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Étude du dimensionnement COSMIC des logiciels embarqués et d'IA en temps réel 
pour leur utilisation dans des contextes a priori et a posteriori à des fins d'estimation 

dans l'industrie 
 

Shaghayegh VEDADI 
 

RÉSUMÉ 
 
La littérature sur l'estimation des logiciels et le dimensionnement des logiciels démontre que 
l'effort de développement de logiciels à une valeur pour les organisations. Cette recherche vise 
à opérationnaliser la mesure a posteriori de la taille fonctionnelle d'un logiciel avec la norme 
COSMIC-ISO 19761 dans une entreprise qui développe des logiciels embarqués en temps réel 
et d'Intelligence Artificielle (IA) pour les mines souterraines. 
 
Dans la pratique, le manque de documentation des exigences fonctionnelles du logiciel, le 
manque de données de référence et l'absence d'utilisation de méthodes standard entraînent des 
contraintes supplémentaires et de nouveaux défis de recherche pour le développement de 
modèles d’estimation de l’effort pour une organisation spécifique. Dans cette recherche, nous 
explorons les enjeux des mesures a priori de logiciels basés sur des informations partielles, et 
leurs utilisations dans les modèles d'estimation pour notre partenaire en industrie. 
 
Nous utilisons les ressources disponibles pour identifier les exigences fonctionnelles des 
solutions logicielles intégrées d'intelligence artificielle et temps réel développées et les 
dimensionner avec la méthode COSMIC. La taille des projets pour une version logicielle est 
mesurée, et une approche d'analyse exploratoire des données et des statistiques descriptives 
sont adoptées pour développer des modèles d'estimation a posteriori pour ces projets. 
 
De plus, une technique d'approximation basée sur l'analogie de l'iceberg et l'ingénierie des 
exigences est conçue pour attribuer un facteur d'échelle aux exigences fonctionnelles précoces; 
son application pratique est illustrée à l'aide de deux études de cas COSMIC. 
 
Les résultats de la recherche démontrent que: 
 
1. Les informations de taille de l'IA et des solutions logicielles embarquées en temps réel 

peuvent être utilisées pour mesurer ces applications AI avec la norme COSMIC. Elles 
peuvent ensuite être utilisées comme l'une des variables indépendantes pour développer des 
modèles d'estimation a priori d'effort pour développer un algorithme d'IA dans de tels projets 
similaires; 
 

2. Les modèles d'estimation pour les projets d’une Version ont été développés sur la base de la 
similitude des caractéristiques et des statistiques descriptives; 

 
3. Les résultats de la technique d'approximation basée sur les fonctionnalités montrent que les 

données sur les projets antérieurs peuvent être collectées et que la classification pertinente 



VIII 

des fonctionnalités peut être identifiée; ces ratios de mise à l'échelle peuvent être utilisés au 
début du cycle de vie d'un projet logiciel pour l’estimation a priori de la taille fonctionnelle. 

 
 
 

Mots-clés: exigences de taille fonctionnelle, approximation de taille, méthode COSMIC, 
ISO 1971



 

Investigation of the COSMIC sizing of real-time embedded and AI software for their 
usage within a priori and a posteriori contexts for estimation purposes in industry 

 
Shaghayegh VEDADI 

 
ABSTRACT 

 
The literature on software estimation and software sizing demonstrates that software 
development effort has value for organizations. This research aims to operationalize a 
posteriori measurement of functional size of software with COSMIC-ISO 19761 standard in a 
company that develops real-time embedded and Artificial Intelligence (AI) software for 
underground mines. 
 
In practice, lack of documentation of the software functional requirements, lack of benchmark 
data and no usage of standard methods lead to additional constraints and new research 
challenges. In this research, we explore the issues of a priori measures of software based on 
partial information, and their uses in estimation models. 
 
We use the available resources to identify the functional requirements of developed AI and 
real-time embedded software solutions and size them with COSMIC method. The size of 
project for a software release is measured, and an exploratory data analysis (EDA) approach 
and descriptive statistics are adopted to develop a posteriori estimation models for these 
projects. In addition, an approximation technique based on iceberg analogy and requirement 
engineering is designed to assign scaling factor to early functional requirements, using two 
detailed documented COSMIC case studies. 
 
The research results demonstrate that: 
 
1. The size information of the AI and real-time embedded software solutions can be used as 

one of the independent variables to develop a priori estimation models for future projects; 
 

2. In AI projects, this size information can be used for estimating the amount of effort to 
develop an AI algorithm in such similar projects; 
 

3. The estimation models proposed based on similarity of characteristics and descriptive 
statistics can be used to estimate effort in the corresponding groups, based on historical data; 

 
4. The results of functionality-based approximation technique show that the data on past 

projects can be collected and relevant classification of functionalities can be identified and 
these scaling ratios can be used as a priori estimation early in the life cycle of a software 
project. 

 
 
 
Keywords: functional size requirements, size approximation, COSMIC method, ISO 19761 
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INTRODUCTION 
 
 
All companies in the software industry, of whatever size, are facing the challenge of having to 

estimate their software development efforts (Abran, 2015), and the functional size of a software 

is one of the estimation inputs that can be measured using international standards of 

measurement. It can be sized either at the beginning of the project, during the project life cycle 

and at the end of the project once the software has been built. 

 

In the literature, most of the models for estimating software development efforts are based on 

data collected after the fact on completed projects (Abran, 2015) (Cheikhi & Abran, 2014) 

(Dumke & Abran, 2011) (Jayakumar & Abran, 2017). They correspond to a posteriori models 

(e.g., modeling the past) that were built with variables that are known and measured at the end 

of projects using a wide variety of algorithmic estimation techniques and, more recently, 

machine learning (ML) (García-Floriano, López-Martín, Yáñez-Márqu, & Abran, 2018) 

(Hosni, Idri, & Abran, 2018) (Idri & Abran, 2018). 

 

The COSMIC-ISO 19761 measurement of the functional size of the software is one of the main 

variables for the construction of these posteriori estimation models (Abran, 2010) (García-

Floriano, López-Martín, Yáñez-Márqu, & Abran, 2018) (Jayakumar & Abran, 2017). It makes 

it possible to quantify in a standardized, repeatable, and objective way the functions delivered 

in a software, and independently of development technologies.  

 

When the estimation models are considered for a priori estimation at the beginning of the 

project, it is with the implicit assumption that the independent variables of the model are known 

and can be measured in a precise way from the beginning of a project. However, in practice 

this is far from being the case, and there is practically no work in the software engineering 

literature that explores this issue of a priori measures of the software to be developed, including 

from partial and modifiable information during the project, and their use within a priori 

estimation models (Almakadmeh & Abran, 2013) (Lopez-Martin & Abran, 2012) (Ungan, 

Trudel, & Abran, 2018). 



2 

This thesis reports on the research carried out to explore a posteriori measurement of functional 

size of software applications in the specific software development context of real-time 

embedded and of AI software. This research was conducted in a small size company designing 

software and AI solutions for the underground mining industry. This is followed next by the 

development of a sizing approximation technique applicable within the context of incomplete 

requirements (e.g. within an a priori estimation context), as well as of its usage with industry 

data. 

 

The motivation of this research project is to assist engineers by providing the size information 

on the software requirements (in both priori and posteriori contexts) and to use this size to 

build realistic estimation models for their software projects and improve their planning. These 

functional size requirements can be documented at different levels of granularity when 

estimating future projects. 
 
 
Research Issue 

 
It is challenging for software engineers to identify all the functional requirements as well as 

the size and required effort of a piece of software before starting their project, in particular 

when: 

1. A project is new and there is lack of information; 

2. A project is complex, i.e. a lot of features need to be developed; 

3. Time is limited, and it is not possible to identify all the functional requirements. 

 

To help in tackling these challenges, the engineers can use their historical data (if documented 

well) to identify the functional requirements or use the historical data of other external projects 

to help determine the functional requirements.  
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This ETS research project was initiated within the context of the following ETS R&D project 

funded by MITACS1 and a private organization in Montreal: “A priori effort estimation models 

of embedded software development for underground mines communications”. When this R&D 

project was initiated in 2018, there was virtually no work in the software engineering literature 

that explores the issue of a priori measures of software based on partial information, and their 

uses in estimation models. 

 

In this underground mining environment, new software solutions are developed to optimize 

underground communications, improve safety and operational performance. The research 

issues that have been identified in this specific development environment were: 

 

Issue #1: lack of benchmark data based on estimated size and effort for an adequate 

approximation for future projects. This lack of data inhibits the ability to estimate for a new 

software solution the required effort, duration, money, and resources (mostly people); 

 
Issue #2: no usage of any standard to measure the functional size of the requirements, for 

benchmarking studies as well as for estimation purposes; 

 
Issue #3: lack of documentation of the functional user requirements (FUR) in this development 

environment of embedded software and of AI applications. The FUR need to be for 

maintenance and estimation purposes; 
 

Issue #4: the size of AI projects had not been measured yet either in research or industry using 

function point (FP) techniques. For instance, in a 2020 Software Project Management course 

offered to graduate students, only the measurement of real-time and business applications was 

taught in the course curriculum. 

 
 
  
                                                 
 
1 Nonprofit national research organization 
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Research Objectives 
 

The initial objectives of this research were to operationalize and experiment in the context of 

the private organization funding this R&D project the “a posteriori” measurement of functional 

size of software proposed in (Abran, 2015) and next evaluate its contribution within an  “a 

posteriori” and “a priori” estimation with historical data in the specific context of real-time 

embedded and AI software developed for underground mines. The software projects developed 

by in that organization during a period of 12 months were to be measured with COSMIC - ISO 

19761. The initial objectives of that R&D funding proposal were: 

 

Initial objective 1: a first sub-project for the posteriori measurement with the COSMIC - ISO 

19761 standard of the software developed in that organization, followed by the construction of 

a posteriori estimation models for these projects, and evaluation of their performance as 

estimation models; 

 

Initial objective 2: a second sub-project to determine at which stage of the development cycle 

each of these details was known and could have been measured in a priori context rather than 

in a posteriori context. Analysis of measurement patterns to identify scale factors and origins 

of these factors. From the scale factors developed in the previous step, the construction of a 

historical a priori database; 

 

Initial objective 3: a third sub-project for the construction of a priori estimation models of 

these projects with these a priori measures and evaluating their performance as a priori 

estimation models. 

 

Within the detailed planning and execution of this ETS R&D project, a number of additional 

practical constraints and new research challenges have been identified, and in particular: 

 

1. Functional size measurement: there was no documentation of the software functional 

requirements, either in an ‘a priori’ context at a project stage, nor in an “a posteriori” context 
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of an implemented software. Only actual lines of code were available, of which the 

functional requirements had to be extracted for measurement purposes. 

 

2. Types of software: in addition to the type of real-time embedded for underground mines, the 

organization had started to develop AI software and ML algorithms to analyse data and 

develop predictive models. When this R&D started, there were no literature exploring 

whether or not the COSMIC standard could be used for such types of software.  

 

Under these constraints of 1 and 2, this raised then two research questions (RQ) for this thesis: 

 

RQ 1: Can the COSMIC functional size be used to measure real-time embedded software? 

RQ 2: Can the COSMIC functional size be used to measure AI software and ML algorithms? 

 

3. In the literature, the posteriori estimation models using linear regression are typically built 

using a relatively small set of projects developed by teams within a timeframe of weeks or 

months, and a significant variation in functional sizes; however, the data made available for 

this thesis research were small programming tasks carried mostly by individuals, over a 

period of a few days maximum, and for a period on only three months (instead of the targeted 

12 months of data) within the context of a ‘Release’ of changes to existing set of real-time 

embedded software, where a ‘change’ corresponded to either the addition or modification of 

a ‘feature’ or a correction of a ‘defect’. This then raised two additional research questions 

for this thesis: 

 

RQ 3: Do linear regression models based on functional size work well for set of very small 

projects developed by individuals and when their size is very small and within a very small 

range? 

RQ 4: If the answer to RQ 3 does not provide good posteriori models, can descriptive 

statistics be used to provide relevant posteriori estimation models that could be used in a 

priori context? 
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4. In this organization there was no a priori or a posteriori documentation available to explore 

the development of scaling factors for their usage in ‘a priori’ context: therefore, another 

alternative set of data had to be identified to explore this research issue. Since there is very 

good documentation and detailed a posteriori COSMIC measurement results in COSMIC 

case studies, these were used in this thesis research work to explore the development of 

scaling factors. This led to a fifth research question: 

 

RQ5: Can the detailed documentation and functional size measurement results in COSMIC 

case studies be used for the development of size scaling factors applicable early in a software 

development life cycle? 

 

To answer the research questions, the following specific research activities were planned: 

 

1. For RQ 1 & RQ 2: Identify the FUR of software and ML solutions developed for 

underground mines, size them with the COSMIC-ISO 19761 international standard and 

document the corresponding measurement results; 

 

2. For RQ 3 & RQ 4: Measure the size of the projects in a specific software release and then 

using the available information on effort for each project, develop a posteriori estimation 

models for these projects; 

 

3. For RQ 5: Design an approximation technique-based ISO/IEC/IEEE 25148 standard on 

requirements engineering and an iceberg analogy to assign scaling factor to early functional 

requirements. 

 

 

Methodology and Contributions 
 
To answer the research questions and achieve these research objectives, the following research 

methodology was designed and adopted: 
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1. By using the information in the software user guides, the knowledge repository where the 

company archives its project documents and complementary information from the software 

developers: 

a. Document the identified FUR of software solutions and AI algorithms already programmed 

by the researcher at this organization development site and; 

b. Size and document their detailed functional size measurement results using the COSMIC – 

ISO 19761 standard, both from the software and from the data scientist viewpoints. 

 

2. For a specific three-month software release: 

a. Manual measurement with the COSMIC-ISO 19761 standard of the software projects 

within that release; 

b. Constructing a posteriori estimation models for these projects and evaluating their 

performance as estimation models with:  

- regression analysis, 

- an EDA approach and the identification of outliers and extreme data through box plots 

and Grubbs test. 

 

3. Develop an early software size approximation technique with function point sizing using 

two COSMIC case studies, through the classification of the functionality at three levels of 

increasing details and the derivation of scaling factors. 

 

 

Thesis Structure 
 
This thesis contains 5 chapters and is structured as follows: 
 

Chapter 1 presents a literature review on software functional size, software size approximation 

and software sizing with the COSMIC-ISO 19761 measurement method.  

Chapter 2 presents the identified FUR of developed software solutions with their 

corresponding size measurement results that needed to answer the RQ 1. 
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Chapter 3 provides answer to RQ 2 by presenting the identified FUR of developed ML 

algorithms to provide AI solutions for the company’s underground mining projects. 

Chapter 4 presents an analysis of three months of historical data for a software release, 

proposing estimation models using descriptive statistics to answer the RQ 3 and RQ 4.  

Chapter 5 presents a new approximation technique on early sizing in software projects. This 

new early approximation technique of software sizing was applied to two COSMIC case 

studies to address to RQ 5. 

The conclusion presents a summary of the results of this thesis research work, as well as the 

contributions and suggestions for future work. 

 

 

 
 
 
 



 

CHAPTER 1 
 

LITERATURE REVIEW 
 

1.1. Software Functional Size 
 

Software is composed of different components and the size of these components is dependent 

on the functionality required (Singh, 2017). According to ISO, functional size must be 

independent of quality and technical aspects of the software (Abran, Al-Sarayreh, & Cuadrado-

Gallego, 2013) and it does not have any fixed proportional size relationship among those 

components (Singh, 2017). 
 

Functional size measurement (FSM) is one of the techniques to measure the functionalities a 

software delivers to user (s) (ISO/IEC 14143-1 Standard, 2007) and it is applicable in software 

project management for different purposes: for example, to obtain system related technical 

indicators, development effort, manage scope in project, productivity studies, benchmark for 

future projects and normalize quality and maintenance ratios. 

 

FSM is based on requirements and can provide size information early in the life cycle of the 

project (Ungan, Trudel, & Abran, 2018). When organizations collect the information from the 

past projects, they can build their own productivity and estimation models. This brings them 

the required data to measure their productivity from the past projects to find out their 

performance and how much it differs from the past projects. Having your own organization 

productivity model is a key advantage in the market and in the organization (Abran, 2015). 

 

Research on FSM began with Allan Albrecht’s invention of Function Point Analysis (FPA) in 

1979 (Lokan, 2005). One of the most important phases of FPA is recognizing system 

components that bring functionality to users (Zelkowitz, 2005). Abran and Robillard (1996) 

investigated the structure of FPA considering mathematical operations and scale types in the 

measurement process. 
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(Fetcke, 2001) proposed a generalized representation of available FSM methods focusing on 

commonalities and differences and concluded that the approach could be applicable using the 

experience of past projects and allowing FSM to be automated. (Berg, Dekkers, & Oudshoorn, 

2005) applied FSM to UML-based user requirements and proposed a requirement space in four 

refinement levels: in their study, the FPA and COSMIC CFP were used and three case studies 

were investigated: the results were relatively on mark for both methods. 

 

1.2. Software Sizing with COSMIC Method 
 

One of methods that is applicable to measure the functionality of a software from different 

domains is the COSMIC method (ISO/IEC 19761 Standard, 2011) accepted as an International 

Standard: ‘ISO/IEC 19761 Software Engineering, a functional size measurement method’. 

COSMIC FSM measures the functional size of the software derived from its FUR. COSMIC 

Function Point (CFP) is a unit of measurement that represents the data movement for software 

and 1 CFP is equal to the size of a single data movement of a single data group (COSMIC, 

2017). 
 

Function point sizing (FPS) quantifies the functional size of software and is used for various 

purposes in software project management, including effort estimation, project planning, 

project monitoring, productivity studies and benchmarking (ISO/IEC/IEEE 29148 Standard, 

2011), (Desharnais & Abran, 2003). This makes FPS a tool of choice for planning techniques 

that require an early view of the software to be developed. Despite being available earlier than 

other sizing methods, a precise application of FPS requires that the functional requirements of 

the software be detailed, and its architecture defined (Santillo, 2000). 

 

FSM patterns are applicable to the COSMIC method and useful for measurers to address 

different issues such as: early sizing estimation, measurement errors and decreasing 

measurement effort. A study by Abran et al. (2002) discussed an estimation model for a 

maintenance project to implement functionality in the existing software. In their study, two 
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estimation models were investigated: a regression model with functional size only and a 

multiple regression model with two independent variables. 

 

(Trudel, 2012) investigated the efficiency and effectiveness of COSMIC to identify defects in 

functional requirements. The FSM brings added value and saves the rework cost if the 

identified defects by measurer are corrected early in the development cycle. In another study 

(Trudel, Desharnais, & Clout, 2016) focuses on the application of FSM pattern with real-time 

embedded systems and suggests the potential benefits for the industry. 

 

(Huijgens, Bruntink, Deursen, Storm, & Vogelezang, 2016) presented an exploratory study on 

FSM based on code and discussed challenges, obstacles, and opportunities the experts 

experience on software project code. 87% of the FSM experts have the same opinion that the 

FSM is an important tool for decision making and COSMIC with 25% is the most preferred 

FSM method. 

 

Today, many software development companies have adopted the agile process. A study by 

(Hussain, Kosseim, & Ormandjieva, 2013) presented an approximate COSMIC functional size 

from informally written textual requirements and build a historical database by manually 

measuring the COSMIC functional size from textual requirements. (Sellami, Haoues, 

Borchani, & Bouassida, 2018) studied functional changes in agile projects and proposed a 

guide for decision makers in software development projects when they encounter changes in 

software requirements during agile sprints. The tool is based on user stories and the COSMIC 

sizing method and examined 15 software development projects. 

 

COSMIC method is applicable in different domains such as (COSMIC, 2017): business 

applications, real-time software and several case studies are proposed by the COSMIC group 

in the mentioned domains, but not with AI applications. (Soubra, Abran, Stern, & Ramdan-

Cherif, 2011) proposed an FSM procedure for real-time embedded software based on COSMIC 

and documented the requirements with the Simulink tool. The automated tools reduce the 

measurement variances caused by interpretations made by different measurers. In parallel to 
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this research project, Lesterhuis and Abran (2019) used the COSMIC method to extract the 

ML system requirements of an ML image classifier software in a neural network: it presents 

the ML functionalities and allows the ML expert to have more freedom to address additional 

ML challenges. 

 

1.3. Early Sizing and Size Approximation 
 

Early in the software development life cycle (SDLC) the software requirements are not fully 

described, and it is unrealistic to expect this set of requirements to describe the full scope of 

functionality of the software as a whole. There are obviously many functional unknowns early 

in the life cycle. Over time, more detailed requirements will be identified and part of them 

might be changed as the software development life cycle progresses. When the requirements 

are fully recognized and understood by the risk management experts, the uncertainty dwindles: 

this was graphically represented as a Cone of Uncertainty by (Boehm & Abst, 2000) - Figure 

1.1: 

 

 
Figure 1.1. Cone of uncertainty (Boehm & Abst, 2000) 

 

where the uncertainty progressively decreases as the project progresses and additional more 

precise information becomes available where: 
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At time = project closure, everything is known about the software. When all the requirements 

information as implemented in the software code is available, the size can be measured with 

high accuracy. 

 

At time = feasibility study, the information available on the requirements is typically high level 

and without much details. From a functional perspective many un-knowns remain. With 

imprecise and incomplete inputs, there cannot be accurate measurement. Rather, the expected 

functional size at project closure can only be estimated and, as with any type of estimate, this 

comes with a range of uncertainty that will vary depending on the quality, completeness and 

stability of the set of requirements (Yılmaz, Ungan, & Demirörs, 2011); 

 

At time = between feasibility and project closure, the completeness of the information and 

requirements will progressively improve, which will impact the measurement results until all 

requirements have been specified in detail. 

 

At various points later in the project life cycle, the lists of software functions are detailed, 

programmed, tested and implemented; the same applies to system non-functional and quality 

requirements, some of which may later be allocated to additional software functional 

requirements (Al-Sarayreh, 2011), (Abran, Al-Sarayreh, & Cuadrado-Gallego, 2013), 

(Meridji, Al-Sarayreh, Abran, & Trudel, 2019), (Al-Sarayreh & Abran, 2010). 

 

Some COSMIC-based size approximation techniques have been proposed that can be used as 

an input for early management activities (Desharnais & Abran, 2003), (Santillo, 2000), 

(Vogelezang & Prins, 2007), (Almakadmeh & Abran, 2013), (Almakadmeh, 2013), (COSMIC, 

2015). The bands-based techniques were empirically investigated by Lavazza and Morasca 

(Lavazza & Morasca, 2019). Seven approximation techniques have been proposed by 

(COSMIC, 2015) including: 1) average functional process, 2) fixed size classification, 3) equal 

size bands, 4) average use case, 5) functional size measurement patterns, 6) early and quick 

COSMIC sizing and 7) easy function points. The nature of the gaps and source of them between 

earlier size and final size is discussed in an exploratory analysis study by Abran et. al. (2018) 
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and how the hidden functionality can cause a large gap between the initial size and final size 

of a piece of software (Ungan, Trudel, & Poulin, 2017).  
 

In this research project, we will conduct size measurement using the COSMIC method in the 

context of AI and real-time embedded software for underground mines. Mining is an industry 

with great traditions where change is at times very gradual. There is less literature about the 

software size in the field of software solutions for underground mines whereas the software 

devices have brought many innovations in the mining sector including facilitating data 

collection, improving safety, automating services, and making tasks and procedures integrated. 

The lack of literature and historical data as well as documentation in the specific context of 

software for underground mines have brought challenges for engineers and software 

developers when they want to implement and size a new software project with requirements 

that are imperfect and incomplete.  

 

The same is true in the AI applications and ML algorithms in the specific industry contexts 

without relevant measurement tools to tackle to the problem at hand. There is a lot of literature 

in the context of AI and ML algorithms and the mathematical aspects of them; however, there 

are literature shortcomings about the functional size measurement of software to be developed 

in order to implement an ML algorithm.  
  



 

CHAPTER 2 
 

 MEASUREMENT OF SOFTWARE FOR UNDERGROUND MINES 
 

This chapter presents the COSMIC measurement results of the FUR in the domain of real-time 

embedded software in underground mines and explore whether or not the COSMIC standard 

could be used for real-time embedded software which addressed to RQ 1. The research 

objective in this chapter is to size with COSMIC and extract the FUR of software solutions 

and then document the measurement results. 

 

The software is deployed in the mining hardware devices to collect data and manipulate the 

big data for monitoring, operating, predicting and maintenance. The FSM had never been used 

in this software development company with actual data from the industry projects, and no 

documentation of the FUR and software size information were available. The FUR had 

therefore to be identified from the available software user guides and through a number of 

measurement iterations, more FUR were revealed by software developer’s contributions.  

 

Sections 2.1, 2.2 and 2.3 present an introduction to three software in underground mines. 

Section 2.4 presents the scope and purpose of measurements along with context diagrams of 

these three software. Sections 2.5 and 2.6 present the software requirements and the 

measurement results. More details on software specification and measurement results are 

available in Appendix I. 

 

2.1. Recorder Unit software 
 

The recorder unit is a stand-alone data recorder and wireless router installed in the mine that 

records, stores, and transmits data collected from sensors to the communication server. There 

is currently a total of 195 sensor’s readings received by the recorder. It is compatible with 

mining equipment and well suited to the harsh mining environment. The recorder software 

consists of three elements: 



16 

1. Recorder board (BOT): acquires unformatted data every half second (time is configurable 

in configuration file) transferred through a Bus cable from different sensors. 

This configuration file (with ibc extension) contains the recording and data processing 

parameters and is generated by a desktop application called configuration tool. The 

configuration file is sent directly to the recorder board using USB or other applications and is 

stored on hard disk in BOT. The settings of configuration file in it determines what such 

streams mean and what data should be recorded based on the configuration. For instance, the 

settings in configuration file indicate recoding of the engine pressure coming from sensors. 

2. Router board (TOP): receives the data from BOT and stores them on hard disk. A Bus cable 

connects the BOT to the TOP. When the network connection is available, it transfers the 

data to the communication server. 

3. Two hard disks: to store the data and retrieve it when it is requested by the software. 

 
2.2. Cap Lamp Software 
 

Cap lamp is one of the important personal protection equipment in mines. New IoT cap lamps 

are improving miners’ safety while they are working under the ground and they became one 

of the safety devices that provides communication with outside of the mine. It allows mines 

and industries to monitor their personnel, enhance safety and save lives in hazards.  

 

The cap lamp is placed in a charger base and it has several buttons which trigger the software 

to start performing. The cap lamp is connected to a set of wireless nodes for transmitting signals 

to the server on the surface. The cap lamp has the following software elements: 

 

1. Setting the clock (time) and serial numbers; 

2. Automatic self-test mechanism; 

3. Display network status and LEDs; 

4. Send distress signal, man down alarm and request to cancel the alarms to the server; 

5. Receive the acknowledgements and evacuation notice from server. 
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2.3. Tag Reader Software 
 

Tag reader is a device that provides association between personnel tag (RFID cards) and 

personal safety device (e.g. cap lamp). Before going down into the mine, the miners should 

scan their personnel tags followed by the personal safety device that they are using for the 

shift. Tag association is an important safety procedure and unassigned personal safety device 

alarms are raised when personal safety device tags are tracked underground. Associations are 

made at the beginning of a shift and then broken at the end of the shift. The tag reader has the 

following software elements: 

 

1. Scan the RFID and serial number (tag ID) of the personal safety device; 

2. Receive the acknowledgements and the messages from the server through the tag reader 

gateway; 

3. Ability to restart the association process. 

 

2.4. Scope and Purpose of Measurement 
 

The purpose of measurement is to determine the amount of the functionality of software based 

on its FUR. The scope of the measurement is the detailed functionalities the software delivers 

to user(s). 
 

The software interacts with its functional users across the software boundary. Some COSMIC 

definitions adapted from COSMIC guideline (COSMIC, 2017): 

 

A functional user is a type of user that acts as sender or recipient of data and identified in the 

FUR of software being measured. Table 2.1 presents the functional users of the software.  

A functional process is a unique elementary part of the requirements initiated by a functional 

user.  
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A persistent storage is a storage that allows the functional process to store the data and retrieve 

data by another functional process. The software interacts with its persistent storage within the 

software boundary. 

 

Table 2.1. The functional users for the three embedded software measured 
 

Software Functional users 

Recorder unit 
- USB 
- Sensors 
- Communication server 

Cap lamp 

- Charger base 
- Buttons (lamp, Clock/ display and Lateral buttons) 
- Accelerometer sensor 
- LEDs (main, auxiliary, green and red) 
- Wireless node 

Tag reader 

- RFID 
- Personal safety device 
- Tag reader screen 
- Tag reader gateway 

 

In the recorder software, the hard disks are persistent storage that are within the software 

boundary. 
 

 

2.5. Software Requirements 
 

This section describes the requirements of the software to be measured including the software 

functionalities and the interaction with its functional users. In the following, the context 

diagram of the software is displayed: the context diagram defines the boundary of software 

and its relationship between the functional users (COSMIC, 2017).  

 

2.5.1. Recorder Unit Requirements 
 

This is the set of requirements at the software level. Figure 2.1 depicts the context diagram of 

the software and its interaction with the functional users. 
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Requirement 1. Prepare the configuration file. 

The software needs to receive and store the configuration file on the hard disk in BOT. 

Requirement 2. Record data. 

The software receives unformatted streams of data from the sensors through Bus cable and 

records the required data according to the configuration instructions. 

Requirement 3. Store the data. 

The recorded raw data need to transmit to the TOP and stores on the hard disk. 

Requirement 4. Transfer the data. 

When the connection between the recorder and communication server is established, the raw 

data segments transferred to the communication server through the Bus cable for data 

manipulation. 

Requirement 5. Delete the data. 

Once the communication server downloaded all the raw data segments, a reset command is 

sent to delete the data on recorder. 

 

Recorder Board

BOT

Router Board

TOP

Hard DiskHard Disk

Sensor

USB

Generation Service

ISA

Importation Service

Database

Communication ServerRecorder Unit SoftwareFunctional User
Functional User

Bus Cable Bus Cable

 
 

Figure 2.1. Context diagram of recorder unit software 
 

1. The software of recorder has two layers: BOT and TOP; 
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2. The Bus cable between the BOT and TOP is responsible to transmit data groups from layer 

one to layer two and the other Bus cable transmits the data from the software to the 

communication server; 

3. Hard disks in BOT and TOP are persistent storages where data groups are stored and can 

be retrieved when they are requested by the software; 

4. Communication server is another software application where the data is manipulated.  

 

2.5.2. Cap Lamp Requirements 
 

This is the set of cap lamp requirements at the software level. There are pre-requisites to set up 

the cap lamp software before starting to use it in the mines. Figure 2.2 depicts the context 

diagram of the software and its interaction with the functional users. 

 

Pre-requisite 1. Setting the clock. 

The time needs to set according to time zone where the cap lamp is used. To set the time, the 

person needs to use the lamp and clock/display buttons. 

Pre-requisite 2. Setting the serial number of the cap lamp. 

The serial number of the cap lamp is a unique number assigned to each cap lamp. It is defined 

before in the server and stored in database. To enter the serial number, the person needs to use 

the lamp and clock/display buttons. 

Pre-requisite 3. Check the cap lamp LEDs. 

The cap lamp has two LEDs: main and auxiliary LED. To use the LED, the person needs to 

press the lamp button. 

Pre-requisite 4. Check the cap lamp information. 

The cap lamp holds the information of serial number, current time, and battery status. To check 

the information, the person needs to press the clock/display button. 

 
Requirement 1. Cap lamp self-test mechanism. 

The mechanism is started by a human (miner) taking out the cap lamp from the charger base. 

All the cap lamps need to be plugged into charger after each shift to get fully charged for the 
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usage of personnel. The software in the cap lamp starts a self-test automatically and the main 

LED starts flashing. The lateral buttons stop the mechanism.  

Requirement 2. Connect to the available wireless nodes. 

The cap lamps must be under the coverage of wireless network in the mine, to be able to send 

and receive signals. If the cap lamp connects to the node, the green LED blinks, otherwise, the 

red LED blinks. 

Requirement 3. Send distress signal. 

The distress signal is sent by pressing both lateral buttons simultaneously. An emergency 

request for help transfers to the server through the wireless nodes and red LED starts blinking 

rapidly (twice per second). 

Requirement 4. Send man down alarm. 

The man down alarm is sent when the accelerometer sensor in the cap lamp does not detect the 

miner’s movements for 90 seconds. After 60 seconds of not detecting any movement, the main 

LED of the cap lamp starts blinking, and if the cap lamp remains immobile thorough a full 90-

second, a man down alert is generated and sent to server while the main LED is still blinking. 

Requirement 5. Cancel the man down alert. 

Movement alone does not cancel the man down alarm. To cancel the man down alarm, the 

miner should press the lateral buttons. The main LED stops blinking, and a cancelation signal 

is sent to the server through the wireless nodes. 

Requirement 6. Respond to evacuation notice. 

The operator behind the console can send an evacuation notice to all the enabled cap lamps 

currently online. When the evacuation notice is received by the cap lamp, the red LED turns 

on and the main LED blinks every 30 seconds for a period of 5 seconds. 

Requirement 7. Alarm acknowledgment by console. 

When the distress signal is received by the server, the server logs the time, miner’s location, 

and cap lamp serial number. Then: 

1. The distress signal appears on console and the distress window pups out; 

2. The cap lamp red LED blinks slowly (once every 2 seconds) to indicate that the distress 

alarm is received at the surface; 

3. Once the alarm is acknowledged from the panel in console, the cap lamp red LED turns off. 
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Requirement 8. Alarm acknowledgment by cap lamp. 

When the evacuation notice is received by cap lamp, the miner responds to that by pressing 

the lateral buttons and cap lamp sends a confirmation message to the console. The main LED 

keeps blinking for 5 seconds every 30 minutes, and the red LED remains on until the 

evacuation ends. 

Requirement 9. Stop the evacuation notice. 

If the emergency clears, the operator stops the evacuation notice and both the main LED and 

red LED stop blinking. 
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Figure 2.2. Context diagram of cap lamp software 
 

1. The software of cap lamp has one layer; 

2. Ethernet cable between the last wireless node and the server is responsible to transmit data 

to the server. 

 

2.5.3. Tag Reader Requirements 
 

This is the set of tag reader requirements at the software level. There are pre-requisites before 

starting to use the tag reader. Figure 2.3 shows the context diagram of the software and its 

interaction with the functional users. 

 

Pre-requisite 1. Turn on the tag reader by pressing the on/off button. 
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Pre-requisite 2. The tag reader should be connected to the tag reader gateway and the server. 

The tag reader is connected to the gateway by a wire and the gateway is connected to the server 

through a TCP/IP network. 

Requirement 1. Connect to gateway. 

While the tag reader establishes the connection between gateway and server, the following 

message displays on the tag reader screen: “connecting to server”. Once both connections 

established, the tag reader display the following message: “tag reader is ready, please scan your 

personnel tag”. 

Requirement 2. Scan the personnel tag ID (RFID). 

The software expects the personnel tag to get scanned first. The miner scans his RFID card and 

waits for the validation from the server. 

Requirement 3. Scan the tag ID (serial number) of personal safety device. 

The software proceeds to scan the personal safety device after scanned the RFID. Once the 

serial number is scanned, the software sends it to the server through the gateway for the 

validation. 

Requirement 4. Restart the association process. 

If a wrong tag ID is scanned, the tag reader restarts the association process and the miner needs 

to restart the procedure. 

There is a 10-second timeout after scanning the personnel tag ID. If no device is scanned for 

this period of time, the tag reader restarts the association process. 

If the tag reader loses connection with the gateway, the tag reader restarts the association 

process. 

Requirement 5. Confirmation/error message. 

Once the server received the serial number, an association is created between the RFID and 

the serial number and the successful association message is sent to the tag reader through the 

gateway. 

If a personal safety device is scanned instead of RFID, the following error message shows up: 

“it is not a personnel tag”. 

If personnel tag is scanned instead of personal safety device, the following error message 

shows up: “it is not a personal device”. 
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If undefined tag is scanned, the server does not recognize the tag and the following error 

message shows up: “unrecognized tag”. 
 

Note: after the shift ends, the miner places the personal safety device into its charger base. 

This generates a disassociation message that clears the association between the personal safety 

device and employee RFID. The disassociation message is sent to the server through the 

available wireless network. 
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Figure 2.3. Context diagram of tag reader software 
 

1. The software of tag reader has one layer; 

2. The gateway is connected to the tag reader by a wire. TCP/IP network is for transmitting 

data to the server; 

3. The server is another software application outside of the boundary of measurement. 

 

 

2.6. COSMIC Measurement Results 
 

This section provides the measurement results of the three software in Table 2.2 grouped by 

the type of data movements. 
 

The unit of size measurement is COSMIC Function Point (CFP). According to the COSMIC 

method, there are four types of data movements (COSMIC, 2017): 

Entry: moves a data group into a functional process from a functional user. 
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Exit: moves a data group out of a functional process to a functional user. 

Write: moves a data group from a functional process to persistent storage. 

Read: moves a data group from persistent storage to a functional process. 

Based on the set of requirements for each software, the functional processes related to each 

FUR are identified and the size of them are measured using the COSMIC method. 

 

Table 2.2. COSMIC measurement results of software solutions for underground mines 
 

Software 
Data movements 

COSMIC size 
Entry Exit Write Read 

Recorder unit 5 2 3 2 12 CFP 

Cap lamp 12 17 0 0 29 CFP 

Tag reader 7 7 0 0 14 CFP 

 

The COSMIC-ISO 19761 method can be used to measure the functional size of the real-time 

embedded software deployed in underground mines (answer to RQ 1). The obtained COSMIC 

sizes can be used as one of the independent variables for the construction of priori estimation 

models in the companies. At the beginning of the project, once the other estimated variables 

are known (such as effort), the project leaders can use these size information to build their own 

estimation models (software effort/cost/timelines) with greater certainty and control. It makes 

it possible to quantify the functions the software delivered in a standardized, repeatable, and 

objective way, and independently of development technologies. 

  



 

  



 

CHAPTER 3 
 

MEASUREMENT OF AI SOLUTIONS FOR UNDERGROUND MINES 
 

There is not yet any reported used of COSMIC sizing with AI and ML projects in 

organizations. The aim of this chapter is to answer the RQ 2 and demonstrates that the FP 

technique can be used in the ML context. This chapter reports on our usage of COSMIC for 

sizing two ML algorithms and an AI dashboard developed using Python programming 

language to provide AI solutions for underground mines problems. The measurement is 

performed for two different viewpoints:  

1. Software viewpoint which is the classical viewpoint of measurement that describes the 

functionalities the software does and;  

2. Data scientist viewpoint which describes the software tasks required to be developed by the 

data scientist for using this AI solution. 

 

The AI solutions are new in this software development company and there has not yet been 

any official release for the AI application. In practice, the lack of formal FUR documentation 

as well as size information, and the unavailability of the experts familiar with previous AI 

projects in the company necessitate to identify the FUR during the coding process and then 

fully document them when the coding and testing are accomplished.  

 

The research objectives in this chapter is to size with COSMIC the functional requirements of 

developed ML algorithms that are already programmed and specific to AI projects and 

applicable for the company’s underground mines problems. The size measurement for two 

different viewpoints can assist the data scientists to obtain insights of what needs to be coded 

to develop a specific functionality in the software, how to size them, and how to use this size 

for effort estimation purposes. The method selected in this research to measure the functional 

size of the software is the COSMIC ISO 19761 standard. 
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Section 3.1 provides an explanation of the AI solutions in mining projects and introduces the 

ML algorithms and features of an AI dashboard. Section 3.2 presents the scope and purpose of 

measurements along with the context diagram of the software. Section 3.3 presents the 

measurement results. 

 

 

3.1. Overview on Mining Problems and AI Solutions 
 

The data obtained by the recorder are stored in the database in the server and the data scientists 

have access to the stored data for analysis purposes. One of the sources of data is the SQL 

database: the data scientist can read the data by querying in Python and the other source of data 

is HDF files stored per product per month. Advanced statistical analysis using ML is used to 

identify patterns in the data and build AI solutions. 

 

3.1.1. Event Detection 
 

Event detection is used in mines for multivariate time series data to recognize the event 

triggers. The purpose of events detection is to identify the occurrence of events to monitor an 

environment. The goal of events detection is to recognize the problems and learn how to detect 

the occurrence of these events for several purposes: 

 

1. Inspection: it is almost impossible to inspect in real-time the vehicles in the mines to make 

sure they are working, and that they are not broken or near to get broken down. Detecting 

events helps to recognize problems and fix them on time before they occur; 

2. Safety: from the human resource safety point of view, it is not possible to check on them 

visually to assure the workers are doing well and not in major danger. In practice, all mine 

workers wear cap lamps and, the software in the cap lamp detects the worker’s movements 

and sends signals to the operator. If a danger happens, the issue is detectable and rescue 

procedures can be initiated and carried on; 
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3. Work productivity: as in other industry sectors, productivity is a critical issue in the mining 

industry. Depending on what is measured for the productivity, the event detection can help 

to identify the reasons why the productivity has increased or decreased over a period of 

time. In the software development company, one of the KPIs for productivity is the Standard 

Production Time (SPT) for vehicles as defined by AFNOR. 

 

For example, when the vehicle is in standby mode, the periods need to be recognized using 

ML solutions. The time taken activities in mining are broken down in Figure 3.1 and the 

standard time slot for SPT is specified. 

 

 
 

Figure 3.1. Definition of SPT – AFNOR 
 

 

3.1.2. K-Means Clustering - Detecting Idling Speed in Vehicles 
 

The K-Means algorithm is one of the unsupervised ML algorithms that group similar data 

points together and discover underlying patterns (Garbade, 2018). The algorithm identifies 

randomly selected centroids, allocates every data point to the nearest cluster, and then repeats 

the calculations to optimize the positions of the centroids.  

 

The idling status refers to vehicle's engine functioning while the vehicle is not in motion (e.g., 

a taxi driver is stopped at a red light):  
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1. When the vehicle is off (Down Time in Figure 3.1), the engine speed is zero; 

2. When the driver starts the vehicle on, the engine speed goes up.  

 

Depending on the type of work that the vehicle is doing (e.g. loading, unloading, and dumping) 

the engine speed is variable (usually up to 2400 r/min): 

1. When the vehicle is not in motion and the wheels are stopped (the gear is neutral), the engine 

speed indicator shows a specific engine speed: this is the idling state where:  

2. The engine speed is positive, and the wheel speed is zero (Engine speed > 0 (r/min) & Wheel 

speed = 0 km/h).  

 

As defined in Figure 3.1, operating delay (OD) and operating standby (OS) activities represent 

an idling state of vehicle: they both indicate that the equipment is on but not working and the 

only difference in their definitions is how long the equipment has not been working. 

  

There are different reasons why a vehicle does not work for a long time such as: malfunction, 

unexpected safety issues happened to the driver and sensors deterioration. Identifying these 

reasons will help to find out what occur underground when the vehicle is idle, in particular 

since real-time inspection underground has many challenges. 

 

Furthermore, for productivity analysis, these idling periods have to be excluded from the 

production time formula and one way to exclude those periods is to identify such idling periods 

and events (here, the engine speed) and removing such data from SPT calculation. 

 

Before running the algorithm through the data, a series of conditions have to be set based on 

initial assumptions (here: Engine speed > 0 (r/min) & Wheel speed = 0 km/h) in order to select 

the potential data points. The algorithm identifies the centroid(s) which is (are) the idling 

engine speed in vehicles. The obtained values can be used as an input value for monitoring and 

optimizing purposes in other coding calculations such as:  

1. Calculate OD and OS in each shift; 

2. Monitor the driver’s status while doing job underground. 
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The K-Means algorithm has been chosen for the following two reasons: 

1. Type of dataset: unlabeled data (i.e., data without defined categories or groups); 

2. K-Means is computationally faster and simpler compared to other clustering algorithms. 

It is a hard task for the data scientist. The data scientist knowledge and expertise are required 

to find out the best fitted algorithm to implement. 

 

3.1.3. Predictive Maintenance 
 

The purpose of predictive maintenance is to determine a condition and a point in a future time 

to estimate when the maintenance should be performed. Most of the vehicles in the mine are 

only installed once and they stay there for years until the work finishes in that specific area. It 

is almost impossible to transfer the vehicles in and out every time for maintenance. In addition, 

every day or random checking inside the mine is not a wise, utilized and cost-benefit way due 

to safety and performance issues.  

 

So, robust predictive and data analytics are needed to anticipate the future points based on past 

trends. Common ML algorithms are largely available to make prediction based on the past 

trend of data. Here, one of the elements that needs to be predicted is the air filter restriction in 

the vehicles: an air filter restriction is a device to measure the air induction and it is installed 

on vehicles (trucks and loaders) in the mine. 

 

3.1.4. Linear Regression - Predicting Remaining Air Filter Restriction 
 

Linear regression is a form of regression analysis that shows the relationship between the 

independent variable and dependent variable. In statistics, it is used when an independent 

variable and a dependent variable have a linear relation and as the amount of data grows, the 

model learns to make more accurate predictions. 

The air filter restriction indicator measures the air induction. As the restriction progressively 

decreases, the indicator moves up to the maximum point: when it reaches the maximum, the 

air filter should be changed, and the indicator reset to zero.  
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In the mines, the air filter device is installed on vehicles. The recorder collects the air filter 

data and sends them to the server. Prediction is needed to forecast when is the time to change 

the air filter restriction device:  the air filter restriction data and the total engine hours data are 

used to build the regression model for estimating the remaining hours of the air filter. 

 

There are two reasons why the linear regression is chosen for this case: 

1. In each air filter cycle, the air filter restriction variable and total engine hours have linear 

positive relationship as in Figure 3.2 The red line in each cycle shows such relationships. 

Since the number of data points are huge, they overlap on each other. 

2. It is computationally faster and simpler compared to other prediction models for this case. 

 

  

Figure 3.2. Behavior of air filter and total engine hours in each cycle 
 

 

3.1.5. AI Dashboard with Streamlit 
 

Streamlit is a framework for ML projects which allows to create a data app in Python and run 

and browse data in real time on the web browser. It is a dynamic, highly interactive, and quickly 

built and deployable app with various widgets. Less code is needed in Python compared to 

other programming languages like HTML. 
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According to the needs of AI teams, different features can be coded with the purpose of 

inspecting data and build ML models on them. The main advantages of the AI dashboard are: 

1. It gives the data science workers an interface, particularly in data visualization; 

2. The developed app allows to upload data and provides quick overview of statistical 

analytics and visualization on a web browser environment for the data scientists in real time; 

3. It avoids re-working and re-coding each time when the data scientists want to observe the 

data; 

4. It is a user-friendly tool for someone without programming knowledge whose wants to see 

a display of data, such as senior managers and stakeholders. 

The user interface allows to select, choose, upload, and execute data without touching the script 

and the staff using the same domain in a company can connect to it by the URL on their Google 

Chrome web browser. Here, the data loader feature, statistics summary, equation, filter 

selection and data visualization feature were developed. 
 

3.2. Purpose and Scope of Measurement 
 

Two different viewpoints are discussed here, and the measurements have been carried on 

according to two purposes and scopes of measurement. 

 
Software viewpoint: The purpose of the measurement is to determine the amount of the 

functionality of the software. 
The scope of the measurement is the software requirements to implement an ML algorithm. 

The requirements specify the functionalities that the software delivers to its users for that 

specific algorithm whether or not some of them are done automatically by Python or come 

from reused functions. 

 

Data scientist viewpoint: The purpose of measurement is to provide size data for data 

scientists for their own AI development work. 

The scope of the measurement is the data scientist requirements to implement an ML 

algorithm. It states the data scientist tasks in Python to implement an algorithm. 
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According to the main five stages of AI life cycle in Figure 3.3, which indicates the processes 

data scientists follow in AI projects, the aim of data scientist viewpoint in this thesis only 

positions the software development tasks to implement the ML algorithm and not the full 

development of AI software. 

 

 
 

Figure 3.3. Machine Learning life cycle – The DataRobot website 
(https://www.datarobot.com) 

 
It is to be noted here that these two measurement processes were done after the software 

development has been completed: here, the FUR used were available after the coding process 

and there was no uncertainty and ambiguity in these implemented requirements.  

The context diagram of the AI software is displayed in Figure 3.4 where: 
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Figure 3.4. Context diagram of the AI software – two viewpoints 
 

1. The dashed lines show the software boundary; 

2. The software to be measured is the AI software (here, two ML algorithms and an AI 

dashboard) that is going to be written in the code platform; 
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3. The data scientist who does the coding and implementation part in the software is the human 

functional user (he sends and receives data from the software); 

4. The Python libraries which are pre-programmed as another software application in external 

libraries are also considered as functional users; 

5. The data storage is where the data is maintained. It can be stored as file in computer, server, 

and a SQL database and it is the functional user in data scientist viewpoint when (s)he reads 

the data from storage into Python; 

6. The cache folder is the persistent storage stored under a user directory. It is a temporary 

storage which saves the current outputs as long as the coding program is running. 

 

 

3.3. Software Requirements 
 

This section describes the FUR of the AI software to be measured from the two viewpoints: 

1. The software viewpoint includes the functionalities the software does and; 

2. The data scientist viewpoint includes the data scientist requirements to develop the AI 

software. 

 

3.3.1. K-Means Clustering Requirements 
 

The set of requirements at the software level for the K-Means clustering algorithm from 

software viewpoint and data scientist viewpoint are presented in Table 3.1 and Table 3.2.  

 

Table 3.1. Software requirements - K-Means clustering algorithm 
 

Requirement 1. Receive the inputs. 
The number of clusters (K) are given to the software. 
Requirement 2. Apply the K-Means function. 
The K-Means function is called from the Sklearn.cluster library with a defined K (here: 
K=2) to generate the model.  
Fit the dataset to model and obtain the centroids.  
The model generalizes to the given datasets using the Fit command. 
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Requirement 3. Obtain the centroid(s). 
The list of centroids is obtained which is the engine speed values when the vehicle is in the 
idling state. 
Requirement 4. Plot the scatter graph and specify the centroids in different colors. 
The idling speeds are displayed on graph. 

 
 

Table 3.2. Data scientist requirements - K-Means clustering algorithm 
 

Requirement 1. Import Python libraries. 
The libraries are a collection of functions and methods that allow to perform many actions 
without writing the code. The required libraries are: 
- Numpy: for numerical operations, 
- Pandas: for data manipulation and analysis, 
- Matplotlib: to design the graphs and charts, 
- Sklearn.cluster and K-means: for clustering algorithm. 
Requirement 2. Upload the raw data and create a data frame using the required columns. 
The data scientist uploads the raw data from data storage using pd.read function. 
Depending on the size of the data, the data scientist decides how many data files to upload. 
The data scientist enters the title of the columns as input to the pd.read function. Here the 
columns are: Date/time, engine speed, wheel-based speed, and dump positioning. 
Requirement 3. Create two empty columns in the existing data frame for further 
calculation. 
Two empty columns are created to put the results in the further calculation: state and idle. 
Requirement 4. Process the raw data. 
The unneeded data should be selected and removed from the data frame.  
- Engine speed = 0 (the engine is in offline/down mode) and wheel-based ≠ 0 (the vehicle 

is not in motion), 
- Dump positions: dump refers to a placement of vehicle when unloading the material. 

When the vehicle is in dump position, the wheel-based speed is equal to zero, but the 
angle of dumper bed positioning is more than 400. 

- Higher values of engine speed: make a set of comparison and label the data with 1 when 
the vehicle does not work and label the data with 0 when the vehicle works. The results 
will be put in the state column. 

When the vehicle is working (e.g. loading, unloading, and dumping), the engine works 
with maximum power and when the vehicle is not ‘working’, the engine speed should be 
lower than the engine speed at which the vehicle is working. 
- Apply the constraint for idling period is defined (e.g. Idling > 5 minutes)  

To determine the immobility time, the data scientist writes a sum function to sum the 
values labeled with 1 in state column, with this difference that when it is reached to a 
value labeled with 0 in the state column, resets the summation to zero and start counting 
again. The results are added in idle column. 
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Requirement 5. Apply the K-Means function with defined K and fit the dataset to the K-
Means model to obtain the centroids. 
The data scientist enters the number of K clusters (here: K=2). A cluster is a collection of 
data points aggregated together because of certain similarities. Fitting a dataset means that 
the ML model generalizes the given datasets to data similar to those on which it was trained. 
Requirement 6. Plot the scatter graph and specify the centroids in different colors. 
The data scientist plots the graph and specifies the centroids. The centroids are the outputs 
which are the engine speed values.   

 

Note for requirement 2: data cleaning and index changing need to be done before by the data 

scientist. The procedure is not specific to this context and not described in these software 

requirements: therefore, its measurement is not included. 

 

The scatter plot in Figure 3.5 displays the idling speeds in vehicles in different color. As 

mentioned in requirement 5, the idling speeds are the obtained centroids which are the outcome 

of K-Means algorithm. In this example the idling speeds are [646 , 699 r/min] and the wheel 

based speed is equal to zero which means the vehicle is not in motion. 

 

 
 

Figure 3.5. Example of identified clusters using K-Means algorithm 
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3.3.2. Linear Regression Requirements 
 

The set of requirements at the software level for the linear regression algorithm from the 

software viewpoint and data scientist viewpoint are presented in Table 3.3 and Table 3.4. The 

details of functional process and measurements in the two mentioned scopes along with data 

groups are provided in Appendix II. 

 

Table 3.3. Software requirements - Linear regression algorithm 
 

Requirement 1. Receive the regression equation. 
The regression equation is given to the software. 
Y = A * T + B (A is the regression co-efficient and B is the intercept) 
Requirement 2.  Receive the threshold. 
The threshold is the maximum air filter among all cycle (T = MAX (Air Filter 
Restriction)). 
Any other required thresholds can be given here. 
Requirement 3.  Receive the regression variables and training sets. 
The dependent variable and independent variable and training sets are defined. Use the 
train split method or feed the whole historical dataset as training set. 
Requirement 4. Apply the linear regression to the training set. 
Call the regression algorithm from the scikit-learn library. Then, fit the linear model to the 
training datasets using Fit command. 
Requirement 5. Obtain the regression equation. 
Request the software to produce the calculated remaining hours. 

 

Table 3.4. Data scientist requirements - Linear regression algorithm 
 

Requirement 1. Import Python libraries. 
The libraries are a collection of functions and methods that allow to perform many actions 
without writing the code. The required libraries are: 
- Numpy: for numerical operations, 
- Pandas: for data manipulation and analysis, 
- Stats: for the outlier identification, 
- Scipy: for using the mathematics and scientific computing, 
- Sklearn: for linear regression algorithm. 
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Requirement 2. Upload the raw data and create a data frame using the required columns. 
The data scientist uploads the raw data from data storage using pd.read function. 
Depending on the size of the data, the data scientist decides how many data files to upload. 
The data scientist gives the title of the columns as input to the pd.read function. Here the 
columns are: 
date/time, air filter restriction, total engine hours and engine speed. 
Requirement 3. Create one empty columns in the existing data frame for further 
calculation. 
An empty column (Hours) is created to put the results in the further calculation. 
Requirement 4. Process the raw data. 
The unneeded data should be selected and removed from the data frame.  
- Total engine hours = 0 (the engine is in offline mode), air filter < 0 (the air filter does not 

work) and engine speed more than quantile (0.25) or average, depends on data scientist 
judgment (e.g. engine works with power, so the air filter works), 

- Outliers are removed using z-score method, 
The start and end of each cycle using ‘find_peaks” function in Python along with the 
duration of each cycle and put the results in Hours column. 
Requirement 5. Define the regression variables, inputs and training sets. 
The dependent variable (y, hours) and independent variable (x, air filter) and training set 
are defined. The threshold is the maximum air filter among all cycle (T = MAX (Air Filter 
Restriction)). 
Requirement 6. Apply the linear regression function. 
The linear model is called from scikit-learn library and then fit the model to the training 
set. 
Requirement 7. Obtain the calculated equation. 
Put the obtained intercept and co-efficient from the linear regression into the regression 
equation and derive the estimated remaining hours by subtracting Y and the hours at 
prediction date in the dataset. 

 
 

3.3.3. AI Dashboard Requirements 
 

This sub section presents the set of requirements to develop an AI dashboard with Streamlit. 

The developed AI dashboard is to upload the data and see it visually on the web browser instead 

of writing code each time in the code platform. This AI dashboard is coded based on the 

requirements for the software development company to browse the data for underground 

mines. The details of functional processes and measurement results for the two mentioned 
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scopes along with data groups are provided in Appendix II. The five main features are 

developed in this AI dashboard: 

 

Feature 1. Data loader. 

The Data loader provides three options (SQL server, local computer, and excel/csv) to upload 

the data directly from the web browser. The cache function is used to avoid uploading data 

each time. 

Feature 2. Statistics summary. 

The statistics summary provides information about the shape of the datasets, data types and a 

table of summary statistics including min, max, average, standard deviation, and quantile in 

the order of columns. 

Feature 3. Add equations. 

This is used to perform the mathematical operation on columns. The equation is given to the 

software and then the software applies it on the columns. 

Feature 4. Filter selection. 

This is used to perform the mathematical operation throughout the data frame or grab a piece 

of dataset. The command is given by the user to the software. 

Feature 5. Data visualization. 

Data visualization is developed to plot the dataset with variables on x and y axes. Three plots 

are developed for this AI dashboard: 

1. Seaborn heatmap: is a two-dimensional graphical representation in a matrix shape which 

demonstrates the correlation between each individual value; 

2. Scatter chart: is a two-dimensional plot that represents data as a collection of points; 

3. Line chart: is a graph that displays the trend of the data along a number line. 

 

Table 3.5 and Table 3.6 describe the software functions from two different viewpoints for this 

developed AI dashboard. 

Pre-requisite: The Streamlit app needs to be installed on the Python environment using the 

instruction in Streamlit document on the website and by the local URL obtained in the last step 

of installation, the web app can be opened on browser.  
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Table 3.5. Software requirements - AI dashboard 
 

Requirement 1. Upload the data. 
There are three options to choose how to upload the data: SQL server, local computer, and 
excel/csv. 
Depending on the chosen way, the software asks the required input and proceeds to upload 
the data. 
Requirement 2. Create data frame. 
The software provides a list of required columns to choose and based on that creates the 
data frame. 
Requirement 3. Exert statistic summary. 
The software displays the statistics summary of the created data frame. 
In order to show the statistics summary, a checkbox is created to allow to check when the 
user wants to use this feature. 
Requirement 4. Apply the equation. 
The software receives the equation entered by user and then applies the required operation 
on the column when receives the checkbox command from user. 
Requirement 5. Apply filter selection. 
The software receives the filter selection command entered by user and then applies the 
required operation throughout the data frame when receives the checkbox command from 
user. 
Requirement 6. Plot the seaborn chart. 
The seaborn chart is displayed when the software receives the checkbox command from 
the user. 
Requirement 7. Plot the scatter graph. 
The software receives the X and Y variables and then plots the scatter graph. 
Requirement 8. Plot the line chart. 
The software receives the X and Y (can be more than one Y variable) and plots the multi-
line chart. 

 

Table 3.6. Data scientist requirements - AI dashboard 
 

Requirement 1. Import Python libraries. 
The main required libraries are: Streamlit, numpy, pandas, mysql.connector, seaborn, 
plotly_express and plotly_subplot. 
Requirement 2. Create checkbox for the required steps. 
The data scientist needs to define checkbox for the required functionalities. The checkbox 
acts as trigger and allows the software to apply the functions. 
Requirement 3. Create a widget list for uploading data. 
The data scientist needs to create a list of options and based on chosen option the next step 
appears to the user. 
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Requirement 4. Create a widget list of equipment. 
The data scientist creates a list of all available equipment for the user selection. 
Requirement 5. Connect Python to the SQL database. 
The data scientist needs to link Python to the SQL database to be able to query the data 
directly from SQL database. 
Requirement 6. Create date picker sidebar widgets. 
The date picker widget enables to choose a start and end date for uploading data. 
Requirement 7. Create a path for uploading data from local computer. 
A path (file location) needs to be created for uploading data files from local computer. 
Requirement 8. Create Excel/csv file picker widgets to drag the data file. 
The file picker allows to drag the file from the computer into a box dragger in web 
browser. 
Requirement 9. Upload data and create data frame. 
In this step, the data scientist adds the cache function for the performance. The cache 
function avoids the software to upload data every time for the operation and browsing. 
When the data is uploaded and columns are chosen, the data frame is created. A checkbox 
is created to allow to create the data frame. 
Requirement 10. Exert statistics summary. 
The “describe” function provides the statistics summary of the created data frame. A 
checkbox is created to allow to present the summary. 
Requirement 11. Create box for equations. 
A textbox is created, and the calculation is applied to the data frame using “eval” 
command. 
Requirement 12. Create box for filter selection. 
A textbox is created, and the calculation is applied to the data frame using “eval” 
command. 
The coding command for the equations and filter selection is different, so the data scientist 
needs to create both separately. 
Requirement 13. Create seaborn heatmap plot. 
The seaborn plot can be created using seaborn function in the seaborn library. 
Requirement 14. Create scatter plot. 
The scatter plot can be created using px.scatter function from plotly_express library. The X 
and Y variables are needed to define by selectbox function. 
Requirement 15. Create multi-line chart. 
The multi-line chart can be created using plotly_express library and subplot function. The 
X and Y variables are needed to be defined by selectbox and multiselect functions. 
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3.4. COSMIC Measurement Results of AI Software 
 

This section provides the measurement results of the three AI software based on their FUR 

from two different viewpoints. The functional processes and details of measurement are 

provided in the Appendix II.  

 

As shown in Figure 3.4, the software to be measured is the AI application while the software 

interacts with its functional users (data scientist, python libraries and ML algorithms). 

 

Table 3.7 and 3.8 present the total size of the developed ML algorithms and AI dashboard 

while the COSMIC size of the software in two different viewpoints is relatively close to each 

other. 

 

The software viewpoint determines the amount of functionality of the software. Simply put, 

what the software shall do in terms of requirements for the ML algorithms and AI dashboard. 

 

 

Table 3.7. COSMIC measurement results of AI software – software viewpoint 
 

AI software 
Data movements 

COSMIC size 
Entry Exit Write Read 

K-Means clustering 5 2 2 1 10 CFP 

Linear regression 7 1 5 1 14 CFP 

AI dashboard 12 13 2 0 27 CFP 
 

The data scientist viewpoint measures the amount of work that the data scientist needs to 

perform to implement an ML algorithm. In other words, it determines size data for data 

scientists for their own AI development work. 
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Table 3.8. COSMIC measurement results of AI software – data scientist viewpoint 
 

AI software 
Data movements 

COSMIC size 
Entry Exit Write Read 

K-Means clustering 12 0 0 0 12 CFP 

Linear regression 14 0 0 0 14 CFP 

AI dashboard 25 0 0 0 25 CFP 
 

The results obtained from these three cases showed that the function point techniques are 

applicable for the ML algorithms and AI applications (answer to RQ 2). The FUR and size 

information of developed ML algorithms can be used as one of the variables for estimating the 

development effort of an AI application as well as construction of priori estimation models for 

AI software. Although there are some common functionalities in the developed AI software in 

this project, the applicability of them is different and making each application distinct from 

any other (Lesterhuis & Abran, 2019). The documented FUR allow the data scientists to focus 

on other ML challenges rather than the coding aspects. The measurement in two different 

viewpoints assists them to recognize the functionalities (allocated to software) they need to 

develop as well as the amount of work they should do in practice to develop an ML algorithm 

in similar projects. Developing estimation models based on requirements and using standard 

units facilitate the planning for future projects as well as monitoring for projects in progress.  

 

  



 

CHAPTER 4 
 

EFFORT ESTIMATION MODEL 
 

This chapter presents an exploratory research on the software projects that have been 

implemented in a software release using three months of data to answer the RQ 3 and RQ 4 

which how descriptive statistics can provide relevant posteriori estimation models that could 

be applicable in priori context. In practice, there has never been in this company a priori 

estimation model using the historical data based on software size and effort: estimation was 

mainly done based on expert opinion and the experience from the past releases with related 

weaknesses. This raises a number of questions: “How good are expert’s estimates based only 

on opinions? Can the managers plan the projects based on the expert’s judgments?”. Having 

formal estimation models in the organization can improve estimation quality and can be a 

success story (Jørgensen, Boehm, & Rifkin, 2009) and more reliable than the judgment-based 

effort estimation methods. 

 

The objective of this chapter is to measure the size of the projects developed in a software 

release for three months, followed by the construction of a posteriori estimation models for 

these projects. Effort is the other variables in our model that the relevant data on effort is 

collected for each project. The proposed model is an effort estimation model in the specific 

context of embedded communications software development underground mines. Functional 

size is measured using COSMIC method. 
 

Section 4.1 presents an introduction on software release in the company and the related 

terminology. In section 4.2, the statistical analysis is presented and a discussion on outliers’ 

removal. Section 4.3 reports on first research phase and the applied method. In section 4.4, the 

second phase of research and the corresponding results are presented. In section 4.5 the 

estimation for outliers and risk probabilities of the proposed model are discussed and in section 

4.6 the proposed model is aggregated for its usage of industry. 
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4.1. Software Release 
 

Software release refers to the sum of developments and improvements of a piece of software 

that is going to officially launch for the customers. In each software release, there are a set of 

changes to the existing software for instance new features are added to the software to improve 

the functionality of the software solutions and the identified defects are solved to improve the 

software selling to customers. 

 

For each development/improvement, a ticket is created in an agile project management 

software which can be tracked in the system.  

 

The COSMIC method – ISO 19761 has been applied to measure the size in CFP of each project. 

The corresponding effort in hours was recorded in the time sheets stored in the system. The 

projects can be classified into three groups: 

1. Defects: bugs and errors in the software;  

2. Features: new functionalities added to the software; 

3. Incidents: customer tickets for problems that sometimes lead to a bug and customer requests 

to add new functionality in the software. 

 

4.2. Statistical Analysis 
 

Table 4.1 presents the descriptive statistics of 100 raw data points in a software release 

(includes three months of historical data) in this organization and the functional size in CFP 

and effort in hours. 

 

Table 4.1. Descriptive statistics of functional size and effort – N=100 
 

Development Projects SUM Min Max Average Median Standard 
Deviation 

Functional Size (CFP) 226 1 11 2.26 2 1.63 
Effort (hrs) 2194 1 200.5 21.94 11.2 30.27 
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The sum of size of the development projects for three months of historical data is 226 CFP and 

sum of effort is 2194 hours. However, there is a large variation in effort (Std = 30.27 hrs) for 

a number of projects that have either lower or higher productivity in terms of effort for an 

equivalent size.  

From Table 4.1, a two-dimensional scatter graph is presented in Figure 4.1 with the functional 

size in CFP on the horizontal axis and with their corresponding effort in hours on the vertical 

axis. 

 
Figure 4.1. Development projects: functional size and effort–N=100 

 

From Figure 4.1, it can be observed that on the x-axis: 

1. Most of the data points are within the 1 to 3 CFP size range; 

2. There is a sparsely populated interval between  4 and 5 CFP; 

3. There is only one data point each with  6, 8, 10 and 11 CFP. 

And on the y axis: 

1. The effort for most projects varies from 1 to 50 hours; 

2. 5% of the projects have an effort between 50 and 100 hours; 

3. Only 3 projects have more than 100 hours of effort. 
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For estimation purposes, these development projects can be classified into two different 

groups: defects and features.  

 

 

4.2.1. Defects and Features Groups 
 

This sub section provides descriptive statistics of the raw data classified into two groups: 

defects in Table 4.2 and features in Table 4.3. 

It is to be noted that the Incident group has only 6 data points with a total size of 9 CFP and 98 

hours of effort therefore, this Incident group is too small for a meaningful statistical analysis 

and no statistical results are provided in this research. 

Table 4.2. Functional size and effort - defects group– N=49 
 

Defect group SUM Min Max Average Median Standard 
Deviation 

Functional size 81 1 3 1.65 2 0.59 
Effort 633.4 1 137 12.93 8 20.29 

 
 

Table 4.3. Functional size and effort - features group– N=45 
 

Feature group SUM Min Max Average Median Standard 
Deviation 

Functional size 136 1 11 3.02 2 2.12 
Effort 1462.4 1 200.5 32.5 23 37.1 

 

From Table 4.2 and 4.3 it can be observed that: 

1. The numbers of data points in the defects and features groups are almost equal (49 and 45, 

respectively); 

2. Most of the feature projects have a functional size between 2 CFP to 4 CFP in each 

development project; 

3. Most of the data points in the defects group have a 1 CFP and 2 CFP size; 

4. The minimum effort for each group of features and defect is 1 hour; 
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5. The effort for most of the defect projects varies from 1 to 20 hours; 

6. The effort for most of the feature projects varies from 1 to 40 hours; 

7. The size and effort of the feature group with 45 data points are larger than the defect group 

of 49 data points: feature projects take almost 2.3 times more effort than defect projects 

while the number of the groups are almost equal:  

a. Average time for a feature = 32.5 hours while, 

b. Average time for a defect = 12.93 hours. 

 

4.2.2. Distribution of Effort and Outliers Identification 
 

This section presents the data points of effort variable in a box plot to display the distribution 

of effort and identify the statistical outliers on effort in both groups. The box plot is an EDA 

tool for determining outliers and summarizing large quantities of information. The data point 

that is located outside the whiskers of the box plot is an outlier and needs to be excluded for 

further analysis. Figures 4.2 and 4.3 depict the box plot of defects and features. 

 

For the outlier identification on the size variable, since there is a very small range of values, 

from 1 to 11 CFP, no data point has been removed based on the size variable. 

 

  
Figure 4.2. Box plot of defects - N=49 Figure 4.3. Box plot of features - N=45 
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Seven data points of effort variable in total have been identified as statistical outliers, and they 

need be removed for the statistical analysis that will follow. The outlier analysis is discussed 

in sub section 4.2.3. Overall: 

In defects: 4 data points with a sum of 8 CFP and 242.75 hours effort are excluded. 

In features: 3 data points with a sum of 17 CFP and 417.5 hours effort are excluded. 

 
The two-dimensional scatter graph of development projects in the defects and features groups 

are displayed in Figures 4.4 and 4.5.  

 

  
Figure 4.4. Defects group - N=45 

(excluding 4 outliers) 
Figure 4.5. Features group - N=42 

(excluding 3 outliers) 

 

 

4.2.3. Statistical Outliers Analysis 
 

As mentioned in the previous section, seven data points of effort variable have been identified 

as statistical outliers using the box plot method. Those seven data points are significantly larger 

than all the others in their group. The related Grubbs test for the identification of outliers on 

effort variables and derived p-values are indicated in Table 4.4 while: 

 

1. The outlier number 1 with 137 hours effort is significantly larger; It is at more than three 

standard deviations from the average of 12.93 hours effort. It is a significant outlier 

candidate in the defect group; 
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2. The outlier number 2, 3, and 4 are far from the average of the dataset. As the p-value and 

the critical z measures show the amount of standard deviation is far away from the mean; 

3. The outlier number 5 with 200.5 hours effort is more than three standard deviations away 

from the mean. It is a significant outlier candidate in the features group; 

4. The outlier number 6 with 128 hours effort is a significant outlier candidate. The p-value 

and critical z value indicate that; 

5. The outlier number 7 is two standard deviations away from the average of the dataset which 

affects the results of the dataset in the feature group. 

 

Table 4.4. Outlier analysis of effort dataset– significance level = 0.05 
 

NO Group Size Effort P-value Critical z Result 
1 Defect 2 137 0.0001 6.1136 Significant outlier 
2 Defect 2 37.5 0.0035 2.9239 Furthest from the rest of dataset 
3 Defect 2 34.55 0.0034 2.9257 Furthest from the rest of dataset 
4 Defect 2 33.7 0.0015 3.1752 Furthest from the rest of dataset 
5 Feature 3 200.5 0.0001 4.5281 Significant outlier 
6 Feature 4 128 0.0003 3.6579 Significant outlier 
7 Feature 10 89 0.0058 2.7612 Furthest from the rest of dataset 

 

Without those seven outliers on effort variables, the distribution of effort in both groups will 

be much closer to the normal distribution. Figure 4.6 displays the normal distribution curve for 

both groups after the removal of the outliers.  

 

 
 

Figure 4.6. Normal distribution curve in defect group (on left) and feature group (on right) 
excluding seven outliers on effort variables 
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The average of effort is reduced when those outliers are excluded. The analysis of the impact 

of outliers on the dataset in the defects group and features group is presented in Table 4.5 

while: 

In defects: the total effort is decreased by 243 hours (excluding 4 outliers) and, 

In features: the total effort is decreased by 417 hours (excluding 3 outliers). 

 

Table 4.5. Analysis of the impact of outliers on effort dataset 
 

Defect Effort Size Feature Effort Size 
Total (N=49) 633.4 81 Total (N=45) 1462.4 136 

Average (N=49) 12.93 1.65 Average (N=45) 32.5 3.02 
Standard Deviation 

(N=49) 20.29 0.59 Standard Deviation 
(N=45) 37.1 2.12 

Total (N=45) excluding 
4 outliers 390.65 73 Total (N=45) excluding 

3 outliers 1044.9 119 

Average (N=45) 8.68 1.62 Average (N=42) 24.87 2.8 
Standard Deviation 

(N=45) 6.84 0.61 Standard Deviation 
(N=42) 20.74 1.89 

 

 

4.3. Research Phase 1: Estimation Model with Linear Regression 
 

This section presents the linear regression models of the relationship between an independent 

variable - which is size (in CFP), and the dependent variable which is effort (in hours). 

 

The linear regression approach is first applied to build the estimation model and fit a linear 

equation to the observed data.  The estimation model derived from linear equation can be used 

to predict the amount of effort based on the project COSMIC size. The analysis of linear 

regression approach is presented in Figures 4.7 and 4.8 that plot the scatter graph with the fitted 

line on the data. 
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Figure 4.7. Linear regression of defects – N=45 

 
 

 

Figure 4.8. Linear regression of features – N=42 
 

Based on the obtained results of linear regressions, the summary of regression analysis is 

presented in Table 4.6 while: 

Despite of the positive regression coefficient, the correlation between independent variable and 

dependent variable is very weak with a large variation. 

 

Table 4.6. Regression analysis summary for defect and feature group 
 

 Defect Feature 
Intercept 6.0704 14.117 

Co-efficient 1.6093 3.7982 
R2 0.0208 0.1212 

Regression equation Effort = 1.6*CFP + 6 hrs Effort = 3.8*CFP + 14 hrs 
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The R2 value in both the defects and features group is less than 0.3 so, the relation between 

size and effort is very weak. 

 

Table 4.7. The R2 values 
 

R2 > 0.7 Strong relationship 
0.5 < R2 < 0.7 Moderate relationship 
0.3 < R2 < 0.5 Weak relationship 

R2 < 0.3 Very weak relationship 
 

In other words, either the relationship between variables might not be linear or that another 

variable might have a significant influence on the relationship between size and effort. 

Therefore, other significant variables along with size can impact on effort and our estimation 

model.  

 

We can conclude that, for this small range of dataset, estimation models based on functional 

size and linear regression analysis are poor estimators and better estimation models must be 

developed (answer to RQ 3). 

 

 

4.4. Research Phase 2: Estimation Model with Descriptive Statistics 
 

Descriptive statistics and EDA approach are carried out to analyze the data points and develop 

a posteriori estimation model that could be used in an a priori context. Software projects have 

various productivity ratios and some of them may have significantly different productivity 

behavior and require much more effort compared to the other data points. They need to be 

identified to take the required precautions in the project life cycle (Abran, 2015). Through 

descriptive statistic the basic characteristics of data are described. Some extreme projects that 

may have similar characteristics will be compared to other projects of similar size and effort 

and those characteristics may lead to very high unit effort and such large productivity 

variations. 
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In this section, the dataset is analyzed based on their main characteristics. Some of the data 

points have significantly different effort compared to the other data points and to obtain 

improved estimation models, these data points need to be identified. To identify them, the 

specifications of each project have been investigated and their common specifications were 

extracted. The next step is to summarize the main characteristics of development projects and 

be able to gain maximum insights into the data set and its underlying structure. 

 

It was observed in both groups that those significant data points have the same characteristics, 

and those characteristics lead to much more effort in the projects:  

1. 90% of the dataset are within the range close to average and less than two standard 

deviations away from the average. This dataset is named category 1; 

2. The rest of 10% have the characteristics that need effort more than two standard deviation 

away from the average. This dataset is named category 2. 

 

By classifying the dataset based on their main characteristics, two estimation models can be 

built using a summary of hypotheses and using a simpler statistical technique, here a simple 

average of effort. This will help to know how to estimate the average effort of a development 

project with its initial characteristics that exist in the beginning of the project. 

Tables 4.8 and 4.9 present the characteristics that were observed to be similar in each group. 

 
Table 4.8. Similar characteristics of data points - feature group – N=42 

 
Category 1 (90%) – N=38 Category 2 (10%) – N=4 

Configuration: 
- in console, software, database, translation 

Design software: 
- redesign software for a full 
implementation, deign new feature from 
scratch 

Code changes and code mergers Server update 
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Table 4.9. Similar characteristics of data points - defect group – N=45 
 

Category 1 (90%) – N=41 Category 2 (10%) – N=4 

Connection error: 
- mainly between console and its 
components and database. 
- fixing connection in management panel. 

Connection between two individual software 
or server: 
- when two individual software do not have 
connection and one of them might be 
broken. 

Software error: 
- when the software supposed to display 
something, and it does not. 
- when the software needs to update the 
information and it does not perform it at 
proper time. 

Unexpected software reboot 

Properties and limit: 
- change the frequency, increase/decrease a 
character limit and fields limit in database 

Missed to consider information in the 
console. 

 

According to the derived effort and the comparison between those classified 90% and 10% of 

the development projects. It can be noted that those 10% of development projects affect the 

effort dramatically depending on the type of development projects and increase the average 

effort of the projects. Table 4.10 presents the summary of results: 
 

Table 4.10. Average effort and standard deviations in each group 
 

 Defect Feature 
Average effort for 90% 7 hrs 20 hrs 

Std (90%) 4.6 14 
Average effort for 10% 25 hrs  73 hrs 

Std (10%) 3.44 7.5 
 

From Table 4.10 and Figure 4.9 it can be observed for the defects group that: 

1. The average effort for 90% of the defects with similar characteristics is 7 hours (e.g., almost 

1 business day) while; 

2. The average effort spending on the rest of 10% is 3.5 times larger (e.g., 25 hours and = 3 

business days). 
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Figure 4.9. Average effort based on characteristics – defects 

 

From Table 4.10 and Figure 4.10 it can be observed for the features group that: 

1. The average effort for 90% of the features with similar characteristics is 20 hours (e.g., 2.5 

business days) while;  

2. The average effort spending on the rest of 10% is 3.5 times larger: it takes 73 hours and 9 

business days (almost 2 weeks). 

 

 
Figure 4.10. Average effort based on characteristics – features 
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Overall, the effort spent on the features is almost 3 times more than the effort spent on the 

defects. Tables 4.11 and 4.12 present the descriptive statistics of the data points in functional 

size and effort according to the classified percentage in each group. 

 

Table 4.11. Functional size and effort according to classified percentage – defects 
 

Classification SUM Min Max Average Median Standard 
Deviation 

Category 1 
(N=41) 

64 CFP 1 CFP 3 CFP 1.5 CFP 2 CFP 0.54 
290 hrs 1 hrs 17 hrs 7 hrs 6 hrs 4.6 

Category 2 
(N=4) 

9 CFP 1 CFP 3 CFP 2.25 CFP 2.5 CFP 0.95 
100 hrs 22 hrs 30 hrs 25 hrs 24.12 3.44 

 
 

Table 4.12. Functional size and effort according to classified percentage – features 
 

Classification SUM Min Max Average Median Standard 
Deviation 

Category 1 
(N=38) 

99 CFP 1 CFP 8 CFP 2.6 CFP 2 CFP 1.44 
754 hrs 1 hrs 48.5 hrs  20 hrs 15.12 hrs 14 

Category 2 
(N=4) 

20 CFP 2 CFP 11 CFP 5 CFP 3.5 CFP 4 
291 hrs 64.5 hrs  80.5 hrs  73 hrs 73 hrs 7.5 

 

From Table 4.11 and through a comparison in Table 4.2, it can be concluded that in defects 

group: 

1. The standard deviation of effort is decreased from 20.29 (in Table 4.2) to 4.6 for the 

category 1 and to 3.44 for the category 2. There are less values of dataset farther away from 

the mean; 

2. The standard deviation of size is still below 1 which means there was not much more 

variation in the size from the beginning; 

3. The average size in Table 4.2 is still the same as the average size for the category 1 however, 

the average size has a minor larger size for the category 2. 

 

From Table 4.12 and through a comparison in Table 4.3, it can be concluded that in the features 

group: 
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1. The standard deviation of effort is decreased from 37.10 (in Table 4.3) to 14 hours for the 

category 1 and to 7.5 hours for the category 2. There are less values of dataset farther away 

from the mean; 

2. The standard deviation of size is also declined from 2.12 (in Table 4.3) to 1.44 hours for the 

category 1 while, the variation of size is increased to 4 hours for the category 2; 

3. The average size in Table 4.3 is around 3 CFP while the average size for the category 1 is 

declined to 2.6 CFP and the average size is larger at 5 CFP for the category 2. 

 

With this EDA approach, a number of distinct estimation models can be proposed based on 

similarity of characteristics and the approximated effort is derived from the average effort in 

the corresponding groups, based on historical data. The EDA based on descriptive statistics 

provides insight to obtain better understanding of the characteristics of the datasets in both 

groups and discover expected behavior. We can conclude that, in our small range of dataset, 

the descriptive statistics and using EDA approach provide better posteriori estimation models 

that the organizations can use in a priori context for a new development projects (answer to 

RQ 4). 

 

 

4.5. Estimation Steps for Outliers and Risk Probabilities 
 

This section presents the information of risk probability in the proposed estimation model. As 

it is shown in the outlier’s analysis sections (4.2.2 and 4.2.3) projects with same size have 

much more effort than another of comparable size and these variations of effort sometimes 

cause a very high unit of effort in the software projects even their characteristics are in one of 

the classified categories. It is important to know that these projects are inevitable that we have 

such variations in real business environment and there is no guarantee the effort for a new 

project be equal to the estimated effort. By investigating among the datasets of defect and 

feature groups and using the information of outliers in box plots 4.2 and 4.3, the following risk 

probability in our proposed estimation model exist. 
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From 94 data points in total (considering the statistical outliers) there is:  

1. A probability of 93 % that a new development project is among one of those categories and; 

2. A probability of 7% that a new development project is an outlier and we can not directly 

estimate the effort and the size at the beginning of the project. 

 

Therefore, the risk factors in each group are as follows: 

 

In the defects group there is a risk probability of: 

1. 92% that the new project has one of the characteristics either in category 1 or 2 and the 

probability of 8% to be an outlier; 

2. 6% that the new project which seems to be an outlier has the estimated effort between 25 to 

40 hours; 

3. 2% that the project benefited from very high unit effort compared to others and the effort 

goes over 130 hours. 

 

In the features group there is a probability of: 

1. 93% that the new project has one of the characteristics either in category 1 or 2 and the 

probability of 7% to be an outlier; 

2. 4.5% that the new project has one of the characteristics but benefited from very low unit 

effort; 

3. 4.5% that the new project which seems to be an outlier has the estimated effort between 73 

to 140 hours; 

4. 2.5% that the benefited from very high unit effort compared to others and the effort goes 

over 200 hours. 

 

By looking at estimation results objectively, it may have a probability that the new project 

takes more effort than the estimated effort. Since the statistical outliers have the same 

characteristics of the rest of the projects – see Table 4.13-: 
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Table 4.13. Outlier characteristics in each group, defects and features 
 

NO Group Size Effort Category 1 Category 2 
1 Defect 2 137    
2 Defect 2 37.5    
3 Defect 2 34.55    
4 Defect 2 33.7    
5 Feature 3 200.5    
6 Feature 4 128    
7 Feature 10 89    

 

The project managers need to calculate an effort contingency in their estimation process 

meaning that a new project may go off track for any reason and take much more effort 

compared to past projects. Therefore, to calculate the effort contingency, we use the Expected 

Value method with respect to the project’s category and their probabilities in each group. 

 

The calculation of the effort contingency using the Expected Value method starts with the 

identification of risks probabilities and the average effort impact in each category per group. 

Then, the expected effort contingency is calculated by multiplying the probability of risk 

occurring in each category per group by the average effort if it happens and then adding up the 

results – see the formula below, how the expected effort contingency is calculated per category-

group-: 

 

Expected Effort Contingency = (Estimated effort* Probability of risk occurring) + (Average 

outlier effort* Probability of risk occurring) 

 

Table 4.14 and 4.15 presents the expected effort contingency of the projects using Expected 

Value method: 
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Table 4.14. Expected effort contingency of projects – defect group (N=49) 
 

 Category 1 Category 2 
Number of data points 41+3 (outlier) = 44 4+1 (outlier) = 5 

Estimated effort 7 hrs 25 hrs 
Probability of risk occurring 0.93 0.8 

Average outlier effort 35 hrs 137 hrs 
Probability of risk occurring 0.07 0.2 

Expected Effort Contingency 9 hrs 47 hrs 
 
 

Table 4.15. Expected effort contingency of projects – feature group (N=45) 
 

 Category 1 Category 2 
Number of data points 38+1 (outlier) = 39 4+2 (outlier) = 6 

Estimated effort 20 hrs 73 hrs 
Probability of risk occurring 0.97 0.66 

Average outlier effort 128 hrs 145 hrs 
Probability of risk occurring 0.03 0.34 

Expected Effort Contingency 23 hrs 97 hrs 
 

In the case above, it may need to add those extra hours to the base average effort as a 

contingency to cover risks of finding outliers in the projects. 
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4.6. Steps for Industry to Use the Proposed Estimation Models 
 

This section aggregates the results of the exploratory research and classifies them for the usage 

within an estimation process tailored to this organization. Figure 4.11 represents a process 

workflow for estimating in this organization the development projects.  Depending on the type 

of development project, the following step by step estimation approach can be taken: 

 

Development Project

Feature

Characteristics 
available? Linear Regression

Chapter 4

Table 4.12

Chapter 4

Table 4.12

NO

YES

Average Effort = 7 hours
Average size = 1.56 CFP

Chapter 4

Table 4.13
& 4.14

Defect

Characteristics 
available?

NO
Linear Regression

YES

Category 1
(90%)

Category 1
(90%)

Category 2
(10%)

Category 2
(10%)

Average Effort = 25 hours
Average size = 2.25 CFP

Average Effort = 20 hours
Average size = 2.6 CFP

Average Effort = 73 hours
Average size = 5 CFP

Effort = 1.6*CFP + 6
Average size = 1.62 CFP

Effort = 3.8*CFP + 14
Average size = 2.8 CFP

Expected Effort Contingency
= 9 hours

Expected Effort Contingency
= 47 hours

Expected Effort Contingency
= 23 hours

Expected Effort Contingency
= 97 hours

Estimation 
Steps for 
Outliers

 
 

Figure 4.11. Workflow of process for effort estimation for industry 
 

Step 1. Specify the type of the development project: defect or feature. 

 

Step 2. Are the characteristics of the project identifiable at the beginning of the project? 

(if “NO” follow step 2.1 & 2.1.1, and if “yes” follow step 2.2 and continue). 
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Step 2.1. If “NO” (the characteristics of the defect/feature are unknown): 

Use the linear regression model based on functional size only. 

Note: (effort: ‘dependent variable’ & CFP size: ‘independent variable’) 

 
Step 2.1.1. Is the size information available? 

If “Yes”: the CFP size should be put in the regression equation. 

IF “NO”: the average size is used for effort estimation using the linear regression model. 

 

Table 4.16. The linear regression model for effort estimation 
 

Type of the project Regression equation Size information 
Defect Effort = 1.6*CFP + 6 hrs Average size = 1.62 CFP 
Feature Effort = 3.8*CFP + 14 hrs Average size = 2.8 CFP 

 
Step 2.2. If “YES” (the characteristics of the defect/feature are known): 

Choose the most relevant characteristics from one the categories below: 

 
Table 4.17. The category of characteristics of the development projects 

 
Group Category 1 (90%) Category 2 (10%) 

Defect 

Connection error 
- mainly between console and its components 
and database. 
-fixing connection in management panel. 
Software error 
- when the software supposed to display 
something, and it does not. 
- when the software needs to update the 
information and it does not perform it at 
proper time. 
Properties and limit 
- change the frequency, increase/decrease a 
character limit and fields limit in database 

Connection between two individual 
software or server: 
- when two individual software do not 
have connection and one of them 
might be broken. 
 
Unexpected software reboot 
 
Missed to consider information in 
the console. 

Feature 
Configuration: 
- in console, software, database, translation 
Code changes and code merges 

Design software: 
- redesign software for a full 
implementation, deign new feature 
from scratch 
Server update 
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Step 2.2.1. The project leader needs to decide in which category the project best matches and 

grab the average estimated effort and the average estimated size for the new project. 

 

Step 3. To calculate the contingency of the projects, use the Expected value method. Identify 

the risks probabilities and the average effort impact, then calculate by multiplying the risk’s 

probability by the average effort and add up the results. 

 

Expected Effort Contingency = (Estimated effort* Probability of risk occurring) + (Average 

outlier effort* Probability of risk occurring) 

 

Step 4. Do not assign the contingency to a specific estimation, but accumulate it into the 

portfolio of projects; this contingency fund can be used in the future when, a posteriori, a 

project is observed to have happened to be an outlier that needs a posteriori funding. 

 

Table 4.18. The estimated values of effort and size based on project’s category 
 

Group Category 1 (90%) Category 2 (10%) 

Defect 
Estimated effort = 7 hrs 

Expected effort contingency = 9 hrs 
Average size = 1.56 CFP 

Estimated effort = 25 hrs 
Expected effort contingency = 47 hrs 

Average size = 2.25 CFP 

Feature 
Estimated effort = 20 hrs 

Expected effort contingency = 23 hrs 
Average size = 2.6 CFP 

Estimated effort = 73 hrs 
Expected effort contingency = 97 hrs 

Average size = 5 CFP 
 

 
 



 

 
  



 

CHAPTER 5 
 

SOFTWARE ICEBERG APPROXIMATION 
 

This chapter proposes a new technique for estimating and approximating function points early 

in the lifecycle of a software project. This research addressed to RQ 5 and provides answers 

for if the size scaling factors applicable early in a software development life cycle. In this 

chapter an analytical study using ISO-IEEE 21948 standard on requirements engineering 

(ISO/IEC/IEEE 29148 Standard, 2011) is presented. It reports on empirical research carried 

out with two COSMIC case studies. Since there were no documentation of FUR in a priori or 

a posteriori context available in the company, we had to use the alternative set of data in the 

COSMIC case studies. Where the requirements are documented at various levels of detail, 

identified, and classified using a number of concepts from ISO-IEEE 21948 standard and the 

corresponding COSMIC function points measured on the basis of the most detailed 

requirements. From these observations, and comparison of the information available at various 

points in time, again based on ISO-IEEE 21948 standard concepts, size scaling factors specific 

to these case studies can be developed.  

 

Section 5.1 reports on the requirement engineering lifecycle documented in ISO-IEEE 21948 

standard and on the iceberg analogy. Section 5.2 introduces the relevant terminology in 

requirements engineering and the documentation levels for the proposed iceberg 

approximation technique. In section 5.3 and 5.4, the COSMIC case studies are analyzed using 

the proposed size approximation technique and the statistical results and corresponding scaling 

factors are presented. 

 

5.1. Requirements Engineering and Iceberg Analogy 
 

The ISO-IEEE 29148 standard on requirements engineering presents a number of concepts 

related to the sources, types and levels of detail of the requirements throughout the system and 
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software life cycle. The initial set of requirements originates from two sets of sources, the 

business stakeholders and other stakeholders, which leads to the ‘systems’ requirements. 

From the ‘system’ functional requirements, some will be allocated to ‘software’ requirements 

(as well as to hardware requirements and at times to manual operational procedures). These 

sources provide the system contextual requirements, including the system purpose, system 

scope and system overview. From this contextual information, the following are identified 

next– Figure 5.1 (ISO/IEC/IEEE 29148 Standard, 2011): 

1. System functional requirements, 

2. System non-functional and quality requirements. 

 

ISO-IEEE 29148 also notes that in addition to software functions explicitly identified, there 

may be interfaces identified, but not yet specified, as well as quality requirements, still at a 

high level. 
 

 
 

Figure 5.1. Software requirements derived from systems requirements 
 (ISO/IEC/IEEE 29148 Standard, 2011) 

 

It is to be noted that a large number of these system non-functional quality requirements may 

be derived from stakeholders not identified upfront in the feasibility studies but who must be 

involved at some point in the operationalization and ongoing operation of the software 

developed. 
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At the end of development, all these functional details are known to the developers, even if not 

formally documented and the software functionality implemented can be measured precisely 

in COSMIC function points. An outside measurer without access to all the documentation, or 

the undocumented functionality (such as that derived from system non-functional requirement 

(NFR) and implemented late in the testing phase), would miss a number of software functions. 

Similarly, when measurement is done earlier in the lifecycle, a number of software functions 

which have been neither identified nor specified in detail would be ‘invisible’ to the outside 

early measurer. 

 

To illustrate the above, the iceberg analogy is useful, illustrated in Figure 5.2, where on the 

left, only the easily visible part of the iceberg (e.g., above water line) is evident, to the view on 

the right where the total iceberg is revealed. 

 

 
 

Figure 5.2. The Iceberg analogy: initially visible functions (left) to full view (right) 
 

The concepts from ISO-IEEE 29148 were used, as per the iceberg analogy, to: 

1. Identify the types of requirements when they become visible in the life cycle and;  

2. Develop (by working backwards) ratios to extrapolate in previous phases. 

 

5.2. Relevant Terminology and Documentation Level 
 

The terminology from ISO-IEEE 29148 to describe the functionality of software is detailed in 

three levels: 

Level 1: Business functions (list of ‘system functions’): the information at this level is 

available at vision time or feasibility study phase; 
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Level 2: Business functions allocated to software functional processes (list of ‘software 

functions’): often this is available early in the specifications phase; 

Level 3: Detailed functionality allocated to each software functional process (functional details 

allocated to software): this is ideally completed and verified at the end of the specifications 

phase as well as at the end of a project, provided that the functional documentation has been 

kept up to date across the lifecycle. 

The sources of these functional details were analyzed using the concepts from ISO-IEEE 

29148. Each of the functional details within each functional process of the case study was 

classified into the following five categories with the following color-coding scheme: 

1. Functionality from business requirements– allocated to software functions - level 2; 

2. Functionality with more details from business requirements - level 3; 

3. Operational functionality for implementing in practice the business requirements 

functionality - level 3; 

4. Functionality derived from system requirements & allocated to software - level 3; 

5. Functionality related to an interface to other software applications - level 1 or 2. 

 

To be noted, the functions in yellow refer to the ‘system requirements’ related to data and 

operational quality requirements allocated as software functions. For ease of readability and 

traceability, this is re-labelled as ‘quality functionality’ in the subsequent tables.  

 

This approach was explored with two COSMIC case studies: course registration system (CRS) 

and restaurant management system (Resto-Sys) and using the statistical information from these 

measurements and classifications, scaling factors can derived next. 
 

 

5.3. CRS Case Study and its Scaling Factors in COSMIC Function Points 
 

The classification and color-coding scheme for the functional processes were applied on the 

COSMIC CRS case study. 
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The list of business functions and functional processes along with an example of classification 

for the CRS case study is available in Appendix III. 

 

5.3.1. Results of Functional Size Distribution at Level 3 - CRS Case Study 
 

The results from the classification by origin of the functional details for all the functional 

processes of the course registration system in five different types of functionality (the types 

are color-coded) together with their corresponding COSMIC size in CFP units and percentages 

are presented in Table 5.1, while the two last lines present: 

The percentage of the functionality comes from the five different types of functionality. 

The average size comes from the five types of functionality. 

 

Table 5.1. CRS – functional classification and size at functional process level 3 (N=21) 
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1 Add a 
professor 1 0 2 2 0 5 20 0 40 40 

2 Modify a 
professor 1 0 1 1 0 3 33.3 0 33.3 33.3 

3 Delete a 
professor 1 0 1 1 0 3 33.3 0 33.3 33.3 

4 
Enquire 
on a 
professor 

1 0 2 1 0 4 25 0 50 25 

 15  
……      …     

Sub-total in 
CFP 21 9 42 30 1 102 - - - - 

Percentage 
over TOTAL 

size 
20% 9% 41% 30% - 100% - - - - 

Average size 1 0.4 2 1.4 - - - - - - 
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5.3.2. Functional Size Distribution at Level 2 - CRS Case Study 
 

Using the iceberg analogy -as shown in Figure 5.3- and the above information sized at the 

functional process level it can be noticed that: 

1. 20 % of the functionality comes from the size of the functions listed from the systems 

software requirements; 

2. 9 % comes from the functional details added later to the software requirements; 

3. 41% comes from the operational functionality that must be added to implement such 

functional requirements in an operational context (business, embedded software, etc.); 

4. 30% came from the implementation of quality derived functionality allocated to the 

software – here more specifically ‘data integrity’. 

 

 
 

Figure 5.3. CRS case study – functional size distribution 
 

It is to be observed that the above requirements over the lifecycle were progressively identified, 

from earliest to latest. Such information (i.e. the percentage per classification of requirements) 

can then be used as scaling factors to estimate the final size of the fully developed software, 

taking into account the functionality-type to be added across the project life. Of course, the 

usual caveat applies for similar types of applications, similar organizational contexts, etc.  

The statistical information and scaling factors can be used to provide an estimate of the final 

size of the corresponding software -see Figure 5.4-: 
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Figure 5.4. CRS case study - transformation into scaling factors of requirements 
 

 
1. 20% system functions lead to a 1:5 scaling factor, for example: a size of 10 FP would lead 

to 10*5= 50 CFP when fully specified, including operational functions and data integrity 

functions; 

2. Details of business functions: 20%+9% (= 29%) leads to a 1:3.4 scaling factor, for example: 

a size of 20 CFP would lead to 20*3.4 = 68 CFP. 

 

The above have all been classified and calculated on the basis of the functional processes 

allocated to software. 

 
 
5.3.3. Functional Size Distribution at Level 1 - CRS Case Study 
 

A similar approach can be developed for earlier usage by using the list of ‘system’ 

requirements (e.g. level 1) instead of the list of functional processes (e.g. level 2) that become 

available later. 

 

To develop a scaling factor for level 1, the size information available at levels 2 and 3 was 

rolled-up at level 1 (e.g., system requirements level in ISO-IEEE 29148) with the following 

system level functions from business functions – see results in Table 5.2. 

 

As an example, if for a subsequent project, 10 additional system functions are identified, this 

statistical information and scaling factors can be used to estimate the final size of the 

corresponding software: 
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10 business functions with a size of 3 CFP at the feasibility study phase would represent 20% 

of the total expected total functionality (or 30 CFP a functional process), and would then scale 

up to an estimated final added functional size of 150 CFP. 
 

Table 5.2. CRS – functional classification and size at system function level 1 (N=7) 
 

ID
 

Fu
nc

tio
na

l 
pr

oc
es

s 
na

m
e 

Bu
sin

es
s 

fu
nc

tio
ns

 

Bu
sin

es
s 

de
ta

ils
 

O
pe

ra
tio

na
l 

fu
nc

tio
ns

 

Q
ua

lit
y 

fu
nc

tio
ns

 

In
te

rf
ac

e 

To
ta

l s
iz

e 

%
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%
 

%
 

1 Maintain 
professor 4 0 6 5 0 15 27 0 40 33 

2 Maintain student 
info 4 0 6 5 0 15 27 0 40 33 

3 Maintain course 5 4 8 8 0 25 20 16 32 32 

4 Maintain student 
schedule 5 3 14 7 1 29 18 11 49 25 

Sub-total: 
Maintain functions 18 7 34 25  84 22 9 50 30 

Average: 
Per maintain 

functions 
4.5     21     

5 Close 
registration 1 1 2 3  7 15 15 29 43 

6 Submit grades 1 1 4 1  7 15 15 55 15 

7 Enquire report 
card 1 0 2 1  4 25 0 50 25 

Sub-total: 
Other functions 3 2 6 5 0 18 17

% 
12
% 

36 
% 

28
% 

Average: 
Per other functions 1     6     

TOTAL % 21 9 41 30 1 102 
CFP 

20
% 

9 
% 

41 
% 

30
% 

Average from 
TOTAL 3 1.3 6 4.3  14.6     
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5.4. Results of Resto-Sys Case Study 
 

The same approach was applied on the COSMIC Resto-Sys case study which is composed of 

two parts: a mobile app and a web application. For more details see Appendix III section 2. 

 

5.4.1. Results of Functional Size Distribution at Level 3 – Resto-Sys Case Study 
 

The functional processes of the Resto-Sys case study were classified into the five different 

types of functionality (including security-NFR allocated to software functions) together with 

their corresponding COSMIC size in CFP units and percentages - see Table 5.3, while the two 

last lines present: 

The percentage of the functionality comes from the five different types of functionality. 

The average size comes from the five types of functionality. 

 

The list of business functions and functional processes for Resto-Sys case study is available in 

Appendix III. 

 

Table 5.3. Resto-Sys case study - list of functional processes and their sizes (N=33) 
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1 
Log on to 
mobile 
app. 

0 0 0 0 5 5 0 0 0 0 100 

2 Add an 
order 4 0 7 5 0 16 25 0 44 31 0 

3 Modify an 
order 3 0 6 3 0 12 25 0 50 25 0 

Total functional size of mobile application 33 
CFP  

4 Create 
new order 

4 1 7 2 0 14 29 7 50 14 0 
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ID
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5 Modify 
existing 
order 

3 2 3 1 0 9 33.3 22 33.3 11.1 0 

6 Log on as 
administra
tor 

0 0 0 0 4 4 0 0 0 0 100 

7 Add user 
in web 
app. 

1 0 2 1 0 4 25 0 50 25 0 

8 View the 
user list 

1 0 2 1 0 4 25 0 50 25 0 

.. …….            

Total functional size of web application 118 
CFP  

Total in CFP 40 3 63 36 9 151 
CFP - - - - - 

Percentage 
over TOTAL 

size 
26
% 

2 
% 

42
% 

24
% 

6 
% 

100
% - - - - - 

Average size 1.21 0.09 1.9 1.09 0.27 - - - - - - 
 

 

5.4.2. Functional Size Distribution at Level 2 & 1 – Resto-Sys Case Study 
 

Using the iceberg analogy, the usage of the information and sizes at level 3 can be rollup-up at 

level 2 of the software functions where - see Table 5.3: 

1. 26 % of the functionality comes from the size of the functions listed from the systems 

software requirements; 

2. Only 2 % of the functionality comes from the functional details added later to the software 

requirements; 

3. 42% comes from the operational functionality that must be added to implement such 

functional requirements in an operational context (here, a business application); 
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4. 30% comes from the implementation of quality derived functionality allocated to the 

software – here more specifically - see Table 5.4: 

a. 24 % as data integrity, 

b. 6% as security through the 2 login simple functions. 

 

Table 5.4. Resto-Sys case study – list of the use cases and their sizes – level 2 (N=10) 
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%
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%
 

%
 

%
 

1 Log on to 
mobile app.     5 5     100

% 

2 Maintain 
order 7 0 13 8 0 28 25 0 46 29  

Total functional size of mobile application 33 
CFP   

2 Maintain 
order 7 3 10 3 0 23      

 
Sub-total 
FUR 2 + 
NFR 

14 3 23 11 5 56 25 5 41 20 9 

3 
Log on as 
administrat
or 

    4 4 0 0  0 100
% 

4 Maintain 
user 5 0 8 4 0 17 29 0 47 23  

5 Maintain 
item 5 0 7 5 0 17 29 0 47 29  

6 Add an 
item family 4 0 8 5 0 17 23 0 47 29  

7 Maintain 
table 5 0 7 7 0 19 26 0 37 37  

8 Maintain 
menu 4 0 6 4 0 14 29 0 43 29  

9 View list of 
orders 1 0 2 1 0 4 25 0 50 25  

1
0 

Delete an 
order 1 0 1 0 0 2 50 0 50 0  

Total functional size of web application 118 
CFP   
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Total in CFP 39 3 62 37 9 151 
CFP - - - -  

Percentage 
over total size 

26
% 

2 
% 

42 
% 

24
% 

6 
% 100% - - - -  

Average size 
in CFP for 8 

FUR 
5 0.4 8 4.6 4.5 

151 
CFP 

(or 4.5 
& 19) 

- - - -  

 

To develop a scaling factor for level 1, the size information available at levels 2 and 3 was 

rolled-up at level 1 (e.g., system requirements level in ISO-IEEE 29148) with the following 

system level functions from business functions. The scaling factors are shown on the iceberg 

Figure 5.5. 

 

 
 

Figure 5.5. Resto-Sys case study - Transformation into scaling factors of requirements 
 

In addition, ISO-IEEE 29148 standard presents a number of concepts related to the sources, 

types and levels of detail of the requirements throughout the system and software life cycle. 

ISO-IEEE 29148 standard also notes that in addition to software functions explicitly identified, 

there may be interfaces identified, but not yet specified, as well as quality requirements, still 

at a high level. 
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From these observations and comparison of the information available and described using 

concepts from ISO-IEEE 29148 standard, at various points in time size scaling factors specific 

to these case studies and levels of documentation and sizing were developed.   

 

The challenge of designing functionality scaling factors was worked out from known detailed 

documented requirements measured in a context of full visibility, full documentation, and no 

uncertainty. More specifically, requirements were positioned at three levels of documentation, 

from the initial high-level system level down to the most detailed functional levels where all 

the requirements allocated to the software from the business functions to the operational 

functions as well as quality functions allocated to software were known. 

 

Such scaling ratios, with successive levels of documentation, can be used in future projects as 

a project progresses through the lifecycle, and documentation of levels of completeness. 

 

This approximation technique was not operated in this software development company due to 

some constraints. The functional size measurement using FP technique was used for the first 

time in this company and before that, no documentation of the FUR were available even 

specifically at these three levels of documentation. In fact, this functionality-based 

approximation technique can be used when the provided data on past projects can be collected 

and relevant classification of functionalities identified. With this in mind, COSMIC 

measurement of FUR was done for the first time in the company and the majority of concepts 

need discussion from the initial high-level system level requirements down to the most detailed 

functional levels. The documentation of FUR specific to each software need to carry out in 

every software release and then the comparison of the acquired information should be updated 

at various points in time. Therefore, such scaling ratios, with successive levels of 

documentation, can be used in the future projects in the company such as project progress 

through the lifecycle, and documentation of levels of completeness. 
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5.5. Threats to Validity 
 

The research in this thesis is based on actual measurements and the measurement expert has 

provided clarifications and assumptions to interpret the functionalities in this specific context. 

So, there is no significant threat to internal validity. 

 

An external validity threats is associated to the validity of findings. The obtained measurement 

results on the size of real-time embedded and AI software are specific to this context and the 

results can not be generalized to other contexts, situations, and settings. 

 

In addition, the scaling ratios derived from the two case studies are specific to these case studies 

and only the technique can be used in the organizations, that provided data on past projects 

with relevant classifications.  



 

CONCLUSION 
 

Estimating the development effort of software projects has always been a challenge for 

software development organizations. The literature on software development effort proves that 

functional size is one of notable factors that the organizations need to consider when they want 

to build their own posteriori estimation models. 

 

The objectives of this research were to operationalize and experiment a posteriori measurement 

of functional size of software using the FSM technique and COSMIC-ISO 19761 method in 

the specific software development context of AI and real-time embedded software in 

underground mines. This research is conducted in a software development company and the 

functional size method is used for the first time in this company where there was no 

documentation of software functional requirements as well as standard methods to quantify the 

functional size of the requirements. 

 

In this research project, we answered five research questions. In RQ 1, we performed a 

posteriori measurement of the software developed in that organization. The measurement 

results of FUR of three software deployed in underground mine are presented. The results show 

that the COSMIC method can be used to measure the functional size of the real-time embedded 

software and these size information can be used as one of the independent variables for the 

construction of priori estimation models at the beginning of the software projects. 

 

To address the RQ 2, we investigated the size measurement with COSMIC standard in the AI 

domain and explored whether or not the FP technique could be used to measure the size of AI 

software and ML algorithms. We reported the size measurement of three AI solutions 

programmed in Python for two different viewpoints. The obtained measurement results 

demonstrate that the COSMIC method can be used in AI domain and this size information is 

one of the variables for estimating the development effort as well as construction of priori 

estimation models for AI software. 
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To address to the RQ 3 and RQ 4, estimation models based on size and effort using three 

months of historical data were built. The linear regression model showed that the relation 

between size and effort is very weak and might not be linear and other unknown variables have 

impact on the size-effort relationship. Thereby, a posteriori estimation model based on 

descriptive statistics and EDA approach was developed. In this model, the dataset is classified 

into two categories based on their main characteristics and for each category average estimated 

effort and size are obtained. The model demonstrates that within a small set of data, the 

estimation with average effort can provide good a posteriori estimation models that could be 

used in priori context. 

 

To answer to RQ 5 and explore the development of size scaling factors for the usage in a priori 

context, two detailed COSMIC case studies as an alternative dataset were chosen to explore 

this issue. An analytical study using ISO-IEEE 21948 standard on requirements engineering 

and iceberg analogy is developed and the results of scaling factors show that such an 

approximation technique can be used for estimating function points early in the life cycle of a 

software project. 

 

 

Research Contributions and Industry Outcomes 
 

The research paper  “Development of COSMIC Scaling Factors Using Classification of 

Functional Requirements” has been published in “29th International Workshop on Software 

Measurement (IWSM) & 14th International Conference on Software Process and Product 

Measurement (MENSURA)” in 2019 in Haarlem, The Netherlands. 

 

The software-iceberg approach has been adopted by the COSMIC Group as an additional 

sizing approximation technique and included in the 2nd  release (February 27, 2020) of  “Early 

Software Sizing with COSMIC” both the Practitioners Guide and Experts Guide in chapter 7. 
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Part of the measurement of developed ML algorithms has been accepted by the COSMIC 

Group maintaining the COSMIC Software Sizing Standard.  

In addition, I have contributed to the editing process as a co-editor of the case study  “Data 

points clustering with Machine Learning”: it is in draft status and is currently being reviewed 

by the COSMIC ‘measurement practices committee – MPC’. It is expected to be approved in 

the coming weeks for publication on the COSMIC website. 

 

 

Future Work 
 

The research presented in this thesis can lead to further work in the context of AI size 

measurement in other industries. It can be pursued based on the methodologies used in this 

thesis. 

Other future work may include considering other possible independent variables in the 

proposed models that could have had impact on the size and effort variables and improve the 

accuracy of estimations in the organization. 

In this thesis two detailed COSMIC case studies are investigated in order to develop the scaling 

factors. Additional case studies from other domains may provide additional types and sources 

of functionality that could be considered for scaling purposes. 



 

 
 



 

APPENDIX I 
 

SOFTWARE ELEMENTS 
 
 
1. Elements of Recorder Unit 
 
The software comes with the following elements: 
 
1. Configuration tool: to generate the configuration file for the recorder software. All 

information concerning the external sensors and the data to be recorded and how to process 
the raw information is included in this file such as: time settings, sensor’s channels, engine 
types, parameters and calculations and all of them are set manually by engineers since it 
varies for each vehicle, engine type, device and customer. This file is required by the 
recorder to operate. 
 

2. Backend: is the server-side development and responsible for storing and manipulating data. 
It includes communication server, generation service, importation service and database. 

 
3. Client application: is responsible to check the recorder in real time and receive alarms and 

events from recorder. 
 
The recorder unit is connected to the vehicle and server by Bus cables. The cables from the 
vehicle are joined together by a hardware piece called main harness and the main harness is 
plugged into one of the recorder’s port. 
 
2. Communication Server 
 
The communication server provides an environment by a set of specialized services to handle 
the data. Once the data which is called raw data is received in the communication server, it is 
stored in raw folder. 
The raw data in the raw folder need to be converted to ISA files using generation service. The 
generation service converts the raw data to the meaningful data parameters with isa extension 
and stores them in ISA folder. To do that, the data needs to be filtered. There are equations that 
is written and configured before by engineers: 
1. Filter equation: to filter the data that is not needed to be converted to ISA; 
2. Conversion equation: to convert the data from one unit to another (e.g. Fahrenheit to 

Celsius); 
3. Timer equation: to measure time period of a specific parameter; 
4. Alarm state equation: to specify the alarm state (e.g. temperature over 50 C is alarm state). 

Then, the importation service imports the ISA files into the database. The ISA files that go to 
the importation service create events. The events are created by a set of conditions that are 
written and configured before by engineers. If a condition is met, an event is created, and the 
events are stored in the database. For example, if the temperature parameter is over 50 C for a 
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period of 10 minutes, create high temperature event. If a condition is not met, the ISA files are 
transferred to ISA processed folder and archived there. 

The order of processing data files is: IBC – Raw – ISA – Database. The ISA files are readable 
using MET Analyzer application installed on windows. 

The client application is an API2 console and the data is interpreted on the console. There is 
backend software to create reports and display alarms in the console for user’s follow-up. There 
are standard reports and customized reports that are written engineers using Power BI 
application. The reports are written based on recognized events stored in database. The 
notification and alarm warnings are configurable in the console for user’s observation, such 
configurations are: 

1. Alarm notification in console: a message is displayed in the alarm list; 
2. Email: an email is sent to the configured email address; 
3. Fax: a report is sent to the fax machine; 
4. Printer: a report is sent to the printer; 
5. PDF: a pdf report is created and saved in a folder that configured before. 
 
The communication server parts, and data conversions are not specific to the recorder unit 
measurement context; therefore, its measurement is not included.  
 
 
3. Cap Lamp Hardware Elements 

Cap lamp safety device has several buttons on the device itself that makes the software inside 
the cap lamp start the process:  
1. There are two buttons on the top of the cap lamp named lamp button and clock/display 

button which are mostly used for displaying information; 
2. The lateral buttons are applicable for the emergencies and safety purposes; 
3. There are two LEDs: main LED and auxiliary LED; 
4. There are two network LEDs: 

a. Green: blinks once every 5 seconds which means the cap lamp is under wireless network 
coverage and; 

b. Red: blinks once every 60 seconds which means the cap lamp is not under wireless 
network coverage.  

 
To be noted that, the number of the nodes under the ground depends on size of the mine and 
the distance to the server. The nodes should be installed at suitable distances and the miner 
should work within a specified area to stay connected. The last node is connected to the server 
by an ethernet cable. 

                                                 
 
2 Application Program Interface 
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4. Tag Reader Hardware Elements 
 
In order to be able to use the tag reader, the RFIDs and the device’s serial numbers must be 
configured manually in the server. The scanning is done by a tag reader and then the tag reader 
must be connected to a tag reader gateway and the server to perform the association in the 
server.  
 
 
5. COSMIC Size of the Software 
 
Based on the given FUR in the main text in chapter 2, the measurement of functional size of 
the software is presented next. 
 
 
5.1. Recorder Unit Measurement Results 
 
The measurement with COSMIC Function Points of each corresponding functional process is 
presented in Tables A I-1 to A I-5. 
 
Functional process 1: Receive the configuration file. 
 

Table-A I-1. FP 1 - size = 2 CFP 
 

Sub-process Data group Data 
movement CFP 

The Software receives the configuration 
file on BOT Configuration file Entry 1 

The software stores the configuration file 
on hard disk on BOT Configuration file Write 1 

 
Functional process 2: Record data on BOT. 

 
Table-A I-2. FP 2 – size = 3 CFP 

 

Sub-process Data group Data 
movement CFP 

The software receives unformatted 
streams of data Unformatted data Entry 1 

The software reads the configuration from 
configuration file Configuration file Read 1 

The software records the formatted data 
as raw data Data manipulation - - 

The software sends the raw data from 
BOT to TOP Raw data Exit 1 
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Functional process 3: Store data. 
 

Table-A I-3. FP 3 - size = 2 CFP 
 

Sub-process Data group Data 
movement CFP 

The software receives raw data on TOP  Raw data Entry 1 
The software stores the raw data on hard 
disk on TOP Raw data Write 1 

The raw data stores as raw data segments Data manipulation - - 
 
Functional process 4: Transfer data to the communication server. 
 

Table-A I-4. FP 4 – size = 3 CFP 
 

Sub-process Data group Data 
movement CFP 

The software receives the connection 
establishment through Bus cable Connection signal Entry 1 

The software reads the raw data segment 
from hard disk on TOP 

Raw data 
segments Read 1 

The software sends the raw data segments 
to the communication server 

Raw data 
segments Exit 1 

 
Functional process 5: Delete the data. 
 

Table-A I-5. FP 5 - size = 2 CFP 
 

Sub-process Data group Data 
movement CFP 

The software receives the reset command Reset command Entry 1 
The software deletes the raw data on 
TOP’s disk Reset command Write 1 

 
 
5.2. Cap lamp Measurement Results 
 
The measurement with COSMIC Function Points of each corresponding functional process is 
presented in Tables A I-6 to A I-14. 
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Functional process 1: Start cap lamp’s self-test mechanism. 
 

Table-A I-6. FP 1 – size = 4 CFP 
 

Sub-process Data group Data 
movement CFP 

The software receives a self-test 
command after taking out the cap lamp 
from charger base 

Self-test command Entry 1 

The software sends a blinking command 
to the main LED Blinking command Exit 1 

The software receives stop command 
from lateral buttons pressed by miner Stop command Entry 1 

The software sends stop command to the 
main LED to turn it off Stop command Exit 1 

 
Functional process 2: Connect to the available wireless nodes. 
 

Table-A I-7. FP 2 - size = 2 CFP 
 

Sub-process Data group Data 
movement CFP 

The software receives connection signal 
from available wireless nodes Connection signal Entry 1 

Confirmation/error message – green/red 
LED blinks 

Successful/unsuccess
ful message Exit 1 

 
Functional process 3: Send distress signal. 
 

Table-A I-8. FP 3 - size = 3 CFP 
 

Sub-process Data group Data 
movement CFP 

The software receives distress command 
from lateral buttons pressed by miner Distress command Entry 1 

The software sends distress signal to the 
available wireless node Distress signal Exit 1 

The software turns on the red LED Blinking command Exit 1 
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Functional process 4: Send man down alarm. 
 

Table-A I-9. FP 4 – size = 4 CFP 
 

Sub-process Data group Data 
movement CFP 

The software receives the 60 seconds 
immobility message from the accelerometer 
sensor in the cap lamp 

Immobility 
message Entry 1 

The software turns on the main LED Blinking 
command Exit 1 

The software receives the 90 seconds 
immobility message from the accelerometer 
sensor in the cap lamp 

Immobility 
message Entry 1 

The software sends man down alarm to the 
available wireless node  Man down alarm Exit 1 

 
Functional process 5: Cancel the man down alert. 

 
Table-A I-10. FP 5 - size = 3 CFP 

 

Sub-process Data group Data 
movement CFP 

The software receives a stop command 
from lateral buttons pressed by miner to 
cancel the man down alarm 

Stop command Entry 1 

The software stops the main LED 
blinking Stop command Exit 1 

The software sends the cancelation signal 
to the available wireless node Cancelation signal Exit 1 

 
Functional process 6: Respond to evacuation notice. 

 
Table-A I-11. FP 6 – size = 3 CFP 

 

Sub-process Data group Data 
movement CFP 

The software receives the evacuation 
notice Evacuation notice Entry 1 

The software turns on the red LED Blinking 
command Exit 1 

The software turns on the main LED Blinking 
command Exit 1 
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Functional process 7: Alarm acknowledgment by console. 
 

Table-A I-12. FP 7 - size = 4 CFP 
 

Sub-process Data group Data 
movement CFP 

The software receives a confirmation that 
the distress signal is received to the server 

Confirmation 
message Entry 1 

The software sends a command to red 
LED blinking slowly Blinking command Exit 1 

The software receives the 
acknowledgment message 

Acknowledgment 
message Entry 1 

The software turns off the red LED Stop command Exit 1 
 
Functional process 8: Alarm acknowledgment by cap lamp. 

 
Table-A I-13. FP 8 – size = 3 CFP 

 

Sub-process Data group Data 
movement CFP 

The software receives acknowledgment 
from lateral buttons 

Acknowledgment 
command Entry 1 

The software sends the message to the 
server 

Acknowledgment 
message Exit 1 

The software switches the red LED 
blinking in slow mode Blinking command Exit 1 

 
Functional process 9: Stop the evacuation notice. 

 
Table-A I-14. FP 9 - size = 3 CFP 

 

Sub-process Data group Data 
movement CFP 

The software receives stop evacuation 
notice Stop command Entry 1 

The software sends stop command to 
main LED Stop command Exit 1 

The software sends stop command to red 
LED Stop command Exit 1 

 
 
5.3. Tag reader Measurement Results 
 
The measurement with COSMIC Function Points of each corresponding functional process is 
presented in Tables A I-15 to A I-18. 
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Functional process 1: Connect to the gateway. 
 

Table-A I-15. FP 1 – size = 4 CFP 
 

Sub-process Data group Data 
movement CFP 

The software receives the successful 
connection from gateway 

Successful 
connection Entry 1 

The software displays the waiting 
message on tag reader screen (waiting the 
gateway connects to the server) 

Waiting message: 
“connecting to 

server” 
Exit 1 

The software receives both connection 
establishment 

Successful 
connection Entry 1 

The software displays the connection 
message on screen 

Connection 
message: 

“tag reader is 
ready” 

Exit 1 

 
Functional process 2: Scan the personnel tag (RFID). 

 
Table-A I-16. FP 2 - size = 3 CFP 

 

Sub-process Data group Data 
movement CFP 

The software receives tag ID from the 
miner Tag ID Entry 1 

The software sends the tag ID to the server 
through the gateway Tag ID Exit 1 

Error/Confirmation message may appear Error/confirmatio
n message Exit 1 

 
Functional process 3: Scan the serial number of personal safety device. 

 
Table-A I-17. FP 3 – size = 3 CFP 

 

Sub-process Data group Data 
movement CFP 

The software receives the tag ID of personal 
safety device Tag ID Entry 1 

The software sends the tag ID to the server 
through the gateway Tag ID Exit 1 

The server receives the serial number and 
creates an association 

Data 
manipulation - - 

Error/Confirmation message may appear Error/confirmati
on message Exit 1 
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Functional process 4: Restart the association process 
 

Table-A I-18. FP 4 - size = 4 CFP 
 

Sub-process Data group Data 
movement CFP 

The software receives the wrong tag ID Tag ID Entry 1 
The software receives the 10-second time 
out signal Time out signal Entry 1 

The software loses the connection signal 
with gateway Connection signal Entry 1 

The software sends restart the association 
process 

Restart 
association Exit 1 

 
 

 



 

 

  



 

APPENDIX II 
 

AI SOFTWARE MEASUREMENT RESULTS 
 
 
The list of functional process and the details of COSMIC measurement for three AI software 
are presented next. 
 
K-Means Clustering – Software Viewpoint 
 
The list of functional process is presented in Table A II-1 to A II-4. 
 
Functional process 1: Receive the inputs.  

 
Table-A II-1. FP 1 - size = 2 CFP 

 

Sub-process Data group Data 
movement CFP 

The software receives the inputs (K =2) Inputs Entry 1 
The software stores the inputs in cache 
folder Inputs Write 1 

 
Functional process 2: Apply the K-Means function. 

 
Table-A II-2. FP 2 - size = 4 CFP 

 

Sub-process Data group Data 
movement CFP 

The software receives K-Means function K-Means 
function Entry 1 

The software creates the model Model Write 1 
The software receives the fit command Fit command Entry 1 
The software retrieves the model from 
cache folder Model Read 1 

 
Functional process 3: Obtain the centroids. 

 
Table-A II-3. FP 3 – size = 2 CFP 

 

Sub-process Data group Data 
movement CFP 

The software receives the requests to 
produce the centroids Request Entry 1 

The software outputs the centroids Centroids Exit 1 
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Functional process 4: Plot the scatter graph. 
 

Table-A II-4. FP 4 – size = 2 CFP 
 

Sub-process Data group Data 
movement CFP 

The software receives plot function and 
specified inputs (x, y, colors) Plot function Entry 1 

The software displays the scatter graph and 
centroids positions Scatter plot Exit 1 

 
K-Means Clustering – Data Scientist Viewpoint 
 
The list of functional process is presented in Table A II-5 to A II-12. 
 
Functional process 1: Import Python libraries. 

 
Table-A II-5. FP 1 – size = 1 CFP 

 

Sub-process Data group Data 
movement CFP 

The data scientist specifies the required 
libraries Libraries Entry 1 

 
Functional process 2: Upload the raw data and create a data frame using the required columns. 

 
Table-A II-6. FP 2 – size = 1 CFP 

 

Sub-process Data group Data 
movement CFP 

The data scientist asks the software to 
upload the data using “pd.read” function and 
specifies the file location (path) and 
column’s title to create data frame 

“pd.read” function Entry 1 

Functional process 3: Create two empty columns in the existing data frame for further 
calculation. 
 

Table-A II-7. FP 3 – size = 1 CFP 
 

Sub-process Data group Data 
movement CFP 

The data scientist generates two new empty 
columns columns Entry 1 
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Functional process 4: Process the raw data. 
 

Table-A II-8. FP 4 – size = 4 CFP 
 

Sub-process Data group Data 
movement CFP 

The data scientist removes the unneeded values 
of engine speed=0, wheel speed≠ 0  Parameters Entry 1 

The data scientist excludes dump positioning 
from the data frame Parameters Entry 1 

The data scientist enters the desired quantile 
values to label the data points so as to remove 
the vehicle’s actual working data points 

Quantile Entry 1 

The data scientist removes the data points with 
immobility less than constraint  Constraint Entry 1 

 
Functional process 5: Apply the K-Means function with defined K and fit the dataset to the K-
Means model.  

 
Table-A II-9. FP 5 – size = 3 CFP 

 

Sub-process Data group Data 
movement CFP 

The data scientist enters the number of clusters 
K with which the K-Means algorithm 
determines the K centroids 

K cluster Entry 1 

The data scientist enters the fit command to fit 
Engine speed datasets to the K-Means model Fit command Entry 1 

The data scientist requests to print the 
centroids. Centroids Entry 1 

 
Functional process 6: Plot the scatter graph. 

 
Table-A II-10. FP 6 – size = 2 CFP 

 

Sub-process Data group Data 
movement CFP 

The data scientist enters the plot function 
with cluster dataset and specifies the 
corresponding x and y axes 

Plot function Entry 1 

The data scientist enters the set of centroids 
and specifies the colors Centroids Entry 1 
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Linear Regression – Software Viewpoint 
 
The list of functional process is presented in Table A II-11 to A II-15. 
 
Functional process 1: Receive the regression equation.  

 
Table-A II-11. FP 1 - size = 2 CFP 

 

Sub-process Data group Data 
movement CFP 

The software receives the equation Equation Entry 1 
The software stores the equation in cache 
folder Equation Write 1 

 
Functional process 2: Receive the thresholds.  

 
Table-A II-12. FP 2 - size = 2 CFP 

 

Sub-process Data group Data 
movement CFP 

The software receives the inputs Inputs Entry 1 
The software stores the inputs in cache 
folder Inputs Write 1 

 
Functional process 3: Receive the regression variables and training sets. 

 
Table-A II-13. FP 3 - size = 4 CFP 

 

Sub-process Data group Data 
movement CFP 

The software receives regression variables Variables Entry 1 
The software stores the variables in cache 
folder Variables Write 1 

The software receives training sets Training sets Entry 1 
The software stores the training sets in 
cache folder Training sets Write 1 
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Functional process 4: Apply the linear regression to the training set. 
 

Table-A II-14. FP 4 – size = 4 CFP 
 

Sub-process Data group Data 
movement CFP 

The software receives linear function Linear function Entry 1 
The software creates the linear model Model Write 1 
The software receives the fit command Fit command Entry 1 
The software retrieves the model from 
cache folder Model Read 1 

 
Functional process 5: Obtain the regression equation. 

 
Table-A II-15. FP 5 – size = 2 CFP 

 

Sub-process Data group Data 
movement CFP 

The software receives the requests to 
produce the results Request Entry 1 

The software outputs the remaining hours Predicted 
remaining hours Exit 1 

 
 
 
Linear Regression – Data Scientist Viewpoint 
 
The list of functional process is presented in Table A II-16 to A II-22. 
 
Functional process 1: Import Python libraries. 

 
Table-A II-16. FP 1 - size = 1 CFP 

 

Sub-process Data group Data 
movement CFP 

The data scientist specifies the required 
libraries Libraries Entry 1 
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Functional process 2: Upload the raw data and create a data frame using the required columns. 
 

Table-A II-17. FP 2 - size = 1 CFP 
 

Sub-process Data group Data 
movement CFP 

The data scientist asks the software to 
upload the data using “pd.read” function and 
specifies the file location (path) and 
column’s title to create data frame 

“pd.read” function Entry 1 

 
Functional process 3: Create an empty column in the existing data frame for further calculation. 

 
Table-A II-18. FP 3 – size = 1 CFP 

 

Sub-process Data group Data 
movement CFP 

The data scientist generates a new empty 
column column Entry 1 

 
Functional process 4: Process the raw data. 

 
Table-A II-19. FP 4 - size = 4 CFP 

 

Sub-process Data group Data 
movement CFP 

The data scientist removes the unneeded 
values of total engine hours=0 and air filter 
< 0 and engine speed > quantile (x) from the 
data frame 

Parameters Entry 1 

The data scientist removes the noises using 
z-score function z-score function Entry 1 

The data scientist uses “find_peak” function 
to find the start and end of each cycle 

“find_peak” 
function Entry 1 

The data scientist calculates the duration of 
each cycle in hours 

Mathematical 
formula Entry 1 
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Functional process 5: Define the regression variables, inputs, and training sets. 
 

Table-A II-20. FP 5 - size = 4 CFP 
 

Sub-process Data group Data 
movement CFP 

The data scientist enters the inputs Inputs Entry 1 
The data scientist defines the equation  Equation Entry 1 
The data scientist defines the variables  Variables Entry 1 
The data scientist defines the training sets Training sets Entry 1 

 
Functional process 6: Apply the linear regression function. 

 
Table-A II-21. FP 6 - size = 2 CFP 

 

Sub-process Data group Data 
movement CFP 

The data scientist enters the linear function Linear function Entry 1 
The data scientist enters the fit command 
to fit the training set to the linear model Fit command Entry 1 

 
Functional process 7: Obtain the calculated equation. 

 
Table-A II-22. FP 7 - size = 1 CFP 

 

Sub-process Data group Data 
movement CFP 

The data scientist requests the calculated 
results Request Entry 1 

 
 
AI Dashboard – Software Viewpoint 
 
The list of functional process is presented in Table A II-23 to A II-30. 
 
The “Error message” may appear from the Streamlit app if something wrong is chosen or the 
app disconnects/stops before displaying data.  
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Functional process 1: Upload the data. 
 

Table-A II-23. FP 1 - size = 3 CFP 
 

Sub-process Data group Data 
movement CFP 

The software receives the inputs depending 
on the chosen way to upload the data Inputs Entry 1 

The software uploads the raw data Data 
manipulation - - 

The software stores the data in cache Raw data Write 1 
Error messages may appear Error message Exit 1 

 
Functional process 2: Create data frame. 

 
Table-A II-24. FP 2 – size = 4 CFP 

 

Sub-process Data group Data 
movement CFP 

The software receives the name of the 
chosen columns Columns Entry 1 

The software creates the data frame with the 
chosen columns 

Data 
manipulation - - 

The software displays the data frame Data frame Exit 1 
The software stores the data frame in cache Data frame Write 1 
Error messages may appear Error message Exit 1 

 
Functional process 3: Exert statistic summary. 

 
Table-A II-25. FP 3 - size = 3 CFP 

 

Sub-process Data group Data 
movement CFP 

The software receives checkbox 
command  

Checkbox 
command Entry 1 

The software displays the summary Statistics 
summary Exit 1 

Error messages may appear Error message Exit 1 
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Functional process 4: Apply the equation. 
 

Table-A II-26. FP 4 - size = 3 CFP 
 

Sub-process Data group Data 
movement CFP 

The software receives the equation  Equation Entry 1 
The software receives checkbox 
command  

Checkbox 
command Entry 1 

Error messages may appear Error message Exit 1 
 
Functional process 5: Apply filter selection. 

 
Table-A II-27. FP 5 - size = 3 CFP 

 

Sub-process Data group Data 
movement CFP 

The software receives the filter selection  Filter selection  Entry 1 
The software receives checkbox 
command  

Checkbox 
command Entry 1 

Error messages may appear Error message Exit 1 
 
Functional process 6: Plot the seaborn chart. 

 
Table-A II-28. FP 6 - size = 3 CFP 

 

Sub-process Data group Data 
movement CFP 

The software receives checkbox 
command  

Checkbox 
command Entry 1 

The software displays the chart Seaborn chart Exit 1 
Error messages may appear Error message Exit 1 

 
Functional process 7: Plot the scatter graph. 

Table-A II-29. FP 7 – size = 4 CFP 
 

Sub-process Data group Data 
movement CFP 

The software receives the X and Y variables 
input Input variables Entry 1 

The software receives checkbox command  Checkbox 
command Entry 1 

The software displays the scatter chart Scatter chart Exit 1 
Error messages may appear Error message Exit 1 
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Functional process 8: Plot the line chart. 
 

Table-A II-30. FP 8 - size = 4 CFP 
 

Sub-process Data group Data 
movement CFP 

The software receives the X and Y 
variables input Input variables Entry 1 

The software receives checkbox 
command  

Checkbox 
command Entry 1 

The software displays the line chart Line chart Exit 1 
Error messages may appear Error message Exit 1 

 
 
AI Dashboard – Data Scientist Viewpoint 
 
The list of functional process is presented in Table A II-31 to A II-45. 
 
Functional process 1: Import Python libraries. 

 
Table-A II-31. FP 1 - size = 1 CFP 

 

Sub-process Data group Data 
movement CFP 

The data scientist specifies the required 
libraries Libraries Entry 1 

 
Functional process 2: Create checkbox for the required steps. 

 
Table-A II-32. FP 2 - size = 1 CFP 

 

Sub-process Data group Data 
movement CFP 

The data scientist enters checkbox 
command 

Checkbox 
command Entry 1 

 
Functional process 3: Create a widget list of options for uploading data. 

 
Table-A II-33. FP 3 - size = 1 CFP 

 

Sub-process Data group Data 
movement CFP 

The data scientist defines a list of options Options Entry 1 
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Functional process 4: Create a widget list of equipment. 
 

Table-A II-34. FP 4 - size = 1 CFP 
 

Sub-process Data group Data 
movement CFP 

The data scientist defines a list of input 
equipment equipment Entry 1 

 
Functional process 5: Connect Python to the SQL database. 

 
Table-A II-35. FP 5 - size = 2 CFP 

 

Sub-process Data group Data 
movement CFP 

The data scientist defines the connection 
function  SQL connection Entry 1 

The data scientist enters the server 
credentials Server credentials Entry 1 

 
Functional process 6: Create a date picker sidebar widget. 

 
Table-A II-36. FP 6 - size = 1 CFP 

 

Sub-process Data group Data 
movement CFP 

The data scientist defines the sidebar 
function Sidebar function Entry 1 

 
Functional process 7: Create a path for uploading data from local computer. 

 
Table-A II-37. FP 7 - size = 1 CFP 

 

Sub-process Data group Data 
movement CFP 

The data scientist defines a path Path Entry 1 
 
Functional process 8: Create Excel/csv file picker widgets to drag the data file. 

 
Table-A II-38. FP 8 - size = 1 CFP 

 

Sub-process Data group Data 
movement CFP 

The data scientist defines the file picker 
widget File picker widget Entry 1 
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Functional process 9: Upload the data and create data frame. 
 

Table-A II-39. FP 9 - size = 4 CFP 
 

Sub-process Data group Data 
movement CFP 

The data scientist enters the cache function “@st.cache” 
function Entry 1 

The data scientist asks the software to 
upload the data using “pd.read” function  “pd.read” function Entry 1 

The data scientist defines the “multiselect” 
function for choosing the columns 

“multiselect” 
function Entry 1 

The data scientist enters the pd.dataframe 
to create data frame 

“pd.dataframe” 
function Entry 1 

 
Functional process 10: Exert statistics summary. 

 
Table-A II-40. FP 10 - size = 1 CFP 

 

Sub-process Data group Data 
movement CFP 

The data scientist enters “describe” 
function 

“describe” 
function Entry 1 

 
Functional process 11: Create equations. 

 
Table-A II-41. FP 11 - size = 2 CFP 

 

Sub-process Data group Data 
movement CFP 

The data scientist defines textbox 
function Textbox function Entry 1 

The data scientist enters “eval” command “eval” command Entry 1 
 
Functional process 12: Create filter selection. 

 
Table-A II-42. FP 12 - size = 2 CFP 

 

Sub-process Data group Data 
movement CFP 

The data scientist defines textbox function Textbox function Entry 1 
The data scientist enters “eval” command “eval” command Entry 1 
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Functional process 13: Create seaborn heatmap plot. 
 

Table-A II-43. FP 13 - size = 1 CFP 
 

Sub-process Data group Data 
movement CFP 

The data scientist enters 
“seaborn.heatmap” function  

“seaborn.heatmap” 
function Entry 1 

 
Functional process 14: Create Scatter plot. 

 
Table-A II-44. FP 14 - size = 2 CFP 

 

Sub-process Data group Data 
movement CFP 

The data scientist enters “px.scatter” 
function   

“px.scatter” 
function Entry 1 

The data scientist defines corresponding 
inputs (x and y) using selectbox function selectbox function Entry 1 

 
Functional process 15: Create multi-line chart. 

 
Table-A II-45. FP 15 – size = 4 CFP 

 

Sub-process Data group Data 
movement CFP 

The data scientist enters 
“make_subplots” function 

“make_subplots” 
function Entry 1 

The data scientist defines corresponding 
inputs X using selectbox function selectbox function Entry 1 

The data scientist defines corresponding 
inputs Y using multiselect function multiselect function Entry 1 

The software receives “go.line” function 
which allows to plot the y variables in the 
order of choosing 

“go.line” function Entry 1 

 
  



 

 

  



 

APPENDIX III 
 

SIZE APPROXIMATION OF COSMIC CASE STUDIES 
 
 
1. CRS Case Study 
 
The list of business functions and functional process derived from the COSMIC case study is 
presented in Table A III-1 and A III-2, respectively. 
 

Table-A III-1. CRS case study: list of  business functions (N=7) 
 

NO Business function 
1 Maintain professor information (by the registrar) 
2 Maintain student information (by the registrar) 
3 Maintain courses to teach (by professor) 
4 Maintain student schedule (by students) 
5 Close registration (by the registrar) 
6 Submit grades (by professor) 
7 Enquire report card (by students) 

 
Table-A III-2. CRS case study: list of functional processes (N=21) 

 
NO Functional process 
1 Add a professor 
2 Modify a professor 
3 Delete professor 
4 Enquire on a professor 
5 Add a student 
6 Modify a student 
7 Delete a student 
8 Enquire on student 
9 Add courses to teach 
10 Modify a course to teach 
11 Delete courses to teach 
12 Enquire courses to teach 
13 Enquire on course to teach details 
14 Add courses 
15 Modify a course 
16 Delete a course 
17 Enquire on courses 
18 Enquire on course details 
19 Close registration 
20 Submit grades 
21 Enquire on a report card 
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An example of color-coding classification for the first business function is presented below: 
 

Table-A III-3. CRS case study: example of the classification of types of functionality 
  

FP 
No/ 
Req. 

Process 
descriptio

ns 

Functional 
user/ 

object of 
interest 

Sub-process description Data 
group 

DM 
type CFP ∑ 

1/ 
1.2.1 

Add a 
professor 

Registrar/ 
professor 

Registrar enters information 
for the professor 

Professor 
data E 1  

   

The system validates the 
entered data and checks if a 
professor of the same name 
exists already 

Professor 
data R 1  

   The system creates a new 
professor 

Professor 
data W 1  

  Registrar/ 
professor 

Display the system generated 
professor ID number 

Professor 
ID X 1  

  Registrar/ 
messages Display error message Messages X 1  

5 CFP 
 
 
2. Resto-Sys Case Study 
 
Resto-Sys requirements are as follows: 
 
1. Resto-Sys ensures communication between the smartphone client (the waiter) and the web 

client (the administrator); 
2. Web client maintains the database (which is included in the DB server). 
 
The Resto-Sys application includes the following functionality: 
 
1. Smartphone client receives the waiter’s username and password; 
2. Web server retrieves data from the DB and provides the required data to the smartphone 

client; 
3. Smartphone client maintains the customer order (by adding or modifying an order); 
4. Web client receives the administrator’s username and password; 
5. Web server retrieves data from the DB and provides the required data to the web client; 
6. Web client maintains the required data, the FUR in section 1.4 A in the case study document. 
 
The Resto-Sys includes the following tasks: 
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1. Order management allows the waiter to add, and/or modify an order via his smartphone. It 
also allows the administrator to delete an order. During working hours, the waiters 
(smartphone) and the administrator (web client) are continuously connected; 

2. Account management, involves user management, and enables access to the application with 
a username and password; 

3. Restaurant menu management allows the management of item3 families and the 
classification of items into item families. 

 
Note that the users of Resto-Sys (waiter and administrator) must be logged on before executing 
one of the previous tasks (order management, account management, and restaurant menu 
management). 
 
The list of system functions and functional process derived from the COSMIC case study is 
presented in Table A III-4 and A III-5, respectively. 
 

Table-A III-4. Resto-Sys case study - use case identification (N=10) 
 

Actor Global use cases Detailed use cases 

Waiter Logon FUR1: Logon 
Maintain order FUR2: Maintain order 

Administrator 

Logon FUR3: Logon 

Maintain data 

FUR4: Maintain user 
FUR5: Maintain item 
FUR6: Maintain item family 
FUR7: Maintain table 
FUR8: Maintain restaurant 
menu 

Maintain order FUR9: View the list of orders 
FUR10: Delete customer order 

 
Table-A III-5 Functional processes – Resto-Sys case study (N=33) 

 
FUR Functional Processes 

FUR 1: Logon FP 1: Logon 

FUR 2: Maintain Order 

FP 2: Add an Order 
FP 3: Modify an Order 
FP 4: Create a new order 
FP 5: Modify an existing order 

FUR 3: Logon FP 6: Logon 
FUR 4: Maintain User FP 7: Add a User 

                                                 
 
3 Item is used to describe a dish and beverage 
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FUR Functional Processes 
FP 8: View Users List 
FP 9: View a User data 
FP 10: Modify User Data 
FP 11: Delete a User 

FUR 5: Maintain Item 

FP 12: Add an Item 
FP 13: View Items List 
FP 14: View an Item Data 
FP 15: Modify an Item 
FP 16: Delete an Item  

FUR 6: Maintain Item Family 

FP 17: Add an Item Family 
FP 18: View Item Families List 
FP 19: View Item Family Data 
FP 20: Modify an Item Family 
FP 21: Delete an Item Family 

FUR 7: Maintain Table 

FP 22: Add a Table 
FP 23: View Tables List 
FP 24: View a Table Data 
FP 25: Modify Table Data 
FP 26: Delete a Table 

FUR 8: Maintain Restaurant Menu  

FP 27: Add a Restaurant Menu  
FP 28: View Restaurant Menu List 
FP 29: View a Restaurant Menu Data 
FP 30: Modify a Restaurant Menu  
FP 31: Delete a Restaurant Menu  

FUR 9: View the List of Orders FP 32: View the List of Orders 
FUR 10: Delete a Customer’s Order FP 33: Delete an Order 
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