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GÉNÉRATION DE VISAGES SYNTHÉTIQUES POUR LA RECONNAISSANCE DE
VISAGES SUR VIDÉO

Faniya MOKHAYYERI

RÉSUMÉ

La reconnaissance faciale (FR) en vidéo continue de susciter un intérêt considérable de la part

des milieux universitaires et de l’industrie en raison du large éventail d’applications dans les

domaines de la surveillance et de la sécurité. Malgré les progrès récents en matière de vision

par ordinateur et d’apprentissage machine, la conception d’un système robuste pour de recon-

naissance faciale en temps réel pour les applications de surveillance reste un défi important. Un

problème clé est la divergence entre les visages du domaine source, où les visages de référence

sont de haute qualité et capturés dans des conditions contrôlées par des caméras fixes, et ceux

du domaine cible, où les images vidéo sont capturées avec des caméras vidéo dans des condi-

tions non contrôlées avec des variations de pose, éclairage, flou, etc. L’apparence des visages

capturés dans les vidéos correspond à de multiples distributions de données pouvant différer

considérablement des visages initialement capturés. Un autre défi de la vidéo est le nombre

limité de photos de référence disponibles par personne cible pour la conception de modèles de

visage. Ce scénario est courant dans les applications de sécurité et de surveillance basées sur la

vidéo, comme par exemple l’authentification biométrique et le triage avec une liste de surveil-

lance. Les performances des systèmes vidéos peuvent diminuer considérablement en raison

de la quantité limitée d’information disponible pour représenter les variations intra-classe ob-

servées dans les images.

Cette thèse propose des techniques d’augmentation des données basées sur la synthèse des

visages pour surmonter les défis posés par la variation des visages et le nombre limité d’images

d’entraînement. Le principal avantage des approches proposées est la possibilité de fournir un

ensemble compact capable de représenter avec précision le visage de référence d’origine avec

des variations pertinentes aux condition de capture dans le domaine cible. En particulier, cette

thèse présente 3 nouveaux systèmes pour une reconnaissance faciale robuste en vidéo qui sont

basés sur l’augmentation synthétique des galeries de référence.

Dans une première contribution, une approche de synthèse de visage exploitant les informa-

tions de variation représentatives intra-classe du domaine cible est proposée. Cette approche,

appelée synthèse de visages spécifique à un domaine, génère un ensemble compact de visages

synthétiques qui ressemblent à des individus d’intérêt dans les conditions de capture pertinentes

pour le domaine cible. Dans une implémentation particulière basée représentation clairsemée,

les visages synthétiques générés sont utilisés pour former un dictionnaire interdomaine tenant

compte de la structure de la clarté, où les blocs de dictionnaire combinent les visages d’origine

et synthétique de chaque individu. Les résultats expérimentaux obtenus avec des vidéos des

bases de données Chokepoint et COX-S2V révèlent qu’augmenter le nombre de galeries de

référence de systèmes la FR en vidéo en utilisant l’approche proposée par une approche syn-
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thèse de visage peut fournir un niveau de précision nettement supérieur à celui de l’état de

l’art.

Dans un deuxième temps, nous proposons un modèle de représentation par paires fragmentées

permettant l’utilisation d’informations conjointe variationnelles et d’images de visage synthé-

tiques. Le modèle proposé, appelé modèle de synthèse plus variationnel, reconstruit une im-

age sonde en utilisant conjointement (1) un dictionnaire variationnel conçu avec un ensemble

générique et (2) un dictionnaire de galerie complété par un ensemble d’images synthétique

générées sur une grande diversité des angles de pose. Le dictionnaire de galerie augmentée

est ensuite encouragé à partager le même motif de parcimonie avec le dictionnaire de variation

pour d’angles de pose similaires en résolvant un problème d’optimisation simultané basé sur

la parcimonie. Les résultats expérimentaux obtenus sur les données Chokepoint et COX-S2V,

indiquent que l’approche proposée peut surpasser les méthodes représentation clairsemé de

pointe pour la FR en vidéo continue avec un seul échantillon par personne.

Troisièmement, un réseau siamois profond, appelé SiamSRC, est proposé pour effectuer une

mise en correspondance des visages à l’aide d’une représentation clairsemée. L’approche pro-

posée étend la galerie en utilisant un ensemble d’images de visage synthétiques et exploite la

représentation clairsemé avec une structure de blocs pour la correspondance des visages par

paires qui trouve la représentation d’une image sonde nécessitant le nombre minimal de blocs

de la galerie. Les résultats expérimentaux obtenus avec les bases de données Chokepoint et

COX-S2V suggèrent que le réseau SiamSRC proposé permet une représentation efficace des

variations intra-classe avec une augmentation modérée de la complexité temporelle. Les résul-

tats ont montré que les performances des systèmes d’images fixes à vidéo continue basées sur

SiamSRC peuvent être améliorées grâce à la synthèse des visages, sans qu’il soit nécessaire de

collecter une grande quantité de données d’entraînement.

Des expérimentations approfondies ont été menées sur deux ensembles de données de surveil-

lance disponibles au public. Les résultats ont indiqué que la synthèse de visage à elle seule ne

peut pas résoudre efficacement les défis du échantillons limités et les problèmes de changement

de domaine visuel. Les techniques proposées, à savoir l’intégration de la synthèse des visages

et de l’apprentissage générique, peuvent fournir un niveau de précision supérieur à celui des

approches de pointe avec un seul échantillon par personne.

Mots-clés: Reconnaissance de visage, synthèse de visage, reconstruction du visage en 3D,

surveillance vidéo, adaptation de domaine, représentation clairsemée, apprentissage générique



DOMAIN-SPECIFIC FACE SYNTHESIS FOR STILL-TO-VIDEO FACE
RECOGNITION

Faniya MOKHAYYERI

ABSTRACT

Face recognition (FR) has attracted a considerable amount of interest from both academia and

industry due to the wide range of applications as found in surveillance and security. Despite the

recent progress in computer vision and machine learning, designing a robust system for video-

based FR in real-world surveillance applications has been a long-standing challenge. One

key issue is the visual domain shift between faces from source domain, where high-quality

reference faces are captured under controlled conditions from still cameras, and those from

the target domain, where video frames are captured with video cameras under uncontrolled

conditions with variations in pose, illumination, expression, etc. The appearance of the faces

captured in the videos corresponds to multiple non-stationary data distributions can differ con-

siderably from faces captured during enrollment. Another challenge in video-based FR is the

limited number of reference stills that are available per target individual to design facial models.

This is a common scenario in security and surveillance applications, as found in, e.g., biomet-

ric authentication and watch-list screening. The performance of video-based FR systems can

decline significantly due to the limited information available to represent the intra-class varia-

tions seen in video frames. This thesis proposes 3 data augmentation techniques based on face

synthesis to overcome the challenges of such visual domain shift and limited training set. The

main advantage of the proposed approaches is the ability to provide a compact set that can ac-

curately represent the original reference face with relevant intra-class variations corresponding

to the capture conditions in the target domain. In particular, this thesis presents new systems

for domain-invariant still-to-video FR that are based on augmenting the reference gallery set

synthetically which are described with more details in the following.

As a first contribution, a face synthesis approach is proposed that exploits the representative

intra-class variational information available from the generic set in target domain. The pro-

posed approach, called domain-specific face synthesis, generates a set of synthetic faces that

resemble individuals of interest under the capture conditions relevant to the target domain. In

a particular implementation based on sparse representation, the generated synthetic faces are

employed to form a cross-domain dictionary that accounts for structured sparsity where the

dictionary blocks combine the original and synthetic faces of each individual. Experimental

results obtained with videos from the Chokepoint and COX-S2V datasets reveal that augment-

ing the reference gallery set of still-to-video FR systems using the proposed face synthesizing

approach can provide a significantly higher level of accuracy compared to state-of-the-art ap-

proaches.

As a second contribution, a paired sparse representation model is proposed allowing for joint

use of generic variational information and synthetic face images. The proposed model, called

synthetic plus variational model, reconstructs a probe image by jointly using (1) a variational



X

dictionary designed with generic set and (2) a gallery dictionary augmented with a set of syn-

thetic images generated over a wide diversity of pose angles. The augmented gallery dictionary

is then encouraged to share the same sparsity pattern with the variational dictionary for similar

pose angles by solving a simultaneous sparsity-based optimization problem. Experimental re-

sults obtained on Chokepoint and COX-S2V datasets, indicate that the proposed approach can

outperform state-of-the-art methods for still-to-video FR with a single sample per person.

As a third contribution, a deep Siamese network, referred as SiamSRC, is proposed where per-

forms face matching using sparse coding. The proposed approach extends the gallery using a

set of synthetic face images and exploits sparse representation with a block structure for pair-

wise face matching that finds the representation of a probe image that requires the minimum

number of blocks from the gallery. Experimental results obtained using the Chokepoint and

COX-S2V datasets suggest that the proposed SiamSRC network allows for efficient represen-

tation of intra-class variations with only a moderate increase in time complexity. Results show

that the performance of still-to-video FR systems based on SiamSRC can improve through face

synthesis, with no need to collect a large amount of training data.

Results indicate that our proposed techniques which are the integration of face synthesis and

generic learning can effectively resolve the challenges of the visual domain shift and limited

number of reference stills and provide a higher level of accuracy compared to state-of-the-art

approaches under unconstrained surveillance conditions.

Keywords: Face Recognition, Face Synthesis, 3D Face Reconstruction, Video Surveillance,

Domain Adaptation, Sparse Representation, Generic Learning
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INTRODUCTION

Given the growing demand for public security, much attention has been devoted to person iden-

tification and recognition. Over the past few decades, biometric technology has received a lot

of interest as a way for public security agencies to achieve accurate identification and verifica-

tion. Among biometric applications, Face Recognition (FR) in video surveillance applications

is considered as a promising approach for authentication owing to its convenient data collec-

tion, flexible control, high performance to cost ratio as well as the possibility of analysis of

live feeds. FR has been the prominent biometric modality for identity authentication and has

been widely used in many areas, such as military, finance, public security and daily life. It

is reported that the global market for video surveillance technologies has reached revenues in

the billions of US$ as traditional analogue technologies are replaced by IP-based digital ones

(Pagano et al. (2014)). Hence, the necessity to develop an efficient and robust FR in surveil-

lance videos is rising. Using video streams makes it possible to employ spatial and temporal

information of faces to improve FR performance. Furthermore, some on-line and incremental

learning techniques can be applied for video-based FR to update the model over time. The

growing availability of low-cost cameras also motivated the development of intelligent video

surveillance system based on FR algorithms (Huang et al. (2017b); Cevikalp et al. (2019)).

FR from video surveillance can be designed using two scenarios w.r.t. the nature of training

and testing data: (1) video-to-video, (2) still-to-video. In V2V scenario, training and recogni-

tion tasks are performed using frames from video streams. However, in still-to-video scenario,

still images of individuals are used to design facial models, and recognition is performed us-

ing frames from video streams (Dewan et al. (2016)). A generic still-to-video FR consists of

two main phases; enrollment and operation. During the enrollment of target individuals, facial

models are designed using facial regions of interests (ROIs) isolated in high quality reference

still images that were captured under controlled conditions. During operations, the ROIs of

faces captured with surveillance cameras under uncontrolled conditions are compared against
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the facial models of watch-list individuals. A face tracker may be employed to track the ROIs

appeared in the capturing scene over several frames, and matching scores can be accumulated

over a facial trajectory for robust spatio-temporal recognition (Bashbaghi et al. (2017a)). The

typical application of still-to-video FR is watch-list screening where ROIs captured over a net-

work of video surveillance cameras are matched against ROIs extracted from reference stills of

target individuals (high quality mug shots) that were captured under controlled condition (De-

la Torre et al. (2015)). Recently, the theory of sparse representation and compressed sensing

has shown promising results on this challenging problem. The basic idea is to cast the recog-

nition problem as one of classifying among multiple linear regression models. Given sufficient

training samples from each class, it will be possible to represent the test samples as a linear

combination of those training samples from the same class. These algorithms produce ex-

tremely striking results and accurately recognize subjects across large databases despite severe

corruption and occlusion (Gao et al. (2017)). Using deep neural networks to learn effective

feature representations has become popular in FR Deng et al. (2019); Masi et al. (2019a); Wu

et al. (2018b) and FR accuracy has been boosted rapidly in recent years. Thanks to their deep

architectures and large learning capacity, effective features can be learned through hierarchical

nonlinear mappings. Contemporary deep models report near perfect performance on challeng-

ing benchmarks such as Labeled Faces in the Wild (Huang et al. (2008) ), which due to its

difficulty, represented the de facto standard for evaluating FR technology for nearly a decade

(Jiang et al. (2019)).

Problem Statement

This thesis focuses on video-based FR, in particular still-to-video FR, where a single high-

quality reference still image under controlled conditions is matched against lower-quality faces

captured with video cameras under uncontrolled conditions.
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Numerous performance evaluation have shown that FR algorithms that operate well in con-

trolled environments tend to suffer in unconstrained conditions (Sohn et al. (2017)). For a

still-to-video FR system, critical obstacles towards surveillance applications are often caused

by large intra-class variability, arising from changes in lighting, pose, expression and corrup-

tion. Another key issue is the limited number of reference stills that are available per target

individual to design facial models. In many surveillance applications (e.g., watch-list screen-

ing), only a single reference still per person is available for design, which corresponds to the

so-called Single Sample Per Person (SSPP) problem. A further challenge for surveillance ap-

plications is the matching of low-resolution probe face images with high resolution reference

images, which could be the case in watch-list scenarios (Li et al. (2018)). Over the past few

decades, a wide variety of approaches have emerged to overcome the aforementioned problems

that affect FR performance such as; (1) multiple face representations which extract discrimi-

nant features from face images that are robust to facial variations (Bashbaghi et al. (2017b); Yin

et al. (2019)), (2) image patching which decomposes an image into multiple local components

to provide robustness to local changes in illumination, blur, etc (Zhang et al. (2018b)), (3) super

resolution that attempts to obtain a high-resolution face image by leveraging the knowledge of

multiple low-resolution images (Yu et al. (2018)), (4) frontalization1 and illumination normal-

ization that try to adjust the images to normal pose and lighting condition (Cao et al. (2019b)),

(5) generic learning (incorporating generic auxiliary set) (Deng et al. (2012)) where a genetic

training set2 is used to exploit variational information from an auxiliary generic set of images

to represent the differences between probe and reference gallery images (Wei & Wang (2015);

Deng et al. (2018)), (6) face synthesis which attempt to generate synthetic face images from

the original reference stills under different appearance (such as pose, illumination, expression,

and etc.) (Sanyal et al. (2019); Masi et al. (2016)) and add the extra samples to the gallery to

1 Frontalization is the process of synthesizing frontal facing views of faces appearing in single uncon-

strained photos.

2 A generic set is defined as an auxiliary set comprised of facial ROIs from unknown individuals

captured in videos from the target environment.
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produce diverse face representations and accordingly improve the robustness to various capture

conditions.

This Thesis focuses on methods that are based on augmenting the reference gallery set through

synthetic set, and by taking into account the intra-class variation information transferred from

a generic set. The most general approach for the generation of synthetic face images under

different appearance is 3D reconstruction that attempts to reconstruct 3D models of faces from

their 2D images. 3D morphable model (3DMM) and its variants have been the most popular

methods for 3D face reconstruction for many years. However, the resulting images are not

realistic enough to be suitable for real-world FR tasks. The discrepancy in quality of synthetic

and real images has been the main challenge of using synthetic data obtained from 3DMM

model (Gecer et al. (2019), Tran & Liu (2019), Koppen et al. (2018)). Recently, generative

adversarial networks (GANs) have been successful to mitigate such challenges. Zhao & et al.

(2017) proposed Dual-GAN which improves the realism of a 3DMM’s output using unlabeled

real faces, while preserving the identity information during the refinement. The dual agents

are designed for distinguishing real v.s. fake and identities simultaneously. Gecer et al. (2018)

proposed an end-to-end semi-supervised adversarial framework to synthesize photorealistic

images conditioned by synthetic images generated by 3DMM with a wide range of expressions,

poses, and illuminations. Despite their success, in practice, GANs are likely to get stuck in

mode collapse for large scale image generation.

Selecting a sufficient number of faces to cover intra-class variations is another challenging is-

sue of data augmentation techniques. Many synthetic faces may be generated to account for

all possible capture conditions. In this case, FR systems would, therefore, require complex im-

plementations and may yield lower accuracy when training on many facial images that provide

less relevant information for FR.
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Research Objectives and Contributions

The main objective of this thesis is to develop an accurate and robust still-to-video FR sys-

tem that can accurately recognize target individuals under real-world capture conditions when

only one reference face image per person is available for facial modeling. According to the

constraints of real-world surveillance applications, these systems need to be designed consid-

ering only a single reference still captured under controlled conditions, while they should be

operated over the low-quality videos captured under uncontrolled conditions such as various

pose, lighting, expression, and etc. We first study what are the representative information to

compensate the real-world intra-class variations. Then, we propose domain specific face syn-

thesis methods that take into account the representative information obtained from a generic

set during the synthesis process. The generated synthetic images are used to enrich the refer-

ence gallery. Our problem of generating domain-specific face images can be seen as a domain

adaptation3 problem i.e. aligning reference stills of source domain into probe videos of target

domain (Hong et al. (2017)).

Since this thesis is article-based, each chapter presents a different contribution to the devel-

opment of the robust still-to-video FR framework. There are three main contributions in this

work which led to three journal and three conference publications. The contributions of this

thesis are listed below:

I) An algorithm for domain-specific face synthesis is proposed. It maps representative vari-

ation information from the generic set in the target domain to the reference stills by inte-

grating an image-based face relighting technique inside the 3D reconstruction framework.

In order to find a representative set of faces, affinity propagation clustering is applied in

3 Domain adaptation tries to learn a better model for the target scenario, by on one hand borrowing

some common knowledge from the source domain and on the other hand exploiting the particular

information from the target domain but with limited supervision
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the captured condition space defined by pose and illumination estimation. In this way, a

compact set of synthetic faces is produced that represent reference images and probe video

frames under a common capture condition.

Related publications:

• Mokhayeri, F., Granger, E., and Bilodeau, G-A. "Domain-specific face synthesis for

video face recognition from a single sample per person." IEEE Transactions on Infor-

mation Forensics and Security 14.3 (2018): 757-772.

• Mokhayeri, F., Granger, E., and Bilodeau, G-A. "Synthetic face generation under var-

ious operational conditions in video surveillance." In IEEE International Conference

on Image Processing (ICIP), 2015.

II) A paired sparse representation framework for FR is introduced that reconstructs a probe

image using an augmented gallery dictionary enriched with a set of synthetic stills gener-

ated under a wide diversity of pose angles and auxiliary dictionary designed with generic

set. Two dictionaries are correlated by imposing the simultaneous sparsity prior that force

the augmented dictionary to pair the same sparsity pattern with auxiliary dictionary for the

same pose angles.

Related publications:

• Mokhayeri, F., Granger, E. "A paired sparse representation model for robust face

recognition from a single sample." Pattern Recognition 100 (2020): 107-129.

• Mokhayeri, F., Granger, E. "Robust video face recognition from a single still using

a synthetic plus variational model." In IEEE International Conference on Automatic

Face and Gesture Recognition (FG), 2019.

III) Deep SiamSRC network is proposed that employs sparse representation with block struc-

ture for face matching inside a Siamese network. In this approach, a set of domain-specific
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synthetic facial images are generated and then integrated into the reference gallery of the

Siamese network where rendering parameters are obtained through row sparsity clustering

of unlabeled faces.

Related publications:

• Mokhayeri, F., Granger, E. "Video face recognition using siamese networks with block-

sparsity matching." IEEE Transactions on Biometrics, Behavior, and Identity Science

(2019).

Organization of the Thesis

This is a thesis by articles, with Chapters 2 to 4 corresponding to a journal paper. Figure 0.1

presents an overview of the organization of this thesis. The chapters in the blue box and ap-

pendix in the green box represent the articles that were published during the development of the

thesis. The solid arrows indicate the dependencies between the chapters (i.e., one chapter must

be read before the other for a better understanding of the proposed techniques). In addition, the

dashed arrows indicate the relationship between each chapter and the appendix.

This thesis starts with an overview of face synthesis and data augmentation techniques in the

first chapter. They are presented for still-to-video FR applications, which is the main concern

examined in this thesis.

Chapter 2 presents a domain-specific face synthesizing technique to improve the performance

of still-to-video FR systems when surveillance videos are captured under various uncontrolled

conditions, and individuals are recognized based on a single facial image. The proposed ap-

proach takes advantage of target domain information from the generic set that can effectively

represent probe ROIs. A representative set of synthetic faces is generated that resemble indi-

viduals of interest under capture conditions relevant to the target domain. For proof-of-concept
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Conclusion

Introduction

Literature Review 

Chapter 2: Domain-Specific Face 
Synthesis for Video Face Recognition 

from a Single Sample Per Person

Chapter 4: Video Face Recognition 
Using Siamese Networks with Block-

Sparsity Matching

Chapter 3: A Paired Sparse 
Representation Model for  Robust Face 

Recognition from a Single Sample

Appendix I:  Cross-Domain Face 
Synthesis using a Controllable GAN

Figure 0.1 The flow of the thesis is shown by connected boxes. The solid

arrows indicate the dependencies between the chapters and appendix (i.e., one

chapter must be read beforehand). Dashed arrows indicates the suggested

readings between the chapters and appendix for a better comprehension.

validation, an augmented dictionary with a block structure is designed based on the proposed

face synthesizing, and face classification is performed within a sparse representation frame-

work.

In Chapter 3, a paired sparse reconstruction model is presented to account for linear and non-

linear variations in the context of still-to-video FR. The proposed model leverages both face

synthesis and generic learning to effectively represent probe ROIs from a single reference still.

This approach manages non-linear variations by enriching the gallery dictionary with a rep-
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resentative set of synthetic profile faces, where synthetic (still) faces are paired with generic

set (video) face in the auxiliary variational dictionary. In this model, the augmented gallery

dictionary is encouraged to share the same sparsity pattern with the auxiliary dictionary for the

same pose angles. In this way, each synthetic profile image in the augmented gallery dictionary

is combined with approximately the same facial viewpoint in the auxiliary dictionary which is

a more accurate way of representation, and allows for a higher level of FR accuracy.

Chapter 4 presents an approach that exploits a deep Siamese network and sparse representation-

based classification with block structure for pair-wide face matching. It also leverages domain-

specific face synthesis to further improvement where rendering parameters are obtained through

row sparsity clustering of unlabeled faces captured in the target domain. The proposed tech-

nique improves the performance of still-to-video FR systems when surveillance videos are

captured under various uncontrolled conditions, and individuals must be recognized based on

a single facial still.

Appendix 1 presents a cross-domain face synthesis approach based on a controllable GAN that

learns a model using synthetic images as inputs instead of random noise vector. It generates

a set of realistic synthetic facial images under the target domain capture conditions with high

consistency, while preserving their identity and allowing to specify the pose conditions of

synthetic images.





CHAPTER 1

LITERATURE REVIEW

This chapter provides a comprehensive survey and critical analysis of systems for still-to-video

FR and state-of-the-art techniques to address their challenges, in particular face synthesis and

generic learning.

1.1 Still-to-Video Face Recognition Systems

In a still-to-video FR scenario, there is typically one or more still image(s) to enroll an indi-

vidual to the system while a set of video frames is available for recognition. Given one or

few reference still images, still-to-video FR system seeks to detect the presence of target in-

dividuals enrolled to the system over a network of surveillance cameras. In recent years, few

specialized approaches have been proposed for still-to-video FR in the literature. Bashbaghi

et al. (2017b) proposed a robust still-to-video FR system based on multiple face representa-

tions. In this work, various feature extraction techniques are applied to face patches isolated

in the single reference sample to generate multiple face representations to make it robust to

nuisance factors commonly found in video surveillance applications. An individual-specific

ensemble of exemplar-SVM classifiers is proposed by Bashbaghi et al. (2017a) to develop a

domain adaptive still-to-video FR to improve its robustness to intra-class variations. Parchami

et al. (2017c) developed an accurate still-to-video FR from a SSPP based on deep supervised

autoencoder that can represent the divergence between the source and target domains. The

autoencoder network is trained using a novel weighted pixel-wise loss function that is spe-

cialized for SSPP problems, and allows to reconstruct high-quality canonical ROIs for match-

ing. Parchami et al. (2017a) presented an efficient network for still-to-video FR from a single

reference still based on cross-correlation matching and triplet-loss optimization that provides

discriminant face representations. The matching pipeline exploits a matrix Hadamard product

followed by a fully connected layer inspired by adaptive weighted cross-correlation. Parchami

et al. (2017b) introduced an ensemble of CNNs named HaarNet for still-to-video FR, where
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a trunk network first extracts features from the global appearance of the facial ROIs. Then,

three branch networks effectively embed asymmetrical and complex facial features based on

Haar-like features. Dewan et al. (2016) exploited an adaptive appearance model tracking for

still-to-video FR to gradually learn a track-face-model for each individual appearing in the

scene. The models are matched over successive frames against the reference still images of

each target individual enrolled to the system, and then matching scores are accumulated over

several frames for robust spatio-temporal recognition. Migneault et al. (2018) considered adap-

tive visual trackers for still-to-video FR to regroup faces (based on appearance and temporal

coherency) that correspond to the same individual captured along a trajectory, and thereby learn

diverse appearance models on-line. Mokhayeri et al. (2015) designed a practical still-to-video

FR system for video surveillance applications by benefiting from face synthesis. the synthetic

images are produced based on camera-specific capture conditions.

1.1.1 Challenges

Despite the recent progress in computer vision and machine learning, designing a robust system

for still-to-video FR remains a challenging problem in real-world surveillance applications.

Domain Shift

One key issue is the visual domain shift between faces from the source domain, where reference

still images are typically captured under controlled conditions, and those from the target do-

main, where video frames are captured under uncontrolled conditions with variations in pose,

illumination, blurriness, etc. The appearance of faces captured in videos of target domain cor-

responds to multiple non-stationary data distributions that can differ considerably from faces

captured in source domain during enrollment (Bashbaghi et al. (2017a)).
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Single Sample Per Person Scenario

Another key issue is the limited number of reference stills stored in the gallery. In many

surveillance applications (e.g., watch-list screening), only a single reference still per person

is available for design, which corresponds to the so-called Single Sample Per Person (SSPP)

problem. The performance of still-to-video FR systems can decline significantly due to the

limited information available to represent the intra-class variations seen in video frames. Many

discriminant subspaces and manifold learning algorithms cannot be directly employed with a

SSPP problem. It is also difficult to apply representation-based FR methods such as sparse

representation-based classification (SRC) (Wanger et al. (2009)) and deep learning methods

under a SSPP scenario. Although still faces from the cohort, other non-target persons, and

trajectories of video frames from unknown individuals are typically available.

Although designing a robust FR system based on a single sample per person in under surveil-

lance conditions is challenging, several techniques have been recently proposed to address

these problems and improve the robustness of still-to-video FR systems designed using a sin-

gle sample accordingly. They can be categorized into techniques for (1) data augmentation

(Masi et al. (2019b)), (2) multiple face representation (Bashbaghi et al. (2017a)), (3) normal-

ization (Cao et al. (2019b)) and (4) Image patching (Zhu et al. (2014)). This Thesis mainly

focuses on methods that are based on augmenting the reference gallery set through synthetic

set either generic set. Figure 1.1 shows the different categories of existing solutions hierarchy.

The following sections give a review of face synthesis and generic learning methods for data

augmentation to address visual domain shift and limited samples problems in FR systems.

1.2 Data Augmentation

Generating synthetic face images from a single face image has a wide range of applications in

the field of FR. Shekhar et al. (2017) enhanced the SRC performance for FR by augmenting

the reference gallery using the synthetically relighted images. Masi et al. (2016) proposed a

data augmentation technique that enriches the training dataset with important facial appearance
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Figure 1.1 Taxonomy of the solutions proposed in the literature to address

challenging issues of FR systems.

variations by manipulating the faces it contains. An efficient face-specific data augmentation

technique has been introduced by Masi et al. (2019b) that uses a fast rendering during training

to augment the training set with intra-subject appearance variations, thus effectively training

our CNN on a much larger training set.
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1.2.1 Face Synthesis

1.2.1.1 3D Morphable Model

A common approach for synthetic face generation is to reconstruct the 3D model of a face

using its 2D face image. As a classic statistical model of 3D facial shape and texture, 3D

Morphable Model (3DMM) is widely used to reconstruct a 3D face from a single 2D face

image and accordingly synthesize new face images (Blanz & Vetter (2003)). This algorithm is

based on designing a morphable model from 3D scans and fitting the model to 2D images for

3D shape and texture reconstruction. The 3DMM is based on two key ideas: first, all faces are

in dense point-to-point correspondence, which is usually established on a set of example faces

in a registration procedure and then maintained throughout any further processing steps. The

second idea is to separate facial shape and color and to disentangle these from external factors

such as illumination and camera parameters. The Morphable Model may involve a statistical

model of the distribution of faces, which was a principal component analysis in the original

work and has included other learning techniques in subsequent work.

In the past decade, several extensions of 3DMM is presented for 3D face reconstruction.

Zhang & Samaras (2006) proposed a 3D spherical harmonic basis morphable model that is an

integration of spherical harmonics into the 3DMM framework. More recently, Koppen et al.

(2018) expanded 3DMM by adopting a shared covariance structure to mitigate small sample

estimation problems associated with data in high dimensional spaces. It models the global pop-

ulation as a mixture of Gaussian sub-populations, each with its own mean value. Gecer et al.

(2019) revisited the original 3DMM fitting making use of non-linear optimization to find the

optimal latent parameters that best reconstruct the test image. They optimized the parameters

with the supervision of pre-trained deep identity features through an end-to-end differentiable

framework.

Despite the significant success of 3DMM-based techniques for 3D face modeling they often

fail to represent small details since they are not spanned by the principal components. An
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alternative line of work considers CNNs for 3D face modeling with 3DMM. Embedding 3D

morphable basis functions into deep neural networks opens great potential for models with

better representation power which is superior in capturing a higher level of details. Tran et al.

(2019) improved the nonlinear 3DMM in both learning objective and architecture by solving

the conflicting objective problem with learning shape and albedo proxies with proper regu-

larization. The novel pairing scheme allows learning both detailed shape and albedo without

sacrificing one. Tran et al. (2017a) employed a CNN to regress 3DMM shape and texture

parameters directly from an input image without an optimization process which renders the

face and compares it to the image. Richardson et al. (2017) presented a face reconstruction

technique from a single image by introducing an end-to-end CNN framework which derives

a novel rendering layer, allowing back-propagation from a rendered depth map to the 3DMM

model. In the same line, Tewari et al. (2017) proposed a CNN regression-based approach for

face reconstruction, where a single forward pass of the network estimates a much more com-

plete face model, including pose, shape, expression, and illumination, at a high quality. Due

to the type and amount of training data, as well as, the linear bases, the representation power

of 3DMM can be limited. To address these problems, Tran & Liu (2018) proposed an innova-

tive framework to learn a nonlinear 3DMM model from a large set of in-the-wild face images,

without collecting 3D face scans. Specifically, given a face image as input, a network encoder

estimates the projection, lighting, shape and albedo parameters. Two decoders serve as the

nonlinear 3DMM to map from the shape and albedo parameters to the 3D shape and albedo,

respectively.

Although their results are encouraging, the synthetic face images may not be realistic enough to

represent intra-class variations of target domain capture conditions. The synthetic images gen-

erated in this way are highly correlated with the original facial stills from enrolment, and there

is typically a domain shift between the distribution of synthetic faces and that of faces captured

in the target domain which poses the problem of domain adaptation. The FR models naively

trained on these synthetic images, often fail to generalize well when matched to real images
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captures in the target domain. Producing realistic synthetic face images while preserving their

identity information is still an ill-posed problem.

1.2.1.2 Generative Adversarial Network

Recently, Generative Adversarial Networks (GANs) have shown promising performance in

generating realistic images (Gonzalez-Garcia et al. (2018); Choi et al. (2018); Chen & Koltun

(2017)). GANs are a framework to produce a model distribution that mimics a given target dis-

tribution, and it consists of a generator that produces the model distribution and a discriminator

that distinguishes the model distribution from the target. The concept is to consecutively train

the model distribution and the discriminator in turn, with the goal of reducing the difference

between the model distribution and the target distribution measured by the best discrimina-

tor possible at each step of the training (Goodfellow & et al. (2014)). Benefiting from GAN,

FaceID-GAN is proposed by Shen et al. (2018) which generates photorealistic and identity

preserving faces. It competes with the generator by distinguishing the identities of the real

and synthesized faces to preserve the identity of original images. Gecer et al. (2018) proposed

a novel end-to-end semi-supervised adversarial framework to generate photorealistic face im-

ages of new identities with a wide range of expressions, poses, and illuminations conditioned by

synthetic images sampled from a 3DMM. Huang et al. (2017a) proposed TP-GAN for photore-

alistic frontal view synthesis by simultaneously perceiving global structures and local details.

They made problem well constrained by introducing a combination of adversarial loss, sym-

metry loss and identity preserving loss. The combined loss function leverages both frontal face

distribution and pre-trained discriminative deep face models to guide an identity preserving in-

ference of frontal views from profiles. Wang et al. (2018b) proposed a variant of GANs for face

aging in which a conditional GAN module functions as generating a face that looks realistic

and is with the target age, an identity-preserved module preserves the identity information and

an age classifier forces the generated face with the target age. Tewari et al. (2017) proposed

a novel model-based deep convolutional autoencoder for 3D face reconstruction from a sin-

gle in-the-wild color image that combine a convolutional encoder network with a model-based
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face reconstruction model. In this way, the CNN-based encoder learns to extract semantically

meaningful parameters from a single monocular input image. WGAN is a recent technique

which employs integral probability metrics based on the earth mover distance rather than the

Jensen–Shannon divergence that the original GAN uses (Arjovsky et al. (2017)). BEGAN

built upon WGAN using an autoencoder based equilibrium enforcing technique alongside the

Wasserstein distance to stabilize the training of the discriminator (Berthelot et al. (2017)).

Difficulty in controlling the output of the generator is a challenging issue in GAN-based face

synthesis models. To reduce this gap, conditional GANs are proposed that leverage conditional

information in the generative and discriminative networks for conditional image synthesis.

Tran et al. (2018) used pose codes in conjunction with random noise vectors as the inputs to

the discriminator with the goal of generating a face of the same identity with the target pose

in order to fool the discriminator. Hu et al. (2018) introduced a coupled-agent discriminator

which forms a mask image to guide the generator during the learning process. Mokhayeri

et al. (2019b) proposed a controllable GAN that employs an additional adversarial game as the

third player to the GAN, competing with the generator to preserve the specific attributes, and

accordingly, providing control over the face generation process. Despite the success of GAN

in generating realistic images, they still struggle in learning complex underlying modalities in

a given dataset, resulting in poor-quality generated images.

1.2.2 Generic Learning

Generic learning is another effective solution to compensate visual domain shift in FR sys-

tems that employs a generic set to enrich the diversity of the reference gallery set (Gao et al.

(2017); Li et al. (2016)). Su et al. (2010) proposed an adaptive generic learning method for

FR which utilized external data to estimate the within-class scatter matrix for each individual

and applies this information to the reference set. Recent reports have suggested that integra-

tion of SRC with generic learning substantially boosts the performance of FR systems. Deng

et al. (2012) added generic learning into the SRC framework and proposed the extended SRC

(ESRC), which provide additional information from other face datasets to construct an intra-
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class variation dictionary to represent the changes between the training and probe images. Yang

et al. (2013) introduced a sparse variation dictionary learning (SVDL) technique by taking the

relationship between the reference set and the external generic set into account and obtained a

projection by learning from both generic and reference set. Nourbakhsh et al. (2016) integrated

intra-class variation information from the target domain with the reference set through domain

adaptation to enhance the facial models. Wei & Wang (2015) designed a robust auxiliary

dictionary learning technique that extracts representative information from generic dataset via

dictionary learning without assuming prior knowledge of occlusion in probe images. Zhu et al.

(2014) proposed a local generic representation-based framework for FR with SSPP. It builds

a gallery dictionary by extracting the neighboring patches from the gallery dataset, while an

intra-class variation dictionary is constructed by using an external generic training dataset to

predict the intra-class variations. Bashbaghi et al. (2015) proposed a robust still-to-video FR

using a multi-classifier system in which each classifier is trained by a reference face still ver-

sus many lower-quality faces of non-target individuals captured in videos. In this system, the

auxiliary set collected from the videos of unknown people in the target domain is employed

to select discriminant feature sets and ensemble fusion functions. Despite the significant im-

provements reported with generic learning, several critical issues remain to be addressed. The

generic intra-class variation may not be similar to that of gallery individuals, so the extraction

of discriminative information from the generic set may not be guaranteed.

1.3 Deep Face Recognition

Recent state-of-the-art approaches for video FR mostly rely on CNNs (Parchami et al. (2017c);

Cao et al. (2018); Zhao et al. (2018); Parkhi et al. (2015)). One of the pioneering work in

this domain is Siamese network (Bromley et al. (1994)) that formulates deep learning with a

contrastive loss that minimizes distance between positive pairs while keeps negative pairs apart.

Deep Siamese networks are often designed using two or more identical sub-networks and one

cost module where the extractors share same parameters and weights. During the training

process, these networks typically seek to minimize the intra-class distance and maximize the
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inter-class distances. When the features are extracted for a pair of images, the matcher produces

a similarity score indicating if the pair images are from the same or different classes.

Siamese networks have significantly improved FR accuracy due to their high capacity for learn-

ing discriminative features (Parchami et al. (2017a)). Taigman et al. (2014) proposed to employ

these networks to learn similarity metrics for FR which trained on a large dataset from Face-

book. Schroff et al. (2015) introduced FaceNet that directly learns a mapping from face images

to a compact Euclidean space. FaceNet uses a deep Siamese network that directly optimizes the

L1-distance between two faces and employs face triplets and minimizes the distance between an

anchor and a positive sample of the same identity, while maximizing the distance between the

anchor and a negative sample of a different identity. Light CNN framework was proposed by

Wu et al. (2018a) to learn deep face representations from the large-scale dataset with noisy la-

bels, where a max-feature map operation allows to obtain a compact representation. Yin & Liu

(2017) presented a multi-task CNN for FR that exploits side tasks in regularization to learn

pose-specific identity features. Masi et al. (2019a) proposed a pose-aware network to process a

face image using several pose-specific CNNs. Parchami et al. (2017b) introduced an ensemble

of CNNs named HaarNet for FR, where a trunk network first extracts features from the global

appearance of the facial ROIs. Then, three branch networks effectively embed asymmetrical

and complex facial features based on Haar-like features. Peng et al. (2019) developed a deep

local descriptor for cross-modality FR, which can learn discriminant information from image

patches. Despite the great success of CNNs in FR (Schroff et al. (2015)), contrastive embed-

ding requires training data contains real-valued precise pair-wise similarities or distances. This

problem is solved by optimizing the relative distance of the positive pair and one negative pair

from three samples (Salakhutdinov & Hinton (2007)). To facilitate the training process, the

N-pair loss (Sohn (2016)) is introduced to consider multiple negative samples in training, and

exhibits higher efficiency and performance. More recently, the angular loss is proposed by

Wang et al. (2017) to enhance N-pair loss by integrating high-order constraint that captures

additional local structure of triplet triangles.



21

1.4 Summary

Reviewing the current literature on video FR, we identify that designing a robust face FR under

surveillance conditions is still a challenging task, and the performance of such systems declines

when the number of training images per class is limited and the underlying distribution be-

tween the still reference and probe video ROIs differ. Deep learning and representation-based

FR methods such as sparse representation-based classification cannot be directly employed

with limited samples. Extending the gallery using the synthetic face images to address these

problems is the main topic of this thesis, which is explored in chapters 2, 3 and 4.

Generating photorealistic synthetic face images being able to cover target domain variations

with high consistency is still a challenge. We address this problem by integrating an image-

based face relighting technique inside the 3D reconstruction framework and projecting the

discriminant information of the generic set onto the reference stills. Finding representative

variations to prevent over-fitting is another key aspect of data augmentation. In this thesis,

we select representative facial exemplars by applying clustering on the information extracted

from the videos of target domain. Another key challenge is preserving the identity information

of the generated faces, which is critical for FR applications. In this thesis, we address this

issue by presenting an extended GAN conditioned by synthetic images that uses an additional

adversarial game as the third player to the original GAN, competing with the generator to

preserve the specific attributes.





CHAPTER 2

DOMAIN-SPECIFIC FACE SYNTHESIS FOR VIDEO FACE RECOGNITION FROM
A SINGLE SAMPLE PER PERSON

Fania Mokhayeri1, Eric Granger1, Guillaume-Alexandre Bilodeau2

1 Le Laboratoire d’imagerie, de vision et d’intelligence artificielle (LIVIA),

École de technologie supérieure,

1100 Notre-Dame Ouest, Montréal, Québec, Canada H3C 1K3
2 Laboratoire d’Interprétation et de Traitement d’Images et Vidéo (LITIV),

Polytechnique Montréal,

Montréal, Québec, Canada H3T 1J4

Article published in « IEEE Transactions on Information Forensics and Security » 2018.

Abstract

In video surveillance, face recognition (FR) systems are employed to detect individuals of in-

terest appearing over a distributed network of cameras. The performance of still-to-video FR

systems can decline significantly because faces captured in unconstrained target domain over

multiple video cameras have a different underlying data distribution compared to faces cap-

tured under controlled conditions in the source domain with a still camera. This is particularly

true when individuals are enrolled to the system using a single reference still. To improve the

robustness of these systems, it is possible to augment the reference set by generating synthetic

faces based on the original still. However, without knowledge of the target domain, many syn-

thetic images must be generated to account for all possible capture conditions. FR systems

may, therefore, require complex implementations and yield lower accuracy when training on

many less relevant images. This paper introduces an algorithm for domain-specific face syn-

thesis (DSFS) that exploits the representative intra-class variation information available from

the target domain. Prior to operation (during camera calibration), a compact set of faces from

unknown persons appearing in the target domain is selected through affinity propagation clus-

tering in the captured condition space (defined by pose and illumination estimation). The

domain-specific variations of these face images are then projected onto the reference still of
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each individual by integrating an image-based face relighting technique inside the 3D recon-

struction framework. A compact set of synthetic faces is generated that resemble individuals of

interest under the capture conditions relevant to the target domain. In a particular implementa-

tion based on sparse representation classification, the synthetic faces generated with the DSFS

are employed to form a cross-domain dictionary that accounts for structured sparsity where the

dictionary blocks combine the original and synthetic faces of each individual. Experimental

results obtained with videos from the Chokepoint and COX-S2V datasets reveal that augment-

ing the reference gallery set of still-to-video FR systems using the proposed DSFS approach

can provide a significantly higher level of accuracy compared to state-of-the-art approaches,

with only a moderate increase in its computational complexity.

2.1 Introduction

Still-to-video face recognition (FR) is an important function in several video surveillance ap-

plications, particularly for watch-list screening. Given one or more reference still images of a

target individual of interest, still-to-video FR systems seeks to accurately detect their presence

in videos captured over multiple distributed surveillance cameras (Dewan et al. (2016)).

Despite the recent progress in computer vision and machine learning, designing a robust sys-

tem for still-to-video FR remains a challenging problem in real-world surveillance applications.

One key issue is the visual domain shift between faces from the source domain (enrollment do-

main), where reference still images are typically captured under controlled conditions, and

those from the target domain (operational domain), where video frames are captured under un-

controlled conditions with variations in pose, illumination, blurriness, etc. The appearance of

faces captured in videos corresponds to multiple non-stationary data distributions that can differ

considerably from faces captured during enrollment (Bashbaghi et al. (2017a)). Another key

issue is the limited number of reference stills that are available per target individual to design

facial models. Although still faces from the cohort or other non-target persons, and trajecto-

ries of video frames from unknown individuals are typically available. In many surveillance

applications (e.g., watch-list screening), only a single reference still per person is available for
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design, which corresponds to the so-called Single Sample Per Person (SSPP) problem. The per-

formance of still-to-video FR systems can decline significantly due to the limited information

available to represent the intra-class variations seen in video frames. Many discriminant sub-

spaces and manifold learning algorithms cannot be directly employed with a SSPP problem. It

is also difficult to apply representation-based FR methods such as sparse representation-based

classification (SRC) (Wright et al. (2009)).
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Figure 2.1 Overview of the proposed DSFS algorithm to augment the reference gallery

set. We assume that the gallery set initially contains only one reference still image per

individual of interest.

Different techniques for SSPP problems have been proposed to improve the robustness of FR

systems, such as using multiple face representations (Bashbaghi et al. (2017a)), face frontal-

ization (Hassner et al. (2015)), generating synthetic faces from the original reference stills

(Liu & Wassell (2015); Masi et al. (2016)), and incorporating generic auxiliary set (Deng et al.

(2012, 2014)). This paper focuses on methods that are based on augmenting the gallery set

using synthetic set generated based on the original reference still, and by taking into account

the generic variational information. A challenge with strategies for augmenting the reference

gallery set is selecting a sufficient number of synthetic or generic faces to cover intra-class vari-

ations in the target domain. Many synthetic faces or generic auxiliary faces may be generated

or collected, respectively, to account for all possible capture conditions. FR systems would,

therefore, require complex implementations and may yield lower accuracy when training on
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many facial images. Another challenge is domain discrepancy between synthetic and real im-

ages. The synthetically generated images may not be covering the range intra-class variations

of target domain, since they are highly correlated with the original face images.

In this paper, a new approach is proposed that exploits the discriminant information of the

generic set for the face synthesis process. The new algorithm called domain-specific face

synthesis (DSFS) maps representative variation information from the generic set in the target

domain to the original reference stills. In this way, a compact set of synthetic faces is generated

that represent reference still images and probe video frames under a common capture condi-

tion. As depicted in Fig. 2.1, the DSFS technique involves two main steps: (1) characterizing

capture condition information from the target domain, (2) generating synthetic face images

based on the information obtained in the first step. Prior to operation (during camera calibra-

tion process), a generic set is collected from video captured in the target domain. A compact

and representative subset of face images is selected by clustering this generic set in a capture

condition space defined by pose, illumination, blur. The 3D model of each reference still im-

age is reconstructed via a 3D morphable model and rendered based on pose representatives.

Finally, the illumination-dependent layers of the lighting representatives are extracted and pro-

jected on the rendered reference images with the same pose. In this manner, domain-specific

variations are effectively transferred onto the reference still images. The major contributions

of our work are:

• A technique based on affinity clustering to select representative facial exemplars using

information extracted from videos captured form target domain. This prevents over-fitting

of classifier due to the redundant information and improves efficiency.

• A novel face synthesizing technique that maps the intra-class variation from facial exem-

plars available in the target domain to generate a representative set of face images under

real-world capture conditions.

• A technique to design a compact and discriminative dictionary for SRC allowing to perform

robust still-to-video FR with only one reference still ROI.
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In a particular implementation for still-to-video FR, the original and synthetic face images are

employed to design a structural dictionary with powerful variation representation ability for

SRC. The dictionary blocks represent intra-class variations computed from either the refer-

ence faces themselves or the synthetic faces (Elhamifar & Vidal (2011)). The cooperation of

SRC with the proposed DSFS improves the robustness of SRC for video-based FR in a SSPP

scenario to domain variations. In order to validate the performance of the proposed DSFS al-

gorithm for still-to-video FR with a SSPP, this SRC implementation is evaluated and compared

on two public face databases.

The main advantage of the proposed approach is the ability to provide a compact set that can

accurately represent the original reference face with relevant of intra-class variations in pose,

illumination, motion blur, etc., corresponding to capture condition in the target domain. For

instance, in the context of SRC implementations, this set can prevent over-fitting and refines

more informative classes during the sparse coding process. The rest of the paper is organized

as follows. Section 2.2 provides an overview of related works for FR with a SSPP. Section 2.3

describes the proposed face synthesizing algorithm. Section 2.4 presents a particular imple-

mentation of the DSFS for still-to-video FR system. In Section 2.5, the experimental method-

ology (dataset, protocol, and performance metrics) for validation of FR systems is described,

and the experimental results is presented in 2.6. Finally, Section 2.7 concludes the paper and

discusses some future research directions.

2.2 Related Work

Several techniques have been proposed in the literature to improve the robustness of still-to-

video FR systems designed using a SSPP. They can be categorized into techniques for (1)

multiple face representation, (2) generic learning, and (3) generation of synthetic faces. An

overview of the techniques is presented as below.
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2.2.1 Multiple Face Representations

One effective approach to address the SSPP problem in FR is to extract discriminant features

from face images. Bashbaghi et al. (2014) developed a robust still-to-video FR system based

on diverse face representations. They applied multiple appearance-invariant feature extraction

techniques to patches isolated from the reference still images in order to produce multiple face

representations and generate a pool of diverse exemplar-SVMs. This pool provides robust-

ness to common nuisance factors encountered in surveillance applications. Lu et al. (2013)

proposed a discriminative multi-manifold analysis method by learning discriminative features

from image patches. In this technique, the patches of each individual are considered to form a

manifold for each sample per person and a projection matrix is learned by maximizing the man-

ifold margin of different persons. A deep face representation method is proposed by Almageed

et al. (2016) using several pose-specific deep CNN models to generate multiple pose-specific

features. The multiple face representation techniques are, however, able to compensate only

the small variations and consequently are not effective to tackle with variations in practical

applications (e.g., extreme illumination, pose and expression variations).

2.2.2 Generic Learning

An early finding to compensate visual domain shift in FR systems is to employ a generic

set to enrich the diversity of the reference gallery set that is the so-called generic learning

concept (Su et al. (2010)). Generic learning has been widely discussed by many researchers

(Gao et al. (2017); Li et al. (2016)). Su et al. (2010) proposed an adaptive generic learning

method for FR which utilized external data to estimate the within-class scatter matrix for each

individual and applies this information to the reference set. In recent years, integration of sparse

representation-based classification (SRC) with generic learning for FR has attracted significant

attention. Deng et al. (2012) added generic learning into the SRC framework and proposed

the extended SRC (ESRC), which provide additional information from other face datasets to

construct an intra-class variation dictionary to represent the changes between the training and

probe images. Yang et al. (2013) introduced a sparse variation dictionary learning (SVDL)
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technique by taking the relationship between the reference set and the external generic set into

account and obtained a projection by learning from both generic and reference set. Nourbakhsh

et al. (2016) proposed integrating intra-class variation information from the target domain with

the reference set through domain adaptation to enhance the facial models. Wei & Wang (2015)

proposed a robust auxiliary dictionary learning (RADL) technique that extracts representative

information from generic dataset via dictionary learning without assuming prior knowledge

of occlusion in probe images. Zhu et al. (2014) proposed a local generic representation-based

framework (LGR) for FR with SSPP. It builds a gallery dictionary by extracting the neighboring

patches from the gallery dataset, while an intra-class variation dictionary is constructed by

using an external generic training dataset to predict the intra-class variations. A supervised

autoencoder network for still-to-video FR system is proposed by Parchami et al. (2017c) that

generates canonical face representations from unknown video frames in the target domain that

are robust to appearance variations. Despite the significant improvements reported with generic

learning, several critical issues remain to be addressed. The generic intra-class variation may

not be similar to that of gallery individuals, so the extraction of discriminative information from

the generic set may not be guaranteed. Moreover, the large number of images collected from

external data may contain redundant information which could lead to complex implementations

and degrade the capability in covering intra-class variations.

2.2.3 Synthetic Face Generation

Augmenting the reference gallery set synthetically is another strategy to compensate the ap-

pearance variations in FR with SSPP. Shao et al. (2017) presented a SRC-based FR algorithm

that extends the dictionary using a set of synthetic faces generated by calculating the image

difference of a pair of faces. Mokhayeri et al. (2015) augmented the reference gallery set by

generating a set of synthetic face images under camera-specific lighting conditions to design a

robust still-to-video FR system under surveillance conditions. 3D Morphable Model (3DMM),

proposed by Blanz & Vetter (2003), has been widely used to synthesize new face images from

a single 2D face image. Tran et al. (2017a) employed a CNN to regress 3DMM shape and
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texture parameters directly from an input image without an optimization process which ren-

ders the face and compares it to the image. Zhang & Samaras (2006) proposed a 3D Spherical

Harmonic Basis Morphable Model (SHBMM) that is an integration of spherical harmonics into

the 3DMM framework. Richardson et al. (2017) proposed a neural network for reconstructing

a detailed facial surface in 3D from a single image where the rough facial geometries are mod-

eled using a 3DMM and facial features of that geometry is refined by a CNN. The proposed

method by Tewari et al. (2017) integrates an expert-designed decode layer that implements an

elaborate generative analytically-differentiable image formation model on the basis of a de-

tailed parametric 3D face model. Apart from 3D reconstruction techniques, some 2D-based

techniques generate synthetic images under various illumination conditions by transferring the

illumination of target images to the reference face images (Isola et al. (2017)). Liu et al. (2019)

proposed a encoder-decoder framework that for the first time jointly learns face models directly

from raw scans of multiple 3D face databases and establishes dense correspondences among

all scans. Recently, generative adversarial network (GAN), introduced by Goodfellow & et al.

(2014) has become popular for realistic face synthesis (Shen et al. (2018); Tran et al. (2017b);

Bao et al. (2018b)). These methods formulate GAN as a minimax game, where a discrimina-

tor distinguishes face images in the real and synthetic domains, while a generator reduces its

discriminativeness by synthesizing realistic face images. The competition converges when the

discriminator is unable to differentiate between real and synthetic domains. Shrivastava et al.

(2017) proposed Simulated+Unsupervised learning method that improves the realism of syn-

thetic images. The proposed learning method employs an adversarial network similar to GAN

with synthetic images as inputs instead of random vectors. Although synthetic images can im-

prove the robustness of FR systems designed with a SSPP, they may not be covering the range

intra-class variations in practical scenarios because of redundancy in the learned discrimina-

tive subspace. Many synthetic images should be generated to account for all possible capture

conditions in target domain. Without the selection of representative face images from both

the reference gallery and external data, generating the synthetic faces may require complex

implementations and yield lower accuracy when training on many less relevant images.
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To overcome the challenges discussed above, this paper presents a framework that exploits

both face synthesis and generic learning. The technique proposed in Section III generates a

compact set of synthetic facial images per individual of interest that corresponds to relevant

target domain capture conditions, by mapping the intra-class variations from a representative

set of video frames selected from the target domain into the original reference still images.

2.3 Domain-Specific Face Synthesis

This paper focuses on augmenting reference face set to cover the intra-class variations of indi-

vidual appearing in target domain with a compact set of synthetic face images. A new Domain-

Specific Face Synthesis (DSFS) technique is proposed that employs knowledge of the target

domain to generate a compact set of synthetic face images for the design of FR systems. Prior

to operation, e.g., during a camera calibration process, DSFS selects facial regions of inter-

est (ROIs) isolated in videos with representative pose angles and illumination conditions from

facial trajectories of unknown persons captured in the target domain. These video ROIs are

selected via clustering facial trajectories in the captured condition space defined by pose and

illumination conditions. Next, the DSFS exploits a 3D shape reconstruction method and an

image-based illumination transferring technique to generate synthetic ROIs under representa-

tive pose angles and illumination conditions from the reference still ROIs. To do so, the 3D

models of the reference still ROIs are reconstructed and rendered w.r.t. the representative pose

angles. The illumination-dependent layers of the representative illumination conditions are

then extracted and projected onto rendered images with the same view by applying a morphing

between the layers. In other words, illumination-dependent layers of video ROIs from the tar-

get domain are replaced with that of the still reference ROI from the source domain. Fig. 2.2

shows the pipeline of the DSFS technique.

2.3.1 Characterizing the Capture Conditions

An important concern for the reference set augmentation is the selection of representative pose

angles and illumination conditions to represent relevant capture conditions in the target domain.
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Figure 2.2 Block diagram of the DSFS technique applied to a reference still ROI.

As mentioned, adding a large number of potentially redundant images to the reference set

can significantly increase the time and memory complexity, and may degrade the recognition

performance due to over-fitting.

With the DSFS technique, the representative pose angles and illumination conditions to cover

relevant intra-class variations is approximated by characterizing the capture conditions from a

large generic set of video ROIs. This set is formed with multiple ROIs isolated in several facial

trajectories of unknown persons captured in the target domain. Let R=
{

ri ∈ R
d×d|i = 1, . . . ,n

}
be a set of ROIs of still reference individuals, and G =

{
gi ∈ R

d×d|i = 1, . . . ,m
}

be a set of

video ROIs in the generic set, where n and m denote the number of individuals in the reference

gallery set, and the generic set, respectively.

In the proposed technique (see Fig. 2.3), an estimation of luminance, contrast and pose are

measured for each video ROIs in the generic set gi. Next, a two-step clustering process is

applied on video ROIs in the measurement space defined by pose, luminance and contrast.

The first step is applied on all ROIs in the 3D metric space defined by pose (tilt, yaw and

roll), while the second step is applied on ROIs of each pose cluster in the 2D space defined by

luminance and contrast metrics. The prototype of each cluster is considered as an exemplar.
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The generic variational information obtained during this step is then transferred to the reference

still ROIs during the face synthesizing step (see Section III B). Although many algorithms

are also suitable to implement DSFS, the following subsections describe DSFS with specific

algorithms.
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Figure 2.3 Pipeline for characterizing capture conditions of video

ROIs in the target domain.

2.3.1.1 Estimation of Head Pose

The estimate of head pose for the ith video ROI (gi) in the generic set is defined as pi =

(θ pitch
i ,θ yaw

i ,θ roll
i ). Euler angles θ pitch

i , θ yaw
i , and θ roll

i are used to represent pitch, yaw and

roll rotation around X axis, Y axis, and Z axis of the global coordinate system, respectively.

In order to estimate the head pose, the discriminative response map fitting (DRMF) method is

employed (Asthana et al. (2013)). It is the current state-of-the-art method in terms of fitting

accuracy and efficiency suitable for handling occlusions and changing illumination conditions.

2.3.1.2 Luminance-Contrast Distortion

Luminance and contrast distortion measures estimate the distortion between a video ROI and

the corresponding reference still ROI. Components of the structural similarity index measure

presented by Wang et al. (2004) are employed to measure the proximity of the average lu-
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minance and contrast locally by utilizing sliding window. The global luminance distortion in

image quality (GLQ) factor between ri and g j is calculated by sliding a window of B×B pixels

from the top-left corner to the bottom-right corner of the image, for a total of M sliding steps:

li, j =
1

M

M

∑
ψ=1

2.μψ(ri).μψ(g j)+Cl

μψ(ri)
2 +μψ(g j)

2 +Cl
, (2.1)

where ψ is the sliding step and μψ(·) denotes mean values of the ψ th image window. Cl is a

positive stabilizing constant defined as Cl = (ψlL)2 where L is the dynamic range of the pixel

values and ψl � 1 is a small constant. Similarly, the contrast distortion between ri and gi is

estimated using global contrast distortion in image quality (GCQ) factor defined as:

ci, j =
1

M

M

∑
ψ=1

2.σψ(ri).σψ(g j)+Cc

σψ(ri)
2 +σψ(g j)

2 +Cc
, (2.2)

where σψ(·) denotes the standard deviation of the ψ th image window. Cc is a positive stabi-

lizing constant defined as Cc = (ψcL)2 where L is the dynamic range of the pixel values and

ψc � 1 is a small constant.

2.3.1.3 Representative Selection

Affinity propagation (AP) is applied to cluster video ROIs from the generic set defined in the

normalized space defined by p j = (θ pitch
i ,θ yaw

i ,θ roll
i ) and ui = (li,ci) measures (Frey & Dueck

(2007)). This clustering algorithm aims to maximize the net similarity (average distortion be-

tween ROIs and pose angles) and produce a set of exemplars. Two types of messages: respon-

sibility and availability are exchanged between data points until a high-quality set of exemplars

and corresponding clusters emerges. AP is a suitable clustering technique for DSFS because:

(1) it can automatically determine the number of clusters based on the data distribution, and

(2) it produced exemplars that correspond to actual ROIs. Indeed, cluster centroids produced

by many prototype-based clustering methods are not necessarily actual ROIs with a real-world

interpretation. Given that clustering samples simultaneously in terms of both p j and ui may
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favor certain common pose angles, a two-step clustering algorithm is proposed to preserves di-

versity in pose angles and illumination effects. In the first step, clustering is performed on the

pose angle vector, and then the population of each pose cluster is clustered according to GLQ

and GCQ metrics to find the representative luminance and contrast samples. Representative lu-

minance and contrast samples – called lighting exemplar – are found along with representative

pose angles – called "pose exemplar" (Fig. 2.4).
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Figure 2.4 An illustration of the AP clustering process.

The clustering algorithm inputs a set of pose similarities sp(i,k) = − ‖ pi −pk ‖2 indicating

how well the sample pk with index k is similar to the sample pi from the generic set. The pose

responsibility rp(i,k) is defined as the accumulated evidence for how well-suited sample pk is

to serve as the exemplar for the sample pi, taking into account other potential exemplars for the

sample pi. Evidence about whether each pose candidate exemplar would be a good exemplar

is obtained from the application of the pose availability ap(i,k). The availability reflects the

accumulated evidence for how appropriate it would be for sample pi to choose sample pk as

its exemplar, taking into account the support from other samples that sample pk should be

an exemplar. The availabilities are initialized to zero, and the pose responsibilities are then

computed iteratively using the rule of Eq.2.3. The availabilities are updated in each iteration
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using Eq.2.4.

rp(i,k) = sp(i,k)− max
k′|k′ �=k

{ap(i,k′)+ sp(i,k′)} , (2.3)

ap(i,k) = min
{

0,rp(k,k)+∑
i′|i′ �∈{i,k}

max{0,rp(i′,k)}
}
. (2.4)

For pi, the value of pk that maximizes ap(i,k)+ rp(i,k) either identifies sample pi as an ex-

emplar if k = i, or identifies the sample that is the exemplar for the sample pi. The message-

passing procedure is terminated after a fixed number of iterations when the local cost functions

remain constant for some number of iterations. At the end of pose clustering, K pose clusters

P = {P1,P2, . . . ,P j, . . . ,PK} are determined, where pi = [θ pitch
i ,θ yaw

i ,θ roll
i ].

The second clustering is then applied for each pose cluster in the li, j and ci, j measure space

to find lighting exemplars. The first step computes illumination-contrast similarities su(i,k) =

− ‖ (ui −uk) ‖2. The corresponding responsibility and availability are obtained according to:

ru(i,k) = su(i,k)− max
k′|k′ �=k

{au(i,k′)+ su(i,k′)} , (2.5)

au(i,k) = min
{

0,ru(k,k)+∑
i′|i′ �∈{i,k}

max{0,ru(i′,k)}
}
. (2.6)

The estimated rcl(i,k) and acl(i,k) are combined to monitor the exemplar decisions and the

algorithm is terminated when these decisions do not change for several iterations. At the end of

the illumination-contrast clustering for each pose cluster P j, a number of Nj lighting clusters

P j = {U j1,U j2, . . . ,U jNj} are obtained. The central representative samples of illumination-

contrast clusters in jth pose cluster are considered as the pose and lighting exemplars for jth

pose as ui
j = (li

j,c
i
j),1 ≤ i ≤ Nj where l and c are illumination and contrast of center of ith

illumination-contrast cluster U ji in the jth pose cluster P j.

Larger clusters represent a greater number of generic samples, they should have more influ-

ence for the classification. Therefore, a weight is assigned to each exemplar ui
j to indicate its

importance, approximated based on its cluster size, Wi j = ni j/n, where ni j is the number of
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samples in the cluster Ui j and n is the number of generic samples. This selection strengthens

those classes that are more representative in reconstructing a probe sample.

2.3.2 Face Synthesis

For generating synthetic ROIs based on the representative pose and lighting conditions, 3D

models of reference ROIs are reconstructed and their material-dependent layers are extracted.

In the rendering process, the extracted material layers are employed as a texture of the 3D

model. This model is rendered w.r.t. the pose exemplars. Following this, the illumination-

dependent layers of the lighting exemplars are extracted. Finally, the lighting layers are pro-

jected on the rendered images with the same view by applying a morphing between the layers.

The following subsections describe the steps proposed for the face synthesizing with DSFS.

2.3.2.1 Intrinsic Image Decomposition

Each still reference image, ri, is decomposed to its material-dependent layer (albedo), Mi, and

shading-dependant layer, Li, based on the a texture-aware image model defined by Jeon et al.

(2014). This image decomposition method explicitly models a separate texture layer in ad-

dition to the shading layer and material layer in order to avoid ambiguity caused by textures.

Explicitly modeling textures, shading layer and reflectance layer in the model depict only tex-

tureless base components, and accordingly avoid ambiguity caused by textures. Furthermore,

for robustness against noise, the points are sparsely sampled for the surface normal constraint

based on local variances of surface normal. This model is presented as follows:

ri(x,y) = Bi(x,y).Ti(x,y) = Li(x,y).Mi(x,y).Ti(x,y) , (2.7)

where B(x,y) = L(x,y).M(x,y) is a base layer, and L(x,y), M(x,y) and T(x,y) are shading,

material, and texture components at a pixel (x,y), respectively.
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2.3.2.2 3D Face Reconstruction

3D face model of reference ROIs, ri, are reconstructed using the 3DMM technique (Blanz & Vet-

ter (2003); Paysan et al. (2009)). In this study, a customized version of the 3DMM is employed

in which the texture fitting of the original 3DMM is replaced with image mapping. By re-

placing the texture fitting in the original 3DMM with 2D image mapping, an efficient method

is implemented for 3D face reconstruction from one frontal face image. Basically, the shape

model is defined as a convex combination of shape vectors of a set of examples in which the

shape vector (S) is defined as Eq.2.8 (Blanz & Vetter (2003)). A principal components analysis

is performed to estimate the statistics of the 3D shape of the faces.

S = S̄+
mS−1

∑
k=1

αk.S̃k , (2.8)

where, the 3D shape is represented by the probability distribution of faces around the averages

of shape S̄ and the basis vectors S̃ j, 1 ≤ j ≤ ms in Eq.2.8 where ms is the number of the basis

vectors.

Each vector S stores the reconstructed 3D shape in terms of x, y, z-coordinates of all vertices

ε{1, . . . ,ns} of a high-resolution 3D mesh as

S = [X1,Y1,Z1,X2, . . . ,Xns ,Yns ,Zns ]
T . (2.9)

Here, for each reference ROI, ri, we reconstruct the 3D shape.

Si = S̄+
mS−1

∑
j=1

α i
j.S̃ j, (2.10)

where α i
j ∈ [0,1],1 ≤ j ≤ ms are the shape parameters and Si is the reconstructed shape of

the ith reference still ROI ri. The optimization algorithm presented by Blanz & Vetter (2003)

is employed to find optimal α i
j,1 ≤ j ≤ ms , for each reference still ROI ri. In the next step,

the extracted material layers, Mi, are projected to the 3D geometry of the reference gallery
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set. Given the 3D facial shape and texture, novel poses can be rendered under various forms

of the pose by adjusting the parameters of a camera model. In the rendering procedure, the

3D face is projected onto the image plane with Weak Perspective Projection which is a linear

approximation of the full perspective projection.

Since the 2D image is directly mapped to the 3D model, no corresponding color information is

available for some vertices because they are occluded in the frontal face image. Consequently,

it is possible that there are still some blank areas on the generated texture map. In order to

correct these blank space areas, a bilinear interpolation algorithm is utilized to fill in areas of

unknown texture using the known colors in the vicinity.

2.3.2.3 Illumination Transferring

For each pose exemplar, p j, a set of samples {I jk
u ∈ R

d×d|1 ≤ k ≤ Nj} corresponding to the

u jk, for k = 1,2, ...,Nj, are selected as lighting exemplars. The illumination-dependent layer of

each I jk
u are extracted using the same process described in section 2.3.2.1. For each pose exem-

plar p j, Nj the illumination layers, L jk, for k = 1,2, ...,Nj, are then projected to the rendered

reference, Vi j. This is performed by morphing between L jk and V jk according to the following

steps:

i) detect the landmark points of L jk and Vi j using active shape model to locate corresponding

feature points. The landmark points of L jk and Vi j are denoted as l jk and vi j, respectively;

ii) define a triangular mesh over l jk and vi j via the Delaunay triangulation technique and

obtain d jk
l and di j

v ;

iii) coordinate transformations between d jk
l and di j

v with affine projections on the points;

iv) warp each triangle separately from the source to destination using mesh warping technique

which moves triangular patches to the newly established location to align two ROIs;

v) cross-dissolve the triangulated layers considering warped pixel locations.



40

In this way, a number q = ∑K
j=1 Nj of synthetic ROIs are generated for each reference still ROI

ri. Therefore, the total number of synthetic ROIs are qtotal = nq. The synthetic set of ROIs

for the ith reference still ROI are presented by Si = [si
1,s

i
2, . . . ,s

i
q] ∈ IRd2×q where si

j is the jth

concatenated synthetic ROI for the ith reference still ROI. The overall process of DSFS face

generation technique is formalized in Algorithm 2.1.

Algorithm 2.1 The DSFS Approach.

Input: Reference set R =
{

ri ∈ R
d×d |i = 1, . . . ,n

}
, and generic set

G =
{

gi ∈ R
d×d |i = 1, . . . ,m

}
.

1 Estimate pose angles.

2 Calculate luminance and contrast distortion measures. // Eq.2.1, Eq.2.2
3 AP clustering on pose space to obtain P = {P1,P2, . . . ,PK}. // Section2.3.1.3
4 for j = 1 to K do
5 AP clustering on Illumination and contrast space for the P j to obtain {u ji|1 ≤ i ≤ Nj}.

// Section2.3.1.3

6 end
7 for i = 1 to n do
8 Extract material-dependent layer of ri (Mi). // Section2.3.2.1
9 Recover 3D face model of ri using 3DMM (Si). // Section2.3.2.2

10 Map the texture of Mi to Si.

11 for j = 1 to K do
12 Render under p j pose to obtain Vi j.

13 for each u ji, i = 1 to Nj do
14 Extract illumination-dependent layers (L jk). // Section2.3.2.1
15 Morphing between L jk and Vi j to obtain Si. // Section2.3.2.3

16 end
17 end
18 end

Output: All sets of synthetic face ROIs under representative pose and illumination conditions.

Si = [si
1,s

i
2, . . . ,s

i
q] ∈ IRd2×q, i = 1,2, . . . ,n .

2.4 Domain-invariant Face Recognition with DSFS

In this section, a particular still-to-video FR implementation is considered (see Fig. 2.5) to

assess the impact of using DSFS to generate synthetic ROIs to address these limitations.

An augmented dictionary is constructed by employing the synthetic ROIs generated via DSFS

technique, and classification is performed via a structured SRC approach. Since the synthetic
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Figure 2.5 Block diagram of the proposed domain-invariant SRC-based still-to-video

FR system.

ROIs for each individual (including the synthetic poses, illuminations, and etc.) form a block in

this dictionary, the SRC is considered as a structured sparse recovery problem. The main steps

of the proposed domain-invariant still-to-video FR with dictionary augmentation are summa-

rized as follows:

• Step 1: Generation of Synthetic Facial ROIs

In the first step, q synthetic ROIs Si = [si
1, . . . ,s

i
q] ∈ Rd2×q are generated for each ri of the

reference gallery set using DSFS technique, where q is the number of synthetic ROIs for

each class.

• Step 2: Augmentation of Dictionary

The synthetic ROIs generated through the DSFS technique are added to the reference dic-

tionary to design a cross-domain dictionary. Let DR = [Ir
1,Ir

2, . . . ,Ir
n] ∈ R

d2×n be the
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reference gallery dictionary, where Ir
i is the concatenated result of ri. The cross-domain

dictionary DC = [Ir
1,S1, . . . ,Ir

n,Sn]∈R
d2×n(q+1) integrates the original and synthetic ROIs

in a linear model where S j is the jth set of synthetic ROIs added to the jth class. Since q

synthetic ROIs are added to each class, the total number of ROIs in the cross-domain dic-

tionary are nc = n(q+1).

The presented dictionary design in this work enables SRC to perform recognition with only

one reference still ROI and makes it robust to the visual domain shift.

• Step 3: Classification

Given a probe video ROI y, general SRC represents y as a sparse linear combination of

the codebook DC, and derives the sparse coefficients of y by solving the �0-minimization

problem as follows:

A�0
: min‖x‖0 s.t. y = DCx . (2.11)

Since the generated synthetic ROIs for each individual form a block of the dictionary, a

better classification can arise from a representation of the probe ROI produced from the

minimum number of blocks from the dictionary instead of looking for the representation

of a probe ROI in the dictionary of all the training data using the so-called structured SRC

which its goal is to find a representation of a probe ROI that uses the minimum number

of blocks from the dictionary. For a dictionary DC =
[
DC[1],DC[2], . . . ,DC[n]

]
with blocks

DC[i], i = 1, . . . ,n, the block sparsity is formulated in terms of mixed �2/�0 norm as;

A�2/�0
: min

x

n

∑
i=1

I(‖ x[i] ‖2 > 0) s.t. y = DCx , (2.12)

where I(.) is the indicator function, and x[i] is the ith block in the sparse coefficient vector

x corresponding to the dictionary block DC[i]. Since each dictionary block corresponds to

a specific class, i represents the class index ranging from 1 to n as well. This optimization

problem seeks the minimum number of non-zero coefficient blocks that reconstruct the

probe ROI.
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Note that the optimization program A�2/�0
is NP-hard since it requires searching over all

possible few blocks of x and checking whether they span the given y. A relaxation of this

problem is obtained by replacing the �0 with the �1 norm and solving the Eq.2.13.

A�2/�1
: min

x

n

∑
i=1

‖ x[i] ‖2 s.t. y = DCx . (2.13)

Finally, the weighted matrix obtained in 2.3.1.3 which shows cluster weights is multiplied

to the �1-minimization term.

A�2/�1
: x̂ = argmin

x

n

∑
i=1

‖Wi x[i] ‖2 s.t. y = DCx . (2.14)

where

Wi =

⎡⎢⎢⎢⎢⎢⎢⎣
wi1 0 · · · 0

0 wi2 · · · 0
...

...
. . .

...

0 0 · · · wi(q+1)

⎤⎥⎥⎥⎥⎥⎥⎦ . (2.15)

In order to solve the SRC problem of equation 2.14, the classical alternating direction

method (ADMM) is considered which is an efficient first-order algorithm with global con-

vergence (Deng et al. (2013)).

The class label of the probe ROIs y is then determined based on the reconstruction error as

follows:

label(y) = argmin
i
‖ y−D[i]x̂[i] ‖2 . (2.16)

• Step 4: Validation

In practical FR systems, it is important to detect and then reject outlier invalid probe ROIs.

We use the sparsity concentration index (SCI) criteria defined by Wright et al. (2009):

SCI(x̂) .
=

n.maxi ‖ x̂[i] ‖1 / ‖ x̂ ‖1 −1

n−1
∈ [0,1] . (2.17)



44

where n is the number of classes. A probe ROI is accepted as valid if SCI ≥ τ and otherwise

rejected as invalid, where τ ∈ (0,1) is a threshold.

The still-to-video FR process through dictionary augmentation is formalized in Algorithm 2.2.

Algorithm 2.2 A SRC-based Still-to-Video FR System.

Input: Reference face models of n classes enlisted in the gallery R =
{

ri ∈ R
d×d |i = 1, . . . ,n

}
,

generic set G =
{

gi ∈ R
d×d |i = 1, . . . ,m

}
, threshold τ , and a probe ROI y.

1 Generate nq synthetic ROIs for each class using the DSFS method.

2 Build the cross-domain dictionary DC by adding the synthetic ROIs to the reference gallery set.

3 Solve the A�2/�1
problem using ADM technique. if SCI ≥ τ then

// Eq. 2.17
4 Find the class label y. // Eq. 2.16

5 else
6 Reject as invalid.

7 end
Output: Class label of y.

2.5 Experimental Methodology

2.5.1 Databases

In order to validate the proposed DSFS for still-to-video FR under real-world surveillance

conditions, extensive experiments were conducted on two publicly available datasets – COX-

S2V (Huang et al. (2015)) and Chokepoint (Wong et al. (2011)). These datasets were selected

because they are the most representative for watch-list screening applications. They contain

a high-quality reference image per subject captured under controlled condition (with a still

camera), and lower-quality surveillance videos for each subject captured under uncontrolled

conditions (with surveillance cameras).

COX-S2V dataset contains 1000 individuals (435 male and 565 female), with 1 high-quality

still image and 4 low-resolution video sequences per individual simulating video surveillance

scenario. In each video, an individual walk through a designed S-shape route with changes

in illumination, scale, and pose (Huang et al. (2015)). The Chokepoint dataset consists of 25
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individuals (19 male and 6 female ) walking trough portal 1, and 29 individuals walking trough

portal 2. The recording of portal 1 and portal 2 are one month apart. A camera rig with 3

cameras is used for simultaneously recording the entry of a person during four sessions with

changes in illumination conditions, pose, and misalignment. In total, the dataset consists of 54

video sequences and 64,204 face images (Wong et al. (2011)).

2.5.2 Experimental protocol

With the Chokepoint database, 5 individuals are randomly chosen as watch-list individuals that

each individual includes a high-quality frontal captured image. Prior to each experiment, the

video data is split into 3 parts. ROIs are extracted from the video sequences of 10 other indi-

viduals selected at random as a generic set to represent capture conditions. ROIs of the video

sequences of the remaining individuals along with video sequences of the 5 already selected

watch-list individuals are employed for testing. In order to obtain representative results, this

process is repeated 5 times with a different random selection of watch-list and generic set in-

dividuals, and the average accuracy is reported with mean and standard deviation over all the

runs. With COX-S2V, 30 individuals are randomly considered as watch-list individuals includ-

ing a high-quality captured image per each individual. Their corresponding low-quality video

sequences along with ROIs of the video sequences of 100 other individuals are employed for

testing. The ROIs extracted from the video sequences of 100 other individuals are selected at

random as a generic set to represent capture conditions. This process is replicated 5 times with

different stills and videos of watch-list individuals, and the average accuracy is reported with

mean and standard deviation over all the runs. During the enrollment, the ROIs of the generic

set of faces captured from video trajectories across all target domains (i.e., global modeling)

are extracted using the Viola-Jones face detection algorithm (Viola & Jones (2004)). Face de-

tection is also applied to still images prior to face synthesis. An estimation of luminance and

contrast are measured for each video ROIs in the generic set where the constant values of Kl

and KC are set to 0.01 and 0.03, respectively as proposed by Wang et al. (2004). Pose angles are

estimated. Then, AP clustering is applied to the generic set, where q representative video ROIs
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are selected under various pose, illumination and contrast conditions, and a weight is assigned

to each exemplar according to the cluster size. Then, q synthetic face images are generated for

each individual based on the information obtained from these selected exemplars. Recall that

AP clustering seeks exemplars (samples that are representative of clusters), and automatically

determines k and q, the number of clusters, for each independent replication. The cross-domain

dictionary is then designed using the reference still and synthetic ROIs. During the operational

phase, recognition is performed by coding the probe image over the cross-domain dictionary

regarding the weights obtained in the source domain. Throughout the experiments, the sparsity

parameter λ is fixed to 0.005. For reference, the still-to-video FR system based on individual-

specific SVMs is also evaluated. During the enrollment, a non-linear SVM classifier with RBF

kernel is trained for each individual using target ROIs (reference still of the individual plus the

related synthetically face images) versus non-target ROIs (reference still of cohort persons plus

their synthetic face images).

2.5.3 Performance Measures

To assess the ability of face synthesizing techniques to address shifts between target domain

and source domain, a domain shift quantification (DSQ) measure is employed. With this mea-

sure, the similarity between a dictionary designed using synthetic ROIs (DA) is compared with

a dictionary formed with images collected from the target domain (DR) by measuring the mean

pixel error between the dictionaries. Given two dictionaries DA and DR with the same number

of images, the DSQ measure is defined as Qdsq = ‖DT
RDA‖F where a higher value indicates less

domain shift (Ni et al. (2013)). The accuracy of the still-to-video FR system is assessed per

individual of interest at the transaction level, using the receiver operating characteristic (ROC)

space, where the true positive rates (TPRs) are plotted as a function of false positive rates

(FPRs) over all threshold values. TPR is the proportion of target ROIs that correctly classified

as individuals of interest over the number of target ROIs, while FPR is the proportion of non-

target ROIs incorrectly classified as individuals of interest over the number of non-target ROIs.

The area under ROC curve is a global scalar measure of accuracy that can be interpreted as the
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probability of correct classification over the range of TPR and FPR. Accordingly, accuracy of

FR systems is estimated using the partial area under ROC curve pAUC(10%) (using the AUC

at 0 <FPR≤ 0.1%). Since the number of target and non-target data are imbalanced, the area

under precision-recall curves (AUPR) is also used to estimate the performance of FR systems.

2.6 Results and Discussion

This section first presents some examples of synthetic faces generated using the DSFS tech-

nique and compares them with synthetic faces generated using state-of-the-art face synthesiz-

ing methods: 3DMM (Blanz & Vetter (2003)), and 3DMM-CNN (Tran et al. (2017a)). Then,

the performance of still-to-video FR systems based on individual-specific SVMs and on SRC

is presented when using these synthetic facial ROIs for system design. FR performance is as-

sessed when increasing the number of synthetic ROIs per each individual according to pose

angles and lighting effects. To characterize the impact on performance, these systems are

tested with a growing number of synthetic ROIs and generic training set, and compared with

several relevant state-of-the-art still-to-video FR systems: ESRC (Deng et al. (2012)), RADL

(Wei & Wang (2015)), SVDL (Yang et al. (2013)), LGR (Zhu et al. (2014)), and Flow-based

face frontalization (Hassner et al. (2015)). The final experiment compares the performance

of a system designed with synthetic ROIs obtained with DSFS, to a system designed with a

growing number of randomly-selected synthetic ROIs. The dataset,face synthesizing and face

recognition experiments can be viewed at https://github.com/faniamokhayeri/DSFS.

2.6.1 Face Synthesis

This subsection presents examples of pose and lighting exemplars obtained by clustering of

facial trajectories in the captured condition space. Fig. 2.6 shows an example of pose clus-

ters obtained with Chokepoint video trajectories of 10 individuals, and with COX-S2V video

trajectories of 100 individuals. In this experiment, k1 = 9 and k2 = 7 pose clusters (exem-

plars) are typically determined with the Chokepoint and COX-S2V videos, respectively. The

second level of clustering is then applied in the illumination and contrast measure space on
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each pose clusters. Fig. 2.7 shows the exemplars selected based on both pose and lighting

with the proposed representative selection of DSFS (see section 2.3.1). Overall, q1 = 22 and

q2 = 18 exemplars were typically selected based on both pose and lighting clusters determined

in Chokepoint and COX-S2V videos, respectively.

a) Chokepoint b) COX-S2V

Figure 2.6 Examples of representative selection results using AP

clustering technique in terms of pose angles with Chokepoint

dataset on video sequences of 10 individuals and COX-S2V

dataset on video sequences of 100 individuals, respectively.
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b) COX-S2V

Figure 2.7 Examples of luminance and contrast representatives

with Chokepoint dataset on video sequences of 10 individuals and

COX-S2V dataset on video sequences of 100 individuals,

respectively, where the center of clusters show exemplars.

Fig. 2.8 show examples of synthetic ROIs generated under different pose, illumination and con-

trast conditions using the DSFS technique on the Chokepoint and COX-S2V datasets, where



49

Basel Face Model are used as generative 3D shape model (Paysan et al. (2009)). In Fig.2.9,

the quality of synthetic faces generated under different pose via DSFS, 3DMM (Blanz & Vetter

(2003)), and 3DMM-CNN (Tran et al. (2017a)) techniques are compared.

a) Chokepoint b) Chokepoint

c) COX-S2V d) COX-S2V

Figure 2.8 Examples of synthetic ROIs generated under

different capture conditions using the DSFS technique with

Chokepoint (a,b) and COX-S2V (c,d) datasets.

The synthetic ROIs generated using the DSFS are also evaluated quantitatively. Table. 2.1

shows the DSQ values of the DSFS and other state-of-the-art face synthesizing methods in-

cluding 3DMM (Blanz & Vetter (2003)), 3DMM-CNN (Tran et al. (2017a)), and SHBMM

(Zhang & Samaras (2006)) on Chokepoint and COX-S2V datasets. Higher DSQ values indi-

cate a smaller domain shift, and potentially higher recognition rate between the corresponding

two domains. The results are provided under the two following scenarios.
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a) DSFS b) 3DMM c) 3DMM-CNN

Figure 2.9 Synthetic face images generated under different pose via (a) DSFS,

(b) 3DMM, (c) 3DMM-CNN with Chockpoint dataset.

2.6.1.1 Frontal View

In the first experiment, 5 individuals in source domain are randomly selected. A set of synthetic

face are generated with a frontal view under various lighting effects from the still ROI of

each individual to design DA. The corresponding video ROIs in the target domain under the

frontal view are then collected to form DR. Finally, the DSQ is measured for the DA and Dr

dictionaries.

2.6.1.2 Profile View

In the second experiment, 5 individuals in source domain are again randomly selected. Their

synthetic ROIs are generated with profile view and different illumination conditions to form

DA. The corresponding video ROIs in target domain under profile view are collected to con-

struct DR. Finally, the DSQ is estimated for the dictionaries.

As shown in Table. 2.1, DSQ values of DSFS method are higher followed most closely by

SHBMM in both scenarios. Accordingly, the cross-domain dictionary designed by the syn-

thetic ROIs generated via the DSFS method is most suitable to reduce visual domain shifts and

potentially achieve a higher level of accuracy. These results are in line with the recognition

performance results.
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Table 2.1 Average DSQ value for frontal and profile views on Chokepoint and

COX-S2V datasets.

DSQ

Technique Chokepoint database COX-S2V database
Frontal View Profile View Frontal View Profile View

3DMM 8.27 7.38 8.24 7.63

3DMM-CNN 7.61 7.03 7.57 7.29

SHBMM 9.16 7.26 9.34 7.71

Proposed DSFS 9.53 8.17 9.58 8.39

2.6.2 Face Recognition

In this subsection, the performance achieved using the still-to-video FR system based on SRC

and DSFS (see Section 2.3) is assessed experimentally. For reference, the still-to-video FR

system based on individual-specific SVMs is also evaluated.

2.6.2.1 Pose Variations

The still-to-video FR system is evaluated versus the number of synthetic ROIs that incorporate

growing facial pose. 2.10 show the average AUC and AUPR obtained by increasing the num-

ber of synthetic ROIs generated using DSFS from k representative pose angles (pi, i = 1 . . .k)

and with fixed lighting condition. Results indicate that by adding extra synthetic ROIs gen-

erated under representative pose angles allows to outperform baseline systems designed with

an original reference still ROI alone. AUC and AUPR accuracy increases by about 10%, typi-

cally with only k1 = 9 and k2 = 7 synthetic pose ROIs for Chokepoint and COX-S2V datasets,

respectively.

2.6.2.2 Mixed Pose and Illumination Variations

The performance of still-to-video FR systems is assessed versus the number of synthetic ROIs

generated under both pose and lighting effects. Fig. 2.11 show average AUC and AUPR ob-

tained by increasing the number of synthetic ROIs used to design SRC and SVM classifiers

on the Chokepoint and COX-S2V databases, where Si is a set of synthetic ROIs generated us-
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Figure 2.10 Average AUC and AUPR versus the number of

synthetic ROIs generated with DSFS according to various pose

and fixed illumination. The still-to-video FR system employs

either SVM and SRC classifiers on Chokepoint (a,b) and

COX-S2V (c,d) databases.

ing DSFS technique under various pose and illumination conditions. Adding synthetic ROIs

generated under various pose, illumination and contrast conditions allows to significantly out-

perform the baseline system designed with the original reference still ROI alone. AUC and

AUPR accuracy increases by about 40%, typically with only q1 = 24 and q2 = 18 synthetic

ROIs for Chokepoint and COX-S2V datasets, respectively. As shown in Fig. 2.11, accuracy

for DSFS+SRC trends to stabilize to its maximum value when the size of the generic set is

greater than q in DSFS. To view performance stabilizing with more than q synthetic ROIs, ad-

ditional samples were selected randomly among AP clusters. Note that the Chokepoint dataset

contains faces captured for a range illumination conditions with various densities. Hence, some

exemplars may represent many video ROIs. Our method assigns higher weights to such distri-

butions and may yield a higher level of performance. The results obtained with DSFS are also

compared to still-to-video FR systems that exploit state-of-the-art face synthesis techniques
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including 3DMM (Blanz & Vetter (2003)) (with randomly selected images), and SHBMM

(Zhang & Samaras (2006)) (with 9 spherical harmonic basis images). As shown in Fig. 2.11,

DSFS always outperforms these other techniques.
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Figure 2.11 Average AUC and AUPR versus the number of

synthetic ROIs generated with DSFS, 3DMM, and SHBMM

according to pose and lighting effects where still-to-video FR

system employs either SVM and SRC classifiers on Chokepoint

(a,b) and COX-S2V (c,d) databases.

2.6.2.3 Impact of Representative Selection

Without prior knowledge of the target domain, synthetic faces are generated according to a

uniform distribution. Adding a large number of synthetic ROIs to the dictionary as needed

to cover all possible cases can significantly increase the time and memory complexity of FR

systems and, more importantly, may cause over-fitting. The proposed DSFS technique extracts

representative information from the target domain to produce a compact set of synthetic ROIs

that are robust to intra-class variations in the target domain. In order to evaluate the impact of
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the synthetic ROIs generated based on representative information (i.e., pose and lighting cluster

instances), 3 dictionaries are designed for SRC: (1) a dictionary designed with representative

synthetic ROIs (DSFS technique); (2) a dictionary designed with the synthetic ROIs under

all capture conditions (DSFS without AP clustering); and (3) a dictionary designed under all

possible conditions.

The first scenario evaluates the impact of representative selection in terms of pose with 3 dic-

tionaries. The first dictionary typically employs k1 = 9 and k2 = 7 representative synthetic pose

ROIs generated with the DSFS technique for Chokepoint and COX-S2V datasets, respectively.

The second dictionary employs 100 synthetic pose ROIs generated by DSFS technique under

all target domain capture conditions. The third dictionary employs 180 synthetic pose ROIs

generated by 3DMM in a set of rotation angles ranging from to −60 to +60 (2.12). The second

scenario evaluates the impact of representative selection in terms of both pose and illumina-

tion conditions with 3 dictionaries designed for SRC. The first dictionary employs q1 = 22 and

q2 = 18 representative synthetic ROIs generated under different pose and illumination with the

DSFS technique for Chokepoint and COX-S2V datasets, respectively. The second dictionary

employs 100 synthetic ROIs generated under different pose and illumination by DSFS tech-

nique under all target domain capture conditions. The third dictionary employs 180 synthetic

pose ROIs generated under different pose and illumination by 3DMM (2.12). The results in

Fig. 2.12 suggest that augmenting the dictionary using representative synthetic ROIs with the

DSFS technique yields a higher level of accuracy, particularly under both pose and illumination

conditions.

The impact of the proposed representative selection technique is also assessed based on the var-

ious pose estimation methods including DRMF (Asthana et al. (2013)), ERT (Kazemi & Josephine

(2014)), and OpenFace (Baltruvsaitis et al. (2016)). For this, the performance of the FR system

is compared according the different pose estimation techniques under combined variations of

identity, pose, and illumination conditions. In this experiment, the 5 individuals of Chokepoint

database and 30 individuals of COX-S2V database are used. With Chokpoint dataset, q1 = 22,

q2 = 20, q3 = 24 representative samples with DRMF, ERT, and OpenFace are obtained, re-
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Figure 2.12 Average AUC and AUPR of a still-to-video FR

system designed with representative synthetic ROIs vs a system

designed with randomly generated synthetic ROIs on Chokepoint

(a,b) and COX-S2V (c,d) datasets.

spectively, and With COX-S2V dataset, q1 = 18, q2 = 16, q3 = 21 representative samples with

DRMF, ERT, and OpenFace are obtained, respectively. Fig.2.13 show the average AUC and

AUPR obtained by increasing the number of synthetic ROIs generated from q1, q2, and q3

representative pose angles obtained with different pose estimation techniques. Then, the error

of each pose estimation technique is computed based on the normalized distance of each land-

mark to its ground truth position (see Table. 2.2). It can be observed from the results that when

error of pose estimation is low, the accuracy increases. The results suggest that the robustness

of pose estimation techniques to nuisance factors has an impact on the performance of the FR

system. The results are also compared with the situation where there is no pose estimation and

the pose angles for face synthesizing are selected randomly.

The impact of illumination transferring on the DSFS technique is further evaluated. For this,

the DSQ value (2.5.3) of the DSFS technique is compared based on the proposed illumination
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Figure 2.13 Average AUC and AUPR accuracy obtained by

increasing the number of the synthetic ROIs generated using

DSFS from different representative pose angles (obtained

with different pose estimation techniques) on Chokepoint

(a,b) and COX-S2V (c,d) datasets.

Table 2.2 Average error rate of pose estimation for frontal

and profile views on Chokepoint and COX-S2V datasets.

Error rate of pose estimation

Technique Chokepoint database COX-S2V database
Frontal View Profile View Frontal View Profile View

DRMF 0.35 0.46 0.31 0.41

ERT 0.39 0.52 0.35 0.46

OpenFace 0.42 0.55 0.38 0.48

transferring method and the method presented by Chen et al. (2013) that transfer illumination

through adaptive layer decomposition. In this experiment, we consider 5 and 30 individuals of

Chokepoint and COX-S2V databases, respectively. With the proposed technique, DSQ of the

Chokpoint and COX dataset are DSQ = 8.63 and DSQ = 8.81, respectively. With the adaptive

layer decomposition method, DSQ of the Chokpoint and COX dataset are DSQ = 7.24 and
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DSQ = 7.39, respectively. It can be concluded that the robustness of illumination transfer-

ring to unrelated distortions has an impact on the performance of DSFS technique. Since the

shading decomposition technique employed in our illumination transferring technique is able

to explicitly model the texture layer, the decomposed shading layer does not have any textures

(Jeon et al. (2014)). As a result, It can avoid ambiguity caused by textures. However, weighted

least squares filter employed by Chen et al. (2013) cannot deal with nuisance factors.

2.6.3 Comparison with Reference Techniques

With the above experimental setting, we compare the recognition rate of the DSFS technique

with 3DMM (Blanz & Vetter (2003)) and SHBMM (Zhang & Samaras (2006)) methos in a

still-to-video FR framework. We also present the impact of using face synthesizing along with

KSVD dictionary learning (Aharon et al. (2006)).

Following this, the recognition rate of the DSFS technique with existing generic learning tech-

niques including ESRC (Deng et al. (2012)), RADL (Wei & Wang (2015)), SVDL (Yang

et al. (2013)), LGR (Zhu et al. (2014)) is compared that regularization parameter λ is set to

0.005. Note that the performance of the face synthesizing techniques is evaluated w/o dictio-

nary learning. We also compared the DSFS results with the results obtained by Flow-based

face frontalization method (Hassner et al. (2015)). Table. 2.3 lists and compares the recogni-

tion performance where the results (recognition rate) are illustrated by the mean and standard

deviation of 5 runs.

2.6.3.1 Generic Set Dimension

In this subsection, the results of DSFS technique and some generic learning techniques are

evaluated based on the size of the generic set. Given N generic images in the target domain, the

recognition rate of the approaches is compared with increasing value of N. In this comparison,

each system is considered as a black box, and their recognition rate is shown for a range of

different numbers of inputs. 2.14 shows that for many generic learning techniques, intra-class
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Table 2.3 Comparative transaction level analysis of the proposed FR approach and

related state-of-the art FR methods with Chokepoint and COX-S2V databases.

Category Technique Classifier Chokepoint database COX-S2V database
pAUC AUPR pAUC AUPR

Baseline SRC 0.516±0.033 0.415±0.035 0.548±0.031 0.457±0.036

ESRC
SRC

SRC-KSVD

0.798±0.029

0.809±0.024

0.651±0.032

0.672±0.022

0.827±0.028

0.831±0.018

0.695±0.032

0.715±0.020

Generic Learning RADL SRC 0.847±0.025 0.724±0.031 0.883±0.024 0.753±0.027

LGR SRC 0.841±0.028 0.717±0.024 0.877±0.026 0.744±0.025

SVDL SRC 0.823±0.021 0.703±0.029 0.839±0.022 0.724±0.031

3DMM
SRC

SRC-KSVD

0.663±0.035

0.712±0.032

0.523±0.037

0.605±0.032

0.702±0.031

0.732±0.031

0.562±0.032

0.641±0.028

Face Synthesizing 3DMM-CNN
SRC

SRC-KSVD

0.672±0.025

0.716±0.024

0.516±0.026

0.585±0.025

0.705±0.025

0.741±0.026

0.552±0.025

0.603±0.025

SHBMM
SRC

SRC-KSVD

0.721±0.032

0.773±0.026

0.593±0.040

0.671±0.022

0.735±0.032

0.784±0.027

0.607±0.041

0.681±0.028

Face Frontalization Flow-based SRC 0.822±0.021 0.711±0.024 0.843±0.022 0.719±0.023

Face Synthesizing
+

Generic Learning
Proposed DSFS SRC 0.897±0.023 0.751±0.027 0.916±0.18 0.775±0.25

variation of a small number of individuals in operational environment is sufficient to largely

improve the recognition rate. In particular, it can be observed from Fig.2.14 that when more

generic images are used, the accuracy increases significantly from our method and RADL

technique (Wei & Wang (2015)), while the accuracies of other state-of-the-art methods do not

change significantly. This shows that the proposed representative selection method is able to

adequately select the representative faces out of a large set of faces.

Next, we compare the computational complexity in terms of average running time for each

individual as well as number of inner products needed per each iteration. 2.15 shows the

computational complexity in terms of number of inner products with a growing number of

synthetic ROIs.

Table. 2.4 compares the complexity of the proposed DSFS-SRC algorithm with RADL (Wei & Wang

(2015)), LGR (Zhu et al. (2014)), and flow-based frontalization (Hassner et al. (2015)) tech-

niques on Chokepoint and COX-S2V datasets per each iteration. The experiments are con-

ducted in MATLAB R2016b (64bit) Linux version on a PC workstation with an INTEL CPU

(3.41-GHz) and 16GB RAM.
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a) Chokepoint b) Chokepoint

c) COX-S2V d) COX-S2V

Figure 2.14 Average AUC and AUPR accuracy obtained by

increasing the size of the generic set in the (synthetic) variant

dictionary on Chokepoint (a,b) and COX-S2V (c,d) datasets.
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Figure 2.15 Time complexity versus the number of synthetic

ROIs on Chokepoint (a) and COX-S2V (b) data.

The results show our proposed method that is a joint use of generic learning and face syn-

thesizing achieves superior recognition results compared to the other methods under the same

configuration which verifies that our face synthesizing technique better preserves identity infor-

mation. Although RADL, LGR, and the flow-based face frontalization techniques can achieve
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Table 2.4 Average computational complexity of the DSFS and state-of-the-art

methods on Chokepoint and COX datasets.

Technique Chokepoint database COX-S2V database|
No.inner products Run time(s) No.inner products Run time(s)

RADL 52,650,000 3.12 350,500,000 6.17

LGR 273,100,000 7.13 1,147,200,000 11.35

Face Frontalization+SRC 40,510,000 3.14 245,320,000 4.08

Proposed DSFS+SRC 32,450,000 1.55 190,250,000 2.61

comparable accuracy to our approach, they are computationally expensive. It can be concluded

that augmenting the SRC with synthetic ROIs generated by DSFS technique has a good recog-

nition rate with less computational cost than other state-of-the-art methods. The main reason

is that the dictionary designed by DSFS technique is able to represent real-world capture con-

ditions and does not require any traditional dictionary learning process.

2.7 Conclusions

This paper proposes a domain-specific face synthesizing (DSFS) technique to improve the

performance of still-to-video FR systems when surveillance videos are captured under vari-

ous uncontrolled conditions, and individuals are recognized based on a single facial image.

The proposed approach takes advantage of target domain information from the generic set

that can effectively represent probe ROIs. A compact set of synthetic faces is generated that

resemble individuals of interest under capture conditions relevant to the target domain. For

proof-of-concept validation, an augmented dictionary with a block structure is designed based

on DSFS, and face classification is performed within a SRC framework. Our experiments on

the Chokepoint and COX-S2V datasets show that augmenting the reference discretionary of

still-to-video FR systems using the proposed DSFS approach can provide a higher level of ac-

curacy compared to state-of-the-art approaches. The results indicated that face synthesis alone

(without recovering the target domain information) cannot effectively resolve the challenges of

the SSPP and visual domain shift problems. With DSFS, generic learning and face synthesis

operate complementarity. The proposed DSFS technique could be improved to generate syn-

thetic faces with expression variations for a robust FR. In addition, to improve performance, the
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representative synthetic ROIs generated using DSFS could be applied to generate local camera-

specific ROIs. DSFS is general in that synthetic ROIs could be applied to train or fine-tune a

multitude of face recognition systems like deep CNNs, with information that robust models to

specific target domains.
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Abstract

Sparse representation-based classification (SRC) has been shown to achieve a high level of

accuracy in face recognition (FR). However, matching faces captured in unconstrained video

against a gallery with a single reference facial still per individual typically yields low accuracy.

For improved robustness to intra-class variations, SRC techniques for FR have recently been

extended to incorporate variational information from an external generic set into an auxiliary

dictionary. Despite their success in handling linear variations, non-linear variations (e.g., pose

and expressions) between probe and reference facial images cannot be accurately reconstructed

with a linear combination of images in the gallery and auxiliary dictionaries because they do

not share the same type of variations. In order to account for non-linear variations due to

pose, a paired sparse representation model is introduced allowing for joint use of variational

information and synthetic face images. The proposed model, called synthetic plus variational

model, reconstructs a probe image by jointly using (1) a variational dictionary and (2) a gallery

dictionary augmented with a set of synthetic images generated over a wide diversity of pose

angles. The augmented gallery dictionary is then encouraged to pair the same sparsity pattern

with the variational dictionary for similar pose angles by solving a newly formulated simulta-

neous sparsity-based optimization problem. Experimental results obtained on Chokepoint and

COX-S2V datasets, using different face representations, indicate that the proposed approach
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can outperform state-of-the-art SRC-based methods for still-to-video FR with a single sample

per person.

3.1 Introduction

Video-based face recognition (FR) has attracted a considerable amount of interest from both

academia and industry due to the wide range applications as found in surveillance and security.

In contrast to FR systems based on still images, an abundance of spatio-temporal information

can be extracted from target domain videos to contribute in the design of discriminant still-to-

video FR systems.

Sparse Representation-based Classification (SRC) techniques can provide an accurate and cost-

effective solution in many video FR applications when there are a sufficient number of refer-

ence training images per each person under controlled condition (Wright et al. (2009); Xu

et al. (2017)). However, single sample per person (SSPP) problems are common in video-

based security and surveillance applications, as found in, e.g., biometric authentication and

watch-list screening (Nourbakhsh et al. (2016); Dewan et al. (2016)). For example, still-to-

video FR systems are typically designed using only one reference still image per individual in

the source domain, and then faces captured with video surveillance cameras in target domain

are matched against these reference stills (Bashbaghi et al. (2017a,b)). Additionally, when

faces are captured under challenging uncontrolled conditions, they may vary considerably ac-

cording to pose, illumination, occlusion, blur, scale, resolution, expression, etc. In such cases,

using SRC techniques often associated with limited robustness to intra-class variations, and a

lower recognition rate.

State-of-the-art approaches designed to address SSPP problems in SRC-based FR systems can

be roughly divided into three categories: (1) image patching methods, where the images are

partitioned into several patches (Zhu et al. (2014); Gao et al. (2015)), (2) face synthesis tech-

nique to expand the gallery dictionary (Mokhayeri et al. (2019a); Hu et al. (2018)), and (3)

generic learning methods, where a genetic training set is used to leverage variational informa-
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tion from an auxiliary generic set of images to represent the differences between probe and

gallery images (Wei & Wang (2015); Deng et al. (2018)). Indeed, similar intra-class variations

may be shared by different individuals in the generic set and ROIs in the gallery. Moreover, a

generic set can be easily collected during operations or some camera calibration process, and

encode subtle knowledge on faces appearing in the operational environment. One of the pio-

neering techniques in generic learning is extended SRC (ESRC) (Deng et al. (2012)), which

manually constructs an auxiliary variational dictionary from a generic set to accurately repre-

sent a probe face with unknown variations from the target domain. ESRC was subsequently

generalized to employ different sparsity for identity and variational parts in sparse coefficients

(Li et al. (2016)), and to learn the variational dictionary that accounts for the relationship be-

tween the reference gallery and external generic set (Yang et al. (2013)).

Although leveraging intra-class variations from a generic set has been shown to improve robust-

ness to some linear facial variations, it cannot accurately address non-linear facial variations

(e.g., pose and expression) between reference still ROIs in the source domain and probe videos

ROIs captured in real-world capture conditions in the target domain. Indeed, non-linear varia-

tions are not additive nor sharable. For instance, a probe video ROI with various lighting can

be recovered with a linear combination of an image with a natural lighting and its correspond-

ing illumination component. However, a probe ROI with a profile view cannot be accurately

reconstructed with a linear combination of frontal view ROIs in gallery dictionary and profile

view ROIs in the auxiliary dictionary because they do not share the same type of variations.

Non-linear facial variations between still and video ROIs make it difficult to represent a probe

image using a linear combination of reference and generic set images. Another concern with

ESRC is the large manually designed auxiliary dictionary (obtained via random selection in

the generic set) which is computationally expensive. To address these concerns, we focus on

two issues: (1) how to represent a probe image under non-linear variations with a linear com-

bination of reference set and generic set, (2) how to design a discriminative dictionary, and (3)

how to yield a robust representation with a minimum number of images.
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In this paper, a paired sparse representation framework referred as the synthetic plus variational

model (S+V) is proposed to address the problem of non-linear pose variations by increasing

the range of pose variations in the gallery dictionary. Since collecting a large database with

a wide variety of views is extremely expensive and time-consuming, a set of synthetic face

images under representative pose are generated. As illustrated in Fig. 3.1, a probe video ROI

is reconstructed using an auxiliary dictionary as well as a gallery dictionary augmented with a

set of synthetic face images generated under a representative diversity of azimuth angles. The

proposed sparse model not only allows probe image to be represented by the atoms of both

augmented and auxiliary dictionaries, but also restricts the selected atoms to be combined with

the same viewpoint, thus providing an improved representation.
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Figure 3.1 Overall architecture of the proposed approach. The gallery

dictionary is augmented with a diverse set of synthetic images and the

auxiliary variational dictionary co-jointly encode non-linear variations in

appearance. Sparse coefficients within each dictionary share the same

sparsity pattern in terms of pose angle.
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Under this model, facial ROIs from trajectories in the generic set are clustered in the captured

condition space (defined by pose angle) by applying row sparsity (Elhamifar et al. (2012)). The

auxiliary variational dictionary with block structure is designed using intra-class variations as

subsets of the pose clusters. Following this, the gallery dictionary is augmented with the syn-

thetic face images generated from the original reference image in the source domain, where

the rendering parameters are estimated based on the center of each cluster in the target do-

main. By introducing a joint sparsity structure, the pose-guided augmented gallery dictionary

is encouraged to share the same sparsity pattern with the auxiliary dictionary for the same pose

angles. Each synthetic facial ROI in the augmented gallery dictionary is thereby combined

with approximately the same facial viewpoint in the variational dictionary in a joint manner

(Rakotomamonjy (2011)). During the operation, each input probe face captured in videos is

represented by a linear combination of ROIs from a same person and same pose in the aug-

mented gallery dictionary as well as the intra-class variations from a same pose in the auxiliary

variational dictionary. In this framework, the auxiliary dictionary models the linear variations

(such as illumination changes, different occlusion levels) and non-linear pose variation are

modeled by augmented gallery dictionary. Note that the S+V model is paired across different

domains in the enrollment stage. The main contributions of this paper are:

• A generalized sparse representation model for still-to-video FR, using generic learning and

data augmentation to represent both linear and non-linear variations based on only one

reference still ROI;

• A simultaneous optimization technique to encourage pairing between each synthetic profile

image in the augmented gallery dictionary and a similar view in the auxiliary dictionary;

• An efficient SRC method to design a compact augmented dictionary using row sparsity.

This paper extends our preliminary investigation of synthetic plus variational models (Mokhay-

eri & Granger (2018)) in several ways, in particular with: (1) a comprehensive analysis of

dictionary design and of selection of representative face exemplars; (2) a detailed description
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of the proposed joint sparsity structure; and (3) more experimental results and interpretations,

including results with deep facial representations, an ablation study and complexity analysis.

For proof-of-concept validation, a particular implementation of the proposed SRC technique

for still-to-video FR is considered where representative pose angles are selected by applying

clustering on the generic set. The original and synthetic ROIs rendered under these pose angles

are employed to design an augmented gallery dictionary, while the pose clusters of video ROIs

are exploited to design an auxiliary variational dictionary with block structure. The simul-

taneous sparsity constraint is then applied to both dictionaries to improve the discrimination

power of the dictionaries. Moreover, since most state-of-the-art FR methods rely on Convo-

lution Neural Network (CNN) architectures such as ResNet (He et al. (2016)) and VGGNet

(Simonyan & Zisserman (2015)), the model is fed with CNN features extracted from the atoms

of dictionaries (Gao et al. (2017); Cai et al. (2016)), in order to further improve still-to-video

FR accuracy. Performance of the SRC implementation is evaluated on two public video FR

databases – Chokepoint (Wong et al. (2011)) and COX-S2V (Huang et al. (2015)).

The rest of the paper is organized as follows. Section 3.2 provides a brief review for SRC

methods that employ generic learning to address SSPP problems. Section 3.3 describes the

proposed S+V model. Section 3.4 presents a particular implementation of the S+V model for

still-to-video FR system. Finally, Sections 3.5 and 3.6 describe the methodology and experi-

mental results, respectively.

3.2 Background on Sparse Coding

In the following, the set D = {R1, . . . ,Ri, . . . ,Rk} ∈ R
d×N denote a gallery dictionary, where

Ri = {ri
1, . . . ,r

i
j, . . . ,r

i
n} ∈ R

d×n is composed of 1 reference still ROIs belonging to one of

k different classes, d is the number of pixels or features representing a ROI and N = kn is

the total number of reference still ROIs. The set G = {g1,g2 . . . ,gm} ∈ R
d×m denotes the

auxiliary generic set composed of m external generic images of unknown persons captured
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in the target domain. The set V = {v1,v2, . . . ,vm} ∈ R
d×m denotes the auxiliary variational

dictionary composed of m intra-class variations extracted from G ∈ R
d×m.

3.2.1 Sparse Representation-based Classification

Given a probe image y, SRC represents y as a sparse linear combination of a reference set

D ∈ R
d×k. SRC uses the �1-minimization to regularize the representation coefficients. More

precisely, SRC derives the sparse coefficient ααα of y by solving the following �1-minimization

problem:

min
α

‖y−Dααα‖2
2 +λ‖ααα‖1. (3.1)

where λ is a regularization parameter, and λ > 0. After the sparse vector of coefficients ααα is

obtained, the probe image y is recognized as belonging to class k∗ if it satisfies:

k∗ = argmin
k

‖y−Dγk(ααα)‖2. (3.2)

where γk is a vector whose only nonzero entries are the entries in ααα that are associated with

class k. SRC is based on the idea that a probe image y can be best linearly reconstructed by

the columns of Dk∗ if it belongs to class k∗. As a result, most non-zero elements of ααα will

be associated with class k∗, and ‖y−Dγk∗(ααα)‖2 yields the minimum reconstruction error. An

important assumption of SRC is that it requires a large amount of reference training images

to form an over-complete dictionary. However, in many practical applications, the number of

labeled reference images are limited, and SRC accuracy declines in such cases (Wright et al.

(2009)).

3.2.2 SRC through Generic Learning

Since the facial variations share much similarity across different individuals, an external generic

set with multiple images of unknown persons as they appear in the target domain can provide

discriminant information on intra-class variations. These additional variations can enrich the

gallery diversity, especially in SSPP scenarios. The general model solves the following mini-
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mization problem:

min
α,β

∥∥∥∥y− [D,V]

⎡⎣ααα

βββ

⎤⎦∥∥∥∥a

a
+λ

∥∥∥∥
⎡⎣ααα

βββ

⎤⎦∥∥∥∥b

b
. (3.3)

where ααα is a sparse vector that selects a limited number of variant bases from the gallery

dictionary D, and βββ is another sparse vector that selects a variant bases from the auxiliary

variational dictionary V, a ∈ {1,2}, b ∈ {1,2} and λ > 0. The variant bases can be estimated

by subtracting the natural (original) image of a class from other images of the same class, the

difference from the class centroid, and pairwise difference. The probe image y is recognized

as belonging to class k∗ if it satisfies:

k∗ = argmin
k

∥∥∥∥y− [D,V]

⎡⎣γk(ααα)

βββ

⎤⎦∥∥∥∥a

a
. (3.4)

where γk is reused as a matrix operator.

Deng et al. (2012) introduced extended SRC (ESRC), which manually designs an auxiliary

dictionary (through random selection from a generic set) to accurately represent a probe face

with unknown variations from the target domain. The model of Eq. 3.4 degenerates to the

ESRC model when a = 2 and b = 1. Motivated by ESRC, Yang et al. (2013) proposed the

sparse variation dictionary learning (SVDL) model to learn the variational dictionary by ac-

counting for the relationship between the reference gallery and external generic set. A robust

auxiliary dictionary learning (RADL) technique was proposed by Wei & Wang (2015) that

extracts representative information from external data via dictionary learning without assum-

ing the prior knowledge of occlusion in probe images. Nourbakhsh et al. (2016) integrated

variational information from the target domain with the reference gallery set through domain

adaptation to enhance the facial models for still-to-video FR. Fan et al. (2018) proposed a new

approach to learn a kernel SRC model based on a virtual dictionary and the original train-

ing set. Deng et al. (2018) developed a superposed linear representation classifier to cast the

recognition problem by representing the test image in terms of a superposition of the class

centroids and the shared intra-class differences. A sparse illumination and transfer learning
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technique proposed by Zhuang et al. (2015) allows fitting illumination examples of auxiliary

face images from one or more additional subjects with a sparsely-used illumination dictionary.

A local generic representation-based (LGR) framework for FR with SSPP was proposed by

Zhu et al. (2014). It builds a gallery dictionary by extracting the patches from the gallery

database, while an intra-class variation dictionary is formed by using an external generic set

to predict the possible facial variations (e.g., illuminations, pose, and expressions). In order

to address non-linearity, Fan et al. (2018) used a nonlinear mapping to transform the original

reference data into a high dimensional feature space, which is achieved using a kernel-based

method. A customized SRC (CSR) had been proposed to leverage the different sparsity of

identity and variational parts in sparse coefficients, and to assign different parameters to their

regularization terms (Li et al. (2016)). Yang et al. (2017) presented a joint and collaborative

sparse representation framework that exploits the distinctiveness and commonality of different

local regions. A novel discriminative approach is proposed by Lin et al. (2018a), in which a

robust dictionary is learned from diversities in training samples, generated by extracting and

generating facial variations. Xie et al. (2019) proposed feature sparseness-based regularization

to learns deep features with better generalization capabilities. In this paper, the regularization

is integrated into the original loss function, and optimized with a deep metric learning frame-

work. Luo et al. (2019) proposed a novel multi-resolution dictionary learning method for FR

that provides multiple dictionaries – each one associated with a resolution – while encoding

the similarity of representations obtained using different dictionaries in the training phase. 3D

Morphable Model (3DMM), proposed by Blanz & Vetter (2003), has been widely used to syn-

thesize new face images from a single 2D face image. The 3DMM is expanded by adopting a

shared covariance structure to mitigate small sample estimation problems associated with data

in high dimensional spaces (Koppen et al. (2018)). It models the global population as a mixture

of Gaussian sub-populations, each with its own mean value. Finally, an efficient deep learn-

ing model for face synthesis is proposed by Jiao et al. (2018) which dose no rely on complex

optimization.
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Zhang et al. (2018a) proposed a deep learning model that automatically generates synthetic

face images with different expressions using GAN under arbitrary poses to enlarge the training

set. Unlike our representative selection technique, they embedded a classifier into the network

to generate representative face images.

The aforementioned techniques work well in video-based FR. However, they neglect the impact

of non-linear variations between probe images and facial images in the gallery and auxiliary

dictionaries. To account for the non-linearities, particularly pose variations, the range of view-

points represented in the gallery dictionary should be increased to represent the probe image

with the same view gallery and variations, and thereby compensate the non-linear pose varia-

tions. Additionally, the sparsity pattern should ensure the correlation between the gallery and

variational dictionaries in terms of pose angles.

3.3 The Proposed Approach - A Synthetic plus Variational Model

In this section, a new sparse representation model – called the Synthetic plus Variational (S+V)

model – is proposed to overcome issues related to the non-linear pose variations with conven-

tional and ESRC model. SRC techniques commonly assumed that frontal and profile views

share the same type of variations. To address this limitation, we increase the range of pose

variations of gallery dictionary to represent the probe with the same view gallery and varia-

tions, and accordingly compensate the non-linear pose variations.

The proposed S+V model exploits two dictionaries including (1) an augmented gallery dic-

tionary containing the original reference still ROI of each individual as well as their synthetic

profile ROIs (with diverse poses) enrolled to the still-to-video FR system, and (2) an auxiliary

variational dictionary which contains variations from the target domain that can be shared by

different persons. Two dictionaries are correlated by imposing the simultaneous sparsity prior

that force the augmented gallery dictionary to pair the same sparsity pattern with the auxil-

iary dictionary for the same pose angles. In this manner, each synthetic profile image in the

augmented gallery dictionary is combined with approximately the similar view in the auxiliary
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dictionary. Fig. 3.2 gives an illustrative example that compares the sparsity structure of SRC,

ESRC and S+V model. The rest of this section presents more details on the dictionary design

and encoding process with the S+V model.
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Figure 3.2 A comparison of the coefficient matrices for three sparsity models:

(a) Independent sparsity (SRC) with a single dictionary, (b) Extended sparsity

(ESRC) with two dictionaries, and (c) Paired extended sparsity (S+V model)

with pair-wise correlation between two dictionaries where the sparse coefficients

of same poses share the same sparsity pattern. Each column represents a sparse

coefficient vector and each square block denotes a coefficient value. White

blocks denote zero values, whereas color blocks stand for nonzero values.

3.3.1 Dictionary Design

In order to design the gallery and auxiliary dictionaries, the representative pose angles are de-

termined by characterizing the capture conditions from a large generic set of video ROIs in

the pose space (estimations of pitch, roll, and yaw). Prior to operation, e.g., during a camera

calibration process, facial ROIs are isolated in facial trajectories from the videos of unknown

persons captured in the target domain. A representative set of video ROIs are selected by ap-
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plying row sparsity regularized optimization program on facial trajectories in the captured con-

dition space defined by pose angles. Next, the variational information of the generic set with

multi-samples per person are extracted to form an auxiliary dictionary based on the subsets of

the pose clusters. A compact set of synthetic images is then generated from the reference set

in the source domain based on the information obtained from the center of each cluster in the

target domain, called pose representatives, and integrated into the gallery dictionary to enrich

the diversity of the gallery set. Two dictionaries are correlated by imposing the simultaneous

sparsity prior that force the same sparsity patterns among the multiple sparse representation

vectors in the augmented and auxiliary dictionaries in terms of pose angles. Finding represen-

tative poses not only are employed to make a pair-wise correlation between the dictionaries but

also can save time and memory and improve the recognition performance due to preventing

over-fitting. Inspired by Elhamifar et al. (2012); Elhamifar & Kaluza (2017), we formulated

the representative selection problem as a row sparsity regularized trace minimization problem

where the objective is to find a few representatives (exemplars) that efficiently represent the

collection of data points according to their dissimilarities.

The proposed model allows to select pose representatives from a collection of N pose samples.

The pose angles are estimated using the discriminative response map fitting method (Asthana

et al. (2013)) which is a state-of-the-art method for accurate fitting, suitable for handling occlu-

sions and changing illumination conditions. The estimated head pose for the jth video ROI (g j)

in the generic set is defined as θθθ j = (θθθ pitch
j ,θθθ yaw

j ,θθθ roll
j ). Euler angles θθθ pitch, θθθ yaw, and θθθ roll are

used to represent roll, yaw and pitch rotation around X axis, Y axis, and Z axis of the global

coordinate system, respectively. The set of dissimilarities {di j : i, j = 1, ...,k} between every

pair of pose data points are then calculated by using the Euclidean distance, which indicates

how well the data point i is suited to be an exemplar of data point j. The dissimilarities are

arranged into matrix:

D �

⎡⎢⎢⎢⎣
dT

1
...

dT
N

⎤⎥⎥⎥⎦=

⎡⎢⎢⎢⎣
d11 d12 · · · d1k

...
...

. . .
...

dk1 dk2 · · · dkk

⎤⎥⎥⎥⎦ ∈ R
k×k, (3.5)
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where di denotes the ith row of D. Variables zi j are associated with dissimilarities di j, and

organized into matrix of the same size as:

Z �

⎡⎢⎢⎢⎣
zT

1
...

zT
N

⎤⎥⎥⎥⎦=

⎡⎢⎢⎢⎣
z11 z12 · · · z1k
...

...
. . .

...

zN1 zN2 · · · zkk

⎤⎥⎥⎥⎦ ∈ R
k×k, (3.6)

where zi ∈ R
k denotes the ith row of z. zi j is the probability that data point i is representative

for data point j, and zi j ∈ [0,1]. The row sparsity regularized trace minimization algorithm is

applied on matrix Z to select some representative exemplars that can suitably encode pose data

according to dissimilarities as follows:

min
k

∑
j=1

k

∑
i=1

di jzi j +η
k

∑
i=1

∥∥zi
∥∥

q, (3.7)

subject to:

zi j ≥ 0, ∀i, j;
k

∑
i=1

zi j = 1, ∀ j, (3.8)

where the parameter η > 0, rank regularization parameter, sets the trade-off between these

two terms. As we change η in 3.7, the number of representatives found by the algorithm

changes. For small values of η , where we put more emphasis on better encoding data points via

representatives, we obtain more representatives. On the other hand, for large values of η , where

we put more emphasis on the row sparsity of Z, we select a small number of representatives.

Once this optimization problem (Eq. 3.7) has been solved, one can find the representative

indices from the nonzero rows of Z. The clustering of data points into K clusters, associated

with K representatives, is obtained by assigning each data point to its closest representative. In

particular, if { i1; . . . ; iq } denote the indices of the representatives, data point j is assigned to

the pose representative θ( j) such that θ( j) = argmin�∈{i1;... ;iq} d� j.

The auxiliary dictionary is designed based on these pose clusters, where each cluster forms

a block in the dictionary. The pose angle of representative video ROI of each pose cluster,
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referred as pose exemplar, is used as rendering parameter to generate synthetic face images

with varying poses using off-the-shelf 3D face models (Blanz & Vetter (2003); Tran et al.

(2017a,b)). In this way, q synthetic profile faces, S = {Si : i = 1, . . . ,k}, are generated under

the representative pose angles from a given single still face image where Si = {si
1,s

i
2, . . . ,s

i
q} ∈

R
d×q.

The augmented gallery dictionary D′ = {D′
i : i = 1, . . . ,k}, is formed by merging each still ROI

of reference set with q synthetic images rendered w.r.t. representative pose exemplars, where

here D′
i = {r1,si

1,s
i
2, . . . ,s

i
q} ∈ R

d×(1+q).

3.3.2 Synthetic Plus Variational Encoding

With the S+V model (see Fig. 3.3), each probe video ROI is seen as a combination of two

different sub-signals in the augmented gallery dictionary and auxiliary variation dictionary in

the linear additive model:

y = D′ααα +Vβββ + e, (3.9)

where D′ ∈ R
d×k(q+1) denote the augmented gallery dictionary, V ∈ R

d×m denote the varia-

tional dictionary, and e is a noise term. This model searches for the sparsest representation

of the probe sample in both D′ and V dictionaries. We first extend the original ESRC to the

following robust formulation (Eq. 3.10).

min
α,β

∥∥∥∥y− [D′,V]

⎡⎣ααα

βββ

⎤⎦∥∥∥∥2

2

+λ
∥∥ααα

∥∥
1
+μ

∥∥βββ
∥∥

τ , (3.10)

where ‖ · ‖τ corresponds with combination of Gaussian and Laplacian priors, defined as Eq.

3.11. This model assigns different regularization parameters to the ααα and βββ coefficients to

guaranty the robustness of the variational information from generic set (Li et al. (2016)).

∥∥x
∥∥

τ = τ
∥∥x

∥∥
1
+(1− τ)

∥∥x
∥∥

2
. (3.11)
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The simultaneous sparsity constraint is then imposed to fully benefit from the variational infor-

mation as well as synthetic still ROIs. Each generic set cluster found during the representative

selection forms a block in the auxiliary dictionary, and exemplar of each cluster is considered

as rendering parameter in face synthesizing for augmenting the gallery dictionary. The same

sparsity pattern constraint in terms of the pose angle is imposed on the dictionaries which en-

courages similar pose angles to select the same set of atoms for representing each view. In this

way, the coefficient vectors for the still ROIs in the augmented gallery dictionary are forced

to share the same sparsity pattern with non-zero coefficients associated with the video ROI

belonging to the corresponding block (cluster) of the same view in the auxiliary dictionary.

This improves the discrimination power of the dictionaries accordingly. The new sparse
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Figure 3.3 An illustration of sparsity pattern with the S+V model based on

clustering results in the pose space. Each column represents a sparse representation

vector, each square denotes a coefficient and each matrix is a dictionary.
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coefficients can be obtained by solving the following optimization problem:

min
A,B

∥∥∥∥y− [D′,V]

⎡⎣A

B

⎤⎦∥∥∥∥2

F
+λ

∥∥A
∥∥

1
+μ

q

∑
l=1

∥∥B[l]
∥∥

τ , (3.12)

where ‖·‖F denotes the Frobenius norm, A= [ααα1,ααα2, . . . ,αααk(q+1)] and B= [βββ [1],βββ [2], . . . ,βββ [q]]

are coefficients matrix consists of q blocks which q is number of clusters/representatives.

⎡⎣Â

B̂

⎤⎦= argmin

∥∥∥∥y− [D′,V]

⎡⎣A

B

⎤⎦∥∥∥∥2

F
+λ

∥∥A
∥∥

1
+μ

q

∑
l=1

∥∥B[l]
∥∥

τ , (3.13)

subject to: ∥∥A,B
∥∥

2,1
≤ ξ , (3.14)

where ξ is the sparsity level and ‖ · ‖2,1 is the mixed norm defined as the sum of �2 − norm

of all rows of matrix A and B and then applying �1 − norm on the obtained vector. Note that

each view in formulation of Eq. 3.13 shares the same sparsity pattern at class-level, but not

necessarily at atom-level in real world scenarios. This problem, called joint dynamic sparse

representation, can be solved by applying �0 −norm across the �2 −norm of the sparse coeffi-

cients as follows:⎡⎣Â

B̂

⎤⎦= argmin

∥∥∥∥y− [D′,V]

⎡⎣A

B

⎤⎦∥∥∥∥2

F
+λ

∥∥A
∥∥

1
+μ

q

∑
l=1

∥∥B[l]
∥∥

τ , (3.15)

subject to: ∥∥A,B
∥∥

G ≤ ξ , (3.16)

where
∥∥ ·∥∥G is defined as follows:

∥∥A,B
∥∥

G =

∥∥∥∥[∥∥Ag1
,Bg1

∥∥
2
,
∥∥Ag2,Bg2

∥∥
2
, . . .

]∥∥∥∥
0

. (3.17)

The use of joint dynamic sparsity regularization term allows combining the cues from all the

views during joint sparse representation. Moreover, it provides a better representation of the
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multiple view images, which represent different measurements of the same individual from

different viewpoints. Finally, the residuals for each class k are calculated for the final classifi-

cation as follows:

rk(y) =
∥∥∥∥y− [D′,V]

⎡⎣γk(Âk)

B̂k

⎤⎦∥∥∥∥2

F
, (3.18)

where γk is a vector whose nonzero entries are the entries in Âk that are associated with class

k. Then the class with the minimum reconstruction error is regarded as the label for the probe

subject y. Algorithm 3.1 summarizes the S+V model for still-to-video FR from a SSPP.

Algorithm 3.1 Synthetic Plus Variational Model.

Input: Reference still ROIs D = {r1,r2, . . . ,rk} ∈ R
d×k, Generic set

G = {g1,g2, . . . ,gm} ∈ R
d×m, probe sample y, and parameters λ , μ , and ξ .

1 Estimate pose angles of G.

2 Apply row sparsity clustering in the pose space of G, and produce q clusters (representative

exemplars).

3 Find center of each cluster as q representative pose angles.

4 Construct the variation dictionary, V ∈ R
d×m, with q blocks.

5 for each ri do
6 Generate q synthetic images Si ∈ R

d×q per each individual based on q representative pose

angle.

7 Merge Si with ri to form D′
i ∈ R

d×(1+q).

8 end
9 Solve the sparse representation problem to estimate coefficient matrix, A and B, for y by

Eq. 3.12.

10 Compute the residual, rk(y) by Eq. 3.18.

Output: label(y) = argmin
k

(rk(y)).

3.4 Face Recognition with the S+V Model

In this section, a particular implementation is considered (see Fig. 3.4) to assess the impact of

using the S+V model for still-to-video FR. The augmented and auxiliary dictionaries are con-

structed by employing the representative synthetic ROIs and generic variations, respectively,

and classification is performed by SRC while the generic set in the auxiliary dictionary is forced
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to combine with approximately the same facial viewpoint in the augmented gallery dictionary.

The main steps of the proposed domain-invariant FR with the S+V model are summarized as

follows.

Design an Augmented 
Gallery Dictionary 

ROs of Gallery Set
(Frontal)

ROIs of Generic Set in OD 
(Frontal+Profile)

Head Pose Estimation

Simeltaniuse Sparse 
Representation

Identity

Synthetic ROIs  

Reconstruction Error 
based Classification

Design an Auxiliary 
Variant Dictionary

3D Face Reconstruction

Clustering

3D Models  Head pose angles

Face Rendering
Representative 

pose angles

Pose clusters

Stream of frames captured 
by video cameras

pjsi

ri gj

r'i vj

y

...
1 M...2 3

...
..... ... ...

Feature Extraction

Figure 3.4 Block diagram of the proposed

still-to-video FR system with the S+V modeling.

• Step 1. Select Representatives: The generic set Gi ∈ Rd×m in the target domain is clustered

based on their pose angles based on row sparsity.

• Step 2. Design an Augmented Gallery Dictionary: The q synthetic ROIs Si ∈ Rd×q are

generated for each ri of the reference gallery set in the source domain to form an augmented

gallery dictionary D′
i ∈ R

d×k(q+1), where q is the number of clusters/representatives.

• Step 3. Form an Auxiliary Dictionary: The variations of the natural albedo of the generic

set Gi ∈ Rd×m in the target domain are extracted by subtracting the natural image from
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other images of the same class to form a generic auxiliary dictionary Vi ∈ Rd×m with block

structure.

• Step 4. Extract Features: The deep CNN features of D′
i ∈ R

d×k(q+1) and Vi ∈ Rd×m are

extracted.

• Step 5. Apply Simultaneous Sparsity: The augmented gallery dictionary is encouraged to

pair the sparsity pattern with the auxiliary dictionary for the same pose angles by applying

the simultaneous sparsity.

• Step 6. Validation: The proposed system assess if given probe ROIs belong to one of the

enrolled persons and rejects invalid probe ROIs using sparsity concentration index (SCI)

criteria defined by Wright et al. (2009):

SCI(x̂) .
=

k.max
i

‖ δi(x̂) ‖1 / ‖ x̂ ‖1 −1

k−1
∈ [0,1] . (3.19)

A probe ROI is accepted as valid if SCI≥ τ and otherwise rejected as invalid, where τ ∈
(0,1) is an outlier rejection threshold.

3.5 Experimental Methodology

3.5.1 Datasets

In order to evaluate the performance of the proposed S+V model for still-to-video FR, an exten-

sive series of experiments are conducted on Chokepoint1 (Wong et al. (2011)) and COX-S2V2

(Huang et al. (2015)) datasets. Chokepoint and COX-S2V datasets are suitable for experi-

ments in still-to-video FR in video surveillance because they are composed of a high-quality

still image and lower-resolution video sequences, with variations of illumination conditions,

pose, expression, blur and scale.

1 http://arma.sourceforge.net/chokepoint.

2 http://vipl.ict.ac.cn.
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Chokepoint (Wong et al. (2011)) (see Fig. 3.5) consists of 25 subjects walking through portal

1 (P1) and 29 subjects in portal 2 (P2). Videos are recorded over 4 sessions (S1,S2,S3,S4)

one month apart. An array of 3 cameras (Cam1,Cam2,Cam3) are mounted above P1 and P2

that capture the subjects during 4 sessions while they are either entering (E) or leaving (L) the

portals in a natural manner. In total, 4 data subsets are available (P1E, P1L, P2E, and P2L),

and the dataset consists of 54 video sequences.

COX-S2V dataset (Huang et al. (2015)) (see Fig. 3.6) contains 1,000 individuals, with 1 high-

quality still image and 3,000 low-resolution video sequences per each individual simulating

video surveillance scenario. The video frames are captured by 4 cameras (Cam1, Cam2, Cam3,

Cam4) mounted at fixed locations of about 2 meters high. In each video, an individual walk

through an S-shape route with changes in pose, illumination, and scale.

ID#23 ID#16 ID#6 ID#25

a) Chokepoint

P1E – Camera 1 P1L – Camera 1 P2E – Camera 2 P2L – Camera 2

b) COX-S2V

Figure 3.5 Examples of still images and video frames from portals and

cameras of Chokepoint dataset.

ID#021 ID#281 ID#0241 ID#036

a) Chokepoint b) COX-S2V

Figure 3.6 Examples of still images and video frames from 3 cameras of

COX-S2V dataset.
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3.5.2 Protocol and Performance Measures

A particular implementation of the S+V model for still-to-video FR has been considered to

validate the proposed approach. We hypothesize that accuracy can be improved by adding

synthetic reference faces to the gallery dictionary and encouraging the dictionaries to share the

same sparsity pattern for the same pose angles can address non-linear pose variations.

First, it is assumed that during the calibration process, q representative pose angles are selected

based on the q pose clusters obtained from facial ROI trajectories of unknown persons captured

in the target domain using the row sparsity clustering. During the enrollment of an individual

to the system, q synthetic ROIs for each reference still ROI are generated under typical pose

variations from different camera viewpoints. For face synthesis, we employ the conventional

3D Morphable Model (3DMM) (Blanz & Vetter (2003)) and the CNN-regressed 3DMM (Tran

et al. (2017a)), that relies on a CNN for regressing 3DMM parameters. The gallery dictionary

is constructed using the reference still ROIs of the individuals along with their synthetic ROIs.

Next, the auxiliary variational dictionary is designed using the intra-class variations of the

generic set with block structure (q blocks). Additionally, we consider extracting deep features

using CNN models to further improve the FR recognition rate. The networks are pre-trained

using the VGGFace2 dataset with AlexNet (Krizhevsky et al. (2012)), ResNet (He et al. (2016))

and VGGNet (Simonyan & Zisserman (2015)) architectures using Triplet Loss (Schroff et al.

(2015)). The extracted features are concatenated as a row feature vector of this dictionary. The

sparse model is fed with the extracted features. In all experiments with Chokepoint dataset,

5 target individuals are selected randomly to design a watch-list that includes a high-quality

frontal captured images, and for the experiment with COX-S2V, 20 individuals are randomly

selected to build a watch-list from high-quality faces. Videos of 10 individuals that are assumed

to come from non-target persons are used as generic set. The rest of the videos including 10

other non-target individuals and the videos of individuals who are already enrolled in the watch-

list are used for testing. In order to obtain representative results, this process is repeated 5 times

with a different random selection of watch-lists and the average performance is reported with

standard deviation over all the runs.
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During the operational phase, FR is performed by sparse coding the features of probe ROI

over the features of augmented and auxiliary (variational) dictionaries ROIs. The sparsity

parameter λ is fixed to 0.005 during the experiments. We also compared the S+V method

to several baseline state-of-the-art methods: ESRC (Deng et al. (2012)), SVDL (Yang et al.

(2013)), RADL (Wei & Wang (2015)), LGR (Zhu et al. (2014)), CSR (Li et al. (2016)), face

frontalization (Hassner et al. (2015)), and recognition via generation (Masi et al. (2016)).

The average performance of the proposed and baseline FR systems is measured in terms

of accuracy and complexity. For accuracy, we measure the partial area under ROC curve

pAUC(20%) (using the AUC at 0<FPR≤ 20%) and area under precision-recall space (AUPR).

An estimation of time complexity is provided analytically based on the worst-case number of

operations performed per iteration. Then, the average running time of our algorithm is mea-

sured with a randomly selected probe ROIs using a PC workstation with an Intel Core i7 CPU

(3.41GHz) processor and 16GB RAM.

3.6 Results and Discussion

This section first shows some examples of synthetic face images produced under representative

pose variations, and then presents still-to-video FR performance achieved with augmenting

SRC dictionaries with such images to address non-linear variations caused by pose changes. In

order to investigate the impact of the proposed S+V model on performance, we considered the

still-to-video FR system described in Section 3.4 with a growing number of synthetic faces,

along with a generic training set. Finally, this section presents an ablation study (showing

the effect of each module on the performance) and a complexity analysis for our proposed

approach.

3.6.1 Synthetic Face Generation

Fig. 3.7 shows an example of the clustering (based on row sparsity) obtained with facial ROIs

of 20 trajectories extracted from Chokepoint videos of 5 individuals and 40 trajectories ex-
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tracted from COX-S2V videos of 10 individuals in the 3-dimensional pose (roll-pitch-yaw)

space. In this experiment, qChok = 7 and qCOX = 6 representative pose condition clusters are

typically determined using row sparsity with Chokepoint and COX-S2V data, respectively. The

exemplars selected from these clusters (black circles) are used to define representative pose an-

gles for synthetic face generation with 3DMM and 3DMM-CNN techniques. For instance,

the representative pose angles with the Chokepoint database, are listed as follows: θChok1 =

(pitch, yaw, roll)= (15.65, 14.77, -0.62), θChok2 = (12.44, 2.76, 3.64), θChok3 = (9.06, -5.46,

4.73), θChok4 = (1.98, 6.09, 2.79), θChok5 = (13.21, 15.32, 6.14), θChok6 = (0.64, -18.93, 0.86),

θChok7 = (5.23, 2.92, 2.03) degrees.

Fig. 3.8 and 3.9 show the synthetic face images generated based on 3DMM and 3DMM-CNN

under representative exemplars using reference still ROIs of the Chokepoint and COX-S2V

datasets, respectively.

Chok2 
Chok7 

Yaw Pitch

Ro
ll Chok1

4 Trajectory from ID#1
4 Trajectory from ID#5
4 Trajectory from ID#6
4 Trajectory from ID#7
4 Trajectory from ID#9

a) Chokepoint

COX2 
COX1 

Yaw Pitch

Ro
ll

4 Trajectory from ID#33
4 Trajectory from ID#36
4 Trajectory from ID#38
4 Trajectory from ID#44
4 Trajectory from ID#56

COX5 
COX4 

4 Trajectory from ID#78

4 Trajectory from ID#24
4 Trajectory from ID#9
4 Trajectory from ID#1

4 Trajectory from ID#80

b) COX-S2V

Figure 3.7 Example of clusters obtained with 20 and 40 facial

trajectories represented in the pose space with Chokepoint (ID#1,

#5, #6, #7, #9) and COX-S2V (ID#1, #9, #24, #33, #36, #38, #44,

#56, #78, #80) datasets, respectively. Clusters are shown with

different colors, and their representative pose exemplars are

indicated with a black circle.
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Chok1 Chok2 Chok3 Chok4 

Chok5 Chok6 Chok7 

Chok1 Chok2 Chok3 Chok4 

Chok5 Chok6 Chok7 

(a) Still ROIs

(c) Synthetic face images with 3DMM-CNN

Chok1 Chok2 Chok3 Chok4 Chok1 Chok2 Chok3 Chok4 

Chok5 Chok6 Chok7 Chok5 Chok6 Chok7 

Chok1 Chok2 Ch k3 Chok4

Ch k5 Ch k6 Ch k7

Chok1 Ch k2 Chok3 Chok4

Ch k5 Ch k6 Ch k7

(a) Still ROIs

(c) Synthetic face images with 3DMM-CNN

ChokChok11 ChokChok22 ChokChok33 ChokChok44ChokChok11 ChokChok22 ChokChok33 ChokChok44

Chok1 Chok2 Chok3 Chok4

Chok5 Chok6 Chok7

ChokChok55 ChokChok66 ChokChok77ChokChok55 ChokChok66 Ch kChok77

Chok1 Chok2 Chok3 Chok4

Chok5 Chok6 Chok7

(b) Synthetic face images with 3DMM

Figure 3.8 Examples of synthetic face images generated from

the reference still ROI of individuals ID#25 and ID#26 (a) of

Chokepoint dataset. They are produced based on representative

exemplars (poses) and using 3DMM (b) and 3DMM-CNN (c).

3.6.2 Impact of Number of Synthetic Images

In this subsection, the proposed S+V model is evaluated for a growing set of synthetic facial

images in the augmented gallery dictionary. Fig. 3.10 shows the average pAUC(20%) and

AUPR accuracy obtained for the implementation in Section 3.4 when increasing the number

of synthetic ROIs per each individual. These ROIs were sampled from the q representative

pose exemplars from the Chokepoint and COX-S2V datasets. Results indicate that adding rep-

resentative synthetic ROIs to the gallery dictionary allows to outperform the baseline system

designed with an original reference still ROI alone. AUC and AUPR accuracy increase con-
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(a) Still ROIs(a) Still ROIs

(b) Synthetic face images with 3DMM

(c) Synthetic face images with 3DMM-CNN

COX1 COX2 COX3 COX1 COX2 COX3 

COX4 COX5 COX4 COX5 COX6 COX6 

COX4 COX5 COX6 

COX1 COX2 COX3 COX1 COX2 COX3 

COX4 COX5 COX6 

COX1 COX2 COX3

COX4 COX5 COX6

COX1 COX2 COX3

Figure 3.9 Examples of synthetic face images generated from

the reference still ROI of individuals ID#21 and ID#151 (a) of

COX-S2V dataset. They are produced based on representative

exemplars (poses) and using 3DMM (b) and 3DMM-CNN (c).

siderably by about 20− 30% with only few synthetic ROIs (1 sample per pose cluster) for

Chokepoint and COX-S2V datasets, respectively.

To further assess the benefits, Fig. 3.11 compares the performance of the proposed S+V method

(adds q synthetic samples) with the original SRC (without an auxiliary dictionary), and to

ESRC (with manually designed auxiliary dictionary). Results in this figure show that the pro-

posed method outperforms the others, and that FR performance is higher when the dictionary

is designed using the representative views than based on the manually designed dictionary. The
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Figure 3.10 Average pAUC(20%) and AUPR accuracy of S+V

model versus the size of the synthetic set generated using 3DMM

and 3DMM+CNN on Chokepoint (a,b) and COX-S2V (c,d)

databases. Error bars are standard deviation.

proposed method can therefore adequately generate representative facial ROIs for the gallery,

and then match it with the corresponding variations in the auxiliary dictionary. Encouraging

pair-wise relationships between the variational and augmented gallery dictionaries has a posi-

tive impact on the performance of still-to-video FR system based on SRC.

3.6.3 Impact of Camera Viewpoint

To evaluate the robustness of the proposed S+V model to pose variations, accuracy is measured

for different portals and video cameras, as well as for a fusion of cameras. Tables 3.1 and 3.2

summarize the average accuracy on Chokepoint and COX-S2V datasets, respectively. For the

Chokepoint dataset, videos are captured over 4 sessions for 3 cameras (Camera1, Camera2,

Camera3) over portals 1 (P1E, P1L) and portal 2 (P2E, P2L), while for the COX-S2V dataset,

videos are captured over 3 cameras (Camera1, Camera2 and Camera3). The performance
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Figure 3.11 Average pAUC(20%) and AUPR accuracy for SRC,

ESRC and S+V model on Chokepoint (a,b) and COX-S2V (c,d)

databases. Error bars are standard deviation.

of the S+V model is compared with that of SRC and ESRC using the same configurations.

Results show that the S+V model outperforms other techniques across different pose variations.

Using synthetic profile views can improve the robustness of FR systems to pose variations. As

expected, designing a system that combines faces from all the cameras (and portals) always

provides a higher level of accuracy.

3.6.4 Impact of Feature Representations

Table 3.3 shows the effect on FR performance of using different feature representations (in-

cluding raw pixels, AlexNet (Krizhevsky et al. (2012)), ResNet (He et al. (2016)) and VGGNet

(Simonyan & Zisserman (2015)) and face synthesis methods (3DMM and 3DMM-CNN) for

videos from all 3 cameras of the Chokepoint and COX-S2V datasets.
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Table 3.1 Average accuracy of FR systems based on the proposed S+V model, SRC, and

ESRC over different sessions, portals and cameras of the Chokepoint dataset. Feature

representations are raw pixels, the 3DMM method is used for face synthesis.

Portal Viewpoint
Accuracy

SRC ESRC S+V Model
pAUC(20%) AUPR pAUC(20%) AUPR pAUC(20%) AUPR

P1

Camera1 0.482±0.023 0.361±0.021 0.691±0.020 0.534±0.023 0.712±0.024 0.607±0.021

Camera2 0.495±0.021 0.389±0.022 0.703±0.022 0.553±0.020 0.719±0.022 0.615±0.022

Camera3 0.412±0.025 0.377±0.023 0.532±0.023 0.512±0.022 0.672±0.026 0.572±0.023

All 3 Cameras 0.513±0.022 0.438±0.024 0.718±0.019 0.579±0.018 0.731±0.021 0.706±0.022

P2

Camera1 0.422±0.023 0.387±0.020 0.604±0.024 0.526±0.021 0.622±0.022 0.518±0.020

Camera2 0.452±0.022 0.416±0.023 0.631±0.025 0.548±0.020 0.652±0.021 0.546±0.021

Camera3 0.378±0.021 0.351±0.022 0.517±0.022 0.435±0.023 0.538±0.025 0.441±0.022

All 3 Cameras 0.471±0.020 0.423±0.021 0.651±0.020 0.547±0.019 0.672±0.018 0.573±0.023

P1&P2 All 3 Cameras 0.524±0.032 0.475±0.031 0.802±0.028 0.651±0.025 0.892±0.019 0.751±0.020

Table 3.2 Average accuracy of FR systems using the proposed S+V model, SRC, and

ESRC over different sessions and portals of the COX-S2V dataset. Feature

representations are raw pixels, the 3DMM method is used for face synthesis.

Viewpoint
Accuracy

SRC ESRC S+V Model
pAUC(20%) AUPR pAUC(20%) AUPR pAUC(20%) AUPR

Camera1 0.481±0.020 0.432±0.021 0.765±0.019 0.645±0.022 0.780±0.020 0.657±0.021

Camera2 0.475±0.023 0.419±0.022 0.716±0.020 0.602±0.020 0.747±0.023 0.629±0.022

Camera3 0.507±0.021 0.441±0.019 0.802±0.021 0.671±0.021 0.824±0.021 0.715±0.019

All 3 Cameras 0.566±0.030 0.480±0.027 0.835±0.027 0.695±0.026 0.905±0.020 0.776±0.017

We further evaluate the impact on the performance of different CNN feature extractors and

loss functions for FR with the S+V model. Table 3.4 shows the average AUC and AUPR

accuracy of FR systems using the proposed S+V model with different pre-trained CNNs for

feature representation and loss functions (triplet loss (Schroff et al. (2015)), cosine loss (Liu

et al. (2017)) and angular softmax (Wang et al. (2018a))) on the Chokepoint and COX-S2V

databases. Results indicate that coupling the S+V model with deep CNN features can further

improve FR accuracy over using raw pixels, and that using ResNet-50 outperforms there other

CNN architectures. Additionally, SphereFace training method yields the higher accuracy. By

using CNN features along with 3DMM or 3DMM-CNN, a still-to-video FR system with the

S+V model outperforms the baseline template matcher (TM) and SRC.
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Table 3.3 Average accuracy of FR systems using the proposed S+V model and template

matching using different feature representation on Chokepoint and COX-S2V databases.

Technique Face Synthesis Features
Accuracy

Chokepoint database COX-S2V database
pAUC(20%) AUPR pAUC(20%) AUPR

TM N/A

Raw pixels 0.551±0.027 0.503±0.028 0.574±0.031 0.512±0.029

AlexNet 0.563±0.026 0.513±0.029 0.586±0.030 0.519±0.027

VGGNet-16 0.570±0.028 0.524±0.026 0.597±0.027 0.528±0.030

VGGNet-19 0.578±0.025 0.531±0.027 0.605±0.029 0.533±0.028

ResNet-50 0.595±0.027 0.550±0.026 0.628±0.024 0.551±0.025

SRC N/A

Raw pixels 0.525±0.030 0.475±0.029 0.568±0.031 0.481±0.030

AlexNet 0.537±0.025 0.487±0.028 0.581±0.027 0.494±0.026

VGGNet-16 0.552±0.026 0.491±0.027 0.590±0.025 0.505±0.027

VGGNet-19 0.567±0.027 0.512±0.024 0.602±0.023 0.511±0.028

ResNet-50 0.581±0.026 0.533±0.025 0.623±0.022 0.523±0.024

3DMM

Raw pixels 0.892±0.018 0.751±0.019 0.903±0.020 0.775±0.016

S+V Model

AlexNet 0.905±0.019 0.771±0.020 0.913±0.016 0.783±0.015

VGGNet-16 0.908±0.016 0.773±0.017 0.916±0.018 0.786±0.016

VGGNet-19 0.912±0.017 0.779±0.018 0.921±0.016 0.791±0.017

ResNet-50 0.917±0.015 0.783±0.016 0.925±0.015 0.798±0.014

3DMM-CNN

Raw pixels 0.855±0.019 0.737±0.018 0.871±0.019 0.741±0.018

AlexNet 0.873±0.020 0.752±0.020 0.884±0.018 0.753±0.019

VGGNet-16 0.880±0.017 0.759±0.017 0.891±0.017 0.761±0.016

VGGNet-19 0.884±0.018 0.763±0.020 0.902±0.016 0.765±0.017

ResNet-50 0.891±0.016 0.769±0.014 0.907±0.017 0.771±0.015

Results show that coupling the S+V model with deep CNN features can further improve the FR

accuracy over using raw pixels, and that using ResNet-50 outperforms all other deep architec-

tures. The results also indicate that SphereFace training method yields higher accuracy. Using

CNN features and 3DMM or 3DMM-CNN, a FR system with the S+V model outperform the

baseline template matcher (TM) and SRC.

Tables 3.5 shows the average accuracy of FR for the augmented and auxiliary dictionaries with

the videos from all 3 cameras of the Chokepoint and COX-S2V datasets, respectively.

3.6.5 Comparison with State-of-the-Art Methods

Table 3.6 presents the FR accuracy obtained with the proposed S+V model compared with

baseline SRC techniques based on generic learning – ESRC (Deng et al. (2012)), SVDL (Yang

et al. (2013)), LGR (Zhu et al. (2014)), RADL (Wei & Wang (2015)), CSR (Li et al. (2016)).
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Table 3.4 Average accuracy of FR systems using the proposed S+V model (3DMM face

synthesis) with different deep feature representations on Chokepoint and COX-S2V

databases.

Technique Deep Architecture Training
Accuracy

Chokepoint database COX-S2V database
pAUC(20%) AUPR pAUC(20%) AUPR

AlexNet

FaceNet 0.905±0.019 0.771±0.020 0.913±0.016 0.783±0.015

S+V Model

CosFace 0.908±0.021 0.774±0.022 0.915±0.017 0.787±0.016

SphereFace 0.912±0.020 0.780±0.018 0.918±0.015 0.792±0.014

VGGNet-19

FaceNet 0.884±0.021 0.763±0.020 0.902±0.019 0.765±0.018

CosFace 0.889±0.019 0.768±0.022 0.907±0.017 0.772±0.016

SphereFace 0.906±0.018 0.771±0.017 0.913±0.015 0.778±0.017

ResNet-50

FaceNet 0.917±0.015 0.783±0.016 0.924±0.015 0.798±0.014

CosFace 0.920±0.018 0.786±0.019 0.927±0.018 0.802±0.020

SphereFace 0.922±0.015 0.791±0.014 0.928±0.017 0.805±0.015

Table 3.5 Average accuracy of FR systems using the augmented dictionary (3DMM

face synthesis) and auxiliary dictionaries on Chokepoint and COX-S2V databases.

Technique
Accuracy

Chokepoint database COX-S2V database
pAUC(20%) AUPR pAUC(20%) AUPR

S+V Model
Augmented Dictionary 0.829±0.28 0.705±0.27 0.847±0.26 0.718±0.254

Auxiliary Dictionary 0.836±0.23 0.714±0.25 0.862±0.22 0.731±0.021

Each one uses the same number of samples, raw pixel-based features, and a regularization

parameter λ set to 0.005. Accuracy of the S+V model is also compared with that of the Flow-

Based Face Frontalization (Hassner et al. (2015)) and Recognition via Generation (Masi et al.

(2016)) techniques. The baseline system is a SRC model designed with the original reference

still ROI of each enrolled person, and raw pixel-based features. The table shows that the S+V

model, using a joint generic learning and face synthesis, achieves the higher level of accuracy

than other methods under the same configuration, has potential in surveillance FR.

In order to assess still-to-video FR accuracy under the worst-case pose variations between the

probe video ROIs and augmented gallery dictionary ROIs, we compute the minimum distance

between the pose angle of each probe video ROI (20 trajectories in 3 cameras), {θ1,θ2, . . . ,θn},

and pose angles of both reference still and synthetic ROIs in the augmented gallery dictionary,
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Table 3.6 Average accuracy of FR systems based on the proposed S+V model

and related state-of-the art SRC methods for videos from all 3 cameras of the

Chokepoint and COX-S2V databases. Feature representations are raw pixels, the

3DMM method is used for face synthesis.

Techniques
Accuracy

Chokepoint database COX-S2V database
pAUC(20%) AUPR pAUC(20%) AUPR

SRC (Wright et al. (2009)) 0.524±0.032 0.475±0.031 0.568±0.030 0.480±0.027

ESRC (Deng et al. (2012)) 0.802±0.028 0.651±0.025 0.835±0.027 0.695±0.026

ESRC-KSVD 0.811±0.023 0.659±0.022 0.840±0.023 0.712±0.021

SVDL (Yang et al. (2013)) 0.825±0.023 0.703±0.025 0.843±0.025 0.724±0.023

RADL (Wei & Wang (2015)) 0.832±0.019 0.711±0.020 0.849±0.022 0.730±0.021

LGR (Zhu et al. (2014)) 0.849±0.022 0.717±0.024 0.878±0.023 0.744±0.025

CSR (Li et al. (2016)) 0.852±0.025 0.722±0.020 0.880±0.021 0.753±0.020

Face Frontalization (Hassner et al. (2015)) 0.822±0.021 0.711±0.023 0.843±0.022 0.719±0.023

Recognition via Generation (Masi et al. (2016)) 0.815±0.023 0.703±0.025 0.838±0.024 0.705±0.026

S+V Model (Ours) 0.892±0.019 0.751±0.020 0.905±0.018 0.776±0.017
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Figure 3.12 Illustration of procedure for the selection of the

largest pose variations.

{ϕ1,ϕ2, . . . ,ϕm}:

di = min
j
{‖ (θi −ϕ j) ‖ : j = 1,2, . . . ,m}, . (3.20)

where di corresponds to the ith probe video ROI, for i = 1,2, . . . ,n. Next, 5 video ROIs that

have the largest distance, max
i
{di}, are chosen as the faces with the largest pose differences

(see Fig. 3.11). Fig. 3.13 shows the accuracy obtained with the SRC, ESRC, RADL, LGR and

S+V models when these ROIs are classified as probe ROIs.

As the pose differences increase, FR accuracy decreases. The FR system using the S+V model

reaches the highest accuracy due to the added robustness to pose variations. Then, LGR outper-
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Figure 3.13 Average pAUC(20%) and AUPR accuracy of S+V

model and related state-of-the-art techniques versus the different

pose variations on Chokepoint (a,b) and COX-S2V (c,d)

databases. Error bars are standard deviation.

forms SRC, ESRC and RADL across all pose variations. Accuracy of the SRC is much lower

than the others because, with only one frontal reference gallery ROI per person, the probe ROIs

are not well represented.

Fig. 3.14 shows the impact of the size of generic set in the auxiliary variational dictionary

on FR accuracy. The results of SRC, ESRC, RADL and LGR are also shown for the same

configurations for comparison. Accuracy of the S+V model increases significantly with respect

to other state-of-the-art methods as the number of generic ROIs grows. The results support the

conclusion that by augmenting the gallery dictionary, allows the S+V model to increasingly

benefit from the variational information of the generic set.
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Figure 3.14 Average pAUC(20%) and AUPR accuracy versus

the size of the generic set on Chokepoint (a,b) and COX-S2V (c,d)

databases. Error bars are standard deviation.

3.6.6 Ablation Study

Designing S+V model for still-to-video FR consists of three main steps: (M1) face synthesis,

(M2) adding intra-class variations, and (M3) pairing the dictionaries. In this subsection, an

ablation study is presented to show the impact of each module on the FR performance. We

assume that all FR systems use a pixel-based feature representation, 3DMM face synthesis,

and q synthetic images in the augmented dictionary.

Tables 3.7 and 3.8 shows the average accuracy of the ablation study with videos from all 3

cameras of the Chokepoint and COX-S2V datasets, respectively. Firstly, we disabled the face

synthesis module, M1, and performed experiments to show the impact of augmenting the ref-

erence gallery with synthetic faces on FR accuracy. Next, we removed the auxiliary dictionary

to evaluate the impact of considering generic set variations with the S+V model. By removing

both M1 and M2 modules from the S+V model, accuracy declines significantly by about 50%.
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The results suggest that the addition of synthetic and generic set faces is an effective strategy

to cope with facial variations. Another important component of the S+V model is the selection

of representative ROIs and pairing the dictionaries. By removing the row sparsity and joint

sparsity in the S+V model, M3, and by adding 10 randomly selected synthetic ROIs, accuracy

decreases by about 15%.

Table 3.7 Results of ablation study with Chokepoint database.

Accuracy Removed Module
baseline (none) M1 M2 M3

pAUC(20%) 0.892±0.019 0.839±0.21 0.827±0.27 0.883±0.25

AUPR 0.751±0.020 0.709±0.23 0.702±0.25 0.721±0.22

Table 3.8 Results of ablation study with COX-S2V database.

Accuracy Removed Module
baseline (none) M1 M2 M3

pAUC(20%) 0.905±0.018 0.857±0.22 0.835±0.24 0.887±0.20

AUPR 0.776±0.017 0.721±0.20 0.712±0.21 0.769±0.21

3.6.7 Complexity Analysis

Time complexity is an important consideration in many real-time FR applications in video

surveillance. The time required by the S+V model to classify a probe ROI is O(d(N+M)Lq logn+

Lk(q+1)) where d is the dimension of the face descriptors, n is the number of ROIs per class

in the augmented gallery dictionary, k is the number of classes (enrolled individuals), N = kn

is the number of reference still images, M is the size of the external generic set, q is the number

of views, and L is number active sets (at each iteration, we need to select L most representa-

tive dynamic active sets from coefficient matrix.) In video FR applications, N may be larger,

therefore the computational burden of handling larger dictionaries may represent bottleneck of

the proposed method. The complexity of SRC and ESRC are O(d2N), O(d2(N +M)), respec-

tively. The complexity of LGR is O(s(nd
3+nd

2dp)) where s is the number of patches, nd is the

number of patches, dp is the feature dimension of patches. Although the proposed S+V model

outperforms SRC and ESRC, it requires more computations, mostly because of the pairing of

the dictionaries.
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Table 3.9 reports the average test time required by the proposed and baseline techniques to

classify a probe ROI from Chokepoint and COX-S2V videos. The LGR and RADL are more

computationally intensive than the S+V model. Finally, Table 3.10 reports the average time

for the 3 main steps of the proposed framework: face synthesis (M1), intra-class variation

extraction (M2), and pairing the dictionaries (M3) on videos of all 3 cameras in the Chokepoint

and COX-S2V datasets. The time complexity of M1 is the highest, followed by M3 with

complexity O(MNlog(M)), where M and N are, respectively, the number of rows and columns

of the dissimilarity matrix.

Table 3.9 Average time required by techniques to classify a

probe videos ROI with the Chokepoint and COX-S2V datasets.

Technique Classification Time (sec)
Chokepoint database COX-S2V database

SRC (Wright et al. (2009)) 1.03 2.56

ESRC (Deng et al. (2012)) 1.72 3.42

RADL (Wei & Wang (2015)) 4.62 8.15

LGR (Zhu et al. (2014)) 7.13 12.37

S+V Model 2.81 4.83

Table 3.10 Average computational time of different step in

the S+V model with the Chokepoint and COX-S2V datasets.

Module Processing Time (Sec)
Chokepoint database COX-S2V database

M1 (3DMM) 120 120

M1 (3DMM-CNN) 1.3 1.3

M2 0.53 0.53

M3 2.47 4.41

3.7 Conclusion

In this paper, a paired sparse reconstruction model is proposed to account for linear and non-

linear variations in the context of still-to-video FR. The proposed S+V model leverages both

face synthesis and generic learning to effectively represent probe ROIs from a single reference

still. This approach manages the non-linear variations by enriching the gallery dictionary with a

representative set of synthetic profile faces, where synthetic (still) faces are paired with generic

set (video) face in the auxiliary variational dictionary. In this way, the augmented gallery
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dictionary is encouraged to share the same sparsity pattern with the auxiliary dictionary for

the same pose angles. Experimental results obtained using the Chokepoint and COX-S2V

datasets suggest that the proposed S+V model allows us to efficiently represent linear and

non-linear variations in facial pose with no need to collect a large amount of training data.

Results indicated that generic learning alone cannot effectively resolve the challenges of the

SSPP and visual domain shift problems. With S+V model, generic learning and face synthesis

are complementary. The results also reveal that the performance of FR systems based on the

S+V model can further improve with CNN features. Future research includes investigating the

geometrical structure of the data space in the dictionaries and the corresponding coefficients to

improve the discrimination. To reduce reconstruction time, we plan to extend the current S+V

model, allowing it to represent larger sparse codes.
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Abstract

Deep learning models for still-to-video FR typically provide a low level of accuracy because

faces captured in unconstrained videos are matched against a reference gallery comprised of

a single facial still per individual. For improved robustness to intra-class variations, deep

Siamese networks have recently been used for pair-wise face matching. Although these net-

works can improve state-of-the-art accuracy, the absence of prior knowledge from the target

domain means that many images must be collected to account for all possible capture condi-

tions, which is not practical for many real-world surveillance applications. In this paper, we

propose the deep SiamSRC network that employs block-sparsity for face matching, while the

reference gallery is augmented with a compact set of domain-specific facial images. Prior to de-

ployment, clustering based on row sparsity is performed on unlabelled faces captured in videos

from the target domain. Cluster centers discovered in the capture condition space (defined by,

e.g., pose, scale and illumination) are used as rendering parameters with an off-the-shelf 3D

face model, and a compact set of synthetic faces are thereby generated for each reference still

based on representative intra-class information from the target domain. For pair-wise simi-

larity matching with query facial images, the SiamSRC exploits sparse representation-based

classification with a block structure. Experimental results obtained with the videos from the

Chokepoint and COX-S2V datasets indicate that the proposed SiamSRC network can outper-
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form state-of-the-art methods for still-to-video FR with a single sample per person, with only

a moderate increase in computational complexity.

4.1 Introduction

Video face recognition (FR) has attracted much interest from academia and industry due to

the wide range of monitoring, security and surveillance applications. In this paper, we focus

on deep learning architectures for still-to-video FR, where systems seek to match each query

ROI captured in unconstrained videos (from the target domain) to still facial ROIs stored in a

reference gallery (from the source domain) (Bashbaghi et al. (2017a)). Architectures based on

the convolutional neural network (CNN) have achieved state-of-the-art performance across a

wide range of visual recognition tasks like FR, at the expense of growing network complexity

(Cao et al. (2019a)). Training CNNs with large datasets of facial images allow to encode

discriminant feature embeddings that can provide accurate predictions during inference (Wang

et al. (2018a)).

While deep learning architectures can provide a high level of accuracy, designing robust sys-

tems for still-to-video FR remains a challenging problem in real-world video surveillance

applications, such as watch-list screening (Dewan et al. (2016)). One key challenge is the

limited number of reference still images that are available per individual enrolled to the sys-

tem, and stored in a gallery. Still-to-video FR systems are typically designed using only one

still image per individual. This corresponds to a single sample per person (SSPP) problem in

FR, where facial models have limited robustness to intra-class variations. State-of-the-art ap-

proaches proposed to address SSPP problems in FR systems can be roughly divided into four

categories: (1) image patching methods, where the images are partitioned into several patches

(Zhu et al. (2014); Gao et al. (2015)), (2) multiple face representations that extract diverse

features from face images where each descriptor may be specialized to address some nui-

sance factors (e.g., illumination, pose, blur, etc.) encountered in video surveillance (Bashbaghi

et al. (2017b)), (3) super resolution (hallucination) that aims at reconstructing details/high-

frequencies in low-resolution face images (Yu et al. (2018)), (4) face synthesis techniques to
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augment the gallery dictionary (Mokhayeri et al. (2019a); Masi et al. (2016)), and (5) generic

learning methods, where a genetic training set is used to leverage variational information from

an auxiliary generic set to represent the differences between probe and reference gallery images

(Wei & Wang (2015); Deng et al. (2018)).

Another key challenge for still-to-video FR is the visual domain shift in the distributions be-

tween facial ROIs from the source domain, where reference stills are typically captured during

enrolment under controlled conditions, and facial ROIs from the target domain, where videos

are captured under uncontrolled conditions with variations in pose, illumination, motion blur,

scale, resolution, expression, etc. The appearance of facial ROIs captured in the videos corre-

spond to target domain distribution can differ considerably from reference faces captured dur-

ing enrollment in a gallery (Bashbaghi et al. (2017a)). A network for still-to-video FR would

require transfer learning or unsupervised domain adaptation to learn robust domain-invariant

representations from source and target ROIs. Recent state-of-the-art approaches for still-to-

video FR rely on deep Siamese networks (Koch et al. (2015)) for pair-wise matching. These

architectures apply two identical CNNs (same parameters and weights) to extract features from

the reference gallery and query facial ROIs, and then compare the feature vectors using some

similarity measures. They are trained to learn embeddings where similar image pairs (por-

traying the same identity) are close to each other, while dissimilar image pairs (with different

identities) are distant from each other (Ahmed et al. (2015); Varior et al.; Parchami et al.

(2017c)). For instance, DeepFace (Taigman et al. (2014)) employs a deep Siamese network to

compare the feature vectors of the gallery and query faces using the Euclidean distance. The

goal of training is to minimize the distance between congruous pairs of faces (i.e. portraying

the same identity) and maximize the distance between incongruous pairs. However, achiev-

ing state-of-the-art performance comes with high computational complexity. For instance, the

ResNet-50 CNN (He et al. (2016)) contains about 23.5M parameters (stored in about 86MB of

memory), and requires 6.3 billion floating point operations (FLOPs) to match two color images

of size 256×128×3. Such complex networks are impractical for many real-time applications.

Consequently, even if all reference stills are stored in the gallery as feature vectors, there is an
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interest in reducing the number of pair-wise matchings needed by the network. The time and

memory complexity of a Siamese network grows with the number of reference gallery images,

and thus of pair-wise matchings.
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Figure 4.1 An overview of the proposed deep SiamSRC network for still-to-video FR.

In this paper, deep SiamSRC network is proposed (see Figure 4.1) that uses sparse representation-

based classification (SRC) for pair-wise face matching while integrates domain-specific set of

synthetic facial images into the network’s extended reference gallery. The motivation is to

improve the FR system’s robustness to intra-class variations of individual appearing in the tar-

get domain and compensate limited images available in the gallery. One concern with data

augmentation is the selection of a sufficient number of synthetic or generic auxiliary faces to

cover intra-class variations. Many synthetic (generic) faces may be generated (collected) to ac-

count for all possible real-world capture conditions, although several of these may provide less

relevant information on the target domain. FR systems would therefore require high computa-

tional complexity to accommodate many reference gallery images. To provide a good trade-off

between accuracy and efficiency, we select representative synthetic ROIs by exploiting the dis-

criminant information of the generic set during the face synthesis process. Prior to deployment

(e.g., during camera calibration), the generic set is formed with facial ROIs captured in target

domain videos, and clustered based on row sparsity (Elhamifar et al. (2012)) in a captured

condition space. The gallery is augmented with a set of synthetic face images generated from

the original reference image in the source domain, where the rendering parameters are esti-
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mated based on the cluster centers (exemplars) in the target video domain. During inference,

the proposed SiamSRC network exploits the SRC for pair-wise face matching. SRC similarity

is measured as the block structure that finds the representation of a query ROI and requires the

minimum number of blocks from the gallery.

For proof-of-concept validation, the proposed SiamSRC network relies on representative syn-

thetic sets that are selected by clustering the generic set in the pose and illumination space. Per-

formance is evaluated and compared to several relevant state-of-the-art methods on two public

databases for still-to-video FR – Chokepoint (Wong et al. (2011)) and COX-S2V (Huang et al.

(2015)).

The rest of the paper is organized as follows. Section 4.2 provides a brief review of deep

Siamese networks, SRC models and face synthesizing methods that address still-to-video FR

problems. Section 4.3 describes the proposed deep SiamSRC network. Finally, Sections 4.4

and 4.5 describe the experimental methodology and results, respectively.

4.2 Related Work

4.2.1 Deep Siamese Networks for Face Recognition

The idea of using deep Siamese networks for pair-wise matching of query and reference im-

ages in biometric authentication and verification originates from Bromley et al. (1994). Deep

Siamese networks are often designed using two or more identical sub-networks for feature

extraction. These extractors share the same parameters and weights, and are commonly imple-

ment with CNNs suitable for classification. During the training process, these networks typi-

cally seek to minimize the intra-class distance and maximize the inter-class distances mostly

using triplet loss function (Schroff et al. (2015)). When the features are extracted for a pair

of images, the matcher produces a similarity score indicating if the pair images are from the

same or different classes. This similarity measure is often the Euclidean or cosine distance

between the two feature representations (Wang et al. (2018a)). Similarity can also be assessed
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using a Softmax layer with two classes, where one neuron represents the same class and the

other different class. For a given query image, the system provides a ranked list of matching

scores for every reference image in the gallery, where the highest score represents the net-

work’s prediction for the input image. The feature extractor sub-network is considered to be

the backbone of a Siamese network. Various CNN architectures have been proposed to learn

discriminative feature embeddings, most of which employ end-to-end training, where both fea-

ture embeddings and metrics are learned as a joint optimization problem (Ahmed et al. (2015);

Varior et al.). Any CNN such as VGG-Face, Inception, ResNet, DenseNet, etc., can be used for

feature extraction. Although deeper CNNs, like ResNet-50 and DenseNet, are better to address

the challenges of real-world FR, the computational complexity and over-fitting make them less

suitable for real-time applications.

In recent years, deep Siamese networks have significantly improved FR accuracy due to their

high capacity for learning discriminative features. Taigman et al. proposed to use these net-

works to learn similarity metrics for FR which trained on a large dataset from Facebook (Taig-

man et al. (2014)). Schroff et al. introduced FaceNet that directly learns a mapping from

face images to a compact Euclidean space. It employs a deep Siamese network that directly

optimizes the L1-distance between two faces. FaceNet employs face triplets and minimizes

the distance between an anchor and a positive sample of the same identity, while maximizing

the distance between the anchor and a negative sample of a different identity (Schroff et al.

(2015)). Light CNN framework was proposed to learn deep face representations from the

large-scale dataset with noisy labels, where a max-feature map operation allows to obtain a

compact representation (Wu et al. (2018a)). Yin & Liu (2017) presented a multi-task CNN

for FR that exploits side tasks, e.g., pose, in regularization, to learn pose-specific identity fea-

tures. A pose-aware network was proposed by Masi et al. (2019a) to process a face image

using several pose-specific CNNs. In this model, 3D rendering was used to synthesize multi-

ple face poses from input images to train these models, and provide additional robustness to

pose variations. A deep local descriptor learning framework for cross-modality FR was pre-

sented by Peng et al. (2019) to learn discriminant and compact local information from raw
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facial patches, and then integrated into a CNN that extracts deep local descriptors. Peng et al.

(2019) proposed an efficient network for still-to-video FR from a single reference still based

on cross-correlation matching and triplet-loss optimization methods that provide discriminant

face representations. The matching pipeline exploits a matrix Hadamard product followed by

a fully connected layer inspired by adaptive weighted cross-correlation.

4.2.2 Face Synthesis

Augmenting the reference gallery set synthetically is known to improve the accuracy of CNN-

based methods. Masi et al. (2019b) enhanced CNN performance by augmenting dataset with

facial images that differ in 3D shape, expression and pose. An efficient face-specific data

augmentation technique has been introduced by Masi et al. (2019b) to enrich the training data

for CNN-based FR to reduce appearance variations. A common approach for synthetic face

generation is to reconstruct the 3D model of a face using its 2D face image. Blanz & Vetter

(2003) proposed 3D Morphable Model (3DMM) to reconstruct a 3D face from a single 2D

face image and accordingly synthesize new face images. A CNN was proposed by Tran et al.

(2017a) to regress 3DMM shape and texture parameters directly from an input image without

an optimization process which renders the face, and compares it to the image. Richardson et al.

(2017) presented a face reconstruction technique from a single image by introducing an end-to-

end CNN framework which derives the shape in a coarse-to-fine fashion. Tewari et al. (2017)

proposed a model-based deep convolutional autoencoder for 3D face reconstructing from a

single, where a convolutional encoder network is combined with an expert-designed generative

model that serves as a decoder. Mokhayeri et al. (2019a) proposed a domain-specific face

synthesis technique that exploits the representative intra-class variation information available

from the target domain. It maps the intra-class variations from a representative set of video

ROIs selected from the target domain into the original reference still ROIs.

Recently, Generative Adversarial Networks (GANs) proposed by Goodfellow & et al. (2014)

have shown promising performance in face synthesis. Benefiting from GAN, FaceID-GAN

(Shen et al. (2018)) was proposed which generates identity preserving faces. It competes with
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the generator by distinguishing the identities of the real and synthesized faces to preserve the

identity of original images. The major shortcoming of the GAN-based face synthesis models

is that they may produce images that are inconsistent due to the weak global constraints. To re-

duce this gap, Shrivastava et al. (2017) developed SimGAN that learns a model using synthetic

images as inputs instead of random noise vector. Recently, conditional GANs allow to leverage

conditional information in the generative and discriminative networks for conditional image

synthesis. Tran et al. (2018) used pose codes in conjunction with random noise vectors as the

inputs to the discriminator with the goal of generating a face of the same identity with the target

pose in order to fool the discriminator. Hu et al. (2018) introduced a coupled-agent discrimina-

tor which forms a mask image to guide the generator during the learning process. Chen & Ross

(2019) proposed semantic-guided generative adversarial network to automatically synthesize

face images. In particular, semantic labels, extracted by a face parsing network, are used to

compute a semantic loss function to regularize the adversarial network during training.

4.2.3 Sparse Representation-based Classification

Shao et al. (2017) presented a SRC-based FR algorithm that extends the dictionary using a

set of synthetic faces generated by calculating the image difference of a pair of facial im-

ages. Deng et al. (2012) introduced an extended SRC (ESRC) that integrates an auxiliary

variational dictionary (through random selection from a generic set) to accurately represent a

probe face with unknown variations from the operational environment. Motivated by ESRC,

Yang et al. (2013) proposed the sparse variation dictionary learning (SVDL) model to learn the

variational dictionary by accounting for the relationship between the reference gallery and ex-

ternal generic set. A robust auxiliary dictionary learning (RADL) technique was proposed by

Wei & Wang (2015) that extracts representative information from external data via dictionary

learning without assuming the prior knowledge of occlusion in probe images. A collaborative

probabilistic generic learning technique was introduced by Ji et al. (2017) which constructs

probabilistic labels for the samples in the generic set corresponding to those in the reference

gallery set, then it estimates the variation type for a given probe image. Deng et al. (2018)
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developed a superposed linear representation classifier, where the test images are represented

in terms of a superposition of the class centroids and the shared intra-class differences. A lo-

cal generic representation-based (LGR) framework for FR with SSPP was proposed by Zhu

et al. (2014). It builds a gallery dictionary by extracting the patches from the gallery database,

while an intra-class variation dictionary is formed by using an external generic set to predict

the possible facial variations. A joint and collaborative sparse representation framework is

presented by Yang et al. (2017) that exploits the distinctiveness and commonality of different

local regions. In order to address non-linearity, Fan et al. (2018) used a nonlinear mapping to

transform the original reference data into a high dimensional feature space, which is achieved

using a kernel-based method. Mokhayeri & Granger (2018) proposed a synthetic plus varia-

tional (S+V) model to account for the non-linearities. It reconstructs a probe image using an

auxiliary variational dictionary and an augmented gallery dictionary while the dictionaries are

encouraged to share the same sparsity pattern for the same pose angles.

4.3 The SiamSRC Network

This section describes the deep SiamSRC network for still-to-video FR. It relies on block

sparsity to measure pair-wise similarity, and on a reference gallery that is augmented with a

compact domain-specific set of synthetic images in order to overcome the issues related to

visual domain shift and SSPP.

We select video ROIs with representative capture conditions (defined by pose angles and il-

lumination measures) from facial trajectories or tracklets of unknown persons captured in the

target domain. These video ROIs are selected by clustering facial trajectories with row spar-

sity in the captured condition space. A set of synthetic face images is generated according to

cluster centers (representatives) to augment the reference gallery. A deep Siamese network is

designed with the augmented gallery, where SRC with block structure is used for pair-wise

face matching. The rest of this section presents more details on the proposed network.
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4.3.1 Notation

In the following, the set D = {R1, . . . ,Ri, . . . ,Rk} ∈ R
d×N denote a gallery dictionary, where

Ri = {ri
1, . . . ,r

i
j, . . . ,r

i
n} ∈ R

d×n is composed of n reference still ROIs belonging to one of

k different classes, d is the number of pixels or features representing a ROI and N = kn is

the total number of reference still ROIs. In the context of SSPP problems Ri = {ri} ∈ R
d is

the single gallery sample of ith class. The set G = {g1, . . . ,g j . . . ,gM} ∈ R
d×M denotes the

auxiliary generic set composed of M external generic images of unknown persons captured in

the operational environment. The set V = {v1, . . . ,v j, . . . ,vM} ∈ R
d×M denotes the auxiliary

variational dictionary composed of M intra-class variations extracted from G ∈ R
d×M.

4.3.2 Representative Selection

Prior to operation, e.g., during a camera calibration process, facial ROIs are isolated in facial

trajectories from the videos of unknown persons captured in the target domain. A representa-

tive set of video ROIs are selected by applying row sparsity regularized optimization on facial

trajectories in the captured condition space. A compact set of synthetic images is then gen-

erated from the reference set in the source domain based on the information obtained from

the center of each cluster in the target domain, and integrated into the gallery dictionary to

enrich the diversity of the gallery set. The representative selection problem is formulated as

a row sparsity regularized trace minimization problem where the objective is to find a few

representatives (exemplars) that efficiently represent the collection of data points according to

their dissimilarities (Elhamifar & Kaluza (2017)). In this paper, the proposed model selects

illumination and pose representatives from a collection of N samples. The pose angles are

estimated using the discriminative response map fitting method (Asthana et al. (2013)) which

is a state-of-the-art method for accurate fitting, suitable for handling occlusions and changing

illumination conditions. The estimated head pose for the jth video ROI (g j) in the generic set

is defined as θθθ j = (θ pitch
j ,θ yaw

j ,θ roll
j ). Euler angles θ pitch, θ yaw, and θ roll are used to represent

roll, yaw and pitch rotation around X axis, Y axis, and Z axis of the global coordinate system,

respectively. Luminance and contrast distortion measures are also estimated between a video
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ROI and the corresponding reference still ROI. Structural similarity index measure presented

by Wang et al. (2004) are employed to measure the proximity of the average luminance and

contrast locally by utilizing sliding window. The set of dissimilarities {di j : i, j = 1, ...,N}
between every pair of pose and illumination data points are then calculated by using the Eu-

clidean distance, which indicates how well the data point i is suited to be an exemplar of data

point j. The dissimilarities are arrange into matrix:

D �

⎡⎢⎢⎢⎣
dT

1
...

dT
N

⎤⎥⎥⎥⎦=

⎡⎢⎢⎢⎣
d11 d12 · · · d1N

...
...

. . .
...

dN1 dN2 · · · dNN

⎤⎥⎥⎥⎦ ∈ R
N×N , (4.1)

where di ∈ D
N denotes the ith row of D. Variables zi j are associated with dissimilarities di j,

and organized into matrix of the same size as:

Z �

⎡⎢⎢⎢⎣
zT

1
...

zT
N

⎤⎥⎥⎥⎦=

⎡⎢⎢⎢⎣
z11 z12 · · · z1N
...

...
. . .

...

zN1 zN2 · · · zNN

⎤⎥⎥⎥⎦ ∈ R
N×N , (4.2)

where zi ∈ R
N denotes the ith row of z. zi j is the probability that data point i is representative

for data point j, hence zi j ∈ [0,1]. The row sparsity regularized trace minimization algorithm

is applied on matrix Z to select some representative exemplars that can suitably encode pose

data according to dissimilarities as follows:

min
N

∑
j=1

N

∑
i=1

di jzi j +η
N

∑
i=1

∥∥zi
∥∥

q, (4.3)

subject to:

zi j ≥ 0, ∀i, j;
N

∑
i=1

zi j = 1, ∀ j, (4.4)
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where the parameter η > 0 sets the trade-off between both terms.

Once this optimization problem (Eq. 4.3) has been solved, one can find the representative in-

dices from the nonzero rows of Z. The clustering of data points into K clusters, associated with

K representatives, is obtained by assigning each data point to its closest representative. In par-

ticular, if { i1; . . . ; iq } denote the indices of the representatives, data point j is assigned to the

pose representative θ( j) such that θ( j) = argmin�∈{i1;... ;iq} d� j. The pose angle of representa-

tive video ROIs of each cluster, referred as exemplar, is used as rendering parameter to generate

synthetic face images with varying poses using an off-the-shelf 3D face model (Blanz & Vetter

(2003); Tran et al. (2017a,b)). For each pose exemplar, p j, a set of lighting exemplars are then

selected. Clusters that represent a greater number of generic samples should have a greater

influence on classification. Here, a weight is assigned to each exemplar to indicate its impor-

tance, approximated based on its cluster size, Wi j = ni j/n, where ni j is the number of samples

in each cluster and n is the number of generic samples. This selection strengthens those classes

that are more representative in reconstructing a probe sample.

4.3.3 Face Synthesis

To generate representative synthetic ROIs, we employ the domain-specific 3DMM, a simplified

version of the 3DMM in which the texture fitting of the original 3DMM is replaced with image

mapping based on target domain information (Mokhayeri et al. (2019a)). With this technique,

each still reference image, is decomposed and its material layer is extracted based on the a

texture-aware image model defined by Jeon et al. (2014). 3D shape models of reference ROIs,

ri, are reconstructed using the 3DMM and rendered w.r.t. pose exemplars. Basically, the shape

model is defined as a convex combination of shape vectors of a set of examples in which the

shape vector (S) is defined as Eq.4.5 (Blanz & Vetter (2003)).

S = S̄+
mS−1

∑
k=1

αk.S̃k , (4.5)
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where, the 3D shape is represented by the probability distribution of faces around the averages

of shape S̄ are calculated and the basis vectors S̃ j, 1 ≤ j ≤ ms in Eq.4.5 where ms is the number

of the basis vectors. Here, for each reference ROI, ri, we reconstruct the 3D shape using:

Si = S̄+
mS−1

∑
j=1

α i
j.S̃ j, (4.6)

where α i
j ∈ [0,1],1 ≤ j ≤ ms are the shape parameters and Si is the reconstructed shape of

the ith reference still ROI ri. The optimization algorithm presented by Blanz & Vetter (2003)

is employed to find optimal α i
j,1 ≤ j ≤ ms , for each reference still ROI ri. The extracted

material layers are then projected to the 3D model of the reference gallery set. Given the

3D facial shape and texture, novel poses can be rendered under various forms of the pose by

adjusting the parameters of a camera model.

Following this, the shading layers of the lighting exemplars are projected on the rendered

views by morphing between the layers. A guided filter with the guidance of the input shading

layer is applied to preserve the structure of the input face. In this way, q synthetic faces,

Si = {s1, . . . ,sq}∈R
d×q, are generated under the representative information from a given single

still face image. The augmented gallery dictionary D′ = {R′
1, . . . ,R

′
i, . . . ,R′

k} ∈ R
d×k(n+q) is

formed by merging each still ROI of (k class) reference set with q synthetic images rendered

w.r.t. representative exemplars, where R′
i = {ri

1, . . . ,r
i
n,s1, . . . ,sq} ∈ R

d×(n+q).

4.3.4 Block-Sparsity Matching

After generating the representative synthetic samples, a Siamese network with ResNet-50 ar-

chitecture (He et al. (2016)) is designed that learns how to differentiate between two inputs. A

deep Siamese network basically consists two symmetrical CNN feature extractors both shar-

ing the same weights and architecture, and both joined together at the end using some energy

function. When a query, y is matched against a gallery image (either the reference face, ri or

synthetic faces, si of person i), the last layer of the CNNs produce fixed size vector, fy, and fr,

and the SiamSRC network finally outputs a similarity scores. The proposed SiamSRC model
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employs sparse representation for pair-wise face matching (see Fig. 4.2). SRC derives the

sparse coefficients ααα of y by solving the following �1-minimization problem:

min
α

‖y−Dααα‖2
2 +λ‖ααα‖1. (4.7)

where λ is a regularization parameter, and λ > 0. After the sparse vector of coefficients ααα is

obtained, the probe image y is recognized as belonging to class k∗ if it satisfies:

k∗ = argmin
k

‖y−Dγk(ααα)‖2. (4.8)

where γk is a vector whose only nonzero entries that are the entries in ααα are associated with

class k. That is, the probe image y will be assigned to the class with the minimum class-wise

reconstruction error.

Classification can rely on the reconstruction of a query ROI in the dictionary of all reference

images, using the so-called structured SRC (S-SRC). Since the synthetic ROIs generated for

each individual forms a block inside the gallery, higher classification accuracy is possible if

the reconstruction of a query ROI is produced from the minimum number of blocks from the

dictionary. The goal of S-SRC is to find a representation of a probe ROI that uses the minimum

number of blocks from the dictionary. The block sparsity is formulated in terms of mixed �t/�1

(t > 1) norm as follows.

A�2/�1
: min

α
‖y−Dααα‖2

2 +λ
q

∑
i=1

‖ααα‖1. (4.9)

where ααα[i] is the ith block in the sparse coefficient vector ααα corresponding to the dictionary

block D[i]. Since each dictionary block corresponds to a specific class, i represents the class

index ranging from 1 to q as well. This is a convex optimization problem when t ≥ 1. Here we

suppose t = 2. This optimization problem seeks the minimum number of non-zero coefficient

blocks that reconstruct the probe ROI. Finally, the weighted matrix obtained in Section 4.3.2
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Figure 4.2 Architecture of SiamSRC.

shows that cluster weights multiplied to the �1-minimization term.

A�2/�1
: min

α
‖y−Dααα‖2

2 +λ
q

∑
i=1

‖Wααα‖1. (4.10)

where

Wi =

⎡⎢⎢⎢⎢⎢⎢⎣
Wi1 0 · · · 0

0 Wi2 · · · 0
...

...
. . .

...

0 0 · · · Wiq

⎤⎥⎥⎥⎥⎥⎥⎦ (4.11)

The class label of the probe ROIs y is then determined based on the block sparse reconstruction

error as 4.12. Algorithm 4.1 summarizes the steps for design and testing with the SiamSRC



114

network.

label(y) = argmin
k

‖ y−D[k]γkααα[k] ‖2 . (4.12)

Algorithm 4.1 SiamSRC Network.

Input: Reference still ROIs {Ri : i = 1, . . . ,n}, Generic set of video ROIs {Gi : i = 1, . . . ,M}, a

probe sample y, and parameters λ , μ , and ξ
1 Design:

2 Estimate pose angles and luminance-contrast distortions of ROIs in {Gi : i = 1, . . . ,M}
3 Cluster video ROIs in the pose and lighting space with the row sparsity technique, and produce q

representative exemplars

4 for each still Ri do
5 Generate q synthetic images {Si : i = 1, . . . ,q} per each individual based on exemplars

6 Merge {Si : i = 1, . . . ,q} with {Ri : i = 1, . . . ,n} to form {R′
i : i = 1, . . . ,(n+q)}

7 Integrate augmented gallery R′
i into the SiamSRC network

8 end
9 Testing:

10 Match faces by solving the sparse representation problem to estimate coefficient matrix, ααα for y
(see Eq. 4.10)

Output: label(y) = argmin
k

(rk(y)) (see Eq. 4.12)

The main steps of the proposed domain-invariant S2V FR with dictionary augmentation are

summarized as follows.

Selecting representatives: During design, a generic set Gi ∈ Rd×M in the target domain is

clustered using row sparsity in the pose angles space.

Augmentation of the reference gallery: q synthetic ROIs, Si ∈ Rd×q are generated for each

ri of the reference gallery set in the source domain to form an augmented reference gallery

R′
i ∈ R

d×k(q+1), where q is the number of clusters.

Block-sparsity matching: During inference, a given an input query image, y, in matched to

a set of images in the augmented gallery, R′
i ∈ R

d×k(q+1). For each matching, the Siamese

network outputs a deep feature representation, SRC with block structure is used to compute

similarity scores between the features. Figure 4.3 summarizes a typical implementation of the

SiamSRC network for still-to-video FR.



115

ROs of Gallery Set
(Frontal)

ROIs of Generic Set in OD 
(Frontal+Profile)

Head Pose Estimation

Siamese Network

Identity

Block SRC

Luminance-Contrast 
Extraction

3D Face 
Reconstruction

Clustering

Head pose angles

Shape Modeling
Representative 

pose angles

Pose clusters

Stream of frames captured 
by video cameras

pj

ri gj

r'i

vj

y

...
1 M...2 3

Face Morphing

Design an Augmented 
Gallery Dictionary 

Face Rendering

si

3D Shape Models  

Figure 4.3 The block diagram that summarizes the steps for

design and inference with the proposed SiamSRC network.

4.4 Experimental Methodology

4.4.1 Datasets

In order to evaluate the accuracy and complexity of the proposed SiamSRC network, an ex-

tensive series of experiments are conducted on publicly-available datasets for still-to-video FR.

Datasets to validate still-to-video FR systems should contain at least one good quality reference

frontal still per person, and many lower-quality video sequences captured under various un-
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controlled conditions, incorporating real-world intra-class variations. The Chokepoint1 (Wong

et al. (2011)) and COX-S2V2 (Huang et al. (2015)) datasets are suitable for experiments in

still-to-video FR in video surveillance because they are composed of a high-quality still image

and several lower-resolution video sequences per subject, with variations of illumination, pose,

expression, motion blur, and scale, etc. Chokepoint is comprised of a smaller number subjects,

while the COX-S2V dataset is comprised of 1,000 subjects.

Chokepoint (Wong et al. (2011)) consists of 25 subjects walking through portal 1 and 29 sub-

jects in portal 2. Videos are recorded over 4 sessions one month apart. An array of 3 cameras

are mounted above P1 and P2 that capture the subjects during 4 sessions while they are either

entering or leaving the portals in a natural manner. In total, 4 data subsets are available, and

the dataset consists of 54 video sequences.

COX-S2V dataset (Huang et al. (2015)) contains 1,000 individuals, with 1 high-quality still

image and 3,000 low-resolution video sequences per each individual simulating video surveil-

lance scenario. The video frames are captured by 4 cameras mounted at fixed locations of

about 2 meters high. In each video, an individual walk through an S-shape route with changes

in illumination, scale, and pose.

4.4.2 Protocol and Performance Measures

A particular implementation of the SiamSRC model has been considered to validate the pro-

posed approach. We add synthetic facial images to the gallery of the Siamese network, and

employ SRC for the pair-wise face matching. First, during the calibration process, q represen-

tatives are selected based on the q clusters obtained using the row sparsity clustering on facial

ROI trajectories of unknown persons captured in the target domain. During the enrollment of

an individual to the system, the ROIs of the generic set of faces captured from the video tra-

jectories are extracted using the MTCNN face detection algorithm (Zhang et al. (2016)) and

1 http://arma.sourceforge.net/chokepoint.

2 http://vipl.ict.ac.cn.
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converted to grey-scale images of 96×96 pixels. Pre-processing is also applied to still images

prior to face synthesis. q synthetic ROIs for each reference still are generated. The augmented

gallery is constructed using the reference still ROIs along with their synthetic ROIs. The struc-

ture of the network is ResNet-50 which is pre-trained with the images of the Labeled Faces

in the Wild (LFW) dataset 3 (Huang et al. (2012)) which is a suitable dataset for large scale

face recognition in the wild. The dataset contains more than 13,000 images of faces collected

from the web. 1680 of the people pictured have two or more distinct photos in the dataset, and

each face has been labeled with the name of the person pictured. The sparsity parameter λ

is fixed to 0.005 during the experiments. Each probe or query image is presented to the net-

work to obtain a deep feature representation, and then block sparse coding is used for pair-wise

face matching. In all experiments with Chokepoint dataset, 5 target individuals are selected

randomly to design a watch-list that includes a high-quality frontal captured images, and for

the experiment with COX-S2V, 20 individuals are randomly selected to build a watch-list from

high-quality faces. Videos of 10 individuals that are assumed to come from non-target persons

are used as generic set. The rest of the videos including 10 other non-target individuals and

the videos of individuals who are already enrolled in the watch-list are used for testing. In

order to obtain representative results, this process is repeated 5 times with a different random

selection of watch-lists and the average performance is reported with standard deviation over

all the runs.

The average accuracy of the proposed and baseline FR systems are measured in terms of accu-

racy and complexity. For accuracy, we measure the partial area under ROC curve pAUC(20%)

(using the AUC at 0 < FPR ≤ 20%), and the area under precision-recall space (AUPR). Time

complexity is estimated empirically, using the amount of time required to match 2 facial ROIs

with the given dataset. The average running time is measured with a randomly selected probe

ROIs using a PC workstation with an Intel Core i7 CPU (3.41GHz) processor, 16GB RAM and

python, tensorflow (GPU version).

3 http://vis-www.cs.umass.edu/lfw/.
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4.5 Results and Discussion

This section first shows representative selection results and some examples of synthetic face

images, and then presents still-to-video FR performance achieved with augmenting the gallery

with such images. In order to investigate the impact of the proposed SiamSRC network on

performance, we considered the still-to-video FR system with a growing number of synthetic

faces, along with a generic training set. Finally, this section presents an ablation study (showing

the effect of each module on the performance) and a complexity analysis for our proposed

approach and several state-of-the-art methods: S+V model (Mokhayeri & Granger (2018)),

DeepFace (Taigman et al. (2014)), FaceNet (Schroff et al. (2015)), ESRC (Deng et al. (2012)),

SVDL (Yang et al. (2013)), RADL (Wei & Wang (2015)), LGR (Zhu et al. (2014)), CSR (Li

et al. (2016)), and face frontalization (Hassner et al. (2015))..

4.5.1 Synthetic Face Generation

Fig. 4.4 shows an example of the row sparsity clustering obtained with facial ROIs of 20 trajec-

tories extracted from Chokepoint videos of 5 individuals, and of 40 trajectories extracted from

COX-S2V videos of 10 individuals. The exemplars selected from these clusters (black circles)

are used to define rendering parameters for synthetic generation. For instance, the representa-

tive pose angles with the Chokepoint database are listed as follows: θChok1 = (pitch, yaw, roll)=

(15.65, 14.77, -0.62), θChok2 = (12.44, 2.76, 3.64), θChok3 = (9.06, -5.46, 4.73), θChok4 = (1.98,

6.09, 2.79), θChok5 = (13.21, 15.32, 6.14), θChok6 = (0.64, -18.93, 0.86), θChok7 = (5.23, 2.92,

2.03) degrees. Another clustering is then applied in the illumination measure space on each

pose cluster. Fig. 4.5 shows the synthetic face images generated based on domain-specific

3DMM under representative pose angles using reference still ROIs of the Chokepoint and

COX-S2V datasets.
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Figure 4.4 Example of clusters obtained with 20 and 40 facial

trajectories represented in the pose space with Chokepoint (a)

and COX-S2V (b) datasets, respectively. Clusters are shown

with different colors, and their representative exemplars are

indicated with a black circle.
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Figure 4.5 Examples of the reference still ROI of individuals ID#25 and ID#26

of Chokepoint dataset (a), ID#21 and ID#151 of COX-S2V dataset (c), and their

corresponding synthetic face images (b,d) produced using the representatives

and domain-specific 3DMM.

4.5.2 Impact of Number of Synthetic Images

Fig. 4.6 shows the average pAUC(20%) and AUPR accuracy obtained by the SiamSRC network

when increasing the number of synthetic ROIs under representative pose per each individual.

These ROIs were sampled from the q representatives exemplars selected from the Chokepoint
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and COX-S2V datasets. We also show results for 3DMM-CNN technique (Tran et al. (2017a))

that uses a CNN to regress 3DMM shape parameters directly from an input photo without

an optimization process. Fig. 4.7 shows the average pAUC(20%) and AUPR accuracy of the

SiamSRC network when increasing the number of synthetic ROIs under various pose and illu-

mination conditions in the augmented gallery.
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Figure 4.6 Average pAUC(20%) and AUPR accuracy of

SiamSRC network versus the size of the synthetic set on

Chokepoint (a,b) and COX-S2V (c,d) databases. Synthetic faces

are generated using 3DMM, domain-specific 3DMM, and

3DMM-CNN. Error bars are standard deviation.

The results indicate that adding representative synthetic ROIs to the reference gallery allows to

outperform the baseline system designed with an original reference still ROI alone. AUC and

AUPR accuracy increase considerably by about 20− 30% with only qChok = 7 and qCOX = 6

synthetic pose ROIs for Chokepoint and COX-S2V datasets, respectively.

To further assess the benefits, Fig. 4.8 compares the performance of the proposed SiamSRC

network when adding representative images versus 15 randomly selected images. Results in
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Figure 4.7 Average pAUC(20%) and AUPR accuracy of

SiamSRC network versus the size of the synthetic set on

Chokepoint (a,b) and COX-S2V (c,d) databases. Synthetic faces

are generated using 3DMM, domain-specific 3DMM, and

3DMM-CNN. Error bars are standard deviation.

this figure show that SiamSRC outperforms the two other models – FR performance is higher

when the gallery is designed using the q representative views than based gallery comprised

of 15 randomly selected synthetic faces per person. The proposed SiamSRC network can

therefore adequately generate representative facial ROIs for the gallery.

The results of SiamSRC and some generic learning techniques can be evaluated based on the

size of the generic set. Given N generic images (video ROIs) from the target domain, the

recognition rate of the approaches is compared with increasing of N. Fig. 4.9 shows that for

several generic learning techniques, the intra-class variation information of a small number of

individuals is sufficient to largely improve the recognition rate. In particular, it can be observed

from Fig.4.9 that when more generic images are used, the accuracy increases significantly for
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Figure 4.8 Average pAUC(20%) and AUPR accuracy for SRC

model, and Siamese and SiamSRC networks with q representative

and 15 randomly selected faces on Chokepoint (a,b) and

COX-S2V (c,d) databases. Error bars are standard deviation.

SiamSRC and S+V techniques. This shows that the proposed SiamSRC method is able to

properly select representative faces out of a set of faces.

Fig. 4.10 shows the impact on SiamSRC accuracy of adding generic set and synthetic faces.

The performance of the S+V model is also shown with the same configurations for the com-

parison. The results indicate that the accuracy of the SiamSRC network improves by adding

synthetic samples, but does not change with adding generic set faces. However, the perfor-

mance of S+V model increases significantly with the inclusion of both synthetic faces and

generic set. The reason why SRC techniques can benefit from generic set is that they are able

to decompose the signal as a linear combination of few signals, as a result, they can recover a

probe signal as a combination of variation of generic set and original gallery signal.
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Figure 4.9 Average pAUC(20%) and AUPR accuracy versus the

size of the generic set on Chokepoint (a,b) and COX-S2V (c,d)

databases. Error bars are standard deviation.

4.5.3 Comparison with State-of-the-Art Methods

Table 4.1 compares the FR accuracy obtained with the proposed SiamSRC network with base-

line methods: Original Siamese (Deng et al. (2012)), Deep Face (Deng et al. (2012)), FaceNet

(Deng et al. (2012)), and SRC techniques: S+V model (Mokhayeri & Granger (2018)), ESRC

(Deng et al. (2012)), SVDL (Yang et al. (2013)), LGR (Zhu et al. (2014)), RADL (Wei & Wang

(2015)), CSR (Li et al. (2016)). We also compared it with the Flow-Based Face Frontalization

(Hassner et al. (2015)) technique. The results shows that the SiamSRC model, using a joint

generic learning and face synthesis, achieves the higher level of accuracy under the same con-

figuration.

Table 4.2 shows the average matching time of deep Siamese networks over the video ROIs

of the Chokepoint and COX-S2V datasets. The table shows time complexity increases with

the growth of the gallery size. Since SiamSRC requires a moderate increase in computational
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Figure 4.10 Average pAUC(20%) and AUPR accuracy for S+V

model and SiamSRC network of using an augmented gallery with

both generic set and synthetic faces on Chokepoint (a,b) and

COX-S2V (c,d) databases. Error bars are standard deviation.

complexity w.r.t. to other Siamese networks, results suggest that the proposed approach is able

to represent an interesting trade-off between accuracy and complexity. In the future, we plan to

validate the proposed approach with the IJB-A dataset (Whitelam et al. (2017)) which consists

of a larger number of stills, videos, and subjects.

4.5.4 Ablation Study

Designing the SiamSRC network for still-to-video FR consists of three main steps: selection

of representatives (M1), face synthesis (M2), and SRC for face matching (M3). In this sub-

section, an ablation study is presented to show the impact of each module on FR performance.

We assume that all FR systems use domain-specific 3DMM face synthesis, and q synthetic im-

ages in the augmented dictionary. First, we disabled the representative selection module, M1,

and added 10 randomly selected synthetic ROIs. Next, we removed the face synthesis mod-
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Table 4.1 Average accuracy of the SiamSRC network and related state-of-the networks

for videos from all 3 cameras of the Chokepoint and COX-S2V databases. Feature

representations are raw pixels, the 3DMM method is used for face synthesis.

Techniques
Accuracy

Chokepoint database COX-S2V database
pAUC(20%) AUPR pAUC(20%) AUPR

SRC (Wright et al. (2009)) 0.524±0.032 0.475±0.031 0.568±0.030 0.480±0.027

ESRC (Deng et al. (2012)) 0.802±0.028 0.651±0.025 0.835±0.027 0.695±0.026

ESRC-KSVD 0.811±0.023 0.659±0.022 0.840±0.023 0.712±0.021

Face Frontalization (Hassner et al. (2015)) 0.822±0.021 0.711±0.023 0.843±0.022 0.719±0.023

SVDL (Yang et al. (2013)) 0.825±0.023 0.703±0.025 0.843±0.025 0.724±0.023

RADL (Wei & Wang (2015)) 0.832±0.019 0.711±0.020 0.849±0.022 0.730±0.021

LGR (Zhu et al. (2014)) 0.849±0.022 0.717±0.024 0.878±0.023 0.744±0.025

CSR (Li et al. (2016)) 0.852±0.025 0.722±0.020 0.880±0.021 0.753±0.020

S+V model (Mokhayeri & Granger (2018)) 0.882±0.018 0.745±0.019 0.895±0.020 0.766±0.017

DeepFace (Taigman et al. (2014)) 0.895±0.021 0.802±0.023 0.906±0.022 0.812±0.024

Cosface (Wang et al. (2018a)) 0.903±0.022 0.810±0.020 0.907±0.025 0.816±0.023

Siamese Network (Koch et al. (2015)Schroff et al. (2015))

· 1 frontal reference still / person 0.833±0.028 0.742±0.031 0.852±0.029 0.791±0.027

· block sparsity match 0.851±0.029 0.752±0.027 0.866±0.026 0.798±0.028

· 1 still+73 uniform synthetic / person 0.872±0.023 0.772±0.021 0.893±0.020 0.813±0.022

· 1 still+100 random synthetic / person 0.861±0.022 0.764±0.020 0.878±0.021 0.802±0.023

SiamSRC (Ours)
· 1 still+q representative synthetic / person 0.911±0.019 0.819±0.020 0.923±0.018 0.837±0.016

Table 4.2 Average matching time of deep Siamese networks

over the video ROIs of the Chokepoint and COX-S2V datasets.

Techniques
Matching Time (sec)

Chokepoint COX-S2V
Siamese Network

· 1 frontal reference still / person 0.07 0.09

· 1 still + 73 uniform synthetic / person 0.13 0.18

· 1 still + 100 random synthetic / person 0.15 0.21

SiamSRC (Ours)

· 1 still + q representative synthetic / person 0.27 0.33

ule and performed experiments to show the impact of the reference gallery augmenting with

synthetic faces on FR accuracy. By removing both M1 and M2 modules from the SiamSRC

network, accuracy declines significantly by about 50%. The results suggest that the addition of

representative synthetic faces is an effective strategy to cope with facial variations and prevent

overfitting. Another important component of the SiamSRC model is the face matching through

SRC. By removing the sparsity in SiamSRC model, M3, and replacing Euclidean distance, ac-

curacy decreases by about 15%. Tables 4.3-4.4 show the average AUC and AUPR accuracy of
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the ablation study using the videos from all cameras of the Chokepoint and COX-S2V datasets,

respectively. respectively.

Table 4.3 Ablation study results with Chokepoint dataset.

Accuracy Removed Module
baseline M1 M2 M3

pAUC 0.911±0.019 0.852±0.21 0.846±0.27 0.893±0.25

AUPR 0.819±0.020 0.721±0.23 0.725±0.25 0.752±0.22

Table 4.4 Ablation study results with COX-S2V dataset.

Accuracy Removed Module
baseline M1 M2 M3

pAUC 0.923±0.018 0.871±0.22 0.857±0.24 0.911±0.20

AUPR 0.837±0.016 0.745±0.20 0.739±0.21 0.782±0.21

4.6 Conclusion

This paper proposes the SiamSRC technique to improve the performance of still-to-video face

recognition systems when surveillance videos are captured under various uncontrolled con-

ditions, and individuals must be recognized based on a single facial still. The proposed ap-

proach exploits a deep Siamese network and sparse representation-based classification with

block structure for pair-wide face matching. It also leverages domain-specific face synthesis

where rendering parameters are obtained through row sparsity clustering of unlabeled faces

captured in the target domain. Experimental results obtained using the Chokepoint and COX-

S2V datasets suggest that the proposed SiamSRC network allows for efficient representation

of intra-class variations with only a moderate increase in time complexity. Results indicated

that performance of still-to-video FR systems based on SiamSRC can improve through face

synthesis, with no need to collect a large amount of training data. Future research includes

investigating the geometrical structure of the data space in the gallery and the corresponding

coefficients to improve discrimination. Future work plan to speed-up the proposed SiamSRC

network and represent larger sparse codes which is necessary for real-world surveillance appli-

cations.



CONCLUSION AND RECOMMENDATIONS

Still-to-video face recognition has become more significant in recent years owing to its poten-

tial applications as found in surveillance and security. It offers remarkable advantages over

other biometric modalities such as convenient data collection, easy installation, and flexible

control. Although progress in face recognition has been encouraging in the past few years,

many problems still exist in unconstraint tasks, especially when the size of training reference

still images is small. This thesis aimed to design a robust still-to-video face recognition system

by improving representative ability through enlarging the reference gallery synthetically. In

this way, we proposed face synthesizing methods that generate images under target domain

capture conditions by exploiting the discriminant information of the generic set.

In Chapter 2, we presented a domain-specific face synthesis algorithm by integrating an image-

based face relighting technique inside a 3D face reconstruction framework. With the proposed

technique, a compact set of synthetic faces are generated that represent reference images and

probe video frames under a common capture condition. Results indicate that face synthesis

alone cannot effectively resolve the challenges of the SSPP and visual domain shift problems

for still-to-video FR. Integrating generic learning with face synthesis in the domain specific

context lead to desire performance.

In Chapter 3, we proposed a paired sparse representation framework to account for linear and

non-linear variations in the context of still-to-video FR. The proposed model leveraged both

face synthesis and generic learning to effectively represent probe ROIs from a single reference

still with no need to collect a large amount of training data. This approach managed the non-

linear variations by enriching the gallery dictionary with a representative set of synthetic profile

faces, where synthetic faces are paired with generic set video face in the auxiliary variational

dictionary. Results show that generic learning alone cannot effectively resolve the challenges

of the SSPP and visual domain shift problems.
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In Chapter 4, we presented the SiamSRC network that employs block sparsity for face matching

inside a Siamese network. In order to improve its robustness, a compact set of domain-specific

facial images is further generated and integrated into the augmented reference gallery of the

Siamese network. Results suggest that the proposed SiamSRC network allows for efficient

representation of intra-class variations and can improve the performance of still-to-video FR

systems accordingly.

Lastly, we introduced the controllable GAN that generates identity preserving and realistic

synthetic faces under specific pose. The proposed technique extends the original GAN by us-

ing synthetic images as inputs instead of random noise vector. It also employs an additional

adversarial game as a third player to provide control over the face generation process. Result

indicate that the synthetic face images generated based on the controllable GAN allow us ad-

dress visual domain shift, and thereby improve the accuracy of still-to-video FR system with

no need to generate a large number of synthetic face images.

It can be concluded that face synthesis methods proposed in this thesis not only are able to

generate realistic synthetic face images under target domain capture conditions but also control

the conditions under which synthetic faces are generated. They can appropriately address

visual domain shift and single sample per person problems for still-to-video FR applications

with only a moderate increase in their computational complexity. They provide a higher level of

accuracy compared to the current state-of-the-art approaches for synthetic data augmentation.
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Future Works

The findings of this thesis suggest the following directions for future work in this topic:

• Learning the gap between current 3DMM renderings and real-world 2D images. Im-

ages generated by 3DMM usually lack facial details such as wrinkles or moles which are

challenging to render properly. Although generative adversarial networks aims to address

those challenges as texture models but they are not modeled in the shape and the resulting

models lack details.

• Generating synthetic images under a wide variety of facial appearance. Although

our proposed face synthesis algorithms have effectively improved recognition performance

under unconstrained capture conditions, fundamental challenges such as matching faces

cross ages, expressions, sensors, or styles still remain which are necessary to address in

future research.

• Design the proposed face synthesis model for the situations where we are not able to

collect paired data in target domain. Since it is often difficult to collect a large amount

of generic set, the ability to use unpaired data with high accuracy enables us to avoid

sophisticated and expensive paired data collection.

• Reducing the reconstruction time. We aim to reduce the reconstruction time of the pro-

posed paired sparse and SiamSRC models even further allowing them to represent larger

sparse codes. Because time complexity is the critical part of designing face recognition

systems for real-world surveillance applications.
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Abstract

The performance of face recognition (FR) systems applied in video surveillance has been

shown to improve when the design data is augmented through synthetic face generation. This is

true, for instance, with pair-wise matchers (e.g., deep Siamese networks) that typically rely on

a reference gallery with one still image per individual. However, generating synthetic images in

the source domain may not improve the performance during operations due to the domain shift

w.r.t. the target domain. Moreover, despite the emergence of Generative Adversarial Networks

(GANs) for realistic synthetic generation, it is often difficult to control the conditions under

which synthetic faces are generated. In this paper, a cross-domain face synthesis approach is

proposed that integrates a new Controllable GAN (C-GAN). It employs an off-the-shelf 3D

face model as a simulator to generate face images under various poses. The simulated images

and noise are input to the C-GAN for realism refinement which employs an additional adver-

sarial game as a third player to preserve the identity and specific facial attributes of the refined

images. This allows generating realistic synthetic face images that reflects capture conditions

in the target domain while controlling the GAN output to generate faces under desired pose

conditions. Experiments were performed using videos from the Chokepoint and COX-S2V

datasets, and a deep Siamese network for FR with a single reference still per person. Results
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indicate that the proposed approach can provide a higher level of accuracy compared to the

current state-of-the-art approaches for synthetic data augmentation1.

2. Introduction

Recent advances in deep learning have significantly increased the performance of still-to-video

face recognition (FR) systems applied in video monitoring and surveillance. One of the pio-

neering techniques in this area is FaceNet (Schroff et al. (2015)). It uses a deep Siamese net-

work architecture, where the same CNN feature extractor is trained through similarity learning

to perform pair-wise matching of query (video) and reference (still) faces. Despite many recent

advances, FR with a single sample per person (SSPP) remains a challenging problem in video-

based security and surveillance applications. In such cases, the performance of deep learning

models for FR can decline significantly due to the limited robustness of matching to a single

still obtained during enrolment (Bashbaghi et al. (2017a)). One effective solution to alleviate

the aforementioned problem is extending the gallery using synthetic face images.

Some of the recent research (Mokhayeri et al. (2019a); Zhao & et al. (2017)) augment gal-

leries using synthetic images generated from 3D models. Tran et al. (2017a) proposed a face

synthesis technique where CNN is employed to regress the 3D model parameters to overcome

the shortage of training data. Although their results are encouraging, the synthetic face im-

ages may not be realistic enough to represent intra-class variations of target domain capture

conditions. The synthetic images generated in this way are highly correlated with the original

facial stills from enrolment, and there is typically a domain shift between the distribution of

synthetic faces and that of faces captured in the target domain. The models naively trained on

these synthetic images, often fail to generalize well when matched to real images captures in

the target domain. Mokhayeri et al. (2019a) proposed an algorithm for domain-specific face

synthesis (DSFS) that exploits the intra-class variation information available from the target

domain.

1 Code available at: https://github.com/faniamokhayeri/C-GAN.
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Figure-A I-1 An overview of the proposed cross-domain face synthesis approach

based on the C-GAN. The 3D simulator generates simulated faces, y, with the

arbitrary pose. The refiner is trained using y the generic set, g, and random noise

to generate refined images, ŷ, under the target domain capture conditions, and

while specifying the pose of y using an additional adversarial game.

Generative adversarial networks (GANs) have recently shown promising results for the syn-

thesis of realistic face images (Brock et al. (2019); Goodfellow & et al. (2014)). For instance,

DA-GAN has been proposed for automatically generating augmented data for FR in uncon-

strained conditions (Zhao & et al. (2017)). One of the challenging issues in GAN-based face

synthesis models is the difficulty controlling images they generate since a random distribution

is used as the input of generators. Modified GAN architectures, like the conditional GAN,

have attempted to address this issue by setting conditions on the generative and discriminative

networks for conditional image synthesis (Isola et al. (2017); Lin et al. (2018b); Tran et al.

(2018)). However, the mapping of conditional GANs does not constrain the output to the

target manifold, thus the output can be arbitrarily off the target manifold. Generating identity-

preserving faces is another unsolved challenge in GAN-based face synthesis models.

In this paper, we propose a cross-domain face synthesis approach that relies on a new con-

trollable GAN (C-GAN). It extends the original GAN by using an additional adversarial game

as the third player to the GAN, competing with the refiner (generator) to preserve the specific

attributes, and accordingly, providing control over the face generation process. As depicted
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in Figure I-1, C-GAN involves three main steps: (1) generating simulated face images via 3D

morphable model (Blanz & Vetter (2003)) rendered under a specified pose, (2) refining the real-

ism of the simulated face images using an unlabeled generic set to adapt synthetic face images

in the source domain to appear as if drawn from the target domain, and (3) preserving the spe-

cific attributes of the simulated face images during the refinement through another adversarial

network. Using C-GAN, a set of realistic synthetic facial images are generated that represent

gallery stills under the target domain with high consistency, while preserving their identity and

allowing to specify the pose conditions of synthetic images. The refined synthetic face images

are then used to augment the reference gallery for FR with SSPP. The main contribution of this

paper is a novel cross-domain face synthesis approach that integrates C-GAN to leverage an

additional adversarial game as third player into the GAN model, producing highly consistent

realistic face images in a controllable manner. Additionally, we show that using the images

generated by C-GAN as additional design data within a Siamese network allows to improve

still-to-video FR performance under unconstrained capture conditions.

For proof-of-concept experiments, the performance of the proposed and baseline face synthesis

methods are evaluated using a "recognition via generation" framework2 (Zhao & et al. (2017))

on videos from the public Chokepoint and COX-S2V datasets. In a particular implementation,

we extend the reference gallery of a deep Siamese network for still-to-video FR.

3. Related Work

3.1 GANs for Realistic Face Synthesis.

Recently, Generative Adversarial Networks (GANs) proposed by Goodfellow & et al. (2014)

have shown promising performance in face synthesis. Existing methods typically formulate

GAN as a two-player game, where a discriminator D distinguishes face images from the real

and synthesized domains, while a generator G reduces its discriminativeness by synthesizing

2 In this framework, face images are synthesized first, and then the performance is evaluated with the

augmented gallery.
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a face of realistic quality. Their competition converges when the discriminator is unable to

differentiate these two domains. Benefiting from GAN, FaceID-GAN is proposed which treats

a classifier of face identity as the third player, competing with the generator by distinguishing

the identities of the real and synthesized faces (Shen et al. (2018)). The major shortcoming of

the GAN-based face synthesis models is that they may produce images that are inconsistent due

to the weak global constraints. To reduce this gap, Shrivastava et al. (2017) developed SimGAN

that learns a model using synthetic images as inputs instead of random noise vector. Our

work draws inspiration from SimGAN specialized for face synthesis. Another issue of vanilla

GAN is that it is difficult to control the output of the generator. Recently, conditional GANs

have added condition information to the generative network and the discriminative network for

conditional image synthesis (Lin et al. (2018b)). Tran et al. (2018) proposed DR-GAN takes

a pose code in addition to random noise vector as the inputs for discriminator with the goal

of generating a face of the same identity with the target pose that can fool the discriminator.

In the CAPG-GAN, a couple-agent discriminator is introduced which forms a mask image

to guide the generator in the learning process and provides a flexible controllable condition

during inference (Hu et al. (2018)). The bottleneck of conditional GANs is the regression of

the generator may lead to arbitrarily large errors in the output, which makes it unreliable for

real-world applications (Chrysos et al. (2019)). This paper aims to address the above problems

by augmenting the refiner of GAN with a domain-invariant feature extractor.

3.2 Domain-Invariant Representations.

Recently, there have been efforts to produce domain-invariant feature representations from a

single input. One of the most popular approaches in this area is the domain-adversarial neural

network which integrates a gradient reversal layer into the standard architecture to ensure a

domain invariant feature representation (Ganin & Lempitsky (2014)). They introduced a do-

main confusion loss term to learn domain-invariant feature. Haeusser et al. (2017) presented

a statistically domain invariant embedding by reinforcing associations between source and tar-

get data directly in embedding space. A slightly different approach is presented by Ghifary

et al. (2016), where common feature assimilation is achieved implicitly by using a decoder
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to reconstruct the input source and target images. In a similar spirit, Sankaranarayanan et al.

(2018) used a generator from the encoded features to generate samples which follow the same

distribution as the source dataset.

4. Proposed Approach

In the following, the set X = {x1, . . . ,xi, . . . ,xN} ∈ R
d×N denote a gallery set composed of n

reference still ROIs belonging to one of k different classes in the source domain, where d is the

number of features representing a ROI and N = kn is the total number of reference still ROIs;

Y = {y1, . . . ,yi, . . . ,yM} ∈R
d×M and H = {h1, . . . ,hi, . . . ,hM} ∈R

(kp)×M denote the simulated

set and the corresponding one-hot labels, where M is the number of the simulated ROIs and

kp is number of 3D simulated classes (k identity class with p pose). The label associated

with yi is defined as hi = {hi
d,h

i
p}, where hd represents the label for identity and hp for pose.

G = {g1, . . . ,gi, . . . ,gL} ∈ R
d×L denote a generic set composed of L unlabeled video ROIs in

the target domain. The objective of C-GAN model is to generate realistic face images with

high consistency while specifying the pose, in particular pose hp, shown in synthetic images

and preserving the identity hd .

Figure I-2 depicts the overall C-GAN process within the approach for cross-domain face syn-

thesis. Our approach is divided into three stages: (1) 3D simulation, (2) training the refiner, (3)

refiner inference. In the first stage, the 3D model of each reference still image is reconstructed

via a 3D simulator and rendered under a specified pose. The rendered images, Y, are then

imported to the refiner (generator) to recover the information inherent in the target domain. In

contrast to the vanilla GAN formulation (Goodfellow & et al. (2014)), in which the generator is

conditioned only on a noise vector, our model’s generator is constrained on both a noise vector

(z) and simulated image.

During the training stage, the refiner is trained to produce realistic images through an adver-

sarial game with a discriminator network, DR. The discriminator classifies a refined image as

real/fake image. The refiner is further encouraged to generate realistic images while preserving
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the identity and capture conditions of Y by augmenting the refiner with a domain invariant fea-

ture extractor (Ganin & Lempitsky (2014)). The feature extracting is applied on both input and

output of the refiner and the Euclidean distance of the two features is considered as an addi-

tional loss. The feature extractor F must be invariant with respect to Y and G while including

all identity and pose information. For this purpose, an additional adversarial game between

another discriminator and the feature extractor is employed to train the feature extractor to be

domain invariant. The second discriminator DF takes the output of the domain-invariant feature

extractor and distinguish between the features extracted from the the refined images and real

images. In order to guaranty that the extracted features include all the information of identity

and pose, an identity-pose classifier predicts identity and pose of the refined images while being

trained simultaneously on the labeled 3D simulated images, Y. In this way, the target domain

variations are effectively transferred onto the reference still images while specifying the pose

shown in synthetic images, and without loosing the consistency. The refiner in the proposed

C-GAN shares ideas with methods for unsupervised domain adaptation (Ganin & Lempitsky

(2014)), where labeled still images in the source domain and unlabeled video images from

target domain are used to learn a domain-invariant embedding. We minimize the difference

between the refined images and generic set while keeping the joint distribution information

(on identity and pose). For stabilizing the training process of such dual-agent GAN model, we

impose a boundary equilibrium regularization term. Once synthetic images are generated, any

off-the-shelf classifier can be trained to perform the FR task.

4.1 3D Simulator

The simulated image set, Y ∈ R
d×M, is formed by reconstructing the 3D face model of refer-

ence ROIs, xi, using a customized version of the 3DMM (Blanz & Vetter (2003)) in which the

texture fitting of the original 3DMM is replaced with image mapping for simplicity (Mokhay-

eri et al. (2019a)). The shape model is defined as a convex combination of shape vectors of a

set of examples:

s = s̄+
m−1

∑
k=1

αk.ŝk , (A I-1)
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where ŝk, 1 ≤ k ≤ m is the basis vector, m is the number of the basis vectors, and αk ∈ [0,1]

are the shape parameters. The optimization algorithm presented by Blanz & Vetter (2003)

is employed to find optimal α i
k, for each xi. Then, the material layer of xi is extracted and

projected to the 3D geometry of xi. Given the 3D facial shape and texture, novel poses can

be rendered under various pose by adjusting the parameters of a camera model. During the

rendering procedure, the 3D face is projected onto the image plane with weak perspective

projection:

y j = f ∗λ ∗R j ∗ (s̄+
m−1

∑
k=1

α i
k.ŝk)+ t j

2d , (A I-2)

where y j is the jth reconstructed pose of xi, f is the scale factor, λ is the orthographic projection

matrix

(
1 0 0

0 1 0

)
, Ri is the rotation matrix constructed from rotation angles and t j

2d is the

translation vector.
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Figure-A I-2 Illustration of our proposed C-GAN architecture. It incorporates a

simulator S, a refiner R, two discriminators DR and DF , and a classifier C constrained by

the simulated and noise vector. The blue box indicates the attributes preserving module.

4.2 C-GAN Network Structure

The main part of C-GAN is the refiner (R) which improves the realism of a 3D simulator’s

output, Y, using unlabeled images in the target domain, G, while controlling their specific
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facial appearance (e.g. pose). The refiner, R, consists of an encoder Renc and a decoder Rdec.

The encoder Renc aims to learn an identity and attribute representation from a face image y:

f(y) = Renc(y). The decoder Rdec aims to synthesize a face image ŷ = Rdec(f(y),z) where

z ∈ R
Nz

is the noise modeling other variance besides identity or attribute (e.g. pose). The goal

of R is to fool DR to classify ŷ as a generic image.

We adopt CASIA-Net (Yi et al. (2014)) for Renc and DR where batch normalization and ex-

ponential linear unit are applied after each convolutional layer. A fully connected layer with

logistic loss is added at the output of DR. Renc and Rdec are bridged by the to-be-learned identity

representation f(y) ∈ R
320, which is the AvgPool output in Renc network. f(y) is concatenated

with a random noise z and fed to Rdec. A series of fractionally-strided convolutions transforms

the (320+Nz)-dim concatenated vector into a realistic image ŷ = R(y,z), which is the same

size as y (Radford et al. (2015)).

An encoder, F , with the same structure as Renc is used at the input and output of R to compare

the domain invariant features of the simulated images to the refined images. As mentioned

before, the discriminator, DF , and classifier, C, are used to train F . Both C and DF consist

two fully-connected 1024 unit layers. A fully-connected softmax loss for k identity and p pose

classification is added to C while a 1 unit fully-connected logistic layer is added to DF . Table

I-1 shows the neural network structures of Renc, DR, F and Renc.

4.3 Training the Refiner

Let a refined image be denoted by ŷi, then ŷ = R(θR;y) where θR is the function parameters.

The key requirement is that the refined image, ŷ, must look like a real generic image preserv-

ing the identity and pose information from the 3D simulator. To this end, θR is learned by

minimizing a combination of two losses:

LR(θR,θF) = ∑
i
Lreal(θR;yi,G)+λLreg(θF ;yi) (A I-3)
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Table-A I-1 The network structure of the proposed C-GAN architecture.

Rend and DR Rdec
Layer Filter/Stride Output Size Layer Filter/Stride Output Size

FConv52 3×3/1 6×6×320

Conv11 3×3/1 96×96×32 FConv52 3×3/1 6×6×160

Conv12 3×3/1 96×96×64 FConv51 3×3/1 6×6×256

Conv21 3×3/2 48×48×64 FConv43 3×3/2 12×12×256

Conv22 3×3/1 48×48×64 FConv42 3×3/1 12×12×128

Conv23 3×3/1 48×48×128 FConv41 3×3/1 12×12×192

Conv31 3×3/2 24×24×128 FConv33 3×3/2 24×24×192

Conv32 3×3/1 24×24×96 FConv32 3×3/1 24×24×96

Conv33 3×3/1 24×24×192 FConv31 3×3/1 24×24×128

Conv41 3×3/2 12×12×192 FConv23 3×3/2 48×48×128

Conv42 3×3/1 12×12×128 FConv22 3×3/1 48×48×64

Conv43 3×3/1 12×12×256 FConv21 3×3/1 48×48×64

Conv51 3×3/2 6×6×256 FConv13 3×3/2 96×96×64

Conv52 3×3/1 6×6×160 FConv12 3×3/1 96×96×32

Conv53 3×3/1 6×6×320 FConv11 3×3/1 96×96×1

AvgPool 6×6/1 1×1×320

FC (DR only) 1

The first part of the cost, Lreal , adds realism to the simulated images, while the second part,

Lreg, preserves the identity and pose information.

The adversarial loss used for training the refiner network, R, is responsible for fooling DR into

classifying the refined images as real. This problem is modeled a two-player minimax game,

and update the refiner network, R, and the discriminator network. DR updates its parameters

by minimizing the following loss:

LD(φ) =−∑
i

log(DR(φ ; ŷi))−∑
j

log(1−DR(φ ;g j)) (A I-4)

where DR(·) is the probability of the input being a refined image, and 1−DR(·) that of a real

one. For training this network, each mini-batch consists of randomly sampled ŷi and gi.

The realism loss function employs the trained discriminator DR as follows:

Lreal(θR) = log(1−DR(R(θR;yi))) (A I-5)
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By minimizing this loss function, the refiner forces the discriminator to fail classifying the

refined images as synthetic.

In order to preserve the annotation information of the 3D simulator, we use a self-regularization

loss that minimizes difference between a feature transform of Y and Ŷ,

Lreg(θF) = ‖F(ŷi,θF)−F(yi,θF)‖ (A I-6)

where F is the mapping from image space to a feature space, and ‖ · ‖ is the �2 norm.

Another adversarial game is employed to train the feature extractor network parameters (θF ).

For this purpose, the classifier, C(.), assigns identity and pose information labels (hi) to a

set of features extracted by F . In this way, F learns to extract the features that are domain-

invariant and consist information of identity and pose. F and C are updated based on the

identity and pose labels of Y in a traditional supervised manner. F is also updated using the

adversarial gradients from DF so that the feature learning and image generation processes co-

occur smoothly.

LC(θC) =−∑
i

c

∑
j=1

hi
j log(C(θC;F(ŷi))) (A I-7)

LDF (γ) =−∑
i

log(DF(γ;F(ŷi)))−∑
i

log(1−DF(γ;F(g j))) (A I-8)

Given a realistic simulated images ŷi as input, DF outputs a binary distribution optimized by

minimizing a binary cross entropy loss LF .The gradients are generated using the following loss

functions:

LF(θF) = ∑
i

log(1−DF(F(θF ŷi))) (A I-9)

where the F and DF parameters are learned by minimizing LF(θF) and LDF (γ) alternately.

We leave γ fixed while updating the parameters of F , and we fix θF while updating DF .

5. Experimental Analysis
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5.1 Evaluation Methodology

The performance of the proposed and baseline methods was evaluated using two datasets

for still-to-video FR. The Chokepoint (Wong et al. (2011)) consists of 25 subjects walking

through portal 1 and 29 subjects in portal 2. Videos are recorded over 4 sessions one month

apart. An array of 3 cameras are mounted above portal 1 and portal 2 that capture the entry of

subjects during 4 sessions. In total, the dataset consists of 54 video sequences and 64,204 face

images. COX-S2V dataset (Huang et al. (2015)) contains 1000 individuals, with 1 high-quality

still image and 4 low-resolution video sequences per individual simulating video surveillance

scenario. The video frames are captured by 4 cameras mounted at fixed locations. In each

video, an individual walks through a designed S-shape route with changes in illumination,

scale, and pose.

FR performance under SSPP scenario was assessed via the "recognition via generation" frame-

work to validate our hypothesis that adding photo-realistic synthetic reference faces to the

gallery set can address the visual domain shift, and accordingly improve the accuracy.. Be-

sides, since photographic results also indicate the performances qualitatively, the visual quality

is also compared in our experiment. We also compared our results with those obtained by

flow-based Frontalization (Hassner et al. (2015)). During the enrollment of an individual to

the system, q simulated ROIs for each reference still ROI are generated under different poses

using the conventional 3DMM (Blanz & Vetter (2003)). The images are then refined using

the controlled GAN that projects the capture conditions of the target domain on them while

preserving their pose and identity. The gallery is formed using the original reference still ROIs

along with the corresponding synthetic ROIs. During the operational phase, FR is performed

using Siamese network model that is pre-trained using the VGG-Face2 dataset with Inception

Resnet V1 architecture. The CNN feature extractors in this model is trained using stochastic

gradient descent and AdaGrad with standard back-propagation (Schroff et al. (2015)). Finally,

given the query (video) and reference (still) feature vectors, pair-wise matching is performed

using the k-NN classifier based on Euclidean distance.
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In all experiments with Chokepoint and COX-S2V datasets, 5 and 20 target individuals are

selected, respectively, to populate the watch-list, using one high-quality still image. Videos

of 10 individuals that are assumed to come from unlabeled persons are used as a generic set.

The rest of the videos including 10 other unlabeled individuals and 5 videos of the individuals

who are already enrolled in the watch-list are used for testing. In order to obtain representative

results, this process is repeated 5 times with a different random selection of watch-lists and the

average performance is reported with standard deviation over all the runs. The average per-

formance of the proposed and baseline system for still-to-video FR is presented by measuring

the partial area under ROC curve, pAUC(20%) (using the AUC at 0 < FPR ≤ 20%), and mean

average precision, mAP. We further employed the Frechet Inception Distance (FID) (Heusel

et al. (2017)) to quantitatively verify the superiority of our synthetic faces.

5.2 Results and Discussion

Figure I-3 shows examples of the synthetic face images generated based on our proposed tech-

nique using the original reference still ROIs and generic set of the Chokepoint dataset. This

show that the images refined using C-GAN can preserve their pose variations. Figure I-4 com-

pares the qualitative results obtained with state-of-the-art techniques; (b) 3DMM (Blanz & Vet-

ter (2003)), (c) 3DMM-CNN (Tran et al. (2017a)), (d) DSFS (Mokhayeri et al. (2019a)), and

(e) our proposed C-GAN.

Table I-2 shows the average accuracy of a deep Siamese network for still-to-video FR that

relies on the proposed and baseline methods for generating synthetic face images to augment

the reference gallery. The baseline system is designed with an original reference still ROI

alone. For our proposed C-GAN technique, the synthetic faces are generated with 5◦ step size

within a range of ±5 to ±60 degrees in yaw, pitch, and roll. Consequently, we have q = 73

synthetic face images in total for our experiments. For reference, the still-to-video FR system

based on frontalization is also evaluated. Results indicate that by adding extra synthetic ROIs

generated with C-GAN allows to outperform baseline systems. pAUC and mAP accuracy

increases by about 3%, typically with q = 73 synthetic pose ROIs for Chokepoint and COX-
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(a) Reference ROIs (b) Target Domain ROIs (c) Simulated ROIs (d) Refined ROIs 

3DMM

C-GAN

Figure-A I-3 Examples of the synthetic faces obtained with the proposed

approach on Chokepoint database (ID#1, ID#5, ID#6, ID#16). The simulated

images (c) are refined based on the target domain capture conditions (b) while

preserving the identity of reference stills (a) under specific pose.

(b) 3DMM

(d) DSFS

(c) 3DMM-CNN

(e) Ours (C-GAN)

(a) Reference ROI

Figure-A I-4 Examples of facial images generated using state-of-the-art face

synthesizing methods on Chokepoint dataset (ID#23, ID#25).

S2V datasets. Results suggest that that leveraging target domain information within the GAN

framework while controlling its pose and identity can efficiently mitigate the impacts of the

visual domain shift.

Figure I-5 shows the average pAUC(20%) (a) and mAP (b) accuracy obtained for the imple-

mentation of still-to-video FR when increasing the number of synthetic ROIs per each individ-
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Table-A I-2 Average pAUC and mAP accuracy of the Siamese network using the

proposed and baseline methods for data augmentation. The ’# synth’ columns show the

minimum number of synthetic samples needed to attain the highest level of accuracy.

Techniques Chokepoint database COX-S2V database
pAUC(20%) mAP # Synth pAUC(20%) mAP # Synth

Baseline 0.908±0.018 0.861±0.020 N/A 0.912±0.017 865±0.016 N/A

3DMM (Blanz & Vetter (2003)) 0.917±0.023 0.877±0.025 73 0.928±0.026 872±0.027 73

3DMM-CNN (Tran et al. (2017a)) 0.915±0.025 0.873±0.028 73 0.922±0.024 871±0.028 73

DSFS (Mokhayeri et al. (2019a)) 0.923±0.018 0.880±0.019 17 0.934±0.021 896±0.022 14

SimGAN (Shrivastava et al. (2017)) 0.942±0.025 0.901±0.023 73 0.948±0.023 904±0.020 73

DR-GAN (Tran et al. (2018)) 0.931±0.019 0.893±0.017 73 0.939±0.016 903±0.017 73

FaceID-GAN (Shen et al. (2018)) 0.936±0.023 0.905±0.019 73 0.942±0.018 911±0.022 73

Dual-GAN (Zhao & et al. (2017)) 0.948±0.021 0.915±0.018 73 0.952±0.021 922±0.024 73

Frontalization (Hassner et al. (2015)) 0.919±0.020 0.884±0.019 N/A 0.926±0.017 892±0.020 N/A

C-GAN (Ours) 0.951±0.023 0.917±0.022 73 0.957±0.019 925±0.019 73

ual. Adding synthetic ROIs generated under various capture conditions allows to significantly

outperform the baseline system designed with the original reference still ROI alone. As shown

in I-5, accuracy trends to stabilize to its maximum value when the size of the synthetic faces is

greater than q = 73 in C-GAN.
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Figure-A I-5 Average pAUC(20%) (a) and mAP (b) accuracy of the proposed and

baseline techniques versus the size of the synthetic set on Chokepoint database.

Frechet Inception Distance (FID) (Heusel et al. (2017)) has been recently proposed to evaluate

the performance of image synthesis tasks quantitatively where lower FID score indicates the

smaller Wasserstein distance between two distributions. Inception V3 model is employed to ex-

tract feature vectors from images. Table I-3 show the FID between the real and the synthesized

faces across different yaw which demonstrates the effectiveness of our method.
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Table-A I-3 Frechet Inception Distance (FID) across different views with

Chokepoint and COX-S2V datasets.

Technique Chokepoint data COX-S2V data
±5◦ ±15◦ ±45◦ ±5◦ ±15◦ ±45◦

3DMM (Blanz & Vetter (2003)) 22.3 23.4 25.7 20.5 21.4 21.7

3DMM-CNN (Tran et al. (2017a)) 49.5 53.2 61.4 42.2 50.7 53.2

DSFS (Mokhayeri et al. (2019a)) 21.4 22.7 24.5 17.9 21.8 23.1

C-GAN (Ours) 20.9 22.1 23.8 17.3 20.9 21.5

To further evaluate the effectiveness of refiner in our C-GAN, we use t-SNE (Maaten & Hinton

(2008)) to visualize the deep features of simulated, refined and real faces in a 2D space. Figure

I-6 shows there is significant difference between the distribution of 3D simulated and real face.

However, after refining the 3D simulated images, the distribution of the refined images become

closer to the distribution of the real images.

(a) Chokepoint (b) COX-S2V

Figure-A I-6 t-SNE visualization. Circles represent the generic set.

Triangles in (a) represent 3D simulated faces while triangles in (b)

represent refined faces.

Figure I-7 compares the performance of Siamese networks for FR when adding 73 selected

synthetic ROIs generated with the C-GAN versus 73 randomly selected images (without con-

dition). For reference, FR based on 3DMM face synthesizing is also evaluated. Results in this

figure show that the C-GAN with a specified range outperforms other models – FR performance

is higher when the gallery is designed using the representative views than based gallery com-

prised of randomly selected synthetic faces per person. The proposed C-GAN can therefore

adequately generate representative facial ROIs for the reference gallery.
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Figure-A I-7 Average pAUC(20%) and AUPR accuracy for

Siamese network with C-GAN and 3DMM face synthesis with q
specified and randomly selected faces on Chokepoint (a,b) and

COX-S2V (c,d) databases. Error bars are standard deviation.

5.2.1 Ablation Study

To evaluate the components of C-GAN (DF , DR , C), the model is trained by removing these

modules while fixing the training process and all parameters. Recognition accuracy is evaluated

on the synthetic images generated from each variant. We observe (Table I-4) that the accuracy

will decrease by about 3% if one module is not used.

Table-A I-4 Results of ablation study with Chokepoint and COX-S2V datasets.

Accuracy
Removed Module

Chokepoint data COX-S2V database
DF DR C DF DR C

pAUC 0.905±0.022 0.901±0.023 0.882±0.020 0.908±0.021 0.902±0.025 0.891±0.027

mAP 0.873±0.024 0.868±0.021 0.854±0.019 0.885±0.018 0.875±0.020 0.859±0.024
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5.2.2 Time Complexity

Time complexity is estimated empirically, using the amount of time required to match 2 facial

ROIs with the given dataset. The average running time is measured with a randomly selected

probe ROIs using a PC workstation with an Intel Core i7 CPU (3.41GHz) processor and 16GB

RAM. Table I-5 shows average matching time of deep Siamese networks over videos ROIs of

the Chokepoint and COX-S2V datasets. The table shows time complexity grows the gallery

size. The results suggest that the proposed approach represents an interesting trade-off between

accuracy and complexity.

Table-A I-5 Average matching time over videos ROIs

of the Chokepoint and COX-S2V datasets.

Techniques Matching Time (sec)
Chokepoint COX-S2V

Siamese Network (Koch et al. (2015))

· 1 frontal reference still / person 6.4 13.2

· +73 uniform synthetic / person 129.7 186.1

· +100 random synthetic / person 152.3 211.5

Frontalization (Hassner et al. (2015)) 12.7 16.3

6. Conclusion

In this paper, a cross-domain face synthesis approach with a new C-GAN model is proposed

for data augmentation that generates highly consistent, realistic and identity preserving syn-

thetic face images under specific pose conditions. The proposed model allows to mitigate the

impact of some common issues with the original GAN model for data augmentation, such as

lack of control and inconsistency. C-GAN leverages an additional adversarial game as third

player to encourage the refiner during the inference to specify the capture conditions shown

in synthetic images in a controllable manner. This allows augmenting to the gallery of a deep

Siamese network with a diverse, yet compact set of synthetic views relevant to the target do-

main. Experimental results obtained using the Chokepoint and COX-S2V datasets suggest that

the synthetic face images based on C-GAN allow us address visual domain shift, and thereby

improve the accuracy of still-to-video FR system, with no need to generate a large number of
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synthetic face images. A future direction is to simulate and control other facial appearance

(e.g. illumination and expression) during the face synthesis process. This can be further used

to augment a dataset with representative images to train a deep neural network for FR systems.
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