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Méthodes d’apprentissage profond pour les problèmes de dynamique des fluides de
haute dimension : application à la modélisation des inondations avec prise en compte des

incertitudes

Pierre JACQUIER

RÉSUMÉ

Bien que des résultats impressionnants aient été obtenus dans les domaines bien connus où

l’apprentissage approfondi a permis des percées telles que la vision par ordinateur, son impact

sur des domaines différents et plus anciens reste encore largement inexploré. Dans le domaine

de la mécanique des fluides numérique et en particulier dans la modélisation des inondations, de

nombreux phénomènes sont de très haute dimension et les prévisions nécessitent l’utilisation

de méthodes numériques, qui peuvent être, bien que très robustes et éprouvées, lourdes à

calculer et peuvent ne pas s’avérer utiles dans le contexte de prévisions en temps réel. Cela a

conduit à diverses tentatives de développement de techniques de modélisation à ordre réduit,

à la fois intrusives et non intrusives. Une contribution récente nommée POD-NN consiste en

la combinaison de la Proper Orthogonal Decomposition avec les réseaux neuronaux profonds.

Pourtant, à notre connaissance, dans cet exemple et plus généralement sur le terrain, peu de

travaux ont été menés sur la quantification des incertitudes émises par le modèle de substitution.

Dans ce mémoire, nous visons à comparer différentes méthodes nouvelles traitant de la

quantification de l’incertitude dans les modèles d’ordre réduit, en faisant avancer le concept

POD-NN à l’aide de réseaux neuronaux informés des incertitudes, tels que les Deep Ensembles

ou les Bayesian Neural Networks. Ces derniers sont testés sur des problèmes de référence, puis

appliqués à une application réelle : les prévisions d’inondation dans la rivière des Mille-Îles à

Laval, QC, Canada.

L’objectif est de construire un modèle de substitution non-intrusif, capable de savoir quand il ne
sait pas, ce qui reste un domaine de recherche ouvert en ce qui concerne les réseaux neuronaux.

Mots-clés: Quantification de l’incertitude, apprentissage approfondi, POD espace-temps,

modélisation des inondations





Deep Learning Methods for High-Dimensional Fluid Dynamics Problems: Application
to Flood Modeling with Uncertainty Quantification

Pierre JACQUIER

ABSTRACT

While impressive results have been achieved in the well-known fields where Deep Learning

allowed for breakthroughs such as computer vision, its impact on different older areas is still

vastly unexplored. In Computational Fluid Dynamics and especially in Flood Modeling, many

phenomena are very high-dimensional, and predictions require the use of numerical simulations,

which can be, while very robust and tested, computationally heavy and may not prove useful in

the context of real-time predictions. This issue led to various attempts at developing Reduced-

Order Modeling techniques, both intrusive and non-intrusive. One recent relevant addition is a

combination of Proper Orthogonal Decomposition with Deep Neural Networks (POD-NN). Yet,

to our knowledge, little has been performed in implementing uncertainty-aware regression tools

in the example of the POD-NN framework.

In this work, we aim at comparing different novel methods addressing uncertainty quantification

in Neural Networks, pushing forward the POD-NN concept with Deep Ensembles and Bayesian

Neural Networks, which we first test on benchmark problems, and then apply to a real-life

application: flooding predictions in the Mille-Iles river in Laval, QC, Canada.

Building a non-intrusive surrogate model, able to know when it doesn’t know, is still an open

research area as far as neural networks are concerned.

Keywords: Uncertainty Quantification, Deep Learning, Space-Time POD, Flood Modeling
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INTRODUCTION

0.1 Background and the computational cost issue

While impressive results have been achieved in the well-known fields where Deep Learning

allowed for breakthroughs such as computer vision, language modeling, or content generation,

respectively performed in Szegedy, Ioffe, Vanhoucke & Alemi (2017), Mikolov, Sutskever,

Chen, Corrado & Dean (2013), and Karras, Laine, Aittala, Hellsten, Lehtinen & Aila (2019), its

impact on different, older fields is still vastly unexplored. In Computational Fluid Dynamics

and especially in flood modeling, many phenomena are very high-dimensional, and predictions

require the use of finite element or volume methods, which can be, while very robust and tested,

computational-heavy and may not prove useful in the context of real-time predictions.

The world, as we know it today, is continuously evolving, and as the human concentration in

large metropolitan areas keeps on increasing, it is of primary concern to focus on predicting

natural disasters consequences. Montreal, QC, Canada, as many big metropolia, is located near

large bodies of water, and their levels have to be monitored closely. The time for action after any

variation remains ridiculously tiny compared to the importance of the measures that have to be

taken to ensure public safety. However, with the many parameters involved and the computational

cost of running simulation for free surface flows, especially in a large-scale, high-performance

context, making real-time predictions and knowing the related arising uncertainties remain very

challenging as of today.

0.2 Objectives

This led to various attempts at developing Reduced-Order Modeling techniques, both intrusive

and non-intrusive, to develop surrogate, alternative models that could be used in a real-time

context. A recent relevant addition is a combination of Proper Orthogonal Decomposition

with artificial Neural Networks, first coined as POD-NN in Hesthaven & Ubbiali (2018), and

extended to time-dependent problems in Wang, Hesthaven & Ray (2019). With its offline-online
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paradigm, it allows for computational load offsetting to slower times as far as natural disasters

are concerned, and provides rapid evaluation for new predictions in the urgency context. It has

been applied to multiple physics applications, and we ultimately aim at using it for our flood

modeling problem. The high nonlinear regression power that comes with Deep Neural Networks

will be instrumental in tackling a wide range of real-world problems.

Nonetheless, to our knowledge, in this example and more generally in the field, little work has

been conducted on quantifying uncertainties arising from the surrogate model, and this would

represent a significant contribution.

In this work, we, therefore, aim at comparing different novel methods addressing uncertainty quan-

tification in Machine Learning tools, especially in Deep Neural Networks, pushing forward the

POD-NN concept with novel techniques like Deep Ensembles, Lakshminarayanan, Pritzel & Blun-

dell (2017), or Bayesian Neural Networks, Blundell, Cornebise, Kavukcuoglu & Wierstra (2015).

Chosen methods are tested on a variety of benchmark problems, and then deployed to a real-life

application: flooding predictions in the Mille-Iles river in Laval, QC, Canada.

For the flood prediction application, our setup involves a set of input parameters resulting from

on-site measurements. High-fidelity solutions are then generated using our own finite-volume

code CuteFlow, which is solving the highly nonlinear Shallow Water equations. The goal is

then to build a non-intrusive surrogate model that is able to know when it doesn’t know, which

is still an open research area as far as neural networks are concerned, Blundell et al. (2015);

Lakshminarayanan et al. (2017).

We set out three main objectives for the surrogate model in this study:

1. Stay general enough so the framework can be used without too much change in various

cases,

2. Be fast to predict the desired quantity for any new set of parameters, allowing for real-time

predictions,
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3. Give a confidence interval around the predictions, for it to be used out-of-distribution

without making ridiculous claims.

0.3 Methodology outline

After reviewing the current state of our problem in the literature in Chapter 1, with a focus on the

separation between intrusive and non-intrusive methods, fundamentals of Machine Learning and

modern developments, a detailed description of our building block for this work, the POD-NN

approach, is available in Chapter 2. A few possible strategies are discussed and compared in

Chapter 3, investigating the different possibilities to fulfill our Objective 3.. Applying these

uncertainties-handling techniques to the POD-NN framework in the flood modeling context is

our contribution as a standalone research paper, detailed in Chapter 4.





CHAPTER 1

LITERATURE REVIEW

Computational Mechanics, and especially Fluid Dynamics, is an area of science that requires

a lot of computing power to reach accurate outcomes. It almost always relies on a mesh, and

its coarseness is directly related to the time needed for a simulation involving it to converge.

It can become so large that ways to reduce its order have to be developed. These ways aim at

constructing a Reduced-Order Model (ROM), that can effectively replace its heavier counterpart

for tasks like design and optimization, or real-time predictions, all of which would require the

model to run a large number of times, which is in most cases impossible by lack of adequate and

available computer resources.

1.1 Reduced-basis through Proper Orthogonal Decomposition

The most common way to build a ROM is to go through a compression phase into a reduced

space, defined by a set of Reduced Basis (RB), which is at the root of many methods, according

to Benner, Gugercin & Willcox (2015). For the most part, RB methods involve an offline-online

paradigm, where the first is the more computational-heavy one, while the latter should be fast

enough to allow for real-time predictions. The idea is to collect data points from simulation,

or any high-fidelity source, called snapshots and stored in an ensemble {𝒖𝑖}, and extract the

information that has the broader impact on the dynamics of the system, the modes, via a reduction

method in the offline stage.

Proper Orthogonal Decomposition was introduced in Lumley then presented in Holmes, Lumley,

Berkooz, Mattingly & Wittenberg (1997) and Sarkar & Ghanem (2002), and aims at finding

a basis functions 𝜑(𝑘) in a Hilbert space H possessing the structure of an inner product (·, ·),
that would optimally represent the field 𝑢. Supposing that solutions or high-fidelity measures of

theses solutions are availables as {𝒖𝑖}, each belonging to the same space H , so that the field can

be approximated in

𝑢 =
∞∑
𝑘=1

𝑣 (𝑘)𝜑(𝑘) , (1.1)
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For scalar or complex valued functions, the Hilbert space is H = 𝐿2(Θ), where a space vector 𝒙

in the domain Θ is considered, and the time variable 𝑡, possessing an inner product defined by

( 𝑓 , 𝑔) =
∫
Θ
𝑓𝑖𝑔

∗
𝑖 𝑑𝒙, with ∗-superscript denoting the conjugate transpose. The summation would

allow for variable separation as

𝑢(𝒙, 𝑡) =
∞∑
𝑘=1

𝑣 (𝑘) (𝑡)𝜑(𝑘) (𝒙), (1.2)

Considering the mean 〈·〉, thought as "an average over a number of separate experiments", e.g. in

the case of a function 𝑓 with 𝑁𝑟 realizations 𝑓𝑖, 〈 𝑓 〉 = 1/𝑁𝑟 ∑𝑖 𝑓𝑖, Holmes, Lumley & Berkooz

(1996), the absolute value | · |, and the 2-norm | | · | | defined as | | 𝑓 | |= ( 𝑓 , 𝑓 )1/2, each normalized

optimal basis 𝜑 is sought after

max
𝜑∈H

〈| (𝑢, 𝜑) |2〉
| |𝜑| |2 , (1.3)

and through a condition on variations calculus, it can be shown equivalent to solving the

eigenvalues 𝜉 problem ∫
Θ
〈𝑢(𝒙, 𝑡)𝑢∗(𝒙′, 𝑡)〉 𝜑(𝒙′) 𝑑𝒙′ = 𝜉𝜑(𝒙). (1.4)

Moving from these continuous expressions to a low-rank approximation involves most of the time

the Singular Value Decomposition (SVD) algorithm introduced in Burkardt, Gunzburger & Lee

(2006). One can note that this method shares many similarities with the statistical technique

of Principal Component Analysis, introduced in Pearson (1901), and recently reviewed in

Jollife & Cadima (2016). With this algorithm, one can make a practical approximation by

truncating the sum in (1.2) to a finite length 𝐿, first shown in Sirovich (1987), and expressed as

𝑢POD(𝒙, 𝑡) =
𝐿∑
𝑘=1

𝑣 (𝑘) (𝑡)𝜑(𝑘) (𝒙). (1.5)

Subsequently, the online stage involves recovering the expansion coefficients, projecting back

into our uncompressed, real-life space. This is where the separation between intrusive and

non-intrusive methods appear, where the first is using techniques depending on the problem’s
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formulation, while the latter tries to statistically infer the mapping by considering the snapshots

as a dataset.

1.2 Intrusive reduced-order methods: the Galerkin procedure

As described and improved in Couplet, Basdevant & Sagaut (2005), the conventional way to

handle the second part of the Proper Orthogonal Decomposition approach to reduced-order

modeling is the Galerkin procedure.

Let’s consider a partial differential equation (PDE), defined by the nonlinear operator N , with

the 𝑥 and 𝑡 subscripts representing corresponding derivatives, as

𝑢𝑡 = N𝑥𝑢. (1.6)

From the 𝐿-truncated sum in (1.5), each expansion coefficient 𝑣 (𝑘) is to be determined by the

Galerkin procedure. By indeed reinjecting the approximated 𝑢POD inside (1.6), and multiplying

by the 𝐿 POD modes 𝝋, known as Galerkin projection, a system of solvable equations is derived

as

𝑣
(𝑝)
𝑡 =

𝐿∑
𝑖=1

𝜑(𝑝)N𝑥𝑢
POD ≈ R(𝑝)𝑢POD, (1.7)

for the 𝑝-th expansion coefficient, with R the nonlinear residuals.

This POD-Galerkin approach has been applied in subsequent work to Shallow Water equations

problems like a dam break and flood predictions in Zokagoa & Soulaimani (2012a,1). However,

as mentioned in these references and many others, if R is a general nonlinear operator, it

is not apparent how to gain any speedup in the offline stage, i.e., solving 1.7, unless some

approximations are made on R. Furthermore, for parameter-dependent problems where multi-

simulations are required, the reduced basis is parameter-dependent as well, and it is the case for

uncertainty quantification problems. The usage of many RB may be necessary and finding a

way to combine these bases to find an accurate solution isn’t straightforward, as discussed in

Amsallem & Farhat (2014); Hesthaven & Ubbiali (2018); Zokagoa & Soulaimani (2018).
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1.3 Non-intrusive reduced-order methods: Polynomial Chaos Expansion

If one wants to make sense of this snapshot dataset and build a surrogate model able to recover

the projection coefficients correctly, a modeling procedure has to be performed. While usual and

straightforward techniques like polynomial interpolation seem appealing for this task, they’re

having trouble yielding usable results in the case of a low amount of samples, as pointed out in

Barthelmann, Novak & Ritter (2000).

A different take has been explored within the Polynomial Chaos Expansion (PCE) realm,

proposed in Ghanem & Spanos (1991). Using Hermite polynomials, and more precisely, a set of

multivariate orthonormal polynomials Φ, Wiener’s Chaos theory allows for modeling of the

outputs as a stochastic process. Considering the previous expansion coefficients 𝑣 (𝑘) (𝑡) as a

stochastic process of the variable 𝑡, the PCE is defined as

𝑣 (𝑘) (𝑡) =
∑
𝛼∈𝐶𝐿

𝑐(𝑘)𝛼 Φ𝛼 (𝑡), (1.8)

with 𝛼 identifying polynomials following the right criteria in a set 𝐶𝐿 , Sun, Pan & Choi (2019).

However, stability issues may arise, and a new different approach using the B-Splines Bézier

Elements based Method (BSBEM) aimed at addressing this has been developed in Abde-

dou & Soulaimani (2018). While it has shown excellent results, this approach can also suffer

from the curse of dimensionality, a term coined half a century ago, Bellman (1966), that still

has significant repercussions nowadays, as shown in Verleysen & François (2005). In simple

words, it implies that many well-intentioned approaches perform well on small domains, but

suffer from unpredicted and impractical problems when scaled up to broader contexts.

1.4 Modern use of Machine Learning for physical problems

1.4.1 Data-driven methods in Computational Fluid Dynamics

While Neural Networks have been around for a while now, traced back to the perceptron model,

Rosenblatt (1958), they had to wait for the concept of backpropagation and automatic differenti-

ation, coined respectively in Linnainmaa (1976) and Rumelhart, Hinton & Williams (1986), to

have a computationally practical way of training their multi-layer, less trivial counterparts. Sub-



9

sequently, various other types of networks became popular, such as Recurrent Neural Networks,

Hopfield (1982), and later Long-Short-Term Memory networks, Hochreiter & Schmidhuber

(1997), that allowed for breakthroughs in sequenced data. While the universal approximation

power of Deep Neural Networks, in the context of Deep Learning, had been predicted for a

long time, especially in Rina Dechter (1986), the community had to wait till the early 2010s to

finally have both the computational power and the practical tools to train these large networks,

with the likes of Goodfellow, Bengio & Courville (2016); Hinton (2007), and it quickly led to

breakthroughs, making sense of and building upon massive amounts of data, with work from

Szegedy et al. (2017), Mikolov et al. (2013), and Karras et al. (2019) to only name a few.

Conventionally, laws of physics are expressed as well-defined PDEs, with boundary/initial

conditions as constraints, but lately, pure data-driven methods gave birth to new approaches in

PDE discovery, Brunton, Proctor & Kutz (2016). The take-off of this new field of Deep Learning

in Computational Fluid Dynamics was predicted in Kutz (2017). Its flexibility allows for multiple

applications, such as the recovery of missing CFD data as in Carlberg, Jameson, Kochenderfer,

Morton, Peng & Witherden (2019), or aerodynamic design optimization, Tao & Sun (2019).

The cost associated with a fine mesh is high and yet has been overcome with a Machine

Learning approach aiming at assessing errors and correcting quantities in a more coarse setting,

Hanna, Dinh, Youngblood & Bolotnov (2020). New research in the field of numerical schemes

has been performed in Després & Jourdren (2020), presenting the Volume of Fluid-Machine

Learning (VOF-ML) approach, applied in bi-material settings. A review of the vast landscape of

possibilities is explored in Brunton & Kutz (2019). Additionally, an older study of available

Machine Learning methods, yet applied to environmental sciences and specifically hydrology,

was performed in Hsieh (2009).

Nonetheless, it is common in engineering to only have sparse and noisy data at our disposal, but

intuitions or expert knowledge about the underlying physics. It led researchers to think about

how to balance the need for data in these techniques with expert knowledge on the system such as

governing equations, first detailed in Raissi, Perdikaris & Karniadakis (2017a), then extended to

Neural Networks in Raissi, Perdikaris & Karniadakis (2019a) with applications on Computational
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Fluid Dynamics, as well as in vibrations Raissi, Wang, Triantafyllou & Karniadakis (2019b). A

few of these approaches will be detailed in Section 1.4.3.2.

1.4.2 Statistical Machine Learning: a simple curve-fitting example

Before going further in this review, we propose a study of the simple case of a one-dimensional

curve-fitting example. This section is built upon Bishop (2006), and its outstanding introduction

chapter.

1.4.2.1 A toy problem: the cubic function

Let’s introduce a toy problem that we will reuse throughout this work to quickly assess the

performance of our methods, borrowed from Lakshminarayanan et al. (2017). Over the interval

Ω = [−4, 4], we sample 𝑁 = 20 data points of the true function, 𝑢(𝑥) = 𝑥3, polluted by a

Gaussian noise of mean 0 and standard deviation 𝜎al = 9. Each point (𝑥𝑖, 𝑦𝑖) lives in the set

D = {𝒙, 𝒚}.
The real cubic function is also directly sampled from its true value 𝑁tst = 300 times on a broader

domain Ωtst = [−6, 6]. The general aim is to find a function �̂� that is best approximating 𝑢. A

plot of the data is shown in Figure 1.1.

−6 −4 −2 0 2 4 6

−200

−100

0

100

200
ytst

y

Figure 1.1 Toy problem: dataset and true value
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1.4.2.2 Common polynomial fitting

As a first step, let’s first try the simplest approach: fitting a polynomial function to our data, that

we define as follows

�̂�(𝑥, 𝒘) =
𝑑∑
𝑖=0

𝑤𝑖𝑥
𝑖, (1.9)

with 𝑑 the number of polynomial coefficients 𝒘 = [𝑤0, . . . , 𝑤𝑑]ᵀ, which we will refer to as

weights from now on since they define our model in the sense that changing them will change

the prediction. To find the best possible �̂�, one needs to set up a loss function, also known as cost

function, that, w.r.t. the weights, returns a metric assessing the quality of the predicted value of

the model, and the most common simple choice is the Mean Squared Error, defined in our case

as

LMSE(𝒙, 𝒚;𝒘) :=
1

𝑁

𝑁∑
𝑖=1

(�̂�(𝑥𝑖;𝒘) − 𝑦𝑖)2 (1.10)

Minimizing this loss function w.r.t. the weights is analytically tractable by its quadratic nature,

and an optimal solution exists, denoted by 𝒘∗. In Figure 1.9, four different results are depicted,

for four different values of 𝑑, the number of weights to be learned, i.e., the degree of the

polynomial function, and one can clearly see the most simple definition of overfitting appearing

in the 𝑑 = 10 case: when the model is too complicated for the data and starts fitting the noise

rather than the true hidden value. At the same time, one could say that 𝑑 = 1 underfits, and that

𝑑 = 3 seems like a good choice, no surprise here. A sample code is displayed in Figure 1.3,

using NumPy’s method polyfit, which is minimizing (1.10) under the hood.

Besides reducing the model complexity, overfitting can usually be overcome using more data, or

regularization. While the former is trivial, the latter involves adding a penalty to the MSE loss,

and the most common one is known as L2 regularization, or weight decay in Neural Networks

contexts, Krogh & Hertz (1992). The regularized MSE is defined as, with | | · | | denoting the L2

norm,

L𝜆
MSE(𝒙, 𝒚;𝒘) :=

1

𝑁

𝑁∑
𝑖=1

(�̂�(𝑥𝑖;𝒘) − 𝑦𝑖)2 + 𝜆
2
| |𝒘 | |2, (1.11)

where 𝜆 is the regularization coefficient, and is a hyperparameter of the model, meaning that it

is set externally.
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a) 𝑑 = 1
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b) 𝑑 = 3
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c) 𝑑 = 10

Figure 1.2 Toy problem: polynomial fitting, with three different degrees

import numpy as np
d = 3
w_star = np.polyfit(x, y, deg=d)
print(f"Weights w* for d={d}: {w_star}")
P_star = np.poly1d(w_star)
y_pred = P_star(x_tst)

Figure 1.3 Sample code for the polynomial fitting of degree 𝑑 = 3

Figure 1.4 shows the fight against overfitting for the overkill 𝑑 = 10 model, with a L2-Regression

on the left, and more training data on the right. Both approaches seem to help the predicted

curve to be less prone to fit the noise.

While the examples are simple, the reasoning and the notions presented will be reused throughout

this work.

1.4.2.3 The two sides of probabilities

The need for uncertainty accounting, as defined in Objective 3., forces us to keep a probabilistic

view. In this section, we’ll discuss probability densities, and leave discrete probabilities aside

since we will only need continuous random variables in this work.
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a) 𝜆 = 1.0
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b) 𝑁 = 200

Figure 1.4 Toy problem: polynomial fitting, reducing overfitting from 𝑑 = 10

As defined in Bishop (2006), 𝑝(𝑥) is a probability density of a real-valued variable 𝑥 if

𝑝(𝑥 ∈ (𝑥, 𝑥 + 𝛿𝑥)) = 𝑝(𝑥)𝛿𝑥 for 𝛿𝑥 → 0. In other words, it must respect the two conditions

𝑝(𝑥) ≥ 0, (1.12)∫ ∞

−∞
𝑝(𝑥) 𝑑𝑥 = 1. (1.13)

If 𝑛 continuous variables are considered as 𝒙 = [𝑥1, . . . , 𝑥𝑛]ᵀ, then the definition is analogous,

and the same conditions apply—yet we integrate on the whole domain instead of just IR, and we

refer to it as a multivariate probability density.

In both cases, the two main rules to keep in mind are the sum rule and the product rule and are

respectively defined as

𝑝(𝑥) =
∫

𝑝(𝑥, 𝑦) 𝑑𝑦 (1.14)

𝑝(𝑥, 𝑦) = 𝑝(𝑦 |𝑥)𝑝(𝑥) (1.15)
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The most common associated quantities are the expectation of a function 𝑓 (𝑥) under the

probability distribution 𝑝(𝑥), defined as

E[ 𝑓 ] =
∫

𝑝(𝑥) 𝑓 (𝑥) 𝑑𝑥, (1.16)

and the variance, measuring the variability around the mean and writing as

𝜎2 [ 𝑓 ] = E [
𝑓 − E[ 𝑓 ]2

]
. (1.17)

From the product rule, one can derive the famous Bayes’ theorem: given two random variables

𝑥 and 𝑦, the following relationship between conditional probabilities applies

𝑝(𝑦 |𝑥) = 𝑝(𝑥 |𝑦)𝑝(𝑦)
𝑝(𝑥) , (1.18)

and plays a key role in the second side of probabilities, known as the bayesian view, as opposed

to the standard frequentist view. It changes from moving from seeing "probabilities in terms

of the frequencies of random, repeatable events", to thinking about how "to convert a prior

probability into a posterior probability by incorporation the evidence provided by the observed

data", Bishop (2006).

If we indeed go back to our curve-fitting example of Section 1.4.2.2, we can write Bayes’ theorem

for our dataset D, and the weights of our model 𝒘

𝑝(𝒘 |D) = 𝑝(D|𝒘)𝑝(𝒘)
𝑝(D) . (1.19)

Each term above has a name, as follows:

1. 𝑝(𝒘): the prior, which is an assumption on the weights,

2. 𝑝(𝒘 |D): the posterior, given the dataset, what probabilities do multiple weights have,

3. 𝑝(D|𝒘): the likelihood, given the weights, how likely it is to see the data,

4. 𝑝(D): the marginal likelihood, which is a scaling term.
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Since the last one is indeed not dependent on the weights 𝒘, we can simply remember the

following rule

posterior ∝ likelihood × prior. (1.20)

A central element to the Bayesian view is the predictive posterior distribution, defined for a new

pair (𝑥, 𝑦) after seeing a dataset D = {𝒙, 𝒚} and accounting for all the weights configurations 𝒘

as

𝑝(𝑦 |𝑥, 𝒙, 𝒚) =
∫

𝑝(𝑦 |𝑥, 𝒘)𝑝(𝒘 |𝒙, 𝒚) 𝑑𝒘. (1.21)

1.4.2.4 Bayesian polynomial curve-fitting

We now assume that any target values 𝑦 knowing the input 𝑥 follows a normal distribution, with

the mean equal to �̂�(𝑥;𝒘). Still following Bishop (2006), we denote 𝛽 the precision, which is

the inverse of the variance, 𝛽−1, and is itself a hyperparameter.

We, therefore, can write the probability of seeing the targets provided the inputs

𝑝(𝑦 |𝑥, 𝒘, 𝛽) = N(𝑦 |�̂�(𝑥;𝒘), 𝛽−1), (1.22)

and we recall that a normal or Gaussian distribution writes as follows, for a mean 𝜇 and a

variance 𝜎2

N(𝑥 |𝜇, 𝜎2) = 1

(2𝜋𝜎2)1/2 exp

(
− 1

2𝜎2
(𝑥 − 𝜇)2

)
. (1.23)

Still considering our dataset D = {𝒙, 𝒚}, we know want to maximize the likelihood of seeing

our targets, which writes as

𝑝(𝒚 |𝒙, 𝒘, 𝛽) =
𝑁∏
𝑖=1

N(𝑦𝑖 |�̂�(𝑥𝑖, 𝒘), 𝛽−1), (1.24)

and that we can rewrite as a log-likelihood, injecting the normal definition

ln 𝑝(𝒚 |𝒙, 𝒘, 𝛽) = − 𝛽
2

𝑁∑
𝑖=1

(�̂�(𝑥𝑖;𝒘) − 𝑦𝑖)2 + 𝑁

2
ln 𝛽 − 𝑁

2
ln 2𝜋, (1.25)
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noting that the last two terms wouldn’t have any impact on the maximization, and don’t have to

be accounted for when optimizing.

Equivalently, the opposite quantity can be minimized, and is known as the Negative Log-

Likelihood (NLL). Its optimization w.r.t. the weights 𝒘 gives the optimal 𝒘∗, which maximizes

the likelihood of seeing the targets knowing the parameters. Subsequently, minimizing w.r.t. 𝛽

gives the Maximum Likelihood variance, which is an average across the domain, expressed as

1

𝛽∗
=

1

𝑁

𝑁∑
𝑖=1

[�̂�(𝑥𝑖;𝒘∗) − 𝑦𝑖]2 . (1.26)

Let’s now introduce a prior on the weights, 𝑝(𝒘) = N(𝒘 |0, 𝛼−1𝑰), with 𝛼 denoting the precision

of this second distribution. Using Bayes’ theorem, we finally get the Maximum A Posteriori

(MAP) estimator, that is given by the minimum of the negative log form, Bishop (2006),

− ln MAP =
𝛽

2

𝑁∑
𝑖=1

[�̂�(𝑥𝑖;𝒘) − 𝑦𝑖]2 + 𝛼

2
𝒘ᵀ𝒘, (1.27)

which we recognize as being equivalent to a regularized Sum of Squared Error, a non-averaged

version of the L2-regularized Mean Squared Error presented in (1.11), with the regularization

coefficient 𝜆 = 𝛼/𝛽. We, therefore, see that while the concept of prior has been incorporated,

this treatment still isn’t fully Bayesian.

The requirement is to write the predictive posterior distribution for a new pair (𝑥, 𝑦) as

𝑝(𝑦 |𝑥, 𝒙, 𝒚, 𝛼, 𝛽) =
∫

𝑝(𝑦 |𝑥, 𝒘, 𝛽)𝑝(𝒘 |𝒙, 𝒚, 𝛼, 𝛽) 𝑑𝒘. (1.28)

This implies summing over all the possible weights, and is often the bottleneck for full Bayesian

treatments. In this case it’s analytically tractable, thanks to the Gaussian prior and the simple

polynomial approach, which is linear w.r.t. to the polynomial basis. Nonetheless in most cases,

it’s intractable. The analytical case is given in Bishop (2006), and the predictive distribution

writes as

𝑝(𝑦 |𝑥, 𝒙, 𝒚, 𝛼, 𝛽) = N
(
𝑦 |𝜇ana(𝑥), 𝜎2

ana(𝑥)
)
, (1.29)
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with the mean and variance of the distribution expressed as

𝜇ana(𝑥) = Φ(𝑥)ᵀ𝑺
𝑁∑
𝑖=1

Φ(𝑥𝑖)𝑦𝑖, (1.30)

𝜎2
ana(𝑥) = 𝛽−1 + 𝛽−1Φ(𝑥)ᵀ𝑺Φ(𝑥). (1.31)

In these results, we defined 𝑺−1 =
𝛼

𝛽
𝑰 + ∑𝑁

𝑖=1 Φ(𝑥𝑖)Φ(𝑥𝑖)ᵀ,
and Φ the vector of polynomial basis, defined as Φ𝑖 (𝑥) = 𝑥𝑖 for 0 ≤ 𝑖 ≤ 𝑑.

It’s interesting to note that the variance expressed in (1.31) is composed of two terms: 𝛽−1,

a direct consequence of the noise within the data, which will be later referred to as aleatoric

uncertainty, as well as 𝛽−1Φ(𝑥)ᵀ𝑺Φ(𝑥), which accounts for the uncertainty on the weights 𝒘,

and represents the additional information that is provided by the Bayesian treatment, denoting

the different ways the model could fit the data.

As an illustration, we apply these results to the toy problem presented in Section 1.4.2.1. The

Python implementation is straightforward since (1.29) gives explicit definitions and is depicted

in Figure 1.6, while the results are in Figure 1.5. We used 𝛽 = 1/𝜎2
al
= 1/32, the inverse of the

known noise, and 𝛼 = 0.11. We can notice in Figure 1.5 that the 𝑑 = 10 case doesn’t overfit and

is a direct result of the built-in regularization shown in (1.27). One can note that this choice of 𝛼

and 𝛽 would produce a regularization coefficient of 𝜆 = 1.0 in the previous frequentist approach,

justifying our pick of 𝛼.

1.4.2.5 Neural Network regression

First introduced as the perceptron in Rosenblatt (1958), artificial Neural Networks now represent

the epicenter of modern Machine Learning. The Universal Approximation Theorem shows that,

in the case of width-bounded ReLU networks, as stated in Lu, Pu, Wang, Hu & Wang (2017):

Theorem 1. For any Lebesgue-integrable function 𝑢 : IR𝑛 → IR and any 𝜖 > 0, there exists a

fully-connected ReLU network with width 𝑑𝑚 ≤ 𝑛 + 4, such that the function �̂� represented by

this network satisfies ∫
IR𝑛

|𝑢(𝑥) − �̂�(𝑥) | 𝑑𝑥 < 𝜖. (1.32)
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a) 𝑑 = 3

−6 −4 −2 0 2 4 6

−200

−150

−100

−50

0

50

100

150

200
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b) 𝑑 = 10

Figure 1.5 Toy problem. Polynomial Bayesian fitting

d = 10
beta = 1/noise_std**2
alpha = 0.11

# Polynomial basis
def phi(x_):

return np.array([x_**i for i in range(d+1)])

# S matrix
S_inv = alpha/beta * np.identity(d+1) + \

* np.array([phi(x_i).dot(phi(x_i).T) for x_i in x]) \
.sum(0)

S = np.linalg.inv(S_inv)

# Mean for a given x
def mean(x_):

sum_n = np.array([phi(x[i]) * y[i] for i in range(N)]) \
.sum(0)

return beta * phi(x_).T.dot(S).dot(sum_n)

# Variance for a given x
def variance(x_):

return 1/beta + 1/beta*phi(x_).T.dot(S).dot(phi(x_))

# Predictions
y_pred = np.zeros_like(x_tst)
var = np.zeros_like(x_tst)
for i, x_i in enumerate(x_tst):

y_pred[i] = mean(x_i)
var[i] = variance(x_i)

sig = np.sqrt(var)

Figure 1.6 Python implementation of the full Bayesian Polynomial curve-fitting

Let’s define the missing components. A feedforward Neural Network is a set of neurons

organized in 𝑑 hidden layers. Each hidden layer 𝑗 has a width 𝑙 ( 𝑗) . There’s an additional input
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layer, its width being tied to space in which the function we wish to approximated lives, IR𝑛 in

the theorem for instance, and also an output layer, bringing the overall depth to be 𝑑 + 2. To

reach the result of Theorem 1, the authors of Lu et al. (2017) make the assumption of a depth of

4𝑛 + 1. Figure 1.7 gives a representation of a network.

... ...
...

𝑥1

𝑥𝑛

ℎ1,1

ℎ𝑙 (1) ,1

ℎ1,𝑑

ℎ𝑙 (𝑑) ,𝑑

𝑦

𝒃0

𝑤0,1

𝑤0,𝑛𝑙 (1)

𝒃𝑑
𝑤𝑑1

𝑤𝑑,𝑛𝑙 (𝑑)

Input

layer

Hidden

layer (1)
Hidden

layer (𝑑)
Output

layer

. . .

Figure 1.7 �̂�(𝑥1, . . . , 𝑥𝑛;𝒘, 𝒃) = 𝑦, a Deep Neural Network regression

Each layer 𝑗 but the input has a state defined as a column vector 𝒉( 𝑗) , which is a linear

combination of the precedent state (with 𝒉(0) = [𝑥1, ..., 𝑥𝑛]ᵀ being the inputs) and the weights

matrix 𝒘 ( 𝑗−1) and bias column vector 𝒃 ( 𝑗−1) of the layer, transformed by an activation function

𝜙 as following

𝒉( 𝑗) = 𝜙
(
𝒘 ( 𝑗−1)𝒉( 𝑗−1) + 𝒃 ( 𝑗−1)

)
. (1.33)

Activation functions are nonlinearities, and the most common one is the Rectified Linear Unit,

Nair & Hinton (2010), known as ReLU, and defined as

𝜙ReLU(𝑥) = max(0, 𝑥), (1.34)

and are the reason why one is able to approximate most functions with these Neural Networks,

or multi-layer perceptrons, as seen in Theorem 1. Yet, to make good predictions, the model

parameters, i.e., the weights and the biases, need to have the right values.
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Going back to our curve-fitting example, with our 𝑁-sized dataset D = {𝒙, 𝒚}, one can measure

the quality of the predictions �̂�(𝒙;𝒘, 𝒃) through a loss function, and the MSE defined in (1.11)

also applies here

L(𝒘, 𝒃; 𝒙, 𝒚) = 1

𝑁

𝑁∑
𝑖=1

[�̂�(𝒙𝑖;𝒘, 𝒃) − 𝒚𝑖]2 + 𝜆 | |𝒘 | |2, (1.35)

to which we’ve also applied the same weight decay, L2 regularization.

Minimizing this loss function, i.e., training the network, can’t, unfortunately, be performed

analytically, and have to be handled by an optimizer. In the case of optimizers based on Stochastic

Gradient Descent, such as Adam, Kingma & Ba (2014), we take the derivative of this loss L
w.r.t. the weights 𝒘 and biases 𝒃 in order to update them in a step similar to the following

equation, using a concept called backpropagation, Linnainmaa (1976). The weights 𝒘𝑛+1 and

biases 𝒃𝑛+1 corresponding to the epoch 𝑛 + 1 write as

(
𝒘𝑛+1, 𝒃𝑛+1

)
= (𝒘𝑛, 𝒃𝑛) − 𝜂 𝑓

(
𝜕L(𝒘𝑛, 𝒃𝑛; 𝒙, 𝒚)

𝜕 (𝒘𝑛, 𝒃𝑛)
)
, (1.36)

with 𝑓 (·) being a function of loss derivative w.r.t. the weights and biases that depends on the

optimizer choice, and 𝜂 the learning rate, a hyperparameter for SDG training.

In order to perform our NN regression on the cubic toy problem, we choose a network topology

of 𝑑 = 3 layers of 𝑙 (1) = 𝑙 (2) = 𝑙 (3) = 5 neurons, to follow exactly the minimum requirement

of 𝑛 + 4 in Theorem 1. The ReLU nonlinearity is used, as well as a learning rate of 𝜂 = 0.05,

and a regularization coefficient of 𝜆 = 0.1. Training is performed by the Adam optimizer, for

𝑁𝑒 = 5000 epochs. A sample of Python code is presented in Figure 1.8, using the TensorFlow

library, Abadi (2016), in version 2. The results are displayed in Figure 1.9.

1.4.3 Physics-informed Machine Learning

In this section, we will present a few papers from researchers at Brown University and the

University of Pennsylvania, that paved the way for physics-informed machine learning and first

caught our attention for an application in our field of small and expensive data.
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import tensorflow as tf
tfk = tf.keras

model = tfk.Sequential([

*[tfk.layers.Dense(5,
activation="relu",
kernel_regularizer=tfk.regularizers.l2(0.1)) for _ in range(3)],

tfk.layers.Dense(1),
])
model.compile(optimizer=tfk.optimizers.Adam(0.1), loss="mse")
model.fit(x, y, epochs=1000, verbose=0)
y_pred = model.predict(x_tst)

Figure 1.8 Toy Problem. TensorFlow 2 implementation of a NN regression.
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Figure 1.9 Toy problem. NN curve-fitting

Since this group of methods has been investigated a lot for this work and has remained an

inspiration, we will dive in a bit more into details in this review.

1.4.3.1 Encoding physics in Gaussian Processes

"A Gaussian process is a generalization of the Gaussian probability distribution.", Ras-

mussen & Williams (2006). It has a mean (here 0) and a covariance function 𝑘 , for instance, the

Square Exponential (see 1.39). It could be thought of as a very long vector containing every
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function value 𝑦𝑖 = 𝑓 (𝑥𝑖) defined as, with 𝑓 ′ representing the test outputs of 𝑥′, not yet observed,

𝑓 (𝑥) ∼ GP(0, 𝑘 (𝑥, 𝑥′; 𝜃)) (1.37)

≡
⎡⎢⎢⎢⎢⎣
𝑓

𝑓 ′

⎤⎥⎥⎥⎥⎦ ∼ N ���0,

⎡⎢⎢⎢⎢⎣
𝑘 (𝑥, 𝑥; 𝜃) 𝑘 (𝑥, 𝑥′; 𝜃)
𝑘 (𝑥′, 𝑥; 𝜃) 𝑘 (𝑥′, 𝑥′; 𝜃)

⎤⎥⎥⎥⎥⎦��� , (1.38)

and the covariance can be for instance Gaussian, written as

𝑘
���𝑥, 𝑥′;

⎡⎢⎢⎢⎢⎣
𝛼

𝛽

⎤⎥⎥⎥⎥⎦��� := 𝛼2 exp

(
−1

2

𝑛∑
𝑑=1

(𝑥𝑑 − 𝑥′𝑑)2

𝛽2
𝑑

)
. (1.39)

It would be used if one wanted to set the prior information of our functions to be smooth. Three

random picks could be the ones displayed on the top of Figure 1.10. After taking into account

five data points (in blue), we retrieve a posterior, which leads to a prediction concerning the

mean (in dashed red) and standard deviation (with twice this pictured as a light blue area). Three

random picks in this posterior are also displayed.

Setup

Let’s now consider a time-dependent linear PDE, as presented in Raissi, Perdikaris & Karniadakis

(2017b)

𝑢𝑡 = L𝑥𝑢, 𝑥 ∈ Ω, 𝑡 ∈ [0, 𝑇] . (1.40)

Applying the simplest time discretization scheme, Forward Euler, gives

𝑢𝑛 = 𝑢𝑛−1 + Δ𝑡L𝑥𝑢
𝑛−1, (1.41)

and then placing a GP prior

𝑢𝑛−1(𝑥) ∼ GP(0, 𝑘𝑛−1,𝑛−1
𝑢,𝑢 (𝑥, 𝑥′, 𝜃)), (1.42)
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û(x)

u(x)

2σT (x)

yi

Figure 1.10 Gaussian Processes: samples generated using code

from Bailey (2016)

therefore capturing the Euler rule in the following multi-output GP

⎡⎢⎢⎢⎢⎣
𝑢𝑛

𝑢𝑛−1

⎤⎥⎥⎥⎥⎦ ∼ GP ���0,

⎡⎢⎢⎢⎢⎣
𝑘𝑛,𝑛𝑢,𝑢 𝑘𝑛,𝑛−1

𝑢,𝑢

𝑘𝑛−1,𝑛−1
𝑢,𝑢

⎤⎥⎥⎥⎥⎦��� . (1.43)

Workflow

1. Train hyperparameters 𝜃 with initial {𝒙0, 𝒖0} and boundary {𝒙1
𝑏, 𝒖

1
𝑏} data.

2. Predict artificial data {𝒙1, 𝒖1} of the next time-step from the posterior.
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3. Train new hyperparameters for the time-step 2, using these artificial data {𝒙1, 𝒖1} and the

boundary data {𝒙2
𝑏, 𝒖

2
𝑏}.

4. Predict new artificial data {𝒙2, 𝒖2} with these new hyperparameters.

5. Repeat 3. and 4. until the final time-step.

Handling nonlinearities

What if L𝑥 is actually nonlinear? For example, Burgers’ equation

𝑢𝑡 + 𝑢𝑢𝑥 = 𝜈𝑢𝑥𝑥, with L𝑥 := 𝜈𝑢𝑥𝑥 − 𝑢𝑢𝑥. (1.44)

Applying Backward Euler gives

𝑢𝑛 = 𝑢𝑛−1 − Δ𝑡 𝑢𝑛
𝑑

𝑑𝑥
𝑢𝑛 + 𝜈Δ𝑡 𝑑

2

𝑑𝑥2
𝑢𝑛. (1.45)

Here, assuming 𝑢𝑛 as a GP directly won’t work since the nonlinear term 𝑢𝑛 𝑑
𝑑𝑥 𝑢

𝑛 won’t result in

a GP. The trick here is to use the posterior mean of the previous step, denoted 𝜇𝑛−1, giving a

workable expression

𝑢𝑛 = 𝑢𝑛−1 − Δ𝑡 𝜇𝑛−1 𝑑

𝑑𝑥
𝑢𝑛 + 𝜈Δ𝑡 𝑑

2

𝑑𝑥2
𝑢𝑛. (1.46)

Limits on this approach include the cubic scaling with the number of training points of the

computing power, due to the matrix inversion while predicting, and the case-by-case basis that is

needed to treat nonlinear equations. This has lead researchers to look into tools that have the

nonlinearities built-in: Deep Neural Networks.

1.4.3.2 Physics-Informed Neural Networks

As presented in Raissi et al. (2019a), let’s consider a generic, parametrized nonlinear PDE

𝑢𝑡 + N𝛾
𝑥 𝑢 = 0, 𝑥 ∈ Ω, 𝑡 ∈ [0, 𝑇] . (1.47)

Whether we aim at solving it or identifying the parameters 𝛾, the idea of the paper is the

same: approximating 𝑢(𝑡, 𝑥) with a Deep Neural Network, and therefore defining the resulting
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physics-informed neural network 𝑓 (𝑡, 𝑥):

𝑓 := 𝑢𝑡 + N𝛾
𝑥 𝑢 (1.48)

This time, the trick is in the derivation of this special network, using automatic differentiation,

Rumelhart et al. (1986), a chain-rule-based technique notoriously used in standard Deep Learning

contexts, which in our case removes the need for numerical or symbolic differentiation.

As a test case, the authors consider Burgers’ equation, expressed as followed in 1D with Dirichlet

boundary conditions

𝑢𝑡 + 𝑢𝑢𝑥 − (0.01/𝜋)𝑢𝑥𝑥 = 0, 𝑥 ∈ [−1, 1], 𝑡 ∈ [0, 1], (1.49)

𝑢(0, 𝑥) = − sin(𝜋𝑥),
𝑢(𝑡,−1) = 𝑢(𝑡, 1) = 0.

From this, one can define 𝑓 (𝑡, 𝑥), the PINN, as

𝑓 := 𝑢𝑡 + 𝑢𝑢𝑥 − (0.01/𝜋)𝑢𝑥𝑥. (1.50)

The shared parameters are learned minimizing a custom version of the commonly used Mean

Squared Error loss, with {𝑡𝑖𝑢, 𝑥𝑖𝑢, 𝑢𝑖}𝑁𝑢

𝑖=1
and {𝑡𝑖𝑓 , 𝑥𝑖𝑓 }

𝑁 𝑓

𝑖=1
respectively the initial/boundary data on

𝑢(𝑡, 𝑥) and collocations points for 𝑓 (𝑡, 𝑥).

𝑀𝑆𝐸 =
1

𝑁𝑢

𝑁𝑢∑
𝑖=1

|𝑢(𝑡𝑖𝑢, 𝑥𝑖𝑢) − 𝑢𝑖 |2 +
1

𝑁 𝑓

𝑁 𝑓∑
𝑖=1

| 𝑓 (𝑡𝑖𝑓 , 𝑥𝑖𝑓 ) |2 (1.51)

The results of this benchmark problem can be found in Figure 1.11, that was generated using the

original source code of Raissi et al. (2019a), that we ported to TensorFlow 2.0 and hosted on

https://github.com/pierremtb/PINNs-TF2.0.

To show how easy it is to implement thanks to the modern open-source Deep Learning libraries,

Algorithm 1.1 provides a pseudo-code example using TensorFlow and its automatic differentiation

gradients function, Abadi (2016).
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Figure 1.11 From top to bottom: predicted solution (with the

initial and boundary training data), and a comparison

predicted/exact solutions for the three snapshots (white vertical

lines on top)

Algorithm 1.1 Implementing a PINN is straightforward with modern tools

1 Function u(𝑡, 𝑥):
2 �̂� ← 𝑛𝑒𝑢𝑟𝑎𝑙_𝑛𝑒𝑡 ( [𝑥, 𝑡])
3 return �̂�
4

5 Function f(𝑡, 𝑥):
6 �̂� ← 𝑢( [𝑥, 𝑡])
7 �̂�𝑡 ← 𝑡 𝑓 .𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡𝑠(�̂�, 𝑡)
8 �̂�𝑥 ← 𝑡 𝑓 .𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡𝑠(�̂�, 𝑥)
9 �̂�𝑥𝑥 ← 𝑡 𝑓 .𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡𝑠(�̂�𝑥, 𝑥)

10 𝑓 ← �̂�𝑡 + �̂��̂�𝑥 − (0.01/𝜋)�̂�𝑥𝑥
11 return 𝑓

Further work has been performed by the same authors, applying the framework to different

fields, including Deep learning of vortex-induced vibrations, Raissi et al. (2019b).
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Figure 1.12 The same setup as in Figure 1.11, yet using the

UQPINNs framework, and the data is polluted with uncorrelated

noise of 10%.

1.4.3.3 Uncertainty Quantification in Physics-Informed Neural Networks

A quite recent addition to the mainstream Deep Learning catalog, Generative Adversar-

ial Networks, proposed by Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair,

Courville & Bengio (2014a), gained fame because of their ability to generate synthetic data.

These networks are learning probability distributions through competition of a generator,

creating fake data from random noise, and a discriminator, trying to pick the best out of an entry

of the training set and the fake data at each iteration.

This technique has been used in Yang & Perdikaris (2019) to build an uncertainty quantifier

within the Physics-Informed Neural Networks framework, which was one of the few missing

pieces. In Figure 1.12, we can see the same benchmark as performed before, but this

time it is featuring a confidence interval around the prediction. It was generated using the

source code of Yang & Perdikaris (2019), that we ported to TensorFlow 2.0 and hosted on

https://github.com/pierremtb/UQPINNs-TF2.0.
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1.4.3.4 Hybridizing: Neural-Net-induced Gaussian Processes

Combining high expressivity of Deep NNs with the predictive ability and uncertainty quan-

tification of GPs for regression is a concept named NNGP, as coined by the original authors

Lee, Bahri, Novak, Schoenholz, Pennington & Sohl-Dickstein (2017). It achieved breakthrough

results in image classification contexts, but has mostly not been used for other tasks. While it

seems to be a promising approach, the main paper of interest that is applying it to our field, Pang,

Yang & Karniadakis (2019), didn’t provide any source code.

1.4.3.5 Discussion and benchmark

Table 1.1 Features comparison of the different

physics-informed ML approaches

GPs PINNs UQPINNs NNGPs
UQ Yes No Yes Yes

Nonlinear With tricks Yes Yes With tricks

The aforementioned researchers have been very busy building up and extending various

frameworks to tackle this new field of small-data, physics-informed machine learning. Table 1.1

compares the four main frameworks on their ability to propagate uncertainties and the handling

of nonlinearities.

While the NNGP framework seems the most versatile, the PINN one seems like an excellent

choice in the present context of easy use of Deep Learning libraries such as TensorFlow, Abadi

(2016), and since the source code is provided by the authors.

Even if it’s conceptually easy to understand and be confident in the fact that encoding the laws

of physics in Neural Networks helps in predicting accurately, this section also aims at picturing

it with a small experiment. For our system, we will provide a regular, physics-uninformed ML

approach as close as possible to the physics-informed one.

The PINN for solving the 1D Burgers’ equation has a topology of 8 hidden layers, each involving

20 neurons each. A set of initial and boundary data is fed to it, and an example of 100 is depicted

on the left of Figure 1.13a.
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a) Training data in different modes: 100 initial/boundary points only on the left, and 1000

domain-wide on the right

b) Performance results, with the relative error plotted against the data size

used for training. The training time in seconds is used as label of each

point.

Figure 1.13 Benchmarking the PINN approach

To make a physics-uninformed alternative, we use a regular Deep Neural Network with the same

topology and feed it first with the same initial/boundary data, and then with domain-wide data to

improve its accuracy and better compete, as shown on the right of Figure 1.13a. Benchmarking

results are displayed in Figure 1.13b, and it confirms that the physical constraints of the PINN

enable it to predict accurately with much less data, by a factor of 20 on this example. In green,

one can observe the reference, i.e., the PINN result. With the dataset size horizontally and the

relative error vertically, the optimum lies at the lower-left corner. The red points are results

from feeding a physics-uninformed, regular DNN with boundary/initial data and is obviously
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not performing well. Therefore, we tried feeding domain-wide data to the same uninformed

network, and we see that the more data we feed, the better accuracy we get, and we tend to reach

the same results as the PINN, yet with much more data involved (2000 v. 100).

1.5 Machine Learning-based non-intrusive reduced-order methods, and uncertainties

Mixing expert knowledge and data-driven approaches, the idea of modern physics-informed

Machine Learning techniques provides many advantages. Yet despite the effectiveness that has

just been demonstrated, the intrusive nature of the PINN framework—having to go back to the

equation—doesn’t make it an ideal solution for our use case, since it’s contrary to our Objective

1..

After seeing the great results that modern Machine Learning techniques brought to intrusive

methods in Section 1.4, it seems straightforward to also give them a try in a non-intrusive context.

The use of Neural Networks has indeed been successfully applied to nonlinear problems, with

examples on the Poisson and Navier-Stokes equations, in a novel framework coined as POD-NN

in Hesthaven & Ubbiali (2018). It has subsequently been applied to time-dependent systems

in Wang et al. (2019)—the primary building block of this work. The main idea is to directly

infer the expansion coefficients 𝑣 from (1.5) that have been of interest in this review with a

multi-output Deep Neural Network �̂�, with its weights and biases denoted 𝒘 for simplicity, such

as

𝒗(𝑡) = �̂�(𝑡;𝒘). (1.52)

This approach will be fully detailed and applied to a few test cases in Chapter 2.

While uncertainty quantification is still an open research area as far as Neural Networks are

concerned, multiple attempts have been proposed to address it. As presented in Section 1.4.3.3,

latent-variables in an adversarial context, like the UQPINNs from Yang & Perdikaris (2019) are

one way. However, most of the work has been conducted embedding a Bayesian approach in

Neural Networks, with the work of Mackay (1995), Barber & Bishop (1998), Graves (2011),

Hernandez-Lobato & Adams (2015) ultimately leading to the backpropagation-compatible

Bayesian Neural Networks defined in Blundell et al. (2015). Shortly after, a simpler and more

practical take was presented with the Deep Ensembles framework in Lakshminarayanan et al.
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(2017). And to the best of our knowledge, none of them have been applied within the POD-NN

framework.

One should note that the POD-NN concept of Hesthaven & Ubbiali (2018) has also been revamped

in Guo & Hesthaven (2018), using Gaussian Processes as a regression tool, instead of Deep

Neural Networks, and in the case of time-dependent studies, LSTMs, Hochreiter & Schmidhuber

(1997), have also been applied to perform this regression in Hu, Fang, Pain & Navon (2019).

Additionally, it is to be noted that a slightly different approach resides in Zhu & Zabaras (2018)

and have also bundled uncertainty quantification, with the use of convolutional encoder-decoder

Deep Neural Networks, with a few similarities in the compression-decompression approach of

the UQPINNs framework.





CHAPTER 2

A DATA-DRIVEN NON-INTRUSIVE APPROACH: THE POD-NN FRAMEWORK

If the use of physics-informed constraints made a lot of sense and seamed appealing, their very

intrusive nature wasn’t a great fit for our problem, and there is a different way for AI tools such

as Neural Networks to help in accelerating the modeling of physical phenomena. One example

that has started to gain attention is the use of the regression power of Deep NNs to perform

the final step in the process of creating Reduced-Order Models through Proper Orthogonal

Decomposition, Hesthaven & Ubbiali (2018); Wang et al. (2019).

In this section, we will present the POD-NN framework, and apply it to three different benchmark

problems: the 1D Shekel function, the 2D Ackley function, and an analytically-available solution

of Burgers’ equation, which is one-dimensional and time-dependent.

2.1 Problem Setup

In order to stay as general as possible, let’s first mathematically define our objective.

We denote 𝑢 the IR𝐷-valued function of interest. It depends on two types of parameters: the

spatial ones 𝒙 ∈ IR𝑛, and the additional non-spatial ones 𝒔 ∈ IR𝑃—which could either be physical

coefficients like fluid viscosity or time, such as

𝑢 : IR𝑛+𝑃 → IR𝐷 (2.1)

(𝒙, 𝒔) ↦→ 𝑢(𝒙, 𝒔).

Assuming computing this function costly, whether it be performing real-world measurements or

running computationally-expensive simulations, one can only get a finite number of snapshots

𝑆, over a discretized space. We denote 𝑁𝑠 the number of non-spatial parameters sampled, and

𝑁𝑡 the number of time-steps considered—greater than one in a time-dependent setting, leading

the total of snapshots to be 𝑆 = 𝑁𝑠𝑁𝑡 . This space has 𝑛 dimensions, with each direction �𝑥𝑖, for

simplicity, is for now discretized linearly in 𝑁𝑥𝑖 nodes for 𝑖 ∈ (1, 𝑛). The total number of nodes

𝑁𝐷 is hence defined as 𝑁𝐷 =
∏𝑛

𝑖=1 𝑁𝑥𝑖 .
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This spatial mesh being assumed fixed in time and known upfront, there is no reason to keep

it as a parameter, and one can incorporate it in (2.1), removing 𝒙 as a parameter in 𝑢, with

𝐻 = 𝑁𝐷 × 𝐷 the total number of degrees of freedom (DOFs) on the mesh

𝑢𝐷 : IR𝑃 → IR𝐻 (2.2)

𝒔 ↦→ 𝑢𝐷 (𝒔).

Sampling the 𝑆 parameters this way results in a matrix of snapshots𝑼 = [𝑢𝐷 (𝒔1) | . . . |𝑢𝐷 (𝒔𝑆)] ∈
IR𝐻×𝑆.

In this first section, we will go through the POD-NN approach of Hesthaven & Ubbiali (2018);

Wang et al. (2019), and this will help us toward our first objectives: being fast to predict 𝑢𝐷 (𝒔)
for any new set of parameters 𝒔, in a flexible way.

2.2 Reducing the order using Proper Orthogonal Decomposition

While this new regression objective 𝑢𝐷 allows us to immediately take care of the space component,

having a IR𝐻-valued output is not practical since its size can quickly become a problem—the

size of a DNN with 𝐻 as an output would be huge and close to impossible to train. This is when

the Reduced-Order Model approach comes in.

Although there are other ways to reduce the order while keeping the time topology unchanged in

a reduced-order model, such as Variational Autoencoders or Recurrent Neural Networks, the

flexibility of the POD approach allows for the embedding of time as a regular parameter, Wang

et al. (2019), and has been chosen in this work for its simplicity.

2.2.1 Compression via POD

Proper Orthogonal Decomposition aims at building a Reduced-Order Model (ROM) of a system,

to produce a low-rank approximation, much more efficient to compute and use.

The theoretical goal is to find a function 𝜓 in a Hilbert space that optimally represents 𝑢(𝒙, 𝒔).
This optimization problem is equivalent to an eigenvalues problem, as shown in Holmes et al.
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(1997), from which we extract proper modes 𝝋𝐷𝑖 (𝒙), such as

𝑢𝐷 (𝒔) =
∞∑
𝑖=1

𝒗𝑖 (𝒔)𝝋𝐷𝑖 , (2.3)

with 𝒗𝑖 being projection coefficients to determine. One can note the variable-separating nature

of this approach since 𝝋𝐷𝑖 (𝒙) encompasses the spatial mesh while 𝒗𝑖 (𝒔) handles the non-spatial

parameters, which can include the time.

2.2.2 Finite truncation

Using the snapshots method from Sirovich (1987), one can efficiently extract a reduced POD

basis in a finite-dimension context. One can make use of the Singular Value Decomposition

algorithm, Burkardt et al. (2006), to extract𝑾 ∈ IR𝐻×𝐻 , 𝒁 ∈ IR𝑆×𝑆, and the 𝑟 descending-ordered

positive singular values matrix 𝑫 = diag(𝜉1, 𝜉2, . . . , 𝜉𝑟) such as

𝑼 = 𝑾

⎡⎢⎢⎢⎢⎣
𝑫 0

0 0

⎤⎥⎥⎥⎥⎦ 𝒁ᵀ . (2.4)

In order to get the first and most valuable 𝐿 modes, one sets out a hyperparameter 𝜖 , to build up

a truncating criterion defined as ∑𝑟
𝑙=𝐿+1 𝜉

2
𝑙∑𝑟

𝑙=1 𝜉
2
𝑙

≤ 𝜖, (2.5)

and build each reduced vector 𝑽 𝑗 ∈ IR𝑆 from 𝑼 and the 𝑗-th column of 𝒁, 𝒁 𝑗 , such as

𝑽 𝑗 =
1

𝜉 𝑗
𝑼𝒁 𝑗 , (2.6)

to form our POD basis

𝑽 =
[
𝑽1 | . . . |𝑽 𝑗 | . . . |𝑽𝐿

] ∈ IR𝐻×𝐿. (2.7)

Or equivalently, one can use 𝑾 to build the same reduced basis.
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2.2.3 Projection between spaces

Thanks to this reduction, one can now get projection coefficients corresponding to the snapshots

𝒗 = 𝑽ᵀ𝑼, (2.8)

with 𝑼POD the approximation of 𝑼, projecting twice as

𝑼𝑃𝑂𝐷 = 𝑽𝑽ᵀ𝑼 = 𝑽𝒗. (2.9)

The relative projection error writes as

𝑅𝐸𝑃𝑂𝐷 =
𝑆∑
𝑗=1

| | (𝑼) 𝑗 − (𝑼𝑃𝑂𝐷) 𝑗 | |2
| | (𝑼) 𝑗 | |2 , (2.10)

with the (·) 𝑗 subscript denoting the 𝑗-th column of the targeted matrix, | | · | |2 the L2 norm, and

the mean projection error over the samples and on each degree of freedom can be defined as

𝝈𝑃𝑂𝐷 =
1

2𝑆

𝑆∑
𝑗=1

| (𝑼) 𝑗 − (𝑼𝑃𝑂𝐷) 𝑗 | ∈ IR𝐻. (2.11)

2.2.4 Improving POD speed for time-dependent problems

While the SVD algorithm is well-known and widely used, it can quickly get overwhelmed by the

dimensionality of the problem, especially in a time-dependent context, such as Burgers’ equation

and their variations (Euler, Shallow Water, etc.), which will be discussed later in Section 2.4.3.

Indeed, as time is being added as an input parameter, the matrix of snapshots 𝑼 ∈ IR𝐻×𝑆 can

have a considerable width, making it very hard and long to process. One way to deal with this is

the two-step POD algorithm, introduced in Wang et al. (2019).

Instead of invoking the algorithm directly on the wide matrix 𝑼, the idea is to perform the SVD

first on an unflattened tensor 𝑼3D ∈ IR𝐻×𝑁𝑆×𝑁𝑇 , along the time axis for each parameter, as POD

is usually used for standard space-time problems for a single parameter.

The workflow is as follows:
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1. The "time-trajectory of each parameter value", quoting the authors’ words, is being fed to the

SVD algorithm, and the subsequent process of reconstructing a POD basis 𝑻𝑘 is performed

for each time-trajectory 𝑼(𝑘)
3D

, with 𝑘 ∈ [1, 𝑁𝑆]. A specific stopping hyperparameter, 𝜖0, is

used here, producing 𝐿0 reduced basis.

2. Each basis 𝑻𝑘 is collected in a new time-trajectories matrix 𝑻 ∈ IR𝐻×(𝑁𝑆𝐿0) , on which the

SVD algorithm is performed, with the regular 𝜖 hyperparameter forming the 𝐿 reduced

basis, and the final POD basis construction to produce 𝑽 can happen.

A pseudo-code implementation is available in Algorithm 2.1, and a sample Python implementation

using Numpy is shown in Figure 2.1.

Algorithm 2.1 Implementing the two-step POD that allows for large, time-dependent

datasets handling

1 Function POD(𝑼, 𝜖):
2 𝑫, 𝒁 ← 𝑆𝑉𝐷 (𝑼)
3 𝚲 ← 𝑫2

4 𝚲𝑡𝑟𝑢𝑛𝑐 ← 𝚲

[∑𝐿
𝑖=0 Λ𝑖∑
𝑖 Λ𝑖

≥ (1 − 𝜖)
]

5 𝑽 ← 𝑼.𝒁.𝚲−1/2
𝑡𝑟𝑢𝑛𝑐

6 return 𝑽
7

8 Function DualPOD(𝑼, 𝜖 , 𝜖0):
9 𝑻 ← 0

10 for 𝑘 in 𝑁𝑆 do
11 𝑻𝑘 ← POD(𝑼(𝑘) , 𝜖0)
12 end
13 𝑽 ← POD(𝑻, 𝜖)
14 return 𝑽
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import numpy as np
from numba import njit

@njit(parallel=False)
def perform_pod(U, eps):

n_h, n_st = U.shape

# SVD algorithm call, and reorienting
_, D, ZT = np.linalg.svd(U, full_matrices=False)
Z = ZT.T

# Storing eigenvalues and their sum
lambdas = D**2
sum_lambdas = np.sum(lambdas)

# Finding n_L and truncating
n_L = 0
sum_lambdas_trunc = 0.
for i in range(n_st):

sum_lambdas_trunc += lambdas[i]
n_L += 1
if sum_lambdas_trunc/sum_lambdas >= (1 - eps):

break
lambdas_trunc = lambdas[0:n_L]

U = np.ascontiguousarray(U)
V = np.zeros((n_h, n_L))
for i in range(n_L):

Z_i = np.ascontiguousarray(Z[:, i])
V[:, i] = U.dot(Z_i) / np.sqrt(lambdas_trunc[i])

return np.ascontiguousarray(V)

@njit(parallel=True)
def perform_dual_pod(U, eps, eps_init):

n_h, n_s = U.shape

# Init at the max it can be, n_t
n_L_init = U.shape[1]

T = np.zeros((n_h, n_L_init, n_s))
for k in range(n_s):

U_k = U[:, :, k]
T_k = perform_pod(U_k, eps_init)
n_L_k = T_k.shape[1]
if n_L_k < n_L_init:

n_L_init = n_L_k
for i in range(n_L_init):

T[:, i, k] = T_k[:, i]

# Cropping the results accordingly and stacking
T = np.ascontiguousarray(T[:, :n_L_init, :])

# Reshaping the 3d-mat into a 2d-mat
U_f = np.reshape(T, (n_h, n_s*n_L_init))
return perform_pod(U_f, eps)

Figure 2.1 POD module. Sample Python 3 code, implementing POD algorithms
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2.3 Learning the projection coefficients with Deep Neural Networks

2.3.1 Regression objective

For a ROM to be non-intrusive, computing the new solution for new non-spatial parameters 𝒔

can be done online, using a regression model.

Since the spatial parameters 𝒙 are getting reduced during the POD process, we can formalize the

regression as a mapping 𝑢𝐷𝐵 that features the projection coefficients 𝒗(𝒔) as outputs, such as

𝑢𝐷𝐵 : IR𝑃 → IR𝐿 (2.12)

𝒔 ↦→ 𝒗(𝒔).

2.3.2 Deep Neural Network and training

This mapping 𝑢𝐷𝐵 is then to be approximated by a Deep Neural Network �̂�𝐷𝐵 (𝒔;𝒘, 𝒃), with

𝒘 and 𝒃 being the weights and biases of the network, that are learned during training (offline

phase), and then reused during predictions (online phase). Its number of hidden layers is called

the depth 𝑑—that is, without counting the input and output layers, and they each have a width

𝑙 ( 𝑗) . A representation of this DNN is pictured in Figure 2.2, with 𝑑 hidden layers—and therefore,

𝑑 + 2 layers in total.

For a 𝑁-sized training dataset D = {𝑿, 𝒗}, with the inputs 𝑿 being the non-spatial parameters

𝒔 after normalization and the projection coefficients 𝒗 coming from a training/validation-split

matrix of snapshots 𝑼, a chosen optimizer runs a number of training epochs 𝑁𝑒 in order to

minimize the following Mean Squared Error loss function w.r.t. the network weights 𝒘 and

biases 𝒃:

L(𝒘, 𝒃; 𝑿, 𝒗) = 1

𝑁

𝑁∑
𝑖=1

[�̂�𝐷𝐵 (𝑿;𝒘, 𝒃)𝑖 − (𝒗)𝑖]2 + 𝜆 | |𝒘 | |2, (2.13)

with the subscript 𝑖 describing the 𝑖-th training point, 𝜆 the regularization parameter of the L2

regularization, as introduced in Section 1.4.2.5. The training phase is handled by the optimizer

Adam, based on Stochastic Gradient Descent, also introduced in Section 1.4.2.5.
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Figure 2.2 �̂� = �̂�𝐷𝐵 (𝑿;𝒘, 𝒃), a Deep Neural Network regression

2.3.3 Validation and testing metrics

Just as for the loss, we consider the widely-used mean squared error to assess the quality of

the predictions, either on a 𝑁val-sized validation dataset Dval = {𝑿val, 𝒗val} or on a 𝑁tst-sized

validation dataset Dtst = {𝑿tst, 𝒗tst}.

𝑀𝑆𝐸 (�̂�val, 𝒗val, 𝑁val) = 1

𝑁val

𝑁val∑
𝑖=1

[(�̂�val)𝑖 − (𝒗val)𝑖]2 , (2.14)

with the inputs 𝑿val being the non-spatial parameters 𝒔 after normalization and the projection

coefficients 𝒗val coming from a validation-split matrix of snapshots 𝑼val, the validation error

𝐸val = 𝑀𝑆𝐸 (�̂�val, 𝒗val; 𝑁val) is computed with (�̂�val)𝑖 = �̂�𝐷𝐵 (𝑿val;𝒘
𝑘 , 𝒃𝑘 )𝑖, 𝒘𝑘 and 𝒃𝑘 being

the weights and biases of the network at a training epoch 𝑘 . The same goes for the test error 𝐸𝑇 ,

which will be evaluated after the training (𝑘 = 𝑁𝑒).

Its relative counterpart 𝑅𝐸 carries more meaning to report the results:

𝑅𝐸 (�̂�,𝑼) = 1

𝑆

𝑆∑
𝑖=1

| |�̂�𝑖 −𝑼𝑖 | |2
| |𝑼𝑖 | |2 , (2.15)
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with 𝑼 = 𝑽 .𝒗 and �̂� = 𝑽 .�̂�. In both cases 𝑽 corresponds to the POD bases, extracted in Section

2.2.2.

During the training, we report three metrics, if possible: the training loss L, the validation loss

Lval = L(𝒘, 𝒃; 𝑿val, 𝒗𝑇 ), as well as the validation relative error 𝑅𝐸val.

Sample codes for the custom NeuralNetwork class, with a custom training loop in TensorFlow

2, is available in Figure 2.4. Figure 2.3 also shows a sample implementation in Python of the

PODNNModel wrapper class, which handles the model reduction and controls the NeuralNetwork

object.
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import tensorflow as tf
import numpy as np

from .pod import perform_pod, perform_dual_pod
from .handling import pack_layers
from .logger import Logger
from .neuralnetwork import NeuralNetwork
from .metrics import re, re_s

class PodnnModel:
# ...
def initNN(self, h_layers, lr, lam):

"""Create the neural net model."""
self.layers = pack_layers(self.n_d, h_layers, self.n_L)
self.regnn = NeuralNetwork(self.layers, lr, lam,

lb=self.lb, ub=self.ub)

def train(self, X_v, v, X_v_val, v_val, epochs, freq=100):
"""Train the POD-NN's regression model, and save it."""
# Validation and logging
logger = Logger(epochs, freq)
def get_val_err():

v_val_pred = self.predict_v(X_v_val)
return {

"L_v": self.regnn.loss(v_val, v_val_pred),
"RE_v": re_s(v_val.T, v_val_pred.T),
}

logger.set_val_err_fn(get_val_err)

# Training
self.regnn.fit(X_v, v, epochs, logger)

# Saving
self.save_model()
return logger.get_logs()

def predict(self, X_v):
"""Returns the predicted solutions, via proj coefficients."""
v_pred = self.regnn.predict(X_v)
U_pred = self.V.dot(v_pred.T)
return U_pred

@classmethod
def load(cls, save_dir):

"""Recreate a pre-trained POD-NN model."""
n_v, x_mesh, n_t = PodnnModel.load_setup_data(save_dir)
podnnmodel = cls(save_dir, n_v, x_mesh, n_t)
podnnmodel.load_train_data()
podnnmodel.load_model()
return podnnmodel

Figure 2.3 PODNNModel class: sample Python 3 code
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import tensorflow as tf

class NeuralNetwork:
# ...
def __init__(self, layers, lr, lam, model=None, lb=None, ub=None):

self.model = tf.keras.Sequential()
self.model.add(tf.keras.layers.InputLayer((layers[0],)))
for width in layers[1:-1]:

self.model.add(tf.keras.layers.Dense(width, tf.nn.tanh))
self.model.add(tf.keras.layers.Dense(layers[-1], None))
self.model.compile(optimizer=self.tf_optimizer, loss="mse")

@tf.function
def loss(self, v, v_hat):

"""Return a MSE loss function between the pred and val."""
return tf.reduce_mean(tf.square(v - v_hat)) + self.regularization()

@tf.function
def grad(self, X, v):

"""Compute the loss and its derivatives w.r.t. the inputs."""
with tf.GradientTape(persistent=True) as tape:

tape.watch(X)
loss_value = self.loss(v, self.model(X))
if self.adv_eps:

# Adversarial contribution
loss_x = tape.gradient(loss_value, X)
X_adv = X + self.adv_eps * tf.math.sign(loss_x)
loss_value += self.loss(v, self.model(X_adv))

grads = tape.gradient(loss_value, self.wrap_training_variables())
return loss_value, grads

def regularization(self):
l2_norms = [tf.nn.l2_loss(v) \

for v in self.wrap_training_variables()]
l2_norm = tf.reduce_sum(l2_norms)
return self.lam * l2_norm

def fit(self, X_v, v, epochs, logger):
"""Train the model over a given dataset, and parameters."""
X_v = self.normalize(X_v)
v = self.tensor(v)

# Optimizing
for epoch in range(epochs):

loss_value, grads = self.grad(X_v, v)
self.tf_optimizer.apply_gradients(

zip(grads, self.wrap_training_variables()))

def predict(self, X):
"""Get the prediction for a new input X."""
X = self.normalize(X)
return self.model(X).numpy()

Figure 2.4 NeuralNetwork class: sample Python 3 code
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2.4 Benchmark problems

In order to test the accuracy of the method, we’ll present three benchmark problems from which

analytical solutions can be generated.

The library TensorFlow, Abadi (2016), in version 2.1.0 is used for all results, and the SVD

algorithm is performed by NumPy, all in Python 3.7. Documented source code will be made

available at https://github.com/pierremtb/POD-UQNN, on the POD-NN branch.

Across the standard benchmarks, 𝜙 : 𝑥 ↦→ tanh(𝑥) is used as activation function on all hidden

layers, while a linear mapping is applied on the output layer since we need to retrieve real-

valued variables. The chosen NN topology is 𝑑 = 2 hidden layers, of widths 𝑙 (1) = 𝑙 (2) = 64.

Normalizing is performed on all non-spatial parameters 𝒔 to form the input 𝑿 as

𝑿 =
𝒔 − 𝒔

𝒔std
, (2.16)

with 𝒔 and 𝒔std being respectively the empirical mean and standard deviation over the dataset, on

each column to keep physical meaning, e.g., the time would be normalized w.r.t. time moments.

Choice of optimizer

As it was used earlier in physics-informed machine learning research of Raissi et al. (2019a),

the quasi-newton L-BGFS optimizer, Liu & Nocedal (1989), has been tried on the benchmark

problems and proved to be overall less effective than Adam, Kingma & Ba (2014), as far

as convergence speed and result accuracies were concerned. It is, however, to note that

a combination of the two—starting with Adam for a few iterations and then finishing the

optimization via L-BGFS, performed very well, yet required fine-tuning, minimizing the return

on investment, so we chose not to use it in the following cases.

Datasets generation using native code

Simple benchmarks like the following are functions that we can call, and that output a result.

One or more of their parameters is non-spatial and stochastic, i.e., to get a reference solution, we

need to run it a rather large number of times.



45

Our baseline for these simulations is a sampling size of 𝑁val = 500 for the training/validation

sets, and 𝑁tst for the test sets (which can be more prominent for time-dependent cases), leading

to long computation times if it is done without optimization in Python. One way to drastically

reduce it is through multi-threading and machine code Just-In-Time compilation, using the

library Numba, Lam, Pitrou & Seibert (2015).

Two-step POD for time-dependent problems

Among the following benchmark, the only one that is time-dependent is the 1D Burgers’ equation

solution, Section 2.4.3. And that is where we make use of the two-step POD algorithm as

described in Section 2.2.4. The results are comforting: on a dataset of size 𝑆 = 10, 000, with

𝑁𝑡 = 100, the time to compute the SVD decomposition is reduced from 0.63 seconds to 0.51

when switching from the regular to the two-step POD process, which could result in a significant

gain on more massive datasets. Numba optimizations have also been used for both the regular

POD algorithm and dual one.

2.4.1 Shekel function (1D)

2.4.1.1 Definition

As a first benchmark, let’s introduce the function presented in Shekel (1971), which is commonly

used to test stochastic methods and is interesting in our case since it can take many stochastic

parameters, which will be a great way to test if the POD-NN can perform well in this otherwise

simple one-dimensional case. Being real-valued (𝑁val = 1) and one-dimensional in space, it is

defined as

𝑢 : IR1+𝑃 → IR

(𝑥, 𝒔) ↦→ −
𝑃/2∑
𝑖=1

(
(𝑥 − 𝑠𝑖+𝑃/2)2 + 𝑠𝑖

)−1

, (2.17)

with a chosen central point for non-spatial parameters vector of size 𝑃 = 10, borrowed from

Abraham, Tsirikoglou, Miranda, Lacor, Contino & Ghorbaniasl (2018),

𝒔 =

[
1

10
(1, 2, 2, 4, 4), (4, 1, 8, 6, 3)

]ᵀ
.
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2.4.1.2 Setup

The 1D space domain Ω𝑥 = [0, 10] is discretized uniformly in 𝑁𝑥1
= 𝑁𝑥 = 300, leading the

number of DOFs to be 𝐻 = 300 as well.

With 𝑆 = 𝑁𝑆 = 500 as our default number of samples of the parameters 𝒔, and we use a Latin

Hypercube Sampling (LHS) strategy to sample each non-spatial parameter 𝑠𝑖 on a domain

around the central point defined earlier in the function definition,

Ω𝑠𝑖 =
[
𝑠𝑖 (1 −

√
3/10), 𝑠𝑖 (1 +

√
3/10)

]
,

and generate the matrix of snapshots 𝑼 ∈ IR𝐻×𝑆.

After getting the reduced POD bases via (2.4–2.8) picking 𝜖 = 10−10, and generating a full set, the

(80%, 20%) train/validation ratio splits it into D = {𝑿, 𝒗} of size 𝑁 = 400, Dval = {𝑿val, 𝒗val}
of size 𝑁val = 100. We generate an additional test set Dtst = {𝑿tst, 𝒗tst} of size 𝑁tst = 300.

We choose a fixed learning rate of 𝜂 = 0.001 for the Adam optimizer, as well as an L2

regularization with 𝜆 = 10−4. No mini-batching is performed, i.e., the whole dataset is run

through at once for each epoch. The training epochs number is set to 𝑁𝑒 = 15, 000.

2.4.1.3 Results

The initial dataset preparation was instantaneous, using the settings mentioned above on a

standard desktop computer, while the training took 45 seconds on a regular desktop CPU.

The relative errors reached were 𝑅𝐸val = 4.06% and 𝑅𝐸tst = 4.03% for validation and testing,

respectively. In Figure 2.5 are displayed a few test predictions, as well as out-of-distribution

predictions, sampled in the Ω𝑠𝑖,out
defined as

Ω𝑠𝑖,out
=

[
𝑠𝑖 (1 − 1.5

√
3/10), 𝑠𝑖 (1 −

√
3/10)

]
∪

[
𝑠𝑖 (1 +

√
3/10), 𝑠𝑖 (1 + 1.5

√
3/10)

]
.

One can notice that while the predictions inside the dataset bounds (the three test samples in the

first row) are excellent, performance really goes down on the second row, with predictions made

out-of-distribution. A sample code of this benchmark lives in Figure 2.7.
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ûD(sout)

uD(sout)

Figure 2.5 Shekel Function (1D). From left to right: comparing the predicted �̂�𝐷 and

the observed data 𝑢𝐷 from the dataset across three random snapshots of the test set. The

second row shows samples 𝑠out, outside the dataset bounds

2.4.1.4 Convergence study

To assess the convergence of the method, we put together a small systematic study on two

hyperparameters that directly impact the results: the number of training epochs and the number

of POD snapshots. Five different values for the snapshots count 𝑆 are forming the x-axis of

Figure 2.6, and three pairs of lines show the relative errors for different numbers of epochs

𝑁𝑒, with validation as dashed lines and testing as plain lines. As expected, one can see both

parameters bring the relative errors down when they are increased, and the black pair shows that

a low amount of epochs prevent the convergence with a larger snapshots count 𝑆.
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Figure 2.6 Shekel Function (1D). Systematic study

results on the number of samples and training epochs.

import numpy as np
from podnn.podnnmodel import PodnnModel
from podnn.metrics import re_s
from podnn.mesh import create_linear_mesh
from podnn.plotting import figsize, savefig
from hyperparams import HP as hp, u

#%% Prepare
x_mesh = create_linear_mesh(hp["x_min"], hp["x_max"], hp["n_x"])

#%% Init the model
model = PodnnModel("cache", hp["n_v"], x_mesh, hp["n_t"])

#%% Generate the dataset from the mesh and params
X_v_train, v_train, \

X_v_val, v_val, \
U_val = model.generate_dataset(u, hp["mu_min"], hp["mu_max"],

hp["n_s"],
hp["train_val"],
hp["eps"])

#%% Train
model.initNN(hp["h_layers"], hp["lr"], hp["lambda"])
train_res = model.train(X_v_train, v_train, X_v_val, v_val, hp["epochs"],

hp["log_frequency"])

#%% Validation metrics
U_pred = model.predict(X_v_val)
err_val = re_s(U_val, U_pred)
print(f"RE_v: {err_val:4f}")

#%% Sample the new model to generate a test prediction
mu_lhs = model.sample_mu(hp["n_s_tst"],

np.array(hp["mu_min"]),
np.array(hp["mu_max"]))

X_v_tst, U_tst, _ = \
model.create_snapshots(mu_lhs.shape[0], mu_lhs.shape[0],

model.n_d, model.n_h, u, mu_lhs)
U_pred = model.predict(X_v_tst)
print(f"RE_tst: {re_s(U_tst, U_pred):4f}")

Figure 2.7 Shekel Function (1D). Sample of Python 3 code to run the benchmark
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2.4.2 Stochastic Ackley function (2D)

2.4.2.1 Definition

As a second benchmark, let’s introduce a stochastic version of the Ackley function, producing a

highly irregular surface with multiple extrema presented in Sun et al. (2019), which takes three

parameters. Being real-valued (𝐷 = 1) and two-dimensional in space (𝑛 = 2), it is defined as

𝑢 : IR2+𝑃 →IR (2.18)

(𝑥, 𝑦; 𝒔) ↦→ − 20 (1 + 0.1𝑠3) exp

(
−0.2(1 + 0.1𝑠2)

√
0.5(𝑥2 + 𝑦2)

)
− exp (0.5(cos(2𝜋(1 + 0.1𝑠1)𝑥) + cos(2𝜋(1 + 0.1𝑠1)𝑦)))
+ 20 + exp(0),

with the non-spatial parameters vector 𝒔 of size 𝑃 = 3, each element 𝑠𝑖 uniformly sampled over

Ω𝑠𝑖 = [−1, 1], in the same way as the authors in Sun et al. (2019).

2.4.2.2 Setup

The 2D space domain Ω𝑥𝑦 = [−5, 5] × [−5, 5] is discretized uniformly in 𝑁𝑥1
= 𝑁𝑥 = 400 and

𝑁𝑥2
= 𝑁𝑦 = 400, leading the number of DOFs to be 𝐻 = 160, 000.

With 𝑆 = 500 as our default number of samples of the parameters 𝒔, and we use an LHS

strategy to sample each non-spatial parameter on their domain [−1, 1] and generate the matrix

of snapshots 𝑼 ∈ IR𝐻×𝑆.

After getting the reduced POD bases via (2.4–2.8) picking 𝜖 = 10−10, and generating a full set, the

(80%, 20%) train/validation ratio splits it into D = {𝑿, 𝒗} of size 𝑁 = 400, Dval = {𝑿val, 𝒗val}
of size 𝑁val = 100. We generate an additional test set Dtst = {𝑿tst, 𝒗tst} of size 𝑁tst = 300.

We choose a fixed learning rate of 𝜂 = 0.003 for the Adam optimizer, as well as an L2

regularization with 𝜆 = 10−4. No mini-batch split is performed. The training epochs number is

set to 𝑁𝑒 = 50, 000.



50

−5.0 −2.5 0.0 2.5 5.0

y

−6

−4

−2

0

2

4

6

x

uD([−0.25, 0.50,−0.62])

2

4

6

8

10

12

14

−5.0 −2.5 0.0 2.5 5.0

y

−6

−4

−2

0

2

4

6

x
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Figure 2.8 Ackley Function (2D). Quick visualization with contour plots of the first

column, with the cross-section 𝑦 = 0 pictured. One compares the predicted �̂�𝐷 and the

observed data 𝑢𝐷 across two random test snapshots vertically on the second column, and

on the last one, two samples 𝑠out, taken outside the dataset bounds

2.4.2.3 Results

The initial dataset preparation was quasi-instantaneous, using the settings mentioned above on a

standard desktop computer, while the training took 1 minute and 31 seconds on a regular desktop

CPU. The relative errors reached were 𝑅𝐸val = 0.11% and 𝑅𝐸tst = 0.11% as well for validation

and testing, respectively. In Figure 2.8, we display the results for four different parameter set,

two of them from the testing set on the second (and first) column, as as well as out-of-distribution

predictions on the third column, sampled in the domain

Ωout = [−2,−1] ∪ [1, 2] . (2.19)
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As it was the case with Shekel Function in Section 2.4.1, the performance of the model

shown in Figure 2.8 is great on the second column, which represents three samples of the test

dataset, while it’s drastically decreasing on the third column, which represents samples taken

out-of-distribution.

2.4.3 Burgers’ equation solution (1D, time-dependent)

2.4.3.1 Definition

As a third benchmark, let’s introduce the solution of the viscous Burgers’ equation—commonly

used as a first step before the more complex Navier Stokes equations, yet notoriously hard

to work with for computational methods because of its shock-forming behavior, Raissi et al.

(2019a). It can take one stochastic parameter, the fluid viscosity, denoted here as 𝑠. Being

real-valued (𝐷 = 1) and one-dimensional in space, it is defined as

𝑢 : IR2+1 → IR (2.20)

(𝑥, 𝑡; 𝑠) ↦→ �̃�(𝑥, 𝑡; 𝑠),

with the non-spatial parameters vector 𝒔 = 𝑠 of size 𝑃 = 1, and �̃�(𝑥, 𝑡; 𝜈) being an analytically

available solution of the following PDE—Burgers’ equation with an initial sine condition, as

presented in Basdevant, Deville, Haldenwang, Lacroix, Ouazzani, Peyret, Orlandi & Patera

(1986), with the subscripts denoting the partial derivatives

𝑢𝑡 + 𝑢𝑢𝑥 − 𝑠𝑢𝑥𝑥 = 0, 𝑥 ∈ Ω𝑥 = [0, 1.5], 𝑡 ∈ Ω𝑡 = [1, 5], (2.21)

𝑢(0, 𝑡) = 𝑢(1.5, 𝑡) = 0, 1 ≤ 𝑡,

𝑢(𝑥, 1) = 𝑥

1 + exp
[

1
4𝑠 (𝑥2 − 1

4
)] , 0 < 𝑥 < 1.5.

(2.22)
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There exists a directly available analytical solution according to Maleewong & Sirisup (2011),

expressed as

�̃�(𝑥, 𝑡, 𝑠) = 𝑥/𝑡
1 + (𝑡/𝑡0)1/2 exp

(
𝑥2

4𝑠𝑡

) , 1 ≤ 𝑡, (2.23)

with 𝑡0 = exp(1/8𝑠).

2.4.3.2 Setup

The 1D space domain Ω𝑥 = [0, 1.5] is discretized uniformly in 𝑁𝑥1
= 𝑁𝑥 = 256, leading the

number of DOFs to be 𝐻 = 256.

With 𝑁𝑡 = 100 time-steps in the time domain Ω𝑡 = [1, 5], we generate 𝑁𝑠 = 100 samples of the

parameters 𝒔 using an LHS strategy over the domain Ω𝑠 = [0.001, 0.010] and produce the matrix

of snapshots 𝑼 ∈ IR𝐻×𝑁𝑠𝑁𝑡 . This domain is chosen to be spread around the value of 𝑠 = 0.005

used in Maleewong & Sirisup (2011) and similar to 𝑠 = 0.01/𝜋 in Raissi et al. (2019a).

After getting the reduced POD bases via (2.4–2.8) and the dual-step POD approach, picking

𝜖 = 10−10 and 𝜖0 = 10−8, and generating a full set, we use our default (80%, 20%) train/validation

ratio to split it into D = {𝑿, 𝒗} of size 𝑁 = 80 ∗ 100, Dval = {𝑿val, 𝒗val} of size 𝑁val = 20 ∗ 100,

and Dtst = {𝑿tst, 𝒗tst} of size 𝑁tst = 100 ∗ 100.

We choose a fixed learning rate of 𝜂 = 0.005 for the Adam optimizer, as well as an L2

regularization with 𝜆 = 10−8. No mini-batch split is performed. The training epochs number is

set to 𝑁𝑒 = 30, 000.

2.4.3.3 Results

Using the settings mentioned above, on a standard desktop computer, the initial dataset preparation

was quasi-instantaneous, while the training took 1 minute and 28 seconds on an NVIDIA Tesla

V100 GPU. The dataset is larger because of the time dimension, so the training has indeed

been performed on a GPU rather than a desktop CPU, as for the two previous benchmarks.

The relative errors reached were 𝑅𝐸val = 1.37% and 𝑅𝐸tst = 1.36% for validation and testing,

respectively.
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Figure 2.9 Burgers’ equation (1D, unsteady). As a quick visualization, one can see

colormaps of a random test sample of the first column, as well as the time-steps depicted

by the white lines. Then, from left to right: comparing the predicted �̂�𝐷 and the

analytical data 𝑢𝐷 from the dataset at the time-steps, and across two random snapshots

for the viscosity parameter 𝑠, respectively in and out of the training bounds

For a quick visualization of the solutions, Figure 2.9 pictures the true value and the predicted

solution for a random test sample in a colormap on the first column. The second column shows

the same sample at the two different time-steps depicted as the white lines on the colormaps.

The third column is home to out-of-distribution predictions, for one parameter sampled in the

domain

Ωout = [0.0005, 0.001] ∪ [0.010, 0.0105] (2.24)

While the predictions made out-of-distribution in the last column of Figure 2.9 are still decreasing

in accuracy versus the ones made within the dataset bounds (second column) on the different



54

time snapshots, we notice instabilities appearing around the shockwave, on both the test samples

(less noticeable) and the out-of-distribution samples (more noticeable). We will see in Section

4.4.2 that a Negative Log-Likelihood trained network is handling it better, and the contribution of

adversarial training, first introduced by Goodfellow et al. (2014a) and used in Lakshminarayanan

et al. (2017), will also be of help.

2.5 Concluding remarks on the POD-NN framework

Applying the POD-NN framework to these three benchmarks has helped us achieve our Objective

2., creating a fast surrogate model, and Objective 1., a general one since the benchmarks were of

dimensions 1D and 2D, and of various time dependence.

The offline-online POD-NN paradigm presented by Hesthaven & Ubbiali (2018), and extended

for time-dependent problems in Wang et al. (2019) helped us to achieve exactly that, with

reasonable accuracy and flexibility: we have indeed used the same architecture across all

benchmarks.

We note that a sample benchmark code has only been attached for the Shekel case (Figure 2.7)

since it is only a matter of tuning a few hyperparameters and the definition of the function 𝑢 for

the framework to run correctly on the others.



CHAPTER 3

UNCERTAINTY QUANTIFICATION IN DEEP NEURAL NETWORKS

Even though the previous chapter has fulfilled some of our expectations, putting together a fast

surrogate model that would be able to make real-time predictions without going back to the

mathematical equations (Objective 1., 2.), we still don’t know anything about the confidence we

can have in the predictions (Objective 3.). That is what this chapter is attempting to develop,

and is the basis of our contribution to the POD-NN framework.

In Chapter 2, our Neural Network’s prediction can indeed be thought of as a probability

𝑝(𝒚 |𝒙, 𝒘), with D = {𝒙, 𝒚} denoting our dataset. Yet, one can’t know anything about what this

distribution is since we only retrieve its mean, �̂�𝐷 , which is nothing but a point estimate. There

have been, however, multiple attempts to track uncertainties within a Deep Neural Network. In

this chapter, we will present two of them to build a model that can provide a prediction, and its

associated uncertainties, especially some indication on the outputs should be provided if the

inputs are out of the domain of learning. In other words, that knows when it doesn’t know.

3.1 Different types of uncertainty

When one thinks of uncertainties arising from the use of a model, in our case, a Deep Neural

Network, there could be multiple ways to think about it. Yet, the most common in the literature

is the dichotomy into two groups: aleatoric and epistemic.

The first one refers to the inherent randomness in the data we observe. No matter how good

our model gets, if the information is issued from any measurement, there must be some kind of

noise around it, and it can’t be reduced, even with additional data. One way to think about it is a

fair coin toss. No matter how many times we observe the experiment, we won’t be able to make

predictions that go below the inherent probability, as explained in Keydana (2019).

The latter is directly linked to the model, and is, in contrary to the aleatoric uncertainty, prone to

decreasing with additional data. In a perfect world with an ideal model, this uncertainty would

be null.

As we go forward in this chapter, we will try to add an uncertainty component to our Deep

Neural Network regression, that addresses both of these categories. It is, however, interesting to
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note that in our case, the epistemic uncertainty is very valuable, since our Objective 3. is about

getting a warning for out-of-distribution predictions. This uncertainty is tightly linked to how

the model fits the data. In a data-free domain, there’s an infinity of ways for a model to predict,

leading to sizeable epistemic uncertainty.

3.2 Deep Ensembles

3.2.1 Definition

As demonstrated in the paper Lakshminarayanan et al. (2017), there is a simple and straightforward

way to enable Deep Neural Networks to take care of their associated uncertainties. It is achieved

by having them provide a trainable variance output in addition to the regular mean, and train

them multiple times with random initialization of their parameters, to average over their different

outcomes, as it is depicted in Figure 3.1. The idea of the dual output was first introduced in

Nix & Weigend (1994). The concept of ensembles isn’t exactly new either and has been detailed

extensively in Goodfellow et al. (2016), yet using them as a way to quantify uncertainties is

the contribution of Lakshminarayanan et al. (2017). We see in Figure 3.1 that the number of

outputs is indeed doubled from a simple one-dimensional case like in Section 1.4.2.5. It’s a

consequence of the choice to output 𝜇𝑦 and 𝜌𝑦, which are respectively denoting the predicted

mean of the output variable, 𝑦, and a raw variance.

A simple way to think about this captured aleatoric uncertainty would be a measurement problem,

where one wants to retrieve some quantity 𝑢, yet would retrieve some additional non-constant

noise 𝑛 on top of it, resulting in 𝑢(𝑥) + 𝑛(𝑥) for any parameter 𝑥 of the measurable domain.

Having the dual-output within the NN of a mean and a variance would directly try to model

these components during the regression process.

In this context, the final layer raw variance node(s) will feature a softplus activation function,

defined as

softplus(𝑥) = log(1 + exp(𝑥)), (3.1)

which will help to ensure the positivity of the real predicted variance 𝜎2
𝑦 = softplus(𝜌2

𝑦).
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Figure 3.1 �̂�(𝒙;𝒘) = N(𝜇𝑦 |0, 𝜎2
𝑦 ), a Deep Neural Network with a dual-output

3.2.2 Training

A custom loss function is being used, a negative log-likelihood (NLL) due for optimization w.r.t.

the parameters 𝜽 = (𝒘, 𝒃) of the network. If one indeed makes the assumption of normally

distributed errors around the prediction �̂�(𝑥) with a variance 𝜎(𝑥), for a data point (𝑥, 𝑦) in the

dataset, one can write the probability of seeing the data as

𝑝(𝑦 |𝑥) = 1√
2𝜋𝜎2(𝑥)

exp

(
− (𝑦 − �̂�(𝑥))2

2𝜎2(𝑥)

)
. (3.2)

If one takes the opposite log on each side, it writes as a summation, Nix & Weigend (1994),

− log 𝑝(𝑦 |𝑥) = log 2𝜋

2
+ log𝜎2(𝑥)

2
+ (𝑦 − �̂�(𝑥))2

2𝜎2(𝑥) , (3.3)

which, applied to the setting of a 𝜽-parametrized network and a minimization context where the

constant log(2𝜋)/2 won’t play a role, considering all the datapoints at once, is constructing the

following loss L𝑁𝐿𝐿 defined as

LNLL(D, 𝜽) :=
log 𝝈2

𝜽 (𝒙)
2

+ (𝒚 − 𝝁𝜽 (𝒙))2

2𝝈2
𝜽 (𝒙)

, (3.4)
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with (𝝁𝜽 ,𝝈𝜽) being respectively the mean and the variance, the two outputs of this specifically

designed NN, in the case of a dataset D = {𝒙, 𝒚}. This loss, compared to a standard MSE, allows

for direct uncertainties capturing and has been designed by the authors as a proper scoring rule

which performed well in their experiments Lakshminarayanan et al. (2017).

The activation function used by the authors is the ReLU nonlinearity, defined as 𝜙(𝑥) = max(0, 𝑥),
as presented in Section 1.4.2.5.

As noted by the authors, state-of-the-arts results can be achieved training only 𝑀 = 5 randomly

initialized networks, which is not a big overhead, especially considering our relatively small

training times, as discussed in Section 2.4. This initialization is performed in a glorot uniform,

or Xavier way, Glorot & Bengio (2010), and picks the initial weights of the network in a uniform

distribution. For a layer 𝑗 , with 𝑙 ( 𝑗−1) and 𝑙 ( 𝑗) denoting the width of the previous layer and the

width of the layer 𝑗 , we, therefore, initialize each weight 𝑖 of this layer 𝑗 as follows

𝒘 𝑗 ∼ U
[
−

√
6√

𝑙 ( 𝑗−1) + 𝑙 ( 𝑗)
,

√
6√

𝑙 ( 𝑗−1) + 𝑙 ( 𝑗)

]
(3.5)

3.2.3 Predictions

The authors of Deep Ensembles suggest approximating the mixture of each NN outputs

(𝜇𝜽𝒎 , 𝜎𝜽𝒎 ) in a single normal distribution N(𝜇∗, 𝜎∗), with the mean defined as

𝜇∗ =
1

𝑀

𝑀∑
𝑚=1

𝜇𝜽𝑚 , (3.6)

with the variance subsequently computed as as

𝜎2
∗ =

1

𝑀

𝑀∑
𝑚=1

(𝜎2
𝜽𝑚

+ 𝜇2
𝜽𝑚
) − 𝜇2

∗ . (3.7)

An example implementation will follow in Section 3.4.
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3.3 Bayesian Neural Networks

3.3.1 Presentation and main issue

While Deep Ensembles kept a frequentist point of view, there is a different class of networks

adopting the second vision to probabilities, for which the basics have been presented through

a curve-fitting example in Section 1.4.2.3. In this section, we will introduce the concept of

Variational Inference to workaround the analytical intractabilities of fully Bayesian approaches

to create trainable Bayesian Neural Networks, as shown in Blundell et al. (2015).

With D = {𝒙, 𝒚} as our 𝑁-sized dataset, we wish to construct a likelihood function 𝑝(D|𝒘),
tied to our weights and biases of our model, reduced to 𝒘 for clarity. In a Bayesian context, we

think of a prior distribution 𝑝(𝒘)—that is, the knowledge we decide to constrain the distribution

on the weights with, and Bayes theorem provides us with the posterior distribution 𝑝(𝒘 |D),
i.e., the new distribution of 𝒘 after the dataset is observed, which is defined proportionally with

regards to our likelihood and prior as following

𝑝(𝒘 |D) ∝ 𝑝(D|𝒘)𝑝(𝒘). (3.8)

It is interesting to note that this right-hand side can be maximized and represents the Maximum

A Posteriori, which, in a similar fashion to a regular Mean Squared Error, only deals with

mean values, and doesn’t offer a full distribution over all possible models parametrized by some

weights 𝒘. This case is covered in Section 1.4.2.4. To achieve the fully Bayesian treatment, one

needs to deal with the posterior predictive distribution for a new pair (𝑥, 𝑦) outside of D instead,

expressed as

𝑝(𝑦 |𝑥,D) =
∫

𝑝(𝑦 |𝑥, 𝒘)𝑝(𝒘 |D)𝑑𝒘. (3.9)

The goal here is indeed to provide an entire distribution for the outputs, rather than a point

estimate. Unfortunately, the posterior 𝑝(𝒘 |D) and, therefore, this integral is intractable in a

Neural Network context since it would have to account for every possible weights configuration,

which would mean using an infinite number of models, as explained in Blundell et al. (2015).
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3.3.2 Workaround: Variational Inference

A way for this issue to be addressed is known as Variational Inference and involves an

approximation of the true posterior 𝑝(𝒘 |D) with a new 𝜽-parametrized distribution 𝑞(𝒘 |𝜽) of

a known form.

The Kullback-Leibler divergence KL is introduced to measure the difference between two

distributions 𝑃(𝑥) and 𝑄(𝑥), and is defined as

KL(𝑃(𝑥) | |𝑄(𝑥)) =
∫

𝑃(𝑥) log
𝑃(𝑥)
𝑄(𝑥) 𝑑𝒙. (3.10)

In our case, the goal is then to minimize this difference measure w.r.t. to the parameters 𝜽,

defined as

KL(𝑞(𝒘 |𝜽) | |𝑝(𝒘 |D)) =
∫

𝑞(𝒘 |𝜽) log
𝑞(𝒘 |𝜽)
𝑝(𝒘 |D) 𝑑𝒘 (3.11)

Remembering the Bayes rule and 𝑝(𝒘 |D) = 𝑝(D|𝒘)𝑝(𝒘)/𝑝(D), the optimization goal can

write as

KL(𝑞(𝒘 |𝜽) | |𝑝(𝒘 |D)) =
∫

𝑞(𝒘 |𝜽) log
𝑞(𝒘 |𝜽)𝑝(D)
𝑝(𝒘)𝑝(D|𝒘) 𝑑𝒘 (3.12)

= KL(𝑞(𝒘 |𝜽) | |𝑝(𝒘)) − E𝑞(𝒘 |𝜽) log 𝑝(D|𝒘) + log 𝑝(D) (3.13)

=: F (D, 𝜽) + log 𝑝(D). (3.14)

This first term, F (D, 𝜽), is usually known in the literature as the variational free energy and

is equivalent to minimizing the KL w.r.t. 𝜽 since the other term log 𝑝(D) doesn’t depend on

𝜽. The variational free energy is a sum of two terms, the first being linked to the prior, named

complexity cost, while the latter is related to the data and referred to in Blundell et al. (2015) as

the likelihood cost. It is shown to be approximated by drawing 𝑁mc samples 𝒘𝑚 from 𝑞(𝒘 |𝜽) at

the layer level, and 𝑁 samples at the output level (for each training input), as follows

F (D, 𝜽) ≈
𝑁mc∑
𝑚=1

[log 𝑞(𝒘𝑚 |𝜽) − log 𝑝(𝒘𝑚)] −
𝑁∑
𝑚=1

log 𝑝(D|𝒘𝑚). (3.15)
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Another term one can often see in the literature is the Evidence Lower Bound (ELBO), that

is defined as the opposite of F (D|𝜽), and due to the positivity of the KL, it is effectively a

lower bound on log 𝑝(D). We, therefore, denote the corresponding minimization objective, our

loss function in practice, by LELBO(D, 𝜽) := F̃ (D, 𝜽), with F̃ representing the approximation

made in (3.15).

... ...
...

𝑥1

𝑥𝑛

ℎ1,1

ℎ𝑙 (1) ,1

ℎ1,𝑑

ℎ𝑙 (𝑑) ,𝑑

softplus

𝜇𝑦

𝜌𝑦 𝜎2
𝑦

Input

layer

Hidden

layer (1)
Hidden

layer (𝑑)
Output

layer

. . .

𝝐 ∼ N(0, 𝑰)
𝒘 = 𝑓 (𝜽𝜇, 𝜽𝜌, 𝝐)

Figure 3.2 �̂�(𝒙;𝒘) = N(𝜇𝑦 |0, 𝜎2
𝑦 ), a probabilistic Bayesian Neural

Network, with distributions on the weights, and a dual-ouput

3.3.3 Training and predictions

In a similar fashion to Section 2.3, the model is trained using the backpropagation of the

gradients. Figure 3.2 shows a representation of a Bayesian Neural Network, with distributions

on the weights, as well as a dual mean and variance output. The variational posterior for each

weight 𝒘 ( 𝑗) , or bias 𝒃 ( 𝑗) , is parametrized by the trainable parameters 𝜽 ( 𝑗) = (𝜽 ( 𝑗)
𝜇 , 𝜽 ( 𝑗)

𝜌 ). They

correspond to a mean and a raw variance, which are randomly initialized at first. This setting

grows the number of total parameters to be twice the one in a regular NN.

3.3.3.1 Reparametrization trick

In this context, the reparametrization trick presented in Kingma & Welling (2014) is needed for

the posterior: at the 𝑗-th layer level, a random noise from parameter-free distribution is sampled,
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for instance, 𝝐 ( 𝑗) ∼ N (0, 𝑰), with 0 and 𝑰 denoting the null and identity matrices of the right

size.

We then construct a determinist and differentiable function, such as 𝑓 (𝜽 ( 𝑗)
𝜇 , 𝜽 ( 𝑗)

𝜌 , 𝝐 ( 𝑗)) =

𝜽 ( 𝑗)
𝜇 + 𝜽 ( 𝑗)

𝜌 � 𝝐 ( 𝑗) , with � denoting the element-wise multiplication, which will be used at the

backpropagation step.

3.3.3.2 Training workflow

As presented in Blundell et al. (2015), the workflow is the following, for each training epoch.

1. For each layer 𝑗 :

a. Sample a random noise 𝝐 ( 𝑗) for the weights and the biases,

b. Initialize the weights and the biases, 𝒘 ( 𝑗) = 𝑓 (𝜽 ( 𝑗)
𝜇 , 𝜽 ( 𝑗)

𝜌 , 𝝐 ( 𝑗)),

c. Compute each processed variance 𝜽 ( 𝑗)
𝜎 = softplus(𝜽 ( 𝑗)

𝜌 ),

d. Add the layer contribution to the loss functionLELBO, with 𝑞(𝒘 ( 𝑗) |𝜽 ( 𝑗)) = N(𝒘 ( 𝑗) |𝜽 ( 𝑗)
𝜇 , 𝜽 ( 𝑗)

𝜎 ),
minus the log of the prior, log 𝑝(𝒘 ( 𝑗)).

2. The last term of the loss is added from the outputs of the network (𝜇𝑦, 𝜎2
𝑦 ) and is, in fact, a

Negative Log-Likelihood contributed to the loss, computed from a Normal distribution of

the output as

− log 𝑝(D|𝒘) = N(𝒗 |𝜇𝑦, 𝜎2
𝑦 ). (3.16)

3. The regular backpropagation step can finally take place, finishing the epoch by updating each

parameter with the derivative of the fully reconstructed loss LELBO w.r.t. the parameters 𝜽 .

One can note that the Monte-Carlo approximation made in (3.15) for the loss function is taking

place with 𝑁mc being the number of parameters in the network since a configuration 𝒘𝑚 is

triggered while going through each of them, and the sum of the first two terms is done iteratively

while going through the network. However, the NLL sum term is added from the outputs (Step

2. above), and in that case, 𝑁 represents the number of points in the dataset.

Each hidden state 𝑗 is computed as usual in a feedforward NN,

𝒉( 𝑗) = 𝜙
(
𝒘 ( 𝑗)𝒉( 𝑗−1) + 𝒃 ( 𝑗)

)
, (3.17)
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with a nonlinearity 𝜙, yet each weight and bias computed via the parameters we actually train,

(𝜽 ( 𝑗)
𝜇 , 𝜽 ( 𝑗)

𝜎 ), and a sample noise 𝝐 ( 𝑗) , as seen above in Step 1.

3.3.3.3 Predictions

This is what makes the whole network probabilistic since each forward pass has a component of

randomness within, contributing to the epistemic uncertainty.

Its non-deterministic predictions have to be evaluated 𝐵 times to effectively get an approximation

of the intractable predictive posterior in (3.9), and, therefore, grasp the epistemic side of the

related uncertainties. These 𝐵 predictions will then be averaged over like in (3.6) and (3.7) to

reach the mean 𝜇∗ and variance 𝜎2∗ , as

𝜇∗ =
1

𝐵

𝐵∑
𝑏=1

𝜇𝜽𝑏 , (3.18)

𝜎2
∗ =

1

𝐵

𝐵∑
𝑏=1

(𝜎2
𝜽𝑏

+ 𝜇2
𝜽𝑏
) − 𝜇2

∗ . (3.19)

After the training phase of this unique network, one chooses a number of samples 𝐵 for the

prediction estimation, that can be large since the evaluation phase of a network is very fast. In

practice 𝐵 = 100 has been often used, but as for the Deep Ensembles, going as low as 𝐵 = 𝑀 = 5

should encompass enough information.

3.3.3.4 Prior and initialization details

For the prior, one can choose to either have it trainable, for instance by having the parameters

of a Normal distribution within the parameters of the network 𝜽 , or predefined, and the choice

made by the authors of Blundell et al. (2015) is a scale mixture defined as

𝑝(𝒘) = 𝜋0N(𝒘 |0, 𝜋2
1) + (1 − 𝜋)N (𝒘 |0, 𝜋2

2), (3.20)

with 𝜋, 𝜋1 and 𝜋2 hyperparameters to be set by the user, with the conditions 𝜋1 > 𝜋2 and 𝜋2 � 1,

according to Blundell et al. (2015). In practice, we’ve used continuously 𝜋2 = 0.1, and 𝜋0 = 1
2
,

as in Krasser (2019), yet multiple values for 𝜋1, such as 1.5, 3, and 4, since it appeared tightly

linked to the predicted uncertainties, especially out-of-distribution.
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Each trainable parameter 𝜽 ( 𝑗) (weight or bias) of the 𝑗-th layer can be randomly initialized, with

𝜽 ( 𝑗) = (𝜽 ( 𝑗)
𝜇 , 𝜽 ( 𝑗)

𝜎 ) ∼ N
(
0,

√
𝜋0𝜋

2
1
+ (1 − 𝜋0)𝜋2

2
𝑰

)
. (3.21)

An example implementation with sample Python code will be presented in Section 3.4 and

specifically in Figure 3.9. Additionally, a pseudo-code implementation for the flood modeling

application is provided later in Algorithm 4.3.

Table 3.1 Handling of uncertainties for the two chosen

approaches: Bayesian Neural Networks and Deep Ensembles

BNN EnsNN
Aleatoric 𝜎𝑎𝑙 Multi-output (𝜇, 𝜌)

𝜎𝑎𝑙 = log(1 + 𝑒𝜌)
Multi-output (𝜇, 𝜌)
𝜎𝑎𝑙 = log(1 + 𝑒𝜌)

Epistemic 𝜎𝑒𝑝 Built-in with the distribution

on (𝒘, 𝒃)
Train: 1x, Predict: 𝐵 times

Random init of (𝒘, 𝒃)
Train + Predict: 𝑀 times

3.4 Summary and tests

Let’s consider an effortless setup to assess the quality of the methods above, the same as in

Section 1.4.2.2, that was borrowed from Lakshminarayanan et al. (2017). The focus is on the

cubic function 𝑢(𝑥) = 𝑥3, acting as our exact "unknown" solution. We sample 𝑁 = 20 points

within the training domain 𝑥 ∈ [−4, 4], with an artificial Gaussian noise of 𝜎𝑎𝑙 = 9, representing

the aleatoric uncertainty. After training the model �̂�, we will use it to make predictions over a

larger domain 𝑥 ∈ [−6, 6], with 𝑁tst = 300, to see how our model performs when the inputs are

out-of-distribution.

For all tests, the library TensorFlow, Abadi (2016), has been used in version 2.1.0 to define and

train regular Deep Neural Networks using Dense layers, and the module TensorFlow Probability

which provides distributions. It allows for a natural definition of custom DenseVariational layers,

adapted from a blog post, Krasser (2019), dedicated to the implementation of Blundell et al.

(2015).
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Figure 3.3 Toy problem. Curve-fitting of a cubic function. From

left to right, UQPINNs (without the physics-informed loss), Deep

Ensembles, and Bayesian Neural Networks are used

The results are pictured in Figure 3.3. While the uncertainty quantification is present in the

UQPINNs outcome, the fact that the confidence interval around the predicted mean goes to

zero as we exit the training domain prevents us from using it. This model, quickly presented in

Section 1.4.3.3, wouldn’t indeed allow us to realize our Objective 3., having a model that knows

when it doesn’t. A tentative explanation for this would be that the authors of the UQPINNs

paper worked on PDEs with boundary conditions. Hence, they were probably concerned about

what was happening within those boundaries and not on the outside.

We can, however, observe that both the Deep Ensembles and the Bayesian Neural Network

models perform as expected, with uncertainties increasing on both ends.

Additionally, Table 3.1 is introduced to quickly sum up the primary difference in the handling of

epistemic uncertainty in Deep Ensembles and Bayesian Neural Networks.

Code snippets for the Deep Ensembles model and the Bayesian Neural Network model applied

to this toy problem can be found, respectively, in Figure 3.7 and 3.5. They make use of two

classes, VarNeuralNetwork and BayesianNeuralNetwork, that are also respectively depicted by

sample Python code in Figure 3.10 and 3.8. The custom Keras layer DenseVariational that is

being used in the latter can be found in Figure 3.9.

It is also to be noted that, in the Deep Ensembles case, the 𝑀 steps of the training can be easily

distributed on different devices—provided it isn’t an issue, and therefore reduce the overhead.
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To achieve this, we’ve used the Horovod library, Sergeev & Del Balso (2018), which provides an

easy interface to control the devices that TensorFlow sees. A sample code of its implementation

on the toy problem is shown in Figure 3.6.

To illustrate the two types of uncertainties, we’ve drawn three samples from the trained BNN,

and have plotted them in Figure 3.4. One can see three dark blue lines, representing the mean

of each prediction, and two associated light blue lines, located at ±2 standard deviations given

by each prediction. These errors represent the aleatoric uncertainty, while combining these

predictions in a mixture as in (3.7) gives rise to the epistemic uncertainty, which grows bigger

when one exits the training bounds.
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Figure 3.4 Toy problem. 3 samples drawn from a

BNN model, with their respective aleatoric

uncertainty

from podnn.custombnn import BayesianNeuralNetwork

layers = [1, 20, 20, 1]
model = BayesianNeuralNetwork(layers, lr=0.05, klw=1., soft_0=1.,

sigma_alea=noise_std,
adv_eps=None, norm="minmax")

model.fit(x, y, epochs=15000, batch_size=batch_size)
u_pred, u_pred_var = model.predict(x_tst)
u_pred_sig = np.sqrt(u_pred_var)

Figure 3.5 Sample of code for the BNN toy problem
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import numpy as np
from podnn.varneuralnetwork import VarNeuralNetwork

# Setting up the Horovod library
import horovod.tensorflow as hvd
tf.config.set_soft_device_placement(True)
hvd.init()
gpu_id = hvd.local_rank()
phys_devices = tf.config.experimental.get_visible_devices('GPU')
tf.config.experimental.set_visible_devices(phys_devices[gpu_id], 'GPU')

# Will be run on the hvd.local_rank() device
layers = [1, 20, 20, 1]
model = VarNeuralNetwork(layers, lr=0.01, lam=0.001, norm="minmax")
model.fit(x, y, epochs=5000)
model.save()

# To be run with this command for M=5 GPUs (on one node)
# horovodrun -np 5 -H localhost:5 python train.py

Figure 3.6 Distributed version of the Deep Ensembles toy problem code

import numpy as np
from podnn.varneuralnetwork import VarNeuralNetwork

layers = [1, 20, 20, 1]
M = 5
u_pred_samples = np.zeros((M, y_tst.shape[0], y_tst.shape[1]))
u_pred_var_samples = np.zeros_like(u_pred_samples)

for i in range(5):
model = VarNeuralNetwork(layers, lr=0.01, lam=0.001, norm="minmax")
model.fit(x, y, epochs=5000)
u_pred_samples[i], u_pred_var_samples[i] = model.predict(x_tst)

u_pred = u_pred_samples.mean(0)
u_pred_var = (u_pred_var_samples + u_pred_samples ** 2).mean(0) \

- u_pred ** 2
u_pred_sig = np.sqrt(u_pred_var)

Figure 3.7 Sample of code for the Deep Ensembles toy problem
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import tensorflow as tf
import tensorflow_probability as tfp
from .podnn.densevar import DenseVariational

class BayesianNeuralNetwork:
def __init__(self, layers, lr, klw, soft_0, sigma_alea, adv_eps,

norm=NORM_NONE, model=None, norm_bounds=None):
# ...
self.model = self.build_model()

def build_model(self):
n_L = self.layers[-1]
model = tfk.models.Sequential([

tfk.layers.InputLayer(self.layers[0]),

*[
DenseVariational(

units=width, activation="relu",
kl_weight=self.klw, dtype=self.dtype,

) for width in self.layers[1:-1]],
DenseVariational(

units=n_L, activation="linear",
dtype=self.dtype, kl_weight=self.klw,

),
])
def neg_log_likelihood(y_obs, y_pred, sigma=self.sigma_alea):

dist = tfp.distributions.Normal(loc=y_pred, scale=sigma)
return K.sum(-dist.log_prob(y_obs))

model.compile(loss=neg_log_likelihood,
optimizer=tfk.optimizers.Adam(self.lr))

return model

def fit(self, X_v, v, epochs, logger, batch_size):
# ...
self.set_normalize_bounds(X_v)
X_v = self.normalize(X_v)
v = self.tensor(v)
self.model.fit(X_v, v, epochs=epochs, batch_size=batch_size)

def predict(self, X):
X = self.normalize(X)
return self.model(X)

def save_to(self, model_path, params_path):
# ...
tf.keras.models.save_model(self.model, model_path)

@classmethod
def load_from(cls, model_path, params_path):

# ...
model = tf.keras.models.load_model(model_path)
return cls(model=model)

Figure 3.8 Sample of code for the BayesianNeuralNetwork class
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import tensorflow as tf
import tensorflow_probability as tfp
tfk = tf.keras
K = tf.keras.backend
tfp = tfp.distributions

class DenseVariational(tfk.layers.Layer):
def __init__(self, units, kl_weight, activation=None,

prior_sigma_1=1.5, prior_sigma_2=0.1,
prior_pi=0.5, **kwargs):

self.units = units #...
self.sig_i = np.sqrt(prior_pi_1 * prior_sigma_1 ** 2 +

prior_pi_2 * prior_sigma_2 ** 2)
super().__init__(**kwargs)

def build(self, input_shape):
self.kernel_mu = self.add_weight(name='kernel_mu',

shape=(input_shape[1], self.units), trainable=True,
initializer=tfk.initializers.RandomNormal(stddev=self.sig_i)),

self.bias_mu = self.add_weight(name='bias_mu',
shape=(self.units,), trainable=True,
initializer=tfk.initializers.RandomNormal(stddev=self.sig_i)),

self.kernel_rho = self.add_weight(name='kernel_rho',
shape=(input_shape[1], self.units), trainable=True,
initializer=tfk.initializers.Constant(0.)),

self.bias_rho = self.add_weight(name='bias_rho',
shape=(self.units,), trainable=True,
initializer=tfk.initializers.Constant(0.)),

super().build(input_shape)

def call(self, inputs, **kwargs):
w_sig = 1e-3 + tf.math.softplus(0.1 * self.kernel_rho)
kernel = self.kernel_mu + w_sig * \

tf.random.normal(self.kernel_mu.shape)
b_sig = 1e-3 + tf.math.softplus(0.1 * self.bias_rho)
bias = self.bias_mu + b_sig * tf.random.normal(self.bias_mu.shape)

self.add_loss(self.kl_loss(kernel, self.kernel_mu, kernel_sigma) +
self.kl_loss(bias, self.bias_mu, bias_sigma))

return self.activation(K.dot(inputs, kernel) + bias)

def kl_loss(self, w, mu, sigma):
variational_dist = tfp.distributions.Normal(mu, sigma)
return self.kl_weight * K.sum(variational_dist.log_prob(w) \

- self.log_prior_prob(w))

def log_prior_prob(self, w):
comp_1_dist = tfp.distributions.Normal(0., self.prior_sigma_1)
comp_2_dist = tfp.distributions.Normal(0., self.prior_sigma_2)
c = np.log(np.expm1(1.))
return K.log(c + self.prior_pi_1 * comp_1_dist.prob(w) +

self.prior_pi_2 * comp_2_dist.prob(w))

Figure 3.9 Sample of code for the custom DenseVariational Keras layer
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import tensorflow as tf

class VarNeuralNetwork:
# ...
def build_model(self):

inputs = tf.keras.Input(shape=(self.layers[0],), name="x")
for width in self.layers[1:-1]:

x = tf.keras.layers.Dense(width, activation=tf.nn.relu,
kernel_initializer="glorot_normal")(inputs)

x = tf.keras.layers.Dense(2 * self.layers[-1], activation=None,
kernel_initializer="glorot_normal")(x)

def split_mean_var(data):
mean, out_var = tf.split(data, num_or_size_splits=2, axis=1)
var = tf.math.softplus(out_var) + 1e-6
return [mean, var]

outputs = tf.keras.layers.Lambda(split_mean_var)(x)
model = tf.keras.Model(inputs=inputs, outputs=outputs)
return model

@tf.function
def loss(self, y, y_pred):

y_pred_mean, y_pred_var = y_pred
return tf.reduce_mean(tf.math.log(y_pred_var) / 2) + \

tf.reduce_mean((y - y_pred_mean)**2 / 2*y_pred_var) + \
self.regularization()

@tf.function
def grad(self, X, v):

with tf.GradientTape(persistent=True) as tape:
tape.watch(X)
loss_value = self.loss(v, self.model(X))
if self.adv_eps is not None:

loss_x = tape.gradient(loss_value, X)
X_adv = X + self.adv_eps * tf.math.sign(loss_x)
loss_value += self.loss(v, self.model(X_adv))

grads = tape.gradient(loss_value, self.wrap_training_variables())
del tape
return loss_value, grads

def fit(self, X_v, v, epochs, logger):
# ...
self.set_normalize_bounds(X_v)
X_v = self.normalize(X_v)
v = self.tensor(v)
for epoch in range(epochs):

loss_value, grads = self.grad(X_v, v)
self.tf_optimizer.apply_gradients(

zip(grads, self.wrap_training_variables()))

def predict(self, X):
X = self.normalize(X)
y_pred_mean, y_pred_var = self.model(X)
return y_pred_mean.numpy(), y_pred_var.numpy()

Figure 3.10 Sample of code for the VarNeuralNetwork class



CHAPTER 4

NON-INTRUSIVE REDUCED-ORDER MODELING USING
UNCERTAINTY-AWARE DEEP NEURAL NETWORKS AND PROPER

ORTHOGONAL DECOMPOSITION: APPLICATION TO FLOOD MODELING

This chapter content is also available as a journal article, which is in the process of being

submitted to the Journal of Computational Physics.

4.1 Introduction

Machine Learning and other forms of Artificial Intelligence have been at the epicenter of massive

breakthroughs in the notoriously hard fields of computer vision, language modeling, or content

generation, such as presented in the work of Szegedy et al. (2017), Mikolov et al. (2013),

and Mikolov et al. (2013). Yet, many other fields where robust and heavily-tested methods

could be positively impacted by the modern computational tools associated with it: antibiotic

discovery is a very recent example of this Stokes, Yang, Swanson, Jin, Cubillos-Ruiz, Donghia,

MacNair, French, Carfrae, Bloom-Ackerman, Tran, Chiappino-Pepe, Badran, Andrews, Chory,

Church, Brown, Jaakkola, Barzilay & Collins (2020). In the realm of high-fidelity computational

mechanics, simulation time is tightly related to the size of the mesh and the number of time-steps,

in other words, its accuracy, which might make it impractical to be used in real-time context for

new parameters.

Much research has been performed to address this large-size problem and create Reduced-

Ordered Models (ROM), that can effectively replace its heavier counterpart for tasks like design

and optimization, or real-time predictions. The most common way to build a ROM is to go

through a compression phase into a reduced space, defined by a set of reduced basis (RB),

which is at the root of many methods, according to Benner et al. (2015). For the most part, RB

methods involve an offline-online paradigm, where the first is the more computational-heavy

one, while the latter should be fast enough to allow for real-time predictions. The idea is to

collect data points from simulation, or any high-fidelity source called snapshots, and extract

the information that has the most significance on the dynamics of the system, the modes, via a

reduction method in the offline stage.
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Proper Orthogonal Decomposition, as introduced in Holmes et al. (1997); Sirovich (1987), and

the algorithm named Singular Value Decomposition (SVD) algorithm, Burkardt et al. (2006), is

by far the most popular method to reach a low-rank approximation. Subsequently, the online

stage involves recovering the expansion coefficients, projecting back into our uncompressed,

real-life space. This is where the separation between intrusive and non-intrusive methods

appears, where the first is using techniques depending on the problem’s formulation, such as the

Galerkin procedure, Couplet et al. (2005); Zokagoa & Soulaimani (2018). At the same time,

the latter tries to statistically infer the mapping by considering the snapshots as a dataset. In

this non-intrusive context, the POD-NN framework has been proposed by Hesthaven & Ubbiali

(2018) and extended for time-dependent problems in Wang et al. (2019), and aims at training an

artificial neural network at performing the mapping.

Conventionally, laws of physics are expressed as well-defined PDEs, with boundary/initial

conditions as constraints, but lately, pure data-driven methods lead to new approaches in

PDE discovery, Brunton et al. (2016). The take-off of this new field of Deep Learning in

Computational Fluid Dynamics was predicted in Kutz (2017). Its flexibility allows for multiple

applications, such as the recovery of missing CFD data in Carlberg et al. (2019), or aerodynamic

design optimization, Tao & Sun (2019). The cost associated with a fine mesh is high and

yet has been overcome with a Machine Learning approach aiming at assessing errors and

correcting quantities in a more coarse setting, Hanna et al. (2020). New research in the field of

numerical schemes has been performed in Després & Jourdren (2020), presenting the Volume

of Fluid-Machine Learning (VOF-ML) approach, applied in bi-material settings. A review of

the vast landscape of possibilities is explored in Brunton & Kutz (2019). The constraints of

small data also led researchers to try to balance the need for data in AI contexts with expert

knowledge such as the defined governing equations. It was first presented in Raissi et al. (2017a),

then extended to Neural Networks/hi in Raissi et al. (2019a) with applications on Computational

Fluid Dynamics, as well as in vibrations Raissi et al. (2019b).

While their regression power is impressive, Deep Neural Networks are still, in their standard

state, only able to predict a mean value, and don’t provide any guidance on how much trust

one can put in it. To address this, recent additions to the Machine Learning landscape include
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Deep Ensembles, Lakshminarayanan et al. (2017), which suggest the training of an ensemble of

specific, variance-informed deep neural networks, to get a complete uncertainty treatment. It

has been subsequently extended to Sub-Ensembles for faster implementation, Valdenegro-Toro

(2019), and later reviewed in Snoek, Ovadia, Fertig, Lakshminarayanan, Nowozin, Sculley,

Dillon, Ren & Nado (2019). Prior to this, other works have successfully encompassed the

Bayesian view of probabilities within the Deep Neural Network, with the work of Mackay

(1995), Barber & Bishop (1998), Graves (2011), Hernandez-Lobato & Adams (2015) ultimately

leading to the backpropagation-compatible Bayesian Neural Networks defined in Blundell et al.

(2015), making use of Variational Inference, Hinton & van Camp (1993), and paving the way for

trainable Bayesian Neural Networks, also reviewed in Snoek et al. (2019).

In this work, we, therefore, aim at extending the concept of POD-NN with uncertainty

quantification in Deep Neural Networks. After going through the methodology of Deep

Ensembles, we will test it on two different benchmarks and apply it to flood modeling with

the aim of producing probabilistic flooding maps, as well as a dam break scenario, first in

a 1D Rieman analytically tractable example, and subsequently in the river setting. As a real

application example, we consider the case of the Milles-Iles river in the Montreal, Canada, metro

area. Finally, Bayesian Neural Networks are embedded in the framework and applied to one

benchmark and the probabilistic flooding maps problem.

4.2 Reduced basis with Proper Orthogonal Decomposition

4.2.1 Objective and setup

We first start by defining 𝑢, our IR𝐷-valued function of interest

𝑢 : IR𝑛+𝑃 → IR𝐷 (4.1)

(𝒙, 𝒔) ↦→ 𝑢(𝒙, 𝒔),

with 𝒙 ∈ IR𝑛 the spatial parameters, and 𝒔 ∈ IR𝑃 additional non-spatial parameters, anything

from a fluid viscosity to the time variable.
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Computing this function is costly, so one can only get a finite number of snapshots 𝑆. These

solutions are obtained over a discretized space, which can either be a uniform grid or an

unstructured mesh, with 𝑛 representing its the number of dimensions, and 𝐷 the total number

of nodes. We denote 𝑁𝑠 the number of non-spatial parameters sampled, and 𝑁𝑡 the number of

time-steps considered, which would be greater than one in a time-dependent setting, leading the

total of snapshots to be 𝑆 = 𝑁𝑠𝑁𝑡 .

In our applications, the spatial mesh of 𝑁𝐷 nodes is considered fixed in time, and since it’s

known and defined upfront, one can incorporate it in (4.1), removing 𝒙 as a parameter in 𝑢, and

making 𝐻 = 𝑁𝐷 × 𝐷 the total number of degrees of freedom (DOFs) on the mesh

𝑢𝐷 : IR𝑃 → IR𝐻 (4.2)

𝒔 ↦→ 𝑢𝐷 (𝒔).

The simulation data, obtained from computing the function 𝑢 with 𝑆 parameters, is stored

in a matrix of snapshots 𝑼 = 𝑢𝐷 (𝒔) ∈ IR𝐻×𝑆. Proper Orthogonal Decomposition is used to

build a Reduced-Order Model (ROM) and produce a low-rank approximation, which will be

much more efficient to compute and use when fast multi query simulations are required. With

the snapshots method, Sirovich (1987), one can efficiently extract a reduced POD basis in a

finite-dimension context. In our case, one starts with the 𝑼 matrix, and the Singular Value

Decomposition algorithm is used, Burkardt et al. (2006), to extract 𝑾 ∈ IR𝐻×𝐻 , 𝒁 ∈ IR𝑆×𝑆, and

the 𝑟 descending-ordered positive singular values matrix 𝑫 = diag(𝜉1, 𝜉2, . . . , 𝜉𝑟) such as

𝑼 = 𝑾

⎡⎢⎢⎢⎢⎣
𝑫 0

0 0

⎤⎥⎥⎥⎥⎦ 𝒁ᵀ . (4.3)

For the finite truncation of the first 𝐿 modes, the following criterion on the singular values, with

a hyperparameter 𝜖 ∑𝑟
𝑙=𝐿+1 𝜉

2
𝑙∑𝑟

𝑙=1 𝜉
2
𝑙

≤ 𝜖, (4.4)
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and one constructs each reduced vector 𝑽 𝑗 ∈ IR𝑆 from 𝑼 and the 𝑗-th column of 𝒁, 𝒁 𝑗 , such as

𝑽 𝑗 =
1

𝜉 𝑗
𝑼𝒁 𝑗 , (4.5)

and finally build our POD basis

𝑽 =
[
𝑽1 | . . . |𝑽 𝑗 | . . . |𝑽𝐿

] ∈ IR𝐻×𝐿. (4.6)

4.2.2 Projections

To project from and to the low-rank approximation, one needs projection coefficients, and the

ones corresponding to the matrix of snapshots are obtained as

𝒗 = 𝑽ᵀ𝑼, (4.7)

with 𝑼POD the approximation of 𝑼, that can be projected back to the expanded space as

𝑼𝑃𝑂𝐷 = 𝑽𝑽ᵀ𝑼 = 𝑽𝒗. (4.8)

To assess the quality of the compression/expansion procedure, the relative projection error writes

as

𝑅𝐸𝑃𝑂𝐷 =
𝑆∑
𝑗=1

| | (𝑼) 𝑗 − (𝑼𝑃𝑂𝐷) 𝑗 | |2
| | (𝑼) 𝑗 | |2 , (4.9)

with the (·) 𝑗 subscript denoting the 𝑗-th column of the targeted matrix, | | · | |2 the L2 norm, and

the mean projection error over the samples writes as

𝝈𝑃𝑂𝐷 =
1

2𝑁

𝑆∑
𝑗=1

| (𝑼) 𝑗 − (𝑼𝑃𝑂𝐷) 𝑗 | ∈ IR𝐻, (4.10)
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Figure 4.1 �̂�𝐷𝐵 (𝑿;𝒘, 𝒃) ∼ N (𝝁𝑣, (𝝈𝑣)2), a Deep Neural

Network regression with a dual mean and variance output

4.3 Learning distributions over the expansion coefficients using Deep Ensembles

4.3.1 Regression objective

Building a non-intrusive ROM involves a statistical step to construct the function responsible for

infering the expansion parameters 𝒗 from new non-spatial parameters 𝒔. This regression step is

performed offline, and since we’ve considered the spatial parameters 𝒙 to be externally handled,

one can denote it as a mapping 𝑢𝐷𝐵 outputting the projection coefficients 𝒗(𝒔), such as

𝑢𝐷𝐵 : IR𝑃 → IR𝐿 (4.11)

𝒔 ↦→ 𝒗(𝒔).

4.3.2 Deep Neural Networks with built-in variance

This statistical step is handled in the POD-NN framework by infering the mapping with a Deep

Neural Network �̂�𝐷𝐵 (𝒔;𝒘, 𝒃). 𝒘 and 𝒃 are the model parameters: the weights and biases of the

network, and are learned during training (offline phase), to be later reused to make predictions



77

(online phase). Its number of hidden layers is called the depth 𝑑, which is chosen not to account

for the input and output layers. Each layer has a number of neurons, called the width 𝑙 ( 𝑗) .

The difference here with a vanilla DNN architecture for regression resides in the dual-output, first

presented in Nix & Weigend (1994) and reused in Lakshminarayanan et al. (2017), where the

final layer size is twice the number of expansion coefficients to project, 𝑙 (𝑑+1) = 2𝐿 since it both

outputs a mean value 𝜇 and a raw variance 𝜌, which will then be constrained for positiveness

through a softplus function, finally outputting 𝜎2 as

𝜎2 = log(1 + exp(𝜌)). (4.12)

A representation of this DNN is pictured in Figure 4.1, with 𝑑 hidden layers—and therefore,

𝑑 + 2 layers in total. Each hidden layer state 𝒉( 𝑗) gets computed from its input 𝒉( 𝑗−1) alongside

the layer weights 𝒘 ( 𝑗) and biases 𝒃 ( 𝑗) , and finally goes through an activation function 𝜙

𝒉( 𝑗) = 𝜙
(
𝒘 ( 𝑗)𝒉( 𝑗−1) + 𝒃 ( 𝑗)

)
, (4.13)

with 𝒉(0) = 𝒔, the input of �̂�𝐷𝐵, and 𝒉(𝑑+1) = [𝝁𝑣, 𝝆𝑣]ᵀ, the output.

Since this predicted variance reports the spread, or noise, in data (the inputs data are drawn from

a distribution), hence wouldn’t be reduced even if we were to grow our dataset larger, it accounts

for aleatoric uncertainty, which is usually separated from epistemic uncertainty, the one that is

inherent to the model, Kendall & Gal (2017).

One can think about this idea of aleatoric uncertainty as a measurement problem: with the goal

of measuring a quantity 𝑢, the tool has some inherent noise 𝑛, random and dependent on the

parameter 𝑥 in the measurable domain, making the measured quantity 𝑢(𝑥) + 𝑛(𝑥). The model

presented here, as introduced in Nix & Weigend (1994), is trying to perform the regression on

both components, with an estimated variance alongside the regular point-estimate of the mean.

4.3.3 Ensemble training

Considering a 𝑁-sized training dataset D = {𝑿, 𝒗}, with 𝑿 denoting the normalized non-spatial

parameters 𝒔 and 𝒗 the corresponding expansion coefficients coming from a training/validation-
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split of the matrix of snapshots 𝑼, an optimizer performs several training epochs 𝑁𝑒 to minimize

the following Negative Log-Likelihood loss function, w.r.t. the network weights 𝒘 and biases 𝒃

LNLL(D, 𝜽) :=
1

𝑁

𝑁∑
𝑖=1

[
log 𝝈𝑣

𝜽
2(𝑿)𝑖

2
+ (𝒗 − 𝝁𝑣𝜽 (𝑿))2

𝑖

2𝝈𝑣
𝜽

2(𝑿)𝑖

]
, (4.14)

with the normalized inputs 𝑿, as well as 𝝁𝑣𝜽 and 𝝈𝑣
𝜽

2, respectively, the mean and variance

retrieved from the network, parameterized by 𝜽 = (𝒘, 𝒃).
This loss gets an additional term in practice, an L2 regularization, commonly known as weight

decay in Neural Network contexts, Krogh & Hertz (1992), producing

L𝜆
NLL(D, 𝜽) := LNLL(D, 𝜽) + 𝜆 | |𝒘 | |2. (4.15)

Optimizers based on Stochastic Gradient Descent, such as Adam, Kingma & Ba (2014), are

needed to handle this loss function, often irregular and non-convex in a Deep Learning context.

The derivative of the loss LNLL w.r.t. the weights 𝒘 and biases 𝒃 is obtained through automatic

differentiation, Rumelhart et al. (1986), a technique requiring to keep track of the gradients

during the forward pass of the network, (4.13). Using backpropagation, Linnainmaa (1976), the

updated weights 𝒘𝑛+1 and biases 𝒃𝑛+1 corresponding to the epoch 𝑛 + 1 write as

(
𝒘𝑛+1, 𝒃𝑛+1

)
= (𝒘𝑛, 𝒃𝑛) − 𝜂 𝑓

(
𝜕L(𝒘𝑛, 𝒃𝑛; 𝑿, 𝒗)

𝜕 (𝒘𝑛, 𝒃𝑛)
)
, (4.16)

with 𝑓 (·) a function of loss derivative w.r.t. weights and biases that depends on the optimizer

choice, and 𝜂 the learning rate, a hyperparameter defining the step size taken by the optimizer.

The idea behind Deep Ensembles, presented in Lakshminarayanan et al. (2017) and recommended

in Snoek et al. (2019), is to randomly initialize 𝑀 sets of 𝜽𝑚 = (𝒘, 𝒃), therefore creating 𝑀

independent NNs. Each of them is then subsequently trained. Overall, the predictions moments

in the reduced space (𝝁𝑣𝜽𝑚 ,𝝈𝑣
𝜽𝑚
) of each create a probability mixture, that, as suggested by the

original authors, we approximate in a single Gaussian distribution, leading to a mean expressed
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as

𝝁𝑣∗ =
1

𝑀

𝑀∑
𝑚=1

𝝁𝑣𝜽𝑚 , (4.17)

and a variance subsequently obtained as

𝜎𝑣
∗

2 =
1

𝑀

𝑀∑
𝑚=1

[
(𝜎𝑣

𝜽𝑚
)2 + (𝜇𝑣𝜽𝑚)2

]
− 𝜇2

∗ . (4.18)

The model is now accounting for the epistemic uncertainty through random initialization and

variability in the training step. This uncertainty is directly linked to the model, and could be

reduced, for we had more data to feed it with. It is directly related to the data-fitting capabilities

of the model, and will, therefore, snowball in the absence of such data, since there is no more

constraint. It has in our case the most value, compared to aleatoric uncertainty, since one of our

objectives is being warned when the model is making predictions out-of-distribution.

Since these networks are independent, parallelizing their training is relatively easy, with only the

results having to be averaged over. We will refer to this model as POD-EnsNN.

Algorithm 4.1 Deep Ensembles training and predictions

1 Prepare the dataset D = {𝑿, 𝒗}
2 for each model in the ensemble 1 ≤ 𝑚 ≤ 𝑀 do
3 Train the model 𝑚:

4 for each epoch 1 ≤ 𝑒 ≤ 𝑁𝑒 do
5 Retrieve the outputs (𝝁𝑣𝜽𝑚 , 𝝆𝑣𝜽𝑚) from the forward pass �̂�𝐷 (𝑿)
6 Perform the variance treatment, 𝝈𝑣2

𝜽𝑚
= softplus(𝝆𝑣𝜽𝑚)

7 Compute the loss LNLL

8 Backpropagate the gradients to the parameters 𝜽𝑚
9 end

10 Retrieve statistical outputs (𝝁𝑣𝜽𝑚 , (𝝈𝑣
𝜽𝑚
)2) for the model 𝑚 for a test dataset

11 end
12 Approximate the predictions for the reduced space in a Gaussian N(𝝁𝑣∗,𝝈𝑣∗

2)
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4.3.4 Metrics

In addition to the regularized loss L𝜆
NLL

, we define a relative error 𝑅𝐸 that is more meaningful

to report the results with

𝑅𝐸 (�̂�,𝑼) = | |∑𝑆
𝑖=1(�̂�𝑖 −𝑼𝑖) | |2
| |∑𝑆

𝑖=1𝑼𝑖 | |2
, (4.19)

with 𝑼 = 𝑽 .𝒗 and �̂� = 𝑽 .�̂�. In both cases, 𝑽 corresponds to the POD bases, extracted in Section

4.2. During the training, we report two metrics: the training loss L𝜆
NLL

, as well as the validation

relative error 𝑅𝐸val.

4.3.5 Predictions in the expanded space

While embedding uncertainty quantifications within Deep Neural Networks helps getting a

confidence interval on the predicted expansion coefficients 𝒗, there is still a need to perform the

expansion step subsequently to retrieve the full solution, and it is defined as a dot product with

the modes matrix 𝑽, as defined in (4.7).

While this applies perfectly for the predicted mean 𝜇𝑣, one needs to be careful when handling

the predicted standard deviation 𝜎𝑣 since there is no theoretical guarantee that the statistical

moments on the reduced basis translate linearly to the expanded space. However, the distribution

over the coefficients 𝒗 is known as following

�̂� = �̂�𝐷𝐵 (𝑿;𝒘, 𝒃) ∼ N
(
𝝁𝑣∗,𝝈

𝑣
∗

2
)
. (4.20)

Therefore, unlimited samples �̂� (𝑖) can be drawn from it, and individually decompressed into

a corresponding full solution �̂�(𝑖)𝐷 = 𝑽 .�̂� (𝑖) , from (4.7). We hence put forward the following

Monte-Carlo approximation of the full distribution on �̂�𝐷 , drawing 𝑁ex samples, and computing

𝝁∗ =
1

𝑁ex

𝑁ex∑
𝑖=1

�̂�(𝑖)𝐷 =
1

𝑁ex

𝑁ex∑
𝑖=1

𝑽 .𝒗 (𝑖) , (4.21)

𝝈2
∗ =

1

𝑁ex

𝑁ex∑
𝑖=1

[
�̂�(𝑖)𝐷 − 𝝁∗

]2

=
1

𝑁ex

𝑁ex∑
𝑖=1

[
𝑽 .𝒗 (𝑖) − 𝝁∗

]2

, (4.22)
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which represent the approximated statistical moments of the distribution on the predicted full

solution �̂�𝐷 (𝒔), also refered to as �̂�
𝜇
𝐷 and �̂�𝜎𝐷 .

4.3.6 Adding adversarial training

First proposed in Szegedy, Zaremba, Sutskever, Bruna, Erhan, Goodfellow & Fergus (2014) and

studied in Goodfellow, Shlens & Szegedy (2014b), the concept of adversarial training, not to be

confused with Generative Adversarial Networks, Goodfellow et al. (2014a), aims at improving

the robustness of neural networks when confronted with noisy data, that could potentially be

intentionally created.

In the Deep Ensembles framework, it is an optional component that, according to Lakshmi-

narayanan et al. (2017), can help to smooth the output out, and could be useful as will be shown

in the oncoming test case, where the POD is struggling with the highly-nonlinear wave getting

produced by Burgers’ equation, see Section 4.4.2.

A simple implementation is the gradient sign technique, which is adding noise in the opposite

way of the gradient descent, scaled by a new hyperparameter 𝜁 , at each training epoch, and is

pictured in Algorithm 4.2. The idea is indeed to perform data augmentation at each training

epoch. The additional data comes from the generated adversarial samples which will help train

the network in a more robust way since these tricky samples are being inserted in the dataset.

Algorithm 4.2 Implementing adversarial training within the training loop

1 Function getAdversarialLoss(𝑿, 𝒗, 𝜖):
2 L𝑇 ← L({�̂�𝐷 (𝑿), 𝒗}, 𝜽)
3 𝑿′ ← 𝑿 + 𝜁 sign( L𝑇

𝜕𝑿
)

4 L𝑇 ← L𝑇 + L({�̂�𝐷 (𝑿′), 𝒗}, 𝜽)
5 return L𝑇

4.4 Benchmarks with uncertainty quantification

In this section, we assess the uncertainty propagation component of our framework against two

benchmark problems, using the same setup each time. The first is steady and two-dimensional,
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known as the Ackley Function, while the second involves a solution of Burgers’ equation, which

is time-dependent and one-dimensional.

The library TensorFlow, Abadi (2016), in version 2.1.0 is used for all results, while the

SVD algorithm and various matrix operations are performed by NumPy, all in Python 3.7.

Documented source code will be made available at https://github.com/pierremtb/POD-UQNN,

on the POD-EnsNN branch.

In both benchmarks, the activation function on all hidden layers is the ReLU nonlinearity

𝜙 : 𝑥 ↦→ max(0, 𝑥), while a linear mapping is applied on the output layer since in a regression

case, real-valued variables are needed as outputs. We choose the NN topology to involve 𝑑 = 3

hidden layers, of widths 𝑙 (1) = 𝑙 (2) = 𝑙 (3) = 128. We perform normalization on all non-spatial

parameters 𝒔, to build the inputs 𝑿 as

𝑿 =
𝒔 − 𝒔

𝒔std
, (4.23)

with 𝒔 and 𝒔std being respectively the empirical mean and standard deviation over the dataset, on

each column to keep physical meaning, e.g., the time would be normalized w.r.t. time moments.

To achieve GPU parallel training, we used the Horovod library, Sergeev & Del Balso (2018),

which allowed us to efficiently train the 𝑀 = 5 models on 𝑀 = 5 GPUs at the same time, this

number being the recommended one from Lakshminarayanan et al. (2017).

Among the following benchmarks, the Burgers’ equation solution is time-dependent, which

grows the matrix of snapshots 𝑼 substantially. We, therefore, make use of the two-step POD

algorithm, presented in Wang et al. (2019). The results are comforting: on a dataset of size

𝑆 = 10, 000, with 𝑁𝑡 = 100, the time to compute the SVD decomposition shrunk from 0.63

seconds to 0.51 switching from using the regular POD to the two-step POD algorithm, which

could result in a significant gain on more massive datasets. Numba optimizations have also been

used for both the regular POD algorithm and dual one, as well as for data generation, which

allows for multi-threading and native code compilation within Python, Lam et al. (2015), and is

especially useful for loop-based computations.
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Figure 4.2 Ackley Function (2D). The first column is a quick visualization to see

contour plots of the predicted mean over the testing samples 𝑢𝐷 ( ¯𝑠tst) on top, and the true

mean at the bottom. The second column shows the predicted �̂�𝐷 and the observed data

𝑢𝐷 from the dataset across two random snapshots inside the training bounds, within the

test set (top/bottom). The third column shows results for the samples 𝑠out, that are taken

outside the dataset bounds and have therefore more substantial uncertainties.

4.4.1 Stochastic Ackley function

As a first test case, we introduce a stochastic version of the Ackley function, a highly irregular

baseline with multiple extrema presented in Sun et al. (2019), which takes 𝑃 = 3 parameters.
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Being real-valued (𝐷 = 1) and two-dimensional in space (𝑛 = 2), it is defined as

𝑢 : IR2+𝑃 →IR (4.24)

(𝑥, 𝑦; 𝒔) ↦→ − 20 (1 + 0.1𝑠3) exp

(
−0.2(1 + 0.1𝑠2)

√
0.5(𝑥2 + 𝑦2)

)
− exp (0.5(cos(2𝜋(1 + 0.1𝑠1)𝑥) + cos(2𝜋(1 + 0.1𝑠1)𝑦)))
+ 20 + exp(0),

with the non-spatial parameters vector 𝒔 of size 𝑃 = 3, each element 𝑠𝑖 randomly sampled over

Ω𝑠𝑖 = [−1, 1], as performed by authors of Sun et al. (2019).

The 2D space domain Ω𝑥𝑦 = [−5, 5] × [−5, 5] is discretized linearly in 𝑁𝑥1
= 𝑁𝑥 = 400 and

𝑁𝑥2
= 𝑁𝑦 = 400, leading the number of DOFs to be 𝐻 = 160, 000.

With 𝑆 = 𝑁𝑆 = 500 as our default number of samples of the parameters 𝒔, and we use a Latin

Hypercube Sampling (LHS) strategy to sample each non-spatial parameter on their domain

Ω = [−1, 1] and generate the matrix of snapshots 𝑼 ∈ IR𝐻×𝑆.

After getting the reduced POD bases via (4.3–4.7) picking 𝜖 = 10−4, producing 𝐿 = 79

coefficients to be matched by half of the final layer, and generating a full set of inputs and

targets, the (80%, 20%) train/validation ratio splits it into D = {𝑿, 𝒗} of size 𝑁 = 400,

Dval = {𝑿val, 𝒗val} of size 𝑁val = 100. We generate an additional test set Dtst = {𝑿tst, 𝒗tst} of

size 𝑁tst = 300.

A fixed learning rate of 𝜂 = 0.005 is set for the Adam optimizer, as well as an L2 regularization

with the coefficient 𝜆 = 10−3. No mini-batch split is performed since our dataset is small enough

to be fully handled in memory. The training epochs count is 𝑁𝑒 = 25, 000.

The training of each model took 37 seconds, 37 seconds, 38 seconds, 38 seconds, and 38

seconds on each GPU, and the total, real-time of the parallel process was 1 minute and 2

seconds. In order to picture the random initialization of each model, here are the training losses:

L = 4.0548 × 100, 4.5826 × 100, 4.8950 × 100, 4.8916 × 100, and 3.9446 × 100, down from the

initial L0 = 2.7332 × 106, 3.1626 × 106, 2.9548 × 106, 2.8836 × 106, and 2.9711 × 106.

The overall relative errors reached were 𝑅𝐸val = 1.12% and 𝑅𝐸tst = 1.11%, for validation and

testing, respectively.
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The first column of Figure 4.2 shows two contour plots of the predicted mean across the testing

set as well as the true mean, to quickly visualize the Ackley function, its irregularity and,

its various local extrema. The second column shows two different random samples within

the same testing set with predictions and analytical values, while the third column contains

out-of-distribution cases, sampled in Ω𝑠𝑖,out
, defined as

Ω𝑠𝑖,out
= [−2,−1] ∪ [1, 2] . (4.25)

The essential thing to notice in this last column of Figure 4.2 is the two slices of parameters that

are sampled out-of-distribution, meaning that are outside of the dataset bounds. We can see that

the predicted mean, represented by the continuous blue line, is performing badly w.r.t. the red

dashed line, which represents the true values. This predicted mean would be approximately the

same as the point estimate prediction of a regular Deep Neural Network. And even if here, our

mean prediction out-of-distribution is indeed off, from the wide confidence zone defined by the

two standard deviations on the prediction, we get a warning that the model doesn’t know, and

therefore doesn’t try to make a precise claim.

4.4.2 Burgers’ equation solution

Our second test case is very different, chosen to asses the flexibility of the framework properly.

It’s a solution of the viscous Burgers’ equation, that is notoriously hard to work with for

computational methods because of its shock-forming behavior, Raissi et al. (2019a). It can take

in our case 𝑃 = 1 stochastic parameter, the fluid viscosity, denoted here as 𝑠. Being real-valued

(𝐷 = 1) and one-dimensional in space, yet time-dependent, it is defined as

𝑢 : IR2+1 → IR (4.26)

(𝑥, 𝑡; 𝑠) ↦→ �̃�(𝑥, 𝑡; 𝑠),

with the non-spatial parameters vector 𝒔 = 𝑠 of size 𝑃 = 1, and �̃�(𝑥, 𝑡; 𝑠) being an analytically

available solution of the following PDE definition, which is a case of Burgers’ equation with an

initial sine condition, as presented in Basdevant et al. (1986). The subscripts are denoting the
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partial derivatives, defining it as

𝑢𝑡 + 𝑢𝑢𝑥 − 𝑠𝑢𝑥𝑥 = 0, 𝑥 ∈ Ω𝑥 = [0, 1.5], 𝑡 ∈ Ω𝑡 = [1, 5], (4.27)

𝑢(0, 𝑡) = 𝑢(1.5, 𝑡) = 0, 1 ≤ 𝑡,

𝑢(𝑥, 1) = 𝑥

1 + exp
[

1
4𝑠 (𝑥2 − 1

4
)] , 0 < 𝑥 < 1.5.

(4.28)

There exists a directly available analytical solution according to Maleewong & Sirisup (2011),

expressed as

�̃�(𝑥, 𝑡, 𝑠) = 𝑥/𝑡
1 + (𝑡/𝑡0)1/2 exp

(
𝑥2

4𝑠𝑡

) , 1 ≤ 𝑡, (4.29)

with 𝑡0 = exp(1/8𝑠).
The 1D space domain Ω𝑥 = [0, 1.5] is discretized linearly in 𝑁𝑥 = 256, and since it’s real-valued,

the number of DOFs remains 𝐻 = 256.

With 𝑁𝑡 = 100 time-steps in the domain Ω𝑡 = [1, 5], we generate 𝑁𝑠 = 100 samples of the

parameters 𝒔 using an LHS strategy over the domain Ω𝑠 = [0.001, 0.010] and produce the matrix

of snapshots 𝑼 ∈ IR𝐻×𝑁𝑠𝑁𝑡 . This domain is chosen to be spread around the value of 𝑠 = 0.005

used in Maleewong & Sirisup (2011) and similar to 𝑠 = 0.01/𝜋 in Raissi et al. (2019a).

After getting the reduced POD bases via (4.3–4.7) and the dual-step POD approach, picking

𝜖 = 10−10 and 𝜖0 = 10−8, producing 𝐿 = 20 coefficients to be matched by half of the final layer,

and generating a full set of inputs and targets, we use our default (80%, 20%) train/validation

ratio to split it into D = {𝑿, 𝒗} of size 𝑁 = 80 ∗ 100, Dval = {𝑿val, 𝒗val} of size 𝑁val = 20 ∗ 100.

We produce an additional test set Dtst = {𝑿tst, 𝒗tst} of size 𝑁tst = 100 ∗ 100.

A fixed learning rate of 𝜂 = 0.01 is set for the Adam optimizer, as well as an L2 regularization

with the coefficient 𝜆 = 10−8. No mini-batch split is performed since our dataset remains

small enough to be fully handled in memory, even though the time dimension is considerably

increasing the total size.
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Figure 4.3 Burgers’ equation (1D, unsteady). As a quick visualization, one can see

colormaps of a random test sample of the first column, as well as the time-steps depicted

by the white lines. Then, from left to right: comparing the predicted �̂�𝐷 and the

analytical data 𝑢𝐷 from the dataset at the time-steps, and across two random snapshots

for the viscosity parameter 𝑠, respectively in and out of the training bounds, and one can

see the uncertainty increasing while exiting the training bounds

We choose a fixed learning rate of 𝜂 = 0.01 for the Adam optimizer, as well as an L2

regularization with 𝜆 = 10−8. No mini-batch split is performed. The training epochs number is

set to 𝑁𝑒 = 13, 000.

The training of each model took 52, 52, 52, 52, and 52 seconds on each GPU, and the total,

real-time of the parallel process was 1 minute and 15 seconds. In order to picture the random

initialization of each model, here are the training losses: L = −4.8198 × 100, −4.3091 × 100,

−5.1255 × 100, −5.0622 × 100, and −5.0182 × 100, down from the initial L0 = −4.7256 × 10−2,

−4.3737 × 10−2, −2.9728 × 10−2, −4.3704 × 10−2, and −5.5732 × 10−2.
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The overall relative errors reached were 𝑅𝐸val = 1.33% and 𝑅𝐸tst = 1.17%, for validation and

testing, respectively.

Figure 4.3 shows on its first column colormaps for a random test sample, with on top the

analytical solution and on the bottom the predicted solution. Then, on the second, one can

see great performances for the test predictions on the same sample at two different time-steps,

which were depicted as white lines on the first column. Finally, the last column is meant for

out-of-distribution predictions, with a sample from the domain Ωout, defined as

Ωout = [0.0005, 0.001] ∪ [0.010, 0.0105] . (4.30)

Again, this last column shows the ability of the ensembles-enhanced POD-NN framework to

show a warning when one aims for the outside of the dataset bounds, with larger confidence

zones, and therefore intentionally less precise predictions.

4.5 Flood Modeling application: the Mille-Iles river

After assessing how the Deep Ensembles version of the POD-NN model performed on various

benchmark problems with different dimensions and time-dependencies in Section 4.4, this one

will aim at applying it to real-world engineering problems: flood modeling.

4.5.1 Background

Just like wildfires or hurricanes, floods are natural phenomena that can be devastating, especially

in densely populated areas. Around the globe, they have become more and more frequent, and

ways to predict it should be found to deploy safety services and evacuate areas when needed.

The primary physical phenomenon in flooding predictions involves free surface flows and is

usually described by the Shallow Water equations for rivers and lakes, extensively described in

Toro (2001), which, in their inviscid form, are defined as follows

𝜕

𝜕𝑡

∫
Ω𝑥𝑦

𝑼 𝑑Ω𝑥𝑦 +
∫
𝜕Ω𝑥𝑦

( [𝑮 (𝑼) 𝑯(𝑼)] · 𝒏) 𝑑Γ =
∫
Ω𝑥𝑦

𝑺(𝑼) 𝑑Ω𝑥𝑦 on [0, 𝑇𝑠], (4.31)
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with 𝑇𝑠 denoting the time duration, and

𝑼 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
ℎ

ℎ𝑣𝑥

ℎ𝑣𝑦

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, 𝑮 (𝑼) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
ℎ𝑣𝑥

ℎ𝑣2
𝑥 + 1

2
𝑔ℎ2

ℎ𝑣𝑥𝑣𝑦

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, 𝑯(𝑼) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
ℎ𝑣𝑥

ℎ𝑣2
𝑦 + 1

2
𝑔ℎ2

ℎ𝑣𝑥𝑣𝑦

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

𝑺(𝑼) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
0

𝑔ℎ(𝑆0𝑥 − 𝑆 𝑓𝑥 )
𝑔ℎ(𝑆0𝑥 − 𝑆 𝑓𝑦 )

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎣
𝑆0𝑥

𝑆0𝑦

⎤⎥⎥⎥⎥⎦ = −∇𝑧,

and 𝑺 𝑓 =

⎡⎢⎢⎢⎢⎣
𝑆 𝑓𝑥

𝑆 𝑓𝑦

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
𝑚2𝑣𝑥

√
𝑣2
𝑥 + 𝑣2

𝑦

ℎ4/3

𝑚2𝑣𝑦

√
𝑣2
𝑥 + 𝑣2

𝑦

ℎ4/3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

considering the ℎ water depth, (𝑣𝑥, 𝑣𝑦) the velocity components, 𝑚 the Manning roughness, 𝑔

the gravity density, 𝑺 𝑓 the friction vector, and 𝑧 the bottom depth w.r.t. a reference level.

These equations can be discretized using finite volumes, as detailed in Toro (2001) and

Zokagoa & Soulaimani (2012b). And while we do already have decent numerical simulation

programs to make these predictions, with well-validated software like TELEMAC, Galland,

Goutal & Hervouet (1991) or CuteFlow, Zokagoa & Soulaimani (2012b), these are both

computational and time-expensive for multi query simulations as in uncertainties propagation.

Therefore, it is impossible to run them in real-time since they depend on various stochastic

parameters. The POD-NN model, enriched with uncertainty quantification via Deep Ensembles,

aims precisely at addressing this type of issue.

4.5.2 A 1D test case

We first put forward a one-dimensional test case in the Shallow Water equations application,

with two goals in mind. The first is to have a reproducible benchmark on the same equations that

will be used for flood modeling, with an analytically available solution, and, therefore, generable
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Δℎℎ

Figure 4.4 Simple representation of the water flow and main quantities before a dam

break (Δℎ > 0)

data. The second is to make sure that the solver CuteFlow performs correctly w.r.t. the analytical

solution, since in future sections, it will be our only data source.

The 1D domain Ω𝑥𝑦 = [0, 100] m is considered, with 𝑁𝑥 = 132 points, uniformly distributed.

An initial condition is considered, with two levels of water depth, 𝑠 = Δℎ denoting the difference,

that will act as our stochastic parameter in this study, with the water depth in the outflow fixed at

ℎ = 1 m. Following the initial discontinuity at 𝑡 = 0, we consider 𝑁𝑡 = 50 time-steps, separated

by Δ𝑡 = 0.1 s, in the domain Ω𝑡 = [0, 5] s. There are 𝑁𝐷 = 2 DOFs per node, the water depth ℎ

and the velocity 𝑢, leading to the total number of DOFs 𝐻 = 264.

The dataset for the training/validation D = {𝑿, 𝒗} of size 𝑁 = 40, split with the usual 80%/20%

ratio, is generated from an analytical solution sampling 𝑠 in Ω = [2, 20], presented in Wu,

Huang & Zheng (1999), as well as a testing dataset Dtst = {𝑿tst, 𝒗𝑡𝑠𝑡} of size 𝑁𝑡𝑠𝑡, with

𝒔tst = [2, 3, . . . , 20]ᵀ m. Additionally, the numerical finite volume solver CuteFlow is used to

generate corresponding test solutions, from which we also obtain 𝑁𝑡 = 50 time-steps after the

initial condition, with a 2D dedicated mesh of 25551 nodes and 50000 elements specifically

designed to represent this 1D problem in a compatible way for the solver.

The Python and TensorFlow implementation involves a topology three layers of 256 neurons

for each network of the ensemble to encompass for nonlinearities. The POD handles the water

depth ℎ, and its truncation is performed with 𝜖 = 1.10−5, producing 𝐿 = 79 coefficients to be

matched by half of the final layer. 𝑁𝑒 = 30, 000 epochs are set for training. L2 regularization is

used with a coefficient of 𝜆 = 1.10−4, while adversarial training is set to 𝜁 = 0.001.

The training of each model took 49, 50, 50, 51, and 51 seconds on each GPU, and the total,

real-time of the parallel process was 1 minute and 15 seconds, and reached the following losses
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L = −1.0993 × 100, −1.0075 × 100, −1.0105 × 100, −1.0692 × 100, and −8.4801 × 10−1, down

from the initial L0 = 1.3699× 102, 1.3085× 102, 1.3238× 102, 1.3352× 102, and 1.3545× 102,

reported to show the variance within the ensemble due to the random initialization.

The overall relative errors reached were 𝑅𝐸val = 4.46% and 𝑅𝐸tst = 4.42%, for validation and

testing, respectively.

The results are displayed in Figure 4.5 for the water depth, and Figure 4.6 for the velocity. On

both, one can see two samples, with one within the testing set, that is pictured on the first

column as a colormap for a visual purpose, and plotted for two time-steps on the second column.

The first time-step is notably the initial condition, which is very well handled by the POD

compression-expansion. One can note the black line in the second column, representing the

corresponding solution computed by the numerical solver CuteFlow, that is very close to the

analytical solution, and, therefore, validates it for later use in more complex cases.

A second out-of-distribution sample fromΩout = [20, 30] m is plotted for the same two time-steps

on the third column. The model performance within the training set is very decent considering

the nonlinearities involved, with relatively small uncertainties, while it decreases when going

out-of-distribution, as one expects it.

4.5.3 River setup

Our domain Ω𝑥𝑦 is composed of an unstructured mesh of 𝑁𝑥𝑦 = 24361 nodes, connected in

481930 triangular elements. It is represented in Figure 4.7. Each node has 𝑁val = 1 degree of

freedom, the water depth ℎ on which the POD will be performed, leading to the global number

of DOFs to be 𝐻 = 24361. It is represented in Figure 4.8.

For this first study, we will consider the time-independent case, and we have at our disposal

a dataset of 𝑆 = 180 samples for different inflow discharge (𝑄) values that we will use for

training, and one of 𝑆 = 20 that we will use for testing, with the solution computed numerically

with the software CuteFlow. They have both been randomly sampled before splitting in the

domain Ω = [800, 1200] m3/s. It is chosen to be mainly above the regular flow in the river of

𝑄0 = 780 m3/s, Zokagoa & Soulaimani (2018).

We picked a POD truncating criterion of 𝜖 = 10.10−10, producing 𝐿 = 81 coefficients to be

matched by half of the final layer, a fixed learning rate of 𝜂 = 0.003 for the Adam optimizer,



92

0 20 40 60 80 100

x [m]

0

1

2

3

4

5

t
[s
]
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Figure 4.5 1D test case for SWE, water elevation results. The first two columns show

results for a random sample in the test set, while the last column shows a random sample

taken out-of-distribution. The white lines on the color maps denote the time steps of the

last two columns. The lines 𝑢sim are computed numerically by CuteFlow, and compared

to the predicted mean �̂�𝐷 as well as the analytical value 𝑢𝐷

without L2 regularization, as well as the default Deep Ensembles activation function, ReLU. No

mini-batching is performed, i.e., the whole dataset is run through at once for each epoch. The

training epochs number is set to 𝑁𝑒 = 120, 000.

4.5.4 Results

The training of each model took 4 minutes 19 seconds, 4 minutes 20 seconds, 4 minutes 20

seconds, 4 minutes 21 seconds, and 4 minutes 21 seconds on each GPU, and the total, real-time

of the parallel process was 4 minutes and 45 seconds. Again, to show the diversity in the five

models, here are the final training losses: L = −2.2240 × 100, −3.5421 × 100, −3.5199 × 100,

−2.3894 × 100, and −3.5003 × 100, down from the initial L0 = 2.6522 × 104, 2.6075 × 104,

2.6522 × 104, 2.5357 × 104, and 2.6958 × 104.
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Figure 4.6 1D test case for SWE, velocity results. The first two columns show results

for a random sample in the test set, while the last column shows a random sample taken

out-of-distribution. The white lines on the color maps denote the time steps of the last

two columns. The lines 𝑢sim are computed numerically by CuteFlow, and compared to

the predicted mean �̂�𝐷 as well as the analytical value 𝑢𝐷

The overall relative errors reached were 𝑅𝐸val = 1.90% and 𝑅𝐸tst = 1.46%, for validation and

testing, respectively.

Figure 4.8 depicts random test predictions using the open-source visualization software Paraview,

Ahrens, Geveci & Law (2005), on two random samples for the water depth ℎ. We notice the

flooding limit, achieved by slicing at ℎ = 0.05 𝑚 of water depth—in place of 0 for stability, are

very well predicted when compared to the simulation results from CuteFlow (red line), and

one can retrieve these additional white lines, adding ±2 standard deviations on top of the mean

predictions, depicted by the blue body of water, that would define the confidence interval of

the predicted flood lines. We consider that having this probability-distribution outcome, over
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Figure 4.7 Setup for Milles-Iles river in Laval, QC, Canada. On top one can see the

bathymetry, given by the Communauté Métropolitaine de Montréal, and at the bottom lies

a portion of the triangle-based mesh, that features refinements abound the piers of a

bridge

the usual point-estimate prediction of a regular network in the POD-NN framework is a step

forward for a practical, engineering use.

Finally, to make sure that our out-of-distribution predictions weren’t just coincidences in the

previous benchmarks, see Section 4.4.1 and 4.4.2, we also sampled new parameters from the

whole Ωout ∪Ω domain, retrieved the mean across all DOFs of the predicted standard deviation,

and rendered it in Figure 4.9. We observe that uncertainties snowball as soon as we exited the

space where the model knows, validating the model, just as one could expect.
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a) View from afar of a random test sample𝑄 = 884.4 m3/s. This shows an iso-contour at ℎ = 0.05 𝑚, with its

boundary being the flooding lines. For illustration purposes, the overall predicted relative water height ℎpred

has been pictured throughout. The green boxes show the two different locations of the following closer shots

b) Random test sample with two levels of zoom, incoming flow of 𝑄 = 884.4 m3/s

c) Random test sample with two levels of zoom, incoming flow of 𝑄 = 1159.8 m3/s

Figure 4.8 POD-EnsNN application: flood modeling on the Mille-Iles river. Flooding

lines at ℎ = 0.05 𝑚 are shown on the close-up shots, with the red one for the CuteFlow

solution, and the white ones representing the end of the predicted confidence interval

±2𝜎𝐷 . The distance between the simulated value and the upper bound is measured
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Figure 4.9 POD-EnsNN on the flooding case. Visualization of the

average uncertainties for a range of inputs, with the two vertical black

lines depicting the boundaries of the training and testing scope

4.5.5 Contribution to standard uncertainty propagation

Instead of considering the domain of the sampled inflow Ω as just a dataset, this is often used

in the field as random inputs around a central, critical point for uncertainty propagation tasks,

as performed in a similar context in Zokagoa & Soulaimani (2018). In this field, the use of

a surrogate model is mandatory, since we wish to approximate the statistical moments of the

output distributions to the model, i.e., the mean 𝜇up and the standard deviation 𝜎up.

On the flood modeling problem for the Milles-Iles river, the normal inflow is estimated to be of

𝑄0 = 780 m/s. Our snapshots have been sampled uniformly in Ω = [800, 1200] m/s, targeting

a critical mean value of 𝑄crit = 1000 m/s, corresponding to an extreme flood discharge.

After having successfully trained and validated the model in Section 4.5.1, we now generate a

new set of inputs 𝑿up of size 𝑁up = 1, 000, 000 uniformly on Ω. Running the full POD-EnsNN

model, we obtain the outputs 𝑼up, with the quantity of interest being the water depth ℎ here

again. Since our model provide a local uncertainty for each sample point, we approximate the
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statistical moments using the same mixture formulas as for sample prediction (𝜇∗𝑖 , 𝜎∗𝑖 ),

𝜇up =
1

𝑁up

𝑁up∑
𝑖=1

𝜇∗𝑖 , (4.32)

𝜎2
up =

1

𝑁up

𝑁up∑
𝑖=1

(𝜎2
∗𝑖 + 𝜇2

∗𝑖 ) − 𝜇2
up. (4.33)

Additionally, we’ll keep track of the regular statistical standard deviation 𝜎ups on the means, as a

point of comparison, defined as

𝜎2
ups =

1

𝑁up

𝑁up∑
𝑖=1

(𝜇∗𝑖 − 𝜇up)2. (4.34)

The produced probabilistic flooding map is depicted in Figure 4.10. On the very top, one can

see a broad view of the flooding at ℎ = 0.05 m, with the predicted ℎmean = 𝜇up from (4.32),

depicted as a colormap throughout, with two yellow boxes locating the two chosen close-up

shots. These are displayed in the second row. On both, four lines on top of the mean blue

water level: two green lines, showcasing two bands of the standard deviation over the predicted

means only, ±2𝜎ups, and two white lines, representing two bands of a standard deviation ±2𝜎up

obtained averaging across each mean and variance predicted by the POD-EnsNN locally.

While these lines are very close throughout, as it is well represented by the second close-up shot

on the right, where the difference measured is tiny, the gap sometimes increases, for instance,

in the case of the first close-up shot, where the measured difference is much more significant.

This attests to the potential usefulness of our approach is the realm of uncertainty propagation,

effectively combining aleatoric (due to the distribution of Q) and epistemic (due to the numerical

simulator). Nonetheless, epistemic uncertainty stays relatively minor in this case since averaging

over the quite broad domain Ω mostly wipes away the predicted local variances.

4.5.6 An unsteady case: the failure of a dam

While the flooding predictions in the sense of generating flooded/non-flooded limits are a handy

tool for public safety, it seemed interesting to apply the same framework to a time-dependent
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a) View from afar of the mean over the whole predicted domain Ω. This shows an iso-contour at ℎ = 0.05 𝑚,

with its boundary being the flooding lines. For illustration purposes, the mean predicted relative water height

ℎmean has been pictured throughout. The yellow boxes show the two different locations of the following

close-up shots

b) Two close-up shots, showing differences in the uncertainty around the mean water level (in blue)

Figure 4.10 POD-EnsNN for uncertainty propagation on the Milles-Iles river. Flooding

lines at ℎ = 0.05 𝑚 are shown on the close-up shots, with the green ones showing ±2𝜎ups,

the standard deviation over each predicted mean, while the white ones represent ±2𝜎up,

the approximation over each predicted mean and variance. Distances are measured

between the mean, represented by the blue area, and each of these quantities

case: simulations result of a fictitious dam break on the same river, which is for interest also for

dams owners.

The setup involves the same Shallow Water equations, as described in Section 4.5.1. The domain

of study is a subdomain of the previous Ω𝑥𝑦, with only 𝑁𝑥𝑦 = 9734 nodes and 18412 elements,
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registering one degree of freedom per node, the water elevation 𝜂. Yet, for this case, we consider

𝑁𝑡 = 100 time-steps, after the initial 𝑡 = 0 s with Δ𝑡 = 0.1 s between each step. 𝑁𝑠 = 20 samples

are considered for the non-spatial parameter: the water difference between the inflow and the

outflow cross-sections at the moment of the dam break 𝑠 = Δ𝜂, as displayed in Figure 4.4,

sampled uniformly on Ω = [0, 3] 𝑚.

As training hyperparameters, we settled on a number of epochs 𝑁𝑒 = 70, 000, a learning rate of

0.001, an L2 regularization of 𝜆 = 0.01, and adversarial training with a 𝜁 = 0.001 coefficient.

POD was performed with 𝜖 = 1.10−8, producing 𝐿 = 52 coefficients to be matched by half of

the final layer, and the NN topology was 2 hidden layers of 140 neurons.

The training of each model took 2 minutes 23 seconds, 2 minutes 24 seconds, 2 minutes 25 seconds,

2 minutes 26 seconds, and 2 minutes 27 seconds on each GPU. The total, real time of the parallel

process was 02 minutes and 49 seconds, reaching training losses L = 4.2265×100, 3.8916×100,

4.2662 × 100, 2.7526 × 100, and 2.3032 × 100, down from the initial L0 = 1.2416 × 105,

1.0910× 105, 1.1882× 105, 1.2899× 105, and 1.2625× 105, also noted to picture the variability

in the randomly initialized networks.

The overall relative errors reached were 𝑅𝐸val = 0.06% and 𝑅𝐸tst = 0.11%, for validation and

testing, respectively.

Results are displayed in Figure 4.11, where, from top to bottom, one can see representations of

three time-steps, 𝑡 = 0 𝑠, 𝑡 = 0.5 𝑠, and 𝑡 = 2.0 𝑠. On the left, a small colormap is displayed to

comprehend the problem visually, with the investigated cross-section depicted as a white vector.

We can see discontinuity of colors on the first one, that represents a dam, and in that case, a

Δ𝜂 = 0.42 𝑚 difference in the water levels, before the artificial collapse. The two subsequent

time-steps picture the intense dynamics that follow. On the right, the cross-section is projected

at each step, and we can see a decent approximation performed by the model, considering the

high nonlinearity of the problem. It is, however, well depicted by the noticeable uncertainty

associated, obtained from (4.18), and represented by the light blue area around the predicted

blue line.
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Figure 4.11 Left: color map according to 𝜂, showing the location of our cross-section

𝑥′ (white vector). Right: plots of the water elevation on the cross-section of a random test

snapshots on three time-steps, with the prediction �̂�𝐷 , true value 𝑢𝐷 , and confidence

interval. The water in the river is flowing from right to left.
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4.6 Exploring Bayesian Neural Networks
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Figure 4.12 �̂�𝐷𝐵 (𝑿; 𝜽) ∼ N (𝝁𝑣, (𝝈𝑣)2) , a probabilistic Bayesian Neural

Network regression with a dual mean and variance output, and distributions

on the weights

The other way to get to uncertainties in probabilities is to adopt the Bayesian view, yet lately,

things have started getting better to include a fully Bayesian treatment within Deep Neural

Networks, Blundell et al. (2015), designed to be compatible with backpropagation. In this

section, we aim at implementing Bayesian Neural Networks within the POD-NN framework,

which we will refer to as POD-BNN, and compare it to the Deep Ensembles approach.

4.6.1 Overview

To address the aleatoric uncertainty, Bayesian Neural Networks can make use of the same

dual-output setting as the NNs we used earlier for Deep Ensembles, (𝜇, 𝜌), with the variance

subsequently retrieved with the softplus function 𝜎 = log(1 + exp(𝜌)).
But it’s indeed in the epistemic uncertainty treatment that things are much different. Earlier,

even though the NNs were providing us with a mean and variance, they were still deterministic,

and variability was obtained by ensembling randomly initialized models.
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On the contrary, the Bayesian treatment aims to assign distributions to the network’s weights,

and therefore have a probabilistic output by design, see Figure 4.12. In this context, one has to

make multiple predictions, instead of numerous training times, to get data on uncertainties.

Considering a dataset D = {𝑿, 𝒗}, the goal is to construct a likelihood function 𝑝(D|𝒘), with

𝒘 denoting both the weights 𝒘 and the biases 𝒃 for simplicity, so that we could achieve the

following posterior predictive distribution

𝑝(𝒗 |𝑿,D) =
∫

𝑝(𝒗 |𝑿, 𝒘)𝑝(𝒘 |D) 𝑑𝒘, (4.35)

which is known to be intractable in a NN context, due to the infinite possibilities for the weights

𝒘, leaving the posterior 𝑝(𝒘 |D) unknown as explained in Blundell et al. (2015).

There’s, however, an approximate way to compute it, using Variational Inference, first presented

by Hinton & van Camp (1993). The idea is to build up an approximation 𝑞(𝒘 |𝜽) of 𝑝(𝒘 |D),
and the goal is to minimize their Kullback-Leibler divergence, which measures the difference

between them, denoted KL(𝑞(𝒘 |𝜽), | |𝑝(𝒘 |D)) w.r.t the new parameters 𝜽 , and expressed as

KL(𝑞(𝒘 |𝜽) | |𝑝(𝒘 |D)) =
∫

𝑞(𝒘 |𝜽) log
𝑞(𝒘 |𝜽)
𝑝(𝒘 |D) 𝑑𝒘 (4.36)

= KL(𝑞(𝒘 |𝜽) | |𝑝(𝒘)) − E𝑞(𝒘 |𝜽) log 𝑝(D|𝒘) + log 𝑝(D) (4.37)

=: F (D, 𝜽) + log 𝑝(D). (4.38)

This term F (D, 𝜽) we’ve just defined is commonly known as the variational free energy, and

minimizing it w.r.t. to the weights doesn’t involve the last term log 𝑝(D), so is equivalent to the

goal of minimizing KL(𝑞(𝒘 |𝜽), | |𝑝(𝒘 |D)). Still according to Blundell et al. (2015), one can

approximate it by drawing 𝑁mc samples 𝒘 (𝑖) from our new 𝑞(𝒘 |𝜽), such as

F (D, 𝜽) ≈
𝑁∑
𝑖=1

[
log 𝑞(𝒘 (𝑖) |𝜽) − log 𝑝(𝒘 (𝑖)) − log 𝑝(D|𝒘 (𝑖))

]
:= LELBO(D, 𝜽). (4.39)

This defines our new loss function LELBO, named after the opposite of F (D, 𝜽) usually known

as the Evidence Lower Bound (ELBO).
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4.6.2 Implementation

The idea behind the work of Blundell et al. (2015) was to have a fully Bayesian treatment of

the weights while providing it in a compatible form to the usual backpropagation algorithm,

mentioned in Section 4.3. One of the blockers is the forward pass that requires gradients to be

tracked, in a way allowing their derivatives can then be backpropagated. In the 𝑗-th variational

layer, we consider the weights and the biases to be parametrized by a distribution of mean 𝜽 ( 𝑗)
𝜇

and raw variance 𝜽 ( 𝑗)
𝜌 . This setting leads the total number of trainable parameters of the network

to be twice the one in a standard NN since each 𝒘 ( 𝑗) = (𝜽 ( 𝑗)
𝜇 , 𝜽 ( 𝑗)

𝜌 ).
In the forward pass, to keep track of the gradients, each operation has to be differentiable. We,

therefore, construct a function 𝑓 (𝜽 ( 𝑗)
𝜇 , 𝜽 ( 𝑗)

𝜌 , 𝝐) = 𝜽 ( 𝑗)
𝜇 + 𝜽 ( 𝑗)

𝜌 � 𝝐 ( 𝑗) , with 𝝐 ( 𝑗) sampled from a

parameter-free normal distribution, 𝝐 ∼ N(0, 𝑰). It is known as the reparametrization trick,

Kingma & Welling (2014).

The true variance on the weights 𝜽 ( 𝑗)
𝜎 isn’t the direct parameter, but as earlier, we define it

through a softplus function, with 𝜽 ( 𝑗)
𝜎 = log(1 + exp(𝜽 ( 𝑗)

𝜌 )).
The last step is to establish the Bayesian prior on the weights, 𝑝(𝒘). While there is plenty to

choose from, whether they be hardcoded or trainable, for simplicity in this work we reuse the

Gaussian mixture proposed in Blundell et al. (2015), defined for three positive hyperparameters

𝜋0, 𝜋1, and 𝜋2, such as

𝑝(𝒘) = 𝜋0N(𝒘 |0, 𝜋2
1) + (1 − 𝜋0)N (𝒘 |0, 𝜋2

2). (4.40)

The practical implementation steps for one training epoch are summarized in Algorithm 4.3.

Predictions are made in a standard way, with the network being fed with the input data 𝑿.

However, calling it once will only trigger samples of the parameters 𝒘𝑏; therefore, no two

model calls will be identical. We hence require the use of an approximation in a simple Normal

distribution over 𝐵 different samples, using the same expressions as in Section 4.3 for the
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averaged mean 𝝁𝑣∗ and variance 𝝈𝑣∗
2 in the reduced space

𝝁𝑣∗ =
1

𝐵

𝐵∑
𝑏=1

𝝁𝑣𝒘𝑏
, (4.41)

𝝈𝑣
∗

2 =
1

𝐵

𝐵∑
𝑏=1

[(𝝈𝑣
𝒘𝑏
)2 + (𝝁𝑣𝒘𝑏

)2
] − 𝝁2

∗ . (4.42)

Algorithm 4.3 Epoch training of a BNN

1 Feed the model with the dataset D = {𝑿, 𝒗}
2 for each variational layer 1 ≤ 𝑗 ≤ 𝑑 do
3 𝝐 ∼ N(0, 𝑰)
4 𝒘 ( 𝑗) = 𝑓 (𝜽 ( 𝑗)

𝜇 , 𝜽 ( 𝑗)
𝜌 , 𝝐 ( 𝑗))

5 𝜽 ( 𝑗)
𝜎 = softplus(𝜽 ( 𝑗)

𝜌 )
6 Sample the variational posterior 𝑞(𝒘 ( 𝑗) |𝜽 ( 𝑗)) = N(𝒘 ( 𝑗) |𝜽 ( 𝑗)

𝜇 , 𝜽 ( 𝑗)
𝜎 )

7 Sample the prior 𝑝(𝒘 ( 𝑗))
8 Contribute the posterior and prior to the loss,

LELBO += log 𝑞(𝒘 ( 𝑗) |𝜽 ( 𝑗)) + log 𝑝(𝒘 ( 𝑗))
9 Perform the forward pass 𝒉( 𝑗) = 𝜙(𝒘 ( 𝑗)𝒉( 𝑗−1) + 𝒃 ( 𝑗))

10 end
11 Retrieve the outputs 𝝁𝑣,𝝈𝑣2 from the NN

12 Compute the likelihood from the ouputs, 𝑝(D|𝒘) ∼ N (𝝁𝑣,𝝈𝑣2)
13 Contribute the NLL to the loss, LELBO += − log 𝑝(D|𝒘)
14 Backpropagate the gradients

𝜕LELBO

𝜕𝜽
to update the weights

4.6.3 Setup and results

A Bayesian Neural Network approach is now applied to perform the regression and create the

surrogate model �̂�𝐷𝐵 in the POD-NN framework, and the two test cases are the Ackley Function

(2D), see Section 4.4.1, and the Flood Predictions on the Mille-Iles river, Section 4.5.1.

The same datasets D = {𝑿, 𝒗} are used on each case, and the setup remains the same. The prior

is chosen to have the parameters 𝜋0 = 0.5 and 𝜋2 = 0.1 for both cases, while we picked 𝜋1 = 4.0

for Ackley and 𝜋1 = 2.0 for the flood modeling predictions.
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Figure 4.13 Identical setup as Figure 4.2, second column samples in the scope and third

column out-of-distribution, yet with Bayesian Neural Network regression

The trainable parameters 𝜽 ( 𝑗) (weight or bias) of the 𝑗-th layer have been randomly initialized,

with

𝜽 ( 𝑗) = (𝜽 ( 𝑗)
𝜇 , 𝜽 ( 𝑗)

𝜎 ) ∼ N
(
0,

√
𝜋0𝜋

2
1
+ (1 − 𝜋)𝜋2

2
𝑰

)
. (4.43)

The results of performing the regression using Bayesian Neural Networks are showcased in

Figure 4.13 and 4.14, and are very similar to the one conducted in Section 4.4, yet only requires

one training time.

The Ackley function case took 5 minutes and 24 seconds on a standard desktop CPU to reach a

relative validation error of 𝑅𝐸val = 0.04% after 𝑁𝑒 = 70, 000 training epochs, and 𝑅𝐸tst = 0.03%

for the test error. One can see that the slices shown in Figure 4.13 are very similar to the ones

performed by the POD-EnsNN approach in Figure 4.2, with a similar proper fitting of the

predicted mean, and a comparable uncertainty handling, hence validating the framework.
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a) View from afar of a random test sample𝑄 = 884.4 m3/s. This shows an iso-contour at ℎ = 0.05 𝑚, with its

boundary being the flooding lines. For illustration purposes, the overall predicted relative water height ℎpred

has been pictured throughout. The green boxes show the two different locations of the following closer shots

b) Random test sample with two levels of zoom, incoming flow of 𝑄 = 884.4 m3/s

c) Random test sample with two levels of zoom, incoming flow of 𝑄 = 1159.8 m3/s

Figure 4.14 POD-BNN application: flood modeling on the Mille-Iles river. Flooding

lines at ℎ = 0.05 𝑚 are shown on the close-up shots, with the red one for the CuteFlow

solution, and the white ones representing the end of the predicted confidence interval

±2𝜎𝐷 . The distance between the simulated value and the upper bound is measured
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For the flood modeling case, the application of foremost interest, the training took 11 minutes

and 36 seconds on a standard desktop CPU to reach a relative validation error of 𝑅𝐸val = 0.25%

after 𝑁𝑒 = 200, 000 training epochs, and 𝑅𝐸tst = 0.26% as well for the test error. These

computing times are similar to the ensembles approach in a linear training setting. However,

when parallelized as we did in Section 4.5.1, ensembles were faster by a factor of at least 5.

Figure 4.14 shows similar probabilistic flooding lines as Figure 4.8, yet the Bayesian approach

seems to produce larger confidence intervals, as it is depicted quantitatively by the measured

distance on the second column between the CuteFlow solution and the upper bound of the

confidence interval.

As for the POD-EnsNN, we inspected the uncertainties predicted out-of-distribution, and the

results are displayed in Figure 4.15. Nonetheless, one can note that the increase isn’t as drastic

as for the Deep Ensembles, and our observations were that the prior parameters had a direct

impact on this matter.

Documented source code will be made available at https://github.com/pierremtb/POD-UQNN,

on the POD-BNN branch.

Additionally, quality training was harder to achieve for Bayesian Neural Networks compared to

Deep Ensembles, since the convergence itself greatly depended in our experiments on numerical

stability issues such as the coefficients to be inserted before or in the softplus function when

ensuring positivity. The probabilistic layers and their uncertainty prediction was also dependent

on the number of training epochs, with cases of uncertainties dropping when more epochs

were performed. More practical details and handy insights in the implementation of BNN are

discussed in Keydana (2019), with examples in the R programming language.

4.7 Wrapping up

The excellent regression power of Deep Neural Networks is an asset to play along with Proper

Orthogonal Decomposition to build reduced-order models. Through 1D and 2D benchmarks,

we’ve shown that the simplicity of the approach didn’t prevent us from getting great results in terms

of accuracy, and the training times were very decent, even on regular computers—time-dependent

problems, however, require the use of GPUs to speed up training.
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It has also been shown that while the standard NNs were rapidly predicting inaccurate quantities

when brought out of the training scope, adopting an uncertainty-enabled approach kept the true

values within the confidence interval, and having it growing larger makes up for a great warning.

Bayesian Neural Networks, as introduced by Blundell et al. (2015), have also been explored, as

a way to bundle all the uncertainty quantification within the model, hence avoiding ensembling.

Future work will focus on stabilizing the Bayesian Neural Networks approach, which still

requires a much finer tuning compared to the flexibility of Deep Ensembles, and applying it both

to refined meshes, that will require the POD step to be performed on a subdomain basis to avoid

memory issues, to better assess the performance of our uncertainties-aware POD-NN framework

in a more complicated, real-life engineering problem. The work being done in Latent-Variable

Models, such as Zhu & Zabaras (2018), are also a different way to think about reduced-order

modeling and deserves more in-depth exploration.

Flood modeling itself in the context of the Milles-Iles river and beyond provides many future

exploration directions since various other parameters have a direct influence on the results, such

as the Manning roughness of the bed, as well as its elevation, also complicated by measurement

uncertainties.



CONCLUSION AND RECOMMENDATIONS

The last decade has seen tremendous growth in the Machine Learning and Artificial Intelligence

power, and it’s becoming a game-changer in more and more fields. The tools are becoming

rock-solid, as is TensorFlow, Abadi (2016), to mention only one, and while they have the potential

to revolutionize more and more industries, they are nowadays a must-have for anyone interested

in computational science.

While we started off investigating the brand new field of Physics-Informed Machine Learning

which had many breakthroughs in the use of specific network training tools like automatic

differentiation for older problems and therefore removing the need for numerical differentiation,

Raissi et al. (2019a), we had to pivot away to stay purely non-intrusive, because the very nature

of this branch has to do with encoding the laws of physics in the model definition, which

mismatched with our purpose.

In this work, we built upon the work of other pioneers in the mixing of Machine Leaning

techniques with more conventional Fluid Mechanics simulation methods. The POD-NN

framework first presented in Hesthaven & Ubbiali (2018) and extended in Wang et al. (2019) is

leveraging the tremendous nonlinear, complex regression power of Deep Neural Networks to

make sense of and complete the results of the well-known order-reducing Proper Orthogonal

Decomposition method.

After properly defining its implementation and testing it on both steady and time-dependent

benchmark problems, we tried to implement novel probabilistic ideas to make it aware of

uncertainties and fulfill our objective of having a model that knows when it doesn’t. While we

first settled on Deep Ensembles from Lakshminarayanan et al. (2017) for our first attempt in

building an uncertainties-aware version of the POD-NN framework, further exploration has

been performed in the realm of Bayesian Neural Networks, in the frame of Blundell et al. (2015).

They, however, proved to be very tricky to train and incredibly sensible to hyperparameters and

would require more in-depth work to be fully implemented in a reliable way for our purpose.
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The Milles-Iles river located in Laval, QC, Canada, has been our playground for multiple

use cases of the two different approaches presented in this work, the POD-EnsNN model

implementing Deep Ensembles, and POD-BNN model featuring Bayesian Neural Networks. We

started from a simple one-dimensional shock-wave test case problem to both attest to the solver

we’ve later used a source of data, CuteFlow, and our statistical approach. The problem has been

extended to a dam break scenario on the real river topology, as well as probabilistic flooding

map generation. This is where the approach shines since our models are capable of producing

flooding lines within a predicted confidence interval, either in a local prediction manner, such

as a real-time context where these lines need to be computed for a new parameter, or in a

more global, uncertainty propagation case, where we think of an unknown extreme and critical

inflow, for which one wishes to assess the consequences of profound changes in this quantity.

And instead of computing the statistical moments of the output distribution from the point

estimates of a surrogate model such as a standard Neural Network, our model is considering

the contribution of each local uncertainty and, therefore, producing a more extensive and safer

confidence area around the predicted flooding line.

Additional environmental parameters should be considered and investigated in the approach

to build even more realistic models, such as the bed elevation or roughness, from which only

uncertainty-prone measurements are available. And for such large scale scenarii, the curse of

dimensionality, as mentioned in Chapter 1, may eventually play a role and will have to be taken

into consideration.

Other Machine Learning methods such as Latent-Variable Models, reviewed in Li & Chen (2016),

or Bayesian Encoder-Decoders from Zhu & Zabaras (2018) are two future directions to work with,

that also would, in a sense, be conceptually similar to bundling our compression-decompression

flow inside the model. Very recently, work has also been performed on implementing the

Bayesian view in Physics Informed Neural Networks, Yang, Meng & Karniadakis (2020).

Bridging the gap between POD-based approaches and the novel physics-informed methods, or
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physics-constrained, as lately introduced in Magiera, Ray, Hesthaven & Rohde (2020), would

also represent a big step forward.
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