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RÉSUMÉ 
 
 
Les robots sériels sont récemment l'une des méthodes les plus efficaces pour réaliser plusieurs 
applications industrielles, notamment le positionnement précis et les tâches d'inspection. Ils 
peuvent fournir une grande enveloppe de travail, un accès à des zones restreintes, des 
opérations dans des environnements dangereux et des travaux de précision avec un haut degré 
de fiabilité. Un désavantage majeur des robots sériels est le problème des vibrations, en raison 
de la dynamique des modes flexibles qui sont excités. La vibration provoque une détérioration 
de la précision du contrôle de mouvement, une grande contrainte dans les boîtes de vitesses et 
des déformations ou des dommages du robot manipulateur. La dynamique des modes flexibles 
est introduite en raison de la faible rigidité des robots manipulateurs, qui peut être causée par 
la flexibilité des articulations ou des membrures. Indépendamment de la taille et de la 
conception, la plupart des robots sériels sont encore assez flexibles avec la première résonance 
dans les basses fréquences d'environ 10 Hz. Pour éviter les conséquences causées par les 
vibrations, le contrôle des vibrations devient très important et doit être pris en compte dans la 
conception des contrôles. 
 
L'objectif principal de cette étude est de concevoir des algorithmes de contrôle pour réduire les 
vibrations des robots sériels avec articulations flexibles. Les procédures de conception de 
contrôleur proposées peuvent être appliquées à divers robots industriels et sont testées 
expérimentalement sur un robot industriel à six articulations, le SCOMPI, actuellement en 
développement à l'Institut de recherche d'Hydro-Québec. Pour atteindre cet objectif, deux 
phases d'étude sont proposées. 
 
L'objectif de la première phase est d'étudier la dynamique et de concevoir un algorithme de 
contrôle des vibrations pour un robot à articulation unique. Un modèle dynamique décentralisé 
de robot sériel avec articulation flexible est étudié. Les concepts de contrôle sont testés sur une 
configuration expérimentale simple composée d'une seule articulation et d'une seule 
membrure. Toutes les parties du système sont considérées comme rigides à l'exception d'un 
élément qui est l’articulation flexible. Le modèle de joint flexible unique est placé dans un 
environnement entièrement contrôlé, dans lequel l'accès à la commande de couple du moteur, 
à la référence du moteur ou aux états de rétroaction est disponible. Pour cet objectif, un 
contrôleur à deux étages amélioré est proposé, qui combine deux parties. La première partie 
est un contrôleur à deux étages basé sur la commande de backstepping, qui considère la 
position du moteur comme une entrée de commande virtuelle pour la dynamique côté 
membrure. La seconde partie est un observateur d'état et de perturbation, qui compense les 
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perturbations et reconstruit les mesures indirectes. La simulation numérique et les résultats 
expérimentaux valident que le contrôleur proposé améliore efficacement les performances de 
contrôle en termes de réduction des vibrations des membrures, d'extension de la bande passante 
et d'atténuation de l'erreur cinématique du réducteur d'entraînement harmonique du joint. Les 
limites du contrôleur proposé sont également discutées. Les performances de contrôle 
dépendent des paramètres du système, qui doivent être correctement identifiés. Cela nécessite 
également des efforts pour régler manuellement les gains du contrôleur. Et surtout, le 
contrôleur proposé doit avoir accès à la commande de couple du moteur pour implémenter son 
algorithme. Cependant, il convient de mentionner que les résultats de la première phase 
valident l'hypothèse de modélisation sous-jacente pour le joint flexible et que l'architecture en 
deux étages est réalisable à des fins de contrôle des vibrations. 
 
Sur la base des résultats prometteurs du contrôle des vibrations pour le robot à articulation 
unique, la deuxième phase consiste à adapter les connaissances acquises pour un cas qui est 
beaucoup plus général, un robot série industriel à articulations multiples. Il y a une décision à 
prendre, soit qu‘une configuration expérimentale multi-joint est construite, soit qu‘un robot 
sériel existant est utilisé comme banc d'essai. Avec la première option, le contrôleur développé 
dans la première phase peut être directement appliqué. Cependant, la construction d'une 
nouvelle configuration expérimentale multi-joint peut nécessiter beaucoup d'efforts et de 
temps. La dernière option, utilisant un robot industriel existant comme banc d'essai, présente 
un gros avantage. Cela coûte beaucoup moins cher car la main-d'œuvre humaine, le matériel 
pour construire les composantes sont économisés et tous les éléments mécaniques ou 
électroniques sont inclus. Cependant, le nouveau contrôleur doit se conformer à l'interface de 
contrôle existante du robot. L'une des contraintes est que le robot est contrôlé en mode position 
et que l'accès au couple de joint n'est pas disponible. Sans accès à la commande de couple du 
moteur, le contrôleur proposé pour le robot à articulation unique dans la première phase ne 
peut pas être directement appliqué. 
 
Dans l'étude de cette deuxième option, un robot industriel sériel à articulations multiples est 
utilisé pour développer un algorithme de contrôle des vibrations. Bien qu'un nouveau 
contrôleur doive être développé, il partage toujours certains aspects du modèle dynamique de 
robot avec articulation flexible développé dans la première phase. De plus, il peut être 
facilement industrialisé par la suite car toutes les contraintes sont déjà prises en compte. Notez 
que, en raison du fait que l’accès à la commande de couple du moteur n'est pas disponible, le 
contrôleur proposé doit être basé sur la commande de position du moteur. 
 
L'objectif de la deuxième phase est de concevoir des algorithmes de contrôle des vibrations 
pour les robots industriels à articulations flexibles multiples. Un modèle flexible décentralisé 
est introduit, dans lequel la rigidité de couplage localisée est prise en compte. Dans le premier 
étage, une entrée à mise en forme variable dans le temps façonne la dynamique de contrôle 
rigide en une dynamique souhaitée qui ne produit pas de vibrations. Un deuxième étage est 
ajouté pour augmenter le rejet des perturbations. Un prédicteur de Smith généralisé est 
développé pour compenser le retard et le filtre passe-bas des capteurs de rétroaction. Des 
simulations numériques et des expériences sur un robot à six articulations SCOMPI confirment 
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que le contrôleur proposé améliore les performances de contrôle en termes de bande passante, 
d'atténuation des vibrations et de rejet des perturbations. 
 
Mots clés: robot articulation flexible, contrôle des vibrations, contrôleur à deux étages, 
observateur de perturbation, observateur d'état, formation d’entrée variant dans le temps, 
prédicteur de Smith. 
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ABSTRACT 
 
 

Serial robots are recently one of the most effective methods to realize several industrial 
applications including precision positioning and inspection tasks. They can provide a large 
working envelope, access to restricted areas, operations in hazardous environments, and 
precision works with high degree of reliability. A major issue of serial robots is vibration, due 
to flexible modes dynamics that are excited. The vibration causes deterioration of motion 
control accuracy, large stress in the joint gearboxes, and deformations or damages of the robot 
manipulator. The flexible modes dynamics are introduced due to the low rigidity of robot 
manipulators, which may be caused by the flexibility of joints or links. Regardless of size and 
design, most serial robots are still quite flexible with the first resonance in low frequencies of 
about 10 Hz. To avoid the consequences caused by vibrations, vibration control becomes very 
important and needs to be taken into account in control design.  
 
The main objective of this study is to design control algorithms to reduce vibration of flexible 
joint robots. The proposed controller design procedure can be applied for various industrial 
robots and is tested experimentally on an industrial six-joint robot namely SCOMPI, developed 
at Hydro-Québec’s Research Institute. In order to achieve that end, two phases of study are 
proposed. 
 
The objective of the first phase is to study the dynamics of a single flexible joint robot and 
design a control algorithm to reduce the vibration. Decentralized dynamic model of flexible 
joint robot is studied. Control concepts are tested on a simple experimental setup consisting of 
only one joint and one link. All parts of the system are considered rigid except for one element 
that is the flexible joint. The single flexible joint model is placed in a fully-controlled 
environment, in which access to motor torque command, motor reference, or feedback states 
are available. For this objective, an enhanced two-stage feedback controller is proposed, which 
combines two parts. The first is a two-stage feedback loop based on backstepping control, 
which considers the motor position as a virtual control input for the link side dynamics. The 
second is a disturbance-state observer, which compensates disturbances and reconstructs 
indirect measurements. Numerical simulation and experimental results validate that the 
proposed controller effectively improves control performance in terms of reducing link 
vibration, extending control bandwidth, and attenuating the kinematic error from the joint’s 
harmonic drive reducer. Limitations of the proposed controller are also discussed. The control 
performance relies on system parameters, which need to be properly identified. It also requires 
effort to manually tune controller gains. And most importantly, the proposed controller needs 
access to motor torque command to implement its algorithm. However, it is worth mentioning 
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that the results of the first phase validate the underlying modelling assumption for the flexible 
joint and that the two-stage architecture is feasible for vibration control purpose. 
 
Based on promising results of vibration control on single flexible joint test bench, the second 
phase is to adapt the acquired knowledge for a much more general case, industrial serial robot 
with multiple joints. There is a decision to make, either a multi joint experimental setup is built 
or an existing serial robot is used as a test bench. With the former option, the controller 
developed in the first phase can be directly applied. However, building a new multi-joint 
experimental setup costs a lot of effort and time. The latter option, using an existing industrial 
robot as a test bench, has a big advantage. It costs much less since man power, material to build 
things are saved and all mechanical or electronic elements are included. However, a new 
controller must be designed to comply with the existing robot control interface. One of the 
constraints is that the industrial robot is controlled in position mode and that the access to the 
motor torque command is not provided. Without access to the motor torque command, the 
controller proposed for single joint test bench in the first phase can not to be directly applied. 
 
Considering these two options, an existing industrial multiple joint serial robot is used to 
develop vibration control algorithms. Although a new controller needs to be developed, it still 
shares some aspects of the dynamic model of flexible joint robot developed in the first phase. 
Also, it can be easily industrialized afterward since all constrains are already taken into 
account. Note that, due to the fact that access to motor torque command is unavailable, the 
proposed controller needs to be based on the access to motor position command.  
 
The objective of the second phase is to design vibration control algorithms for industrial robots 
with multiple flexible joints. A two-stage flexible joint discrete controller is presented, where 
the decentralized approach is extended with a lumped stiffness to take into account the 
dominant coupling mode. In the first stage, a time-varying input shaping feedforward shapes 
the rigid closed-loop dynamics into a desired dynamics that does not produce link vibrations. 
A second stage is added to increase disturbance rejection. A generalized Smith predictor is 
developed to compensate for delay and link feedback sensor filtering. Numerical simulations 
and experiments on a six-joint robot manipulator SCOMPI confirm that the proposed controller 
improves control performances in terms of bandwidth, vibration attenuation, and disturbance 
rejection. 
 
Keywords: flexible joint robot, vibration control, two-stage controller, disturbance observer, 
state observer, time varying input shaping, Smith predictor. 
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sT  s Sampling time 

wT  s Compensated distortion delay 
u  Nm Motor torque vector 
u  Nm Motor torque 
( )x n  rad Filtered time inverse response vector 

jτ  Nm Joint torque vector 

zω  rad/s Anti-resonant frequency 
pω  rad/s Resonant frequency 

cω  rad/s Warping frequency 

1nω  rad/s Natural frequency of rigid control 

2nω  rad/s Natural frequency of the second-stage PID 
,lc mcω  rad/s Cut-off frequencies of low-pass filters 

2ζ  - Damping ratio of the second-stage PID 

1ζ  - Damping ratio of rigid control 

1λ  - Rigid control frequency rate 

2λ  - Second-stage PID frequency rate 
 
 



 

INTRODUCTION 
 

Vibration problem 

 

Serial robots are used extensively in industrial applications including pick and place, assembly, 

machining, and inspection tasks. This is because serial robots can work on large parts in single 

operation setup, due to their wider working envelopes. In addition, robots can provide a cost-

effective solution, by accurately following arbitrarily complex trajectories and accessing 

restricted areas. Robots are capable of operating in hazardous environments and delivering 

precision works with high degree of reliability. 

 

At Hydro-Québec’s Research Institute, a robot named “SCOMPI”, which stands for “Super 

COMPact Ireq robot” is developed for on-side maintenances and inspections. It is a track-

based six-joint serial robot with a total weight of about 33 kg and is designed to access difficult-

to-reach locations such as turbine blades and unmovable parts like large hydropower 

equipment.  

 

A major issue of serial robots in general and of the SCOMPI robot in particular is vibration. 

Vibration occurs when the trajectories, disturbances, or noises excite flexible modes, which 

are introduced by the low rigidity of the robot manipulator. The vibration may reduce motion 

control performance, induce large stress in the gearboxes, deform and damage the robot 

manipulator. The low rigidity, however, is an inherent natural property of open chain kinematic 

systems. In some particular cases such as space robotic arms, links can be the major source of 

compliance as they become longer and slender. For most modern industrial robots, the links 

are considered fairly rigid and the major source of flexibility comes from the joints. The joint 

speed reducer, the drive shaft, or the bearings may deflect during torque transmission, resulting 

in a degradation of the overall stiffness.  
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To increase the stiffness, mechanical stiffening of robot components is an option. A concept 

of mixing parallel and serial links has been introduced to increase the stiffness of industrial 

robots with maximum payload above 110 kg, such as Fanuc M-900iB, M-2000iA, or M-410iC 

robots. However, modification of existing robots is costly and generally requires a lot of effort. 

It is even almost impossible in some industrial robots, which do not allow modifying any part 

of the hardware.  

 

 

Vibration control  

 

Therefore, instead of trying to modify the robot structure, it is desirable to leave it untouched. 

Alternatively, much research effort has been devoted to design vibration control algorithms 

that takes into account the flexible dynamics of the robot manipulators. By introducing 

appropriate control signals, the controller may shape the robot dynamics into a desired 

dynamics where the vibration due to the flexibility is attenuated. Due to its effectiveness, the 

vibration control is a key to the robot’s performance in terms of accuracy and speed. 

 

There are several difficulties in the development of vibration control algorithms for flexible 

joint robots. The presence of flexibility introduces more degrees of freedom, resulting in more 

complicated dynamic models. In addition, when the control architectures that do not take the 

flexibility into account are used, the control gains should be small to avoid exciting flexible 

modes. As a price, the control performance in terms of the control bandwidth (defined by a 

band of frequencies that the output can track the reference input with a small error) and the 

disturbance rejection (defined by the effect of the disturbances on the output) are low. Another 

problem is the configuration-dependent of robot dynamics, which introduces more challenges 

to the robustness of the controllers. Besides, many constrains of industrial robots also pose 

more challenges to the development of control algorithms. For example, the SCOMPI robot 

just provides an access to the motor target position while the access to the motor torque and 

velocity feedback are totally unavailable. The position feedback is accessible, but it comes 
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with delay and quantization noises. Due to these difficulties, the development of control 

algorithms, which are practical and suitable for vibration control of the industrial flexible joint 

robots, is still an open problem. 

 

Organization of this thesis 

 

This thesis focuses on vibration control algorithms for flexible joint robots. The proposed 

method is then validated by numerical simulations and experiments on the industrial serial 

robot SCOMPI at Hydro-Québec’s Research Institute. The thesis is arranged into four chapters. 

Chapter 1 presents the background and literature review on vibration control of flexible joint 

robot. Chapter 2 presents the main objectives, specific objectives, and methodologies needed 

to be carried out. Chapter 3 and chapter 4 respectively present technical works on designing 

vibration control algorithms to meet the specific objectives of this thesis. Numerical 

simulations and experimental results are presented to validate the effectiveness of proposed 

controllers in terms vibration attenuation, extending bandwidth, and disturbance rejection. The 

conclusion and recommendations are provided at the end of this thesis. 

 

EQUATION CHAPTER (NEXT) SECTION 1 

 

 





 

CHAPTER 1 
 
 

BACKGROUND AND LITERATURE REVIEW 

This chapter presents a background and literature review on dynamic models of robot 

manipulators and recent motion/vibration control techniques for flexible joint robots.  A 

discussion on remaining problems is also given at the end of this chapter. 

 

1.1 Dynamic models of robot manipulators 

Dynamic models of robot manipulators are reviewed in this section. The dynamic model of 

robot manipulator is important in several ways. Firstly, appropriate dynamic models can be 

used to perform numerical simulations of robots. The simulation results predict the behavior 

of the robots under many different operating conditions. Secondly, the dynamic model can be 

used as a plant to develop control strategies. Some controllers use the dynamic model to 

determine their optimal gains while others use it to compute feedforward or compensation 

parts. In the following, dynamic models of both rigid and flexible joint robots are discussed. 

 

1.1.1 Rigid manipulators 

This section presents the equations of motion for a rigid-body serial robot manipulator. The 

robot manipulator is an open kinematic chain with revolute and prismatic joints. For some 

applications, such as arc welding or grinding, it is necessary to move the end effector of a 

manipulator from point to point rapidly and accurately. The dynamics of the manipulator plays 

an important role in achieving such high-speed and low steady-state error performance. There 

are two types of dynamics problems: direct dynamics and inverse dynamics. The direct 

dynamics problem is to find the response of a robot arm corresponding to some applied torque 

and/or forces. This is useful for simulating the manipulator. The inverse dynamics problem is 

to find the actuator torques and/or force required to generate a desired trajectory of the 
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manipulator. This formulation of dynamics may be useful for the problem of controlling the 

manipulator. The problem can be formulated in the joint space or in the Cartesian space. The 

dynamical equations of motion can be formulated by several methods. One of the most 

frequently used is the application of the Newton and Euler laws. Newton’s and Euler’s 

equations are written once for each body of a manipulator, resulting a system of equations with 

applied forces and constrained forces. Dynamic models can also be derived using Lagrange’s 

equation of motion or Kane’s method. 

 

The dynamic model of rigid serial robot can be written in the form (Craig, 1989; Tsai, 1999): 

 

 ( ) (( ))l l l l l l l+ + =q q C q ,q q g q uM     (1.1) 

 

where lq  is an 1n×  vector of link angular displacement, u  is an 1n×  vector of actuator torque, 

( )l lM q  is the n n×  mass matrix of the manipulator, ( )l lC q ,q  is an 1n× vector of Coriolis and 

centrifugal terms, and ( )lg q  is an 1n×  vector of gravity terms.  

 

1.1.2 Flexible joint robot manipulators 

Joint and link flexibilities introduce additional degrees of freedom, resulting in a much more 

complex dynamic model than the rigid robot dynamics. Depending on the mechanical design 

of the robot, the flexibility of joints and links may contribute to the overall flexibility in 

different ways. For example, in the case of aerospace manipulators with long and slender links, 

link becomes a major source of flexibility. For general industrial manipulators, the effect of 

flexible links on the vibration is normally much smaller than that of joints.  

 

In this study, we focus on a robot with flexible joints. The flexible joint robot is modelled as 

an open kinematic chain having 1n +  rigid bodies, the base and the n  links, interconnected by 

n  (rotary or prismatic) joints undergoing deflection, and actuated by n  electrical drives (Craig, 

1989; Tsai, 1999). Each motor is an additional rigid body with its inertial properties. The joint 
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flexibility is modelled by linear torsional spring. All joints are considered to be flexible, though 

mixed rigid-flexible joints may be encountered in some robots due to the use of different 

transmission devices. When reduction gearings are present, they are modelled as being placed 

before the joint deflection occurs (De Luca & Book, 2008). 

 

The dynamic model of flexible joint robot can be obtained using Newton-Euler or Lagrange 

formulation. The kinetic energy stored by the manipulator is the sum of the kinetic energy due 

to the links alone and the kinetic energy arising from the rotation of the drive rotor alone (Craig, 

1989; Readman & Belanger, 1990b; Tsai, 1999). The complete dynamical model for flexible 

joints manipulator can be expressed as follows: 
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where ( )lS q is an n n×  strictly upper triangular matrix corresponding to the inertial coupling 

between motors and links, rk  is an n n×  diagonal matrix of joint stiffness, and the dissipative 

terms are: 
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where rD  is an n n×  joint viscosity diagonal matrix, lB  and mB  are respectively n n×  

diagonal matrices of link and motor viscous friction, fB  is an n n×  diagonal matrix of motor 

Coulomb friction, sgn( )  is the sign function. 

 

Spong provides an assumption that the kinetic energy of the rotors is due mainly to their own 

rotation (De Luca, Farina, & Lucibello, 2005; M. W. Spong, 1987). This implies the inertial 
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coupling between motors and links vanishes, i.e. ( )l =S q 0  and 

1 2( ) ( )l l l l lm = =C 0q ,q q C q ,q q    . By ignoring the joint viscosity ( r =D 0 ), the complete 

dynamic model is reduced to a reduce model as follows: 
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The stability of flexible joint robot dynamics is presented using the theory of singular 

perturbations in (Mills, 1992).  

 

A remaining problem of the robot dynamic model expressed in Eq. (1.4) is that only the reducer 

stiffness is taken into account. For a robot manipulator where the flexibility of other 

components is high, the model of Eq. (1.4) may lack accuracy.  

 

1.2 Vibration control of flexible joint robot 

This section presents the most common motion control technologies used for flexible joint 

robots. Model-based controllers are widely used for flexible joint robots. These controllers are 

favored to take advantage of the available dynamic models, which can be computed using 

many techniques such as Newton-Euler or Lagrange formulation. However, an identification 

process is normally required to obtain accurate values of parameters. Well-known model-based 

control algorithms for flexible joint robot are listed in the following: 

 

 PID control (De Luca, 2000; De Luca & Flacco, 2011; De Luca, Siciliano, & Zollo, 

2005; Tomei, 1991b): The PID (proportional-integral-derivative) control has three 

elements: a proportional term to close the feedback loop, an integral term to assure zero 

error to constant reference and disturbance inputs, and a derivative term to improve 

stability and good dynamic response. It is adapted for the flexible joint robot.  

 



9 

 Feed-forward control: (De Luca, 2000) shows that PD-type control law based on the 

nominal feed-forward computation is a viable solution for a cheap but effective 

implementation of a feedback controller for the various motion tasks. In (Lessard, 

Bigras, Liu, & Hazel, 2014), the authors demonstrated the high performance of feed-

forward control compared to rigid control and singular perturbation methods in a 

specific experiment test rig of flexible joint and single link robot. 

 

 Singular perturbation (Lessard et al., 2014; Wilson & Irwin, 1993): The singular 

perturbation method separates the system into two parts:  slow dynamics and fast 

dynamics. The slow part has a rigid control law that ignores robot flexibility. The fast 

part, which takes into account the flexibility, is stabilized by linear state feedback.  

 

 Adaptive control (Al-Ashoor, Patel, & Khorasani, 1993; An-Chyau & Yuan-Chih, 

2004; Elbestawi, Yuen, Srivastava, & Dai, 1991; Ge, Lee, & Tan, 1997; Khorasani, 

1991; Lee, Ge, & Wang, 2001; Readman & Belanger, 1990b; Ser Yong, Dawson, Jun, 

& de Queiroz, 1997; Mark W. Spong, 1989; Yin-Chieh & Jinsiang, 2011): The basic 

idea of adaptive control is to change the gains or other parameters in the control law 

according to some on-line algorithm. In this way the controller can “learn” an 

appropriate set of parameters during the course of its operation. This idea is especially 

useful for manipulators that are performing repetitive task. Without adaptation the 

tracking errors are also repetitive. With adaptation, the tracking performance can be 

improved through successive repetition. 

 

 Robust control (D.-W. Gu, 2005; Jae Young, Je Sung, & Jong Hyeon, 2007; Kwan & 

Yeung, 1993; Mark W. Spong, 1989; Tae-Jun, Jaeyoung, & Jong Hyeon, 2007; Yeon, 

Yim, & Park, 2011): robust control techniques are based on worst case estimates of the 

uncertainty or mismatch between the plant and the inner loop control. In these 

approaches the inner loop control law is fixed and the gains in the outer loop are set 

according to the estimate of the uncertainty. 
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 Backstepping approach (J. H. Oh & Lee, 1997): This approach considers joint elastic 

torque or motor position as an intermediate virtual input to control the link dynamics. 

The backstepping control is favored to take advantage of the available dynamic models 

including the joint flexibility. Both motor and link side feedback are used in the control 

architecture.  

 

In recent years, model-free control has been proposed for flexible joint robots. An advantage 

of these control techniques is that they do not require a precise system model in the design of 

the controller. However, they normally need data to train their networks and several iterations 

to improve control performance. Some literatures are listed in the following: 

 

 Fuzzy PID control (Botsali, Kalyoncu, Tinkir, & Onen, 2010; Malki, Misir, 

Feigenspan, & Guanrong, 1997):  authors proposed the mathematical principle for the 

fuzzy PID controller design, including the fuzzification, rule-base and defuzzification. 

In this design, a standard PD+I controller configuration is conducted. The design of the 

fuzzy PID controller consists of two parts: one fuzzy PD and one fuzzy I controllers.  

 

 Neural network control (Chatlatanagulchai & Meckl, 2005; Ge et al., 1997; Hunmo & 

Parker, 1993a, 1993b; Miao & Wang, 2013; Shipitko & Zmeu, 2003; Yeşildirek, 

Vandegrift, & Lewis, 1996): In (Chatlatanagulchai & Meckl, 2005), authors derive a 

desired control law based on Lyapunov’s equations. Then, a three-layer neural network 

is proposed to learn unknown parts of the desired control laws. However, the time-

varying case such as the change in payload has not been fully covered in this research. 

 

 Iterative learning control: Iterative learning control is a data-driven methodology that 

iteratively uses the error profile from previous trails to compute the system inputs for 

the next iteration (W. Chen & Tomizuka, 2014). Normally, the iterative learning 

control performs as an add-on feedforward controller in addition to the existing real-

time feedback controller, to further enhance the performance over the standalone real-

time feedback system. A drawback of iterative learning control is that it requires the 
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system to perform repetitive tasks under the same conditions. This assumption may be 

invalid if the robot follows arbitrary trajectories under effect of different disturbances.  

 

Control techniques mentioned above normally require access to motor torque command. This 

requirement becomes an issue for many industrial robots, in which robot joints are equipped 

with built-in motion controller and no access to motor torque command is provided. In that 

case, input shaping of the reference profile is an effective technique to reduce vibration. As 

explained in (Singhose, 2009), input shaping reduces vibration of closed-loop dynamic systems 

by optimizing only position command signals such that they does not excited flexible modes. 

The shaped command signal is obtained by convolving the command signal with a sequence 

of impulses, known as an input shaper. Parameters of the input shaper directly relies on the 

natural frequencies and damping ratios of the induced vibration.  

 

Based on the literature review, there are some important points that require more attention. The 

first concern is the flexible joint robot modelling. Recently, the robot dynamic model including 

flexible dynamics is presented. However, for simplicity, this model only takes the reducer 

stiffness into account while ignoring the coupling stiffness and the distortions of all other parts 

of the robot manipulator. To better model the behaviors of the robot manipulators with high 

coupling stiffness, a dynamic model including the coupling dynamics is necessary to be 

developed.  

 

The second point is on the control of flexible joint robots. Based on the review of recent 

techniques, the following observations are drawn: 

 

 Backstepping approach is a promising approach for motion and vibration control. No 

additional devices such as joint torque or acceleration sensors are needed. However, 

experimental study of backstepping approach is limited since the motor torque signal 

is very noisy. The performance of this method also relies on the knowledge of 

parameters, which are difficult to be precisely identified. Due to these difficulties, an 
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application of backstepping approach on flexible joint robot has not been fully 

developed in recent publications. 

 

 Input shaping is an effective method to reduce vibration of system with limited access 

to the motor torque command. However, how it can be used in combination with the 

state feedback for industrial serial robots has not been fully detailed in previous 

literature.  

 

EQUATION CHAPTER (NEXT) SECTION 1 

 

 

 



 

CHAPTER 2 
 
 

OBJECTIVE AND RESEARCH APPROACH 

Based on the literature review, the objective and corresponding methodologies of this thesis 

are given in this chapter.  

 

2.1 Objective of the thesis 

Main objective:  
The main objective of this work is to design control algorithms to reduce vibrations while 

improve control bandwidth and disturbance rejection of flexible joint robots. The control 

algorithms need to be robust to the changes of the robot’s configurations. The control methods 

are expected to be practical, which can be retrofitted into industrial robots with limited access 

to feedback and command signals. 

 

The effectiveness of the proposed approaches is verified by numerical simulations and 

experiments. Even though this study is validated using a specific robot, namely SCOMPI 

developed at Hydro-Québec’s Research Institute, the proposed controller design procedures 

can be used as a practical guideline for various other industrial robots. 

 

Specific objectives: 
The main objective is broken down into a series of smaller objectives with intermediate 

validation. These two specific objectives are given in the following: 

 
Specific objective 1: The first specific objective is to study dynamics and to develop a vibration 

control algorithm for a single flexible joint robot using a simple and well controlled testbed. 

The single joint testbed is designed such that all other components are much more rigid than 

the joint’s harmonic drive reducer. A full control environment is provided, in which access to 

motor torque and reference profile is available. The goal of this phase of study is to find how, 

with this simple testbed, the vibration of a flexible joint can be attenuated. 
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Specific objective 2: The second specific objective is to study dynamics and to develop a 

control algorithm for multiple flexible joint robots. Control algorithm developed in this phase 

is expected to be practical, which can be consequently applied into recent industrial robots. 

 

2.2 Research approach 

The research approach used to conduct this research work is briefly discussed in the following: 

 

For the first specific objective, a single flexible joint testbed is built to test control algorithms. 

A single flexible joint testbed can be built by connecting a rigid rotor and a rigid link via a 

harmonic drive reducer, which is considered flexible. A motion control drive providing access 

to motor torque command is used. A vibration control algorithm based on a two-stage feedback 

controller combined with dual observer is presented. The first part of the controller is a two-

stage feedback loop, which considers the motor position as a virtual control input for the link 

side dynamics. The second is a disturbance-state observer, which compensates disturbances 

and reconstructs indirect measurements. Numerical simulation and experimental results on a 

flexible joint robot show the effectiveness of the proposed controller in terms of position 

tracking, link vibration and rejection of the kinematic error from the joint’s harmonic drive 

reducer. The first objective is conducted during the first phase of this study. Details of the 

proposed controller are discussed in chapter 3. 

 

Based on promising results of vibration control on the single flexible joint, the second phase 

is to develop vibration control algorithm for industrial serial robot with multiple flexible joints. 

There are two ways to establish a testbed for controller development. The first is to build a new 

multiple joint experimental setup, in which each joint uses the single flexible joint architecture 

developed in the first phase. The second is to employ an existing serial robot as a test bench. 

A main advantage of the former option is that the controller developed in the first phase can 

be directly applied. However, building a new multi-joint experimental setup costs a lot of effort 

and time. A big advantage of the latter option, using an existing industrial robot as a test bench, 
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is that it costs much less since man power are saved and all mechanical or electronic elements 

are already included. However, a disadvantage is that industrial robot may come with several 

constrains in terms of the access to its software. Industrial robots are normally controlled in 

position mode and an access to the motor torque reference is not provided. Without the access 

to the joint torque command, the controller proposed for the single joint test bench in the first 

phase can not to be directly applied. 

 

Considering these two options, an existing multiple joint serial robot is selected to develop 

vibration control algorithm. With the option selected, a new controller based on the access to 

the motor position command is developed. Although the control algorithm developed in the 

first phase cannot be directly applied, the understanding of the dynamic model of flexible joint 

robot can be reused. A benefit of developing controller directly for industrial robots is that the 

controller can be easily industrialized afterward since all constraints are already taken into 

account.  

 

A vibration control study for an industrial multiple flexible joint robot is conducted in the 

second phase of this study. A two-stage flexible joint controller based on input shaping is 

proposed. The decentralized modelling approach for flexible joint is extended with a lumped 

stiffness to take into account the dominant coupling mode. The proposed controller can be 

retrofitted into existing robots, for which access to motor torque command is unavailable. 

Numerical simulations and experiments on a six-joint robot manipulator confirm that the 

proposed controller improves control performances in terms of bandwidth, vibration 

attenuation, and disturbance rejection. Details of the proposed controller are discussed in 

chapter 4. 

EQUATION CHAPTER (NEXT) SECTION 1 

 

 





 

CHAPTER 3 
 
 

A TWO-STAGE FEEDBACK CONTROLLER SUPPORTED BY DISTURBANCE-
STATE OBSERVER FOR VIBRATION CONTROL OF A FLEXIBLE JOINT 

ROBOT  

The performance of robot manipulator is limited due to the presence of the joint flexibility, 

which introduces additional degrees of freedom to the robot dynamic model and additional 

vibration modes. To overcome these problems, this chapter introduces an enhanced two-stage 

feedback controller, which is a combination of two subsystems. The first subsystem is a two-

stage feedback control, in which the motor position is considered as a virtual control input of 

the link side dynamics. The second subsystem is a dual observer, which combines a disturbance 

observer and a state observer. The dual observer compensates disturbances and estimates the 

feedback signals that could not be measured directly. To validate the effectiveness of the 

proposed controller, numerical simulations and experiments on a single flexible joint testbed 

are conducted. The simulation and experimental results show that the control preformation are 

improved significantly in terms of link vibration, position tracking, and rejection of the 

kinematic error due to harmonic drive reducers. This chapter is based on an article titled “A 

Two-Stage State Feedback Controller Supported by Disturbance-State Observer for Vibration 

Control of a Flexible-Joint Robot” published on Robotica (in press), accepted in July 2019. 

 

3.1 Introduction 

Serial robots are used in several industrial applications. The control performance is reduced 

mainly by vibration problems, which are caused by the presence of joint flexibility. Since the 

joint flexibility induces a distortion between motor and link positions, a single joint becomes 

a multiple degrees of freedom system with a complex dynamic model. The joint flexibility 

introduces flexible modes, which may be excited by the reference or disturbances such as 

external torques, coupling torques, or kinematic error frequencies if harmonic drive reducers 

are used at robot joints (Gandhi & Ghorbel, 2002; Tonshoff & Kummetz, 1999).  
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In order to avoid exciting flexible modes, the control bandwidth of flexible joint robots is kept 

lower than a half the lowest flexible frequency (Craig, 1989). The low control bandwidth, 

however, may significantly deteriorate the robot control performances in terms of vibration 

control, motion control, and disturbance rejections. Although many studies on control 

algorithms for flexible joint robots has been conducted, extending robot control bandwidth 

while minimizing the effect of kinematic error with experimental validation on flexible joint 

robots is still open for further research. 

 

3.1.1 Flexible joint robot control background 

Most industrial serial robots currently use a decentralized control approach,  in which the robot 

joints are controlled individually using joint-level controllers (Houman Dallali, Lee, 

Tsagarakis, & Caldwell, 2015). The decentralized approach is based on an idea that that the 

multiple joint robot dynamic model can be decoupled into multiple single-joint systems. The 

nonlinear terms and coupling effects are grouped into lumped disturbances (Cong Wang, 

Zheng, Wang, Peng, & Tomizuka, 2017). These disturbances are considered substantially 

small and treated independently by joint-level controllers, resulting in stable and good control 

performance (W. Chen & Tomizuka, 2014). Due to the success of the decentralized control 

approach, most studies including the study in this chapter focus on a development of joint-

level controllers for the decoupled single-joint model. 

 

Several methods for motion control in joint-level of flexible joint robots are well documented 

in (M.W. Spong, 1990). The first approach is rigid controller, which is still extensively used 

for recent industrial serial robots. The proportional-integral-derivative (PID) controller for 

flexible joint robots are studied in (Nanos & Papadopoulos, 2015; Pham & Ahn, 2014). 

Another approach is singular perturbation control, in which the flexible joint robot dynamics 

is approximated by a singular perturbation model (Liu & Huang, 2018; Readman & Belanger, 

1990a). A problem of the rigid, the PID, and the singular perturbation control algorithms is 

that they work only when the flexible mode frequencies are very high in comparison with the 

dominant frequencies of the transient response. In other word, the robot dynamics can be 
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separated into fast and slow dynamics, which are well separated from each other. However, 

that frequency separation is not always fulfilled in industrial serial robots. For example, even 

big serial robots with very high joint stiffness normally carry heavy links and loads, resulting 

in relatively low flexible mode frequencies. Another reason preventing the extension of the 

singular perturbation method is that the fluctuation and saturation problems of the control 

effort, which may damage the test bench (Lessard et al., 2014). The combination of feedback 

and feedforward control are proposed for flexible joint robots in (Bang, Shim, Park, & Seo, 

2010; Losey, Erwin, McDonald, Sergi, & O’Malley, 2016; Yamada et al., 2015). In (Bang et 

al., 2010), although the control architecture is practical, the feedforward gains are obtained 

based on a complicated backstepping procedure, making implementation not a trivial matter. 

The feedforward control approach in (Yamada et al., 2015) provides acceptable motion 

tracking performance and the closed-loop control bandwidth of about half of the minimum 

flexible mode frequency. However, the method still requires an experimental validation and 

more efforts to deal with noises and modeling errors. Another control method for flexible joint 

robots is iterative learning control, which is discussed thoroughly in (W. Chen & Tomizuka, 

2014; Cong Wang et al., 2017; L. Wang, Freeman, & Rogers, 2016; Xu, Chu, & Rogers, 2014). 

The iterative learning control is suitable for robotic systems performing repetitive tasks under 

unchanged conditions. The input and the tracking error of the recent iteration are used to 

construct the input for the next iteration. As a result, the tracking error is decreased 

proportionally to the iteration number. Another successful control approach for flexible joint 

robots is feedback linearization, which is discussed in (Nanos & Papadopoulos, 2015). By 

providing a nonlinear state feedback law, a closed-loop system of flexible joint robots with 

exactly linear behavior and decoupled dynamics is achieved. However, the feedback 

linearization may be sensitive to model mismatches since it relies on the exact cancellation of 

the robot dynamics (Giusti, Malzahn, Tsagarakis, & Althoff, 2017).  

 

Another control method for flexible joint robot is backstepping control, which is also known 

as two-stage feedback control approach. The two-stage feedback control considers the joint 

elastic torque or the motor position as an intermediate virtual reference for the link dynamics. 

When the joint elastic torque is sensed using a torque sensor, the joint elastic torque is 
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considered as a state variable and is controlled by a torque feedback loop (Lin & Goldenberg, 

1995). In (Baspinar, 2011), a two-stage feedback controller is proposed, assuming that the 

robot links converge to their reference motions if the motors track appropriate trajectories. 

However, most two-stage feedback controllers have been proven only by numerical 

simulations in recent studies (Baspinar, 2011; Jong H. Oh & Lee, 1999; Sungha Kwon, 2016). 

The two-stage feedback control approaches, to the authors’ knowledge, has undergone fairly 

limited testing. This is primarily because of the natural complexity of the flexible joint robot 

dynamics. For example, although a two-stage feedback control obtains acceptable motion 

control performance in terms of position tracking error (Uh, Oh, & Lee, 1998), the applied 

torque on the motor is too noisy. Moreover, complex adaptive schemes proposed by Baspinar 

may require to deal with uncertainties. The two-stage feedback control approach proposed by 

(An-Chyau & Yuan-Chih, 2004) was proven to be effective, however, the joint stiffness 

coefficient selected for simulations was unrealistically low for most recent robotic 

configurations. Consequently, due to the remaining problems, the recent two-stage feedback 

controllers developed in the literature cannot be directly applied to actual flexible joint robots. 

More experimental investigations need to be conducted to validate the performance of the two-

stage feedback control approaches. However, despite the practical difficulties mentioned 

above, the two-stage feedback approach is still very promising since the closed-loop dynamic 

model is explicit and the control performance can be expressed by analytical solutions.  

 

3.1.2 Need for disturbance-state observer 

Most controller mentioned in the previous section are model-based control approaches. The 

main obstacles that limit the performance of the model-based control algorithms are 

disturbances and the lack of state measurements. The disturbances may include external 

torques, kinematic errors, unmodelled joint friction, unmodelled joint stiffness, or parametric 

uncertainties. A common method to deal with disturbances is disturbance observers. The 

disturbance observers estimate unknown disturbances in real-time and then cancel them 

through an appropriate torque feedback loop. General principle of the disturbance observers is 

presented in (M. Chen & Ge, 2013; Hamelin, Bigras, Beaudry, Richard, & Blain, 2014; S.-K. 
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Kim, Park, Yoon, & Lee, 2015). Active disturbance rejection control is another approach to 

compensate disturbances (Han, 2009; Parvathy & Daniel, 2013; Zhao & Guo, 2015). Similarity 

analysis of disturbance observer and active disturbance rejection control are presented in (Y. 

Wang, Tian, Dai, Shen, & Jia, 2018). A recent work of using the disturbance observers on 

flexible link systems is discussed in (Morales, Feliu, & Jaramillo, 2012). Morales introduces a 

disturbance cancellation to only the outer feedback loop, which is the link side dynamics. In 

(M. J. Kim & Chung, 2015), a disturbance compensation is presented to the inner loop, which 

is the motor feedback loop of a flexible joint system. However, a disturbance observer on both 

link and motor sides of flexible joint robots has not been fully developed.  

 

To deal with the lack of feedback signal, the disturbance observer can be combined with state 

observer, resulting in a dual disturbance-state observer. Although the disturbance-state 

observer is successfully implemented on several mechanical systems (W. Chen, Yang, Guo, & 

Li, 2016; Hamelin, Bigras, Beaudry, Richard, & Blain, 2012; Yang, Chen, Li, Guo, & Yan, 

2017), a combination of the disturbance-state observer and the two-stage feedback controllers 

to enhance motion control of flexible joint robots is still a very open problem.  

 

3.1.3 Purpose and structure of this chapter 

As discussed in the previous section, the major problems of the conventional two-stage 

feedback controller applied to flexible joint robots may include very noisy applied motor 

torques, the effect of uncertainties, and the lack of experimental validations. In order to deal 

with these problems, this chapter presents a design concept and an experimental study of a 

two-stage feedback controller supported by a disturbance-state observer to improve control 

performance in terms of motion tracking and vibration rejections. The two-stage feedback 

controller is designed based on a backstepping approach. Especially, partitioned controllers are 

employed on the motor and link side controllers. To support the two-stage feedback controller, 

a disturbance observer is added to compensate the unwanted disturbances on both the motor 

side and link side dynamics. In combination with the disturbance observer, a state observer is 

implemented to estimate the velocity feedback signals. The state observer aims to achieve the 
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feedback signals with low noise and without delay. Using the estimated feedback signals from 

the disturbance-state observer helps to avoid the motor torque noise, which may be induced by 

the two-stage feedback controller alone.  

 

The proposed approach introduces some interesting properties, which can be summarized as 

follows. First, although disturbance observers are successfully applied for flexible joint robots 

in the literature, normally only the disturbances on the motor side dynamics are compensated 

(M. J. Kim & Chung, 2015; Paine et al., 2015; Yun & Su, 2014). This is due to the fact that 

most robots have only a motor feedback control loop, which allows only motor torque 

reference modification. In contrast to these controllers, the proposed controller may estimate 

the disturbances on both link and motor sides simultaneously, and then feeds the estimated 

disturbances to a two-stage feedback architecture. Second, the proposed controller is validated 

experimentally on an actual flexible joint robot. The experimental validation presented in this 

study is motivated by very successful numerical simulations of the disturbance observer for 

flexible joint robots shown in (M. J. Kim & Chung, 2015; Yun & Su, 2014). A design 

procedure of the proposed controller can be considered as a guideline for practically controlling 

of various industrial serial robots other than the one described in this study. 

 

This chapter is organized as follows. In section 3.2 and 3.3, the flexible joint robot modelling 

and the rigid control are reviewed. Then, the proposed enhanced two-stage feedback controller 

is introduced in the section 3.4. In the section 3.5, experimental results are presented to validate 

the effectiveness and the improvement of the proposed controller. The section 3.6 presents the 

summary and the contributions of this work.  

 

3.2 Modelling of the flexible joint robot 

The dynamic models of the multiple flexible joint robot and the decoupled single flexible joint 

robot are presented in this section. The complete dynamic model of multiple flexible joint 

robots can be governed using Lagrange formulation (De Luca & Book, 2008). In the complete 

multiple joint robot model, the link and motor dynamic equations are not only coupled through 
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the elastic joint torques but also at the acceleration level (De Luca, 1998). By assuming that 

the angular velocity of the robots is due only to their own spinning (De Luca & Book, 2008; 

M. W. Spong, 1987), the complete model reduces to the simplified model as follows: 
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l l l l l l l l l r m l

m m m r mrf m l

 −
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M q q + C q ,q q + B q + g q = K N q q

J q + B q + B q N K N q q = u

   

  
 (3.1) 

 

where n
l ∈q   and n

m ∈q   are the vectors of link and motor positions, ( ) n n
l l

×∈M q   is the 

matrix of link inertias, ( ) n
l l ∈C q ,q   is the vector of Coriolis and centrifugal forces, n

l
n×∈B   

is the diagonal matrix of joint damping coefficients, ( ) n
l ∈g q   is the vector of gravitational 

forces, n n×∈K   is the diagonal matrix of joint stiffness, n
r

n×∈N   is the diagonal matrix of 

harmonic drive gear ratio, n
m

n×∈J   is the diagonal matrix of motor inertias, mB  and 

n
f

n×∈B   are diagonal matrices of motor viscous friction coefficients and motor Coulomb 

friction coefficients, sgn( )  denotes the sign function, and n∈u   is the vector of actuator 

torques with n  is the number of the robot joint. 

 

Applying the decentralized approach to the simplified multiple joint dynamic model in (3.1) 

yields a single flexible joint robot (SFJ) model, in which the Coriolis and centrifugal forces, 

the coupling effects, the Coulomb frictions, and the gravitational forces can be grouped into 

lumped torque disturbances as follows (Bang et al., 2010; Sariyildiz, Chen, & Yu, 2016): 
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where  lq  and mq  are the link and the motor angular displacements, mJ  is the motor inertia, 

lJ  is the total link side inertia, lb  is the link side viscous friction coefficient, mb  is the motor 
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viscous friction coefficient, rk  is the harmonic drive stiffness and rN  is the harmonic drive 

gear ratio, u  is the motor torque, ld   and md  are the lumped disturbances on the motor side 

and the link side, respectively. Eq. (3.2) can be called “link side dynamics” while Eq. (3.3) can 

be called “motor side dynamics”. Figure 3.1 shows a schematic of the single flexible joint 

robot. Note that bolded letters are used to denote matrices and vectors while plain letters 

denotes scalars. 

 

 

                       
 

 

The single flexible joint dynamic model can be expressed using a state-space representation as 

follows: 

 u dx = Ax + B +Γ  (3.4) 

 y = Cx  (3.5) 
where  
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Figure 3.1 The single flexible joint robot schematic diagram 
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and [ ] 2T n
l md d= ∈d  , where 1n =  for the single flexible joint model. 

 

The transfer functions from the actuator torque u  to the motor position mq  and to the link 

position lq  can be derived from the dynamic equations Eqs. (3.2) and (3.3). By considering 

only the actuator torque u  as the input signal, Eqs. (3.2) and (3.3) can be rearranged as follows: 
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The i-th element of the vector opx of Eq. (3.6) can be obtained using Cramer’s Rule as shown 

in Eq. (3.7).  
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where i
opA is the matrix obtained by replacing the i -th column of the matrix opA by the vector 

opB . 

 

Substituting 1i =  and 2i =  into (3.7) gives the link and motor position ( )lq s  and ( )mq s  

corresponding to the input ( )u s , as expressed in Eqs. (3.8) and (3.9), respectively.  
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By simple matrix manipulations of Eqs. (3.8) and (3.9), the transfer functions from the motor 

torque to the motor and to the link positions are given in Eqs. (3.10) and (3.11), respectively. 
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The frequencies of anti-resonance and resonance can be determined as the frequencies of 

conjugate zeros and poles of the motor transfer function in Eq. (3.10), respectively. By ignoring 

the damping, the undamped anti-resonant frequency can be computed by: 

 

 r
z

l

k
J

ω =   (3.12) 

and the undamped resonant frequency is: 

 

 2
r r

l
p

m r

k k
J J N

ω = +  (3.13) 

 

These two frequencies zω  and pω  are called “flexible mode frequencies”, which are discussed 

in (Zinn, Khatib, Roth, & Salisbury, 2003). The link position can be computed from the motor 

position following the transfer function shown in Eq. (3.14), which is obtained by dividing Eq. 

(3.10) by Eq. (3.11). Note that the zeros of transfer function in Eq. (3.11) turns out to be the 

poles of transfer function in Eq. (3.14), leading to that fact that the anti-resonance frequency 

on the motor side becomes the oscillation natural frequency of the link (Ellis, 2004).  
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The dynamic model of the single flexible joint shown in Eqs. (3.2)-(3.3) and its representations 

will be used to develop the control algorithm in the next sections. 

 

3.3 Rigid control limitation background 

In this section, a review on the rigid controller, the most common used controller for industrial 

robot, is presented. It is worth emphasizing that the rigid control presented here is only for 

providing a baseline of current industrial robot control performances.  
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3.3.1 Rigid control design 

When designing the rigid control, the joint is assumed to be rigid (Craig, 1989; Lessard et al., 

2014). This assumption significantly simplifies the design and analysis of the controller since 

the complex flexible joint model is regarded as a rigid joint model. Moreover, by ignoring the 

joint friction, the controller can be even simpler. In fact, the friction compensation, in some 

flexible joint robot controllers, does not significantly improve the responses. For example, by 

varying the friction coefficient in the control model, the tracking error changes very little 

(Lessard et al., 2014).  

 

To give an overview of the rigid control approach, the closed-loop block diagram is shown in 

Figure 3.2. The rigid control is basically a PID feedback loop with acceleration feedforward 

control. 

 

By ignoring the joint flexibility, the motor frictions, and the lumped disturbances, the dynamic 

model of the single flexible joint (shown in Eqs. (3.2) and (3.3)) reduces significantly to: 

 

Figure 3.2 Rigid control for the single flexible joint robot 

Flexible joint modelRigid controller
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where the term 2
l

e m
JJ J
N

= +  is the effective inertia seen from the motor side. The flexible 

joint dynamics now appears to be very simple, consisting of only a rigid inertia. 

 

The rigid control law is proposed for the reduced model Eq. (3.15) as follows: 
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where 1pK , 1dK  and 1iK  are the motor feedback control gains, and mr  is the reference motor 

position, which is computed as m r
d
lr N q= . 

 
By taking the Laplace transform of Eq. (3.16), the transfer functions of feedforward and 

feedback portions in Figure 3.2 are obtained as follows: 
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Substituting Eq. (3.16) into Eq. (3.15) yields the closed-loop motor dynamics in the error space 

as follows: 

 11 1 0m
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t
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where m m mr qε = −  is the motor position tracking error. The feedback gains are defined as 

follows: 

 2
1 1ep nK J ω=   (3.20) 
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 11 2d neK J ζω=  (3.21) 
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n
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where ζ  and 1nω  are the damping ratio and the natural frequency of the rigid controller, 

respectively. In the rigid control scheme, the gain 1pK  sets the stiffness of the closed-loop 

system. The integral gain 1iK  is computed such that the feedback controller Eq. (3.18) has 

critical damped zeros for a given value of 1nω . The Eq. (3.19) implies that the motor steady 

state error vanishes with the rigid controller. 

 

3.3.2 Bandwidth limitation 

The closed-loop stiffness can be increased by increasing the parameter 1nω  in Eqs. (3.20), 

(3.21), and (3.22), resulting in higher disturbance rejection and faster response. However, too 

high stiffness leads to an excessive vibration in the link transient responses if the flexible mode 

frequencies in Eqs. (3.12) and (3.13) are unintentionally excited (Zinn et al., 2003). To avoid 

exciting these flexible mode frequencies, the parameter 1nω  is set to be half of the lowest 

flexible mode (Craig, 1989), as follows:  

 1
1
2n zω ω=   (3.23) 

 

with zω  corresponding to the lowest flexible mode frequency computed using (3.12). To obtain 

critical damped responses, the damping ratio ζ  is set to 1, then, the PID gains can be computed 

using Eqs. (3.20) , (3.21), and (3.22). 
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The relationship between 1nω  and zω  in Eq. (3.23) implies that a higher flexible mode 

frequency zω  allows boosting the rigid controller natural frequency 1nω , resulting in better 

performances in terms of disturbance rejection and responsiveness. Intuitively, high flexible 

mode frequency zω  is expected. However, since the frequencies of the flexible modes rely on 

the physical properties of the robot manipulators, they could not be modified without putting 

so much effort on mechanical designs. Eventually, due to the nature of the open-chain robotic 

dynamics, variations of robot size and design may not cause significant changes of flexible 

mode frequencies. Big robot joints with high joint stiffness normally drive large and long links 

with heavy loads while small robot joints carrying small links but having low joint stiffness. 

As a result, dynamic behaviors of big and small robots are similar, with the first resonance 

within a low frequency range about 5 Hz to 25 Hz (Paul, 1981). This low frequency range leads 

to low control bandwidth of robotic systems using rigid control approach. 

 

 

3.4 Enhanced two-stage feedback controller 

This section presents a control algorithm to improve control performances of flexible joint 

robots, especially in terms of control bandwidth. The proposed controller entitled enhanced 

two-stage feedback (ESFB) is a combination of a two-stage feedback controller and a 

disturbance-state observer. The two-stage feedback considers the actual motor position as an 

intermediate virtual input for the link side dynamics. The link position may converge to the 

reference position if the motor position follows an appropriate trajectory. The disturbance-state 

observer compensates the lumped disturbances on both motor and link sides and estimates the 

feedback velocities, which are not directly measured. The block diagram of the closed-loop 

system using the proposed controller is shown in Figure 3.3. In the next sections, two main 

parts (the two-stage feedback controller and the disturbance-state observer) of the proposed 

controller are presented. 
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3.4.1 Two-stage feedback controller design 

First, assuming that an appropriate reference of the motor that leads the link to accurately 

follow the link reference is known. This motor position reference is denoted as a vector 
Tdd d d

m m m mqqq =  q   . A partitioned controller (Craig, 1989) can be employed to control the 

motor. The partitioned controller is basically a computed torque controller, which can be 

considered as a special application of the feedback linearization of nonlinear systems. 

Although feedback linearization may be sensitive to model mismatches and disturbances, the 

robustness of the partitioned controller can be improved by adding disturbance compensations. 

Basically, the partitioned control uses an inner feedback loop to reduce the complex motor side 

dynamics to a 21 / s  type system. An outer feedback loop is then employed to place the closed-

loop poles at desired locations in the s-plane. The partitioned control on the motor side is 

expressed as follows:  

 

Figure 3.3 Block diagram of the closed-loop system using the proposed 
controller ESFB. The link side controller shown in (3.31), the motor side 

controller shown in (3.24), the link side dynamics shown in (3.2) or (3.30), 
the motor side dynamics shown in (3.3) and the disturbance-state observer 

shown in (3.37) and (3.40) 
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with  ( ) ( )ˆv d p d
m m m m m m

d
m K q K qq q qα = − ++ −   (3.25) 

 

where p
mK  and v

mK  are the feedback control gains, ˆ
md  and ˆmq  are the estimated motor side 

disturbance and the estimated motor velocity, respectively. The last three terms in the right 

hand side of the Eq. (3.24) are of the inner feedback loop, which cancels out the complex 

system dynamics. The Eq. (3.25) is the outer feedback loop, which modify the behaviors of 

the closed-loop system. 

 

Rearranging the Eq. (3.25) using the estimation error of the motor velocity ˆm m mq q q= −    as 

follows: 

 ( ) ( )v d p d v
m m m m m m m m

d
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Substituting Eq. (3.24) into Eq. (3.3) yields the motor side closed-loop dynamics in error space 

as follows: 
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where ˆ
m m mdd d= −  is the estimation error of the motor disturbance and d

m m me q q= −  is the 

tracking error of the motor position.  

 

If md  and mq  are small, the selection of control gains is pretty simple and is independent of 

the flexible joint parameters such that 

 2p
m mK λ=  (3.28) 

 

 2v
m mmK ξ λ=  (3.29) 
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where the parameter mλ  sets the closed-loop stiffness provided by the motor side controller. 

Eqs. (3.28) and (3.29) implies that the critical damped of the motor position tracking error is 

preserved by setting 1mξ = .  

 

In the following, the steps to find the motor reference are presented. The link side dynamics 

expressed in Eq. (3.2) can be reformulated as: 

 

 l l l m
l rr r

l r l
r r r

b NN NJ q q N q d q
k k k

+ + + =   (3.30) 

 

According to the link side dynamics in Eq. (3.30), the link position is the output while the 

motor position is the input signal. The motor reference is defined based on the partitioned 

control as: 
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with  ( ) ( )ˆd v d p d
l l l l l l lq K q q K q qβ = + − + −   (3.32) 

 

where p
lK  and v

lK  are the feedback control gains, the parameters ˆ
ld  and ˆlq  are the estimated 

disturbances on the link side and the estimated link velocity, respectively. The Eq. (3.31) is 

considered the link side controller since it derives the input for the link side dynamics. 

 

The first and the second numerical derivative of the motor reference d
mq  are used to implement 

the motor side controller expressed in Eqs. (3.24) and (3.25). For practical implementations, 

the typical sampling frequency is one kHz, which is about 50 times faster than the frequency 

of the first flexible mode of most flexible joint robots (which is normally less than 20 Hz), 

resulting in fairly small numerical derivation errors. 
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The Eq. (3.32) is rearranged using the estimation error of the link velocity ˆl l lq q q= −    as 

follows: 

 ( ) ( )v d p d v
l l l l l l l l

d
lq k q q k q q k qβ = − + − ++     (3.33) 

 

Substituting Eq. (3.31) into Eq. (3.30), given that d
m m mq q e= − , yields the closed-loop 

dynamics of the link side in the error space as follows: 

 

 1 1p l r
l l l m

l

v v

l
l l l

l
l l

r

be kK K e K q de e
J J J N

 
+ = − + ++ 

 
   (3.34) 

 

where ˆ
l l ldd d= −  is the estimation error of the link disturbance and d

l l le q q= −  is the tracking 

error of the link position. 

 

If ld , me  and lq  are small, the feedback control gains of the link side controller can be 

determined using Eqs. (3.35) and (3.36). Note that the critical damped of the tracking error of 

the link is obtained by setting 1lξ = . 

 2p
l lK λ=  (3.35) 

 

 2v
l llK ξ λ=  (3.36) 

 

where the parameter lλ  sets the closed-loop stiffness provided by the link side controller. 
 

3.4.2 Disturbance-state observer design 

A disturbance-state observer is combined with the enhanced two-stage feedback presented in 

the previous section to improve the robustness. The block diagram of the combination of the 

disturbance-state observer and the two-stage controller is shown in Figure 3.4. Note that the 
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diagram in Figure 3.4 can be considered as a simpler view of the proposed controller shown in 

Figure 3.3. The disturbance-state observer is the integration of a disturbance observer and a 

state observer. While the disturbance observer subsystem estimates and compensates the 

disturbances, the state observer subsystem provides the estimations of the angular velocities. 

Up to now, the applications of the disturbance observers for several systems with flexible 

elements are presented in the literature of the control theory. However, the motion control 

performances of disturbance observers combining multiple feedback loop controllers have not 

been fully understood. In contrast with previous studies, the proposed control approach 

described in this study presents the disturbance compensation implemented simultaneously in 

both inner and outer loop of the controller, as shown in Eqs. (3.24) and (3.31). 

 

 
The general form of state observer subsystem of the disturbance-state observer is defined as: 

 

 ˆˆ ˆ ˆux = Ax + B + L(y - Cx) +Γd  (3.37) 

 

where 4 2n n×∈L  is the matrix of the observer gains, 2 4n n×∈C   is the selection matrix that 

maps the vector of state variables to the vector of the state measurements, 4ˆ n∈x   is the vector 

    

Figure 3.4 Combination of the disturbance-state observer and the two-stage controller 
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of the estimated states, and 2ˆ n∈d  is the vector of the estimated disturbances. If only the link 

and the motor angular positions are directly measured (using embedded encoders), the 

dimensions of the matrix L and the matrix C can be determined using 1n = . 

 

The lumped disturbances of the flexible joint dynamic model can be derived from Eq. (3.4) as 

follows: 

 ( )u− −+d Γ x Ax B=   (3.38) 
 

where 2 4n n×∈+Γ   is the Moore-Penrose pseudoinverse of Γ and it can be determined by the 

equation ( )-1+ T TΓ = Γ Γ Γ .  

 

Note that the implementation of Eq. (3.38) requires a full state feedback, which is unavailable 

in practice. When the missing feedback states are estimated by the state observer, the 

equivalent estimated disturbance can be expressed as follows: 

 

 ˆ( )ˆeq u− −+Γ x Axd B=   (3.39) 

where 2T n
eq eq l eq md d− −   ∈=d  .  

 

Then the disturbance observer subsystem is a combination of the vector of the equivalent 

estimated disturbance eqd  and low-pass filters as follows: 

 

 ˆ
eqd = Qd  (3.40) 

 

where { }diag ,l mQ Q=Q  is a diagonal matrix, in which the diagonal elements are low-pass 

filtering linear operators. lQ  and mQ  are the low-pass filters on the link side and the motor 

side, respectively. Since a systematic way to determine the type and structure for the low-pass 

filter of Eq. (3.40) is not fully developed in previous literatures, it is still unclear which design 

technique should be taken. However, based on a successfully implemented in several 
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researches (Hamelin et al., 2014; Hamelin et al., 2012; Yan & Shiu, 2008), a third-order 

binominal filter is a promising approach and is used in this study. 

 

The state-space representation of the low-pass filters lQ  and mQ  are given in Eqs. (3.41) to 

(3.44), respectively. 

 ˆ ˆl l l l eq ld −η = F η + G  (3.41) 

 ˆ ˆl l ld = H η  (3.42) 
 

and 

 ˆ ˆ eq mm m m md −η = F η + G  (3.43) 

 ˆ ˆm m md = H η  (3.44) 
 

Combining Eqs. (3.41), (3.42), (3.43), and (3.44) yields the low-pass filter Q  in state-space 

representation as follows: 

 

 
 

( )( ) ( ) ( ) 2( ) 2ˆˆ

ˆ ˆ
ˆˆ

r rr r r r l m nl m l m l ml m e
r

q
r r nr

l l l

m m mm

eq ll

eq m

d
d

++ × + + ×+

−

−

∈∈ ∈ ∈∈

        
= +        
         

ηη F G d

η F η
F η 0η
0 G 0

0 G
   

 








 (3.45) 

 

 


2 ( )2ˆ

ˆ ˆ
ˆˆ

n r rn l m

l l l

m mm

d

d
× +∈∈

     
=     

      
Hd

H
0

η0
H η





 (3.46) 

 

where [ ] ( )ˆ ˆ ˆ l m
T r r

ml
+= ∈η η η   presents the vector of filter states, lr  and mr  are the order of the 

filter lQ  and mQ , respectively, { } ( ) ( )diag , ml l mml l mr r r r r
l m

r r r× × + × +∈ ∈ ∈=F F F   , 

{ } ( ) 2diag ,l m l mr r r r n
l m

+ ×∈ ∈= ∈G G G   , and { } 2 ( )diag ,l lm mr r n r r
l m

× +∈ ∈= ∈H H H    are 

block diagonal matrices of the state-space representation. Note that all elements of the matrices 

F, G, and H are determined from the link side low-pass filter ( )-1( ) ll llQ s s= H I - F G  and 
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motor side low-pass filter ( )-1( )m m m mQ s s= H I - F G , and s is the Laplace complex variable.  

 

The filter state error is derived from Eq. (3.40) as: 

 

 ( )2( ) n eqs= −η Q I d  (3.47) 
 

where 2
2

2n n
n

×∈I   is a unity matrix and the filter state error ( )l mr r+∈η  is computed by 

ˆ= −η η η . 

 

Combining Eqs. (3.37), (3.4), and (3.46) yields the state estimation error as follows: 

 

 ( )x = A - LC x + ΓHη    (3.48) 
 

where 4n∈x   is computed by ˆx = x - x , η  is computed from Eq. (3.47), and H  is from Eq. 

(3.46). 

 

The disturbance estimation errors are derived as follows: 

 21d = δ + δ  (3.49) 

 

where ( ) 2n∈= −1 eqdδ d  and ( ) 2
2

ˆ n= − ∈eq dδ d  . Combining Eqs. (3.38), (3.39), and (3.48) 

yields: 

 = − ++
1 Γ LC ηxδ H   (3.50) 

 

In addition, 2δ also may be derived from Eq. (3.46) as: 

 

 2 =δ Hη  (3.51) 

 

Substituting Eqs. (3.50) and (3.51) into Eq. (3.49) yields: 
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 2− ++ ηΓ LC Hxd =    (3.52) 

 

The disturbance estimation on the motor side and on the link side can be obtained from Eq. 

(3.52) as: 

 2l l l ld − ++S Γ LCx= H η   (3.53) 

 

 2mm m md − ++S Γ LCx= H η   (3.54) 
 

where 21
0

n
T

l
 
 
 

∈=S  , and 20
1

n
m

T
 
 
 

∈=S  . 

 

The state estimation error expressed in Eq. (3.48) and the disturbance estimation error 

expressed in Eq. (3.52) are used to conduct the stability analysis presented in the next sections. 

Note that the architecture of the disturbance observer shown in Eq. (3.40) is used in this study 

since its effectiveness in practical applications is validated in our previous works (Hamelin et 

al., 2012). Although the disturbance observer is designed based on the linear dynamics only, it 

still works effectively in the presence of nonlinear behaviors, as shown in (M. J. Kim & Chung, 

2015). For further studies on different types of disturbance observers, the interested readers are 

invited to follow some other design approaches discussed in (Mohammadi, Tavakoli, Marquez, 

& Hashemzadeh, 2013; Yun & Su, 2014). It is worth mentioning that, in order to improve the 

disturbance compensation, the variations of the link side inertia and the gravitational forces 

when the robot configuration changes can be computed and updated in real-time to the 

controller, as presented in (Alessandro De Luca et al., 2005).   

 

3.4.3 Steady-state error analysis 

By taking the Laplace transform of Eqs. (3.27) and (3.34), the tracking errors of the motor and 

the link positions are expressed in Eqs. (3.55) and (3.56), respectively. 
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 ( ) ( )2 2

1 1

m m

m
m mv m

v
mp v p

m mmm

be K q
JJ s K s K s K s K

d
 

= + − 
+ + ++ 

  (3.55)  

( ) ( ) ( )2 2 2

1 1 1v
l m lv p v p v p

l l l l
l

lr
l

l lr l l l

bke e K q
J JN s K s K J s K s K s K

d
s K

 
= + + −

+  + + + ++ 
  (3.56) 

 

Substituting Eq. (3.55) into Eq. (3.56) yields the tracking error of the link position as a function 

of the disturbances and the state estimation errors as follows:  
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 (3.57) 

Assuming the estimation errors of the disturbances ( ld  and md ) vary slowly, the tracking error 

of the link position after all transients have decayed can be obtained by applying the final value 

theorem (Franklin, Powell, & Emami-Naeini, 2010) to Eq. (3.57) as follows: 
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  (3.58) 
 

Note that ( )∞ indicates the steady-state at time t = ∞ . The Eq. (3.58) implies that the tracking 

error of the link position at t = ∞  becomes very small when the disturbance errors ( ( )ld ∞ and
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( )md ∞ ) and the velocities estimation errors ( ( )lq ∞ and ( )mq ∞ ) are small, and the proportional 

feedback control gains (
l

pK and
m

pK ) are high (Franklin et al., 2010).  

 

3.4.4 Closed-loop control bandwidth analysis 

The transfer function from the disturbance estimation error to the state estimation error is 

derived from Eq. (3.48) as follows (Franklin et al., 2010; G. F. Franklin, J. David Powell, & 

Workman, 1997): 

  [ ]
4 2

1
4( )

n n

ns s
×

−

∈

= = − −xΨ I (A LC) ΓH
η






 (3.59) 

 

where 4
4

4n n
n

×∈I   is a unity matrix.   

 

Then, the tracking error of the link position as a function of the disturbances and the state 

estimation errors expressed in Eq. (3.57) can be rewritten as follows: 

 

 1 2l ee = Δ + Δd C x   (3.60) 

where, ( ) ( )( )2 2 2
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1
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l m

l l mK K K

b bK k K
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∈
+ + +

 ,  

 

and 2 40 1 0 0
0 0 0 1

n
e

n× 
=  
 

∈C  . 

Using the link position tracking error expressed as d
l l le q q= − , the Eq. (3.60) can be rewritten 
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as: 

 1 2 e
d

l lq q= − Δ − Δd C x   (3.61) 

Substituting Eq. (3.52) into Eq. (3.61) yields: 

 

 ( )1 2 12d
l elq q −= − Δ Δ − Δ +C Γ LC xHη   (3.62) 

 

Substituting Eq. (3.59) into Eq. (3.62) gives: 

 

 ( )1 2 12 ( )l e
d

lq q s = − Δ Δ −+ Δ 
+H ηC Γ LC Ψ   (3.63) 

 

Then, substituting Eq. (3.47) into Eq. (3.63) gives to the following result: 

 

 ( ) ( )21 2 1 ( ( )2 )e n
d
l eqlq q s s = − Δ Δ − Δ + −

+C Γ LC ΨH I Q d  (3.64) 

 

It can be seen from Eq. (3.64) that the link position tracking error relies on the performance of 

the low-pass filter ( )sQ , of which the attenuation rate varies with regarding to the operation 

frequencies. In the frequency range such that 2( ) ns ≈Q I  ( where 2nI  is an unity matrix), the 

Eq. (3.64) gives d
l lq q≈ . In these frequencies, the disturbance observer completely 

compensates for the disturbances and the model mismatches, leading to a perfect position 

tracking performance. Note that if there is no disturbance applied on the flexible joint model, 

i.e. 0eq =d , a perfect position tracking is also obtained in all frequencies, leading to an infinity 

control bandwidth.  

 

In the frequency range such that ( )s ≈Q 0 , the disturbance observer loop is completely disable, 

resulting in a degradation of the position tracking performance. When the disturbances are 

large, the lowest bandwidth of ( )sQ  can be used to determine the closed-loop control 

bandwidth. The higher the bandwidth of ( )sQ , the higher the closed-loop control bandwidth 
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achieved.  

 

The bandwidth of the low-pass filter ( )sQ  is determined by its cut-off frequencies. It is 

normally no problem to increase the cut-off frequencies of ( )sQ  over the frequency of the link 

oscillation ( zω ). This is because the cut-off frequencies of ( )sQ  are restricted only by the 

sensor noises and the modelling errors, which normally dominate at high operation frequencies 

(Yun & Su, 2014). Considering the closed-loop control bandwidth provided by the rigid 

controller, which is half of the frequency of the link oscillation, the control bandwidth using 

the proposed controller can be significantly higher. The bandwidth improvement is verified 

using both numerical simulations and experiments in the next sections. 

 

 

3.4.5 Closed-loop system stability analysis 

By combining Eqs. (3.27) and (3.34), the closed-loop position tracking error can be expressed 

as: 
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where  [ ] 4T n
l l m mee e e= ∈ξ     is the vector of the link and motor position tracking. Note 

that 1n =  for the single flexible joint model. The matrices  cA , cZ , and cH  are given as 

follows: 
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The Eq. (3.37) can be rearranged to achieve the following relationship: 

 

 ˆˆ ˆ u− − =x Ax B LCx +Γd   (3.66) 
 

Substituting Eq. (3.66) and the second equation of Eq. (3.45) into Eq. (3.39) yields the 

following relationship: 

 ˆeq
+ )Γ LCd x + Γ( H= η  (3.67) 

 

Substituting Eq. (3.67) into the first equation of Eq. (3.45) yields: 

 

 
( )

ˆ ˆ ˆ
ˆ= +

+

+

η = Fη+ GΓ LCx +ΓH
x

( )η
η GF + GH Γ LC

 


 (3.68) 

 

Since ˆ= −η η η  then ˆ= −η η η  . Substituting Eq. (3.68) into the relation ˆ= −η η η   yields: 

 

 
( )

( ) ( )
ˆ− −

= − + −

+

+

F + GH
F η

η = η η GΓ LCx
η GΓ+ GH F + GHLCx η

  
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 (3.69) 

 

By combining Eqs. (3.48), (3.65) and (3.69), the closed-loop dynamics using the proposed 

control can be expressed as follows: 
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 (3.70) 

 

The matrix oA  are related to the stability of the disturbance-state observer while the matrix 

clA  determines the stability of the whole closed-loop system. Since the low-pass filter ( )sQ  

with cut-off frequencies tends toward zero, the matrices H and G tend to zero (Hamelin et al., 

2012). Thus, the matrix oA  in Eq. (3.70) becomes block diagonal, resulting in decoupling of 

the eigenvalues of the disturbance observer and the state observer. An important observation 

is that clA  is a block triangular matrix, thus the eigenvalues of the feedback controller are also 

decoupled from the eigenvalues of the disturbance-state observer (Hamelin et al., 2014; 

Hamelin et al., 2012), i.e. { } { } { }oe cl e c eλ λ λ= ∪A A A . Due to the decoupled eigenvalues, the 

two-stage feedback controller and the disturbance-state observer can be designed 

independently. To guarantee the stable closed-loop, the stable eigenvalues of cA  and oA  are 

expected. The parameter of the matrix L of the state observer is determined by placing all poles 

of (A‒LC) in the left haft of the s-plane. 

 

3.4.6 Controller synthesis procedure 

This section presents a procedure to determine the gains of the proposed controller. As 

discussed, due to the decoupled eigenvalues, the two-stage feedback controller and the 

disturbance-state observer can be designed independently. The controller design procedure is 

proposed as follows: 

 

1. Assuming that the robot system is not subjected to disturbances and a full state feedback 

is available, determine of the value of lλ  and mλ  such that the matrix cA satisfies the 

Routh-Hurwitz criterion. The highest possible values of lλ  and mλ  provide low position 
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tracking errors and minimize the link vibration while avoiding actuator torque saturation. 

 

2. Set ( )sQ to zero and then design the state observer by calculating matrix L of the state 

observer using the eigenvalue assignment of (A‒LC). 
 

3. Increase the cut-off frequencies of the low-pass filter ( )sQ  from zero as long as the oA is 

still stable and the desired performance is achieved. 

 

3.5 Experiments 

In this section, experiments are performed to validate the effectiveness of the proposed control 

approach. 

 

3.5.1 Experiment setup 

The experiments in this study is conducted using a single flexible joint test bench. The 

architecture of the joint is built following the design of the serial industrial robot entitled 

SCOMPI developed at Hydro-Quebec’s Research Institute (see Figure 3.5). The test bench 

consists of a flexible joint, a rigid link, an additional load mass, an embedded current driver, 

and a control PC system. The joint uses a harmonic drive reducer (CSG-20 with a 160:1 gear 

ratio). The total moment induced by the link and the load are restricted such that it does not 

surpass the average torque limit of the harmonic drive reducer. The motor position is measured 

by a 13-bit resolution custom Timken magnetic encoder while the link position is measured by 

an 18-bit Netzer DS-58 absolute encoder.  

 

The actuator is a synchronous permanent magnets frameless motor with the limitations of the 

continuous and the peak torque being respectively 0.53 Nm and 1.05 Nm. The control 

algorithm is realized using C++ language and executes on a control PC running a real-time 

Linux operating system. The sampling frequency is 1 kHz. The control PC communicates with 

the embedded current driver through the EtherCAT protocol.  
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The discrete controllers are used for experiments. For simplicity, the discrete controllers are 

obtained by discretizing the continuous controllers described in the previous sections using the 

backward difference method. Since the sampling frequency is fairly fast (1 kHz, which is about 

50 times faster than the vibration frequency of most industrial flexible joint robots (normally 

less than 20 Hz)), control performances obtained by the discrete controllers may differ very 

little from that of the continuous controllers.  

 

3.5.2 Identification of the single flexible joint robot  

Since the proposed controller uses its feedback loop to cancel the joint dynamics, the 

parameters of the joint are very important information, which is likely to be accurately known. 

Using the transfer functions of the single flexible joint robot shown in Eqs. (3.10) and (3.11), 

the parameters can be identified by matching the simulated and measured frequency response 

curves, as shown in Figure 3.6.  

 

   

Figure 3.5 (a) The six-joint SCOMPI robot, (b) The single flexible joint test bench to test 
a flexible joint of the SCOMPI robot 
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Figure 3.6 Comparison of the simulated and the measured open-loop 
frequency responses of the single flexible joint robot. (a) The motor 
position plant ( ) / ( )mq s u s  and (b) The link position plant ( ) / ( )lq s u s  

(a) (b)

Figure 3.7 The experimental identification of the joint friction 
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The coefficient of the joint viscous friction can be verified using a friction-velocity diagram, 

in which the friction torque is presented as a function of the motor velocity, as shown in Figure 

3.7. The coefficient of the slope is the motor viscous friction coefficient mb  while the torque 

magnitude at near-zero speed gives the motor Coulomb friction coefficient. A consistent value 

of the motor viscous friction coefficient has been found even it is characterized by frequency 

responses or by extracting from the friction-speed diagram. 

 

The identified parameters of the single flexible joint are shown in Table 3.1. The undamped 

frequencies of the zeros and of the poles are zω  = 8.435 Hz and pω = 17.085 Hz, respectively. 

 

3.5.3 Controller gain selection 

The two-stage feedback controller and the disturbance-state observer of the proposed enhanced 

two-stage feedback controller are configured following the procedure detailed in the section 

3.4.6. The rigid control is designed according to the section 3.3.2. The controller gains are 

given in the following:  

 

The control gains of the enhanced two-stage feedback controller are obtained by increasing lλ  

Table 3.1 Single flexible joint robot parameters identified 

Symbol Quantity Value 

lJ   Total link side inertia 8.9 kgm2 

mJ   Motor inertia 1.12×10-4 kgm2 

rN   Harmonic drive gear ratio 160 

rk   Joint stiffness 2.5×104 Nm/rad 

lb  Joint viscous friction 6 Nms/rad 

mb   Motor viscous friction 9.5×10-4 Nms/rad 

fb   Motor Coulomb friction 8.6×10-2 Nm 
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and mλ  such that good tracking performance of the link position and low vibration are 

achieved. The fluctuation or saturation on the motor torque is avoided. Practically, the values

9.5lλ = Hz and 12.7mλ = Hz are determined. 

 

The matrix L of the state observer is obtained by placing the four poles of the matrix (A‒LC) 
at the location p = [‒400, ‒400, ‒600, ‒600]. For both the link and the motor sides of the 

disturbance observer, third-order critically damped low-pass filters are used, given the 

effectiveness of this filter in a robotic grinding application presented in (Hamelin et al., 2012). 

The low-pass filters have the form 3 3/( () )l lc lcQ ss ω ω+= . and 3 3/( () )mc mm cQ ss ω ω+=  for the 

link side and motor side, respectively. The low-pass filter cut-off frequencies of lcω = 100 rad/s 

and mcω = 200 rad/s are found experimentally to adequately reject disturbances and to maintain 

the control loop stability. Further increasing the cut-off frequencies may cause too much noise 

in the motor torque, resulting in even much more vibration on the link position. 

 

The closed-loop stiffness of the rigid control is set using Eq. (3.23), i.e. 1 4.22nω = Hz (26.5 

rad/s), given that the minimum flexible mode frequency is zω = 8.435 Hz. Then the rigid 

controller gains are determined using Eq. (3.20) as 1 0.323pK = Nm/rad, 1 0.024dK = Nms/rad, 

and 1 1.07iK = Nm/rads. 

 

 

3.5.4 Simulation and experimental results 

This section presents the simulation and experimental study on the control performance of the 

single flexible joint robot using two control methods: the rigid control (RC) and the enhanced 

two-stage feedback controller (ESFB). 
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a. Closed-loop bandwidth 

In this section presents a study on the control bandwidth. First, the closed-loop system is 

defined as the transfer function from the reference link position to the actual link position. The 

control bandwidth is then defined as a range from 0 Hz to BWω  Hz, at which the magnitude of 

frequency response of the closed-loop transfer function crosses 3dB± : 

 

 ( ) 3dB
( ) BW

l

s
d
l j

q s
q s ω=

= ±  (171) 

 

where lq  and d
lq  are the actual link position and the reference link position, respectively.  

 

First, assuming there are no disturbances induced on the single flexible joint model, the 

simulated frequency responses of the closed-loop systems using rigid control and using the 

proposed enhanced two-stage feedback control are shown in Figure 3.8. The simulation results 

show that the closed-loop system using rigid control has the control bandwidth of 4.8 Hz and 

a large vibration resonance occurs at the flexible mode frequency zω . On the other hand, the 

simulated control bandwidth of the closed-loop system using the enhanced two-stage feedback 

control is infinite, which is an expected result when no disturbance is applied (discussed in 

Section 3.4.4). The control bandwidth of the closed-loop system using the enhanced two-stage 

feedback control is reduced if the system is subjected to the disturbances such as external 

torques, modelling mismatches, nonlinear effects, quantization effects of encoders, or feedback 

signal delays. A numerical simulation is conducted to illustrate the effect of disturbances. 

Assuming 30% mismatch on the joint stiffness, the control bandwidth of the closed-loop 

system using the enhanced two-stage feedback control is reduced to 26.03 Hz, as shown in 

Figure 3.9. The hypothesis used in this simulation is reasonable given the fact that the harmonic 

drive reducer, the main source of the joint flexibility, has a nonlinear stiffness, which is 

normally varied up to 36% (HarmonicDrive, 2009).  
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As shown in Figure 3.9, the frequency response of the closed-loop using the enhanced two-

stage feedback control is approximately unity for the frequencies less than the cut-off 

frequency of the low-pass filter of the disturbance observer on the link side lQ  (about 15.9 

Hz). Within this frequency range, the disturbance observer significantly compensates the 

disturbances of the single flexible joint model. For frequencies higher than the cut-off 

frequency of the low-pass filter lQ , the position tracking performance of the link position starts 

to be decreased due to the disturbances that are not compensated. This result verifies the 

importance of the low-pass filter of the disturbance observer in the motion control 

performance, as discussed in the section 3.4.4.  

 

Although the control performance is reduced due to the presence of disturbances, the 

performance of the proposed enhanced two-stage feedback control is always better than the 

Figure 3.8 Simulation: the closed-loop frequency responses using rigid 
control (RC) and using enhanced two-stage feedback control (ESFB) 

assuming no disturbances 
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rigid control. Figure 3.9 shows that the closed-loop using the enhanced two-stage feedback 

control has the control bandwidth of 26.03 Hz, which is significantly higher than that using the 

rigid control (3.8 Hz). 

 

 

                   
 

Figure 3.10 shows the experimental frequency responses of the closed-loop system using the 

rigid control and using the enhanced two-stage feedback control. Note that, due to the 

limitations of motor current and encoder resolutions, the test bench in this study just allows to 

measure the closed-loop frequency responses up to 20 Hz. Since there is a significant resonance 

in the response of the closed-loop using rigid control up to about 5 dB, the control bandwidth 

with rigid control is determined at the frequency response magnitude crossing +3 dB. Figure 

3.10 shows that the control bandwidth with rigid control is about 5.5 Hz. In contrast to the rigid 

Figure 3.9 Simulation: the closed-loop frequency responses using rigid 
control (RC) and using enhanced two-stage feedback control (ESFB) 

assuming 30% uncertainty on joint stiffness 
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control, the closed-loop response with the enhanced two-stage feedback control has almost no 

resonance at zω  (8.435 Hz), resulting in very low link vibration. Therefore, the closed-loop 

bandwidth can be determined as the frequency response magnitude crossing -3dB. As shown 

in Figure 3.10, the bandwidth of the closed-loop using the enhanced two-stage feedback is 

about 16 Hz, which is almost twice the first flexible mode frequency ( zω  = 8.435 Hz) and is 

about three times that of the rigid control. Due to the high achievable closed-loop bandwidth, 

the enhanced two-stage feedback allows the link to accurately track link position references at 

frequencies that are impossible with the rigid control. In addition, the phase lag is effectively 

reduced using the enhanced two-stage feedback control, as presented in the phase diagram (the 

bottom figure of Figure 3.10). 

 

 

                      
The bandwidth of rigid control obtained from the experimental closed-loop frequency response 

Figure 3.10 Experiment: the closed-loop frequency responses using rigid 
control (RC) and using enhanced two-stage feedback control (ESFB) 
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(Figure 3.10) confirms the rigid control design method proposed in (Craig, 1989), where the 

frequency 1nω  is recommended to be half of the flexible mode frequency. 

 

It is almost impossible to crank up the frequency 1nω  of the rigid control above half of the 

flexible mode frequency zω  without deteriorating the transient response performance. High 

frequency 1nω  causes significant link vibration and motor torque noise. By decreasing the 

frequency 1nω  below half of the flexible mode frequency zω , the link vibration of the closed-

loop using rigid control can be slightly reduced. However, the vibration resonance peak of the 

closed-loop using rigid control is always far above that using the enhanced two-stage stage 

feedback control. In addition, low frequency 1nω  leads to a significant deterioration of the 

disturbance rejection and the position tracking in low frequencies. 

 

b. Step response 

This section presents the control performance with the step reference signal. Although smooth 

references are normally available in control processes, the controllers are also expected to 

provide good control performance with non-smooth inputs, such as step signals. In this study, 

a step with magnitude of 0.1 rad is used to test all controllers. 

 

As shown in Figure 3.11, the enhanced two-stage feedback clearly outperforms the rigid 

control. The settling time is defined as the time for the tracking error to fall within 2% of the 

final value. The settling time of the link using the enhanced two-stage stage feedback control 

is 0.22 s, which is about twice faster than that using rigid control (0.41 s). The link with 

enhanced two-stage feedback has a little slower rise time (0.11 s) compared to that with rigid 

control (0.09s). Although the rigid control provides a faster rise time, it comes up with a large 

overshoot (28.49%) while the enhanced two-stage feedback gives a critical damping link 

response. The link overshoot of the enhanced two-stage feedback is 0.11%, which is almost 

negligible. During the first 0.1s, the link responses using the enhanced two-stage feedback 

control and the rigid control are equivalent due to actuator saturation (see the bottom figure of 
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Figure 3.11). 

 

         
 

 

c. Kinematic error compensation 

In this section, the link vibration due to kinematic error of the harmonic drive reducer is 

studied. The kinematic error is one of the most important concerns when using harmonic drive 

reducer for robotic joints. The kinematic error causes an inaccuracy of the robot kinematic by 

introducing a deviation between the expected and the actual positions of the harmonic drive 

reducer output. It is a periodic positioning error, which may excite the natural frequencies of 

the robot manipulator. The dominant frequency of the kinematic error is twice frequency of 

the wave generator (Cheng-Huei, Chun-Chih, & Masayoshi, 2008). Therefore, to examine how 

the flexible joint dynamics is excited by the kinematic error, the frequency of the wave 

generator is set to about half of the first flexible mode frequency ( zω ). The reference motor 

 

 

Figure 3.11 Experiment: the link step response 
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position is one complete rotation in the counter-clockwise direction with the frequency mf  = 

4 Hz (240 rpm).  

 

 

        
 

Figure 3.12 shows the fast Fourier transform of the link position tracking error using the rigid 

control and the proposed enhanced two-stage feedback control. The vibration resonance at 8 

Hz due to the kinematic error with the rigid control is about 1.4×10-4 rad. The vibration 

resonance due to the kinematic error with the enhanced two-stage feedback control is 

effectively reduced by 50% , with a lower peak of about 0.75×10-4 rad. There is synchronized 

vibrations occurred at 32 lf×   (0.8 Hz), at 64 lf×  (1.6 Hz), and at 128 lf×   (3.2 Hz) where lf  

is the frequency of the link rotation, i.e. /l m rf f N=  (= 0.025 Hz) with 160rN = . These 

induced harmonics may be caused by quantization effect when computing the motor velocity 

by the backward derivative method from the motor position, given that the ratio between the 

 

Figure 3.12 Experiment: the link vibration due to kinematic error of the harmonic 
drive reducer 
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resolutions of the encoders on the link side and on the motor side is 32:1 (see section 3.5.1).  

 

The performance of the rigid control and the enhanced two-stage stage feedback control in 

terms of the step response, the closed-loop control bandwidth and the kinematic error 

compensation are summarized in Table 3.2. 

 

    
d. Comparison of the proposed enhanced two-stage feedback control with the two-

stage feedback controller 

This section presents a control performance comparison of the proposed enhanced two-stage 

feedback control (disturbance-state observer turned on) with the two-stage feedback control 

(disturbance-state observer turned off), which is denoted as SFB. The comparison is to 

emphasize the important of the disturbance-state observer. The gains of the two-stage feedback 

control and the parameters of the disturbance-state observer are given in Section 3.5.3. Figure 

3.13 shows the step response of the link position using the proposed the enhanced two-stage 

feedback control and using the two-stage feedback control.  

 

The disturbance observer and state observer may improve the motion control performance of 

the flexible joint robot in different ways. The disturbance observer helps the feedback 

controller to track the link reference position faster with less overshoot (see Figure 3.13). The 

contribution of the state observer on the performance of the enhanced two-stage feedback 

Table 3.2 Experimental comparison of control performance in terms of step response, 
control bandwidth and kinematic error compensation 

 
Step response 

Bandwidth Kinematic error peak 
(at about ωn1) Over-

shoot Rise time Settling 
time 

RC 28.49% 0.09 s 0.41 s 0 ~ 5.5 Hz 1.4×10-4 rad 

ESFB 0.11% 0.11 s 0.22 s 0 ~ 16 Hz 0.75×10-4 rad 
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control in terms of link position tracking is not very clear. In other words, the link position 

tracking performance is almost unchanged with the state observer enabled or disabled. 

However, the state observer clearly helps to reduce the noise of the motor torque. Since the 

enhanced two-stage feedback control uses the link velocity in its computational process, the 

low-noise link velocity estimated by the state observer (see Figure 3.14) leads to a reduction 

of the motor torque noise, as shown in Figure 3.15. The link velocity error and the motor torque 

with the proposed enhanced two-stage feedback control are always inside the bounded areas 

(denoted by dashed lines) created by the control performance of the two-stage feedback 

control. In practice, with the two-stage feedback control, during the tests, the motor torque 

noise can be heard and could eventually damage the test bench. These experimental results 

again motivate the use of the state observer for the proposed controller.  

 

 

                   

Figure 3.13 Experiment: the link step responses using the enhanced two-
stage feedback control (ESFB) and using the two-stage feedback control 

(SFB) 
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Figure 3.14 Experiment: the link velocities of the step response experiment with 
the proposed enhanced two-stage feedback control (ESFB) and with the two-stage 

feedback control (SFB) 
 

 

Figure 3.15 Experiment: the motor torques of the step response experiment with the 
proposed enhanced two-stage feedback control (ESFB) and with the two-stage 

feedback control (SFB) 
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3.6 Summary 

This chapter presented the enhanced two-stage feedback to improve motion control 

performance of the single flexible joint robot. The main contributions of this study can be listed 

as follows:  

1) It introduces the two-stage feedback control with partitioned controllers on both motor 

and link side controller.  

2) It introduces the enhanced two-stage feedback controller, which is an integration of the 

two-stage feedback control with the disturbance-state observer. The disturbance on 

both motor side and link side dynamics of the single flexible joint robot are 

compensated.  

3) It presents the simulation and experimental studies to validate the control approaches. 

A rigid control is implemented to provide a baseline of the control performance of 

recent industrial robots. It shows that the proposed enhanced two-stage feedback 

control extends the control bandwidth by two times the first flexible mode frequency 

and by three times the rigid control. With the step reference, the proposed enhanced 

two-stage feedback control accurately displaces the link of the single flexible joint 

robot. There is almost no overshoot and the settling time is two times faster than that 

of the rigid control. The vibration due to the kinematic error is reduced by 50%. The 

disturbance-state observer effectively compensates the disturbances and reduces the 

acoustic noise.  

 

 

 

EQUATION CHAPTER (NEXT) SECTION 1 

 



 

CHAPTER 4 
 
 

VIBRATION CONTROL OF MULTIPLE FLEXIBLE JOINT ROBOTS USING A 
DISCRETE-TIME TWO-STAGE CONTROLLER BASED ON TIME VARYING 

INPUT SHAPING AND DELAY COMPENSATION 

This chapter presents a two-stage controller to reduce vibration of a multiple flexible joint 

robot. The proposed controller can be retrofitted into existing robots, for which access to motor 

torque command is unavailable. A decentralized flexible model is introduced, in which the 

lumped coupling stiffness is taken into account. In the first-stage, an input shaping feedforward 

shapes the rigid closed-loop dynamics into a desired dynamics that does not produce link 

vibrations. Robotic dynamic computation based on a recursive Newton-Euler Algorithm is 

conducted to update the feedforward link inertia parameter during robot motion. A second-

stage is added to increase disturbance rejection. A generalized Smith predictor is developed to 

compensate for delay and feedback sensor filtering. A simple methodology is presented to 

adjust the control loop gains. A discrete energy separation algorithm allows identifying the 

flexible dynamics parameters from the closed-loop temporal response. Numerical simulations 

and experiments on a six-joint robot manipulator confirm that the proposed controller improves 

control performances in terms of bandwidth, vibration attenuation, and disturbance rejection. 

This chapter is based on an article titled “Vibration control of flexible joint robots using a 

discrete-time two-stage controller based on time-varying input shaping and delay 

compensation” submitted to Robotics and Autonomous Systems in December 2019 (Pham, 

Hazel, Hamelin, & Liu, 2019). 

 

 

4.1 Introduction 

As discussed in the previous chapter, the performance of industrial robot is limited due to the 

presence of structural flexibilities. It is impossible or very difficult to build rigid manipulators, 

especially in the case of serial robots. Unavoidable flexibilities may emerge from gear boxes, 

links, joint bearings, and other mechanical components of the robot. Regardless of size, most 
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serial robots are quite flexible, with the first resonance in a low frequency range of about 10 

Hz (Doria, Cocuzza, Comand, Bottin, & Rossi, 2019). Due to this flexibility, controllers based 

on rigid model assumption are no longer sufficient for precise positioning applications. 

 

A classical PD controller can be adapted for flexible cases, which is discussed in (Tomei, 

1991a). Although the control structure can be reused, the controller gains must be limited to 

avoid exciting vibration modes, which result in a low control bandwidth. Another approach is 

to employ a flexible joint model to design advanced controllers. Effective control methods 

include feedforward-feedback (Lessard et al., 2014), passivity-based (Albu-Schäffer, Ott, & 

Hirzinger, 2007), elastic structure preserving (Keppler, Lakatos, Ott, & Albu-Schäffer, 2018), 

feedback linearization (Nanos & Papadopoulos, 2015), back-stepping (Bang et al., 2010; Lin 

& Goldenberg, 1995), disturbance observer based (Yun, Su, Kim, & Kim, 2013), and iterative 

learning control (W. Chen & Tomizuka, 2014; C. Wang, Minghui, Wang, & Tomizuka, 2016). 

Implementations of these methods may require access to motor torque command, and, in some 

cases, complex control schemes. Successful adaptations of these methods for industrial robots 

still require more work in order to address various constraints. The first major one of many 

such constraints is that most industrial robots comprise built-in joint motion controllers, which 

only allow gains modification. The access to motor torque command is not provided. Some 

commercial industrial robots even allow only pose reference correction via the implementation 

of additional software packages, such as the Externally Guided Motion (EGM) of ABB robots 

(Zhang et al., 2018), Dynamic Path Modification of Fanuc robots (Gharaaty, Shu, Joubair, Xie, 

& Bonev, 2018; Shu, Gharaaty, Xie, Joubair, & Bonev, 2018), or Robot Sensor Interface (RSI) 

of Kuka robots (Shi, Zhang, Qu, & Liu, 2016). Another constraint is the fact that delays and 

quantization noises may be present on the feedback signals, which significantly deteriorate 

control performance if they are not considered.  

 

With the above constraints considered, input shaping is an effective technique for realizing 

high-level controllers. It ensures vibration attenuation via a trajectory optimization procedure 

alone. Once the vibration problem is handled by input shaping, feedback control gains can be 

increased to extend the bandwidth. In an early development by Smith in (J. Y. Smith, Kozak, 
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& Singhose, 2002), which was later covered in extensive study by Singhose (Singhose, 2009), 

various types of finite impulse response input shapers (FIRIS) were developed, including zero-

vibration (ZV), zero-vibration-derivative (ZVD), and extra insensitive (EI). While FIRIS may 

provide adequate vibration attenuation performance, the order of the discrete-time FIRIS filter 

transfer function may be high, resulting in long delays. In order to avoid this problem, infinite 

impulse response input shaping (IIRIS) based on an inverse model could be used instead. In 

the latter, vibration is attenuated based on the pole/zero cancellation technique, which requires 

a good knowledge of the dynamic model.  

 

Dynamic models of robots have been fully covered in many research studies, such as (Lightcap 

& Banks, 2010; Sariyildiz et al., 2016; Yun et al., 2013). Multiple joint robot models are very 

complex, even if they only include flexible joints. Such models must thus be simplified into a 

series of decentralized flexible joint sub-models, in which the joint is represented by the motor 

mass and the link mass, connected via a reducer (Houman Dallali et al., 2015; H. Dallali, 

Medrano-Cerda, Kashiri, Tsagarakis, & Caldwell, 2014; Paine et al., 2015). The decentralized 

flexible joint model can be used to design joint level controllers. Such model, however, is 

unable to fully reflect reality behavior since it does not take into account the flexibility of many 

other parts of robots such as links and bearings. Not modelling these components may lead to 

severe stability and robustness problems, especially when fast motions are required. It is 

desirable to develop a single flexible joint model, in which coupling dynamics with other parts 

of the robot are taken into account. 

 

In addition to vibration control, disturbance rejection is also important. An effective way to 

improve the robustness and disturbance rejection of controlled systems is to introduce a second 

control stage in the process, such as the one studied by Morales (Morales et al., 2012). In such 

cases, link-side feedback delays and quantization become a major issue. It should be mentioned 

that a disturbance-state observer could be used to estimate feedback signals. The estimated 

feedback signals do not have delay and noise. However, such an observer requires sufficient 

knowledge of the complicated dynamic model of the robot arm (Bang et al., 2010; Pham, 

Hamelin, Hazel, & Liu, 2019). A simple yet effective method is to implement filters in the 
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feedback path to damp out any sensor noise, but this introduces more delay, which may further 

reduce stability margins. 

 

In this chapter, we focus on a combination of a two-stage control with an input shaping 

feedforward for reducing vibration of serial robots. The proposed algorithm can be retrofitted 

straight into existing industrial robots with built-in joint controllers. This study extends 

previous works as follows: 

 

1) It extends the classical decentralized joint model by taking into account a lumped 

stiffness resulting from a dominant coupling mode.  

2) It provides a two-stage controller including an input shaping feedforward with time-

varying updating in the first-stage and a generalized Smith predictor to compensate for 

delay and feedback sensor filtering in the second-stage. 

3) It provides experimental results on an actual six-joint industrial robot. 

 

This chapter is organized as follows. Section 4.2 details the flexible robot decentralized 

modelling. Section 4.3 presents the conventional rigid control and the proposed control 

approach, along with a detailed stability and sensitivity analysis. Section 4.4 presents the 

experimental results validating the effectiveness of the proposed approach.  

 

4.2 System modelling 

This section presents the modelling of the flexible robot in the presence of a high coupling 

effect.  

 

4.2.1 Flexible joint robot modelling background 

A dynamic model of a flexible joint robot was fully developed using the Lagrange formulation 

and Spong’s assumption as follows: 
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 ( ) ( ) ( )l l l l l l l l jlM q q + C q ,q q + B q + g = τq     (4.1) 
 

 1sgn( )m m m m m jrf
−+J q + B q + B q N = uτ    (4.2) 

 

where lq  and mq  are the link and motor position vectors, l lM (q )  is the link inertia matrix, 

( )l lC q ,q  is the Coriolis and centrifugal forces matrix, lB  is the joint damping diagonal matrix, 

( )lg q  is the gravitational forces vector, rN  is the gear ratio diagonal matrix, mJ  is the motor 

inertia diagonal matrix, mB  and fB  are the diagonal matrices of motor viscous friction and 

motor Coulomb friction, respectively, sgn( )  is the sign function, ( )1
j r m lr

−= −k N q qτ  is the 

joint torque induced by the joint flexibility, rk  is the reducer stiffness diagonal matrix, and u  

is the actuator torque vector. 

 

The flexible joint robot model in Eqs. (4.1) and (4.2) can be simplified into a conventional 

decentralized model, in which the robot is regarded as a series of single flexible joints. All 

nonlinear terms including ( )l lC q ,q , ( )lg q , fB , and coupling inertias (off-diagonal elements 

of ( )llM q ) are ignored. Each joint model consists of a motor mass and a link mass, connected 

via a reducer, as shown in Figure 4.1.  

 

An important assumption of the conventional decentralized model is that only the reducer itself 

is considered flexible. The connection between reducer and the link is rigid. The encoder 

placed at the reducer output can capture the link motion. It means there is no distortion between 

the reducer output position rq  and the link position lq . Dynamic equations of flexible joint 

using decentralized model (CDM) are expressed in Eqs. (4.3) and (4.4), respectively. 

 

Motor position: 

 1r
m m

r
m l

r
m m

kJ b q q u
N N

q q
 

+ + − = 
 

    (4.3) 
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Link position or reducer output position: 
 

 0l l l
m

l r l
r

qb q k qJ q
N

 
+ + − = 

 
  (4.4) 

 

Some modelling issues of the conventional decentralized model occur. While the conventional 

decentralized model assumes there is no distortion between the reducer output position rq  and 

the link position lq , i.e. l rq q= , experimental results show a contradicting result. A 

considerable difference between these two signals was observed experimentally, as shown in 

Figure 4.2. Note that the link position is measured by a laser tracker and converted into joint 

angle for comparison while the reducer output position is captured by the encoder. The joint is 

controlled to follow a trapezoidal trajectory. 

 

Distortion of experimental and simulation frequency responses of the closed-loop flexible joint 

is presented in Figure 4.3. The closed-loop transfer function is defined from the reference to 

the reducer output position. The experimental frequency response has a resonance and an anti-

resonance while the simulation frequency response using the conventional decentralized model 

has only a resonance.  

 

Although the reducer stiffness can be modified to allow closely matching of the simulated and 

measured frequencies of the resonance, it is very hard to explain why the modified reducer 

stiffness is much lower than the value from the manufacture specification. In addition, for any 

value of the reducer stiffness set for the simulations, the resonance amplitudes are still different 

and the anti-resonance are not modelled. 

 

The modelling error using the conventional decentralized may be because the conventional 

model ignores the presence of the coupling effect between robot joints and the flexibilities of 

many other mechanical parts of robot manipulators. A flexible robot model which includes 

coupling, but is simpler than the model expressed by Eqs. (4.1) and (4.2) is desirable for 

practical implementations. 
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Figure 4.1 Conventional decentralized model of a flexible joint. The joint model 
consists of a motor mass and a link mass, connected via a reducer, which is the 

only element considered to be flexible 

Equivalent load 

Motor
Reducer

Reducer input
encoder 

Reducer output
encoder 

Figure 4.2 Experimental results of vibrations of the link and the reducer output 
position. It is unable to simulate the distortion between the link positon and the 
reducer output position using conventional decentralized flexible joint model 
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4.2.2 Proposed flexible joint model 

A flexible joint model that takes into account the coupling effect is proposed in this section. A 

schematic diagram of the flexible joint is depicted in Figure 4.4 (note that this model describes 

robots with two encoders for each joint). The major difference between the conventional 

flexible joint model and the proposed flexible joint model is that while the conventional 

flexible joint model ignores the coupling, the proposed flexible joint model introduces a new 

flexible coupling element, with stiffness ck , between the reducer and the link inertia. The 

presence of the coupling stiffness allows the proposed flexible joint model to reflect (i) the 

 

Figure 4.3 Closed-loop frequency response of a single flexible joint. The 
experimental frequency response has a resonance and an anti-resonance while the 
simulation frequency response using the conventional decentralized model (CDM) 

has only a resonance. Varying the reducer stiffness only allows the simulation 
using CDM matching the frequency of the resonance 
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reduction of the overall stiffness between the motor mass and the link mass, and (ii) the 

distortion between the reducer output position and the link position.  

 

 

          
 

The system’s dynamic equations are given as follows: 

Reducer input position or motor position: 

 

 1r
m m mm m r m

rr

kJ b q q d u
N N

q q
 

+ + − + = 
 

    (4.5) 

 

Reducer output position: 

 ( ) 1 0c l r r
r

r mk q q k q q
N

 
− + − = 

 
  (4.6) 

 

Link position: 

Figure 4.4 Proposed schematic diagram of a flexible joint model. The motor 
position mq  and the reducer output position rq  can be measured directly by 

encoders 

Equivalent load 

Motor
Reducer

Reducer input
encoder 

Reducer output
encoder 
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 ( ) 0l l ll c l r lJ b q k q q dq + + − + =   (4.7) 
 

where mq  is  the motor position, rq  is the reducer output position, lq  is the link position, mJ  

is the motor inertia, lJ  is the link inertia, lb  is the link side viscous friction coefficient, mb  is 

the motor side viscous friction coefficient, rk  is the reducer stiffness, ck  is the coupling 

stiffness, and rN  is the reducer gear ratio. The actuator torque applied to the motor is denoted 

by u , while ld  and md  are the link and motor side lumped disturbances, respectively.  

 

The effective joint stiffness jk  is defined as the serial combination of the reducer stiffness rk  

and the coupling stiffness ck .  

 ( )
r c

j
r c

k kk
k k

=
+

  (4.8) 

 

In analyzing Eq. (4.8), a finite value of ck  implies that ( )/ 1c r ck k k+ < , leading to an overall 

stiffness reduction, that is j rk k< . 

 

The transfer functions from the actuator torque to the motor position and to the link position 

are given in Eqs. (4.9) and (4.10), respectively. 

 

( ) ( )
2

24 3 22

( )( )
( )

( )
l l j

l m l m m l l j m l j m j

m

r rm j l

q sM s
u s

J s b s k
J J s J b J b s J k N b b k J s k b k b N s− −

=

+ +
=

+ + + + + + +

   (4.9) 

 

 

( ) ( )24 3 2

1

2

( )( )
( )

( )

l

j

l m l m m l l j m l j m l

r

j m jr r

q sL s
u s

N k
J J s J b J b s J k N b b k J s k b k b N s

−

− −

=

=
+ + + + + + +

 (4.10) 
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The function ( )L s  also represents the transfer function from the link disturbance ld  to the 

motor position mq . The undamped anti-resonance frequency zω  and the resonance frequency 

pω  of the flexible joint are given: 

 j
z

l

k
J

ω =   (4.11) 

 

 2
j j

l
p

m r

k k
J J N

ω = +  (4.12) 

 

These two frequencies are depicted in the bode plots of a typical coupled flexible joint shown 

in Figure 4.5. By dividing Eq. (4.9) by Eq. (4.10), the transfer function from the motor position 

to the link position can be derived as follows: 

 

 
1

2

( )( )
( )

l

l

rj

m l j

k Nq sR s
q s J s b s k

−

= =
+ +

 (4.13) 

 

Note that the anti-resonance zω  is also the natural frequency of the reducer transfer function 

( )R s  (Ellis, 2004). Taking the Laplace transform for Eq. (4.7), the coupling transfer function 

from link position lq  to reduce output position rq  is as follows: 

 

 2( )( ) 1
( )

l l

c

r

l c

J bq sK s s s
q s k k

= = + +  (4.14) 

 

From the Eq. (4.6), rq  can also be computed from mq , and lq , which can be written as follows: 

 

 
1

l
r

r

c

r

r
r m

c c

k k Nq q q
k k k k

−

= +
+ +

  (4.15) 

 

It is worth mentioning that due to the presence of the coupling stiffness, the link position lq  
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and the reducer output position rq  are dynamically related through the transfer function 𝐾(𝑠), 
as shown in Eq. (4.14).  

 

 

 
 

4.3 Controller design 

Industrial robots usually have built-in joint motion controllers. Since the architecture of the 

built-in controller is unchangeable, it is preferable to modify the overall control performance 

by adding an input shaping and an outer feedback stage. For this reason, the two-stage 

controller is presented. The first-stage includes the built-in rigid controller, a feedforward input 

 
Figure 4.5 Frequency responses of the proposed flexible joint model. 
( )M s is the transfer function from the motor torque to the motor position 
and ( )R s  is the transfer function from the motor position to the link 

position  
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shaping, and a time-varying updating dynamics. The main goal of the first-stage feedforward 

is to attenuate the vibration due to the joint flexibility, while the time-varying updating 

dynamics serves to adjust the feedforward transfer function according to robot configurations. 

The second-stage includes a generalized Smith predictor, a PID compensator, and a feedback 

low-pass filter. The intent of the second-stage is to improve the disturbance rejection 

performance. Figure 4.6 gives an overview of the block diagram of the closed-loop system 

using the two-stage controller.  

 

 

 
 

The references of the first-stage and of the second-stage are denoted as isr  and r , respectively. 

The reference of the rigid control loop is rcr , while that of the motor is mr . The reference of 

the second-stage r  represents the desired position of the joint, which is smooth up to the 

Figure 4.6 Block diagram of the proposed two-stage controller. ( )M s , ( )R s , ( )L s , and ( )K s  
represent time-varying joint dynamics, depending on robot configurations 

1( )C s

Built-in 
rigid controller

( )M s

1( )D s

( )F s

2 ( )C s

( )S s

2 ( )D s2 ( )H s

Motor

Delay 1

Delay 2

Filter

Generalized
Smith Predictor

PID 
compensator

Feedforward

First-stage controller
(Input shaping)

Second-stage controller

Time-varying 
dynamics

mq

r

md

rN
rcr

u

lJ

jk

isr mr
( )R s

( )K s

Link

Coupling

lq

rq
mη

rη

( )L s

ld

r



76 

second derivation. The sensor noise on the motor side is mη  and that on the link side is rη . The 

components of the two-stage controller are detailed in the rest of this section. 

 

4.3.1 First-stage conventional built-in rigid controller 

Because of the flexibility of the joints, the motor and the link positions are not simply coupled 

through the gear ratio, but through the joint dynamic model. Depending on whether the 

feedback is from the motor or from the reducer output, controllers can be classified as 

collocated or non-collocated, respectively. Most built-in joint controller use the collocated 

scheme. This scheme takes advantage of the phase characteristic of the motor transfer function 

(see Figure 4.5), thus facilitating the control. A non-collocated controller using reducer output 

feedback encounters more difficulties since the phase of the link transfer function drops 

quickly to -180 degrees at its anti-resonance frequency. 

 

The classical proportional and derivative (PD) control is one of the simplest methods to realize 

a collocated controller. Based on a rigid body assumption, the PD gains ( 1pK  and 1dK ) can be 

set as follows:  

 2
11p e nK J ω=  and 111 2 ed nK J ζ ω=  (4.16) 

 

where 1
e rm lJ J J N −= +  is the effective inertia seen on the motor side and 1ζ  and 1nω  are 

respectively the damping ratio and the natural frequency of the closed-loop rigid joint. 

 

When the rigid controller is applied to the flexible joint, the joint motion may excite the un-

modelled flexible dynamics if the closed-loop bandwidth is close to the natural frequency of 

the un-modelled dynamics (Zinn et al., 2003). Therefore, the closed-loop natural frequency 

1nω  can be adjusted as a function of the flexible joint natural frequency as follows: 

 

 1 1n zω λ ω=   (4.17)  
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The natural frequency 1nω  is now proportional to the flexible dynamic natural frequency zω  

via the parameter 1λ . The parameter 1λ  should be adjusted to compromise between the link 

vibration and control bandwidth. To avoid exciting the flexible dynamics, 1 1ζ =  and 1 0.5λ =  

are often suggested (Craig, 1989).  

 

In order to reduce the steady-state error when controlling the flexible joint, an integral gain 

1iK  can be added. Assuming a critical damping of the PID transfer function, the integral gain 

can be set with respect to the proportional and derivative gains as follows: 

 

 
1

2
1

1 4
p

i
d

K
K

K
=  (4.18) 

 

The continuous-time PID rigid compensator transfer function is shown in Eq. (4.19): 

 

 
2

1 1 1
1( ) d p iK s K s K

C s
s

+ +
=  (4.19) 

 

4.3.2 First-stage input shaping feedforward 

The role of the input shaping feedforward is to shape the first-stage trajectory such that it 

cancels its own vibrations, leading to closed-loop dynamics that do not produce link vibrations. 

Instead of being directly designed in the discrete domain, the feedforward is designed from the 

continuous model of the rigid closed-loop transfer function. This approach is favored as to take 

advantage of the available closed-form solution for the continuous-time closed-loop model, 

thus avoiding order reduction problems that are common with numerical methods. However, 

obtaining the accurate continuous closed form may be challenging in the presence of delays. 

In the following, the design of the input shaping feedforward is presented, taking into account 

the delay in the first-stage feedback loop. Discussions on issues relating to the conversion from 

the continuous space to the discrete space are left for section 4.3.7.  
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The transfer function of the continuous-time first-stage, with rigid control only, can be 

expressed as follows: 

 1
1

1 1

( ) ( ) ( )( ) : ( )
( ) 1 ( ) ( ) ( )rc

l
r

q s C s M sG s N R s
r s C s M s D s

= =
+

 (4.20) 

 

where 1( )C s  is the PID compensator and 1( )D s  is the delay in the feedback loop expressed as: 

 

 1
1( ) d sTD s e−=  (4.21) 

 

with 1dT  being the delay of the loop feedback path.  

 

There are many ways to approximate the delay by rational functions. Among these approaches, 

the Padé approximant is the most frequently used method. A key factor in the implementation 

of the Padé approximant is order selection. In fact, the higher the order, the higher the group 

delay bandwidth achieved. However, a high order Padé approximant results in a high order 

closed-loop model, which may complicate the proposed approach. Therefore, a second-order 

approximation is considered, which provides unity gain and linear phase up to about 20% of 

the Nyquist frequency. The rational continuous-time transfer function of the delay derived 

using second order Padé approximant (Pekař & Kureckova, 2011) is as follows: 

 ( ) ( )
( ) ( )

2
1 1

1 2
1 1

12 6
( )

12 6
d d

d d

T s T s
D s

T s T s
− +

≈
+ +

 (4.22) 

 

The feedback delay introduces a conjugate pole pair at high frequencies and slightly changes 

the closed-loop transfer function dynamics at low frequencies. 

 

By manipulating transfer functions, Eq. (4.20) can be rewritten in rational form as follows: 

 

 0 1 2
1 3 4 5 6 7

0 1

2 3 4
3 4

2
2 3 4 5 6 7

( ) b b s b s b s b sG s
a a s a s a s a s a s a s a s

+ + + +=
+ + + + + + +

 (4.23) 
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where the coefficients are given as: 

 

10 12 j ib k K= ,  

11 1 112 6j p d i jb k K T K k= + ,  

12 1
2

1 1 16 12j p d d ji j db K k T k K T K k= + + ,  

1
2

3 1 1 16 dj p d d jb k K T K k T= + ,  

2
4 1 1j d db k K T= ,  

10 12 ,j ia k K=  

( )11 1 112 6 12 ,i l j d j pa K b k T k K= − +  

( ) ( )1 1 1 1
2 2
1 12 12 6 12 12 ,12 6 12p l d j m j d dj i j l d l l j ja K k K k K k TT bTb k b b k NJ −− += + + − + +  

( ) ( ) ( )
( )2

1 1 1
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3 1

2
1

1 1

1
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12 6 j dd l d j m j d m j l j l m p j l d l
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bT J
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−

−
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+ − +
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( ) ( ) ( )11
2 2 2 2

5 11 1 11 ,6 6 12d l m m l m j l dd j dm l j l p dl d l m la T J b J b J k b b J k K b J T JT N K TJT J−+ + + + + − += +  

( )6 1
2
11

2
1 6 ,l m m l l m ld d ddT Ja J b J J T J Tb K++= +  

2
7 1dl ma J J T=  

 

The continuous-time first-stage, with rigid control only, as defined by Eq. (4.23), can be 

expressed in terms of its poles and zeros as follows: 

 

 
( ) ( )

( ) ( )

2 2

1 1
1 5 2

1 1

( ) j j
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j
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∏ ∏
 (4.24) 
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where GK  is a gain factor, jz  and jp  are zeros and poles corresponding to low frequency 

dynamics near zω  while jz  and jp  are zeros and poles corresponding to high frequency 

dynamics due to the presence of delays. With a digital motion controller, the delay is typically 

never greater than a few sampling time and high frequency dynamics is well separated from 

the low frequency dynamics. It is worth mentioning that when separating the dynamics, no 

conjugate pole and zero pair is broken. This is to guarantee that complex conjugates can be 

combined into a quadratic form such that the transfer function coefficients are always real. The 

gain factor GK  is computed to preserve the static gain of 1( )G s  in rational form as shown in 

(4.23).  

 

The feedforward ( )F s  is proposed based on a combination of three parts as follows: 

 

 
( )

( ) ( )

5

1
2 3

1 1

1( ) j

j j

j

Fs

j j

s p
F s K

s z s σ

=

= =

−
=

− −

∏

∏ ∏
 (4.25) 

 

The first part of ( )F s  is the gain factor FsK , which is computed such that ( )F s  has unity static 

gain. The second part is the dominant inverse of 1( )G s , which includes poles jp  and zeros jz  

corresponding to low frequency dynamics. The last part is an all pole low-pass filter with poles 

located at jσ . 

 

Since the dominant inverse of 1( )G s has 5 zeros and 2 poles, the low-pass filter should have at 

least 3 poles to balance the number of pole and zero of the feedforward transfer function      

( )F s . 

 

4.3.3 First-stage time-varying dynamics 

In order to properly attenuate the flexible joint vibrations, it is very important that the zeros of 
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the first-stage feedforward transfer function cancel the dynamic poles of the first-stage rigid 

control loop. The natural frequency of the low frequency dynamic poles depends mainly on 

the effective joint stiffness, the motor inertia and the link inertia. As the robot’s tool moves 

along an arbitrary path, the link inertias, and to a less extent, the joint coupling stiffness, vary. 

To maintain vibration attenuation, the feedforward transfer function needs to be time varied 

with new coefficients that match the time-dependent link inertia and coupling stiffness. 

 

Given a robot configuration defined by the vector of reference joint position r , the link 

effective inertias are computed very efficiently by using a recursive Newton-Euler formulation 

(Featherstone & Orin, 2000). Each joint’s link inertia is computed by successive application 

of the inverse dynamics with the joint velocities set to zero, and with the joint accelerations set 

to zero or a unit vector.  

 

In order to compute inertial forces acting on the links, it is necessary to compute the linear and 

rotational accelerations of the center of mass of each link at a given instant. This computation 

is done iteratively starting with the link j and moving successively link by link outward to last 

link n . 

 ( )1 1
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ω ω
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− −
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  (4.27) 

 

 ,ci i i i ciPν ων = + ×    (4.28) 
 

where iω  and iν  are the rotational and linear accelerations of link i  , iR  is the rotation matrix 

from link i   to 1i −  , iq  is the joint i   rotational acceleration, 1,i iP−  is the origin of link i  in 

link 1i −  coordinates and ,i ciP  is link i  center of mass in link i  coordinates. To compute link 

j  accelerations, we set 1 1 0j jνω − −= = . 

Having computed the accelerations, we can apply the Newton-Euler equations to compute the 
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inertial force and torque acting at the center of mass of each link and the joint torques being 

applied to each link. The Newton-Euler equations are evaluated link by link starting from last 

link n  and working inward toward link j . 

 

Inward iterations i : n j→   

 ( )
1 1

1 1 1, , 1 1 ,

i i i i c

i i i i i i i i i ci i i i ci

f R f m

n R n I f P P R f P

ν
ω

+ +

+ + − + +

= +

= + − × + + ×




  (4.29) 

 

where if  and in  are the force and torque exerted on link i  by link 1i − , im  is the mass of link 

i  and iI  is the inertia tensor of link i  at its center of mass. Note that 1nf +  and 1nn +  are set to 

zero. 

 

The torque jτ  on joint j  is found by taking the Z component of the torque applied by its 

neighbor: 
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
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  (4.30) 

 

The link j  inertia jJ  is then obtained by dividing the joint torque by the joint acceleration 

used at the beginning of the procedure, i.e. /j j jJ qτ=  . 

 

The coupling stiffness ck  can be estimated using an empirical function. For simplicity, a first-

order model is used, where the coupling stiffness is expressed as a function of the link inertia.  

 

At every sampling time, the link inertia and coupling stiffness are computed and the first-stage 

closed-loop, with rigid control only, 1( )G s  is updated. Then, the feedforward is recomputed 

based on the procedure expressed by Eqs. (4.23) to (4.25). 
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4.3.4 Second-stage PID compensator  

The continuous PID compensator of the second-stage can be presented as: 

 

 2

2
2

2 2
2 2 2 2 2

2
2( ) d p ni nK s K s K s sC s K

s s
ζ ω ω+ + + += =  (4.31) 

 

where 2nω  and 2ζ  are the angular natural frequency and the damping ratio of the numerator 

polynomial, and 2pK , 2iK , 2dK  are the second-stage PID gains. The parameters 2K , 2nω  and 

2ζ  can be expressed as follows: 

 2 2dK K= , 2
2

2

i
n

d

K
K

ω = , 2
2

2 22
p

i d

K
K K

ζ =  (4.32) 

 

By setting 2 1ζ =  to obtain critical damping responses (shortest settling time without 

oscillation), 2 2n cω λ ω=  where 2λ  is a dimensionless parameter and cω  is the geometrical mean 

between zω  and Pω  defined in (4.33), the responsiveness of the second-stage is tuned only 

with the gain 2dK . The gain 2dK  is considered as a global gain that corresponds to the overall 

control performance trade-off between the response time and the overshoot.  

 zc pω ω ω=  (4.33) 
 

4.3.5 Second-stage feedback filter  

One aspect that must not be neglected for the second-stage loop is noise sensitivity. Two factors 

contribute to increase the noise sensitivity at high frequencies. Firstly, the quantization error 

of the second-stage position sensor can excite the delay poles of the first-stage. Secondly, the 

coupling transfer function ( )K s  from the link position to the reducer output position sensor 

features a zero at the coupling natural frequency and amplifies the high frequency content. 
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These two factors severely restrict the stability margin and the load rejection of the second-

stage. One way to alleviate the problem is to insert a low-pass filter in the feedback path. 

The filter 2( )H s  is designed using a thn -order Butterworth filter since it provides maximum 

flatness of the frequency response and a high-frequency roll-off of 20n  dB/decade. The order 

and cut-off frequency are selected to provide enough attenuation at the frequency of the delay 

poles, while leaving the flexible joint dynamics frequencies undisturbed.  

 

The transfer function of the Butterworth filter with a unit cut-off frequency is: 

 2 2

1( )
1 n

H jω
ω

=
+

 (4.34) 

 

The n poles of the filter lie on a unit circle at equally spaced point, and symmetric around the 

negative real axis. The k-th pole is specified by 

 

 
( )2 1

2
j k n

k
ns e

π+ −

=  with 1, 2,3, ,k n=    (4.35) 
 

4.3.6 Second-stage generalized Smith predictor 

A low-pass filter must be inserted into the second-stage loop feedback path to prevent the 

sensor noise from exciting the first-stage delay poles. One disadvantage of feedback filtering 

is the additional phase lag that is introduced. This phase lag and the loop delay reduce the gain 

margin. 

 

 The Smith predictor (J. M. Smith, 1957) can be considered as the first predictor-based control 

for linear systems with time delay. For our application, the group delay of the low-pass filter 

at low frequency is typically much higher than the time delay. This leads us to generalize the 

predictor concept to an arbitrary feedback transfer function. 

 

 First, the first-stage with input shaping feedforward seen at the reducer output position output 

can be computed as follows: 
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 1 1
( )( ) ( ) ( ) ( )
( )is

rq sP s F s G s K s
r s

= =  (4.36) 

 

The transfer function 1( )P s  can be regarded as the plant for the second-stage. If no filter and 

delay are placed in the feedback path, the second-stage closed loop transfer function is: 

 

 2 1

2 1

( ) ( )( )
1 ( ) ( )

C s P sG s
C s P s

=
+

 (4.37) 

 

where 2 ( )C s  is a satisfactory PID compensator. 

 

In the presence of feedback filter and delay, the second-stage closed-loop transfer function 

becomes: 

 2 1

2 1 2 2

ˆ ( ) ( )ˆ ( ) ˆ1 ( ) ( ) ( ) ( )
C s P sG s

C s P s H s D s
=

+
 (4.38) 

 

where 2
ˆ ( )C s  is a compensator to be defined. 

 

The objective is to design a compensator 2
ˆ ( )C s  such that the second-stage closed-loop transfer 

function remains unchanged in the presence of a feedback filter and delay as follows:  

 

 ˆ ( ) ( )G s G s=  (4.39) 
 

Substituting Eqs. (4.37) and (4.38) into Eq. (4.39), and solving for 2
ˆ ( )C s  gives: 

 

 [ ]2 2
2 1 2 2

( )

1ˆ ( ) ( )
1 ( ) ( ) 1 ( ) ( )

S s

C s C s
C s P s H s D s

=
+ −


 (4.40) 
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The transfer function 2
ˆ ( )C s  is the combination of 2 ( )C s  and the transfer function ( )S s , which 

is the so-called generalized Smith predictor. 

 

4.3.7 Discrete-time implementation  

In the previous sections, the proposed controller is designed in the continuous-time domain. 

However, most industrial robots use digital controllers to perform joint position control. 

Therefore, for implementation purpose, a discretization of the control approach needs to be 

conducted.  

 

When converting the feedforward transfer function from the continuous domain to the discrete 

domain, it is then of paramount importance to preserve the frequency response near the flexible 

joint dynamics frequencies. For that purpose, the bilinear transform with frequency warping is 

used. The pre-warping frequency of continuous poles and zeros is performed at a central 

frequency cω , which is the geometrical mean between zω  and pω  of the ( )M s  transfer 

function, as shown in Eq. (4.33). This cω  is very close to the crossover frequency of the motor 

transfer function ( )M s  for unity gain. The frequency cω  is pre-warped into an analog angular 

frequency cΩ  as follows: 

 2 tan
2
c s

c
s

T
T

ω Ω =  
 

 (4.41) 

 

where sT  is the sampling time.  

 

For each pole and zero of the continuous-time feedforward transfer function ( )F s , the 

following pre-warp frequency transformation is applied: 

 

 
c

ss ←
Ω

 (4.42) 
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The bilinear transform is used to map the continuous-time domain to the discrete-time domain 

as follows: 

 2
2

s

s

sTz
sT

+=
−

 (4.43) 

 

The discrete-time feedforward transfer function can be written as follows: 

 

 
( )

( )

5

1
5

1

( ) Fz

j
j

j
j

z z
F z K

z p

=

=

−
=

−

∏

∏
 (4.44) 

 

where FzK  is the gain factor, which is obtained by matching the magnitude of the analog and 

discrete transfer function at cω , and jz  and jp  are zeros and poles of the discrete-time transfer 

function computed by applying Eq. (4.43) to the continuous-time zeros and poles. 

 

The bilinear approximation with frequency warping is used to obtain the discrete versions of 

all continuous transfer functions that are needed for the implementation of the control method, 

except for the PID compensators. Although bilinear approximation with frequency warping is 

widely used to preserve the frequency response, it cannot be used to obtain a discrete PID 

transfer function. If bilinear approximation is used, it leads to two poles on the unit circle and 

thus a marginally stable transfer function. The backward difference approximation is used to 

discretize the PID compensator instead. Substituting the backward difference approximation 

( )1 / ss z T z= −  into Eq. (4.19) yields: 

 

 
( ) ( ) ( )1 2

1 1 1 1 1 1
11

/ 2 / /
( )

1
p i s d s p d s d sK K T K T K K T z K T z

C z
z

− −

−

+ + − + +
=

−
 (4.45) 

 

where sT  is the sampling time. 
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At low frequencies, the discrete transfer function matches well the continuous transfer 

function, but at frequencies above 10% of the sampling frequency it stops following its 

continuous counterpart, and a large phase distortion is observed. For instance, at high 

frequencies, the derivative term is dominant and the phase of the continuous transfer function 

is close to 90 degrees and the group delay is zero. For the discrete version, at the Nyquist 

frequency, the phase becomes zero and the group delay is not zero.  

 

Due to the phase mismatch between continuous and discrete rigid controllers, the continuous 

closed-loop transfer function 1( )G s  overestimates the frequency of the delay poles, resulting 

in an overestimated gain margin. 

 

To remedy this situation, a simple but effective approach is to tweak the feedback delay value 

such that the frequencies of delay poles in the continuous and discrete models are matched. To 

this end, the feedback delay in the continuous rigid control loop 1( )G s  is defined as: 

 

 1 1d fb wT T T= +  (4.46) 
 

where 1fbT  is the actual motor feedback delay and wT  is the compensated distortion delay 

computed from the group delay of the 1( )C z  at / sTω π=  , as shown in (4.47): 
 

 ( )1
sj T

w
dT eC

d
ω

ω
= − ∠  at 

sT
πω =   (4.47) 

 

An example is given to illustrate the effect of PID phase distortion on the first-stage rigid 

control. Parameters used for the simulation are 210.74 kgmlJ = , 4 22.65 10 kgmmJ −= × , 

314.66 10 Nm/radjk = × , 412 10 Nm/radrk = × , 314.65 10 Nm/radck = × , 160rN = , 

24.74 Nms/radlb = , 49.46 10 Nms/radmb −= × , 1 2.3λ = , and 1 2 msfbT = .  

 

As shown in Figure 4.7, at Nyquist frequency, there is a difference of 0.4849 ms between the 
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group delays of continuous and discrete PID controllers, which is about half of the sampling 

time of 1ms. This difference causes frequency modelling errors of the closed-loop system, as 

shown in Figure 4.8. Note that a discrete closed loop 1( )G z  is directly computed using discrete 

versions of the flexible joint dynamic model and integer delay. An actual delay frequency of 

84.36 Hz is computed from the discrete closed loop 1( )G z . Without the distortion 

compensation, the continuous model provides a delay frequency of 100.38 Hz, which is 

overestimated by about 19%. With the distortion compensation, i.e. 0.4849wT =  ms, the 

continuous model provides a delay frequency of 86.63 Hz, which is only about a 2.7% 

mismatch versus the delay frequency computed from the discrete-time model. 

 

      
Figure 4.7 Phase lag and delay induced by discrete PID distortion at high frequencies 
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It should be mentioned that although the discrete version of the closed-loop 1( )G z  is available, 

it should not be used to design the feedforward. This is because the numerical computation of 

1( )G z  may require order reduction, which introduces difficulties for pole-zero selection and 

time-varying dynamics of the feedforward.  

 

 
 

4.3.8 Stability analysis 

The advantage of increasing the gain parameter 1λ  of the PID compensator 1C  is that it 

improves the rejection of disturbances, such as external torques or nonlinear frictions. 

However, 1λ  should not be increased up to the point where flexible dynamics of the link are 

excited. With input shaping control, the parameter 1λ  can be boosted up since the link vibration 

is attenuated by the feedforward. Now, there are two other factors that bound the magnitude of 

1λ . The first is the level of confidence in the model parameters. The presence of model 

 
Figure 4.8 (a) Frequency response of the closed-loop 1G  with and without PID distortion 

compensation; (b) Zoomed-in of selected portion according to delay frequency 
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mismatches, which is very common in practice, can deteriorate the feedforward performance 

if a too high 1λ  is selected. Consequently, the higher the model confidence, the higher the gain 

can be set. The second factor is the feedback delay, which introduces a conjugate pole pair at 

high frequencies (see Eq. (4.24)). The feedback delay sets a limit on gains, above which the 

closed loop becomes unstable. The value of the parameter 1λ  that results in an unstable system 

can be numerically found by solving the closed loop characteristic equation of 1( )G z  as 

follows: 

 1 11 ( ) ( ) ( ) 0C z M z D z+ =  (4.48) 
 

A simulation study is realized to illustrate the stability of 1( )G z  with respect to the parameter 

1λ . Parameters used for the simulation are similar to those in section 4.3.7, with the parameter 

1λ  varying from 1.9 to 3.7, and the low-pass filter inside the feedforward being a third-order 

Butterworth low-pass filter with a cutoff frequency at the crossover frequency of 7.45 Hz.  

 

    

 

 
Figure 4.9 (a) Pole locus of closed-loop model 1( )G z  with increasing 1λ , (b) Zoomed-in of 

region I: delays dynamics, (c) Zoomed-in of region II: flexible joint dynamics 
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The pole locus of the first-stage, with rigid control only, is depicted in Figure 4.9. Increasing 

1λ  may cause flexible joint poles to approach the unit circle (see Figure 4.9 (c)) and cause 

delay poles to be out of the unit circle (see Figure 4.9 (b)). In addition, the motor torque gets 

noisier when delay poles move towards the unit circle. This noise develops even much faster 

when the motor position encoder quantization error is taken into account. Therefore, to 

maintain a margin for model mismatches and to avoid torque fluctuation or even saturation, 1λ  

should not exceed 75% of the value that leads the closed loop to instability. A typical response 

of the first-stage rigid control (with 1 0.5λ =  and 1 2.3λ = ) versus the input shaping control is 

shown in Figure 4.10. Note that the input shaping control refers to the first-stage with rigid 

control (with 1 2.3λ = ) and input shaping feedforward enabled. It can clearly be seen that the 

first-stage rigid control with higher value of 1λ  reduces rising time, but induces large 

vibrations. The input shaping control significantly reduces the vibration. 

 

Figure 4.10 (a) Frequency response and (b) step response of the first-stage rigid control 
versus the first-stage input shaping feedforward control 

(a) (b)
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The stability of the second-stage is determined based on an analysis of the second-stage open 

loop defined as: 

 

 2 2 1( ) ( ) ( ) ( )O z C z S z P z=  (4.49) 
 

where 1( )P z  is the plant for the second-stage, which is computed by discretizing 1( )P s  in Eq. 

(4.36). A typical trend of the phase margin and closed-loop 3db bandwidth with increasing 

global gain 2dK  with different 2λ  is shown in Figure 4.11. Increasing 2λ  leads to a higher 

control bandwidth, but a lower phase margin. The value 2 1λ =  is recommended, which 

Figure 4.11 Phase margin and closed-loop bandwidth of the two-stage control 
with increasing 2dK  
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compromises between the bandwidth and the phase margin. To avoid inducing too much 

vibration in the link response, 2dK  should be selected to obtain a phase margin of at least 70 

degrees. 

 

 

              
 

An important quality of the proposed controller is its capacity to reject torque disturbance at 

the link inertia. The load disturbance transfer function is defined from the link torque 

disturbance ld  to the link position lq . Figure 4.12 shows the simulated frequency responses 

of the load disturbance transfer function for three control approaches: Rigid control (with

1 0.5λ = ), Input shaping control (with 1 2.3λ = ) and Two-stage control (with 1 2.3λ =  and 

2 0.0075dK = ). It is clearly seen that the proposed input shaping control and two-stage control 

provide a much higher disturbance rejection at low frequencies. This is due to the use of a 

higher gain in the first-stage and the addition of the second-stage.  

Figure 4.12 Load disturbance rejection with three controllers: Rigid 
control, Input shaping control, and Two-stage control 
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However, the input shaping control, and even the two-stage control do not provide any more 

disturbance rejection near resonance frequency. This implies that torque disturbances with 

frequency content near resonance frequency generate vibrations. This is a shortcoming of the 

input shaping approach. Such disturbances may arise from external forces at the effector, or 

from internal coupling inertial, Coriolis and centrifugal torques. 

 

Another important quality of the proposed controller is the reducing of high frequency sensor 

noise effects. The noise reduction is evaluated using the noise sensitivity function, which is 

defined from the second-stage feedback noise rη  to the motor torque u . Figure 4.13 shows the 

frequency response of the sensitivity functions of the system using the two-stage control with 

the second-stage (fourth order Butterworth) low-pass filter enabled and disabled.  

 

 

                  
 

As shown in Figure 4.13, for the frequencies less than the low-pass filter cut-off frequency (25 

Hz), the sensitivity functions with the low-pass filter enabled or disabled are similar. However, 

Figure 4.13 Frequency responses of the sensitivity function of the system 
using Two-stage control with and without the second-stage low-pass 

filter 
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for higher frequencies, without the second stage low-pass filter, the sensor noise is significantly 

amplified at the resonance of 84.36 Hz due to the delay dynamics. This noise, if not 

compensated, may cause the fluctuation or even the saturation of the motor torque. With the 

second stage low-pass filter enabled, the control performance is much improved since the 

resonance is effectively attenuated by 70 dB and the magnitude near the Nyquist frequency is 

reduced by about 150 dB. 

 

 

4.3.9 Model mismatch sensitivity analysis 

In this section, we consider the more general case in which model mismatches exist. In practice, 

it is very difficult or almost impossible to obtain exact dynamic models due to the inadequacy 

of linear time-invariant modelling, nonlinear effects, or time-varying robot configurations. A 

general requirement of a control system is that it should provide a certain level of robustness, 

even in the presence of modelling errors.  

 

The following observations are drawn from the analysis of the control performance: 

 

1) The performance of the input shaping control is highly dependent on how well the link 

resonance frequency is modelled. This frequency is obtained from a conjugate pole pair 

of the seventh-order closed-loop 1G . The frequency of these poles is sensitive to the 

effective joint stiffness jk  and link inertia lJ . Since the link inertia lJ  can be obtained 

quite accurately, the modelling error of jk  becomes the main source of oscillation 

frequency modelling uncertainty. 

 

2) Modelling errors of damping have a smaller effect on vibration control performance 

than that from frequency modelling error. Large errors in the damping coefficients do 

not produce very big differences in the link response with feedforward.  
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To illustrate the effect of the stiffness mismatch, numerical simulations are performed. The 

parameters used for the simulations are similar to those in the section 3.8, with modelling errors 

added. Figure 4.14 shows the link position response of the input shaping control with effective 

joint stiffness modelling errors varying within 20%± . This large error induces a lump and a 

bump in the frequency responses near the link resonance frequency, which deteriorates the 

tracking performance. However, input shaping control still improves the tracking performance 

and vibration rejection as compared to the use of the first-stage rigid control alone (see Figure 

4.10), even in the presence of large modelling errors.  

 

 

 
Figure 4.15 shows the phase margin and 3dB closed-loop bandwidth of the two-stage control 

with large modelling errors, with up to a 20%±  mismatch of effective joint stiffness jk . It can 

Figure 4.14 (a) Frequency response and (b) step response of the first-stage feedforward 
control with large modelling errors 

(a) (b)
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clearly be seen that the system is still stable, but the phase margin and closed-loop bandwidth 

may vary significantly if a high 2dK  is selected.  

 

 

                
 

4.3.10 Parameter identification technique  

Since the feedforward is designed using the inverse closed-loop model, all parameters that 

appear in the differential equations of the closed-loop 1( )G s  need to be known. These 

parameters include flexible joint parameters lJ , mJ , lb , mb , rk , jk , and rN . 

 

 
Figure 4.15 Phase margin and closed-loop bandwidth of two-stage 

control with large modelling errors 
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Based on the mass distribution and density of every part of the manipulator from the CAD 

model, a recursive Newton-Euler allows computing the link effective inertia lJ  with regard to 

robot configurations. The CAD model can also be used to obtain the motor inertia mJ . The 

reducer stiffness rk  and gear ratio rN  can be obtained from component specifications. The 

motor friction mb  can be obtained from specifications of motor bearings and motor iron losses, 

and the link friction lb  can be estimated from the reducer efficiency.  

 

Theoretically, rigid controller gains ( 1pK , 1iK , and 1dK ) are known precisely. However, if the 

proposed control approach is retrofitted into existing robots, it should be ensured that built-in 

rigid control gains are available. 

 

Once the above parameters are obtained, the effective joint stiffness jk  is identified. If the 

torque command is available, the motor open-loop transfer function can be obtained. Then, the 

joint stiffness jk  can be identified by fitting open-loop frequency response curves (S. Oh & 

Kong, 2017; Pham, Hamelin, et al., 2019). Note that to obtain frequency responses accurately, 

excitations should be performed at many different frequencies. If only the access to the 

reference profile is available, as is the case for industrial robots with built-in joint controllers, 

the effective joint stiffness jk  cannot be easily extracted from closed-loop frequency 

responses. Therefore, a method to identify the effective joint stiffness jk  using temporal 

responses is needed. Compared to identification using frequency responses, the identification 

using temporal responses presents the advantage of being very fast since only one test is 

required. 

 

A discrete energy separator algorithm (DESA) is used to find the instantaneous frequency and 

envelope of a temporal response signal (Maragos, Kaiser, & Quatieri, 1993). Before applying 

DESA, the signal goes through a band-pass filter to retain the frequency content near the 

estimated resonance frequency. A fourth order Butterworth filter with a 4 Hz bandwidth gives 

good results. 
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To separate the induced vibration from reference transient harmonics, an instantaneous 

frequency and envelope can be found by applying DESA to the time inverse response data. 

The instantaneous frequency can be extracted as shown in (4.50):  

 

 [ ( )] [ ( 1)]ˆ ˆ( ) ( ) arccos 1
4 [ ( )]s

y n y nn n T
x n

ω  Ψ + Ψ +Ω = = − Ψ 
 (4.50) 

 

 where ˆ ( )nω  is the instantaneous angular frequency, ( )x n is the band-pass filtered time inverse 

temporal response signal, ( ) ( ) ( 1)y n x n x n= − − , n  is the sample index, and Ψ  is the discrete-

time Teager energy operator defined as: 

 [ ]
2

11

s

n n n
n

x x xx
T

− +−Ψ =  (4.51) 

 

where sT  is the sampling time, and x  is the input signal. 

 

A fourth order low-pass Butterworth filter is used for smoothing the instantaneous frequency 

signal. The low-pass filter cutoff frequency is set to twice the value of the band-pass filter 

bandwidth. The vibration frequency ω  can be found as the mean of the low-pass filtered ˆ ( )nω

about its steady state. If the obtained vibration frequency differs too much from the initial 

estimate used to set the band-pass filter central frequency, the identification procedure can be 

repeated with an updated central frequency estimate. Figure 4.16 shows a frequency 

identification example using a time inverse temporal response signal. For 1000 samples during 

the vibration decay period, the standard deviation using the original signal is 0.54 Hz. It is 

difficult to obtain a stable frequency average since the instantaneous frequency varies 

significantly (see Figure 4.16(a), bottom figure). When the time inverse signal is used (see 

Figure 4.16(b), bottom figure), the instantaneous frequency stabilizes quickly and the standard 

deviation is reduced by 56% to only 0.24 Hz. 

 

Then, a numerical optimization procedure based on the Secant method is conducted to find the 

effective joint stiffness jk  such that the closed-loop model 1( )G s  can provide the identified 
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vibration frequency. The effective joint stiffness based on previous iterations as shown in 

(4.52) 

 
( 1) ( )

( 2) ( 1) ( 1)
( 1) ( )

j j
j j

k i k i
k i k i i

i i
ω

ω ω
+ −

+ = + − Δ +
Δ + − Δ

  (4.52) 

 

where 
1Gω ω ωΔ = −  with 

1Gω  is the frequency of the conjugate poles of 1G  according to the 

flexible joint vibration, ω  is the identified vibration frequency, and i  is number of iteration. 

Once jk  is identified, the coupling stiffness ck  can be computed using (4.8). 

 

 

 

Figure 4.16 Frequency identification from experimental data: (a) Identified from the original 
signal, (b) Identified from the time inverse signal 
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In the following, the identification of delays is presented. The identification of feedback time 

delay requires access to motor torque measurement, which can be estimated from the motor 

current signal. A discrete numerical simulation of the first-stage, with rigid control only, is 

conducted. A high value of 1λ  is selected such that the delay pole is excited. Then, the 

simulation feedback delay is tuned to allow closely matching of simulated and measured FFT 

of the motor torques. The delays from motor side and link side measurements are assumed to 

be equal, since these two signals come from the same motion drive.  

 

 

4.3.11 Multiple joint synchronization 

It is not necessary to apply the proposed input shaping techniques to each joint first-stage 

controller. Typically, only the joints near the base of the kinematic chain need the first-stage 

input shaping since they exhibit significant vibrations in their response. For instance, the link 

inertia of the joints becomes smaller as the joint approaches the end of the kinematic chain. 

This results in higher dynamics frequencies and lower vibration amplitudes. Eventually, the 

vibration level is smaller than the resolution of the link position sensor, at which point it is no 

longer required, or feasible, to compensate for it. In that case, a second-stage is still desirable, 

but without the first-stage feedforward. 

 

The position control of an individual joint from a decentralized perspective has been 

considered to this point. Nevertheless, to achieve precise Cartesian position control, it is 

important that all joint positions be synchronized. When enabled, the input shaping 

feedforward adds a non-negligible group delay to the low frequency response of the first-stage 

controller. This creates a distortion of the desired trajectory in the Cartesian space if not 

compensated. 

 

We propose to use an all-pass fractional delay filter in place of the feedforward when the 

feedforward is not required. The fractional delay is adjusted as the average static group delay 

of all the input shaping feedforward transfer functions. 



103 

Such a digital all-pass filter, with exactly flat magnitude response, can be directly designed in 

the Z-plane as follows: 

 

 
( )1

( )
( )

nz D z
H z

D z

− −

=  (4.53) 

 
with   1 2

1 2( ) 1 n
nD z a z a z a z− − −= + + + +   

 

where n  is the order of the filter and ( )D z  is the denominator polynomial with real value 

coefficients ka , and the numerator polynomial is a reverse version of the denominator. The 

Thiran method (Thiran, 1971) is used to obtain a maximally flat group delay. The following 

design formula is used to compute the polynomial coefficients: 

 

 ( ) ( ) 0

!1
! !

k
N

k
n

N d na
N k k d k n=

+= −
− + +∏  (4.54) 

 

where D  is the fractional delay and d D N= −  is the real value delay parameter. The 

denominator polynomial has all roots inside the unit circle for 1d > − . Typically, a fourth order 

is enough to provide flat group delay inside the closed-loop bandwidth. 

 

 

4.4 Experiment 

In this section, experiments are conducted to validate the effectiveness of the proposed control 

approach.  

 

4.4.1 Experimental setup 

The experimental test bench is an industrial six-joint serial robot system named SCOMPI 

currently under development at Hydro-Québec’s Research Institute, as shown in Figure 4.17. 

It includes a track-based robot manipulator, a controller, and a teach pendant. A grinding tool 
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is mounted on the robot end effector. The robot is installed on a vertical track.  

 

Each joint actuator uses a synchronous permanent magnets motor controlled by an embedded 

Elmo whistle motion drive. The motor torques is amplified by a harmonic drive reducer. Joint 

angular positions are captured by a custom Timken magnetic encoder with 13-bit resolution 

on the motor and a Netzer DS-58 absolute encoder with 18-bit resolution on the reducer output.  

 

The high-level control algorithm is implemented in C++ and runs under a real-time Linux 

operating system with a loop cycle time of 1 ms. The robot controller communicates with the 

embedded motion drives via the EtherCAT protocol. The main specifications of the robot are 

given in Table 4.1 to Table 4.3.  

 

 

   
 

Figure 4.17 Experimental testbed: (a) the industrial six-joint SCOMPI robot manipulator 
with embedded joint controllers; (b) the robot controller and the teach pendant 



105 

 
 

 

Table 4.1 Joint specifications 

 Joint 1 Joint 2 Joint 3 Joint 4 Joint 5 Joint 6 
rN  51 160 160 160 160 160 

mJ  [ 4 210 kgm− ] 1.71 2.65 2.42 1.26 0.91 0.86 

lJ  [ 2kgm ] 4.27 2.87 - 
10.74 

3.65 - 
6.70 

1.33 - 
1.35 4.316 2.53 

jk  [kNm/rad] N/A 7.49 - 
14.66 

18.33 -
21.36 

3.34 - 
8.34 N/A N/A 

rk   [kNm/rad] 25 120 120 57 29 29 

mb  [ 410− Nms/rad] 9.46 9.46 9.46 9.46 5.90 5.90 

lb   [Nms/rad] 2.73 24.74 5.67 9.37 8.74 8.74 
 

Table 4.2 Mass distribution 

 Link 1 Link 2 Link 3 Link 4 Link 5 Link 6 Tool 
m   [kg] 19.0 5.723 5.166 4.425 3.302 1.022 4.026 

xPc  [m] 0.021 -0.054 -0.138 0.011 0 -0.004 -0.002 

yPc  [m] 0.031 0.003 0 0.012 -0.026 0.039 0.005 

zPc  [m] -0.226 0.014 -0.019 0.161 -0.022 0 0 

xxI [kgm2] 0 0.010 0.008 0.044 0.012 0.001 0.007 

yyI [kgm2] 0 0.044 0.160 0.044 0.006 0.001 0.007 

zzI [kgm2] 0 0.043 0.160 0.008 0.008 0.012 0.008 

xyI [kgm2] 0 0.003 0 0 0 0 0 

xzI [kgm2] 19.0 5.723 5.166 4.425 3.302 1.022 4.026 

yzI [kgm2] 0.021 -0.054 -0.138 0.011 0 -0.004 -0.002 

m : mass        Pc : Center of mass           I : Moment of inertia at the center of mass   
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The robotic arm is a chain of links vibrating at different levels. The joints with indices 2-4 are 

about the base of the kinematic chain carrying the high load, and are subjected to large 

vibrations. Therefore, joints with indices 2-4 are equipped with full components of the 

proposed two-stage controller. Other joints use only the second-stage control without input 

shaping feedforward on the first-stage. This is because the joints with indices 5-6 are at the end 

of the kinematic chain, which are subjected to lower amplitude vibration. Joint 1 is a prismatic 

joint that is less prone to vibrations, and as such, the input shaping control should not be 

applied.  

 

For experimental and simulation studies, reference trapezoidal trajectories which are 

continuous up to the second-order derivative are employed. The amplitude and rise time are 

adjusted to avoid saturating the motor torque. Three controllers are implemented including the 

rigid control (first-stage with the rigid control only), the input shaping control (first-stage with 

the input shaping feedforward), and the two-stage control (with input shaping feedforward at 

the first-stage).  

 

The built-in Elmo motion drive uses a P/PI controller. In order to directly implement the 

proposed approach, the P/PI is transformed into a standard PID controller. The transformation 

and more details about the P/PI controller are given in Appendix I. Note that the velocity 

feedforward signal mr  is obtained by feeding the reference velocity r  and feedback velocity 

rq  through the second-stage and feedforward transfer functions. The feedback velocity rq  is 

Table 4.3 Denavit-Hartenberg parameters 

 Joint 1 Joint 2 Joint 3 Joint 4 Joint 5 Joint 6 
iq [deg] o90  2q  3q  4q  5q  6q  

iα  [deg] o0  o90  o0  o90  o90  o90−  

ia [m] 0 0.192 0.042 0 0 0 

id  [m] 1q  0 0 0 0.38 0 
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numerically computed from rq  using backward difference. Experimental values of motor 

position mq  and reducer output position rq  are obtained from encoders, while those of link 

position lq  are measured with a laser tracker.  

 

4.4.2 Parameter identification 

Two robot configurations are used to identify robot parameters, as shown in Figure 4.18. The 

first is a fully extended pose, where the end effector is far from the track. The second is a fully 

folded pose, where the end effector is close to the track. These two configurations can be 

considered as a bound for trajectories of the SCOMPI robot. Since joint 2 is subjected to large 

vibrations, its identification procedure is detailed in the following.  

 

Applying DESA for a time inverse temporal response of the reducer output position, the 

vibration frequency is 5.54 Hz and 7.97 Hz at the fully extended pose and at the fully folded 

pose, respectively. Then, the numerical optimization is launched to find the effective stiffness 

at each pose. As shown in Figure 4.19, after about 4 iterations, the effective stiffness converges 

to its optimized value. The effective stiffness at the fully extended pose and at the fully folded 

pose are 14.66 kNm/rad and 7.49 kNm/rad, respectively. 

 

The feedback delay is then identified. Varying the motor feedback delay in the simulation 

causes significant changes of the motor torque at high frequencies. The delay time is found by 

matching the simulated and measured spectrum of the motor torques, as shown in Figure 4.20. 

The presence of a 2 ms delay is identified, which induces a resonance of about 93.57 Hz. A 

delay of 1 ms causes no significant oscillation peak after 10 Hz, while a delay of 3 ms causes 

instability. Good agreement between the motor torques from the simulation and the experiment 

are obtained in both flexible dynamic frequencies (0 to 10 Hz) and delay frequencies (about 

94 Hz), as shown in Figure 4.21. Finally, the identified robot parameters are shown in Table 

4.1. 
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Figure 4.18 Robot configurations used for identification: (a) Fully extended pose and (b) 

Fully folded pose 

 
Figure 4.19 Identification of the effective joint 2 stiffness 

(a) Fully extended pose (b) Fully folded pose
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Figure 4.20 Comparison of experiment and simulation motor torque 

spectrums. (a) Flexible joint dynamics and (b) Delay dynamics 

 
Figure 4.21 Zoomed-in of the regions (a) and (b) shown in Figure 4.20 
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4.4.3 Validation of the first-stage control performance 

In this section, the rigid control and input shaping control are implemented. Using a reference 

trapezoidal trajectory, temporal responses of the reducer output position and motor torques 

using these two control approaches are obtained. Following that, the control performances are 

compared.  

 

 

Figure 4.22 Experimental and simulation temporal responses of reducer output position rq  
[rad] with rigid control. Rigid controller gains corresponding to (a) 1 0.5λ = , (b) 1 2.3λ = , and 

(c) 1 2.8λ =  

(a)

(b)

(c)
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Rigid controller gains are set using parameters at the fully extended configuration. The 

parameter maxλ  of 3.1 which results in an unstable system can be numerically found by solving 

the closed loop characteristic equation shown in Eq. (4.48). Figure 4.22 shows the temporal 

response of the reduce output position with RC gains set to 1 0.5λ = , 1 2.3λ =  (equals 75% of 

max )λ , and 1 2.8λ =  (equals 90% of maxλ ). The lowest rigid controller gains corresponding to 

1 0.5λ =  causes the highest overshoot, but less vibration. When 1λ  increases from 2.3 to 2.8, 

vibration changes slightly, as is shown in Figure 4.22(b) and Figure 4.22(c). However, the 

motor torque gets noisy quickly since the delay poles are excited. As shown in Figure 4.23, the 

peak according to the delay (at about 94 Hz) gets bigger as 1λ  is increased. 

 

 
Discrepancies between experimental and simulation results can be found in Figure 4.22(a). 

The experimental reducer output position oscillates a little bit more than that in the simulation 

model. These results can be expected given the fact that the RC gains are low ( 1 0.5λ = ), 

causing low rejections of unmodelled disturbances, such as nonlinear frictions. In general, 

good agreement between experimental and simulation results of the reducer output position 

are presented in Figure 4.22. The spectrums of the motor torque from simulation and 

 
Figure 4.23 Experimental and simulation motor torque spectrum with rigid controller gains 

corresponding to (a) 1 0.5λ = , (b) 1 2.3λ = , and (c) 1 2.8λ =  
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experiment are also similar, especially in terms of the matching of the frequency of the delay 

dynamics, as shown in Figure 4.23 (c).  

 

The reducer output position using the input shaping control is shown in Figure 4.24. The 

vibration is significantly attenuated. Steady-state error due to gravity and calibration can be 

seen on one side of the response, as shown in Figure 4.24(b). A remaining overshoot, in the 

reducer output position response, is caused by an underdamped conjugate pair poles of the 

Butterworth low-pass filter inside the feedforward. Other low-pass filter, such as critical 

damped and Bessel, types can be used to avoid inducing that overshoot. However, these two 

filters provide less attenuation at high frequency. 

 
4.4.4 Validation of the second-stage control performance 

The motion tracking performance of the two-stage controller with a second-stage generalized 

Smith predictor (GSP) disabled or enabled is shown in Figure 4.25. The PID compensator of 

 

 
Figure 4.24 Experimental and simulation temporal responses of reducer output position with 

input shaping control 
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the second-stage is designed using 2 0.0075dK = . It is clearly seen that the GSP plays an 

important role in reducing vibration and allows cranking up the control gains. With the same 

2dK , vibration is always reduced with GSP enabled.  

 

 
 

Figure 4.26 shows the torque frequency spectrum of the two-stage controller with the second-

stage feedback filter enabled and disabled. With the feedback filter enabled, high amplitude 

harmonics of the motor torque near the delay frequency are significantly reduced. Without the 

feedback filter, the motor torques gets very noisy and are almost saturated. 

 

Comparisons of the temporal responses using three controllers are given in Figure 4.27. The 

rigid control is designed with 1 2.3λ = . The two-stage controller reduces both the vibration and 

disturbances. The response with the input shaping control and two-stage control reaches steady 

state in 0.4 secs, while that with rigid control keeps oscillating up to 1.4 secs. The steady-state 

error at the reducer output position is also eliminated with the two-stage controller, as shown 

in Figure 4.27 (b). 

 
Figure 4.25 Experimental and simulation temporal responses of reducer output position using 

two-stage controller with GSP disabled or enabled 
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0 0.2 0.4 0.6 0.8 1
Time [s]

0.019

0.0195

0.02

0.0205

0.021
Ref.
GSP disabled
GSP enabled

0 0.2 0.4 0.6 0.8 1
Time [s]

0.019

0.0195

0.02

0.0205

0.021
Ref.
GSP disabled
GSP enabled



114 

 

 
 

 

 
Figure 4.26 Experimental and simulation torque spectrum of two-stage controller with the 

feedback filter enabled and disabled 

 
Figure 4.27 Experimental and simulation temporal responses with three controllers: Rigid 

control, Input shaping control, and Two-stage control: (a) Experiment, (b) Simulation 
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Experimental and simulation frequency responses of the closed loop with three controllers are 

given in Figure 4.28. The rigid control is designed with 1 2.3λ = . Vibration resonance in the 

reducer output position and link position are significantly reduced with feedforward and two-

stage control. Indeed, the resonance of about 20.1 dB on the link side with rigid control (with 

1 2.3λ = ) is reduced to almost 0 dB with the two-stage control. The bandwidth of the two-stage 

controller is 5.6 Hz, which is almost twice that of the rigid control at 2.9 Hz. Note that 

experimental measurements at link side are presented in section 4.4.6. 

 

 
Figure 4.28 Experimental and simulation frequency responses with three controllers: Rigid 
control, Input shaping control, and Two-stage control; (a) From reference input to reducer 

output position, (b) From reference input to link position 
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4.4.5 Validation of time-varying dynamics  

In this section, the performance of the proposed controller with the time-varying robot 

configuration is presented. Figure 4.29(a) is a screenshot from the robot teach pendant that 

shows the reference trajectory used to test time-varying dynamics. The grinding tool is moved 

slowly from right to left (Figure 4.29(b-d)), following the red line, while the trapezoidal pattern 

of joint 2 (green line) is superimposed.  

 

 

 

At initial time, the joint 2 effective inertia is 28.12 kgm , the coupling stiffness is 

13.39 kNm/rad , and the joint natural frequency is 6.19 Hz. At the end of the trajectory, 50 secs 

Figure 4.29 (a) Overview of the reference trajectory. The robot configuration changes from 
(b) large link 2 effective inertia, via (c) average link 2 effective inertia and finishes at (d) 

minimum link 2 effective side inertia 
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later, the joint 2 effective inertia is 22.74 kgm , the coupling stiffness is 7.79 kNm/rad , and the 

joint natural frequency is 8.13 Hz. 

 

Figure 4.30 shows the experimental temporal responses for the two-stage controller with and 

without time-varying dynamics. It is clearly seen that the two-stage controller, with updating 

dynamics enabled, significantly reduces the vibration as compared to that with updating 

dynamics disabled, even in the presence of large configuration variations. 

 

 
4.4.6 Validation of end effector vibration attenuation 

Although a decentralized approach is implemented to reduce vibration at the joint level, the 

main motivation for the proposed controller is to reduce the vibration at the robot end effector. 

To validate that the lumped coupling stiffness element introduced into each joint model is 

satisfactory for predicting the link vibration, measurements at the end effector are required. 

 

Figure 4.30 Experimental temporal responses of joint 2 for trapezoidal trajectory during 
configuration change. (a) For large link 2 effective inertia, (b) For average link 2 effective 

inertia, (c) For minimum link 2 effective inertia 

(a) During 0 [s] to 2.5 [s] (b) During 25.5 [s] to 28 [s] (c) During 44.5 [s] to 47 [s] 
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To that end, a laser tracker (Faro Vintage) is used. A retro-reflector is attached to the grinder 

spindle as shown in Figure 4.31. The tracker can measure the Cartesian position of the retro-

reflector at a sampling rate of up to 500 Hz, with an accuracy of 0.025 mm. 

 

The end effector temporal response to the same reference trapezoidal trajectory used in sections 

4.3 and 4.4 is measured with the laser tracker for the weaving experiments with joints 2, 3 and 

4. The measured Cartesian position signals are converted into an angular joint position for 

comparison with the angular reference signal. The simulated link position, the experimental 

link position and the experimental reducer output position are plotted in Figure 4.32 to Figure 

4.34 for the rigid controller (with 1 2.3λ = ), the input shaping controller and the two-stage 

controller. 

 

                   
For joints 2 and 3, the experimental measurements at the end effector are in good agreement 

with the simulation. It is clearly seen that the introduction of a lumped coupling stiffness 

Figure 4.31 Experimental setup for measuring the robot end effector 
motion 
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creates a significant amplification of the vibration, near resonance, from the reducer output 

position to the link position. This amplification factor is close to 400%.  

 

For joint 4, there is a significant difference between the experiment and the simulation for the 

rigid control. The amplitude of link vibration from the simulation is much bigger than that from 

the experiment. In addition, another frequency of about 17 Hz can be seen (see zoomed-in area 

in Figure 4.34(a)). This new frequency may be caused by the unmodelled degrees of freedom 

of the joint 4 coupling dynamics, which are not captured by the lumped coupling stiffness 

model. Despite the limitations of the lumped model for joint 4, the vibration is still reduced 

significantly with the input shaping control and the two-stage control, as shown in Figure 

4.34(b-c). 

 

 

 

Figure 4.32 Experimental and simulation temporal responses of the end effector with joint 2 
weaving for three controllers: (a) Rigid control, (b) Input shaping control, (c) Two-stage 

control. The measured Cartesian position signals are converted into an angular joint position 
for comparison with the angular reference signal 

(a) Rigid control (b) Input shaping control (c) Two-stage control
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Figure 4.33 Experimental and simulation temporal responses of the end effector with joint 3 
weaving for three controllers: (a) Rigid control, (b) Input shaping control, (c) Two-stage 

control 

(a) Rigid control (b) Input shaping control (c) Two-stage control

Figure 4.34 Experimental and simulation temporal responses of the end effector with joint 4 
weaving for three controllers: (a) Rigid control, (b) Input shaping control, (c) Two-stage 

control 

(a) Rigid control (b) Input shaping control (c) Two-stage control

310− rad
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4.5 Summary 

In this chapter, a two-stage controller for a flexible joint robot was presented. The proposed 

decentralized approach is simple, but effective through the use of a lumped coupling stiffness 

element in the flexible joint model. A methodology was detailed to design an input shaping 

discrete feedforward for the first-stage motor feedback control loop. Model parameter 

identification was realized from a closed-loop temporal response analysis. A second-stage 

control loop was implemented with a generalized Smith predictor for delay and filtering 

dynamics compensation. The approach was successfully retrofitted and tested on a six-axis 

serial robot.  

 

The coefficients of the input shaping feedforward discrete-time transfer function can be time-

varied to match the dynamics of the moving robot. The time-varying link inertias could be 

efficiently computed using the recursive Newton-Euler algorithm. With the tested robot, it was 

observed that the lumped coupling stiffness of the joints varies with the robot poses. To obtain 

optimal performance within the whole robot envelope, an interpolating technique to estimate 

this lumped stiffness would need to be developed. 

 

The input shaping feedforward adds a delay to the position response. For robot motion in free 

space, the robot trajectory is just a delayed version of the input reference. Most often, the 

introduced delay is not a problem. However, if a third-stage control loop is required for 

regulating a process through some feedback measurement, the introduced delay can reduce the 

third stage bandwidth. In such a case, the delay compensation technique used for the second-

stage can be applied to the third-stage. 

 

One shortcoming of the input shaping approach is the poor disturbance rejection near 

resonance. During motion in free space, the inertial, centrifugal and Coriolis coupling torque 

disturbances may cause vibrations. These disturbances could be estimated from rigid body 

dynamics and an input shaping compensation technique could be developed. 
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The proposed controller is simple enough for retrofitting into existing serial robots. Knowledge 

of the robot link inertia tensor is required for computing the joint’s effective link inertia. The 

access to joint torque is not needed but the robot must support joint reference position updating 

with a sampling rate significantly higher than the robot’s dominant dynamic frequencies.  

 

 

 

 

 

 

 

 



 

CONCLUSION 

 

 

This thesis presents a study on the dynamics and vibration control of flexible joint robots. Two 

specific objectives were introduced. The first specific objective is to design vibration control 

algorithm for a simple case: a single joint robot considering only joint flexibility. The second 

objective is to design vibration control algorithm for actual industrial multiple flexible joint 

robots. The proposed control algorithms for these two objectives share the same two-stage 

architecture but are different in their components.  

 

A vibration control algorithm for a single flexible joint robot was developed in the first phase 

of the study, which was presented in chapter 3. This study presented some important 

contributions on vibration control of flexible joint robots as follows: (i) It introduced a two-

stage feedback control for flexible joint robot where partitioned controllers are employed on 

each stage. (ii) It combined the two-stage feedback control with a disturbance-state observer, 

in which both motor side and link side disturbances were compensated. (iii) It provided 

experimental validation in terms of extending the control bandwidth and reducing the 

vibration. Compared to the rigid control, the proposed controller displaces the link with almost 

no overshoot and the settling time is twice faster, while the vibration resonance due to 

kinematic error of the harmonic drive is also cut in half. Disturbances were compensated and 

the feedback noise is reduced. An important requirement to implement the proposed two-stage 

feedback control with a disturbance-state observer is the access to motor torque command.  

 

Based on the promising results of vibration control of the single flexible joint robot, extensive 

study on vibration control of multiple flexible joint robot was conducted. Two options to make 

the testbed for multiple joint robots were considered. The first option was to build a multiple 

joint robot testbed, in which each joint uses the single flexible joint architecture developed in 

the first phase. The second option was to directly use an actual industrial robot as the testbed. 

Each option had its own advantages and disadvantages. If a multiple joint robot was built, as 

the first option, the vibration control developed in the first phase can be directly applied. 
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However, building a new robot would have required a lot of time and efforts. The second 

option was more preferable and finally selected. By using an actual industrial robot, all 

manpower and time to build robots were saved. However, instead of a full control environment 

as the self-built single flexible joint testbed, industrial robots normally provide only access to 

the motor position command (or the motor reference profile). The access to motor torque 

command was unavailable. Therefore, the two-stage feedback with disturbance-stage observer 

developed in the first phase, which requires the access to the motor torque command, cannot 

be directly applied to industrial robots.  

 

In order to adapt to the constraints of industrial robots, a vibration control algorithm based on 

motor position command was developed. A two-stage controller based on time-varying input 

shaping and delay compensation was developed in the second phase of this study, which was 

described in chapter 4. This study provided some important contribution on control of multiple 

joint robots. (i) It firstly proposed a decentralized flexible joint model, which takes into account 

a lumped coupling stiffness element. (ii) It provided a two-stage controller including an input 

shaping feedforward with time-varying updating in the first-stage and a generalized Smith 

predictor to compensate for delay and feedback sensor filtering in the second-stage. An 

identification procedure was proposed to obtain all parameters that are needed to implement 

the proposed method. (iii) It provided experimental validation using an actual industrial serial 

robot. For implementation, the proposed controller requires a sampling rate significantly higher 

than the robot’s dominant dynamic frequencies. This requirement can be satisfied easily since 

it is included in the standard setting of most industrial robots.  

 

 

 



 

RECOMMENDATIONS  
 

The research work presented in this thesis might be continued through the recommendations 

listed in the following: 

 

The experimental study on vibration control of an industrial serial robot indicates that the 

accuracy of the coupling stiffness is a very important. The coupling stiffness significantly 

affects the input shaping feedforward transfer function, which determines how well the 

vibration is attenuated. The coupling stiffness, however, is difficult to be precisely obtained 

since it varies with the robot pose and no closed-form expression is available. To obtain optimal 

performance, an interpolating technique to estimate this coupling stiffness within the whole 

robot envelope is necessary to be developed. 

 

The two-stage control based on input shaping approach has low disturbance rejection 

performance near the resonance frequency. Even while performing motion in free space, the 

inertial, centrifugal and Coriolis coupling torques disturbances may cause vibrations. 

Therefore, it is necessary to include disturbance compensations to the control architecture. A 

review on recent literature reveals that most disturbance compensation architectures require an 

access to the motor torque command. This requirement, however, is not fulfilled by the default 

setting of most recent industrial robots, which normally offer only an access to the reference 

position input. To overcome this obstacle, further studies focusing on disturbance 

compensation by reference profile alteration, as discussed in (Tan, Li, Chen, Teo, & Lee, 

2019), is a promising research direction. 

 

Another research direction is to apply the proposed two-stage controllers, which are originally 

for motion tracking applications, to industrial serial robots performing machining tasks. In that 

case, a third stage is required, which employs a feedback signal from the process. Due to a 

delay and noise of the process feedback signal, further work is required focusing on appropriate 

signal processing and filtering of the process feedback signal. A general Smith predictor to 
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compensate for the filtering dynamics of the process feedback signal may be required on the 

third-stage.  

 

The machining process normally introduces large disturbances to the robot manipulator, which 

may cause unwanted distortions on both motor and link positions. In order to reduce the effects 

of the disturbances due to machining tasks, a disturbance compensation by reference profile 

alteration may be employed. A comprehensive experimental investigation may be needed to 

develop the dynamic model of the process, which can be used for designing the disturbance 

observer.  

 

 

 

EQUATION CHAPTER (NEXT) SECTION 1 



 

APPENDIX I  
 
 

TRANSFORMATION BETWEEN PID AND P/PI COMPENSATORS 

The P/PI controller is a dual control loop system, consisting of a proportional-integral 

compensator for the inner velocity control loop and a proportional compensator for the outer 

position control loop with velocity feedforward vfκ . The block diagram of the PID and P/PI 

controllers are shown in Figure A I-1. 

 

                   

 
Figure A I-1 (a) Block diagram of PID controller, (b) Block 

diagram of P/PI controller 
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When the velocity feedforward gain vfκ  is set to 1, the P/PI controller can be transformed into 

a PID controller through the equations below: 
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where 1pK , 1iK , and 1dK  are PID gains and 3pκ , 2pκ , and 2iκ  are P/PI gains.  

 
Proof: 

The transfer function of PID compensator (Figure A I.1 (a)) is given as follows:  
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where 1pK , 1iK , and 1dK  are PID gains, and s is the Laplace complex variable. 

 

The output of PID control can be computed as follows: 
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where me  is the motor position tracking error. 
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Consider the P/PI controller shown in Figure A I.1 (b), the input of the inner loop PI of P/PI 

can be derived as 
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where ( ) ( ) ( )m mme s r s q s= − . 

 

Then, the output of the inner loop PI of P/PI is defined as: 
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Substituting (A I.5) into (A I.6) gives: 
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By simple manipulating (A I.7) gives the transfer function of P/PI controller: 
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To compute an equivalent of PID and P/PI in frequency domain, substituting into gives: 

 

 ( )2 2
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By equalizing corresponding coefficients of (A I.9) gives the linear transformation of gains as 

shown in (A I.1) and (A I.2). 
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