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Contribution des données climatiques de référence à l’incertitude des études sur les impacts

du changement climatique

Mostafa Tarek Gamaleldin Galal IBRAHIM

RÉSUMÉ
Les études d’impact du changement climatique nécessitent un ensemble de données clima-

tologiques de référence fournissant une période de référence par rapport à laquelle évaluer les

changements futurs et post-traiter les biais des modèles climatiques. Des ensembles de données

climatiques à haute résolution, interpolées sur une grille à partir des stations météorologiques,

sont disponibles pour la précipitation et la température dans la plupart des régions ayant des

réseaux d’observations bien développés, comme l’Europe et les États-Unis. Cependant, dans

de nombreuses régions du monde, la faible densité des réseaux d’observation rend les jeux de

données basés sur ces observations très incertains. Des ensembles de données de satellites, de

réanalyses et de produits fusionnés ont été utilisés pour surmonter cette lacune. Cependant, on

ignore le degré d’incertitude que le choix d’un ensemble de données de référence peut apporter

aux études d’impact.

Pour répondre à cette question, cette étude compare les ensembles de données globales / quasi

globales de précipitations et de température sur 3138 bassins versants nord-américains (haute

densité de stations) et 1145 bassins versants africains (faible densité de stations) pour évaluer

la contribution de l’incertitude de l’ensemble de données aux études de changement clima-

tique. Ces ensembles de données couvrent tous une période commune de 30 ans, ils pourraient

donc tous être utilisés comme ensembles de données de référence pour les études d’impact

du changement climatique. Les ensembles de données sur les précipitations comprennent deux

produits uniquement basés sur les observations des stations météorologiques (GPCC, CPC Uni-

fied), deux produits satellites (CHIRPS et PERSIANN-CDR) corrigés à l’aide d’observations

au sol, quatre produits de réanalyse (JRA55, NCEP-CFSR, ERA-I et ERA5) et un produit fu-

sionné de stations, de satellites et de réanalyses (MSWEP). Les jeux de données de température

comprennent un produit station (CPC Unified) et deux produits de réanalyse (ERA-I et ERA5).

Toutes les combinaisons des 9 jeux de précipitations et des 3 jeux de températures ont été

comparées et utilisées comme données d’entrée à des modèles hydrologiques globaux pour

évaluer leur performance. Ils ont également été utilisés pour évaluer les changements dans les

débits futurs et pour évaluer l’incertitude liée aux jeux de données par rapport à celle provenant

d’autres sources d’incertitude. L’étude d’impact du changement climatique a utilisé une chaîne

classique de modélisation hydroclimatique utilisant 10 MCG CMIP5 sous RCP8.5 et deux

modèles hydrologiques globaux (HMETS et GR4J) pour générer des débits futurs sur la période

2071-2100. Une décomposition de la variance a été effectuée pour comparer la contribution à

l’incertitude des diverses sources d’incertitude.

Sur l’Amérique du Nord, les résultats ont montré que les trois ensembles de données de tem-

pérature performent de manière similaire, bien que les performances du CPC soient systé-

matiquement inférieures aux deux autres. Des différences significatives de performance ont
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cependant été observées entre les jeux de données de précipitations. MSWEP a obtenu les

meilleurs résultats, suivi par les deux ensembles de données basés sur les stations, des réanal-

yses et des données satellite. ERA5 était la réanalyse la plus performante, tandis que CHIRPS

était le meilleur produit satellite. Il a également été constaté que les performances relatives

des ensembles de données dépendent de la région. Les résultats montrent que les jeux de

données basés sur des stations devraient être préférés dans les régions où la densité du réseau

météorologique est bonne, mais que CHIRPS et ERA5 seraient de bonnes alternatives dans les

régions où les données de stations sont plus rares.

Pour l’étude d’impact du changement climatique en Afrique, les résultats montrent que toutes

les combinaisons de jeux de données de précipitations et température fournissent de bonnes

simulations d’écoulement fluvial sur la période de référence. Toutefois, 4 jeux de données de

précipitations ont surpassé les autres pour la plupart des bassins versants: ils sont dans l’ordre

MSWEP, CHIRPS, PERSIANN et ERA5. Ces ensembles de données les plus performants

diffèrent de ceux identifiés en Amérique du Nord, démontrant l’impact de la densité des stations

météorologiques.

Pour l’étude d’incertitude sur les changements climatiques, les deux jeux de données de tem-

pérature ont fourni un niveau d’incertitude négligeable. Cependant, l’ensemble des neuf jeux

de données de précipitations a fourni une incertitude égale ou supérieure à celle liée aux MCG

pour la plupart des métriques d’écoulement et sur la plupart des bassins versants. La sélection

des 4 jeux de données de précipitation les plus performants sur l’Afrique (ensemble de crédi-

bilité) a considérablement réduit l’incertitude attribuée aux précipitations pour la plupart des

métriques, mais est toujours restée la principale source d’incertitude pour certaines autres. Le

choix d’un ensemble de données de référence peut donc être critique pour les études d’impact

du changement climatique, car de petites différences apparentes entre les jeux de données sur

une période de référence commune peuvent se propager et générer de grandes incertitudes dans

les débits futurs.

Mots-clés: Changements climatiques, Incertitude, Ensemble de données climatiques de référence,

Précipitation, Température, Modélisation hydrologique, Modèle climatiques globaux
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ABSTRACT

Climate change impact studies require a reference climatological dataset providing a baseline

period against which to assess future changes and post-process climate model biases. High-

resolution gridded precipitation and temperature datasets interpolated from weather stations are

available in regions of high-density networks of weather stations, as is the case in most parts

of Europe and the United States. In many of the world’s regions, however, the low-density of

observational networks renders gauge-based datasets highly uncertain. Satellite, reanalysis and

merged products dataset have been used to overcome this deficiency. However, it is not known

how much uncertainty the choice of a reference dataset may bring to impact studies. To tackle

this issue, this study compares global/near-global precipitation and temperature datasets over

3138 North American catchments (high station-density), and 1145 African catchments (low

station-density) to evaluate the dataset uncertainty contribution to the results of climate change

studies. These datasets all cover a common 30-year period, so they could all potentially be used

as reference datasets for climate change impact studies. The precipitation datasets include two

gauged-only products (GPCC, CPC Unified), two satellite products (CHIRPS and PERSIANN-

CDR) corrected using ground-based observations, four reanalysis products (JRA55, NCEP-

CFSR, ERA-I, and ERA5) and one gauged, satellite, and reanalysis merged product (MSWEP).

The temperature datasets include one gauged-only (CPC Unified) product and two reanalysis

(ERA-I and ERA5) products.

All combinations of these 9 precipitation and 3 temperature datasets were compared and used

as inputs to lumped hydrological models to evaluate their performance. They were also used

to evaluate the changes in future streamflows and to assess dataset uncertainty against that of

other sources of uncertainty. The climate change impact study used a top-down hydroclimatic

modeling chain using 10 CMIP5 GCMs under RCP8.5 and two lumped hydrological models

(HMETS and GR4J) to generate future streamflows over the 2071-2100 period. Variance de-

composition was performed to compare how much the different uncertainty sources contribute

to actual uncertainty.

Over North-America, the results showed that all three temperature datasets performed simi-

larly, albeit with the CPC performance being systematically inferior to the other two. Signif-

icant differences in performance were, however, observed between the precipitation datasets.

The MSWEP dataset performed best, followed by the gauge-based, reanalysis and satellite

datasets categories, respectively. ERA5 was the best-performing reanalysis, while CHIRPS

was the best satellite product. Relative dataset performance was also found to be region-

dependent. Results show that gauge-based datasets should be preferred in regions with good

weather network density, but that CHIRPS and ERA5 would be good alternatives in data sparse

regions.
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For the climate change impact study over Africa, results show that all combination of pre-

cipitation and temperature datasets provide good streamflow simulations over the reference

period, but 4 precipitation datasets outperformed the others for most catchments: they are in

order MSWEP, CHIRPS, PERSIANN, and ERA5. These best-performing datasets differ from

the ones identified over North-America, demonstrating the impact of the density of weather

stations.

For the climate change uncertainty study, the 2-member ensemble of temperature datasets pro-

vided negligible levels of uncertainty. However, the ensemble of nine precipitation datasets un-

certainty that was equal to or larger than that related to GCMs for most of the streamflow met-

rics and over most of the catchments. A selection of the best 4 performing reference datasets

over Africa (credibility ensemble) significantly reduced the uncertainty attributed to precipita-

tion for most metrics, but still remained the main source of uncertainty for some streamflow

metrics. The choice of a reference dataset can therefore be critical to climate change impact

studies as apparently small differences between datasets over a common reference period can

propagate to generate large amounts of uncertainty in future climate streamflows.

Keywords: Datasets, Precipitation, Temperature, Hydrological model, Hydrology, GCMs,

Uncertainty, Climate changes
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INTRODUCTION

General Circulation Models/Earth System models (ESM) /Global Climate Models (GCMs) are

the primary tools used to simulate the response of the global climate system to increases in

greenhouse gas concentrations and to generate future climate projections. GCMs are complex

mathematical representations of the physical and dynamical processes governing atmospheric

and oceanic circulations as well as the interactions with the land surface. In order to reduce

the computation burden, which can be considerable, GCMs represent the earth with a grid

having a relatively coarse spatial resolution (IPCC, 2001). Consequently, GCM projections

cannot be used directly for fine scale climate impact studies. Statistical/empirical or dynam-

ical downscaling techniques have thus commonly been used to address this scale mismatch.

In addition, climate model outputs are always biased, and the extent of these biases can be

evaluated through a comparison against observations over a common reference period. A bias

correction procedure is therefore generally performed in addition to the downscaling step, and

biases are assumed to be invariant in time when the correction is applied to future climate pro-

jections (Velázquez et al., 2015). Although a two-step downscaling bias correction approach

is preferable in most cases, a single instance of bias correction is sometimes used to account

for both scale mismatch and GCM biases. While this may be acceptable when the scale dif-

ference is small (e.g., when using catchment averaged values), recent studies have shown that

bias correction has limited downscaling skills (Maraun, 2016).

Statistical downscaling, bias correction approaches as well as the calibration of hydrological

model primarily rely on hydrometeorological observations over a historical reference period.

It is therefore primordially important that the observed reference dataset represents the true

climate state as closely as possible. For this task, ground stations remain the standard and

most accurate/trusted source of weather data (New et al., 2001; Nicholson, 2013). However,

the spatial distribution of these stations varies widely across the globe, and coverage is often

sparse and even deficient in many parts of the world outside of Europe and the US. Even in well-
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covered regions, gauge data is subject to many problems, such as missing data, precipitation

undercatch and inhomogeneities related to a variety of issues such as equipment change, station

relocation and land surface modifications near each station (Kidd et al., 2017; Peterson et al.,

1998).

0.1 Problem Statement

In recent decades, extensive efforts have been devoted to the development and improvement of

gridded global and quasi-global climate datasets to overcome the limitations of gauge stations.

These datasets provide meteorological record time series with continuous spatiotemporal cov-

erage, and typically, no missing data. However, various error sources are inherent in these

datasets, thus also bringing uncertainty to the data (Voisin et al., 2008). Thus, choosing an

appropriate reference dataset for climate change impact studies is an important concern, and

especially so in regions with sparse ground station coverage.

According to Huth (2004): “For estimates based on downscaling of General Circulation Model

(GCM) outputs, different levels of uncertainty are related to: (1) GCM uncertainty or inter-

model variability, (2) scenario uncertainty or inter-scenario variability, (3) different realizations

of a given GCM due to parameter uncertainty (inter-model variability) and (4) uncertainty due

to downscaling methods”. In most climate change impact studies, it is generally assumed that

GCMs are the major source of uncertainty (Mpelasoka & Chiew, 2009; Kay et al., 2009; Vetter

et al., 2017). Rowell (2006) compared the effect of different sources of uncertainty using

the initial condition ensembles of different General Circulation Models (GCMs), Greenhouse

Gas Emission Scenarios (GHGESs) and Regional Circulation Models (RCMs) on changes in

seasonal precipitation and temperature in the United Kingdom. The results indicated that the

largest uncertainty comes from the GCM choice. Minville et al. (2008) used ten equally-

weighted climate projections derived from a combination of five GCMs, two GHGES and

the change factor approach for downscaling to investigate the uncertainty envelope of future



3

hydrologic variables. Their results showed that the uncertainty related to the GCM choice is

dominant. These results have also been confirmed by several studies (Prudhomme & Davies,

2009; Nóbrega et al., 2011; Dobler et al., 2012)).

Other studies have assessed other sources of uncertainty such as Greenhouse Gases Emission

Scenarios (GHGESs) (Prudhomme et al., 2003; Kay et al., 2009; Chen et al., 2011a), the

downscaling method (Wilby & Harris, 2006; Khan et al., 2006) and hydrological modeling

(Bae et al., 2011; Vetter et al., 2017). Recent studies have also looked at the uncertainty

related to the choice of the impact model (Giuntoli et al., 2018; Krysanova et al., 2018). From

these studies, a more complex picture emerges, in which the main source of uncertainty may

vary, depending on geographical location and metric under study. Dataset uncertainty has been

assessed in numerous studies either by direct inter-comparison between datasets (Vila et al.,

2009; Andermann et al., 2011; Romilly et al., 2011; Jiang et al., 2012; Chen et al., 2014;

Prakash et al., 2018; Nashwan & Shahid, 2019) or by using hydrological modeling (Behrangi

et al., 2011; Beck et al., 2017b; Wu et al., 2018; Zhu et al., 2018; Tarek et al., 2019). However,

to the best of our knowledge, the uncertainty of gridded datasets has not been evaluated against

other sources of uncertainties when performing climate change impact studies.

0.2 Study Objectives

The main objective of this study is therefore to assess the impact of the choice of a given refer-

ence dataset on the global uncertainty chain of climate change impact studies in hydrology.

Since this is of particular concern to regions with sparse weather station coverage, this study is

conducted over Africa. To achieve this main objective, this work is further divided into three

secondary objectives:

1. Evaluate the performance of relevant precipitation and temperature datasets in North Amer-

ica over 3138 catchments, where the gauge-station networks are high;
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2. Re-evaluating the datasets performance in data-sparse regions. This step will be performed

over 350 African catchments;

3. Assess the uncertainty of the reference dataset compared to other sources of uncertainty.

0.3 Thesis Organization

This thesis consists of six chapters organized as follows: Literature review, Study region and

Data, Methodology, Results, Discussion, and finally Conclusions and recommendations.

Chapter one is devoted to the literature review. It introduces the global warming phenomena

and the key indicators of climate changes. It also discusses how to evaluate the impacts of cli-

mate changes by using climate projections from general circulation models (GCMs). It covers

the issues of downscaling to address the scale mismatch between the model and the regional

study, as well as the assessment of uncertainty. Then, the different types of gridded precipi-

tation and temperature datasets that can be used as potential reference datasets are described.

Finally, it covers the topic of hydrological models which are used in the study of climate change

impacts on water resources.

Chapter two first presents the target study area of Africa. It covers the geography, climate,

physiographic characteristics and vulnerability of the main African catchments and rivers. The

precipitation and temperature datasets are then described in four main sections: Section 1

describes the criteria which were used to select the participating precipitation and temperature

datasets. A brief description of each of these datasets follows. Section 2 presents the observed

streamflow data, which was obtained from two data sources: The Global Runoff Data Centre

(GRDC) database for the African catchments, and the North American Climate Change and

Hydroclimatology (NAC2H) database for the North American catchments. Section 3 describes

the ten used GCMs that were obtained from the Coupled Model Intercomparison Project Phase
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5 (CMIP5). Finally, section 4 describes the HydroSHEDS database that was used to provide

the watershed boundaries of the African catchments.

Chapter three describes the methodology used to conduct this research, which is divided

into three steps. In the first step, the performance of the chosen precipitation and temperature

datasets is assessed over North American watersheds which are known to generally have a

good coverage of weather stations. The analysis is conducted in two parts: (1) a statistical

evaluation comparing the Mean Error, Mean Absolute Error, Root Mean Square Error and

correlation coefficient, as well as an intercomparison between the selected gridded datasets

at the seasonal and annual scales, (2) an indirect evaluation using hydrological modelling to

simulate streamflows over 3138 catchments. In the second step, the performance of the same

datasets is re-evaluated over Africa using a similar methodology. Two lumped hydrological

models are implemented for this evaluation. In the third and final step, a climate change impact

study over 1145 African catchments is performed using a top-down hydroclimatic modeling

chain. A variance decomposition analysis is performed to compare the uncertainty related to

reference datasets against that of GCMs and hydrological models for 51 streamflow metrics

over 1145 African catchments.

Chapter four outlines the main findings of the study in a systematic and detailed way. The

results are presented following the same sequence as described in the methodology. The re-

sults of the gridded datasets intercomparison and the hydrological modelling analysis in North

America are shown first. Then, the re-evaluation results of the same datasets over Africa are

presented. Finally, the results of the variance decomposition analysis are presented.

Chapter five presents a general discussion on the obtained results.

Finally, Chapter six presents the main conclusions and summarizes the main contributions of

this Thesis, as well as providing recommendations for future research work. The four appen-
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dices that follow, each presents a published/submitted paper. These papers are briefly described

in the contribution to science section.



CHAPTER 1

LITERATURE REVIEW

1.1 Global warming

Global warming has become one of the most important environmental challenges for humanity.

In its Fifth Assessment Report, the Intergovernmental Panel on Climate Change (IPCC), a

group of 1,300 independent climate scientists from countries all over the world, agreed that

industrial activities, that our modern civilization depends upon, considered the main cause of

the current global warming trend (IPCC, 2014). The IPCC stated that: “Human influence on the

climate system is clear. This is evident from the increasing greenhouse gas concentrations in

the atmosphere, positive radiative forcing, observed warming, and understanding of the climate

system”. No one knows how much warming is “safe” but it is known that climate change is

already disrupting the climate system and water cycle processes.

Key indicators of global climate change are attributed to the steady increase of atmospheric

trace gases, such as carbon dioxide (CO2), methane (CH4), nitrous oxides (NO2), and chlo-

rofluorocarbons (CFC or "Freon"). These gases are commonly referred to as "greenhouse

gases". These gases absorb sunlight and infrared radiation that have reflected from earth’s

surface and block the heat from escaping to space. As the concentration of greenhouse gases

increases, less long-wave radiation escapes, and the earth’s surface temperature has to increase

to balance its radiative budget. This phenomenon, which is known as the “Greenhouse Effect”

has been well-represented and studied through climate models.

There are many indicators of global warming such as changes in surface temperature, precip-

itation, atmospheric water vapor, warmer oceans, severe events, higher sea levels and reduced

amounts of snow and ice (IPCC, 2001; Fowler et al., 2007). For engineers, the impacts to

temperature and precipitation are key since those variables control the distribution of water

resources in both time and space. Distribution and availability of water is a key concern for the

health and safety of many countries.
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To better evaluate the impacts of future climate change, this requires the development of high

quality climate projections with the best possible estimation of uncertainty. General circulation

models (GCMs) and Earth System models (ESMs) are the major tools that are used to project

the earth’s climate in the future.

1.2 General Circulation Models and climate scenarios

1.2.1 General Circulation Models (GCMs)

General Circulation Models or Global Climate Models (GCMs) are complex mathematical

representations of physical and dynamical processes to simulate the interaction between the

atmosphere, land surface, oceans and sea ice. Moreover, they are used to simulate the re-

sponse of the global climate system to the increase of greenhouse gas concentration. GCMs

are physically based on the principle of fluid dynamics and describe the entire globe using a

three-dimensional grid. In order to reduce the huge calculation requirements, general circu-

lation models usually have to use coarse spatial resolutions (a few hundreds of kilometers) to

simulate the globe, typically having a horizontal resolution between 110 and 500 km. More-

over, vertical layers range from 10 to 20 layers in the atmosphere and sometimes as many as

30 layers in the oceans (IPCC, 2001).

To depict long-term climate change, the model has to be provided with inputs on how the en-

vironment is changing. One of the most critical variables is fossil-fuel emissions. Greenhouse

gases were represented by injecting carbon dioxide to the model. In recent years, more de-

tailed models have used methane and other key gases (Henson, 2011). Two major types of

simulations used to study the effect of greenhouse gases on climate:

1. Equilibrium: runs by instant and massive injection of carbon dioxide; i.e. the amount is

twice the pre-industrial level, which is expected to be reached by the end of the century.

2. Transient: runs more closely representing reality; i.e. the carbon dioxide is added in

smaller amounts every year to represent the actual amounts added (and predicted for the
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future) by human activities. Scientists are more interested in this type of simulation as this

scenario is closer to reality and shows a good agreement against past trends.

1.2.2 Greenhouse Gases Emission Scenarios (GHGESs)

The estimation of future greenhouse gases (GHG) emissions is recognized with high uncer-

tainty (Hegerl et al., 2007; Min et al., 2011). In 1990, the IPCC produced a first set of global

GHG emission (SA90) which consisted of four scenarios (A-D) (Houghton et al., 1990). Then,

new information regarding the increasing population and the economic growth rates became

available. Consequently, these scenarios were updated in 1992 and a new set of 6 scenarios

(IS92) was (IS92a-f) (Leggett et al., 1992).

Much additional knowledge was gained since then, which prompted the IPCC in 1996 to pro-

vide another set of scenarios for its Third Assessment Report. This new set of scenarios was

divided into four different narrative story-lines (A1, A2, B1 and B2) called “families”. Each

family has one group, with the A1 family containing three groups based on future energy tech-

nologies; A1F1 (fossil fuel intensive), A1B (balanced), and A1T (predominantly non-fossil

fuel). Overall, 40 different scenarios were in the Special Report on Emissions Scenarios

(SRES), which described the relationship between the emissions and the latest available in-

formation on technology change, social and economic development as well as the population

projections which are the main driving forces of future greenhouse gas trajectories (Nakicen-

ovic et al., 2000).

Last but not least, the IPCC decided to update its emission scenarios in its fifth assessment

report (AR5). For this report, the IPCC produced a standard set of scenarios called the Rep-

resentative Concentration Pathways (RCPs), where population, economic activities, energy

consumption, lifestyle and climate policies are factored into. The RCPs consist of four sce-

narios (RCP2.6, RCP4.5, RCP6.0 and RCP8.5), each representing a specific radiative forcing

pathway (Pachauri et al., 2014). For example, RCP8.5 refers to a radiative forcing that reaches

> 8.5 W/m2 by 2100. As a result of these different radiative forcings, the average increase in
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the global surface temperatures varies between each pathway. These variations are likely to be

between (0.3 - 1.7) ◦C for RCP2.6, (1.1 - 2.6) ◦C for RCP4.5, (1.4 - 3.1) ◦C for RCP6.0 and

(2.6 - 4.8) ◦C for RCP8.5 (Stocker et al., 2013).

1.2.3 General Circulation Models and climate scenarios Uncertainties

The processes to describe natural phenomena are always incomplete. Science tries to repre-

sent things and events in a way that is “very close to reality”. Scientifically speaking, the gap

between reality and science representation is known as "Uncertainty". In other words, the natu-

ral phenomena is very complex to be accurately represented throughout the modeling process.

This incomplete scientific knowledge results in Uncertainty.

Different climate models may use different computational approaches to represent the climate

processes. Because of this, different climate models may react differently to an identical forc-

ing. This different climate sensitivity is the main source of GCMs uncertainty. Through the use

of a large number of GCMs, GHGESs, downscaling methods (DMs) and different hydrological

model structures, it has become increasingly challenging to assess the uncertainties resulting

from their combination (Chen et al., 2011a).

Generally, it is considered that the largest sources of uncertainty are linked to General Circula-

tion Models (GCMs) and Greenhouse Gases Emissions Scenarios (GHGESs) for quantifying

the impacts of climate change (Mpelasoka & Chiew, 2009; Kay et al., 2009; Vetter et al., 2017).

GCM simulations of precipitation and temperature have to be used with caution as they often

show significant biases (Déqué et al., 2007; Teutschbein & Seibert, 2012). However, other

sources of uncertainty have been given less attention (Chen et al., 2011a).

Rowell (2006) compared the effect of different sources of uncertainty using different GCMs,

emission scenarios and Regional Climate Model (RCM) initial condition ensembles on the

changes in seasonal precipitation and temperature for the United Kingdom, and showed that

of all the sources of uncertainty, that related to choice of GCM is normally dominant. These
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results have been also confirmed by several other studies (Prudhomme & Davies, 2009; Kay

et al., 2009; Green et al., 2014).

Minville et al. (2008) used ten equally weighted climate projections from a combination of five

general circulation models (GCMs), two greenhouse gas emission scenarios (GHGESs) and

the change factor approach for downscaling to investigate the uncertainty envelope of future

hydrologic variables. The results indicated that the largest uncertainty comes from the choice

of GCM.

Prudhomme & Davies (2009) investigated the uncertainty in the impact of climate change

on water resources for four catchments in Britain. They concluded that the largest source of

uncertainty comes from GCMs, likewise the downscaling uncertainty is significant. While,

hydrological modeling uncertainty was found to vary significantly between catchments.

Vetter et al. (2017) evaluated the main contributors to uncertainty on twelve river catchments

located in six continents. Their study included nine hydrological models (HMs), four Rep-

resentative Concentration Pathways (RCPs) and five General Circulation Models (GCMs).

The analysis of variance (ANOVA) was used to quantify uncertainties from the three differ-

ent sources (e.g., GCMs, RCPs and HMs). Their results showed that GCMs dominated the

uncertainty followed by RCPs and HMs, respectively.

Several studies worked to assess the greenhouse gas emission scenarios uncertainty in climate

change impact studies. Prudhomme et al. (2003) used four GHGES to evaluate the output of

several GCMs on five catchments in Great Britain. The results showed little uncertainty among

the different emission scenarios. Kay et al. (2009) used a range of GHGESs and applied them

on two catchments in England. The results showed that the GHGESs uncertainty for the larger

and flatter catchments was very low, while it was more important for the smaller and steeper

catchments. However, Chen et al. (2011a) compared the uncertainty of two emission scenarios,

A2 and B1, against other sources of uncertainty. The results showed that emission scenarios

had the least uncertainty compared to other sources.
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1.3 Downscaling

Generally, GCMs are run at an average spatial resolution between 150-300 km, while regional

studies (such as hydrological studies), require a finer resolution and even in some cases less

than 10 km. To overcome this problem, downscaling techniques are commonly used to address

the scale mismatch between the coarse resolution outputs of global climate models (GCMs)

and the finer catchment scale required for climate change impact assessment and hydrological

modeling.

There are two main types of downscaling methods; dynamical and statistical methods; and each

has its advantages and drawbacks. A growing number of studies have compared statistical and

dynamical methods (Boé et al., 2007; Pierce et al., 2013; Huth et al., 2015; Ayar et al., 2016).

These two methods are discussed in more detail in the next sections.

1.3.1 Statistical downscaling

Traditionally, statistical downscaling has been used as an alternative to dynamical downscal-

ing. These methods fall into three categories: transfer function, weather generator and weather

typing (Chen et al., 2011a). No one can say that there is a particular type of downscaling

that is superior to all others and many climate change impact studies use more than one tech-

nique (Chen et al., 2012; Onyutha et al., 2016; San-Martín et al., 2017). However, statistical

downscaling has drawbacks that must be taken into account in practical applications. First,

the spatial pattern of climate will remain constant under different future climate conditions

and ignoring change in variability (Fowler et al., 2007). In addition, data needed to develop

those relationships may not be available in regions with complex topography. Furthermore, an

ideal statistical downscaling needs a strong statistical relationship explaining completely the

variability of the local scale variable, whereas this is almost never the case as the predictors

never describe all the variability of the local variable which is also affected by local factors not

accounted by the large scale fields (Wilby et al., 2004).
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Another widely used popular downscaling method is the change factor (CF) method (Diaz-

Nieto & Wilby, 2005; Minville et al., 2008; Anandhi et al., 2011; Goodarzi et al., 2015). This

method works as it adjusts the observed reference series by multiplying the ratio (for precip-

itation) and adding the difference (for temperatures) between future and present climates as

simulated by GCMs. The most significant drawback of this method is the inability in changing

the temporal sequence of wet and dry days.

1.3.1.1 Transfer function

Transfer function (TF) approaches are based on establishing statistical linear or nonlinear re-

lationships between GCM large-scale outputs (predictors) and the observed regional or local

climatic variables (predictands) (Fowler et al., 2007). This method is relatively easy to apply,

but its main obstacle is the probable lack of a stable relationship between predictors and pre-

dictands, such that climate variables may change from one year to another within the same

circulation regime.

1.3.1.2 Weather generators

Weather generators (WG) develop synthetic time series of weather data based on the statistical

characteristics of observed weather. Two steps are typically used to predict stochastic weather

data; the first is to model daily precipitation, and then to model the remaining variables of in-

terest, such as daily maximum and minimum temperature, solar radiation, humidity and wind-

speed conditional on precipitation occurrence. To reflect seasonal variability different model

parameters are usually required for each month. The most likely feature of using a weather

generator approach is its ability to rapidly produce sets of climate scenarios for studying the

impacts of rare climate events and investigating natural variability (Chen et al., 2011a).
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1.3.1.3 Weather typing

Weather typing schemes group local meteorological variables in relation to different classes

of atmospheric circulation. The main advantage of this approach is the stationary relationship

between local variables and global circulation. However, its reliability depends on the rela-

tionship between local climate and large-scale circulation (Chen et al., 2011a). More recently,

Model Output Statistics (MOS) (Pinto et al., 2010) methods have been largely favored by the

climate change impact community. MOS methods aim at directly correcting climate model

outputs (most typically temperature and precipitation) rather than trying to rely on large-scale

atmospheric variables that are normally better represented by regional and global climate mod-

els. Bias correction (BC) is the class of MOS now used in most climate change impact studies.

While there are many possible variants of bias correction, most use some form of quantile

mapping, in which the distributions of climate variables are mapped onto the distribution of

observations over the reference period. These methods can be univariate (one variable cor-

rected at a time) or multivariate (multiple variables corrected at the same time). The work of

Cannon (Cannon, 2016, 2018; Cannon et al., 2015) present good examples of both cases.

1.3.2 Dynamical downscaling

Dynamical downscaling consists of using Regional climate models to downscale General Cir-

culation models to a finer scale. Dynamical downscaling is computationally very expensive to

run, and still contain biases inherited from their parent GCM and originating from their own

formulation and parameterization. They therefore still require a bias correction step to make

them amenable to be used in impact models.

The dynamical approach is also constrained by the availability of RCM simulations and driving

GCMs to adequately cover climate model uncertainty. Accordingly, statistical downscaling

(and MOS methods in particular) remain the most popular alternative for climate change impact

studies due to their relative ease of use and general performance (Eden & Widmann, 2014).
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In particular, some downscaling methods are unable to capture the extremes of climate events

that are often of particular concern in hydrology. For example, changes in precipitation ex-

tremes would have very important impacts. Therefore, it is important to study the patterns of

such events. Changes of extremes are evaluated at a range of temporal and spatial scales, i.e.,

from globally extremely warm years to locally peak rainfall intensities. To span this entire

range, data is required at a daily or sub-daily time step (Singh & Patwardhan, 2012).

1.3.3 Downscaling Uncertainty

Downscaling methods add uncertainty due to the limitations of each technique. Accordingly,

the choice of a downscaling method is important when studying the uncertainty. Wilby & Har-

ris (2006) studied the impact of climate change on low flows in the Thames river using four

GCMs, two emissions scenarios, two statistical downscaling techniques, two hydrological

model structures and two sets of hydrological model parameters. They concluded that the

results are most sensitive to the choice of GCM as well as the downscaling method, and less

sensitive to the choice of hydrological model parameters or emissions scenario.

Khan et al. (2006) studied the downscaling uncertainty by comparing the performance of three

statistical downscaling methods using 40 years of precipitation, maximum and minimum daily

data. They investigated that the performance of the three methods would remain the same

under future climate forcing, as the uncertainty of their results would be mostly correlated by

the GCM output uncertainty.

Chen et al. (2011a) studied the uncertainty using six dynamical and statistical downscaling

methods in quantifying the impacts of climate change on the hydrology of a Canadian province

(Quebec) river basin. The results indicate that studying climate change impacts based on only

one downscaling method should be avoided.
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1.4 Precipitation and temperature Gridded Datasets

Notwithstanding the limitations associated with meteorological stations as reference datasets,

such as missing records, inhomogeneity, short temporal coverage, sparse spatial coverage and

the inability to adequately represent the climate variability in all topographic and climatic

zones, the stations are still considered to constitute the most accurate source of climate data

(Tapiador et al., 2012; Nicholson, 2013; Colston et al., 2018).

In recent decades, to overcome some of the limitations of station data, several global and re-

gional gridded datasets have been developed with different input data sources (gauges, radar,

satellite, reanalysis or combinations thereof), spatial resolutions (0.05◦ to 2.5◦), spatial cov-

erage (continental to global), temporal scales (30 minutes to annual) and temporal coverage

(from 1 to several years) (Henn et al., 2018). Such gridded datasets provide continuous spatial

and temporal coverage, and typically, with no missing data.They allow some information from

regions with good network coverage to be extended, to some extent, towards areas with less

information. Interpolated datasets, however, do not create new information, no matter how

complex and how much additional information is used in the interpolation schemes (Essou

et al., 2016a; Newman et al., 2015).

1.4.1 Ground-based datasets

Gridded datasets can be classified as a function of their data source. Gauge-based gridded

datasets are obtained by interpolating and mapping the information measured at a small scale

(typically, a point measurement at a weather station) onto a predefined spatial and temporal res-

olution grid. Gridded datasets are much simpler to use than their direct station data. However,

variations in gauge types or instrument replacements affect error characteristics in long-term

records. In addition, observations are affected by systematic biases due to evaporation and

wind effects, as well as the elevation of gauges in mountainous regions (Isotta et al., 2014).

Gauges are also typically placed in regions allowing easier access for station maintenance and

troubleshooting, meaning that the gauges do not necessarily reflect the actual climatic condi-
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tions of their surroundings. Interpolated station gridded climate data products are thus subject

to these limitations and many integrate adiabatic lapse rates and elevation/precipitation rela-

tionships using terrain elevations in a bid to correct some of these shortcomings. The main

issue is how to map the gauge data onto the grid. One approach is to average the entire gauge

records within each grid box, and, if there is no available information, the grid box is left

empty. Another approach is to fill the grid boxes based on some distance measured between

the closest gauges and the grid box (Kidd & Huffman, 2011).

Gauge-based datasets include the Global Precipitation Climatology Centre (GPCC), which

uses data from the Global Telecommunication System (GTS) network of approximately 64,000

gauges, improved with other national network data to generate daily and monthly global land-

products used as a reference dataset for numerous studies (Rudolf et al., 2010). The Global His-

torical Climatology Network (GHCN) is another notable database with 31,000 stations (Vose

et al., 1992).

Another method used to measure precipitation is using the ground weather radars that become

more common and available at an even higher resolution (Beck et al., 2019). They partially

address the issue of rain gauge spatial coverage since each radar site covers a relatively large

area. Moreover, it provides much larger spatial coverage to measure precipitation than the point

measurements provided by gauges. However, radar coverage is limited to developed regions

that have a high population. In addition, they provide estimates of the rainfall rate at certain

observational levels above the ground and cannot detect surface precipitation. Therefore, the

presence of weather stations is required for the calibration and correction processes between

surface measurements and atmospheric precipitation estimates (Martens et al., 2013).

1.4.2 Satellite remote sensing datasets

Remotely sensed datasets have long carried the hope of bringing relevant hydrometeorological

information over large swaths of land, up to the global scale, and over regions with absent or

low-density observational networks (Lettenmaier et al., 2015). There are now several global or
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near-global precipitation datasets derived from various satellites, with high spatial and temporal

resolutions and near real time coverage (Sun et al., 2018). They are mainly suitable for rainfall

estimation in the tropics and data-scarce regions. Given this advantage, satellite products have

been used in water resource management studies (Giardino et al., 2010; Nishat & Rahman,

2009; Siddique-E-Akbor et al., 2014), hydroclimatological studies (Khan et al., 2011; Jutla

et al., 2015) and in extreme event analysis (Lockhoff et al., 2014; Boers et al., 2015). However,

satellites are relatively insensitive and generally miss a significant quantity of light precipitation

and tend to fail over snow- and ice-covered surfaces (Tian et al., 2009; Laviola et al., 2013).

Satellite precipitation estimates can be derived from a range of observations from many dif-

ferent sensors. Two major types of satellites are used to measure precipitation; Geostationary

(GEO) satellites and Low Earth Orbiting (LEO) satellites (Kidd et al., 2012). GEO satellites

orbit the Earth above the Equator at about 35,800 km. They orbit at the same rate as the

Earth turns, thus appearing stationary relative to the Earth’s surface. Each GEO satellite is

able to view about one third of the Earth’s surface. However, five operational GEO satellites

are required to ensure full East–West and 60◦ N/S coverage due to the increasing scan angle

towards the edges of the imagery. LEO satellites orbit the Earth once about every hour and

a half at an altitude of about 850 km (Klaes et al., 2007). Observations from LEO orbiting

satellites complement the observations from GEO-based instrumentation. Sensors typically in-

clude both multi-channel IR sensors and passive microwave (PMW) sounders and imagers that

are sensitive to precipitation. The NASA WetNet project organized a series of Precipitation

Intercomparison Projects (PIP) concentrating on global monthly estimates and regional-scale

performance. The main conclusion from those studies was that PMW techniques were clearly

better than IR techniques for precipitation estimates, primarily due to their direct observation

of rainfall.

All remotely sensed precipitation datasets do however only provide indirect measurements of

the target variable. They typically provide biased estimates, and ground stations are often

needed to correct the remotely sensed estimates (Fortin et al., 2015). Some studies evaluated

the uncertainties of these datasets and showed that high resolution satellite products perform



19

better when bias corrected using gauge observations (Xie et al., 2007; Awange et al., 2016).

Most studies evaluated accuracy using independent gauge observations (Hirpa et al., 2010;

Buarque et al., 2011; Alijanian et al., 2017) or gauge-adjusted radar fields (AghaKouchak

et al., 2011; Islam et al., 2012), while others just compared their spatiotemporal patterns (Kidd

et al., 2012, 2013). Awange et al. (2016) evaluated the uncertainties of these products with-

out being dependent on the choice of a reference dataset. The results showed that the satellite

merged products with rain gauge observations contain smaller error amplitudes compared to

the satellite only products. Finally, other studies quantified the performance of different remote

sensing datasets using hydrological modeling, by comparing simulated and observed values

of river discharge (Collischonn et al., 2008; Cole & Moore, 2009; Behrangi et al., 2011; Bas-

tola & François, 2012; Falck et al., 2015). Generally, results of these works showed that remote

sensing data are not accurate enough to consistently allow hydrological models to adequately

simulate river flows.

1.4.3 Reanalysis datasets

Retrospective-analysis / reanalysis is another product that has generated interest increasingly

in the recent decade and provide global four dimensional earth system data including many

physical and dynamical processes (Bosilovich et al., 2008). They are vital sources of data in

weather and climate studies. A typical reanalysis system consists of two main components, the

forecast model and the data assimilation system. Data assimilated in a reanalysis consist mostly

of atmospheric and ocean data and do not typically rely on surface data, such as measured by

weather stations. The role of the data assimilation system is to integrate observed databases

of many sources of observations with the numerical weather forecast models to produce con-

sistent gridded datasets (Seyyedi et al., 2015). Reanalysis assimilates data from measurements

derived from different sources. The main sources are floats, aircrafts, satellites and global mea-

surement networks (Rienecker et al., 2008). Floats mainly measure real time temperature and

the salinity of the first 2000 meters of ocean water, while Aircrafts and satellites provide sev-
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eral atmospheric data, such as radiance, wind, humidity and pressure, at different atmospheric

heights (Essou et al., 2016a).

Reanalysis combine a wide array of measured and remotely sensed information within a dy-

namical–physical coupled numerical model. They use the analysis part of a weather forecasting

model, in which data assimilation forces the model toward the closest possible current state of

the atmosphere. A reanalysis is a retrospective analysis of past historical data making use of

the ever-increasing computational resources and more recent versions of numerical models and

assimilation schemes. Reanalyses have the advantage of generating a large number of variables

not only at the land surface, but also at various vertical atmospheric levels.

Although reanalysis are not direct observations and are not directly dependent on the density

of surface observational networks, they provide variables throughout the world, including in

areas where weather stations are non-existent or scattered (Bosilovich, 2013). These products

are of specific interest especially for estimating snow and rain on snow, which are often poorly

measured by satellite precipitation products (Clifford, 2010). Additionally, these models are

ideally suitable for simulating the evolution of large-scale weather systems (Roads, 2003). For

the previous reasons, datasets were designed for different applications and provide widely vary-

ing precipitation estimates. One of the key utilities in a reanalysis is that the output generated

from the model physics provides data not easily observed, but consistent with the analyzed

observed data.

Reanalysis have increasingly been used in various environmental and hydrological applica-

tions Chen et al. (2018); Ruffault et al. (2017); Emerton et al. (2017); Di Giuseppe et al.

(2016). They are commonly used in regional climate modelling, weather forecasting and,

more recently, as substitutes for surface precipitation and temperature in various hydrological

modelling studies (Chen et al., 2018; Essou et al., 2016a, 2017; Beck et al., 2017b). They have

been shown to provide good proxies to observations and even to be superior to interpolated

(from surface stations) datasets in regions with sparse network surface coverage (Essou et al.,

2017). Precipitation and temperature outputs from reanalysis have, however, been shown to
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be inferior to observations in regions with good weather station spatial coverage (Essou et al.,

2017). The relatively coarse spatial resolution of reanalyses is thought to be partly responsible

for this.

Widely used reanalysis products include the 44-year reanalysis from the National Centers for

Environmental Prediction Coupled Forecast System Reanalysis (NCEP-CFSR) (Saha et al.,

2006), a 40-year reanalysis (ERA-40) from the European Centre for Medium-Range Weather

Forecasts (ECMWF) (Uppala et al., 2005) and the 41-years ERA-Interim (Dee et al., 2011).

Numerous reanalysis validation studies have been carried out to provide a better and deeper

understanding about these products. Fekete et al. (2004) computed runoff from observed and

reanalysis precipitation, and stated that the largest errors from the reanalysis are found in arid

and semiarid regions. Moreover, many studies have shown ERA-Interim (European Centre for

Medium-Range Weather Forecasts (ECMWF) interim reanalysis) to be the best or amongst

the best performing reanalysis products (Sun et al., 2018; Beck et al., 2017a; Essou et al.,

2016a, 2017), arguably the result of its sophisticated assimilation scheme, and despite a spatial

resolution inferior to that of most other modern reanalyses.

In March 2019, ECMWF released the fifth generation of its reanalysis (ERA5) over the 1979–

2018 period (Hersbach & Dee, 2016). ERA5 incorporates several improvements over ERA-

Interim. Of particular interest to the hydrological community are the largely improved spatial

(30 km) and temporal (1-hour) resolutions. The spatial resolution is now similar to or better

than that of most observational networks in the world, with the exception of some parts of

Europe and the United States. The hourly temporal resolution matches that of the best obser-

vational networks. In the United States and Canada, for example, there are currently no readily

available observation derived precipitation and temperature datasets at the sub-daily timescale,

and sub-daily records are not consistently available for weather stations. In particular, the

hourly temporal resolution, if proven accurate, could open the door to many applications, and

notably for modelling small watersheds for which a daily resolution is not adequate. Such

watersheds are expected to be especially impacted by projected increases in extreme convec-

tive events resulting from a warmer troposphere in a changing climate. Some early results
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from ERA5 have shown that it outperforms other reanalysis sets and its predecessor ERA-I

(Balsamo et al., 2018; Olauson, 2018; Urraca et al., 2018; Tarek et al., 2019). Overall, no

single precipitation product could be considered ideal for measuring precipitation. In fact, all

precipitation products tend to miss a significant volume of rainfall (Behrangi et al., 2011).

1.4.4 Gridded datasets uncertainty

Appropriate dataset selection is a key issue in climate studies. High uncertainty is found across

most gridded datasets, coming from multiple sources, such as using different data sources,

merging and interpolation algorithms or quality control techniques (Vogel & Vogel, 2013;

Prakash et al., 2015b,a; Prein & Gobiet, 2017; Nashwan et al., 2019). Moreover, the num-

ber and the accuracy of observations used to correct these products typically vary. However,

some products are calibrated to the observations, thus making annual biases minimal, while

their daily patterns are significantly different from the observations (Sylla et al., 2013). There-

fore, gridded datasets should be comprehensively evaluated before they are used.

Several studies have assessed the performance, advantages and limitations of gridded datasets.

Most of these studies focus solely on precipitation datasets and evaluate the accuracy of these

products through a straightforward comparison against ground weather stations (Vila et al.,

2009; Romilly et al., 2011; Jiang et al., 2012; Prakash et al., 2018; Nashwan et al., 2019;

Andermann et al., 2011) evaluated five remote sensing and gauge-based gridded datasets with

ground-based measurements in the Himalayan region. The results showed that the satellite

products underestimate the precipitation at both the annual and seasonal scales. The authors

reported that the findings likely resulted from the bias correction techniques applied to correct

the datasets using the Global Telecommunication System (GTS) rain gauge network, which

has a poor spatial coverage in the study region; in addition, 0 mm precipitation is used to

compensate for missing values in the database. Moreover, there is a lag experienced by the

remote sensors in precisely capturing the snowfall, which is the major contributor of precipita-

tion in the Himalayas. The conclusion that satellite approaches tend to fail in snow-dominant

regions has also been reported in other studies (Kidd et al., 2012; Laviola et al., 2013). Chen
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et al. (2014) also evaluated two satellite-based products, (CMORPH) (Joyce et al., 2004) and

PERSIANN-CCS (Ashouri et al., 2015), to capture the rainfall in the mountainous zones lo-

cated west and north of Beijing. The study showed that both datasets failed to capture the

spatial pattern and the temporal variation of precipitation.

Other studies have used hydrological modelling as an indirect method to evaluate the perfor-

mance of these datasets in forcing hydrological models (Zhu et al., 2018; Duan et al., 2019;

Tarek et al., 2019). Hydrological modelling offers an interesting perspective since results de-

pend on the coherence between precipitation and temperature datasets and on an accurate rep-

resentation of the annual cycle of both variables. Hydrological modelling is also not overly

sensitive to biases present in every dataset, as these are typically removed during the calibra-

tion process (Essou et al., 2016a).

Behrangi et al. (2011) evaluated five satellite-based products to force a hydrological model and

simulate streamflows. The results showed that the bias-corrected datasets captured streamflow

patterns well. However, the non-bias-corrected products overestimated the streamflow over

warm seasons and underestimated it in cold seasons. Wu et al. (2018) evaluated the Multi-

Source Weighted-Ensemble Precipitation (MSWEP V2.1) and three satellite-based precipita-

tion products with rain gauge observations to simulate streamflows on the upper Huaihe River

Basin in China. The results showed that the merged precipitation product (MSWEP V2.1)

generally outperformed the other satellite datasets, although significant uncertainty existed in

mountainous regions.

Various studies have shown that in the Northern Hemisphere (NH), the older reanalysis prod-

ucts such as the National Center for Atmospheric Research (NCAR), the 15-year reanalysis

(ERA-15), 40-year reanalysis (ERA-40), and the 25-year Japan Reanalysis (JRA-25), gener-

ally do a good job at reproducing the spatial distribution of precipitation (Hodges et al., 2003;

Wang et al., 2006). In the Southern Hemisphere (SH) larger differences were found, indicating

a higher degree of uncertainty. This is related to how the available observations in the SH are

assimilated (Hoskins & Hodges, 2005).
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Beck et al. (2017b) evaluated 23 gridded precipitation datasets over the 2000-2016 period.

Thirteen daily uncorrected datasets (non-dependent on gauges for correction) were compared

with observations from gauges, and the other ten gauge-corrected datasets were evaluated us-

ing hydrological modelling. Among the uncorrected datasets, the merged-products datasets

(MSWEP-ng) generally performed the best, followed by the reanalysis and then the satellite

products. For the corrected datasets, results showed that datasets integrating daily gauge data

(CPC Unified and MSWEP products) generally outperformed the other datasets.

Finally, precipitation datasets have also been evaluated using the surface water budget (Getirana

et al., 2011; Lorenz et al., 2014; Munier & Aires, 2018; Sheffield et al., 2009; Smith & Kum-

merow, 2013; Song et al., 2016), as well as using surface water and energy budgets (Kang & Ahn,

2015; Hobeichi et al., 2020b,a; Yang et al., 2015). Despite the growing literature on the subject,

the question regarding the most accurate dataset for capturing the spatio-temporal variability

of weather events or driving hydrological models for climate change impact studies remains

unanswered.

Near-surface air temperature is a key variable for meteorological monitoring and forecasting

services (Nieto et al., 2011), as well as for climate and hydrological studies. In hydrologi-

cal modelling, the air temperature is the main driving variable for the evapotranspiration and

snowmelt processes. Hence, accurate temperature data is vital when driving hydrological mod-

els in historical and future climate periods. However, the lack of an adequate gauge network can

result in improper temperature estimations. Therefore, gridded temperature datasets are also

crucial in many fields. Temperature products are generally thought to be less complex than

precipitation datasets due to the much smaller spatial and temporal temperature variability in

the former. Therefore, significantly fewer studies have compared and evaluated the uncertainty

of using different temperature datasets in hydrological impact models (Essou et al., 2016b).
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1.5 Hydrological modelling

Moradkhani & Sorooshian (2009) defined a "model" as a simplified representation of a real

world system. The best model is the one that represents the reality as closely as possible us-

ing the least parameters and model complexity (Devia et al., 2015). The sensitivity of the

hydrological cycle to diverse climate conditions makes climate change projections essential

for the assessment of future variations (Teutschbein & Seibert, 2012). Extracting climate vari-

ables (temperature and precipitation) from global climate models (GCMs) and simulating using

hydrological models is the most commonly used method to estimate future climate change im-

pacts on hydrology. Therefore, the choice of the suitable hydrological model is essential.

1.5.1 Different types of hydrological models

Hydrological models represent the hydrological cycle using mathematical equations and are

available under a wide range of model structures. The most important model classifications are

lumped, distributed and semi-distributed models, and empirical, conceptual and physically-

based models.

In lumped hydrologic models, the entire watershed is described as one unit. Generally, a

lumped model can be expressed by empirical or differential equations with uniform spatial

characteristics (i.e the spatial heterogeneity of most or all catchment attributes is disregarded).

At the opposite, a distributed model is structured to consider these spatial variations to some

extent by dividing the basin into smaller units or sub-basins. Consequently, model complexity

rises rapidly, which increases the computational effort needed to run this class of model. Semi-

distributed models try to navigate the middle ground to allow for the representation of spatial

heterogeneity while keeping the computational budget reasonable (Orellana et al., 2008).

Empirical models are observation models that only use mathematical relationships between

input and output time series without considering the physical processes of the catchment. Unit

hydrographs are an example of this method (Devia et al., 2015). Conceptual models use sim-

ple mathematical equations to describe the main physical elements of the hydrological process
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(i.e rainfall, infiltration, evapotranspiration, runoff, etc.). However, while some of the model

parameters can be extracted from field data, in most cases, calibration is needed to define an

optimal parameter set. Calibration requires large amounts of hydrological and meteorological

data (Wheater, 2002). The physical models use more advanced equations such as mass con-

servation and momentum transfer equations to describe the hydrological processes of water

movement (Aghakouchak & Habib, 2010). The parameters of such models have, in principle,

a direct physical significance and can vary as a function of both time and space. They do not

require an extensive amount of data for calibration, but the initial state of the model such as

the soil moisture content and initial water depth, for example, as well as the morphology of the

catchment are required (Devia et al., 2015).

Model selection is dependent on data availability (dos Santos et al., 2018). Data requirements

are much less demanding lumped models compared to their distributed counterparts. It is

often argued that the more complex model provides better results (Devia et al., 2015). How-

ever, Wheater (2002) stated that “simple model structure does not reflect the complexity of the

rainfall-runoff response and a complex model structure is not always supported by the avail-

able data. A balance between the complexity of the model and available information is crucial

for successful model identification”. In this context, several studies have shown that a well

calibrated lumped conceptual model may perform similarly or better than the more complex

distributed model (Ghavidelfar et al., 2011; Lobligeois et al., 2014; Sayama et al., 2012). How-

ever, in some cases, both the simple and complex models perform badly (Ajami et al., 2004).

Vansteenkiste et al. (2014) used five hydrological models; three lumped and two distributed

models, to assess the differences in the runoff and extremes simulations. The results showed

that, overall, the lumped hydrological models performance is higher than the distributed mod-

els with much less computational time required. Distributed models have however the distinct

advantage of being able to provide information within the catchment, such as intermediate

streamflows.
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1.5.2 Hydrological model calibration

In order for the hydrological model to accurately simulate streamflows, the model parameters

have to be adjusted to the studied basin. This is generally needed for models of all com-

plexity, from a simple lumped model to a very complex physical-distributed model (Morad-

khani & Sorooshian, 2009). Generally, all hydrological models are dependent on the set of

parameters that are used to control the model. Therefore, these parameters should be tuned pre-

cisely through a calibration process to match the observed basin runoff (Arsenault et al., 2014).

This calibration process could be either manual or automatic. Manual calibration depends on

iterative trial and error adjustment. Consequently, it is a time-consuming task, even with a

model with few parameters. When using a complex model, it is nearly impossible to get the

best calibrated parameter set using the manual method. Automatic calibration algorithms are

generally considered better and a much faster alternative (Moradkhani & Sorooshian, 2009). In

automatic calibration, the set of parameters are adjusted automatically using mathematical and

statistical methods; mainly optimization algorithms, according to a specific search scheme to

minimize the difference between simulated and observed data. Typically, an objective function

(also called error-measure function) is used to measure that difference.

1.5.3 Hydrological modeling Uncertainty

The typical way to evaluate the hydrological model uncertainty is to compare the performance

of different models to represent the basin hydrology. Most studies showed that the arising

uncertainty from using different hydrological models is relatively small compared to GCMs

and GHGESs uncertainties (Vetter et al., 2017). While others pointed out that the role of the

hydrological model in generating a large amount of uncertainty should be considered (Bastola

et al., 2011; Asseng et al., 2013).

The hydrological models uncertainty is mainly related to the model structure and model param-

eters (Koskela et al., 2012; Ajami et al., 2007; Liu & Gupta, 2007). Some studies showed that

model parameters led to significant uncertainty (Wilby, 2005). Considerable concerns have
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been given to the automatic calibration methods intending to find the best fitting parameters

set. Finding the best single set of parameters is, however, unrealistic owing to the existence of

many available objective functions that can be used in model calibrations. Consequently, bad

model-parameter identification results in considerable uncertainty in model outputs (Morad-

khani & Sorooshian, 2009).

Other studies have shown that important uncertainty is related to the model structure (Chen

et al., 2011b; Poulin et al., 2011). Poulin et al. (2011) applied one lumped conceptual model

and one spatially-distributed physically-based model, calibrated using multiple automatic cal-

ibration algorithms to analyse the effect of model parameters and model structure on the hy-

drological modeling uncertainty in climate change studies. The results showed the significant

effect of hydrological model structure on the modeling uncertainty. Troin et al. (2018) used

seven snow models, five potential evapotranspiration methods, and three hydrological model

structures to evaluate the uncertainties linked to the hydrological model components over two

catchments in Canada. Their results show that most of the contribution to uncertainty was

related to the hydrological model structure. Brissette et al. (2020) stated that selecting an ap-

propriate hydrological model may be even more crucial than climate model selection in certain

cases. Therefore, quantifying and reducing uncertainties are an important but very challenging

task in hydrologic modeling studies.



CHAPTER 2

STUDY REGIONS AND DATA

2.1 Study Regions

2.1.1 Geographic Situation

North America is the third largest continent with a surface area of about 21.34 million km2. It

is bounded by the Arctic Ocean in the north, South America in the south, and by the Atlantic

and Pacific Oceans respectively on its east and west sides. North America can be divided into

five main physiographic regions: 1) the mountainous west, where all of the largest mountain

chains are located (e.g., the Rocky Mountains); 2) the Great Plains which are located in the

middle of the continent; 3) the Canadian Shield that extends over eastern, central, and north-

western Canada; 4) the eastern region, which includes the Appalachian Mountains; and 5) the

Caribbean islands, which are normally considered as part of North-America.

Africa is the second largest and second most-populous continent in the world. It covers a land

area of about 30.3 million km2, including adjacent islands, which represents 6% of Earth’s

total surface area and 20.4% of its total land area (Mawere, 2017). Deserts and dry lands cover

60% of its entire surface (Prăvălie, 2016). The average elevation of Africa is almost 600 m

above sea level, roughly close to the average elevations of North and South America (Atrax,

2016). Generally, higher-elevation areas lie to the east and south, while a progressive decrease

in altitude towards the north and west is apparent.

The African continent can be divided into 25 major hydrological basins (Karamage et al.,

2018). Generally speaking, the main drainage for all of the continent’s basins is towards the

north and west, and ultimately, into the Atlantic Ocean. About 95% of its streams are drained

through permanent rivers. In some arid areas (i.e., Northwest Sahara Desert), drainage is some-

times absent or masked by sand seas (Karamage et al., 2018). Roughly, 60% of the African
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continent is drained by 10 large rivers (Congo, Limpopo, Niger, Nile, Ogooue, Orange, Sene-

gal, Shebelle, Volta and Zambezi) and their tributaries (Paul et al., 2014).

2.1.2 Climate profiles

The North American continent has a wide variety of climate zones ranging from harsh win-

ters to moderate summers (James Wreford Watson & Others, 2020). Canada’s climate varies

greatly across different geographical regions. The temperature ranges between -25◦C in winter

and 35◦C in summer. The precipitation characteristics differ in both space and time. The snow

falls almost all over Canada in winter, except on the west coast. The west coast is characterized

by a temperate climate resulting from the warm air streams from the Pacific Ocean. The Cana-

dian Prairies, extending from the Rocky Mountains to the Great Lakes, are characterized by

cold snowy winters and dry summers. The Great Lakes see wet summers and snowy winters.

Northern Canada is covered with snow for a large part of the year and temperatures rise above

freezing only for a few months during summer.

In the United States, the climate varies considerably across the different regions. Generally, the

climate in the southern and western regions is warmer than regions located in the northern and

eastern regions. Hot summers and mild winters can be expected in the western and southern re-

gions, while harsh winters with heavy snowfall are typical of the north-eastern regions (Faridi,

2016). Six main climate regions describe the climate in the USA: Northwest Pacific; Mid/-

South Pacific; Midwest; Northeast; Southeast and Southwest. The Northwest Pacific is the

wettest region with warm summer temperatures and scattered rainfall almost throughout the

year. The Mid/South Pacific zone is characterized by nice winter weather with limited snow-

fall. The summers are generally dry with cooler weather in the northern part. The weather in

the Midwest zone has reasonable summer temperatures and harsh winters with lots of snow.

The Northeast has warm summers and very cold winters with heavy snowfall. The Southeast

zone has good weather all around the year with moderate rainfalls and some snow during win-

ter. Finally, the Southwest zone is considered the hottest region of the US. It is characterized

by heavy rainfall accompanied with thunderstorms and tornadoes.
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Africa is the hottest continent on earth, and is the area that has seen the highest ever-recorded

land surface temperature (58◦C in Libya; El Fadli et al. (2013)). The continent is charac-

terized by highly variable climates that range from tropical to subarctic on its highest peaks.

According to the Koppen climate classification (Köppen, 1900) as shown in Figure 2.1, the

northern region, the Sahara Desert, is mainly classified as dry (red) whereas the central and

western areas contain both savannah plains and dense forests with tropical and humid subtrop-

ical climates (blue) with a semi-arid climate in-between (El Fadli et al., 2013). The southern

region transitions toward semi-tropical (green) and semi-arid climates (orange and red). These

wide climate ranges are characterized by a wide variety of precipitation extremes, including

droughts and floods. Droughts occur mostly in the Sahel and in some parts of Southern Africa,

whereas flooding is most prevalent in the southern and eastern regions.

Figure 2.1 Koppen-Geiger climate zones classification map for

Africa in the (1980-2016) period

Taken from (Beck et al., 2018)

Precipitation varies widely across the African continent and spans some of the earth’s dri-

est and wettest climates. While most of the precipitation is liquid, some mountain ranges in

North-Africa and, to a lesser extent in South-Africa experience regular snowfall. The three vol-
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canic cones of Mount Kilimanjaro also experience frequent snowfall and hosts several glaciers,

which are however rapidly shrinking. Rainfall patterns are dominated by the intertropical con-

vergence zone (ITZ) which generate intense precipitation along the Equatorial band. This

band experiences intense thunderstorms and convective activity. The movement of the ITZ

dominates the seasonality of precipitation with well-defined wet and dry seasons along Central

African countries. The West coast of Africa experiences some relatively small hurricane ac-

tivity during the months of August and September. The most destructive hurricanes that travel

across the Atlantic Ocean are typically formed near the Cape Verde islands.

2.1.3 Climate change in Africa

The African ecosystems are already being affected by the consistent anthropogenic climate

change with evidence of warming over land regions. Over the past century, minimum tem-

peratures have increased more rapidly than maximum temperatures. It is very likely that over

most of Africa, the mean annual temperature has increased by 0.5◦C or more over the past

century (IPCC, 2001). Moreover, average temperatures in Africa are expected to rise faster

than the global increase during the 21st century (IPCC, 2001; James & Washington, 2013).

Warming projections under medium greenhouse gases emission scenarios indicate an increase

in the mean annual temperature exceeding 2◦C by the end of this century and between 3 ◦C

and 6 ◦C under a high Representative Concentration Pathway (RCP) (IPCC, 2014).

Precipitation projections are more uncertain than temperature projections with higher spatial

and seasonal dependence (Orlowsky & Seneviratne, 2012). Changes in mean seasonal precip-

itation coupled with temperature increases will result in significant impacts to river stream-

flow and reservoir levels that will amplify the existing water-stressed availability problems in

Africa. Climate projections point to a likely reduction in precipitation over the Mediterranean

region of northern Africa as well as the western parts of Africa by the end of the 21st century

(Giorgi & Lionello, 2008; Shongwe et al., 2009; Kotsias et al., 2020). On the contrary, ex-

pected increases in mean and extreme rainfall by the end of the century for regions of high or

complex topography such as in western regions (Akinsanola & Zhou, 2019; Dinku et al., 2007),
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and parts of eastern and southern Africa (IPCC, 2001), likely resulting in additional flooding

risk. In western Africa, the impact of climate change on water resources is restricted by the

significant climate model uncertainties. Some studies expect an increase in precipitation, while

others predict a likely decreasing trend in precipitation by the end of the century (IPCC, 2014).

Several studies point to the future decrease in water abundance. Abouabdillah et al. (2010)

estimated that higher temperatures and declining rainfall would reduce the water resources in

Tunisia. Droogers et al. (2012) estimated that 78% of future water stress could be attributed

to socioeconomic factors, while climate change will account for the other 22% of future water

shortage in Northern Africa by 2050. In eastern Africa, potential climate change impacts on

the Nile Basin are of concern for its socioeconomic importance. Kingston & Taylor (2010)

showed in their studies an initial increase between (2010–2039), followed by a decline in sur-

face water discharge in the Blue Nile by late century as a result of both declining precipitation

and increased evaporating demand.

2.2 Data

2.2.1 Precipitation and temperature datasets

As discussed earlier, there is now a rather large number of gridded datasets that have been

stockpiled from stations, satellites, reanalysis or a combination thereof. However, not all these

datasets can be used for climate change impact studies. Dataset selection should be driven

by the availability of high spatial and long temporal resolutions. The chosen datasets have

to meet the minimum requirement of having at least 30-years of data series, as defined by

the World Meteorological Organization (WMO) for climatological studies (Burroughs & Bur-

roughs, 2003), covering the same time period, so they can show a high-frequency internal

variability as well as they could potentially be used as reference datasets in climate change

impact studies. To be useful in this study, a dataset must have the following characteristics: 1)

spatial resolution (finer than 1◦ for example to be used in local hydrological studies); 2) daily

scale or finer temporal resolution; 3) long temporal coverage (at least 30 years to establish
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robust statistics for downscaling and bias correction); and 4) for an inter-comparison study, all

datasets should cover approximately the same time period.

Table 2.1 The selected global gridded datasets

No. Short
Name

Data
Source

Spatial
Resolution

Spatial
Coverage

Temporal
Resolution

Temporal
Coverage

1- Precipitation

1 CPC Unified Gauge 0.5◦ Global Daily
1979-

Present

2 GPCC Gauge 1.0◦ Global Daily
1982-

2016

3
PERSIANN-

CDR (V1R1)

Gauge,

Satellite
0.25◦ ±60◦ Lat. 6 hourly

1983-

2012

4 CHIRPS V2.0
Gauge,

Satellite
0.05◦ ±50◦ Lat. Daily

1981-

Present

5 NCEP-CFSR Reanalysis 0.5◦ Global 6 hourly
1979-

2012

6 ERA-Interim Reanalysis 0.75◦ Global 3 hourly
1979-

8/2019

7 ERA5 Reanalysis 0.25◦ Global hourly
1979-

2017

8 JRA-55 Reanalysis 0.5625◦ Global 3 hourly
1959-

Present

9 MSWEP V1.2

Gauge,

Satellite and

Reanalysis

0.25◦ Global 3 hourly
1979-

2015

2- Temperature

1 CPC Unified Gauge 0.5◦ Global Daily
1979-

Present

2 ERA-Interim Reanalysis 0.75◦ Global 3 hourly
1979-

8/2019

3 ERA5 Reanalysis 0.25◦ Global hourly
1979-

2017

According to above criteria, nine precipitation and three temperature gridded datasets are in-

cluded in this study, and are presented in Table 2.1. The precipitation datasets are classified

based on their respective data sources. Two datasets are based solely on gauge data: CPC Uni-

fied (Climate Prediction Center Unified Gauge) and GPCC V2018 (V2) (Global Precipitation
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Climatology Center); two combine gauge and satellite data: CHIRPS V2.0 (Climate Hazards

group Infrared Precipitation with Stations) and PERSIANN-CDR V1R1 (Precipitation Esti-

mation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN)

Climate Data Record (CDR)); four are derived from reanalysis: ERA5 (The European Cen-

tre for Medium-Range Weather Forecast’s 5th generation reanalysis), ERA-Interim (European

Centre for Medium-range Weather Forecasts ReAnalysis Interim), JRA55 (Japanese 55-year

ReAnalysis) and NCEP-CFSR (National Centers for Environmental Prediction (NCEP) Cli-

mate Forecast System Reanalysis (CFSR), while the last is a multi-source dataset integrating

gauge, satellite and reanalysis data (MSWEP V1.2 (Multi-Source Weighted-Ensemble Precipi-

tation)). In terms of temperature, three datasets are included in this study: the gauge-based CPC

unified dataset, the ERA-Interim and ERA5 reanalysis products. Properties of the temperature

datasets are also provided in Table 2.1.

CPC Unified is a gauge-based dataset launched at the NOAA Climate Prediction Center (CPC)

to provide daily precipitation data over the global land areas (Chen et al., 2008). Gauged data

was collected from the Global Telecommunication System (GTS), national and international

agencies with more than 30,000 stations. The CPC Unified dataset provides rainfall data for

the 1979-2016 period with a 0.5◦ x 0.5◦ spatial resolution. Data quality control was performed

through direct comparisons against nearby stations, satellite records and numerical model fore-

casts.

GPCC V2018 (V2) is a global land-surface precipitation dataset that provides daily rainfall

data for the 1982-2016 period on a regular grid with a spatial resolution of 1.0◦ x 1.0◦ based

on in-situ rain gauge data (Schneider et al., 2018). The data was provided by the national

meteorological and hydrological services, global and regional data collections and the World

Meteorological Organization (WMO) GTS data, and the GPCC’s database incorporates data

from more than 116,000 different stations.

PERSIANN-CDR is a near-global (60◦N - 60◦S) satellite-based precipitation dataset developed

by the National Climatic Data Center (NCDC) of NOAA. It is generated using the archives of
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historical GridSat-B1 infrared data to produce long-term rainfall estimates for the period 1983

to near present with a 0.25◦ x 0.25◦ spatial and 6-hours temporal resolutions (Ashouri et al.,

2015; Miao et al., 2015). PERSIANN-CDR was bias-corrected using the Global Precipitation

Climatology Project (GPCP) monthly 2.5◦ product (version 2.2), which includes the Global

Precipitation Climatology Centre (GPCC) gauge information.

CHIRPS V2.0 is a quasi-global (50◦N - 50◦S) rainfall dataset that was released by the U.S.

Geological Survey (USGS) and the Climate Hazards Center (CHC) scientists. It provides daily

rainfall estimates for the period 1981 to near present with a high spatial resolution of 0.05◦

x 0.05◦ (Funk et al., 2014). CHIRPS utilizes two global Thermal InfraRed (TIR) archives;

the Globally Gridded Satellite (GriSat) archive of the National Climate Center (NOAA) for

the period 1981 to 2008, and the NOAA Climate Prediction Center dataset (CPC TIR) for the

period 2000 to present. The 2000-2008 overlap period was used to adjust the systematic bias

although the slight differences found between both sources (Funk et al., 2015b). Several public

and private gauged observation archives are incorporated in the development of the dataset. The

public data has been provided by GHCN daily, GHCN monthly, Global Summary of the Day

(GSOD), World Meteorological Organization’s Global Telecommunication System (GTS) and

Southern African Science Service Centre for Climate Change and Adaptive Land Management

(SASSCAL). Additional observations come from national meteorological agencies in Mexico,

Central America, South America, and sub-Saharan Africa (Funk et al., 2015b).

The NCEP Climate Forecast System Reanalysis (CFSR) was designed to be a global and high

resolution coupled atmosphere-ocean-land surface-sea ice system and could be used in climate

studies. It was generated on a 6-hours temporal resolution and a spatial resolution of 0.5◦ x

0.5◦ (Saha et al., 2010). The main historical data used in this product came from the National

Center for Atmospheric Research (NCAR), the National Climatic Data Center (NCDC), and

the National Climatic Data Center (NESDIS) archives.

ERA-I is a global atmospheric reanalysis that was released by the ECMWF in 2006 (Dee et al.,

2011) in replacement of ERA40. ERA-I introduced an advanced four-dimensional variational
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(4D-var) analysis assimilation scheme with a 12-hour time step. It computes 60 vertical levels

from the surface up to 0.1 hPa. Its horizontal resolution is 0.75◦ x 0.75◦ (approximately 80

km). Precipitation and temperature are available at a 12-hour time step and were aggregated

to the daily scale in this work. The production of ERA-I was ceased in August 2019, thus

providing temporal coverage from January 1979 until August 2019.

ERA5 is the fifth generation reanalysis from ECMWF. It provides several improvements com-

pared to ERA-I, as detailed by Hersbach & Dee (2016). The analysis is produced at a 1-hourly

time step using a significantly more advanced 4D-var assimilation scheme. Its horizontal res-

olution is 0.25◦ x 0.25◦ and it computes atmospheric variables at 139 pressure levels up to a

height of 80 km. Data for the 1979–2018 period was released in March 2019, while the entire

dataset from 1950 to present is still expected to be released in 2020. This work only looks at

the 1979–2018 period because outputs of reanalysis prior to 1979 have been put into question

due to the more limited availability of data to be assimilated, and notably from earth-observing

satellites (e.g. Bengtsson et al. (2004)). While ERA5 may solve some of these problems, it

is believed that a careful evaluation of inhomogeneity in ERA5 time series would be needed

before using pre-1979 data.

JRA-55 is the second Japanese global atmospheric reanalysis that was conducted by the Japan

Meteorological Agency (JMA) as of December 2009. JRA-55 covers the period starting from

1959 on a global basis with a spatial resolution of 0.5625◦ x 0.5625◦ and 3-hours time step

(Kobayashi et al., 2015). JRA-55 has solved the two major problems found in the previous

product of JRA-25; which are the dry bias in the Amazon basin and the cold bias in the lower

stratosphere. Observations used in ERA-40 (Uppala et al., 2005) and those that were archived

by the Japan Meteorological Agency (JMA) were the primary source of data. Snow depths for

Russia were provided by the Russian Research Institute for Hydrometeorological Information

(RIHMI), in the USA from the University Corporation for Atmospheric Research (UCAR) and

in Mongolia from the Institute of Meteorology and Hydrology (IMH). A detailed list of data

suppliers could be also found in (Kobayashi et al., 2015).
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MSWEP V1.1 is a global precipitation dataset designed mainly for hydrological modeling.

The dataset provides data for the 1979–2015 period at a 0.25◦ x 0.25◦ spatial resolution and

3-hours temporal resolution (Beck et al., 2017a). The long-term mean of MSWEP was pro-

vided from the Climate Hazards Group Precipitation Climatology (CHPclim V1.0) dataset

(Funk et al., 2015a). (CHPclim) is a global climatology database based on satellite data and

corrected by gauge observations. The correction for gauge under-catch was performed us-

ing streamflow records from 13,762 stations across the globe. MSWEP incorporates inputs

from seven datasets; two gauge-based products (CPC Unified and GPCC), three satellite-based

(CMORPH, GSMaP-MVK, and TMPA 3B42RT), and two reanalysis (ERA-Interim and JRA-

55). The reanalysis datasets performed better in mid to high latitudes as well as for snowfall

estimates, while the satellite products performed better in the tropics. For each grid cell, the

weight of gauge-based products was calculated based on the gauge network density, and for

the satellite and reanalysis products the weight was assigned relative to their performance.

There are additional satellite products that provide global rainfall information at finer resolu-

tions than PERSIANN-CDR, which has been selected in this work. Of particular interest is

the Global Precipitation Measurement (GPM) mission, designed to further precipitation mon-

itoring from an array of microwave sensors. It was launched to provide a new generation

of precipitation datasets with an improved accurate measurement for light rainfall and snow

precipitation as well as more frequent observations over the medium and high latitudes (Hou

et al., 2014). GPM utilizes passive microwave sensors in addition to the infrared measurements

from geostationary satellites, providing rainfall monitoring around the globe with higher spa-

tial and temporal resolutions than the previously widely used TMPA products (Yong et al.,

2015). These improvements are likely to provide significant advantages for hydrometeoro-

logical studies, weather forecasting, water budget studies and many other applications. In

particular, the GPM Integrated Multisatellite Retrievals (IMERG), provides data at 0.1◦ and

half-hourly spatial and temporal scales (Huffman et al., 2015) and the Global Satellite Map-

ping of Precipitation (GSMaP) provides hourly rainfall data also at a 0.1◦ resolution (Okamoto

et al., 2005). These products have been evaluated against gauge measurements over different
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regions (Aslami et al., 2019; Asong et al., 2017; Chen et al., 2016; Lu & Yong, 2018; Maz-

zoglio et al., 2019) and showed satisfactory results. However, these state-of-the-art products do

not cover a long-enough time period to be used for the evaluation of a climatic base-line period

required for climate change impact studies. They were therefore not chosen for this study.

2.2.2 Observed hydrometeorological data

2.2.2.1 GRDC database (Africa)

The Global Runoff Data Centre (GRDC) archive is arguably the most complete global dis-

charge database providing free access to river discharge data (Fekete & Vörösmarty, 2007).

The database provides streamflow records collected from 9213 stations across the globe, with

an average temporal coverage of 42 years per station (Do et al., 2017). It is operated under

the World Meteorological Organization (WMO) umbrella to provide broad hydrological data

to support the scientific research community. GRDC data has been widely used in various hy-

drological studies, such as those examining hydrological model calibrations (Milliman et al.,

2008; Hunger & Döll, 2008; Donnelly et al., 2010; Haddeland et al., 2011), or as a benchmark

to compare simulated streamflows (Trambauer et al., 2013; Zhao et al., 2017).

2.2.2.2 NAC2H database (North-America)

The observed data (OBS) in this study was taken from the North American Climate Change

and hydroclimatology (NAC2H) database (Arsenault et al., 2020), which is a hydrology and

climate change impact dataset developed to study the impacts of different components of the

modelling chain on hydrological indices over a collection of 3540 North American catchments.

It includes hydrometeorological data such as precipitation values (mm/d) on a daily time step,

maximum and minimum temperature (◦C) and streamflow at the daily scale for each of the

catchments. Climate data for the 698 catchments in Canada were taken from the CANOPEX

database (Arsenault et al., 2016), whereas the data for the 2842 United States catchments

were collected from the United-States Geological Survey’s (USGS) National Water Informa-
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tion System (NWIS) (US Geological Survey, 2016) and National Hydrography Dataset (U.S

Geological Survey, 2019).

For Canada, the data is sourced from Environment and Climate Change Canada (ECCC)

that were post-processed and basin-averaged using Thiessen Polygon weighting. Any miss-

ing values were replaced by the NRCan interpolated climate data product (Hutchinson et al.,

2009). While the Canadian streamflow data is provided by Water Survey Canada, the hydro-

metric branch of ECCC. For the United States, NAC2H uses the Livneh gridded dataset for

meteorological data (Livneh et al., 2015), whereas streamflows are provided by the United

States Geological Survey (USGS) National Water Information Service. The data cover the

period 1951–2010 for Canada and 1950-2014 for the United States. NAC2H data is open

source and available on the Open Science Foundation data repository at the following website:

https://osf.io/s97cd/. More details can be found in (Arsenault et al., 2020).

2.2.3 General Circulation Models (GCMs)

All GCMs used in this study were part of the Coupled Model Intercomparison Project Phase

5 (CMIP5) (Taylor et al. (2012)). Long historical climate simulations (1850–2005) and future

climate projections (up to 2100 and beyond) for 4 Representative Concentration Pathways

(RCPs) are included in the CMIP5 database.

Ten CMIP5 GCMs from 10 different modeling centers were selected for this study, as shown

in Table 2.2. They were selected as a subset of the GCMs used to set up the NAC2H database

(Arsenault et al., 2020). The number of GCMs (10) was selected as a compromise between

having an accurate representation of GCM climate sensitivity variability and keeping the large

computational burden of this project reasonable. All GCM data was extracted over the 1983-

2012 and 2071-2100 future periods under the (RCP8.5) emission scenario.
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Table 2.2 List of chosen GCMs, research centres and

spatial resolutions

No. Models Research
Center

Spatial
Resolution

1 BCC-CSM1-1

Beijing Climate Center,

China Meteorological Administration,

China

2.79◦ x 2.81◦

2 BNU-ESM

College of Global Change and Earth System

Science, Beijing Normal University,

China

2.79◦ x 2.81◦

3 CanESM2
Canadian Center for Climate Modeling

and Analysis, Canada
2.79◦ x 2.81◦

4 CCSM4
National Center of Atmospheric Research,

USA
0.94◦ x 1.25◦

5 CMCC-CESM
Centro Euro-Mediterraneo per I Cambiamenti

Climatici, Italy
3.44◦ x 3.75◦

6 CNRM-CM5
National Center of Meteorological Research,

France
1.40◦ x 1.40◦

7 FGOALS-g2

LASG, Institute of Atmospheric Physics,

Chinese Academy of Sciences,

China

2.79◦ x 2.81◦

8 INMCM4
Institute for Numerical Mathematics,

Russia
1.5◦ x 2.0◦

9 MIROC5

Atmosphere and Ocean Research Institute

(The University of Tokyo), National Institute

for Environmental Studies, and Japan Agency

for Marine-Earth Science and Technology,

Japan

1.40◦ x 1.40◦

10 MRI-CGCM3
Meteorological Research Institute,

Japan
1.12◦ x 1.125◦

2.2.4 African watersheds boundaries data

HydroSHEDS (the Hydrological data and maps based on the SHuttle Elevation Derivatives

at multiple Scales database) is a freely available global archive, developed through a World

Wildlife Fund (WWF) program, that uses a hydrologically-corrected digital elevation model to

provide hydrographic information for regional and global studies (Lehner et al., 2008). In ad-

dition, it applies a consistent methodology using Geographic Information System (GIS) tech-
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nology to provide watershed polygons for more than 7000 GRDC gauging stations. Figure

2.2 shows watershed polygon layers at different spatial scales for the African continent. Hy-

droSHEDS consists of four main databases; 1) HydroRIVERS, 2) HydroLAKES, 3) HydroAT-

LAS and 4) HydroBASINS.

Figure 2.2 Sample of the different vector layers of watersheds

on the African continent. Each layer has a different number of

watersheds, depending on the required scale

HydroRIVERS database provides a global rivers network data in a vector format for all rivers

that have either a basin area of at least 10 km2 or/and an average flow of at least 0.1 m3/sec.

HydroLAKES (Messager et al., 2016) is another database that offers polygon shapes of the

1.4 million global lakes that have, at least, a surface area of 10 ha. HydroATLAS (Linke

et al., 2019) is a comprehensive database presenting extensive series of hydro-environmental

information such as hydrology, physiography, climate, land cover and use, soils and geol-

ogy, and anthropogenic influences for all global watersheds and rivers. Finally, HydroBASINS
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(Lehner & Grill, 2013) database offers various data layers such as void-filled elevations, drainage

directions, flow accumulations, streamflow networks and basin boundaries, in raster and vector

formats, to support hydrological modeling and watershed studies. These data are available with

different spatial resolution ranges from 3 arc-second (approximately 90 m at the equator) to 5

minute (approximately 10 km at the equator) with a quasi-global extent between ±60◦ latitude

(Lehner, 2014). The vector layer (lev05), which consists of 1145 watersheds, was chosen to be

used in this study.





CHAPTER 3

METHODOLOGY

The methodology structure is divided into three main parts which follow the secondary ob-

jectives of the study. All of the chosen datasets are first explored and evaluated over North

America, where there is a good network of weather stations and reference datasets to assess

their advantages and limitations. The nine global/near-global precipitation and three global

temperature datasets are compared over 3138 catchments relative to a reference dataset; in this

case, the NAC2H observation dataset. Then to further assess dataset performance, the nine pre-

cipitation and 3 temperature datasets under evaluation, in addition to the two reference datasets

from NAC2H are combined in their 40 possible arrangements and used as inputs to the two

lumped conceptual hydrological models; GR4JCN and HMETS.

A second evaluation of these gridded precipitation and temperature datasets is then performed

over Africa, which displays a very sparse network of weather stations. As is the case over

North America, all gridded datasets combinations are then used to drive the two hydrological

models over 850 African catchments. These catchments were chosen based on the availability

of at least 5 consecutive years of GRDC streamflow records during the study period. Since

there is no reference dataset over Africa, the analysis is based on an intercomparison of all

dataset combinations.

Not all these 850 catchments were compatible with the HydroSHEDS database. However,

the reason for using these catchments in that part of the study was to run the hydrological

models over the largest number of available catchments. These 850 stations from the GRDC

database were re-filtered again by choosing only the stations that were compatible with the

selected HydroSHEDS layer (e.g., lev05). As a result, the 1145 African catchments were

divided into 350 gauged (which correspond to GRDC streamflow data) and 795 ungauged (no

GRDC hydrometric station) catchments such that the gauged catchments were used to predict

the streamflow at the ungauged sites in an additional regionalization step."



46

In a last step, a large-sample hydrological climate change impact study is performed over 1145

African catchments. It uses the standard top-down approach in a modeling chain, which con-

sists of 10 GCMs, 2 hydrological models, 2 temperature and 9 precipitation datasets, for a total

of 360 possible combinations. A single GHGES (RCP8.5), a single climate projection for each

GCM and a single downscaling method (see below) are used, since the focus of this work is not

on conducting a complete uncertainty chain study. All precipitation and temperature datasets

combinations were used as reference datasets to bias-correct the climate projections. Both

hydrological models were calibrated on all catchments for all 18 combinations of reference

datasets (2 temperature datasets x 9 precipitation datasets), for a total of 41,220 independent

hydrological model calibrations. The climate projections from each combination were used to

feed the hydrological model using the relevant set of parameters obtained during the hydro-

logical model calibration over the same reference period employed in the bias-correction step.

For each catchment, 360 30-year streamflow time series are generated for both the reference

(1983-2012) and future (2071-2100) time periods. Fifty-one streamflow metrics are computed

for each of these time series. An n-dimensional analysis of variance is performed to partition

the uncertainty linked to the four groups of components of the uncertainty modeling chain.

The uncertainty related to the reference dataset will therefore be compared to that of the cli-

mate model ensemble and against that of both hydrological models. Figure 3.1 describes the

main methodological steps for this work.

3.1 Intercomparison of gridded climate products and statistics

The study regions are composed of 3138 North American and 850 African catchments. Figure

3.2 presents the geographic distribution of these catchments. The comparison in North America

was done at the catchment scale since the available catchments almost cover the entirety of the

continent. In Africa, the first part of the analysis: datasets inter-comparison, was done at the

grid scale since the spatial distribution of gauged catchments is more heterogeneous than over

North-America. The second part of the analysis: the hydrological modeling evaluation, was

conducted at the catchment scale.
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Figure 3.1 Overview of the various methodological steps

implemented in this study

3.1.1 Datasets evaluation over North America

While the NAC2H database was considered as the reference dataset, there was no underly-

ing assumption that it is of higher quality or more accurate than any of the gridded products.

Rather, it simply served as a baseline against which the other data products were compared.

Analyses were performed by comparing annual and seasonal means of the gridded climate

variables to the reference dataset. This allowed finding spatial patterns of differences in aver-

age precipitation and temperatures to obtain an evaluation of the regional differences between

the products. A similar analysis was then performed to investigate the differences in variability

within these datasets on a daily time step. This also allowed evaluating the properties at a time

scale that is more difficult to manage for gridded datasets compared to aggregated values at

the annual or seasonal scales. The tests were performed because gridded datasets presenting
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Figure 3.2 Spatial distribution of: a) the 3138 North American

watersheds and b) the 850 African watersheds (each dot

represents the watershed centroid)

little to no precipitation difference at the annual scale could still be largely underestimating the

variance found in observational records. The Mean Error (ME), Mean Absolute Error (MAE),

Root Mean Square Error (RMSE) and correlation coefficient (r) were used to compare the

annual and seasonal precipitation, and temperature values to the reference dataset (the article

is presented in APPENDIX II). The main characteristics of North American basins were ex-

tracted from the NAC2H database as well as the main characteristics of the African basins were

extracted from the GRDC database and are presented in Table 3.1.
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Table 3.1 Main characteristics of the study basins

Basin attribute Minimum Maximum Median Mean
North America

Elevation (m) 7.3 3585 380 692

Area (km2) 302 179150 1803 6317

Mean annual precipitation (mm/year) 307 3895 993 981

Mean annual discharge (m3/sec.) 0.048 1584 17.60 56.75

Temporal coverage (years) 5 30 30 27.60

Africa

Elevation (m) 22 2897 598 803

Area (km2) 1.18 3.65x106 16268 40471

Mean annual discharge (m3/sec.) 0.0014 2955 11.47 208.86

Temporal coverage (years) 5 30 30 25.70

3.1.2 Datasets evaluation over Africa

Following the North-American evaluation, the chosen datasets were re-evaluated over Africa

(see APPENDIX III). For the temperature datasets, Tarek et al. (2019) showed significant rel-

ative improvement of ERA5 with respect to its predecessor ERA-Interim (The article is pre-

sented in APPENDIX I). ERA5 systematically reduced biases present in ERA-Interim for the

temperature variables. Therefore, the ERA-I temperature dataset was excluded and only two

temperature datasets were kept: ERA5 and CPC. The same nine precipitation datasets and

hydrological models were included.

3.2 Evaluation using hydrological modeling

The quality and performance of the climate variable datasets were evaluated indirectly through

an independent measure, namely, the watershed observed streamflow. The hypothesis posed

here is that climate datasets that allow for more accurate hydrological modelling with respect

to the observed streamflow should be considered as being of higher quality. Of course, the

choice of a hydrological model does influence performance. However, this should be seen as

a first attempt at finding inconsistencies within the climate datasets. Hydrological modelling

is sensitive to the annual cycle of precipitation and temperature, as well as to the coherency
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between both variables, so it can therefore be seen as a good evaluator of dataset overall quality.

This approach has been used in several other studies (Beck et al., 2017b; Essou et al., 2016a;

Tarek et al., 2019).

In the course of this study, two lumped hydrological models were implemented and calibrated

over each of the available catchments because the large-scale nature of this study precluded

the widespread implementation of distributed models. The two hydrological models selected

to evaluate the performance of the various climate datasets, GR4JCN and HMETS, are flexible

and adaptable and have been shown to perform well in a wide range of climates and hydrolog-

ical regimes (Arsenault et al., 2015, 2018; Martel et al., 2017; Valéry et al., 2014; Perrin et al.,

2003).

3.2.1 The GR4J hydrological model

The GR4J hydrological model (Perrin et al., 2003) is a lumped and conceptual model that is

based on a cascading reservoir production and routing scheme. Water is routed from these

reservoirs to the outlet in parameterized unit hydrographs. While the original GR4J model in-

cludes four calibration parameters, the version used in this study had six calibration parameters

in order to include a snow-accumulation and snowmelt routine, namely CEMANEIGE (Valéry

et al., 2014). This GR4J-CEMANEIGE (GR4JCN) combination has shown excellent results in

studies across the globe (Raimonet et al., 2017, 2018; Youssef et al., 2018; Riboust et al., 2019;

Wang et al., 2019), including in Canada and the United States. It requires daily precipitation,

temperature and potential evapotranspiration (PET) as inputs. The PET was computed in the

present study using the Oudin formulation (Oudin et al., 2005) as it was shown to be simple

yet efficient when used in GR4JCN. Furthermore, the choice of PET is more sensitive than in

other simple hydrological models because GR4J does not scale the input PET to adjust its over-

all mass balance. Instead, a parameter is included that allows exchanges between underground

reservoirs of neighbouring catchments.
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3.2.2 The HMETS hydrological model

HMETS (Hydrological Model - École de technologie supérieure) is a lumped and conceptual

model used in many research applications and as a component of operational multi-model

hydrological studies and forecasting (Martel et al., 2017). It was selected due to its good

performance in the study domain in previous studies and because a lumped model was required

to simulate discharge over the large number of catchments in the study.

The HMETS hydrological model (Martel et al., 2017) is more complex than GR4JCN, and as

such has more calibration parameters (21). The HMETS hydrological model has four reser-

voirs instead of two (surface runoff, hypodermic flow from the vadose zone reservoir, delayed

runoff from infiltration and groundwater flow from the phreatic zone reservoir), allowing for

finer adjustments to the runoff and routing schemes. Its snowmelt module requires 10 of the 21

parameters and was selected specifically to be more robust in Nordic catchments with specific

routines for snow accounting, snowmelt, snowpack refreezing, ice formation and soil freezing

and thawing. It requires daily maximum and minimum temperature as well as daily rainfall and

snowfall amounts. All the chosen temperature datasets provide daily minimum and maximum

temperature, with the exception of ERA5, which provides mean hourly air temperature. The

minimum and maximum hourly temperatures for each day were therefore used as being repre-

sentative of the daily maximum and minimum values. For ERA5, the mean daily temperature

was computed as the average of the 24 hourly temperature values.

HMETS starts by computing the potential evapotranspiration using the Oudin formulation,

which is scaled through a calibration parameter, and then computes snow accumulation and

melt with a 10-parameter degree-day-based snow module developed by Vehviläinen (1992).

Rainfall is then added to the runoff generated by snowmelt to obtain total water production.

Potential evapotranspiration is then subtracted from the total water production to obtain the

final runoff depths. The water then infiltrates into one of three underground soil layers modelled

as reservoirs (the aquifer, the vadose zone and the delayed surface runoff zone), using six

calibrated parameters. Some of the water is also kept above the soil as the surface runoff
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reservoir. Water from these reservoirs is routed using two independent 2-parameter gamma

distribution unit hydrographs for the surface unit hydrograph and the delayed unit hydrograph,

respectively.

As will be detailed in the following section, the precipitation and temperature datasets were

combined in their all possible arrangements for analysis purposes. It follows that the sheer

number of calibrations to be performed in this study required implementation of automatic

model parameter calibration methods.

3.2.3 Hydrological model calibration

For this study, the automatic Covariance Matrix Adaptation Evolution Strategy (CMAES) opti-

mization algorithm was implemented because of its flexibility (Hansen et al., 2003). Indeed, it

performs well for small and large parameter spaces such as the 6-parameter and 21-parameter

spaces in this study. It was also shown to be robust and is considered to be one of the best

auto-calibration algorithms for hydrological modelling (Arsenault et al., 2014).

For the African catchments, streamflow records from the GRDC database were used to calibrate

the hydrological models and to evaluate the hydrological modeling performance. The GRDC

database contains streamflow data from 1150 African stations. Only 850 stations were chosen

based on two criteria. First, stations should have data during the 1983-2012 study period.

Second, stations with less than five consecutive years of data during this period were excluded.

For North American 3138 catchments, the streamflow records were extracted from the NAC2H

database and used in the hydrological model calibration.

The hydrological model parameters were calibrated on the entire available record of data for

each catchment, foregoing the usual model validation step. This method was chosen for two

reasons. First, calibrating on all years ensures that the maximum amount of information from

the climate data is present in the parameter set and thus that there is no added uncertainty from

choosing calibration and validation years. Second, Arsenault et al. (2018) have shown that the
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model performance is statistically better when more years are added to the dataset and that

validation and calibration skills are not necessarily correlated.

Both precipitation and temperature datasets were averaged at the catchment scale before being

fed to the hydrological model. Each catchment was calibrated by letting CMAES converge

over 15,000 model evaluations and repeating the process twice. The calibration was performed

on the entire length of the available data as recommended in (Arsenault et al., 2018). The best

calibration score from the two generated sets was used to reduce the chance of considering a

parameter set that had not properly converged to an acceptable minimum. This calibration pro-

cedure was repeated for each combination of precipitation and temperature datasets, including

the reference datasets, for each watershed, in order to allow their objective comparison (Essou

et al., 2016a).

The objective function used to calibrate the parameters was the Kling-Gupta Efficiency (KGE)

metric, which was introduced by Gupta et al. (2009) and modified by Kling et al. (2012), and

which is an equally-weighted bias, variance and correlation aggregate metrics. KGE corrects

the fact that the Nash-Sutcliffe Efficiency (Nash & Sutcliffe, 1970) metric (NSE) underesti-

mates variability in the goodness-of-fit function. It is defined as a combination of three ele-

ments:

KGE = 1−
√
(r−1)2 +(β −1)2 +(γ −1)2 (3.1)

Where r is the correlation component represented by Pearson’s correlation coefficient, β is the

bias component represented by the ratio of estimated and observed means, and γ is the variabil-

ity component represented by the ratio of the estimated and observed coefficients of variation.

The KGE values theoretically range from negative infinity, implying an extremely poor perfor-

mance of the model, all the way to one, suggesting a perfect performance. The performance

ratings used in this study are defined based on the work of Gutenson et al. (2019) and Pech-



54

livanidis & Arheimer (2015) who divided the KGE values into three modeling-performance

groups: Poor (KGE < 0.4), Acceptable (0.4 ≤ KGE < 0.7) and Good (KGE ≥ 0.7).

3.3 Regionalization

The 350 gauged catchments were used to predict the streamflow at the 795 ungauged sites. The

transfer of hydrological information (i.e., model parameters or streamflow) from one catchment

(gauged) to another (ungauged) is known as “regionalization” (Razavi & Coulibaly, 2013). Re-

gionalization can be conducted using two methods: 1) rainfall-runoff models/model-dependent

method, which typically transfers the model parameters from one or more gauged watersheds

to an ungauged watershed, and 2) hydrological model-independent methods, which transfer the

streamflow directly from gauged to ungauged watersheds. In this study, the model-dependent

method was applied as it has been used in several studies and has shown acceptable results

(Merz & Blöschl, 2004; McIntyre et al., 2005; Boughton & Chiew, 2007; Cutore et al., 2007;

Samaniego et al., 2010; Beck et al., 2016; Arsenault & Brissette, 2014b; Saadi et al., 2019).

The three most prominent approaches, namely, the spatial proximity (S.P), physical similarity

(P.S) and multi-linear regression (MLR) methods (Oudin et al., 2008), have been used with

varying degrees of success to estimate the hydrological model parameters in ungauged catch-

ments. The spatial proximity approach transfers the model parameters based on the spatial

distance (geographic location) between the gauged and the ungauged basins. The physical

similarity approach depends on the similarity of the physiographic attributes (e.g. area, eleva-

tion, slope, soil type, land cover, etc.) between the gauged and the ungauged basins. Finally,

the multi-linear regression approach estimates a linear relationship between model parameters

and catchment attributes on the gauged catchments, which can then be used to estimate via

regression each of the hydrological model parameters at the ungauged site.

First, the climatological data from 9 precipitation and 2 temperature datasets were extracted

for each of the 1145 catchments. Then, the three approaches were tested on the 350 gauged

catchments to find the best method to apply, using a leave-one-out cross-validation frame-
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work. Finally, the best-performing precipitation-temperature datasets combination based on

the streamflow simulations (e.g., MSWEP precipitation and ERA5 temperature datasets) were

used to feed the hydrological models and simulate the streamflow at the ungauged locations.

Based on the hydrological modeling performance on the 350 gauged catchments, the MSWEP

precipitation and ERA5 temperature datasets were found to be the best combination used in

computing the streamflow for the 795 ungauged catchments.

3.4 Bias correction

In this study, the N-dimensional multivariate bias correction algorithm (MBCn) was used (Can-

non, 2018). MBCn is an image processing technique extension that preserves the change be-

tween the historical and projected periods for all quantiles of the distribution. The algorithm

consists of three main steps: (1) application of an orthogonal rotation to both model and ob-

servational data; (2) correction of the marginal distributions of the rotated model data using

quantile mapping, and (3) application of an inverse rotation to the results. These three steps are

repeated until the model distribution matches the observational distribution. MBCn is arguably

the best-performing quantile-based method available (Adeyeri et al., 2020; Meyer et al., 2019).

3.5 Variance analysis

An n-dimensional analysis of variance theory (ANOVA) was used to quantify the contribution

of the different uncertainty sources to the overall uncertainty (Von Storch & Zwiers, 2001).

This method has been applied in many previous studies for this purpose (Addor et al., 2014;

Bosshard et al., 2013; Trudel et al., 2017). The ANOVA considers the interactions between

the different sources of uncertainty. Without considering these interactions, the uncertainty of

each individual source is overestimated. Therefore, testing all possible combinations/interac-

tions of the different uncertainty sources is crucial. However, one limitation of this method

is the difficulty to interpret how these interactions contribute to the overall uncertainty. An-

other disadvantage is that it requires a normal (Gaussian) distribution of the projected values

to provide good results. Consequently, the results are vulnerable to outliers (Kim et al., 2019).
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Analysis of variance was performed for the 51 streamflow metrics defined in Arsenault et al.

(2020) for each of the 1145 catchments (the article is presented in APPENDIX IV). These met-

rics cover a wide range of streamflow conditions: mean annual, seasonal and monthly values,

distribution quantiles, as well as low- and high-flow extreme metrics. A variance was attributed

to each of the four groups under study, namely, GCM, precipitation dataset, temperature dataset

and hydrological model. A total of 11 variance components were computed: 4 main effect

components, 6 first-order, 3 second-order, and 1 third-order interaction components.



CHAPTER 4

RESULTS

4.1 Evaluating the gridded datasets in North America

The first part of the study was to compare precipitation and temperature values over North

American catchments. Precipitation and temperature was first averaged at the catchment scale

in order to preserve the consistency between the climate data and the hydrological modelling

results presented later in this chapter.

4.1.1 Analysis of precipitation and temperature in North America

The results in Figure 4.1 shows the mean annual temperature of the reference dataset (up-

per left) and differences between each of the three chosen temperature datasets. The term

di f f erence is used below, instead of bias, since our reference dataset is not a true representa-

tion of the population, and is not inherently better than other datasets. On average, the three

datasets are warmer than the observations, with ERA-I being the warmest. The warm differ-

ence is particularly clear in the western United States. Overall, it can be seen that ERA5 is the

closest to observations, with small differences across central and eastern North America, and

reduced differences on the West Coast.

The differences between ERA-I and ERA5 temperature datasets were studied in more deep

details (see APPENDIX I). Figure 4.2 shows the mean annual temperatures for the observations

and the ERA5 and ERA-Interim reanalysis products for the catchments in this study (top row).

It also shows the mean absolute differences between the datasets for the winter (centre row)

and summer seasons (bottom row). It can be seen that ERA5 sees a strong reduction in biases

compared to those in the ERA-Interim dataset. The western coast of North America clearly

still shows some important biases of up to 3 ◦C in summer and -2 ◦C in winter, although for

most catchments the bias amplitude is smaller.
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Figure 4.1 Difference maps for the mean annual temperature

(dataset-OBS). The (top-left) plot shows the observed mean

annual temperature extracted from the NAC2H database

Figure 4.2 Mean annual temperature for the three datasets

(a, b, c), winter (d, e, f) and summer (g, h, i) differences.

All values are in degrees Celsius
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It should be noted that most of the large differences are observed in mountainous areas, where

observation networks are generally considered less robust. In the panels representing the dif-

ferences between ERA5 and ERA-Interim in Figure 4.2, it can be seen that the ERA5 product

corrects the biases in ERA-Interim; i.e. the areas that were too hot in ERA-Interim are colder in

ERA5 and vice versa. Based on these results, the ERA-I temperature dataset will be excluded

from any analysis over Africa.

Figure 4.3 presents a similar analysis for precipitation. It shows observed mean annual pre-

cipitation (upper left) and differences of the 9 studied precipitation datasets. It can be seen

that the precipitation products differ widely, depending on the source and type of processing

of data. Datasets that integrate observations (first row: CPC, GPCC, MSWEP and last row:

PERSIANN and CHIRPS) show much smaller differences in general, as compared to the four

reanalysis products (central row). ERA5 is the best-performing reanalysis, followed by its

predecessors, ERA-I, JRA55 and CFSR products, which are wetter over most of North Amer-

ica. Figure 4.3 also shows large differences in the western mountain ranges for all datasets,

outlining limitations for all gridded precipitation datasets under study.

To further investigate precipitation seasonality, Figures 4.4 and 4.5 present seasonal precipita-

tion differences for winter (DJF) and summer (JJA).

Results for winter (figure 4.4) are very similar to those obtained at the annual scale. It seems

that ERA-Interim and ERA5 are very similar, as the differences between those datasets are

small. One exception is the western coast, where a dry difference persists although it has

been reduced in ERA5 as compared to ERA-Interim. Summer differences (figure 4.5) do,

however, display important differences. These differences are smaller for the gauge-based and

satellite-based datasets, and larger for the reanalysis datasets in general. The CFSR reanalysis

is particularly dry in the central USA. The differences between ERA5 and ERA-I are also

larger, with ERA5 having smaller differences all across North America. Additionally, ERA5

has a strong reduction in differences for the eastern half of the United States, where ERA-

Interim was problematic.
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Figure 4.3 Difference maps of mean annual precipitation

(dataset-OBS). Note that CHIRPS does not provide data beyond

±50◦ Latitude

Figure 4.4 Mean winter (DJF) Precipitation difference maps

for the 1983-2012 period
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Figure 4.5 Mean summer (JJA) Precipitation difference maps

for the 1983-2012 period

To analyze the results at a more localized scale, mean annual precipitation statistics were com-

puted for each catchment and compared to the reference precipitation dataset. Figure 4.6

presents boxplots for annual precipitation Mean Error (ME), Mean Absolute Error (MAE),

RMSE and correlation coefficient. The spatial distribution of the last two metrics is also pre-

sented in Figures 4.7 and 4.8. The boxplots are built from 3138 values, one from each individ-

ual catchment. The central boxes show the 25th and 75th quantiles (bottom and top), with the

median in red. The whiskers display the smallest and largest values. Red crosses are consid-

ered statistical outliers. Overall, when compared to the reference dataset, we see that MSWEP

is consistently the closest across all metrics. The two gauge-based products (CPC and GPCC)

and CHIRPS follow. The median difference of ERA-I is close to zero, but otherwise displays

a large spread. Surprisingly, ERA5 shows a relatively large positive mean difference, as do

the other reanalyses (JRA55, CFSR). Correlation coefficients tell a similar story, with the main

differences being that ERA5 clearly outperforms the other reanalysis. RMSE distributions also

follow a similar pattern.

Figure 4.7 presents the spatial distribution of mean annual precipitation RMSE values between

each precipitation dataset and the reference dataset. JRA55 and CFSR are clearly the worst-
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Figure 4.6 Boxplots comparing ME, MAE, RMSE and r for 9

precipitation datasets at the annual scale

Figure 4.7 Root Mean Square Error (RMSE) of mean annual

precipitation for 9 precipitation datasets

performing datasets. MSWEP performs the best everywhere, with the exception of Western

Canada, where ERA-5 and GPCC perform best.

Figure 4.8 presents the spatial distribution of correlation coefficients calculated for daily pre-

cipitation. MSWEP, ERA5, GPCC and CHIRPS are clearly the best-performing datasets. CPC
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Figure 4.8 Spatial distribution of correlation coefficients

computed at the daily time step

performs well over the USA, but quite badly in Canada, where weather station density gets

lower.

4.1.2 Hydrological model simulations over North America

This section presents the results of the hydrological model simulations using all possible com-

binations of precipitation and temperature datasets. The results shown in this section are for

the HMETS model only. Both models display very similar spatial patterns and HMETS was

chosen as it generally outperforms the GR4J model. Figures 4.9 and 4.10 show the distribu-

tions of KGE scores for all catchments below (figure 4.9) and above 50◦N (Figure 4.10). The

separation at 50◦N was made for two reasons: the unavailability of data for CHIRPS, and to in-

vestigate the impact of the much lower resolution of observation networks in the North, which

should technically affect gauge-based datasets.
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Figure 4.9 KGE boxplots of simulated streamflows (below 50◦N

Latitude) from 10 precipitation datasets and 4 temperature

datasets (40 combinations) using the HMETS hydrological model

Figure 4.9 shows that all datasets can be used to generate good hydrological modelling, with

all combinations generating median KGE values larger than 0.7. There are, however, large per-

formance variations across datasets and some outliers are present for all combinations. These

outliers reflects the lower performance of these datasets in some watersheds, either due to re-

gional dataset issues, streamflow records deficiencies, or a combination thereof. It can be seen

that the main driver of the modelling skill is the precipitation dataset. All four temperature

datasets offer a nearly equal performance below 50◦N, although CPC is consistently the worst

of the four. The reference and MSWEP datasets clearly outperform all other precipitation

datasets. These are then followed by the GPCC and CPC gauge-interpolated datasets, and then

by CHIRPS and ERA5. The other satellite (PERSIANN) and reanalysis (ERA-I, JRA55 and

CFSR) products perform clearly worse than their best counterparts (CHIRPS and ERA5).

The results for catchments north of 50◦N (figure 4.10) are markedly different. The differences

between all datasets is much smaller, with the exception of CPC, which is the worst-performing

dataset. This is consistent with results presented in Figure 4.8 showing that CPC precipitation

behaves quite differently over Canada. The lower density of the station network is an equalizer,
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preventing gauge-based datasets from outperforming their counterparts. MSWEP and ERA5

are the best-performing datasets, and are slightly better than using the regional gridded dataset

used as a reference.

Figure 4.10 KGE boxplots of simulated streamflow for 9

precipitation datasets and 4 temperature datasets (36

combinations) using the HMETS hydrological model (above

50◦N). Note that CHIRPS V2.0 does not provide data beyond

±50◦ latitude, and is excluded from this comparison

Overall, ERA5 and the observations provide very similar results, whereas ERA-Interim and

CPC temperatures lag slightly behind. In this sense, the temperature data from ERA5 are

marginally more accurate for hydrological modelling at the catchment scale than the other two

temperature datasets and are similar to that of the observed temperature dataset. Hydrological

modelling performance is very good, and, for most datasets, better than below 50◦N. This is

very likely a combination of watersheds being larger, thus producing smoother, less reactive

and easier to model hydrographs, and because snow-dominated catchments typically have rel-

atively simple hydrographs, with a long winter recession curve and a strong spring snowmelt
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Figure 4.11 Spatial distribution maps for the KGE difference

between the observed precipitation dataset combined with the

observed temperature dataset (top left plot) and the 9 precipitation

datasets combined with the observed temperature dataset

signature. The gain in performance is notable for all reanalyses, which are less affected by a

deficient local observational network.

Figure 4.11 shows the spatial distribution of KGE scores for the different precipitation datasets

combined with the reference temperature dataset. The upper left graph shows the KGE values

for the reference dataset, whereas all the other graphs display the difference in KGE values for

each precipitation dataset. A red colour indicates a better performance, and blue, a worse one.

It can be seen that MSWEP, GPCC, and CHIRPS to some extent, compare favourably with the

reference dataset, and that CPC is affected by the lack of stations in the northern parts of North

America. Also of note is the strong negative score associated with some of the reanalysis and

satellite datasets in the eastern United States. Outside of this zone, ERA5 performs extremely

well, as noted by (Tarek et al., 2019).
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Finally, Figure 4.12 presents the aggregate mean KGE score over all catchments for all pre-

cipitation temperature pairs (first row), as well as for the catchments below (second row) and

above 50◦N (third row). The first two rows are nearly identical due to the much larger number

of stations located below 50◦N. The third row displays warmer colours related to the preva-

lence of snowmelt dominated watersheds, which are easier to model. Otherwise, these results

confirm those of Figure 4.11, and underline the relatively poor performance of CPC above

50◦N for precipitation, and to a lesser extent, for temperature. Reanalysis datasets perform

comparatively much better with both ECMWF reanalysis (ERA5 and ERA-I) among the best

products.

Figure 4.12 Mean KGE values for all catchments (top panel),

catchments below 50◦N Latitude (center panel) and catchments

above 50◦N Latitude (bottom panel) for 10 precipitation datasets

and 4 temperature datasets. CHIRPS does not provide data

beyond ±50◦ Latitude, and is left in white



68

4.2 Evaluating the gridded datasets in Africa

4.2.1 Analysis of precipitation and temperature in Africa

Figure 4.13 presents mean annual temperature over the 1983-2012 period for the two selected

temperature datasets. Both datasets display the same temporal patterns. ERA5 is however

significantly warmer than CPC with a typical warm difference of 5-6 degrees over most of

Africa. This difference is very large and can potentially affect evapotranspiration. However,

the specific calibration of the hydrological model to each dataset has the potential to take this

into account.

Figure 4.13 Mean annual temperature maps and the difference

between the two datasets for the period (1983-2012) over Africa

Regarding the precipitation datasets, to better present the differences between the products,

the difference in the mean annual precipitation was calculated between each individual dataset

and the average of all datasets as shown in Figure 4.14. The average here is considered as

the reference benchmark. Since all the gridded datasets have different spatial resolution, the

datasets were first interpolated to the finest grid scale. A red color indicates that the dataset

is wetter than the average, while the blue color indicates it is dryer. Results show important

differences between the different precipitation datasets. All the datasets are generally similar

in the desert and semi-desert regions but large differences are obvious in the tropical western

and central regions.
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Figure 4.14 Difference maps for mean annual precipitation

(dataset-Average) in Africa. The (top-left) plot is the average of

all the 9 precipitation datasets

Overall, the reanalysis (middle row) are wetter over the intertropical zone, with ERA5 being

much closer than the other three considered reanalysis. The CPC gauge-based dataset is much

drier than all other datasets, whereas at the opposite end, the ERA-I reanalysis dataset is much

wetter. The large differences between both gauge-based datasets (CPC and GPCC) outline the

complexity of interpolation in data-sparse regions. Differences between the other datasets are

comparatively smaller. In the absence of any reliable reference datasets, it is difficult to inter-

pret the differences observed here. While an outlier dataset (e.g., CPC) may lead to suspicion,

the limitations associated with each dataset do not allow for any firm conclusion to be drawn.

This is why hydrological modeling is used as an indirect validation method in this study. Even

though streamflow gauges records do contain errors (Di Baldassarre & Montanari, 2009), in

the context of this study, they are considered as the most reliable source for validation of the

precipitation and temperature datasets.
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Figures 4.15 and 4.16 present seasonal precipitation differences for summer (JJA) and winter

(DJF). It can be seen that the merged product (MSWEP), the two satellite products (PER-

SIANN and CHIRPS) and the reanalysis product (ERA5) generally provide the best represen-

tation, as the differences between these datasets and the average are much smaller compared

to the other products in both seasons. The reanalysis datasets have significant differences with

the exception of ERA5, which is therefore considered the best-performing reanalysis. The two

satellite datasets; CHIRPS and PERSIANN, perform similarly for both seasons. Both gauge-

based precipitation datasets display large differences for both seasons. The GPCC is dry over

the intertropical zone, while CPC is much wetter over the same region.

Figure 4.15 Mean summer (JJA) Precipitation difference maps

for the 1983-2012 period in Africa. The (top-left) plot is the mean

summer precipitation of all the 9 datasets
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Figure 4.16 Mean winter (DJF) Precipitation difference maps

for the 1983-2012 period in Africa. The (top-left) plot is the mean

winter precipitation of all the 9 datasets

4.2.2 Hydrological model simulations over Africa

This section presents the results obtained from the hydrological modelling simulations. Figure

4.17 shows the distribution of KGE scores for each of the 18 combinations of the 9 precipi-

tation and 2 temperature datasets. Results are only shown for the HMETS model since both

hydrological models display the same patterns. In addition, HMETS generally outperforms the

GR4J model in terms of KGE scores. Each boxplot in Figure 4.17 contains the KGE scores of

the 850 catchments provided from the GRDC database.

Many conclusions can be drawn from Figure 4.17. Both temperature datasets perform very

similarly across all precipitation datasets, although ERA5 (blue boxplots) gives very small

but consistently better results. Most of the differences observed therefore originate from the

precipitation datasets.
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Figure 4.17 KGE boxplots of simulated streamflows from 9

precipitation datasets and 2 temperature datasets (18

combinations) using the HMETS hydrological model

All precipitation datasets result in an acceptable KGE median value larger than 0.5, showing

they can all be used for hydrological modeling. There are however large differences with

some datasets clearly outperforming others. The CPC and GPCC gauge-based datasets are

outperformed by, respectively, five and four datasets. The MSWEP merged-product is quite

clearly the best-performing precipitation dataset, followed by the CHIRPS satellite and the

ERA-5 reanalysis datasets. The ERA-I, CFSR and JRA reanalysis are the least-performing

datasets in this study.

In order to study the impact of spatial variability, Figure 4.18 presents the spatial distribution

of KGE values for all nine precipitation datasets used in conjunction with ERA5 temperature.

The spatial patterns are consistent for all precipitation datasets. Hydrological modelling per-

formance is generally quite good everywhere with the exception of South Africa. This could

either be due to less reliable streamflow records in this region or more likely to the hydrological

model difficulties in dealing with the arid climate of south Africa. Rainfall-runoff models have

long been known to have difficulties in such climates (Wheater et al., 2007).
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Figure 4.18 Spatial distribution of Kling-Gupta efficiency

metrics for nine precipitation datasets and ERA5 temperature

dataset using the HMETS hydrological model

4.3 Contribution to uncertainty - Variance analysis in African catchments

Figure 4.19 presents the calibration results for both hydrological models using all possible

combinations of the 9 precipitation and 2 temperature datasets. Each boxplot consists of 350

KGE values corresponding to the calibration results for each of the 350 selected gauged African

catchments. Each box extends from the 25th quantile to the 75th quantile, with the median dis-

played as the red line within that range. The top and bottom whiskers (where shown) represent

highest and lowest values. Red crosses are considered statistical outliers.
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Figure 4.19 KGE calibration values using the 18 possible

combinations of precipitation and temperature datasets, for both

hydrological models (GR4J in blue and HMETS in green) for

each of the 350 selected gauged catchments

Results show that both hydrological models perform well, but that there are important dif-

ferences between datasets. HMETS performs better than GR4J, with respective overall mean

KGEs of 0.58 and 0.41. All the precipitation and temperature datasets result in acceptable

median KGE values (Pechlivanidis & Arheimer, 2015).

Both temperature datasets perform very similarly across all combinations, with ERA5 gener-

ally slightly outperforming CPC. Figure 4.19 clearly shows that most of the variability seen

originates from the precipitation datasets. Four precipitation datasets are ahead of the field.

They are in order of performance: the merged product MSWEP, followed by the two satel-

lite datasets; CHIRPS and PERSIANN, and the ERA5 reanalysis dataset. The gauge-based

precipitation datasets (e.g., GPCC and CPC), and the ERA-I reanalysis follow with a similar

performance. Finally, the CFSR and JRA55 reanalysis are the worst-performing products for

hydrological model calibration.
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Table 4.1 presents the main results of the analysis of variance for the 2071-2100 period for

the gauged catchments. It shows the relative variance for all main effect (precipitation datasets

(P), General Circulation Models (GCM), temperature datasets (T) and hydrological modeling

(HM)), first-order interactions of the four components of uncertainty under study, and for 6

streamflow metrics (shown in rows 5 to 10). The variance originating from second- and third-

order interactions are summed up and presented in the last row. QQ5 and QQ95 are respectively

the 5th and 95th quantiles of streamflow distribution. QX1 is the 30-year mean of the annual

daily maximum streamflow value. Results show that most of the variance consistently comes

from 5 sources, for all 6 streamflow metrics. They are: precipitation datasets (P), GCMs,

hydrological models (HM), interactions between precipitation datasets and GCMs (P-GCM)

as well as interactions between precipitation datasets and hydrological models (P-HM). The

colored-rows outline the main contributors to variance.

Table 4.1 Mean percentage of variance for 6 streamflow metrics

for 350 gauged catchments

Mean Q Winter Q Summer Q QQ5 QQ95 QX1 Average
P 21.62 24.12 28.54 34.38 23.17 22.36 25.70

GCM 39.71 24.93 27.29 4.39 39.56 25.82 26.95

T 0.17 0.12 0.09 0.02 0.15 0.04 0.09

HM 5.18 8.43 19.99 21.96 5.59 5.50 10.11

P-GCM 21.55 25.19 10.20 3.42 16.01 26.33 17.12

P-T 0.02 0.01 0.02 0.01 0.02 0.01 0.015

P-HM 7.38 9.72 14.69 31.12 8.17 8.78 12.31

GCM-T 0.01 0.01 0.006 0.0018 0.017 0.005 0.008

GCM-HM 1.30 2.13 1.44 1.36 2.49 3.49 2.04

T-HM 0.0087 0.0098 0.0069 0.0041 0.0189 0.0058 0.009

Others 2.78 5.20 3.46 2.99 4.60 7.58 4.43

Table 4.1 indicates that both the precipitation datasets and GCMs are the main contributors to

variance, including through interactions (P-GCM). The hydrology models also generate some

uncertainty, and in particular, through interaction with the precipitation datasets. All metrics

exhibit a similar pattern, with the exception of the low-flow metric (QQ5), where precipitation,

hydrological models and their interaction components (P-HM) are dominant, and for which
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GCM uncertainty is minimal. In almost all cases, the five highlighted components represent

approximately 92% of the total variance. The average amount of variance introduced by both

temperature datasets is less than 0.20% for all 6 different streamflow metrics.

To show cross-catchment variability, Figure 4.20 shows boxplots of the relative variance at-

tribution results for the 5 main contributors to variance, as identified in Table 4.1, and for the

same 6 streamflow metrics. The results are also decomposed into three parts: all 1145 catch-

ments (A), as well as the 350 gauged (G) and 795 ungauged (U) catchments, in order to ensure

that the regionalization process does not introduce undesirable effects on the results.

Figure 4.20 Boxplots of the relative variance attribution results.

For each component, variance is shown for all (1145), gauged

(350) and ungauged (795) catchments

Figure 4.20 shows that the response of the gauged and ungauged catchments is very similar

across all variance components and streamflow metrics, and that no major variance artifact is

introduced by the regionalization step. Consequently, all further results will only be shown for

all 1145 catchments, with no differentiation made between the gauged and ungauged ones.
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The results show that there is considerable across-catchment variability, as shown by the extent

of the boxplots, with GCM and P-GCM interaction being the most important, and most variable

contributors to variance. As was shown in Table 4.1, the low-flow metric displays a pattern that

is much different from the other five metrics, with HM being important and GCM, being the

lowest. There is a relatively large difference between the two metrics representing high flows

(Q95 and Q1X). While GCM dominates the former, a much larger part of the uncertainty is

transferred to the precipitation dataset (P and P-GCM) for the latter.

In order to study the impact of spatial variability, Figure 4.21 presents the spatial distribution

of the relative variance attribution for the five main contributors to variance of Table 4.1 and

all 6 streamflow metrics. Mean Q, Winter Q, QX1 and QQ95 display somewhat similar spatial

patterns. Summer Q and QQ5 metrics display somewhat similar spatial patterns. The largest

precipitation uncertainty (P and P-GCM interactions) is found in the northern parts of Sub-

Saharan Africa, between 0 and 30◦N. GCM uncertainty appears to be larger all around the

coastlines of Africa. Hydrological model uncertainty is strongest for QQ5, but spatial patterns

are fairly consistent across all 6 streamflow metrics. GCM uncertainty is strongly different

for both Summer Q and Winter Q, likely because of the monsoon pattern. Above 20◦N, there

is generally less than 100 mm of total annual precipitation, and some level of care should

therefore be taken when analyzing results in relative contribution to variance.

In other words, a variance analysis of a metric with very little absolute variance could be

misleading. Consequently, Figure 4.22 displays the standard deviation of the 360 streamflow

values computed for each streamflow metric and for each watershed. The streamflow value for

each metric is normalized per unit area to allow for a comparison of large and small water-

sheds in the same figure. Not surprisingly, the results demonstrate a larger variance along the

equatorial band, where precipitation is largest. This pattern is particularly clear for the QQ95

high-flow metric. The catchment database is, however, large enough to show some catchments

which exhibit a large variance, even in arid regions above 20◦N and below 20◦S.
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Figure 4.21 Spatial distribution of the five main contributors to

variance for each of the 6 streamflow metrics

Since some precipitation datasets are clearly better than others based on the hydrological model

calibration results, it may not be entirely fair to compare precipitation uncertainty to GCM

uncertainty. To investigate this further, the uncertainty contribution obtained when using all 9

precipitation datasets is compared to that of 3 sub-ensembles, as presented in Table 4.2. While



79

ensemble 4 is composed of the clearly best-performing datasets for model calibration, the main

goal here is to investigate the impact of dataset selection, not the definition of a credibility

ensemble, as will be further discussed later.

Figure 4.22 Standard deviation of discharge per unit area

(in m3/sec/km2), constructed from 360 values for each catchment

and streamflow metric

Figure 4.23 presents the boxplots of percentages of variance for each catchment, for the five

main contributors to variance for all 4 precipitation dataset ensembles of Table 4.2. Unsur-

prisingly, it shows that reducing the size of the precipitation ensemble results in a consistent

decrease in the variance attributed to precipitation. Most of this reduction in variance comes

from the P-GCM interaction term, although there is also a noticeable decrease in the main

effect P component. The lost precipitation variance is transferred mostly to GCMs, and to a

lesser extent, to hydrological modeling. The exception is the low-flow QQ5, where most of the

variance is transferred to HM. Most of the drop observed is obtained by dropping the five worst

precipitation datasets, as no significant difference is observed between precipitation ensembles
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Table 4.2 List of ensembles of precipitation datasets

Ensemble
Number of

precipitation
datasets

Rationale
for

selection

Datasets
included

Datasets
excluded

1 9 All 9 All None

2 7 Mean KGE≥0.65

MSWEP, CHIRPS,

PERSIANN, ERA5

GPCC, CPC,

and ERA-I

CFSR,

and JRA55

3 4

Best of each

category (merged,

satellite, gauge,

and reanalysis

MSWEP, CHIRPS,

GPCC, and ERA5

PERSIANN,

CPC, ERA-I,

CFSR,

and JRA55

4 4 Best 4
MSWEP, CHIRPS,

PERSIANN, and ERA5

GPCC,

CPC, ERA-I,

CFSR,

and JRA55

3 and 4. Even in a reduced ensemble, precipitation datasets still provide between 10 to 20% of

median variance, and more than 30% for the low-flow metric (QQ5) when taking into account

the main effect and first-order interaction term.

Figure 4.24 presents the spatial distribution of the relative variance attribution for each of the 6

streamflow metrics after including only the four best overall precipitation datasets (Ensemble

4 of Table 4.2). This is the same as Figure 4.21 but with a reduced precipitation ensemble.

Results outline that GCM uncertainty is the dominant source of uncertainty when using the

reduced precipitation ensemble, with the exception of the low-flow metric, for which precipita-

tion uncertainty remains dominant. There are, however, significant interactions between GCM

and precipitation for all metrics, especially in the Northern half of the continent. Otherwise,

the observed spatial patterns are similar to the ones presented in 4.21.
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Figure 4.23 Boxplots of the five main components of the

variance attribution: precipitation (P), GCMs (G), hydrological

models (H), interaction between precipitation datasets and GCMs

(PG) and interaction between precipitation datasets and

hydrological models (PH). Columns represent the four

precipitation ensembles of Table 4.2, while rows represent the 6

hydrological indices investigated in this study
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Figure 4.24 Spatial distribution of the five main contributors to

variance for each of the 6 streamflow metrics, using the 4 best

precipitation datasets (Ensemble 4 of Table 4.2)



CHAPTER 5

DISCUSSION

Impact models strongly rely on hydrometeorological information. The performance of such

models (stochastic and deterministic) is fundamentally dependent on the quality of input data.

Defining a reference climate dataset is an important but difficult task. A reference climate

dataset is used as a benchmark for monitoring environmental changes and correcting climate

model biases of future climate projections to assess future impacts of a changing climate.

Weather station observations are still considered as the most accurate representation of the

current climate, but are limited in both time and space. Time series of relevant hydrome-

teorological variables are plagued with problems such as short temporal horizons, missing

data, measurement errors, instrument biases and discontinuities introduced through equipment

change and modification of the environment of weather stations, including their displacement.

To allow for regular data coverage and remove missing data, it is now a common practice to in-

terpolate station data onto a regular grid. Such gridded datasets greatly simplify the processing

of meteorological data for environmental studies at the regional, continental and global scales.

In regions with a good weather station coverage, gridded datasets using the same underlying

data differ due to the different interpolation methods (Essou et al., 2016a), and typically see

an increase in the number of wet days and a decrease in the frequency of extreme events (En-

sor & Robeson, 2008). In regions with scarce weather stations coverage (such as Africa), in-

terpolation becomes extrapolation, and is therefore potentially highly unreliable. Additionally,

the slow but steady decreasing trend in the number of weather stations around the world (Law-

rimore et al., 2011) compounds the problem. Gridded datasets are created to try to overcome

many of the above problems. While it is likely that multi-source merged gridded products are

the way of the future, it is not clear how good and reliable the many currently available gridded

products are.

Several inter-comparison studies have been done (Beck et al., 2017b; Essou et al., 2017) in-

cluding over Africa (Satgé et al., 2020; Dembélé et al., 2020). These studies outline a complex
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picture in which performance depends on scale, climate and data source, and for which no

dataset consistently outperforms all of the others. Because of this, in data-sparse regions such

as Africa, there is not only no commonly agreed upon reference dataset, but even no agreement

on the optimal source of climate data (e.g., satellite vs. reanalysis), and different environmen-

tal studies have used completely different datasets. This work sheds some light on this issue

by comparing nine global or near-global precipitation datasets and three temperature datasets

first over North America, and then over Africa, therefore combining regions with high and low

densities of weather stations. For climate change impact studies, there is no knowledge on how

dataset uncertainty may propagate in the typical hydroclimatic modeling chain. The results

presented in this study attempt to answer this question by comparing dataset uncertainty to

other sources of uncertainty, such as that derived from GCMs.

5.1 Gridded datasets evaluation

The results show important differences between all the datasets, as well as within categories of

datasets (gauge-based, reanalysis and satellite-based). All the datasets were shown to be ade-

quate for driving a hydrological model. However, some datasets were clearly better than others

in various circumstances. This is in agreement with the results of Beck et al. (2017b) and Beck

et al. (2019). A first conclusion was that most of the dataset uncertainty originates from precip-

itation. Temperature displays much smaller spatial and temporal variability than precipitation,

and can therefore be a lot more reliably interpolated using the adiabatic lapse rate to account

for elevation and terrain orientation in mountain areas. There was little difference between

the four selected temperature datasets (NAC2H observations, CPC, ERA-I and ERA5), even

though CPC performed slightly worse than the selected reanalyses (ERA5 and ERA-I) and the

reference gridded dataset. The equal performance of both reanalyses, when compared to the

reference gridded datasets, could likely be explained by the fact that they assimilate the surface

temperature from weather stations (in addition to a plethora of other data sources) and by the

relatively small spatial and temporal variability of temperature, at least when compared to pre-

cipitation. Our evaluation of temperature is, however, based solely on hydrological modelling.
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Hydrological models have the ability to filter out some level of variability in driving inputs.

Many other levels of validation still need to be performed (e.g., extremes) to determine if these

alternative products are able to represent specific types of events in the hydrologic cycle. These

results are nonetheless very encouraging for reanalyses, which are now available in near real-

time and at spatial and temporal resolutions matching or exceeding those of most observational

networks.

Comparatively, precipitation datasets provided a much more challenging problem, which ex-

plains why most dataset intercomparison work has focused on this variable. The selection of

the best-performing precipitation dataset was evaluated over a reference period using the single

metric of the KGE criterion. The criterion is considered to be a good metric as it weights bias,

correlation and RMSE between simulation and observations, all rightfully considered to be im-

portant attributes of a good hydrological simulation. There are, however, many other metrics

that could have been chosen to perform this comparison, some of which might be even more

important for specific applications such as floods. Based on KGE performance over a common

reference period, all nine precipitation datasets performed adequately in terms of hydrological

modeling performance, but some clearly performed much better than others. One important

conclusion of this work is that the relative performance of precipitation datasets in North Amer-

ica below 50◦N, which includes the contiguous United States and southern Canada, and above

50◦N. Above 50◦N, the density of the Canadian observational network is much lower. Results

imply that a low-density station network narrows the gap between the reanalyses and gauge-

based products. Reanalyses do not assimilate surface precipitation in their analysis scheme,

and are therefore much less affected by a lack of ground precipitation measurements (either

sparse station network or precipitation undercatch in gauged locations). This suggests that

ERA5 precipitation is as robust as the best gauged products above 50◦N and reanalyses should

therefore be considered as good candidates in regions with deficient observational networks,

confirming the conclusions of Tarek et al. (2019).

The spatial and temporal resolution of the datasets reviewed in this work differ widely. The

temporal resolution itself (hourly to sub-daily) was not investigated. The spatial resolution
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of the above products, which varies from 0.05◦ to 1◦, was summarily evaluated by analyzing

hydrological modelling performance with respect to watershed size and by elevation, on the

basis that higher-resolution datasets would perform better on smaller watersheds, or for high

elevation watersheds, where the topography is more complex. No clear link was found between

dataset performance and either size or elevation (results not shown). The main notable result

was a clear improvement of ERA5 over ERA-I for high elevation catchments. This suggests

that the resolution difference between the highest and lowest resolution datasets is not large

enough to make a difference in this type of application, or that the use of a global hydrological

model (which requires the averaging of the contributing grid points irrespective of their reso-

lution) is not ideal to investigate the impact of resolution. Most of the selected watersheds are

relatively large and therefore have a response time larger than one day. On those watersheds,

the averaging of input data coupled with the smoothed hydrographs from the global hydrolog-

ical models result in differences that are very difficult to see when using a criterion such as

the KGE metric. Other metrics (e.g. peak flow reproduction, streamflow variance) may have

been better suited to study the impact of dataset resolution (Kokkonen & Jakeman, 2001). The

conceptualized nature of the hydrological models used in this study may also not be best suited

to outline such differences. For the smaller watersheds in our database, sub-daily modeling

would be better suited (Bevelhimer et al., 2015), but was not feasible since most datasets are

limited to the daily time step. The use of a distributed hydrological model may be preferable

to study the impacts of data resolution.

The results show that amongst all datasets tested in this study, MSWEP either is the best dataset,

or is tied for best. The performance of MSWEP demonstrates the potential of merged prod-

ucts in providing high quality outputs, by utilizing and integrating all available information.

In high network density regions, MSWEP weighs observations heavily, but also relies heavily

on reanalysis when weather station observation networks are less dense, such as in Northern

Canada and Africa. We can expect an increasing number of datasets to rely on multi-source in-

formation, at the regional and global scales. At the regional scale, for example, high-resolution

datasets can be obtained by combining ground-based radars and weather stations (Lespinas



87

et al., 2015; Shen et al., 2018). In addition, there are other potential reasons for the excellent

MSWEP results in North America. MSWEP is the closest relative (in terms of construction and

resolution) to the chosen reference dataset (NAC2H) and especially over the US. Over Africa

and Canada, MSWEP relies to a much larger extent on reanalysis as well as using streamflow

data in its merging scheme, which may give it an advantage over the other datasets in terms of

long-term biases.

CHIRPS performed very well for most of the comparison criteria and in both study regions;

North America and Africa. It performed better during the warm seasons, owing to its limitation

in terms of detecting snowfall in North America. CHIRPS, which integrates satellite and gauge

stations data on a high spatial resolution grid of 0.05◦, has been shown to be a viable choice

in climatological studies. Other studies have indeed mentioned its quality in this regard (Toté

et al., 2015; Duan et al., 2016; Poméon et al., 2017; Beck et al., 2017b; Duan et al., 2019).

For hydrological modelling in Africa, the MSWEP merged-product dataset was clearly the best

performing one, followed by CHIRPS and ERA5 products, respectively. The performance of

all other reanalysis datasets (ERA-I, CFSR and JRA55) was inferior. However, in other studies,

JRA55 was shown to provide the best reanalysis (Odon et al., 2019), while CFSR was success-

fully used for precipitation modeling (Khedhaouiria et al., 2018). Clearly, the results presented

in this study should only be used as intended (i.e., to study uncertainty related to the choice of

a reference climate dataset), and not as a judgment of the absolute performance of each dataset.

As mentioned earlier, it is important to keep in mind that all of the datasets used in this study

generate adequate streamflow simulations. In North America, the results have shown that, in

general, gauge-based datasets perform better than reanalyses, whereas the performance of the

two selected satellite products differ widely, with CHIRPS clearly outperforming PERSIANN.

CPC is the worst gauge-only product, especially so over Canada. A few relevant studies have

assessed the influence of gauge-density on climate data (Arsenault & Brissette, 2014a; Gubler

et al., 2017; Hofstra et al., 2010; Janis et al., 2004). In particular, Janis et al. (2002) evaluated

the required station-density to capture the regional climate variability in the United-States. The
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study reported that a station-density of 1 station per 180 km2 would be needed to adequately

monitor the climate variability.

ERA5 presents clear improvements over its predecessor (ERA-I), and is the best reanalysis

product for hydrological modelling amongst those used in this study. ERA5 shines brightly,

particularly in North America above 50◦N. The high spatial (0.25◦) and temporal (1 hour)

resolutions of ERA5 and the fact that it is available in near real-time lends it a significant

advantage over most of the other datasets. The ECMWF recently launched the ERA5-LAND

reanalysis at a 0.1◦ resolution. It uses the same assimilation process as ERA5, but is run at a

finer resolution over land. Reanalyses could be considered as extremely complex multi-source

merged products, and are likely to gain in importance in the near future. Their main limitation,

when compared to MSWEP, for example, is that they do not integrate precipitation gauge data

into the assimilation scheme. Reanalyses are very likely to be supported and improved in the

future, as compared to the other datasets used in this study, which do not rely on recurrent

national funding, and which often result from the efforts of small teams. Reanalysis performed

generally worse than gauge-based products, and particularly so in Africa and the eastern half of

the U.S. Essou et al. (2016a) showed that reanalysis had difficulties reproducing the seasonal

cycle of precipitation over this region in the U.S. Reanalysis precipitation could easily be post-

processed at the monthly scale using observations to palliate this problem, as was previously

done on older reanalysis products (Weedon et al., 2014).

Overall, results show that gauge-based datasets should be preferred in regions with good

weather network density, with MSWEP being clearly the best performing dataset as repre-

sented by its results. In regions where observational network density is much poorer, CHIRPS

and ERA5 datasets perform relatively well. This indicates that ERA5, and potentially CHIRPS

would be good choices as reference datasets for climate change impact studies in data sparse

regions.
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5.2 Uncertainty of gridded datasets

The uncertainty contribution of datasets to future streamflow uncertainty was first evaluated

using all 9 precipitation datasets, in conjunction with 2 temperature datasets, a sample of 10

GCMs and two hydrological models, for a total of 360 possible element combinations. While

this is a relatively large sample, not all sources of uncertainty were accounted for. In particular,

GHGESs, downscaling and bias correction were not included in the analysis. In comparison,

the North American Climate Change and Hydroclimatology Dataset (NAC2H) database (Ar-

senault et al., 2020) offers 16,000 combinations allowing examining future streamflow uncer-

tainty. In this regard, the relative variance contribution of the climate dataset is best examined

in comparison to that of GCMs, the most studied source of climate change impact uncertainty.

Results outline the important, and in some cases, dominant contribution of the precipitation

dataset to the overall uncertainty of future streamflows. For all 6 streamflow metrics presented

here, the precipitation dataset uncertainty was comparable and sometimes larger than that of

GCMs.

Uncertainty contribution was then studied by retaining subsets of precipitation datasets, elim-

inating the least performing ones with respect to the chosen KGE metric. This follows the

concept of a credibility ensemble based on carefully selecting the best/most robust compo-

nents of the hydroclimatic modeling chain, in order to obtain the most credible uncertainty

range (Brissette et al., 2020; Giuntoli et al., 2018; Maraun et al., 2017). Results demonstrate

a large decrease in contribution to uncertainty for 5 of 6 streamflow metrics. The precipita-

tion dataset remained the largest contributor to uncertainty for the low-flow metric, and still

accounted for 10 to 20% of the total variance for the other metrics. Most of the decrease in

uncertainty was obtained by dropping the worst-performing datasets, rather than keeping the

best-performing in each category.

The results presented here indicate that hydrological model uncertainty is relatively small,

with the exception of the low-flow metric. These results should be taken with caution because

only two hydrological models were used, and also because they both share the same potential
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evapotranspiration (PET) formula. For climate change impact studies, the climate sensitivity

of PET is now thought to be an important source of uncertainty for impact studies (Clark et al.,

2016; Brissette et al., 2020), and the importance of hydrological model uncertainty has been

outlined in many studies (Vetter et al., 2017; Krysanova et al., 2018; Giuntoli et al., 2018). It

is therefore likely that the contribution of hydrological models is underestimated here.

It is recommended that reference dataset uncertainty be included in climate change impact

studies, and especially so in regions with a sparse network of weather stations. We believe

that climate dataset uncertainty can be minimized for most streamflow metrics using a careful

validation and selection of the best-performing ones. A dataset ensemble should nonetheless

be retained to assess the sensitivity of the impact study to the choice of a reference dataset.

As is the case for most other elements of the hydroclimatic modeling chain of future climate

change impacts, there is ‘no free lunch’ in the sense that there is no single recipe, which will be

applicable in all cases. Climate dataset performance is spatially-dependent, as shown here and

in other studies, and will depend on the criteria used to assess said performance. In addition, the

relative uncertainty contribution also depends on the catchment location and streamflow metric

under study. The importance of first-order interactions in variance analysis, and especially of

interactions between precipitation datasets with GCMs and with the hydrology models testify

to the complex nature of the propagation of uncertainties in the hydroclimatic modeling chain.

The use of an appropriate credibility climate dataset ensemble is therefore more than likely to

be catchment-related and metric-dependent, and some minimum level of upstream validation

would be needed to select the best components.



CONCLUSIONS AND RECOMMENDATIONS

Conclusion

The main objective of this study was to assess the uncertainty related to the choice of a refer-

ence dataset against that of other sources of uncertainty in climate change impact studies. This

was achieved in a three-step process. First, the performance of precipitation and temperature

global gridded dataset products was assessed over 3138 North American catchments, where the

underlying network of weather stations is dense and of good quality. The same datasets were

then re-evaluated over Africa, where the station-network is sparse and of lower quality. Fi-

nally, a large-sample hydrological climate change impact uncertainty study over 1145 African

catchments was performed.

In North America, the datasets were compared against high-resolution regional gridded dataset

(NAC2H). Performance was evaluated using annual and seasonal biases, mean error (ME),

mean absolute error (MAE), root mean square error (RMSE) and coefficient of correlation (r).

Streamflows were simulated using all 40 possible combinations of precipitation and temper-

ature datasets, and compared against data from gauging stations. In comparison, there is no

equivalent high-quality reference dataset available in Africa as a base for comparison. There-

fore, the comparison was done against the average of all datasets. The performance was evalu-

ated statistically using the annual and seasonal differences. Hydrological models were used to

simulate the streamflows and to compare the datasets performance against streamflow records

from the Global Runoff Data Centre (GRDC).

Results showed that precipitation datasets are the main driver of uncertainty due to the rela-

tively large differences between the datasets. Comparatively, differences between temperature

datasets played a much smaller role as all four products behave very similarly. Temperature

derived from the ERA-5 reanalysis provided consistently better results than the other tested
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temperature datasets. For precipitation, overall, the merged-product MSWEP consistently per-

formed best over both Africa and North America. Both gauge-based global products performed

well over the U.S., but their performance decreased over Canada (and particularly in the case of

CPC Unified), where observations are based on a less dense observational network. The ERA5

reanalysis performed really well over Africa, Canada and Western U.S., but its overall perfor-

mance was affected by a relatively poorer performance over the Eastern U.S. It clearly outper-

formed the other three tested reanalyses. CHIRPS was found to be easily the best-performing

satellite precipitation dataset over Africa and North America, outperforming PERSIANN and

all reanalysis.

For the uncertainty contribution of datasets to future streamflow, the study used 9 precipitation

and 2 temperature datasets, along with 10 GCMs and 2 hydrological models, for a total of

360 possible combinations. Results showed that temperature dataset-related uncertainty was

minimal, with a median relative contribution to uncertainty less than 0.20% for all 6 presented

streamflow metrics. On the other hand, the nine precipitation dataset ensembles generated a

future uncertainty equal to or larger than that related to GCMs. Using a reduced ensemble

of the best-performing precipitation datasets systematically reduced the precipitation dataset

uncertainty, but still accounted for 10 to 20% of the total variance for 5 of the 6 streamflow

metrics, and still remained the main source of uncertainty for the low-flow metric. The main

conclusion of this study is that the choice of a climate reference dataset can induce significant

uncertainty in climate change impact studies, at least in regions with a sparse weather station

coverage.

Limitations and recommendations for future work

As is the case with any large-scale comparison studies, some methodological limitations may

potentially impact conclusions drawn from the presented results. This subsection outlines the

limitations of this research and the recommendations for further work.
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1- This study does not calculate the relative future changes for either the climate variables or

the expected streamflows. Therefore, the obvious next step is to generate a climate change

impact study over Africa.

2- In terms of hydrological modeling, this study uses only two lumped conceptual models shar-

ing the same potential evapotranspiration (PET) formula. It is therefore very likely that hydro-

logical modeling uncertainty is underestimated in this study. Therefore, using more complex

hydrological models (including more physically-based distributed models) would be important

to figure out the impact of physically based processes and distributed inputs on the uncertainty.

Using additional PET formulas would also be useful for a better understanding of the tem-

perature sensitivity of such formulas, and particularly in the case of commonly used formulas

which are mostly empirical and temperature-based only.

3- A single objective function (e.g., KGE) is used in this study. It is likely that other objective

functions would return different results, and should be tested in further work.

4- There are several other streamflow criteria that could shed light on differences between

datasets, such as extremes. In particular, high-flow extremes have the potential to outline other

improvements that we have not analyzed here. In this sense, sub-daily components should

be investigated, since most of the datasets studied here have data at the sub-daily time scale.

Access to climate models at the sub-daily time scale would however be required and the issue

of sub-daily bias correction would have to be considered.

5- Regarding the reference dataset uncertainty, this work evaluates the uncertainty of datasets

in regions with low-density station networks. It is suggested to assess the dataset uncertainty

in high station network regions as well, such as in North America or Europe. It would also be

interesting to consider the uncertainty generated by the datasets over the reference period, and

how it propagates in the future.
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6- While there is a large range of uncertainty sources that were considered in the study, others

were not accounted for in the variance analysis and should be studied. In particular, greenhouse

gas emission scenarios and bias correction methods should be explored in more detail in future

work, to complete the hydroclimatic modeling chain.

Main scientific contributions of this Thesis

The work presented in this Thesis offers several contributions to scientists concerned with the

impact of climate change on water resources. In particular:

1- This Thesis has shown that the choice of a reference dataset is a very important issue and

that precipitation dataset uncertainty, in some cases, can be the main source of uncertainty for

future streamflows.

2- This Thesis offers a valuable contribution to the study of ‘alternative’ datasets for hydrolog-

ical studies. For example,in regions where the weather station network is deficient or sparse,

like Africa, MSWEP, CHIRPS and ERA5 were shown to be very valuable sources of data, typ-

ically outperforming gauge-based interpolated gridded datasets. While gauge-based gridded

dataset remains the best source of data when station network density is good, there are many

other products which perform very well and will only get better in the future due to improving

computation power and technological advances.

3- The ERA5 temperature dataset provides very similar results compared to those obtained with

gauge-based temperature datasets. It also provides much improved precipitation compared to

its older version ERA-I. When replacing observed temperatures with ERA5 temperatures, the

hydrological modelling performance marginally improves. While it is not a significant differ-

ence, this attests to the quality of the ERA5 temperatures in general for hydrological modeling.

The results from our work indicate that reanalysis, which will only improve in the future, with
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even better temporal and spatial resolutions, could become an important contributor of data for

environmental studies.
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1. Introduction

Hydrological science knowledge has long been anchored in the need for observations (Wood

(1998)). Observations and measurements of all components of the hydrological cycle have

been used to gain a better understanding of the physics and thermodynamics of water and en-

ergy exchange between the land and the atmosphere (e.g. Luo et al. (2018); McCabe et al.

(2017); Siegert et al. (2016); Zhang et al. (2016); Stearns & Wendler (1988)). In particular,

measurement of precipitation and temperature at the earth’s surface has been a critical part of

the development of various models describing the vertical and horizontal movements of water.

Hydrological models, for example, are routinely used to transform liquid and solid precip-

itation into streamflows, using other variables such as temperature, wind speed and relative

humidity to increase their predictive skill (Singh & Woolhiser (2002)). Throughout the last

several decades, such data has essentially been provided by surface weather stations (Citterio

et al. (2015)). However, and despite the utmost importance of observed data for hydrolog-

ical sciences, a net decline in the number of stations in the historical climatology network

of monthly temperature datasets has been observed since the beginning of the 21st century

(Menne et al. (2018); Lins (2008)). Perhaps more importantly, data from the NASA-GISS

surface temperature analysis shows a particularly large decrease in the number of stations with

a long record, a decline starting in 1980. Stations with long records are critical for monitoring
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trends in hydroclimatic variables (Whitfield et al. (2012); Burn et al. (2012)). In addition, the

GISS data documents a slow but consistent decrease in the percent of hemispheric area located

within 1200km of a reporting station since the middle of the 20th century.

On the upside, other sources of data have steadily appeared to compensate for this worrisome

diminishing trend in surface weather stations (e.g. Beck et al. (2019); Sun et al. (2018); Beck

et al. (2017a);Beck et al. (2017b); Lespinas et al. (2015)). Interpolated gridded datasets of pre-

cipitation and temperature are now common. They allow some information from regions with

good network coverage to be extended, to some extent, towards areas with less information.

Interpolated datasets, however, do not create new information, no matter how complex and

how much additional information is used in the interpolation schemes (Essou et al. (2016a);

Newman et al. (2015)). Remotely sensed datasets have long carried the hope of bringing rel-

evant hydrometeorological information over large swaths of land, up to the global scale, and

over regions with absent or low-density observational networks (Lettenmaier et al. (2015)).

There are now several global or near global precipitation datasets derived from various satel-

lites with spatial resolutions varying between 0.05◦ to 1◦ (Sun et al. (2018)). Ground radar

based products are also becoming more common and are available at an even higher resolution

(Beck et al. (2019)). All remotely sensed precipitation datasets do however only provide indi-

rect measurements of the target variable. They typically provide biased estimates, and ground

stations are often needed to correct the remotely sensed estimates (Fortin et al. (2015)).

Atmospheric reanalysis is another product that has generated interest increasingly in the recent

decade. Reanalysis combine a wide array of measured and remotely sensed information within

a dynamical-physical coupled numerical model. They use the analysis part of a weather fore-

casting model, in which data assimilation forces the model toward the closest possible current

state of the atmosphere. A reanalysis is a retrospective analysis of past historical data mak-

ing use of the ever-increasing computational resources and more recent versions of numerical

models and assimilation schemes. Reanalysis have the advantage of generating a large number

of variables not only at the land surface, but also at various vertical atmospheric levels. Data

assimilated in a reanalysis consist mostly of atmospheric and ocean data and do not typically
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rely on surface data, such as measured by weather stations. Reanalysis outputs are therefore

not directly dependent on the density of surface observational networks and have the poten-

tial to provide surface variables in areas with little to no surface coverage. Several modelling

centres now provide reanalysis with varying spatial and temporal scales (Lindsay et al. (2014);

Chaudhuri et al. (2013)). Reanalysis and observations share similarities and differ in other

aspects (Parker (2016)). Reanalysis have increasingly been used in various environmental and

hydrological applications (e.g. Chen et al. (2018); Ruffault et al. (2017); Emerton et al. (2017);

Di Giuseppe et al. (2016)). They are commonly used in regional climate modeling, weather

forecasting and, more recently, as substitutes for surface precipitation and temperature in vari-

ous hydrological modeling studies (Chen et al. (2018); Essou et al. (2017); Beck et al. (2017b);

Essou et al. (2016a)). They have been shown to provide good proxies to observations and even

to be superior to interpolated (from surface stations) datasets in regions with sparse network

surface coverage (Essou et al. (2017)). Precipitation and temperature outputs from reanalysis

have, however, been shown to be inferior to observations in regions with good weather station

spatial coverage (Essou et al. (2017)). The relatively coarse spatial resolution of reanalysis is

thought to be partly responsible for this. Amongst all available reanalysis, many studies have

shown ERA-Interim (European Centre for Medium-Range Weather Forecasts (ECMWF) in-

terim reanalysis) to be the best or amongst the best performing reanalysis products (e.g. Sun

et al. (2018); Beck et al. (2017b); Essou et al. (2017); Essou et al. (2016a)), arguably the result

of its sophisticated assimilation scheme, and despite a spatial resolution inferior to that of most

other modern reanalysis. In March 2019, ECMWF released the fifth generation of its reanaly-

sis (ERA5) over the 1979-2018 period (Hersbach & Dee (2016)). ERA5 incorporates several

improvements over ERA-I (see section 3 of this paper).

Of particular interest to the hydrological community are the largely improved spatial (30-km)

and temporal (1-hour) resolutions. The spatial resolution is now similar or better than that

of most observational networks in the world, with the exception of some parts of Europe and

the United-States. The hourly temporal resolution matches that of the best observational net-

works. In the United-States and Canada, for example, there are currently no readily avail-
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able observation-derived precipitation and temperature datasets at the sub-daily time scale, and

sub-daily records are not consistently available for weather stations. In particular, the hourly

temporal resolution, if proven accurate, could open the door to many applications, and notably

for modeling small watersheds for which a daily resolution is not adequate. Such watersheds

are expected to be especially impacted by projected increases in extreme convective events

resulting from a warmer troposphere in a changing climate. Some early results from ERA5

have shown that it outperforms other reanalysis sets and its predecessor ERA-I (Balsamo et al.

(2018); Olauson (2018); Urraca et al. (2018)).

2. Study objectives

This work aims at providing a first evaluation of the ERA5 reanalysis over the 1979-2018

period with an emphasis on hydrological modeling at the daily scale. Even though the hourly

temporal scale brings a lot of many potential applications for hydrological studies, a first step

in the evaluation of ERA5 precipitation and temperature datasets is performed at the daily

scale. The daily scale allows for a comparison against other North-American datasets available

at the same temporal resolution, as well as against results from previous studies. In addition,

validation at the hourly scale over North-America presents additional difficulties, as discussed

above, due to the absence of US or Canadian datasets at this resolution, and to the absence

of recorded hourly precipitation for many weather stations. In Canada, for example, fewer

than 15% of weather stations have archived hourly variables, and hourly precipitation records

contain particularly large ratios of missing data, thus complicating the validation at the regional

scale. Consequently, the objectives of this study are to:

1- Provide a first assessment of the potential of ERA5 at providing an accurate representation

of precipitation and temperature fields at the daily temporal scale;

2- Evaluate the hydrological modeling potential of ERA5 precipitation and temperature datasets

over a large set of hydrologically heterogeneous watersheds using two lumped hydrological

models;
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3- Based on the above results, document any spatial variability in dataset performance and

quantify improvements compared to ERA-I.

3. Methods and data

3.1 Data and study area

The goal of this study is to evaluate the ERA5 reanalysis product as a substitute for observed

data and to compare its properties to those of the older ERA-Interim reanalysis for hydro-

logical modelling uses. Therefore, the ERA5, ERA-Interim and observed (weather station)

meteorological datasets were used and basin-averaged over 3138 catchments over Canada and

the United-States, whose locations and average elevations are shown in Figure I-1. It can be

seen that there is a good coverage of the entire domain, although some sparsely populated ar-

eas in Northern Canada and in the United-States Midwest have a lower density of hydrometric

gauges.

Figure-A I-1 Watershed locations and their mean elevations in

North America (each dot represents the watershed centroid)

The hydrological models used in this study required minimum and maximum daily temperature

as well as daily precipitation amounts. ERA-Interim and the observed datasets were already
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on a daily time step, however ERA5 is an hourly product and as such, it was necessary to

derive daily values from the hourly data by summing precipitations and taking the maximum

and minimum one-hour temperatures of the day.

3.1.1 ERA-Interim

ERA-Interim (ERA-I) is a global atmospheric reanalysis which was released by the ECMWF

in 2006 (Dee et al. (2011)) in replacement of ERA40. ERA-I introduced an advanced 4-

dimensional variational (4D-var) analysis assimilation scheme with a 12-hour time step. It

computes 60 vertical levels from the surface up to 0.1 hPa. Its horizontal resolution is approx-

imately 80km. Precipitation and temperature are available at a 12-hour time step and were

aggregated to the daily scale in this work. The production of ERA-I will cease in August 2019,

thus providing temporal coverage from January 1999 until August 2019.

3.1.2 ERA5

ERA5 is the fifth generation reanalysis from ECMWF. It provides several improvements com-

pared to ERA-I, as detailed by Hersbach & Dee (2016). The analysis is produced at a 1-hourly

time step using a significantly more advanced 4D-var assimilation scheme. Its horizontal res-

olution is approximately 30km and it computes atmospheric variables at 139 pressure levels.

Data for the 1979-2018 period was released in March 2019. The 1950-1978 period is expected

to be released in the summer of 2019. This paper only looks at the 1979-2018 because outputs

of reanalysis prior to 1979 have been put into question due to the more limited availability

of data to be assimilated, and notably from earth-observing satellites (e.g. Bengtsson et al.

(2004)). While ERA5 may solve some of these problems, it is believed that a careful eval-

uation of inhomogeneity in ERA5 time series would be needed before using pre-1979 data.

ERA5 precipitation and temperature was downloaded and aggregated to the daily time step for

this work.
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3.1.3 Observed weather data

The observed weather data come from multiple sources due to the transboundary component

in this study. Climate data for catchments in Canada were taken from the CANOPEX database

(Arsenault et al. (2016)), which includes weather stations from Environment Canada that were

post-processed and basin-averaged using Thiessen Polygon weighting. The data cover the

period 1950-2010. Any missing values were replaced by the NRCan interpolated climate data

product (Hutchinson et al. (2009)).

For the United-States, historical weather data was taken from the Santa-Clara gridded data

product (Maurer et al. (2002)) as it was shown to be as good as observations for hydrological

modelling in a previous study (Essou et al. (2016a)) and covers a long time period (1949-

2010). The data is interpolated along a regular 0.125◦x0.125◦ grid, and is then averaged at the

catchment scale.

3.1.4 Observed streamflow data

Streamflow records from the United States Geological Survey (USGS) and Environment Canada

were used to calibrate the hydrological models at each of the 3138 catchments and evaluate the

hydrological modelling performance. The availability of streamflow data was the limiting fac-

tor for the simulation length of many catchments, as it varied from 20 years (minimum amount

used in these databases) to over 60 years of streamflow records. Missing data were left as-is

and were simply not included in the computation of the evaluation metrics.

3.2 Hydrological models

In the course of this study, two lumped hydrological models were implemented and calibrated

over each of the available catchments because the large-scale aspect of this study precluded the

widespread implementation of distributed models. Although ERA5’s spatial resolution is more

refined than ERA-Interim (31km vs. 79km), it is still coarse enough that a distributed model

would not have changed the results dramatically in this regard. The two hydrological models
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selected to evaluate the performance of the various climate datasets, GR4J and HMETS, are

flexible, adaptable and have shown to perform well in a wide range of climates and hydrological

regimes (Arsenault et al. (2018); Arsenault et al. (2015); Martel et al. (2017); Valéry et al.

(2014); Perrin et al. (2003)). It was decided to perform the study using two hydrological

models in order to assess the impacts of the climate data selection on the overall uncertainty of

the hydrological modelling simulations.

3.2.1 The GR4J hydrological model

The GR4J hydrological model (Perrin et al. (2003)) is a lumped and conceptual model that

is based on a cascading-reservoir production and routing scheme. Water is routed from these

reservoirs to the outlet in parameterized unit hydrographs. While the original GR4J model

includes 4 calibration parameters, the version used in this study had 6 calibration parame-

ters in order to include a snow-accounting and melt routine, namely CEMANEIGE (Valéry

et al. (2014)). This GR4J-CEMANEIGE (GR4JCN) combination has shown excellent results

in studies across the globe (Raimonet et al. (2017); Raimonet et al. (2018); Youssef et al.

(2018); Riboust et al. (2019); Wang et al. (2019)), including in Canada and the United-States.

It requires daily precipitation, temperature and potential evapotranspiration (PET) as inputs.

The PET was computed using the Oudin et al. (2005) as it was shown to be simple yet effi-

cient when used in GR4JCN. Furthermore, the choice of PET is more sensitive than in other

simple hydrological models because GR4J does not scale the input PET to adjust its overall

mass-balance. Instead, a parameter is included that allows exchanges between underground

reservoirs of neighboring catchments.

3.2.2 The HMETS hydrological model

The HMETS hydrological model (Martel et al. (2017)) is more complex than GR4JCN, and as

such has more calibration parameters (21). While it is similar conceptually to GR4JCN, it has

four reservoirs instead of two (surface runoff, hypodermic flow from the vadose zone reser-

voir, delayed runoff from infiltration and groundwater flow from the phreatic zone reservoir)
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allowing for finer adjustments to the runoff and routing schemes. Its snowmelt module requires

10 of the 21 parameters and was selected specifically to be more robust in Nordic catchments

with specific routines for snow accounting, melt, snowpack refreezing, ice formation and soil

freezing and thawing. As for PET, it uses the same Oudin formulation as GR4JCN but HMETS

includes a scaling parameter on PET to control mass-balance. It has also been used in large-

scale hydrological studies and has shown overall good performance and robustness in a myriad

of climates and hydrological conditions.

3.3 Hydrological model calibration

As will be detailed in the following section, the three precipitation and three temperature

datasets were combined in their 9 possible arrangements for analysis purposes. It follows

that the sheer number of calibrations to be performed (3 precipitation datasets x 3 tempera-

ture datasets x 2 hydrological models x 3138 catchments) in this study required implementing

automatic model parameter calibration methods. For this study, the CMAES algorithm was im-

plemented because of its flexibility (Hansen et al. (2003)). Indeed, it performs well for small

and large parameter spaces such as the 6-parameter and 21-parameter spaces in this study. It

was also shown to be robust and is considered as one of the best auto-calibration algorithms

for hydrological modelling (Arsenault et al. (2014)).

The hydrological model parameters were calibrated on the entire available record of data for

each catchment, foregoing the usual model validation step. This method was chosen for two

reasons. First, calibrating on all years ensures that the maximum amount of information from

the climate data is present in the parameter set, and thus that there is no added uncertainty from

choosing calibration and validation years. Second, Arsenault et al. (2018) have shown that the

model performance is statistically better when more years are added to the dataset, and that

validation and calibration skills are not necessarily correlated.

Finally, the calibration objective function was the Kling-Gupta Efficiency (KGE) metric, which

is a modified version of the Nash-Sutcliffe Efficiency metric that was introduced by Gupta et al.
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(2009) and Kling et al. (2012). KGE corrects the fact that NSE underestimates variability in

the goodness of fit function. It is defined as a combination of three elements:

KGE = 1−
√

(r−1)2 +(β −1)2 +(γ −1)2 (A I-1)

Where r is the correlation component represented by Pearson’s correlation coefficient, β is

the bias component represented by the ratio of estimated and observed means, and γ is the

variability component represented by the ratio of the estimated and observed coefficients of

variation:

A perfect fit between observed and simulated flows will return a KGE of 1. Using the mean

hydrograph as a predictor returns a KGE of 0, and a KGE inferior to 0 implies that the simulated

streamflow is a worse predictor of the observed flows than taking the mean of the observed

values. KGE values above 0.6 are generally considered good, however this is a subjective

quantification of the quality of the goodness of fit.

3.4 Evaluation of the ERA5, ERA-I and observed datasets

The next steps following the calibration of the hydrological models on the 3138 catchments

were to analyze the raw climate data (precipitation and temperature) at the catchment scale.

This analysis was performed by generating the 9 possible arrangements of 3 precipitation and

3 temperature datasets and comparing their relative differences. Then, after performing the

model calibration and hydrological simulation steps, the same type of comparison was per-

formed using the calibration KGE metric as a proxy to the quality of the climate dataset. For

example, if a certain combination of precipitation and temperature datasets generates higher

KGE calibration scores, it is assumed that the climate data are more likely to be accurate than

another dataset that returns lower KGE scores.

The various analyses were conducted on the yearly scale as well as for winter (December,

January and February, or DJF) and summer (June, July and August, or JJA) seasons. The
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results were then analyzed according to their respective catchment locations, climates and sizes

in an effort to explain any relationships or differences between the dataset characteristics (i.e.

resolution, physics) and their performance (i.e. KGE scores).

4. Results

4.1 Analysis of precipitation and temperature

The first part of the study was to compare precipitation and temperature values averaged at

the catchment scale. Figure I-2 shows the mean annual temperatures for the observations, the

ERA5 and the ERA-Interim reanalysis products for the catchments in this study (top row). It

also shows the mean absolute differences between the datasets for the winter (center row) and

summer seasons (bottom row).

Figure-A I-2 Mean annual temperature for the three datasets

(a, b, c), winter (d, e, f) and summer (g, h, i) differences.

All values are in degrees Celsius
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The results in Figure I-2 are averaged at the catchment scale in order to preserve the consis-

tency between the climate data and the hydrological modelling results presented further in this

paper. It can be seen that the ERA-Interim and ERA5 temperatures are generally similar to the

observations, although ERA-Interim displays a warm bias almost everywhere except for the

southeastern United-States and a few catchments in Canada, where it has a cold bias.

On the other hand, ERA5 sees a strong reduction in biases compared to those in the ERA-

Interim dataset. The west coast of North America clearly still shows some important biases of

up to 3 ◦C in summer and -2 ◦C in winter, although for most catchments the bias amplitude

is smaller. It should be noted that most of the large biases are observed in mountainous areas,

where observation networks are generally considered less robust. In the panels representing

the differences between ERA5 and ERA-Interim in Figure I-2, it can be seen that the ERA5

product corrects the biases in ERA-Interim, i.e. the areas that were too hot in ERA-Interim

are colder in ERA5 and vice-versa. The southeast USA was particularly problematic for ERA-

Interim in the context of hydrological modelling (Essou et al. (2016a)), and it will therefore be

explored further with ERA5 in the rest of this study.

The precipitation time series from the three datasets in this study were compared in a similar

manner to the temperature data, with Figure I-3 showing the mean annual precipitation for the

observations, the ERA5 and the ERA-Interim reanalysis products for the catchments in this

study (top row). Figure I-3 also shows the mean absolute differences between the datasets for

the winter (center row) and summer seasons (bottom row).

From Figure I-3, it is clear that there is a good representation of mean seasonal and annual

precipitation values across the study domain. For winter, it seems that ERA-Interim and ERA5

are very similar as the differences between those datasets are small. One exception is the west

coast, where a dry bias persists although it has been reduced in ERA5 as compared to ERA-

Interim. For the summer period, there is a strong reduction in biases for the eastern half of the

United-States where ERA-Interim was problematic. The dry/wet bias pattern of ERA-Interim

is strongly reduced in ERA5. However, both reanalysis products are wet in the North, although
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Figure-A I-3 Mean annual precipitation for the three datasets

(a, b, c), winter (d, e, f) and summer (g, h, i) differences.

All values are in mm.yr−1

as will be discussed in section 5.1, this might be related to the quality of the observation datasets

in the remote Northern catchments.

4.2 Hydrological model simulations

The first results obtained in the hydrological modelling portion of this study was the perfor-

mance of the hydrological models in calibration when driven by the various combinations

of precipitation and temperature data. Figure I-4 shows the calibration KGE scores for the

HMETS (left panel) and GR4JCN (right panel) for the 9 combinations of precipitation (3 sets)

and temperature (3 sets). Each boxplot in Figure I-4 contains the KGE scores of all of the

catchments in this study.
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Figure-A I-4 Distribution of calibration KGE scores for all

watersheds as a function of meteorological inputs for (a) HMETS

and (b) GR4JCN

From Figure I-4, it seems clear that the observations remain the best source of precipitation

data for hydrological modelling. It is clear that for hydrological modelling, the ERA5 dataset

is a net improvement over the ERA-Interim reanalysis ranking second after the observations.

For the catchments in this study, using ERA5 precipitation allows reducing the median gap

between the older ERA-Interim reanalysis and the observations by approximately 40%. The

precipitation data is the main driver behind the differences observed between the datasets as it

can also be seen that the variability linked to the temperature dataset is minimal.

Regarding temperature, ERA5 and the observations provide very similar results, whereas ERA-

Interim temperature lags slightly behind. In this sense, the temperature data from ERA5 is

marginally more accurate for hydrological modelling at the catchment scale than ERA-Interim,

and is similar to that of the observed temperature dataset.

From Figure I-4, it is also interesting to note that the hydrological models respond similarly

to the various inputs, indicating that the improvements seen with ERA5 are due to the dataset

rather than the choice of hydrological model. In general, it can also be seen that HMETS
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performs better than GR4JCN when using the reanalysis datasets (with a median 0.04 KGE

improvement) that is modest but statistically significant using a Kruskal-Wallis nonparametric

test (McKight & Najab (2010)). HMETS and GR4JCN are statistically equivalent in terms of

KGE when using the observed meteorological data.

The hydrological modelling KGE metrics were next analyzed with respect to the catchment

locations, as seen in figures I-5 and I-6. Figure I-5 presents absolute values of KGE efficiency

metrics for all three datasets and both hydrological models. The differences between hydro-

logical models (first vs second row) are generally small, although the better performance of

HMETS is particularly clear over the Rocky Mountains, and especially in the case of both

reanalyses. Both hydrological models perform similarly when using observations as inputs

compared to reanalysis.

Figure-A I-5 Spatial distribution of Kling–Gupta efficiency

metrics for all 3138 watersheds for the HMETS model (a, b, c)

and GR4J model (d, e, f), and for ERA5 (a, d), ERA-I (b, e) and

observations (c, f)

Focusing on the best performing hydrological model results (first row), two major observations

can be made. First, hydrological modeling with observations is clearly superior to using both

reanalysis datasets for the eastern part of the US but not so much for Western US and Canada.

Second, hydrological modelling performance using ERA5 appears to be consistently superior
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Figure-A I-6 Spatial distribution of the difference of

Kling–Gupta efficiency metrics between the three datasets for all

3138 watersheds, for the HMETS model (a, b, c) and the GR4J

model (d, e, f)

to ERA-I. To better emphasize these conclusions, Figure I-6 presents differences in KGE ef-

ficiency metrics between all three datasets. The maps in Figure I-6 are therefore obtained by

subtracting the maps from Figure I-5, two at a time. The middle (ERA5) and right (ERA-

I) columns present differences in hydrological modeling performance when using reanalyses

compared to observations. A blue colour indicates that observations are superior for hydro-

logical modeling, the reverse being true for red colours. This figure provides a clear view of

the spatial patterns of hydrological modeling performance. Observations are clearly superior

to reanalyses for the eastern half of the US. This corresponds to the zone with relatively large

summer precipitation biases presented earlier in Figure I-3. Outside of this zone, both reanal-

yses perform similarly to observations, and especially so for ERA5. The left side of Figure

I-6 testifies to the uniform and significant improvement in hydrological modeling performance

when using ERA5 compared to its predecessor ERA-I.

To gain a better understanding of the reasons behind these observations, hydrological modeling

performance was analyzed by looking at watershed size (Figure I-7), elevation (Figure I-8)

and climate zone (figures I-9 and I-10). In those three cases, the results are only shown for
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the HMETS hydrological model, since the results for GR4J are similar, albeit with a small

degradation in modeling performance, as shown in the preceding figures.

Figure-A I-7 Distribution of the Kling–Gupta efficiency metrics

for various watershed surface areas, for HMETS model

Figure-A I-8 Distribution of the Kling–Gupta efficiency metrics

for various elevation bands, for HMETS model

Since all three gridded datasets have different spatial resolutions, Figure I-7 looks at modeling

performance for watersheds grouped under 4 different size classes. The patterns are consistent

across all four size classes, and similar to those of Figure I-4, with observations being best

for all classes, followed by ERA5 and then ERA-I. However, it can be seen that hydrological
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modelling performance gets progressively better for larger watersheds for all three datasets.

This is particularly clear for both reanalysis. While observations perform better at all scales, the

gap with reanalysis gets smaller as catchment size increases. The interquartile range (defined

by the solid rectangle of the boxplot) is roughly constant for observations but consistently

decreases for both reanalysis. Therefore, a larger proportion of smaller size watersheds are

challenging for hydrological modeling than for larger size watersheds. Differences between

ERA5 and ERA-I stay constant across all size classes.

Figure I-8 presents the same data but as a function of watershed elevation, separated once

again in four classes. Mean watershed elevation is mapped in Figure I-1. Figure I-8 shows

a strong dependence of hydrological modeling results on watershed elevation. Observations

clearly perform better for the low elevation (< 500 m) watersheds, but differences rapidly shrink

with ERA5 actually performing as strongly and even better than observations for the last two

elevation classes. It is relevant to stress that over 60% of all watersheds are included in the first

elevation class, and that most of the Eastern US watersheds are within the first two elevation

classes. Results from Figure I-7 could therefore be influenced by watershed location in addition

to elevation. It is also clear that ERA-Interim temperature gets progressively less competitive

as the elevation rises, being significantly less efficient than ERA5 and the observations in the

high-elevation groups.

The data was finally analyzed by climate zone groupings. Figure I-9 presents North-America’s

climate classes from the Koppen-Geiger classification (Peel et al., 2007). It can be seen that

North-America displays 4 of the 5 main climate zones, with the exception of the Equatorial

climate. In total, 13 classes were kept for this analysis. Figure I-10 presents hydrological

modeling results for each of those 13 zones.

Results indicate that dataset performance and relative performance strongly depends on the

climate zone. This is not surprising since performance was already shown to display spatial

patterns. From figures I-9 and I-10, it is apparent that the ERA5 dataset is systematically

better than ERA-Interim for all climate zones and that the observations are clearly superior
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Figure-A I-9 Köppen–Geiger climate classification of the North

American watersheds presented in this study

to ERA5 for the Cfa and Dfa climate zones. Elsewhere, the differences are less pronounced.

The Cfa and Dfa climate zones are the two main climate zones in the eastern US, which were

shown to be problematic for the reanalysis datasets. Furthermore, ERA5 fares better than the

observations in the Northern parts of Canada and in the mountainous regions with climate zones

Dfc and BSh, respectively. This observation will be discussed further, in section 5.2. Figure

I-11 summarizes these results with the use of the Kruskal-Wallis statistical significance test to

determine the best dataset for each climate zone. The Kruskal-Wallis hypothesis test is a non-

parametric test to evaluate if two samples originate from the same distribution. In Figure I-11,

the green, yellow and red colors respectively indicate the best, second best and worst datasets

for each climate zone. If two datasets share a color for the same climate zone, the distribution

of KGE values is considered to not be statistically different. Results indicate that there are no

differences in hydrological modelling performance between ERA5 and observations over 9 of

the 13 climate zones. For the other 4 regions (all in the easternUnited States - Bsk, Cfa, Dfa,

Dfb), using observations will result in a statistically significant better hydrological modelling

performance. ERA-I is the worst performing dataset over 8 climate zones. In the remaining 5

zones: Bsh (3), Csa (53), Dsc (33), EF (3) and ET (15), all three datasets perform identically
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Figure-A I-10 Distribution of the Kling–Gupta efficiency

metrics for the 13 climate zones of Fig. 9, for the hydrological

model HMETS

from a statistical viewpoint. These zones share in common having the fewest watersheds and

most extreme climates (arid and polar).

In order to better explore the differences related to the watershed locations and properties, three

catchments of different hydrological regimes were analyzed in depth. Figure I-12 presents

the hydrological modelling KGE difference for HMETS between ERA5 and the observa-

tion dataset (first column) along with the mean monthly precipitation (second column), mean

monthly temperature (third column) and mean annual hydrograph (fourth column). Results are

presented for the Ouiska Chitto Creek Near Oberlin, Louisiana USA (First row), the Grande

Rivière à la Baleine in Quebec, Canada (center row) and the Cosumnes River at Michigan Bar,

California, USA (bottom row). Table I-1 shows summarized statistics for the three catchments.
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Figure-A I-11 Results of the Kruskal–Wallis statistical

significance test to determine the best dataset for hydrological

modelling as observed through the KGE metric, for each climate

zone. The green, yellow and red colours, respectively, indicate the

best, second best and worst datasets for each climate zone

Table-A I-1 Main properties of the study basins

Catchment Outlet
Lat.

Outlet
Long.

Elevation
(m)

Area
(km2)

KGE in calibration
ERA5
dataset

ERA-I
dataset

OBS
dataset

Ouiska Chitto

(Southeast USA)
30.93◦ -92.98◦ 53 1320 0.65 0.49 0.87

Grande Baleine

(Northern Canada)
55.08◦ -73.10◦ 389 36300 0.94 0.94 0.92

Cosumnes River

(Western USA)
38.60◦ -120.68◦ 696 1388 0.87 0.83 0.90

The first row in Figure I-12 presents a catchment in the southeastern United-States, which is a

region in which the reanalysis-driven hydrological models are unable to perform as well as the

observation-driven models. ERA-Interim has a clear precipitation seasonality problem, being

too dry except for the summer months where there is a large overestimation of precipitation

compared to the observations. This seasonality problem is mostly solved by ERA5, but a dry

bias persists all year, as shown in Figure I-3. The temperatures between the three datasets

are practically identical, which means that evapotranspiration should be relatively constant
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Figure-A I-12 Difference in hydrological modelling

performance, mean monthly precipitation and temperature and

mean annual hydrograph using ERA-I and ERA5 observations

(OBS) and streamflow observations (G-OBS) on three dissimilar

catchments: Ouiska Chitto Creek (top row), Grande Rivière à la

Baleine (centre row) and Cosumnes River (bottom row)

between the products. The lack of precipitation should therefore become apparent in the sim-

ulated hydrograph, however the streamflow is higher for ERA5 than for the observations when

the opposite would normally be expected. It is important to note that the hydrological model

can adapt its mass balance by adjusting the potential evapotranspiration scaling, which it has

clearly done in this case. The difference in hydrological modelling then comes from the tem-

poral distribution of precipitation, and it can be seen that the ERA5 winter precipitations are

relatively lower in winter than for the rest of the year. The PET scaling therefore attempts

to reduce evaporation for the entire year but does not compensate enough to account for this

difference in winter. Indeed, it can be seen that the observed hydrograph is underestimated by

ERA5 and ERA-Interim for that period in the southeastern United-States.

The second catchment is located in Northern Quebec, Canada, and as such is in a remote

and sparsely gauged region. In this case, it can be seen that the ERA5-driven KGE metric is
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superior to that obtained using the observations. One key difference between the reanalysis

and observed datasets is the precipitation, where ERA5 and ERA-Interim both show more

precipitation than the observations. Again, the temperatures are practically identical, meaning

that the potential evapotranspiration, although weak in that region, are very similar. The mean

annual hydrograph is also very similar between ERA-Interim and the observations, but it can

be seen that the ERA5 model overestimates streamflow in winter while matching the snowmelt

peak flows more closely than the other datasets. The difference in KGE in this case comes

from a better matching of peak flows, which counts more heavily towards the KGE than the

low-flows.

The third catchment, located in the west, is characterized by large precipitation systems in fall

and winter, with a months-long dry spell in summer. ERA5 mostly corrected ERA-Interims’

strong underestimation of precipitation for that catchment, as is the case for most West-coast

catchments as seen in Figure I-3. ERA5 temperatures are slightly cooler and are more in-line

with the observations. In terms of hydrological modelling, ERA-Interim underestimates the

average streamflows year-round while ERA5 slightly overestimates them in winter. As seen in

Table I-1, the ERA5 dataset managed to improve the KGE from 0.83 (ERA-Interim) to 0.87,

as compared to the reference of 0.90 obtained with the observed data. The improvements in

precipitation in ERA5 for this region thus seem to translate to improved hydrological modelling

compared to using ERA-Interim, which confirms the findings of Figure I-6.

5. Discussion

This study aims to evaluate the ERA5 reanalysis product as a potential reference dataset for

hydrological modelling. The ERA5 reanalysis was compared to the ERA-Interim and obser-

vation datasets when used in two hydrological models covering 3138 catchments in North

America. This section aims to analyze and explain the results obtained in light of the literature

and properties of the ERA5 reanalysis. First, differences in climate and hydrological data will

be investigated, followed by an analysis based on climate classifications and catchment size.

Finally, limitations of the study and recommendations for future work will be provided.
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5.1 Differences in temperature and precipitation between the ERA5, ERA-I
and observation datasets

In this study, the observations are taken as the reference dataset and ERA5 is compared to both

the observations and ERA-Interim. This allows validating both the improvement in ERA5 with

respect to ERA-Interim, as well as evaluating the possibility of using ERA5 reanalysis data

as inputs to hydrological models to overcome potential deficiencies of observation networks,

related to either quality and/or availability.

The evaluation of ERA5 temperature and precipitation variables compared to ERA-Interim

and the observation datasets showed that ERA5 systematically reduced biases present in ERA-

Interim for the temperature variables, whereas precipitation was generally also less biased,

although to a lesser degree. There are remaining precipitation biases on the West coast of

North-America with ERA5, but from Figure I-2 it can bee seen that the scale of these biases

is dependent on the season. In the Southeast United-States, ERA5 largely corrects biases that

were present in ERA-Interim dataset and led to relatively poor hydrological modelling in a

few studies (e.g. Essou et al. (2016a)). As for temperature, Figure I-2 shows that summer

temperatures in ERA5 are mostly too high for the catchments west of the Rocky Mountains

but are improved over the ERA-Interim data. There is also an interesting pattern of biases

between the East and West coasts (figures I-2 and I-3), which could be partly explained by

some processes not being accounted for in ERA5, notably the high-amplitude ridge trough

wave patterns which have seen a recent increase allowing severe weather in both the East and

West simultaneously (Singh et al. (2016); Raymond et al. (2017)), although ERA5 did improve

the representation of many processes since ERA-I (Hoffmann et al. (2019)).

It is important to note that these perceived biases suppose that the observation data is per-

fect. In reality, at the catchment scale, one would expect that the observations would be far

from perfect and contain errors due to location representativeness, precipitation undercatch,

and missing data due to station malfunction or instrument replacement, for example. However,

the observation data are the best estimates available which makes them the de facto reference

dataset. This means that although figures I-2 and I-3 show ERA5 and ERA-Interim as con-
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taining some important biases on western North America, it is possible that these biases are

caused by biases in the station data relative to the catchment size. The reanalysis products also

have the advantage of being driven by spatialized sources such as satellites, which can help in

estimating precipitation and temperature data in regions where the weather station network is

deficient or sparse.

5.2 Differences in hydrological simulations using ERA5, ERA-I and observation data
as inputs to hydrological models

One way to evaluate the quality of the observation and reanalysis data is to use hydrologi-

cal models as integrators to compare simulated and observed streamflow, which can act as an

independent validation variable. In an attempt to independently assess precipitation and tem-

perature data for each dataset, all possible combinations of precipitation and temperature were

fed to two hydrological models, which were then calibrated for each combination. This was

to remove any bias caused by parameter sets calibrated on one single dataset, which would

obviously be favored in the resulting analysis. As was the case for the climatological vari-

ables, the observed streamflows act as the reference hydrometric data and are considered as

unbiased. Of course, in reality streamflow gauges contain various sources of errors (Di Bal-

dassarre & Montanari (2009)), but for this study they are the best available estimates. This

hypothesis could have a small effect on the conclusions of this study. For example, if a certain

combination of precipitation and temperature datasets generate higher KGE calibration scores,

it is assumed that the climate data are more likely to be correct than another dataset that returns

lower KGE scores. This could be incorrect in some instances, where the error actually comes

from the streamflow data; however, on average over the 3138 catchments this effect should not

influence the results.

The results in Figure I-4 showed that the hydrological models driven with the observed precip-

itation generally provide the most representative simulated hydrographs, with KGE values ex-

ceeding those of the ERA5-precipitation driven hydrological models by 0.1 on average, which

is a significant difference. ERA5 precipitation is also shown to be clearly better than ERA-
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Interim precipitation on average for the catchments in this study. Another interesting aspect

is that in Figure I-4, replacing observed temperatures with ERA5 temperatures marginally im-

proves the hydrological modelling skill. While not a significant difference, this attests to the

quality of the ERA5 temperatures in general for hydrological modelling. Therefore, the dif-

ferences observed in the hydrological modelling performance are almost entirely due to the

precipitation data quality. The rest of this study will thus focus on the precipitation and hydro-

logical modelling and forego further analysis on temperature data.

Also of note is that in general, ERA5-driven hydrological simulations are less skillful than

those driven by observations. However, there are some catchments - mostly in the mountain-

ous regions of western United-States and in Northern Canada - where use of ERA5 leads to

improved hydrological simulations. This is probably due to the difficulty in installing weather

stations and obtaining representative observation data in those regions, but it shows that re-

analysis data can be used as a replacement to observations for hydrological modelling in these

regions, as previously reported by Essou et al. (2016a)).

The more detailed spatial (Figure I-6) and climate zone (figures I-10 and I-11) analysis out-

lined the strong spatial dependence on dataset performance. Observations clearly outperformed

ERA5 over the Eastern half of the US, where a larger portion of the watersheds used in this

study are located. To illustrate this point, Figure I-13 presents modelling performance over the

Eastern US (grouping climate zones Cfa, Dfa, and Dfb) against that of the other 10 climate

zones.

Figure I-13 paints a much different picture than Figure I-6 since it shows that hydrological

modeling with ERA-5 precipitation and temperature is as good as observations everywhere in

North-America, with the exception of the Eastern US. The disproportionate number of wa-

tersheds in this region may overemphasize the performance differential between ERA5 and

observations as seen in Figure I-6. An interesting fact is that the Eastern US is the North-

American region having by far the highest density of weather stations, as reported by Janis

et al. (2002). Theoretically, this could explain why observation-based modeling performs bet-
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Figure-A I-13 Distribution of the Kling–Gupta efficiency

metrics for the 3 north-eastern US climate zones (Cfa, Dfa, Dfb)

and for all the other 10 climate zones grouped together, for

hydrological model HMETS

ter in this region. However, Figure I-13 shows that observation-based modelling performance

is not different in the other regions, whereas reanalysis-based modeling clearly suffer over the

Eastern US. This was also noted in Essou et al. (2016a). It could mean that reanalysis face

a harder challenge in the Eastern US, further away from the Pacific Ocean control on atmo-

spheric circulation. A large proportion of summer and fall precipitation in these zones come

from convective storms. Eastern Canadian watersheds are well modelled using reanalysis, but

the hydrological behaviour of most of those watersheds is dominated by the spring flood which

is largely controlled by temperature, which is very well reproduced by both reanalysis.

Alternatively, this could also mean that Eastern US watersheds are in fact more difficult to hy-

drologically model and that differences are therefore directly linked to network density. Equal

performance of ERA5 and observations elsewhere would therefore be the result of the im-

proved process representation of ERA5 coupled with some degradation of observations due to

the gridded interpolation process between more distant stations. As discussed below, a more

precise investigation of modeling performance as a function of station density could shed light

on this issue.
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5.3 Differences between the HMETS and GR4J hydrological models

In this study, two hydrological models were selected to perform the hydrological evaluation of

the reanalysis and observation datasets. While both models are conceptually similar, GR4J is

simpler than HMETS (two routing processes instead of four, non-scalable PET, much simpler

snow model, less than half the number of parameters, etc.). They were shown to perform

generally well over all climate zones represented by the catchments used in this study, as can

be seen in Figure I-4. Interestingly, both GR4J and HMETS return similar results for any

given driving climate dataset. HMETS performs slightly better than GR4J almost everywhere,

although that can be attributed to its more flexible model structure and parameterizations that

can better adapt to various hydrological conditions.

Since the main objective of this study was to evaluate the ERA5 dataset for hydrological mod-

elling, the interest is not to compare the hydrological model performances, but to compare the

ERA5-driven simulations to the others for each model. In both cases, as can be seen in figures

I-4, I-6 and I-8, ERA5-driven hydrological models clearly outperforms the ERA-Interim-driven

models, which shows that the precipitation scheme in ERA5 is superior to that in ERA-Interim

for hydrological modelling purposes. As stated in section 5.2, temperature seems to play only

a minor role in the differences in hydrological modelling.

Furthermore, the observation-driven hydrological models generally perform better than the

ERA5-driven models, which confirms that station data should be prioritized when possible.

The main caveat to this point is that when the observation station network is of poor quality or

too sparse, then ERA5 can be used to fill the voids and get an acceptable hydrological response,

as discussed in section 5.2.
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5.4 Analysis of the impacts of catchment size and elevation on the hydrological
simulation performance using the ERA-I and ERA5 reanalyses

One of the major differences between ERA-Interim and ERA5 is the horizontal resolution, im-

proving from 79km to 31km. This finer resolution should allow for more precise estimations of

precipitations and temperatures over smaller catchments that were not adequately represented

by ERA-Interim. This logic should apply even though the hydrological models are lumped

models. Larger catchments could also see some improvements, namely in a better estimation

of the terrain elevation, but it is expected that the gain would not be as large as for smaller

catchments.

In order to test this hypothesis, the improvements between ERA5 and ERA-Interim in hy-

drological modelling were sorted according to catchment size, as shown in Figure I-7. It is

clear from Figure I-7 that the catchment size is not a good predictor of hydrological simulation

improvement. While most catchments see improvements with ERA5 over ERA-Interim, the

catchment size does not seem to affect the rate of improvement. This suggests that the im-

provements do not come from the higher spatial resolution, lending credence to the hypothesis

that the enhancements are due to ERA5’s improved physics and process representations.

A similar analysis was performed to evaluate the impact of catchment elevation on hydrological

modelling skill. It can be seen from Figure I-8 that the elevation plays a significant role in the

hydrological model’s ability to estimate streamflow. For example, the median and interquartile

ranges increase for all datasets as elevation increases. This could be caused by a more rapid

hydrological response in higher-elevation and steeper catchments, compared to the slow runoff

schemes often found in flat lowlands. The hydrological models being lumped models could

contribute to this as large and flat catchments would be more affected by the location of rainfall

events compared to steeper ones, especially in the timing of the hydrograph peaks. For the

Northern catchments, the peaks are caused by snowmelt which is much more uniform than

rainfall events, which would minimize this effect.
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Another, a more probable reason for the reanalysis datasets being stronger in mountainous re-

gions is simply because there are fewer weather stations set up in those areas due to difficulties

in accessing and maintaining them. The density of weather stations in the eastern part of the

US is typically at least twice as large than for the western part (Janis et al. (2002)). In such

cases, a reanalysis would provide information that is not conveyed by station data, making it a

de-facto best estimation of precipitation. In essence, the ERA5 data are not yet as accurate as

observations, however they are able to perform very well in their absence.

Finally, in all the analyzed scenarios in this study, ERA5 has always been either at least as good

as ERA-Interim in terms of hydrological performance. The same is true for the precipitations

and temperatures at the catchment scale. From all the results in this study, there does not seem

to be any reason or indication that ERA-Interim should continue to be used for hydrological

modelling applications, at least in North America. This is not to say that ERA5 is perfect, but

it should become the reference for the time being.

5.5 Limitations

As is the case with any large-scale comparison studies, some methodological limitations may

potentially impact conclusions drawn from the presented results. In terms of hydrological

modeling, this study only uses two lumped conceptual models and one flow criteria (KGE).

Both models are lumped, which limits the assessment of the horizontal resolution component

of the three datasets. This aspect was however indirectly assessed by looking at the impact

of watershed size. Both hydrological models are conceptually similar but HMETS is more

flexible and has more hydrological processes (and parameters). Accordingly, this study was

able to look at the impact of parametric space flexibility in dealing with various datasets biases,

but not at other issues such as the impact of physically-based processes and distributed inputs.

A study looking at the latter points would require more complex hydrological models, but at

the expense of having to look at much fewer watersheds.
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The single streamflow criteria and objective function (KGE), like its Nash-Sutcliffe relative,

is weighted towards higher flow events. Other objective functions would return different re-

sults, however the fact that ERA5 climate data is generally improved in all areas is an indicator

that other metrics could potentially see improved results as well, although no test has been

performed to that effect in this study. There are several other streamflow criteria which could

shed light on differences between datasets, such as extremes. In particular, high flow extremes

have the potential to outline improvements in ERA5 compared to its predecessor ERA-I be-

cause of improved resolution and processes. Low flows may also be of interest, although the

are typically less well-modelled by conceptual hydrological models, and more strongly depen-

dent on temperature, which is very comparable across all three datasets. Finally, there are now

several potential other precipitation datasets that could have been included in the comparison

(see for example Beck et al. (2017b)). However, the goal of this work was a first evaluation

of the 1979-2019 ERA5 dataset, because of the potential linked to its spatial and temporal

resolutions.

5.6 Recommendations

One of the main reasons for the interest in the ERA5 reanalysis resides with its hourly tem-

poral resolution. Therefore, the obvious next step is to investigate sub-daily components, and

particularly for precipitation. Sub-daily precipitation is key to investigating the hydrological

response of smaller watersheds. However, sub-daily studies raise another set of challenges,

notably the absence of a robust baseline hourly meteorological dataset. MSWEP (Beck et al.

(2017a)) is the best potential candidate at the sub-daily time scale (3-hourly), but the reliability

of its sub-daily component is largely unknown. Reliance on hourly weather station data will

therefore be required, meaning additional problems including having to deal with missing data.

The differences noted in Eastern USA raised the question of the potential impact of the density

of the station network on the absolute and relative performance of the various datasets. This

could be better studied by assigning a network density index to each watershed. This could

ultimately lead to a better understanding of the role of station density, and provide guidance
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on network improvements or rationalization. It could also be envisioned to extend this work to

underdeveloped countries where there is a fewer number of observational gauges, where a good

quality reanalysis might allow for improved hydrological simulations and better understanding

of the regional weather characteristics.

The hydrological performance of ERA5 opens specific avenues of research for streamflow

forecasting using ECMWF forecasts. Calibrating hydrological models with ERA5 data could

potentially reduce streamflow forecasts biases since the reanalysis and forecasts essentially

originate from the same model.

6. Conclusion

The main objective of this study was to evaluate the ERA5 reanalysis as a potential reference

dataset for hydrological modeling over North-America, by performing a large-scale hydrolog-

ical modelling study using ERA5, ERA-Interim and observations as forcing data to two hy-

drological models. The first assessment showed that ERA5 precipitation and temperature data

were greatly improved compared to its predecessor ERA-Interim, although some significant

biases remain in the southeast United-States and North-American West coast. These improve-

ments were then shown to translate well to the hydrological modelling results, where both hy-

drological models showed significant increases in skill with ERA5 as opposed to ERA-Interim.

In all cases, ERA5 was consistently better than ERA-Interim for hydrological modelling, and

as good as observations over most of North-America, with the exception of the Eastern half the

US. The lesser performance of reanalyses in this region may reflect some deficiencies at rep-

resenting precipitation seasonality accurately, and may also result from the higher-density net-

work over Eastern USA, thus favoring observations, or a combination thereof. We also showed

that the catchment size did not impact the hydrological modelling performance, thus the im-

provements are not linked to ERA5’s model resolution but to its improved internal physics

and assimilation. While some limitations apply to ERA5, it seems that this reanalysis is sig-

nificantly improved compared to ERA-I and that is should definitely be considered as a high-
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potential dataset for hydrological modelling in regions where observations are lacking either in

number or in quality.

Future work should focus on evaluating the sub-daily performance of hydrological modelling

with ERA5, testing its quality on other continents, integrating ERA5-based model calibration

for hydrological forecasting applications and evaluating its potential for weather network aug-

mentation and rationalization.

Finally, it is important to state that this paper does not advocate for the replacement of ob-

served data from weather stations by products such as reanalysis, nor should it be interpreted

as providing justification to pursue the current trend of decommissioning additional stations.

Weather stations will continue to provide the best estimate of surface weather data at the local

and regional scales and there are many fundamental reasons to keep on supporting a strong

network of quality weather stations. The results provided in this study for ERA5 show that

atmospheric reanalysis have likely reached the point where they can reliably complement ob-

servations from weather stations, and provide reliable proxies in regions with less dense station

networks, at least over North America.

7. Code and data availability

The gridded observed weather data was downloaded from the Santa Clara repository, available

here: http://hydro.engr.scu.edu/files/gridded_obs/daily/ncfiles_2010.

The Canopex climate and streamflow data can be downloaded from the official data repository

available here: http://canopex.etsmtl.net/.

The USGS streamflow data can be downloaded from the USGS Water Data for the Nation

repository, available here: https://waterdata.usgs.gov/nwis/sw.

ERA-Interim data are available through the ECMWF servers at: https://apps.ecmwf.int/datasets/

data/interim-full-daily/.
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ERA5 data is available on the Copernicus Climate Change Service (C3S) Climate Data Store:

https://cds.climate.copernicus.eu/#!/search?text=ERA5&type=dataset.

The HMETS hydrological model is available on the Matlab File Exchange: https://www.

mathworks.com/matlabcentral/fileexchange/48069-hmets-hydrological-model.

Finally, the GR4J model and Cemaneige snow module are made available by the IRSTEA:

https://webgr.irstea.fr/en/models/.
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Abstract. Currently, there are a large number of diverse climate datasets in existence, which

differ, sometimes greatly, in terms of their data sources, quality control schemes, estimation

procedures, and spatial and temporal resolutions. Choosing an appropriate dataset for a given

application is therefore not a simple task. This study compares nine global/near-global pre-

cipitation and three global temperature datasets over 3138 North American catchments. The

chosen datasets all meet the minimum requirement of having at least 30-years of available data,

so they could all potentially be used as reference datasets for climate change impact studies.

The precipitation datasets include two gauged-only products (GPCC and CPC-Unified), two

satellite products corrected using ground-based observations (CHIRPS V2.0 and PERSIANN-

CDR V1R1), four reanalysis products (NCEP-CFSR, JRA55, ERA-Interim and ERA5) and

one merged product (MSWEP V1.2). The temperature datasets include one gauge-based (CPC-

Unified) and two reanalysis (ERA-Interim and ERA5) products. High-resolution gauge-based

gridded precipitation and temperature datasets were combined as the reference dataset for this

inter-comparison study. To assess dataset performance, all combinations were used as inputs

to a lumped hydrological model. The results showed that all temperature datasets performed

similarly, albeit with the CPC performance being systematically inferior to that of the other

three. Significant differences in performance were, however, observed between the precipita-

tion datasets. The MSWEP dataset performed best, followed by the gauge-based, reanalysis

and satellite datasets categories. Results also showed that gauge-based datasets should be pre-
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ferred in regions with good weather network density, but CHIRPS and ERA5 would be good

alternatives in data sparse regions.

1. Introduction

Climate change impact assessments require future climate scenarios developed at adequately

high spatial and temporal resolutions. Although General Circulation Models (GCMs) are typ-

ically sourced for future climate projections, their spatial resolution is often too coarse for

fine-scale climate studies (Ahmed et al. (2013)). Consequently, spatial downscaling and/or

bias correction approaches are normally used to bring bias-corrected GCM simulation infor-

mation to the appropriate scale before it is used in impact models. This procedure requires a

reference climate dataset generally consisting of precipitation and temperature data to ensure

that the downscaling and/or bias correcting steps preserve the main characteristics of the refer-

ence climate at the finer scale. An often limiting additional requirement of reference datasets

is that they should cover a time-period long-enough to filter out high-frequency internal vari-

ability (e.g. Deser et al. (2012)). A 30-year period is generally favored as defined by the

World Meteorological Organization, even though periods as short as 20 years have been used

in the literature (e.g. Martel et al. (2018)). It is important that the chosen dataset represent the

true state of the reference climate as closely as possible, since any deficiency in the reference

dataset would be transferred to the future climate scenario.

Notwithstanding the limitations associated with meteorological stations as reference datasets,

such as missing records, inhomogeneity, short temporal coverage, sparse spatial coverage and

the inability to adequately represent the climate variability in all topographic and climatic

zones, the stations are still considered to constitute the most accurate source of climate data

(Tapiador et al. (2012); Nicholson (2013); Colston et al. (2018)). In recent decades, to over-

come some of the limitations of station data, several global and regional gridded datasets have

been developed with different input data sources (gauges, radar, satellite, reanalysis or com-

binations thereof), spatial resolutions (0.05◦ to 2.5◦), spatial coverage (continental to global),

temporal scales (30 minutes to annual) and temporal coverage (from 1 to several years) (Henn
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et al. (2018)). Such gridded datasets provide continuous spatial and temporal coverage, and

typically, with no missing data.

Gridded datasets can be classified as a function of their data source. Gauge-based gridded

datasets are obtained by interpolating and mapping the information measured at a small scale

(typically, a point measurement at a weather station) onto a predefined spatial and temporal

resolution grid. However, variations in gauge types or instrument replacements affect error

characteristics in long-term records. In addition, observations are affected by systematic bi-

ases due to evaporation and wind effects, as well as the elevation of gauges in mountainous

regions (Isotta et al. (2014)). Gauges are also typically placed in regions allowing easier ac-

cess for station maintenance and troubleshooting, meaning that the gauges do not necessarily

reflect the actual climatic conditions of their surroundings. Interpolated station gridded climate

data products are thus subject to these limitations and many integrate adiabatic lapse rates and

elevation/precipitation relationships using terrain elevations in a bid to correct some of these

shortcomings.

A different approach to measuring precipitation uses ground weather radars, as they partially

address the issue of rain gauge spatial coverage since each radar site covers a relatively large

area. However, radar coverage here is limited to high population developed regions. In addi-

tion, they provide estimates of the rainfall rate at certain observational levels above the ground

and cannot detect surface precipitation. Therefore, the presence of weather stations is required

for the calibration and correction processes between surface measurements and atmospheric

precipitation estimates (Martens et al. (2013)).

Nowadays, satellite products are available at the global scale, and can cover large areas at

high spatial and temporal resolutions with near real-time coverage. They are mainly suit-

able for rainfall estimation in the tropics and data-scarce regions. Given this advantage, satel-

lite products have been used in water resource management studies (Giardino et al. (2010);

Nishat & Rahman (2009); Siddique-E-Akbor et al. (2014)), hydroclimatological studies (Khan

et al. (2011); Jutla et al. (2015)) and in extreme event analysis (Lockhoff et al. (2014); Boers



134

et al. (2015)). However, satellites are relatively insensitive and generally miss a significant

quantity of light precipitation and tend to fail over snow- and ice-covered surfaces (Tian et al.

(2009)). Some studies have evaluated the uncertainties of these datasets and shown that high-

resolution satellite products perform better when bias is corrected using gauge observations

(Awange et al. (2016)).

Retrospective analysis/reanalysis systems represent vital sources of data in weather and climate

studies. A typical reanalysis system consists of two main components: the forecast model and

the data assimilation system. The role of the data assimilation system is to integrate many

sources of observations to provide the forecast model with the most accurate representation

of initial atmospheric states. Then, the numerical weather forecast models are executed for

a given time-step to produce consistent gridded datasets (Di Luzio et al. (2008)). Although

reanalysis are not direct observations, they nevertheless provide analyzed variables, even in

areas with minimal or nonexistent stations (Bosilovich (2013)).

Overall, no single precipitation product could be considered ideal for measuring precipitation.

In fact, all precipitation products tend to miss a significant volume of rainfall (Behrangi et al.

(2011)).

Near-surface air temperature is a key variable for meteorological monitoring and forecasting

services (Nieto et al. (2011)), as well as for climate and hydrological studies. In hydrologi-

cal modelling, the air temperature is the main driving variable for the evapotranspiration and

snowmelt processes. Hence, accurate temperature data is vital when driving hydrological mod-

els in historical and future climate periods. However, the lack of an adequate gauge network can

result in improper temperature estimations. Therefore, gridded temperature datasets are also

crucial in many fields. Temperature products are generally thought to be less complex than

precipitation datasets due to the much smaller spatial and temporal temperature variability in

the former. Therefore, significantly fewer studies have compared and evaluated the uncertainty

of using different temperature datasets in hydrological impact models.
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Appropriate dataset selection is a key issue in climate studies. High uncertainty is found across

most gridded datasets, coming from multiple sources, such as using different data sources,

merging and interpolation algorithms or quality control techniques (Vogel & Vogel (2013);

Prakash et al. (2015b); Prakash et al. (2015a); Prein & Gobiet (2017); Nashwan et al. (2019)).

Moreover, the number and the accuracy of observations used to correct these products typically

vary. However, some products are calibrated to the observations, thus making annual biases

minimal, while their daily patterns are significantly different from the observations (Sylla et al.

(2013)). Therefore, gridded datasets should be comprehensively evaluated before they are used.

Several studies have assessed the performance, advantages and limitations of gridded datasets.

Most of these studies focus solely on precipitation datasets and evaluate the accuracy of these

products through a straightforward comparison against ground weather stations (Vila et al.

(2009); Romilly et al. (2011); Jiang et al. (2012); Prakash et al. (2018); Nashwan et al. (2019)).

Andermann et al. (2011) evaluated five remote sensing and gauge-based gridded datasets with

ground-based measurements in the Himalayan region. The results showed that the satellite

products underestimate the precipitation at both the annual and seasonal scales. The authors

reported that the findings likely resulted from the bias correction techniques applied to correct

the datasets using the Global Telecommunication System (GTS) rain gauge network, which

has a poor spatial coverage in the study region; in addition, 0 mm precipitation is used to

compensate for missing values in the database. Moreover, there is a lag experienced by the

remote sensors in precisely capturing the snowfall, which is the major contributor of precipita-

tion in the Himalayas. The conclusion that satellite approaches tend to fail in snow-dominant

regions has also been reported in other studies (Kidd et al. (2012); Laviola et al. (2013)). Chen

et al. (2014) also evaluated two satellite-based products, CMORPH (Joyce et al. (2004)) and

PERSIANN-CCS (Ashouri et al. (2015)), to capture the rainfall in the mountainous zones lo-

cated west and north of Beijing. The study showed that both datasets failed to capture the

spatial pattern and the temporal variation of precipitation.

Others studies have used hydrological modelling as an indirect method to evaluate the perfor-

mance of these datasets in forcing hydrological models (Zhu et al. (2018); Duan et al. (2019);
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Tarek et al. (2019)). Hydrological modelling offers an interesting perspective since results

depend on the coherence between precipitation and temperature datasets and on an accurate

representation of the annual cycle of both variables. Hydrological modelling is also not overly

sensitive to biases present in every dataset, as these are typically removed during the cali-

bration process (Essou et al. (2016a)). Behrangi et al. (2011) evaluated five satellite-based

products to force a hydrological model and simulate streamflows. The results showed that the

bias-corrected datasets captured streamflow patterns well. However, the non-bias-corrected

products overestimated the streamflow over warm seasons and underestimated it in cold sea-

sons. Wu et al. (2018) evaluated the Multi-Source Weighted-Ensemble Precipitation (MSWEP

V2.1) and three satellite-based precipitation products with rain gauge observations to simulate

streamflows on the upper Huaihe River Basin in China. The results showed that the merged

precipitation product (MSWEP) generally outperformed the other satellite datasets, although

significant uncertainty existed in mountainous regions. Beck et al. (2017b) evaluated 23 grid-

ded precipitation datasets over the 2000-2016 period. Thirteen daily uncorrected datasets (non-

dependent on gauges for correction) were compared with observations from gauges, and the

other ten gauge-corrected datasets were evaluated using hydrological modelling. Among the

uncorrected datasets, the merged-products datasets (MSWEP-ng) generally performed the best,

followed by the reanalysis and then the satellite products. For the corrected datasets, results

showed that datasets integrating daily gauge data (CPC Unified and MSWEP products) gener-

ally outperformed the other datasets. Finally, precipitation datasets have also been evaluated

using the surface water budget (Getirana et al. (2011); Lorenz et al. (2014); Munier & Aires

(2018); Sabarly et al. (2016); Sheffield et al. (2009); Smith & Kummerow (2013); Song et al.

(2016)), as well as using surface water and energy budgets (Kang & Ahn (2015); Hobeichi

et al. (2020b); Hobeichi et al. (2020a); Yang et al. (2015)).

Despite the growing literature on the subject, the question regarding the most accurate dataset

for capturing the spatio-temporal variability of weather events or driving hydrological mod-

els for climate change impact studies remains unanswered. The main objective of this study

is therefore to establish a large-scale comparison of available temperature and precipitation
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datasets covering a time-period long-enough to define the regional climate and therefore hav-

ing the potential to be used as reference datasets to bias-correct climate model outputs for cli-

mate change impact studies. Secondary objectives include a comparison of families of climate

data sources (gauges, gridded products, satellite products and reanalysis products), a quantifi-

cation of the variability between the different datasets and providing recommendations on their

applicability depending on the region of interest and physiographic characteristics.

2. Study Region and Data

2.1 Study Region

The study region is composed of 3138 catchments distributed over North America. The catch-

ments were selected from the NAC2H database (Arsenault et al., 2020a), which is a set of

pre-processed catchments for climate-change studies that is a subset of the larger HYSETS

database (Arsenault et al. (2020)). Figure II-1 presents the geographic distribution of the catch-

ments, and Table II-1 presents the main statistics of the set of catchments.

Table-A II-1 Main properties of the study basins

Basin attribute Minimum Maximum Median Mean
Elevation (m) 7.3 3,585 380 692

Area (km2) 302 179,150 1803 6,317

Mean Annual Precip. (mm/yr) 307 3,895 993 981

Mean Annual discharge (m3/sec) 0.048 1,584 17.60 56.75

Temporal coverage (years) 5 30 30 27.6

2.2 Data

2.2.1 Gridded precipitation and temperature datasets

Currently, a significant number of gridded datasets have been stockpiled from stations, satel-

lites, reanalysis or a combination thereof. However, not all these datasets can be used for
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Figure-A II-1 Spatial distribution of the North American basins

climate change impact studies. To be useful, a dataset must have the following characteristics:

1) spatial resolution (finer than 1◦ for example to be used in local hydrological studies); 2)

daily scale or finer temporal resolution; 3) long temporal coverage (at least 30 years to estab-

lish robust statistics for downscaling and bias correction); and 4) for an inter-comparison study,

all datasets should cover approximately the same time period.

Based on these criteria, nine precipitation and three temperature gridded datasets are included

in this study, and are presented in Table II-2. The precipitation datasets are classified based

on their respective data sources. Two datasets are based solely on gauge data: CPC Uni-

fied (Climate Prediction Center Unified Gauge) and GPCC (Global Precipitation Climatol-

ogy Center); two combine gauge and satellite data: CHIRPS V2.0 (Climate Hazards group

Infrared Precipitation with Stations) and PERSIANN-CDR V1R1 (Precipitation Estimation

from Remotely Sensed Information using Artificial Neural Networks (PERSIANN) Climate

Data Record (CDR)); four are derived from reanalysis: ERA5 (The European Centre for

Medium-Range Weather Forecast’s 5th generation reanalysis), ERA-Interim (European Cen-

tre for Medium-range Weather Forecasts ReAnalysis Interim), JRA55 (Japanese 55-year Re-

Analysis) and NCEP-CFSR (National Centers for Environmental Prediction (NCEP) Climate
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Forecast System Reanalysis (CFSR), while the last is a multi-source dataset integrating gauge,

satellite and reanalysis data (MSWEP V1.2 (Multi-Source Weighted-Ensemble Precipitation)).

In terms of temperature, three datasets are included in this study: the gauge-based CPC unified

dataset, the ERA-Interim and ERA5 reanalysis products. Properties of the temperature datasets

are also provided in Table II-2.

Table-A II-2 The selected global gridded datasets

No. Short
Name

Data
Source

Spatial
Resolution

Spatial
Coverage

Temporal
Resolution

Temporal
Coverage

1- Precipitation

1 CPC Unified Gauge 0.5◦ Global Daily
1979-

Present

2 GPCC Gauge 1.0◦ Global Daily
1982-

2016

3
PERSIANN-

CDR (V1R1)

Gauge,

Satellite
0.25◦ ±60◦ Lat. 6 hourly

1983-

2012

4 CHIRPS V2.0
Gauge,

Satellite
0.05◦ ±50◦ Lat. Daily

1981-

Present

5 NCEP-CFSR Reanalysis 0.5◦ Global 6 hourly
1979-

2012

6 ERA-Interim Reanalysis 0.75◦ Global 3 hourly
1979-

8/2019

7 ERA5 Reanalysis 0.25◦ Global hourly
1979-

2017

8 JRA-55 Reanalysis 0.5625◦ Global 3 hourly
1959-

Present

9 MSWEP V1.2

Gauge,

Satellite and

Reanalysis

0.25◦ Global 3 hourly
1979-

2015

2- Temperature

1 CPC Unified Gauge 0.5◦ Global Daily
1979-

Present

2 ERA-Interim Reanalysis 0.75◦ Global 3 hourly
1979-

8/2019

3 ERA5 Reanalysis 0.25◦ Global hourly
1979-

2017
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There are additional satellite products that provide global rainfall information at finer resolu-

tions than PERSIANN-CDR, which has been selected in this work. Of particular interest is

the Global Precipitation Measurement (GPM) mission, designed to further precipitation mon-

itoring from an array of microwave sensors. It was launched to provide a new generation of

precipitation datasets with an improved accurate measurement for light rainfall and snow pre-

cipitation as well as more frequent observations over the medium and high latitudes (Hou et al.

(2014)). GPM utilizes passive microwave sensors in addition to the infrared measurements

from geostationary satellites, providing rainfall monitoring around the globe with higher spa-

tial and temporal resolutions than the previously widely used TMPA products (Yong et al.

(2015)). These improvements are likely to provide significant advantages for hydrometeo-

rological studies, weather forecasting, water budget studies and many other applications. In

particular, the GPM Integrated Multisatellite Retrievals (IMERG), provides data at 0.1◦ and

half-hourly spatial and temporal scales (Huffman et al. (2015)) and the Global Satellite Map-

ping of Precipitation (GSMaP) provides hourly rainfall data also at a 0.1◦ resolution (Okamoto

et al. (2005)). These products have been evaluated against gauge measurements over different

regions (Aslami et al. (2019); Asong et al. (2017); Chen et al. (2016); Lu & Yong (2018); Maz-

zoglio et al. (2019)) and showed satisfactory results. However, these state-of-the-art products

do not cover a long-enough time period to be used for the evaluation of a climatic base-line

period required for climate change impact studies. They were therefore not chosen for this

study.

2.2.2 Observed hydrometeorological data

The observed data (OBS) over North America was taken from the North American Climate

Change and hydroclimatology (NAC2H) database, which is a hydrology and climate change

impact dataset developed to study the impacts of different components of the modelling chain

on hydrological indices over a collection of 3540 North American catchments. It includes hy-

drometeorological data such as precipitation, maximum and minimum temperature and stream-

flow at the daily scale for each of the catchments. Observed meteorological data come from

regional datasets interpolated from station data. For Canada, the meteorological data is sourced
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from Environment and Climate Change Canada (ECCC), whereas Canadian streamflow data

is provided by Water Survey Canada, the hydrometric branch of ECCC. In the United States,

NAC2H uses the Livneh gridded dataset for meteorological data, whereas streamflows are pro-

vided by the United States Geological Survey (USGS) National Water Information Service.

NAC2H data is open source and available on the Open Science Foundation data repository at

the following website: https://osf.io/s97cd/. More details can be found in (Arsenault et al.

(2020)).

3. Methodology

3.1 Intercomparison of gridded climate products and statistics

The first step in this study was to evaluate the different products relative to a reference dataset;

in this case, the NAC2H observation dataset. While it was considered as the reference dataset,

there was no underlying assumption that it is of higher quality or more accurate than any of the

gridded products. Rather, it simply served as a baseline against which the other data products

were compared. Analyses were performed by comparing annual and seasonal means of the

gridded climate variables to the reference. This allowed finding spatial patterns of differences

in average precipitation and temperatures to obtain a first feeling on the regional differences

between the products. Then, a similar analysis was performed to investigate the differences in

variability within these datasets on a daily time step. This also allowed evaluating the prop-

erties at a time scale that is more difficult to manage for gridded datasets than are aggregated

annual or seasonal scales. The tests were performed because gridded datasets presenting no

annual differences in precipitation versus the reference could still be largely underestimating

the variance found in observational records. Metrics such as the Mean Error (ME), Mean

Absolute Error (MAE), Root Mean Square Error (RMSE) and correlation coefficient (r) were

used to compare the annual and seasonal precipitation and temperature values to the reference

datasets, allowing to quantify the level of departure from the reference data.
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3.2 Evaluation using hydrological modeling

The quality and performance of the climate variable datasets were evaluated indirectly through

an independent measure, namely, the watershed observed streamflow. The hypothesis posed

here is that climate datasets that allow for more accurate hydrological modelling with respect

to the observed streamflow should be considered as being of higher quality. Of course, the

choice of a hydrological model does influence performance. However, this should be seen as

a first attempt at finding inconsistencies within the climate datasets. Hydrological modelling

is sensitive to the annual cycle of precipitation and temperature, as well as to the coherency

between both variables, so it can therefore be seen as a good evaluator of dataset overall quality.

This approach has been used in several other studies (e.g. Beck et al. (2017b); Essou et al.

(2016a); Tarek et al. (2019)).

3.2.1 The HMETS hydrological model

HMETS (Hydrological Model - École de technologie supérieure) is a lumped and conceptual

model used in many research applications and as a component of operational multi-model

hydrological studies and forecasting (Martel et al. (2017)). It was selected due to its good

performance in the study domain in previous studies and because a lumped model was required

to simulate discharge over the large number of catchments in the study.

The HMETS hydrological model is a 21-parameter, reservoir-based model that simulates water

balance, including snow processes and the horizontal hydrological fluxes, using a series of unit

hydrographs. It requires daily maximum and minimum temperature as well as daily rainfall

and snowfall amounts. All the chosen temperature datasets provide daily minimum and maxi-

mum temperature, with the exception of ERA5, which provides mean hourly air temperature.

The minimum and maximum hourly temperatures for each day were therefore used as being

representative of the daily maximum and minimum values. When needed by the hydrological

model, mean daily temperature was computed as the average of daily minimum and maximum

temperatures. HMETS starts by computing the potential evapotranspiration using the Oudin
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formulation (Oudin et al. (2005)), which is scaled through a calibration parameter, and then

computes snow accumulation and melt with a 10-parameter degree-day-based snow module

developed by Vehviläinen (1992). Rainfall is then added to the runoff generated by snowmelt

to obtain total water production. Potential evapotranspiration is then subtracted from the total

water production to obtain the final runoff depths. The water then infiltrates into one of three

underground soil layers modelled as reservoirs (the aquifer, the vadose zone and the delayed

surface runoff zone), using six calibrated parameters. Some of the water is also kept above the

soil as the surface runoff reservoir. Water from these reservoirs is routed using two indepen-

dent 2-parameter gamma distribution unit hydrographs for the surface unit hydrograph and the

delayed unit hydrograph, respectively.

3.2.2 Hydrological model calibration

HMETS was calibrated using the automatic Covariance Matrix Adaptation Evolution Strategy

(CMAES) optimization algorithm (Hansen et al. (2003)), which was shown to perform well

with such optimization problems (Arsenault et al. (2014)). The objective function used to

calibrate the parameters was the Kling-Gupta Efficiency (KGE) metric, which was introduced

by (Gupta et al. (2009)) and modified by (Kling et al. (2012)), and which is an equally weighted

bias, variance and correlation aggregate metric. It has been shown to be more easily interpreted

than the Nash-Sutcliffe Efficiency (Nash & Sutcliffe (1970)) metric from which it is derived.

The KGE values theoretically range from negative infinity (extremely poor performance) all

the way to one (perfect performance). The performance ratings used in this study are defined

based on the work of Gutenson et al. (2019) and Pechlivanidis and Arheimer (2015) who

divide KGE values into three modeling-performance groups: Poor performance (KGE < 0.4),

acceptable (0.4 ≤ KGE < 0.7) and good (KGE ≥ 0.7). Both precipitation and temperature

datasets were averaged at the catchment scale before being fed to the hydrological model.

Each catchment was calibrated by letting CMAES converge over 15,000 model evaluations and

repeating the process twice. The calibration was performed on the entire length of the available

data as recommended in (Arsenault et al. (2018)). The best calibration KGE score from the

two generated sets was used to reduce the chance of considering a parameter set that had not
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properly converged to an acceptable minimum. This calibration procedure was repeated for

each combination of precipitation and temperature datasets, including the reference datasets,

for each watershed, in order to allow their objective comparison (Essou et al. (2016a)).

4. Results

The results of the climatic variables analysis are first presented, followed by an analysis of the

performance of the precipitation and temperature data when used in hydrological modelling.

Figure-A II-2 Difference maps for the mean annual temperature

(dataset-OBS) for the period (1983-2012)

4.1 Analysis of precipitation and temperature

Figure II-2 shows the mean annual temperature of the reference dataset (upper left) and dif-

ferences between each of the three chosen temperature datasets. The term di f f erence is used

below, instead of bias, since our reference dataset is not a true representation of the population,

and is not inherently better than other datasets.
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On average, the three datasets are warmer than the observations, with ERA-I being the warmest.

The warm difference is particularly clear in the western United States. Overall, ERA5 is the

closest to observations, with small differences across central and eastern North America, and

reduced differences on the West Coast. Figure II-3 presents a similar analysis for precipita-

tion. It shows observed mean annual precipitation (upper left) and differences of the 9 studied

precipitation datasets.

Figure-A II-3 Difference maps for mean annual precipitation

(dataset-OBS). Note that CHIRPS does not provide data beyond

±50◦ Latitude

It can be seen in (Figure II-3) that the precipitation products differ widely, depending on the

source and type of processing of data. Datasets that integrate observations (first row: CPC,

GPCC, MSWEP and last row: PERSIANN and CHIRPS) show much smaller differences

in general, as compared to the four reanalysis products (central row). ERA5 is the best-

performing reanalysis, followed by its predecessors, ERA-I, JRA55 and CFSR products, which

are wetter over most of North America. Figure II-3 also shows large differences in the west-

ern mountain ranges for all datasets, outlining limitations for all gridded precipitation datasets

under study.
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To further investigate precipitation seasonality, figures II-4 and II-5 present seasonal precipita-

tion differences for winter (DJF) and summer (JJA).

Figure-A II-4 Mean winter (DJF) Precipitation difference maps

for the 1983-2012 period

Figure-A II-5 Mean summer (JJA) Precipitation difference maps

for the 1983-2012 period
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Results for winter are very similar to those obtained at the annual scale. Summer differences

(Figure II-5) do, however, display important differences. These differences are smaller for the

satellite-based datasets and larger for the reanalysis datasets in general. The CFSR reanalysis

is particularly dry in central USA. The differences between ERA5 and ERA-I are also larger,

with ERA5 having smaller differences all across North America.

To analyze the results at a more localized scale, mean annual precipitation statistics were com-

puted for each catchment and compared to the reference precipitation dataset. Figure II-6

presents boxplots for annual precipitation Mean Error (ME), mean absolute Error (MAE),

RMSE and correlation coefficient. The spatial distribution of the last two metrics is also pre-

sented in figures II-7 and II-8. The boxplots are built from 3138 values, one from each individ-

ual catchment. The central boxes show the 25th and 75th quantiles (bottom and top), with the

median in red. The whiskers display the smallest and largest values. Red crosses are consid-

ered statistical outliers. Overall, when compared to the reference dataset, we see that MSWEP

is consistently the closest across all metrics. The two gauge-based products (CPC and GPCC)

and CHIRPS follow. The median difference of ERA-I is close to zero, but otherwise displays

a large spread. Surprisingly, ERA5 shows a relatively large positive mean difference, as do

the other reanalyses (JRA55, CFSR). Correlation coefficients tell a similar story, with the main

differences being that ERA5 clearly outperforms the other reanalysis. RMSE distributions also

follow a similar pattern.

Figure II-7 presents the spatial distribution of mean annual precipitation RMSE values between

each precipitation dataset and observations. JRA55 and CFSR are clearly the worst-performing

datasets. MSWEP performs the best everywhere, with the exception of Western Canada, where

ERA-5 and GPCC perform best. Figure II-8 presents the spatial distribution of correlation

coefficients calculated for daily precipitation. MSWEP, ERA5, GPCC and CHIRPS are clearly

the best-performing datasets. CPC performs well over the USA, but quite badly in Canada,

where weather station density gets lower.
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Figure-A II-6 Boxplots comparing ME, MAE, RMSE and r for

9 precipitation datasets at the annual scale

Figure-A II-7 Root Mean Square Error (RMSE) of mean annual

precipitation for 9 precipitation datasets

To investigate in more details, the distribution of precipitation amounts at the watershed scale

was examined. Figure II-9 presents quantile-quantile plots for the Saint Louis River watershed.

This catchment was chosen as its behaviour is typical of most other watersheds, even though

there is some level of regional control on quantile biases (not shown). The median quantile is

represented by the solid red circle on each graph. This Figure therefore emphasises the larger
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Figure-A II-8 Spatial distribution of correlation coefficients

computed at the daily time step

Figure-A II-9 Quantile-Quantile precipitation plots (0.01 to 0.99

at a 0.01 interval) for the Saint Louis River catchment in

Minnesota State (USA). The median (quantile 0.5) is represented

by the solid red circle

quantiles. The most striking feature of Figure II-9 is the overestimation of the larger quantiles

at the catchment level for most datasets. This is particularly the case for all reanalysis, CHIRPS

and GPCC. The lower quantiles are generally well represented by all datasets.
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4.2 Hydrological model simulations

This section presents the results of the hydrological model simulations using all possible com-

binations of precipitation and temperature datasets. Figures II-10 and II-11 show the distribu-

tions of KGE scores for all catchments below (Figure II-10) and above 50◦N (Figure II-11).

The separation at 50◦N was made for two reasons: the unavailability of data for CHIRPS, and

to investigate the impact of the much lower resolution of observation networks in the North,

which should technically affect gauge-based datasets.

Figure-A II-10 KGE boxplots of simulated streamflows (below

50◦N Latitude) from 10 precipitation datasets and 4 temperature

datasets (40 combinations) using the HMETS hydrological model

Figure II-10 shows that all datasets can be used to generate good hydrological modelling, with

all combinations generating median KGE values larger than 0.7. There are, however, large

performance variations across datasets. The main driver of the modelling skill is the precip-

itation dataset. All four temperature datasets offer a nearly equal performance below 50◦N,

although CPC is consistently the worst of the four. The reference and MSWEP datasets clearly

outperform all other precipitation datasets. These are then followed by the GPCC and CPC

gauge-interpolated datasets, and then by CHIRPS and ERA5. The other satellite (PERSIANN)
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Figure-A II-11 KGE boxplots of simulated streamflow for 9

precipitation datasets and 4 temperature datasets (36

combinations) using HMETS hydrological model (above 50◦N).

Note that CHIRPS V2.0 does not provide data beyond ±50◦
latitude, and is excluded from this comparison

and reanalysis (ERA-I, JRA-55 and CFSR) products perform clearly worse than their best

counterparts (CHIRPS and ERA5).

The results for catchments north of 50◦N (Figure II-11) are markedly different. The differences

between all datasets is much smaller, with the exception of CPC, which is the worst-performing

dataset. This is consistent with results presented in Figure 8 showing that CPC precipitation

behaves quite differently over Canada. The lower density of the station network is an equal-

izer, preventing gauge-based datasets from outperforming their counterparts. MSWEP and

ERA5 are the best-performing datasets, and are slightly better than using the regional gridded

dataset used as a reference. Overall, hydrological modelling performance is very good, and, for

most datasets, better than below 50◦N. This is very likely a combination of watersheds being

larger, thus producing smoother, less reactive and easier to model hydrographs, and because

snow-dominated catchments typically have relatively simple hydrographs, with a long winter

recession curve and a strong spring snowmelt signature. The gain in performance is notable

for all reanalyses, which are less affected by a deficient local observational network.
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Figure II-12 shows the spatial distribution of KGE scores for the different precipitation datasets

combined with the reference temperature dataset. The upper left graph shows the KGE values

for the reference dataset, whereas all the other graphs display the difference in KGE values for

each precipitation dataset. A red colour indicates a better performance, and blue, a worse one.

It can be seen that MSWEP, GPCC, and CHIRPS to some extent, compare favourably with the

reference dataset, and that CPC is affected by the lack of stations in the northern parts of North

America. Also of note is the strong negative score associated with some of the reanalysis and

satellite datasets in the eastern United States. Outside of this zone, ERA5 performs extremely

well, as noted by Tarek et al. (2019).

Figure-A II-12 Spatial distribution maps for the KGE difference

between the observed precipitation dataset combined with the

observed temperature dataset (top left plot) and the 9 precipitation

datasets combined with the observed temperature dataset

Finally, Figure II-13 presents the aggregate mean KGE score over all catchments for all pre-

cipitation/temperature pairs (first row), as well as for the catchment below (second row) and

above 50◦N (third row). The first two rows are nearly identical due to the much larger number

of stations located below 50◦N. The third row displays warmer colours related to the preva-
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Figure-A II-13 Mean KGE values for all catchments (top panel),

catchments below 50◦N Latitude (center panel) and catchments

above 50◦N Latitude (bottom panel) for 10 precipitation datasets

and 4 temperature datasets. CHIRPS does not provide data

beyond ±50◦ Latitude, and left in white

lence of snowmelt-dominated watersheds, which are easier to model. Otherwise, these results

confirm those of Figure II-12, and underline the relatively poor performance of CPC above

50◦N for precipitation, and to a lesser extent, for temperature. Reanalysis datasets perform

comparatively much better with both ECMWF reanalysis (ERA5 and ERA-I) products.

5. Discussion

Impact models strongly rely on hydrometeorological information. The performance of such

models (stochastic and deterministic) is fundamentally dependent on the quality of input data.

Weather station observations are considered as key information for most applications, but are

limited in both time and space. Time series of relevant hydrometeorological variables are

plagued with problems such as short temporal horizons, missing data, measurement errors,

instrument biases and discontinuities introduced through equipment change and modification

of the environment of weather stations, including their displacement. The low spatial density
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of stations in many parts of the world, as well as the slow but steady decreasing trend in

the number of weather stations around the world (Lawrimore et al. (2011)), compounds the

problem. Gridded datasets are created to try to overcome many of the above problems. While

it is likely that multi-source merged gridded products are the way of the future, it is not clear

how good and reliable the many currently available gridded products are. This paper sheds

some light on this issue by comparing nine global or near-global precipitation datasets and

three temperature datasets over North America, therefore combining regions with high and

low densities of weather stations.

The results showed important differences between all the datasets, as well as within categories

of datasets (gauge-based, reanalysis and satellite-based). All the datasets were shown to be ade-

quate for driving a hydrological model over 3138 catchments across North America. However,

some datasets were clearly better than others in various circumstances. A first conclusion was

that precipitation datasets are the main drivers of uncertainty. There was little difference be-

tween the four selected temperature datasets (NAC2H observations, CPC, ERA-I and ERA5),

even though CPC performed slightly worse than the selected reanalyses (ERA5 and ERA-I)

and the reference gridded dataset. The equal performance of both reanalyses, when compared

to the reference gridded datasets, could likely be explained by the fact that they assimilate the

surface temperature from weather stations (in addition to a plethora of other data sources) and

by the relatively small spatial and temporal variability of temperature, at least when compared

to precipitation. Our evaluation of temperature is, however, based solely on hydrological mod-

elling. Hydrological models have the ability to filter out some level of variability in driving

inputs. Many other levels of validation still need to be performed (e.g., extremes) to determine

if these alternative products are able to represent specific types of events in the hydrologic cy-

cle. These results are nonetheless very encouraging for reanalyses, which are now available

in near real-time and at spatial and temporal resolutions matching or exceeding those of most

observational networks.

Comparatively, precipitation datasets provided a much more complex comparison picture. One

important conclusion of this work is that the relative performance of precipitation datasets
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below 50◦N, which includes the contiguous United States and southern Canada, and above

50◦N. Above 50◦N, the density of the Canadian observational network is much lower. Results

imply that a low-density station network narrows the gap between the reanalyses and gauge-

based products. Reanalyses do not assimilate surface precipitation in their analysis scheme,

and are therefore much less affected by a lack of ground precipitation measurements (either

sparse station network or precipitation undercatch in gauged locations). This suggests that

ERA5 precipitation is as robust as the best gauged products above 50◦N and reanalyses should

therefore be considered as good candidates in regions with deficient observational networks,

confirming the conclusions of Tarek et al. (2019).

The spatial and temporal resolution of the datasets reviewed in this work differ widely. The

temporal resolution itself (hourly to sub-daily) was not investigated. The spatial resolution

of the above products, which varies from 0.05◦ to 1◦, was summarily evaluated by analyzing

hydrological modelling performance with respect to watershed size and by elevation, on the

basis that higher-resolution datasets would perform better on smaller watersheds, or for high

elevation watersheds, where the topography is more complex. No clear link was found between

dataset performance and either size or elevation (results not shown). The main notable result

was a clear improvement of ERA5 over ERA-I for high elevation catchments. This suggests

that the fourfold resolution difference between the highest and lowest resolution datasets is

not large enough to make a difference in this type of application, or that the use of a global

hydrological model (which requires the averaging of the contributing grid points irrespective

of their resolution) is not ideal to investigate the impact of resolution. Most of the selected

watersheds are relatively large and therefore have a response time larger than one day. On those

watersheds, the averaging of input data coupled with the smoothed hydrographs from the global

hydrological models result in differences that are very difficult to see when using a criterion

such as the KGE metric. Other metrics (e.g. peak flow reproduction, streamflow variance) may

have been better suited to study the impact of dataset resolution (e.g. Kokkonen & Jakeman

(2001)). The conceptualized nature of the hydrological models used in this study may also not

be best suited to outline such differences. For the smaller watersheds in our database, sub-
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daily modeling would be better suited (Bevelhimer et al. (2015)), but was not feasible since

most datasets are limited to the daily time step. The use of a distributed hydrological model

may be preferable to study the impacts of data resolution.

The results show that amongst all datasets tested in this study, MSWEP either is the best dataset,

or is tied for best. In addition, MSWEP provides the second-highest spatial and temporal res-

olutions of all datasets. The performance of MSWEP demonstrates the potential of merged

products in providing high quality outputs, by utilizing and integrating all available informa-

tion. In high network density regions, MSWEP weighs observations heavily, but also relies

heavily on reanalysis when weather station observation networks are less dense, such as in

Northern Canada. We can expect an increasing number of datasets to rely on multi-source in-

formation, at the regional and global scales. At the regional scale, for example, high-resolution

datasets can be obtained by combining ground-based radars and weather stations (Lespinas

et al. (2015); Shen et al. (2018)). In addition, there are other potential reasons for the excellent

MSWEP results. MSWEP is the closest relative (in terms of construction and resolution) to the

chosen reference dataset (NAC2H) and especially over the US. Over Canada, MSWEP relies to

a much larger extent on reanalysis and is therefore not as closely related to NAC2H. In addition,

MSWEP uses streamflow data in its merging scheme, which may give it an advantage over the

other datasets in terms of long-term biases. The use of streamflow data by MSWEP is however

limited to long-term mean streamflow corrections, and only in regions with snowfall and/or

complex topography. It is unlikely that this procedure has noticeable impacts on hydrological

modeling performance at the daily scale.

CHIRPS performed very well for most of the comparison criteria. It performed better during

the warm seasons, owing to its limitation in terms of detecting snowfall. It had a high corre-

lation value (0.93) with the reference dataset as well as the second lowest mean absolute and

root mean square errors. CHIRPS, which integrates satellite and gauge stations data on a high

spatial resolution grid of 0.05◦, has been shown to be a viable choice in climatological studies.

Other studies have indeed mentioned its quality in this regard (Toté et al. (2015); Duan et al.

(2016); Poméon et al. (2017); Beck et al. (2017b); Duan et al. (2019)).
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For hydrological modelling, the results in this study have shown that, in general, gauge-based

datasets perform better than reanalyses, whereas the performance of the two selected satel-

lite products differ widely, with CHIRPS clearly outperforming PERSIANN. CPC is the worst

gauge-only product, especially so over Canada. A few relevant studies have assessed the in-

fluence of gauge-density on climate data (Arsenault & Brissette (2014a); Gubler et al. (2017);

Hofstra et al. (2010); Janis et al. (2004)). In particular, Janis et al. (2002) evaluated the required

station-density to capture the regional climate variability in the United-States. The study re-

ported that a station-density of 1 station per 180 km2 would be needed to adequately monitor

the climate variability.

ERA5 presents clear improvements over its predecessor (ERA-I), and is the best reanalysis

product for hydrological modelling amongst those used in this study. ERA5 shines brightly,

particularly above 50◦N. The high spatial (0.25◦) and temporal (1 hour) resolutions of ERA5

and the fact that it is available in near real-time lends it a significant advantage over most

of the other datasets. The ECMWF recently launched the ERA5-LAND reanalysis at a 0.1◦

resolution. It uses the same assimilation process as ERA5, but is run at a finer resolution over

land. Reanalyses could be considered as extremely complex multi-source merged products, and

are likely to gain in importance in the near future. Their main limitation, when compared to

MSWEP, for example, is that they do not integrate precipitation gauge data into the assimilation

scheme. Reanalyses are very likely to be supported and improved in the future, as compared

to the other datasets used in this study, which do not rely on recurrent national funding, and

which often result from the efforts of small teams. Reanalysis performed worse than gauge-

based products below 50◦N, and particularly so in the eastern half of the U.S. Essou et al.

(2016a) showed that reanalysis had difficulties reproducing the seasonal cycle of precipitation

over this region. Reanalysis precipitation could easily be post-processed at the monthly scale

using observations to palliate this problem, as was previously done on older reanalysis products

(Weedon et al. (2014)).

Overall, results show that gauge-based datasets should be preferred in regions with good

weather network density, with MSWEP being clearly the best performing dataset as repre-
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sented by its results below 50◦N. Above this latitude, where observational network density is

much poorer, ERA5 performs just as well as MSWEP and the reference dataset. This indicates

that ERA5, and potentially CHIRPS would be good choices as reference datasets for climate

change impact studies in data sparse regions.

6. Conclusion

The performance of nine precipitation and three temperature global gridded dataset products

was assessed in this paper in a two-step process. The datasets were first compared against two

high-resolution regional gridded datasets over the U.S. and Canada. Performance was evalu-

ated over 3138 North American catchments using annual and seasonal biases, mean error (ME),

mean absolute error (MAE), root mean square error (RMSE) and coefficient of correlation (r).

In a second step, streamflows were simulated using all 40 possible combinations of precipi-

tation and temperature datasets over 3138 North American catchments, and compared against

data from gauging stations. Results showed that precipitation datasets are the main driver of

uncertainty due to the relatively large differences between the datasets. Comparatively, differ-

ences between temperature datasets played a much smaller role as all four products behave very

similarly. Temperature derived from observations and from the ERA-5 reanalysis provided

marginally, but consistently better, results than the other two tested temperature datasets. For

precipitation, overall, the merged-product MSWEP consistently performed best. Both gauge-

based global products performed well over the U.S., but their performance decreased over

Canada (and particularly in the case of CPC Unified), where observations are based on a less

dense observational network. The ERA5 reanalysis performed really well over Canada and

Western U.S., but its overall performance was affected by a relatively poorer performance over

the Eastern U.S. It clearly outperformed the other three tested reanalysis. CHIRPS was found

to be easily the best-performing satellite precipitation dataset, outperforming PERSIANN and

all reanalysis, with the exception of ERA5.
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7. Datastatement

The CPC, GPCC and NCEP datasets can be downloaded from the Earth System Research

Laboratory (ESRL), available here:

https://www.esrl.noaa.gov/psd/data/gridded/tables/precipitation.html.

ERA-Interim, ERA5 and JRA55 datasets are available on the Research Data Archive:

https://rda.ucar.edu/datasets/ds628.0/.

MSWEP data are available through the PCA servers at:

https://platform.princetonclimate.com/PCA_Platform/mswepRetro.html.

The CHIRPS satellite dataset can be downloaded from the Climate Hazards Center:

https://www.chc.ucsb.edu/data/chirps.

Finally, the HMETS hydrological model is available on the MATLAB File Exchange:

https://www.mathworks.com/matlabcentral/fileexchange/48069-hmets-hydrological-model.
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Abstract. In recent decades, many parts of the African continent have experienced high precip-

itation variability with periodic drought and flood events. However, the network of streamflow

gauges is too sparse in most countries to adequately capture these variations. In addition, no

observed reference climatological dataset exists to adequately represent precipitation and tem-

perature changes within all topographic and climatic zones. Consequently, the use of global

gridded datasets needs to be considered. This paper aims to use the different available gridded

datasets as inputs to a hydrological model to evaluate dataset performance. Nine precipita-

tion and two temperature gridded datasets are used to this effect. The precipitation datasets

include two gauged-only products, two satellite products corrected using ground-based obser-

vations, four reanalysis products and one merged product of gauge, satellite, and reanalysis.

The two temperature datasets include one gauged-only and one reanalysis product. The nine

precipitation and two temperature datasets were combined in their 18 possible arrangements

for analysis purposes. Each combination was used to force the HMETS lumped hydrological

model. The model parameters were calibrated individually for each combination against the

streamflow records of 850 African catchments. The Kling-Gupta Efficiency (KGE) was used to

evaluate the simulation performance. Results show that both temperature datasets performed

equally well. Large differences were however observed between precipitation datasets. The

MSWEP merged-product was the best-performing precipitation dataset, followed by CHIRPS

satellites and ERA5 reanalysis products, respectively. The performance of both gauged-only
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datasets (CPC and GPCC) was inferior, outlining the limitations of extrapolating information

in data-sparse regions.

Keywords: precipitation datasets, gridded datasets, reanalysis products, streamflow simula-

tion, hydrological modeling, African catchments.

1. Introduction

Ground meteorological stations are considered the most accurate source of climate data, as

they offer physical record of data in a specified area. However, stations may suffer from many

limitations such as missing measurements or short temporal coverage (Tapiador et al. (2012)).

In recent decades, many regions have experienced high variability in precipitation with peri-

odic drought and flood events (Tschakert et al. (2010); Rojas et al. (2011); Nicholson (2013);

Omondi et al. (2014)). However, the spatial coverage of station networks is not sufficient

to adequately represent these changes within all topographic and climatic zones (Nicholson

(2013)). In addition, a gradual but steady decrease in the number of weather stations with long

record listed in the Global Historical Climatology Network (GHCN) has started in the early

1990. To resolve all these problems, a large effort has been put into producing global gridded

meteorological datasets. Such datasets provide continuous spatial and temporal coverage and,

typically, with no missing data.

Over recent decades, several precipitation products have been produced with different spatial

and temporal characteristics. These datasets differ in terms of data sources (gauge, radar,

satellite, reanalysis or combinations thereof), spatial resolution (0.05◦ to 2.5◦), spatial coverage

(continental to global), temporal scale (30 minutes to annual) and temporal coverage (from 1 to

several years). Several studies addressed the importance of evaluating these datasets to stand

on their advantages and limitations. Most studies quantified the accuracy of these products

through a direct comparison against data from weather stations (Vila et al. (2009); Andermann

et al. (2011); Jiang et al. (2012); Prakash et al. (2018); Romilly et al. (2011); Chen et al. (2014)

), while others assessed the performance indirectly using a hydrological model to compare
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against observed streamflow (Behrangi et al. (2011); Tarek et al. (2019)Wu et al. (2018); Duan

et al. (2019); Zhu et al. (2018)).

2. Study Area

In this study, the African continent was chosen as the main research area. Africa is considered

the second largest continent with an area of 30.3 million km2 covering about 20% of the global

land area (Sayre (1999)). Africa is considered to be the hottest continent on Earth. The north-

ern half is mostly covered by drylands and desert, while the central and southern parts contain

savanna and rainforests (Hulme et al. (2001)). Based on the combination of temperature, pre-

cipitation and evapotranspiration, Africa can be divided into four main climatic zones; 1) arid

and semi-arid, 2) tropical, 3) equatorial, and 4) temperate (Ngaira (2007)).

3. Data and Methods

3.1 Data

For many African regions, observed meteorological data are not easily available, either due to

the lack of weather stations or the high fees to access the data. Most studies in Africa therefore

depend on using satellite-derived data as a reference dataset (Skinner et al. (2015); Adjei et al.

(2015); Koriche & Rientjes (2016); Bâ et al. (2018)). Hence, this paper aims to evaluate the

performance of other several types of gridded datasets over a large set of hydrologically het-

erogeneous watersheds. The dataset performance is assessed through their ability as generating

accurate streamflow through the use of a hydrological model.

3.1.1 Precipitation gridded datasets

Gridded datasets can be classified as a function of their data source. Gauge-based gridded

datasets are obtained by interpolating the information measured at a small scale (typically a

point measurement at a weather station) and mapped onto a predefined spatial and temporal

resolutions grid. However, variation in gauge types or instrument replacements affect error
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characteristics on the long-term records. In addition, observations are affected by systematic

biases from evaporation and wind effect or due to, for example, elevation placement of gauges

in mountainous regions (Isotta et al. (2014)).

A different approach to measure precipitation is using ground weather radars, as it partially

addresses the issue of rain gauge coverage. Moreover, it provides much larger spatial coverage

to measure precipitation than the point measurements provided by gauges. However, radar

coverage is limited to developed regions that have a high population. In addition, they sense

the real rainfall rate at a certain observational level above ground. Therefore, the presence of

weather stations is required for the calibration and correction processes (Martens et al. (2013)).

Nowadays, satellite products are available at the global scale and can cover large areas at high

spatial and temporal resolutions and near real time coverage. They are mainly suitable for

rainfall estimation in the tropics and data sparse regions. However, satellites are relatively

insensitive and generally miss a significant quantity of light precipitation and tend to fail over

snow and ice-covered surfaces (Tian et al. (2009)). Some studies evaluated the uncertainties

of these datasets and showed that high resolution satellite products perform better when bias

corrected using gauge observations (Xie et al. (2007); Awange et al. (2016)).

Retrospective-analysis / reanalysis systems are vital sources of data in weather and climate

studies. A typical reanalysis system consists of two main components, the forecast model

and the data assimilation system. The role of the data assimilation system is to integrate ob-

served databases of many sources of observations with the numerical weather forecast mod-

els to produce consistent gridded datasets (Di Luzio et al. (2008)). Although reanalysis are

not direct observations, they provide analyzed variables in areas where stations are minimal

(Bosilovich (2013)). Overall, no single precipitation product could be considered ideal for

measuring precipitation. In fact, all precipitation products tend to miss a significant volume of

rainfall (Behrangi et al. (2011)).

As discussed earlier, there is now a rather large number of gridded datasets from stations,

satellites, reanalysis or a combination thereof. However, not all those datasets can be used
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for climate change impact studies. Appropriate datasets would have the following desirable

characteristics: 1) spatial resolution (between 0.05◦ to 1◦); 2) daily scale or finer temporal

resolution, 3) long temporal coverage (30 years), and 4) all datasets should cover approxi-

mately the same time interval. Based on those criteria, nine precipitation and two temper-

ature gridded datasets were chosen in this study as shown in Table III-1. The precipitation

datasets include two gauged-only products (GPCC and CPC), two satellite products corrected

using ground-based observations (CHIRPS and PERSIANN), four reanalysis products (JRA55,

NCEP-CFSR, ERA-Interim and ERA5) and one merged product of gauge, satellite, and reanal-

ysis (MSWEP).

3.1.2 Temperature gridded datasets

Land surface temperature is a key variable for meteorological monitoring and forecasting ser-

vices (Nieto et al. (2011)). It is also a key variable for climate and hydrological studies. In

hydrological modelling, the air temperature is the key driving variable for the evapotranspira-

tion and snowmelt processes. Hence, accurate temperature data is a vital issue. However, the

lack of adequate gauge network can result in improper estimates of temperature. Therefore,

temperature gridded datasets are also crucial in many fields. Temperature products are gener-

ally thought to be less complex than precipitation datasets due to its much smaller spatial and

temporal variability. Therefore, much fewer studies have compared and evaluated the uncer-

tainty of using different temperature datasets. On this study, two temperature datasets have

been included: the gauge-based CPC dataset, and the ERA5 reanalysis.

3.1.3 Observed streamflow data

Streamflow records from the Global Runoff Data Centre (GRDC) were used to calibrate the hy-

drological models and evaluate the hydrological modelling performance. The GRDC database

has streamflow data from 1150 African stations. In this study, 850 stations were chosen based

on two criteria. First, stations should have data during the 1983-2012 study period. Second,
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Table-A III-1 The selected global gridded datasets

No. Short
Name

Data
Source

Spatial
Resolution

Spatial
Coverage

Temporal
Resolution

Temporal
Coverage

1- Precipitation

1 CPC Unified Gauge 0.5◦ Global Daily
1979-

Present

2 GPCC Gauge 1.0◦ Global Daily
1982-

2016

3
PERSIANN-

CDR (V1R1)

Gauge,

Satellite
0.25◦ ±60◦ Lat. 6 hourly

1983-

2012

4 CHIRPS V2.0
Gauge,

Satellite
0.05◦ ±50◦ Lat. Daily

1981-

Present

5 NCEP-CFSR Reanalysis 0.5◦ Global 6 hourly
1979-

2012

6 ERA-Interim Reanalysis 0.75◦ Global 3 hourly
1979-

8/2019

7 ERA5 Reanalysis 0.25◦ Global hourly
1979-

2017

8 JRA-55 Reanalysis 0.5625◦ Global 3 hourly
1959-

Present

9 MSWEP V1.2

Gauge,

Satellite and

Reanalysis

0.25◦ Global 3 hourly
1979-

2015

2- Temperature

1 CPC Unified Gauge 0.5◦ Global Daily
1979-

Present

3 ERA5 Reanalysis 0.25◦ Global hourly
1979-

2017

stations that have less than five years of consecutive data during this period were excluded. The

spatial distribution of these stations is shown in Figure III-1.

3.2 Hydrological model

In this study, the use of a distributed model was discarded due the scale of the study. The

lumped hydrological model HMETS (Martel et al. (2017)) was used to evaluate the perfor-

mance of the various climate datasets. This model has shown an overall good performance in a

wide range of climates and hydrological studies (Martel et al. (2017); Perrin et al. (2003); Ar-
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Figure-A III-1 Spatial distribution of the African 850

streamflow stations

senault et al. (2018)). The model requires daily precipitation, temperature and potential evap-

otranspiration (PET) as inputs. The Oudin’s temperature-based formula (Oudin et al. (2005))

was used to calculate PET as it has shown an overall good performance and robustness on

large-scale hydrological studies (Baguis et al. (2010)).

3.3 Hydrological model calibration

As will be detailed in the following section, the nine precipitation and two temperature datasets

were combined in their 18 possible arrangements for analysis purposes and the hydrologi-

cal model parameters were calibrated for each catchment and each dataset combination. The

15300 calibrations to be performed (9 precipitation datasets x 2 temperature datasets x 850

catchments) required the application of an automatic model parameter calibration method. For

this study, the CMAES algorithm was applied because of its flexibility (Hansen et al. (2003)).
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Moreover, it is considered as one of the best auto-calibration algorithms for hydrological mod-

elling (Arsenault et al. (2014)).

The Kling-Gupta Efficiency (KGE) calibration objective function was used to evaluate the

simulation performance. KGE is a modified version of the Nash-Sutcliffe Efficiency (NSE)

metric that was introduced by Gupta (Gupta et al. (2009)) and modified by Kling (Kling et al.

(2012)). It is defined as a combination of three elements; correlation, bias and variability as

shown in (equation III-1). Pearson’s correlation coefficient used to represent the correlation

component (r), the ratio of estimated and observed means used to calculate the bias component

(β ) and the ratio of the estimated and observed coefficients of variation represent the variability

component (γ).

KGE = 1−
√

(r−1)2 +(β −1)2 +(γ −1)2 (A III-1)

The theoretical value for KGE to be equal 1 means that there is a perfect fit between the

observed and simulated flows. Generally, KGE values above 0.6 are considered good.

4. Results and discussion

4.1 Analysis of precipitation and temperature

Figure III-2 presents mean annual temperature over the 1983-2012 period for the two selected

temperature datasets. Both datasets display the same temporal patterns. ERA5 is however sig-

nificantly warmer than CPC with a typical warm bias of 5-6 degrees over most of Africa. This

difference is very large and can potentially affect evapotranspiration. However, the specific

calibration of the hydrological model to each dataset has the potential to take this into account.

Regarding the precipitation datasets, to better present the differences between the products, the

bias in the mean annual precipitation was calculated between each individual dataset and the

average of all datasets as shown in Figure III-3. The average here is considered as the reference
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Figure-A III-2 Mean annual temperature for the two datasets

and the bias between them

Figure-A III-3 Mean annual precipitation for the average of the

all datasets (top left) and the bias from the average

bench mark. Since all the gridded datasets have different spatial resolution, the datasets were

first interpolated to the finest grid scale. A red color indicates that the dataset is wetter than the

average, while the blue color indicates it is dryer. Results show important differences between
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the different precipitation datasets. All the datasets are generally similar in the desert and semi-

desert regions but large differences are obvious in the tropical western and central regions.

Overall, the reanalysis (middle row) are wetter over the intertropical zone, with ERA5 being

much closer than the other three considered reanalysis. The CPC gauge-based dataset is much

drier than all other datasets. The large differences between both gauge-based datasets (CPC and

GPCC) outline the complexity of interpolating in data-spare regions. Differences between the

other datasets are comparatively smaller. In the absence of any reliable reference datasets, it is

difficult to interpret the differences observed here. While an outlier dataset (e.g. CPC) may lead

to suspicion, the limitations associated with each dataset does not allow for any firm conclusion.

This is why hydrological modeling is used as an indirect validation method in this study. Even

though streamflow gauges records do contain errors (Di Baldassarre & Montanari (2009)), in

the context of this study, they are considered as the most reliable source for validation of the

precipitation and temperature datasets.

4.2 Hydrological model simulations

This section presents the results obtained from the hydrological modelling simulations. Figure

III-4 shows the distribution of KGE scores for each of the 18 combinations of precipitation (9

sets) and temperature (2 sets). Each boxplot in Figure III-4 contains the KGE scores of all of

the catchments in this study.

Many conclusions can be drawn from Figure III-4. Both temperature datasets perform very

similarly across all precipitation datasets, although ERA5 gives very small but consistently

better results. Most of the differences observed in Figure III-4 therefore originate from the

precipitation datasets.

All precipitation datasets result in acceptable KGE median value larger than 0.5, showing they

can all be used for hydrological modeling. There are however large differences with some

datasets clearly outperforming others. The CPC and GPCC gauge-based datasets are outper-

formed by five datasets. The MSWEP merged-product is quite clearly the best-performing
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Figure-A III-4 KGE boxplots of simulated streamflows from 9

precipitation datasets and 2 temperature datasets (18

combinations) using the HMETS hydrological model

Figure-A III-5 Spatial distribution of KGE for nine precipitation

datasets and ERA5 temperature dataset
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precipitation dataset, followed by the CHIRPS satellite and the ERA-5 reanalysis datasets. The

ERA-I, CFSR and JRA reanalysis are the least-performing datasets in this study.

In order to study the impact of spatial variability, Figure III-5 present the spatial distribution of

KGE values for all nine precipitation datasets used in conjunction with ERA5 temperature.

The spatial patterns are consistent for all precipitation datasets. Hydrological modelling per-

formance is general quite good everywhere with the exception of South Africa. This could

either be due to less reliable streamflow records in this region or more likely to the hydrologi-

cal model difficulties in dealing with the arid climate of south Africa. Rainfall-runoff models

have long been known to have difficulties in such climates.

5. Conclusion

The main objective of this study was to evaluate the performance of nine precipitation and two

temperature datasets to simulate streamflows of 850 African catchments over the 1983-2012

period. The MSWEP merged-product dataset was clearly the best performing one, followed

by CHIRPS and ERA5 products, respectively. The performance of both gauged-only datasets

(CPC and GPCC) was inferior, outlining the limitations of extrapolating point-based measure-

ment in data-sparse regions. Both temperature datasets performed similarly.

6. Data Access

The CPC, GPCC and NCEP datasets can be downloaded from the Earth System Research

Laboratory (ESRL), available here:

https://www.esrl.noaa.gov/psd/data/gridded/tables/precipitation.html.

ERA-Interim, ERA5 and JRA55 datasets are available on the Research Data Archive:

https://rda.ucar.edu/datasets/ds628.0/.

MSWEP data are available through the PCA servers at:

https://platform.princetonclimate.com/PCA_Platform/mswepRetro.html.
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The CHIRPS satellite dataset can be downloaded from the Climate Hazards Center:

https://www.chc.ucsb.edu/data/chirps.

Finally, the HMETS hydrological model is available on the MATLAB File Exchange:

https://www.mathworks.com/matlabcentral/fileexchange/48069-hmets-hydrological-model.
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Abstract. Climate change impact studies require a reference climatological dataset provid-

ing a baseline period to assess future changes and post-process climate model biases. High-

resolution gridded precipitation and temperature datasets interpolated from weather stations are

available in regions of high-density networks of weather stations, as is the case in most parts

of Europe and the United States. In many of the world’s regions, however, the low density

of observational networks renders gauge-based datasets highly uncertain. Satellite, reanaly-

sis and merged products dataset have been used to overcome this deficiency. However, it is

not known how much uncertainty the choice of a reference dataset may bring to impact stud-

ies. To tackle this issue, this study compares nine precipitation and two temperature datasets

over 1145 African catchments to evaluate the dataset uncertainty contribution to the results

of climate change studies. These datasets all cover a common 30-year period needed to de-

fine the reference period climate. The precipitation datasets include two gauged-only products

(GPCC, CPC Unified), two satellite products (CHIRPS and PERSIANN-CDR) corrected us-

ing ground-based observations, four reanalysis products (JRA55, NCEP-CFSR, ERA-I, and

ERA5) and one gauged, satellite, and reanalysis merged product (MSWEP). The temperature

datasets include one gauged-only (CPC Unified) product and one reanalysis (ERA5) product.

All combinations of these precipitation and temperature datasets were used to assess changes

in future streamflows. To assess dataset uncertainty against that of other sources of uncer-

tainty, the climate change impact study used a top-down hydroclimatic modeling chain using
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10 CMIP5 GCMs under RCP8.5 and two lumped hydrological models (HMETS and GR4J)

to generate future streamflows over the 2071-2100 period. Variance decomposition was per-

formed to compare how much the different uncertainty sources contribute to actual uncertainty.

Results show that all precipitation and temperature datasets provide good streamflow simula-

tions over the reference period, but 4 precipitation datasets outperformed the others for most

catchments: they are, in order: MSWEP, CHIRPS, PERSIANN, and ERA5. For the present

study, the 2-member ensemble of temperature datasets provided negligible levels of uncer-

tainty. However, the ensemble of nine precipitation datasets provided uncertainty that was

equal to or larger than that related to GCMs for most of the streamflow metrics and over most

of the catchments. A selection of the best 4 performing reference datasets (credibility ensem-

ble) significantly reduced the uncertainty attributed to precipitation for most metrics, but still

remained the main source of uncertainty for some streamflow metrics. The choice of a ref-

erence dataset can therefore be critical to climate change impact studies as apparently small

differences between datasets over a common reference period can propagate to generate large

amounts of uncertainty in future climate streamflows.

Keywords: Gridded datasets, precipitation, temperature, uncertainty, reanalysis products, stream-

flow simulation, hydrological modeling, African catchments.

1. Introduction

General Circulation Models/Earth System models (ESM) /Global Climate Models (GCMs) are

the primary tools used to simulate the response of the global climate system to increases in

greenhouse gas concentrations and to generate future climate projections. GCMs are complex

mathematical representations of the physical and dynamical processes governing atmospheric

and oceanic circulations as well as the interactions with the land surface. In order to reduce

the computation burden, which can be considerable, GCMs represent the earth with a grid

having a relatively coarse spatial resolution (IPCC (2001)). Consequently, GCM projections

cannot be used directly for fine scale climate impact studies. Statistical/empirical or dynam-
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ical downscaling techniques have thus commonly been used to address this scale mismatch.

In addition, climate model outputs are always biased, and the extent of these biases can be

evaluated through a comparison against observations over a common reference period. A bias

correction procedure is therefore generally performed in addition to the downscaling step, and

biases are assumed to be invariant in time when the correction is applied to future climate pro-

jections (Velázquez et al. (2015)). Although a two-step downscaling bias correction approach

is preferable in most cases, a single instance of bias correction is sometimes used to account

for both scale mismatch and GCM biases. While this may be acceptable when the scale dif-

ference is small (e.g., when using catchment averaged values), recent studies have shown that

bias correction has limited downscaling skills (Maraun (2016)).

Statistical downscaling and bias correction approaches primarily rely on hydrometeorological

observations over a historical reference period. It is therefore primordially important that the

observed reference dataset represents the true climate state as closely as possible. For this task,

ground stations remain the standard and most accurate/trusted source of weather data (New

et al. (2001); Nicholson (2013)). However, the spatial distribution of these stations varies

widely across the globe, and coverage is often sparse and even deficient in many parts of the

world outside of Europe and the US. Even in well-covered regions, gauge data is subject to

many problems, such as missing data, precipitation undercatch and inhomogeneities related to

a variety of issues such as equipment change, station relocation and land surface modifications

near each station (Kidd et al. (2017); Peterson et al. (1998)).

In recent decades, extensive efforts have been devoted to the development and improvement of

gridded global and quasi-global climate datasets to overcome the limitations of gauge stations.

These datasets provide meteorological record time series with continuous spatiotemporal cov-

erage, and typically, no missing data. However, various error sources are inherent in these

datasets, thus also bringing uncertainty to the data (Voisin et al. (2008)). Thus, choosing an

appropriate reference dataset for climate change impact studies is an important concern, and

especially so in regions with sparse ground station coverage.
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According to Huth (2004): “For estimates based on downscaling of General Circulation Model

(GCM) outputs, different levels of uncertainty are related to: (1) GCM uncertainty or inter-

model variability, (2) scenario uncertainty or inter-scenario variability, (3) different realizations

of a given GCM due to parameter uncertainty (inter-model variability) and (4) uncertainty due

to downscaling methods”. In most climate change impact studies, it is generally assumed that

GCMs are the major source of uncertainty (Mpelasoka & Chiew (2009); Kay et al. (2009); Vet-

ter et al. (2017)). (Rowell (2006)) compared the effect of different sources of uncertainty using

the initial condition ensembles of different General Circulation Models (GCMs), Greenhouse

Gas Emission Scenarios (GHGESs) and Regional Circulation Models (RCMs) on changes in

seasonal precipitation and temperature in the United Kingdom. The results indicated that the

largest uncertainty comes from the GCM choice. (Minville et al. (2008)) used ten equally-

weighted climate projections derived from a combination of five GCMs, two GHGESs and

the change factor approach for downscaling to investigate the uncertainty envelope of future

hydrologic variables. Their results showed that the uncertainty related to the GCM choice is

dominant. These results have also been confirmed by several studies (Prudhomme & Davies

(2009); Nóbrega et al. (2011); Dobler et al. (2012)). Other studies have assessed other sources

of uncertainty such as Greenhouse Gases Emission Scenarios (GHGESs) (Prudhomme et al.

(2003); Kay et al. (2009); Chen et al. (2011a)), the downscaling method (Wilby & Harris

(2006); Khan et al. (2006)) and hydrological modeling (Bae et al. (2011); Vetter et al. (2017)).

Recent studies have also looked at the uncertainty related to the choice of the impact model

(Giuntoli et al. (2018); Krysanova et al. (2018)). From these studies, a more complex pic-

ture emerges, in which the main source of uncertainty may vary, depending on geographical

location and metric under study. Dataset uncertainty has been assessed in numerous studies ei-

ther by direct inter-comparison between datasets (Vila et al. (2009); Andermann et al. (2011);

Romilly et al. (2011); Jiang et al. (2012); Chen et al. (2014); Prakash et al. (2018); Nash-

wan & Shahid (2019)) or by using hydrological modeling (Behrangi et al. (2011); Beck et al.

(2017b); Wu et al. (2018); Zhu et al. (2018); Tarek et al. (2019)). However, to the best of our

knowledge, the uncertainty of gridded datasets has not been evaluated against other sources of

uncertainties when performing climate change impact studies. The objective of this study is
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therefore to assess the impact of the choice of a given reference dataset on the global uncer-

tainty chain of climate change impact studies. Since this is of particular concern to regions

with sparse weather station coverage, this study is conducted over Africa.

2. Study Region and data

2.1 Study Region

2.1.1 Geographic situation

Africa is the second largest and second most-populous continent in the world. It covers a land

area of about 30.3 million km2, including adjacent islands, which represents 6% of Earth’s

total surface area and 20.4% of its total land area (Mawere (2017)). Deserts and dry lands

cover 60% of its entire surface (Prăvălie (2016)). The average elevation of Africa is almost

600 m above sea level, roughly close to the average elevations of North and South America

(Atrax, 2016). Generally, higher-elevation areas lie to the east and south, while a progressive

decrease in altitude towards the north and west is apparent.

The African continent can be divided into 25 major hydrological basins (Karamage et al.

(2018)). Generally speaking, the main drainage for all of the continent’s basins is towards

the north and west, and ultimately, into the Atlantic Ocean. About 95% of its streams are

drained through permanent rivers. In some arid areas (i.e., Northwest Sahara Desert), drainage

is sometimes absent or masked by sand seas (Karamage et al. (2018)). Roughly, 60% of the

African continent is drained by 10 large rivers (Congo, Limpopo, Niger, Nile, Ogooue, Orange,

Senegal, Shebelle, Volta and Zambezi) and their tributaries (Paul et al. (2014)).

2.1.2 Climate profile

Africa is the hottest continent on earth, and is the area that has seen the highest ever recorded

land surface temperature (58 ◦C in Libya; El Fadli et al. (2013)). The continent is characterized

by highly variable climates that range from tropical to subarctic on its highest peaks. According
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to the Koppen climate classification (Köppen (1900)), the northern half is mainly classified as

dry (group B) whereas the central and southern areas contain both savannah plains and dense

forests with tropical and humid subtropical climates (groups A and C) with a semi-arid climate

in-between (El Fadli et al. (2013)). These wide climate ranges are characterized by a wide

variety of precipitation extremes, including droughts and floods. Droughts occur mostly in the

Sahel and in some parts of Southern Africa, whereas flooding is most prevalent in the southern

and eastern regions.

2.2 Data

This project used several datasets built from climate models, observed precipitation, temper-

ature and streamflow, as well as catchment boundaries. These are described in the following

four sub-sections.

2.2.1 General Circulation Models (GCMs)

All GCMs used in this study were part of the Coupled Model Intercomparison Project Phase

5 (CMIP5) (Taylor et al. (2012)). Long historical climate simulations (1850–2005) and future

climate projections (up to 2100 and beyond) for four Representative Concentration Pathways

(RCPs) are included in the CMIP5 database.

Ten CMIP5 GCMs from 10 different modeling centers were selected for this study, as shown

in Table IV-1. They were selected as a subset of the GCMs used to set up the NAC2H database

(Arsenault et al. (2020)). The number of GCMs (10) was selected as a compromise between

having an accurate representation of GCM climate sensitivity variability and keeping the large

computational burden of this project reasonable. All GCM data was extracted over the 1983-

2012 and 2071-2100 future periods under the (RCP8.5) emission scenario.
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Table-A IV-1 List of chosen GCMs, research centres

and spatial resolutions

No. Models Research
Center

Spatial
Resolution

1 BCC-CSM1-1

Beijing Climate Center,

China Meteorological Administration,

China

2.79◦ x 2.81◦

2 BNU-ESM

College of Global Change and Earth System

Science, Beijing Normal University,

China

2.79◦ x 2.81◦

3 CanESM2
Canadian Center for Climate Modeling

and Analysis, Canada
2.79◦ x 2.81◦

4 CCSM4
National Center of Atmospheric Research,

USA
0.94◦ x 1.25◦

5 CMCC-CESM
Centro Euro-Mediterraneo per I Cambiamenti

Climatici, Italy
3.44◦ x 3.75◦

6 CNRM-CM5
National Center of Meteorological Research,

France
1.40◦ x 1.40◦

7 FGOALS-g2

LASG, Institute of Atmospheric Physics,

Chinese Academy of Sciences,

China

2.79◦ x 2.81◦

8 INMCM4
Institute for Numerical Mathematics,

Russia
1.5◦ x 2.0◦

9 MIROC5

Atmosphere and Ocean Research Institute

(The University of Tokyo), National Institute

for Environmental Studies, and Japan Agency

for Marine-Earth Science and Technology,

Japan

1.40◦ x 1.40◦

10 MRI-CGCM3
Meteorological Research Institute,

Japan
1.12◦ x 1.125◦

2.2.2 Gridded precipitation and temperature datasets

The precipitation and temperature dataset selection was made on the basis of a high spatial res-

olution, daily (or better) temporal resolution, and of the availability of at least 30 years of data

covering the same time period, in order to properly define the reference climate. Some recent

datasets that provide global/near-global rainfall information at finer spatial and temporal res-

olutions (e.g. the GPM Integrated Multisatellite Retrievals (IMERG) (Huffman et al. (2015)),
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Table-A IV-2 The selected global gridded datasets

No. Short
Name

Data
Source

Spatial
Resolution

Spatial
Coverage

Temporal
Resolution

Temporal
Coverage

1- Precipitation

1 CPC Unified Gauge 0.5◦ Global Daily
1979-

Present

2 GPCC Gauge 1.0◦ Global Daily
1982-

2016

3
PERSIANN-

CDR (V1R1)

Gauge,

Satellite
0.25◦ ±60◦ Lat. 6 hourly

1983-

2012

4 CHIRPS V2.0
Gauge,

Satellite
0.05◦ ±50◦ Lat. Daily

1981-

Present

5 NCEP-CFSR Reanalysis 0.5◦ Global 6 hourly
1979-

2012

6 ERA-Interim Reanalysis 0.75◦ Global 3 hourly
1979-

8/2019

7 ERA5 Reanalysis 0.25◦ Global hourly
1979-

2017

8 JRA-55 Reanalysis 0.5625◦ Global 3 hourly
1959-

Present

9 MSWEP V1.2

Gauge,

Satellite and

Reanalysis

0.25◦ Global 3 hourly
1979-

2015

2- Temperature

1 CPC Unified Gauge 0.5◦ Global Daily
1979-

Present

2 ERA-Interim Reanalysis 0.75◦ Global 3 hourly
1979-

8/2019

3 ERA5 Reanalysis 0.25◦ Global hourly
1979-

2017

and the Global Satellite Mapping of Precipitation (GSMaP) (Okamoto et al. (2005)) were left

out because their temporal coverage was too short to properly represent the mean climate over

the reference period.

According to above criteria, nine precipitation and two temperature datasets were selected for

this study. The precipitation datasets include two gauged-only products, two satellite products

corrected using ground-based observations, four reanalysis products and one gauge, satellite,
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and reanalysis merged product. The temperature datasets include one gauged-only and one

reanalysis product as shown in Table IV-2.

2.2.3 Observed streamflow data

The Global Runoff Data Centre (GRDC) archive is arguably the most complete global dis-

charge database providing free access to river discharge data (Fekete & Vörösmarty (2007)).

The database provides streamflow records collected from 9213 stations across the globe, with

an average temporal coverage of 42 years per station (Do et al. (2017)). It is operated un-

der the World Meteorological Organization (WMO) umbrella to provide broad hydrological

data to support the scientific research community. GRDC data has been widely used in vari-

ous hydrological studies, such as those examining hydrological model calibrations (Milliman

et al. (2008); Hunger & Döll (2008); Donnelly et al. (2010); Haddeland et al. (2011)), or as a

benchmark to compare simulated streamflows (Trambauer et al. (2013); Zhao et al. (2017)).

2.2.4 Watersheds boundaries data

HydroSHEDS (the Hydrological data and maps based on the SHuttle Elevation Derivatives

at multiple Scales database) is a freely available global archive, developed through a World

Wildlife Fund (WWF) program, that uses a hydrologically-corrected digital elevation model

to provide hydrographic information for regional and global studies (Lehner et al. (2008)).

In addition, it applies a consistent methodology using Geographic Information System (GIS)

technology to provide watershed polygons for more than 7000 GRDC gauging stations. Figure

IV-1 shows watershed polygon layers at different spatial scales for the African continent. The

vector layer (lev05), which consists of 1145 watersheds, was chosen to be used in this study.
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Figure-A IV-1 Sample of the different vector layers of

watersheds on the African continent. Each layer has a different

number of watersheds, depending on the required scale

3. Methodology

Figure IV-2 presents the methodological framework for this study. A large-sample hydrological

climate change impact study is performed over 1145 African catchments. It uses the standard

top-down approach in a modeling chain, which consists of 10 GCMs, 2 hydrological models,

2 temperature and 9 precipitation datasets, for a total of 360 possible combinations. A single

GHGES (RCP8.5), a single climate projection for each GCM and a single downscaling method

(see below) are used, since the focus of this work is not on conducting a complete uncertainty

chain study. The uncertainty related to the reference dataset will therefore be compared to

that of the climate model ensemble and against that of both hydrological models. For each

catchment, 360 30-year streamflow time series are generated for both the reference (1983-

2012) and future (2071-2100) time periods. Fifty-one streamflow metrics are computed for

each of these time series. An n-dimensional analysis of variance is performed to partition the

uncertainty linked to the 4 groups of components of the uncertainty modeling chain, as well as

their interactions.
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Figure-A IV-2 Overview of the various methodological steps

implemented in this study

A first set of 350 catchments were selected based on the availability of long-enough gauged

streamflow series. In order to include additional catchments to allow a better spatial cover-

age of the African continent, an additional 795 catchments were selected and an additional

regionalization step was performed to generate streamflows.
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Both hydrological models were calibrated on all catchments for all 18 combinations of refer-

ence datasets (2 temperature datasets x 9 precipitation datasets), for a total of 41,220 indepen-

dent hydrological model calibrations. The main methodological steps are described below in

Figure IV-2.

The watershed boundaries for the African continent were extracted from the HydroSHEDS

database. Streamflow records from the GRDC database were used to calibrate the hydrological

models and to evaluate the hydrological modeling performance. The GRDC database con-

tains streamflow data from 1150 African stations. In this study, only 350 stations were chosen

based on three criteria. First, stations should have data for the 1983-2012 study period. Sec-

ond, stations that have less than five consecutive years of data during this period were excluded.

Finally, all the stations should be compatible with the selected HydroSHEDS catchments. Con-

sequently, the 1145 catchments were divided into 350 gauged and 795 ungauged catchments.

The climatological data from 9 precipitation and 2 temperature datasets were then extracted for

each of the 1145 catchments.

3.1 Hydrological modeling

Given the large-scale nature of this study, distributed and physically-based models were not

considered. Two lumped hydrological models, GR4J and HMETS, were selected and calibrated

over each of the 350 gauged catchments. The two hydrological models have been shown to

perform well in a wide range of studies and over a wide range of climate zones (Arsenault

et al. (2018); Martel et al. (2017); Tarek et al. (2019); Valéry et al. (2014)).

3.1.1 The GR4J hydrological model

The GR4J (Génie Rural à 4 paramètres Journalier) model is a four-parameter lumped and con-

ceptual rainfall-runoff model (Perrin et al. (2003)). This model has shown overall good perfor-

mance in several studies across the globe (Aubert et al. (2003); Raimonet et al. (2018); Riboust

et al. (2019); Westra et al. (2014); Youssef et al. (2018)). The model requires daily precipita-

tion, temperature and potential evapotranspiration (PET) as inputs to simulate the streamflow.
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The Oudin formulation (Oudin et al. (2005)) was used in the present study to compute the daily

PET series as it was shown to be simple and efficient.

3.1.2 The HMETS hydrological model

The HMETS hydrological model (Hydrological Model – École de technologie supérieure; Mar-

tel et al. (2017)) is more complex than GR4J, with 21 model parameters. It has four reservoirs

(surface runoff, hypodermic flow from the vadose zone reservoir, delayed runoff from infiltra-

tion and groundwater flow from the phreatic zone reservoir). HMETS uses the same Oudin

PET formulation, but with scaling parameters to control the mass balance.

3.1.3 Hydrological model calibration

The nine precipitation and two temperature datasets were combined in their eighteen possible

arrangements for analysis purposes. Due to the large number of calibrations to be performed

(41,220 model calibrations), an automatic model parameter calibration approach was selected.

The Covariance Matrix Adaptation Evolution Strategy (CMAES) algorithm was chosen be-

cause of its flexibility and robustness (Hansen et al. (2003)). CMAES has been shown to be

one of the best and fastest automatic calibration algorithms available (Arsenault et al. (2014);

Yu et al. (2013)).

All 30 years were used for calibration, and no validation step was performed following the work

of Arsenault et al. (2018). They showed that validation and calibration skills are not necessar-

ily correlated, and that adding more years to the calibration dataset improves the hydrological

model performance and robustness. The calibration objective function was the Kling-Gupta ef-

ficiency (KGE) metric, introduced by Gupta et al. (2009) and modified by Kling et al. (2012).

It is defined as a combination of equally-weighted bias, variance and correlation aggregate met-

rics. The KGE values theoretically range from negative infinity, implying an extremely poor

performance of the model, all the way to one, suggesting a perfect performance. Pechlivani-
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dis & Arheimer (2015) divided the KGE values into three performance groups: Bad (KGE <

0.4), Acceptable (0.4 ≤ KGE < 0.7) and Good (KGE ≥ 0.7).

3.2 Regionalization

The transfer of hydrological information (i.e., model parameters or streamflow) from one catch-

ment (gauged) to another (ungauged) is known as “Regionalization” (Razavi & Coulibaly

(2013)). Regionalization can be conducted using two methods: 1) rainfall-runoff models/model-

dependent method, which typically transfers the model parameters from one or more gauged

watersheds to an ungauged watershed, and 2) hydrological model-independent methods, which

transfer the streamflow directly from gauged to ungauged watersheds (Razavi & Coulibaly

(2013)). In this paper, the model-dependent method was applied as it has been used in sev-

eral studies and has shown acceptable results (Merz & Blöschl (2004); McIntyre et al. (2005);

Boughton & Chiew (2007); Cutore et al. (2007); Samaniego et al. (2010); Beck et al. (2016);

Arsenault & Brissette (2014b); Saadi et al. (2019)).

The three approaches, namely, the spatial proximity (S.P), physical similarity (P.S) and multi-

linear regression (MLR) methods (Oudin et al. (2008)), have been used to estimate the model

parameters in ungauged catchments. First, the three approaches were tested to find the best

method to apply. Then, the best-performing precipitation-temperature datasets combination

were used to feed the hydrological models and simulate the streamflow of the ungauged catch-

ments. Based on the hydrological modeling performance on the 350 gauged catchments, the

MSWEP precipitation and ERA5 temperature datasets were found to be the best combination

used in computing the streamflow for the 795 ungauged catchments.

3.3 Bias correction

In this study, the N-dimensional multivariate bias correction algorithm (MBCn) was used (Can-

non (2018)). MBCn is an image processing technique extension that preserves the change

between the historical and projected periods for all quantiles of the distribution. The algo-

rithm consists of three main steps: (1) application of an orthogonal rotation to both model
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and observational data; (2) correction of the marginal distributions of the rotated model data

using quantile mapping, and (3) application of an inverse rotation to the results. These three

steps are repeated until the model distribution matches the observational distribution. MBCn

is arguably the best-performing quantile-based method available (Adeyeri et al. (2020); Meyer

et al. (2019)).

3.4 Variance analysis

An n-dimensional analysis of variance was performed for the 51 streamflow metrics defined

in Arsenault et al. (2020) for each of the 1145 catchments. These metrics cover a wide range

of streamflow conditions: mean annual, seasonal and monthly values, distribution quantiles,

as well as low- and high-flow extreme metrics. A variance was attributed to each of the four

groups under study, namely, GCM, precipitation dataset, temperature dataset and hydrological

model. A total of 11 variance components were computed: 4 main effect components, 6 first-

order, 3 second-order, and 1 third-order interaction components.

4. Results

This section outlines the main findings of the work. Figure IV-3 presents the calibration re-

sults for both hydrological models using all possible combinations of the 9 precipitation and

2 temperature datasets. Each boxplot consists of 350 KGE values corresponding to the cali-

bration result for each of the 350 selected gauged catchments. Each box extends from the 25th

quantile to the 75th quantile, with the median displayed as the red line within that range. The

top and bottom whiskers (where shown) represent highest and lowest values. Red crosses are

considered statistical outliers.

Results show that both hydrological models perform well, but that there are important dif-

ferences between datasets. HMETS performs better than GR4J, with respective overall mean

KGEs of 0.58 and 0.41. All the precipitation and temperature datasets result in acceptable

median KGE simulations Pechlivanidis & Arheimer (2015).
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Both temperature datasets perform very similarly across all combinations, with ERA5 gen-

erally slightly outperforming CPC. Figure 3 clearly shows that most of the variability seen

originates from the precipitation datasets. Four precipitation datasets are ahead of the field.

They are, in order of performance: the merged product MSWEP, followed by the two satel-

lite datasets; CHIRPS and PERSIANN, and the ERA5 reanalysis dataset. The gauge-based

precipitation datasets (e.g., GPCC and CPC), and the ERA-I reanalysis follow with a similar

performance. Finally, the CFSR and JRA55 reanalysis are the worst-performing products for

hydrological model calibration.

Figure-A IV-3 KGE calibration values using the 18 possible

combinations of precipitation and temperature datasets, for both

hydrological models (GR4J in blue and HMETS in green) for

each of the 350 selected gauged catchments

Table IV-3 presents the main results of the analysis of variance for the 2071-2100 period for the

gauged catchments. It shows the relative variance for all main effect (P, GCM, temperature (T)

and HM), first-order interactions of the four components of uncertainty under study, and for 6

streamflow metrics (shown in rows 5 to 10). The variance originating from second- and third-

order interactions are summed up and presented in the last row. QQ5 and QQ95 are respectively
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the 5th and 95th quantiles of streamflow distribution. QX1 is the 30-year mean of the annual

daily maximum streamflow value. Results show that most of the variance consistently comes

from 5 sources, for all 6 streamflow metrics. They are: precipitation datasets (P), GCMs,

hydrological models (HM), interactions between precipitation datasets and GCMs (P-GCM)

as well as interactions between precipitation datasets and hydrological models (P-HM). The

colored-rows outline the main contributors to variance.

Table-A IV-3 Mean percentage of variance for 6 streamflow

metrics for 350 gauged catchments

Mean Q Winter Q Summer Q QQ5 QQ95 QX1 Average
P 21.62 24.12 28.54 34.38 23.17 22.36 25.70

GCM 39.71 24.93 27.29 4.39 39.56 25.82 26.95

T 0.17 0.12 0.09 0.02 0.15 0.04 0.09

HM 5.18 8.43 19.99 21.96 5.59 5.50 10.11

P-GCM 21.55 25.19 10.20 3.42 16.01 26.33 17.12

P-T 0.02 0.01 0.02 0.01 0.02 0.01 0.015

P-HM 7.38 9.72 14.69 31.12 8.17 8.78 12.31

GCM-T 0.01 0.01 0.006 0.0018 0.017 0.005 0.008

GCM-HM 1.30 2.13 1.44 1.36 2.49 3.49 2.04

T-HM 0.0087 0.0098 0.0069 0.0041 0.0189 0.0058 0.009

Others 2.78 5.20 3.46 2.99 4.60 7.58 4.43

Table IV-3 indicates that both the precipitation datasets and GCMs are the main contributors to

variance, including through interactions (P-GCM). The hydrology models also generate some

uncertainty, and in particular, through interaction with the precipitation datasets. All metrics

exhibit a similar pattern, with the exception of the low-flow metric (QQ5), where precipitation,

hydrological models and their interaction components (P-HM) are dominant, and for which

GCM uncertainty is minimal. In almost all cases, the five highlighted components represent

approximately 85% of the total variance. The average amount of variance introduced by both

temperature datasets is less than 0.25% for all 6 different streamflow metrics.

To show cross-catchment variability, Figure IV-4 shows boxplots of the relative variance attri-

bution results for the 5 main contributors to variance, as identified in Table IV-3, and for the
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same 6 streamflow metrics. The results are also decomposed into three parts: all 1145 catch-

ments (A), as well as the 350 gauged (G) and 795 ungauged (U) catchments, in order to ensure

that the regionalization process does not introduce undesirable effects on the results.

Figure-A IV-4 Boxplots of the relative variance attribution

results for the five main contributors to overall variance

(P, GCM, HM, P-GCM and P-HM) and 6 streamflow metrics.

Relative variance is shown for all 1145 catchments: (A), 350

gauged (G) and 795 ungauged (U) catchments

Figure IV-4 shows that the response of the gauged and ungauged catchments is very similar

across all variance components and streamflow metrics, and that no major variance artifact is

introduced by the regionalization step. Consequently, all further results will only be shown for

all 1145 catchments, with no differentiation made between the gauged and ungauged ones.

The results show that there is considerable across-catchment variability, as shown by the extent

of the boxplots, with GCM and P-GCM interaction being the most important, and most variable

contributors to variance. As was shown in Table IV-3, the low-flow metric displays a pattern

that is much different from the other five metrics, with HM being important and GCM, being

the lowest. There is a relatively large difference between the two metrics representing high
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flows (Q95 and Q1X). While GCM dominates the former, a much larger part of the uncertainty

is transferred to the precipitation dataset (P and P-GCM) for the latter.

In order to study the impact of spatial variability, Figure IV-5 presents the spatial distribution

of the relative variance attribution for the five main contributors to variance of Table 3 and all

6 streamflow metrics. Mean Q, Winter Q, QX1 and QQ95 display somewhat similar spatial

patterns. Summer Q and QQ5 metrics display somewhat similar spatial patterns. The largest

precipitation uncertainty (P and P-GCM interactions) is found in the northern parts of Sub-

Saharan Africa, between 0 and 30 ◦N. GCM uncertainty appears to be larger all around the

coastlines of Africa. Hydrological model uncertainty is strongest for QQ5, but spatial patterns

are fairly consistent across all 6 streamflow metrics. GCM uncertainty is strongly different

for both Summer Q and Winter Q, likely because of the monsoon pattern. Above 20◦N, there

is generally less than 100 mm of total annual precipitation, and some level of care should

therefore be taken when analyzing results in relative contribution to variance.

In other words, a variance analysis of a metric with very little absolute variance could be

misleading. Consequently, Figure IV-6 displays the standard deviation of the 360 streamflow

values computed for each streamflow metric and for each watershed. The streamflow value for

each metric is normalized per unit area to allow for a comparison of large and small water-

sheds in the same figure. Not surprisingly, the results demonstrate a larger variance along the

equatorial band, where precipitation is largest. This pattern is particularly clear for the QQ95

high-flow metric. The catchment database is, however, large enough to show some catchments

which exhibit a large variance, even in arid regions above 20◦N and below 20◦S.

Since some precipitation datasets are clearly better than others based on the hydrological model

calibration results, it may not be entirely fair to compare precipitation uncertainty to GCM

uncertainty. To investigate this further, the uncertainty contribution obtained when using all

9 precipitation datasets is compared to that of 3 sub-ensembles, as presented in Table IV-4.

While ensemble 4 is composed of the clearly best-performing datasets for model calibration,
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Figure-A IV-5 Spatial distribution of the five main contributors

to variance for each of the 6 streamflow metrics

the main goal here is to investigate the impact of dataset selection, not the definition of a

credibility ensemble, as will be further discussed later.

Figure IV-7 presents the boxplots of percentages of variance for each catchment, for the five

main contributors to variance for all 4 precipitation dataset ensembles of Table IV-4. Unsur-

prisingly, it shows that reducing the size of the precipitation ensemble results in a consistent

decrease in the variance attributed to precipitation. Most of this reduction in variance comes

from the P-GCM interaction term, although there is also a noticeable decrease in the main
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Figure-A IV-6 Standard deviation of discharge per unit area

(in m3/sec/km2), constructed from 360 values for each catchment

and streamflow metric

Table-A IV-4 List of ensembles of the different

precipitation datasets

Ensemble
Number of

precipitation
datasets

Rationale
for

selection

Datasets
included

Datasets
excluded

1 9 All 9 All None

2 7 Mean KGE≥0.65

MSWEP, CHIRPS,

PERSIANN, ERA5

GPCC, CPC,

and ERA-I

CFSR,

and JRA55

3 4

Best of each

category (merged,

satellite, gauge,

and reanalysis

MSWEP, CHIRPS,

GPCC, and ERA5

PERSIANN,

CPC, ERA-I,

CFSR,

and JRA55

4 4 Best 4
MSWEP, CHIRPS,

PERSIANN, and ERA5

GPCC,

CPC, ERA-I,

CFSR,

and JRA55

effect P component. The lost precipitation variance is transferred mostly to GCMs, and to a

lesser extent, to hydrological modeling. The exception is the low-flow QQ5, where most of the

variance is transferred to HM. Most of the drop observed is obtained by dropping the five worst
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precipitation datasets, as no significant difference is observed between precipitation ensembles

3 and 4. Even in a reduced ensemble, precipitation datasets still provide between 10 to 20% of

median variance, and more than 30% for the low-flow metric (QQ5) when taking into account

the main effect and first-order interaction term.

Figure-A IV-7 Boxplots of the five main components of the

variance attribution: precipitation (P), GCMs (G), hydrological

models (H), interaction between precipitation datasets and GCMs

(PG) and interaction between precipitation datasets and

hydrological models (PH). Columns represent the four

precipitation ensembles of Table IV-4, while rows represent the 6

hydrological indices investigated in this study

Figure IV-8 presents the spatial distribution of the relative variance attribution for each of the 6

streamflow metrics after including only the four best overall precipitation datasets (Ensemble

4 of Table 4). This is the same as Figure IV-5, but with a reduced precipitation ensemble.
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Results outline that GCM uncertainty is the dominant source of uncertainty when using the

reduced precipitation ensemble, with the exception of the low-flow metric, for which precipita-

tion uncertainty remains dominant. There are, however, significant interactions between GCM

and precipitation for all metrics, especially in the northern half of the continent. Otherwise, the

observed spatial patterns are similar to the ones presented in Figure IV-5.

Figure-A IV-8 Spatial distribution of the five main contributors

to variance for each of the 6 streamflow metrics, using the 4 best

precipitation datasets (Ensemble 4 of Table IV-4)

5. Discussion
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Defining a reference climate dataset is an important but difficult task. A reference climate

dataset is used as a benchmark for monitoring environmental changes and correcting climate

model biases of future climate projections to assess future impacts of a changing climate. Data

from weather stations is still mostly considered to be the most accurate representation of the

current climate, despite suffering from several important issues, such as precipitation under-

catch and inhomogeneities (Peterson et al. (1998)). To allow for regular data coverage and

remove missing data, it is now common practice to interpolate station data onto a regular grid.

Such gridded datasets greatly simplify the processing of meteorological data for environmental

studies at the regional, continental and global scales. However, even in regions with a good

weather station coverage, gridded datasets using the same underlying data differ due to the dif-

ferent interpolation methods (Essou et al. (2016a)), and typically see an increase in the number

of wet days and a decrease in the frequency of extreme events (Ensor & Robeson (2008)). In

regions with scarce weather station coverage (such as Africa), interpolation becomes extrapo-

lation, and is therefore potentially highly unreliable. In such cases, environmental studies have

had to rely on additional sources of data, such as satellite and atmospheric reanalysis for envi-

ronmental studies. Several inter-comparison studies have been done (e.g., Beck et al. (2017b);

Essou et al. (2017)), including over Africa (Satgé et al. (2020); Dembélé et al. (2020)). These

studies outline a complex picture in which performance depends on scale, climate and data

source, and for which no dataset consistently outperforms all of the others. Because of this,

in data-sparse regions such as Africa, there is not only no commonly agreed upon reference

dataset, but even no agreement on the optimal source of climate data (e.g., satellite vs. re-

analysis), and different environmental studies have used completely different datasets. This is

particularly problematic for climate change impact studies since there is no knowledge on how

dataset uncertainty may propagate in the typical hydroclimatic modeling chain. The results

presented in this study attempt to answer this question by comparing dataset uncertainty to

other sources of uncertainty, such as that derived from GCMs.

Results show that most of the dataset uncertainty originates from precipitation. Temperature

displays much smaller spatial and temporal variability than precipitation, and can therefore
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be a lot more reliably interpolated using the adiabatic lapse rate to account for elevation and

terrain orientation in mountain areas. Precipitation interpolation is a much more challenging

problem, which explains why most dataset intercomparison work has focused on this variable.

Based on KGE performance over a common reference period, all nine precipitation datasets

performed adequately in terms of hydrological modeling performance, but some clearly per-

formed much better than others. This is in agreement with the results of Beck et al. (2017b)

and Beck et al. (2019). The uncertainty contribution of datasets to future streamflow uncer-

tainty was first evaluated using all 9 precipitation datasets, in conjunction with 2 temperature

datasets, a sample of 10 GCMs and two hydrological models, for a total of 360 possible ele-

ment combinations. While this is a relatively large sample, not all sources of uncertainty were

accounted for. In particular, GHGESs, downscaling and bias correction were not included

in the analysis. In comparison, the North American Climate Change and Hydroclimatology

Dataset (NAC2H) database (Arsenault et al. (2020)) offers 16,000 combinations allowing ex-

amining future streamflow uncertainty. In this regard, the relative variance contribution of the

climate dataset is best examined in comparison to that of GCMs, the most studied source of

climate change impact uncertainty. Results outline the important, and in some cases, dominant

contribution of the precipitation dataset to the overall uncertainty of future streamflows. For all

6 streamflow metrics presented here, the precipitation dataset uncertainty was comparable and

sometimes larger than that of GCMs.

Uncertainty contribution was then studied by retaining subsets of precipitation datasets, elimi-

nating the least performing ones with respect to the chosen KGE metric. This follows the con-

cept of a credibility ensemble based on carefully selecting the best/most robust components

of the hydroclimatic modeling chain, in order to obtain the most credible uncertainty range

(e.g., Brissette et al. (2020); Giuntoli et al. (2018); Maraun et al. (2017)). Results demonstrate

a large decrease in contribution to uncertainty for 5 of 6 streamflow metrics. The precipita-

tion dataset remained the largest contributor to uncertainty for the low-flow metric, and still

accounted for 10 to 20% of the total variance for the other metrics. Most of the decrease in
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uncertainty was obtained by dropping the worst-performing datasets, rather than keeping the

best-performing ones.

The results presented here indicate that hydrological model uncertainty is relatively small,

with the exception of the low-flow metric. These results should be taken with caution because

only two hydrological models were used, and also because they both share the same potential

evapotranspiration (PET) formula. For climate change impact studies, the climate sensitivity

of PET is now thought to be an important source of uncertainty for impact studies (Clark et al.

(2016); Brissette et al. (2020)), and the importance of hydrological model uncertainty has been

outlined in many studies (Vetter et al. (2017); Krysanova et al. (2018); Giuntoli et al. (2018)).

It is therefore likely that the contribution of hydrological models is underestimated here.

The selection of the best-performing precipitation dataset was evaluated over a reference period

using the single metric of the KGE criterion. This criterion is considered to be a good metric as

it weighs bias, correlation and RMSE between simulation and observations, all rightfully con-

sidered to be important attributes of a good hydrological simulation. There are, however, many

other metrics that could have been chosen to perform this comparison, some of which might

be even more important for specific applications such as floods or low flows. For example, the

JRA55 and CFSR reanalyses were at the bottom of the list of the best-performing datasets pre-

sented here. However, in other studies, JRA55 was shown to provide the best reanalysis (Odon

et al. (2019)), while CFSR was successfully used for precipitation modeling (Khedhaouiria

et al. (2018)). Clearly, the results presented in this paper should only be used as intended (i.e.,

to study uncertainty related to the choice of a reference climate dataset), and not as a judgment

of the absolute performance of each dataset. As mentioned earlier, it is important to keep in

mind that all of the datasets used in this paper generate adequate streamflow simulations.

It is recommended that reference dataset uncertainty be included in climate change impact

studies, and especially so in regions with a sparse network of weather stations. We believe

that climate dataset uncertainty can be minimized for most streamflow metrics using a careful

validation and selection of the best-performing ones. A dataset ensemble should nonetheless
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be retained to assess the sensitivity of the impact study to the choice of a reference dataset.

As is the case for most other elements of the hydroclimatic modeling chain of future climate

change impacts, there is ‘no free lunch’ in the sense that there is no single recipe, which will be

applicable in all cases. Climate dataset performance is spatially-dependent, as shown here and

other studies, and will depend on the criteria used to assess said performance. In addition, the

relative uncertainty contribution also depends on the catchment location and streamflow metric

under study. The importance of first-order interactions in variance analysis, and especially of

interactions between precipitation datasets with GCMs and with the hydrology models testify

to the complex nature of the propagation of uncertainties in the hydroclimatic modeling chain.

The use of an appropriate credibility climate dataset ensemble is therefore more than likely to

be catchment-related and metric-dependent, and some minimum level of upstream validation

would be needed to select the best components.

6. Conclusion

The main objective of this study was to assess the uncertainty related to the choice of a ref-

erence dataset against that of other sources of uncertainty in climate change impact studies.

This was achieved by performing a large-sample hydrological climate change impact study

over 1145 African catchments. The study used 9 precipitation and 2 temperature datasets,

along with 10 GCMs and 2 hydrological models, for a total of 360 possible combinations.

Temperature dataset-related uncertainty was minimal; with a median relative contribution to

uncertainty, less than 0.25% for all 6 presented streamflow metrics. On the other hand, the

nine precipitation dataset ensembles generated a future uncertainty equal to or larger than that

related to GCMs. Using a reduced ensemble of the best-performing precipitation datasets sys-

tematically reduced the precipitation dataset uncertainty, but still accounted for 10 to 20% of

the total variance for 5 of the 6 streamflow metrics, and still remained the main source of un-

certainty for the low-flow metric. The main conclusion of this study is that the choice of a

climate reference dataset can induce significant uncertainty in climate change impact studies,

at least in regions with a sparse weather station coverage.
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