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Pilote de Grille pour Dispositifs GaN à Demi-pont Reconfigurable à Usages Multiples de
Haute Tension en Technologie SOI CMOS HT 0.18-μm

Nam LY

RÉSUMÉ

En raison de vitesses de commutation plus élevées, de faible résistance à l’état passant et de

taille miniaturisée en comparaison avec des contreparties en silicium, l’utilisation de transistors

de puissance à base de nitrure de gallium (GaN) est de plus en plus courante dans les circuits de

puissances modernes. Avec des figures de mérite supérieures, les convertisseurs de puissance

utilisant des dispositifs GaN peuvent fonctionner à des fréquences de commutation élevées.

Cela se traduit par des dimensions plus petites, une efficacité supérieure et une réduction du

coût du système. La redondance et la reconfigurabilité sont souhaitables dans les applications

critiques pour la sécurité telles que les systèmes automobiles et aérospatiaux. Ces derniers

fonctionnent dans des conditions difficiles nécessitant un niveau élevé de flexibilité et une grande

fiabilité. Ce mémoire présente un circuit de pilotage de grille pour un tel système d’alimentation

reconfigurable.

Destiné à être au coeur d’un système d’alimentation haute tension (HT) programmable et flexible,

le pilote de grille présenté dans ce travail est capable de commander une large gamme de

dispositifs GaN de différentes tailles. Cela est accompli en ayant un mécanisme configurable de

vitesse de mis-à-on et mis-à-off. Cette fonctionnalité élimine le besoin de résistances de grille

discrètes. Elle permet donc des conceptions de circuits plus denses, telles que l’intégration de

système dans un boîtier (SiP - system-in-package). Dans un tel système les pilotes de grille, les

dispositifs GaN et d’autres circuits intégrés de commande sont placés sur le même interposeur.

La vitesse configurable de mis-à-on et de mis-à-off reconfigurable permet également de réduire

les interférences électromagnétiques (EMI). Cela est important dans les applications critiques

pour la sécurité. Une structure uniforme d’unités de commutation en demi-pont est proposée.

Cette dernière permet une reconfigurabilité du fonctionnement du système avec une variété

de topologies possibles à l’aide d’un grand nombre de cellules de commutation. Le pilote de

grille exige un circuit de décalage de niveau de 200 V intégré. Ce circuit utilise une technique

d’annulation de bruit en mode commun, ayant fait l’objet d’une étude approfondie. En utilisant

cette technique dans une technologie HT SOI (silicium sur isolant), une immunité à une variation

de bruit (CMTI) de 80 V/ns est obtenue. Le pilote de grille a un temps mort configurable allant

de 5 ns à 60 ns. Ce temps mort configurable minimise les pertes dues à la conduction par

mécanisme de «diode de corps» des transistors GaN pendant la période de conduction en roue

libre pour différents profils de charge. Toutes les configurations sont programmées à travers un

registre à décalage.

Le circuit de pilotage de grille a été fabriqué avec le procédé SOI de 200-V 0,18-μm (XFAB

XT018). Les résultats expérimentaux montrent que la puce peut piloter les transistors GaN ciblés

de la plus petite à la plus grande taille aux vitesses de mis-à-on et mis-à-off souhaitées. Une

vitesse de 1,46 / 1,18 ns de temps de montée / descente est atteinte. Le temps mort mesuré est de
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4,5 ns à 58 ns avec une tension d’entrée jusqu’à 86 V. Ces paramètres peuvent être reconfigurés

à-chaud (on-the-fly) pendant que le circuit est en train de commuter à une fréquence jusqu’à 20

MHz. Ce travail contribue à l’avancement de la conception de pilotes de grille universels, en

particulier pour les transistors GaN, et aux systèmes de puissance reconfigurables.

Mots-clés: Aérospatiale, CMOS, décalage de niveau, demi-pont, GaN, pilote de grille,

reconfigurable



A High-Voltage Multi-purpose On-the-fly Reconfigurable Half-bridge Gate Driver for
GaN HEMTs in 0.18-μm HV SOI CMOS Technology
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ABSTRACT

Nowadays, the use of Gallium Nitride (GaN) power transistors in power electronics is common,

due to higher switching speeds, lower on-resistance and smaller size compared to silicon

counterparts. With superior figures of merit, power converters utilizing GaN devices can

operate at high switching frequencies, which translates into smaller size, higher efficiency and

lower system cost. Redundancy and reconfigurability are highly desirable for safety-critical

applications such as automotive and aerospace systems that operate under harsh conditions and

require a high degree of flexibility together with high reliability. This thesis presents a gate

driver for such a reconfigurable power system.

Intended to be the core design of a programmable and flexible high-voltage (HV) power

system, the gate driver in this work is capable of driving a wide range of GaN devices with

different sizes by having independently configurable turn-on and turn-off resistance paths. This

feature eliminates the need for discrete gate resistors and allows for higher density designs,

such as System-in-Package integration (SiP) where the gate drivers, GaN devices and other

control integrated circuits are placed on the same interposer. Reconfigurable driving strength

also allows for electromagnetic interference (EMI) reduction, which is important in safety-

critical applications. A uniform structure of half-bridge switching units is proposed, enabling

reconfigurability in the operation of the system with a variety of possible topologies, out of

a large array of switching cells. The gate driver requires a built-in 200-V level shifter, with

common-mode noise cancellation technique, thoroughly investigated and migrated to HV SOI

technology, which is immune against a 80-V/ns slew rate of fast switching GaN devices despite

excessive parasitics in the process and the packaging technique employed. The gate driver has a

configurable dead-time ranging from 5 ns to 60 ns that minimizes loss due to so-called “body

diode” conduction of the GaN FETs during freewheeling for different load profiles. All the

configurations are set via shift registers.

The gate driver has been fabricated in a 200-V 0.18-μm silicon-on-insulator (SOI) process

(XFAB XT018). Measurement results show that the chip can drive targeted GaN HEMTs from

smallest to largest size at the desired turn-on and turn-off speeds, as fast as 1.46/1.18 ns of

rise/fall-time. The measured dead-time is from 4.5 ns to 58 ns with an input voltage up to

86 V. The parameters can be reconfigured on-the-fly at a pulse width modulation switching

frequency up to 20 MHz. This work contributes to the advancement of universal gate driver

design, especially for GaN transistors, and toward reconfigurable power systems.

Keywords: Aerospace, CMOS, GaN, gate driver, half-bridge, level shifter, reconfigurable
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INTRODUCTION

Motivation

In 72 years since the first transistor came to life (Riordan, 2004) and more than 60 years

of integrated circuit (IC) history (Moore, 2006), the computer has transformed from house

form-factor into palm size. That has been a fantastic time where all aspects of society have

been impacted with the modernization thanks to these two moments in history. Processing and

communication systems have become more and more sophisticated, especially in aerospace and

automotive applications. In safety-critical applications, such as fly-by-wire and actuator control

in aircraft, some parts are duplicated, triplicated or even quadrupled according to desired fault

probability (Patton, 1991). The redundancy obviously increases system cost, size and weight.

More functionalities and features implemented demand higher integration to diminish or at least

retain system size.

a) Power SiP (Lee et al., 2002) b) Isolated power transfer SiP

(Lee et al., 2002)

Figure 0.1 Power SiP in the literature
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Power electronic circuits, occupying a large portion of the volume of a power supply, have

been partially shrunk by introducing power semiconductor modules (Lee et al., 2002). Other

integrated components such as inductors, transformers, capacitors and control circuits require

each a dedicated technology (Thomas et al., 2018; Zhuo et al., 2019; Jia & Gu, 2018; Wang et al.,

2018). The sub-system integration thus leads to a heterogeneous system or system-in-package

(SiP) as illustrated in Figure 0.1.

Nowadays, wide bandgap (WBG) transistors are commonly used in power electronics due to

superior figures of merit (FOM) which exceed the electrical boundary of silicon counterparts

(Millán et al., 2014). Furthermore, the reliability of silicon carbide (SiC) and gallium nitride

(GaN) devices, the two mature WBG technologies, has been significantly improved over the

last few years (Bindra, 2015b). GaN-based devices are suitable for 600-V range while SiC

transistors are the candidates for kV range applications (Bindra, 2015a). These reasons make

GaN high electron mobility transistor (HEMT) the best candidate as the power switch for a

<200-V configurable power input/output system (CPIOS) (Figure 0.2b) for, but not limited to,

aerospace applications. This CPIOS aims at shrinking overall system volume by replacing bulky

power electronic parts with multiple configurable power SiPs (Figure 0.2c). Smaller system size

relaxes the physical constraints associated with redundancy.

Towards the Reconfigurable Power System

As an important part of the CPIO-SiP, the gate driver in this work is designed to be universal,

i.e. capable of driving a range of commercial bare-die GaN devices of different sizes (Figure

0.2d) without the need of hardware change or external gate resistor. Thus, it can be used

with appropriate GaN devices per output electrical specification for the optimum SiP size and

efficiency. The gate driver only needs to be placed close to the GaN transistors that it drives and

the settings are handled by the configuration/status handler (CSH). The gate driver can drive a

single GaN device or two of them in half-bridge topology with a configurable dead-time (DT).
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Figure 0.2 Redundancy in automotive applications, GaN devices are from EPC

In half-bridge configuration, the gate driver is robust against the high dV/dt slew rate of the

switching (SW) node.

Contributions to Research

• The design, tape-out and testing of a versatile gate driver for GaN half-bridge (1–5.3 nC gate

charge) with configurable speeds and dead-time with 226 V/ns CMTI.

• IEEE Publication:

N. Ly, N. Aimaier, A. H. Alameh, Y. Blaquière, G. Cowan and N. G. Constantin (2020). A High 
Voltage Multi-Purpose On-the-fly Reconfigurable Half-Bridge Gate Driver for GaN 
HEMTs in 0.18-μm HV SOI CMOS Technology. 2020 18th IEEE International New 
Circuits and Systems Conference (NEWCAS). (ACCEPTED) 
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Overview of This Thesis

This thesis consists of four chapters. Chapter 1 is an overview of gate driver concept, wide

bandgap semiconductors and challenges of driving GaN transistors. A literature review of gate

driver for GaN devices is discussed in Chapter 2. The design and simulation of the gate driver is

outlined in Chapter 3 and its performance is examined and reported in Chapter 4.



CHAPTER 1

BACKGROUND

1.1 Introduction

Before discussing the main topic, the gate driver design, it is important to have a relevant

background. This chapter gives an overview of the concept of DC/DC converter, gate driver,

wide bandgap semiconductors and the challenges of driving GaN transistors.

1.2 Fundamentals of DC/DC converter

DC to DC converters are ubiquitous, from consumer electronics to electric vehicles. Such

electronic devices often have multiple sub-circuits with their own supply level requirements

different from the main input power which is either a built-in battery or an external supply. The

supply of each sub-circuit can be either lower or higher than the main supply rail. Therefore,

there are a lot of different types and topologies of DC/DC converter. They can be categorized

into two main types: isolated and non-isolated.

Table 1.1 Non-isolated DC/DC converter topologies comparison

Category Topology Property
Step-down Buck |Vout | < |Vin |, same polarity

Step-up Boost |Vout | > |Vin |, same polarity

Step-up/down

(|Vout | can be

higher or lower

than |Vin |)

Buck-Boost Vout < 0, simple structure & control

Ćuk Vout < 0, low input current ripple

SEPIC Vout > 0, low input current ripple

Zeta Vout > 0, high input current ripple

Four-switch buck-Boost Vout > 0, simple structure, complex control

The isolated ones, as the name suggests, have their output isolated from the input with transformers.

The benefits of this type are safety, noise isolation and floating output which are useful in some

applications. However, the drawbacks of isolated DC/DC converters are big size, high cost and

low efficiency. In the context of CPIO-SiP project, non-isolated type is preferable thanks to
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its higher efficiency, lower cost due to low number of components, and especially smaller size

that favours high density designs. Table 1.1 details the typical non-isolated DC/DC converter

topologies which are depicted in Figure 1.1.
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Figure 1.1 Typical non-isolated DC/DC converter topologies

In order to support the topology reconfigurability in CPIO-SiP, the half-bridge structure is chosen

as the switching unit (SU). One SU can operate as either synchronous buck or synchronous boost

typology. Two SUs can be combined to form a four-switch buck-boost as outlined in Figure 1.2.

The power router can be realized using MEMS (Micro Electro-Mechanical System) switches.

These MEMS switches do not need to switch fast but they must support high current in on-state

and high voltage in off-state.
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This solution has below advantages:

1. Uniform structure,

2. Scalable,

3. Covering both step-down and step-up with buck, boost and buck-boost topology.

VoutVin

Rload

Vout

Vin

Rload

Controller Power 
router

. . .

(a) Switching unit

(b) Buck configuration

(c) Buck-Boost configuration

(d) Concept of power SiP

(SU)

Figure 1.2 Switching unit and power SiP concept

In half-bridge operation, if high-side (HS) and low-side (LS) transistors turn on at the same

time, they will form a low impedance path which shorts out power rail to ground. This is

called shoot-through or cross-conduction catastrophe which causes the power devices over heat

resulting in reliability degradation or even permanent damage. Therefore, this incident must

be avoided. To prevent this, there should be time margin from the moment one transistor is

off to the moment the other transistor is ON. This time margin is called dead-time (DT) and

described in Figure 1.3. Depending on applications and electrical specifications, DT can range

from nanoseconds to milliseconds.
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LS device
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off on

on off

HS-to-LS DTLS-to-HS DT

VGS-HS
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off on

on off

HS-to-LS DT

Figure 1.3 Dead-time in half-bridge operation

1.3 Why Gate Driver?

Before the 1980s, the world of solid-state circuits witnessed the golden era of bipolar transistors

(BJT) after they had replaced the vacuum tubes in radio and television. The power BJTs were

robust but had a low current gain (beta) of <10 (White, 2018). Thus, a 10-A on-state requires at

least 1-A continuous base current. Furthermore, the turn-off of BJTs demands a negative base

current to remove all base-emitter charge. The fast turn-off hence needs a large negative current.

There had been works addressing this issue such as Baker clamp and other feedback techniques.

Since the 1980s, the MOSFETs had become more mature to replace the BTJs in power supplies

as they have fast switching speed and required voltage drive instead of "base drive" current. In

contrast to BJTs, MOSFETs do not require power input to maintain an ON or OFF-state. The

gate capacitor, formed by the gate terminal, oxide layer and the active region, must be charged or

discharged to switch the MOSFETs. The gate capacitor has to be charged to a certain required

voltage, so-called threshold voltage (Vth), for the MOSFET to be ON. Similarly, this charge
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must be depleted to turn the transistor off. When switching, MOSFETs do not instantly transit

between the non-conducting and the conducting state. In fact, the transition time is inversely

proportional to the charge and discharge speed of the gate capacitor, the typical range is from

nanoseconds to milliseconds depending on power ratings and applications.

Let’s examine an n-channel MOSFET driving a resistor in Figure 1.4. For simplicity, let’s

consider this an ideal MOSFET with zero on-state resistance. The applied voltage VG to the gate

rises from 0 V to surpass Vth to turn it ON. At t1, when VG equals Vth, the transistor starts to

conduct and the drain current ID starts to rise from 0 A while VD starts to fall from Vin. At t2,

when VD reaches 0 V, ID reaches it max value. The period [t1, t2] is called turn-on time of the

MOSFET. During this time interval, the MOSFET consumes an energy (Eturn−on) as calculated

in Equation 1.1. Since Vin and R are constant in the equation, the turn-on energy increases with

ton. Therefore, faster turn-on results in lower switching loss. During turn-off transition, the

MOSFET also exhibits a similar switching loss that depends on to f f .

Vin

VG

R ID
VD

time

VD

ID

VG

t1 t2

Vth

ton

Figure 1.4 The turn-on of a MOSFET driving a resistor
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Eturn−on =

∫ t2

t1
Vd(t) · Id(t) · dt

=
1

6
· Vd(max) · Id(max) · (t2 − t1)

=
1

6
·

V2
in

R
· ton

(1.1)

In order to control the ON and OFF interval of MOSFETs, a new class of circuit was born: Gate

driver. A gate driver usually refers to a power amplifier that gets a signal from a controller

(e.g. MCU or FPGA) and accordingly drives the gate of a power MOSFET, IGBT, SiC or GaN

transistor.

1.4 Wide Bandgap Semiconductor

For over thirty years, innovations in power MOSFET technology and circuit topology have

contributed to the improvement of power management efficiency and cost along with the

increasing need for electrical power in human life. In the 21st century, the rate of improvement

has slowed since the Si power MOSFET approaches its theoretical bounds. Hence, WBG power

semiconductors have become gradually popular thanks to their superior characteristics versus Si

counterparts.

Table 1.2 identifies the key electrical properties of three major semiconductor materials of the

power electronics market.

Table 1.2 Comparison of material properties

Taken from Lidow et al. (2015)

Parameter Si GaN SiC
Bandgap (Eg) eV 1.12 3.39 3.26

Critical Field (Ecrit) MV/cm 0.23 3.3 2.2

Electron Mobility (μn) cm2/V.s 1400 1500 950

Permittivity (εr) 11.8 9 9.7

Thermal Conductivity (λ) W/cm.K 1.5 1.3 3.8
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There are five key characteristics of a power device utilized in commercial power converters:

conduction efficiency, switching efficiency, breakdown voltage, size and cost. The following

sections will discuss the material characteristics and their relationship to the fore-mentioned

power device characteristics in greater detail.

1.4.1 Bandgap (Eg)

The semiconductor bandgap refers to the chemical bonds strength between the atoms in the

lattice. It is more difficult for an electron to jump from an energy level to another in wider

bandgap materials. Therefore, higher bandgap devices exhibit lower leakage currents, higher

operating temperatures.

1.4.2 Critical field (Ecrit )

Critical electric field is defined as the maximum field in one-sided junction at the onset of

avalanche breakdown and is proportional to chemical bonds strength. Wider bandgap results in

higher critical field and higher breakdown voltage (VBD).

1.4.3 On-resistance (Ron )

The theoretical area-specific Ron of a field-effect transistor can be calculated as follow (Lidow

et al., 2015):

Ron =
4 · V2

BD

μn · ε0 · εr · E3
crit

[Ω · mm2] (1.2)

Where ε0 is the permittivity of a vacuum measured in farads per meter (8.854 · 10−12 F/m).

Equation 1.2 can be plotted for the ideal semiconductor materials in Figure 1.5 for Si, SiC and

GaN. GaN appears to yield the lowest Ron which translates into lowest conduction loss in power

converters.
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Figure 1.5 Theoretical Ron vs. VBD
Taken from Lidow et al. (2015)

Real devices do not have ideal structures, so they lie on the top part of their material limit line.

It took more than thirty years in case of Si MOSFETs for the development, improvement and

diminution of the gap from their theoretical limit (Lidow et al., 2015).

1.4.4 Commercial GaN HEMTs

There are two types of GaN HEMT: depletion-mode (d-mode) and enhancement-mode (e-mode).

D-mode is normal-on and requires a negative VGS to turn off. This requirement makes it ill-suited

to DC/DC converters with the obvious risk of shoot-through current in half-bridges upon power

up. In contrast, e-mode type is normally-off and has the same behaviour as n-channel MOSFETs,

so this type is widely adopted. For this reason, e-mode GaN is in the scope of this thesis.

At the time this thesis is being written, there are many semiconductor companies showing their

interest in GaN discrete components. Some of them have their products available on the market.

The most emerging vendors are EPC, GaN systems, Infineon, Panasonic and VisIC. there are also

various manufacturers doing research on GaN discrete device, such as HRL, Navitas, Exagan,

Powdec, Sanken, etc.
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Table 1.3 Commercial typical e-mode GaN discrete devices

Vendor Part # VDS−max ID−max Ron−max QG−typ QOSS−typ Size mm
EPC2036 100 V 1.7 A 73 mΩ 0.7 nC 3.9 nC 0.9 × 0.9

EPC2052 100 V 8.2 A 13.5 mΩ 3.6 nC 13 nC 1.5 × 1.5

EPC EPC2016C 100 V 18 A 16 mΩ 3.4 nC 16 nC 2.1 × 1.6

EPC2012C 200 V 5.0 A 100 mΩ 1.0 nC 10 nC 1.7 × 0.9

EPC2019 200 V 8.5 A 50 mΩ 1.8 nC 18 nC 2.77 × 0.95

EPC2010C 200 V 22 A 25 mΩ 3.7 nC 40 nC 3.6 × 1.6

GaN GS-065-004 650 V 3.5 A 500 mΩ 0.7 nC 7.3 nC 5.0 × 6.0

systems GS-065-011 650 V 11 A 150 mΩ 2.0 nC 20 nC 5.0 × 6.0

Pana PGA26E34H 600 V 9.4 A 340 mΩ 1.0 nC 8.5 nC 4.0 × 6.0

sonic PGA26E17B 600 V 15 A 175 mΩ 2.0 nC 17 nC 8.0 × 8.0

Infineon IGLD60R190 600 V 10 A 190 mΩ 3.2 nC 16 nC 8.0 × 8.0

VisIC V22N65A 650 V 80 A 22 mΩ 41 nC 171 nC 18.6 × 15.6

Table 1.3 lists some GaN HEMTs that are available on the market. While most of the vendors

make devices with the conventional package, Dual Flat No-lead (DFN), EPC and VisIC have

their own unique footprint. VisIC parts support very high power whereas EPC ones favour lower

power with higher density designs. Table 1.4 shows typical footprint options that are available

on the market.

1.5 GaN Transistors - Attributes & Challenges

Although e-mode GaN HEMTs have characteristics similar to n-channel MOSFETs, there are

unique features of GaN HEMTs that circuit designers should understand to best control these

fast switching transistors. The characteristics and associated challenges are discussed in the this

section, focusing on the half-bridge topology which is the most commonly used topology in

power electronics.

1.5.1 Gate charge

Like nMOS, the e-mode GaN HEMTs are controlled by injecting or removing a required amount

of charge from the gate. Figure 1.6a demonstrates a turn-on switching of a GaN transistor with

an inductive load. This turn-on process consists of four intervals: (t1) the charge needed to raise
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Table 1.4 Commercial typical e-mode GaN footprints

Vendor Footprint Figure

EPC Bare-die
0.9x0.9 mm

GaN systems DFN 5.0x6.0 mm

Panasonic DFN 8.0x8.0 mm

Infineon DFN 8.0x8.0 mm

VisIC Custom 18.6x15.6 mm

the gate to Vth, (t2) the charge required to complete the current rise time and for the gate to reach

Vplateau, (t3) the charge required to complete the voltage fall time, and (t4) the charge required to

bring the gate to the desired steady-state voltage. Figure 1.6b depicts EPC2012C gate charge

curve with various components that are defined in Table 1.5. These gate charge components

correspond to above four time intervals (t1, t2, t3 and t4).

With the same gate driving circuit, a FET with smaller gate charge should have faster switching

time compared to the one with higher gate charge, which means lower switching loss.
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Vin

VG

L
ID

VD

time

VD ID

VG

t1

Vth

t2 t3 t4

IL

Switching loss

Vth = 1.4 V

Vplateau
QGS1

QGS2

QGS QGD

QG

b. Gate charge of EPC2012Ca. Switching with an inductive load

Figure 1.6 An e-mode GaN FET driving an inductive load and different gate charge

components of EPC2012C

Table 1.5 Gate charge components

Gate charge
component

Definition

QGS1 Charge required to increase gate voltage from zero to Vth of the device.

QGS2 Charge required to commute the device current.

QGS QGS1 +QGS2

QGD Charge required to commute the device voltage, at which point the device

enters the linear region

QG Total gate charge (QG = QGS +QGD).

One of the FOMs commonly used to compare MOSFETs is the product Ron×QG, smaller being

better. This FOM can also be used to compare Si and GaN technologies, as plotted in Figure 1.7.

First-generation GaN devices have at least 3x better FOM for the same VDS rating, which makes

them switch much faster. This, however can translate into severe ringings at switching nodes

with parasitics. Therefore, higher level (PCB or SiP) design should have optimized parasitics.
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Figure 1.7 On-state resistance vs. total gate charge comparison for Si and GaN power

devices showing (a) 40 V and 200 V, and (b) 100 V and 600 V devices

Taken from Lidow et al. (2015)

1.5.2 Gate drive voltage

Different technologies and different manufacturers have different maximum ratings. For e-mode

GaN, such as the EPC2012C, the maximum VGS is +6 V/-4 V. Exceeding this limit should be

avoided, or the device will be damaged. For EPC2012C, the device Ron is specified in the

datasheet at a recommended 5 V VGS , which is 1 V below the absolute maximum rating. With

very fast switching speed, care must be taken to prevent overshoot that may periodically bring

VGS above 6 V.

Figure 1.8 plots EPC2012C Ron across its VGS at 3 A of drain current for the two temperature

points: 25◦C and 125◦C. The rectangular dotted box in the figure marks the safe driving voltage

range without significantly increasing its on-state resistance. This voltage range can be as low

as 4 V. EPC also recommends keeping VGS−on below 5.25 V to ensure a safe margin from 6 V.

This requirement makes the gate driver design for GaN challenging due to tight VGS tolerance in

comparison with 6-10 V VGS−on and ±20 V VGS−max of Si power transistors.



17

Figure 1.8 Ron vs. VGS of EPC2012C taken from its datasheet

1.5.3 Reverse conduction

In a transistor’s physical structure, its body diode provides a path whenever reverse current is

needed. However, in a HEMT’s physical structure, there is no such p-n junction. The mechanism

of reverse conduction is completely different. The drain and source are symmetrical as depicted

in Figure 1.9. When the GaN device is in off-state (shorted gate-source as shown in Figure 1.9b),

if the gate-drain voltage is higher than Vth, it will conduct current from source (virtual drain) to

drain (virtual source) in a diode-connected fashion. The reverse voltage, VSD, in this situation is

higher than Vth, ranging from 1 to 2 V. This value is about double the one of MOSFET body

diode.

1.5.4 High-side driver supply

With half-bridge topology, the HS gate driver requires a floating supply. The simplest solution for

this is using a bootstrap capacitor and a diode with a high reverse blocking voltage as illustrated

in Figure 1.10. Decoupling capacitor Cboot , the bootstrap capacitor, acts as the energy storage

for the HS logic circuitry supply.

At power-up, Cboot needs to be charged to VDD value for the HS buffer to operate properly. This

can only be done by turning on the LS GaN device to ground VSW . The supply VDD then charges
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Figure 1.9 GaN reverse conduction

Taken from Lidow et al. (2015)
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current

Cboot charge 
current

Figure 1.10 Bootstrap circuit in half-bridge gate driver

Cboot via Dboot . When HS buffer is turned on, Cboot is isolated from VDD by Dboot and acts as

the floating supply for the HS circuit.
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Practically, Cboot is charged to VDD minus the voltage drop across Dboot . This value is apparently

lower than VDD. However, when the half-bridge operates with a certain load current at the output,

VSW can swing negative during freewheeling current condition. The Cboot , in this situation, is

charged up to VDD minus forward voltage of Dboot and plus VSD, the reverse conduction voltage

of LS GaN device discussed in the previous section, which altogether could exceed 6 V. This

overcharge issue can be avoided using the following common solutions:

1. Reduce dead-time resulting minimizing diode conduction time to nanoseconds range.

2. Reduce VSD by adding an external Schottly diode across the LS GaN device.

3. Add a regulator (e.g. LDO) or a clamping circuit (e.g. Zener diode) after Dboot .

4. Replace bootstrap circuit with a charge pump, allowing the HS device to stay ON for a long

time.

1.5.5 dV/dt immunity

A high voltage slew rate (dV/dt) on the drain of an off-state GaN device is a phenomenon worth

investigating. Let’s examine the circuit depicted in Figure 1.11 where the LS GaN is in off-state

and the HS GaN starts to turn on. The high switching speed of the HS GaN results in a high

dV/dt on the drain of LS GaN. This high voltage slew rate charges up all parasitics seen by this

node to ground including CDS, CGD in series with a parallel circuit composed of CGS and the

turn-off path (RG + Lloop + Rpd). The charge current though CGS will result in a positive VGS

transient. If not well addressed, this induced VGS could exceed Vth and accidentally turn on the

LS GaN HEMT. This is known as the Miller turn-on effect and, if the duration is long enough,

it may cause a catastrophic failure of the transistor and therefore must be prevented. The next

chapter will discuss more about this as a criteria of the design.

1.5.6 Ground bounce

Ground bounce is a well-known phenomenon in power electronics, where parasitics inductance

resonates with high dI/dt. As depicted in Figure 1.12a, LS exhibits a high dI/dt switching and

generates voltage spikes. The gate drive signal is then perturbed and could accidentally turn on
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Figure 1.11 Miller turn-on effect of dV/dt on a low-side transistor in off-state
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Figure 1.12 Common source inductance causing ground bounce.

(a) Gate drive impact and (b) simple solution for gate driver
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or off the GaN device. One simple solution to this issue is to minimize the inductance within the

loop comprising the Gate-Source terminals of the GaN device and the associated logic as in

Figure 1.12b.

1.6 Conclusion

In this CPIO-SiP project, the power interface has to drive a load up to 1.25 A and withstand 84 V

transients for hundreds of milliseconds. It must also survive under 150 V transients induced by

lightning strikes (the voltage after being filtered) during its off-state. Therefore the GaN device

candidates should have the following characteristics:

1. Favourable to high density integration in the context of SiP.

2. ID > 1.25 A.

3. VDS > 150 V.

The above requirements lead to the choice of EPC devices as the candidates of power switches

used in CPIO-SiP. The SiP power stage is also scalable with the uniform SU of half-bridge. A

light & low-voltage load can be driven by a buck converter with small GaN half-bridge while a

current-controlled load with complex voltage profile can be supplied with a buck-boost stage.

For this reason, a range of GaN device sizes are considered in this project.

With the background on the concept of gate driver, wide bandgap semiconductors and the

challenges of driving GaN transistors, a review of state-of-the-art gate drivers will be given in

the next chapter before entering into the detail of the proposed gate driver design.





CHAPTER 2

GATE DRIVER FOR GAN - STATE-OF-THE-ART

2.1 Introduction

This chapter presents a literature review of commercial and state-of-the-art gate drivers for GaN

devices, especially in half-bridge topology. This review helps converge towards a versatile and

reconfigurable architecture in the proposed gate driver.

2.2 Commercial Gate Driver for GaN

One of the key aspects of GaN power transistors is the capability of fast switching speed which

copes with a minimum amount of parasitics. The ideal solution for power modules with GaN

devices is monolithic integration of GaN switches, gate drivers and control ciruits on the same

die. EPC and Navitas have commercialized e-mode GaN devices with built-in gate driver as

detailed in Figure 2.1. However, these are with single power device or common source pair.

In the industry there are also commercial gate drivers for GaN device in half-bridge. Table 2.1

lists some of the typical parts.

Table 2.1 Typical commercial gate driver for GaN device in half-bridge

Vendor Part Number Description
Texas Instruments LM5113 1.2/5 A, 100 V driver

Texas Instruments LMG1210 1.5/3 A, 200 V driver with adjustable dead-time

Texas Instruments LMG5200 80 V GaN half-bridge power stage

On Semi NCP51820 -3.5 to +650 V, adjustable dead time, dual LDOs

uPI Semiconductor uP1966A 0.4/0.7� pull-down/pull-up driver

Peregrine PE29101 2/4 A, 80 V driver
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2.9 × 1.1 mm

200 V
10 A

40 mΩ 

2.9 × 1.1 mm

150 V
5 A

88 mΩ 

(a) EPC2112 (b) EPC2115

(c) NV6117  

650 V
12 A

120 mΩ 

5 × 6 mm

Figure 2.1 Integrated GaN device with gate driver from EPC and Navitas Semiconductor

2.3 Gate Driver for GaN in literature

To highlight the key elements in GaN gate drivers, Figure 2.2 shows the main building blocks in

a gate driver for half-bridge topology, the most popular and commonly used converter topology

(Delaine et al., 2012; Song et al., 2015).

As depicted, there are two output stages controlling the two GaN devices, high-side (HS) and

low-side (LS). Each of them has an independent power supply. The ground of HS logic is tied to

VSW . To prevent large shoot-through current, a dead-time (DT) is usually inserted between the

conduction time of HS and LS devices. The level shifter serves as the interface between LS

logic and HS power domains.
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Figure 2.2 Half-bridge gate driver building blocks

In the literature, the majority of GaN power modules in half-bridge still opt for system-in-package,

which integrates GaN power device with silicon gate driver on a surface-mount package (Luo

et al., 2014) or even PCB-level approaches. There are also works with discrete GaN devices in

form of bare-die.

As power converter circuits are downsized, switching frequency increases to cope with miniature

inductors and capacitors. At high fPW M , timing mismatch between HS and LS becomes critical.

Therefore, the performance bottleneck of high-speed gate drivers is the propagation delays of

the level shifter and the DT generator. Such delays can be reduced with circuit techniques which

leads to the classic power-speed compromise.

Conventional HV gate drivers often carry tens of ns of propagation delays in the level shifter,

which becomes a critical problem as the fPW M reaches the 10 MHz range. In (Kawai et al.,

2019), large delay of the level shifter and long DT in the driver limit its fPW M to 1 MHz. To

reduce the total delay, which is dominated by the HV level shifter, a sub-ns delay bootstrapped
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gate driver with dynamic level shifter was reported (Song et al., 2015). The speed gained at the

cost of high power consumption that limits the peak power efficiency.

In a converter using half-bridge topology, the falling edge slope of VSW is proportional to the

output current (Roschatt et al., 2016). A light load with a small DT leads to non-zero-switching

of the GaN FETs whereas a heavy load with high DT results in reverse conduction in the GaN

devices. Figure 2.3 illustrates the scenarios of optimal DT and two extremes. To overcome these

challenges, digital control technique with generated adaptive DT is proposed. However, a high

circuit complexity is involved (Wittmann et al., 2016). A near-optimal DT control is reported

(Lee et al., 2011), however the long delay in sensing loop limits its use to low fPW M applications.

In (Ke et al., 2016), a VSW dual-edge DT modulator was designed, which senses load current and

supply voltage and then generates modulated delays for VSW rising and falling edges to adjust

the instant DT, realizing zero-voltage switching for the GaN power switches. However, this

method is too complicated for the CPIOS context of this project and the power consumption of

the sub-ns comparator is high, leading to significant power loss.

Figure 2.3 VSW and dead-time

Taken from Wittmann et al. (2016)
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Concerning the reliability, there have been some works addressing the bootstrap capacitor

overcharge issue discussed in chapter 1. A Zener diode clamping technique was used to protect

the bootstrap rail by sinking excessive charge to ground (Kawai et al., 2019; Song et al., 2015).

However, this technique limits fPW M as the power loss is proportional to the switching frequency.

In (Ke et al., 2016), an adaptive charging scheme called adaptive bootstrap balancing was

proposed. To avoid overcharge, the charging time is initialized until the VSW zero-crossing sensor

determines that the charge voltage has enter the safe zone. This technique involves a high degree

of circuit complexity. Another reliability issue is current collapse in the GaN devices. This

phenomenon is due to hot electron injection and charge trapping, having been widely considered

as one of the major causes of GaN device aging and premature failure (Bahl et al., 2016). It

degrades channel conductivity and increases Ron leading to higher junction temperature (TJ). As

a consequence, the mean time to failure (MTTF) decreases exponentially (Paine et al., 2019). To

monitor the device aging, Ron drift is highly desirable as the early warning, because its change is

directly related to current collapse effect. A similar approach was reported in (Smet et al., 2011)

using VCE as the precursor for IGBTs. However, the monitoring can only be done when the

system is off. An on-the-fly monitoring approach was reported (Dusmez et al., 2016) by using

pole variation in loop gain for power MOSFETs which correlates to the Ron variation. However,

this technique is limited in continuous conduction mode (CCM) and the implementation of pole

location is very sophisticated. Another indirect Ron measurement technique is realized through

an IGSS-inspired TJ sensor, based on the fact that gate-leakage IGSS of a GaN device is both

TJ-sensitive and aging-independent (Chen & Ma, 2019a). With sensed TJ , the in-situ condition

monitor removes the impact of TJ on Ron through the TJ dependence remover effectively. This

technique allows to take more proactive measures to slow down the aging process whenever

possible (Chen & Ma, 2019a).

Electro-magnetic inteference (EMI) is one of the critical problems in highly reliable electronic

devices, such as aircrafts. When power switches operate at high switching frequency, short

switching cycles lead to high dI/dt and dV/dt rates that favours EMI emission. An LC filter

can reduce EMI at the cost of size. Several techniques are reported to mitigate EMI. One of
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them is frequency hopping using discrete frequencies in (Tao & Fayed, 2011), but this technique

cannot spread the frequency spectrum evenly to lower the peak EMI. Another approach is with

a series resistor, which is typically added at the gate of the GaN FET to damp the transitions

(Song et al., 2015; Ke et al., 2016). However, the drawback is high switching loss. To overcome

this, adjustable driving strength is proposed in (Rose et al., 2010). Unfortunately, the sensing

and driver delays are complicated and limit its use to low switching frequency applications.

Currently, spread-spectrum modulation (SSM) techniques are regarded as the most effective

methods for EMI suppression (Amin & Choi, 2019). Periodic SSM (PSSM) is straightforward

and easy to implement (Tse et al., 2002). However, its EMI suppression is the least effective .

Randomized SSM (RSSM) can outperform PSSM, with lower peak EMI and near-uniform noise

spreading, but its performance highly relies on the random clock design. In (Yang et al., 2018),

an N-bit digital random clock was reported to achieve discrete RSSM (D-RSSM). However,

the bit number N has to be large in order to achieve satisfying EMI attenuation, significantly

increasing circuit complexity, chip area and power consumption. (Chen & Ma, 2019b) proposed

a Markov chain based random clock to achieve analog fSW modulation. It conducts SSM

continuously and spreads spurious noise at fSW0 and its harmonics uniformly, achieving the

desirable C-RSSM.

Closed-Loop EMI regulation is another promising approach. To best compromise between EMI

and switching loss, it is important to accurately identify the Miller Plateau (MP) start point of

VGS. In (Chen et al., 2017), a closed-loop adaptive MP sensing technique is presented. The

technique utilizes the reverse conduction behavior of low-side switch to identify the MP starting

point of the high-side device. This relaxes the design stress on the closed-loop propagation

delay. Once the MP starting point is detected, the driving strength is modulated with an adaptive

closed-loop control to achieve low dI/dt before the MP (for low EMI generation) and high dI/dt

after the MP (to reduce the switching noise), leading to an optimum between noise and efficiency.
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2.4 Conclusion

Driving GaN FETs is quite challenging. Multiple aspects have been studied and addressed in

the literature: driving for performance, for reliability and for EMI reduction. Every approach

was elaborate and aimed at a specific improvement. There has been no universal and versatile

gate driver. The universal and configurable gate driver for GaN half-bridges in the context of

SiP is proposed in this work. It can control a range of GaN devices (1–5.3 nC gate charge)

with configurable speeds and DT without extra components. The adjustable parameters make

local efficiency optimization possible. This gate driver, as a standalone chip, can also serve as a

platform for other works that need on-the-fly configuration of drive strength and DT.





CHAPTER 3

DESIGN OF THE GATE DRIVER

3.1 Introduction

This chapter outlines the gate driver design, starting with system requirements and the choice

of technology. The internal blocks will then be discussed and simulated. Some blocks require

special layout techniques which will also be detailed. Various post-layout simulations are

performed to ensure the functionality of the chip.

3.2 System Requirements

Intended to be the core design of the CPIOS for aerospace applications, the gate driver in this

work is capable of driving GaN devices of various sizes, in half-bridge configuration, with

configurable driving strength and dead-time. The half-bridges, so-called switching unit, can be

configured to operate in buck, boost or buck-boost topology. Figure 3.1 summarizes the context

of this work.

An SiP design, as shown in Figure 3.1c, has some basic requirements. First, the constrained

space demands a limited number of discrete parts and imposes the use of proper GaN devices

size per output specification. A large transistor driving a light load is a waste of space. Second,

the overall cost increases with the number of custom designed ICs used in the SiP. A gate driver

variant per GaN size is a burden for both design and cost. Hence, a single universal gate driver

is desired, as depicted in Figure 3.2, without the need for external resistors. Third, a flexible and

digitally configurable design is required in safety-critical transportation applications. Such a

gate driver can be used in multiple versions of the SiP, each having different specifications in

terms of protection thresholds (e.g. over-temperature threshold). Last, the gate driver supports

not only configuration writing, but also status reading that is essential for self-calibration and

trimming at system level. There are also sensors integrated in the gate driver: temperature

sensors for thermal shutdown (TSD) circuits, voltage sensors and comparators for under-voltage
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Figure 3.1 CPIOS context of the gate driver

lock-out (UVLO) blocks, and current sensors for a variety of protection blocks. These sensors

compare their sensed electrical or physical record to a threshold, to let the system make an

appropriate decision (e.g. when the chip temperature exceeds 100◦C, shutting down the outputs).

Depending on the level of criticality, the decision can be either direct hardware interception

or via software from the top-level processor unit. In automotive applications, different circuits

located at different places of the vehicle usually have different thresholds. The devices near the

main engine or turbine operate at higher temperature than those placed in other locations. For

this reason, a configurable threshold is a key point to make the gate driver universal.
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The stability and parameter drift over time of electronic components, such as sensors, which are

used in critical sub-systems in aerospace applications and operate in harsh environments has

been intensively studied (Marin et al., 2018). In addition, any integrated circuit is subject to

manufacturing process variation that makes its performance different from simulation results.

The possibility of performance trimming after fabrication, and calibration before each operation

or even in-flight (Capobianco et al., 2019) is thus of great interest in aerospace applications.

Table 3.1 summarizes the electrical specs of the power interfaces of the CPIO-SiP.

Table 3.1 CPIO-SiP power interfaces electrical specifications

Vin Vout Iout
14 - 84 V ≤ 32 V 50 mA - 1.25 A
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Vout of some interface types can reach 150 V in off-state upon lightning strike. The interface

types vary from as simple as a 24 V on/off logic circuits to as sophisticated as a buck-boost

converter. The GaN device size will be chosen based on the output current rating per interface.

The targeted GaN FETs are listed in Table 3.2. To be universal, the gate driver is chosen to be

capable of driving half-bridge topology.

Table 3.2 Targeted GaN FETs driven by the gate driver

Part no. ID−dc VDS Ron QG QGS QGD QOSS Size [mm]
EPC2012C 5 A 200 V 100 mΩ 1 nC 0.3 nC 0.2 nC 10 nC 1.7×0.9

EPC2007C 6 A 100 V 30 mΩ 1.6 nC 0.6 nC 0.3 nC 8.3 nC 1.7×1.1

EPC2052 8.2 A 100 V 13.5 mΩ 3.6 nC 1.5 nC 0.5 nC 13 nC 1.5×1.5

EPC2019 8.5 A 200 V 50 mΩ 1.8 nC 0.6 nC 0.35 nC 18 nC 2.77×0.95

EPC2016C 18 A 100 V 16 mΩ 3.4 nC 1.1 nC 0.55 nC 16 nC 2.1×1.6

EPC2010C 22 A 200 V 25 mΩ 3.7 nC 1.3 nC 0.7 nC 40 nC 3.6×1.6

Figure 3.3 and Table 3.3 summarize the specifications of the the proposed gate driver. The

typical driving voltage is 5 V which is ideal for the chosen GaN FETs. The two buffers, with

adjustable drive strength, are able to control the GaN FETs with desired speeds. The dead-time

is also configurable. The design in detail will be discussed in the following sections.

Table 3.3 Proposed Gate driver specifications

Parameter Min Typ Max Unit Note
IC supply voltage 4.75 5 5.25 V

VSW to GND -3 200 V

Drive strength (source) 100 1,500 mA Configurable, step 100

Drive strength (sink) 200 3,000 mA Configurable, step 200

Dead-time 5 80 ns Configurable, step 5

dVSW /dt immunity 100 V/ns

3.3 Technology Options

One of the critical specifications that narrows down the choice of technology is system survival at

150 V in off-state. Table 3.4 summarizes the key >150V technologies available. GlobalFoundries

does not offer multi-wafer project to universities at the time of the project being planned whilst
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XFAB does. XU035 is not SOI, which means multiple power domain monolithic design is

not feasible. The two left options are SOI: 0.18μm and 1.0μm. The digital circuits in XDH10

1.0μm are not as fast as the much smaller node, XT018 0.18μm. For these reasons, XT018 is

selected to realize the gate driver.

Table 3.4 High voltage technologies

Foundry Tech name Max voltage Temperature
XFAB XT018 0.18μm SOI-CMOS 200 V -40 ∼ 175◦C

XFAB XU035 0.35μm CMOS 700 V -40 ∼ 125◦C

XFAB XDH10 1.0μm SOI-CMOS 650 V (not specified)

GlobalFoundries 180UHV 0.18μm SOI-CMOS 700 V -40 ∼ 150◦C

3.4 Block Circuit Design

Ideally, the configurable gate driver should consist of the blocks listed below, which are also

illustrated in Figure 3.4:
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1. Dead-time (DT) generator.

2. Level-shifter for high-side (HS).

3. Delay matching for low-side (LS).

4. Output buffer stage.

5. Configuration handler.

6. 5V floating supply for HS.

7. Power-on reset (POR).

8. Under-voltage lockout (UVLO).

9. Thermal shutdown (TSD).

To simplify the verification of the reconfigurability pf the very first chip in CPIOS project, the

floating supply, POR/UVLO and TSD are not included in the design presented in this work.
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Figure 3.4 Half-bridge GaN gate driver block diagram

The following sections will discuss the design in greater detail.
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3.4.1 Output Driver Stage

The output buffers are designed to have independent turn-on and turn-off speed. The speeds are

digitally configurable.
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Figure 3.5 Output driver stage of the gate driver

Before going into the design, let’s examine a simple gate driving circuit in Figure 3.6.
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Figure 3.6 Gate drive circuit with independent (a) turn-on and (b) turn-off path

The gate driver has an equivalent pull-up resistor Rpu and pull-down one Rpd . Lsource represents

the stray inductance of power distribution network to the gate driver. Lloop is the equivalent



38

inductance in the gate driving loop from the driver to the GaN device. It is noticed that Lsource

is present only in the turn-on path and not in the turn-off one. RG is the parasitic resistance from

the GaN package pin to its intrinsic gate and CGS represents its gate-source capacitance. In

both turn-on and -off scenarios, the equivalent circuit is an RLC-series resonant tank with the

equivalent components specified in Table 3.5. With EPC GaN devies, RG is very small (around

0.4 Ω) and is negligible since the totality of other resistance components is in the order of Ohms.

Table 3.5 Equivalent components of RLC tank for turn-on and turn-off path

RLC component Turn-on path Turn-off path
Req Rpu + RG ≈ Rpu Rpd + RG ≈ Rpd
Leq Lsource + Lloop Lloop
Ceq CGS CGS

If Req is too small, the circuit is underdamped and exhibits overshoot/undershoot. In contrast, if

Req is too large, the tank is overdamped and VGS has slow rise- and fall-time. Therefore, the Req

should be chosen so that both scenarios have near-critical damping factors. In an RLC-series

resonant circuit, Req needed for the critical damp can be calculated as in Equation 3.1 and will

be simulated later.

Req(crit) = 2 ·

√
Leq

Ceq
=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Lsource+Lloop

CGS
≈ Rpu(crit) for turn-on path,

Lloop

CGS
≈ Rpd(crit) for turn-off path.

(3.1)

From Equation 3.1, the chosen value for Rpu(crit) is larger than Rpd(crit) value because of the

presence of Lsource. In other words, drive strength of the turn-on path should be weaker than that

of the turn-off path in general. Figure 3.7 shows the simulation results of turn-on and turn-off

waveform of EPC2012C (CGS = 100pF) at 1 nH and 0.5 nH of Lloop and Lsource respectively,

with different Rpu and Rpd values.

The critical damp occurs at Rpu = 7 Ω and Rpd = 6 Ω. However, in reality the Rpd is chosen to

be smaller than its critical damp value to further mitigate the false turn-on of Miller effect as
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discussed in section 1.3. With smaller Rpd (e.g. 3.5 Ω), some amount of undershoot is present

for the turn-off (-0.4 V) but the margin from its -4 V limit is safe enough. There is always a

compromise between the margin from negative VGS breakdown and the degree of Miller turn-on

effect. A simulation of this compromise (demonstrated in Figure 3.8) is shown in Figures 3.9

and 3.10. One can see that 3.5 Ω Rpd gives the best compromise between the undershoot and

the Miller turn-on effect, i.e. half of the Rpu (7 Ω). In other words, the pull-down drive strength

is twice as strong as the pull-up one in general.

The output stage is realized with pMOS and nMOS as pull-up and pull-down networks. To size

the integrated MOS transistors of this output stage, gate charge (QG) of the GaN FETs and the

desired rise and fall times are taken into account. The initial criteria is that the rise time of VGS

of the targeted GaN devices should be less than 10 ns. This rise time (tr) requirement helps

determine source current (Isource) capability of the pMOS network. Equation 3.2 shows the

relationship between QG, Isource and tr with the first order model of gate charge illustrated in

Figure 3.11.

Isource =
QG

tcharge
= 0.8 ·

QG

tr
(3.2)

Table 3.6 gives an overview of source current needed for various rise time values across the

range of GaN FETs. The Isource range is chosen to be 0.1 A to 1.5 A with the step of 0.1 A. This

range will ensure the switching speed of small GaN devices as fast as 1 ns and larger FETs up to

2 ns. The current sink capability is chosen to be twice the source one.

Table 3.6 Source current requirement across rise times and GaN FETs

Part no. QG Itr=1ns Itr=2ns Itr=3ns Itr=4ns Itr=10ns
EPC2012C 1 nC 0.8 A 0.4 A 0.27 A 0.2 A 0.08 A

EPC2007C 1.6 nC 1.28 A 0.64 A 0.43 A 0.32 A 0.13 A

EPC2019 1.8 nC 1.44 A 0.72 A 0.48 A 0.32 A 0.14 A

EPC2016C 3.4 nC 2.72 A 1.36 A 0.91 A 0.68 A 0.27 A

EPC2052 3.6 nC 2.88 A 1.44 A 0.96 A 0.72 A 0.29 A

EPC2010C 3.7 nC 2.96 A 1.48 A 0.99 A 0.74 A 0.3 A
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Figure 3.12 depicts the design of the output buffer. There are 15 parallel instances of 100/200

mA of source/sink cell. The source (pull-up) and sink (pull-down) networks are implemented

using pMOS (MP1) and nMOS (MN1). All instances are in parallel and independently activated.

The source and sink networks within each instance are also independent enabled/disabled via

EN_PU[i] and EN_PD[i] bits. A built-in non-overlapping logic control per instance is meant to

avoid simultaneous turn-on of MP1 and MN1.

GaN

EN_PU[i]

EN_PD[i]

IN

5V
+
– 
+
– 

MP1

MN1

Gate driver

#1

#15

GaN

EN_PU[i]

EN_PD[i]

IN

5V
+
– 

MP1

MN1

Gate driver

#1

#15

Figure 3.12 Output stage of the gate driver
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The primitive devices in XFAB XT018 in use for MP1 and MN1 are pe5 and ne5 whose DC

characteristics curves are shown in Figure 3.13 with the width of 10 μm and the minimum

length of 0.5 μm. To support the source and sink capability of 100/200 mA, the pe5 and ne5 are

upsized accordingly. Table 3.7 shows the chosen sizes of ne5 and pe5 with the desired current

values of 100/200 mA.

Figure 3.13 Characteristics curves of (a) pe5 and (b) ne5

at W/L = 10/0.5 um in XFAB XT018

Table 3.7 Chosen MP1 and MN1 sizes

pe5 ne5
W/L [μm] Isource [mA] W/L [μm] Isink [mA]

10/0.5 2.75 10/0.5 5.3

363.6/0.5 100 377.4/0.5 200

Table 3.8 shows the truth table of the drive strength control (PullUp and PullDown buses) and

the output source/sink current. The source and sink parameter configurations are independent.

Figure 3.14 shows the simulation result of the buffer stage driving EPC2012C with all 15

different drive strength levels.
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Table 3.8 Drive strength configuration data

PullUp[3:0] bin Source current [A] PullDown[3:0] bin Sink current [A]
0000 Off 0000 Off

0001 0.1 0001 0.2

0010 0.2 0010 0.4

0011 0.3 0011 0.6

0100 0.4 0100 0.8

0101 0.5 0101 1.0

0110 0.6 0110 1.2

0111 0.7 0111 1.4

1000 0.8 1000 1.6

1001 0.9 1001 1.8

1010 1.0 1010 2.0

1011 1.1 1011 2.2

1100 1.2 1100 2.4

1101 1.3 1101 2.6

1110 1.4 1110 2.8

1111 1.5 1111 3.0

VGS rise

Isource 
increasing

VGS fall
Isink 

increasing

Figure 3.14 Post-layout simulation of the buffer driving EPC2012C

with 15 drive strength levels
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3.4.2 Dead-time Controller

Dead-time (DT) generator is a digital block with 6 input (PWM, Resetb and DT[3:0]) and 2

outputs (HS, LS). The DT[3:0] is a 4-bit configuration data which determines the DT value in

use. Table 3.9 gives the relationship between DT[3:0] and the actual DT in ns. Table 3.10 shows

the truth table of the input/output signals. To simplify the design, LS-to-HS and HS-to-LS share

the same configuration data.

Table 3.9 Dead-time configuration data

DT[3:0] bin DT value [ns]
0000 5

0001 10

0010 15

0011 20

0100 25

0101 30

0110 35

0111 40

1000 45

1001 50

1010 55

1011 60

1100 65

1101 70

1110 75

1111 80

Table 3.10 Truth table of DT block

Resetb PWM HS LS
0 X 0 0

1 0 0 1

1 1 1 0

Figure 3.16 depicts the DT generator in detail. This is a non-overlapping logic with adjustable

delay. The delay block consists of 16 of 5-ns delay blocks and a 16-to-1 multiplexer. DT[3:0] bus

is tied to the input select signals of the multiplexer. The simulation of DT generator behaviour at
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Figure 3.16 Dead-time generator design

DT = 10 ns is shown in Figure 3.17. The post-layout simulation of DT outputs across corners is

given in Figure 3.18. The variation of the output is significant because the design is based on

the standard buffer delay.
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Figure 3.17 Dead-time behaviour simulation at DT = 10 ns

Figure 3.18 Dead-time - Post layout corners simulation (-40−85◦C, 4.75−5.25 V)
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3.4.3 Level-shifter

The CPIOS requires 84 V as the maximum input voltage of GaN half-bridges. Thus, a robust

level-shifter block, as identified in Figure 3.19, with constant delay for the whole input voltage

range is mandatory for the high-side. The level-shifter design is adapted from Liu et al. (2016).
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Figure 3.19 Level-shifter of the gate driver

Practically, the level-shifter is triggered at two moments: during DT when the LS GaN is

freewheeling with VSW (i.e. GNDH) at –1.5 V to –3 V for the turn-on of HS GaN, and when

VSW is high (i.e. 84 V) for the turn-off of HS GaN. In order to ensure the robustness and

constant delay of the level-shifter for the voltage range from –3 V to 84 V of VSW , first, a pair

of HV transistors (HNM1a/b) are used. Second, they have to generate the same drain current

(Id−rise/ f all) to trigger the latch, which requires them to operate in saturation with a headroom

voltage as low as 2 V when VSW is at –3 V, as calculated in Equation 3.3.

Vheadroom = V5VH = 5 + VGNDH = 5 + VSW = 2 |VSW = −3 [V] [V] (3.3)
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Figure 3.20 Level-shifter design

A 5-to-1.9V translator, converting 5 V-logic to 1.9 V-logic, helps reduce over-drive voltage (Vgs

– Vth) of HNM1a/b. Thus, their saturation operation under lower headroom voltage is achieved.

Major design steps will be analyzed in the following sections.

The ultimate goal of the level-shifter is to transmit digital from LS power domain to HS power

domain. To save power consumption, the data is transmitted at the time it changes (i.e. edge

sensitive) rather than keeping the link active all the time (i.e. level sensitive). Therefore, the

level-shifter output should have a memory cell to store the transmitted value. The simplest

structure for this is a back-to-back inverter pair latch as depicted in Figure 3.21. The latch is

overridden with a pair of opposite phase current sources, so-called differential mode (Figure

3.21a), and is perturbed with a pair of current source of the same phase in common mode (Figure

3.21b). The differential-mode represents the normal operation in which the data is desired to be

transmitted from LS to HS while the common-mode emulates the noise generated by common

dV/dt of the floating ground (tied to VSW ).
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To identify the inverters’ size, the minimum differential-mode current needed to toggle the latch

(Idi f f ) and the minimum common-mode current able to perturb the latch (Icom) are determined

across all inverter sizes in the technology library. Table 3.11 shows the simulation results of

Idi f f and Icom.

INV cell

INV cell

Idiff Idiff

Icom Icom

A = ‘0’ B = ‘1’

A = ‘0’ B = ‘1’

a. Differential mode

a. Common mode

Figure 3.21 Back-to-back inverter pair latch triggered with current sources

Table 3.11 Idi f f and Icom of latch with different sizes

Current [mA] X0 X1 X2 X3 X4 X6 X8
Idi f f 0.12 0.15 0.36 0.54 0.73 1.1 1.5

Icom 0.3 0.34 0.9 1.4 1.8 2.7 3.6

It is noticed that the current values increase with the latch size, and Icom is approximately 2.5x

Idi f f . In other words, the larger latch is, the more robust it is against common mode noise, but it

requires higher current to trigger in normal mode. This is a power-robustness trade-off. The

INV_X1 is chosen for the first design iteration. Figure 3.22 and 3.23 illustrate the common-mode

and differential-mode current mechanism.

The common-mode current is induced by CDS of the high-voltage nMOS HNM1a/b. To minimize

this common-mode current, HNM1a/b should have minimum size (25/1μm with 2 fingers).
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Figure 3.22 Mechanism of common-mode current
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Figure 3.23 Mechanism of differential-mode current

Next, the pMOS PM1a is sized such that it does not require too high voltage drop when ON

to support low head-room of the HV nMOS, as illustrated in Figure 3.24. Low head-room is

made possible by reducing the triggering value of VGS for the HV nMOS. Figure 3.25 plots I/V

characteristics of the HV nMOS with different VGS. The lower VGS, the lower the head-room

at the cost of lower drain current. The reasonable range of VGS is from 1.8 to 1.9 V with the
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allowed voltage drop across the PM1a of 1 to 1.5 V, at the drain current range of 0.3 to 0.7 mA.

This current range is sufficient to trigger the latch of INV_X1.

The size of PM1a is then determined, as simulated in Figure 3.26. With W/L of 80/0.5 μm, its

voltage drop and current are within the specified range.

PM1a

Id-rise

HNM1a

Headroom
 ≥ 2 V

Ilatch

Latch

Vdrop

HNM1b

Symmetry

PM3a

Figure 3.24 Sizing diode-connected pMOS

The overall operation of the level-shifter will be demonstrated in the post-layout simulation of

the entire chip, along with a pair of GaN devices in half-bridge topology. An immunity against

>200 V/ns will be shown.

3.4.4 Configuration registers

Figure 3.27 highlights the configuration block, one of the key elements of the gate driver. This

block contains the configuration data for the entire chip. In order to reduce the I/O pin count,

the serial-in-parallel-out type shift registers are utilized. With serial interface, the pin count is

not scaled up with the number of bits in use.
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Figure 3.25 I/V characteristics of HV nMOS

(50μm/1μm) is plotted with different VGS

Figure 3.26 I/V of the diode-connected pMOS is plotted with different sizes
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Figure 3.27 Configuration registers of the gate driver
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Figure 3.28 A configuration register set including a shift register

and a shadow register

There are two sets of shift registers: one for HS and one for LS since they are under different

power domains, as illustrated in Figure 3.29. Each one consists of two register banks, namely

shift and shadow. The shadow registers hold the configuration bits while the shift registers are to

receive and transmit the configuration bits from and to the host controller. The shadow registers

are realized with D flip-flops (FF) while the shift registers consist of scan FFs (Figure 3.28).

Table 3.12 describes the serial interface signals.
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Figure 3.29 Configuration registers distribution of the gate driver

Table 3.12 Pin description of serial interface of the shift registers

Pin name Description
CLK2 Clock of shadow register

INITn Active-low reset of shift register

CLK1 Clock of shift register

ENSD Active-high shift enable of shift register

DIN Input data of shift register

DOUT Output data of shift register

CLKO Output clock of shift register

Table 3.13 shows the data bit assignment of both shift register sets. The reset values are 0x66

and 0x666 for the 8-bit register and 12-bit register respectively.

Table 3.13 Data bit assignment of the shift registers

HS 8-bit Description LS 12-bit Description
D[11:8] DT_SEL[3:0] dead-time

D[7:4] HS_PU[3:0] strength D[7:4] LS_PU[3:0] strength

D[3:0] HS_PD[3:0] strength D[3:0] LS_PD[3:0] strength



56

If the system has multiple gate drivers, which is the case in this CPIOS project, then the shift

registers of all gate drivers can be daisy-chained. As a result, the host controller can access any

bit of the chain with a single serial interface. However, this chain connection requires careful

consideration because of the different power domains. The interface between power domains

are made possible using digital isolators as depicted in Figure 3.30.

Gate driver 1
HS Sh.reg

LS Sh.reg

Gate driver 1
HS Sh.reg
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Figure 3.30 Daisy-chain of multiple shift registers in a system

As both shift/shadow register sets have similar timing performance results, the 8-bit register

will be analyzed through simulation. Figure 3.31 shows the post-layout simulation of the 8-bit

shift/shadow register set with a 200 MHz clock. There are four main operations: shift-data-in,

write-shadow, read-shadow and shift-data-out. The clear-data operation is optional to make sure

the shift register value is different from the shadow one before copying data from the latter. Each

one of these operations will be analyzed in detail.

Figure 3.32 illustrates the first two operations: shift-data-in an write-shadow. At system start-up,

the shadow register is reset with the active-low INITn input. The shift-data-in operation starts

by feeding a serial data input sequence synchronized with CLK1 while enSD is held high. After

eight CLK1 cycles, the entire shift register holds the new data. Now CLK1 should be stopped in

order to start the second operation, write-shadow. It takes one CLK2 cycle to copy the shift

register value into the shadow one. From this moment, the configuration data takes effect.
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Figure 3.31 Four main operations of a shift/shadow register set

At some point, if the configuration data, held by the shadow register needs to be verified, it can

be read back and shifted out for validation as illustrated in Figure 3.33. To copy shadow register

back to the shift register for the read-shadow operation, only one CLK1 cycle is needed while

enSD is held low. Once done, data can be shifted out.

The shift registers can operate up to 300 MHz clock as simulated in Figure 3.34. However, they

should be operated at 200 MHz maximum to have a good timing margin.

3.5 Chip layout & simulation

XFAB XT018 supports two form factors of electrostatic discharge (ESD) cell with bonding pad:

pad-limited and core-limited. Pad-limited ESD cells are long and narrow (60x243 μm), used in

designs whose sizes are imposed by the number of IO pads. In contrast, in designs with complex

core structure and few IO pads, the short and wide core-limited ESD cells (84x160 μm) are

used. Both types support 4-kV human body model (HBM) target ESD robustness.
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Figure 3.32 Shift-data-in and write-shadow

Figure 3.35 shows the ESD pad cell form factors and the general chip floorplan. The pad cells

are placed around the chip core with the bonding pad oriented towards the outside. There are

many pad cell types that can be categorized in the following:

1. Power cell.

2. GND cell.

3. Input signal cell.

4. Output signal cell.

5. Bidirectional signal cell.

3.5.1 Gate driver layout

Figure 3.36 shows the layout and micrograph of the gate driver. There are 38 bonding pads with

the pin assignment given in Table 3.14. This is a pad-limited design in which the overall size is
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Figure 3.33 Read-shadow and shift-data-out

imposed by the number of pads. The default bonding pad of ESD cells is 60x67 μm which is

good enough for automated bonders but way too small for semi-automated or manual machines.

For a practical reason, in this first version of the chip, the 100x100 μm bonding pads are added

for the ease of bonding. The active area of the chip is 0.5 mm2.

Figure 3.37 shows the layout of the dead-time generator block. This block is purely digital with

standard cells (and, or, nand, nor, not, buffer) and filler and cap cells. The overall size of this

block is 113x55 μm.

Figure 3.38a is the layout of the output driver stage. There are 15 slices of buffer whose current

source/sink is 100/200 mA. This driver stage occupies 680x175 μm of die size. Figure 3.38b

and c show one buffer slice placement and routing respectively.



60

300 MHz clock

Serial data input

Shift register data

Serial data output (8th bit of shift register)
Clock
output
Clock
output

Shadow register data

Shift data in

Write shadow register

Clear data

Read shadow register

Shift data out

00

00

11

00

11

00

11

11

0

0

1

0

1

0

1

1

00 00 11 00 11 00 11 11

00 00 11 00 11 00 11 11

Figure 3.34 Post-layout simulation of 8-bit shift/shadow register at 300 MHz clock

(a) (b) (c)

Figure 3.35 ESD pad cell for (a) pad-limited and (b) core-limited chip

(c) General chip floorplan with ESD pad cells
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Figure 3.36 The gate driver (a) layout and (b) micrograph
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Figure 3.37 The layout of dead-time generator

Figure 3.39 shows the layout of level-shifter group, including the 5V-to-1.9V translator, 200 V

level-shifter and output latch with reset logic. The latch along with the HS part of the level-shifter

are supplied with floating 5 V which has a high common-mode voltage with respected to global
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Table 3.14 Pin description of the gate driver

Pin no. Pin name Description
1 RESETn Active-low reset of entire chip

2 DISABLEn Active-low disable of entire chip

(AND’ed with RESETn)

3 LSR_CLKO Output clock of LS shift register

4 LSR_DOUT Output data of LS shift register

5 PMW_IN PWM input

6 HSR_ENSD Active-high shift enable of HS shift register

7 HSR_DOUT Output data of HS shift register

8 HSR_CLKO Output clock of HS shift register

9 RESETnH Active-low reset of the latch (after level-shifter)

10,11,12,13 GNDH HS ground (floating ground, connect to VSW )

14,15 HSG Output connect to HS GaN device

16,17,18,19 VDD5H 5V supply (vs. GNDH)

20 HSR_INITn Active-low force initial value of HS shift register

21 HSR_CLK1 Clock of HS shift register

22 HSR_CLK2 Clock of HS shadow register

23 HSR_DIN Input shift data of HS shift register

24 LSR_DIN Input shift data of LS shift register

25 LSR_CLK2 Clock of LS shadow register

26 LSR_CLK1 Clock of LS shift register

27 LSR_INITn Active-low force initial value of LS shift register

28 LSR_ENSD Active-high shift enable of LS shift register

29,30,31,32 VDD5L 5V supply (vs. GNDL)

33,34 LSG Output connect to LS GaN device

35,36,37,38 GNDL LS ground (connect to global ground)

ground. Hence the entire HS logic circuit is placed in a floating p-tub which is isolated from

the main substrate with a double DTI (Deep trench insulation) layer. This double DTI support

200-V isolation.

Figure 3.40 shows the layout of the configuration registers: 8-bit for HS and 12-bit for LS. Each

set of registers has one instance of shift-register and one instance of shadow-register of the same

length.
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Figure 3.38 The layout of (a) output driver.
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Figure 3.39 The layout of level-shifter group
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Figure 3.40 The layout of configuration registers (a) 8-bit for HS and (b) 12-bit for LS

3.5.2 Post-layout simulation of the gate driver

To evaluate the operation of the gate driver, an open-loop buck converter is utilized as the test

bench as depicted in Figure 3.41. The supply voltage is 48 V with PWM duty cycle of 50% and

50 ns DT. Load current varies from 0.1 A to 1.25 A. Figure 3.42 shows the waveforms of VSW

node. During DT, the LS GaN device conducts reversely which results in negative VSW and high

loss. As expected, the rising edge of VSW is independent of load current while the falling edge

slope is proportional to Iload . Figure 3.43 shows the zoomed falling edge of VSW .

The next simulation is performed with different DT values at 1 A load current, shown in Figure

3.44. Figure 3.45 shows the zoomed falling edge of VSW . It is concluded that DT configuration

takes effect on the output as expected.

Figure 3.46 shows the post-layout simulation of the circuit at 200-V at Vin, the zoomed rising

edge of VSW in Figure 3.47 shows a dV/dt of 226 V/ns.
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Figure 3.41 The test bench schematic of the gate driver

Figure 3.42 VSW waveforms at 48-V Vin with fixed 50-ns DT and

different load current values

3.6 Conclusion

The design, layout and simulation of the proposed gate driver is discussed in this chapter.

The design approach is chosen to be conventional but robust. The level shifter is immune



66

Figure 3.43 Zoomed falling edge of VSW in Figure 3.42

Figure 3.44 VSW waveforms at 48-V Vin with fixed 1-A load and different DT values

against >200 V/ns of VSW (floating ground). The shift registers can operate up to 300 MHz

in post-layout simulation. The dead-time generator and output buffers are configurable with

expected parameters. The next chapter will discuss about the test system and measurement

results.
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Figure 3.45 Zoomed falling edge of VSW in Figure 3.44

Figure 3.46 VSW waveforms at 200-V Vin with 1-A load and 50-ns DT

Figure 3.47 Zoomed rising edge of VSW in Figure 3.46





CHAPTER 4

CIRCUIT MEASUREMENTS

4.1 Introduction

This chapter describes the test system for the gate driver, including PCB, FPGA and PC software

designs. The measurement results will be shown and discussed.

4.2 Test System Description

Two experimental test-benches are used: one with the gate driver alone for its characterization

and another with an open-loop buck converter with a GaN half-bridge driven by the gate driver.

Both units under test are controlled with an FPGA kit via a software developed specifically for

this gate driver testing.

Figure 4.1 shows the overall test diagram. The software GUI is developed under MATLAB to

control the gate driver, as shown in Figure 4.2.
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Figure 4.1 Test-bench diagram

Figure 4.3 shows the test setup of the open-loop buck converter operating with input voltage up

to 86 V at 1 MHz PWM.
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Figure 4.2 Matlab GUI of gate driver configuration and fixed PWM mode

4.3 Test results

The following table summarizes the test results and comparison with simulation results and

some of commercial gate drivers.

Figure 4.4 demonstrates the dead-time optimization with a specific load condition, which helps

minimize reverse conduction of the LS GaN HEMT.

Figure 4.5 shows the measurement of the open-loop buck converter with 86 V input voltage

switching at 1 MHz PWM. The dV/dt in this scenario is 85 V/ns.
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Figure 4.3 Test-bench of open-loop buck converter built with the gate driver

Figure 4.6 demonstrates the capability of on-the-fly configuration while PWM is running. This

feature can be used for EMI optimization.

4.4 Conclusion

The universal and configurable gate driver for GaN half-bridges in the context of SiP is verified

by measurement in this chapter. It can control a range of GaN devices (1–5.3 nC gate charge)

with configurable speeds and DT without extra components. The adjustable parameters make

local efficiency optimization possible. This gate driver, as a standalone chip, can also serve as a

platform for other works that need on-the-fly configuration of driving strength and DT.
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Table 4.1 Gate driver performance summary

Performance summary
Specification Simulation Measurement

Dead-time (min/step/max) 6.5/4.76/80 4.5/4.46/58

Rise-time [ns]
with EPC2012C

1.41 - 9.90 1.46 - 10.81

Fall-time [ns] 1.24 - 4.17 1.18 - 4.5

Rise-time [ns]
with EPC2010C

2.89 - 27.78 3.7 - 27.83

Fall-time [ns] 2.82 - 11.57 2.39 - 10.8

Performance comparison with commercial gate drivers
Parameter This work TI LM5113 TI LMG1210

Peak source/sink current [A] Adjustable 1.5/3.0
Fixed

1.2 / 5.0

Fixed

1.5 / 3.0

Dead-time [ns]
Digitally configurable

4.5 - 58
N/A

Configurable with

external resistor

Operating voltage [V]
Simulated / Measured

200 / 86
100 200

VSW

Vin = 48V
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Fixed dead-time = 65ns
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Load current increasing
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(a)
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Figure 4.4 Switching node waveform with different dead-time values
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Figure 4.6 On-the-fly configuration of drive strength





CONCLUSION AND RECOMMENDATIONS

A universal and configurable gate driver for GaN half-bridges in the context of SiP is designed

and demonstrated in this work. It can control a range of GaN devices (1–5.3 nC gate charge)

with configurable speeds and DT without extra components. The adjustable parameters make

local efficiency optimization possible. This gate driver, as a standalone chip, can also serve as

a platform for other works that need on-the-fly configuration of driving strength and DT. The

achieved CMTI is 226 V/ns in simulation.

Since this is the very first tape-out of XFAB XT018 technology at ÉTS, some design aspects

might be overlooked. This chip can be improved as the following:

1. Optimize DT range for ultra fast GaN devices, such as min/step/max of 1/1/10 ns,

2. Make DT less sensitive to PVT,

3. Save die size with inherited bonding pad of ESD cells (requires automatic bonder),

4. Add protection blocks (UVLO, TSD, current sense).





APPENDIX I

PCB DESIGN

Figure-A I-1 3D view of the PCBs
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