overall value of the Hy-

draulic Circuit Pressure monitorable variable is less than 30,000 kPa, the wait-

ForHydraulicPressure function shall remain active until the PressurizationTime-

outEvent is raised.

Traceability: Developed from HLR-6 and HLR-12.

Apportioned to: SequenceController.

LLR-45 If the waitForHydraulicPressure function is active and the overall value of the Hy-

draulic Circuit Pressure monitorable variables is greater than or equal to 30,000

kPa and less than 35,000 kPa, the waitForHydraulicPressure function shall end

and the PressurizationEvent shall be raised.

Traceability: Developed from HLR-6.

Apportioned to: SequenceController.

250

LLR-46 If 0.2 seconds have elapsed since the General EV Actuation Command control-

lable variable was set to Open, the OpenGeneralEVDelayTimeoutEvent shall be

raised.

Traceability: Developed from HLR-7.

Apportioned to: SequenceController.

LLR-47 If 0.2 seconds have elapsed since a specific EV Actuation Command controllable

variable was set to Closed, the ConsecutiveSpecificEVDelayTimeoutEvent shall

be raised.

Traceability: Developed from HLR-8.

Apportioned to: SequenceController.

LLR-48 If 1 second has elapsed since a specific EV Actuation Command controllable vari-

able was set to Closed, the CloseGeneralEVDelayTimeoutEvent shall be raised.

Traceability: Developed from HLR-9.

Apportioned to: SequenceController.

LLR-49 If 0.1 seconds have elapsed since a specific EV Actuation Command controllable

variable was set to Closed, the ContrarySpecificEVDelayTimeoutEvent shall be

raised.

Traceability: Developed from HLR-10.

Apportioned to: SequenceController.

LLR-50 If the ContrarySpecificEVDelayTimeoutEvent is raised, the contrary specific EV

Actuation command controllable variable can be set to Open.

Traceability: Developed from HLR-10.

Apportioned to: SequenceController.

LLR-51 If 28 seconds have elapsed since the moveGears function is active, the waitForAna-

logicalSwitchOpen function shall be activated.

251

Traceability: Developed from HLR-11.

Apportioned to: SequenceController.

LLR-52 If the waitForAnalogicalSwitchOpen function is active and the overall value of the

Analogical Switch Status monitorable variables is Closed, the waitForAnalogi-

calSwitchOpen function shall remain active until the AnalogicalSwitchOpening-

TimeoutEvent is raised.

Traceability: Developed from HLR-11.

Apportioned to: SequenceController.

LLR-53 If the waitForAnalogicalSwitchOpen function is active and the overall value of the

Analogical Switch Status monitorable variables is Open, the waitForAnalogical-

SwitchOpen function shall end and the LGCS shall wait to receive a Desired Gear

Position.

Traceability: Developed from HLR-11.

Apportioned to: SequenceController.

LLR-54 If 1.5 seconds have elapsed after the waitForAnalogicalSwitchOpen function be-

came active, the AnalogicalSwitchOpenTimeoutEvent shall be raised.

Traceability: Developed from HLR-11.

Apportioned to: SequenceController.

LLR-55 If the AnalogicalSwitchOpenTimeoutEvent is raised and the overall value of the

Analogical Switch Status monitorable variables is Closed, the FailureEvent shall

be raised.

Traceability: Developed from HLR-11.

Apportioned to: SequenceController.

LLR-56 If 2 seconds have elapsed since the General EV controllable variable was set to

Open, the PressurizationTimeoutEvent shall be raised.

252

Traceability: Developed from HLR-12.

Apportioned to: SequenceController.

LLR-57 If the PressurizationTimeoutEvent is raised and the overall value of the Hydraulic

Circuit Pressure monitorable variables is less than 30,000 kPa, the FailureEvent

shall be raised.

Traceability: Developed from HLR-12.

Apportioned to: SequenceController.

LLR-58 If 10 seconds have elapsed since the General EV controllable variable was set to

Close, the DepressurizationTimeoutEvent shall be raised.

Traceability: Developed from HLR-13.

Apportioned to: SequenceController.

LLR-59 If the DepressurizationTimeoutEvent is raised and the overall value of the Hy-

draulic Circuit Pressure monitorable variables is greater than or equal to 30,000

kPa and less than 35,000 kPa, the FailureEvent shall be raised.

Traceability: Developed from HLR-13.

Apportioned to: SequenceController.

LLR-60 If 7 seconds have elapsed since the Door Opening EV Actuation Command

controllable variable was set to Open, the DoorsOpeningTimeoutEvent shall be

raised.

Traceability: Developed from HLR-14.

Apportioned to: SequenceController.

LLR-61 If the DoorsOpeningTimeoutEvent is raised and the overall value of the Door

Closed Status monitorable variables for any wheel assembly is Closed, the Fail-

ureEvent shall be raised.

Traceability: Developed from HLR-14.

253

Apportioned to: SequenceController.

LLR-62 If the DoorsOpeningTimeoutEvent is raised and the overall value of the Door

Open Status monitorable variables for any wheel assembly is Not Open, the Fail-

ureEvent shall be raised.

Traceability: Developed from HLR-14.

Apportioned to: SequenceController.

LLR-63 If 7 seconds have elapsed since the Door Closing EV Actuation Command was

set to Open, the DoorsClosingTimeoutEvent shall be raised.

Traceability: Developed from HLR-15.

Apportioned to: SequenceController.

LLR-64 If theDoorsClosingTimeoutEvent is raised and the overall value of theDoor Open

Status monitorable variables for any wheel assembly is Open, the FailureEvent

shall be raised.

Traceability: Developed from HLR-15.

Apportioned to: SequenceController.

LLR-65 If the DoorsClosingTimeoutEvent is raised and the overall value of the Door

Closed Status monitorable variables for any wheel assembly is Not Closed, the

FailureEvent shall be raised.

Traceability: Developed from HLR-15.

Apportioned to: SequenceController.

LLR-66 If 10 seconds have elapsed since the Gear Retraction EV Actuation Command

controllable variable was set to Open, the GearsRetractionTimeoutEvent shall be

raised.

Traceability: Developed from HLR-16.

Apportioned to: SequenceController.

254

LLR-67 If the GearsRetractionTimeoutEvent is raised and the overall value of the Gear

Extended Status monitorable variables for any wheel assembly is Extended, the

FailureEvent shall be raised.

Traceability: Developed from HLR-16.

Apportioned to: SequenceController.

LLR-68 If the GearsRetractionTimeoutEvent is raised and the overall value of the Gear

Retracted Status monitorable variables for any wheel assembly is Not Retracted,

the FailureEvent shall be raised.

Traceability: Developed from HLR-16.

Apportioned to: SequenceController.

LLR-69 If 10 seconds have elapsed since the Gear Extension EV Actuation Command

controllable variable was set to Open, the GearsExtensionTimeoutEvent shall be

raised.

Traceability: Developed from HLR-17.

Apportioned to: SequenceController.

LLR-70 If the GearsExtensionTimeoutEvent is raised and the overall value of the Gear

Retracted Status monitorable variables for any wheel assembly is Retracted, the

FailureEvent shall be raised.

Traceability: Developed from HLR-17.

Apportioned to: SequenceController.

LLR-71 If the GearsExtensionTimeoutEvent is raised and the overall value of the Gear

Extended Status monitorable variables for any wheel assembly is Not Extended,

the FailureEvent shall be raised.

Traceability: Developed from HLR-17.

Apportioned to: SequenceController.

255

LLR-72 If the FailureEvent is raised and the LGCS is currently executing a retraction or

extension sequence, the HaltActiveSequenceEvent shall be raised.

Traceability: Developed from HLR-18.

Apportioned to: SequenceController.

LLR-73 If the FailureEvent is raised, the FailureDetectedEvent shall be raised.

Traceability: Developed from HLR-18.

Apportioned to: OperatingModeManager.

LLR-74 If the FailureDetectedEvent is raised, the Feedback controllable variable shall be

set to Red.

Traceability: Developed from HLR-18.

Apportioned to: PilotInterfaceManager.

LLR-75 If theHaltActiveSequenceEvent is raised, the haltActiveSequence procedure shall

be activated.

Traceability: Developed from HLR-18.

Apportioned to: SequenceController.

LLR-76 If the haltActiveSequence procedure is active, the current sequence of actions shall

be halted.

Traceability: Developed from HLR-18.

Apportioned to: SequenceController.

APPENDIX III

MAPPING RULES AND DESIGN GUIDELINES OF CHECSDM4USS

Table-A III-1 Mapping rule mr_us_01 for UML class and Simulink

subsystem.

Mapping Rule
(ID: Name)

mr_us_01: UML class and Simulink subsystem

When The UML class and the Simulink subsystem have similar names.

Where
(1) Input parameters of operations in the UML classifier’s provided interface and inputs of the

Simulink subsystem block are matched (referenced rule: mr_us_05, see Table III-5).

(2) Output parameters of operations in the UML classifier’s required interface and inputs of the

Simulink subsystem block are matched (referenced rule: mr_us_06, see Table III-6).

(3) Input parameters of operations in the UML classifier’s required interface and outputs of the

Simulink subsystem block are matched (referenced rule: mr_us_07, see Table III-7).

(4) Output parameters of operations in the UML classifier’s provided interface and outputs of

the Simulink subsystem block are matched (referenced rule: mr_us_08, see Table III-8).

(5) Nested classifiers and nested subsystem blocks are matched (referenced rule: mr_us_01,

see Table III-1).

Table-A III-2 Mapping rule mr_us_02 for UML class and Stateflow chart.

Mapping Rule
(ID: Name)

mr_us_02: UML class and Stateflow chart

When The UML class and the Stateflow chart have similar names.

Where
(1) Input parameters of operations in the UML classifier’s provided interface and inputs of the

Stateflow chart are matched (referenced rule: mr_us_05, see Table III-5).

(2) Output parameters of operations in the UML classifier’s required interface and inputs of the

Stateflow chart are matched (referenced rule: mr_us_06, see Table III-6).

(3) Input parameters of operations in the UML classifier’s required interface and outputs of the

Stateflow chart are matched (referenced rule: mr_us_07, see Table III-7).

(4) Output parameters of operations in the UML classifier’s provided interface and outputs of

the Stateflow chart are matched (referenced rule: mr_us_08, see Table III-8).

258

Table-A III-3 Mapping rule mr_us_03 for UML component and Simulink

subsystem.

Mapping Rule
(ID: Name)

mr_us_03: UML component and Simulink subsystem

When The UML component and the Simulink subsystem have similar names.

Where
(1) Input parameters of operations in the UML classifier’s provided interface and inputs of the

Simulink subsystem block are matched (referenced rule: mr_us_05, see Table III-5).

(2) Output parameters of operations in the UML classifier’s required interface and inputs of the

Simulink subsystem block are matched (referenced rule: mr_us_06, see Table III-6).

(3) Input parameters of operations in the UML classifier’s required interface and outputs of the

Simulink subsystem block are matched (referenced rule: mr_us_07, see Table III-7).

(4) Output parameters of operations in the UML classifier’s provided interface and outputs of

the Simulink subsystem block are matched (referenced rule: mr_us_08, see Table III-8).

(5) Nested classifiers and nested subsystem blocks are matched (referenced rule: mr_us_03,

see Table III-3).

Table-A III-4 Mapping rule mr_us_04 for UML component and Stateflow

chart.

Mapping Rule
(ID: Name)

mr_us_04: UML component and Stateflow chart

When The UML component and the Stateflow chart have similar names.

Where
(1) Input parameters of operations in the UML classifier’s provided interface and inputs of the

Stateflow chart are matched (referenced rule: mr_us_05, see Table III-5).

(2) Output parameters of operations in the UML classifier’s required interface and inputs of the

Stateflow chart are matched (referenced rule: mr_us_06, see Table III-6).

(3) Input parameters of operations in the UML classifier’s required interface and outputs of the

Stateflow chart are matched (referenced rule: mr_us_07, see Table III-7).

(4) Output parameters of operations in the UML classifier’s provided interface and outputs of

the Stateflow chart are matched (referenced rule: mr_us_08, see Table III-8).

Table-A III-5 Mapping rule mr_us_05 for UML input parameter and

Simulink block input.

Mapping Rule
(ID: Name)

mr_us_05: UML input parameter and Simulink block input

When
(1) The input parameter’s name is similar to the block input’s name.

(2) The input parameter’s data type is similar to the block input’s data type.

Note: Empty compartments are omitted to keep the table uncluttered.

259

Table-A III-6 Mapping rule mr_us_06 for UML output parameter and

Simulink block input.

Mapping Rule
(ID: Name)

mr_us_06: UML output parameter and Simulink block input

When
(1) The output parameter’s name is similar to the block input’s name.

(2) The output parameter’s data type is similar to the block input’s data type.

Note: Empty compartments are omitted to keep the table uncluttered.

Table-A III-7 Mapping rule mr_us_07 for UML input parameter and

Simulink block output.

Mapping Rule
(ID: Name)

mr_us_07: UML input parameter and Simulink block output

When
(1) The input parameter’s name is similar to the block output’s name.

(2) The input parameter’s data type is similar to the block output’s data type.

Note: Empty compartments are omitted to keep the table uncluttered.

Table-A III-8 Mapping rule mr_us_08 for UML output parameter and

Simulink block output.

Mapping Rule
(ID: Name)

mr_us_08: UML output parameter and Simulink block output

When
(1) The output parameter’s name is similar to the block output’s name.

(2) The output parameter’s data type is similar to the block output’s data type.

Note: Empty compartments are omitted to keep the table uncluttered.

260

Table-A III-9 Mapping rule mr_us_09 for UML state machine and

Stateflow chart.

Mapping Rule
(ID: Name)

mr_us_09: UML state machine and Stateflow chart

When The UML state machine and Stateflow chart have similar names.

Where
(1) Regions in the UML state machine and parallel states at the topmost level of the Stateflow

chart are matched (referenced rule: mr_us_11, see Table III-11). This clause is dropped

when the UML state machine has only one region.

(2) States in the UML state machine and states in the Stateflow chart are matched (referenced

rule: mr_us_12, see Table III-12).

(3) Choice pseudostates in the UML state machine and connective junctions in the Stateflow

chart are matched (referenced rule: mr_us_13, see Table III-13).

(4) Fork pseudostates in the UML state machine and Stateflow composite states in the

Stateflow chart are matched (referenced rule: mr_us_14, see Table III-14).

(5) Join pseudostates in the UML state machine and Stateflow composite states in the

Stateflow chart are matched (referenced rule: mr_us_15, see Table III-15).

(6) Initial states in the UML state machine and default transitions in the Stateflow chart are

matched (referenced rule: mr_us_16, see Table III-16).

(7) Transitions in the UML state machine and transitions in the Stateflow chart are matched

(referenced rule: mr_us_17, see Table III-17).

Table-A III-10 Mapping rule mr_us_10 for UML composite state and

Stateflow composite state.

Mapping Rule
(ID: Name)

mr_us_10: UML composite state and Stateflow composite state

When The UML composite state and Stateflow composite state have similar names.

Where
(1) Regions in the UML composite state and parallel states at the topmost level of the

Stateflow composite state are matched (referenced rule: mr_us_11, see Table III-11). This

clause is dropped when the UML composite state has only one region.

(2) States within the UML composite state and states within the Stateflow composite state are

matched (referenced rule: mr_us_12, see Table III-12).

(3) Choice pseudostates within the UML composite state and connective junctions within the

Stateflow composite state are matched (referenced rule: mr_us_13, see Table III-13).

(4) Fork pseudostates within the UML composite state and Stateflow composite states within

the Stateflow composite state are matched (referenced rule: mr_us_14, see Table III-14).

(5) Join pseudostates within the UML composite state and Stateflow composite states within

the Stateflow composite state are matched (referenced rule: mr_us_15, see Table III-15).

(6) Initial states within the UML composite state and default transitions within the Stateflow

composite state are matched (referenced rule: mr_us_16, see Table III-16).

(7) Transitions within the UML composite state and transitions within the Stateflow composite

state are matched (referenced rule: mr_us_17, see Table III-17).

261

Table-A III-11 Mapping rule mr_us_11 for UML region and Stateflow

parallel state.

Mapping Rule
(ID: Name)

mr_us_11: UML region and Stateflow parallel state

When
(1) The containing Stateflow chart or composite state has parallel (AND) decomposition.

(2) The Stateflow parallel state is at the topmost level of its containing chart/composite state.

(3) the UML region and Stateflow parallel state have similar names.

Where
(1) Nested elements (i.e. states, transitions, pseudostates) are matched (referenced rules:

mr_us_10 through mr_us_17, see Tables III-10 through III-17).

Table-A III-12 Mapping rule mr_us_12 for UML state and Stateflow state.

Mapping Rule
(ID: Name)

mr_us_12: UML state and Stateflow state

When The UML state and Stateflow state have similar names.

Where
(1) Incoming and outgoing transitions are matched (referenced rule: mr_us_17, see

Table III-17).

(2) Entry, do and exit actions are matched.

Table-A III-13 Mapping rule mr_us_13 for UML choice pseudostate and

Stateflow junction.

Mapping Rule
(ID: Name)

mr_us_13: UML choice pseudostate and Stateflow junction

Where
(1) Incoming and outgoing transitions are matched (referenced rule: mr_us_17, see

Table III-17).

Note: Empty compartments are omitted to keep the table uncluttered.

Table-A III-14 Mapping rule mr_us_14 for UML fork pseudostate and

Stateflow composite state.

Mapping Rule
(ID: Name)

mr_us_14: UML fork pseudostate and Stateflow composite state

When
(1) The Stateflow composite state has parallel (AND) decomposition.

(2) The UML fork pseudostates and Stateflow composite state have similar names (see

guideline av_us_17, Table III-37).

Where
(1) Incoming transitions are matched (referenced rule: mr_us_17, see Table III-17).

262

Table-A III-15 Mapping rule mr_us_15 for UML join pseudostate and

Stateflow composite state.

Mapping Rule
(ID: Name)

mr_us_15: UML join pseudostate and Stateflow composite state

When
(1) The Stateflow composite state has parallel (AND) decomposition.

(2) The UML join pseudostates and Stateflow composite state have similar names (see

guideline av_us_17, Table III-37).

Where
(1) Outgoing transitions are matched (referenced rule: mr_us_17, see Table III-17).

Table-A III-16 Mapping rule mr_us_16 for UML default transition and

Stateflow default transition.

Mapping Rule
(ID: Name)

mr_us_16: UML default transition and Stateflow default transition

When The target state of the outgoing transition from the UML initial state and the target state

of the Stateflow default transition are matched.

Note: Empty compartments are omitted to keep the table uncluttered.

Table-A III-17 Mapping rule mr_us_17 for UML transition and Stateflow

transition.

Mapping Rule
(ID: Name)

mr_us_17: UML transition and Stateflow transition

When
(1) The target vertexes have similar names.

(2) the source vertexes have similar names.

Where
(1) Triggers, guards and actions are matched (referenced rules: mr_us_18 through

mr_us_20, see Tables III-18 through III-20).

Table-A III-18 Mapping rule mr_us_18 for UML transition trigger and

Stateflow transition trigger.

Mapping Rule
(ID: Name)

mr_us_18: UML transition trigger and Stateflow transition trigger

When The trigger expressions are matched (see guideline av_us_10, Table III-30).

Note: Empty compartments are omitted to keep the table uncluttered.

Table-A III-19 Mapping rule mr_us_19 for UML transition guard and

Stateflow transition guard.

Mapping Rule
(ID: Name)

mr_us_19: UML transition guard and Stateflow transition guard

When The guard expressions are matched (see guidelines av_us_11 and av_us_12,

Tables III-31 and III-32).

Note: Empty compartments are omitted to keep the table uncluttered.

263

Table-A III-20 Mapping rule mr_us_20 for UML transition actions and

Stateflow transition actions.

Mapping Rule
(ID: Name)

mr_us_20: UML transition actions and Stateflow transition actions

When The actions’ expressions are matched (see guideline av_us_15, Table III-35).

Note: Empty compartments are omitted to keep the table uncluttered.

Table-A III-21 Guideline av_us_01: Mixed use of UML, Simulink and

Stateflow.

Guideline
(ID: Title)

av_us_01: Mixed use of UML, Simulink and Stateflow

Priority Recommended

Scope UML, Simulink and Stateflow

Prerequisites None

Description
The choice of using UML, Simulink or Stateflow, or a mix of them to model all the system

or given portions of it should be driven by the nature of the system being modeled and the

purposes of the models.

• If the system (or the portions of it) primarily involves software, use UML components and

classes to characterize the structure and behaviour of the software.

• If the system (or the portions of it) involves both software and hardware elements, use UML

components and classes to characterize the structure and behaviour of the software, and use

Simulink and Stateflow to characterize the structure and behaviour of the hardware elements.

• If the behaviour of the system (or the portions of it) primarily involves modal logic with a

combination of past and present logical conditions, use UML state machines, Stateflow

charts or a mix of them.

• If a behaviour segment primarily involves behaviour that may execute concurrently, use

UML state machines.

• If the behaviour of the system (or the portions of it) primarily involves if-then-else

statements, use Stateflow truth table charts.

Rationale
Embedded control software are highly heterogeneous, possessing very different

characteristics. In order to cope with their complexities, these characteristics should be

described using diverse modelling mechanisms, like UML, Simulink and Stateflow. This

guideline is intended to manage the resulting design heterogeneity in order to facilitate

understanding and communication without hindering verification and certification.

See Also
• Guideline av_us_02: Definition of a naming convention (see Table III-22)

• MAAB Guideline na_0006: Guidelines for mixed use of Simulink and Stateflow

• MAAB Guideline na_0007: Guidelines for use of Flow Charts, Truth Tables and State

Machines

264

Table-A III-22 Guideline av_us_02: Definition of a naming convention.

Guideline
(ID: Title)

av_us_02: Definition of a naming convention

Priority Mandatory

Scope UML, Simulink and Stateflow

Prerequisites
• MAAB Guideline ar_0001: Filenames

• MAAB Guideline ar_0002: Directory names

• MAAB Guideline na_0035: Adoption of naming conventions

• MAAB Guideline jc_0201: Usable characters for Subsystem names

• MAAB Guideline jc_0211: Usable characters for Inport block and Outport block

• MAAB Guideline jc_0231: Usable characters for block names

• MAAB Guideline na_0014: Use of local language in Simulink and Stateflow

• UML 2.5.1 subclause 9.2.4 Notation (Classifiers)

• UML 2.5.1 subclause 9.5.4 Notation (Properties)

• UML 2.5.1 subclause 9.6.4 Notation (Operations)

• UML 2.5.1 subclause 10.4.4 Notation (Interfaces)

• UML 2.5.1 subclause 11.4.4 Notation (Classes)

• UML 2.5.1 subclause 11.6.4 Notation (Components)

• UML 2.5.1 subclause 14.2.4 Notation (State Machines)

Description
It is not possible to define a single naming convention applicable to the internal processes of

all organizations. However, within an organization it is mandatory to follow a single,

consistent naming convention that is compatible across UML, Simulink and Stateflow

models. Such naming convention must provide guidance for naming Simulink subsystem

blocks, Simulink basic blocks, Simulink input and output ports, Stateflow charts, Stateflow

states, Stateflow data (input, output and local), and UMLNamedElements.

Rationale
This guideline is intended to make mandatory a naming convention across UML, Simulink

and Stateflow models in order to reduce ambiguities when mapping UML constructs and

Simulink or Stateflow constructs.

Table-A III-23 Guideline av_us_03: Naming of elements in UML models.

Guideline
(ID: Title)

av_us_03: Naming of elements in UML models

Priority Mandatory

Scope UML

Prerequisites None

Description
All NamedElements in a UML model must have a name.

Rationale
Finding matches between UML, Simulink and Stateflow models relies on naming.

265

Table-A III-24 Guideline av_us_04: Naming of UML fork and join

pseudostates.

Guideline
(ID: Title)

av_us_04: Naming of UML fork and join pseudostates

Priority Mandatory

Scope UML

Prerequisites None

Description
The names of UML fork and join pseudostates must be the same.

Rationale
Sharing the same name root facilitates their matching to an equivalent Stateflow

construct.

See Also
• Guideline av_us_14: Fork and join behaviour in Stateflow (see Table III-41)

Table-A III-25 Guideline av_us_05: Naming of elements in Simulink /

Stateflow models.

Guideline
(ID: Title)

av_us_05: Naming of elements in Simulink / Stateflow models

Priority Mandatory

Scope Simulink / Stateflow

Prerequisites None

Description
All elements in Simulink / Stateflow models that can be named must have a name.

Rationale
Finding matches between UML, Simulink and Stateflow models relies on naming.

Table-A III-26 Guideline av_us_06: Naming of Simulink Inport and

Outport blocks.

Guideline
(ID: Title)

av_us_06: Naming of Simulink Inport and Outport blocks

Priority Recommended

Scope Simulink

Prerequisites
• MAAB Style Guideline jc_0211: Usable characters for Inport block and Outport block

• MAAB Style Guideline jm_0010: Port block names in Simulink models

Description
The names of Simulink Inport and Outport blocks must start with the prefixes In_ and

Out_, respectively.
Rationale

Finding matches between UML, Simulink and Stateflow models relies on naming.

266

Table-A III-27 Guideline av_us_07: Decomposition type for Stateflow

chart and composite state.

Guideline
(ID: Title)

av_us_07: Decomposition type for Stateflow chart and composite state

Priority Recommended

Scope Stateflow

Prerequisites None

Description
A Stateflow chart or composite state should have a parallel (AND) decomposition and at

least one parallel state owning a set of vertices (states and junctions) and transitions that

define a behaviour fragment.

Rationale
A UML state machine and composite state denote a set of orthogonal behaviour fragments

with the use of regions. Thus, this guideline is intended to reduce ambiguities when mapping

a UML state machine or composite state to a Stateflow chart or composite state, respectively.

The use of a parallel decomposition and parallel states is semantically equivalent to that of

UML orthogonal regions. When the state machine or composite state define only one region

this guideline can be elided.

Table-A III-28 Guideline av_us_08: Expression of triggers in UML

transitions.

Guideline
(ID: Title)

av_us_08: Expression of triggers in UML transitions

Priority Mandatory

Scope UML

Prerequisites None

Description
UML triggers must be defined as event names denoted textually as described in subclause

13.3.4 of the UML 2.5.1 specification.

Rationale
This guideline is intended to allow a mapping to be established between a UML state

machine and a Stateflow chart.

See Also
• UML 2.5.1 subclause 13.3.4 Notation

267

Table-A III-29 Guideline av_us_09: Expression of triggers in Stateflow

transitions.

Guideline
(ID: Title)

av_us_09: Expression of triggers in Stateflow transitions

Priority Mandatory

Scope Stateflow

Prerequisites None

Description
Stateflow events in transitions should not be used for the reasons pointed out in Ferrari et al.
(2013). An exception to the previous restriction applies to relative time event triggers, which

must be denoted with “after” followed by the argument values corresponding to the number

and unit of time.

Rationale
This guideline is intended to allow a mapping to be established between a UML state

machine and a Stateflow chart.

See Also
• MAAB Guideline db_0126: Scope of events

Table-A III-30 Guideline av_us_10: Expression of triggers appearing in

both UML and Stateflow transitions.

Guideline
(ID: Title)

av_us_10: Expression of triggers appearing in both UML and Stateflow transitions

Priority Mandatory

Scope UML and Stateflow

Prerequisites
• Guideline av_us_08: Expression of triggers in UML transitions

• Guideline av_us_09: Expression of triggers in Stateflow transitions

Description
If a transition appears in a UML state machine as well as a Stateflow chart, then the name of

the Stateflow condition variable must be a subset of the UML trigger event name.

An exception to the previous restriction applies to relative time event triggers, which must be

denoted with “after” followed by the argument values corresponding to the number and unit

of time.

Rationale
This guideline is intended to allow a mapping to be established between a UML state

machine and a Stateflow chart.

268

Table-A III-31 Guideline av_us_11: Expression of UML guards in

transitions.

Guideline
(ID: Title)

av_us_11: Expression of UML guards in transitions

Priority Mandatory

Scope UML

Prerequisites None

Description
UML guards in transitions must be defined as logical expressions made up of a primary

expression, or a conjunction or disjunction of two or more primary expressions. A primary

expression is defined to be a relational expression containing one relational operator (<, <=,

>, >=, ∼=, ==, ∼).
Rationale

The UML specification defines a guard as an OpaqueExpression. Only certain constraints

are predefined in UML. Thus, this guideline borrows the Stateflow notation for the

expression of guards in UML to facilitate their mapping.

See Also
• UML 2.5.1 subclause 13.3.4 Notation (Triggers)

• UML 2.5.1 subclause 7.6.4 Notation (OpaqueExpression)

Table-A III-32 Guideline av_us_12: Expression of Stateflow conditions

in transitions.

Guideline
(ID: Title)

av_us_12: Expression of Stateflow conditions in transitions

Priority Mandatory

Scope Stateflow

Prerequisites MAAB Style Guideline db_0150: State machine patterns for conditions

Description
Stateflow conditions in transitions must be defined as logical expressions made up of a

primary expression, or a conjunction or disjunction of two or more primary expressions. A

primary expression is defined to be one of the following:

• a Boolean input or local variable, or

• a relational expression containing one relational operator (<, <=, >, >=, ∼=, ==, ∼).
Rationale

This guideline is intended to allow a mapping to be established between a UML state

machine and a Stateflow chart.

269

Table-A III-33 Guideline av_us_13: Expression of UML actions.

Guideline
(ID: Title)

av_us_13: Expression of UML actions

Priority Mandatory

Scope UML

Prerequisites
• MAAB Guideline jc_0501: Format of entries in a State block

• MAAB Guideline db_0151: State machine patterns for transition actions

Description
UML actions on entry, do and exit behaviours for states and on transitions must be defined

as sequences of UML Operation calls.

Rationale
The UML specification provides relatively minimal concrete syntax for actions in

behaviours attached to states and transitions in a state machine. Thus, this guideline clarifies

the type of behaviour expressions allowed. The guideline is also intended to facilitate the

mapping of actions between UML state machines and Stateflow charts.

See Also
• UML 2.5.1 subclause 16.1.1.1 Concrete Syntax

• UML 2.5.1 subclause 7.6.4 Notation (OpaqueExpression)

Table-A III-34 Guideline av_us_14: Expression of Stateflow actions.

Guideline
(ID: Title)

av_us_14: Expression of Stateflow actions

Priority Mandatory

Scope Stateflow

Prerequisites
• MAAB Guideline jc_0501: Format of entries in a State block

• MAAB Guideline db_0151: State machine patterns for transition actions

Description
Stateflow actions on entry, do and exit behaviours for states and on transitions must be

defined as sequences of variable assignment statements. If the actions appear in a UML state

machine as well, then the variable names must be subsets of the UML operation names used.

Rationale
The guideline is intended to facilitate the mapping of actions between UML state machines

and Stateflow charts.

See Also
• UML 2.5.1 subclause 16.1.1.1 Concrete Syntax

• UML 2.5.1 subclause 7.6.4 Notation (OpaqueExpression)

270

Table-A III-35 Guideline av_us_15: Expression of actions appearing in

both UML and Stateflow models.

Guideline
(ID: Title)

av_us_15: Expression of actions appearing in both UML and Stateflow models

Priority Mandatory

Scope UML and Stateflow

Prerequisites
• Guideline av_us_07: Expression of UML actions (see Table III-27)

• Guideline av_us_08: Expression of Stateflow actions (see Table III-28)

Description
If an action appears in a UML state machine as well as a Stateflow chart, then the Stateflow

variable names must be subsets of the UML operation names used.

Rationale
The guideline is intended to facilitate the mapping of actions between UML state machines

and Stateflow charts.

Table-A III-36 Guideline av_us_16: Use of signal receipt and send

symbols in UML state machines.

Guideline
(ID: Title)

av_us_16: Use of signal receipt and send symbols in UML state machines

Priority Recommended

Scope UML

Prerequisites None

Description
The UML signal receipt and send symbols should not be used. Instead, the UML default

textual notation for a

Rationale
The signal receipt and send symbols break up the transition (into at least two segments),

which makes more difficult a consistency analysis with other models (e.g., Stateflow).

Furthermore, these symbols are not always supported in tools.

See Also
• UML 2.5.1 subclause 14.2.4.8 Transition

• Guideline av_us_08: Expression of triggers in UML transitions (see Table III-28)

• Guideline av_us_13: Expression of UML actions (see Table III-33)

271

Table-A III-37 Guideline av_us_17: Use of UML fork and join

pseudostates.

Guideline
(ID: Title)

av_us_17: Use of UML fork and join pseudostates

Priority Mandatory

Scope UML

Prerequisites Guideline av_us_04: Naming of UML fork and join pseudostates (Table III-24)

Description
When using fork and join pseudostates, every parallel path from the fork pseudostate to the

join pseudostate has only one composite state.

Rationale
This guideline is intended to reduce ambiguities when mapping a UML state machine and a

Stateflow chart.

Table-A III-38 Guideline av_us_18: Data type of Simulink Inports and

Outports.

Guideline
(ID: Title)

av_us_18: Data type of Simulink Inports and Outports

Priority Mandatory

Scope Simulink

Prerequisites None

Description
The data type of Simulink Inports and Outports must be set. The data type cannot be

inherited or auto.

Rationale
Finding matches between UML, Simulink and Stateflow models relies on data types.

Table-A III-39 Guideline av_us_19: Conjugation of a UML Port.

Guideline
(ID: Title)

av_us_19: Conjugation of a UML Port

Priority Mandatory

Scope UML

Prerequisites None

Description
• The value of the isConjugated property of a UML port must be set accordingly depending

on the port’s purpose.

• If the port is used to provide an interface, then the value of the isConjugated property must

be set to false.

• If the port is used to require an interface, then the value of the isConjugated property must

be set to true.

Rationale
• The value of the isConjugated property specifies the way that the provided and required

interfaces are derived from the port’s type.

See Also
• UML 2.5.1 subclause 11.8.14 Port

272

Table-A III-40 Guideline av_us_20: Entry and exit points in Stateflow

chart.

Guideline
(ID: Title)

av_us_20: Entry and exit points in Stateflow chart

Priority Recommended

Scope Stateflow

Prerequisites None

Description
In some modelling situations when encapsulating elements in a composite state, it is useful

to bind the internal elements of such composite state with incoming and outgoing

transitions. In UML this is realized by means of entry and exit point pseudostates. Stateflow

does not provide equivalent constructs for such purpose. However, incoming transitions can

penetrate a composite state and terminate directly on one of its internal vertices, and

outgoing transitions can start in an internal state and terminate in another state outside the

composite state.

When these situations need to be modelled in a Stateflow chart an additional state should be

added within the composite state representing an entry or exit point of the composite state.

For the case of exit points, the entry action of the additional state must set a local data in the

Stateflow chart that is evaluated in the conditions of the state’s corresponding outgoing

transitions.

Rationale
This guideline is intended to reduce ambiguities when mapping a UML state machine and a

Stateflow chart. The introduction of additional states into the Stateflow chart to represent

entry and exit points of composite states can be regarded as semantically equivalent to that

of UML entry and exit point pseudostates.

273

Table-A III-41 Guideline av_us_21: Fork and join behaviour in Stateflow.

Guideline
(ID: Title)

av_us_21: Fork and join behaviour in Stateflow

Priority Recommended

Scope Stateflow

Prerequisites None

Description
In some modelling situations where all parallel states need to terminate their execution

before the execution can continue, the parallel states must perform a synchronization. To

perform a synchronization function in Stateflow parallel states, additional states are required

as follows:

• An additional ‘Synced’ state within each parallel state must be added as the final state.

• The previous ‘Synced’ state must be reached through a transition that evaluates to ‘true’ a

Boolean ‘syncing’ local data. When the state is reached, the Boolean ‘synced’ local data is

changed to ‘true’.

• One of the parallel states needs to be chosen as the synchronizing state. Such a state will

change the ‘syncing’ local data to ‘true’ in the transition to an additional ‘Syncing’ state

placed before the ‘Synced’ state.

Rationale
Stateflow parallel states do not have a synchronization mechanism. Thus, this guideline is

intended to define a synchronization mechanism. A word of caution, synchronizing parallel

states in this manner is not scalable and is recommended only for synchronizing two parallel

states as it could cause state explosion.

See Also
• Stateflow documentation: Broadcast Events to Synchronize States

APPENDIX IV

CHECSDM AND CHECSDM4USS DEVELOPER’S AND USER’S GUIDES

1. Developer’s Guide

1.1 Getting started

System requirements

- Java JDK 8 or higher

- Eclipse Oxygen or newer with the Modeling package (a.k.a. Eclipse Modeling Tools)

- MATLAB R2018b

Install required dependencies

The required dependencies are Epsilon, Viatra and Xtext.

1. Go to Help » Install New Software....

2. Work with http://download.eclipse.org/epsilon/1.4/updates/ to install Epsilon. Select the

following features:

- Epsilon Core v1.4.0

- Epsilon Core Development Tools v1.4.0

- Epsilon EMF Integration v1.4.0

- Epsilon UML Integration v1.4.0

3. Work with http://download.eclipse.org/modeling/tmf/xtext/updates/composite/releases/ to

install Xtext. Select the following features:

276

- Xtext » Xtext Complete SDK v2.12.0

4. Work with http://download.eclipse.org/viatra/updates/release to install Viatra. Select the

following features:

- VIATRA Core » VIATRA Query and Transformation SDK v1.6.1

Import the checsdm4uss projects

1. Import the source code projects of checsdm4uss into the Eclipse workspace.

Create new run configuration

Create a new Run Configuration in Eclipse:

1. Go to Run » Run Configurations....

2. From the list in the left, double click on Eclipse Application.

3. Give the configuration a name (suggestion: checsdm4uss).

4. Select the tab Environment.

5. Create a new variable with the following information:

In Windows:

Name: PATH

Value: «path to MATLAB»\bin\win64

In macOS:

Name: DYLD_LIBRARY_PATH

Value: «path to MATLAB»/bin/maci64

277

In Linux:

Name: LD_LIBRARY_PATH

Value: «path to MATLAB»/bin/glnxa64:«path to MATLAB»/sys/os/gl

nxa64

1.2 Project structure

- src-gen

This folder contains generated source code from models. These files should not be edited

directly.

- src

This folder contains manually created source code. These files can be edited directly if

necessary.

- icons

This folder contains image files used for icons in the plug-in.

- META-INF and MANIFEST.MF

This folder and file contain descriptions of the extensions made to Eclipse IDE by the plug-

in.

- models

This folder contains EMF models.

- build.properties

This file contains the build properties of the plug-in.

- plugin.properties

This file contains additional properties of the plug-in.

278

- plugin.xml

This file contains descriptions of the extensions made to the Eclipse IDE by the plug-in.

1.3 checsdm4uss projects and noteworthy files

- ca.ets.sofeess.checsdm4uss.guidelinecompliance

This project contains the guideline formalizations in VQL. Each .vql file contains one guide-

line formalization. The files are named with the guideline IDs.

- ca.ets.sofeess.checsdm4uss.guidelinecompliance.validation

This project is automatically generated by Viatra. It contains all the marker-based valida-

tion code generated from the constraints specified with the @Constraint annotation in the

guideline formalizations.

- ca.ets.sofeess.checsdm4uss.mappingrules

This project contains the mapping rules formalizations in ECL.

– Main.ecl

Entry point for mapping rule execution. This file contains initialize (pre) and terminate

(post) code blocks that must be executed before and after (respectively) evaluating the

mapping rules.

– Common.ecl

This file defines common operations used throughout the mapping rules formalizations.

– ClassesAndSubsystems.ecl

This file defines the formalizations for mapping rules regarding UML components and

classes, and Simulink subsystem blocks, i.e. mapping rules mr_us_01 through mr_us_-

08 (see Appendix III).

– StateMachinesAndCharts.ecl

This file defines the formalizations for mapping rules regarding UML state machines

and Stateflow charts, i.e. mapping rules mr_us_09 throughmr_us_20 (see Appendix III).

279

- ca.ets.sofeess.checsdm4uss.mappingrules.ui

This project provides a contextual menu UI contribution to the Eclipse IDE for executing the

mapping rules when both a UML and a Simulink model are selected in the Model Explorer

view.

- ca.ets.sofeess.checsdm.mappings

This project defines the Mapping metamodel.

– Mappings.ecore

EMF model defining the Mapping metamodel (see Figure 3.4).

– Mappings.genmodel

EMF generator model containing the control parameters on how code and other derived

outputs should be generated.

- ca.ets.sofeess.checsdm.mappings.edit

This project provides editing facilities for mapping models. This project is generated

through the Mappings.genmodel generator model in the ca.ets.sofeess.checsdm.mappings

project.

- ca.ets.sofeess.checsdm.mappings.editor

This project provides a graphical editor for mapping models. This project is generated

through the Mappings.genmodel generator model in the ca.ets.sofeess.checsdm.mappings

project.

- ca.ets.sofeess.breesse.engine

This project provides a high-level, reusable, extendable framework for working program-

matically with Simulink and Stateflow through MATLAB’s Java API.

- ca.ets.sofeess.breesse.simulink

This project defines the Simulink EMF metamodel.

280

– Simulink.ecore

EMF model defining the Simulink EMF metamodel.

– Simulink.genmodel

EMF generator model containing the control parameters on how code and other derived

outputs should be generated.

- ca.ets.sofeess.breesse.simulink.edit

This project provides editing facilities for Simulink EMF models. This project is gener-

ated through the Simulink.genmodel generator model in the ca.ets.sofeess.checsdm.simulink

project.

- ca.ets.sofeess.breesse.simulink.editor

This project provides a graphical editor for Simulink EMF models. This project is gener-

ated through the Simulink.genmodel generator model in the ca.ets.sofeess.checsdm.simulink

project.

- ca.ets.sofeess.breesse.importer.api

This project provides facilities for importing Simulink.slx files into the Eclipse IDE.

- ca.ets.sofeess.breesse.importer.ui

This project provides a contextual menu UI contribution to the Eclipse IDE for importing a

Simulink.slx file selected in the Model Explorer view.

- matlabengine.bundle

This project bundles the MATLAB Java API as an Eclipse plug-in.

– engine.jar

The MATLAB Java API file. The current file corresponds to MATLAB R2018b. If the

installed MATLAB release differs, replace the file by importing the one found in «path

to MATLAB»/extern/engines/java/jar/engine.jar.

281

- org.apache.commons.text

This project bundles the Apache Commons Text library as an Eclipse plug-in. This library

provides algorithms working on strings. Some of these algorithms are used when comparing

names in the mapping rules formalizations.

– commons-text-1.1.jar

The Apache Commons Text library. The library can be updated by replacing the file

with a more recent version.

1.4 More information

Viatra

More information about Viatra is available at https://www.eclipse.org/viatra/documentation/i

ndex.html.

ECL

More information about ECL is available in Kolovos et al. (2018).

MATLAB

More information about MATLAB, Simulink and Stateflow is available at https://www.math

works.com/help/simulink/.

2. User’s Guide

2.1 Getting started

System requirements

- Java JDK 8 or higher

282

- Eclipse Oxygen or newer with the Modeling package (a.k.a. Eclipse Modeling Tools)

- MATLAB R2018b

Before running

Create a new environment variable in your operating system with the following information:

In Windows:

Name: PATH

Value: «path to MATLAB»\bin\win64 Note: If a PATH variable already exists, ap-

pend the value to it. Make it the first value of the variable. You must restart the computer

afterward before continuing, otherwise the Simulink Importer will not work.

In macOS:

Name: DYLD_LIBRARY_PATH

Value: «path to MATLAB»/bin/maci64

In Linux:

Name: LD_LIBRARY_PATH

Value: «path to MATLAB»/bin/glnxa64:«path to MATLAB»/sys/os/glnx

a64

Install required dependencies

The required dependencies are Epsilon, Viatra and Xtext.

1. Go to Help » Install New Software....

283

2. Work with http://download.eclipse.org/epsilon/1.4/updates/ to install Epsilon. Select the

following features:

- Epsilon Core v1.4.0

- Epsilon Core Development Tools v1.4.0

- Epsilon EMF Integration v1.4.0

- Epsilon UML Integration v1.4.0

3. Work with http://download.eclipse.org/modeling/tmf/xtext/updates/composite/releases/ to

install Xtext. Select the following features:

- Xtext » Xtext Complete SDK v2.12.0

4. Work with http://download.eclipse.org/viatra/updates/release to install Viatra. Select the

following features:

- VIATRA Core » VIATRA Query and Transformation SDK v1.6.1

Install the checsdm4uss plug-ins

1. Place the checsdm4uss plug-ins under «path to Eclipse »/plugins.

2. (Re)Start the Eclipse IDE.

checsdm4uss plug-ins

- ca.ets.sofeess.checsdm4uss.guidelinecompliance_1.0.0.jar

- ca.ets.sofeess.checsdm4uss.guidelinecompliance.validation_1.0.0.jar

- ca.ets.sofeess.checsdm4uss.mappingrules.ui_1.0.0.jar

- ca.ets.sofeess.checsdm.mappings_1.0.0.jar

284

- ca.ets.sofeess.checsdm.mappings.edit_1.0.0.jar

- ca.ets.sofeess.checsdm.mappings.editor_1.0.0.jar

- ca.ets.sofeess.breesse.engine_1.0.0.jar

- ca.ets.sofeess.breesse.simulink_1.0.0.jar

- ca.ets.sofeess.breesse.simulink.edit_1.0.0.jar

- ca.ets.sofeess.breesse.simulink.editor_1.0.0.jar

- ca.ets.sofeess.breesse.importer.api_1.0.0.jar

- ca.ets.sofeess.breesse.importer.ui_1.0.0.jar

- matlabengine.bundle_1.0.0.jar

- org.apache.commons.text_1.0.0.jar

Import the checsdm4uss mapping rules project

1. Import the ca.ets.sofeess.checsdm.mappingrules project into the Eclipse workspace.

2.2 Importing a Simulink model into Eclipse

The following steps guide the import of a Simulink model into the Eclipse workspace.

1. Open the Eclipse IDE.

2. Create a project.

3. Move or copy and paste the .slx Simulink model file into the project.

4. Select the .slx file.

285

5. Right click on the .slx file and select Import Simulink block diagram.

286

6. The import process starts. The import process may take a few minutes. MATLAB may

pop up. This is the normal behaviour. Once the import process ends the MATLAB

window will close and the EMF Simulink model should appear inside the project. If the

block diagram makes use of library files, a dialog may pop up asking if these should be

imported. A dialog may pop up if library models are used but could not be imported.

2.3 Verify guideline compliance

The following steps guide the verification of guideline compliance on any of the supported

models (i.e. UML, Simulink/Stateflow, mapping model).

287

1. Open the model to be verified for guideline compliance. In this case, a UML model.

288

2. The verification can be carried out at anytime during modelling. Right click anywhere in

the model and select VIATRA Validation » Initialize VIATRA Validators on Editor.

289

3. Violations will be presented in the Problems view (bottom of the screen). Any violating

element will be marked in the editor view as well. To fix a violation, follow the

indications given in the violation message.

2.4 Map models

The following steps guide the mapping of design models.

290

1. Select two models to map. In this case a Simulink EMF and UML models.

291

2. Right click over one of the selected models and select Map models.

292

3. If the mapping fails, refresh the project and right click over the build.xml file that was

generated inside the project. Go to Run As » Ant Build....

293

4. Select the JRE tab. Make sure the Runtime JRE is set to Run in the same JRE as the

workspace. Click on Apply and then Run. This will rerun the mapping models

operation.

294

5. Refresh the project. The mapping model should appear inside the project.

295

6. Select a mapping to review its details in the Properties view (bottom of the screen).

APPENDIX V

BREEZE THROUGH SAFETY-CRITICAL SYSTEM MODEL-BASED DESIGN
WITH EMF, SIMULINK AND STATEFLOW

The following subsections highlight Breesse’s main features and describe its architecture. Two

most notable elements in the architecture are further described: 1) the EMF-based Simulink

and Stateflow metamodel, and 2) the command evaluator.

1. Overview

Breesse is a live, generic bridge for the EMF ecosystem and the MathWorks Simulink and

Stateflow ecosystem. The bridge has been realized in pure Java with EMF technologies and

packaged as an Eclipse plug-in for an easy deployment. Eclipse UI integration is also pro-

vided. Breesse makes use of the MATLAB Engine API for Java to directly connect to a running

MATLAB instance, or initiate one. Figure-A V-1 shows the technology stack used to develop

Breesse. Breesse is able to import the contents of Simulink and Stateflow design models and

libraries into EMF-based Simulink and Stateflow representations. These EMF-based represen-

tations are straightforward and enable the manipulation of the design models in other existing

EMF-based tools for MDE. A screenshot of Breesse in action is presented later in Section 5.

The current release and complete source code of Breesse are available at Paz & El Boussaidi

(2019a).

Eclipse Platform

Eclipse Modeling Framework
Matlab Engine
API for Java

Breesse

Figure-A V-1 Technology stack supporting

Breesse.

298

2. Architecture

Figure-A V-2 presents the high-level component structure of Breesse and their interactions

with the MATLAB Engine API for Java. At the core of Breesse is the EMF-based Simu-

link and Stateflow metamodel to which imported design models and libraries conform. The

following subsection gives the details of such metamodel. The Simulink and Stateflow importer

component provides facilities to import the contents of Simulink and Stateflow design models

and libraries and create an EMF-based model conforming to the EMF-based Simulink and

Stateflow metamodel. In order to create a generic bridge, able to support a wide range of

operations, a command evaluator component was introduced. This component offers a set of

high-level operations for extracting information from Simulink and Stateflow design models in

MATLAB. These operations are translated into MATLAB Engine commands and sent for their

execution using the MATLAB Engine API for Java.

Breesse

Matlab Engine API for Java

Matlab

Matlab Engine
Command
Evaluator

Simulink/
Stateflow

commands

results

commands results

commands results

Command
Evaluator

EMF-based
Simulink and

Stateflow
Metamodel

high-level operations

results

Simulink and
Stateflow
Importer

instance

Figure-A V-2 Breesse’s high-level
component structure and interactions.

299

3. The EMF-based Simulink and Stateflow Metamodel

The metamodel describes the concepts, and their relationships, found in both MathWorks

Simulink and Stateflow. It is primarily based on Massif’s EMF Simulink metamodel (IncQuery

Labs, 2017). The complete metamodel is not shown, however, it is available online (Paz & El

Boussaidi, 2019a). Figure-A V-3 shows a simplified excerpt of the main Simulink concepts.

Shaded concepts are abstract concepts. All concepts extend the abstract concept SimulinkEle-

ment. This inheritance provides the common attributes in all the other concepts. Simulink

contains Blocks that own a set of Ports. A Block can be a (predefined or customized) primi-

tive block or typed as a logical structuring block such as a Subsystem—or one of its subtypes:

SimulinkModel or Reference—or as a Stateflow Chart or TruthTableChart. Subsystems

are regarded as logical structuring blocks since they solely impose a hierarchy of blocks and do

not determine system behaviour. SimulinkModels are much the same except that their con-

tents reside in a separate model file. Reference blocks are pointers to concrete reusable blocks

defined in custom libraries. A Port is typed as either an InPort or an OutPort depending if

it serves to receive or supply data, respectively. Ports can be connected between each other;

with a connection going from an OutPort toward an InPort.

SimulinkElement

– name : EString
– handle : EString

BlockReference Port

– dataType : Estring
– portNumber : EInt

SubsystemSimulinkModelChart TruthTableChart

StateflowElement

– name : EString
– handle : EString

PortBlock

– portNumber : EInt

InPort OutPort

Connection

CompositeStateflowElement

[0..*] ownedPorts[0..1] sourceBlock

[0..*] subBlocks
[0..1] port

[0..1] portBlock

[0..*] connections

[0..1] to

[0..1] from

Figure-A V-3 Excerpt of the main Simulink concepts in the EMF-based

Simulink and Stateflow metamodel, adapted from IncQuery Labs (2017).

300

Support for Stateflow is a major feature of Breesse. Figure-A V-4 presents a simplified excerpt

of the main Stateflow concepts. All Stateflow concepts extend the abstract StateflowElement.

Like with the SimulinkElement abstract concept, this inheritance gathers the shared attributes

in all the Stateflow concepts. CompositeStateflowElements are those that comprise other

elements to represent part-whole hierarchies. A CompositeStateflowElement can be typed

as a Chart, i.e. a representation of a finite state machine, or a State, i.e. an operating mode

within a finite state machine. In the latter, the State is regarded as a composite state. Contain-

ableStateflowElements represent elements that can be children of CompositeStateflowEle-

ments. A ContainableStateflowElement can be typed as a Vertex (either Junction or

State), Transition or a ContainableTruthTable. Transitions connect a source Vertex to a

destination Vertex. A Transition without a specified source is interpreted as the default tran-

sition, i.e. the first transition taken when a CompositeStateflowElement is entered. Thus,

this attribute is marked as a derived attribute. TruthTables specify combinatorial logic. These

can be typed as ContainableTruthTable or TruthTableChart, whenever the truth table is

contained within a CompositeStateflowElement or it is its own standalone Simulink block.

Vertex Chart

– decomposition : DecompositionType

TruthTable

StateflowElement

– path : EString
– id : EInt

CompositeStateflowElementContainableStateflowElement [0..*] children

Transition

– executionOrder : EInt
– /isDefaultTransition : EBoolean

State

– decomposition : DecompositionType
– executionOrder : EInt

Junction

[1..1] destination

[0..1] source

ContainableTruthTable TruthTableChart

Figure-A V-4 Excerpt of Stateflow concepts in the EMF-based Simulink

and Stateflow metamodel.

Design engineers can create Simulink and Stateflow design models using the metamodel. An

EMF-based tree editor is provided for this purpose.

301

4. The Command Evaluator

The MATLAB Engine API for Java enables the interaction with MATLAB from Java pro-

grams. Key features of this API include: 1) starting and terminating a MATLAB instance,

and 2) evaluating MATLAB functions/commands with the input arguments passed from within

the Java program and receiving the output variables returned from MATLAB. Interaction with

MATLAB via the MATLAB Engine API for Java, however, is based entirely on the expres-

sion of commands/functions as simple strings without any validation done at compile time or

even content assist support. The command evaluator, hence, provides a framework for inte-

grating MATLAB command/function evaluation capabilities directly into the Java language.

MATLAB commands are written against strongly typed command objects using Java’s famil-

iar syntax. It is worth mentioning that the command evaluator framework is reusable on its

own in other application contexts that involve interaction with MATLAB from a Java program.

The framework divides the interaction process into four parts: 1) engine management, 2) com-

mand specification/creation, 3) command evaluation, and 4) command result retrieval. In the

first part, engine management, a MatlabEngineManager class hides the logic for starting and

stopping MATLAB instances. Command specification/creation is supported by the use of the

factory and builder design patterns. Figures-A V-5 and V-6 show sample structural views of

their applications, respectively. The MatlabCommandFactory encapsulates the commands’

initial creation logic in simple-to-use methods that return the required instance. Passing ar-

guments to a MATLAB function/command can be cumbersome since they sometimes require

appending keywords. Furthermore, depending on the expected result, the amount of arguments

varies. MatlabCommands enable themselves a step by step construction of the command ob-

ject. The bottom part of Figure V-6 depicts the specification of a command to find all Stateflow

charts in a Simulink model.

The MatlabEngineManager class also handles the third part, command evaluation, sending

over to the MATLAB instance the commands for execution. Command result retrieval from

the evaluation of commands/functions works also as a factory. A CommandResultRetriever

302

allChartsInModel

MatlabCommandFactory

…
+ find() : FindCommand
…

MatlabCommand

FindCommand

«create»

StateflowImporter

…
– createStateflowCharts(…) : Collection<Block>
…

«use»

Figure-A V-5 Sample application of the factory design

pattern.

allChartsInModel

MatlabCommand

+ saveInto(resultVariable : String) : T <T
extends MatlabCommand>

FindCommand

«constructor» + FindCommand ()
+ in (object : String) : FindCommand
+ a (elementType : String) : FindCommand

«build»

StateflowImporter

…
– createStateflowCharts(…) : Collection<Block>
…

«use»

MatlabCommand allChartsInModel = commandFactory.find()
.in(modelVariable)
.a(Stateflow.CHART)
.saveInto(allChartsInModelVariable);

Figure-A V-6 Sample application of the builder design

pattern.

class provides several factory methods that encapsulate long, repetitive result creation logic.

These methods construct the required result object by extracting the necessary information

from MATLAB’s complex, string-based output.

303

5. Application in Avionic System Design

Breesse was motivated by the issues two industrial partners faced during their safety-critical

avionics system developments. In essence: dealing with information that is spread across

multiple models that are expressed in different modelling languages. The industrial partners

represent avionics systems using a mix of UML, Simulink and Stateflow design models (Paz

et al., 2020). Manually ensuring consistency between such heterogeneous design models is

a resource-consuming and error-prone activity for them. Hence, a hybrid approach was pro-

posed (Paz et al., 2020), where automated tools aid engineering teams in flagging errors for

review and eventual correction. An Eclipse toolchain was implemented to support such ap-

proach. The toolchain is currently deployed in the industrial partners’ premises. Breesse serves

as a key constituent of the toolchain.

Various Simulink and Stateflow design models have been imported into Eclipse for their fur-

ther processing with EMF-based technologies in the scope of the project: a Landing Gear

System (LGS), a Flight Control System (FCS) and an Elevator Control System (ECS). Openly-

available system descriptions of the LGS, FCS and ECS were developed by Paz & El Boussaidi

(2018), Potter (2016) andMosterman &Ghidella (2018), respectively. The Simulink and State-

flow design models for these three systems were created in close consultation with engineers

of the industrial partners in order to achieve an accurate functional representation. Table-A V-1

provides a summary of their contents in terms of the number of model element types. Building

an EMF-based representation is a computationally-demanding activity that depends on the de-

sign model’s size. Table-A V-1 also presents the processing times to generate the EMF-based

representations for the design models of the three avionics systems. Time measurements were

taken on a Quad Core Intel Core i7 at 2.8 GHz with 16 GB of RAM. Figures-A V-7 and V-8

show excerpts of the design models for the LGS.

Figure-A V-9 displays a screenshot of V-7 and V-8. The left side shows the contextual menu

option from which the import procedure can be invoked over a MATLAB.slx file. The right

side shows an excerpt of the resulting EMF-based representation. The bottom of the right side

304

Table-A V-1 Summary of the Simulink and Stateflow

design models for the LGS, FCS and ECS.

LGS FCS ECS
Number of Simulink subsystem blocks 8 12 8

Number of Simulink inputs 7 31 8

Number of Simulink outputs 7 24 8

Number of Stateflow charts 3 3 6

Number of Stateflow states 23 6 19

Number of Stateflow transitions 31 6 30

Number of Stateflow junctions 0 0 2

Processing time 300s 180s 300s

In_AnalogicalSwitch
Status
In_HydraulicCircuit
Pressure
In_DoorOpen
Status
In_DoorClosed
Status
In_GearShock
AbsorberStatus
In_GearRetracted
Status
In_GearExtended
Status

PIM

Figure-A V-7 Excerpt of the Simulink block diagram for the

LGS.

shows an example of the properties in a Stateflow chart. Three professional engineers were

recruited to verify the consistency between the original Simulink and Stateflow design models

of the three systems and their resulting EMF-based representation. The engineers found all

design models were correctly imported.

While Breesse has been developed and applied to representative avionics systems of the indus-

trial partners, there is still much development to do. Breesse, especially its command evaluator

framework, allows a precise data exchange with MATLAB through its MATLAB Engine API

for Java, it is not possible to guarantee a flawless interaction. The MATLAB Engine API for

305

Figure-A V-8 Excerpt of a Stateflow chart for the LGS.

Java is limited in the size of the outputs returned from command/function evaluations. In the

context of safety-critical embedded and cyber-physical systems this can be an issue when try-

ing to satisfy design standards. Design standards specify methods, notations, rules, constraints,

guidelines, and conventions to be used in the development of the design models. Certain ele-

ments in the resulting EMF-based representations from Breesse may end up with truncated data

that violate established design standards. Scalability is also a major issue. MATLAB evaluates

commands one-by-one. Depending on the amount and type of elements these evaluations may

take longer for some commands. Breesse cannot obtain a result for a command until MATLAB

has output a value. From the testing done with Breesse, design models with larger Stateflow

structures (e.g., the LGS and ECS design models) took a longer time to process than those with

few Stateflow structures but larger Simulink structures (e.g., FCS).

306

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

Figure-A V-9 Screenshot of the resulting EMF-based Simulink

model for the LGS and the properties of the selected element in line 8.

APPENDIX VI

SPECML DOMAIN CONCEPTS

1. Constraint

The Constraint concept packages the expression of a constraint, which is defined over one or

more parameters. Moreover, a constraint can be expressed as a conjunction of finer-grained

constraints.

Attributes

- expression : String [0..1]

Specifies the expression of the constraint.

Relationships

- hasSubconstraints

Indicates the decomposition of the current constraint as a conjunction of subconstraints. The

subconstraints end of the relationship indicates the current requirement is a conjunction of

zero or more subconstraints. The parent end of the relationship indicates the constraint

being decomposed.

- overParameters

Indicates the parameters over which the constraint is defined. The constraint may involve

one or more parameters.

308

2. DataDictionary

Description

A DataDictionary defines the container for the parameters used in the formalization con-

straints.

Relationships

- hasEntries

Indicates the parameters considered as entries of the data dictionary. The entries end of the

relationship indicates the entries in the dictionary. The dataDictionary end of the relation-

ship indicates the data dictionary to which they belong.

3. HighLevelRequirement

Description

A HighLevelRequirement (HLR) specifies a capability or condition that must (or should) be

satisfied. An HLR is developed from the analysis of SRATS, safety-related requirements and

system architecture. HLRs must be very detailed so as to guide the design activities. HLRs

must not include design nor verification details in accordance with DO-178C.

Generalizations

- Requirement

309

Attributes

- precludesCFC : Boolean [1]

Indicates if the requirement intends to prevent one or more of the identified contributions to

failure conditions (CFCs).

- describesDesignDetail : Boolean [1]

Indicates if the requirement statement describes design detail. HLRs should not describe

design details except when there is a justified design constraint.

- describesVerificationDetail : Boolean [1]

Indicates if the requirement statement describes verification detail. HLRs should not de-

scribe verification details except when there is a justified constraint.

Relationships

- copy

It could occur that allocated system requirements are, in fact, very detailed so as to guide the

design without any further refinement into HLRs. In this case HLRs must be defined and

related to their corresponding SRATS through the copy relationship. The Copy relationship

goes from the HLR to the SRATS.

Constraints

1. A HighLevelRequirement without the isDerived flag must have a refinement or copy

relationship to a SystemRequirement.

This constraint is applicable to ensure traceability to an originating system requirement.

Introduced from DO-178C.

310

2. A HighLevelRequirement with the describesDesignDetail flag must justify the exis-

tence of the design detail with a Rationale. Introduced from DO-178C.

This constraint is applicable to enforce the inclusion of a rationale for DO-178C certifica-

tion compliance.

3. A HighLevelRequirement with the describesVerificationDetail flag must justify the

existence of the verification detail with a Rationale. Introduced from DO-178C.

This constraint is applicable to enforce the inclusion of a rationale for DO-178C certifica-

tion compliance.

4. LowLevelRequirement

Description

A LowLevelRequirement (LLR) specifies a capability or condition that must (or should) be

satisfied. An LLR is developed from the HLRs and must be directly implementable/realizable

without further information.

Generalizations

- Requirement

Constraints

1. A LowLevelRequirement without the isDerived flag must have a refinement relation-

ship to a HighLevelRequirement.

This constraint is applicable in adherence with DO-178C to ensure traceability to an orig-

inating HLR.

311

5. Parameter

Description

The Parameter concept represents an entry in the data dictionary. The concept defines the

essential metadata.

Attributes

- interpretation : String [1]

A description of the contents of the data and how it must be interpreted.

- rationale : String [1]

A description of why the data is needed.

- displayName : String [1]

The full readable name of the data.

- source : Source [1..*]

The source who expresses the data. Possible values are: acquirer, operator, certification

authority, specialty engineer, other stakeholder, or another source like certification standard,

safety, costs, environmental conditions, design, production, tests, or maintenance. A data

may have multiple sources.

- creationNotes : String [*]

Notes about how the values for the data may be created.

- maintenanceNotes : String [*]

Notes about how the values for the data may be obtained and/or updated.

312

- usageNotes : String [*]

Information about the intended use of the data. May include one or more examples of values

the data can take. Examples are intended to be illustrative.

- creationDate : Date [1]

The date on which the data was created.

- modificationDate : Date [1]

The date on which the data was last modified.

- revision : Integer [1]

Indicates the number of times the data has been modified.

- expectedRangeValues : String [1..*]

Indicates values for the data when the value is restricted, for instance to a list or a range of

values.

- defaultValue : String [1]

Indicates a default value for the data, within the expectedRangeValues, to be used on

creation.

- format : String [1]

Indicates the proper format for entering values to the data.

- precision : Integer [1]

Indicates the precision allowed for the value of the data.

- units : String [1]

Indicates the units used for the interpretation of the value of the data.

- load : String [1]

Indicates the load at which the value of the data is updated.

313

- isRequired : Boolean [1]

Indicates if the data is mandatory or optional.

- isReadOnly : Boolean [1]

Indicates if the data is not meant to be changed.

- isUnique : Boolean [1]

Indicates if the data i

- encoding : String [1]

Indicates how the data is going to be stored for a later recall.

6. PropertyBasedStatement

Description

A PropertyBasedStatement establishes a requirement statement formalization following the

PBR theory.

Attributes

- id : String [1]

The unique ID of the statement.

- text : String [1]

A textual description.

314

Relationships

- hasCondition

Indicates the constraint representing the condition of actualization C. The condition is

optional.

- hasPredicate

Indicates the constraint representing the domain D, subset of im(P), in which the value of a

Parameter P of object O must be located when the condition C occurs or is achieved, i.e.

val(O.P) ∈ D ⊂ im(P).

- specifies

Indicates the property-based statement specifies a behaviour that needs to be performed

with a predetermined frequency for a number of times. The timedEvent end of the rela-

tionship indicates the annotation. The when end of the relationship indicates when the first

occurrence occurs.

- represents

Indicates the property-based statement represents an instant in time that will be observed

for an event occurrence. The timedInstantObservation end of the relationship indicates

the annotation. The observedEvent end of the relationship indicates when the associated

observed event.

Constraints

1. The condition must not be a subconstraint.

This constraint is applicable to avoid constraints that are not associated with a requirement.

2. The predicate must not be a subconstraint.

This constraint is applicable to avoid constraints that are not associated with a requirement.

315

7. Requirement

Description

A Requirement defines the general attributes and relationships essential for requirements

specification of avionics software in compliance with DO-178C. Specifically the concept gen-

eralizes the different kinds of requirements described in DO-178C, namely system require-

ments, high-level software requirements (HLRs) and low-level software requirements (LLRs).

A Requirement conveys an understanding of what needs to be performed by the system of

interest.

Attributes

- id : String [1]

The unique ID of the requirement.

- text : String [1]

The requirement statement as a natural language statement.

- type : RequirementType [1]

The type of the requirement. Possible values are (Micouin, 2008): structural, behavioural

or mixed. Structural requirements concern to a structural property (i.e. composition and

structure) of the system being specified. Behavioural or functional requirements concern to

a behavioural/functional property (i.e. observable behaviour) of the system being specified.

Mixed requirements concern to both structural and behavioural properties of the system

being specified.

- source : Source [1..*]

The source who expresses the requirement. Possible values are: acquirer, operator, certi-

fication authority, specialty engineer, other stakeholder, or another source like certification

316

standard, safety, costs, environmental conditions, design, production, tests, or maintenance.

A requirement may have multiple sources.

- status : RequirementStatus [1]

The status of the reviewing and acceptance of the requirement. Possible values are: pending

review, reviewed and accepted, and reviewed and incorrect.

- conditionsType : ConditionsType [1]

The type of conditions expressed by the requirement. Possible values are: normal-range and

abnormal-range (i.e. robustness). A normal-range requirement will describe the nominal

behaviour of the software. On the other hand, a robustness requirement will describe the

software’s behaviour when its operating conditions are not normal.

- isDerived : Boolean [1]

Indicates if a requirement is a derived requirement, i.e. a requirement that (a) is not directly

traceable to a higher level requirement, and/or (b) specifies behaviour beyond that which is

specified by the system requirements or the high-level requirements.

- isStable : Boolean [1]

Indicates if a requirement is unlikely to be changed.

- isVerifiable : Boolean [1]

Indicates if requirement-based verification activities can be carried out.

- isConsistent : Boolean [1]

Indicates if the requirement is consistent according with the review of the requirement.

- isFormalizable : Boolean [1]

Indicates if the requirement statement can be expressed using a formalism that can facilitate

its analysis and verification.

317

- revision : Integer [1]

Indicates the number of times the requirement has been modified.

- creationDate : Date [1]

The date on which the requirement was created.

- modificationDate : Date [1]

The date on which the requirement was last modified.

Relationships

- refinement

Indicates the refinement of a requirement into lower level requirements. This relationship

enables bi-directional traceability as required by DO-178C. The refinedBy end of the rela-

tionship indicates the current requirement is refined by zero or more lower level require-

ments. The refines end of the relationship indicates the higher level requirements being

refined.

- derivation

Indicates the derivation of a requirement. This relationship enables the indirect traceability

between the derived requirement and an originating requirement. The derivedBy end of the

relationship indicates the current requirement is derived by zero or more requirements. The

derives end of the relationship indicates the requirement being refined.

- coupling

Indicates the interdependence between requirements. This relationship enables the rep-

resentation of interdependences that may exist between structural requirements and be-

havioural requirements. The coupledTo ends of the relationship indicate the coupled re-

quirements. This relationship is included as a suggestion from the industrial partners.

318

- justification

Indicates the rationale for the requirement’s existence in the instances required by DO-178C

(e.g., when the requirement is a derived requirement).

- formalizations

Indicates the formalizations of a requirement. The formalizedBy end of the relationship

indicates the current requirement is formalized by zero or more property based statements.

The formalizes end of the relationship indicates the requirement being formalized.

Constraints

1. The id must be specified and be unique.

This constraint is applicable to uniquely identify a requirement.

2. A Requirement with the isDerived flag must be justified by a Rationale. Introduced

from DO-178C.

This constraint is applicable to understand why the requirement cannot be directly traced

to an originating requirement because it specifies behaviour beyond that specified by the

higher-level requirements.

8. SystemRequirement

Description

A SystemRequirement specifies a capability or condition that the system (or a part of it) must

satisfy.

Generalizations

- Requirement

319

Attributes

- isAllocatedToSoftware : Boolean [1]

Indicates if the system requirement has been allocated to software.

9. TimedDurationConstraint

Description

The TimedDurationConstraint concept imposes a constraint on the temporal distance be-

tween two behavioural events. This concept is included to allow the expression of timing

constraints between specified behaviour in property-based statements.

Generalizations

- Constraint

Attributes

- interpretation : String [1]

A description of the constraint and how it must be interpreted.

Relationships

- from

Indicates the event that marks the start of the timing observation.

- to

Indicates the event that marks the end of the timing observation.

320

10. TimedEvent

Description

The TimedEvent concept establishes an annotation on a property-based statement indicat-

ing that the specified behaviour needs to be performed with a predetermined frequency for a

number of times.

Attributes

- every : String [1]

Specifies the duration that separates successive occurrences of the timed event.

- repetition : Integer [0..1]

Specifies the number of repetitive occurrences.

- isRelative : Boolean [1]

Specifies whether the time value is considered to be relative (i.e. the when property is a

time duration value) or absolute (i.e. the when property is a time instant value).

11. TimedInstantObservation

Description

The TimedInstantObservation concept denotes an instant in time that is associated with an

event occurrence and observed. This concept is included to allow the observation of event

occurrences and allowing their use in the expression of timing constraints on the specified

behaviour.

321

Attributes

- obsKind : EventKind [0..1]

Specifies the kind of the observed event. Possible values are: start, finish, send, receive,

consume.

APPENDIX VII

SPECML STEREOTYPES

1. Copy

Description

The Copy relationship is as defined in the SysML specification but with a more constrained

usage. A Copy relationship is a dependency between two requirements at different levels of

abstraction, e.g., a SystemRequirement and a HighLevelRequirement. The dependency

specifies that the client requirement (e.g., HLR) is a read-only copy of the supplier requirement

(e.g., an SRATS). The Copy relationship goes from the client requirement to the supplier re-

quirement. For instance, this stereotype is included to make it possible to define SRATS as the

HLRs when they are determined to be detailed enough to guide the design activities.

Generalizations

- SysML Copy

Attributes

(From UML Dependency class)

- client : NamedElement [1..*] (from)

- supplier : NamedElement [1..*] (to)

Constraints

1. Constraint 1 from the SysMLCopy stereotype is strengthened. A Copy dependency can

only be created between subtypes of Requirement as follows:

324

- SystemRequirement (supplier) – HighLevelRequirement (client)

- HighLevelRequirement (supplier) – LowLevelRequirement (client)

2. Constraint 2 from the SysMLCopy stereotype. The text property of the client requirement

is constrained to be a read-only copy of the supplier requirement.

3. Constraint 1 from the Trace stereotype. The Copy stereotype shall only be applied to

dependencies.

2. Coupled

Description

Requirements at the same level of the requirements hierarchy may experience some interdepen-

dence. The Coupled stereotype makes it possible to represent such relationship between two

requirements. For instance, this stereotype makes it possible to define the interdependence of

a requirement of type StructuralRequirement with one of type BehaviouralRequirement.

This stereotype is included as a suggestion from experienced industrial practitioners.

Generalizations

- SysML Trace

Attributes

(From UML Dependency class)

- client : NamedElement [1..*] (from)

- supplier : NamedElement [1..*] (to)

325

Constraints

1. Constraint 1 from the Trace stereotype. The Coupled stereotype shall only be applied to

dependencies.

2. Constraint 2 from the Trace stereotype is strengthened. Dependencies stereotyped by

Coupled shall have exactly one client and one supplier. Furthermore, dependencies with

a Coupled stereotype applied must only relate two elements stereotyped by the same

subtype of Requirement, one of which has type StructuralRequirement and the other

one has type BehaviouralRequirement.

3. DataEntry

Description

The DataEntry stereotype represents an entry in the data dictionary. The stereotype defines

the essential metadata.

Attributes

- interpretation : String [1]

A description of the contents of the data and how it must be interpreted.

- rationale : String [1]

A description of why the data is needed.

- displayName : String [1]

The full readable name of the data.

326

- source : Source [1..*]

The source who expresses the data. Possible values are: acquirer, operator, certification

authority, specialty engineer, other stakeholder, or another source like certification standard,

safety, costs, environmental conditions, design, production, tests, or maintenance. A data

may have multiple sources.

- creationNotes : String [*]

Notes about how the values for the data may be created.

- maintenanceNotes : String [*]

Notes about how the values for the data may be obtained and/or updated.

- usageNotes : String [*]

Information about the intended use of the data. May include one or more examples of values

the data can take. Examples are intended to be illustrative.

- creationDate : Date [1]

The date on which the data was created.

- modificationDate : Date [1]

The date on which the data was last modified.

- revision : Integer [1]

Indicates the number of times the data has been modified.

- expectedRangeValues : String [1..*]

Indicates values for the data when the value is restricted, for instance to a list or a range.

- defaultValue : String [1]

Indicates a default value for the data, within the expectedRangeValues, to be used on

creation.

327

- format : String [1]

Indicates the proper format for entering values to the data.

- precision : Integer [1]

Indicates the precision allowed for the value of the data.

- units : String [1]

Indicates the units used for the interpretation of the value of the data.

- load : String [1]

Indicates the load at which the value of the data is updated.

- isRequired : Boolean [1]

Indicates if the data is mandatory or optional.

- isReadOnly : Boolean [1]

Indicates if the data is not meant to be changed.

- isUnique : Boolean [1]

Indicates if the data i

- encoding : String [1]

Indicates how the data is going to be stored for a later recall.

4. Derive

Description

A Derive relationship is a dependency between two requirements, a subtype of Requirement

with the isDerived flag and another subtype of Requirement without the isDerived flag. The

dependency specifies that the client requirement (i.e. the requirement with the isDerived flag)

depends on the supplier requirement (i.e. the requirement without the isDerived flag), which

328

is the requirement from which the former was derived. This stereotype is included to make it

possible to trace the derived requirement indirectly to a higher level requirement through the

mediation of the requirement from which it was derived.

Generalizations

- SysML Trace

Attributes

(From UML Dependency class)

- client : NamedElement [1..*] (from)

- supplier : NamedElement [1..*] (to)

Constraints

1. Constraint 1 from the Trace stereotype. The Derive stereotype shall only be applied to

dependencies.

2. Constraint 2 from the Trace stereotype is strengthened. Dependencies stereotyped by

Derive shall have exactly one client and one supplier. Furthermore, a Derive dependency

can only be created between a subclass of Requirement with the isDerived attribute set

to true (client) and a subclass of Requirement with the isDerived attribute set to false

(client).

329

5. HighLevelRequirement

Description

A HighLevelRequirement (HLR) specifies a capability or condition that must (or should) be

satisfied. An HLR is developed from the analysis of SRATS, safety-related requirements and

system architecture. HLRs must be very detailed so as to guide the design activities. It could

occur that allocated system requirements are, in fact, very detailed so as to guide the design

without any further refinement into HLRs. In this case HLRs must be defined and related to

their corresponding SRATS using the Copy relationship. The Copy relationship goes from the

HLR to the SRATS. HLRs must not include design details nor include verification details in

accordance with regulations.

Generalizations

- Requirement

Attributes

- precludesCFC : Boolean [1]

Indicates if the requirement intends to prevent one or more of the identified contributions to

failure conditions (CFCs).

- describesDesignDetail : Boolean [1]

Indicates if the requirement statement describes design detail. HLRs should not describe

design details except when there is a justified design constraint.

- describesVerificationDetail : Boolean [1]

Indicates if the requirement statement describes verification detail. HLRs should not de-

scribe verification details except when there is a justified constraint.

330

Constraints

1. A HighLevelRequirement stereotype must not be applied alongside other stereotypes

that specialize the Requirement stereotype.

2. A HighLevelRequirement without the isDerived flag must have a RefineReqt or Copy

dependency to a SystemRequirement.

This constraint is applicable to ensure traceability to an originating system requirement.

3. A HighLevelRequirement with the describesDesignDetail flag must justify the exis-

tence of the design detail with a Rationale (see clause 7.3.2.5 Rationale from the OMG

(2017a) SysML 1.5 Specification).

This constraint is applicable to enforce the inclusion of a rationale for certification com-

pliance.

4. A HighLevelRequirement with the describesVerificationDetail flag must justify the

existence of the verification detail with a Rationale (see clause 7.3.2.5 Rationale from the

OMG (2017a) SysML 1.5 Specification).

This constraint is applicable to enforce the inclusion of a rationale for certification com-

pliance.

6. LowLevelRequirement

Description

A LowLevelRequirement (LLR) specifies a capability or condition that must (or should) be

satisfied. An LLR is developed from the HLRs and must be directly implementable/realizable

without further information. The stereotype can be used: 1) as a standalone element to capture

natural language or formal requirement statements, or 2) to stereotype a design model element

as an LLR.

331

Generalizations

- Requirement

Constraints

1. A LowLevelRequirement stereotype must not be applied alongside other stereotypes that

specialize the Requirement stereotype.

2. A LowLevelRequirement without the isDerived flag must have a RefineReqt depen-

dency to a HighLevelRequirement.

This constraint is applicable in adherence with DO-178C to ensure traceability to an orig-

inating HLR.

7. PropertyBasedStatement

Description

A PropertyBasedStatement establishes a requirement statement formalization following the

PBR theory.

Extensions

- UML Class

Attributes

- id : String [1]

The unique ID of the statement.

332

- text : String [1]

A textual description.

- condition : ConstraintBlock [0..1]

The condition of actualization C. The condition is represented as a ConstraintBlock. The

condition is optional.

- predicate : ConstraintBlock [1]

The domain D subset of im(P) in which the value of property P of object O must be located

when the condition C occurs or is achieved, i.e. val(O.P) ∈ D ⊂ im(P). The predicate is

represented as a ConstraintBlock.

Constraints

1. A PropertyBasedStatement shall not own any structural or behavioural elements be-

yond the properties that define its condition and predicate expressions.

2. A PropertyBasedStatement shall not participate in associations other than the one that

binds it to the Requirement that it formalizes.

3. A PropertyBasedStatement shall not participate in generalizations.

4. A PropertyBasedStatement shall not have nested classifiers.

5. A PropertyBasedStatement stereotype must not be applied alongside other stereotypes.

8. RefineReqt

Description

A RefineReqt relationship is a bidirectional trace in which a requirement can be developed

into a lower-level requirement. This stereotype is included to trace system requirements that

333

are developed into HLRs and, in turn, HLRs are developed into LLRs. The RefineReqt rela-

tionship goes from the refining requirement (e.g., the LLR) to the refined requirement (e.g., the

HLR).

Generalizations

- SysML DeriveReqt

Attributes

(From UML Dependency class)

- client : NamedElement [1..*] (from)

- supplier : NamedElement [1..*] (to)

Constraints

1. Constraint 1 from the Trace stereotype. The RefineReqt stereotype shall only be applied

to dependencies.

2. The refined requirement (supplier) shall be an element stereotyped by a subtype of Re-

quirement.

3. The refining requirement (client) shall be an element stereotyped by a subtype of Require-

ment.

4. Constraint 2 from the Trace stereotype is strengthened. Dependencies with a RefineReqt

stereotype applied shall have exactly one refined requirement and one refining requirement

as follows:

- SystemRequirement (refined) – HighLevelRequirement (refining)

- HighLevelRequirement (refined) – LowLevelRequirement (refining)

334

9. Requirement

Description

A Requirement defines the general attributes and relationships essential for requirements

specification of avionics software. Specifically the stereotype generalizes the different kinds

of requirements described in DO-178C, namely system requirements, high-level software re-

quirements (HLRs) and low-level software requirements (LLRs). A Requirement conveys an

understanding of what needs to be performed by the system of interest.

Extensions

- UML Class

Generalizations

- SysML AbstractRequirement

Attributes

- id : String [1]

The unique ID of the requirement. Inherited from AbstractRequirement (see clause

16.3.2.1 AbstractRequirement from the OMG (2017a) SysML 1.5 Specification).

- text : String [1]

The requirement statement as a natural language statement. Inherited from AbstractRe-

quirement (see clause 16.3.2.1 AbstractRequirement from the OMG (2017a) SysML 1.5

Specification).

335

- type : RequirementType [1]

The type of the requirement. Possible values are (Micouin, 2008): structural, behavioural

or mixed. Structural requirements concern to a structural property (i.e. composition and

structure) of the system being specified. Behavioural or functional requirements concern to

a behavioural/functional property (i.e. observable behaviour) of the system being specified.

Mixed requirements concern to both structural and behavioural properties of the system

being specified.

- source : Source [1..*]

The source who expresses the requirement. Possible values are: acquirer, operator, certi-

fication authority, specialty engineer, other stakeholder, or another source like certification

standard, safety, costs, environmental conditions, design, production, tests, or maintenance.

A requirement may have multiple sources.

- status : RequirementStatus [1]

The status of the reviewing and acceptance of the requirement. Possible values are: pending

review, reviewed and accepted, and reviewed and incorrect.

- conditionsType : ConditionsType [1]

The type of conditions expressed by the requirement. Possible values are: normal-range and

abnormal-range (i.e. robustness). A normal-range requirement will describe the nominal

behaviour of the software. On the other hand, a robustness requirement will describe the

software’s behaviour when its operating conditions are not normal.

- isDerived : Boolean [1]

Indicates if a requirement is a derived requirement, i.e. a requirement that (a) is not directly

traceable to a higher level requirement, and/or (b) specifies behaviour beyond that which is

specified by the system requirements or the high-level requirements.

- isStable : Boolean [1]

Indicates if a requirement is unlikely to be changed.

336

- isVerifiable : Boolean [1]

Indicates if requirement-based verification activities can be carried out.

- isConsistent : Boolean [1]

Indicates if the requirement is consistent according with the review of the requirement.

- isFormalizable : Boolean [1]

Indicates if the requirement statement can be expressed using a formalism that can facilitate

its analysis and verification.

- revision : Integer [1]

Indicates the number of times the requirement has been modified.

- creationDate : Date [1]

The date on which the requirement was created.

- modificationDate : Date [1]

The date on which the requirement was last modified.

- /derived : AbstractRequirement [*]

Inherited from AbstractRequirement (see clause 16.3.2.1 AbstractRequirement from the

OMG (2017a) SysML 1.5 Specification).

- /derivedFrom : AbstractRequirement [*]

Inherited from AbstractRequirement (see clause 16.3.2.1 AbstractRequirement from the

OMG (2017a) SysML 1.5 Specification).

- /satisfiedBy : NamedElement [*]

Inherited from AbstractRequirement (see clause 16.3.2.1 AbstractRequirement from the

OMG (2017a) SysML 1.5 Specification).

337

- /tracedTo : NamedElement [*]

Inherited from AbstractRequirement (see clause 16.3.2.1 AbstractRequirement from the

OMG (2017a) SysML 1.5 Specification).

- /verifiedBy : NamedElement [*]

Inherited from AbstractRequirement (see clause 16.3.2.1 AbstractRequirement from the

OMG (2017a) SysML 1.5 Specification).

- /master : AbstractRequirement

Inherited from AbstractRequirement (see clause 16.3.2.1 AbstractRequirement from the

OMG (2017a) SysML 1.5 Specification).

- /formalization : PropertyBasedStatement [*]

Indicates the requirement’s formalization as a collection of property-based statements. One

property-based statement may not be sufficient to describe the entire domain captured in the

requirement’s text attribute. Thus, a collection of property-based statements may be intro-

duced as part of the requirement’s formalization. The requirement is, therefore, interpreted

as the conjunction of the specified property-based statements.

Constraints

1. The id must be specified and be unique.

This constraint is applicable to uniquely identify a requirement.

2. A Requirement with the isDerived flag must be justified by a Rationale (see clause

7.3.2.5 Rationale from the OMG (2017a) SysML 1.5 Specification).

This constraint is applicable to understand why the requirement cannot be directly traced

to an originating requirement because it specifies behaviour beyond that specified by the

higher-level requirements.

338

3. A Requirement, or any of its subclasses, shall not participate as the client in dependencies

stereotyped by Satisfy.

The Satisfy relationship is a dependency between a requirement and a model element that

fulfills the requirement. However, when the model element is stereotyped as a LowLevel-

Requirement the Satisfy relationship takes on the same meaning as the RefineReqt re-

lationship. In such case the RefineReqt relationship shall be used. Thus, this constraint is

intended to enforce the use of the RefineReqt relationship over the Satisfy relationship.

4. A Requirement, or any of its subclasses, shall not own any nested classifiers stereotyped

by Requirement.

This constraint is to avoid the creation of compound requirements and subrequirements.

10. SystemRequirement

Description

A SystemRequirement specifies a capability or condition that the system (or a part of it) must

satisfy.

Generalizations

- Requirement

Attributes

- isAllocatedToSoftware : Boolean [1]

Indicates if the system requirement has been allocated to software.

339

Constraints

1. A SystemRequirement stereotype must not be applied alongside other stereotypes that

specialize the Requirement stereotype.

11. TimedDomain

Description

The TimedDomain stereotype is as defined by the MARTE specification. A package stereo-

typed by TimedDomain is a container of clocks. Elements in a TimedDomain package may

use the clocks contained in it to express behaviour that is time dependent. A TimedDomain

package may own nested TimedDomain packages.

Generalizations

- MARTE TimedDomain

12. TimedDurationConstraint

Description

The TimedDurationConstraint stereotype is as defined by the MARTE specification. The

stereotype imposes a constraint on the temporal distance between two events. This stereotype

is included to allow the expression of timing constraints between specified behaviour.

Generalizations

- MARTE TimedDurationConstraint

340

Attributes

- kind : MARTE::NFP::NFP_Annotation::ConstraintKind [0..1]

Specifies the kind of the constraint. The constraint can be qualified by either a required,

offered or contract kind. A constraint that is required indicates the minimum level that is

demanded for the model element. A constraint that is offered establishes the space of values

that can support the model element. A constraint that is contract defines a conditional

expression between offered and required values.

- interpretation : TimeInterpretationKind [1]

The value of this attribute is fixed to specify that the constraint applies to a duration value.

- on : MARTE::Time::TimeAccesses::Clocks::Clock [1..*]

Specifies the associated clock(s).

- specification : DurationPredicate [1]

Specifies the constrained duration value.

Constraints

1. The owner of an element stereotyped by TimedDurationConstraint must be a package

stereotyped by TimedDomain.

13. TimedEvent

Description

The TimedEvent stereotype is as defined by the MARTE specification but with a more con-

strained usage. The stereotype establishes a non-functional annotation on a PropertyBased-

Statement indicating the specified behaviour needs to be performed with a predetermined

frequency (i.e. it is explicitly bound to a clock).

341

Generalizations

- MARTE TimedEvent

Attributes

- when : CVS::ClockedValueSpecification [1]

Specifies when the first occurrence occurs.

- every : CVS::DurationValueSpecification [0..1]

Specifies the duration that separates successive occurrences of the timed event.

- repetition : Integer [0..1]

Specifies the number of repetitive occurrences.

- isRelative : ConstraintBlock [1]

Specifies whether the time value is relative (i.e. the when property is a time duration value)

or absolute (i.e. the when property is a time instant value).

Constraints

1. A TimedEvent stereotype must only be applied to an element stereotyped by Property-

BasedStatement.

2. The owner of an element stereotyped by TimedEvent must be a package stereotyped by

TimedDomain.

342

14. TimedInstantObservation

Description

The TimedInstantObservation stereotype is as defined by the MARTE specification but with

a more constrained usage. The stereotype denotes an instant in time that is associated with an

event occurrence and observed on a given clock. This stereotype is included to allow the

observation of event occurrences and allowing their use in the expression of timing constraints

on the specified behaviour. The stereotype must only be applied to a property-based statement.

Generalizations

- MARTE TimedInstantObservation

Attributes

- obsKind : EventKind [0..1]

Specifies the kind of the observed event. Possible values are: start, finish, send, receive,

consume.

- eocc : MARTE::CoreElements::Causality::RunTimeContext::EventOccurrence [1]

The associated observed event.

- on : MARTE::Time::TimeAccesses::Clocks::Clock [1..*]

Specifies the associated clock(s).

Constraints

1. A TimedInstantObservation stereotype must only be applied to a PropertyBased-

Statement.

343

2. The owner of an element stereotyped by TimedInstantObservation must be a package

stereotyped by TimedDomain.

APPENDIX VIII

SPECML DEVELOPER’S AND USER’S GUIDES

1. Developer’s Guide

1.1 Getting started

System requirements

- Java JDK 8 or higher

- Eclipse Oxygen or newer with the Modeling package (a.k.a. Eclipse Modeling Tools)

Install required dependencies

The required dependency is Papyrus modelling environment.

1. Go to Help » Install New Software....

2. Work with http://download.eclipse.org/modeling/mdt/papyrus/updates/releases/oxygen to

install the Papyrus modelling environment. Select the following features:

- Papyrus

- Papyrus Toolsmiths

Install Papyrus additional components

1. Go to Help » Install Papyrus Additional Components.

2. Select:

- Papyrus DSML Validation

- Papyrus SysML 1.4

346

Install SpecML

1. Due to a bug in Papyrus, you must place the SpecML plug-ins under «path to Eclipse

»/dropins. Note: These plug-ins must be updated with every change to the source

code.

2. (Re)Start the Eclipse Papyrus modelling environment.

Import SpecML projects

1. Import the SpecML source code projects into the Eclipse workspace.

Create new run configuration

Create a new Run Configuration in Eclipse:

1. Go to Run » Run Configurations....

2. From the list in the left, double click on Eclipse Application.

3. Give the configuration a name (suggestion: SpecML).

4. In the Plug-ins tab, select to launch with plug-ins selected below only.

5. Under Workspace, select the plug-ins that correspond to SpecML.

6. Uncheck the box Add new workspace Plug-ins to this launch configuration automati-

cally.

7. Uncheck the box Validate Plug-ins automatically prior to launching.

8. Click on Apply.

347

1.2 Project structure

- src-gen

This folder contains generated source code from models. These files should not be edited

directly.

- src

This folder contains manually created source code. These files can be edited directly if

necessary.

- icons

This folder contains image files used for the icons in SpecML’s reference implementation.

- META-INF and MANIFEST.MF

This folder and file contain descriptions of the extensions to the Eclipse Papyrus modelling

environment provided by the plug-in.

- models

This folder contains EMF models with extensions to the Eclipse Papyrus modelling envi-

ronment.

- resources

This folder contains other resources used in the extensions to the Eclipse Papyrus modelling

environment.

- build.properties

This file contains the build properties of the plug-in.

- plugin.properties

This file contains additional properties of the plug-in.

348

- plugin.xml

This file contains descriptions of the extensions to the Eclipse Papyrus modelling environ-

ment provided by the plug-in.

1.3 SpecML projects and noteworthy files

- ca.ets.sofeess.specml.architecture

This project specifies a new Avionics architecture context and the SpecML viewpoint in the

Eclipse Papyrus modelling environment.

– specml.architecture

EMF model specifying the Avionics architecture context and SpecML viewpoint. Basic

concepts on architecture models and a walkthrough for the definition of new architecture

models can be found at https://help.eclipse.org/oxygen/topic/org.eclipse.papyrus.infra.

architecture.doc/target/generated-eclipse-help/architecture.html?cp=79_1_3.

– SpecModelCreationCommand.java

Initializes a new SpecML model by applying the SpecML profile.

- ca.ets.sofeess.specml.newchild

This project specifies the necessary facilities for the creation and manipulation of SpecML

constructs within UML models.

– newChild.creationmenumodel

EMF model specifying a context menu for the creation of SpecML constructs within

a UML model. Basic concepts and how to create or modify creation menu models

can be found at https://help.eclipse.org/oxygen/topic/org.eclipse.papyrus.infra.newchi

ld.doc/target/generated-eclipse-help/newChild.html?cp=79_1_6.

349

– specml.elementtypesconfigurations

EMF model specifying the high-level model editing facilities for UML models neces-

sary to support the creation and manipulation of SpecML constructs through the con-

text menu. Basic concepts on the ElementTypeConfigurations Framework can be found

at https://help.eclipse.org/oxygen/topic/org.eclipse.papyrus.infra.types.doc/target/gener

ated-eclipse-help/types.html?cp=79_1_7.

- ca.ets.sofeess.specml.palette

This project provides a palette in the main SpecMLmodel editor for quick access to SpecML

constructs. The palette is organized into categories for a better reference.

– specml.paletteconfiguration

EMF model specifying the elements in the palette and their categories. The Eclipse

Papyrus modelling environment provides creation forms for the contents of this model.

A demonstration can be found at https://www.youtube.com/watch?v=XnhxHPksbjc.

– specmldi.elementtypesconfigurations

EMF model specifying the high-level model editing facilities for UML models nec-

essary to support the creation and manipulation of SpecML constructs through the

palette. Basic concepts on the ElementTypeConfigurations Framework can be found

at https://help.eclipse.org/oxygen/topic/org.eclipse.papyrus.infra.types.doc/target/gener

ated-eclipse-help/types.html?cp=79_1_7.

- ca.ets.sofeess.specml.profile

This project specifies the SpecML profile.

– specml.profile

Papyrus Profile resource model file defining the SpecML profile, its stereotypes and

OCL constraints. Java code must be generated from this model through an EMF gen-

erator model (genmodel). Basic concepts and a walkthrough on defining profiles and

350

stereotypes in the Eclipse Papyrus modelling environment can be found at https://help

.eclipse.org/oxygen/nav/79_0_1_6.

- ca.ets.sofeess.specml.properties

This project provides an extension to the Properties view in the Eclipse Papyrus modelling

environment for editing properties of the SpecML profile that are too hard to edit directly

from the main graphical editor or that do not have a graphical representation.

– specml.ctx

EMF model specifying the properties from the SpecML stereotypes that can be edited,

the types of widgets to enable editing, and their organization in a form-like view. Basic

concepts and a walkthrough on the Properties View framework can be found at https://he

lp.eclipse.org/oxygen/topic/org.eclipse.papyrus.views.properties.doc/target/generated-ec

lipse-help/properties-view.html?cp=79_1_0.

- ca.ets.sofeess.specml.style

This project specifies custom graphical representations for certain SpecML stereotypes.

This is done through the use of Cascading StyleSheets (CSS). Basic concepts and a walk-

through on graphical customizations with CSS can be found at https://help.eclipse.org/oxy

gen/topic/org.eclipse.papyrus.infra.gmfdiag.css.doc/target/generated-eclipse-help/css.html?

cp=79_1_5.

- ca.ets.sofeess.specml.tables

This project provides tabular representations for certain SpecML constructs. Tabular rep-

resentations are available for SRATS, HLRs and property-based statements. These tabular

representations can be modified or new ones can be added. Basic concepts on tables and a

walkthrough for table creation can be found at https://help.eclipse.org/oxygen/nav/79_2_4.

- ca.ets.sofeess.specml.validation

This project provides constraint validation facilities. This project is generated from the

SpecML.profile file in the ca.ets.sofeess.specml.profile project. Basic concepts on con-

351

straint validation and a walkthrough on generating the validation plug-in project can be

found at https://help.eclipse.org/oxygen/topic/org.eclipse.papyrus.dsml.validation.doc/targ

et/generated-eclipse-help/dsml-validation.html?cp=79_1_2.

1.4 More information

More information about the Eclipse Papyrus modelling environment and how to customize it

for a particular domain is available at https://help.eclipse.org/oxygen/nav/79_1 and http://wi

ki.eclipse.org/Papyrus_Developer_Guide?cp=79_2. A YouTube video with more explanations

and live demonstrations of the Eclipse Papyrus modelling environment is available at https:

//www.youtube.com/watch?v=U62b2EQObRg.

1.5 Limitations

SpecML’s reference implementation is limited by the Eclipse Papyrus modelling environment.

Some of the features of SpecML could not be properly implemented because of limitations in

Papyrus’ UML, SysML and MARTE implementations. Papyrus does not implement SysML

1.5, only SysML 1.4, which limits extensions that can be done to the SysMLRequirement

stereotype. Hence, the AbstractRequirement stereotype of SysML 1.5 was manually defined

for SpecML’s reference implementation. Papyrus’ implementation of the MARTE profile was

archived and could not be used successfully to integrate it with Papyrus’ current implemen-

tation of UML. Therefore, stereotypes that were borrowed from MARTE had to be manually

defined for SpecML’s reference implementation. The previous implementation choices by no

means limit SpecML as its reference implementation can be developed differently.

352

2. User’s Guide

2.1 Getting started

System requirements

- Java JDK 8 or newer

- Eclipse Oxygen or newer with the Modeling package (a.k.a. Eclipse Modeling Tools)

Install required dependencies

The required dependency is Papyrus modelling environment.

1. Go to Help » Install New Software....

2. Work with http://download.eclipse.org/modeling/mdt/papyrus/updates/releases/oxygen to

install the Papyrus modelling environment. Select the following features:

- Papyrus

Install Papyrus additional components

1. Go to Help » Install Papyrus Additional Components.

2. Select:

- Papyrus DSML Validation

- Papyrus SysML 1.4

More information about the Eclipse Papyrus modelling environment and how to use it is avail-

able at https://help.eclipse.org/oxygen/nav/79_0.

353

Install SpecML

1. Place the SpecML plug-ins under «path to Eclipse »/plugins.

2. (Re)Start the Eclipse Papyrus modelling environment.

SpecML plug-ins

- ca.ets.sofeess.specml.architecture_1.0.0.jar

- ca.ets.sofeess.specml.newchild_1.0.0.jar

- ca.ets.sofeess.specml.palette_1.0.0.jar

- ca.ets.sofeess.specml.profile_1.0.0.jar

- ca.ets.sofeess.specml.properties_1.0.0.jar

- ca.ets.sofeess.specml.style_1.0.0.jar

- ca.ets.sofeess.specml.tables_1.0.0.jar

- ca.ets.sofeess.specml.validation_1.0.0.jar

2.2 Creating a specification model

The following steps guide the creation of a new SpecML specification model, its verification

of well-formedness, and the creation of tabular views of the requirements specification.

354

1. Open the Eclipse Papyrus modelling environment.

2. Create a project.

355

3. Create a new Papyrus model.

4. Select the SpecML architecture context.

356

5. Select the SpecML diagram representation kind.

6. Click on Finish. The model should open.

357

7. Drag and drop elements into the model by using the palette on the right. For instance,

select the System Requirement element.

8. Drop the element anywhere in the model and give it a name.

358

9. Fill out the properties of the element in the Properties view (bottom of the screen).

10. Add more elements into the model in the same way. For instance, select the High-Level

Requirement element.

359

11. Drop the element anywhere in the model and give it a name.

12. Fill out the properties of the element in the Properties view.

360

13. Continue adding more elements into the model.

14. A verification of well-formedness of the model can be carried out at anytime. Right click

anywhere in the model and select Validation » Validate model.

361

15. Violations will be presented in the Model Validation view (bottom of the screen). Any

violating element will be marked in the editor view as well. In this case, the HLR (in

blue) is not refining or copying an SRATS. To fix a violation, follow the indications given

in the violation message.

362

16. In this case, the violation will be fixed by defining a RefineReqt trace between the HLR

(in blue) and the SRATS (in red).

17. Click on the HLR to set the trace’s client element. Then, click on the SRATS to set the

trace’s supplier element. Give the trace a name.

363

18. The violation was fixed. Re-verify the model by right clicking anywhere in the model and

select Validation » Validate model.

19. The violation should disappear from the Model Validation view.

364

20. Continue adding more elements into the model. For instance, drag and drop a

Property-Based Statement element and give it a name. Fill out its properties in the

Properties view.

365

21. Define time-dependent behaviour and constraints by applying MARTE stereotypes onto

existing property-based statements or dragging and dropping standalone elements from

the palette. In this case, the TimedEvent stereotype is applied on the Property-Based

Statement and displayed as a comment. This is done in the Profile and Appearance tabs

of the Properties view (respectively).

366

22. Add a ConstraintBlock and define as the predicate of the Property-Based Statement

with the Predicate formalization trace.

367

23. In this case, the predicate of this statement has nested SysML constraint blocks. This

constraint blocks need to be defined in a SysML block diagram. Select the predicate

constraint block in the Model Explorer view (left center of the screen).

368

24. Right click and select New Diagram » SysML 1.4 Block Definition Diagram (first

option).

25. A new tab in the model is created.

369

26. Drag and drop the selected constraint block of the predicate from the Model Explorer

view.

27. Add the nested constraint blocks by dragging and dropping from the palette and

connecting them with the Containment Link.

370

28. In a similar way, a parametric diagram can be added to detail the usage of the nested

constraints.

371

29. If there is time-dependent behaviour and constraints, the specification model must be

stereotyped with TimedDomain. This is done in the Profile tab of the Properties view

with the SpecML diagram selected in the Model Explorer view.

372

30. The specified requirements and their formalizations can be viewed in tables. Right click

and select, for instance, New Table » PBSs Table.

31. In this case, a table with the requirement formalizations is created.

BIBLIOGRAPHY

acatech (Ed.). (2011). Cyber-Physical Systems: Driving Force for Innovation in Mobility,
Health, Energy and Production. Berlin, Heidelberg: Springer-Verlag.

Almeida da Silva, M. A., Mougenot, A., Blanc, X. & Bendraou, R. (2010). Towards Automated

Inconsistency Handling in Design Models. Advanced Information Systems Engineering,
pp. 348–362.

Amyot, D. (2003). Introduction to the User Requirements Notation: Learning by Example.

Computer Networks, 42(3), 285–301.

Arboleda, H. & Royer, J.-C. (2012). Model-Driven and Software Product Line Engineering.
London: ISTE and Wiley.

Areias, C., Cunha, J. C., Iacono, D. & Rossi, F. (2014). Towards Certification of Automotive

Software. 2014 IEEE International Symposium on Software Reliability Engineering
Workshops (ISSREW), pp. 491-496.

Basili, V. R., Caldiera, G. & Rombach, H. D. (1994). The Goal Question Metric Approach.

In Encyclopedia of Software Engineering. Wiley.

Berkenkötter, K. & Hannemann, U. (2006). Modeling the Railway Control Domain Rigorously

with a UML 2.0 Profile. In Proceedings of the 25th International Conference on Com-
puter Safety, Reliability, and Security (SAFECOMP) (pp. 398–411). Berlin, Heidelberg:

Springer Berlin Heidelberg.

Bézivin, J. (2005). On the unification power of models. oftware & Systems Modeling, 4(2),
171–188.

Bézivin, J. (2006). Model Driven Engineering: An Emerging Technical Space. In Gener-
ative and Transformational Techniques in Software Engineering (pp. 36–64). Berlin -

Heidelberg, Germany: Springer.

Bialy, M., Lawford, M., Pantelic, V. & Wassyng, A. (2015, 5). A Methodology for the Simpli-

fication of Tabular Designs in Model-Based Development. 2015 IEEE/ACM 3rd FME
Workshop on Formal Methods in Software Engineering (FormaliSE), pp. 47–53.

Bialy, M., Pantelic, V., Jaskolka, J., Schaap, A., Patcas, L., Lawford, M. &Wassyng, A. (2017).

3 - Software Engineering for Model-Based Development by Domain Experts. In Griffor,

E. (Ed.), Handbook of System Safety and Security (pp. 39–64). Boston: Syngress.

Biggs, G., Sakamoto, T. & Kotoku, T. (2016). A profile and tool for modelling safety in-

formation with design information in SysML. Software & Systems Modeling, 15(1),
147–178.

374

Bitsch, F. (2001). Safety Patterns — The Key to Formal Specification of Safety Requirements.

In Computer Safety, Reliability and Security: 20th International Conference, SAFE-
COMP 2001 Budapest, Hungary, September 26–28, 2001 Proceedings (pp. 176–189).

Berlin, Heidelberg: Springer Berlin Heidelberg.

Blouin, D., Senn, E. & Turki, S. (2011). Defining an annex language to the architecture analysis

and design language for requirements engineering activities support. 2011 Model-Driven
Requirements Engineering Workshop, pp. 11–20.

Blouin, D. (2013). Modeling languages for requirements engineering and quantitative analysis
of embedded systems. (Ph.D. thesis, Université de Bretagne-Sud).

Bombino, M. & Scandurra, P. (2013). A model-driven co-simulation environment for het-

erogeneous systems. International Journal on Software Tools for Technology Transfer,
15(4), 363–374.

Boniol, F. & Wiels, V. (2014). The Landing Gear System Case Study. In ABZ 2014: The
Landing Gear Case Study. Springer.

Bozga, M., Graf, S., Ober, I., Ober, I. & Sifakis, J. (2004). The IF Toolset. In Bernardo,

M. & Corradini, F. (Eds.), Formal Methods for the Design of Real-Time Systems: Inter-
national School on Formal Methods for the Design of Computer, Communication, and
Software Systems, Revised Lectures (pp. 237–267). Berlin, Heidelberg: Springer Berlin

Heidelberg.

Bozzano, M. & Villafiorita, A. (2010). Design and Safety Assessment of Critical Systems
(ed. 1). Auerbach Publications.

Camhy, D., Kernbichler, W., Huhs, G. & Albert, C. (2013). Matclipse – Eclipse-Matlab in-

terface. Consulted at https://undocumentedmatlab.com/blog/matclipse-eclipse-matlab-

interface.

Carnegie Mellon University. (2019). OSATE (Open Source AADL Tool Environment). Con-

sulted at https://osate.org/.

Ceccarelli, A. & Silva, N. (2013). Qualitative comparison of aerospace standards: An objective

approach. 2013 IEEE International Symposium on Software Reliability Engineering
Workshops (ISSREW), pp. 331–336.

Combemale, B., DeAntoni, J., Baudry, B., France, R. B., Jézéquel, J. & Gray, J. (2014).

Globalizing Modeling Languages. Computer, 47(6), 68–71.

Creswell, J. W. (2008). Research Design: Qualitative, Quantitative, and Mixed Methods
Approaches (ed. 3). Sage Publications Ltd.

de la Vara, J. L., Ruiz, A., Attwood, K., Espinoza, H., P.-W., R. K., Ángel López, del Río,

I. & Kelly, T. (2016). Model-based specification of safety compliance needs for critical

375

systems: A holistic generic metamodel. Information and Software Technology, 72, 16–
30.

Dijkman, R. M., Quartel, D. A. & van Sinderen, M. J. (2008). Consistency in multi-viewpoint

design of enterprise information systems. Information and Software Technology, 50(7),
737–752.

Easterbrook, S., Singer, J., Storey, M.-A. & Damian, D. (2008). In Shull, F., Singer,

J. & Sjøberg, D. I. K. (Eds.), Guide to Advanced Empirical Software Engineering
(ch. Selecting Empirical Methods for Software Engineering Research, pp. 285–311).

Springer London.

Eclipse Lyo. (2014). Lyo OSLC Simulink Adapter. Consulted at https://wiki.eclipse.org/Lyo

/Simulink.

Eisemann, U. (2016, 01). Applying Model-Based Techniques for Aerospace Projects in Ac-

cordance with DO-178C, DO-331, and DO-333. 8th European Congress on Embedded
Real Time Software and Systems (ERTS).

Eker, J., Janneck, J., Lee, E., Liu, J., Liu, X., Ludvig, J., Neuendorffer, S., Sachs, S. & Xiong,

Y. (2003). Taming heterogeneity - the Ptolemy approach. Proceedings of the IEEE,
91(1), 127–144.

El Hamlaoui, M., Bennani, S., Nassar, M., Ebersold, S. & Coulette, B. (2018). Heterogeneous

Design Models Alignment: From Matching to Consistency Management. Proceedings
of the 33rd Annual ACM Symposium on Applied Computing (SAC), pp. 1695–1697.

Erkkinen, T. (2005). Model Style Guidelines for Flight Code Generation. In AIAA Modeling
and Simulation Technologies Conference and Exhibit (pp. 1–8). American Institute of

Aeronautics and Astronautics, Inc.

Esposito, C., Cotroneo, D. & SIlva, N. (2011). Investigation on Safety-Related Standards for

Critical Systems. 2011 First International Workshop on Software Certification, pp. 49–
54.

Farkas, T., Neumann, C. & Hinnerichs, A. (2009). An Integrative Approach for Embedded

Software Design with UML and Simulink. 33rd Annual IEEE International Computer
Software and Applications Conference, 2, 516–521.

Fecher, H., Schönborn, J., Kyas, M. & de Roever, W.-P. (2005). 29 New Unclarities in the

Semantics of UML 2.0 State Machines. In Formal Methods and Software Engineering
(pp. 52–65). Springer Berlin Heidelberg.

Feiler, P. H. (2010). Model-based validation of safety-critical embedded systems. 2010 IEEE
Aerospace Conference, pp. 1–10.

Feiler, P. H., Gluch, D. P. & Hudak, J. J. (2006). The Architecture Analysis & Design Language
(AADL): An Introduction. Software Engineering Institute, Carnegie Mellon University.

376

Feiler, P. H., Delange, J. & Wrage, L. (2016). A Requirement Specification Language for
AADL. Software Engineering Institute, Carnegie Mellon University.

Ferrari, A., Fantechi, A., Magnani, G., Grasso, D. & Tempestini, M. (2013). The Metrô Rio

case study. Science of Computer Programming, 78(7), 828–842.

Fifarek, A. W., Wagner, L. G., Hoffman, J. A., Rodes, B. D., Aiello, M. A. & Davis, J. A.

(2017). SpeAR v2.0: Formalized Past LTL Specification and Analysis of Require-

ments. In Proceedings of NASA Formal Methods: 9th International Symposium (NFM)
(pp. 420–426).

Finkelstein, A., Gabbay, D., Hunter, A., Kramer, J. & Nuseibeh, B. (1994). Inconsistency han-

dling in multiperspective specifications. IEEE Transactions on Software Engineering,
20(8), 569–578.

Finlayson, M. A. (2014). Java libraries for accessing the Princeton WordNet: Comparison and

evaluation. In Proceedings of the 7th Global Wordnet Conference.

Gaucher, F. & Génevaux, Y. (2017). Debugging Embedded Systems Requirements Before The

Design Begins: "The Beginning is the Most Important Part of the Work" - Plato. Ada
Letters, 36(2), 58–59.

Graf, S., Ober, I. & Ober, I. (2006). A real-time profile for UML. International Journal on
Software Tools for Technology Transfer, 1–15.

Hawkins, R., Habli, I., Kelly, T. & McDermid, J. (2013). Assurance cases and prescriptive

software safety certification: A comparative study. Safety Science, 59, 55–71.

Heimdahl, M. P. E. (2007). Safety and Software Intensive Systems: Challenges Old and New.

Future of Software Engineering (FOSE), pp. 137–152.

Herrmannsdörfer, M. & Berenbach, B. (2008). Tabular Notations for State Machine-Based

Specifications. The Journal of Defense Software Engineering, 18–23.

Hooman, J., Kugler, H., Ober, I., Votintseva, A. & Yushtein, Y. (2007). Supporting UML-

based development of embedded systems by formal techniques. Software & Systems
Modeling, 7(2), 131–155.

Horváth, Á., Ráth, I. & Starr, R. R. (2015). Massif - the love child of Matlab Simulink and

Eclipse. EclipseCon. Consulted at https://www.eclipsecon.org/na2015/session/massif-

love-child-matlab-simulink-and-eclipse.

Huang, P., Jiang, K., Guan, C. & Du, D. (2018). Towards Modeling Cyber-Physical Sys-

tems with SysML/MARTE/pCCSL. 2018 IEEE 42nd Annual Computer Software and
Applications Conference (COMPSAC), 01, 264–269.

377

Huhn, M. & Hungar, H. (2007). UML for Software Safety and Certification: Model-based

Development of Safety-critical Software-intensive Systems. Proceedings of the 2007
International Dagstuhl Conference on Model-based Engineering of Embedded Real-
time Systems (MBEERTS’07), pp. 201–237.

IncQuery Labs. (2017). Massif: MATLAB Simulink Integration Framework for Eclipse.

Consulted at https://incquerylabs.com/en/page/show/massif.

IST. (2001). Flight Control Voting and Monitoring Case Study. Consulted at http://www-

omega.imag.fr/cs/IAI/IAI.php.

Kelly, S. & Tolvanen, J. (2007). Domain-Specific Modeling: Enabling Full Code Generation.
IEEE.

Kolovos, D., Rose, L., García-Domínguez, A. & Paige, R. (2018). The Epsilon Comparison

Language (ECL). In The Epsilon Book. Eclipse Epsilon Project.

Kuroki, Y., Yoo, M. & Yokoyama, T. (2016, 03). A Simulink to UML model transformation

tool for embedded control software development. 2016 IEEE International Conference
on Industry Technology (ICIT), pp. 700–706.

Kurtev, I., Bézivin, J., Jouault, F. & Valduriez, P. (2006). Model-based DSL Frameworks.

Companion to the 21st ACM SIGPLAN Symposium on Object-oriented Programming
Systems, Languages, and Applications, (OOPSLA ’06), 602–616.

Le Sergent, T., Dormoy, F.-X. & Le Guennec, A. (2016, 01). Benefits of Model Based Sys-

tem Engineering for Avionics Systems. Proceedings of the 8th European Congress on
Embedded Real Time Software and Systems (ERTS 2016).

Lee, E. A. (2010). Disciplined Heterogeneous Modeling. Proceedings of the 13th International
Conference on Model Driven Engineering Languages and Systems (MODELS 2010),
pp. 273–287.

Lempia, D. L. & Miller, S. P. (2009). Requirements Engineering Management Handbook.
Washington, DC, USA: National Technical Information Service (NTIS).

Leveson, N. G., Heimdahl, M. P. E., Hildreth, H. & Reese, J. D. (1994). Requirements

specification for process-control systems. IEEE Transactions on Software Engineering,
20(9), 684–707.

Levine, W. S. (1996). The control handbook. CRC Press New York.

Luo, Y., van den Brand, M., Engelen, L., Favaro, J., Klabbers, M. & Sartori, G. (2013).

Extracting Models from ISO 26262 for Reusable Safety Assurance. In Safe and Secure
Software Reuse: 13th International Conference on Software Reuse (ICSR) (pp. 192–

207). Berlin, Heidelberg: Springer Berlin Heidelberg.

378

MathWorks. (2018a). Simulink - Simulation and Model-Based Design. Consulted at https:

//www.mathworks.com/products/simulink.html.

MathWorks. (2018b). Stateflow. Consulted at https://www.mathworks.com/products/stateflo

w.html.

MathWorks Automotive Advisory Board. (2012). Control Algorithm Modeling Guidelines
using MATLAB, Simulink, and Stateflow.

McGregor, J. D., Gluch, D. P. & Feiler, P. H. (2017). Analysis and Design of Safety-critical,

Cyber-Physical Systems. Ada Letters, 36(2), 31–38.

Metayer, N. (2018). An assurance level sensitive UML profile for supporting DO-178C. (Mas-

ter’s thesis, École de Technologie Supérieure).

Metayer, N., Paz, A. & El Boussaidi, G. (2019). Modelling DO-178C Assurance Needs:

A Design Assurance Level-Sensitive DSL. 2019 IEEE International Symposium on
Software Reliability Engineering Workshops (ISSREW), pp. 1–8.

Micouin, P. (2008). Toward a Property Based Requirements Theory: System Requirements

Structured As a Semilattice. Systems Engineering, 11(3), 235–245.

Miller, G. A. (1995). WordNet: A Lexical Database for English. Communications of the ACM,

38(11), 39–41.

Mosterman, P. & Ghidella, J. (2018). Fault Detection Control Logic in an Aircraft Elevator

Control System. Consulted at https://www.mathworks.com/help/stateflow/examples/fau

lt-detection-control-logic-in-an-aircraft-elevator-control-system.html.

Moy, Y., Ledinot, E., Delseny, H., Wiels, V. & Monate, B. (2013). Testing or Formal Verifica-

tion: DO-178C Alternatives and Industrial Experience. IEEE Software, 30(3), 50–57.

Nair, S., de la Vara, J. L., Sabetzadeh, M. & Briand, L. (2014). An extended systematic liter-

ature review on provision of evidence for safety certification. Information and Software
Technology, 56(7), 689–717.

Nejati, S., Sabetzadeh, M., Falessi, D., Briand, L. & Coq, T. (2012). A SysML-based ap-

proach to traceability management and design slicing in support of safety certification:

Framework, tool support, and case studies. Information and Software Technology, 54(6),
569–590.

OMG. (2011). UML profile for MARTE: Modeling and Analysis of Real-Time Embedded
Systems. Consulted at http://www.omg.org/spec/MARTE.

OMG. (2013). OMG Meta Object Facility (MOF) Core Specification. Consulted at https:

//www.omg.org/spec/MOF.

OMG. (2017a). Systems Modeling Language. Consulted at http://www.omg.org/spec/SysML.

379

OMG. (2017b). OMG Unified Modeling Language (OMG UML). Consulted at http://www.om

g.org/spec/UML.

OMG. (2018). Structured Assurance Case Metamodel (SACM). Consulted at http://www.om

g.org/spec/SACM/2.0/.

OpenDo. (2011). Project P. Consulted at http://www.open-do.org/projects/p/.

Özçelik, O. & Altilar, D. T. (2015). Test-Driven Approach for Safety-Critical Software Devel-

opment. Journal of Software, 10(7), 904–911.

Panesar-Walawege, R. K., Sabetzadeh, M. & Briand, L. (2013). Supporting the verification of

compliance to safety standards via model-driven engineering: Approach, tool-support

and empirical validation. Information and Software Technology, 55(5), 836 - 864.

Paz, A. & El Boussaidi, G. (2016). On the Exploration of Model-Based Support for DO-178C-

Compliant Avionics Software Development and Certification. 2016 IEEE International
Symposium on Software Reliability Engineering Workshops (ISSREW), pp. 229–236.

Paz, A. & El Boussaidi, G. (2017). Landing Gear Control Software: An avionics software de-
velopment case study. Montreal, Canada: École de Technologie Supérieure. Consulted

at http://dx.doi.org/10.13140/RG.2.2.34900.19848.

Paz, A. & El Boussaidi, G. (2018). Building a Software Requirements Specification and

Design for an Avionics System: An Experience Report. Proceedings of the 33rd ACM
Symposium on Applied Computing (SAC), pp. 1262–1271.

Paz, A. & El Boussaidi, G. (2019a). Breesse: Live bridge for the Eclipse Modeling Framework

ecosystem and the MathWorks Simulink and Stateflow ecosystem. Consulted at https:

//github.com/afpaz/breesse.

Paz, A. & El Boussaidi, G. (2019b). A Requirements Modelling Language to Facilitate Avion-

ics Software Verification and Certification. Proceedings of the 6th International Work-
shop on Requirements Engineering and Testing (RET), pp. 1–8.

Paz, A. & El Boussaidi, G. (2019c). Supporting Consistency in the Heterogeneous Design of

Safety-Critical Software. 2019 IEEE 43rd Annual Computer Software and Applications
Conference (COMPSAC), 1, 37–46.

Paz, A. & El Boussaidi, G. (2019d). Breeze through Safety-Critical System Model-Based De-
sign with EMF, Simulink and Stateflow. Unpublished manuscript, École de Technologie

Supérieure, Montreal, Canada.

Paz, A. & El Boussaidi, G. (2019e). SpecML: Requirements Specification Modelling Lan-

guage. Consulted at https://github.com/afpaz/specml.

Paz, A. & El Boussaidi, G. (2019f). checsdm: Consistency of Heterogeneous Embedded

Control System Design Models. Consulted at https://github.com/afpaz/checsdm.

380

Paz, A., El Boussaidi, G. & Mili, H. (2020). checsdm: A Method for Ensuring Consistency

in Heterogeneous Safety-Critical System Design. IEEE Transactions on Software Engi-
neering, 1–27. Accepted for publication.

Pettit, R. G., Mezcciani, N. & Fant, J. (2014). On the Needs and Challenges of Model-

Based Engineering for Spaceflight Software Systems. 2014 IEEE 17th International
Symposium on Object/Component/Service-Oriented Real-Time Distributed Computing,
pp. 25–31.

Potter, B. (2012). Complying with DO-178C and DO-331 using Model-Based Design. Math-

Works.

Potter, B. (2016). DO-178 Case Study. Consulted at https://www.mathworks.com/matlabcent

ral/fileexchange/56056-do178_case_study.

Radio Technical Commission for Aeronautics. (2011a). Software Considerations in Airborne
Systems and Equipment Certification. RTCA DO-178C.

Radio Technical Commission for Aeronautics. (2011b). Model-Based Development and Veri-
fication Supplement to DO-178C and DO-278A. RTCA DO-331.

Radio Technical Commission for Aeronautics. (2011c). Object-Oriented Technologies and
Related Techniques Supplement to DO-178C and DO-278A. RTCA DO-332.

Roques, P. (2016, 01). MBSE with the ARCADIA Method and the Capella Tool. Proceedings
of the 8th European Congress on Embedded Real Time Software and Systems, (ERTS
2016), 1–10.

Rozanski, N. & Woods, E. (2011). Software Systems Architecture: Working With Stakeholders
Using Viewpoints and Perspectives (ed. 2). Addison-Wesley Professional.

Ruiz, A., Juez, G., Espinoza, H., de la Vara, J. L. & Larrucea, X. (2016). Reuse of safety

certification artefacts across standards and domains: A systematic approach. Reliability
Engineering & System Safety, 158, 153–171.

Runeson, P. & Höst, M. (2009). Guidelines for conducting and reporting case study research

in software engineering. Empirical Software Engineering, 14(2), 131–164.

SAE. (2017). Architecture Analysis & Design Language (AADL). SAE AS5506C.

Sakairi, T., Palachi, E., Cohen, C., Hatsutori, Y., Shimizu, J. & Miyashita, H. (2012). De-

signing a control system using SysML and Simulink. Proceedings of the SICE Annual
Conference, pp. 2011–2017.

Sarkis, A. & Dias, L. A. V. (2014). A Set of Rules for Production of Design Models Compliant

with Standards DO-178C and DO-331. 11th International Conference on Information
Technology: New Generations, pp. 27–32.

381

Schamai, W., Buffoni, L., Albarello, N., Fontes De Miranda, P. & Fritzson, P. (2015). An

Aeronautic Case Study for Requirement Formalization and Automated Model Compo-

sition in Modelica. Proceedings of the 11th International Modelica Conference, (118),
911–920.

Schmidt, D. C. (2006). Model-Driven Engineering. Computer, 39(2), 25–31.

Selic, B. (2003). The pragmatics of model-driven development. IEEE Software, 20(5), 19–25.

Selic, B. (2007, 05). A Systematic Approach to Domain-Specific Language Design Using

UML. 10th IEEE International Symposium on Object and Component-Oriented Real-
Time Distributed Computing (ISORC), pp. 2–9.

Sjöstedt, C.-J., Shi, J., Törngren, M., Servat, D., Chen, D.-J., Ahlsten, V. & Lönn, H. (2008).

Mapping Simulink to UML in the design of embedded systems: Investigating scenarios

and transformations. Proceedings of the 4th Workshop on Object-oriented Modeling of
Embedded Real-Time Systems, (OMER 4), 137–160.

Spitzer, C. R. (2007). Avionics: Elements, Software and Functions (ed. 1). CRC Press.

Stallbaum, H. & Rzepka, M. (2010). Toward DO-178B-compliant Test Models. 2010 Work-
shop on Model-Driven Engineering, Verification, and Validation (MoDeVVa), pp. 25–30.

Sztipanovits, J. (2007). Composition of Cyber-Physical Systems. 14th Annual IEEE Inter-
national Conference and Workshops on the Engineering of Computer-Based Systems
(ECBS’07), pp. 3–6.

Tanaka, K., Inaho, S., Hatano, M., Kuroki, Y., Yoo, M. & Yokoyama, T. (2017). An Ex-

tended Simulink to UML Model Transformation Tool for Embedded Control Software

Development. Proceedings of the 2017 International Conference on Industrial Design
Engineering (ICIDE), pp. 76–81.

The Eclipse Foundation. (2017a). EMF Documentation. Consulted at https://www.eclipse.or

g/modeling/emf/docs/.

The Eclipse Foundation. (2017b). Papyrus Modeling Environment. Consulted at https://www.

eclipse.org/papyrus/.

The Eclipse Foundation. (2017c). Viatra. Consulted at https://www.eclipse.org/viatra/.

van den Brand, M. & Groote, J. F. (2015). Software engineering: Redundancy is key. Science
of Computer Programming, 97, 75–81.

Vangheluwe, H., De Lara, J. & Mosterman, P. J. (2002). An introduction to multi-paradigm

modelling and simulation. Proceedings of the AIS’2002 conference (AI, Simulation and
Planning in High Autonomy Systems), pp. 9–20.

382

Varró, D. (2016). Incremental Queries and Transformations: From Concepts to Industrial

Applications. SOFSEM 2016: Theory and Practice of Computer Science, pp. 51–59.

Whalen, M. W. (2000). A formal semantics for the Requirements State Machine Language
Without Events (RSML-e). (Master’s thesis).

White, J. & Reza, H. (2012, 11). Deriving DO-178C Requirements Within the Appropriate

Level of Hierarchy. The 7th International Conference on Software Engineering Ad-
vances (ICSEA), pp. 430–435.

Wu, J., Yue, T., Ali, S. & Zhang, H. (2015). A modeling methodology to facilitate safety-

oriented architecture design of industrial avionics software. Software: Practice and
Experience, 45(7), 893–924.

Yin, R. K. (2008). Case Study Research: Design and Methods (Applied Social Research
Methods) (ed. 4). Sage Publications.

Yu, H., Ma, Y., Glouche, Y., Talpin, J.-P., Besnard, L., Gautier, T., Guernic, P. L., Toom,

A. & Laurent, O. (2011). System-level Co-simulation of Integrated Avionics Using

Polychrony. Proceedings of the 2011 ACM Symposium on Applied Computing (SAC),
pp. 354–359.

Zoughbi, G., Briand, L. & Labiche, Y. (2011). Modeling Safety and Airworthiness (RTCADO-

178B) Information: Conceptual Model and UML Profile. Software & Systems Modeling,
10(3), 337–367.

