
Context and Resource Aware Cloud-Based Solution for Efficient
and Scalable Multi-Persona Mobile Computing

by

Hanine TOUT

THESIS PRESENTED TO ÉCOLE DE TECHNOLOGIE SUPÉRIEURE

IN PARTIAL FULFILLMENT FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Ph.D.

MONTREAL, "DECEMBER 13, 2017"

ÉCOLE DE TECHNOLOGIE SUPÉRIEURE
UNIVERSITÉ DU QUÉBEC

Hanine Tout, 2018

This Creative Commons license allows readers to download this work and share it with others as long as the

author is credited. The content of this work cannot be modified in any way or used commercially.

BOARD OF EXAMINERS

THIS THESIS HAS BEEN EVALUATED

BY THE FOLLOWING BOARD OF EXAMINERS

Mrs. Nadjia Kara, Thesis Supervisor

Department of Software Engineering and IT, École de Technologie Supérieure

M. Chamseddine Talhi, Co-supervisor

Department of Software Engineering and IT, École de Technologie Supérieure

M. Chakib Tadj, President of the Board of Examiners

Department of Electrical Engineering, École de Technologie Supérieure

M. Abdelouahed Gherbi, Member of the jury

Department of Software Engineering and IT, École de Technologie Supérieure

M. Ali Miri, External Independent Examiner

Department of Computer Science, Ryerson University

THIS THESIS WAS PRESENTED AND DEFENDED

IN THE PRESENCE OF A BOARD OF EXAMINERS AND THE PUBLIC

ON "JANUARY 26, 2018"

AT ÉCOLE DE TECHNOLOGIE SUPÉRIEURE

FOREWORD

The present doctoral thesis is structured in "integrated articles" format. During this research

work, four journal articles have been conducted. For the sake of fidelity of the published and

submitted versions, these articles are presented without modifications. Although each of the

articles address different aspects, yet they are all closely interrelated. While a separate section

is devoted for the literature, in each article, a specialized state of the art review is presented and

analyzed based on the research problems and contributions subject to that particular work.

ACKNOWLEDGEMENTS

The work presented in this thesis would not have been possible without many people. I take

this opportunity to extend my sincere gratitude and appreciation to all those who made this

Ph.D thesis possible.

A very special gratitude goes out to my advisors, Dr. Nadjia Kara, Dr. Chamseddine Talhi and

Dr. Azzam Mourad for their enthusiasm, guidance, and unrelenting support throughout this

process. They have routinely gone beyond their duties to fire fight my worries, concerns, and

anxieties, and have worked to instil great confidence in both myself and my work. It was a

great privilege and honor to work under their guidance.

My heartfelt thanks to Dr. Kara for her dedicated help, advice, continuous support and mission

for providing high-quality work, throughout this thesis. Big thanks for all her encouragement

words and distinctive acts. To Dr. Kara, thank you for all the opportunities you offered to me

during these years. By the way, I still have that special rose and I will always keep it with me

for inspiration.

I express my heart-felt gratitude to Dr. Talhi for providing invaluable guidance throughout

this research. His integral view on research, motivation and support are appreciable. His deep

insights have indeed helped me at various stages of my research. To Dr. Talhi, special thanks

for the fruitful discussions we had, your continuous encouragement and remarkable constant

smile that have made a deep impression on me and have always kept me going ahead.

My special words of thanks also go to Dr. Mourad for his dynamism, vision, sincerity and

motivation that have deeply inspired me. I would like thank him for being a great mentor and

for providing me with appreciable advices, both professional and personal. To Dr. Mourad,

big thanks for being there through the ups and downs, and I am pretty confident that you will

always support me in the future, as you did during the past years.

Besides my advisor, I would like to thank my thesis committee Dr. Chakib Tadj, Dr. Abde-

louahed Gherbi and Dr. Ali Miri for their efforts and insightful comments.

I also reserve special thanks to my mother, father and sisters. They were always supporting me

and encouraging me with their love and best wishes. Special thanks to my sister Sawsan for

her endless support during all these years of my Ph.D. program. Kisses to my nephews and

niece who made this journey full of happiness and endless laughs.

A special mention of thanks to all my friends. Their timely help and friendship shall always

be remembered. To all of you my friends, the time we spent together worth more than I can

express on paper.

This journey has been quite remarkable and I believe it is a unique stepping stone to many

achievements ahead.

UNE SOLUTION BASÉE SUR L’INFONUAGIQUE SENSIBLE AU CONTEXTE ET
AUX RESSOURCES POUR MULTI-PERSONA EFFICACE ET ÉVOLUTIF SUR LES

APPAREILS MOBILES

Hanine TOUT

RÉSUMÉ

Alimenté par les changements dans les modèles d’applications professionnelles, les intérêts

personnels et les désirs et progrès technologiques dans les appareils mobiles, le concept de

multi-persona a émergé récemment pour garder l’équilibre entre différents aspects, dans notre

vie quotidienne, sur un seul terminal mobile. Dans ce contexte, la technologie de virtualisation

mobile a evolué et se dirige actuellement vers une adoption répandue pour réaliser le concept de

multi-persona. Bien que les techniques récentes de virtualisation légère, capable de maintenir

l’équilibre entre la sécurité et l’évolutivité des personas, la puissance du processeur limitée et

les capacités de la mémoire et de la batterie insuffisantes, menacent toujours la performance des

personas et la viabilité du dispositif physiques. Au cours des dernières années, l’infonuagique

a cultivé et raffiné le concept de migration des ressources de calcul. Aujourd’hui, avec le

développement des smartphones et les tablettes, les conditions préalables sont satisfaites pour

permettre à l’infonuagique de prendre en charge les contraintes de ressources des appareils

mobiles. De ces prémisses, nous proposons dans cette thèse une nouvelle solution basée sur

l’infonuagique mobile pour un support efficace de multi-persona. Ce support inclut (1) des

moyens de profilage pour la surveillance d’appareils, de réseaux et de programmes; (2) des

techniques d’optimisation génériques, adaptables et légères pour la gestion des ressources et

des performances; (3) des méthodes proactives avec des stratégies de gestion avancées; et

(4) des algorithmes efficaces pour trouver automatiquement les bonnes politiques de gestion

à adopter par le terminal. Tous ces moyens répondent aux exigences des personas et ceux

requis pour la viabilité du système. Divers prototypes ont été conçus et évalués grâce à des

expériences approfondies, et les résultats ont prouvé l’efficacité des solutions proposées.

Mots-clés: Multi-persona, Appareil mobile, Virtualisation mobile, Infonuagique, Gestion des

ressources, Migration, Optimisation multi-objectif, Heuristique, Programmation dynamique,

apprentissage automatique.

CONTEXT AND RESOURCE AWARE CLOUD-BASED SOLUTION FOR
EFFICIENT AND SCALABLE MULTI-PERSONA MOBILE COMPUTING

Hanine TOUT

ABSTRACT

Fueled by changes in professional application models, personal interests and desires, and tech-

nological advances in mobile devices, multi-persona mobile computing has emerged recently

to keep balance between different aspects, in our daily life, on a single mobile terminal. In this

context, mobile virtualization technology has turned the corner and currently heading towards

widespread adoption to realize multi-persona. Although recent lightweight virtualization tech-

niques were able to maintain balance between security and scalability of personas, the limited

CPU power and insufficient memory and battery capacities, still threaten personas performance

and physical device viability. Throughout the last few years, cloud computing has cultivated

and refined the concept of outsourcing computing resources, and nowadays, in the coming age

of smartphones and tablets, the prerequisites are met for importing cloud computing to support

resource constrained mobiles. From these premises, we propose in this thesis a novel mobile

cloud-based solution for efficient multi-persona mobile computing support, which includes

(1) profiling means for device, network and program monitoring; (2) generic, adaptable and

lightweight optimization techniques for resource and performance management; (3) proactive

methods with advanced manageability strategies; and (4) efficient algorithms to automatically

find the adequate strategies to be applied by the end terminal while meeting with personas

requirements and system survivability. Various prototypes have been built and evaluated via

extensive experiments through which the results have proved the efficiency of the proposed

solutions.

Keywords: Multi-persona, Mobile device, Mobile virtualization, Mobile Cloud Computing,

Resource management, Offloading, Multi-objective optimization, Heuristics, Dynamic pro-

gramming, Machine learning

TABLE OF CONTENTS

Page

INTRODUCTION . 1

0.1 Motivations . 1

0.2 Problem Statement . 3

0.3 Main Goal . 4

0.4 Methodology . 5

0.5 Technical Contributions . 11

0.6 Publications . 12

0.7 Thesis Organization . 13

LITERATURE REVIEW .. 15

1.1 Mobile Virtualization . 15

1.2 Mobile Computation Offloading . 16

1.3 Predictive Management Techniques for Virtual Environments . 19

1.4 Dynamic Offloading Algorithms . 20

1.5 Conclusion . 22

CHAPTER 2 ARTICLE 1: SELECTIVE MOBILE CLOUD OFFLOADING

TO AUGMENT MULTI-PERSONA PERFORMANCE AND

VIABILITY . 23

2.1 Abstract . 23

2.2 Introduction . 24

2.3 Background and Related Work . 27

2.3.1 Mobile Virtualization . 27

2.3.2 Offloading . 29

2.3.3 Proposed Approach Positioning . 32

2.4 Problem Illustration . 33

2.5 Offloading Meets Multi-Persona . 35

2.6 Multi-Objective Optimization for Multi-Persona . 37

2.6.1 Problem Definition . 37

2.6.2 Problem Formulation . 40

2.7 Heuristic Algorithms for Optimal Distribution of Multi-Persona Components

42

2.7.1 Representation of Individuals . 43

2.7.2 Fitness Evaluation . 43

2.7.3 Operators . 43

2.7.4 Algorithm and Time Complexity Analysis . 44

2.8 Implementation and Experiments . 45

2.8.1 Implementation . 45

2.8.2 Experiments . 47

2.8.2.1 Testbed Setup . 48

2.8.2.2 Assumptions . 50

2.8.2.3 Results and Analysis . 50

2.9 Conclusion and Future Directions . 56

CHAPTER 3 ARTICLE 2: SMART MOBILE COMPUTATION OFFLOADING:

CENTRALIZED SELECTIVE AND MULTI-OBJECTIVE APPROACH

. 59

3.1 Abstract . 59

3.2 Introduction . 60

3.3 Computations Offloading Overview . 63

3.4 Related Work . 65

3.5 Technical Problems . 69

3.5.1 Accuracy and Overhead of Decision Model Evaluation . 69

3.5.2 Decision Model Metrics . 70

3.6 Centralized Selective and Multi-Objective Offloading: Insights . 71

3.7 Selective Mechanism . 73

3.7.1 Hotspots Profiling . 73

3.7.2 Hotspots Detection . 74

3.7.3 Selection Algorithm . 74

3.8 Centralized Selective Offloading Decision Model . 76

3.8.1 Definition . 77

3.8.2 Model Formulation . 78

3.9 Intelligent Decision Making Process . 80

3.9.1 Solution Encoding . 82

3.9.2 Fitness Evaluation . 82

3.9.3 Evolution Process . 83

3.9.3.1 Selection . 83

3.9.3.2 Crossover . 83

3.9.3.3 Mutation . 84

3.10 Numerical Analysis . 84

3.10.1 Testbed Setup . 84

3.10.2 Results . 86

3.10.2.1 Decision Model Efficiency . 86

3.10.2.2 Selective Mechanism and Intelligent Decision Maker

Efficiency . 87

3.11 Conclusion and Future Directions . 91

CHAPTER 4 ARTICLE 3: COST-EFFECTIVE CLOUD-BASED SOLUTION

FOR MULTI-PERSONA MOBILE COMPUTING IN WORKPLACE

. 93

4.1 Abstract . 93

4.2 Introduction . 94

4.3 Computation offloading to support mobile devices: Background . 97

4.4 Related Work . 99

4.4.1 Mobile Centric Offloading .100

4.4.2 Cloud Centric Offloading .102

4.4.3 Analysis .103

4.5 Illustrative Business Model and Problem Description .104

4.6 Cost-Effective Offloading: System Model .107

4.7 Collective Multi-Persona Offloading Optimization Problem (CMPO)109

4.7.1 Definition .109

4.7.2 Formulation .112

4.8 Smart Cost-Effective Decision Maker .115

4.8.1 Solution Encoding .115

4.8.2 Fitness Evaluation .116

4.8.3 Evolution Process .117

4.8.3.1 Selection .117

4.8.3.2 Crossover .117

4.8.3.3 Mutation .118

4.9 Numerical Analysis .118

4.9.1 Setup .120

4.9.2 Generated distribution cost .122

4.9.3 Decision maker overhead .123

4.9.4 Satisfaction rate .124

4.9.5 Optimized decision maker speedup .126

4.9.6 Summary .126

4.10 Conclusion and Future Directions .127

CHAPTER 5 ARTICLE 4: PROACTIVE SOLUTION AND ADVANCED

MANAGEABILITY OF MULTI-PERSONA MOBILE COMPUTING

. .129

5.1 Abstract .129

5.2 Introduction .130

5.3 Related Works .134

5.3.1 Predictive Virtual Instances Management Strategies .134

5.3.2 Dynamic Offloading Algorithms .135

5.3.3 Our Contributions .136

5.4 System Model .137

5.5 Machine Learning Prediction .140

5.5.1 Linear Regression .141

5.5.2 Support Vector Regression .141

5.5.3 Neural Network .142

5.5.4 Deep Neural Network .142

5.6 Problem Formulation .142

5.7 Proposed Dynamic Programming Algorithm .145

5.7.1 DP Table Filling .145

5.8 Evaluation .148

5.8.1 Setup .148

5.8.2 Numerical Analysis .150

5.9 Conclusion and Future Directions .158

CONCLUSION AND RECOMMENDATIONS .161

BIBLIOGRAPHY .165

LIST OF TABLES

Page

Table 2.1 Taxonomy of mobile code offloading approaches. 29

Table 2.2 Applications in each persona. 33

Table 2.3 Formulas notations. 40

Table 2.4 Distribution of services in different scenarios. 48

Table 2.5 Parameters . 49

Table 2.6 Number of iterations. 49

Table 2.7 Distribution of services based on the decision making algorithm.. 52

Table 2.8 Required number of iterations. 55

Table 3.1 Classification of offloading approaches. 65

Table 3.2 Decision error rate. 90

Table 4.1 Taxonomy of offloading schemes.. 99

Table 4.2 Taxonomy of offloading schemes.. .100

Table 5.1 Prioritization scheme. .139

Table 5.2 DP Table Filling .146

Table 5.3 Device Usage Behavior .149

Table 5.4 ML techniques setup for phase #1 .149

Table 5.5 ML techniques setup for phase #2 .149

Table 5.6 Usage scenarios. .156

Table 5.7 Generated strategies. .156

LIST OF FIGURES

Page

Figure 0.1 Mobile cloud offloading approach: objectives, contributions and

architecture. 7

Figure 0.2 Selective approach: objectives, contributions and architecture. 8

Figure 0.3 Cost-effective approach: objectives, contributions and architecture. 9

Figure 0.4 Proactive advanced approach: objectives, contributions and

architecture. 11

Figure 2.1 Multi-Persona efficiency and viability. 34

Figure 2.2 Proposed architecture. 35

Figure 2.3 Algorithms overhead on the mobile device. 51

Figure 2.4 Approach evaluation. 54

Figure 2.5 Optimal(OS) and Good(GS) solutions overheads. 56

Figure 3.1 Mobile code offloading architecture.. 64

Figure 3.2 System model. 71

Figure 3.3 Decision savings. 87

Figure 3.4 Decision maker overhead. 88

Figure 3.5 Components overhead. 89

Figure 3.6 Overall overhead. 90

Figure 4.1 Mobile computation offloading. 98

Figure 4.2 Illustrative business model. .105

Figure 4.3 Unbalanced resource usage, performance, and monetary fees.107

Figure 4.4 System model. .108

Figure 4.5 Encoding scheme. .115

Figure 4.6 Evolution-based crossover. .117

Figure 4.7 Mutation. .118

Figure 4.8 Generated solution cost: average local CPU usage, memory

consumption, execution time, energy loss and monetary fees.121

Figure 4.9 Decision maker overhead. .124

Figure 4.10 Satisfaction rate. .125

Figure 4.11 Optimized decision maker speedup. .126

Figure 5.1 System model. .138

Figure 5.2 DS1: observed CPU vs. predicted. .151

Figure 5.3 DS1: observed memory vs. predicted. .152

Figure 5.4 DS2: observed CPU vs. predicted. .153

Figure 5.5 DS2: observed memory vs. predicted. .153

Figure 5.6 DS3: observed vs. predicted values. .154

Figure 5.7 DS4:Observed vs. Predicted values. .154

Figure 5.8 DS5:Observed vs. Predicted values. .155

Figure 5.9 DS6:Observed vs. Predicted values. .155

Figure 5.10 Strategies efficiency. .157

Figure 5.11 Decision engine performance. .158

LIST OF ABREVIATIONS

ANN/NN Artificial Neural Network

BYOD Bring Your Own Device

DNN Deep Neural Network

DP Dynamic Programming

GA Genetic Algorithm

KNN K-Nearest Neighbor

LR Linear Regression

ML Machine Learning

MCC Mobile Cloud Computing

RF Random Forest

SVM Support Vector Machines

SVR Support Vector Regression

VM Virtual Machine

VP Virtual Phone

INTRODUCTION

0.1 Motivations

Technology has transformed even the smallest tasks in our daily life. As the whole world is

going into the new phase of technological advances, our needs become more sophisticated. We

are looking for speed, quality, mobility and effectiveness and on the other hand, we need these

features to be integrated in a solution small enough to be carried in pocket. With the growing

speed of technological advancements, smartphones have become the essential components of

our everyday performance. Equipped with advanced operating systems, smartphones have

risen in prominence and consumer habits have shifted, relegating desktop to mobile computing.

In this mobile-first world, business environment has accordingly entered a new era of mobile-

led changes, which have revolutionised the trend of bring your own device (BYOD). This

policy has been around for a while and is gaining momentum as more and more businesses are

looking to improve work efficiency and decrease operational costs. Simply, "Bring Your Own

Device" refers to employees having the ability to opt their personally owned mobile devices to

perform business tasks. However, letting staff use their own gadgets could rapidly turn into a

headache for IT. Potential pitfalls that a company may face because of BYOD are all around

security and confidentiality, with personal devices accessing corporate network and storing

sensitive business data. Such key considerations force IT to typically apply some security

policies on end devices, which in turn raise some privacy issues for the end users who might

sacrifice their personal data to comply with such policies. The BYOD debate has received much

coverage in recent years [Rouse (2012a)]. Mobile devices with dual persona were released to

determine this battle, enabling two phones-in-a-phone, typically, one for private personal use

and another for business use. This technology provides a way to keep corporate applications

and their associated data segregated and protected on an employee’s personal mobile device in

2

a separate and independent end user environment, while IT can only see and manage the assets

in the business environment, maintaining end user’s privacy.

However, nowadays, multi-persona has become a game changer for mobile devices [Eiferman

(2014a)]. Multi-persona creates the same impenetrable wall between an employee’s appli-

cations and an organization’s data and applications, yet allowing one phone to co-host not

only two, but more completely independent and secure virtual environments. But why would

anybody want so many personas (virtual environments)? A user can isolate private banking

services and e-commerce, sensitive corporate data, social networking and games in separate

personas. Such isolation provides an efficient management of financial transactions, prevents

untrusted applications from accessing critical information and allows sharing the device with

other family members without ending up with accidental phone calls, unintended in-app pur-

chases or even access to restricted content. Even more interesting use cases come with hav-

ing multiple work personas with different levels of security. For example, while working at

their private clinic and at multiple hospitals, doctors are subject to different mobile policies,

reflecting each of the different institutions. With personal, clinic and hospitals personas, multi-

persona allow doctors to comply with the policy of each and effectively treat their patients

while maintaining their own unburdened personal use of the device. Whether in these or any

other example, the success of multi-persona lies in its capability of consolidating multiple mo-

bile devices on a single terminal, while making the latter able to clearly distinguish between

the different contexts in which it is used.

With the option to tap into virtualization solution, a user can differentiate between these con-

texts through virtual phone dedicated for each. Mobile virtualization is one of the key tech-

nologies behind multi-persona realization. Similar to virtualization on servers and desktop

machines, mobile virtualization allows multiple virtual environments (instances) to run simul-

taneously on the same physical mobile device. These instances are called personas or virtual

3

phones (VPs). A significant added value of virtualization is the ability to isolate the virtual

instances from each others so failures in one area do not affect other areas. Yet, to realize

multi-persona, mobile virtualization is much more challenging since it requires a trade-off

between secure isolation and scalability of personas on mobile devices having limited com-

putation capabilities, memory capacity and battery lifetime. Different techniques can be used

to implement mobile virtualization. System-Level Virtualization [Barr et al. (2010)] is a tech-

nique that offers the ability to run multiple operating systems on one physical device using

an additional software layer called a hypervisor (or microkernel) [Wessel et al. (2013)]. Yet,

this technique imposes high overhead due to the complete software stack in each virtual en-

vironment (i.e., Kernel, Middleware, Apps). Therefore, it might be suitable for dual-persona

but not for multi-persona functionality. There is also User-Level Isolation [Android (2014)],

in which both the kernel and the middleware layers are shared between the virtual instances.

Yet this technique does not create virtual environments but rather wraps applications to sepa-

rate them from each other, which does not realize the needed isolation for multi-persona. The

last technique is OS-Level Virtualization, also called Container-based virtualization, which is

a method that shares the kernel layer to run multiple virtual instances on a single operating

system [Andrus et al. (2011)]. Allocating a minimum set of resources for each persona results

in a collection of lightweight personas inside the device making the available OS resources

enough for running more than two personas and thus the most adequate technique to realize

multi-persona functionality.

0.2 Problem Statement

The growing wave of consumerization, expectation and sophistication of mobile devices has

created a powerful force for change. With the significant development of mobile hardware such

as multi-core CPUs, larger memory, network and high-resolution displays, today’s mobile ap-

plications are becoming more complex with an increasingly feature-rich nature. However, no

4

matter how advanced mobile devices hardware is growing, it’s still limited compared to its

counterpart of desktop machines. The resource demands of mobile applications often outstrip

the hardware capacities of mobile devices in terms of computations, memory and battery, and

an additional virtualization layer just make things worse. Even with the lightweight virtual-

ization techniques, co-hosting multiple virtual phones on a single resource constrained mobile

device imposes high overhead on the latter leading to performance degradation and more crit-

ically to system crash due to lack of resources. Thorough experiments have been conducted

in this work aiming to emphasize on this problem. Practically, we varied the number of per-

sonas running diversity of lightweight, moderate and heavy applications, and we examined the

resource consumption on the device which affect personas lifetime, as well as the execution

time to study their influence on the applications performance. With two personas, the results

showed drastic increase in the CPU usage recording up to 62% compared to 26% with one per-

sona along with significant increase in the energy consumption that reached 420 J compared

to 329 J with one running persona. As for the execution time, it took up to 1380 s to finish

the execution of the running applications, which is 1.7 times more than the case of running

one persona. Another critical observation was also exposed in third scenario that involved 3

personas, where it was impossible to run the same applications as the personas kept shutting

down due to lack of memory on the mobile terminal as well as the high consumption of other

resources. These results reveal the incompetence of the mobile device resources to sustain high

performing personas neither to tolerate their viability.

0.3 Main Goal

While personas would require to be scaled up, which is not an option as they are ported on a

single resource constrained device, this thesis aims to propose a novel proactive mobile cloud

computing solution with advanced manageability to boost the performance of the virtual in-

stances and augment the viability of the physical host device.

5

0.4 Methodology

To emphasize the claimed technical problems, a virtualization architecture has been ported on a

mobile device and different virtual environments were built. Extensive experiments have been

performed throughout the work depicting the impediment of the limited computation capabil-

ity, memory capacity and battery lifetime of the mobile terminal to support multi-persona with-

out performance degradation or shorter-time system viability. Advanced technologies were

investigated and novel techniques and algorithms were proposed in this thesis, aiming to rein-

force multi-persona mobile computing.

Mobile Cloud Computing (MCC) is a new paradigm for mobile applications whereby the data

processing and storage are moved from the mobile device to powerful and centralized comput-

ing platforms located in the cloud [Dinh et al. (2013)]. There are several existing definitions

of mobile cloud computing, and different research alludes to different concepts of the ’mobile

cloud’ [Fernando et al. (2013)]. Commonly, the term mobile cloud computing means to run

an application on a remote resource-rich server, while the mobile device acts like a thin client

connecting over to the remote server through WiFi or cellular data network. Another approach

is to consider other mobile devices themselves as resource providers of the cloud making up a

mobile peer-to-peer network. Thus, the collective resources of the various mobile devices in

the local vicinity, and other stationary devices too if available, will be utilized. This is called

ad hoc approach, which presents several challenges. The first challenge is how to motivate

surrogates to collaborate their resources? An interesting method is using common goals, but

in the absence of common activities this will not prevail. In the case of monetary incentives,

several questions need to be answered such as; how are credits represented in a mobile cloud?

how will monetary transactions proceed in a secure method? how will the price of resources be

decided? The second challenge is how to deal with malicious surrogates? The cloudlet concept

is another approach to mobile cloud computing, where the mobile device offloads its workload

6

to a local ’cloudlet’ comprised of several multi-core computers with connectivity to the remote

cloud servers. These cloudlets would be situated in common areas such as coffee shops so

that mobile devices can connect and function as a thin client to the cloudlet as opposed to a

remote cloud server which would present latency and bandwidth issues. Although cloudlets

can decrease latency, but they does not fully support a mobile user who needs to work while

on the move. Cloudlets offload jobs to local resource rich server that could only support the

needs of mobile device users who are within a limited range. Ad hoc cloud is not subject of

this research work, which adopts the first cloud architecture. However, cloudlets could be used

as complementary scheme.

A particularly popular technique to extend limited mobile hardware is computation offloading

which migrates the execution of mobile functionalities to a powerful cloud-based server. A full

research domain of computation offloading has been triggered within mobile cloud computing.

Code offloading is an opportunistic process that leverages cloud resources (e.g., servers) to

execute computations designated by a mobile terminal. Many computations offloading tech-

niques [(Hung et al., 2012; Cuervo et al., 2010; Kosta et al., 2012; Kemp, 2014; Chen et al.,

2012; Chun et al., 2011; Shi et al., 2014; Chae et al., 2014; Gordon et al., 2012; Flores et al.,

2014; Xia et al., 2014)] have been proposed allowing mobile devices to migrate the execution

and throw the burdens of computations to remote resourceful infrastructure. Offloading can

be applied either on a full application or more fine-grained tasks like services, methods, or

threads, releasing the mobile device from intensive processing. An offloading decision is taken

based on a cost model that can estimate where the execution is more effective for the end de-

vice. The network bandwidth and latency, the resource demands of tasks and the mobile device

state, all form a context that influences offloading efficiency. Due to mobility and the variation

in all these aspects, the evaluation of this model changes from one execution to another and

hence lead to different decisions. Tasks, applications and components are used exchangeably

throughout the thesis.

7

While through these approaches, computation offloading has indeed proved its ability to en-

hance the performance and save energy on the mobile terminal, we started to build our solution

based on these premises. Throughout this work, various research questions have arisen and

hence several objectives had to be set, which are highlighted throughout the articles presented

in the following chapters.

Figure 0.1 Mobile cloud offloading approach: objectives,

contributions and architecture.

The aim of the first article (Chapter 2) is to efficiently manage the resources on the mobile

terminal in order to boost personas performance and viability. In this regard, we introduce a

mobile-cloud offloading approach as shown in Figure 0.1 with the following sub-objectives:

- Propose an offloading-based architecture to augment multi-persona performance and via-

bility.

8

- Build a generic optimization model, for multi-persona, independent of the offloading gran-

ularity and adaptable to different execution contexts.

- Automatically generate exact distribution strategies (i.e., remote/local execution) of multi-

persona applications to optimize both resource usage and performance on the physical de-

vice.

Figure 0.2 Selective approach: objectives, contributions and

architecture.

The results in the first chapter reveal that the overhead of the decision maker in some scenarios

is higher than the the services overhead; therefore, in the second article (Chapter 3), we address

the overhead of the offloading cost model evaluation, which can create itself a bottleneck on

the end mobile device with limited resources. We propose in this regard a selective approach

as shown in Figure 0.2 with the following sub-objectives:

9

- Propose a novel selective mechanism that minimizes the search space and significantly

reduces the overhead of offloading decision evaluation.

- Offer an intelligent remotely centralized decision engine able to find the best dissemination

of tasks with minimal evaluation cost.

Figure 0.3 Cost-effective approach: objectives, contributions

and architecture.

From different perspective, embracing such cloud-based solutions in workplace where multi-

persona mobile computing is mainly introduced raises other concerns that cannot be neglected.

The first concern is how to adequately disseminate the execution of services between local

and remote processing in order to enforce as many personas as possible on all users’ terminals

engaged rather than a solo device. Second, leveraging commercial cloud resources is not free

of charge and with several offloading requests generated from numerous mobile devices, the

10

fees aspect becomes a key factor in the equation. Therefore in the third article (Chapter 4),

we aim to answer the important research question that arises when adopting such solutions

in workplace. Particularly, how to balance in one hand, the usage of cloud-based offloading

services to minimize processing, memory, energy and execution time in personas on as many

devices engaged in an organization as possible, and on the other hand, the remote execution

fees imposed on the institution itself? Accordingly, we propose a cost-effective approach as

illustrated in Figure 0.3 with the following sub-objectives:

- Propose a two-level cost-effective optimization model to balance processing, memory, en-

ergy and performance of personas on different devices with minimal remote resources usage

fees.

- Evaluate both centralized and decentralized decision making approaches to examine their

engagement to address the raised concerns from different perspectives.

Technically, some computations might not be offloadable based on their type, security level or

even their need to call device-related functionalities and hence offloading these components is

not an option. Also idle apps and/oidle virtual phones consume some of the device resources

and offloading would even consume more. Therefore finally, in the fourth article (Chapter

5), we examine why only offloading is not enough as a resource management solution, why

proactivity is needed and what kind of advanced manageability strategies are needed beside

offloading? For this end, we place the following sub-objectives in order to offer proactive and

advanced solution as illustrated in Figure 0.4:

- Provide proactive solution to predict resource needs and hence avoid system crash.

- Propose advanced strategies to manage virtual phones.

11

Figure 0.4 Proactive advanced approach: objectives,

contributions and architecture.

- Present novel optimization model to meet the resource needs, enhance the performance on

the end device and support the proposed strategies.

- Elaborate an efficient algorithm to find the adequate strategies to be applied by the end

terminal.

It is worth to mention that throughout this thesis, we use "optimality" and "best distribution"

in order to define a solution that can offer best "trade-off" between the optimization metrics in

hand.

0.5 Technical Contributions

Through this thesis, we were able to offer the following contributions:

12

- A Mobile cloud-based architecture for efficient multi-persona mobile computing support.

- Cost-effective solution for multi-persona mobile computing in workplace.

- Generic, adaptable and lightweight optimization techniques for virtual phones’ resource

and performance management.

- Proactive method with advanced manageability strategies for efficient control of virtual

phones’ performance and viability.

- Competitive algorithms that automatically generate the adequate strategies to be applied by

the end terminal.

0.6 Publications

- Tout, H., Talhi, C., Kara, N. & Mourad, A. (2015). Towards an offloading approach that

augments multi-persona performance and viability. Consumer Communications and Net-

working Conference (CCNC), 2015 12th Annual IEEE, pp. 455–460.

- Tout, H., Talhi, C., Kara, N. & Mourad, A. (2016). Selective Mobile Cloud Offloading to

Augment Multi-Persona Performance and Viability.Cloud Computing, IEEE Transactions

on.

- Tout, H., Talhi, C., Kara, N. & Mourad, A. (2017). Smart mobile computation offloading:

Centralized selective and multi-objective approach. Expert Systems with Applications, 80,

1-13.

- Tout, H., Mourad, A., Kara, N. & Talhi, C. Cost-Effective Cloud-Based Solution for Multi-

Persona Mobile Computing in Workplace (Journal Article Under Review)

- Tout, H., Kara, N., Talhi, C. & Mourad, A. Proactive Solution and Advanced Manageability

of Multi-Persona Mobile Computing (Journal Article Under Review).

13

0.7 Thesis Organization

Since this work is done on articles-basis, we start with a general literature review then we detail

each of our publications in different chapter. Finally, in the last part, we conclude the thesis

and draw some future directions out of remaining open research questions.

LITERATURE REVIEW

In this part, we review different approaches relevant to various aspects subject to this thesis

to formulate a general context for this research work . Yet, we leave the analysis of these

approaches to each chapter separately, where we compare our propositions with existing works

based on different aspects relevant to each contribution.

1.1 Mobile Virtualization

With the advanced hardware of smart phones, researchers have been able to bring virtualiza-

tion to mobile terminals. As a trade-off between system-level virtualization [Barr et al. (2010);

Dall & Nieh (2013)] and user-level isolation [Inc.], researchers have proposed OS-level virtu-

alization which shares the kernel layer to run multiple virtual instances on a single operating

system [Andrus et al. (2011); Chen et al. (2015c)]. Using isolation methods that leverage

namesapces at multiple levels of the mobile platform, OS-level virtualization is able to ensure

that the virtual environments are completely independent, secure from each other and any fail-

ure that might occur in one of them will not affect the others. These properties are what make

such architecture the most adequate for building multi-persona [Andrus et al. (2011); Chen

et al. (2015c)].

Wessel et al. present a lightweight isolation mechanism for Android with access control poli-

cies, to separate one or more Android userland instances from a trustworthy environment [Wes-

sel et al. (2013)]. The proposed architecture provides userspace containers to isolate and con-

trol the resources of single application or groups of applications running on top of one kernel.

Another approach is Cells [Andrus et al. (2011)], which enables multiple virtual phones (VPs)

to run simultaneously on the same physical smartphone. It uses device namespaces to multiplex

access among VPs to kernel interfaces and hardware resources such that VPs can run side-by-

side in virtual OS sandboxes.

16

Chen et al. have proposed Condroid [Chen et al. (2015c)], a lightweight virtualization architec-

ture that allows creating multiple personas by virtualizing identifiers and hardware resources

on a shared OS kernel. The proposed architecture leverages namespaces for resource isola-

tion and cgroups feature for resource control. Together, they allow Condroid to run multiple

independent and securely isolated virtual instances on the same physical device.

Discussion: Throughout this thesis, it is demonstrated that even the latest lightweight virtu-

alization techniques not only impose significant overhead on the mobile hardware, which has

limited computation capabilities, memory capacity and battery lifetime, but also might force

the whole system to shutdown.

1.2 Mobile Computation Offloading

Many approaches have proposed mobile computation offloading techniques to support mobile

devices. These approaches have indeed proved their ability to enhance the applications perfor-

mance and minimize the energy consumption on mobile devices. In mCloud framework [Zhou

et al. (2016)], different cloud resources are considered; mobile ad-hoc device cloud, cloudlets

and public cloud. The work aims to find where tasks should be executed so that the overall

energy consumption and execution time is the lowest among all cloud resources in the mobile

cloud infrastructure based on the current state of the device.

MAUI [Cuervo et al. (2010)] is an offloading framework that has been proposed by Cuervo et

al. in order to reduce the energy consumption of mobile applications. The framework consists

of a proxy server responsible of communicating the method state, a profiler that can monitor

the device, program and network conditions, and a solver that can decide whether to run the

method locally or remotely. MAUI uses its optimization framework to decide which method to

send for remote execution based on the information gathered by the profiler. The results show

the ability of MAUI to minimize the energy consumption of a running application.

CloneCloud [Chun et al. (2011)] is another offloading approach that has been presented in order

to minimize the energy consumption and speed-up the execution of the running application.

17

A profiler collects the data about the threads running in this application and communicates

the gathered data with an optimization solver. Based on cost metrics of execution time and

energy, the solver decides about the best partitioning of these threads between local and remote

execution. This approach does not require modification of the original application since it

works at the binary level. The experiments of CloneCloud showed promising results in terms

of minimizing both execution time and energy consumption of an application. However, only

one thread at a time can be encapsulated in a VM and migrated for remote execution, which

diminishes the concurrency of executing the components of an application.

Relying on distributed shared memory (DSM) systems and virtual machine (VM) synchro-

nization techniques, COMET [Gordon et al. (2012)] enable multithreaded offloading and over-

comes the limitations of MAUI and CloneCloud, which can offload one method/thread at a

time. To manage memory consistency, a field-level granularity is used, reducing the frequency

of required communication between the mobile device and the cloud.

Kemp has followed a different strategy and proposed Cuckoo [Kemp (2014)] that assumes

computation-intensive code to be implemented as an Android service. The framework includes

sensors to decide, at runtime, whether or not to offload particular service since circumstances

like network type and status and invocation parameters of the service call on mobile devices get

changed continuously, making offloading sometimes beneficial but not always. Cuckoo frame-

work has been able to reduce the energy consumption and increase the speed of computation

intensive applications.

Chen et al. [Chen et al. (2012)] have proposed a framework that automatically offloads heavy

back-end services of a regular standalone Android application in order to reduce the energy loss

and execution time of an application. Based on a decision model, the services are offloaded to

an Android virtual machine in the cloud.

An offloading-decision making algorithm that considers user delay-tolerance threshold has

been proposed by Xia et al. [Xia et al. (2014)]. The tool predicts the average execution

18

time and energy of an application when running locally on the device, then compares them

to cloud-based execution cost in order to decide where the application should be executed.

ThinkAir [Kosta et al. (2012)] has been introduced as a technique to improve both compu-

tational performance and power efficiency of mobile devices by bridging smartphones to the

cloud. The proposed architecture consists of a cloud infrastructure, an application server that

communicates with applications and executes remote methods, a set of profilers to monitor the

device, program, and network conditions, and an execution controller that decides about of-

floading. ThinkAir applies a method-level code offloading. It parallelizes method execution by

invoking multiple virtual machines (VMs) to execute in the cloud in a seamless and on-demand

manner achieving greater reduction in execution time and energy consumption.

Shi et al. have presented COSMOS system [Shi et al. (2014)] with the objective of manag-

ing cloud resources to reduce their usage monetary cost while maintaining good offloading

performance. Through a master component, COSMOS collects periodically information of

computation tasks and remote VMs workloads. Based on the gathered information, COSMOS

is able to control the number of active VMs over time. Particularly, whenever VMs are over-

loaded, the system turns on new instance to handle the upcoming requests. It can also decide

to shut down unnecessary instances to reduce the monetary cost in case the rest are enough to

handle the mobile devices requests.

Chae et al. [Chae et al. (2014)] have proposed CMcloud, a new scheme that aims to maximize

the throughput or minimize the server cost at cloud provider end by running as many mobile

applications as possible per server and offer the user’s expected acceleration in the mobile ap-

plication execution. CMcloud seeks to find the least costly server which has enough remaining

resources to finish the execution of the mobile application within a target deadline.

Discussion: These offloading approaches were indeed able to enhance the performance of

the mobile device and reduce its energy consumption. Based on their promising results, we

build an mobile cloud approach to boost the performance of the virtual instances and ensure

longer viability of the physical device. However, the techniques proposed in these approaches

19

are not enough to reach our main goal. Therefore, our approach differs from these works

in different aspects that we discuss in details separately in each chapter based on the latter

contributions. To summarize, this thesis offers novel multi-objective optimization model that

considers critical additional metrics relevant to the device resources. In addition, the model is

generic enough to be applied at any offloading granularity and adaptable to different execution

contexts. Further, it also considers the tradeoff between the device resources, the applications

performance in the running personas, as well as the cost entailed by practical adoption of such

cloud-based solution. In this context, this thesis is the first to deal with all these metrics which

are discussed further in the next chapters.

1.3 Predictive Management Techniques for Virtual Environments

Sharing a single physical end terminal between several virtual machines raises many problems

more critically, autonomic load balancing of resources. In this context, different approaches

have been proposed to predict physical machine loads. Predicting future load enables proactive

consolidation of VMs on the overloaded and under-loaded physical machines [Farahnakian

et al. (2015)]. In [Farahnakian et al. (2013a)] and [Farahnakian et al. (2013b)], the authors

have proposed regression methods to predict CPU utilization of a physical machine. These

methods use the linear regression and the K-nearest neighbor (KNN) regression algorithms,

respectively, to approximate a function based on the data collected during the lifetimes of

the VMs. The formulated function is then used to predict an overloaded or an under-loaded

machine. A linear regression based approach has been implemented by Fahimeh Farahnakian

[Farahnakian et al. (2013a)]. The CPU usage of the host machine is predicted on the basis of

linear regression technique and then live migration process was used to detect under-utilized

and over-utilized machine. Bala et al. [Bala & Chana (2016)], have proposed a proactive

load balancing approach that based on a prior knowledge of the resource utilization parameters

and gathered data, machine learning techniques are applied to predict future resource needs.

Various approaches have been studied such as KNN, Artificial Neural Network (ANN), Support

Vector Machines (SVM) and Random Forest (RF). The approach having maximum accuracy

20

has been utilized as prediction-based approach. Xiao et al. [Xiao et al. (2013)] have also

used a load prediction algorithm to capture the rising trend of resource usage patterns and help

identifying hot spots and cold spots machines. After predicting the resource needs, Hot spot

and cold spot machines are identified. When the resource utilization of any physical machine

is above the hot threshold, the latter is marked as hotspot. If so, some VMs running on it will

be migrated away to reduce its load [Xiao et al. (2013)]. On the other hand, cold spot machines

either idle or having the average utilization below particular threshold, are also identified. If

so, some of those physical machines could potentially be turned off to save energy [Xiao et al.

(2013)] [Beloglazov & Buyya (2010)].

Discussion: While offloading can augment the device resources and boost the applications

performance, it might fail to avoid system crash in some scenarios. When the needed resources

are higher than those available on the device and involved applications cannot be offloaded

whether because they are native tasks or according to their criticality level, additional proactive

technique and more advanced manageability strategies become a must. Approaches presented

in this section show that estimating resource needs enables proactive consolidation of VMs on

a single physical machine in a cloud environment, the same concept applied on multi-persona

mobile devices. In this thesis, future context and resource requirements are predicted before-

hand through machine learning techniques in order to take proactive actions that aim to avoid

performance degradation and system crash on the mobile device. Further, beside offloading,

additional management strategies are advanced including personas switch-off and applications

shut down, all applied based on the device state, classification scheme and predicted future

context.

1.4 Dynamic Offloading Algorithms

Different algorithms have been proposed in order to find for each component, whether it should

be offloaded or executed locally on the device. A linear program solver has been adopted by

[Cuervo et al. (2010); Chun et al. (2011)], while dynamic programming algorithms have been

studied in other works. A Dynamic Programming (DP) algorithm was proposed in [Liu & Lee

21

(2014)] in order to determine what to offload. However, a backtracking algorithm was needed

to find the final decisions, which was time consuming. A dynamic offloading algorithm based

on Lyapunov optimization was presented in [Huang et al. (2012)]. The algorithm is based upon

a relationship between the current solution and the optimal solution requiring a considerable

amount of execution time and many iterations to converge upon a solution [Shahzad & Szy-

manski (2016)]. Another dynamic programming approach has been proposed in [Toma & Chen

(2013)], yet it doesn’t consider the energy consumed in the mobile device which is an important

criteria for resource constrained mobile devices. A semidefinite relaxation approach for the of-

floading problem was presented by Chen et al., [Chen et al. (2015a)]. Their work considered a

mobile cloud computing scenario consisting one nearby computing access point, and a remote

cloud server(s). Their proposition is based on an algorithm that first solves a linear program,

and uses randomization and relaxation to generate an integer solution. The algorithm can find

a near-optimal solution when using about 100 trials of relaxation. In [Shahzad & Szymanski

(2016)], a dynamic programming algorithm with a hamming distance (DPH) is proposed. The

algorithm generates periodically random bit strings of 0s and 1s, for remote and local execu-

tion of tasks, and utilize sub-strings when they improve the solution. The algorithm can find

a nearly optimal solution after several iterations. The authors use a Hamming distance crite-

rion to terminate the search process and hence obtain the final decision quickly. The stopping

criterion is met when a given fraction of tasks are offloaded.

Discussion: Different algorithms have been leveraged in the literature to evaluate and take an

offloading decision. In this work, we prove that the problem we are addressing is NP-hard

and hence we first propose an algorithm based on heuristics. As in the above approaches,

also dynamic programming algorithms were able to prove their ability to generate an efficient

offloading strategy in a reasonable time, we study in our turn its efficiency in multi-persona

context by proposing a dynamic programming-based algorithm and comparing it to heuristic-

based approach. Under different constraints, these algorithms try to find the adequate strategies

to be applied by each persona and its components in a way to offer a trade-off between all the

objective functions formulated in the optimization cost model.

22

1.5 Conclusion

We reviewed in previous sections, existing approaches relevant to mobile virtualization, com-

putation offloading, proactive management techniques for virtual environments and dynamic

offloading algorithms. As discussed above, though the efficiency of the existing propositions,

many technical limitations need to be addressed in order to meet with multi-persona require-

ments on resource-constrained mobile devices. Each of the following chapters is devoted to

tackle set of multi-persona issues and provide part of the full solution proposed in this thesis.

CHAPTER 2

ARTICLE 1: SELECTIVE MOBILE CLOUD OFFLOADING TO AUGMENT
MULTI-PERSONA PERFORMANCE AND VIABILITY

Hanine Tout1, Chamseddine Talhi1, Nadjia Kara1, Azzam Mourad2

1 Departement of Software Engineering and IT, École de Technologie Supérieure,

1100 Notre-Dame Ouest, Montréal, Québec, Canada H3C 1K3

2 Department of Computer Science and Mathematics, Lebanese American University,

1102 2801 Chouran Beirut, Lebanon

Published in IEEE Transactions on Cloud Computing

(DOI: 10.1109/TCC.2016.2535223)

2.1 Abstract

Fueled by changes in professional application models, personal interests and desires and tech-

nological advances in mobile devices, multi-persona has emerged recently to keep balance

between different aspects, in our daily life, on a single mobile terminal. In this context, mo-

bile virtualization technology has turned the corner and currently heading towards widespread

adoption to realize multi-persona. Although recent lightweight virtualization techniques were

able to maintain balance between security and scalability of personas, the limited CPU power

and insufficient memory and battery capacities, still threaten personas performance and viabil-

ity. Throughout the last few years, cloud computing has cultivated and refined the concept of

outsourcing computing resources, and nowadays, in the coming age of smartphones and tablets,

the prerequisites are met for importing cloud computing to support resource constrained mo-

biles. From these premises, we propose in this paper a novel offloading-based approach that

based on global resource usage monitoring, generic and adaptable problem formulation and

heuristic decision making, is capable of augmenting personas performance and viability on

mobile terminals. The experiments show its capability of reducing the resource usage over-

head and energy consumption of the applications running in each persona, accelerating their

execution and improving their scalability, allowing better adoption of multi-persona solution.

24

Index Terms: Multi-Persona, Mobile device, Mobile virtualization, Mobile Cloud Computing,

Offloading, Multi-Objective Optimization, Heuristic algorithms.

2.2 Introduction

In today’s high-tension and fast-paced world, technological advances have changed the concept

of mobile devices from primitive gadget to full computers that accommodate work, personal

and mobility needs. Out of this wave, BYOD (Bring Your Own Device) revolution has emerged

across a variety of industries, as a policy to allow end-users to use personally owned mobile

devices for business tasks [Rouse (2012a)]. However, clearly having personally owned devices

accessing corporate data and apps raise a number of risks and security concerns. One solu-

tion is COPE (Corporate-Owned, Personally-Enabled), a business model in which employees

use corporate issued devices [Rouse (2014)]. Yet, by granting manageability to enterprises,

employees are sacrificing both usability and privacy. Another solution is to carry two mobile

devices, but the natural tendency for most people is to combine professional and personal needs

on the same physical device, hence again not a good solution. As an alternative winning tech-

nology, mobile devices with dual persona were released enabling two phones-in-a-phone, one

for private personal use and another for business use [Rouse (2012b)].

However, nowadays, multi-persona has become the name of the game. Customizing isolated

personas for banking services, e-commerce, corporate data, social networking and games, al-

low parents to efficiently manage financial transactions, prevent untrusted applications from

accessing critical information and share the device with children without ending up with acci-

dental phone calls, unintended in-app purchases or even access to restricted content [Andrus

et al. (2011)]. Also, traveling for a conference or attending a trade show is a very common

practice for businesspersons, who are not tied anymore with just corporate and personal per-

sonas. An additional persona customized by the event coordinator to push relevant apps, files,

feeds, agenda, maps and tourism guides, offers better management and seamless access to

event resources [Spaces]. Further, multi-persona proves its utility in other areas where neither

carrying multiple mobile devices nor complying with single policy is a choice. While working

25

at their private clinic and at multiple hospitals, doctors are subject to different mobile poli-

cies, reflecting each of the different institutions. Carrying multiple devices to accommodate

with different systems drains their productivity. Whereas with personal, clinic and hospitals

personas, multi-persona allow doctors to comply with the policy of each and effectively treat

their patients while maintaining their own unburdened personal use of the device [Eiferman

(2014b)]. Whether in these or any other example, the success of multi-persona lies in its ca-

pability of consolidating multiple mobile devices on a single terminal, while making the latter

able to clearly distinguish between the different contexts in which it is used.

Mobile virtualization is one of the key technologies applied to realize multi-persona. Similar to

virtualization on servers and desktop machines, mobile virtualization allows to create multiple

virtual environments that live alongside on a single terminal, where in this case, the latter is a

mobile device and the environments are called personas. Yet, to realize multi-persona, mobile

virtualization is much more challenging since it requires a trade-off between secure isolation

and scalability of personas on mobile devices with limited resources. Therefore, in the last few

years, researchers have proposed lightweight virtualization techniques [Wessel et al. (2013);

Andrus et al. (2011); Chen et al. (2015c)] towards mitigating the virtualization overhead on

mobile terminals while keeping a certain level of isolation between the virtual environments.

Nevertheless, even with these techniques, the limited CPU power and insufficient memory and

battery, threaten personas performance and viability at any time being. Our experiments in

Section 2.4 show drastic increase in the CPU usage, energy consumption and execution time of

the running applications. Even worse, because of lack of memory, the personas are forced to

shut down under certain circumstances. These severe problems call for the integration of new

techniques capable of augmenting personas performance and viability.

A lot of attention has been given recently to mobile cloud computing, which imports new cloud

computing services, applications and infrastructures to support mobile devices [Khan et al.

(2014); Abolfazli et al. (2014); Zhou et al. (2015)]. In order to address the resource limita-

tions of mobile platforms, many researchers have proposed offloading techniques [Hung et al.

(2012); Cuervo et al. (2010); Kosta et al. (2012); Kemp (2014); Chen et al. (2012); Chun et al.

26

(2011)] to migrate computation intensive components to be executed on resourceful infras-

tructure. While these approaches are proposed to optimize single application, running multiple

apps in multi-persona implies resource profiling and offloading evaluation to be done solely for

each app, which impose high overhead on the mobile terminal. Different offloading approach

[Mazza et al. (2014)] has been proposed towards optimizing the execution of applications on

multiple mobile devices. Yet the proposed technique is not able to identify components to be

offloaded but rather generates only their fraction/percentage.

We propose in this article an offloading-based approach to augment multi-persona performance

and viability on resource constrained mobile devices. Our proposition consists first of monitor-

ing the components running in each persona using per persona profiler, and then determining

their optimal execution environment based on a generic and adaptable decision model. Taking

into account four conflicting objectives of minimizing CPU and memory usages, energy con-

sumption and execution time, we formulate the decision model as multi-objective optimization

problem, generic enough to be applied on any components unit (i.e., applications, services,

methods and threads) and adaptable to different execution settings. Using heuristics to solve

this latter, our approach dictates for each component whether it should be executed locally or

offloaded for remote execution.

The main contributions of our approach are threefold:

- Proposing offloading-based architecture to augment multi-persona performance and viabil-

ity on mobile devices.

- Providing generic and adaptable multi-objective optimization model to formulate multi-

persona problems independently of the offloading granularity and adapt offloading evalua-

tion to different execution contexts.

- Generating exact optimal distribution of multi-persona components through heuristics.

The roadmap of the paper is as follows. In Section 2.3, we present relevant background infor-

mation and we study existing related works. In Section 2.4, we highlight the problems caused

27

by running multiple personas on a single mobile device, while in Section 2.5, we illustrate our

proposed solution to address these issues. In Section 2.6, we present our multi-objective opti-

mization model for offloading evaluation and its complexity analysis whereas in Section 2.7,

we describe the heuristic algorithm to solve it. Later, in Section 2.8, we provide details about

the implementation as well as the experimental results that prove the efficiency of our proposi-

tion. Finally, in Section 2.9, we conclude the paper and draw our future research directions.

2.3 Background and Related Work

We present in this section some background information about mobile virtualization and of-

floading and the relevant state of the art review.

2.3.1 Mobile Virtualization

As smartphones and tablets are growing more and more sophisticated, researchers were able to

bring virtualization to such mobile terminals. System-level virtualization [Barr et al. (2010);

Dall & Nieh (2013)] is a technique that offers the ability to run multiple virtual environments

on one physical device using an additional software layer called a hypervisor (or microkernel)

[Wessel et al. (2013)]. The virtual environments may run the same or even different operating

systems. Even though this technique offers full isolation between the virtual environments,

it suffers from significant overhead due to the complete software stack in each instance (i.e.,

Kernel, Middleware and Apps) [Andrus et al. (2011)]. Therefore, when it comes to more than

just two personas on the device, this architecture will not be the right choice to go. Per contra,

the user-level isolation technique [Inc.] reaches separation by wrapping applications instead

of creating virtual environments, which makes it very lightweight when applied on mobile

devices. However, by keeping separation just at the applications level, critical, malicious,

personal, business and any other type of applications will be running in the same environment.

This makes user-level isolation a bandage more than a real solution that can realize multi-

persona which requires much higher security [Eiferman (2013)].

28

As a trade-off between both above techniques, researchers have proposed recently OS-level

virtualization, also called container-based virtualization, which is a technique that shares the

kernel layer to run multiple virtual instances on a single operating system [Andrus et al. (2011);

Chen et al. (2015c)]. Allocating a minimum set of resources for each instance, make the avail-

able OS resources enough for running more than just two personas on top of it. Also using

isolation techniques that leverage namesapces at multiple levels of the mobile platform, this

technique is able to ensure that the virtual environments are completely independent, secure

from each other and any failure that might occur in one of them will not affect the others. These

properties are what make such architecture the most adequate for building multi-persona [An-

drus et al. (2011); Chen et al. (2015c)]. Wessel et al. present a lightweight isolation mechanism

for Android with access control policies, to separate one or more Android userland instances

from a trustworthy environment [Wessel et al. (2013)]. The proposed architecture provides

userspace containers to isolate and control the resources of single application or groups of

applications running on top of one kernel. Another approach is Cells [Andrus et al. (2011)],

which enables multiple virtual phones (VPs) to run simultaneously on the same physical smart-

phone. It uses device namespaces to multiplex access among VPs to kernel interfaces and hard-

ware resources such that VPs can run side-by-side in virtual OS sandboxes. Lately, Chen et al.

have proposed Condroid [Chen et al. (2015c)], a lightweight virtualization architecture that al-

lows creating multiple personas by virtualizing identifiers and hardware resources on a shared

OS kernel. The proposed architecture leverages namespaces for resource isolation and cgroups

feature for resource control. Together, they allow Condroid to run multiple independent and

securely isolated virtual instances on the same physical device.

Despite the lightweight approaches, running multiple personas on the same physical mobile

terminal remains challengeable. The limited CPU, memory capacity and battery power, all

threaten the performance of the running personas and make the device unable to tolerate their

survivability. While varying the number of personas, number and type of applications running

in each, our experiments in Section 2.4 show drastic increase in the CPU and memory usages,

energy consumption on the device as well as in the execution time of the running applications.

29

Table 2.1 Taxonomy of mobile code offloading approaches.
���������������Technique

Criteria Target Granularity Decision Model Cloud Features Gain

[Hung et al. (2012)]

One App

on Single Device

Application Does Not Apply Virtual Phone Faster Execution

[Cuervo et al. (2010)] Method Energy Server

Faster Execution

and Energy Saving

[Kosta et al. (2012)] Method Energy and Time
Dynamic Allocation and

Management of VMs

[Kemp (2014)] Service Energy and Time Server

[Chen et al. (2012)] Service
Time, Energy

and Battery Level
Virtual Phone

[Chun et al. (2011)] Thread Energy and Time Server

[Mazza et al. (2014)]
Multiple Apps

from Multiple

Devices

Service Energy and Time Server

Distribution Fraction,

Faster Execution

and Energy Saving

Our Approach Multiple Apps

from Multi-Persona
Generic

Energy, Time,

CPU and Memory
Server

Exact Distribution,

Faster Execution,

Energy Saving,

Minimized CPU

and Memory Usages

They reveal also the inability of the device to run more than three personas. Even though we

are able to start a fourth persona, they all shut down once a new application starts executing in

this latter.

2.3.2 Offloading

In turn, mobile cloud computing has brought cloud computing capabilities to support mobile

devices, ranging from outsourcing software and platforms all the way to infrastructure [Ahmed

et al. (2015b,c,a); Abolfazli et al. (2014)]. Different offloading concepts exist in this context.

The explosion of mobile internet applications, like multimedia newspapers, social networking

services, audio and video streaming, is the main reason behind the significant overload on the

cellular networks. In this context, traffic offloading [Fiandrino et al. (2015); Han et al. (2010);

Andreev et al. (2014)] has been proposed, which is the use of complementary networks like

Wi-Fi for data transmission in order to reduce the data carried on the cellular network. On the

other hand, the limited resources of mobile devices have triggered another research domain of

computation offloading, which has different concept and objective compared to traffic offload-

ing. In computation offloading, resource-hungry applications, services, methods or threads are

offloaded out of the device to be executed on resource-rich and more powerful infrastructure

like remote servers. These components are profiled and an offloading decision is taken based

30

on predefined optimization metrics that determine the cost-benefit of offloading. Our proposi-

tion is based on computation offloading, therefore in Table 2.1, we provide a classification of

existing relevant techniques to better position our work. Target indicates what the offloading

techniques aim to optimize, granularity identifies the type of components where offloading is

applied and the decision model defines the metrics for offloading evaluation. Gain shows the

benefits of each technique on the mobile terminal and cloud features are the assets used to

attain these gains.

From Table 2.1, approaches aiming to optimize an application execution on single mobile

device can be further distinguished based on their granularity:

Application-based offloading: Hung et al. [Hung et al. (2012)] have proposed an approach to

execute mobile applications in a cloud-based virtualized environment. The proposed architec-

ture consists of a mobile device connected to virtual phone in the cloud, and an agent program

installed on the device whose purpose is to allocate a delegate system on the cloud and com-

municate the application status. This work presents an application-level migration using the

pause/resume concept in android. The application is copied in case it does not exist on the

virtual phone. Otherwise, the agent triggers OnPause function of the application and sends its

state to the remote agent where it get resumed using OnResume function. Their approach has

been able to prove its ability to offload applications out of the mobile device, to be executed on

virtual phone in the cloud. However, what is missing in their proposition is the criteria, objec-

tive, or circumstances under which a certain application should be considered for offloading.

Method-based offloading: MAUI [Cuervo et al. (2010)] is an offloading framework that aims

to reduce the energy consumption of mobile applications. The framework consists of a proxy

server responsible of communicating the method state, a profiler that can monitor the device,

program and network conditions, and a solver that can decide whether to run the method locally

or remotely. MAUI uses its optimization framework to decide which method to send for remote

execution based on the information gathered by the profiler. The results show the ability of

MAUI to minimize the energy consumption of a running app. ThinkAir [Kosta et al. (2012)]

31

aims to improve both computational performance and power efficiency of mobile devices by

bridging smartphones to the cloud. The proposed architecture consists of a cloud infrastructure,

an application server that communicates with applications and executes remote methods, a set

of profilers to monitor the device, program, and network conditions, and an execution controller

that decides about offloading. ThinkAir applies a method-level code offloading. It parallelizes

method execution by invoking multiple virtual machines (VMs) to execute in the cloud in a

seamless and on-demand manner to achieve greater reduction in execution time and energy

consumption. ThinkAir was also able to demonstrate its capability in that regard.

Service-based offloading: Cuckoo [Kemp (2014)] is another offloading framework that follows

a different strategy for offloading computation-intensive tasks. As precondition, all compute

intensive code should be implemented as an Android service. The framework includes sen-

sors to decide, at runtime, whether or not to offload particular service since circumstances like

network type and status and invocation parameters of the service call on mobile devices get

changed continuously, making offloading sometimes beneficial but not always. Cuckoo frame-

work has been able to reduce the energy consumption and increase the speed of computation

intensive applications. Chen et al. [Chen et al. (2012)] have proposed another framework that

follows similar strategy to automatically offload heavy back-end services of a regular stan-

dalone Android application. Yet, based on a decision model, the services are offloaded to an

Android virtual machine in the cloud. Their proposition has not been implemented and evalu-

ated yet.

Thread-based offloading: CloneCloud [Chun et al. (2011)] is a system that aims to minimize

both execution time and energy consumption of a running application. It consists of a profiler,

which collects the data about the threads running in this app and communicates the gathered

data with an optimization solver. Based on cost metrics of execution time and energy, the solver

decides about the best partitioning of these threads between local and remote execution. This

approach does not require modification in the original application since it works at the binary

level. The experiments of CloneCloud showed promising results in terms of minimizing both

execution time and energy consumption of an application. However, only one thread at a

32

time can be encapsulated in a VM and migrated for remote execution, which diminishes the

concurrency of executing the components of an application.

On the other hand, Mazza et al. [Mazza et al. (2014)] proposes an approach that aims to opti-

mize the execution of applications in a system that involves multiple mobile devices. In their

work, a partial offloading technique has been proposed for heterogeneous networks infrastruc-

ture (HetNets). Depending on the number of devices connected in this network and constrained

by both the energy consumption and execution time, the proposed approach is able to generate

the percentage of tasks to be offloaded, aiming to optimize the entire system rather than just a

single device.

2.3.3 Proposed Approach Positioning

Computation offloading requires device status, network conditions and applications to be mon-

itored, in order to study the effectiveness of offloading when a decision should be made. The

gathered information formulate the input of a solver that evaluates the decision model met-

rics to decide whether a component is to be offloaded or executed locally. Existing approaches

[Hung et al. (2012); Cuervo et al. (2010); Kosta et al. (2012); Kemp (2014); Chen et al. (2012);

Chun et al. (2011)] are proposed for single application where profiling and offloading evalu-

ation are done solely for each app. Therefore, with multiple applications on the mobile ter-

minal, a profiler and a solver should be dedicated for each, which cause significant overhead

in multi-persona where many independent components from different applications are running

on the device. Multi-persona necessitates higher view of resource consumption and global

formulation of the decision making metrics, therefore our work provides per persona profiler,

and eventually global formulation of the optimization model. The proposed model is generic

enough to be applied with any offloading component unit (i.e., at any granularity level) and

adaptable to different execution settings like lack of memory and low battery. The proposed

approach is capable of minimizing CPU and memory usages that affect the performance as

well besides the energy and execution time of the applications.

33

On the other hand, different work [Mazza et al. (2014)] exists involving multiple mobile de-

vices, where the aim is to optimize the entire system rather than a single terminal. The proposed

approach generates the percentage/fraction of components to be offloaded from the system, yet

identifying what components to be offloaded is needed in order to execute the offloading pro-

cess. Therefore, more effectively, our approach can generate the exact distribution of all the

components running in each persona at any time being with the intent of augmenting personas

performance and viability. Seeing that such valuable decision can be costly, we discuss later in

the paper some alternatives that can decrease its overhead.

2.4 Problem Illustration

Table 2.2 Applications in each persona.

Weight Application
Lightweight Zip: This application creates archive folder from original files. To make

it lightweight, we use files having total size of 3 MB. Unzip: The unzip

application extracts the content of the archived folder created using the Zip

app.

Moderate Virus Scanning: This application scans the contents of some files on the

phone against a library of 1000 virus signatures, one file at a time. To

implement moderate application, we fix the size of the files to 100 KB.

Computation
Intensive

NQueens Puzzle: This puzzle implements the algorithm to find all possi-

ble solutions of the typical NQueens problem, and return the number of

solutions found. We consider N=13 to create computationally intensive

problem.

No matter how sophisticated mobile devices are growing, they still have limited hardware in

terms of computing power, memory capacity and battery lifetime. Running multiple personas

on a single mobile device is yet impeded by these limitations, rendering personas performance

and viability on the line [Tout et al. (2015)]. To shed the light on these issues that we address

in this paper, we vary the number of personas running diversity of lightweight, moderate and

heavy applications, and we compare the resource consumption that affect personas lifetime as

well as the execution time that influence their performance. To model different usage scenarios

34

of the device, we consider in each persona four applications of different weights as described

in Table 2.2.

Figure 2.1 Multi-Persona efficiency and viability.

The results depicted in Figure 2.1 show drastic increase in the CPU usage that was originally

49 % with 1 Persona (1P) running the four apps, but reached 62 % with 2 Personas (2Ps). Also

the energy consumption, which is consumed by the applications usage on CPU as well as the

one spent on the screen, has significantly increased from 330 J to 420 J. As for the execution

time, which denotes the time taken till the end of execution of the last app in each persona, it

took 780 s in one persona, yet up to 1380 s with two personas. This long execution time is due

to the NQueens puzzle, which we use to overload the device. Another interesting observation

is in the third scenario (3Ps) where it was impossible to run the same apps in three personas, as

the personas kept shutting down due to lack of memory on the mobile terminal as well as the

high consumption of other resources. These results reveal the inability of the mobile device

resources to afford high performing personas neither to tolerate their viability. In the light of

these serious problems, it is indispensable to integrate new techniques capable of minimizing

the resource consumption and execution time of different type of applications running in each

persona. For details about the implementation and tools used, please refer to Section 2.8.1

which is devoted for that end.

35

2.5 Offloading Meets Multi-Persona

In Section 2.3, we distinguished our proposition from existing offloading approaches. In what

follows we go deeper to explain it in details and highlight its contributions. The architecture of

our approach is depicted in Figure 2.2 that essentially focuses on the mobile device structure,

since the main dilemma lies there.

Figure 2.2 Proposed architecture.

We build our approach on top of OS-level virtualization, which is as we discussed in Section

2.3, the architecture that best fit for multi-persona solution. In each persona (P1...Pn) we add

a profiler to monitor the latter resources. Differently from the literature, this profiler is not

dedicated to one application at a time neither to components belonging to one application,

but rather it is devoted for the entire persona. Each profiler gathers information about CPU

and memory usages, energy consumption, execution time and other relevant data for all the

components running in the persona. These components (C1...Cn) can be applications, services,

36

methods or even threads. The profiler examines also the connectivity availability, bandwidth

and latency in the persona where it runs.

Next comes the role of the solver which uses the gathered information to construct a global

decision model involving all the components running in each persona, rather than just one ap-

plication on the device like in existing approaches. The decision model is based on four metrics

that affect personas performance and viability, which are minimizing CPU usage, memory and

energy consumptions and execution time. With these four conflicting metrics, we formulate the

decision model as multi-objective optimization problem. It is worth to mention that the latter is

generic enough to be independent of the offloading component unit (i.e., application, services,

methods, threads). Further, this model can be automatically adapted to different execution

settings. Particularly, with low CPU, memory, battery level or the need for high performing

applications, the model can be adapted giving more priority for the relevant metric(s), which

is/are in critical situation. We believe that this will be a valuable track in future work. Other

type of adaptations may also apply, like restricting the execution of particular component(s)

to the mobile device (or to remote server) for security reasons. Furthermore, the model can

exclude persona(s) and/or component(s) to try whether shutting them down can be more effi-

cient for the personas performance, and hence notify the user accordingly (e.g., component is

running but has not been used for a while). All these adaptation settings can be enforced by the

policy manager.

Finally, after formulating the problem, a decision algorithm and part of the solver module, is

responsible of generating the exact distribution of the components running in each persona

on the device. The decision dictates for each component whether it should be executed on

the device or offloaded for remote execution. This is also another added value to the existing

approaches, which generate only the fraction or percentage of local and remote tasks. For the

solver algorithm, we use heuristics and more specifically genetic algorithms (GAs), which are

able to find the optimal distribution that complies with multi-persona problem’s objectives. To

decrease the overhead of the decision making process, which is needed for granular offloading,

one solution provided in our approach is to generate good solution rather than an optimal one.

37

This can offer a trade-off between components overhead and decision overhead. Whenever

connectivity is not available, our approach do not call the solver but takes directly a decision

to run the components locally in order to reduce the overhead caused by the solver. Also

whenever certain scenario is repeated, yet with different resources availability or constraints, a

delta value is to be computed in order to reduce the solver overhead. We also offer the ability

to even offload the decision making process by implementing a counterpart of the solver on the

server side, since based on the decision model complexity, the decision making process can be

time consuming and might require additional resources.

2.6 Multi-Objective Optimization for Multi-Persona

In this section, we present a formal definition of the multi-persona problem, explain the com-

putational analysis to prove its complexity and finally show its formulation as multi-objective

optimization problem.

2.6.1 Problem Definition

Assumptions:

- Some components might not be offloadable

- Components are independent

- Network might not be stable in terms of availability, bandwidth and latency

We consider a mobile device of multiple personas P ={P1,...Pm} where each of them is run-

ning a set of components C ={C1,...Cn}, which can be applications, services, methods or even

threads that implement the applications functionalities. Each component has demands in terms

of energy consumption, execution time, memory and CPU usages. Due to limited resources

on the mobile device in terms of CPU, memory and battery, part/all of the components in the

running personas should be offloaded for remote execution. Finding the best distribution of

38

these components is a complex and challenging problem. The multi-persona problem can be

formulated as follows:

Problem Definition 1. Given a set of components running in each persona Pi, where each

of these components Cj has energy consumption El
c j,pi

, execution time tl
c j,pi

, memory usage

Ml
c j,pi

and cpu usage CPUl
c j,pi

for local execution and Er
c j,pi

, tr
c j,pi

, Mr
c j,pi

, CPUr
c j,pi

for remote

execution, αc j,pi an indicator whether they are offloadable or not, network bandwidth B and

latency L, find the best distribution of components between local and remote execution in a way

to minimize their energy consumption, execution time, memory and CPU usages. Minimizing

the energy consumption, execution time and memory and CPU usages form the fundamental

objectives that can augment performance and ensure viability of the personas running on the

mobile device. Yet, this is a complex and challenging problem for the following reasons.

- First, minimizing energy consumption, execution time, memory and CPU usages are con-

flicting objectives, therefore finding the best tradeoff among them is not a simple task.

- Second, computing local and remote partitions of these components suffers from an ex-

ponential search space in the number of different possibilities in which these components

can be distributed, which renders the problem heavy. This is similar to the various ways n

distinct objects (components) can be distributed into m different bins with k1 objects in the

first bin, k2 in the second, etc. and k1+k2+....km= n. This indeed is obtained by applying the

multinomial theorem where (k1 + k2 + ...km)
n= ∑

(n
k1k2....km

)
kn1

1 kn2
2 ...knm

m . In our case m = 2

bins, one is the mobile device and the second is the remote server thus, for n components,

there are 2n different distribution possibilities.

To further emphasize the complexity of the problem, we consider the case of three personas

with only four components in each. To compute the portion of the components in each persona

that should be offloadded and the other that will run locally on the mobile device, there are

212(4096) different mapping possibilities. When this number might not appear to be that big in

case the components are applications or services, it will dramatically increase when the com-

ponents are methods or threads. In such case, the number of components will reach hundreds

39

or even thousands and it would be there 2100 or 21000 possible distributions! which makes it

hard to find their exact distribution.

Theorem 1. Multi-Persona Multi-Objective Optimization problem is NP-Hard

Proof: We reduce the multi-objective-m-dimensional Knapsack Problem [Lust & Teghem (2012)]

to our multi-persona problem (MPP). The idea is that if a case of the multi-persona multi-

objective optimization problem can be solved, then it can be used to solve the multi-objective-

m-dimensional Knapsack Problem (MOMKP). Given the MOMKP - a collection of n items

a1, ...,an, where each item ai has m weights wki ∈N,k = 1, ...,m and t values pki ∈N,k = 1, ..., t

and a knapsack of m capacities ck ∈ N, k = 1, ...,m - we construct the Multi-Persona problem

as follows: Setup m personas P = {p1, ..., pm} with n components in each, forming a set of

n∗m denoted as x components C = {C1, ...,Cx}, one corresponding to each item in MOMKP.

- For components Ci, set the resource demands in terms of memory and CPU of each compo-

nent as the weights of the items in the sack. Ml
ci

, Mr
ci

, CPUl
ci

, and CPUr
ci

, are the memory

and CPU usages when Ci is running locally and when executed remotely, respectively.

- For components Ci set aci . f1, aci . f2, aci. f3 and aci . f4 as the values of each item, where they

form the cost of each component in terms of energy consumption, execution time memory

usage and CPU usage respectively. So that ∑x
i=1 aci. f j where j = 1, ...,4 constitute each of

our objective functions correspondingly.

With this reduction, the content of the knapsack is a portion of components, which is selected

to run on the mobile device such that the total of each value (cost) is minimized (rather than

maximized as in knapsack, but they are essentially the same), and vice versa, and a solution to

our problem yields a solution to the MOMKP. Thus an algorithm for solving the multi-persona

problem can be used to solve the multi-objective m-dimensional Knapsack problem. Hence it

follows that our problem is NP-Hard.

40

2.6.2 Problem Formulation

Table 2.3 describes the notations used in the problem formulation.

Table 2.3 Formulas notations.

Variable Description
m Number of personas

p Persona

n Number of components in a persona

c Component

Pcpu Power consumed by the cpu when the component is executed locally

Psc Power consumed by the screen when the component is executed locally

Pcpu,idle Power consumed by the cpu when it is idle waiting for remote results

Pna Power consumed by the network when it is active

Ptr Power consumed by the device during transmission

tl
c,p Execution time of the component c running locally

tr
c,p Execution time of the component c running remotely

Dc,p Size of data exchanged between the device and the cloud for offloading c

Ml
c,p Memory consumed by the device when c is executed locally

Mr
c,p Memory consumed by the device when c is executed remotely

Cl
c,p CPU usage on the device when c is executed locally

Cr
c,p CPU usage on the device when c is executed remotely

L Latency

B Bandwidth

xc,p Decision variable that indicates whether c should be offloaded or not

αc,p Indicates whether c is offloadable or not

ap Indicates whether persona p should be included in the decision process or not

bc,p Indicates whether c should be included in the decision process or not

1. Minimize Energy Consumption The total energy consumption is equal to the one con-

sumed on local components plus the one for offloaded components. When running com-

ponents locally, they consume energy on the CPU processing and screen brightness. As to

execute components remotely, the energy is spent on the CPU being idle, screen brightness

and network active while waiting for the remote execution. In addition it consists also of

41

the energy consumed by the device for data transmission (i.e., upload and download).

F1 = min

[
m

∑
p=1

ap

n

∑
c=1

bc,p(1− xc,p)
(
(Pcpu +Psc)× tl

c,p

)
+

m

∑
p=1

ap

n

∑
c=1

bc,pxc,p

(((
(Pcpu,idle +Psc +Pn,a)× tr

c,p

)

+(Ptr× (L+
Dc,p

B
))

)
×αc,p

)]

(2.1)

2. Minimize Execution Time The overall execution time is equal to the time taken by the

components running locally and those running remotely.

F2 = min

[
m

∑
p=1

ap

n

∑
c=1

bc,p(1− xc,p)(tl
c,p)+

m

∑
p=1

ap

n

∑
c=1

bc,pxc,p

(
(tr

c,p +L+
Dc,p

B
)×αc,p

)]
(2.2)

3. Minimize Memory Consumption The total memory consumption in the running personas,

is equal to the memory consumed by the components running locally plus the one con-

sumed while waiting the remote execution.

F3 = min

[
m

∑
p=1

ap

n

∑
c=1

bc,p(1− xc,p)× (Ml
c,p)+

m

∑
p=1

ap

n

∑
c=1

bc,pxc,p(Mr
c,p×αc,p)

]
(2.3)

4. Minimize CPU Usage The total CPU usage in the running personas, is equal to the CPU

usage of the components running locally plus the one used while waiting for remote exe-

cution.

F4 = min

[
m

∑
p=1

ap

n

∑
c=1

bc,p(1− xc,p)× (Cl
c,p)+

m

∑
p=1

ap

n

∑
c=1

bc,pxc,p(Cr
c,p×αc,p)

]
(2.4)

So our multi-objective optimization problem is: F = min{F_1,F_2,F_3,F_4}

S.t

n ∈ N (c1)

m ∈ N (c2)

xc,p = {0,1} (c3)

ap,bc,αc,p = {0,1} (c4)

0≤Ml
c,p ≤ 1 (c5)

0≤Mr
c,p ≤ 1 (c6)

0≤Cl
c,p ≤ 1 (c7)

0≤Cr
c,p ≤ 1 (c8)

F3≤ tm% (c9)

42

F4≤ tc% (c10)

Constraints c1 and c2 ensure that the number of personas and their components belong to the

set of natural numbers. Constraints c3 and c4 define the binary variables. Constraints c5-c8

ensure that the memory consumption and CPU usage on the mobile device vary between 0

and 1 since they are represented as percentages in our model. Finally, constraints c9 and c10

ensure that the amount of the memory and CPU usages do not exceed certain thresholds based

on the capacity of the mobile device. Solving this model will generate the best distribution of

the components running in each persona that complies with the formulated objectives aiming

to augment personas performance and viability. This distribution is represented by xc,p, which

represents whether a component c should be offloaded or not. If xc,p = 0, then c should run on

the mobile device, while it should be offloaded otherwise i.e., for xc,p = 1.

2.7 Heuristic Algorithms for Optimal Distribution of Multi-Persona Components

Genetic algorithms (GAs) [Deb (1999)] are heuristic methods that mimic the natural evolution

process to solve a problem. Using the concepts of natural selection, GAs simulate the prop-

agation of the fittest individuals over consecutive generations to determine the best solution.

Particularly, GAs start by initializing random set of solutions represented by chromosomes/in-

dividuals, forming together what is called a population. According to their fitness, solutions

from one population are selected to form new candidate solutions called offspring. The fitness

of a solution is determined based on a function that aims to minimize or maximize particular

objective. The more suitable the solutions are, the more chances they can have to reproduce.

To generate offspring, GAs apply crossover and mutation operators to evolve the solutions try-

ing to find better ones. After evaluation, the process is then terminated if stopping criteria is

met. Over time, this process will result in increasingly favourable individuals for solving the

problem. As such, GAs have been able to prove, through their method of evolution-inspired

search, their capability to solve complex optimization problems in many areas [Grefenstette

(2013); Wu et al. (2014); Cai & Chen (2014)]. In this paper, we exploit the intelligent evolu-

tion of solutions in GAs to solve the multi-objective optimization problem of multi-persona. In

43

what follows we show how the main elements and operators of GAs are mapped to solve the

problem.

2.7.1 Representation of Individuals

Each individual is a candidate solution represented as a set of bits having a length of L. Each

bit represents a component running in particular persona, and hence the size of an individual

is determined based on the number of components. A bit has two possible values 0 and 1.

For instance having three components, a randomly generated individual can be represented by

000, 001, 011, 111, 110, 100, 101 or 111. For any component, a bit of 0 is for local execution

while a bit of 1 is for remote execution. With this representation, we are able to decode the

distribution (local/remote execution) of components running in each persona.

2.7.2 Fitness Evaluation

Genetic algorithms require a fitness function that assigns a score (fitness) to each individual

in the current population. The fitness depends on how efficiently that individual can solve

the problem at hand. In our multi-persona problem, the fitness of a solution is calculated by

evaluating the four objective functions F1, F2, F3, and F4 that we defined in the previous section.

The solutions are ranked based on their ability to minimize these functions.

2.7.3 Operators

2.7.3.0.1 Selection

This operator selects individuals in the population for reproduction. It selects random individ-

uals and picks the x best of them able to minimize mostly the objective functions.

44

2.7.3.0.2 Crossover

This operator applies modification on individuals selected based on particular rate μc to gen-

erate offspring. It randomly chooses a bit and exchanges the subsequence before and after that

bit between two individuals to create two offspring. For example, the individuals 110 and 101

could be crossed over after the second bit in each to produce the two offspring 111 and 100.

2.7.3.0.3 Mutation

This operator randomly flips some of the bits in individuals selected based on mutation rate

μm. For example, an individual 010 might be mutated in its second position to yield 000.

2.7.4 Algorithm and Time Complexity Analysis

Algorithm 2.1 MultiPersonaSolver(N, L, μm, μc)

1: Input: N := Population size, L := Individual length, μm := mutation rate and μc := crossover rate

2: Output: S := Set of fittest individual(s)

3: Initialize populations index k := 0

4: Generate random population Pk := GenerateRandomPop(N,L)
5: for each individual i ∈ Pk do
6: Evaluate objective functions F1(i),F2(i),F3(i),F4(i)
7: end for
8: do
9: {

10: Select x best distribution possibilities and insert them into Pk+1

11: Crossover μc×n individuals to produce new offspring

distributions and insert offspring into Pk+1

12: Mutate μm×n individuals by inverting a randomly-selected bit

in each to generate new possible distribution solutions

13: for each i ∈ Pk+1 do
14: Evaluate objective functions F1(i),F2(i),F3(i),F4(i)
15: end for
16: Increment k := k+1

17: }

18: while stopping criterion is not met

19: return S the fittest distribution(s) from Pk

Based on these definitions, the algorithm of the solver works as described in Algorithm 2.1. It

starts by creating a population of N randomly generated individuals for the running personas.

45

Each individual is a point in the search space that represents a possible distribution solution.

The fitness of an individual is calculated by the computation of the four objective functions

F1,F2,F3 and F4. The fittest individuals in the population are then selected to go through a

process of evolution based on crossover and mutation rates μc and μm respectively. In this

process, crossover and mutation operators are applied on the selected individuals to create next

generation of individuals for new possible distribution solutions of components. The fitness

of these generated individuals is also calculated. This process continues over and over until

a stopping criterion is met. This criterion can be number of iterations, time or other relevant

condition. Finally, the solver returns the fittest distribution(s) of components to solve the multi-

persona problem.

The time complexity of this algorithm depends on many factors, the fitness function evaluation,

the population size, the individual length, variation and selection operators and the number of

iterations or generations. Initializing and generating the population (Lines 3 and 4 respectively)

have time complexity O(1). The evaluation of the fitness function (Line 5 till Line 7) has time

complexity of O(N) where N is the population size. The tournament selection, single point

crossover and bit flip mutation (Line 8 till Line 18), have time complexity of O(INL) where

I is the number of iterations (i.e., generations) and L is the length (i.e., number of bits) of an

individual. Finally, the return statement (Line 19) has O(1). Subsequently, the time complexity

of the algorithm is O(1)+O(N)+O(INL)+O(1) which is equivalent to O(INL).

2.8 Implementation and Experiments

We dedicate this section to describe the implemented components and discuss our experiments

finding.

2.8.1 Implementation

To create personas, we use Cells [Andrus et al. (2011)], since by the time this work is done

Cells was the first and only open-source virtualization architecture that enables multiple virtual

46

smartphones and tablets to run simultaneously on the same physical device [Andrus et al.]. We

set up the environments on Asus Nexus 7 tablet as Cells open source project has been ported

for this device only. The tablet runs Android operating system, has quad-core processor and 1

GB of RAM.

On the other hand, and as we discussed throughout the paper, the offloading unit can be an

application, service, method or thread. Offloading the entire image of a running application,

involves the encapsulation of the latter in a VM instance, which imposes high overhead for

creating, cloning, migrating and configuring the VM on the remote server [Shiraz et al. (2013);

Shiraz & Gani (2014)]. More recent offloading approaches are based on service-level offload-

ing, which distinctly do not have such high overhead and can even reduce the overhead caused

by finer granularity components [Shiraz & Gani (2014)]. In addition, Android platform ar-

chitecture supports and encourages the implementation of applications using activity/service

model in android. In this model, the logic code of the computation-intensive tasks is imple-

mented as services through an interface defined using interface definition language (AIDL)

[Android] and the user interface as activities. In case the applications do not meet with this re-

quirement, an interface can be easily extracted from the original code as stated by kemp [Kemp

(2014)]. Following these facts, a small statistic that we did, in which we downloaded 70 ap-

plications from Google play store from different categories (e.g., games, social media, video

conferencing, notebook, EMR), showed that 51 % of them contain services varying from 1 to

20 services per app. Therefore, for the sake of the implementation in this paper, we decided to

take the services to be the offloadable components using specific libraries [Kemp (2014)].

For the profiler, we implemented one that exploits Linux-based commands to monitor CPU

and memory usages. To get the power consumed on idle CPU and screen, active Wi-Fi and

during transmission, we use the power profile of android [Android (2017)], whereas, Pow-

erTutor tool [Zhang et al. (2010)] is used to get the power consumed on the CPU, screen and

network, during the execution of local components. As for the execution time, we implemented

and embedded a timer to monitor the execution of the relevant components. The connection

between the mobile terminal and the server is done through Wi-Fi network in infrastructure

47

mode and not in an ad-hoc fashion. So the communication is done indirectly through an access

point and not in a peer to peer mode and it is characterized by the IEEE 802.11n standard.

Enhancing the implementation of profilers will be part of future work. Finally in the solver,

we implemented the decision model based on the metrics that we described in Section 2.6. For

the decision maker, we implemented different genetic algorithms in order to compare them

and check which one is more adequate in terms of execution time and resource consumption.

The first algorithm is NSGA-II [Deb et al. (2002)], a multi-objective genetic algorithm which

uses pareto ranking mechanism for classification of solutions and crowding distance to define

proximity between them. SPEA2 [Zitzler et al. (2002)], is another multi-objective evolution-

ary algorithm based on pareto dominance, yet characterized by its strength scheme that not

only takes into account the number of solutions that dominate particular solution, but also the

number of solutions by which it is dominated. The third algorithm is SMSEMOA [Emmerich

et al. (2005)], which is a steady state algorithm, in which a random selection of individuals is

done for the mating process and the offspring replaces the individuals of the parent population.

Next, IBEA [Zitzler & Künzli (2004)] is an algorithm that employs a quality indicator in the

selection process. Finally, MOCell algorithm [Nebro et al. (2009)] which is characterized by

both decentralized population and archive to store non-dominated solutions. We implemented

these algorithms as introduced by their authors, yet based on the mapping that we described

in Section 2.7. As for the formulated problem, it can be adapted at any time by modifying the

input parameters.

2.8.2 Experiments

The first experiment aims to compare the algorithms described above in order to determine the

most efficient one to solve the proposed multi-objective optimization model of multi-persona.

While adopting the most performing algorithm, we study in the second experiment the effi-

ciency of our approach compared to two different strategies. In the first strategy, all services in

all personas are executed locally on the mobile device, while in the second one, the execution

of these services is always offloaded to remote server.

48

2.8.2.1 Testbed Setup

Based on our results in Section 2.4, running three personas on the mobile device terminal was

the most problematic scenario. This makes it the best environment to perform our experiments

for both comparing the overhead of the algorithms as well as studying the efficiency of our

approach. For fair comparison, we use the same applications that we presented in Section

2.4. Yet as shown in Table 2.4, we vary the number of applications and their distribution in

the running personas to reflect different possible usage scenarios of the multi-persona mobile

device. To demonstrate the efficiency of our proposition, Table 2.4 includes also S7, which is

the scenario that the mobile device was not capable to run, as presented in Section 2.4. S8 is

also another scenario that cannot run on the device.

Table 2.4 Distribution of services in different scenarios.

������������Weight
Scenario

S1 S2 S3 S4 S5 S6 S7 S8 S9

Lightweight 3 0 0 1 3 4 6 8 16

Moderate 0 3 0 1 2 3 3 4 0

Heavy 0 0 3 1 1 2 3 3 2

Total 3 3 3 3 6 9 12 15 18

In each scenario, we profiled beforehand all the applications in the running personas as well as

the network characteristics in order to generate the input parameters that we presented in Table

2.3. The generated data set forms the input for the decision making algorithm in order to solve

the formulated multi-persona problem according to each scenario. The connection is charac-

terized by the IEEE 802.11n wireless networking standard with data rate varying between 54

and 600 Mbps and an average latency of 16 s. The server side is running Ubuntu 12.04 with

7.3GB of memory and quad core AMD Phenom(tm) II X4 B95 processor.

Concerning the algorithms configuration, we used the following values presented in Table 2.5.

For NSGA-ii, the population size is 100 individuals and the selection is based on binary tourna-

ment. The operators for crossover and mutation are single point crossover and bit flip mutation

49

Table 2.5 Parameters

Parameter Value
PopulationSize 100 individuals

ArchiveSize 100 individuals

Selection Binary Tournament

CrossoverProbability 0.9

MutationProbability 1/n (n=number of decision variables)

CrossoverOperator Single Point

MutationOperator Bit Flip

CrossoverDistributionIndex 20

MutationDistributionIndex 20

O f f set 10

Feedback 20 individuals

with distribution indexes of ηc = 20 and ηm = 20 respectively. A crossover probability of

pc = 0.9, and a mutation probability of pm = 1/n, where n is the number of decision vari-

ables. For SPEA2, both the population and the archive sizes are 100 individuals, and all se-

lection, crossover and mutation operators are the same used in NSGA-ii, with the same values

of probabilities and distribution indexes. Also SMSEMOA has the same parameters settings

as NSGA-ii, with an offset of 10. Same applies on IBEA and MOCell with feedback of 20

individuals for the latter.

Table 2.6 Number of iterations.

������������Algo
Scenario

S1 S2 S3 S4 S5 S6 S7 S8 S9

NSGA-ii 8 8 8 10 30 60 100 105 135

SPEA2 13 13 13 15 50 100 100 110 135

SMSEMOA 8 8 8 10 50 90 170 170 175

IBEA 14 14 14 15 60 110 -1 120 165

MOCell 13 13 13 15 40 60 100 110 135

1 optimal solution is not found, and therefore IBEA is excluded from being compared with the rest of

the algorithms in scenario S7.

50

The last parameter is the stopping criterion. In these experiments we set it to be the number

of iterations needed to find the optimal solution. We set the value of this criterion for each

algorithm as illustrated in Table 2.6. The values of this criterion are selected based on multiple

executions of these algorithms while trying to find the optimal distribution of services in each

scenario. Yet as discussed in Section 2.7, this criterion can be time threshold or any other

relevant parameter.

2.8.2.2 Assumptions

- The four objective functions have the same priority level; hence an optimal solution is de-

fined as the best trade-off among them: We experimented other models where we prioritized

certain objective functions yet they added no value neither to the algorithms comparison nor

to the approach efficiency experiments, therefore we do not present them here.

- Connectivity is always available: Whenever connectivity is not available, our approach does

not have to run the solver but rather takes directly the decision of running all the services

locally on the device. Therefore, we assume in these experiments that the network is always

available, in order to be able to compare the efficiency of the proposed approach whenever

offloading the execution of the services is a possible choice.

2.8.2.3 Results and Analysis

In what follows, we present the evaluation of the algorithms to select the best performing one,

and the efficiency of our approach compared to other strategies.

2.8.2.3.1 Algorithms Overhead

Figure 2.3 shows the overhead of each algorithm in terms of CPU usage, energy consumption,

memory usage and execution time.

51

Figure 2.3 Algorithms overhead on the mobile device.

The results show that in most of the scenarios, NSGA-ii algorithm consumed the least CPU

compared to the other algorithms. Yet even in scenarios S6 and S8, where SPEA2 algorithm

was the best, NSGA-ii had very comparable results. In terms of energy consumption, the results

are proportional to those of CPU usage, which can be expected since the energy consumption

for the algorithms is the one consumed on their usage of the CPU. Thus, the same analysis

applies on the energy consumption results. In terms of memory, NSAG-ii has proved again its

efficiency over the other algorithms. The results show that it consumed the least memory in

52

all the scenarios except S6, where yet it had comparable result to SPEA2, which was the best

in this case. Finally, in terms of execution time, NSGA-ii was the fastest to find the optimal

solution in all the scenarios. Based on these results, we opted to use NSGA-ii as the decision

making algorithm for the solver component of our model.

Table 2.7 Distribution of services based on the decision making algorithm.

Scenario Decision

S1 000

S2 111

S3 111

S4 101

S5 110111

S6 100110011

S7 100110011001

S8 100110011001100

S9 000000000000000011

2.8.2.3.2 Approach Efficiency

Table 2.7 shows the optimal distribution of the services running in each scenario based on

our solver module that implements NSAG-ii algorithm. The algorithm returns more than just

one possible solution in each scenario. Yet, since all solutions are non-dominated, they are

considered equally good. Therefore, we can randomly select any of them to be applied. In

Table 2.7, we show one of these solutions in each scenario. To recall what we explained in

Section 2.8.1, the distribution is represented in a binary set. Each bit corresponds to particular

service running in particular persona. A bit having a value of zero means that the decision

algorithm recommends to run this service locally, while a bit of one, means that it would be

more efficient to offload the service out of the mobile device. For instance in Scenario S4, the

virus scanning service was running in the first persona, the unzip service in the second persona,

and the NQueens service in the third one. Based on the solver, the optimal distribution that has

the best trade-off between the four objective functions in this scenario, is to run the unzip

service locally while to offload the two others to be executed on a remote server.

53

Based on the decision of the solver in each scenario, we study in Figure 2.4 the overhead

of our proposition compared to two other different approaches. Current usage of mobile de-

vices involves running all the services in all personas locally on the mobile terminal. Hence,

we opted to compare our proposition to such strategy that we call NDAL. In addition, since

we are proposing an offloading-based approach to address personas problems, it is indispens-

able to study whether always running services out of the mobile device can be more efficient.

Therefore we compare our proposition to NDAR, where all services are always offloaded to

be executed on the remote server. The aim of these experiments is to demonstrate that neither

running all the services locally on the mobile terminal nor always offloading their execution

to remote server, can offer an efficient multi-persona solution, but rather other appropriate dis-

tribution can do. The results of our approach are depicted by LDA and RDA in Figure 2.4.

LDA is the case when the solver algorithm is running on the mobile device, while in RDA, it

is running on the remote server. Both NDAL and NDAR do not include any decision making

process, but rather statically consider local device and remote server, respectively, for the exe-

cution of the services. Therefore, the only overhead caused by these approaches is the one of

the services, whereas in our approach, we add also the overhead of the solver in the results for

reasonable comparison (red bars).

The results in Figure 2.4 show how our approach (LDA and RDA) can remarkably minimize

CPU and memory usages, energy consumption and execution time of the services (comparing

the blue bars). Particularly, our finding show that, in scenarios S4 throughout S9, our approach

was able to achieve way better results, for the four metrics, compared to NDAL and NDAR.

Our approach LDA in scenario S9 is generating higher CPU usage overhead than NDAL due to

the solver overload, however we were able to overcome this issue by running the decision mak-

ing process remotely (RDA) achieving better results than both approaches (NDAL and NDAR)

with up to 93% reduction in the CPU usage compared to NDAL in scenario S4. For scenario

S1, our approach had results similar to those of NDAL. This is due the optimal distribution

found by the solver was to run all the services locally on the device (first row in Table 2.7),

which is the same case as of NDAL. Same analysis applies on Scenarios S2 and S3, where

54

LDA and RDA represent our approach. In LDA, the decision making process is done on the mobile terminal,

while in RDA, it is conducted on the server side. NDAL is the case when all components in all personas are

running locally on the device, and NDAR is when these components are always offloaded.

Figure 2.4 Approach evaluation.

the optimal distribution found by the solver was to offload all the services (second and third

row in Table 2.7), which is the same case as of NDAR. Our approach (RDA) was also able

to reduce the memory consumption by 22% compared to NDAR (scenario S9), reach 97%

55

less energy consumption compared to NDAL and accelerate twice the execution compared to

NDAL (scenario S9).

Another interesting observation is in scenarios S7 and S8, where it was impossible to run these

scenarios on the device (NDAL yellow bars), but now it is possible using our approach (LDA

and RDA) and even with better results than NDAR. The results also show that even after adding

the overhead of the decision making process (red bars), either LDA or RDA is still giving better

results than those of the other approaches. So for instance, if at any time being the CPU and/or

the memory on the multi-persona device goes low, we opt to run the solver on the server side,

so it doesn’t consume from local CPU and memory. Whereas, in case more priority is given

to the energy and/or execution time, the solver will be executed locally since for these metrics

LDA had better results than RDA.

Table 2.8 Required number of iterations.

������������Algo
Scenario

S1 S2 S3 S4 S5 S6 S7 S8 S9

NSGA-ii 3 3 3 4 24 30 45 54 67

Finally, in scenarios S1 and S2, the overhead of the decision making process was remark-

able. Therefore in what follows, we discuss some alternatives to decrease this overhead. For

instance, without running the solver, a decision can be taken based on historical profiled behav-

ior of the same situation. Another interesting idea is to find and generate ’good’ solution rather

than ’optimal’ one, where in this case the algorithm runs for less period and hence decreasing

its overhead. Even though on the other hand such proposition increases the overhead of the

running services, yet as overall cost it might be beneficial in some scenarios. To investigate

this option, we reduced the number of iterations of NSGA-ii in each scenario as depicted in

Table 2.8. The results depicted in Figure 2.5 show indeed that in some cases, even though the

services have higher overhead but the reduced decision making cost is able to reduce the overall

approach overhead. For instances, scenarios S5, S6, S7, S8 and S9 for CPU usage, S5, S6, S8

and S9 in terms of energy consumption, S2, S5 and S7 in terms of memory usage while in S5

56

Figure 2.5 Optimal(OS) and Good(GS) solutions overheads.

and S8 for execution time. Yet deeper investigation is still needed and even other alternatives

are to be investigated in future work.

2.9 Conclusion and Future Directions

Multi-persona solution is still impeded by the limited resources of mobile devices. These im-

pediments and their implications of putting personas performance and viability on the line have

been studied throughout the paper. To address these problems, we presented a novel offload-

ing approach to be integrated with multi-persona on the mobile terminal. Through profiling,

multi-objective optimization and heuristics, our proposition is capable of minimizing CPU and

memory usages, energy consumption and execution time of the components running in each

57

persona and hence augmenting the latter performance and viability. Most significantly, it was

able to realise scenarios that were not previously feasible to run on the mobile device with

multi-persona. Experiments demonstrated the efficiency and qualification of our proposition.

Our approach was able in some scenarios to reduce the CPU usage by 93%, the memory usage

by 22% and the energy consumption by 97% proved its capability to accelerate the execution

of the applications with more than twice faster runtime, compared to existing approaches. This

work opens the door for valuable future research directions. Investigating the frequency of

calling the profiler on the device is an interesting track, while another valuable direction is to

analyze the trade-off achieved between the proposed conflicting optimization objectives [Wu

et al. (2013); Liu et al. (2010); Wu & Wolter (2014); Song et al. (2014)].

Acknowledgment

The work has been supported by NSERC Canada and the Associated Research Unit of the

National Council for Scientific Research CNRS Lebanon.

CHAPTER 3

ARTICLE 2: SMART MOBILE COMPUTATION OFFLOADING: CENTRALIZED
SELECTIVE AND MULTI-OBJECTIVE APPROACH

Hanine Tout1, Chamseddine Talhi1, Nadjia Kara1, Azzam Mourad2

1 Département de Génie Logiciel et TI, École de Technologie Supérieure,

1100 Notre-Dame Ouest, Montréal, Québec, Canada H3C 1K3

2 Department of Computer Science and Mathematics, Lebanese American University,

1102 2801 Chouran Beirut, Lebanon

Published in Expert Systems with Applications

Volume 80, Pages 1-13

(DOI: https://doi.org/10.1016/j.eswa.2017.03.011)

3.1 Abstract

Although mobile devices have been considerably upgraded to more powerful terminals, yet

their lightness feature still impose intrinsic limitations in their computation capability, storage

capacity and battery lifetime. With the ability to release and augment the limited resources

of mobile devices, mobile cloud computing has drawn significant research attention allowing

computations to be offloaded and executed on remote resourceful infrastructure. Nevertheless,

circumstances like mobility, latency, applications execution overload and mobile device state;

any can affect the offloading decision, which might dictate local execution for some tasks and

remote execution for others. We present in this article a novel system model for computations

offloading which goes beyond existing works with smart centralized, selective, and optimized

approach. The proposition consists of (1)hotspots selection mechanism to minimize the over-

head of the offloading evaluation process yet without jeopardizing the discovery of the optimal

processing environment of tasks, (2)a multi-objective optimization model that considers adapt-

able metrics crucial for minimizing device resource usage and augmenting its performance,

and (3)a tailored centralized decision maker that uses genetics to intelligently find the opti-

mal distribution of tasks. The scalability, overhead and performance of the proposed hotspots

60

selection mechanism and hence its effect on the decision maker and tasks dissemination are

evaluated. The results show its ability to notably reduce the evaluation cost while the decision

maker was able in turn to maintain optimal dissemination of tasks. The model is also evaluated

and the experiments prove its competency over existing models with execution speedup and

significant reduction in the CPU usage, memory consumption and energy loss.

Index Terms: Mobile device, Mobile Cloud Computing, Computation offloading, Selective

offloading, Hotspots, Optimization.

3.2 Introduction

While smartphone usage continues in a fast-paced mode, developers are provisioning more

advanced applications toward all-in-one computing device. However, no matter how sophis-

ticated smartphones are growing, their hardware is still limited in terms of processing power,

memory capacity and battery lifetime, compared to their counterparts of desktop machines.

With the advancements in wireless communications and the abundance of cloud computing

resources, many computations offloading techniques [(Hung et al., 2012; Cuervo et al., 2010;

Kosta et al., 2012; Kemp, 2014; Chen et al., 2012; Chun et al., 2011; Shi et al., 2014; Chae

et al., 2014; Gordon et al., 2012; Flores et al., 2014; Xia et al., 2014)] have been proposed

allowing mobile devices to migrate the execution and throw the burdens of computations to re-

mote infrastructure. Typically, either full application or fine-grained tasks like services, meth-

ods, or threads, are migrated to be executed on remote server, releasing the mobile device from

intensive processing. The offloading decision is based upon number of factors. The network

bandwidth and latency, the resource demands of tasks and the mobile device state all form

a context that influences offloading efficiency. According to these aspects, a decision engine

analyzes the cost of both local and remote execution and dictates what tasks to be offloaded

correspondingly. Though the success of offloading to enhance performance, decrease energy

loss and augment resource availabilities, offloading evaluation has its own consequences on the

mobile terminal.

61

Multitasking is a trending action on the mobile operating systems, where multiple applications

run simultaneously on the device to meet with the mobile user demands in daily life [(Xiang

et al., 2014)]. However, when more than one application are running on the mobile terminal,

offloading cannot be evaluated independently for each, as migrating one application or running

it locally would affect the execution of the others. Existing offloading techniques necessitate

invoking the decision engine for each application separately, which make them unable to ef-

ficiently handle such circumstances. In addition, analyzing local and remote execution costs

is an iterative process, therefore running such decentralized evaluation imposes in turn signifi-

cant overhead and forms itself a bottleneck on the end terminal. Although taking the decision

remotely might overcome such problem, yet it requires sending relevant data to remote server

which imposes more overhead, besides the additional monetary fees to be carried out. Further,

existing works assume offloading to be productive whenever remotely executing an applica-

tion is able to save energy without degrading its normal response time [(Flores et al., 2015)].

However, taking an offloading decision is more complex and additional metrics have to be

considered. There is already a lot of understanding in the literature regarding the impact of

communication latency and bandwidth, code execution, energy consumption, execution time,

CPU and memory in the offloading process, yet existing decision models are limited such that

none of them considers all these aspects and tries to reach a tradeoff among them.

This article emphasizes theoretically and experimentally on these limitations and advances

relevant prominent solutions. We propose in this work new system model for computations

offloading that differs from existing approaches in different aspects and further contributions.

This proposition includes first a novel selective mechanism to reduce the search space in of-

floading evaluation. The mechanism considers only frequently invoked, resource-intensive and

time consuming tasks, called hotspots, input for the decision model, in order to reduce the

overhead of the decision engine. The work also presents a decision model that considers all of

the connectivity properties, energy consumption, CPU and memory usages and execution time

of tasks in order to refine the execution environment of tasks. We emphasized in previous work

[(Tout et al., 2016)] the effect of such metrics on the device performance and system surviv-

62

ability. We refine the optimization model in this work to make it resilient not only to the device

state but also to the detected hotspots that vary with the device usage, and to strategies that

can be enforced on the device through the proposed system to control offloading prioritization

and execution suspension of tasks. We also redesign a genetic-based algorithm with tailored

adaptive fitness evaluation for intelligent offloading decision making process. The evaluation

is centralized to collectively evaluate offloading tasks from different applications running on

the mobile terminal. The results of our experiments demonstrate the capability and highlight

the efficiency of our proposition. In the following, we use the terms computations, tasks, and

components interchangeably.

The originality and novelty of this work are emphasized by the following contributions:

- Novel system model for computations offloading which goes beyond existing techniques

with selective, centralized and optimized approach.

- A selective mechanism that minimizes the search space and significantly reduces the over-

head of offloading decision evaluation.

- An optimization model with metrics crucial to the device resources and applications perfor-

mance, adaptable to resource usage, detected hotspots and execution strategies.

- An intelligent centralized decision engine which evaluates the optimization model through

tailored genetic-based algorithm able to reach optimal dissemination of tasks with minimal

evaluation cost.

The rest of the article is structured as follows. We review in Section 3.3 the basic mobile

computation offloading architecture including the role of each component. In Section 4.4, we

discuss existing computation offloading strategies while highlighting our contributions. We

emphasize on the problems in Section 3.5 and present insights about our approach in Section

3.6. We detail our proposition in Sections 3.7, 4.7 and 4.8. In Section 3.10, we evaluate our

proposition and finally in Section 3.11, we conclude the article and draw some future directions.

63

3.3 Computations Offloading Overview

Mobile cloud computing has integrated cloud computing capabilities into the mobile environ-

ment to support mobile devices, ranging from outsourcing software and platforms all the way

to infrastructure. In this context, different offloading concepts have been studied. The explo-

sive growth of mobile internet applications, like social networking services, online gaming,

audio and video streaming, is the main reason behind the significant overload on the cellular

networks. In this context, traffic offloading [(Fiandrino et al., 2015; Han et al., 2010; Andreev

et al., 2014)] has been proposed, which is the use of complementary networks like Wi-Fi for

data transmission in order to reduce the data carried on the cellular network. On the other hand,

the limited resources of mobile devices have triggered another research domain of computa-

tion offloading, subject of this work, which has different concept and objective compared to

traffic offloading. Code offloading is an opportunistic process that leverages cloud resources

(e.g., servers) to execute computation-intensive components designated by a mobile terminal.

In this process, an offloading decision is taken based on a cost model that can estimate where

the execution is more effective for the end device. Due to mobility and changes in the net-

work conditions, device resources, and computation requirements, the evaluation of this model

changes from one execution to another and hence lead to different decisions. Whether the com-

munication between the mobile terminal and the cloud resources is done through the cellular

network or Wifi hotspots, the mobile device user is the one responsible for the additional cost

imposed by using these channels, which does not raise any economic conflict.

The common architecture of computation offloading is depicted in Figure 3.1. Set of profilers

are installed on the terminal to monitor the mobile applications, the environment characteris-

tics, and the device state. The mobile also contains a solver (i.e., decision maker) that based

on the information gathered by the profilers, evaluates a cost model and generates an efficient

distribution of components (i.e., decides about portions to be executed locally and those to be

offloaded). On the other hand, the cloud infrastructure offers the servers where the offloaded

components are to be executed. Hereafter, we describe each component of this architecture.

64

Figure 3.1 Mobile code offloading architecture.

The mobile terminal includes profilers to monitor different aspects. The program profiler is

responsible of monitoring multiple parameters of the component (C) which is candidate for

offloading, like energy consumption, execution time and size of data to be transmitted. The

component, which is the offloading unit, can be a service, method or thread inside the appli-

cation or even a full app. Different methods can be used to identify an offloading candidate,

which is also called code partitioning. For instance, some approaches [(Cuervo et al., 2010;

Kosta et al., 2012; Kemp, 2014)] rely on the developers to statically annotate explicitly the

application source code (e.g., [Remoteable], strategy=remote, @Remote), while others [(Chun

et al., 2011)] provide automatic mechanism capable of analyzing the code and generating po-

tential migration points. The network profiler is responsible of monitoring the network charac-

teristics in terms of availability, type (e.g., wifi, 3G), bandwidth, latency and energy consumed

on transmission. The device profiler inspects the energy consumption on the device as well as

the battery level and CPU utilization to predict critical situations that require offloading, and

hence trigger the solver. Based on a cost model, a solver evaluates the information gathered

65

by the profilers. It compares the benefit of local and remote execution and a decision is taken

accordingly. If offloading is more beneficial, the code is invoked remotely; otherwise, it is ex-

ecuted locally. The remote platform consists of server(s) having higher processing power and

more resource competency compared to mobile devices, located in the vicinity like cloudlets

[(Satyanarayanan et al., 2009)] or in the cloud [(Amazon, a; Google, a)], which are responsible

of executing the offloaded code.

3.4 Related Work

In this section, we review existing offloading approaches and we classify them based on differ-

ent key factors to distinguish our proposition and highlight its contributions.

Table 3.1 Classification of offloading approaches.

Approach Offloading Unit Mobile Cost Model Metrics
Model

Evaluation

Evaluation

Overhead
Generated Dissemination Savings

Energy Time Processing Memory Energy Time Processing Memory

[(Cuervo et al., 2010)] Method � x x x Independent High O/S SO/S SO/S SO/S

(Chun et al., 2011) Thread � � x x Independent High O/US O/US O/US O/US

(Gordon et al., 2012) Multi-Thread - - - - - - O/US O/US O/US O/US

(Kemp, 2014) Service � � x x Independent High O/US O/US O/US O/US

(Chen et al., 2012) Service � � x x Independent High O/US O/US O/US O/US

(Kosta et al., 2012) Method � � x x Independent High O/US O/US O/US O/US

(Xia et al., 2014) Method � � x x Independent High O/US O/US O/US O/US

(Chae et al., 2014) Method x � x x Independent High SO/S O/S SO/S SO/S

(Shi et al., 2014) Method x � x x Independent High SO/S O/S SO/S SO/S

(Tout et al., 2016) Generic � � � � Collective High O/US O/S O/S O/S

Our Proposition Generic � � � � Selective

Collective
Low O/US O/S O/S O/S

[Cuervo et al. (2010)] have proposed MAUI, an offloading framework that aims to reduce

the energy consumption of mobile applications. The framework consists of a proxy server

responsible of communicating the method state, a profiler that can monitor the device, program

and network conditions, and a solver that can decide whether to run the method locally or

remotely. MAUI uses its optimization framework to decide which method to send for remote

execution based on the information gathered by the profiler. The results show the ability of

MAUI to minimize the energy consumption of a running app.

66

CloneCloud is another offloading approach that has been presented by [Chun et al. (2011)]

in order to minimize the energy consumption and speedup the execution of the running appli-

cation. A profiler collects the data about the threads running in this app and communicates

the gathered data with an optimization solver. Based on cost metrics of execution time and

energy, the solver decides about the best partitioning of these threads between local and re-

mote execution. This approach does not require modification in the original application since

it works at the binary level. The experiments of CloneCloud showed promising results in terms

of minimizing both execution time and energy consumption of an application. However, only

one thread at a time can be encapsulated in a VM and migrated for remote execution, which

diminishes the concurrency of executing the components of an application.

[Gordon et al. (2012)] proposed COMET that rely on distributed shared memory (DSM) sys-

tems and virtual machine (VM) synchronization techniques to enable multithreaded offloading

and overcomes the limitations of MAUI and CloneCloud, which can offload one method/thread

at a time. To manage memory consistency, a field-level granularity is used, reducing the fre-

quency of required communication between the mobile device and the cloud.

Following different strategy, [Kemp (2014)] has proposed Cuckoo that assumes compute inten-

sive code to be implemented as an Android service. The framework includes sensors to decide,

at runtime, whether or not to offload particular service since circumstances like network type

and status and invocation parameters of the service call on mobile devices get changed con-

tinuously, making offloading sometimes beneficial but not always. Cuckoo framework has

been able to reduce the energy consumption and increase the speed of computation intensive

applications.

[Chen et al. (2012)] have proposed a similar framework that automatically offloads heavy back-

end services of a regular standalone Android application in order to reduce the energy loss and

execution time of an application. Based on a decision model, the services are offloaded to an

Android virtual machine in the cloud.

67

ThinkAir has been introduced by [Kosta et al. (2012)] as a technique to improve both compu-

tational performance and power efficiency of mobile devices by bridging smartphones to the

cloud. The proposed architecture consists of a cloud infrastructure, an application server that

communicates with applications and executes remote methods, a set of profilers to monitor the

device, program, and network conditions, and an execution controller that decides about of-

floading. ThinkAir applies a method-level code offloading. It parallelizes method execution by

invoking multiple virtual machines (VMs) to execute in the cloud in a seamless and on-demand

manner achieving greater reduction in execution time and energy consumption.

Considering user delay-tolerance threshold, new offloading-decision making algorithm has

been proposed by [Xia et al. (2014)]. The proposed tool predicts the average execution time

and energy of an application when running locally on the device, then compares them to cloud-

based execution cost in order to decide where the application should be executed.

CMcloud is a new scheme that aims to maximize the throughput or minimize the server cost

at cloud provider end by running as many mobile applications as possible per server and offer

the user’s expected acceleration in the mobile application execution. Proposed by [Chae et al.

(2014)], CMcloud seeks to find the least costly server which has enough remaining resources

to finish the execution of the mobile application within a target deadline.

COSMOS system has been presented by [Shi et al. (2014)] with the objective of managing

cloud resources to reduce their usage monetary fees while maintaining good offloading perfor-

mance. Through its master component, COSMOS collects periodically information of compu-

tation tasks and remote VMs workloads. Based on the gathered information, COSMOS is able

to control the number of active VMs over time. Particularly, whenever VMs are overloaded,

the system turns on new instance to handle the upcoming requests. It can also decide to shut

down unnecessary instances to reduce the monetary cost in case the rest are enough to handle

the mobile devices requests.

From Table 3.1, offloading unit identifies the code level granularity where offloading is applied.

The mobile cost model metrics represent the decision model aspects used to evaluate offloading

68

productivity. Model evaluation show the characteristics of the offloading evaluation process,

while evaluation overhead reflects the decision making cost. Finally, savings highlight the gain

obtained by tasks dissemination generated by the decision engine after cost model evaluation

(O and SO stand for optimal and suboptimal while S and US stand for stable and unstable

respectively).

3.4.0.3.3 Discussion

Significant attention has been turned toward computation offloading to support mobile de-

vices. Existing approaches focused on enhancing performance and saving energy on the mo-

bile terminal [(Cuervo et al., 2010; Chun et al., 2011; Gordon et al., 2012; Kemp, 2014; Chen

et al., 2012; Xia et al., 2014)], others targeted the additional fees imposed by remote execu-

tion [(Kosta et al., 2012; Chae et al., 2014; Shi et al., 2014)] and in our turn we focused in

previous work [(Tout et al., 2016)] on addressing performance and survivability with multiple

virtual environments running on the mobile device. Evaluating the cost model independently

for each task or even collectively cause significant overhead and create itself a bottleneck on

the mobile terminal with resource constraints, which is a common limitation in all these ap-

proaches. Along with this overhead, these approaches fall in suboptimal and unstable savings

in the dissemination of tasks due to limited aspects considered in the cost model.

Differently, this paper goes beyond existing works by proposing new system model for com-

putations offloading. As independent offloading evaluation, proposed in existing approaches,

fails to handle circumstances when multiple tasks are running simultaneously and hence the

decision on a task affects the others, we present a centralized approach able to collectively

evaluate offloading tasks from different applications. Also, we propose a selective mecha-

nism to process offloading evaluation only for selected tasks, designated as hotspots, which

is capable of significantly reducing the overhead of the decision engine compared to existing

approaches. Moreover, the latter evaluates an optimization model that includes energy loss,

CPU usage, memory consumption and performance of each component, essential metrics to

augment mobile device resources and performance and not being all considered in any of the

69

existing works. We emphasize the efficiency of these metrics where we prove their ability to

overcome suboptimal and unstable savings of tasks dissemination. Differently from exiting

models, we also refine the metrics making them resilient not only to the device state but also to

the hotspots and to strategies that can be enforced on the mobile terminal like offloading priori-

tization and suspension of tasks. The decision engine decodes, for the designated components,

the execution strategy that achieves a balance between all the metrics considered in the model,

reaching stability with high savings in local resource usage and significant execution speedup.

Essentially and differently, the proposed computation offloading system model is able to intel-

ligently reduce the overhead of offloading evaluation without jeopardizing optimality in tasks

dissemination savings.

3.5 Technical Problems

We highlight in this section the technical problems subject of this work.

3.5.1 Accuracy and Overhead of Decision Model Evaluation

The decision making is an iterative process invoked by the decision engine (solver) and trig-

gered to handle critical situations like processing power degradation, storage inefficiency and

dying battery. This process evaluates the decision model to determine whether to offload par-

ticular components or not. In existing approaches, the cost model is evaluated for each task

independently, which has its own consequences when multiple applications run simultaneously

on the mobile terminal to meet with daily life needs. In one hand, with independent offloading

evaluation, the system lacks global view of the execution environment which results in inac-

curate and faulty decisions. On the other hand, repeating the same process for each task is not

reasonable and imposes in turn considerable overhead on the device, higher than the savings

achieved by the dissemination if tasks.

The alternative is a centralized collective decision maker that considers the running com-

ponents from different applications in the evaluation process. Nonetheless, the overhead of

70

such decision engine increases along with the number of components candidates for offload-

ing. Theoretically, deciding what to offload suffers from an exponential search space in the

number of different possibilities in which the components can be distributed (i.e., local or

remote execution). It is similar to the various ways n distinct objects (components) can be

distributed into m different bins with k1 objects in the first bin, k2 in the second one, etc.

and k1 + k2 + ...+ km = n. By applying the multinomial theorem, this can be calculated as

(k1 + k2 + ...km)
n= ∑

(n
k1k2....km

)
kn1

1 kn2
2 ...knm

m . In our multi-apps offloading problem, m = 2, one

bin is the mobile terminal and the other is the remote server thus, for n components, there are

2n different distribution possibilities. This number will dramatically increase with fine grained

components like services and will be more crucial with methods and threads as their number

is greater inside the applications. Our previous work [(Tout et al., 2016)] suffered also from

this dilemma, where the results revealed that the evaluation process in such case can consume

up to 6x more CPU usage and 1.25x more energy consumption than the services themselves,

and takes up to 3 seconds to find the distribution. These results pushed towards sacrificing

optimality of tasks dissemination savings to mitigate the overhead of the evaluation process by

accepting suboptimal solution. A possible alternative to overcome such overhead is to take the

decision remotely, yet this requires sending relevant data to remote server which not only im-

poses in turn more overhead, but also additional monetary fees are to be carried out. Therefore

the question is how to decrease the overhead of decision making without sacrificing optimal

distribution of tasks?

3.5.2 Decision Model Metrics

In the presence of network connectivity and available remote resources, the offloading decision

is based upon number of factors. The available resource on the mobile terminal, the latency and

bandwidth of the network, the resource demands and performance of the component, any of

them can form a context that influences offloading feasibility and efficiency. Besides, energy

and execution time, processing power and memory capacity would critically influences the

mobile device when running multiple applications simultaneously. As the energy is being

71

consumed on many elements other than CPU and memory, essentially, graphics, screen and

network, decreasing the power consumption does not guarantee more processing power or even

more memory availability. As long as the device is on and new applications are running, both

CPU and memory usage levels continue to change. Therefore, for example, in case the device is

running slow or out of memory, migrating components that require intensive processing and lot

of memory would be efficient respectively, regardless of the energy consumption level. Thus,

each time an offloading decision is to be made, these factors should be taken into consideration

and an explicit evaluation of these metrics should be done. As none of the existing techniques

has considered and examined a tradeoff among all these metrics, what is the effect of such

multi-objective optimization on the optimality and stability of tasks dissemination savings?, is

a question to be answered in this work as well.

3.6 Centralized Selective and Multi-Objective Offloading: Insights

The proposed system model is depicted in Figure 3.2.

Figure 3.2 System model.

72

We devote a set profilers on the mobile terminal to monitor the relevant resources. The profil-

ers examine the availability of connectivity, beside its data rate and latency. They also monitor

the energy loss, CPU usage, memory consumption , and execution time for all components. A

component can be service, method, or even thread that implements certain functionalities. It

should be clear that this does not mean that the system deals with components of heterogenous

nature but it is generic enough to be applied independently of the offloading unit considered.

The gathered profiled data are then communicated with the rest of the modules on the device.

Capturing different criteria that influence the resource consumption and performance of the

components, the profiled data serve as input for the detector to identify hotspot components

forming a subset of the offloading candidates. Frequently invoked, resource-intensive and/or

time consuming components are marked as hotspots. Such criteria and the thresholds used

for hotspot selection are adjusted by the strategies controller based on the device state, instru-

mented by the profilers. Gathered data are also used by a centralized, selective and intelligent

decision engine, which evaluates a cost model to analyze tasks offloading.

Only selected hotspots (C2,C3 and C4) go into the offloading evaluation process, while the rest

of the components (C1), not included, continue their execution locally on the mobile termi-

nal. The decision model consists of essential metrics that guarantee resource availabilities and

enhanced performance on the mobile device. The controller can enforce different strategies in

the model to manage offloading evaluation. Such strategies include weights between the model

metrics to adapt it with the device state. For example, additional weights can be given to the

memory metric when the device is running out of memory. Other strategies include priorities

between components like prioritizing offloading from foreground application or even based on

criticality classification. Defining such strategies at high level in the controller form part of

future track, yet this work considers and adapt to such strategies at the low level of the decision

model. The latter is hence adaptable with these controls as well as with the selected hotspots

which vary with the device usage. The decision engine includes also a tailored algorithm that

examines a tradeoff between the model metrics and dictates accordingly what components to

be offloaded and those to run on the mobile terminal (only C4 is to be offloaded). Offloading

73

computations can be done through the cellular network of Wifi hotspots. When Wifi capacity is

purchased by the cellular network provider, both cellular and Wifi capacities should be consid-

ered to evaluate the possibility to process the issued offloading requests as well as to predict the

channels ability to handle upcoming requests. Yet, in this work we assume enough resources

to handle mobile computations offloading regardless the wireless technology employed (Wifi

or cellular network), which is a fair assumption in the light of the resourceful infrastructure of

cloud service providers. The following sections detail our proposition.

3.7 Selective Mechanism

To reduce the search space of the decision maker, only hotspot components from the offloading

candidates are selected and considered in the evaluation model, while the rest of the compo-

nents are to be executed locally.

3.7.1 Hotspots Profiling

Profilers on the device generate instrumented data for each and every component. The produced

profiles serve as input data used by the detector to identify hot components for selective offload-

ing evaluation. The profilers capture different criteria that influence the resource availabilities

and performance on the mobile device. Generated profile includes for every component, the

CPU and memory utilization, size and execution time and its frequency of invocation, which

are the criteria we use for hotspots selection. The detector modules analyzes the logged profile

information and collects all the components whose processing, memory, data size, execution

time and frequency of call are greater than given threshold values respectively. These compo-

nents are marked as hotspots to be considered for offloading evaluation. The higher thresholds

will keep the hotter components.

74

3.7.2 Hotspots Detection

By default, threshold values are set based on bayesian average according to the following

formula:

V̄ =

|C| ∗m+
|C|
∑

i=1
vi

|C|+m
(3.1)

where, |C| is the components data set size, m is the prior mean value and vi is the profile data

value. However, to provide efficient decision for the distribution of components, the strate-

gies controller can tune the selection criteria as well as their threshold values according to the

mobile device state instrumented by the profilers. The device for instance might suffer from

high CPU usage, while after a period of time might run out of memory based on the number

and complexity of the applications on the mobile terminal. Thus, the priority of the selection

criteria can be tuned according to each situation and some of the criteria might not be consid-

ered in the selection of hotspots correspondingly. The thresholds values are also adaptable. For

instance, normally, the battery level will clearly drain along with the usage of the device and

the execution of applications. Therefore with dying battery, even components with low energy

consumption should be considered as hotspot. For this end, the energy threshold value can be

reduced by the controller so that even components with small energy cost on the device would

be considered. In this article, we refine the decision model to consider these adaptations, yet,

at high level, defining such strategies in the controller module is part of future track.

3.7.3 Selection Algorithm

Algorithm 3.1 illustrates the process to select hotspots. Components from different applica-

tions, their profiled data, and the thresholds values and a selection ratio to limit the number

of components marked as hotspots, all form the input of this algorithm. The process starts by

initializing an empty set for the hotspots (Line 3) then loops over all the components calling

ISHOT SPOT procedure in Algorithm 3.2 for hotspots identification (Line 4 till Line 11). This

procedure fills the hotspot set with components having profiled data exceeding the predefined

threshold value. Those criteria which are not considered in the selection process have a thresh-

75

Algorithm 3.1 Hotspots Selection

1: Input: Component set C = {Ci, ...,Cn}, each of which is characterized by size si, invocation frequency

fi, CPU usage ci, Memory usage mi , Energy consumption ei, execution time ti; thresholds for each

criteria respectively Ts,Tf ,Tc,Tm,Te,Tt , and selection ratio r
2: Output: A subset of hotspot components H ⊆C
3: H ← /0

4: for i = 1 to n do
5: ISHOTSPOT(Ci,si,Ts,H)

6: ISHOTSPOT(Ci, fi,Tf ,H)

7: ISHOTSPOT(Ci,ci,Tc,H)

8: ISHOTSPOT(Ci,mi,Tm,H)

9: ISHOTSPOT(Ci,ei,Te,H)

10: ISHOTSPOT(Ci, ti,Tt ,H)

11: end for
12: if H = /0 then
13: H ← H ∪{C}
14: end if
15: if |H|> r then
16: NH ← chooseRand(|H|× r,H)
17: H = NH
18: end if
19: return H

Algorithm 3.2 isHotspot

1: procedure ISHOTSPOT(C, v, T , H)

2: if T ! =−1 & C�H then
3: if v > T then
4: H ← H ∪{C}
5: end if
6: end if
7: return H
8: end procedure

old value of −1, as an indicator used by the controller module to vary the selection criteria.

ISHOT SPOT returns the set of hotspot components back to Algorithm 3.1. If no hotspots

were found (Line 12), the set is filled with the initial list of components (Line 13). In case

the number of hotspots exceeds a predefined ratio (Line 15), which is by default n/2 defined

based on empirical study, the number of hot components are limited to that value (Lines 16)

with random choice from the components set to avoid selecting the same values. Finally the

algorithm returns the hotspots set to be considered in the evaluation model (Line 19).

Lemma 1. The time complexity of Algorithm 3.1 is O(n).

76

Proof:The time complexity of the selection algorithm depends solely on the number of the

entries n in the components set C. Initializing the empty set H (Line 3) takes O(1). Next,

running over all the elements in the C set to identify hotspot components (Line 4 to Line 11),

takes O(n+1) and the inner procedure call isHotspot is of O(1). Checking if the hotspot set

is empty (Line 12) and subsequently assigning the elements of C to H (Line 13), each takes

O(1). Finally, in case the number of elements in H exceeds the ratio r for hotspot components

(Line 15), the algorithm will loop again on the elements in H to select the appropriate portion

(Line 16), which takes O(|H|× r+1). With H ⊆C, O(|H|× r+1) has lower order compared

to O(n+1), the former can be dropped and thus hotspots can be selected in O(n).

3.8 Centralized Selective Offloading Decision Model

We devote this part to present the proposed centralized, selective and optimized offloading

decision model.

Assumptions. We assume in the proposed system model that offloading can be prioritized

between components. These priorities are assigned and enforced by the strategies controller.

For example, foreground components can have higher priorities to use local/remote resources

over background ones. This can be also based on appropriate criticality classification scheme,

where more critical apps will be given for example higher priorities to have better performance.

Also, the execution of tasks might be suspended based on the device resources. We consider all

these strategies at low level in the decision model while their definition at higher level is to be

addressed in future work. Additionally, components are assumed to be independent and some

of them might not be offloadable like tasks that require local device data. We also consider

dynamic environment where the network might not be available and its data rate and latency

may vary.

77

3.8.1 Definition

Definition 1. Considering the set of hotspot components, generated by the selection process,

the device state instrumented by the profilers and the management parameters values of the

controller, the problem is to find components that should be offloaded and those to be executed

locally for a tradeoff of enhanced computing capacity, minimal memory and battery usages on

the device and better performance. The problem defined as follows:

Given a set of hotspot components H = {c1,c2, ...,ck} on a device D, each of which ci needs

CPUlocal
ci

processing unit, Memorylocal
ci

memory, Energylocal
ci

energy and spends ExecTimelocal
ci

period of time when executed on the device; while when offloaded, each consumes CPURemote
ci

processing unit, MemoryRemote
ci

memory, EnergyRemote
ci

on the device and needs ExecTimeRemote
ci

,

waiting and processing the remote response; αci an indicator whether the component ci is of-

floadable or not, offloading priorities pci; network bandwidth Bandwidth and latency Latency,

weights w(FP), w(FM), w(FE) and w(FT) for the evaluation metrics; the decision should dictate

for each component whether it should be executed locally or remotely in a way to minimize the

overall energy loss FE, CPU FC and memory FM usages on the mobile device and speedup the

execution FT for better experience.

Theorem 1. Offloading optimization decision making is NP-Hard

Proof:Offloading optimization can be easily seen in the NP-class; as once a dissemination

of components is found, it can be verified in polynomial time. Next, we will prove that this

problem is NP-Hard via a reduction from the NP-hard multi-objective-m-dimensional Knap-

sack Problem (MOMKP) [(Lust & Teghem, 2012)]. We aim in what follows to prove that a

solution found for a case of our multi-apps code offloading optimization problem can be used

to solve multi-objective-m-dimensional Knapsack. Given the MOMKP - a collection of n items

a1, ...,an, where each item ai has m weights wki ∈N,k = 1, ...,m and t values pki ∈N,k = 1, ..., t

and a knapsack of m capacities ck ∈ N, k = 1, ...,m - we can build the offloading optimization

decision making problem as follows: Having x applications A = {a1, ...,ax} with y components

78

in each, forming a set of x∗ y representing k components H = {c1, ...,ck}, each corresponding

to an item in MOMKP: Set the resource demands of each component ci in terms of memory

and CPU as the weights of the items in the sack. CPUlocal
ci

, and CPUremote
ci

, Memorylocal
ci

and

Memoryremote
ci

, are CPU and memory usages when Ci is running locally or executed remotely,

respectively. Then, set fE , fT , fP and fM as the values of each item, where they form the cost

of each component in terms of energy consumption, execution time, CPU usage and memory

needs respectively. So that ∑x
i=1 f j where j = 1, ...,4 formulates each of objective functions

in the model correspondingly. Accordingly, the knapsack content is a portion of components

selected to run on the mobile device such that the total of each value (cost) is minimized, and

vice versa, and a solution to our problem yields a solution to the MOMKP. After this complete

proof of the reduction, we conclude that this problem is NP-Hard.

3.8.2 Model Formulation

In the following, we mathematically formulate the proposed offloading evaluation model based

on the definitions provided. Built on top of previously proposed optimization metrics in our

latest achievement [(Tout et al., 2016)], the model in this work is now resilient not only to

the device state but also with the hotspots selection and the execution management strategies

defined above.

- Decision Variables:

x = {xc1
, ...xck}

where,

∀ci,i:1→k,xci =

⎧⎪⎨
⎪⎩

0, if ci is to be executed locally

1, if ci is to offloaded

- Parameters:

D mobile device

H set of hotspot components

79

ci hotspot component

γci offloadable component indicator

ExecutionTimelocal
ci

time to execute ci locally

ExecutionTimeremote
ci

round trip time to process ci remotely

CPUlocal
ci

cpu usage on D by ci executed locally

CPUremote
ci

cpu usage on D by ci offloaded

Memorylocal
ci

memory usage on D by ci executed locally

Memoryremote
ci

memory usage on D ci offloaded

Dataci size of data transmitted for offloading ci
powercpu power consumed by D on precessing

powerscreen power consumed by D on the screen

poweridle power consumed by D on idle CPU

powertransmission power consumed by D for transmition

pci offloading priority for component ci
sci suspension indicator for component ci
w(FE) weight for function FE
w(FT) weight for function FT
w(FC) weight for function FC
w(FM) weight for function FM
T̃FP threshold for processing load

T̃FM threshold for memory consumption

T̃FE threshold for energy loss

- Mathematical Model:

Minimize(FE ,FT ,FC,FM) where,

FE =

[|H|
∑
i=1

sci(1− xci)×
(
(Powercpu +Powerscreen)×ExecTimelocal

ci

)
+
|H|
∑
i=1

scixci×(
(Poweridle×ExecTimeremote

ci
)+

(
Powertransmission× (Latency+

Dataci

Bandwidth
)
))

×γci× pci

]
×w(FE)

(3.2)

FT =

[|H|
∑
i=1

sci(1− xci)× (ExecTimelocal
ci

)+
|H|
∑
i=1

scixci× (ExecTimeremote
ci

+Latency

+
Dataci

Bandwidth
)× γci× pci

]
×w(FT)

(3.3)

FC =

[|H|
∑
i=1

sci(1− xci)×CPUlocal
ci

+
|H|
∑
i=1

scixci×CPUremote
ci

× γci× pci

]
×w(FC)

(3.4)

80

FM =

[|H|
∑
i=1

sci(1− xci)×Memorylocal
ci

+
|H|
∑
i=1

scixci×Memoryremote
ci

× γc j × pci

]
×w(FM)

(3.5)

Subject to

FP < T̃FP (c1)
FM < T̃FM (c2)
FE < T̃FE (c3)

The model aims to decrease energy loss, speed up the execution, minimize processing and

memory usage on the mobile device, objectives which are defined in Equations (3.2), (3.3),

(3.4) and (3.5) respectively with pci and sci to control prioritization and suspension of tasks

accordingly. The model is subject to several constraints; (c1) forces the decision maker to

look for solutions that do not overload processing on the mobile device, (c2) ensure the can-

didate solutions do not excess the memory on the end terminal and (c3) represents the energy

constraint that guarantees a threshold for available power on the device.

3.9 Intelligent Decision Making Process

The proposed intelligent decision maker exploits the smart evolution of solutions in genetic

algorithms (GAs) [(Deb, 1999)], which have been able to solve complex optimization prob-

lems in many areas [(Grefenstette, 2013; Wu et al., 2014; Cai & Chen, 2014)] through their

method of evolution inspired search. Based on natural selection, GAs simulate the propagation

of the fittest individuals over consecutive generations to determine the best solution. We inves-

tigated different algorithms for the decision making process. The first algorithm is NSGA-II

[(Deb et al., 2002)], a multi-objective genetic algorithm which uses pareto ranking mechanism

for classification of solutions and crowding distance to define proximity between them. Next,

SPEA2 [(Zitzler et al., 2002)], which is another multi-objective evolutionary algorithm based

on pareto dominance, yet characterized by its strength scheme that not only takes into account

the number of solutions that dominate particular solution, but also the number of solutions by

81

Algorithm 3.3 Intelligent Decision Maker

1: Input: Set of hotspot components H = {c1,c2, ...ck}, each of which is characterized by local and remote

execution time, cpu usage and memory consumption, network characteristics BL in terms of bandwidth

and latency, number of possible solutions N, mutation rate μm, crossover rate μc and number of genera-

tions λ .

2: Output: Distribution set of hotspots H ′.
3: i←− 0 � i is the population index

4: H ′ ←− /0

5: Gi ←− Random[N][|H|] � generates random population

6: for k = 1 to r do
7: Calculate FE :=CalcEnergy(H,Gi,BL)
8: Calculate FT :=CalcTime(H,Gi,BL)
9: Calculate FC:=CalcProcessing(H,Gi)

10: Calculate FM:=CalcMemory(H,Gi)
11: end for
12: for g = 1 to λ do
13: {

14: Propagate b best candidates distributions BC for next

generation Gi+1 ←− BC
15: select two solutions from Gi, XA and XB;

16: Generate XC by evolution-based crossover to XA, XB;

17: Add XC to Gi+2;

18: Select a solution Xb from Gi+2;

19: Mutate Xb and generate new feasible

solution Xj′ ;
20: for k = 1 to r do
21: Reexamine FE :=CalcEnergy(H,Gi+1,BL)
22: Reexamine FT :=CalcTime(H,Gi+1,BL)
23: Reexamine FC:=CalcProcessing(H,Gi+1)
24: Reexamine FM:=CalcMemory(H,Gi+1)
25: end for
26: Update generation Gi = Gi+1 +Gi+2

27: Update generation index i←− i+1

28: if Same fitness is detected in Gi+1 and Gi+2 then
29: break;

30: end if
31: }

32: end for
33: H ′ ←− optimal components distribution in Gi
34: return H ′

which it is dominated. The third algorithm is SMSEMOA [(Emmerich et al., 2005)], which

is a steady state algorithm, in which a random selection of individuals is done for the mat-

ing process and the offspring replaces the individuals of the parent population. Further, IBEA

[(Zitzler & Künzli, 2004)] is an algorithm that employs a quality indicator in the selection

process. Finally, MOCell algorithm [(Nebro et al., 2009)] which is characterized by both de-

82

centralized population and archive to store non-dominated solutions. We implemented these

algorithms as introduced by their authors yet with the adequate mapping. An extensive study

presented in previous work [(Tout et al., 2016)] proves the efficiency of nsga-ii [(Deb et al.,

2002)] over other algorithms. In this work, we redesign nsga-ii with adaptive fitness evalua-

tion and evolution-based crossover. According to the optimization model that we presented in

Section 4.7, the intelligent decision maker is capable of generating the distribution of hot com-

ponents that minimizes the resource usage and enhance the performance. The process adopted

by the decision maker is depicted in Algorithm 3.3. Hereafter, we detail the solution encoding

as well as the genetic operators, then in Section 3.10, we study its efficiency.

3.9.1 Solution Encoding

Each chromosome also called individual in a population forms a candidate solution in GAs.

For offloading decision optimization, the algorithm starts with population of N randomly gen-

erated individuals according to the number of components marked as hotspots (Line 5). Each

individual represents the distribution of components. Every individual has a size |H| and it

is encoded as a set of binaries x = {xc1
, ...,xck}, where k is the total number of components

involved. Each gene xci of an individual represents a component on the mobile device and its

value dictates whether this component should be executed locally on the end terminal (xci = 0)

or offloaded (xci = 1).

3.9.2 Fitness Evaluation

In GAs, a score/fitness is designated for each chromosome simulating the propagation of the

fittest individuals over consecutive generations in order to determine the best solution. The

fitness varies based on how efficiently each individual can solve the problem. In our case, the

fitness of each candidate solution is determined by FE , FT , FC and FM functions that constitute

the model proposed in Section 4.7 (Line 6 to Line 11). With all these metrics are to be mini-

mized, the solutions are ranked according to their ability to speedup the execution and reduce

the resources usage on the mobile terminal.

83

The fittest b individuals in the population are then selected to go through a process of evolution

(Line 14). In the latter, crossover (Line 15 to Line 17) and mutation (Line 18 to Line 19)

operations are applied to produce next generation of individuals for new possible distribution

solutions of components. The algorithm reassesses the model metrics to calculate the fitness

of these generated individuals (Line 20 to Line 25). The evaluation process continues over and

over until any of the stopping criteria is met, where either the fitness of the best individual in

successive populations did not improve (Line 28 to Line 30) or the defined number of iterations

δ is reached. Finally, the decision maker returns the fittest distribution from the last generation

having the optimal tradeoff between the defined metrics (Line 33 to Line 34).

3.9.3 Evolution Process

3.9.3.1 Selection

In this phase, chromosomes are selected to go through the evolution process. We use bit tour-

nament selection, which involves running several rounds over randomly chosen chromosomes

from the population. The winner in each round, which has the best fitness is then selected for

crossover.

3.9.3.2 Crossover

Crossover is achieved by exchanging genes between two individuals with the intent to produce

better offspring. With a μc rate, crossover usually occurs when regions of a chromosome break

and reconnect to the other chromosome. In contrast, we propose an evolution-based crossover

operator. This operator is based on the differential evolution of individuals that optimizes

offloading. Taking two parents individuals, genes that produce better fitness (smaller fitness

value based on the evaluation presented in Section 4.8.2) when compared to their parents are

used to form the offspring.

84

3.9.3.3 Mutation

Mutation operation is to apply additional modifications in the chromosomes that improve their

fitness. With a μm rate, we apply standard bit flip mutation.

Lemma 2. The time complexity of Algorithm 3.3 is O(λN|H|)

Proof: The complexity of this algorithm is determined by the fitness function evaluation, the

population size, the individual length, variation and selection operators and the number of

iterations or generations. Initializing generation index, solution set H ′ and generating the

first random population has each time complexity O(1). The evaluation of the fitness function

has time complexity of O(N + 1) where N is the population size. The tournament selection,

evolution-based crossover and bit flip mutation, have time complexity of O(N|H|λ) where |H|
is the size of an individual and λ is the number of generations. Reassessing the model is

of O(λN). Finally, the return statement has O(1). Subsequently, the time complexity of the

algorithm is O(1) +O(N + 1) +O(λN|H|) +O(λN) +O(1). With lower orders are to be

dropped, this is equivalent to O(λN|H|).

3.10 Numerical Analysis

We devote this section to present the experimental results that demonstrate the efficiency of our

proposition.

3.10.1 Testbed Setup

In the following experiments, the mobile terminal is running Android operating system with

quad-core processor and 1 GB of RAM. The implementation of a mobile application should

follow first particular design pattern in order to make it offloadable. The activity/service model

in android allows clear separation between the application code and its user interface. Particu-

larly, the logic code of the computation-intensive tasks can be implemented as services through

85

an interface definition language (AIDL) while the user interface is defined using activities. Ap-

plying such model would facilitate the offloading task as services and activities are already

isolated. For this end, we developed three mobile services of different weights that we use in

our experiments to map different usage scenarios of the device.

- Zip/Unzip is a lightweight service that allows creating archive folder from files and extract-

ing back the content.

- Virus Scanning is a moderate service that scans files of 100 KB against a library of 1000

viruses’ signatures, 1 file at a time.

- NQueens Puzzle is a computation intensive service that implements an algorithm capable

of finding all possible solutions of the typical NQueens problem and returns the number of

solutions found. In our version we use N=13 to create heavy app.

To make these services offloadable, we take advantage of the offloading libraries provided in

[(Kemp, 2014)] as it applies the same design pattern (i.e., activity/service). On first invocation,

the offloadable services are sent for remote execution on pre-configured server. Only the .class

files of the remote implementation are automatically packaged as jars and transmitted to the

server. With just few kilobytes, the transmission of such package drives negligible overhead

over the network. Whenever the requested services are already hosted on the server, only

relevant parameters are communicated. Yet, the relevant overhead is included in the results.

To profile services, we implemented Linux-based commands to monitor CPU and memory

usages, while we used PowerTutor [(Zhang et al., 2010)] to monitor the energy consumption

on different aspects like CPU, screen and network. As for the power consumption on idle CPU,

active network and during transmissions, we took advantage of the power profile in android

[(Android, 2017)] to get the relevant information. Finally, we embedded a timer to monitor the

execution of each service. As for the decision making algorithm, the configuration is based on

empirical study of 50 times of execution. We set μc = 0.6, μc = 1/n, where n is the number

of decision variables, N = 100 and the number of generations λ to be 20, 45, 70, 75, 100 for

10 to 50 services respectively. The connection between the mobile terminal and the server is

86

achieved through WiFi network in infrastructure mode. It is characterized by the IEEE 802.11n

wireless networking standard. The server side is running Ubuntu 12.04 with 7.3 GB memory

and quad core AMD Phenom(tm) II X4 B95 processor.

3.10.2 Results

3.10.2.1 Decision Model Efficiency

This set of experiments aims to study the efficiency of the proposed offloading optimization

model, which considers energy, execution time, CPU and memory metrics in the evaluation

process and its effect on the optimality and stability of tasks dissemination savings. Running

the developed services, we compare the savings and performance improvement achieved by

our proposition to those provided by existing models presented in Table 3.1. The energy model

adopted by [Cuervo et al. (2010)], the time model adopted by [Shi et al. (2014)] and [Chae

et al. (2014)] and the energy/time model used by [(Kosta et al., 2012; Kemp, 2014; Chen

et al., 2012; Chun et al., 2011; Xia et al., 2014)]. Considering the three services described

in the setup, we run each of the decision models on the mobile device to make the offloading

evaluation and generate the distribution of these services accordingly. Figure 3.3 highlights the

savings of the services dissemination found by each model in terms of resource savings and

execution speedup.

The energy model shows stable results. However, in terms of optimality, this model can lead to

the tasks dissemination that offers the best energy savings yet the minimal in terms of process-

ing, memory and execution speedup. The results show that this model is able to offer 99% less

energy with just 33% less CPU usage, 10% less memory consumption and 59% speedup in the

execution, with average savings values of 99%, 33%, 10% and 58% respectively. Similarly, the

time model shows stability with 485 tasks dissemination that provides the best speedup possi-

ble of 63% yet worst in terms of energy with 97%, processing with 33% and memory usage

with 10% savings, with average of 63%, 97%, 33%, and 10% savings respectively. On the

other hand, the energy/time model is able to reach optimality with respect to processing, mem-

87

Figure 3.3 Decision savings.

ory, energy and execution’s speedup with a dissemination that offers average savings of 51%,

12%, 98% and 61% savings respectively. However, this model shows instability and hence

risks finding the dissemination with such values and fall in suboptimal results of 33% 10%

97% and 58% savings accordingly. Per contra, our proposition outperforms the other models

and shows stable results in terms of CPU, memory and execution time with 68%, 15.5% and

63% as average reductions respectively. As for the energy, our model can reach up to 99%

reduction and 97% in the worst case, with an average of 98%, which is still comparable to the

energy/time model. These results confirm that the proposed model is more adequate to offer

better trade-off of resources and performance on the device with higher stability.

3.10.2.2 Selective Mechanism and Intelligent Decision Maker Efficiency

The second set of experiments is intended to study the efficiency of the selective method in

reducing the overhead of the evaluation process and the ability of the decision maker to adapt

88

to it without jeopardizing finding the optimal distribution of components. The results of these

experiments are depicted in Figures 3.4, 3.5 and 3.6. We increment the number of services

stressing the mobile device to study the scalability and cover the case of more fine grained

components like methods and threads. We cloned the applications defined in the testbed setup

not to implement such large number of services.

Figure 3.4 Decision maker overhead.

We examine first the overhead of the decision making process (DM) that evaluates our multi-

objective optimization model to find the optimal distribution of services (Figure 3.4). The

results show that increasing the number of components (i.e., services), imposes significant

overhead by the decision maker on the mobile terminal when no selective method is applied

(NSDM). Specifically, they show drastic increase in the CPU usage of the decision maker

that was 12% with 10 services and reached 28% with 50 services. In addition, its memory

usage increased 7 times, its energy consumption increased 114 times and its speed decreased

31 times. Compared to NSDM, our selective method (SDM) was able to reduce 1.2 times the

89

Figure 3.5 Components overhead.

CPU usage of DM, 4 times its memory consumption, 17 times the energy consumption and

speedup 13 times its execution.

Following the distribution generated by the decision maker in each scenario, we measured the

overhead of the services dissemination as well (Figure 3.5). The objective here is to check

how the distribution found by the DM, without considering all the components (i.e., using our

selective method SDM) in the cost-benefit analysis, can affect the services overhead. Notably,

SDM was able to find the optimal distribution in many scenarios, namely with 20, 30 and 50

services, and hence did not cause any overhead in terms of CPU usage, memory consumption,

energy and execution time of the services in these cases.

Another interesting observation can be highlighted when comparing the overall overhead caused

by both the DM and the components on the device (Figure 3.6). The results show that even

when SDM caused more services overhead than NSDM (scenarios where SDM could not find

the optimal solution like when running 40 services), the overall overhead remained better for

90

Figure 3.6 Overall overhead.

SDM. This is due to the notable improvement SDM was able to reach in terms of decreasing

the overhead of the offloading decision evaluation process.

Finally, we examine the error rates of non-beneficial offloading. The results are illustrated

in Table 3.2 The results prove that our proposition is always capable of finding the trade-off

Table 3.2 Decision error rate.

Our model Energy model Energy/Time model Time model

0% 80% 50% 80%

that optimizes the device resources and performance based on the proposed multi-objective

optimization model, when other existing models risk finding the adequate computations dis-

semination.

91

3.11 Conclusion and Future Directions

This article goes beyond existing approaches with intelligent system model for computations

offloading. The system is able to collectively evaluate offloading tasks from different applica-

tions that run on the mobile terminal through centralized selective decision engine. With only

hotspots considered in the offloading evaluation process, the proposition is capable of signif-

icantly reducing the overhead of the decision engine. The latter evaluates a multi-objective

optimization model that includes essential metrics to augment mobile device resources and

quality of experience. The model is resilient not only to the device state, but also to the detected

hotspots and to strategies that can be enforced on the mobile terminal to prioritize offloading

and control the execution of tasks. The model was able to offer optimal dissemination of tasks

with 68% reduction in the CPU usage, 15.5% in the memory consumption, 99% in the energy

and up to 63% execution speedup, with higher stability compared to existing models. Ac-

cording to the model, the decision engine decodes, for the designated hotspots, the execution

strategy in order to achieve a tradeoff between the proposed metrics. The selective mechanism

was able to notably reduce the overhead of the offloading evaluation process with 1.2 times

less CPU, 4x less memory consumption, 17x less energy and 13x speedup while the intelligent

decision maker was able to adapt to this mechanism and generate the dissemination of tasks

with optimal overall savings.

Promisingly the results give guidance to selective optimized system that can run on resource

constrained mobile devices to manage applications executions while alleviating the overhead

of the offloading evaluation process without jeopardizing the optimal distribution of tasks that

minimizes processing, memory, energy loss and speedup the execution on the device. This

work opens several research directions that can be considered by the research community. The

main objective is to maintain good quality of experience on the device and ensure longer surviv-

ability. Therefore, defining and enforcing management policies and rules between components

on the mobile device in order to refine the decision would be a valuable track. While there is

still no works that give informative decisions in mobile cloud offloading, adaptive policy-based

approaches [(Cimino et al., 2012; Fang et al., 2012)] allow managing situations with awareness

92

for proactive and instructive recommendations. For instance, rather than dictating what com-

ponents to offload, more valuable recommendations can be taken based on user preferences,

resource availabilities and device state. Such decisions include suspending and shutting down

some applications due to resource scarcity and direct decisions to prioritize the mobile device

survivability over applications performance. While assuming independent components on the

device reduces cost model complexity, considering the dependencies between components of

an application is important. With only few works have been proposed in this regard [(Chun

et al., 2011; Mahmoodi et al.)], dynamic analysis of potential execution flow paths of different

tasks in a mobile application has direct impact on the distribution decision where the deci-

sion to offload or locally execute particular components can influences the execution of other

dependents components.

Acknowledgment

The work has been supported by École de Technologie Supérieure (ETS), NSERC Canada, the

Associated Research Unit of the National Council for Scientific Research CNRS Lebanon and

the Lebanese American University (LAU).

CHAPTER 4

ARTICLE 3: COST-EFFECTIVE CLOUD-BASED SOLUTION FOR
MULTI-PERSONA MOBILE COMPUTING IN WORKPLACE

Hanine Tout1, Azzam Mourad2, Nadjia Kara1, Chamseddine Talhi1

1 Département de Génie Logiciel et TI, École de Technologie Supérieure,

1100 Notre-Dame Ouest, Montréal, Québec, Canada H3C 1K3

2 Department of Computer Science and Mathematics, Lebanese American University,

1102 2801 Chouran Beirut, Lebanon

Under Review

4.1 Abstract

Multi-persona mobile computing has begun to make its way to determine the battle about

practical strategy for adopting personal devices in workplace. Though its competency, multi-

persona performance and viability are critically threatened by the limited resources of mobile

devices. Mobile cloud computing (MCC) has risen as promising paradigm that brings cloud

benefits to the proximity of mobile terminals, leveraging computations offloading services to

address the severity of their resource scarcity. Yet, embracing cloud-based services to augment

personas resources and performance raise new concerns. With remote infrastructure being

shared between many devices in an institution, the first concern is determining what compu-

tations to offload in order to augment multi-persona experience on a broader range of users’

terminals. Another concern is the additional remote execution fees imposed on the institution

for leveraging offloading services. In this context, we propose new cost-effective solution to

address these issues, which includes two-level multi-objective optimization model to settle both

concerns and a redesigned genetic algorithm based method for smart and accelerated offloading

evaluation. Extensive analysis is performed and the results prove the ability of our proposition

to enforce personas by minimizing local processing, memory usage, energy consumption and

execution time along with appropriate minimal additional fees.

94

Index Terms: Mobile device, Multi-persona mobile computing, Mobile Cloud Computing,

Offloading, Cost, Optimization, Workplace.

4.2 Introduction

In the age of mobility we are continuously craving new ways to seamlessly automate different

aspects of our lives, and mobile devices have become one of the most eminent ways to do so.

Yet, the rapid development in consumer electronics has put some pressure on organizations.

BYOD (Bring your own device) [Rouse (2012a)] trend has been embraced across a variety of

businesses as a way to welcome changes in traditional work models. However, a battle has

been opened over the strategy that would allow the inclusion of personal devices in the work

environment without threatening the users’ privacy and imposing risks on professional data.

Recent technological advancements have paved the way for multi-persona mobile computing

to become the most seamless and efficient candidate to determine this battle. Multi-persona

allows having separate personas on a single device untangling concerns resulting from mixing

personal and professional realms [Eiferman (2014a)]. This technology is being welcomed in

different areas. In enterprises, employees can manage wallet, games, social media and business

personas, all on the same mobile device with security policies of different levels enforced on

each. Likewise in healthcare, multi-persona delivers on refining the way of practicing medicine

[NADLER (2014)]. The patterns of delivering care for patients have changed. Doctors are not

tied anymore to their private clinics but rather work additionally with multiple institutions,

where they are subject to different policies. Besides the work/life balance multi-persona is able

to offer, apps are segregated into various personas in isolated virtual environments. Therefore,

through different personas for clinic and hospitals practices, multi-persona mobile computing

allow doctors to fit among their multiple places of work, by complying with the policy of each,

and the quality of care they provide to their patients.

Despite the evolution of mobile devices, a solid emergence of multi-persona is still impeded

by the resource constraints of such platform. In a recent study [Tout et al. (2015)], we revealed

the inability of the mobile device resources to afford high performing personas or tolerate their

95

viability. Yet, in this mobile world that we live in, considerable effort has been put forward in

MCC, offering new services for mobile devices to overcome their resource limitations [Zhou

et al. (2015); Khan et al. (2014); Abolfazli et al. (2014); Deng et al. (2015); Chen (2015);

Zhang et al. (2015)]. Several offloading techniques [Zhou et al. (2016); Hung et al. (2012);

Cuervo et al. (2010); Kosta et al. (2012); Kemp (2014); Chen et al. (2012); Chun et al. (2011);

Shi et al. (2014); Chae et al. (2014); Gordon et al. (2012); Flores et al. (2014); Xia et al.

(2014)] have been proposed allowing mobile terminals to migrate the execution of applications

to resourceful infrastructure. Typically, components like services, methods, or threads, inside

an application, are migrated to be executed on remote server, releasing the mobile device from

intensive processing. Each of these works has proposed an offloading evaluation model to

meet with different objectives like minimizing energy consumption or accelerating applications

execution. A decision is taken accordingly dictating where the components should be executed

whether locally or offloaded to meet with such objectives. These techniques proved their ability

to enhance the performance of the applications and extend the battery lifetime of a mobile

device.

We, in our turn, were able to augment the experience of multi-persona, where we proposed in

previous work [Tout et al. (2016)] an offloading-based solution to augment personas perfor-

mance and viability on mobile terminals. The solution was capable of significantly reducing

the CPU usage, memory consumption, and energy loss and proved its ability to accelerate the

execution of the applications. The results also demonstrated its ability to tolerate different

scenarios that cause shutting down personas on the mobile device.

However, to embrace such solutions in workplace where multi-persona mobile computing is

primarily proposed, two other crucial challenges arise. In workplace, many multi-persona

devices are involved in the business model sharing the remote cloud resources. As a case in

point, in the healthcare system, these devices are used by a variety of medical practitioners

with applications that allow them to access medical records to provide care to their patients no

matter their place of work. While sharing remote assets, the first concern now is to adequately

disseminate the execution of services between local and remote processing to enforce as many

96

personas as possible on all users’ terminals engaged rather than a solo device. Additionally,

leveraging commercial cloud resources is not free of charge. With several offloading requests

generated from numerous mobile devices, the fees aspect becomes a key factor in the equation.

Thus, the second concern that arises is the need to reduce the remote execution fees, which

form additional expenses for the institution itself. Therefore, the challenging question that

this paper aims to answer is how to optimize the total cost in such model? Particularly, how

to balance in one hand, the usage of cloud-based offloading services to minimize processing,

memory, energy and execution time in personas on as many devices as possible, and on the

other hand the remote execution fees imposed?

To the best of our knowledge, this work is the first to address this problem. In this new proposi-

tion, a comprehensive decision is clearly competent to meet with both fundamental concerns of

different perspectives, rather than a decentralized offloading decision taken separately on each

multi-persona device as the latter lacks overall view of the system. For this end, we devote

a centralized smart decision maker that instructs each terminal on the computations execution

strategies that achieve the optimal cost. Differently from existing works including our previous

one [Tout et al. (2016)], our proposition applies multi-layer optimization encompassing dif-

ferent extents. To evaluate the offloading service, we propose a novel two-level optimization

model that not only considers metrics of CPU, memory, energy, and execution time but also

personas on each and every device as well as the corresponding overall remote execution fees

imposed. Additionally, to solve this model, we tailor a genetic-based optimization algorithm

whose solution disseminates computations between local and remote execution to achieve the

needed cost balance. The algorithm presents new additional evolution components tailored to

optimize the model and speed-up the decision taking process. We define the cost as resource

usage and performance on every multi-persona device in addition to their total usage fees of

remote resources. While clearly a centralized approach should yield optimal trade-off for both

concerns, we also study how such solution is far from suboptimal ones obtained by the decen-

tralized distributed paradigm and we show how both approaches can be efficient from different

perspectives. In the following, we use the terms computations, components and services inter-

97

changeably. The following list of contributions emphasize the novelty and originality of our

proposition:

- Novel scheme for efficient cloud-based support of multi-persona in workplace.

- Two-level cost-effective optimization model to balance processing, memory, energy and

performance of personas on different devices with minimal remote resources usage fees.

- A centralized smart and cost-effective decision algorithm to generate the dissemination of

tasks that provides optimal cost. The algorithm presents with new additional evolution

components tailored to optimize the model and speed-up the decision taking process.

- Evaluation of both centralized and decentralized approaches and verifying their engagement

to address the raised concerns from different perspectives.

The rest of the paper is structured as follows. We give in Section 4.3 an overview of mobile

computation offloading and we discuss its advantages to support mobile terminals. In Section

4.4, we review existing strategies while highlighting some technical aspects. We present an

illustrative business model and emphasize on the problems in Section 4.5. We outline our

proposition in Section 4.6, and present its core details in Sections 4.7 and 4.8. In Section

4.9, we evaluate our approach and provide list of learned lessons. Finally in Section 4.10, we

conclude the article and draw some future directions.

4.3 Computation offloading to support mobile devices: Background

We review in this section the main concepts in computation offloading. The latter is an oppor-

tunistic process that leverages cloud resources (e.g., servers) to execute computation-intensive

components designated by a mobile terminal. In this process, an offloading decision is taken

based on a cost model that can estimate where the execution is more effective for the end device.

Due to mobility and changes in the network conditions and device resources, the evaluation of

this model changes from one execution to another and hence lead to different decisions.

98

Figure 4.1 Mobile computation offloading.

The common architecture of computation offloading is depicted in Figure 4.1. Set of profilers

are installed on the terminal to monitor the mobile applications, the environment character-

istics, and the device state. The mobile also contains a solver that based on the information

gathered by the profilers, evaluates a cost model and generates an efficient distribution of com-

ponents (i.e., decides about portions of applications to be executed locally and those to be

offloaded). On the other hand, the cloud infrastructure offers the servers where the offloaded

components are to be executed. Hereafter, we describe each component of this architecture.

Profilers: The mobile terminal includes profilers to monitor different aspects. The program

profiler is responsible of monitoring multiple parameters of the component ci, which is candi-

date for offloading, like energy consumption, execution time and size of data to be transmitted.

The component can be a service, method or thread inside the app. Different methods can be

used to identify an offloading candidate. For instance, some approaches [Cuervo et al. (2010);

Kosta et al. (2012)] and [Kemp (2014)] rely on the developers to annotate explicitly the appli-

cation source code (e.g., [Remoteable], strategy=remote, @Remote), while others [Chun et al.

(2011)] provide automatic mechanism capable of analyzing the code and generating potential

migration points. The network profiler is responsible of monitoring the network characteris-

99

tics in terms of availability, type (e.g., wifi, 3G), bandwidth, latency and energy consumed on

transmission. The device profiler inspects the energy consumption on the device as well as the

battery level and CPU utilization to detect critical situations that require offloading, and hence

trigger the solver.

Solver: Based on a cost model, the decision maker evaluates the information gathered by the

profilers. The evaluation model explores a trade-off between different metrics like energy

consumption and execution time of the applications. In the evaluation process, the solver

compares the benefit of local and remote execution and a decision is taken accordingly. If

offloading is more beneficial, the code is invoked remotely; otherwise, it is executed locally.

The remote platform consists of server(s) located in the vicinity like cloudlets [Satyanarayanan

et al. (2009)] or in the cloud [Amazon (a); Google (a)], which are responsible of executing the

offloaded code. Having higher processing power and more resource competency compared to

mobile devices, these servers are able to accelerate the execution time and augment the user

experience on the mobile terminal.

4.4 Related Work

We survey in this section the most common and recent offloading techniques, then we classify

them based on different key factors.

Table 4.1 Taxonomy of offloading schemes.

Scheme Type Target Offloading Unit Decision Metrics
Cost

Evaluation

Evaluation

Overhead
Savings

Application Persona Device Energy Time Processing Memory Fees Energy Time Processing Memory Fees

mCloud[Zhou et al. (2016)] MC Single Single Single Method � � x x x Independent High +++ +++ + + -

MAUI[Cuervo et al. (2010)] MC Single Single Single Method � x x x x Independent High +++ +++ + + -

CloneCloud[Chun et al. (2011)] MC Single Single Single Thread � � x x x Independent High +++ +++ + + -

COMET[Gordon et al. (2012)] MC Single Single Single Multi-Thread - - - - - - - +++ +++ + + -

Cuckoo[Kemp (2014)] MC Single Single Single Service � � x x x Independent High +++ +++ + + -

Chen et al.[Chen et al. (2012)] MC Single Single Single Service � � x x x Independent High +++ +++ + + -

Phone2Cloud[Xia et al. (2014)] MC Single Single Single Method � � x x x Independent High +++ +++ + + -

ThinkAir[Kosta et al. (2012)] CC Single Single Single Method � � x x � Independent High +++ +++ + + +++

COSMOS[Shi et al. (2014)] CC Multiple Single Multiple Method x � x x � Collective Low + +++ + + +++

CMcloud[Chae et al. (2014)] CC Multiple Single Multiple Method x � x x � Collective Low + +++ + + +++

Tout et al.[Tout et al. (2016)] MC Multiple Multiple Single Generic � � � � x Collective High +++ +++ +++ +++ -

Our Proposition MC Multiple Multiple Multiple Generic � � � � � Collective Low +++ +++ +++ +++ +++

100

Table 4.2 Taxonomy of offloading schemes.

Scheme Proactivity Management Strategies

mCloud[Zhou et al. (2016)] No Offload

MAUI[Cuervo et al. (2010)] No Offload

CloneCloud[Chun et al. (2011)] No Offload

COMET[Gordon et al. (2012)] No Offload

Cuckoo[Kemp (2014)] No Offload

Chen et al.[Chen et al. (2012)] No Offload

Phone2Cloud[Xia et al. (2014)] No Offload

ThinkAir[Kosta et al. (2012)] No
Offload

Cloud Resource Manamegement

COSMOS[Shi et al. (2014)] No
Offload

Cloud Resource Manamegement

CMcloud[Chae et al. (2014)] No Offload

Our Proposition Yes
Offload

Turn off Component
Switch off Persona

4.4.1 Mobile Centric Offloading

Several approaches have proposed mobile centric offloading schemes that proved their ability

to enhance the applications performance and minimize the energy consumption on the mobile

device.

In mCloud framework [Zhou et al. (2016)], different cloud resources are considered; mobile

ad-hoc device cloud, cloudlets and public cloud. The work aims to find where tasks should be

executed so that the overall energy consumption and execution time is the lowest among all

cloud resources in the mobile cloud infrastructure based on the current state of the device.

MAUI [Cuervo et al. (2010)] is an offloading framework that has been proposed by Cuervo et

al. in order to reduce the energy consumption of mobile applications. The framework consists

of a proxy server responsible of communicating the method state, a profiler that can monitor

the device, program and network conditions, and a solver that can decide whether to run the

method locally or remotely. MAUI uses its optimization framework to decide which method to

101

send for remote execution based on the information gathered by the profiler. The results show

the ability of MAUI to minimize the energy consumption of a running app.

CloneCloud [Chun et al. (2011)] is another offloading approach that has been presented in order

to minimize the energy consumption and speed-up the execution of the running application. A

profiler collects the data about the threads running in this app and communicates the gathered

data with an optimization solver. Based on cost metrics of execution time and energy, the solver

decides about the best partitioning of these threads between local and remote execution. This

approach does not require modification in the original application since it works at the binary

level. The experiments of CloneCloud showed promising results in terms of minimizing both

execution time and energy consumption of an application. However, only one thread at a

time can be encapsulated in a VM and migrated for remote execution, which diminishes the

concurrency of executing the components of an application.

Relying on distributed shared memory (DSM) systems and virtual machine (VM) synchro-

nization techniques, COMET [Gordon et al. (2012)] enable multithreaded offloading and over-

comes the limitations of MAUI and CloneCloud, which can offload one method/thread at a

time. To manage memory consistency, a field-level granularity is used, reducing the frequency

of required communication between the mobile device and the cloud.

Kemp has followed different strategy and proposed Cuckoo [Kemp (2014)] that assumes com-

pute intensive code to be implemented as an Android service. The framework includes sensors

to decide, at runtime, whether or not to offload particular service since circumstances like

network type and status and invocation parameters of the service call on mobile devices get

changed continuously, making offloading sometimes beneficial but not always. Cuckoo frame-

work has been able to reduce the energy consumption and increase the speed of computation

intensive applications.

Chen et al. [Chen et al. (2012)] have proposed a similar framework that automatically offloads

heavy back-end services of a regular standalone Android application in order to reduce the

102

energy loss and execution time of an application. Based on a decision model, the services are

offloaded to an Android virtual machine in the cloud.

An offloading-decision making algorithm that considers user delay-tolerance threshold has

been proposed by Xia et al. [Xia et al. (2014)]. The tool predicts the average execution

time and energy of an application when running locally on the device, then compares them

to cloud-based execution cost in order to decide where the application should be executed.

4.4.2 Cloud Centric Offloading

Other schemes have proposed cloud centric solutions that focus on how to manage cloud re-

sources in order to reduce the remote execution fees, while maintaining good performance on

the mobile terminal.

ThinkAir [Kosta et al. (2012)] has been introduced as a technique to improve both compu-

tational performance and power efficiency of mobile devices by bridging smartphones to the

cloud. The proposed architecture consists of a cloud infrastructure, an application server that

communicates with applications and executes remote methods, a set of profilers to monitor the

device, program, and network conditions, and an execution controller that decides about of-

floading. ThinkAir applies a method-level code offloading. It parallelizes method execution by

invoking multiple virtual machines (VMs) to execute in the cloud in a seamless and on-demand

manner achieving greater reduction in execution time and energy consumption.

Shi et al. have presented COSMOS system [Shi et al. (2014)] with the objective of manag-

ing cloud resources to reduce their usage monetary cost while maintaining good offloading

performance. Through its master component, COSMOS collects periodically information of

computation tasks and remote VMs workloads. Based on the gathered information, COSMOS

is able to control the number of active VMs over time. Particularly, whenever VMs are over-

loaded, the system turns on new instance to handle the upcoming requests. It can also decide

to shut down unnecessary instances to reduce the monetary cost in case the rest are enough to

handle the mobile devices requests.

103

Chae et al. [Chae et al. (2014)] have proposed CMcloud, a new scheme that aims to maximize

the throughput or minimize the server cost at cloud provider end by running as many mobile

applications as possible per server and offer the user’s expected acceleration in the mobile ap-

plication execution. CMcloud seeks to find the least costly server which has enough remaining

resources to finish the execution of the mobile application within a target deadline.

4.4.3 Analysis

Table 4.2 presents a taxonomy of most relevant works to clearly differentiate between them.

Type represents the nature of each scheme whether it proposes mobile or cloud centric man-

agement solution (MC and CC respectively). Target represents the number of applications,

personas and devices considered in each technique. Offloading unit identifies the code level

granularity where offloading is applied. The decision metrics represent the aspects to be eval-

uated in order to determine the offloading productivity. Model evaluation show the charac-

teristics of the offloading evaluation process, while evaluation overhead reflects the decision

making cost. Finally, savings highlight the gain obtained in terms of resource usage preser-

vation and performance acceleration on the mobile terminal in addition to the monetary fees

reduction for cloud offloaded services (+++ represents higher savings compared to +, while -

for not applicable).

Several researchers have proposed computation offloading schemes to support mobile devices.

These approaches have indeed proved their abilities to enhance the performance and save en-

ergy on the mobile terminal [Zhou et al. (2016); Hung et al. (2012); Cuervo et al. (2010); Kosta

et al. (2012); Kemp (2014); Chen et al. (2012); Chun et al. (2011); Shi et al. (2014); Chae et al.

(2014); Gordon et al. (2012); Flores et al. (2014); Xia et al. (2014)]. In our turn, we proposed

in previous work an offloading-based solution, yet differently for multi-persona devices, which

was able to augment personas performance and viability [Tout et al. (2016)]. The work ad-

dressed the needs of multi-persona on a single mobile device by analyzing services offloading

opportunities that optimize the resource usage and performance on the end terminal.

104

Yet, this paper goes beyond existing works, including our previous contribution, by address-

ing the concerns of embracing such solutions in workplace, where in this new architecture,

resources and performance of personas on various devices should be augmented without im-

posing high additional fees of services offloading. Our proposition considers a model of nu-

merous multi-persona devices held by an institution’s end users. It includes a smart decision

maker, centralized remotely, which in one hand analyzes the profile of each and every multi-

persona device as well as the usage fees of remote resources, and on the other hand capable

of minimizing the evaluation overhead which can form itself a bottleneck on the mobile termi-

nal. Differently from all works studied in the literature, our proposition applies optimization

on different extents. It includes a two-level optimization model that considers personas on all

devices involved while analyzing the energy consumption, CPU usage, memory consumption

and performance of each of their components in addition to the monetary cost accordingly. The

proposed solution decodes, on every device engaged, the dissemination of computations that

achieves a balance between multi-persona devices needs and corresponding cost, reaching not

only a balance between high savings in local resource usage and execution speed-up but also

significant satisfaction level of multi-persona devices involved and considerable reduction in

the monetary charges. Moreover, we redesign a genetic-based algorithm with tailored adap-

tive fitness evaluation and evolution-based operator for intelligent and accelerated offloading

decision making process. While centralized solution will be able to find such trade-off, clearly

not all devices and services will be satisfied. Therefore besides analyzing the efficiency of this

work, we examine the effect of applying our proposition in decentralized manner and give in-

sights on the efficiency of both approaches from device user and institution perspectives with

respect to the devices and services satisfaction level and the overall cost.

4.5 Illustrative Business Model and Problem Description

Running multiple personas on a mobile device is challenging due to the needed additional

virtualization layer on such resource constrained terminal. The limited CPU power, memory,

and battery can impose serious performance overhead, decrease the responsiveness and put

105

Figure 4.2 Illustrative business model.

the viability of personas on the line. We proposed in previous work an offloading-based solu-

tion to deal with these issues [Tout et al. (2016)]. Yet, leveraging cloud resources to support

multi-persona in workplace raise new problems as different requirements should be taken into

account. To emphasize these concerns, we consider the business model illustrated in Figure

4.2. It’s worth to mention that the following concerns apply on other business models mainly

in enterprises where multi-persona BYOD is embraced by employees to balance personal and

professional facets, while the healthcare system is just used here as an illustrative example. The

demands of medicine impose on doctors to move from traditional private practice to be also

part of larger care provider institutions. Working at different hospitals allows doctors to be a

point of continuity for more patients, providing them with coverage from diagnosis to remedy.

Yet, doctors are subject to different policies that reflect each institution. Yet, with a persona

for each, doctors are able to comply with each policy while providing continuous care for their

patients no matter their place of practice. However, with several multi-persona devices used

by medical practitioners are now involved, leveraging cloud resources to deliver augmented

multi-persona experience on the terminal imposes significant additional fees, as many offload-

ing service requests impose higher expenses. Therefore, every time an offloading decision is to

be taken, it should balance the resource savings and performance acceleration on the concerned

devices with the monetary fees of remote resources leveraged to carry out these benefits.

106

We shed the light on this problem by showing the advantages of offloading on the end termi-

nal yet the additional monetary fees it imposes on the institution in return. With no available

standards testbeds for such evaluation, the mobile applications used in these experiments im-

plements algorithms for virus scanning and encryption and a variety of games, namely, nqueens

puzzle, sudoku solver and maze discoverer. To simulate different range of offloading requests

that can be generated by end users devices in an institution, we vary the number of devices

with three personas on each, all running these applications. To study the impact of offloading,

we compare two strategies; ALLoc where applications on all devices are running locally and

ALLO where they are offloaded to be executed on a remote infrastructure. We measure the

average CPU usage, memory consumption, energy loss and execution time, per device as well

as the overall monetary cost imposed. Computation resources are typically provided in the

form of virtual machine (VM) instances and billed based on usage time [Amazon (b); Google

(b)]. The calculated cost in this work is based on the on-demand pricing scheme of a VM

instance of type m4.4xlarge from Amazon [Amazon (b)], which has been selected with no

particular preferences as any instance from commercial providers would fulfill the objective of

these experiments. Details about the tools are described in Section 4.9.

The results are depicted in Figure 4.3. The ALLoc strategy imposed considerable overhead

on every user terminal with up to 76% CPU usage, 30.6% memory consumption, 1557.7 KJ

of energy loss and poor performance with 39 min to finish the execution. In contrast, ALLO

was able to significantly minimize the resource usage with just 0.9% of the CPU usage, 14.8%

memory, 4100 J of energy and offer enhanced performance with 15 minutes of execution time.

However, the results show also the additional high charges of ALLO needed for the institution

to offer such benefits to its medicine practitioners. The fees varied between 3 and 24$ per hour.

The incremental value of fees in ALLO strategy is due to the offloading requests sent by each

device as in this scheme, all applications are executed remotely. For ALLoc, one can notice

stable results even when incrementing the number of devices, this is due to the fact that all

devices are running the same applications and following the same strategy of local execution.

Similar stability for ALLO strategy, yet this is interpreted by the fact that the setup scales

107

Figure 4.3 Unbalanced resource usage, performance, and

monetary fees.

horizontally to avoid any influence on the server’s throughput. The findings in Figure 4.3 raise

the need for a new strategy that is able to balance, resource usage and performance to boost

personas user experience on different devices and the remote resources usage to minimize the

additional fees implied.

4.6 Cost-Effective Offloading: System Model

The system model is depicted in Figure 4.4. With multi-persona adopted in workplace, many

multi-persona devices are engaged. We devote per persona profilers on each device to monitor

the relevant resources. The profilers gather information about CPU and memory usages, energy

consumption, and execution time for all components. A component can be an application,

service, method, or even thread that implements certain functionalities. The profilers examine

also the availability of connectivity, its data rate and latency in the host persona.

108

Figure 4.4 System model.

Profilers on every device communicate the gathered information with a centralized smart de-

cision maker hosted and managed by the institution to construct and resolve two-level opti-

mization model whose solution balances the fundamental requirements of personas on various

users devices and the implied fees. The profiled information forms not only the input for

the decision maker but also the trigger for offloading evaluation. With periodic monitoring,

the host device will be able to send a request for the decision maker to analyze the benefits

and costs of any decision before personas fall in critical states. Devices resources and per-

formance, and remote resource fees, all constitute the actual cost. Therefore we propose a

decision model composed of different metrics that in one hand affect resources and perfor-

mance of personas, and on the other hand the total remote resource usage fees for executing

offloaded components. In this regard, we devise a two-level multi-objective optimization model

that considers CPU usage P(dk), memory consumptionM(dk), energy loss E(dk) and execution

time P(Tk) for personas on each and every device, as well as the remote execution fees C(D);

(F = Minimize{P(dk),M(dk),E(dk),T (dk)∀dk ∈D,C(D)}). Each of these metrics is weighted

in order to comply with different states on the device. The formal design of the proposed model

and more details are presented and interpreted in Section 4.7.

The Controller is mainly responsible of enforcing privileges between personas. Typically, pro-

fessional persona has more priority to offload its computation than personal one. While when

109

it comes to multiple professional personas, the one that belongs to the institution where the

device is being used at the time being, can be given higher priority. Yet such assumption does

not always hold. For instance, doctors use their multi-persona devices to provide care for their

patients no matter their place of practice, therefore the controller allow them to manage such

privileges between personas, and at lower level to enforce them for particular tasks to handle

critical patients situations. Other policies that are subject of future work include shutting down

particular personas or applications when the device is running out of resources or suffers from

performance degradation.

Devices are not independent as in the sense of resource sharing, the sum of offloading fees

is one of the multiple objectives. However, this two level of objectives are inter-conflicting.

With the aid of offloading to optimize the limited resources and performance of multi-persona

devices, additional fees are imposed, which emphasizes the complexity of finding a trade-

off among these objectives. For this end, we devote a genetic-based algorithm with tailored

evolution elements to generate the distribution of components, which optimizes the global

cost. The optimal distribution (S′ = {0,1,1,1, ...}) dictates for personas components on every

device, whether to be executed locally (0 value) or offloaded (value of 1) like c2,c3,c4. The

core details of the decision making process are presented in Section 4.8.

4.7 Collective Multi-Persona Offloading Optimization Problem (CMPO)

4.7.1 Definition

Differently from [Tout et al. (2016)], when many devices need to offload components to boost

personas performance and ensure longer viability, the offloading decision of each influences the

other as requested remote resources are shared among them and the monetary fees of the latter

cannot be disregarded. This requires finding the optimal dissemination of components with the

lowest-cost for multi-persona mobile devices in one hand and the institution spending on the

other hand. We represent the set of multi-persona devices as D, where each device is defined as

dk/k = [1, ...,r] and r is the number of devices, personas as P = {p1, ..., pm}, the components

110

set as S = {c1, ...,cn} and the disseminations solutions set as G. Here, we consider the cost as

every mobile resource usage in terms of processing P(dk), memory M(dk) and energy E(dk)

besides its performance T (dk) as well as the total monetary fees of remote executions C(D);

The CMPO optimization problem can be defined as follows:

Assumptions. We assume in this problem that offloading can be prioritized between personas.

Each of the latter has a weight that gives priority for its components to be offloaded. These

weights can be assigned by multi-persona device user and enforced by the controller module.

Such weights can give priorities for professional personas over personal ones or foreground

over background to use cloud resources, or even allow doctors to prioritize offloading from

particular persona that deals with critical patient case. Additionally, components are assumed

to be independent and some of them might not be offloadable. Studying the dependability

between components form part of future work where such relation has direct impact on their

execution. We also consider dynamic environment where the network might not be available

and its data rate and latency may vary.

Definition 1. Given various devices dk ∈D/k = [1, ...,r] of multiple personas P = {p1, ..., pm}
characterized by powercpu, powerscreen, poweridle, powertransmission, which correspond to pow-

ers consumed on processing, screen brightness, idle cpu and for transmission, and running set

of components S = {c1, ...,cn} each of which ci uses CPUlocal
ci

percent of the CPU, Memorylocal
ci

percent of the memory, consumes Energylocal
ci

energy, spends ExecutionTimelocal
ci

time, when it

is executed locally whereas CPUremote
ci

, Memoryremote
ci

, Energyremote
ci

and ExecutionTimeremote
ci

respectively when it is offloaded and relevant data to be transmitted accordingly Dataci , while

the network features are Bandwidth and Latency; find the dissemination of components S′ that

optimizes P(dk), M(dk), E(dk) and T (dk), ∀dk ∈ D, with minimal C(D).

The optimization objectives in this problem present both inter and intra levels of conflicts.

At high level, the aim to optimize the resource usage and performance on every device, by of-

floading the execution of components in their host personas, and minimize the monetary fees of

remote execution are inconsistent intents. Likewise, at the low level of every multi-persona de-

111

vice, speeding up the execution while minimizing processing, memory usage and energy con-

sumption are also paradoxical. Further, finding the optimal dissemination that balances these

objectives suffers from an exponential search space in the number of different possibilities in

which these components can be distributed, which increases the complexity of the problem.

This is similar to the various ways n distinct objects can be distributed into m different sacks

with k1 objects in the first sack, k2 in the second, etc. and k1+k2+....km= n. This indeed is ob-

tained by applying the multinomial theorem where (k1+k2+ ...km)
n= ∑

(n
k1k2....km

)
kn1

1 kn2
2 ...knm

m .

Here, the objects are the components on different multi-persona devices and the sacks are the

mobile device and the remote infrastructure. Thus, for n components, there are 2n different

dissemination possibilities.

Theorem 1. The CMPO optimization problem is NP-Hard

Proof:Next, we will prove that the collective multi-persona offloading optimization problem is

NP-Hard via a reduction from the NP-hard multi-objective-m-dimensional Knapsack Problem

(MOMKP) [Lust & Teghem (2012)]. We provide the following definition of the MOMKP: Let n

denote the number of items and m the number of knapsacks. Consider p j
i and w j

i , the profits and

weights of item i with respect to the knapsack j respectively, and c j, the capacity of knapsack j.

Define the solution as x = {x1, ...,xn} with xi ∈ {0,1}. The objective is to distribute the items

into the knapsacks in a way to maximize f (x) = (f1(x), f2(x), ..., fk(x)),where fi(x) =∑n
j=1 p j

i .xi

subject to ∑m
j=1 w j

i .x j < ci∀i ∈ {1, ...,m}.

Now given an instance of the MOMKP, we transform it into an instance of CMPO problem as

follows: Let n denotes the number of components from different multi-personas devices and m

the number of knapsacks, which is here equal to two (mobile device for local execution and

remote infrastructure for offloaded execution). Consider CPUlocal
ci

, Memorylocal
ci

, Energylocal
ci

and ExecutionTimelocal
ci

as processing, memory, energy and execution time costs of component

ci, in persona p j on device dk, respectively when it is executed locally (i.e., ci cost with respect

to sack1), while CPUremote
ci

, Memoryremote
ci

, Energyremote
ci

and ExecutionTimeremote
ci

when it is

offloaded (i.e., ci cost with respect to sack2). In the latter case, a monetary cost cci for remote

112

execution is also imposed. For every device dk, let P(dk), M(dk), E(dk) and T (dk) be the total

cost on every device, which are the sum of the costs of its underlying local and remote com-

ponents form every persona. The total monetary cost is the aggregation of costs of offloaded

components from each device, which is denoted as CD, where D is the set of devices. Each

sack has its own capacity, thus every dk has T̃Pdk
, T̃Mdk

, T̃Edk
to guarantee enough resources

for personas components. Here we assume that the remote sack has enough resources to sup-

port the mobile devices requests as long as the institution is capable of devising the adequate

needed resources. Define the solution as x = {xc1
, ...,xcn} with xci ∈ {0,1}, where a bit of 0

denotes local execution and a bit of 1 is for remote processing. The question is how to dissem-

inate components in each persona on every device between local and remote infrastructure in

a way minimize(P(dk)∀dk ∈ D,M(dk)∀dk ∈ D,E(dk)∀dk ∈ D,T (dk)∀dk ∈ D,C(D)) subject to

P(dk) < T̃Pdk
∀dk ∈ D, M(dk) < T̃Mdk

∀dk ∈ D, E(dk) < T̃Edk
∀dk ∈ D, and C(D) < B. Accord-

ingly, a solution of CMPO yields a solution to the MOMKP. After this complete proof of the

reduction, we conclude that the CMPO problem is NP-Hard.

4.7.2 Formulation

In the following, we mathematically formulate CMPO based on the definitions we provided.

- Decision Variables:

x = {xc1
, ...xcn}

where,

∀ci,i:1→n,xci =

⎧⎪⎨
⎪⎩

0, if ci is to be executed locally

1, if ci is to offloaded

- Parameters:

- Mathematical Model:

Minimize((P(dk),M(dk),E(dk),T (dk))∀dk ∈ D,C(D)) where,

P(dk) = wP(dk)×
[

∑
∀p j∈dk

wp j ∑
∀ci∈p j

(1− xci)×CPUlocal
ci

+ ∑
∀p j∈dk

∑
∀ci∈p j

γci xci × (CPUremote
ci

)

]
(4.1)

113

D set of devices

dk device in D
p j persona on device dk
ci component in persona p j
γci offloadable component indicator

CPUlocal
ci

cpu usage on dk by ci executed locally

CPUremote
ci

cpu usage on dk by ci offloaded

Memorylocal
ci

memory usage on dk by ci executed locally

Memoryremote
ci

memory usage on dk by ci offloaded

powercpu power consumed by dk on precessing

powerscreen power consumed by dk on the screen

poweridle power consumed by dk on idle CPU

powertransmission power consumed by dk for transmition

Dataci size of data transmitted for offloading ci
ExecutionTimelocal

ci
time to execute ci locally

ExecutionTimeremote
ci

round trip time to process ci remotely

price hourly monetary cost of remote execution

wp j weight for persona p j
wP(dk) weight for function P(dk)
wM(dk) weight for function M(dk)

wE(dk) weight for function E(dk)
wT (dk) weight for function T (dk)
wC(D) weight for function C(D)

M(dk) = wM(dk)×
[

∑
∀p j∈dk

wp j ∑
∀ci∈p j

(1− xci)×Memorylocal
ci

+ ∑
∀p j∈dk

∑
∀ci∈p j

γci xci × (Memoryremote
ci

)

]
(4.2)

E(dk) = wE(dk)×
[

∑
∀p j∈dk

wp j ∑
∀ci∈p j

(1− xci)×
(
(powercpu + powerscreen)×ExecutionTimelocal

ci

)
+

∑
∀p j∈dk

∑
∀ci∈p j

γci xci ×
(
(poweridle×ExecutionTimeremote

ci
)+

(
powertransmission× (Latency+

Dataci

Bandwidth
)
))]

(4.3)

T (dk) = wT (dk)×
[

∑
∀p j∈dk

wp j ∑
∀ci∈p j

(1− xci)×ExecutionTimelocal
ci

+ ∑
∀p j∈dk

∑
∀ci∈p j

γci xci × (ExecutionTimeremote
ci

+Latency+
Dataci

Bandwidth
)

]

(4.4)

C(D) = wC(D)×
[

∑
∀dk∈D

∑
∀p j∈dk

wp j ∑
∀ci∈p j

xci × (ExecutionTimeremote
ci

× price)

]
(4.5)

Subject to

114

P(dk)< T̃Pdk
∀dk ∈ D (c1)

M(dk)< T̃Mdk
∀dk ∈ D (c2)

E(dk)< T̃Edk
∀dk ∈ D (c3)

These equations stimulates the model to find the dissemination of components that can bal-

ance the resource usage and performance for as many services as possible on the multi-persona

mobile devices and the additional monetary fees imposed for offloaded components. This is a

two-level optimization model that considers minimizing the resource consumption and boost-

ing the performance on as many involved multi-person mobile devices as possible, through

computation offloading, while takes also into account a conflicting metric of reducing the

monetary fees entailed by using the remote resources for offloading requests. We formulate

CMPO as multi-objective optimization through the minimization function F which includes

five objectives aiming to reduce the resource consumption, execution time and fees implied.

∀dk ∈ D, P(dk) in Equation (4.1) is calculated as the processing needed to execute local ser-

vices and that required during the execution of remote computations and/or for processing the

returned response. As ∀dk ∈D, M(dk) in Equation (4.2) is determined by the memory needed to

process local computations and the one consumed while waiting and/or processing the remote

components execution response. ∀dk ∈ D, E(dk) in Equation (4.3) is the energy consumed on

CPU processing and screen brightness for local components execution and the energy spent

on the CPU being idle, screen brightness and network being active while waiting the offloaded

services execution. It also includes the energy consumed by the terminal for data transmis-

sion of relevant uploaded parameters and downloaded response. ∀dk ∈ D, The time needed

to finish the execution of requested services on every device is defined by T (dk) in Equation

(4.4), which includes the duration of local and remote processing in addition to any latency and

data transmission involved. As for the second layer of this model, Equation (4.5) defines the

monetary fees imposed for processing offloading requests from relevant multi-persona devices,

which is calculated based on the execution time needed for remote processing. Constraint (c1)

forces the model to find a solution that does not overload the processing on the mobile termi-

nal. Constraint (c2) forces the model to find a solution that does not excess the memory of the

115

local device. Constraint (c3) represents the energy constraint that guarantees a threshold for

available power on the device.

4.8 Smart Cost-Effective Decision Maker

As our CMPO is NP-Hard, we propose a heuristic based algorithm to solve it. The proposed

smart decision maker (SDM) exploits the intelligent evolution of solutions in genetic algo-

rithms (GAs), which have been able to solve complex optimization problems in many areas

through their method of evolution inspired search [Deb (1999)]. Based on natural selection,

GAs simulate the propagation of the fittest individuals over consecutive generations to deter-

mine the best solution. After investigating different algorithms, an extensive study presented

in previous work [Tout et al. (2016)] proves the efficiency of nsga-ii [Deb et al. (2002)] over

the others. Differently from [Tout et al. (2016)], we redesign nsga-ii [Deb et al. (2002)] with

tailored adaptive fitness evaluation and evolution-based crossover. Particularly, according to

the proposed two-level optimization model that we presented in Section 4.7, SDM works on

generating the dissemination of personas components that minimizes the resource usage and

enhances the performance on every device with minimal additional fees for the institution. In

addition, we propose an evolution-based crossover operator aiming to accelerate the detection

of favorable candidate solutions that optimize CMPO. Based on the differential evolvement of

the individuals, genes that produce better fitness compared to their parents are used to form

the offspring. Algorithm 4.1 describes the process adopted by the decision maker to generate

cost-effective solution.

4.8.1 Solution Encoding

Figure 4.5 Encoding scheme.

116

In GAs, each chromosome/individual in a population forms a candidate solution. For CMPO,

The algorithm starts with population of N randomly generated individuals according to the

number of components in personas on each device (Line 5). Each individual represents the dis-

semination of personas components from different devices, has a size |S|, and it is encoded as

a set of binaries x = {xc1
, ...,xcn}, where n is the total number of components involved. Figure

4.5 illustrates the encoding scheme. Each gene xci of an individual represents a persona com-

ponent on a mobile device and its value dictates whether this component should be offloaded

(xci = 1) or executed locally on the end terminal (xci = 0).

4.8.2 Fitness Evaluation

A score/fitness is designated for each individual simulating the propagation of the fittest indi-

viduals over consecutive generations in order to determine the best solution. The fitness varies

based on how efficiently each individual can solve the problem. For CMPO, the fitness of each

candidate solution is determined by P(dk), M(dk), E(dk), T (dk) and C(D) functions (Line 6 to

Line 12) that form the model proposed in Section 4.7. The solutions are ranked according to

their ability to reduce the resources usage, speed-up the execution and minimize the relevant

monetary fees, where all these metrics are to be minimized.

The fittest b individuals in the population are then selected (Line 15) to go through a process

of evolution. In the latter, crossover and mutation operations are applied to produces next gen-

eration of individuals for new possible distribution solutions of components (Line 16 to Line

20). The algorithm reassesses the model metrics to calculate the fitness of these generated in-

dividuals (Line 21 to Line 27). The evaluation process continues over and over until any of the

stopping criteria is met, where either the fitness of the best individual in successive populations

did not improve or the defined number of iterations δ is reached. Finally, the decision maker

returns the fittest distribution from the last generation to solve the CMPO problem (Line 35).

117

4.8.3 Evolution Process

4.8.3.1 Selection

In this step (Line 15), chromosomes are selected to go through the evolution process. We

use bit tournament selection, which involves running several rounds over randomly chosen

chromosomes from the population. The winner in each round, which has the best fitness is

then selected for crossover.

4.8.3.2 Crossover

Chromosomal crossover is the operation of exchanging genes between two individuals with

the intent to produce better offspring. With a μc rate, Crossover usually occurs when regions

of a chromosome break and reconnect to the other chromosome. In contrast, we propose an

evolution-based crossover operator (Line 16 to Line 18) for CMPO as illustrated in Figure

4.6. This operator is based on the differential evolution of individuals that optimizes CMPO.

Taking two individuals (parents) I1 and I2 as depicted in Figure 4.6, highlighted genes that

produce better fitness (smaller fitness value based on the evaluation presented in Section 4.8.2)

when compared to their parents are used to form the offspring.

Figure 4.6 Evolution-based crossover.

118

Figure 4.7 Mutation.

4.8.3.3 Mutation

Mutation operation (Lines 19 and 20) is to apply additional modifications in the chromosomes

that improve their fitness. With a μm rate, we apply standard bit flip mutation for CMPO as

depicted in Figure 4.7.

Lemma 3. The time complexity of Algorithm 4.1 is O(δN|S|)

Proof: Different factors determine the time complexity of this algorithm; the fitness function

evaluation, the population size, the individual length, variation and selection operators and the

number of iterations or generations. Initializing generation index, solution set and generating

the first population has each time complexity O(1). The evaluation of the fitness function

has time complexity of O(N + 1) where N is the population size. The tournament selection,

evolution-based crossover and bit flip mutation, have time complexity of O(δN|S|) where δ

is the number of generations and |S| is the size of an individual. Reassessing the model is

of O(δN). Finally, the return statement has O(1). Subsequently, the time complexity of the

algorithm is O(1)+O(N +1)+O(δN|S|)+O(δN)+O(1) which is equivalent to O(δN|S|)
as lower orders are to be dropped.

4.9 Numerical Analysis

Previous examination showed that the device is not able to handle more than 2 personas with

several applications running in each but rather cause the end terminal to shut down, while when

adopting offloading, it was able to run up to three personas with even computation intensive

apps. For more detailed results regarding how many personas and apps the device can support

119

Algorithm 4.1 Smart DM

1: Input: Set of multi-persona devices D = {d1,d2, ...dr} with DS specs of each in terms of power

consumption on cpu, screen in idle state and for transmission, set of personas on these devices

P = {p1, p2, ...pm}, candidate components from each forming a set S = {c1,c2, ...cn}, each of which

is characterized by local and remote execution time, cpu usage and memory consumption, and length,

network characteristics NC in terms of bandwidth and latency, instance leasing cost IC, number of

possible solutions N, mutation rate μm, crossover rate μc and number of generations δ .

2: Output: Distribution set of components S′ ⊆ S.

3: i←− 0 � population index

4: S′ ←− /0

5: Gi ←− Random[N][|S|] � random population

6: for k = 1 to r do
7: Calculate P(dk):=CalcProcessing(P,Gi)
8: Calculate M(dk):=CalcMemory(P,Gi)
9: Calculate E(dk):=CalcEnergy(DS,P,Gi,NC)

10: Calculate T (dk):=CalcTime(P,Gi,NC)
11: end for
12: Calculate C(D):=CalcCost(D,P,Gi, IC)
13: for g = 1 to δ do
14: {

15: Propagate b best candidates distributions BC for next

generation Gi+1 ←− BC
16: select two solutions from Gi, XA and XB;

17: Generate XC by evolution-based crossover to XA, XB;

18: Add XC to Gi+2;

19: Select a solution Xb from Gi+2;

20: Mutate Xb and generate new feasible

solution Xj′ ;
21: for k = 1 to r do
22: Reassess P(dk):=CalcProcessing(P,Gi+1)
23: Reassess M(dk):=CalcMemory(P,Gi+1)
24: Reassess E(dk):=CalcEnergy(DS,P,Gi+1,NC)
25: Reassess T (dk):=CalcTime(P,Gi+1,NC)
26: end for
27: Reassess C(D):=CalcCost(D,P,Gi+1, IC)
28: Update generation Gi = Gi+1 +Gi+2

29: Update generation index i←− i+1

30: if Same fitness is detected in Gi+1 and Gi+2 then
31: break;

32: end if
33: }

34: end for
35: return most cost-effective distribution S′ from Gi

with and without offloading, one can refer to [Tout et al. (2016)]. We interpret in this Section

the experiments performed to answer the following fundamental research questions: (1) How

efficiently the proposed two-level multi-objective optimization model and the cost-effective

smart decision maker are able to generate a trade-off between the usage of cloud resources for

120

minimal processing, memory, energy and execution time in personas on different mobile termi-

nals, and the additional remote execution fees imposed accordingly? (2) What is the satisfac-

tion rate achieved by centralized and decentralized applications of our proposition respectively

and which of them would be more competent from both users and institution perspectives? (3)

What kind of improvements are achieved through the optimized decision engine?

4.9.1 Setup

The implementation of a mobile application should follow particular design pattern in order

to make it offloadable. The activity/service model in android allows clear separation between

the application code and its user interface. Particularly, the logic code of the computation-

intensive tasks can be implemented as services through android interface definition language

(AIDL) while the user interface is defined using activities. Applying such model facilitates the

offloading task as services and activities are already isolated. We use the same applications

described in Section 4.5 to run on the mobile devices. Each mobile device is a three-persona

terminal running Android operating system with quad-core processor and 1 GB of RAM.

To profile the running applications, we implemented Linux-based commands that monitor CPU

and memory usages, while we used PowerTutor [Zhang et al. (2010)] to monitor the energy

consumption on different aspects like CPU, screen and network. As for the power consumption

on idle CPU, active network and during transmissions, we exploit the power profile in android

[Android (2017)] to get the relevant information. Finally, we embedded a timer to monitor

the execution time. On first invocation, the offloadable services are sent for remote execution

on pre-configured server. Only class files of the remote implementation are automatically

packaged as jars and transmitted to the server. Whenever the requested services are already

hosted on the server, only relevant parameters are communicated. Yet, the relevant overhead

is included in the results. The data gathered by the profilers is logged and fed as input to

the decision maker. The connection between local and remote resource is achieved through

WiFi network in infrastructure mode, characterized by the IEEE 802.11n wireless networking

standard. In these experiments, WiFi is used as it is typically adopted in an institution to

121

connect mobile devices to the internet, however other networks can be used in real-life setup

like 3G and LTE. As for the decision algorithm, the configuration is based on empirical study

of 50 times of execution. Accordingly, we set μc = 0.6, μc = 1/n, where n is the number

of decision variables, N = 100 and the number of generations δ to be 20, 45, 70, 75, 100,

135, 135, 170, 185, 200 for 10 up to 100 devices respectively. The calculated monetary cost

here is based on the pricing of on demand m4.4xlarge VM instance from Amazon [Amazon

(b)] running Ubuntu 12.04 with 7.3 GB memory and quad core AMD Phenom(tm) II X4 B95

processor.

a) Average CPU Consumption (%) b) Average Memory Usage (%)

c) Average Energy Consumption (J) d) Average Time (s)

e) Hourly Fees ($)

Figure 4.8 Generated solution cost: average local CPU usage, memory consumption,

execution time, energy loss and monetary fees.

122

4.9.2 Generated distribution cost

In the first set of experiments, we compare the proposed cost-effective solution applied in

both centralized and decentralized manners, CEmodel and Decmodel respectively, along with

two other base approaches namely, Dmodel and Cmodel. We consider four different weights

assigned to the monetary fees metric wC(D) = 75%, wC(D) = 50%, wC(D) = 25% and wC(D) =

5%, while distributing the remaining weights equally between the other metrics, i.e., (1−
wc(D))/4. Such distribution allows to study the effect of the assigned weights on the generated

solution cost.

- CEmodel: proposed centralized solution.

- Decmodel: proposed solution with cost model evaluated independently on each device with

no knowledge about other devices personas.

- Dmodel: deploying model that does not consider the monetary fees in its decision making

process.

- Cmodel: deploying model that neglects the multi-persona devices needs in the evaluation

process.

The results are depicted in Figure 4.8. The decision maker in Dmodel dictated all services from

all personas on every device to be offloaded, typically as this model does not consider the tariff

of remote execution. The numerical results show that such decision is able to mostly minimize

the average processing to 0.9% (Figure 4.8a), the average memory usage to 15% (Figure 4.8b),

the average execution time to 15.6 minutes (Figure 4.8d) and the energy loss to 4103J (Figure

4.8c). Yet to achieve such gain, this decision imposes between 3 and 24$ per hour (Figure 4.8e)

according to the number of devices. Per contra, with Cmodel considering only the remote fees

while disregarding personas metrics on the device, dictates all services to run locally, which

though generates zero fees (Figure 4.8e), it shows high resources exhaustion on the terminals

with up to 76% CPU usage (Figure 4.8a), 20% of memory consumption (Figure 4.8b), 39 min-

utes to finish the execution (Figure 4.8d) and 15.5KJ of energy loss (Figure 4.8c). However,

123

when it comes to the proposed model, our findings illustrates its ability to offer good balance

between personas metrics on the host terminals and the monetary fees for remote resources,

while varying the wC(D) between 25%, 50% and 75%, yet the best trade-off is shown with

wC(D) = 5%. In the latter case, the results show an averages of CPU usage between 5%-8%

(Figure 4.8a), memory usage between 15%-16% (Figure 4.8b), execution time 19-22 minutes

(Figure 4.8d) and energy consumption of 459KJ-657KJ (Figure 4.8c). These improvements

are close to those of Dmodel with acceptable overhead compared to the significant tariff min-

imization that our proposition is able to offer, varying between 2$ and 12$ with respect to the

number of devices (Figure 4.8e).

We also studied the efficiency of decentralized evaluation of our model. Decmodel with 5%

cost weight gives the best savings in terms of mobile device resources with 0.9% of CPU usage

(Figure 4.8a), 14% of memory consumption (Figure 4.8b), 4KJ of energy (Figure 4.8c) and

15 min for applications execution (Figure 4.8d). However it is also noticed that Decmodel

imposes high cost which varies between 28 and 287$ per hour, while CEmodel is able to

achieve close savings results with way less fees varying between 2 and 12$ according to the

number of devices involved (Figure 4.8e).

4.9.3 Decision maker overhead

This experiment aims to study the overhead of centralized and decentralized offloading de-

cision making. In a centralized approach, the decision maker is running on a remote server

yet, in a centralized one, the processing is done on each mobile terminal independently. The

results are depicted in Figure 4.9. Though processing higher number of offloading service re-

quests necessitates additional time, the augmentation was marginal compared to the additional

number of devices involved. With just an increase from 0.01 to 0.2 seconds along with 10

times additional devices (Figure 4.9d), centralized remote DM releases the mobile terminal

from intensive processing negligible additional overhead for the evaluation process in terms of

CPU (Figure 4.9a), memory (Figure 4.9b) and energy consumption (Figure 4.9c)on the mobile

terminal. These results can be interpreted by the fact that running the DM remotely on central-

124

a) CPU (%) b) Memory (%)

c) Time (s) d) Energy (J)

Figure 4.9 Decision maker overhead.

ized entity releases the mobile devices resources with additional yet marginal time needed to

generate the decision, compared to the decentralized execution where each mobile terminal is

responsible of running the offloading evaluation process locally and independently.

4.9.4 Satisfaction rate

These experiments aim to compare the satisfaction rate that can be achieved through centralized

and independent offloading service evaluation. We study the satisfaction at both mobile devices

and services levels. A device is satisfied if at least one of its services is satisfied (in this case

offloaded). Figure 4.10 illustrates the results. For the reviewers convenience, we emphasize

the main findings through the highlighted table in the figure.

The results show stability in the device satisfaction rate for the independent evaluation with

100% satisfaction of Decmodel independently of the weights ranging between 5%, 25%, 50%

125

Figure 4.10 Satisfaction rate.

and 75% respectively, yet not to forget the high additional fees it imposes in return as shown in

Figure 4.8e. As for the centralized approach, CEmodel, the results show its ability to reach high

satisfaction rate yet with instability in the results with 90%-100% satisfaction for wC(D) = 5%,

84%-100% for wC(D) = 25%, 82%-100% for wC(D) = 50% and 84%-100% for wC(D) = 75%.

This can be interpreted by the aim of the centralized evaluation not only to satisfy devices col-

lectively but also the organizations objective of minimal global additional fees. On the other

hand, according to the services satisfaction rates, the results show the ability of the centralized

evaluation to satisfy larger number of services on each device compared to independent evalu-

ation when the cost metric weight increases. Particularly, with 75% weight, CEmodel reaches

up to 63% services satisfaction rate while Decmodel shows only 33% satisfaction.

126

4.9.5 Optimized decision maker speedup

Figure 4.11 Optimized decision maker speedup.

This experiment evaluates the efficiency of the optimization introduced in the decision maker

algorithm compared to the process introduced in previous achievement [Tout et al. (2016)].

For this end, we compare the execution time of the decision maker with and without applying

the evolution based optimization. Figure 4.11 illustrates the results and proves its ability to

speed-up the offloading evaluation process by 1.8 times. Such improvement is justified by the

ability of the proposed differential-based operator to accelerate the convergence towards the

solution that optimizes CMPO.

4.9.6 Summary

The following lessons are learned by analyzing the obtained results:

- L1: The proposed solution is able to settle multi-persona needs on a wide range of users’

terminals and the additional fees imposed on the institution on return for leveraging cloud-

based offloading services. Particularly, compared to other models, our proposition proved

its ability to offer a compromise that minimize processing, memory usage, energy con-

sumption and speed-up the execution for a broad range of services on each multi-persona

device with convenient additional monetary charges.

127

- L2: From the institution perspective, a centralized approach is preferable as it is able to

achieve high satisfaction rates along with significant reduction in the imposed fees. As

from an end user perspective, a decentralized offloading evaluation is more desirable yet,

just in case the number of services running on the end terminal is small not to fail with

significant overhead or system survivability issue detected in previous work [Tout et al.

(2016)].

- L3: With more components running on the mobile device, the centralized approach proved

its competency with its ability to release the terminal from considerable overhead.

- L4: Compared to the decision maker introduced in previous contribution [Tout et al. (2016)],

the proposed optimized decision algorithm proved its ability to speed-up the evaluation

process, a critical aspect in real time mobile environments.

4.10 Conclusion and Future Directions

With the limited resources of mobile devices, offloading has proved its ability to support multi-

persona. Yet, when adopted in workplace to embrace BYOD model, new problems arise.

Personas on different mobile devices are now involved and share remote resources to proceed

offloading service requests, which are not free of charge. The target of this paper is to find the

dissemination of computations that satisfies personas needs on wider range of devices while

assuring minimal additional fees for the institution imposed by remote execution. We proposed

two-level multi-objective optimization model for offloading evaluation. We also proposed

a smart and cost-effective offloading algorithm based on genetics with tailored evolutionary

optimization. An optimal dissemination of personas components on every device offering a

trade-off between end terminals and tariffs of remote processing is generated accordingly. The

experimental results showed significant gain in decreasing the averages of CPU usage, mem-

ory consumption, energy loss and speeding up the execution on multi-persona devices with

considerably lower monetary charges.

128

These results open the door for future track that examines resource management strategies to

enforce policies between personas in order to reach higher satisfaction. These policies aim

to manage local and remote resources by prioritizing offloading requests among personas ser-

vices. This necessitates defining criticality levels and advocating prioritization scheme to clas-

sify services for offloading.

Acknowledgment

The work has been supported by École de Technologie Supérieure (ETS), NSERC Canada, the

Associated Research Unit of the National Council for Scientific Research CNRS Lebanon and

the Lebanese American University (LAU).

CHAPTER 5

ARTICLE 4: PROACTIVE SOLUTION AND ADVANCED MANAGEABILITY OF
MULTI-PERSONA MOBILE COMPUTING

Hanine Tout1, Nadjia Kara1, Chamseddine Talhi1, Azzam Mourad2

1 Departement of Software Engineering and IT, École de Technologie Supérieure,

1100 Notre-Dame Ouest, Montréal, Québec, Canada H3C 1K3

2 Department of Computer Science and Mathematics, Lebanese American University,

1102 2801 Chouran Beirut, Lebanon

Under Review

5.1 Abstract

Allowing Bring Your Own devices (BYOD) scheme in enterprises requires enforcing some

policies that govern how devices will be used and how they will be managed, while main-

taining end user flexibility. In order to efficiently support BYOD, mobile virtualization has

become rapidly a very attractive choice as it provides both employee and enterprise with flexi-

bility, while addressing the privacy concerns of the user and meeting the organizations security

requirements. Latest lightweight mobile virtualization techniques have opened the door for

multi-persona mobile computing allowing the physical device to co-host multiple virtual envi-

ronments (phones). However, at any moment, the physical device resources should be enough

to support the virtual instances and their applications needs to avoid performance degradation,

and more critically, system crash. Many computation offloading approaches have been pro-

posed to augment mobile devices resources. however, just an offloading strategy might not

be enough, especially when some applications are not offloadable due to their criticality level

or their urge to call device-related functionalities. Additionally, the overhead caused by idle

applications or even idle virtual environments raise the need for more advanced strategies to

complement an offloading solution. Therefore, we propose in this work a proactive solution

with advanced manageability to address these issues. Through machine learning techniques,

130

our proposition is able to predict future context and resource needs of currently running vir-

tual environments and potential future active ones. We also provide advanced manageability

strategies that offer the ability to turn off applications and switch off virtual environments to

release the physical device resources when needed. These strategies are generated based on op-

timization model that aims to reduce the resource usage on the physical terminal and augment

its performance. A dynamic programming algorithm is proposed in order to solve this model

and find the adequate management strategies. Extensive experiments were conducted and the

results prove the efficiency of our proposition.

Index Terms: Mobile device, Multi-persona mobile computing, Mobile Cloud Computing,

Offloading, Optimization, Dynamic Programming.

5.2 Introduction

The emergence of smartphones as the linchpin of everyday computing and communication has

forced one of the most major shifts that corporates have ever seen. Mobile computing has

gone from a niche market to the fastest growing, and often most popular, way to do business

computing. Mobile computing is becoming not only a new computing platform, but the dom-

inant one for many enterprises. To cope with this wave, Bring Your Own Device (BYOD)

has been embraced, as a practice that allows employees to use their personal mobile devices

to access corporate data and applications. The trade-off, of course, is that the corporate data

therein, is being accessed and stored on personal devices, which raises many security concerns.

With employee-owned devices at work, the chances of confidential company data mixing with

personal employee information are high, and the instances of data leakage and loss are even

higher. Along the way, corporate culture has had to change in order to accommodate the

always-present nature of the modern smartphone, and security practices have been completely

rethought to deal with the challenge of alien, uncontrolled devices being brought inside the

corporate firewall. Many enterprises have dealt with this issue by requiring employee devices

to adhere to certain security policies. Yet, this in turn has raised some privacy issues for the

end users who might sacrifice their personal data to comply with such policies.

131

Controlling these concerns from different perspectives has proven to be just too difficult for

both the company and the user. Fortunately, with the option to tap into virtualization solu-

tion, a user can differentiate between these contexts through virtual phone dedicated for each.

Similar to virtualization on servers and desktop machines, mobile virtualization allows sev-

eral virtual phones (VPs) to run simultaneously on the same physical mobile device with a

clear isolation among them. Leveraging mobile virtualization, dual persona devices have been

already released, enabling two phones-in-a-phone, to support BYOD needs. Yet, satisfying

many of our daily-life needs nowadays, urges mobile devices to broaden their capabilities to

support more than just two contexts and drive multi-persona device to be the new game changer.

Multi-persona creates the same impenetrable wall between an employee’s applications and an

organization’s data and applications, yet allowing one phone to co-host "multiple completely

independent and secure virtual environments". But why would anybody want more than just

two virtual phones? With multi-persona, a user could isolate private banking services and e-

commerce, sensitive corporate data, social networking and games in separate VPs, in order to

efficiently manage financial transactions, prevent untrusted applications from accessing critical

information and share the device with other family members without ending up with accidental

phone calls, unintended in-app purchases or even access to restricted content. Even more inter-

esting use cases for multi-persona come with having multiple work VPs with different levels of

security. While working at their private clinic and at multiple hospitals, doctors are subject to

different mobile policies, reflecting each of the different institutions. With personal, clinic and

hospitals VPs, multi-persona allow doctors to comply with the policy of each and effectively

treat their patients while maintaining their own unburdened personal use of the device. As a

matter of fact, the success of multi-persona lies in its capability of supporting multiple virtual

devices concurrently on a single terminal, while making the latter able to clearly distinguish

between the different contexts in which it is used.

Though its isolation competency, mobile virtualization imposes significant overhead on the

mobile terminal with limited computation capabilities, memory capacity and battery lifetime.

In one hand, previous works [Tout et al. (2015, 2016)] have proved that even a lightweight

132

virtualization architecture can be costly for the mobile device resources causing performance

degradation and more critically shorter viability of the system. On the other hand, technologi-

cal advances have markedly shaped the way computations are performed. With the abundance

of cloud resources, many computation offloading approaches have been proposed to support

mobile devices needs by migrating the computations from an end mobile device to remote re-

sourceful infrastructure. All these approaches have indeed proved their competency to reduce

the resource consumption on the mobile terminals and enhance the latter performance [Zhou

et al. (2016); Hung et al. (2012); Cuervo et al. (2010); Kosta et al. (2012); Kemp (2014);

Chen et al. (2012); Chun et al. (2011); Shi et al. (2014); Chae et al. (2014); Gordon et al.

(2012); Flores et al. (2014); Xia et al. (2014)]. From these premises, we proposed in previous

work offloading-based approach to support multi-persona [Tout et al. (2016)]. Through opti-

mization and heuristics, the solution was capable to find the dissemination of computations,

in each virtual phone, between local and remote execution capable of minimizing the resource

consumption and augmenting the applications’ performance. However, in many scenarios, the

capability of only offloading computations might just not be sufficient to manage the device

resources.

"Why offloading might not be enough as a resource management solution?" Starting with

the first scenario (Sc1) where typically some computations are not offloadable whether based on

their type (native tasks), security level, or even their need to call device-related functionalities

(e.g., camera); when more resources are needed on the device, offloading these components is

not an option and different management decision should be taken. In another scenario (Sc2),

the device can run out of resources (e.g., battery) while some applications have been idle for

a period of time and will not be used in the near future, yet still consuming part of the device

resources. Offloading such applications will not be efficient as it might cost the device more

energy for transmitting the needed data for remote processing. Moreover, imagine the device

is running out of resources while some VPs are idle (i,e., either running idle applications or

none) and will not get active in the near future; also here just an offloading decision will not be

able to efficiently cope with such situation as the virtual phones are still stressing out the device

133

resources (Sc3). Further, typically, local and remote application execution are adopted based on

their capability to enhance the performance of an application or reduce the energy consumed

on the device. However, in some use cases, one of these strategies should be enforced indepen-

dently of the cost it imposes on the applications performance. For instance, the case when the

device is running out of battery, while local execution of the running components outperforms

their remote execution (Sc4).

"So what kind of advanced manageability is effectively needed besides offloading?" Along

with offloading, other manageability solutions should be available. Shutting down, whether

idle applications which will not be used in the next period of time or active non offloadable

components can cope with the first two aforementioned scenarios (Sc1,Sc2). While the ability

to switch off particular virtual phones can release the device resources and hence cope with

(Sc3). Finally, prioritizing system viability over individual app performance when evaluating

offloading cost is critically needed in (Sc4) as the viability of the whole system is more critical

than the performance of particular application(s).

"How does this work address these research problems and offer the needed manageabil-

ity solutions?" We propose in this work a proactive solution with advanced manageability to

control the virtual instances running on the mobile device. Through machine learning intel-

ligence [Kodratoff (2014)], our proposition is able to predict beforehand the context and the

resource needs for future execution and manage the device resources accordingly. It is able

to predict the resource needs of the currently running VPs and applications as well as those

VPs and applications that may run in the future and their resource demands, all based on the

usage pattern of the device. Additionally, the solution offers advanced management strategies,

particularly, offloading the execution, turning off components, switching off personas and pri-

oritizing device survivability over applications performance, all according to the contextual

environment that might affect the application of these strategies. Based on the predicted con-

text and resource needs, detected hotspot (active and resource intensive) and coldspot (idle)

components and virtual phones, classification scheme, network conditions and device state, an

optimization model is formulated. We propose respectively a dynamic programming algorithm

134

to solve this model, where the solution indicates for each computation the adequate strategy

to handle the resource and performance needs on the end terminal. We performed thorough

experiments and the results prove the efficiency of our proposition to manage VPs needs.

This work offers the following contributions:

- Provide proactive machine learning technique to predict future context and resource needs.

- Propose advanced strategies to manage VPs.

- Build a novel optimization model to meet with the resource needs and enhance the perfor-

mance on end devices with multiple VPs.

- Present efficient dynamic programming algorithm to find the adequate strategies to be ap-

plied by the end terminal.

5.3 Related Works

We survey in this section predictive strategies for virtual machines management, recent tech-

niques for mobile computations offloading, and algorithms for dynamic offloading decisions.

5.3.1 Predictive Virtual Instances Management Strategies

Sharing an end terminal between several virtual machines raises many problems and autonomic

load balancing of resources is one of these open key challenges to be resolved. In this context,

different approaches have been proposed for load prediction on a physical machine. Predicting

future load enables proactive consolidation of VMs on the overloaded and under-loaded phys-

ical machines [Farahnakian et al. (2015)]. In [Farahnakian et al. (2013a)] and [Farahnakian

et al. (2013b)], the authors have proposed regression methods to predict CPU utilization of a

physical machine. These methods use the linear regression and the K-nearest neighbor (KNN)

regression algorithms, respectively, to approximate a function based on the data collected dur-

ing the lifetimes of the VMs. The formulated function is then used to predict an overloaded

135

or an under-loaded machine. A linear regression based approach has been implemented by

Fahimeh Farahnakian [Farahnakian et al. (2013a)]. The CPU usage of the host machine is

predicted on the basis of linear regression technique and then live migration process was used

to detect under-utilized and over-utilized machines. Bala et al. [Bala & Chana (2016)] have

proposed a proactive load balancing approach that based on prior knowledge of the resource

utilization parameters, applies machine learning techniques to predict future resource needs.

Various techniques have been studied in their work, such as KNN, ANN, SVM and RF and the

one with maximum accuracy has been utilized as prediction-based approach. Xiao et al. [Xiao

et al. (2013)] have also used a load prediction algorithm to capture the rising trend of resource

usage patterns and help identifying hot spots and cold spots machines. After predicting the

resource needs, Hot spot and cold spot machines are identified. When the resource utilization

of any physical machine is above the hot threshold, the latter is marked as hotspot. If so, some

VMs running on it will be migrated away to reduce its load [Xiao et al. (2013)]. On the other

hand, cold spot machines either idle or having the average utilization below particular thresh-

old, are also identified. If so, some of those physical machines could potentially be turned off

to save energy [Xiao et al. (2013)] [Beloglazov & Buyya (2010)].

5.3.2 Dynamic Offloading Algorithms

A Dynamic Programming (DP) algorithm was proposed in [Liu & Lee (2014)], where a two

dimensional DP table was used in order to determine what to offload. However, a backtrack-

ing algorithm was needed to find the final decisions, which was time consuming. A dynamic

offloading algorithm based on Lyapunov optimization was presented in [Huang et al. (2012)].

The algorithm is based upon a relationship between the current solution and the optimal solu-

tion requiring a considerable amount of execution time and many iterations to converge upon

a solution [Shahzad & Szymanski (2016)]. Another dynamic programming approach has been

proposed in the same context [Toma & Chen (2013)], yet it doesn’t consider the energy con-

sumed in the mobile device which is an important criteria for resource constrained mobile

devices. A semidefinite relaxation approach for the offloading problem was presented by Chen

136

et al., [Chen et al. (2015a)]. Their work considered a mobile cloud computing scenario con-

sisting of one nearby computing access point, and a remote cloud server(s). Their proposition

is based on an algorithm that solves a linear program through randomization and relaxation to

generate an integer solution. The algorithm can find a near-optimal solution when using about

100 trials of relaxation. In [Shahzad & Szymanski (2016)], a dynamic programming algorithm

called DPH is proposed. The algorithm generates periodically random bit strings of 0s and 1s,

for remote and local execution of tasks, and utilize sub-strings when they improve the solution.

The algorithm can find a nearly optimal solution after several iterations. The authors use a

Hamming distance criterion to terminate the search process and hence obtain the final decision

quickly. The stopping criterion is met when a given fraction of tasks are offloaded.

5.3.3 Our Contributions

Thinking about the multiple VPs case as the load balancing problem of virtual machines in the

cloud, we propose in this work an analogous proactive solution with advanced manageability

strategies. Our proposition includes first a prediction-based proactive approach using machine

learning techniques, which have been found suitable from the literature review discussed above.

As pro-activity requires a prior knowledge of the device context and resource utilization, we de-

vote a set of profilers to log the relevant data. Gathered data are trained using machine learning

algorithms and predictions about future context and resource needs are made. Various machine

learning techniques are evaluated, namely, Linear Regression (LR) [Seber & Lee (2012)], Sup-

port Vector Regression (SVR) [Drucker et al. (1997)], Neural Network (NN) [Demuth et al.

(2014)] and Deep Neural Network (DNN) [Goodfellow et al. (2016)], and the one found to

be with highest accuracy (SVR) has been utilized as prediction-based technique. Moreover,

advanced management solution is proposed, which includes different strategies; namely, of-

floading and turning off tasks and switching off personas. To help adopting such strategies,

we propose hotposts and coldspots detectors along with a classification scheme to categorize

and prioritize tasks and VPs. Based on the predicted context and resource needs, identified

hotspot and coldspot tasks, prioritization, device state and network connection properties, a

137

multi-objective optimization model is formulated. Finally, the model is solved with a dynamic

programming algorithm that finds the adequate strategies to be applied for each task and VP

aiming to attain the objective functions in the formulated model. The experimental results

clearly demonstrate the effectiveness of this work, showing better resource management solu-

tion with improved performance.

5.4 System Model

The capacity of the physical device should be sufficient to satisfy the resource needs of all VPs

it is hosting. Otherwise, the physical mobile device is overloaded and will lead to degraded

performance of its VPs or even system crash when there is no enough resources to support

future VPs needs. Besides the offloading strategy offered in this work, some green computing

actions can be taken; VPs and applications can be switched off to save resources and ensure

longer viability on the physical device as long as they are idle and won’t be used in the near

future or whenever the whole system is in critical situation. The proposed system model is

depicted in Figure 5.1.

A set of profilers are installed in each VP to monitor different aspects. The program profiler

monitors tasks’ energy consumption, execution time and size of data to be transmitted in case

of remote processing. The network profiler monitors the network characteristics in terms of

availability, type (e.g., wifi, 3G), bandwidth, latency and energy consumed on transmission.

The device profiler inspects the energy consumption on the device as well as the battery level,

CPU utilization, memory consumption, and keep track of the location and time where each VP

and application is used. The gathered information helps predicting future usage context and

resource needs.

The statistics collected at each VP are forwarded to the predictor component, which applies

machine learning techniques to predict the context of the device in the future time slot. The

context includes timestamp, location, VPs running, components running and resource needs

accordingly. In other words, this includes the resource needs of the currently running VPs and

138

Figure 5.1 System model.

applications as well as those will run in the future and their resource demands. The predictor

aims to provide proactive solution capable of avoiding critical situations of performance degra-

dation or system crash. Any of the local or remote predictors can be invoked to train the model

and perform the prediction. The performed experiments presented later in this work investi-

gates remote prediction while the evaluation of processing training and prediction locally and

their effect on the device accordingly are to be investigated in future work.

To manage limited system resources, the Android system can terminate running applications.

If the Android system needs to free up resources and terminate processes, it uses the following

priority system [Android (2016)]. Based on its status, each process is assigned a priority level.

Foreground, visible, service, background and empty processes are assigned priorities from 1 to

5 respectively. Those processes with higher priority levels have higher chance to be terminated.

To turn off particular applications and VPs we apply the following classification scheme for

prioritization. We define 5 classes to categorize a component

- Offloadable/Notoffloadable

139

- Background/Foreground

- Active/Idle: doesn’t actively utilize system resources

- Belong to actual context VP (AC)/Not (DC)

- Critical/Not: based on user preferences

As for VPs, we define:

- Background/Foreground

- Active/Idle: is not running any component which actively utilize system resources

- Define actual context (AC)/Not (DC)

- Critical/Not: based on user preferences

Table 5.1 shows the prioritization scheme applied.

Table 5.1 Prioritization scheme.

Class Priority

Critical AC Active Foreground 1

Critical AC Idle Foreground 2

Critical AC Active Background 3

Critical AC Idle Background 4

Critical DC Active Foreground 5

Critical DC Idle Foreground 6

Critical DC Active Background 7

Critical DC Idle Background 8

Uncritical AC Active Foreground 9

Uncritical AC Idle Foreground 10

Uncritical AC Active Background 11

Uncritical AC Idle Background 12

Uncritical DC Active Foreground 13

Uncritical DC Idle Foreground 14

Uncritical DC Active Background 15

Uncritical DC Idle Background 16

140

Frequently invoked, resource-intensive and/or time consuming components are designated as

hotspots. Such criteria and the thresholds used for hotspot selection are adjusted automatically

based on the device state, instrumented by the profilers. The hotspot detector analyzes the

logged profile information and collects all the components whose processing, memory, data

size, execution time and frequency of call are greater than given threshold values respectively.

These components are marked as hotspots. Higher thresholds will keep the hotter components.

For more information about the hotspot detector and its algorithm, please refer to [Tout et al.

(2017)]. In contrast, the coldspot detector detects idle components and VPs. An idle VP is one

that is not running any active component or just idle ones.

According to the predicted context and resource needs, classification scheme, hotposts, colspots,

and instrumented data a multi-objective optimization problem of three vectors of variables is

formulated in the optimizer module. The objective functions aim to manage the resource needs

of VPs, avoid performance degradation and system crash. Finally, for the decision engine, we

propose a novel algorithm based on dynamic programming to find the adequate strategies to be

applied by the physical device. The decision implies which VPs should remain on and/or those

to be switched off, and for each component wether it should be powered-off, executed locally

or offloaded.

5.5 Machine Learning Prediction

To predict future context and usage behavior, we study a variety of machine learning techniques

[Kodratoff (2014)], namely, Linear Regression (LR) [Seber & Lee (2012)], Support Vector

Regression (SVR) [Drucker et al. (1997)], Neural Network (NN) [Demuth et al. (2014)] and

Deep Neural Network (DNN) [Goodfellow et al. (2016)]. We compare the accuracy of these

techniques and the one found to be with the highest accuracy is to be used throughout this

work.

141

5.5.1 Linear Regression

Linear regression [Seber & Lee (2012)] is a linear model that assumes a linear relationship

between the input variable(s) x and the single output variable y. In other words, y can be

calculated from a linear combination of the input variables x. The method is referred to as

simple linear regression, when there is one input variable and as multiple linear regression

method when there are multiple input variables.

The linear equation assigns one scale factor to each input, called a coefficient (β). One addi-

tional coefficient is also added, giving the line an additional degree of freedom (e.g. moving

up and down on a two-dimensional plot), often called the bias coefficient or intercept (β0). In

a simple regression problem, the form of the model would be: y = β0 +β1 ∗ x

In higher dimensions when more than one input variable x are used, the line is called a plane or

a hyper-plane and the linear relationship can be expressed as: y = β0 +β1 ∗ x1 +β2 ∗ x2 + ...+

βn ∗ xn

5.5.2 Support Vector Regression

Support vector machine (SVM) analysis is a popular machine learning tool for classification

and regression (SVR) [Drucker et al. (1997)]. SVR is considered a nonparametric technique

because it relies on kernel functions. The model generated by SVR depends only on a subset

of the training data, because the cost function for building the model ignores any training data

close to the model prediction.

The objective is to

Minimize 1
2 ||w||

Subject to

⎧⎪⎨
⎪⎩

yi−〈w,xi〉−b≤ ε

〈w,xi〉+b− yi ≤ ε

142

where xi is a training sample with target value yi. The inner product plus intercept 〈w,xi〉+b is

the prediction for that sample, and ε is a free parameter that serves as a threshold; all predictions

have to be within an ε range of the true predictions.

5.5.3 Neural Network

Neural Network (NN) [Demuth et al. (2014)] also called Artificial Neural Network (ANN),

is a learning algorithm inspired by the structure and functional aspects of biological neural

networks. Computations are structured in terms of an interconnected group of artificial neu-

rons, processing information using a connectionist approach to computation. Modern neural

networks are usually used to model complex relationships between inputs and outputs, to find

patterns in data, or to capture the statistical structure in an unknown joint probability distribu-

tion between observed variables.

5.5.4 Deep Neural Network

A deep neural network (DNN) [Goodfellow et al. (2016)] is an ANN with multiple hidden

layers between the input and output layers. Similar to ANN, DNN can model complex non-

linear relationships. DNNs are typically feedforward networks in which data flows from the

input layer to the output layer without looping back.

5.6 Problem Formulation

In the following, we mathematically formulate the Multiple Virtual Phones (MVPs) problem

as a multi-objective optimization model with three vectors decision variables.

- Decision Variables:

Ivp j = {Ivp1
, ...Ivpm}

Ici,vp j = {Ic1,vp1
, ...Icn,vpm}

143

xci,vp j = {xc1,vp1
, ...xcn,vpm}

where,

∀vp j, j:1→m, Ivp j =

⎧⎪⎨
⎪⎩

0, if vp j should be switched off

1, if vp j should remain active

∀ci,i:1→n,∀vp j, j:1→m, Ici,vp j =

⎧⎪⎨
⎪⎩

0, if ci ∈ vp j should be turned off

1, if ci ∈ vp j should remain on

∀ci,i:1→n,∀vp j, j:1→m,xci,vp j =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0, if ci ∈ vp j is to be executed locally

1, if ci ∈ vp j is to be offloaded

−(indi f f erent), if Ici,vp j = 0

- Notations:

m number of virtual phones

n number of components in a virtual phone

j 1,... m

i 1,... n

vp j virtual phone

ci component

pcpu power consumed by vp j on precessing

ps power consumed by vp j on the screen

pidle
cpu power consumed by vp j on idle CPU

pactive
net power consumed on network being active

ptr power consumed for data transmition

Dataci,vp j size of data transmitted for offloading ci, ci ∈ vp j

CPUlocal
ci,vp j

cpu usage in vp j by ci executed locally

CPUremote
ci,vp j

cpu usage in vp j by ci offloaded

Memorylocal
ci,vp j

memory usage in vp j by ci executed locally

Memoryremote
ci,vp j

memory usage in vp j by ci offloaded

tlocal
ci,vp j

time to execute ci locally, ci ∈ vp j

tremote
ci,vp j

round trip time to process ci remotely, ci ∈ vp j

Wcpu weight for objective function (5.1)

Wmemory weight for objective function (5.2)

Wenergy weight for objective function (5.3)

Wtime weight for objective function (5.4)

144

T̃cpu threshold for cpu usage

T̃memory threshold for memory usage

- Mathematical Model:

F = Minimize

⎡
⎢⎢⎢⎢⎢⎢⎣

Fcpu

Fmemory

Fenergy

Ftime

⎤
⎥⎥⎥⎥⎥⎥⎦

subject to

Fcpu < T̃cpu (c1)

Fmemory < T̃memory (c2)

where,

Fcpu

(
Ivp j , Ici,vp j ,xci,vp j

)
=Wcpu×

[
m

∑
j=1

Ivp j

n

∑
i=1

Ici,vp j ×
(

1− xci,vp j

)
×CPUlocal

ci,vp j
+

m

∑
j=1

Ivp j

n

∑
i=1

Ici,vp j

×xci,vp j ×CPUremote
ci,vp j

] (5.1)

Fmemory

(
Ivp j , Ici,vp j ,xci,vp j

)
=Wmemory×

[
m

∑
j=1

Ivp j

n

∑
i=1

Ici,vp j ×
(

1− xci,vp j

)
×Mlocal

ci,vp j
+

m

∑
j=1

Ivp j

n

∑
i=1

Ici,vp j

×xci,vp j ×Mremote
ci,vp j

]

(5.2)

Fenergy

(
Ivp j , Ici,vp j ,xci,vp j

)
=Wenergy×

[
m

∑
j=1

Ivp j

n

∑
i=1

Ici,vp j ×
(

1− xci,vp j

)
×
((

Pcpu +Ps

)
× tlocal

ci,vp j

)
+

m

∑
j=1

Ivp j

n

∑
i=1

Ici,vp j × xci,vp j ×
((

Pidle
cpu +Ps +Pactive

net

)
× tremote

ci,vp j
+

(
Ptr×

(
Latency+

Dataci,vp j

Bandwidth

)))] (5.3)

Ftime

(
Ivp j , Ici,vp j ,xci,vp j

)
=Wtime×

[
m

∑
j=1

Ivp j

n

∑
i=1

Ici,vp j ×
(

1− xci,vp j

)
× tlocal

ci,vp j
+

m

∑
j=1

Ici,vp j

n

∑
i=1

Ici,vp j

×xci,vp j ×
(

tremote
ci,vp j

+Latency+
Dataci,vp j

Bandwidth

)] (5.4)

The aim of this model is to find the strategies (determined by the decision variables Ivp j , Ici,vp j

and xci,vp j) able to minimize the resource usage on the physical mobile device in order to avoid

145

performance degradation, while assuring the availability of predicted future context and re-

source needs (identified in constraints (c1) and (c2)). Equation (5.1) measures the processing

needed to execute services locally on the device and the one needed waiting for remote com-

putations and/or processing the response back on the terminal. Equation (5.2) calculates the

memory needed to process local computations and the one consumed while waiting and/or

processing the response back. Equation (5.3) is used to determine the energy consumed by the

CPU and on the screen brightness for for local processing as well as the energy spent on idle

CPU, screen brightness and active network while waiting the execution of offloaded services.

It also includes the energy consumed by the terminal for data transmission. Finally, Equation

(5.4) calculates the duration of local and remote processing taking into account the latency for

data transmission.

5.7 Proposed Dynamic Programming Algorithm

Dynamic programming (DP) [Bertsekas et al. (1995)] is a powerful technique that can be used

to solve many problems, including optimization, for which a naive approach would take expo-

nential time to finish the process. We present in this section our proposed dynamic program-

ming algorithm, which aims to find the strategy to be applied for the VPs and their components,

while meeting with the objective functions defined in previous section.

5.7.1 DP Table Filling

Since at the lower level, strategies should be determined for each service in the running per-

sonas, we need to generate a bit stream of N bits, where N is the number of components on

the device. We use an N +1∗N +1 DP table to store the bit-streams showing which personas

are to be switched off and which components to be offloaded, executed locally and those to be

turned off. For the first step, a random bit stream of size N*3(number of decision variables) is

generated that determines a first solution. However, different Rules apply when generating

potential random solutions:

146

- ∀ci,i:1→n,∀vp j, j:1→m, If Ivp j = 0 then Ici,vp j = 0 and xci,vp j =−
- ∀ci,i:1→n,∀vp j, j:1→m, If Ivp j = 1 and Ici,vp j = 0 then xci,vp j =−
- ∀ci,i:1→n,∀vp j, j:1→m, If Ivp j = 1 and Ici,vp j = 1 then xci,vp j = 0 or 1(if ci is offloadable)

- ∀ci,i:1→n,∀vp j, j:1→m, Ivpi is constant ∀ci ∈ vp j
- Based on the prioritization scheme in Table 5.1, the probability of generating a 0/1 bit is adapted.

- Based on wether ci is offloadable or not, xci,vp j is generated.

Rules to fill the DP Table: This stream is assigned to the table such that 1s for xci,vp j are

assigned to the next horizontal cell, and the 0s are assigned to the next vertical cell. If xci,vp j in

the stream is 1, the starting cell is (1,2) and if it is 0/−, the starting cell is (2,1). This approach

will avoid extra computations for common bit strings [Xiao et al. (2013)]. Since the first cell is

left empty, and the stream size is N, we need N +1∗N +1 Table to fit the generated streams.

Example: A 2D 6∗6 table is shown in Table 5.2. To clarify, assume that N = 5 (2 components

in vp1 and 3 components in vp2) and the first random stream is 00-00-10-110111 (non bold

vectors). Assume that the second random bit stream is 11111010-10-110. The starting cell of

the second stream is (1,2) since the third bit is 1. By following the aforementioned rules to fill

the table, the resulting bold stream is shown in the table. Whenever a bit stream is generated

Table 5.2 DP Table Filling

[1,1,1]
[0,0,-] [1,1,0]
[0,0,-] [1,0,-]
[1,0,-] [1,0,-]
[1,1,0] [1,1,1]/[1,1,0]

randomly, we calculate the consumed CPU, memory, energy and time of each cell (i.e., each

component) in the table, and also at the same time calculate the total of each of these metrics

of this bit stream, which formulate the defined objective functions. However, if a random bit

stream is generated which has some common cells with an existing string in the table; we

replace that cell with the new value only if it’s able to offer better trade-off with respect to the

defined objective functions, for that cell, conforming with the weight of each metric. We then

147

update the metrics of the remaining cells for the existing bit streams, based on the new values

at this common cell. Every time a new stream is generated, we keep tracking the arrangement

of the stream in Table 5.2.

When to terminate this process? Once a solution that meets with the device needs is gener-

ated with the least lost possible (i.e, least number of switched off personas and components).

Therefore, we define the latter as the hamming distance between the Ivp j and Ici,vp j in the gen-

erated bit stream solution and Ivp j = 1 and Ici,vp j = 1.

The full process described above is depicted in Algorithm 5.1.

Algorithm 5.1 Dynamic Programming Algorithm

1: do
2: Set the resource constraints based on the device state and

predicted future context

3: Initialize Tbitstreams
4: Generate a random bit stream that conforms with the rules

5: Check the first bit to specify the starting cell in the table

6: for i = 1 to N do
7: Put each bit of the bit stream in the correct position in table

8: Calculate the self-CPU, memory, energy and time of each cell

and their corresponding totals (objective functions)

9: if this specific cell in table is visited before then
10: Compare the new self-CPU, memory, energy and time of

this cell with the previous one

11: if the new values of the cell offer better trade-off than

the previous one then
12: Replace the values of this cell with the new calculated

amounts

13: Update the remaining amounts in the remaining cells

14: of the previous bit stream based on the new amount

15: of this common cell

16: Calculate the cpu, memory, energy and time of the

remaining bits of the new bit stream

17: Track the position of all bits in the table in a matrix

18: else
19: Keep the previous totals for the cell

20: Track the position of all bits in the table in a matrix

21: end if
22: end if
23: end for
24: return bit stream with least loss and its corresponding Fcpu,

Fmemory, Fenergy, Ftime
25: while No feasible stream is found &NFbitstreams < Tbitstreams

148

5.8 Evaluation

In the sequel, we first evaluate the accuracy of the machine learning techniques discussed in

Section 5.5 and the one with the least error rate is adopted. According to the future context,

predicted by the latter, we evaluate the efficiency of our proposed algorithm to find the adequate

strategies that meet with the optimization objectives and comply with the future resource needs.

5.8.1 Setup

First, we evaluate LR, SVR, NN and DNN in two phases context-aware prediction:

Phase #1: Predict resource needs (CPU and Memory) for the running personas/apps

T0: predict resource needs at T1 for currently running personas/apps.

Phase #2: Predict future running/switched off personas/apps and their resource needs (CPU

and Memory)

T0: predict behavior (Location, VPs and Components) at T1

T0: then resource needs accordingly

For phase #1, we generate two data sets (DS1 and (DS2)) for doctor work shifts during one

day from 8 am to 8 pm. Both data sets have 14400 rows with data being generated each 3

seconds. The dataset consists of timestamp, which allows daily pattern recognition, coordinates

to detect the location of the user (e.g., home, clinic, hospitals), number of VPs running, number

of components, their CPU usage and memory consumption. The data set disregards the time

spent to move from one location to another. The usage behavior in this data set is described

in Table 5.3. DS1 reflects normal behavior while DS2 includes some peaks in the resource

consumption to see how would that affect the prediction accuracy of these resources.

149

Table 5.3 Device Usage Behavior

Time # of VPs VP(s) Location # of Components

8:00-10:00 1 Personal Home 1-5

10:00-12:00 2 Personal + Clinic Clinic 3-8

12:00-15:00 2 Personal + Hospital#1 Hospital#1 3-8

15:00-18:00 3 Personal + Hospital#1 + Hospital#2 Hospital#2 5-12

18:00-20:00 1 Personal Home 1-5

As for phase #2, we generate 4 datasets (DS3, DS4, DS5 and DS6) for daily prediction. Data is

generated every 30 min to reduce the data size to be analyzed. Future Context, behavior and

resource needs are all to be predicted in this phase. In DS3, the same usage pattern is shown

daily (day 1, 2, 3 and 4 and prediction applied on day 5) In DS4, same usage pattern is shown

daily (day 1, 2 and 4, Spikes on day 3 and prediction applied on day 5). In DS5, similar daily

usage pattern (day 1, 2, 3 and 4 and prediction applied on day 5). In DS6, similar daily usage

pattern (day 1, 2 and 4, Spikes on day 3 and prediction applied on day 5).

Table 5.4 ML techniques setup for phase #1

LR SVR NN DNN
Window size 1h Kernel Radial Hidden layers 1 Hidden layers 2

Train 50 min Cross-validation 10 Nodes 5 Nodes 5

Test 10 min Cost 300 Window size 1h Threshold 0.01

Window size 1h Train 50 min Window size 1h

Train 50 min Test 10 min Train 50 min

Test 10 min Test 10 min

Table 5.5 ML techniques setup for phase #2

LR SVR NN DNN
Window size 4 days Kernel Radial Hidden layers 1 Hidden layers 2

Train 4 days Cross-validation 10 Nodes 4-7 Nodes 4-7

Test 1 day Cost 300 Window size 4 days Threshold 0.01

Window size 4 days Train 4 days Window size 4 days

Train 4 days Test 1 day Train 4 days

Test 1 day Test 1 day

150

Various machine learning techniques are used and compared: LR=Linear regression model,

SVR=support vector regression, NN=neural network and DNN=Deep Neural Network. Tables

5.4 and 5.5 show the setup of each machine learning technique studied in each prediction phase.

5.8.2 Numerical Analysis

For each dataset in both phases #1 and #2, we examine the accuracy of Liner Regression (LR),

Support Vector Regression (SVR), Neural Network (NN) and Deep Neural Network (DNN)

techniques to predict resource needs in terms of CPU and memory, to define the constraints of

the formulated optimization model.

Figure 5.2 shows the results of Dataset DS1. Particularly, Figure 5.2a depicts the CPU values

over the day from 8:00am till 8:00pm, while in Figure 5.2b, only a subset of these values is

illustrated for the convenience of the reader when examining the accuracy of each technique.

Observed values are the real data. Comparing the latter with those predicted by each machine

learning technique, the results show that SVR outperforms the others with the highest accuracy

(SVR predicted values almost matches the Observed values). In Figure 5.2c, we analyze the

error rate of these predictions based on the Root Mean Square Error metric (RMSE). SVR

shows the minimum RMSE among the other techniques with only 0.098 error rate. The same

analysis applies on the memory results depicted in Figure 5.3. SVR shows the highest accuracy

with 0.0982 RMSE.

For DS2, which includes some unusual behavior (peaks) in the resources consumption, Support

Vector Regression (SVR) outperformed the other techniques as well for both CPU and memory

needs prediction, showing the least error rate with 0.098083 and 0.09825 RMSE accordingly

as depicted in Figures 5.4 and 5.5.

DS3,DS4,DS5andDS6, all imply multi-stage prediction, which includes prediction of the lo-

cation followed by the virtual phones and components and finally the resource needs by the

latter.

151

a) CPU values over the day (8:00-20:00)

b) Subset of CPU values (12:00-12:05)

c) RMSE

Figure 5.2 DS1: observed CPU vs. predicted.

When exactly the same context and usage pattern are repeated from day 1 to day 4, SVR was

able to predict that the same applies on the fifth day with no errors detected in the predicted

CPU and memory values as depicted in Figure 5.6. However, when exactly the same usage

pattern is shown daily (day 1, 2 and 4) with some spikes observed on day 3, the error rate for

all the machine learning techniques has increased for the predicted values on day 5 as depicted

in Figure 5.7. In this case, LR, SVR, NN and DNN have showed error rates of 3.62, 1.79, 2.11

152

a) Memory values over the day (8:00-20:00)

b) Subset of memory values (12:00-12:05)

c) RMSE

Figure 5.3 DS1: observed memory vs. predicted.

and 3.26 respectively for the CPU values and 3.91, 1.65, 1.44 and 3.37 RMSE for the memory

values, while higher accuracy was observed in previous case (DS3) with 2.37, 0, 1.89 and 2.38

RMSE respectively for CPU and 2.47, 0, 1.34 and 2.52 RMSE for the memory values.

The same analysis applies when comparing the results in Figures 5.8 and 5.9, where similar,

but not exactly the same, context and usage behavior are observed on daily basis for DS5 and

some spikes injected in DS6.

153

a) CPU values over the day (8:00-20:00)

b) RMSE

Figure 5.4 DS2: observed CPU vs. predicted.

a) Memory values over the day (8:00-20:00)

b) RMSE

Figure 5.5 DS2: observed memory vs. predicted.

154

a) CPU b) Memory

c) RMSE: CPU d) RMSE: Memory

Figure 5.6 DS3: observed vs. predicted values.

a) CPU b) Memory

c) RMSE: CPU d) RMSE: Memory

Figure 5.7 DS4:Observed vs. Predicted values.

155

a) CPU b) Memory

c) RMSE: CPU d) RMSE: Memory

Figure 5.8 DS5:Observed vs. Predicted values.

a) CPU b) Memory

c) RMSE: CPU d) RMSE: Memory

Figure 5.9 DS6:Observed vs. Predicted values.

156

The next experiments are performed based on the values predicted by SVR since the latter

had the highest accuracy in all previous conducted analysis. In what follows, we study the

efficiency of the proposed optimization and dynamic programming algorithm to find efficient

management strategies in different scenarios that reflect various usage pattern of the mobile

device.

We compare the results with previous existing work, which adopts heuristics to find the strategy

for each component. Table 5.6 illustrates the configuration of each scenario.

Table 5.6 Usage scenarios.

Scenario-1 Scenario-1 Scenario-3 Scenario-4

Total VPs Running 1 3 2 3

Total Components Running 2 10 8 10

Predicted CPU Needs 10% 80% 60% 30%

Predicted Memory Needs 20% 70% 70% 30%

Table 5.7 shows the strategies generated for each scenario, by both heuristic and dynamic

programming decision engines. To recall, a 0 bit in the heuristic approach is for local execution

of the component while a bit of 1 is for offloading it. In the dynamic programming decision

engine, the ’||’ is to separate strategies between VPs and ’|’ to separate strategies of components

in the same VP.

Table 5.7 Generated strategies.

Scenario Heuristic DPDE

Scenario-1 1 1 [1,1,1] | [1,1,1]

Scenario-2 0 1 0 0 1 1 1 1 0 0 [1,0,-] || [1,1,1] | [1,1,1] | [1,1,1] | [0,0,-] | [0,0,-] | [0,0,-] | [0,0,-] | [0,0,-] | [0,0,-]

Scenario-3 0 0 1 0 0 1 0 0 [1,1,0] | [1,1,0] | [1,0,-] || [1,1,0] | [1,0,-] | [1,1,0] | [1,0,-] | [1,0,-]

Scenario-4 0 0 0 0 1 1 1 1 1 1 [1,0,-] || [0,0,-] | [0,0,-] | [0,0,-] || [0,0,-] | [0,0,-] || [0,0,-] | [0,0,-] | [0,0,-] | [0,0,-]

The resource consumption and performance of each of the applied strategies are compared in

Figure 5.10.

157

a) CPU (%) b) Memory (%)

c) Energy (J) d) Time (s)

Figure 5.10 Strategies efficiency.

The figure shows that the algorithm proposed in this work is able to find better strategies with

less CPU, memory and energy consumption and better performance compared to the heuristic

approach. But how efficient are these strategies with respect to the predicted resource needs in

each scenario? To answer this question, we examine Figures 5.10a and 5.10b. For Scenario-1,

the results show that both approaches, i.e., Heuristic and DPDE are able to find a strategy that

meets with both CPU and memory requirements. Particularly, The strategies found by both

approaches imply 7.83% CPU and 13.634% memory which guarantees the availability of the

needed 10% and 20% of CPU and memory respectively. For Scenario-2, 80% available CPU

and 70% available memory are required as depicted in Table 5.6. The strategy found by the

heuristic approach consumes 56.96% CPU and 63.39% memory which does not meet with the

future resource needs. With DPDE, the strategy found only consumes 15.17% of the CPU

and 20.34% of the memory, which keeps more available resources that meet with the resource

required in future context. The same applies on Scenario-3. Finally for Scenario-4, the results

158

show that both approaches are able to find good strategies that meet with the device needs

yet with better results of the management strategy generated by DPDE, which guarantees more

resource availabilities of 92.67% CPU and 93.3% of the memory usage. These results prove the

efficiency of the advanced management strategies proposed in this work to manage predicted

future resource needs.

Figure 5.11 Decision engine performance.

Finally, we study the performance of heuristic and DPDE algorithms in terms of execution

time. Figure 5.11 shows that for all sceanrios in question, DPDE shows faster execution.

5.9 Conclusion and Future Directions

Managing virtual phones (VPs) running on an end physical mobile device with limited re-

sources is challenging. In this context, we proposed in this work novel approach able to predict

future context and resource needs of these VPs and apply advanced management strategies

accordingly, aiming to avoid any performance degradation or system crash in the system. Var-

ious machine learning techniques are studied and the one with the highest accuracy is adopted.

Additionally, new management strategies are proposed and novel algorithm based on dynamic

programming is presented to generate the adequate strategies that meet with the resource needs

according to different usage scenarios. Thorough analysis was conducted to study the effi-

159

ciency of this proposition. The results proved the efficiency of the predictor, the adequacy of

the new strategies proposed and the competency of the algorithm performance. As for the re-

search community, studying the effect and overhead of training the model and performing the

prediction on the end terminal would be interesting. Also, examining the effect of the window

size value on the accuracy of the prediction model and proposing a dynamic generic approach

to adapt this value to different data sets would be a valuable future research track.

Acknowledgment

The work has been supported by École de Technologie Supérieure (ETS), NSERC Canada, the

Associated Research Unit of the National Council for Scientific Research CNRS Lebanon and

the Lebanese American University (LAU).

CONCLUSION AND RECOMMENDATIONS

This section concludes this doctoral research work. It summarizes the main addressed prob-

lems and the presented key contributions, while opens the door for different future research

directions.

While multi-persona has become an essential utility and virtualization has been ported on mo-

bile terminals, co-hosting multiple virtual phones on a single mobile device is still impeded

by the resource constraints of the latter hardware, which has limited computation capabili-

ties, memory capacity and battery lifetime, compared to its counterpart of desktop machines.

Addressing this problem has drawn the fundamental objective of this thesis. These impedi-

ments and their implications of putting personas performance and viability on the line have

been studied and addressed throughout different models, techniques and algorithms proposed

in each chapter.

Throughout the work, various research questions has arisen and many sub-objectives had to be

set in order to attain the main goal. After studying existing virtualization techniques, extensive

experiments have been performed proving the limitations of the mobile terminal resources to

support multi-persona without causing performance degradation or shorter-time system viabil-

ity. Afterwards, latest technologies that came out to support mobile devices, more specifically,

mobile cloud computing, were investigated. Based on the premises of the benefits concluded

in this area, we started to build our solution.

In the first article (Chapter 2), we proposed an offloading-based architecture and studied its

effectiveness in augmenting multi-persona performance and viability. In this architecture, we

were able to build generic optimization model, independent of the offloading granularity and

adaptable to different execution contexts. We also presented a heuristic-based algorithm to

automatically generate exact dissemination strategies for local and remote processing of multi-

persona applications to optimize both resource usage and performance on the end terminal.

162

In the second article (Chapter 3), we proposed a selective solution for lightweight evaluation

of computation offloading cost. Particulary, we proposed a novel selective mechanism based

on hotspots to minimize the search space of potential components distribution strategies.

In the third article (Chapter 4), we proposed an approach to balance in one hand, the usage of

cloud-based offloading services to minimize processing, memory, energy and execution time in

personas on as many devices engaged in an organization as possible, and on the other hand the

remote execution fees imposed on the institution itself when adopting such solution. For that

end, we formulated two-level cost-effective optimization model and evaluated both centralized

and decentralized decision making approaches to examine their engagement to address the

raised concerns from different perspectives.

Finally, in the fourth article (Chapter 5), we highlighted the need for proactive approach able

to assure future resource needs of the virtual instances and avoid system crash in the physical

device. We advanced in this chapter a proactive scheme to predict resource needs in future

context. We also proposed advanced strategies, beside offloading, which we emphasized on its

limitations to solely manage VPs through different usage scenarios. Moreover, we presented a

novel optimization model to meet with the resource needs, enhance the performance on the end

device and support the proposed strategies. Further, a dynamic programming-based algorithm

was introduced to find the adequate strategies to be applied by the end terminal. This approach

allows managing situations with awareness for proactive and instructive recommendations.

Rather than dictating what components to offload, more valuable recommendations can be

taken based on user preferences, resource availabilities and device state. Such decisions include

turning off applications, switching-off personas due to resource scarcity and direct decisions to

prioritize the mobile device survivability over independent applications performance.

163

In each of these chapters, thorough analysis has been conducted and the results have proved

the efficiency and competency of each of the proposed architectures, techniques, models and

algorithms.

To summarize, this thesis offers the following contributions:

Technical Advancements:

- Mobile cloud-based architecture for efficient multi-persona mobile computing support.

- Cost-effective solution for multi-persona mobile computing in workplace.

- Generic, adaptable and lightweight optimization techniques for virtual phones’ resource

and performance management.

- Proactive method with advanced manageability strategies for efficient control of virtual

phones’ performance and viability.

- Competitive algorithms that automatically generate the adequate strategies to be applied by

the end terminal.

Publications:

- Tout, H., Talhi, C., Kara, N. & Mourad, A. (2015). Towards an offloading approach that

augments multi-persona performance and viability. Consumer Communications and Net-

working Conference (CCNC), 2015 12th Annual IEEE, pp. 455–460.

- Tout, H., Talhi, C., Kara, N. & Mourad, A. (2016). Selective Mobile Cloud Offloading to

Augment Multi-Persona Performance and Viability.Cloud Computing, IEEE Transactions

on.

164

- Tout, H., Talhi, C., Kara, N. & Mourad, A. (2017). Smart mobile computation offloading:

Centralized selective and multi-objective approach. Expert Systems with Applications, 80,

1-13.

- Tout, H., Mourad, A., Kara, N. & Talhi, C. Cost-Effective Cloud-Based Solution for Multi-

Persona Mobile Computing in Workplace (Journal Article Under Review)

- Tout, H., Kara, N., Talhi, C. & Mourad, A. Proactive Solution and Advanced Manageability

of Multi-Persona Mobile Computing (Journal Article Under Review).

Each of the presented approaches opens the door for interesting future tracks:

- Monitoring the device state, applications running on it as well as the network conditions is

essential to adopt the adequate management strategy on the device. Yet, investigating the

frequency of calling these profilers would be intrusting to avoid any bottleneck they might

cause in turn in the device resources.

- While assuming independent components on the device to reduce the complexity of the

optimization model, considering the correlation between components of an application is

important knowing that only few works have been proposed in this regard. Dynamic anal-

ysis of potential execution flow paths of different tasks in a mobile application has direct

impact on the distribution decision where the decision to offload or locally execute particu-

lar components can influences the execution of other dependents components.

- While we adopted remote predictor, studying the effect and the overhead of centralizing

the model training and prediction process on the end terminal would be interesting. Also,

a fixed window size value based on extensive experiments was adopted to perform the

prediction, yet proposing a dynamic automatic approach, generic enough to be adopted

independently of the device usage data sets, would be a valuable future research track as

well.

BIBLIOGRAPHY

Abolfazli, S., Sanaei, Z., Ahmed, E., Gani, A. & Buyya, R. (2014). Cloud-based augmentation

for mobile devices: motivation, taxonomies, and open challenges. IEEE Communica-
tions Surveys & Tutorials, 16(1), 337–368.

Ahmed, E., Akhunzada, A., Whaiduzzaman, M., Gani, A., Ab Hamid, S. H. & Buyya, R.

(2015a). Network-centric performance analysis of runtime application migration in mo-

bile cloud computing. Simulation Modelling Practice and Theory, 50, 42–56.

Ahmed, E., Gani, A., Khan, M. K., Buyya, R. & Khan, S. U. (2015b). Seamless applica-

tion execution in mobile cloud computing: Motivation, taxonomy, and open challenges.

Journal of Network and Computer Applications, 52, 154–172.

Ahmed, E., Gani, A., Sookhak, M., Ab Hamid, S. H. & Xia, F. (2015c). Application optimiza-

tion in mobile cloud computing: Motivation, taxonomies, and open challenges. Journal
of Network and Computer Applications, 52, 52–68.

Amazon. Amazon EC2 - Virtual Server Hosting. Consulted at https://aws.amazon.com/ec2/.

Amazon. Amazon EC2 Pricing. Consulted at https://aws.amazon.com/ec2/pricing/.

Andreev, S., Pyattaev, A., Johnsson, K., Galinina, O. & Koucheryavy, Y. (2014). Cellular traffic

offloading onto network-assisted device-to-device connections. IEEE Communications
Magazine, 52(4), 20–31.

Android. Android Interface Definition Language (AIDL). Consulted at http://developer.

android.com/guide/components/aidl.html.

Android. (2014). The power of Android at work. Consulted at https://www.android.com/

enterprise/employees/.

Android. (2016). The Activity Lifecycle. Consulted at https://developer.android.com/guide/

components/activities/activity-lifecycle.html.

Android. (2017, March). Power Profiles for Android. Consulted at https://source.android.com/

devices/tech/power/index.html.

Andrus, J., Dall, C., Hof, A. V., Laadan, O. & Nieh, J. Cells: Lightweight Virtual Smartphones.

Consulted at http://systems.cs.columbia.edu/projects/cells/.

Andrus, J., Dall, C., Hof, A. V., Laadan, O. & Nieh, J. (2011). Cells: a virtual mobile smart-

phone architecture. Proceedings of the Twenty-Third ACM Symposium on Operating
Systems Principles, pp. 173–187.

Bala, A. & Chana, I. (2016). Prediction-based proactive load balancing approach through VM

migration. Engineering with Computers, 32(4), 581–592.

166

Barr, K., Bungale, P., Deasy, S., Gyuris, V., Hung, P., Newell, C., Tuch, H. & Zoppis, B. (2010).

The VMware mobile virtualization platform: is that a hypervisor in your pocket? ACM
SIGOPS Operating Systems Review, 44(4), 124–135.

Beloglazov, A. & Buyya, R. (2010). Energy efficient allocation of virtual machines in cloud

data centers. Cluster, Cloud and Grid Computing (CCGrid), 2010 10th IEEE/ACM
International Conference on, pp. 577–578.

Bertsekas, D. P., Bertsekas, D. P., Bertsekas, D. P. & Bertsekas, D. P. (1995). Dynamic
programming and optimal control. Athena scientific Belmont, MA.

Cai, Z. & Chen, C. (2014). Demand-driven task scheduling using 2D chromosome genetic

algorithm in mobile cloud. Progress in Informatics and Computing (PIC), 2014 Inter-
national Conference on, pp. 539–545.

Cardellini, V., DE NITO, P. V., Di Valerio, V., Facchinei, F., Grassi, V., LO, P. F. & Piccialli, V.

(2013). A game-theoretic approach to computation offloading in mobile cloud comput-

ing. Mathematical Programming. Consulted at http://dx.doi.org/10.1007/s10107-015-

0881-6.

Cellrox. (2013). Cellrox Partners with Fixmo to Bring Multi-Persona Solution for BYOD to

iOS. Consulted at http://www.cellrox.com/press-release/cellrox-partners-with-fixmo-

to-bring-multi-persona-solution-for-byod-to-ios.

Chae, D., Kim, J., Kim, J., Kim, J., Yang, S., Cho, Y., Kwon, Y. & Paek, Y. (2014). CM-

cloud: Cloud platform for cost-effective offloading of mobile applications. Cluster,
Cloud and Grid Computing (CCGrid), 2014 14th IEEE/ACM International Symposium
on, pp. 434–444.

Chen, E., Ogata, S. & Horikawa, K. (2012). Offloading Android applications to the cloud

without customizing Android. Pervasive Computing and Communications Workshops
(PERCOM Workshops), 2012 IEEE International Conference on, pp. 788–793.

Chen, M.-H., Liang, B. & Dong, M. (2015a). A semidefinite relaxation approach to mobile

cloud offloading with computing access point. Signal Processing Advances in Wireless
Communications (SPAWC), 2015 IEEE 16th International Workshop on, pp. 186–190.

Chen, W., Xu, L., Li, G. & Xiang, Y. (2015b). A lightweight virtualization solution for Android

devices. Computers, IEEE Transactions on, 64(10), 2741–2751.

Chen, W., Xu, L., Li, G. & Xiang, Y. (2015c). A Lightweight Virtualization Solution for

Android Devices. Consulted at http://dx.doi.org/10.1109/TC.2015.2389791.

Chen, X. (2015). Decentralized computation offloading game for mobile cloud computing.

IEEE Transactions on Parallel and Distributed Systems, 26(4), 974–983.

167

Chun, B.-G., Ihm, S., Maniatis, P., Naik, M. & Patti, A. (2011). Clonecloud: elastic execution

between mobile device and cloud. Proceedings of the sixth conference on Computer
systems, pp. 301–314.

Cimino, M. G., Lazzerini, B., Marcelloni, F. & Ciaramella, A. (2012). An adaptive rule-based

approach for managing situation-awareness. Expert Systems with Applications, 39(12),

10796–10811.

Cuervo, E., Balasubramanian, A., Cho, D.-k., Wolman, A., Saroiu, S., Chandra, R. & Bahl, P.

(2010). MAUI: making smartphones last longer with code offload. Proceedings of the
8th international conference on Mobile systems, applications, and services, pp. 49–62.

Dall, C. & Nieh, J. (2013). KVM/ARM: Experiences Building the Linux ARM Hypervisor
(Report n◦CUCS-010-13). Consulted at http://academiccommons.columbia.edu/item/

ac:162668.

Deb, K. (1999). An introduction to genetic algorithms. Sadhana, 24(4-5), 293–315.

Deb, K., Pratap, A., Agarwal, S. & Meyarivan, T. (2002). A fast and elitist multiobjective

genetic algorithm: NSGA-II. Evolutionary Computation, IEEE Transactions on, 6(2),

182–197.

Demuth, H. B., Beale, M. H., De Jess, O. & Hagan, M. T. (2014). Neural network design.

Martin Hagan.

Deng, S., Huang, L., Taheri, J. & Zomaya, A. Y. (2015). Computation offloading for service

workflow in mobile cloud computing. IEEE Transactions on Parallel and Distributed
Systems, 26(12), 3317–3329.

Dinh, H. T., Lee, C., Niyato, D. & Wang, P. (2013). A survey of mobile cloud computing:

architecture, applications, and approaches. Wireless communications and mobile com-
puting, 13(18), 1587–1611.

Drucker, H., Burges, C. J., Kaufman, L., Smola, A. J. & Vapnik, V. (1997). Support vector

regression machines. Advances in neural information processing systems, pp. 155–161.

Eiferman, O. (2013). BYOD: What Containers and Wrappers Don’t Tell You. Consulted

at http://www.cellrox.com/blog/byod-what-containers-and-wrappers-dont-tell-you.

Eiferman, O. (2014a). MWC Blog Series Part III: Cellrox Drives Business by Embracing

Changing Models of Employment. Consulted at http://www.cellrox.com/blog/mwc-

blog-series-part-iii-cellrox-drives-business-embracing-changing-models-employment.

Eiferman, O. (2014b). How to balance security and freedom in medical BYOD.

Consulted at http://health-information.advanceweb.com/Features/Articles/Physicians-

Mobile-Devices.aspx.

168

Emmerich, M., Beume, N. & Naujoks, B. (2005). An EMO algorithm using the hypervolume

measure as selection criterion. Evolutionary Multi-Criterion Optimization, pp. 62–76.

Fang, B., Liao, S., Xu, K., Cheng, H., Zhu, C. & Chen, H. (2012). A novel mobile recom-

mender system for indoor shopping. Expert Systems with Applications, 39(15), 11992–

12000.

Farahnakian, F., Liljeberg, P. & Plosila, J. (2013a). LiRCUP: Linear regression based CPU us-

age prediction algorithm for live migration of virtual machines in data centers. Software
Engineering and Advanced Applications (SEAA), 2013 39th EUROMICRO Conference
on, pp. 357–364.

Farahnakian, F., Pahikkala, T., Liljeberg, P. & Plosila, J. (2013b). Energy aware consolidation

algorithm based on k-nearest neighbor regression for cloud data centers. Utility and
Cloud Computing (UCC), 2013 IEEE/ACM 6th International Conference on, pp. 256–

259.

Farahnakian, F., Ashraf, A., Pahikkala, T., Liljeberg, P., Plosila, J., Porres, I. & Tenhunen, H.

(2015). Using ant colony system to consolidate VMs for green cloud computing. IEEE
Transactions on Services Computing, 8(2), 187–198.

Fernando, N., Loke, S. W. & Rahayu, W. (2013). Mobile cloud computing: A survey. Future
generation computer systems, 29(1), 84–106.

Fiandrino, C., Kliazovich, D., Bouvry, P. & Zomaya, A. Y. (2015). Network-assisted offload-

ing for mobile cloud applications. Communications (ICC), 2015 IEEE International
Conference on, pp. 5833–5838.

Flores, H., Srirama, S. N. & Buyya, R. (2014). Computational offloading or data binding?

bridging the cloud infrastructure to the proximity of the mobile user. Mobile Cloud
Computing, Services, and Engineering (MobileCloud), 2014 2nd IEEE International
Conference on, pp. 10–18.

Flores, H., Hui, P., Tarkoma, S., Li, Y., Srirama, S. & Buyya, R. (2015). Mobile code offload-

ing: from concept to practice and beyond. Communications Magazine, IEEE, 53(3),

80–88.

Goodfellow, I., Bengio, Y. & Courville, A. (2016). Deep Learning. MIT Press.

Google. Google Cloud Platform. Consulted at https://cloud.google.com/.

Google. Google Compute Engine Pricing. Consulted at https://cloud.google.com/compute/

pricing#custommachinetypepricing.

Gordon, M. S., Jamshidi, D. A., Mahlke, S., Mao, Z. M. & Chen, X. (2012). COMET: code

offload by migrating execution transparently. Presented as part of the 10th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 12), pp. 93–106.

169

Grefenstette, J. J. (2013). Genetic algorithms and their applications: proceedings of the second
international conference on genetic algorithms. Psychology Press.

Han, B., Hui, P., Kumar, V., Marathe, M. V., Pei, G. & Srinivasan, A. (2010). Cellular traffic

offloading through opportunistic communications: a case study. Proceedings of the 5th
ACM workshop on Challenged networks, pp. 31–38.

Huang, D., Wang, P. & Niyato, D. (2012). A dynamic offloading algorithm for mobile com-

puting. IEEE Transactions on Wireless Communications, 11(6), 1991–1995.

Hung, S.-H., Shieh, J.-P. & Lee, C.-P. (2012). Virtualizing Smartphone Applications to the

Cloud. Computing and Informatics, 30(6), 1083–1097.

Hwang, J.-Y., Suh, S.-B., Heo, S.-K., Park, C.-J., Ryu, J.-M., Park, S.-Y. & Kim, C.-R. (2008).

Xen on ARM: System virtualization using Xen hypervisor for ARM-based secure mo-

bile phones. Consumer Communications and Networking Conference, 2008. CCNC
2008. 5th IEEE, pp. 257–261.

Inc., E. BYOD: What Containers and Wrappers Don’t Tell You. Consulted at http://www.

enterproid.com.

Kemp, R. (2014). Programming Frameworks for Distributed Smartphone Computing. (Ph.D.

thesis, VRIJE UNIVERSITEIT).

Kerrisk, M. (2013). Namespaces in operation, part 1: namespaces overview. Consulted

at http://lwn.net/Articles/531114/.

Khan, A. R., Othman, M., Madani, S. A. & Khan, S. U. (2014). A Survey of Mobile Cloud

Computing Application Models. IEEE Communications Surveys Tutorials, 16(1), 393-

413. doi: 10.1109/SURV.2013.062613.00160.

Kodratoff, Y. (2014). Introduction to machine learning. Morgan Kaufmann.

Kosta, S., Aucinas, A., Hui, P., Mortier, R. & Zhang, X. (2012). Thinkair: Dynamic resource

allocation and parallel execution in the cloud for mobile code offloading. INFOCOM,
2012 Proceedings IEEE, pp. 945–953.

Kovachev, D., Yu, T. & Klamma, R. (2012). Adaptive computation offloading from mobile

devices into the cloud. Parallel and Distributed Processing with Applications (ISPA),
2012 IEEE 10th International Symposium on, pp. 784–791.

Liu, J., Kumar, K. & Lu, Y.-H. (2010). Tradeoff between energy savings and privacy pro-

tection in computation offloading. Low-Power Electronics and Design (ISLPED), 2010
ACM/IEEE International Symposium on, pp. 213–218.

Liu, Y. & Lee, M. J. (2014). An effective dynamic programming offloading algorithm in

mobile cloud computing system. Wireless Communications and Networking Conference
(WCNC), 2014 IEEE, pp. 1868–1873.

170

Lust, T. & Teghem, J. (2012). The multiobjective multidimensional knapsack problem: a

survey and a new approach. International Transactions in Operational Research, 19(4),

495–520.

Mahmoodi, S. E., Uma, R. & Subbalakshmi, K. Optimal Joint Scheduling and Cloud Offload-

ing for Mobile Applications.

Mazza, D., Tarchi, D. & Corazza, G. E. (2014). A partial offloading technique for wireless

mobile cloud computing in smart cities. Networks and Communications (EuCNC), 2014
European Conference on, pp. 1–5.

Menage, P. (2014). Cgroups. Consulted at https://www.kernel.org/doc/Documentation/

cgroups/cgroups.txt.

NADLER, D. (2014). Multi-Persona Delivers on Changing Models of Practicing

Medicine. Consulted at http://www.cellrox.com/blog/multi-persona-delivers-changing-

models-practicing-medicine.

Nebro, A. J., Durillo, J. J., Luna, F., Dorronsoro, B. & Alba, E. (2009). Mocell: A cellular

genetic algorithm for multiobjective optimization. International Journal of Intelligent
Systems, 24(7), 726–746.

Rouse, M. (2012a). BYOD (bring your own device). Consulted at http://whatis.techtarget.

com/definition/BYOD-bring-your-own-device.

Rouse, M. (2012b). dual persona (mobile device management). Consulted at http://

searchconsumerization.techtarget.com/definition/Dual-persona.

Rouse, M. (2014). COPE (corporate-owned, personally-enabled). Consulted at http://

searchconsumerization.techtarget.com/definition/COPE-corporate-owned-personally-

enabled.

Satyanarayanan, M., Bahl, P., Caceres, R. & Davies, N. (2009). The case for vm-based

cloudlets in mobile computing. Pervasive Computing, IEEE, 8(4), 14–23.

Seber, G. A. & Lee, A. J. (2012). Linear regression analysis. John Wiley & Sons.

Shahzad, H. & Szymanski, T. H. (2016). A dynamic programming offloading algorithm for

mobile cloud computing. Electrical and Computer Engineering (CCECE), 2016 IEEE
Canadian Conference on, pp. 1–5.

Shi, C., Habak, K., Pandurangan, P., Ammar, M., Naik, M. & Zegura, E. (2014). Cosmos:

computation offloading as a service for mobile devices. Proceedings of the 15th ACM
international symposium on Mobile ad hoc networking and computing, pp. 287–296.

Shiraz, M. & Gani, A. (2014). A lightweight active service migration framework for compu-

tational offloading in mobile cloud computing. The Journal of Supercomputing, 68(2),

978–995.

171

Shiraz, M., Gani, A., Khokhar, R. H. & Buyya, R. (2013). A review on distributed application

processing frameworks in smart mobile devices for mobile cloud computing. Commu-
nications Surveys & Tutorials, IEEE, 15(3), 1294–1313.

Sivanandam, S. & Deepa, S. (2007). Introduction to genetic algorithms. Springer Science &

Business Media.

Song, J., Cui, Y., Li, M., Qiu, J. & Buyya, R. (2014). Energy-traffic tradeoff cooperative

offloading for mobile cloud computing. Quality of Service (IWQoS), 2014 IEEE 22nd
International Symposium of, pp. 284–289.

Spaces, S. Using Secure Spaces. Consulted at http://securespaces.com/.

Thede, S. M. (2004). An introduction to genetic algorithms. Journal of Computing Sciences
in Colleges, 20(1), 115–123.

Toma, A. & Chen, J.-J. (2013). Computation offloading for frame-based real-time tasks with

resource reservation servers. Real-Time Systems (ECRTS), 2013 25th Euromicro Con-
ference on, pp. 103–112.

Tout, H., Talhi, C., Kara, N. & Mourad, A. (2015). Towards an offloading approach that

augments multi-persona performance and viability. Consumer Communications and
Networking Conference (CCNC), 2015 12th Annual IEEE, pp. 455–460.

Tout, H., Talhi, C., Kara, N. & Mourad, A. (2016). Selective Mobile Cloud Offloading to Aug-

ment Multi-Persona Performance and Viability. Cloud Computing, IEEE Transactions
on.

Tout, H., Talhi, C., Kara, N. & Mourad, A. (2017). Smart mobile computation offloading:

Centralized selective and multi-objective approach. Expert Systems with Applications,

80, 1–13.

Wessel, S., Stumpf, F., Herdt, I. & Eckert, C. (2013). Improving Mobile Device Security with

Operating System-Level Virtualization. In Security and Privacy Protection in Informa-
tion Processing Systems (pp. 148–161). Springer.

Wu, C.-W., Chiang, T.-C. & Fu, L.-C. (2014). An ant colony optimization algorithm for multi-

objective clustering in mobile ad hoc networks. Evolutionary Computation (CEC), 2014
IEEE Congress on, pp. 2963–2968.

Wu, H. & Wolter, K. (2014). Tradeoff analysis for mobile cloud offloading based on an

additive energy-performance metric. Proceedings of the 8th International Conference
on Performance Evaluation Methodologies and Tools, pp. 90–97.

Wu, H., Wang, Q. & Wolter, K. (2013). Tradeoff between performance improvement and

energy saving in mobile cloud offloading systems. Communications Workshops (ICC),
2013 IEEE International Conference on, pp. 728–732.

172

Xia, F., Ding, F., Li, J., Kong, X., Yang, L. T. & Ma, J. (2014). Phone2Cloud: Exploiting

computation offloading for energy saving on smartphones in mobile cloud computing.

Information Systems Frontiers, 16(1), 95–111.

Xiang, L., Ye, S., Feng, Y., Li, B. & Li, B. (2014). Ready, set, go: Coalesced offloading from

mobile devices to the cloud. INFOCOM, 2014 Proceedings IEEE, pp. 2373–2381.

Xiao, Z., Song, W. & Chen, Q. (2013). Dynamic resource allocation using virtual machines for

cloud computing environment. IEEE transactions on parallel and distributed systems,

24(6), 1107–1117.

Zhang, L., Tiwana, B., Qian, Z., Wang, Z., Dick, R. P., Mao, Z. M. & Yang, L. (2010). Accurate

online power estimation and automatic battery behavior based power model generation

for smartphones. Proceedings of the eighth IEEE/ACM/IFIP international conference
on Hardware/software codesign and system synthesis, pp. 105–114.

Zhang, Y., Niyato, D. & Wang, P. (2015). Offloading in mobile cloudlet systems with inter-

mittent connectivity. IEEE Transactions on Mobile Computing, 14(12), 2516–2529.

Zhou, B., Dastjerdi, A. V., Calheiros, R., Srirama, S. & Buyya, R. (2016). mCloud: A Context-

aware Offloading Framework for Heterogeneous Mobile Cloud. IEEE Transactions on
Services Computing, (99). doi: 10.1109/TSC.2015.2511002.

Zhou, B., Dastjerdi, A. V., Calheiros, R. N., Srirama, S. N. & Buyya, R. (2015). A con-

text sensitive offloading scheme for mobile cloud computing service. Cloud Computing
(CLOUD), 2015 IEEE 8th International Conference on, pp. 869–876.

Zitzler, E., Laumanns, M. & Thiele, L. (2002). SPEA2: Improving the Strength Pareto Evolu-

tionary Algorithm for Multiobjective Optimization. Evolutionary Methods for Design,
Optimisation and Control with Application to Industrial Problems (EUROGEN 2001),
pp. 95–100.

Zitzler, E. & Künzli, S. (2004). Indicator-based selection in multiobjective search. Parallel
Problem Solving from Nature-PPSN VIII, pp. 832–842.

