

An Open-Source PACS Model for University Hospitals

by

Hamidreza GHADERI

THESIS PRESENTED TO ÉCOLE DE TECHNOLOGIE SUPÉRIEURE
IN PARTIAL FULFILLMENT FOR A MASTER’S DEGREE

WITH THESIS IN SOFTWARE ENGINEERING
M.A.SC.

MONTREAL, JANUARY 3, 2021

ÉCOLE DE TECHNOLOGIE SUPÉRIEURE
UNIVERSITÉ DU QUÉBEC

 Hamidreza Ghaderi, 2021

This Creative Commons licence allows readers to download this work and share it with others as long as the

author is credited. The content of this work can’t be modified in any way or used commercially.

BOARD OF EXAMINERS

THIS THESIS HAS BEEN EVALUATED

BY THE FOLLOWING BOARD OF EXAMINERS

Mr. Alain April, Thesis Supervisor
Department of Software Engineering and Information Technology, École de technologie
supérieure

Mr. Jacques de Guise, Thesis Jury President
Department of Systems Engineering, École de technologie supérieure

Mr. François Coallier, Thesis Jury
Department of Software Engineering and Information Technology, École de technologie
supérieure

THIS THESIS WAS PRESENTED AND DEFENDED

IN THE PRESENCE OF A BOARD OF EXAMINERS AND PUBLIC

MONTREAL, DECEMBER 7, 2020

AT ÉCOLE DE TECHNOLOGIE SUPÉRIEURE

Un modèle d’interopérabilité de PACS, du domaine du logiciel libre, pour
les hôpitaux universitaires

Hamidreza GHADERI

RÉSUMÉ

La gestion et l’accès à la quantité croissante de données produites dans les établissements de
santé sont un enjeu important. Les systèmes d’archivage et de transmission d’images (PACS)
peuvent aider à transmettre, stocker, archiver et accéder aux données d’imagerie médicale.
Cependant, les PACS ne sont pas abordables pour tous les hôpitaux, en particulier ceux qui se
situent dans les pays en développement. Utiliser un PACS gratuit disponible dans le domaine
du logiciel libre pourrait être une solution intéressante, mais en choisir un parmi les nombreux
PACS disponibles et s’assurer qu’il s’intègre bien aux autres systèmes d’information de
l’hôpital est une problématique de taille. Les PACS gratuits disponibles dans le domaine du
logiciel libre sont tous différents les uns des autres en termes de conception logicielle,
d’architecture interne, d’interopérabilité, de support et de fonctionnalité utilisateur. Ainsi, afin
de mieux comparer ces logiciels disponibles gratuitement et d’en sélectionner un qui pourrait
être implémenté dans un hôpital universitaire africain, il est intéressant d’avoir une liste de
critères de sélection. Dans cette recherche, tout d’abord, quatre critères de sélection sont définis
afin de faire ressortir les caractéristiques requises d’un PACS qui serait utile aux chercheurs
localisés dans les hôpitaux universitaires:
- critère 1: le niveau d’activité communautaire;
- critère 2: le type de licence utilisée par le logiciel libre;
- critère 3: le niveau de participation, de support de la communauté et de la documentation;
- critère 4: les fonctionnalités disponibles et les caractéristiques techniques du logiciel.

Les référentiels de code source, les sites Web des PACS et les articles publiés sont utilisés pour
collecter des données pour cette évaluation. Seize PACS populaires sont évalués à l’aide de
ces critères. Le résultat de l’évaluation démontre qu’Orthanc, DCM4CHE, DCMTK, Dicoogle
et MRIdb sont les PACS du domaine du logiciel libre qui se sont les mieux classés. Par la suite,
l’architecture logicielle du PACS Orthanc est décrite afin de l’utiliser dans une étude de cas
pour l’hôpital universitaire Donka, de Guinée Conakry, en Afrique.

Des composants incontournables d’un système d’information hospitalier moderne pour la
radiologie sont généralement : le système d’information hospitalier (SIH), le système
d’information de la radiologie (SIR), le PACS lui-même et sa visionneuse d’images médicales.
L’hôpital Donka a acquis, en 2020, un SIH, nommé eHospital, qui inclue toutes les
fonctionnalités requises pour un hôpital universitaire moderne, y compris un SIR. Par contre,
l’administrateur de l’hôpital n’avait pas prévu l’acquisition d’un PACS commercial nécessaire
pour stocker, archiver et accéder aux données d’imagerie médicale de l’hôpital. Dans cette
recherche, une étude de cas expérimente l’utilisation d’un intergiciel entre eHospital et le
PACS Orthanc. L’intergiciel choisi, nommé Mirth Connect, est un projet mature de la
communauté de logiciel libre qui facilite l’interopérabilité et l’échange de données de systèmes
informatiques hétérogènes afin qu’ils puissent se transmettre des messages sous différents

VI

formats, dont le FIHR/HL7 très populaire dans le domaine de la santé. Un modèle
d’interopérabilité expansible est proposé afin d’effectuer l’intégration du PACS Orthanc avec
le système d’information hospitalier eHospital. Les principaux composants nécessitant
d’échanger des transactions sont : le SIH eHospital, le bus de communication Mirth Connect,
le PACS Orthanc, une visionneuse d’images médicales et d’autres interfaces futures.

Dans le modèle d’interopérabilité proposé, différents scénarios de communication sont décrits
et expérimentés afin de décrire le fonctionnement des transactions entre ces composants. Six
scénarios de transactions sont décrits et expérimentés:
1. HIS et PACS (deux scénarios);
2. Modalité et PACS (deux scénarios);
3. Interface PACS et Mirth Connect;
4. Tableau de bord et Mirth Connect;
5. Visionneuse d'images et PACS;
6. Modèle TensorFlow et PACS.

Chacune des transactions traversant le bus de communication SOA Mirth Connect est
expliquée et mise en œuvre pour démontrer l’implantation du PACS Orthanc à l’hôpital
universitaire Donka ainsi que la mise en œuvre d’un BUS de communication SOA FIHR/HL7
permettant l’interopérabilité future de n’importe quel composant future.

Mots-clés: PACS, logiciel libre, critères d’évaluation PACS, bus d’interopérabilité SOA, SIH,
SIR, FIHR, HL7, hôpital universitaire.

An Open-Source PACS Model for University Hospitals

Hamidreza GHADERI

ABSTRACT

Managing the increasing amount of data that is produced in healthcare centers is a challenging
problem. Picture Archiving Communication System (PACS) helps healthcare managers to
transmit, store, archive, and access medical imaging data. However, PACS are not readily
affordable for all hospitals, especially those in developing countries. Using an open-source
PACS could be a viable solution but selecting one and integrating it with other hospital
information systems is a challenging problem for hospitals. Open-source PACS are different
from each other in terms of software design, internal architecture, interoperability, support, and
user functionality. Thus, in order to have a better understanding of available open-source and
be able to select one, it is critical to have good selection criteria. In this research, firstly, four
criteria are defined as the required characteristics of an open source PACS to be used in a
university hospital, which are following:
- criteria 1: community activities;
- criteria 2: licensing models;
- criteria 3: activity, support, and documentation;
- criteria 4: enterprise functions and software characteristics.

These criteria are used to assess sixteen open-source PACS, such as available support from the
software creator, future development and distribution possibility, and implemented and
developed functions. To achieve this assessment, PACS project source code repositories,
PACS websites and research papers are used to collect data for this evaluation. The result of
the assessment shows that: Orthanc, DCM4CHE, DCMTK, Dicoogle, and MRIdb are the top-
ranked open-source PACS using these criteria. Orthanc is then selected in this research to
conduct an interoperability case study for the Donka university hospital in Guinea, Africa.

The main components of a modern hospital information systems for radiology are the hospital
information system (HIS), the radiology information system (RIS), a PACS, and a radiology
image viewer. The Donka hospital management has already acquired an HIS named eHospital
which includes all the modern hospital functionality, including an RIS. But the hospital
administration did not plan the acquisition of a commercial PACS required to store, archive
and access the many imaging files of the hospital. In this research, the case study looks at the
use of a middleware between the HIS/RIS and the open source PACS Orthanc. The middleware
chosen for the case study, named Mirth Connect, is a mature open-source project which
facilitates interoperability and data exchange of heterogeneous IT systems to allow them to
exchange messages between each other using different exchange format, like FIHR/HL7 which
is very popular in the healthcare industry.

A seamlessly extensible interoperability model is proposed to interconnect the SIH/RIS
eHospital and the open source PACS Orthanc. The main components involved in the exchange
of data are: the HIS/RIS, Mirth Connect, the PACS Orthanc, and image viewer, and other

VIII

future interfaces. In this model, different scenarios are defined as routine and required data
transactions between mentioned components. The six data transactions scenarios experimented
are:
1. HIS and PACS (two scenarios);
2. Modality and PACS (two scenarios);
3. PACS interface and Mirth Connect;
4. Dashboard and Mirth Connect;
5. Image viewer and PACS;
6. TensorFlow model and PACS.

Each of these transactions is explained and implemented with the assistance of Mirth Connect
for the Donka university hospital. Each of the transactions going through the Mirth Connect
SOA communication bus is explained and implemented to demonstrate how to integrate
Orthanc PACS at the Donka University Hospital as well as the use of the FIHR / HL7
communication protocol allowing the future interoperability of any future component.

Keywords: PACS, open-source software, PACS evaluation criteria, interoperability SOA bus,
HIS, RIS, FIHR, HL7, university hospital.

TABLE OF CONTENTS

Page

INTRODUCTION ...1

CHAPTER 1 PACS OVERVIEW AND STUDY STRUCTURE3
1.1 Introduction ..3
1.2 Background of this field of study...5
1.3 The opportunities of future research PACS ...11
1.4 Research gap ..13
1.5 Objectives ..14
1.6 Organization of this thesis ...15

CHAPTER 2 LITERATURE REVIEW ..17
2.1 Introduction ..17
2.2 What is the modality in medical imaging? ..18
2.3 Open-source PACS architectures .. 19

2.3.1 DCM4CHE ... 21
2.3.2 DCMTK .. 23
2.3.3 Dicoogle .. 23
2.3.4 MRIdb ... 25
2.3.5 Orthanc ecosystem .. 27

2.3.5.1 Orthanc Server ... 29
2.3.5.2 Orthanc Explorer .. 30
2.3.5.3 Lua Scripting .. 31
2.3.5.4 REST API .. 31
2.3.5.5 Orthanc Plugins .. 32
2.3.5.6 Digital Pathology ... 33
2.3.5.7 Stone of Orthanc .. 33
2.3.5.8 Summary of Orthanc .. 34

2.4 Understanding the use of DICOM format with Orthanc ...35
2.4.1 DICOM file format ... 35
2.4.2 DICOM network protocol ... 37

2.5 Conclusion ...40

CHAPTER 3 ORTHANC MODEL SIMULATION ...41
3.1 Introduction ..41
3.2 Evaluation of open-source PACS ..41

3.2.1 Community activity .. 43
3.2.2 Licensing Models .. 45
3.2.3 Activity, Support, and Documentation ... 46
3.2.4 Enterprise functions and software characteristics 48
3.2.5 Assessment Result .. 50

3.3 Laboratory test model ..50

X

3.4 Developing a model with PACS, HIS, RIS, and Modality ..52
3.4.1 Using Mirth Connect ... 53
3.4.2 Overview of Donka University Hospital PACS interoperability model ... 55

3.5 Conclusion ...58

CHAPTER 4 PACS INTEGRATION IMPLEMENTATION ...61
4.1 Introduction ..61
4.2 Implementation of the proposed model ...61

4.2.1 HIS and PACS dataflow ... 62
4.2.2 Modality and PACS dataflow ... 66
4.2.3 PACS Interface dataflow .. 68
4.2.4 Image Viewer dataflow ... 70
4.2.5 Dashboard dataflow .. 72
4.2.6 TensorFlow Model dataflow ... 73

4.3 Laboratory Implementation ...74
4.4 Conclusion ...75

CONCLUSION77
5.1 Introduction ..77
5.2 Summary of research ...77
5.3 Discussion and Interpretation of the implemented model ...79
5.4 Significance of the Study ...81
5.5 Recommendations for Future research ..81

APPENDIX I MIRTH CHANNEL IMPLEMENTATION ..83

APPENDIX II TENSORFLOW MODEL IMPLEMENTATION85

BIBLIOGRAPHY ...95

LIST OF TABLES

Page

Table 1.1 Medical imaging, PACS and imaging informatics R&D
progress over time ..9

Table 3.1 Top open-source PACS ranked by Medevel, Medfloss,
and Idoimaging websites ..42

Table 3.2 Evaluating open-source PACS by developers’ activity,
updating project activity, and community activity43

Table 3.3 Open source PACS license ..45

Table 3.4 Evaluating PACS by website appearance and documentation,
activity and utilization, ease of installation, technical support forum,
and mailing list activity. ...47

Table 3.5 Open source enterprise functions and software characteristics49

Table 3.6 Open Source PACS assessment results using four criteria50

Table 4.1 New order channel configurations ...64

Table 4.2 Destination 1 configuration and an insert query sample64

Table 4.3 Destination 2 configurations and a sample of the worklist file content65

Table 4.4 DICOM to PACS channel configurations..68

Table 4.5 PACS_Interface_CH1 channel configurations and SQL query code69

Table 4.6 PACS_Interface_CH2 channel configurations and SQL queries70

Table 4.7 Dashboard Channel configurations and SQL queries73

LIST OF FIGURES

Page

Figure 1.1 PACS installation in comparison with the RIS, EPR,
HIS from 2001 to 2010) ...8

Figure 2.1 DCM4CHEE line of code and programming language pie chart21

Figure 2.2 DCM4CHEE Server system architecture...22

Figure 2.3 DCMTK line of code and programming language pie chart23

Figure 2.4 Dicoogle General Architecture. ...24

Figure 2.5 MRIdb Server system architecture ...26

Figure 2.6 Orthanc core line of code and programming language pie chart27

Figure 2.7 Orthanc ecosystem. The main components are shown in red color.
The green components are Orthanc plugins, and the blue color shows
application related to clinical research, academic activities,
and medical practice. ...28

Figure 2.8 The layer of Orthanc server software architecture29

Figure 2.9 Orthanc explorer screenshot ..30

Figure 2.10 A sample of Lua scripting ..31

Figure 2.11 A screenshot of the Orthanc web viewer plugin ..32

Figure 2.12 The stone of Orthanc toolkit rendering sample ..34

Figure 2.13 UML diagram shows a patient’s study workflow37

Figure 2.14 Transaction between Service Class User (SCU) ..38

Figure 2.15 C-Store command transaction diagram ..39

Figure 2.16 C-Find Transaction diagram ..39

Figure 2.17 C-Move and C-Store transaction diagram ...40

Figure 3.1 Modality Emulator software user interface ..51

Figure 3.2 Simulation Workflow...52

XIV

Figure 3.3 Typical connections of PACS in hospital systems53

Figure 3.4 eHospital HIS modules, including Radiology ...55

Figure 3.5 Proposed radiology workflow for the Donka Hospital56

Figure 3.6 Proposed PACS interoperability model for Donka Hospital57

Figure 4.1 Example of new order request parameters ...62

Figure 4.2 New order dataflow..63

Figure 4.3 Transaction between the PACS dashboard and Mirth Connect66

Figure 4.4 Updating Worklist files ..67

Figure 4.5 Returning the image from the Modality to the PACS................................67

Figure 4.6 Searching data in the Mirth database ...68

Figure 4.7 Receive reports from the PACS interface and insert into Mirth_db70

Figure 4.8 Dashboard transactions diagram ..72

Figure 4.9 TensorFlow model ...74

LIST OF ABBREVIATIONS

AET Application Entity Title

AI Artificial Intelligence

AGPL Affero General Public License

ASP Application Service Provider

BSD Berkeley Software Distribution

CAD Computer-aided diagnosis

CBCT Cone beam computed tomography

CMS Clinical Management System

CNN Convolutional Neural Network

CT Computed Tomography

CTN Central Test Node

DCE Dynamic Contrast-Enhanced

DCMTK DICOM Toolkit

DEXA Dual Energy X-Ray Absorptiometry

DICOM Digital Imaging and Communications in Medicine

DICOM-SR DICOM Structured Reporting

DIN Digital Imaging Network

DVD Digital Video Disc

DVTK The Healthcare Validation Toolkit

EMR Electronic Medical Report

EPR Electronic Patient Record

XVI

FNIR Functional Near-Infrared Spectroscopy

FTP File Transfer Protocol

GPL General Public License

HIPAA Health Insurance Probability and Accountability Act

Hi-PACS Hospital Integrated PACS

HIS Hospital Information System

HL7 Health Level 7

HTML Hypertext Markup Language

ICD International Classification of Diseases

ICR Institute of Cancer Research

IHE Integration the Healthcare Enterprise

IT Information Technology

JEE Java Enterprise Edition

JMX Java Management Extensions

JSON JavaScript Object Notation

LDAP Lightweight Directory Access Protocol

LOINC Logical Observation Identifiers Names and Codes

MPI Magnetic Particle Imaging

MRI Magnetic Resonance Imaging

NCI National Cancer Institute

NCPDP National Council for Prescription Drug Programs

NIH National Institute of Health

NM Nuclear Medicine

XVII

NMR Nuclear Magnetic Resonance

OHIF Open Health Imaging Foundation

OS Operating System

OSS Open Source software

PACS Picture Archiving and Communication System

PET Positron Emission Tomography

PNG Portable Network Graphics

REST Representational State Transfer

RIS Radiology Information System

SCP Service Class Provider

SCU Service Class User

SNOMED-CT Systematized Nomenclature of Medicine - Clinical Terms

SPECT Single Photon Emission Computed Tomography

SPIE International Society for Optical Engineering

UI User Interface

USB Universal Serial Bus

VNA Vendor Neutral Archive

XDS-I Cross-Enterprise Document Sharing for Imaging

XNAT Extensible Neuroimaging Archive Toolkit

INTRODUCTION

Imaging plays a vital role in modern medical care services and medical research (Salvador,

Nogueira, & Goncalves, 2014). The management of the growing amounts of medical data (i.e.,

from terabytes to petabytes) that is produced by healthcare centers every year is a current

concern for hospital managers (Bui et al., 2007). Picture Archiving and Communication

System (PACS) is a technology for managing medical images in healthcare (Law & Zhou,

2003). It facilitates electronic access to the medical images and allows their storage,

transmission, and archiving (Arora & Mehta, 2014). Having acquired digital imaging

management systems, hospitals and clinics report a decrease in their imaging costs (i.e., such

as material cost, physical storage space, and manual labor) as opposed to using traditional

radiology technology (Xue & Liang, 2007). As well, hospitals report that imaging service

delivery has also improved because of PACS technology. This technology has eased the

imaging workflow, increased the efficiency and productivity of the imaging service, and

allowed time saving overall (Liu & Huang, 2008). Furthermore, a PACS has become the basis

for supporting imaging specialists’ decision-making process and providing a better quality

diagnosis overall (Valente, Silva, Godinho, & Costa, 2016).

The development of PACS systems dates back to the 1970s (Top, 2012) and over the years has

seen several advancements. The history of PACS development could be described in key

evolutionary stages (van de Wetering & Batenburg, 2014). The first stage of earlier PACS, in

the 1970s, has seen the development of the initial electronic imaging system repository. In the

late 1980s, this first PACS system integrated with Health Information Systems (HIS) and

Radiology Information System (RIS) was created. Then in the early 1990s, the development

of the international standard on Digital Imaging and Communication in Medicine (DICOM)

emerged allowing standard protocols between medical devices. In the most recent evolutionary

stage, the PACS workflow and server application such as the enterprise PACS and the Web-

based PACS have emerged (Huang, 2010). In the USA, the practical implementation of PACS

in hospitals started during the 1980s (Top, 2012) and only in a very few selected hospitals

decided to use them (Duerinckx, 2003). The success demonstrated and published by these

2

precursors was followed by the wide adoption of the technology and PACS were implemented

progressively in many hospitals all around the world. For example, they were adopted widely

in Asia (Huang, 2011), Europe (Inamura et al., 2003), and North America (Huang, 2011).

Today, a large number of hospitals, in developed countries, have PACS. In fact, a hospital that

does not have one, in the G8 countries, is considered a hospital that has not understood the

value of the technology or cannot afford it. Some developing counties are also beginning to

use PACS (Mendel & Schweitzer, 2015) but the affordability level of a commercial versions

of a PACS prevents a large number of them from acquiring it.

Consequently the arrival of mature open-source PACS offering provides a potential solution

to this problem for these poorer countries. An open-source version of a PACS provides a

foundation for implementing an imaging repository and gradually offering more advanced

application when needed. In the choice of an open-source PACS solution, some factors should

be considered, such as cross-platform development and deployment, compliance with the

present and upcoming DICOM standards and extensibility of the solution. The goal of

developing open-source PACS is to provide suitable tools that can then be used by software

engineers to implement PACS functions in their hospital without the high cost demanded by

commercial suppliers (Bui et al., 2007).

The objective of this research is to study the state of the open-source PACS offering in order

that a candidate solution can be used by University Hospitals in Africa. University hospitals

have additional research and teaching responsibilities that potentially affect the functionality

required from an open-source PACS solution. These additional requirements aim at teaching

interns using the diagnostics and imaging processes.

CHAPTER 1

PACS OVERVIEW AND STUDY STRUCTURE

1.1 Introduction

This research thesis aims to firstly provide the background of PACS development through the

last decades and its key support for medical imaging. Secondly, it investigates the potential

extended role and needed functionalities of an open-source PACS solution when used by

research and teaching hospitals in Africa. An experimental objective of this research project is

also to experiment an open-source PACS model for an African university hospital, the

DONKA hospital of Guinea. This topic will be introduced at the end of this chapter. This

introduction presents an overview of the research PACS features and their availability in open-

source software. It follows by identifying how artificial intelligence, particularly computer

vision, could shape the future of medical imaging and the future functionalities of PACS.

Medical imaging technology processes a growing number of medical images and countless

amount of related information. The necessity of a medical imaging system in healthcare is

undeniable. Traditional systems have difficulties dealing with the growing demand by the

clinical departments and the increasingly large number of medical images they consume.

Modern medical imaging technology eliminates the need to manually file, retrieve, or transport

film jackets, the folders used to store and protect X-ray film. As a result, digital medical image

management is a field of research now being recognized (Xiong, Du, Nie, Huang, & Zhou,

2017).

During recent years, the PACS industry has grown, and now, it is considered a profitable

industry (P. G. Nagy, 2007). Combined with available and emerging Web technologies, PACS

have the ability to deliver timely and efficient access to images, interpretations, and other

related data. Many medical professions use PACS for their decision making and treatment

procedures and consider it a valuable tool (Valente et al., 2016).

4

Because of the growing importance of PACS in medical practice during the last two decades,

many advantages of its use have been reported, such as facilitated image manipulation and

interpretation for value-added diagnosis (Silva, Pinho, Monteiro, Silva, & Costa, 2018), as well

as quick access to historical data and convenient transmission (Xiong et al., 2017).

Furthermore, PACS provide support for advanced and improved patient assessment workflow,

which leads to quicker healthcare service delivery and lower operational costs (Huang, 2011).

In addition to these advantages, due to a higher demand in imaging services, researchers are

testing and using new technologies and developing new cutting-edge PACS services that can

operate on cloud computing (Teng et al., 2010), on distributed and heterogeneous computing

grids (Vossberg, Tolxdorff, & Krefting, 2008), (Yang, Chen, & Yang, 2010), offer knowledge

extraction using indexing engines (Costa, Freitas, Pereira, Silva, & Oliveira, 2009), and also

can operate on peer-to-peer networks (Costa et al., 2011).

It is not a surprise to see that healthcare organizations have heavily invested in developing and

enhancing their PACS. Manufacturers have also conducted a lot of research to develop modern,

reliable, safe, and fault-tolerant PACS systems. According to the Zion Market Research study,

published on October 2018, the global market for RIS (Radiology Information System) and

PACS in 2017 was valued USD 2.6 billion, and it’s predicted that by 2024 it will reach USD

4.3 billion. This growing interest and sophistication of functionalities lead to more expensive

solutions (Kagadis, Alexakos, Langer, & French, 2012). To counterbalance the accessibility

problem caused by the high price of modern PACS systems, open-source PACS have started

to emerge after the year 2000. Initial open-source PACS were initially targeted to small

healthcare organizations to allow them to obtain a PACS at a lower cost, with basic

functionality and without too much quality compromise (Erickson, Langer, & Nagy, 2005).

Open source also meant the possibility of customizing and adding PACS functionalities for

healthcare organizations that could not afford a commercial product. According to Nagy, this

option can quickly achieve the same goals with similar performance and features to a

commercial PACS (P. G. Nagy, 2007).

5

In summary, we have seen that the popularity of PACS revolutionized the practice of radiology

(Top, 2012). According to Wetering & Batenburg, and presented in the next section, the

development of PACS can be summarized in key stages.

1.2 Background of this field of study

Picture archiving and communication system (PACS) have revolutionized the practice of

radiology by changing the medical imaging process, the information communication

technologies, the storage and display of medical images and related information, and the

clinical workflow itself. Additional to these many impacts, PACS have the ability to integrate

with different healthcare information systems such as Hospital Information System (HIS),

Radiology Information System (RIS), Clinical Management System (CMS) and other medical

information systems to be more integrated and effective. Progressively, all these systems need

to be interrelated. Interrelation, in health systems, is facilitated by using industrial and

normalized communication standards, including HL-7 and DICOM communication protocols

that facilitate PACS clinical interoperability (Huang, 2011). In this section, the development

of PACS during the last decades is summarized.

Digital radiology and digital image communication were firstly introduced in the late 1970s

and early 1980s. In 1979, the concept of digital image communication and display was

introduced by Professor Heinz U. Lemke (Huang, 2011). The idea of a “Photoelectronic

Radiology Department” was introduced by Dr. M. Paul Capp (Capp et al., 1981) and his

colleagues at the conference on Digital Radiography sponsored by International Society for

Optical Engineering (SPIE). This team of researchers also presented a “system block diagram”

describing a prototype facility located at the University of Arizona Health Sciences Center

(Capp et al., 1981). The cost of managing digital diagnostic images, in a typical radiology

department, was also depicted by Professor S.J. Dwyer (Dwyer et al., 1982). During the first

International Conference and Workshop on PACS conference in California, in January 1982,

the terminology PACS was coined. Afterward, Medical Imaging and PACS conferences

6

combined into a joint SPIE meeting, which was held each February in California or Florida

over the next years (Huang, 2011).

Another effort emerged, in 1983, from the U.S. army “Teleradiology project” that was one of

the earliest research projects concerning PACS technology in the United States. The next

important PACS pilot project, managed by the MITRE Corporation and funded by the U.S.

Army, was the “Installation Site for Digital Imaging Network and Picture Archiving and

Communication System” (DIN/PACS) conducted in 1986. In this pilot project, the George

Washington University Consortium (located in Washington D.C.) and the University of

Washington (located in Seattle) with the participation of AT&T and Philips Medical Systems

were selected for the implementation. Two other related projects (e.g. PACS research project

started at the mid-1980s and large-scale program project started at early 1990s) were funded

by the National Institutes of Health (NIH) and U.S. National Cancer Institute (NCI) during

these years. These two projects were given the names “Multiple Viewing Stations for

Diagnostic Radiology, Image Compression, PACS in Radiology” (Huang, 2011).

With the results of all these initiatives being published, quickly it was realized that PACS had

the potential to be used at a large scale. At that time, the notion of “a large scale use” was

defined as a PACS system which satisfied one of the following conditions:

1. A daily clinical operation;

2. The ability to connect to at least three modalities (Modality is a type of equipment used to

acquire functional or structural images of the body such as magnetic resonance imaging

(MRI), visible light, computed tomography (CT), nuclear medicine, ultrasound and

radiography);

3. Having workstations outside and inside of the Radiology Department that could handle at

least 20,000 radiological procedures per year. This definition separated the concept of

small and large-scale use of a PACS. Even in 1996, most PACS were already meeting or

exceeding this requirement (Bauman, Gell, & Dwyer, 1996).

7

Until the early 1990s, it was reported that PACS technologies had remained in the radiology

department. The University of California, San Francisco developed the first hospital-integrated

PACS (Hi-PACS) (Huang et al., 1996) in the mid-1990s. To be integrated for daily hospital

use, a workflow, named Hi-PACS needed a Radiology Information System (RIS) as the engine

for clinical use, and this concept opened the future PACS hospital clinical applications and

development in imaging informatics. The next years showed that with its growing popularity,

manufacturer and hospitals all over the world had a growing interest in researching and

developing additional PACS functionality for clinical use at different levels of complexity.

Huang, proposed a model having six levels of complexity associated with its method of

implementation. These levels are the home-grown model, the two-team effort model, the

turnkey model, the partnership model, the application service provider (ASP) model, and the

open-source model (Huang, 2011).

Gradually, manufacturers and many universities researchers started to contribute their results

in the public domain towards open-source PACS projects. This new phenomenon allowed

healthcare centers to adapt these open-source PACS application servers and Web servers to

their specific requirements without the involvement of suppliers. Many research hospital

home-grown PACS development teams developed open-source PACS functionality and Web

services (Huang, 2011). As a result, many open-source PACS solutions have appeared, in

recent years, aimed at providing additional functionality for education, research, and clinical

trials based on open-source PACS. Chapter 2 presents some of the most popular open-source

PACS projects.

All of this would not have happened if the funding had not been available at the onset. The

initial growth of PACS technologies was heavily funded by:

1. The US Federal Government academic research;

2. The imaging research community;

3. The manufacturers.

8

Funding then went to many universities where the “medical imaging informatics” domain

emerged as a research specialty in universities (Huang, 2011). This is an important part of this

history of PACS allowing it to become more popular and causing a significant increase in the

number of hospitals equipped with PACS compared to the use of RIS, electronic patient record

(EPR), and HIS (Inamura & Kim, 2011) (see Figure 1.1). Table 1.1 shows the penetration of

PACS technology over time.

Figure 1.1 PACS installation in comparison with the RIS,
EPR, HIS from 2001 to 2010)

Taken from Inamura and Kim (2011, p. 186)

From a clinical use perspectives, researchers started to study the domain of Computer-Aided

Diagnosis (CAD) in the early 1980s, and it gradually became one of their most important

clinical support tool. CAD functionalities enhanced the radiologist diagnostic accuracy as it

could be used as a second reader. Quickly, CAD functions became integral functions of PACS

(Doi & Huang, 2007). This integration provided CAD interoperability to the PACS image

resources and increase its clinical value. Next, the integration of CAD with HIS/RIS/PACS

(Hospital and Radiology Information Systems) became the most popular research topic for

DICOM (Digital Imaging and Communication in Medicine), HL7 (Health Level 7) and

Integration the Healthcare Enterprise (IHE) projects. They all aimed at developing integrated

workflows to comply with the Health Insurance Probability and Accountability Act (HIPAA)

requirements to allow an interoperable and integrated healthcare service. In recent years,

9

developed CAD-PACS integration kit based on IHE workflow profiles and DICOM-SR

(structured reporting) are used frequently and allow unified integration of CAD and PACS (Le,

Liu, & Huang, 2009).

Another interesting use of PACS is for surgical operations. EPR system with PACS images

can be used during surgical applications. In order to develop a patient-centric information

system, the professionals use the concept of Web-based EPR. During the pre-operation

consultation, all medical and surgical information of a patient can be acquired, and throughout

the operation, live information and surgical information can be collected in real-time. Also,

during post-operation, the patient recovery data can also be acquired. After the patient leaves

the hospital, all this information will be available for further diagnostic, research and patient

follow-up (Huang, 2003).

Table 1.1 Medical imaging, PACS and imaging informatics R&D progress over time
Taken from Huang (2011, p. 172)

Decade R&D Progress R&D Topics

The 1980s Medical imaging technology
development CR, MRI, CT, US, DR, WS, storage, networks

The late 1980s Imaging systems integration PACS, ACR/NEMA, DICOM, high-speed networks

The early 1990s Integration of HIS/RIS/PACS DICOM, HL7, Intranet, and Internet

Late 1990s - present Workflow & application servers IHE, EPR, enterprise PACS, Web-based PACS

The 2000s - present Imaging Informatics CAD, image contents indexing, knowledgebase, decision
support tools, image-assisted diagnosis, and treatment

As we have seen, standardization has played a central role in the popularity of medical imaging

for clinical use. Before the presence of the DICOM international standard there was no easy

and standard way of communicating between different vendors systems. Each hospital

purchased a proprietary system form a vendor, including work stations, modalities, archive,

and film printers all on an isolated network. In the early 1990s, the Radiological Society of

North America commissioned two groups to develop DICOM communications tools. The

10

DCMTK which is a collection of open-source applications and libraries implementing large

parts of the DICOM international standard, was developed by the OFFIS group (Oldenburg,

Germany). DCMTK includes software for constructing, analyzing, converting DICOM image

files, sending and receiving images over the network connection, handling offline media, and

other features. Also, the central test node (CTN), which is an application that implements a

simple image archive was developed by the Electronic Radiology Lab at the Mallinckrodt

Institute of Radiology (locate in St. Louis, Missouri) was used to support cooperative

demonstrations by medical imaging vendors. Everyone are permitted to use DCMTK and CTN

for handling and simulating the DICOM international standard transactions, and the source

code could help the industry understand and use DICOM faster. These open-source libraries

remain open to the public today and are used by everyone to implement and test DICOM

components with their PACS software. These initiatives have transformed the medical imaging

industry from an ad-hoc approach to today’s best-of-breed industry (P. Nagy, 2007).

The previous paragraphs presented a literature review of PACS related topics summarized

from many conferences and research papers dated from 1982 to 2010. However, in more recent

years, researchers apply new technology to develop PACS enhanced functionality in order to

extend the reach of PACS data for education, research, and clinical trials. One of the important

use of PACS data, in a teaching hospital, is the “research PACS”. Doran et al. (Doran et al.,

2012) study the required functionality of a research PACS. They mention some of desirable

features of a research PACS in their paper, such as: data visualization, flexibility and security

when accessing data, the need to sort PACS data according to arbitrary criteria, the need for

image co-registration between time points, having access to metadata describing the

relationship of digitized histologic data and noninvasive imaging data, the possibility of

creating data processing pipelines and finally the need to audit of the results of any data

processing done on PACS data. Some of these features are already available and provided by

the open-source project named Extensible Neuroimaging Archive Toolkit (XNAT) software

developed at the Washington University. Doran et al. (2012) propose that a research PACS has

additional data available, allowing specialized research and teaching applications to retrieve

and use this data. They describe a prototype research PACS framework. This framework has

11

been used by a clinical MR imaging group, at the Institute of Cancer Research (ICR), to

develop dynamic contrast-enhanced (DCE) MR imaging, diffusion analysis, data visualization,

distortion correction, and breast screening functionalities. All of these functionalities are being

included in the XNAT system research PACS framework and demonstrates how functionalities

are originally developed to work as standalone functions can interact between themselves by

means of enhancing PACS data sharing (Doran et al., 2012).

Another example of applying new technologies to develop PACS is published by Zhang et al.

(2018). This team of researchers developed a cloud-based research PACS functionality for

diabetic retinopathy prescreening with the help of deep learning algorithms. They used a

convolutional neural network (CNN) technique on 30,000 annotated images from their

research PACS database to design a prescreening functionality. They claim that their initial

research results are very encouraging and that such PACS based research application, joined

with a CAD functionality could be valuable for the next generation of PACS for research

hospitals (S. Zhang et al., 2018).

This PACS functionality review showed how Integrating PACS data with other health data and

systems can provide new opportunities for researchers and practitioners. The next section

explores the opportunities of future research in this domain in more details.

1.3 The opportunities of future research PACS

We have seen that clinically, PACS have demonstrated their many benefits when used with

patients, as they provide secure and easy access to the clinical image repository. We have also

seen that PACS basic functionality has been reported to be insufficiently flexible to be used

for research and academic purposes. Doran proposes that PACS are not solely to blame but

instead it’s the academic and research processes that fail in using this type of technology

because of: “an excessive dependence on individual researchers to keep track of a large amount

of data, a significant overhead in organizing and indexing imaging files, problems with data

duplication and possible data corruption, data loss, and an excessive need to respect patient

12

data protection” (Doran et al., 2012). It is also reported that clinical and research workflows

have many differences. Research data and clinical data are often stored and processed by

different workflows in a hospital. In a typical clinical workflow, images are transferred from

local imaging devices to the institutional PACS and typically processed by the hospital

proprietary software. To ensure patient information security, the patient imaging data sharing

between hospitals is still difficult because institutional PACS data and images are kept behind

security firewalls.

In comparison, in a typical research workflow, imaging data is obtained from a variety of

sources, and it is stored with additional information annotating and enriching it (i.e., patient

history data, environmental data, medication, and genetic data). This combination of data is

generally not used together in clinical management. For research purposes, anonymized patient

images are used to collaborate between researchers and often shared on workstations, either

via secure File Transfer Protocol (FTP), DICOM protocols, or via a portable medium like the

Universal Serial Bus (USB) drive or a Digital Video Disc (DVD). Alternatively, the researcher

may also download images from an open-source repository available online. After processing

this data, he can store the original image and the annotated or processed image on his local

storing space without any centrally available electronic history of processing or typical

organizational structure. Doran also reports that researchers also analyze medical images using

many different applications, which are executing on the different operating system and host

computers (Doran et al., 2012).

We have discussed that in a typical hospital, PACS are generally designed to fulfill routine

radiology tasks for the patients, but in terms of research, it has limited use because of its lack

of flexibility. Because of regulatory compliance, integration of PACS with custom third-party

software is currently still difficult. Doran reports that the development of specific PACS

functionality for scientific research purposes has too small a market potential and does not

seem commercially interesting for manufacturers yet. Researchers also report that since they

manage their own research process, they experience a constant need to upgrade their

technologies when PACS manufacturers release new versions of their software. This leads to

13

an excessive impact and redesigns of their research process protocols and can also invalidate

some past analysis results causing much rework (Doran et al., 2012).

1.4 Research gap

It is planned that PACS that will include artificial intelligence (AI) will likely replace the PACS

that do not have this imbedded functionality in the future (Dugar, 2018). Computer vision and

artificial intelligence, using PACS digital images, have the ability to automate/assist the many

human intensive visual tasks such as: processing, analyzing, and understanding the patient

images in order to emit a diagnostic. It is also reported that using machine learning and artificial

intelligence algorithms improve dramatically the detection accuracy where humans cannot

compete. The increasing amount of research results, in this area of innovation, has proven that

human analysis of PACS images is less precise than its computer vision counterpart. However,

the skills of the professionals are still required to: train, validate, and approve the computer

vision system results at this time. While computer-vision paired with AI has had impacts on

many industries, the availabilities of proven and tested functionalities, for radiologists, is still

limited.

Many PACS commercial suppliers have failed to integrate computer vision and AI in their

current PACS commercial offerings. It is also claimed that there is a need for PACS

commercial offering for the following diagnostics: CT lung nodule CAD, mammography

CAD, brain CT anomaly CAD, fracture detection CAD, and chest x-ray shadow detection

CAD. Secondly, PACS offerings are needed also for the evolution detection of sclerotic

follow-up and tumor follow-up.

In summary, CAD and AI have the potential to provide support for radiology departments and

radiologists in the future. These future functionalities need to be integrated into future PACS

software and use DICOM CAD format standards for easier interoperability. A trend in this

research domain is to try to have the radiologist reporting workflow integrate computer-vision

and AI algorithms to improve the accuracy and efficiency of radiology diagnostics. Further

14

away, is the research concerning the context-aggregation and AI functionalities that could help

the radiologist to extract information, from different healthcare systems, and use it as well.

When radiologists have more information, such as blood test result, renal function tests, tumor

markers, and inflammatory markers tests results, they will likely make more accurate clinical

diagnostics.

Dugar (Dugar, 2018) also reports that computer vision and content aggregation will be the

most interesting new research field to produce novel technologies for the radiology

professionals and researchers in order to help them make smarter and more efficient

diagnostics by using endoscopy and histopathology images, as well as other clinical images

and documents (Dugar, 2018). Research and development of new PACS functionalities for

research and education purposes are currently in its infancy. In the context of African

university hospitals, their requirements for research PACS functionalities and training PACS

functionalities are still unclear. In fact, there is little information available about their current

and most urgent training needs for their interns.

1.5 Objectives

The objective of this research is to develop an open-source PACS model to be experimented

in a university hospital in Africa. The following sub-objectives of the research are:

1. To identify the functionality required by “research PACS” to be useful for research and

teaching hospitals in Africa;

2. To assess the available open-source PACS with regards to the fit of their functionality with

the specific requirements of research and university hospitals in Africa and choose an open-

source PACS candidate for experimentation;

3. To adapt the selected open-source PACS for an experimentation (i.e. the case study)

applied to the Donka university hospitals in Guinea, Africa.

15

1.6 Organization of this thesis

The first chapter of this thesis, the introduction, provided a general overview of this research

project. It is followed by a literature review that will be presented in chapter two. Chapter three

investigates the current open-source PACS and identifies a candidate to be used in a case study

with the Donka hospital of Guinea, Africa. And then, the PACS interoperability model is

proposed. Chapter four will present the Donka hospital case study objectives as well as the

“research PACS” model to guide university and teaching hospitals in Africa in the future and

will present the results of the case study. The final chapter will summarize the results of this

research, its limitations as well as future research directions.

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

We have seen that this research aims to propose a “research PACS” interoperability model for

university hospitals that conduct teaching and research on top of normal clinical activities. As

well, since this study is undertaken to try to help African University hospitals, one key

literature review focus is to investigate and understand some leading open-source PACS

systems functionality to have a better understanding of the best available open-source PACS

software design, internal architecture, interoperability, and user functionality for this research.

This will also help in assessing their potential to be used in a teaching and research university

hospital located in Guinea, Africa.

Imaging is challenged to continually identify, develop, embrace, and promote new services

that have profound impacts on how healthcare services are delivered to patients. Specific

interactions, computational intensity, and a large range of applications are done using imaging.

Sharing source code and programs have played an important role, and accelerated the adoption

of the DICOM international standard (Erickson et al., 2005). The radiology open-source

community is a vibrant collection of users and developers working on collaborative software

projects. The open-source community, which includes several commercial vendors, has a rich

history in supporting the success of the DICOM international standard and nowadays is

promoting interoperability by embracing the in Integrating the Healthcare Enterprise (IHE)

(Nagy, 2007). IHE promotes the coordinated use of established standards such as DICOM and

HL7 to address specific clinical needs in support of optimal patient care. Systems developed

in accordance with IHE communicate with one another better, are easier to implement, and

enable care providers to use information more effectively. Some benefits of open-source

software for medical imaging are:

1. Reducing support costs (Christensen & Raynor, 2003);

2. Reducing development costs;

18

3. Adding business and patient value (Nagy, 2007).

In this chapter, in order to understand the architecture of open-source PACS and DICOM in

more detail, in the next sections, the Modality, popular open-source PACS architectures, the

DICOM file format, and the DICOM network protocol are explained.

2.2 What is the modality in medical imaging?

A modality, in medical imaging, refers to a process and technique of creating visual

representations of the inner body organs for medical intervention and/or clinical analysis. Also,

a modality could be used for the function representation of some tissues or organs. Medical

imaging reveals the internal structure concealed by the skin and bones; this helps doctors

diagnose and treat diseases. There are different types of medical imaging, explained in the

following list.

1. Radiography: is an imaging technique that uses gamma rays, X-Rays, or similar ionizing

radiation and non-ionizing radiation to view the internal form of objects. There are many

types:

a. Projection radiography: creating images by exposing an object to X-rays;

b. Computed tomography (CT scan): using ionizing radiation in conjunction with

computers to create images of both hard and soft tissues;

c. Dual energy X-ray absorptiometry (DEXA or bone densitometry): which is used for

osteoporosis (a type of disease that bone weakening increase the risk of a broken bone)

tests;

d. Fluoroscopy: used to view the movement of tissue, in order to guide a medical

intervention or a joint repair/replacement.

2. Magnetic resonance imaging (MRI scanner) or nuclear magnetic resonance (NMR):
is a radiology technique used to form images of the anatomy and the physiological

processes of the body. MRI is a medical application of nuclear magnetic resonance (NMR);
3. Nuclear medicine: refers to the use of radioactive substances in the diagnosis and

treatment of disease. Nuclear medicine has two common imaging modalities: single photon

19

emission computed tomography (SPECT) uses gamma rays and scans the level of

biological activity and positron emission tomography (PET) to visualize and measure

metabolic in the body;
4. Ultrasound: uses high-frequency broadband sound waves that are reflected by tissue to

produce images. Is largely used for imaging the fetus in pregnant women and detecting

tumors;
5. Elastography: is a relatively new imaging modality and emerged in the last two decades

to draw the elastic properties of soft tissues;
6. Photoacoustic imaging: is a hybrid biomedical imaging modality that has recently been

developed based on the photoacoustic effects. Early tests show that it could be used in skin

melanoma detection, functional brain imaging, blood oxygenation mapping, and vivo for

tumor angiogenesis monitoring;

7. Tomography: is a technique of imaging by sections. The main methods are CT, PET, and

MRI;
8. Echocardiography: is a technique which is using ultrasound to image the heart;
9. Functional near-infrared spectroscopy (FNIR): is a widely accepted technique for brain

imaging technique is used for functional neuroimaging; and

10. Magnetic Particle Imaging (MPI): is used for tracking superparamagnetic iron oxide

nanoparticles with high sensitivity and specificity. In medical research, MPI is used to

image cell tracking, neuroperfusion, and cardiovascular performance.

2.3 Open-source PACS architectures

Open-source software (OSS) development is a popular approach for creating and distributing

software at low costs. OSS is transforming the software industry (Morgan & Finnegan, 2014)

and is used in different domains (von Krogh & von Hippel, 2006). OSS has also demonstrated

significant results in the software industry (Morgan & Finnegan, 2014). Many firms’ success

now depends on OSS (Gulati, Puranam, & Tushman, 2012). Developers’ attention and

Knowledge (Grant, 1996) are key factors assessed by the best OSS projects (Singh, Tan, &

Mookerjee, 2011). The notion of attention is “noticing, encoding, interpreting, and focusing

20

of time and effort”. Attention refers to the effort and time expended on a project by a developer.

Attention has been identified as a key strategic resource (Ocasio, 1997). Researchers

highlighted the relation of developers’ effort and attention to the level of OSS projects’ success.

Online repositories such as Github and Sourceforge provide functionalities to facilitate the

development and allows developers to join and leave the project at will (Seidel & Stewart,

2011). This is how OSS projects draw knowledge from a wide range of professional developers

(Ye & Kishida, 2003) and also from a broad array of other open-source projects (Singh et al.,

2011). Contributors introduce knowledge in different ways, such as posting comments in

project discussions or better by contributing to a project’s source code (Hann, Roberts, &

Slaughter, 2013).

According to Kenwood (2001), the decision between commercial products and OSS is based

on three main factors, which are including:

1. Direct costs (e.g., software price) and indirect cost (e.g., end-user downtime);

2. Benefits of using each product such as performance and enterprise functions;

3. More intangible criteria like the quality of support.

Costs vary when acquiring/using a commercial PACS based on various factors such as the

number of diagnostic and size of the practice. This cost varies between $5,000 to $100,000 in

the literature. Also, costs should consider the entire life-cycle costs of using a PACS, such as

customizations and support costs. Open-source PACS are available freely and can provide

some level of support through forums, from product distributers and/or from volunteers.

Although PACS vendors could provide more completle PACS functionalities for their

customers that require higher PACS performance, recent progress in open-source

developments makes it possible for healthcare organizations to adopt an open-source PACS

and customize it according to their requirements. The quality of support depends on each PACS

open-source project where a forum and mailing lists are available to their users.

Open source PACS software provides some basic, necessary, and cost-effective functionalities

for clinical use and even for some for research and training activities. Additionally, they

21

provide a starting point for software developers to enhance their features in order to better fit

what is required by a specific hospital (Lebre, Bastião, & Costa, 2019). Apart from offering

the developers a startup software code base, good software architecture and modularity is

essential if you are to quickly extend the functionalities of an open-source PACS solution.

Therefore, evaluating open-source PACS applications is helpful for selecting the right software

for your need.

In the next subsections, the architectures of DCM4CHE, DCMTK, Dicoogle, MRIdb, and

Orthanc are described.

2.3.1 DCM4CHE

DCM4CHE is a popular open-source PACS which is mostly developed before 2010 (Figure

2.1) that has been used in many hospitals. In addition, it is used in the architecture of other

PACS (e.g., Dicoogle) for development. DCM4CHEE, as a cross-platform application, is a

collection of open-source utilities and applications about archiving and managing images and

based on JEE, JMX, and the JBoss Application Server (Maniadi, Spanakis, Karantanas, &

Marias, 2015).

Figure 2.1 DCM4CHEE line of code and programming language pie chart
Taken from Openhub (2019)

22

This framework ensures broad compatibility and versatility and excellent performance (Valeri

et al., 2015). DCM4CHEE provides HL7 and DICOM services and interfaces that are required

for retrieving and storing data and managing the workflow in a complex environment like

diagnostic imaging (Warnock, Toland, Evans, Wallace, & Nagy, 2007).

DCM4CHE contains some software components such as PACS server (Archive 2 and Archive

5), toolkit and utilities (DCM4CHE 2 and DCM4CHE 5), and web viewer (Weasis, Oviyam,

and Mayam). DCM4CHEE has a web-based application for administration tasks, which is

compatible with popular database management systems such as Oracle, SQL Server, MySQL,

and PostgreSQL. Each hospital is responsible for managing its own imaging data. Imaging

data can be uploaded through a user interface.

Figure 2.2 DCM4CHEE Server system architecture
Adapted from Warnock et al. (2007, p. 126)

When files upload to the PACS, based on their annotations, DCM4CHEE automatically

indexes and stores them using their DICOM data elements. Imaging specialists can filter

patient data, for example, based on modality. Also, files can be download. Users can also delete

DICOM files (Maniadi et al., 2015). The architecture of DCM4CHEE is depicted in Figure

2.2.

23

2.3.2 DCMTK

DCMTK is open-source software that contains a collection of applications and libraries,

including functionality for constructing, examining and converting DICOM image files,

sending and receiving images over a network connection, handling offline media, and

demonstrative image storage; and worklist servers. It has been used in many different

situations, for example, as a tool, as a building block for research projects, and as a commercial

product. DCMTK is mostly written in C/C++, and in recent years, has grown significantly (see

Figure 2.3).

Figure 2.3 DCMTK line of code and programming language pie chart
Taken from Openhub (2019)

2.3.3 Dicoogle

Dicoogle is an open-source PACS (Valente et al., 2016) with a modular architecture (Figure

2.4) (Pinho & Costa, 2016). Its software development kit (SDK) and plugin concept

encourages researchers and developers to develop new features easily. Dicoogle uses

DCM4CHEE for implementing the DICOM standard functionalities (Costa et al., 2011). Also,

its modular architecture is often used for teaching, education, and clinically in hospitals (Lebre

et al., 2019).

The main features of Dicoogle, according to the project homepage, are included:

24

1. Expansible (based on plugin-based architecture and SDK);

2. Scalable (tested with over 25 million of indexed DICOM objects and optimized for big

data paradigms);

3. Indexing/Query Engine (Enable DICOM study retrieval and knowledge extraction and

support for complex query/retrieval solutions);

4. Web user interface;

Dicoogle has been used for various purposes, both in research and clinically. For example, it

is being used as DICOM data mining tools (Santos, Bastião, Costa, Silva, & Rocha, 2011),

(Valente et al., 2013), by third entities to regional PACS, and as an educational tool for students

and interns. Besides, it addressed many challenges of healthcare institutions such as

performing content-based image retrieval (Valente et al., 2013) and interfacing with Cross-

Enterprise Document Sharing for Imaging (XDS-I) (Santos et al., 2011). Due to its software

architecture, it could support this range of different applications with very varied requirements.

Its extension mechanisms have permitted users to use present DICOM functionality and

discover new directions in a non-intrusive manner.

Figure 2.4 Dicoogle General Architecture.
Taken from Lebre et al. (2019, p. 3)

25

Due to its low difficulty in using it, the development time is reported to be reduced, whether it

is a data analysis task or the development of a new experimental feature. By using the existing

DICOM functionality, developers can quickly prototype, adapt, and develop features for their

use case. It is reported that it provides many benefits for both small to medium medical

healthcare centers and research institutions. Also, because of its low-end hardware

requirements and easy deployment, Dicoogle is popular. To deal with the fast-changing PACS

environment, using an extensible plugin-based software is important, as it facilitates rapid

prototyping, experimentation, and validation while encouraging code and functionality reuse

(Valente et al., 2016).

2.3.4 MRIdb

MRIdb is an open-source PACS that is suitable for storing and managing MRI (magnetic

resonance imaging) datasets. It was designed for researchers and clinicians (Woodbridge,

Fagiolo, & O’Regan, 2013). MRIdb is software composed of a suite of tools and utility scripts

and a bespoke Web application. It depends on a number of other components which include a

PACS, a relational database system that is scalable and an authentication service (see Figure

2.5). MRIdb is based on DCM4CHE (Woodbridge et al., 2013), a highly configurable and

mature open-source PACS. It handles raw image and thumbnail retrieval facilities, metadata

extraction from images into a relational database schema and raw image, and low-level

functions of image archival from scanners using the DICOM protocol.

MRIdb natively provides Web and DICOM interfaces, but the former is complex and provides

extensive data manipulation and administrative facilities, whilst the latter enables access to un-

anonymized data. MRIdb also provides visualization; export functionality with enforced

preservation of anonymity and data integrity; utilities for auditing; system monitoring; data

migration and study management. It is designed to support image management and clinical

research in the area of epidemiological and imaging genetics research. The User Interface (UI)

is implemented using Hypertext Markup Language (HTML). The software is cross-platform,

and it can execute on any modern Web browser. The back-end of the software is written in

26

Python and Java and is recommended to operate on Linux. MRIdb is freely available from the

project Website and distributed under the GNU General Public License v3.0 (Woodbridge et

al., 2013).

Figure 2.5 MRIdb Server system architecture
Adapted from Woodbridge, Fagiolo, & O’Regan (2013, p. 887)

A turnkey distribution of MRIdb is available in the form of a virtual appliance where it can be

deployed without a lot of technical knowledge. By using this facility, the lengthy installation

process is facilitated. This includes specification of the location of the storage space allocated

for image archival, the address of the lightweight directory access protocol (LDAP) server used

for user authentication, and the e-mail address of the system manager (to whom errors are

automatically reported).

Without requiring a complex installation, it provides patient data management in a secure and

scalable manner (Woodbridge et al., 2013). MRIdb was written mostly in Java, and its modular

architecture is depicted in Figure 2.5. The last version of the MRIdb dates back to 2014 and

this PACS has not intensively been enhanced in recent years.

27

2.3.5 Orthanc ecosystem

Orthanc, is an open-source PACS that provides a powerful environment to optimize and

automate the imaging flows, which are always specific to each hospital. The Orthanc server

has a lightweight vendor archive that can be extended using plugins. Orthanc also uses

DCMTK in its Orthanc server for DICOM C-Store, C-Find, and C-Move. The advanced

programming interface of Orthanc server allows research engineers and software developers

to readily develop external software dealing with medical images with very little knowledge

needed of the DICOM standard (Jodogne, 2018). According to the project’s homepage, it is

designed to meet the following benchmarks:

1. To ease DICOM scripting for clinical routine (e.g., C-Find, C-Store, and C-Move SCU);

2. To ease data management for medical research and clinical routine (mini-PACS);

3. To bring DICOM images to the Computer Vision community (to ease the automated

analysis of medical images).

To meet above benchmarks it offers:

1. Fast, Lightweight (written in C++) and mostly developed in recent years (Figure 2.6);

2. Standalone (all the dependencies can be statically linked);

3. Cross-platform (at least, Windows, Linux, and OS X);

4. Compliant with the DICOM standard (as it is built on the top of DCMTK);

5. Programmer-friendly (PNG, JSON, REST API).

Figure 2.6 Orthanc core line of code and programming language pie chart
Taken from Orthanc-server (2019)

28

The software ecosystem of Orthanc contains different modules, which results in a growing

number of source code, as depicted in Figure 2.7.

Figure 2.7 Orthanc ecosystem. The main components are shown in red color. The
green components are Orthanc plugins, and the blue color shows application

related to clinical research, academic activities, and medical practice.
Taken from Jodogne (2018, p. 343)

Orthanc aims to deliver a simple and powerful standalone DICOM server. It is designed to

facilitate the DICOM flows in hospitals and automated analysis of medical images. Orthanc

hides the complexity of the DICOM format and protocol, and it provides this opportunity for

its users to have more focus on the content DICOM files. It can run on many popular operating

systems such as Windows, Linux, and OS X and turn them into a DICOM store (e.g., a mini

PACS system).

The Orthanc server is placed at the core of the Orthanc ecosystem and has a lightweight and

standalone architecture. Thus, it does not require any complex database administration and

installation of third-party dependencies. Two main features of the Orthanc, in comparison with

the other open-source PACS, are its REST API that has a plugin mechanism that will be

explained in the following sections (Jodogne, 2018). The Orthanc software ecosystem has

29

different components, depicted in Figure 2.7 in this section, we will review each part of the

Orthanc architecture.

2.3.5.1 Orthanc Server

As we have seen, the Orthanc server is the main component of the Orthanc software ecosystem.

The Orthanc server is a Vendor Neutral Archive (VNA) that can receive, index, store, and

transmit medical images using the DICOM standard. Its internal architecture (see Figure 2.8)

provides the simplicity of the packaging and deploying almost immediately. This architecture

has the following properties:

1. Small footprint: it can run in many different hardware platforms such as virtual machines

on the cloud, desktop computer, Raspberry Pi, or even from a USB stick;

2. Cross-Platform: It is written in C++, and it can package for the various operating system;

3. Standalone: It comes with SQLite, and it is not required for the installation of any

framework such as Java, .Net, or any external software to run;

4. Compliant with the DICOM standard by using the DCMTK toolkit.

Figure 2.8 The layer of Orthanc server software architecture
Taken from Jodogne (2018, p. 343)

30

2.3.5.2 Orthanc Explorer

The Orthanc explorer provides an embedded Web user interface. Users can open and interact

with the Orthanc explorer, which is an embedded Web user interface that allows the users to

interact with the DICOM server through a browser (see Figure 2.9). It is based on an HTTP

server, but it is configured to use HTTPS to be more secure. The primary functions of these

components are: browsing the content of the Orthanc server; anonymization; manual upload

of DICOM instances; download of a ZIP archive, query; and retrieve from remote modalities

(imaging devices). The Orthanc explorer facilitates data management for medical research and

clinical routine, and it is easy to install, task-specific, and fine-grained DICOM stores. These

servers can connect different DICOM modalities, medical departments, and hospitals. For

example, it is used at the University Hospital of Liege radiology department, which is

interconnected to a nuclear medicine department to enable backups to the contours and to the

research database that collects in-room images produced by treatment machines (Jodogne,

2018).

Figure 2.9 Orthanc explorer screenshot
Taken from Orthanc-server (2019)

31

2.3.5.3 Lua Scripting

Lua scripting is an embedded scripting engine that can be used to drive DICOM flows in an

automated way and is used in Orthanc. Thanks to this major feature, Orthanc can be adjusted

to any medical workflow without being driven by an external script. It means that by using this

scripting engine, users can define routing rules as needed. It can also monitor the arrival of the

DICOM instances and react to them if some condition is met (Jodogne, 2018). A sample of a

Lua script is depicted in Figure 2.10.

Figure 2.10 A sample of Lua scripting
Taken from Orthanc-server (2019)

2.3.5.4 REST API

For basic auto-routing tasks, Lua Scripting is very useful, but for more complex DICOM

automation, the Orthanc server offers REST APIs. It is based on the internal HTTP and

provides this opportunity for software developers to have full access to all the core features

(Richardson & Ruby, 2008). Developers can use different programming languages such as

Python, C#, and Java. It is quicker to develop a new application by giving the responsibilities

of handling the DICOM files into the Orthanc server. Orthanc server works as a high-level

bridge between the DICOM standards and software standards such as XML, JSON, HTTP,

and PNG (Jodogne, 2018).

32

2.3.5.5 Orthanc Plugins

The core of the Orthanc server can be extended by using the Orthanc plugins. C and C++

programming languages are used for developing plugins and can be used to add new endpoints

in the REST API or to serve new Web pages.

Figure 2.11 A screenshot of the Orthanc web viewer plugin
Taken from Orthanc-server (2019)

The Orthanc Web viewer is a good example of an Orthanc plugin which can be used to view a

range of DICOM images (see Figure 2.11), and it can be used to meet basic teleradiology

needs. The plugins engine of the Orthanc provides the opportunity to replace it with another

open-source plugin. For example, the default Database plugins in Orthanc architecture is

SQLite, which is capable of storing approximately 5000 DICOM instances, but it can be

inadequate for enterprises as they require more capacity. Consequently, the PostgreSQL open-

source plugin can be used in Orthanc as a reliable database to manage more than 10TB imaging

data (Jodogne, 2018).

33

2.3.5.6 Digital Pathology

Recently open-source support of DICOM for digital pathology has been added to the Orthanc

ecosystem (Jodogne et al., 2017). Introducing digital pathology is a new approach to

Telepathology. An application of telemedicine provides a long-distance practice of

anatomopathology (Jodogne, 2018) which is valuable for intraoperative consultation (Ribback,

Flessa, Gromoll-Bergmann, Evert, & Dombrowski, 2014), consultation from experts (Farahani

& Pantanowitz, 2016), research and education (Marée et al., 2016), and pathology archiving

(Webster & Dunstan, 2014), the with electronic format images. Digital pathology has two main

parts, which are included: the DICOMizer and a plugin for Orthanc server (Jodogne, 2018).

2.3.5.7 Stone of Orthanc

Finally, the Stone of Orthanc is a function for rendering 2D and 3D medical images. It supports

the multiplanar reconstruction of volume images (MPR), reslicing; radiotherapy (rendering of

RTDOSE and RT-STRUCT); layering (fusion of images), and accurate physical 3D world

coordinates. Stone of the Orthanc can retrieve DICOM images through REST API from an

Orthanc server. It is a lightweight, cross-platform C++ toolkit. Because it is entirely standalone

and entirely written in C++, it can readily be embedded into heavyweight software (bindings

to Java and C# are in active development) or into native mobile applications (iOS and

Android). In addition, it is compatible with the emerging Web Assembly technology and

without any installing browser’s extension can run C++ applications in the Web (Haas et al.,

2017).

As a result, it is possible to quickly develop applications from a single codebase for displaying

and analyzing medical images and use in any platform (Web, native, or mobile) (Jodogne,

2018). The examples of rendering by the stone of Orthanc toolkit is depicted in Figure 2.12.

34

Figure 2.12 The stone of Orthanc toolkit rendering sample
Taken from Farina et al. (2004, p. 59)

2.3.5.8 Summary of Orthanc

As presented here, Orthanc has been used for different application around the world such as

the automated routing or exchange of DICOM instances (both outside and inside of research

centers and hospitals), the Web diffusion of (possibly anonymized) medical images, the

education of stakeholders (medical physicists or physicians) and the industrial R&D or

scientific research about new imaging modalities or software. The Orthanc server as a

lightweight, novel, robust DICOM store provides rich scripting capabilities based on the use

of the Lua engine, and REST API. The built-in capability with Web technology makes it very

multipurpose. It is fully standalone and cross-platform, which facilitates the process of

deployment. Several plugins revolve around the Orthanc server, and they can be used with the

core features of Orthanc, by adding support for enterprise-ready databases, by improving the

user interface, by interfacing with administrative servers of the hospital, by implementing

recent additions to the DICOM standard such as digital pathology support or DICOMweb, and

by providing teleradiology solutions. The stone of Orthanc is a C++ lightweight toolkit and

CPU-based rendering engine for medical images. It is a building block to create heavyweight

software such as Web interfaces (through WebAssembly) or mobile applications (Android or

iOS) that require to display or process medical images. The Orthanc ecosystem is completely

open-source and well documented. The Orthanc server is under the license of GPL3, and the

official plugins are mostly released under the AGPLv3 license. The Orthanc ecosystem is

35

designed to be as simple and open as possible, to eliminate the learning time of DICOM

standard, to the advantage of research centers, hospitals, companies, public organizations, or

general audience. More information can be found in the online Orthanc Book

(https://book.orthanc-server.com/).

The DICOM standard, further explained in the next section, is used for transmitting, storing,

and exchanging medical images that are created by using imaging techniques (see Section 2.2)

so that these images and their patient information can be shared with other hospital information

systems.

2.4 Understanding the use of DICOM format with Orthanc

The DICOM format enables the ability to interconnect medical imaging devices such as

printers, servers, scanners, workstations, and PACS from various manufacturers with other

hospital information systems. It manages exchanges between two medical devices or software

that are able to receive the image and patient data. Each device must support:

1. A DICOM Conformance Statement, which states which DICOM classes they support;

2. A file format definition;

3. A network communication protocol that uses TCP/IP to communicate among systems.

The DICOM standard is divided into two parts: the DICOM file format and DICOM network

protocol, which are explained in the next sections.

2.4.1 DICOM file format

The medical information, which is encoded by a DICOM file, is in fact a data set that has the

form of the key-value associative array. Each array could be a list of data sets, which is called

a sequence. This architecture, which is similar to a JSON or an XML formatted file, leads to a

hierarchical data structure internally. In the DICOM terminology, each key is called a DICOM

tag. An official dictionary is available and normalizes the list of the standard DICOM tags,

36

which are identified uniquely by two 16-bit hexadecimal numbers. The DICOM file format

also specifies which DICOM tags are mandatory or optional for each type of imaging

modalities such as PET, CBCT, NM, MR, CT. This specification is known as a storage service-

object pair. The DICOM standard also allows companies to develop non-standard, proprietary

tags for their own use.

The DICOM tag PixelData (0x7fe0, 0x0010) is associated with the image, and the related

image could be compressed by using popular image formats like JPEG. In addition, the

DICOM file can act as a wrapper around encoded using H.264 or MPEG-2 protocols. A

DICOM image can be multi-frame, meaning that it encodes an array of various image frames.

This feature can be used to encode uncompressed video sequences that are referred to as 2D+t

or cine images (e.g., for Ultrasound imaging).

The Orthanc software can send, receive, and store all kinds of DICOM images, and it supports

all standard transfer syntaxes. In addition, it can convert the most uncompressed images to the

PNG format. This file format was chosen by Orthanc as it is lossless, is natively supported by

many popular software, programming frameworks, browsers, and capable of encoding up to

16bpp integer pixels. When previewing a DICOM image within Orthanc explorer, an on-the-

fly conversion to PNG image occurs.

The patient study workflow of Figure 2.13 shows that a patient is related to a set of medical

imaging studies, and each study contains a set of series. Each series is related to a set of

instances. Multiple series of images can be related to an imaging study. The PET and CT series,

like nuclear medicine, contain at least two separate series. Moreover, any kind of imaging

study usually produces a set of separate series. In general, series could be considered as either

a single 2D image (e.g., standard digital radiology), a 2D+t cine sequence, or a single 3D

volume (as in a CT-scan). However, a series might also encode different files such as a single

PDF report, a 3D+t image (i.e., a temporal sequence of 3D images), and a structured report.

37

Figure 2.13 UML diagram shows a patient’s study
workflow Taken from Orthanc-server (2019)

For each of these four types of DICOM resources (e.g., patient, study, series, and instance),

which is depicted in Figure 2.13, the DICOM standard defines a module as a set of DICOM

tags that explain these resources. For example, a patient module contains the DICOM tag

‘PatientName’, and ‘SeriesDescription’ is part of the series module. Any storage service-object

pair can be decomposed into a set of modules that make sense for its associated type of

modality, and whose conjunction forms encode all the medical information.

2.4.2 DICOM network protocol

The DICOM protocol is known as one of the first instances of Web services, before the

availability of REST and SOAP. It provides basic functionalities, which are:

1. A ‘C-Echo’ command: Test the connection between two devices;

2. A ‘C-Store’ command: Send images from the local imaging device to a remote device;

3. A ‘C-Find’ command: Search the content of a remote device;

4. A ‘C-Move’ command: Retrieve images from a remote device.

38

Figure 2.14 shows an overview of high-level transactions between the client and the server.

The DICOM protocol uses TCP/IP in order to make a connection (i.e., the connection between

a DICOM client and a DICOM server is also called an association) between a client of a

DICOM service (is called a Service Class User) and a server that handles the request (is called

Service Class Provider). Furthermore, each imaging device has a symbolic name, which is

called an application entity title (AET) that is assumed to be unique inside the hospital Intranet.

Therefore, IP address, TCP port, and AET are required for identifying a DICOM server.

Figure 2.14 Transaction between Service Class User (SCU)
 and Service Class Provider (SCP)
Taken from Orthanc-server (2019)

Orthanc can act as both as a DICOM server and as a DICOM client, depending on the value of

the parameters set in its configuration file. To configure the Orthanc DICOM server,

‘DicomServerEnabled’ must be set as true, ‘DicomAet’ set to a reserved AET, and

‘DicomPort’ set the TCP port of the DICOM server. On the other hand, in order to configure

an Orthanc DICOM client, the list of the remote DICOM servers (for each remote server should

provide a symbolic name for the server that will be displayed by Orthanc Explorer, the AET

of the remote server, its IP address, and its DICOM port) into ‘DicomModalities’ option.

The ‘C-Echo’ command helps users to check the connectivity of the DICOM protocol in the

hospital Intranet. In practice to test a connection, first, the PACS administrator should check

the TCP-level connectivity and then issue the ‘C-Echo’ from the client to the server to test the

DICOM-level connectivity. Another command is the ‘C-Store’ command (Figure 2.15), which

39

is sending images (e.g., DICOM instances) to the server. Orthanc can act both as a C-Store

server (SCP) and as a C-Store client (SCU), which can send and receive DICOM files.

Figure 2.15 C-Store command transaction diagram
Taken from Orthanc-server (2019)

The ‘C-Find’ command (see Figure 2.16) is used to search a list of DICOM resources (e.g.,

patients, studies, and series) that are available at the remote DICOM server. These resources

include patients, studies or series, which should be specified. Some filters tags are available.

They describe the resources that users are looking for. The ‘C-find’ command is depicted as

follows:

Figure 2.16 C-Find Transaction diagram
Taken from Orthanc-server (2019)

The ‘C-Move’ command (see Figure 2.17) is used to locally retrieve the result of the ‘C-Find’

command. These two sets of commands are known as the query/retrieve mechanisms, and they

are the core of exchanging a DICOM file within the hospital systems. Whenever an imaging

device calls a ‘C-Move’ command, it asks a DICOM server to transfer some of the resources

to another DICOM server. ‘C-Move’ command drives a ‘C-store’ between two remote DICOM

servers. The following diagram shows the ‘C-Move’ command.

40

Figure 2.17 C-Move and C-Store transaction diagram
Taken from Orthanc-server (2019)

DICOM format and its functions are explained in the current section; in the next section, a

laboratory test model is designed followed by a case study model to be trialed for the Donka

university hospital is presented.

2.5 Conclusion

In this chapter, different imaging techniques (see Section 2.2), popular open-source PACS

architectures (Section 2.3), and the DICOM format (Section 2.4) are explained. In the next

chapter, open-source PACS are evaluated to recognize the most prominent open-source PACS

in recent years, and for remain chapters, the selected PACS is used for the development of

required functions for research-PACS to meet the requirement of Donka university hospital.

CHAPTER 3

ORTHANC MODEL SIMULATION

3.1 Introduction

In the previous chapter, popular open-source PACS architectures were explained. In this

chapter, first, the available open-source PACS are evaluated (section 3.2). After this, the

simulation of a model using a Modality Emulator and the Orthanc PACS in section 3.3, a model

is proposed to experiment its implementation for a university hospital (i.e., the Donka Hospital

of Guinea) (section 3.4).

In this literature review, various open-source PACS solutions are introduced. In this chapter,

some of the most popular open-source PACS are evaluated using the proposed criteria in order

to find a suitable software candidate to be experimented in this research. Therefore, before

choosing an open-source PACS, it is necessary to compare them. Four criteria are extracted

from the article “Open Source in Imaging Informatics” by Nagy (2007) to evaluate open-source

PACS are including:

- criteria 1: community activities;

- criteria 2: licensing models;

- criteria 3: activity, support, and documentation;

- criteria 4: enterprise functions and software characteristics.

In the next section, some available open-source PACS will be evaluated using these criteria.

3.2 Evaluation of open-source PACS

Many websites, such as Medevel, Medfloss, and Idoimaging, which publish articles in the field

of medical and science projects, are trying to evaluate and rank the available open-source

PACS. These websites provide a list of top open-source PACS (see Table 3.1) by considering

different criteria like end-user feedbacks to rank available open-source PACS. According to

42

these studies, see Table 3.1, Orthanc, Dicoogle, and DCM4CHE are considered as top open-

source PACS solutions available currently.

Table 3.1 Top open-source PACS ranked by Medevel, Medfloss, and
Idoimaging websites

Rank Medevel Medfloss Idoimaging

1 Orthanc MRIdb DCM4CHE
2 Dicoogle Orthanc Orthanc
3 OHIF Dicoogle DCMTK
4 JVSdicom server Xebra ConQuest
5 EasyPACS OSPACS Dicoogle
6 NeurDICOM OpensourcePACS MRIdb
7 PacsOne Server ClearCanvas PACSsoft PACS
8 PACSsoft PACS ConQuest MyFreePACS
9 DCM4CHE CDMEDIC PACS WEB PacsOne Server

10 J-PACS DCMTK -
11 - DCM4CHE -

To compare leading open-source PACS, the following criteria have been investigated:

community efforts, updating activities, project forum activity, Wikis documentation, open-

source licenses, website appearance/usefulness, utilization, ease of installation, technical

support, mailing list activity, the functionality offered, data standard, operating system (OS)

and programming languages as well as developers’ facilities offered. These software

characteristics are categorized into four groups:

1. Community activities;

2. Licensing models;

3. Activity, support, and documentation;

4. Enterprise functions and software characteristics.

Each is presented in the next four subsections.

43

3.2.1 Community activity

The success of open-source software is often related to how mature it is in its community.

Maturity in this context relates to its constant development/improvement as well as the level

of collaboration and quality control. Few open-source projects evolve to a high level of

maturity.

Table 3.2 Evaluating open-source PACS by developers’ activity, updating project
activity, and community activity

PACS

Fo
rk

W
at

ch

St
ar

Co
m

m
its

La
st

Co
m

m
it

D
at

e

Re
le

as
e

Fi
na

l V
er

sio
n

Fi
na

l R
el

ea
se

 D
at

e

Fo
ru

m
 T

op
ic

s

Fo
ru

m
 M

em
be

r

DCMTK 96 40 195 9590 08/19 40 3.6.3 02/18 4651 3032

DCM4CHE 389 114 527 2271 08/19 56 5.15.0 11/15 4601 2417

Orthanc 40 21 - 3352 08/19 24 1.5.7 05/19 1598 713

Dicoogle 63 30 134 1122 04/19 7 2.5.0 12/17 - -

ConQuest 10 7 19 1055 06/19 - 1.4.17 04/13 2076 106K

MRIdb 11 6 16 418 08/18 2 1.1.0 09/14 - -

ClearCanvas 381 100 280 1621 04/15 3 13.2 04/15 - -

EasyPACS 30 11 60 5 04/15 - 04/15 - -

PacsOne Server 6.5.1 01/15 - -

PACSsoft PACS 4 1 2 17 11/17 - - - - -

NeurDICOM 4 2 17 110 06/18 - - - - -

CDMEDIC - - - - - - 2.17.2 02/13 - -

OSPACS 2 6 33 127 11/17 1 - - - -

Xebra - - - - 04/08 2 1.0 04/08 - -

opensourcePACS - - - - - - - - - -

JVSdicom - - - - - - - - - -

It has been observed that for every 100 developers who are using and open-source software,

merely ten developers are likely to submit feature requests or bug reports and only a few

developers are likely to contribute and submit a fix or enhancement. According to Eric S.

Raymond, an open-source pioneers, “many eyes make bugs shallow”. Due to the participants

44

of highly focused developers in collaborative development, open-source projects can compete

and even be superior, in quality and functionality, in many cases to commercial software

(Nagy, 2007).

Forums and shared documentation, in Wikis, provide a substantial level of customer support

for many community-based open-source projects. Users and contributors can find answers to

their questions by reviewing topics, reported by others who have faced the same problem and

resolved it or even can create a new topic related to their question. A high level of pertinent

forum activity is one of the useful indication of a mature open-source project. Active and

vibrant forums provide responsive developers support from volunteers and code contributors.

The last update, or release time, of a software project is another way to judge the maturity of

an open-source project. Mature open-source projects update their software monthly, weekly,

or in some cases daily. Working developers and non-programmers in a vibrant community

together is another key to assess an open-source project. The mix of these types of contributors

in an online community could guarantee that the software is not a developer-only tool, but one

with wider appeal and utility (Nagy, 2007).

To sum up this subsection, the contribution of developers and users in a project, updating and

last release time, project forum activity, and shared documentation, in Wikis, are good

indicators and useful measures to be used to rank open-source PACS. Table 3.2 summarizes

information extracted from the project source code repositories (e.g., Github, Sourceforge, and

Bitbucket), which is sorted by the number of project fork, final release date and forum topics

count. DCMTK, DCM4CHE, Orthanc, and Dicoogle have the highest rank in Table 3.2 in

comparison to the other open-source PACS projects. Some developers used the DCM4CHE

and DCMTK libraries in their hospital projects to handle the DICOM implementation, and

these two projects are often chosen to develop a PACS from the ground up instead of starting

from many other open-source PACS offerings such as Dicoogle, MRIdb, and Orthanc.

Because the purpose of open-source development is removing common contribution,

development and distribution restrictions, the copyright on the open-source project is

sometimes called “copyleft”. Open source projects typically use two types of licensing models:

45

Berkeley Software Distribution (BSD) or GNU General Public License. These two types of

licensing styles are explained in the next subsection.

3.2.2 Licensing Models

In the process of selecting an open-source PACS for further development, product license

needs be considered as a very important selecting criteria. There are several license model for

OSS, but the Berkeley Software Distribution (BSD) and GNU Project General Public License

(GPL) are the most popular licensing models. The BSD license model says you may download

a program and use it for non-commercial or commercial products (Hackländer, Martin, &

Kleber, 2005). The main conditions are including:

1. Credit the authors in the source code or reproduce the copyright in binary distributions;

2. May not sue the creator, if the software doesn’t work as you think it should;

3. May not use the creator’s name to endorse the product.

Table 3.3 Open source PACS license

PACS License PACS License
Orthanc GPLv3.0 CDMEDIC PACS GPLv2
DCMTK GNU 2.1 - BSD PacsOne Server1 GPL
Dicoogle GPLv3.0 OSPACS MIT
DCM4CHE GPLv2.0 ConQuest License2
ClearCanvas GPLv3.0 opensourcePACS Not Listed
MRIdb GPLv3.0 EasyPACS Not Listed
PACSsoft PACS GPLv3.0 NeurDICOM Not Listed
Xebra GPLv2 JVSdicom Not Listed

The BSD license model is considered a business-friendly license model because companies

can use it, modify it, and even sell the code without paying its authors. The CTN, which

1 Basic edition version
2 Refer to the project website section: Administrative / Licensing Contact, original MicroPACS
(https://ingenium.home.xs4all.nl/dicom.html)

46

implemented the DICOM international standard, was release with a BSD open-source license.

Many companies do contribute back to OSS projects that use a BSD-style license, because it

is easier to implement a parallel copy of the source code and continually sync and update these

different versions of the source code. Collaborating in an OSS project could also have direct

benefits in terms of visibility for the companies.

The GPL open-source license model requires that if you release a modified product to the

public, the modified source code must be shared with the original creators (Hackländer, Kleber,

Martin, & Mertens, 2005). This approaches helps in the fact that the improvements to the OSS

project will come back and coherently be delivered again to the public. Many developers that

create software use a GPL-style license for non-commercial use (e.g., home and academic use).

But GPL is more restrictive for commercial use. The GPL-style license allows free use for end-

users but when a company sell the OSS as part of one of their solution, there is a need for

royalties. It means that software is free to use, but if it is sold, some portion of the profits should

go to the founders. Table 3.3 presents an overview of the popular open-source license style

used in PACS open-source projects.

3.2.3 Activity, Support, and Documentation

This subsection assesses the projects activity, support and documentation using the following

criterion:

1. Website appearance and documentation: good and current documentation for a project

could be a good indicator of a successful project. Writing a document for a software project

is often the last task that developers want to spend effort on. In the best open-source

projects, users also collaborate with developers in preparing and keeping up to date a

comprehensive documentation. Documents of a mature open-source project will include:

installation guides, screenshots, user guides, and developer’s guides;

2. Activity and utilization: statistics provided by source repositories such as Sourceforge

and Github could indicate also a successful project. These websites contain some activity

measures such as: how often the project has been forked or downloaded; when was the last

47

update the code; the bug reports open and closed, the number of contributors; the number

of subscribers to the project; and information about activity of the bulletin board;

Table 3.4 Evaluating PACS by website appearance and documentation, activity and
utilization, ease of installation, technical support forum, and mailing list activity.

PACS

W
eb

sit
e

ap
pe

ar
an

ce

&
 d

oc
um

en
ta

tio
n

A
ct

iv
ity

 &
 u

til
iz

at
io

n

Ea
se

 o
f i

ns
ta

lla
tio

n

Te
ch

ni
ca

l s
up

po
rt

fo
ru

m
s

M
ai

lin
g

Li
st

A
ct

iv
ity

Pl
at

fo
rm

 Website

Orthanc ∙∙∙ ∙∙∙ ∙∙∙ ∙∙∙ + CP www.orthanc-server.com
DCMTK ∙∙ ∙∙∙ ∙∙∙ ∙∙∙ + W/L https://dicom.offis.de/dcmtk.php.en
DCM4CHE ∙∙ ∙∙∙ ∙∙∙ ∙∙∙ + CP www.dcm4che.org
ConQuest ∙ ∙∙∙ ∙∙ ∙∙∙ - W/U https://ingenium.home.xs4all.nl/dicom.html
Dicoogle ∙∙∙ ∙∙∙ ∙∙ - + CP www.dicoogle.com
MRIdb ∙ - ∙∙ ∙ - CP www.imperial.ac.uk
PacsOne Server ∙ - ∙∙ ∙ + CP www.pacsone.net
NeurDICOM ∙ ∙ ∙ - - - -
EasyPACS ∙ - ∙ - - CP http://mehmetsen80.github.io/EasyPACS/
PACSsoft PACS ∙ - ∙ - - CP www.pacssoft.com
OSPACS ∙ - ∙ - - W https://archive.codeplex.com/?p=ospacs
CDMEDIC ∙ - ∙ - - M/U http://cdmedicpacsweb.sourceforge.net/
ClearCanvas ∙ - ∙ - - W www.clearcanvas.ca
opensourcePACS ∙ - ∙ - - CP -
Xebra - - ∙ - - - -
JVSdicom - - - - - W http://jvsmicroscope.uta.fi/

3. Ease of installation: an easy installation process is another element that could be a decisive

criteria in choosing an open-source software over another. Software can operate on

different platforms (i.e. Operating Systems), such as Windows, Linux, and Mac OS. This

does not mean that the software will install easily as a plug-and-play every time? Poor

installation documentation and insufficient validation tests on different hardware platforms

48

is the most important cause of installation failures. If other users report that a an open-

source project is hard to install, it could be a sign that the project is not mature enough;

4. Technical support forums: the existence of an active support forum for an open-source

project, is a good sign that a large group of active contributors are helping each other to

resolve the issues, evolved the software and get the most value out of the application. In a

mature open-source community, response time, when a support request is issued, is

typically short even for the most challenging questions from volunteers and code

contributors.

Table 3.4 shows a quality rating for each criteria assessed. Three bullets (∙∙∙) indicate good

development, resources, high activity and utilization in the recent year, and a software that is

easy to install. Alternatively, one bullet (∙) demonstrates less development, low activity and

utilization and a software that is hard to install. Finally, a minus (-) indicates that not enough

information was available on that characteristic to assess it. Ease of installation criteria is

assessed by averaging documentation quality, platform and technical support quality. It shows

that Orthanc, DCMTK, DCM4CHE, ConQuest, and Dicoogle obtain the best results. These

open-source PACS software provide good documentation (e.g., Orthanc book and Dicoogle

learning pack) for the developers, researchers, and users. Orthanc google group, DCMTK

developer community, DCM4CHE google group, and ConQuest forum provide a platform for

users and developers to discuss with experts related to their issues. These open-source PACS

platforms help developers and users with the installation process, the adaptation, and

maintenance.

3.2.4 Enterprise functions and software characteristics

Next, we investigate each open-source PACS different built-in functionality, which are

typically: Image Archiving, Image Management, Image Communication, Image Processing,

Image Viewing, and Image Distribution. Some PACS operate on limited or specific operating

systems but other work on many (i.e. they are called cross-platform software).

49

Table 3.5 Open source enterprise functions and software characteristics

PACS
Im

ag
e

A
rc

hi
vi

ng

Im
ag

e
M

an
ag

em
en

t

Im
ag

e
Co

m
m

un
ic

at
io

n

Im
ag

e
Pr

oc
es

sin
g

Im
ag

e
V

ie
w

in
g

Im
ag

e
D

ist
rib

ut
io

n

W
or

kl
ist

 P
ro

vi
de

r

A
pp

lic
at

io
n

In
te

gr
at

io
n

O
th

er

Pl
at

fo
rm

Pr
og

ra
m

in
g

La
ng

ua
ge

Ex
te

ns
ib

ili
ty

DCM4CHE ∙ ∙ ∙ ∙ ∙ ∙ Cross-Platform Java API/Library

Orthanc ∙ ∙ ∙ ∙ ∙ ∙ Cross-Platform C++ API/Library
Scripting

Dicoogle ∙ ∙ ∙ ∙ ∙ ∙ Cross-Platform Java API/Library

ConQuest ∙ ∙ ∙ ∙ ∙ . Windows/Unix C/C++
Pascal API/Library

opensourcePAC
S ∙ ∙ ∙ ∙ ∙ . Cross-Platform Java

DCMTK ∙ ∙ ∙ ∙ ∙ Cross-Platform C/C++
CDMEDIC ∙ ∙ ∙ ∙ ∙ Mac OS/Unix Java
ClearCanvas ∙ ∙ ∙ ∙ ∙ Windows C/C#
MRIdb ∙ ∙ . Cross-Platform Java
OSPACS ∙ ∙ ∙ ∙ ∙ Windows C#
Xebra ∙ ∙ ∙ ∙ . Java
PACSsoft ∙ ∙ Cross-Platform C#
EasyPACS ∙ Cross-Platform JS/Java
PacsOne ∙ Cross-Platform PHP
NeurDICOM Python API
JVSdicom Windows C++

Next, the easiness of programmers to adapt the software to his/her hospital-specific needs is

another concern to be considered when choosing an open-source PACS. Modular software

architecture and the availability of development plugins help developers when

adapting/evolving a software. A software that provides RESTful API is preferred in our

assessment as it is often better architecture than software who do not use it.

Table 3.5 considers the number of built-in functions, platform, and extensibility options.

DCM4CHE, Orthanc, Dicoogle, and ConQuest PACS have the best results according to these

criteria.

50

3.2.5 Assessment Result

Overall, we have evaluated and compared 16 open-source PACS projects using a number of

characteristics regrouped in four criteria:

- criteria 1: community activities;

- criteria 2: licensing models;

- criteria 3: activity, support, and documentation;

- criteria 4: enterprise functions and software characteristics.

Table 3.6 Open Source PACS assessment results using four criteria

Rank Criteria 1 Criteria 2 Criteria 3 Criteria 4 Result 1 (BSD/GNU
License)

Result 2 (All License
Model)

1 DCMTK Orthanc Orthanc DCM4CHE Orthanc Orthanc
2 DCM4CHE DCMTK DCMTK Orthanc DCM4CHE DCM4CHE
3 Orthanc Dicoogle DCM4CHE Dicoogle DCMTK DCMTK
4 Dicoogle DCM4CHE ConQuest ConQuest Dicoogle Dicoogle
5 ConQuest ClearCanvas Dicoogle opensourcePACS MRIdb MRIdb
6 MRIdb MRIdb MRIdb DCMTK CDMEDIC ConQuest
7 ClearCanvas PACSsoft PacsOne CDMEDIC ClearCanvas EasyPACS
8 EasyPACS Xebra NeurDICOM ClearCanvas PACSsoft PacsOne
9 PacsOne CDMEDIC EasyPACS MRIdb Xebra CDMEDIC

10 PACSsoft - PACSsoft OSPACS - ClearCanvas

These Criteria are defined in order to find the best open-source PACS to be used in our case

study. Table 3.6 present a synthesis of this assessment. In Table 3.6, the two columns (Result

1 and Result 2) summarize the assessment result. Result 1 is the average for criteria 1,3 and 4

with BSD or GNU license models, and Result 2 includes all averages without considering

the license model. According to these results, Orthanc, DCM4CHE, DCMTK, and Dicoogle

are identified as the top-ranking open-source PACS projects. Thus, Orthanc is selected for the

remaining parts of this study.

3.3 Laboratory test model

51

Before experimenting Orthanc as a PACS server for the Donka university hospital case study,

it is necessary to test it in a laboratory controlled environment to gain a better understanding

of its internal process, and how to connect this PACS server to an actual hospital information

systems (HIS) (in our case study the eHospital HIS from the Adroit Company). In the next

subsection, this lab test is described.

Figure 3.1 Modality Emulator software user interface

In order to simulate the process of sending DICOM files to the PACS server, reading the

worklist file using a modality requires to execute the following 3 steps:

1. Download and run Orthanc in a virtual machine: in our tests, Orthanc 20.5.3 for windows

is downloaded and installed on a virtual machine;

52

2. Modality Emulator: For the simulation of a modality, the open-source software Modality

Emulator software (version 5.0.0) published in The Healthcare Validation Toolkit (DVTk)

is used. The user interface of the Modality Emulator software is shown in Figure 3.1;

3. Understand the workflow: In order to connect Orthanc to the Modality Emulator in the

Orthanc ‘configuration.json’ file in the section network topology, the AE Title, IP address,

and port have been added. Also, configurations are required for the Modality Emulator in

the Configure Remote System and PACS/Workstation Systems: the IP address, remote

port, and AE Title are added. To check the connectivity of the Orthanc to the Modality

Emulator, users can ping PACS by pressing the Ping PACS/Workstation. After this

command, the Modality Emulator user can read the worklist file provided by Radiology

Information System (RIS). Then the user should choose one the patient from the list. After

this choice, users can send the DICOM file of the selected patient from the worklist to the

PACS server by using the function ‘Store Image’. The workflow of the lab test is depicted

in Figure 3.2.

Figure 3.2 Simulation Workflow

3.4 Developing a model with PACS, HIS, RIS, and Modality

Once this connectivity test is done, integrating PACS with the hospital RIS, HIS is the next

logical step. Different models for integrating PACS, RIS, and HIS exist. Figure 3.3 shows the

typical hospital IT systems in most hospitals involved in connecting a PACS. This may differ

based on the hospital’s limitations, choice of HIS and RIS and PACS server functions. For

53

instance, some RIS have a feature to create and update a worklist file for modalities from the

information which is provided by the HIS. But in some other designs, the PACS is responsible

for this task. Orthanc has this ability to act as a DICOM worklist server by adding the modality

worklist plugin. Using the Mirth Connect application is another method of integrate hospital

IT systems for exchanging the information. In the next section, Mirth Connect as a powerful

integration tool is explained.

Figure 3.3 Typical connections of PACS in hospital systems

3.4.1 Using Mirth Connect

One of the goals of this research is to decide how to best integrate HIS (e.g., eHospital in this

case) with Orthanc. Integration in healthcare information technology is recognized as one of

the most challenging issues faced by hospitals. Hospitals acquire many technologies over time

and they all have to communicate internally with many other systems and if a product/system

fails to integrate, its investment value would not be realized (Henderson & Venkatraman,

1999). In Healthcare, the security and privacy concerns, the diversity of requirements and

versatility of data items, the reluctance of sharing confidential data, and the scarcity of

successful and published interoperability best practices makes it difficult for hospital to

integrate all their healthcare technologies and obtain the maximum value from the data they

produce (Katirai & Sax, 2005). Several studies have been published where a framework is

proposed to integrate diverse health applications/systems and devices. In this research area,

standard terminologies (e.g., SNOMED-CT, LOINC, RxNorm, and ICD-10) and messaging

standards (e.g., NCPDP, HL7, and DICOM) have been proposed by the various standard

54

organizations. These have been progressively used and adapted to different popular

technologies used in the clinical domain such as clinical information and medical imaging

(Cyr, Agarwal, & Furht, 2013). While these efforts are valuable, they have introduced new

challenges and complexity for customers and vendors. Customers and vendors have published

many papers about their difficulty to select messaging and terminology standards, and

consequently applications available from different vendors are not yet available for some

operating systems and platforms. Also, upgrading existing healthcare applications, in a

hospital, to support a peculiar interface is still a challenging task (Cheng, Chen, Lai, & Lai,

2010).

To address all these issues, Mirth Connect provides many interoperability benefits to a hospital,

for example:

1. It is independent of the operating system;

2. It is open-source so has no licensing costs;

3. It is extremely extensible and flexible;

4. It allows its upgrade and maintenance separately from the business logic (Haque, W., Reed,

A., & McCann, A. 2013).

Also, Mirth Connect can be applied for many other interoperability purposes such as: platform

shift, message traffic monitoring, data mart interface creation, and adapter pattern. Between

internal and external systems used by a large healthcare organization, like a university hospital,

many messages have to be exchanged every day between many systems/devices. Mirth

Connect provides a notification and monitoring functionality that can be employed for

monitoring and evaluating the messages, to ensure immediate response to any interruption in

the flow of messages, and to get notified of transactions that may be a sign of privacy or

security breach. Another common scenario for applying Mirth Connect is its resilience when

the technological platform evolves. When a hospital acquires new technological platforms for

novel healthcare service delivery, such as a service on mobile devices or using cloud

computing, the remaining business logic remains unchanged, and only the method used for

55

data gathering and delivering to the logical core needs to be modified (Roberge, MacLeod,

Hartsock, & Asangansi, 2011).

In this research, Mirth Connect will be experimented. In the next section, the proposed PACS

interoperability model for the Donka university hospital case study is proposed.

3.4.2 Overview of Donka University Hospital PACS interoperability model

Each hospital uses different information systems to automate their daily operations. These

systems are often a patch work of many heterogeneous systems and medical devices trying to

exchange information as best as they can. Alternatively, if all the information systems can be

acquired at once it is better to acquire an integrated hospital management system (HIS). In this

research case study, the Donka university hospital has already acquired an HIS (e.g. eHospital),

which is an integrated hospital management system that includes all the hospital functionality,

including a radiology module highlighted by a red box (see Figure 3.4).

Figure 3.4 eHospital HIS modules, including Radiology

In order to integrate this HIS system with Orthanc, first, it is necessary to understand where

the HIS requests and expected responses to and from the PACS will need to be added, to avoid

56

one to one exchanges of information. It is proposed that communication bus, like Mirth

Connect, be added as a middleware between this HIS and Orthanc. Mirth connect would handle

the requests from the HIS and send back expected responses.

A database would be designed in order to log transactions. This proposed design will ensure

that the communication bus be used in the future for any exchange of data between the HIS

and another system or medical device. Understanding the patient workflow in the hospital is

important if we are to identify where the transactions between the HIS and the PACS are to

take place.

Figure 3.5 shows the 10 steps of the radiology workflow that we intend to propose to this

hospital. Patient goes through steps 1 to 4 for administrative purpose. Then the radiology

technician selects his appointment in the radiology dashboard and sends him to the changing

room. After this step he is taken to the X-Ray room where the technician will send a command

to capture patient information from the DICOM worklist and send the DICOM images to the

PACS server to be stored.

Figure 3.5 Proposed radiology workflow for the Donka hospital

1- Patient arrives
with his Radiology
request

CASHIER
RADIOLOGY

2- Register the patient,
create the Radiology
investigation/procedure
and prints the invoice

3- : Patient goes to the Radiology Cashier
and gives his request which is scanned
he pays and then sits down in the waiting room

Période de consultation gratuite
Expirerpa dans 30 jours

Patient ABC
Reçu

4- Patient waits with his receipt in the
waiting room to be called by his name

RECEPTION RADIOLOGY

Example of the Patient Flow – Radiology Donka

5 – The Radiology technician uses the
HIS Radiology Dashboard to see all the
patients and their status. She initiates
the patient procedure.

6 – Patient is called and taken to the
Changing rooms to prepare for exam

7 – Nurse directs the patient to the
exam room and the technician sets up
the examination

8 – Radiology technician scans the
receipt in the HIS, acknowledge start
time, does the X-Ray, enter end-time,
finalizes results transaction in the HIS.
The modality fetches the worklist data
directly from the PACS

9 – Radiologist doctor can use an
image viewer (PACS send the
information to the image viewer) so
that he completes his diagnostic of the
X-Ray which is stored in the HIS system

10 – the radiology interns and doctors
can have a look at patient diagnostics
and images for training purposes also
using the image viewer

Invoice good for 30 Free Services

Patient AB C
R ece ip t

57

In step 9, the radiologist can use the HIS system to retrieve a patient’s files and document his

diagnostic in the HIS system. Finally, at step 10, we show that interns (with authorized access)

can look at examination results and images for later consultation or training.

Figure 3.6 shows the proposed PACS interoperability model for the Donka University Hospital

case study. According to the HIS developers, the system is sending two requests to the PACS

server:

1. When a new order is submitted to PACS (at steps 2 and 3);

2. When they send a query to retrieve a patient image report (steps 9 and 10).

Figure 3.6 Proposed PACS interoperability model for Donka Hospital

58

The point of sending a new patient request to the PACS server is that it should provide to the

modality a worklist table and this can be handled by Orthanc server. Orthanc has the ability to

create a worklist for the radiology department from new orders that could help to automate and

facilitate the data entry. Once receiving the new order from the HIS, Mirth Connect creates a

“.wl” file in a folder which is accessible for the Orthanc DICOM server (adding a DICOM

Worklist plugin makes Orthanc act as a DICOM Worklist server). When a patient goes to the

radiology room, the Modality technician uses the C-Find command to fetch the list of worklist

files from the DICOM server and then select the patient information. After the experiment

Modality sends the DICOM files to the Mirth Connect and Mirth Connect redirect it to the

PACS server in order to store.

PACS interface provides this opportunity for the technicians to query patient’s information

from the PACS and Mirth Connect database. In this web application technician can search a

patient with the patient name, accession number, study description, and study date. The

Dashboard shows the hospital patients’ states online. It means that it shows which a patient is

still in line before entering the experiment room, or which patient is waiting for the doctor to

write a report on his medial image. TensorFlow, which is trained with the X-Ray images,

provide the probability of a specific patient disease according to his DICOM files. This model

could help to increase the accuracy and speed of disease diagnosis and provide support for the

doctors.

3.5 Conclusion

In this chapter, popular open-source PACS are evaluated and Orthanc is selected for the

remaining sections of the study (refer section 3.2). It is followed by the description of a lab test

of Orthanc, as well as the test of an open-source Modality Emulator software that has helped

in understanding the inner workings of the interconnections needed (refer to section 3.3). It is

followed by the description of a proposed radiology patient workflow, as well as a proposed

PACS interoperability model to be experimented for the Donka university hospital case study

(see section 3.4). This proposed interoperability model will be experimented in chapter 4. In

59

the next chapter, the proposed PACS interoperability model design is investigated in more

detail, then implemented in a prototype and is tested, in a case study, for the Donka Hospital.

CHAPTER 4

PACS INTEGRATION IMPLEMENTATION

4.1 Introduction

In the previous chapter, Orthanc Server was tested in the lab, and then an interoperability model

between Orthanc and the HIS of a university hospital was proposed. In this chapter, the PACS

interoperability model and different dataflow scenarios in the hospital are explained (see

section 4.2) and tested for the Donka University Hospital.

4.2 Implementation of the proposed model
The implementation of the proposed PACS interoperability model requires understanding the

type of requests and responses from HIS (e.g., eHospital), PACS, and modalities and

implements each scenario separately. Different scenarios of data transactions in the daily

routine of a hospital are categorized into:

1. HIS and PACS (two scenarios);

2. Modality and PACS (two scenarios);

3. PACS interface and Mirth Connect;

4. Dashboard and Mirth Connect;

5. Image viewer and PACS;

6. TensorFlow model and PACS.

Mirth Connect has been designed to manage transactions between different IT applications,

systems, and medical devices. This means that each transaction is first sent to the Mirth

Connect Channel, and then it will be redirected to its destinations, or Mirth will generate a

proper response to the request. In the next subsections, the eHospital, the modalities, the PACS,

and the image viewer transactions going through Mirth Connect are explained.

62

4.2.1 HIS and PACS dataflow

When a new patient comes to the hospital or to the radiology department reception, a technician

will create a new POST request that will automatically be sent to Mirth Connect. A new

channel is created for receiving this request from the HIS. Figure 4.1 shows the POST request

parameters to the PACS server and the expected responses. These parameters are related to the

patient information, test center, and a unique number named the “accessionNo”. This number

is used for querying patient data from the PACS in order to read the patient's DICOM files and

also the Mirth database. When this request is sent to the PACS, three different scenarios may

occur:

1. New order and save (Figure 4.1 (2));

2. Old order, then update (Figure 4.1 (3));

3. Wrong date format (Figure 4.1 (4) (5)).

Figure 4.1 Example of new order request parameters

63

A new channel should be created to receive requests from the HIS. The connector type of this

channel in the Mirth Connect Administrator is set as an HTTP Listener, so each request which

is sent to the HTTP URL and port of this channel from the HIS is received and processed. The

destination tab should define the potential target of the request. The new order post request

first is inserted into the database (destination_1: Mirth_db) and then generates a worklist file

(destination_2: Worklist folder). Thus, two separate destinations are defined for these two

actions.

Figure 4.2 New order dataflow

In order to parse the JSON values (based on the HL7 standards) received from the POST

request, a transformer should be designed to map the JSON attributes and the defined Mirth

variables. After inserting a sample JSON into the Message Templates in the Edit Channel >

Source > Edit Transformer page, each attribute should map to a variable. Mapping attributes

and variables help in accessing the JSON value in the Destination tab > Destination Mappings

section. Figure 4.2 shows the proposed design of this channel, which includes the HTTP

listener as a source of the channel, two destinations, and a post-processor script. Table 4.1

shows the configurations of the channel and the source section of this channel.

64

Table 4.1 New order channel configurations

Tab Configurations
Summary Name: new_order_req

Set Date Types:
Inbound: HL7 v3.x
Outbound: HL7 v3.x

Source Connector Type: HTTP Listener
Source Queue: OFF (Respond after processing)
Response: Postprocessor
HTTP URL: http://localhost:8090/

The first destination of the channel is a Database Writer. This destination receives the values

from the Destination Mappings section and inserts it into the designed table in the SQL Server.

The configurations and the insert query are described in Table 4.2.

Table 4.2 Destination 1 configuration and an insert query sample

Destination 1

Connector Type: Database Writer
Database Writer Settings:

Driver: net.sourceforge.jtds.jdbc.Driver
Url: jdbc:jtds: sqlserver://127.0.0.1:1433/Mirth_db
Username: sa Password: *****

SQL:
INSERT INTO patient_request
(
 patientid, patientname, dob, patientsex, studydatetime, accessionno, age,
 modalitytype, studydescription, imagecentername, imagecenterguid,
 refphysician, studyinstanceuid, patientoccupation, emergencyflag
)
VALUES
(
 ${patientid}, ${ patientname}, ${dob}, ${patientsex}, ${studydatetime},
 ${accessionno}, ${age}, ${modalitytype}, ${studydescription},
 ${imagecentername}, ${imagecenterguid}, ${refphysician},
 ${studyinstanceuid}, ${patientoccupation}, ${emergencyflag}
)

The second destination of the channel is a File Writer. In order to provide a list of new patient

orders for a modality, Mirth first generates a specific file with a “.wl” extension format (Table

4.1) and stores it in the folder which is accessible for the server of DICOM Worklist. Then, a

65

modality uses these files to create a list of new orders. The process of fetching these files is

explained in subsection 4.2.2.

Table 4.3 Destination 2 configurations and a sample of the worklist file content

Destination 2

Connector Type: File Writer
File Writer Settings:

Method: file
File Name: Worklist-${accessionno}.wl
File Exits: Overwrite

Template:
Dicom-File-Format
Dicom-Meta-Information-Header
Used TransferSyntax: Little Endian Explicit
(0002,0000) UL 202 # 4, 1 FileMetaInformationGroupLength
(0002,0001) OB 00\01 # 2, 1 FileMetaInformationVersion
(0002,0002) UI [1.2.276.0.7230010.3.1.0.1] # 26, 1 MediaStorageSOPClassUID
(0002,0003) UI [1.2.276.0.7230010.3.1.4.2831176407.11154.1448031138.805061]
58, 1 MediaStorageSOPInstanceUID
(0002,0010) UI =LittleEndianExplicit # 20, 1 TransferSyntaxUID
(0002,0012) UI [1.2.276.0.7230010.3.0.3.6.0] # 28, 1 ImplementationClassUID
(0002,0013) SH [OFFIS_DCMTK_360] # 16, 1 ImplementationVersionName
Dicom-Data-Set
Used TransferSyntax: Little Endian Explicit
(0008,0005) CS [ISO_IR 100] # 10, 1 SpecificCharacterSet
(0008,0050) SH [${accessionno}] # 6, 1 AccessionNumber
(0010,0010) PN [${patientname}] # 16, 1 PatientName
(0010,0020) LO [${patientid}] # 8, 1 PatientID
(0010,0030) DA [${dob}] # 8, 1 PatientBirthDate
(0010,0040) CS [${patientsex}] # 2, 1 PatientSex
(0010,2000) LO [] # 10, 1 MedicalAlerts
(0010,2110) LO [] # 6, 1 Allergies
(0020,000d) UI [${studyinstanceuid}] # 26, 1 StudyInstanceUID
(0032,1032) PN [${refphysician}] # 6, 1 RequestingPhysician
(0032,1060) LO [${studydescription}] # 6, 1 RequestedProcedureDescription
(0040,1001) SH [] # 10, 1 RequestedProcedureID
(0040,1003) SH [${emergencyflag}] # 4, 1 RequestedProcedurePriority

When a POST request received from the HIS and processed through Destination 1 and

Destination 2, it is essential to return a proper response. As it is shown in Table 4-1, the

response configuration for the Source Setting section is sent as Postprocessor. It means that

the channel generates the response after processing two destinations and generates a response

with a postprocessor script and then returns a JSON similar to the response shown in Figure

4.1 to the received POST request.

66

eHospital application has a dedicated section to the dashboard; in this section, users can see

the state of the patient request in the hospital or fetch the doctors' reports. Request to the Mirth

could include a specific period of time such as current day, or month or a patient “accessionNo”

to see the report. Figure 4.3 shows these transactions.

Figure 4.3 Transaction between the PACS dashboard and Mirth Connect

4.2.2 Modality and PACS dataflow

The workflow of creating a new worklist file is explained in the previous subsection. Mirth

through “Destination 2” of the “new_patient_order” channel generates worklist files and saves

them into a folder that is accessible by the DICOM worklist server. Whenever a modality sends

a C-Find SCP request to the Orthanc, the DICOM worklist server checks the worklist folder

and filter files related to the received request and return to the Modality (Figure 4.4).

For testing the process, the “findscu” command-line tool from the DCMTK utilities is used.

The below sample shows the command that sends a request to Orthanc and returns all worklist

for CT modality.

findscu –W –k "ScheduledProcedureStepSequence[0].Modality=CT" 127.0.0.1 4242

67

Figure 4.4 Updating Worklist files

After an imaging experiment, a modality should send the DICOM file to the PACS. DICOM

to PACS channel (Figure 4.5) of Mirth receives DICOM files from the Modality and sends it

to the PACS. Also, there is a filed in the “patient_request” table inside the database that holds

the last status of a patient. The second destination of this channel updates the status that shows

the imaging is done.

Figure 4.5 Returning the image from the Modality to the PACS

Table 4-4 shows the configurations for this channel. The connector type is selected as a

DICOM listener and receives all the DICOM files from the modalities. Destination 1, as a

DICOM sender, sends DICOM to PACS and Destination 2 to update the patient status in the

database.

68

Table 4.4 DICOM to PACS channel configurations

Tab Configurations

Summary
Name: DICOM_to_PACS
Set Date Types:

Inbound: DICOM
Outbound: DICOM

Source
Connector Type: DICOM Listener
Source Queue: OFF (Respond after processing)
Response: None
HTTP URL: http://localhost:104/

Destination 1
Connector Type: DICOM Sender
Remote Host: 192.168.1.1 (PACS IP)
Remote Port: 448

Destination 2

Connector Type: Database Writer
Database Writer Settings:

Driver: net.sourceforge.jtds.jdbc.Driver
Url: jdbc:jtds: sqlserver://127.0.0.1:1433/Mirth_db
Username: sa
Password: *****

SQL:
UPDATE TABLE patient_request
SET status = 2 -- Represents that this patient image is sent to the PACS
WHERE accessionNo = msg['tag00280030']

4.2.3 PACS Interface dataflow

The PACS interface provides an opportunity for the technicians to query patients using the

patient name, accession number, study description, and study date. Figure 4.6 shows a

transaction of searching data in the Mirth_db and returns the response.

Figure 4.6 Searching data in the Mirth database

69

This channel has only one destination, which is a Database Writer that inserts a log record into

the Mirth database. The postprocessor script will after the completion of the channel

destination and return filter data to the PACS interface. Table 4.5 shows the configuration and

SQL query code. Destination 1 inserts a log record into the database, and after that, fetch the

patient record form the Mirth_db.

Table 4.5 PACS_Interface_CH1 channel configurations and SQL query code

Tab Configurations

Summary
Name: PACS_Interface_CH1
Set Date Types:

Inbound: HL7 v3.x
Outbound: HL7 v3.x

Source
Connector Type: HTTP Listener
Source Queue: OFF (Respond after processing)
Response: Postprocessor
HTTP URL: http://localhost:80/

Destination 1

Connector Type: Database Writer
Database Writer Settings:

Driver: net.sourceforge.jtds.jdbc.Driver
Url: jdbc:jtds: sqlserver://127.0.0.1:1433/Mirth_db
Username: sa
Password: *****

SQL:
 INSERT INTO log([accessionNo], [action], [submited_user])
 VALUES(${accessionno}, 'return_patient_list', 'PACS_Interface_Admin')

Scripts

var dbConn = DatabaseConnectionFactory.createDatabaseConnection(
 'net.sourceforge.jtds.jdbc.Driver',
 'jdbc:jtds:sqlserver://127.0.0.1:1433/Mirth_db', 'sa', 'admin');
var sql = "SELECT * from patient_request”;
var results = dbConn.executeCachedQuery(sql);
dbConn.close();
return results;

When the received data is loaded into the web page, doctors could write the report with the

help of the image viewer (see subsection 4.2.5) for the patient and save it in the Mirth_db.

Figure 4.7 illustrates the diagram of this channel.

70

Figure 4.7 Receive reports from the PACS interface and insert into Mirth_db

Table 4.5 provides the configurations and SQL queries of the second channel of this section

dataflow. The first query inserts the patient study text into the Mirth_db and then updates the

patient state.

Table 4.6 PACS_Interface_CH2 channel configurations and SQL queries

Tab Configurations

Summary
Name: PACS_Interface_CH2
Set Date Types:

Inbound: HL7 v3.x
Outbound: HL7 v3.x

Source
Connector Type: HTTP Listener
Source Queue: OFF (Respond after processing)
Response: Postprocessor
HTTP URL: http://localhost:81/

Destination 1

Connector Type: Database Writer
Database Writer Settings:

Driver: net.sourceforge.jtds.jdbc.Driver
Url: jdbc:jtds: sqlserver://127.0.0.1:1433/Mirth_db
Username: sa Password: *****

SQL:
INSERT INTO patient_study([accessionNo], [study_result], [study_date])
VALUES(${accessionno}, 'Dr study description', '2020-08-16 07:11 AM’)

 GO
UPDATE TABLE patient_request
SET status = 3 -- Represents that this patient image study is finished
WHERE accessionNo = msg['tag00280030']

4.2.4 Image Viewer dataflow

Due to the fact that Orthanc has been selected as a PACS server in this research, it is important

to explain the image viewer which are compatible with it. An image viewer plays a vital role

71

for the radiologists’ accurate diagnostics. The Orthanc web viewer provides only basic

functionality for users, which is not for diagnostic purposes. The modular structure of Orthanc

provides an opportunity to use more comprehensive image viewer plugins and extend the basic

functionality of Orthanc. The following plugin list proposes more sophisticated options than

the basic Orthanc web viewer.

1. Osimis web viewer plugin: this plugin is the advanced version of the Orthanc web viewer.

Some of the advance features are including:

a. Annotations (linear, elliptic, rectangular, angle measurement, arrows, text);

b. Integration to electronic medical report (EMR)/HIS/RIS through URL links;

c. Support of DICOM video files (MPEG2);

d. Hounsfield windowing presets;

e. Measure Hounsfield units at a specific point of a CT study;

f. Cine playback of multi-frame sequences;

g. Series preview in thumbnails;

h. Progressive image loading;

i. Affero General Public License (AGPL).

2. ImageJ extension: it is a public domain Java image processing program with the following

specifics:

a. Runs as an online applet or downloadable application;

b. Display, edit, analyze, process, save and print 8, 16, 32-bit images;

c. Read TIFF, GIF, JPEG, BMP, DICOM, FITS, and raw;

d. Multithread processing;

e. Designed with an open architecture;

f. GNU General Public License.

3. Stone of Orthanc:

a. Lightweight;

b. CPU hardware acceleration (SSE2, SSSE3 and NEON instruction sets);

c. The highly versatile framework that can run even on low-performance platforms;

72

d. Can display a DICOM series without store entirely in the RAM;

e. Affero General Public License (AGPL).

Also, some compatible software with the Orthanc can be applied as an image viewer such as

Open Health Imaging Foundation (OHIF), Horos, Gringko CADx, 3D Slicer, Medlnria,

Aeskulp, and OsririX.

The image viewer should connect directly to the PACS server in order to fetch and load

DICOM files to study patient images. It should be noted that all the plugins mentioned here

and generally the open-source solutions are not recommended for diagnostic usage.

4.2.5 Dashboard dataflow

Managing well the data flow, in a hospital, is a decisive factor in facilitating the patients’

requests. Monitoring the patients’ states in the hospital will help managers to find and resolve

their internal systems and procedures weaknesses.

Figure 4.8 Dashboard transactions diagram

Through a dashboard, the manager can see not only how many new orders have been sent to

the worklist and are waiting in the queue for service or have already been done, but also it can

generate different types of reports to show the radiology workflow performance. The

dashboard sends a ‘GET request’ to the Mirth software and receives a JSON transaction that

73

is displayed on the web page. Figure 4.8 shows the dataflow between the dashboard and Mirth

Connect. The configurations and designed queries for this channel are demonstrated in Table

4.7.

Table 4.7 Dashboard Channel configurations and SQL queries

Tab Configurations

Summary
Name: Dashboard
Set Date Types:

Inbound: HL7 v3.x
Outbound: HL7 v3.x

Source
Connector Type: HTTP Listener
Source Queue: OFF (Respond after processing)
Response: Postprocessor
HTTP URL: http://localhost:104/

Destination 1

Connector Type: Database Writer
Database Writer Settings:

Driver: net.sourceforge.jtds.jdbc.Driver
Url: jdbc:jtds: sqlserver://127.0.0.1:1433/Mirth_db
Username: sa Password: *****

SQL:
 INSERT INTO log(
 [accessionNo], [action], [submited_user]
)VALUES(
 ${accessionno}, 'return_patient_list', 'PACS_Dashboard_Admin'
)

Scripts

var dbConn = DatabaseConnectionFactory.createDatabaseConnection(
 'net.sourceforge.jtds.jdbc.Driver',
 'jdbc:jtds:sqlserver://127.0.0.1:1433/Mirth_db',
 'sa',
 'admin');
var sql = "SELECT * from patient_request”;
var results = dbConn.executeCachedQuery(sql);
dbConn.close();
return results;

4.2.6 TensorFlow Model dataflow

In chapter one, it was introduced how artificial intelligence, especially in computer vision,

could impact medical imaging diagnostic in different ways. The deep learning algorithms that

use neural network technology has recently become prominent in the area of computer vision

and enables computers to detect objects in natural images. TensorFlow is a free and open-

source library that is used for developing machine learning applications based on neural

74

networks. TensorFlow helps developers to create a model and train it with labeled images to

categorized objects in its test data. Applying trained models in medical imaging is increasing

due to a high level of accuracy in detecting patterns in images to help diagnostic. Thus, a well-

designed and trained model could help the medical imaging specialists in their diagnosis.

After a prediction model for detecting specific patterns (for example pulmonary edema) in

medical images is trained and deployed, doctors can send a request to the PACS to retrieve

patient DICOM files with the help of the “accessionNo”. TensorFlow includes a library that

already decodes DICOM files. After a patients’ DICOM files are received from the Mirth

Connect, it can be decoded, and using the prediction model, it can be processed automatically,

and the result with the highest probability sent to the doctors. Figure 4.9 shows an example of

this transactions.

Figure 4.9 TensorFlow model

4.3 Laboratory Implementation

We implemented a test model in the lab to understand the transaction on Orthanc and modality

in the chapter 3 of this study. To test the proposed model for Donka University Hospital, we

implement the explained model in the laboratory. We used a virtual machine with Windows

Server to install Microsoft SQL Server as a choice of database for mirth_db, Mirth Connect,

Modality Emulator to simulate modality functionalities, and Postman to send request and

receive request to the Mirth Connect. The detail of channel and dataflow scenarios are

explained at the previous sections and same configurations are implemented in this laboratory

75

test. This laboratory test verified the proposed interoperability model feasibility that could be

applied in the Donka hospital environment.

4.4 Conclusion

In this chapter, different data transaction scenarios were described. These transactions are the

most important dataflow between the HIS, PACS, and the imaging modalities for university

hospitals. Besides these popular scenarios, a dashboard, an image viewer, and PACS interface

transactions were explained. Finally, TensorFlow, which has the potential to train diagnosis

models, shows how deep learning could help doctors in automating some diagnostics using

artificial intelligence directly on DICOM images. The open architecture of the proposed model

could lead to time and cost reduction for the Donka hospital, as well as reduce technical barriers

to exchange health information within the hospital.

CONCLUSION

5.1 Introduction

This chapter of the research concludes this thesis. First, a summary of the study and the

purposes of the study are presented (see section 5.2). Then, the summary of the implemented

model is provided (see section 5.3), and the significance of this implication is briefly explained

(section 5.4). Recommendations for future research (see section 5.5) end the chapter.

5.2 Summary of research

The importance of the PACS server is explained in the first chapter of this research and how it

became one of the vital IT systems of G8 countries over the last decade. It was found that

PACS are necessary for all hospitals around the world but not always affordable for everyone,

especially in the developing countries. Open-source PACS seems to be a viable alternative, but

selecting among the many proposals requires creating evaluation criteria.

An objective of this research was to identify the needed functionality of “research PACS” to

be useful for research and teaching hospitals in Africa. For this purpose, four selection criteria

extracted from the article “Open Source in Imaging Informatics” by Nagy (2007) to evaluate

open-source PACS are including:

- criteria 1: Community activities;

- criteria 2: Licensing models;

- criteria 3: Activity, support, and documentation;

- criteria 4: Enterprise functions and software characteristics.

We have found that open-source PACS with active community activities, good support, good

documentation, rich enterprise functions, and a less strict licensing models are preferable.

78

A second objective of this research was to assess available open-source PACS regarding the

fit of their functionalities with the specific requirements (designed criteria) of research and

university hospitals in Africa. This aimed at choosing an open-source PACS candidate for

experimentation. In this regard, a list of sixteen popular open-source PACS was identified then

assessed using the defined criteria. The first criterion compares the retrieved data from the

source code repositories and project forums, which shows that DCMTK, DCM4CHE, and

Orthanc have the highest community activities among other open-source PACS. The second

criterion investigates the licensing model and explains the restrictions and advantages of each

model. Most of the open-source PACS have GPL licensing model. The third criteria assesses

activity, support, and documentation. Orthanc has well designed and user-friendly website,

easy to install (less than a minute), provide some research articles and an online book to support

users and developers and it is a cross-platform application. The last criterion evaluates the

selected PACS enterprise functions and their extensibilities. Orthanc provides some built-in

functions and easily extensible by using API or developing new modules, which make it one

of the best choice along with DCM4CHE. Totally, the combination of all results from the

previous four criteria showed that Orthanc, DCM4CHE, DCMTK, Dicoogle, and MRIdb are

the top rank open-source PACS. Thus, Orthanc is selected for the remaining of this research,

and its modular architecture is reviewed in the second chapter.

In Chapter Three, the DICOM format was explained, then a laboratory test model designed to

have a better understanding of the internal process, software, and hardware requirements was

experimented. Finally, an integrated model was proposed for the university hospitals. The main

issue in the hospital environments is that many heterogeneous systems medical devices are

trying to exchange messages. In this respect, Mirth Connect was chosen and experimented as

a communication bus between the HIS, PACS, and Modality.

During the case study Orthanc was experimented and a connectivity model for the Donka

university hospital in Guinea, Africa case study was designed. The connectivity required the

need for a common language used by hospitals. This problem was solved by FIHR/HL7

International in the form of establishing an FIHR/HL7 standard for communication and

79

interoperability of different healthcare systems, but to be more flexible in the future it needed

a central interface that will facilitate the disparate systems trying to communicate and

interoperate with eHospital in the future. One of the most popular and powerful solutions found

in the literature to solve this healthcare problem is called the HL7 interface engine. One of the

most popular options proposed by our networks of software engineers specialized in healthcare

interoperability is “Mirth Connect HL7.” This hospital had already acquired a HIS system

(eHospital from Adroit), and we had design meetings with their developers’ team to identify

their type of request to a typical PACS. At the end of that chapter three, the connection model

proposed and experimented for the Donka hospital with its PACS system is communicating

through Mirth Connect messaging. In the proposed model, potential communications scenarios

are briefly described and explained.

Finally, in chapter four, the data transaction scenarios are precisely defined and implemented

for the Donka hospital case study. Moreover, using Mirth Connect HL7 has shown the potential

of this approach for the Donka hospital to interconnect any future systems seamlessly to

eHospital with minimum effort and modifications. The communication prototype case study

between the Donka hospital information systems that have been tested successfully are:

1. Two scenarios between HIS (eHospital) and PACS (Orthanc);

2. Modality and PACS (two scenarios);

3. PACS interface and Mirth Connect;

4. Dashboard and Mirth Connect;

5. Image viewer and PACS;

6. TensorFlow model and PACS.

5.3 Discussion and Interpretation of the implemented model

The open-source PACS interoperability model for university hospitals experimented for use

by the Donka hospital, in our case study, shows promise and could be implemented in other

healthcare organizations across Africa and developing countries. It demonstrated how open-

source software could help in interconnecting systems through a free middleware that supports

80

FIHR/HL7 interoperability protocol. In this proposed interoperability model, eHospital

requests are considered as the HIS/RIS requests format to the PACS, which may be different

from the other HIS system or may a Hospital use a separate RIS system for handling the

radiology patient visits. Furthermore, Orthanc was selected for this case study as a choice of

open-source PACS, but there are some other popular open-source PACS such as DMTCK,

DCM4CHEE, and Dicoogle, which could have been selected. So replacing Orthanc with these

other open-source PACS would lead to modification of some transactions due to the specific

characteristics of Orthanc and its Plugins used here. However, both changes in HIS/RIS and

PACS servers would not yield significant alterations to the interoperability model proposed as

it has been designed to be an easily adaptable interoperability model using Mirth Connect.

The transaction scenarios experimented in the case study are the most important and critical

communication transactions between a PACS and an HIS/RIS in a hospital. The first

transaction is when a user sends a new request to the Mirth Connect. Then Mirth Connect

creates a new file with “.wl” extension and storing it in a folder which is accessible for the

DICOM server (in this model, by using Modality Worklists plugin turned Orthanc into a

DICOM worklist server). When a Modality sends the C-FIND SCP request to the DICOM

server, it checks the folder and returns related files to the Modality, and technicians select one

of the listed patients for the experiment. After the experiment, generated DICOM files send to

Mirth Connect, and then it is redirected to the PACS server to store. Doctors can access and

view the patient radiology images using the Orthanc stone or other external plugins and write

their diagnostic report using the PACS interface. This type of web application helps them to

query patients using different filters. After writing the diagnostic report for the patient, it is

submitted to the Mirth Connect and stored into the Mirth_db database. Externally designed

dashboard and eHospital dashboard sync the state of patients with retrieving data from this

database.

Finally, we have shown that this interoperability model allows easy access to medical images

with the use of artificial intelligence algorithms that could help radiologists automate the

detections of pneumonia, using X-Ray images, with acceptable accuracy (> 90%).

81

To sum up, this research has proposed four main contributions; firstly, comparative criteria

ranked popular open-source PACS and could be useful for many healthcare institutes that could

not afford commercial PACS. This part of the rersearch was published in a journal paper

entitled “Assessing available open-source PACS options” and it is accepted to publish in the

Journal of Digital Imaging. Secondly, the interoperability model demonstrated how to

interconnect Orthanc (or any other open source PACS) and HIS/RIS seamlessly. Thirdly, we

have demonstrated how a machine learning model could be used to obtain Xray images and

automatically interpret these medical images to provide automated decision support for future

modern radiologists. And lastly, we have shown the interoperability benefits of using a

FIHR/HL7 SOA messaging system, like the open source project Mirth Connect, in a real case

study for the Donka hospital.

5.4 Significance of the Study

The main objectives of this study were attained where small healthcare institutes that could not

afford a commercial PACS can use and integrate an open source PACS with their HIS/RIS

system. Open-source PACS demonstrate that they can be a good asset and provide basic

radiology functionalities at very low cost. The case study shows promise as its experimentation

showed that all the communications were possible and worked well once developed on our

experimental prototype.

5.5 Recommendations for Future research

To implement this research at the Donka university hospital in 2021, some further steps should

be considered. Firstly, we Mirth Connect has to be installed. Then, the Orthanc server needs to

be installed. Next, the eHopital HIS/RIS needs to be properly connected to the network and

add worklist plugins to the Orthanc. Then, create the channels and tables in the Mirth Connect

and Mirth_db. After this initial installation, the administrators can check the connections of

82

different systems with Mirth Connect and verify that the defined routines in the

interconnectivity model is active using Postman. Administrators should issue a new test order

and then check the Mirth channel (new_patient_order channel), Mirth_db, and worklist folder

to ensure that the user request is successfully logged in the database and that a worklist file is

created. Then, try to load the list of worklists from the modality. The radiologist should be able

to select one of the new order requests among this list. After selecting a patient and doing an

X-Ray, the modality should connect to the Mirth Connect channel (DICOM_to_PACS

channel) to send the DICOM files to the PACS. A test example DICOM files could be sent to

the Mirth Connect in order to test this routine beforehend.

The previous paragraph explained the main steps to integrate an open-source PACS and HIS,

which include send a new request, create a worklist file, read the worklist file from a modality,

and store DICOM files in the PACS. The Mirth Connect software acts as a middleware and

manages most of these actions between the different hospital sub-systems. Moreover, Mirth

Connect provides much more advanced interconnectivity features that were described in this

research, such as SSL connectivity, role-based access, and advanced alert functionality. Also,

the Orthanc server functionalities could be expanded by developing new plugins and

customized applications or adding different/advanced plugins for the many university research

needs in radiology.

APPENDIX I

MIRTH CHANNEL IMPLEMENTATION

As explained in chapter 4, we defined different channels in order to exchange health

information between different hospital information systems. In this section, the

implementation of a channel is demonstrated.

First, install Mirth Connect in a server, which can be downloaded from the Mirth Connect

website (www.mirthcorp.com). Mirth Connect has four main components:

1. Mirth Connect Server: it includes the back-end for the integration engine component and

the management interface, which performs message transmission, transformation, and

filtering;

2. Mirth Connect Administrator: it is a graphical user interface that connects to the Mirth

Connect Server and permits admins to configure interfaces, monitor interface activity, and

browse the message store;
3. Mirth Connect Server Manager: it is a graphical user interface that displays log files,

manages the Mirth Connect service, and includes configuration settings;

4. Mirth Connect Command Line Interface: is a command-line tool that allows

connections to the Mirth Connect Server to deploy/import/export channels and perform

other administrative tasks.

After installing of the latest version of the software, the admin should login to the Mirth

Connect Administrator. Figure 1 shows the user interface of Mirth Connect. In the Dashboard

section, users can see the transactions between the HIS and the Mirth channels and the history

of these transactions. To create a new channel, the admin should select Channels from the

Mirth Connect box, and then right-click and select “new channel”.

84

Figure-A I.1 Mirth Connect Administrator user interface

To create a new channel, first select Channels from the Mirth Connect panel at the top left and

then right-click on the page and choose a new channel. There are four tabs in the Edit Channel

page which is including:

1. Summary: includes channel properties, Message Storage, Message Pruning, Custom

Metadata, and Channel Description;

2. Source: defines Connector Type, Source Settings, and Channel Reader Settings;

3. Destinations: includes Destination and Channel Writer Settings,

4. Scripts: includes developed scripts and defines when it is executed according to the state

of the channel.

APPENDIX II

 TENSORFLOW MODEL IMPLEMENTATION

In this research, we discuss that Artificial Intelligence, especially the Deep learning algorithm,

which is a subset of machine learning, could help radiologists to increase their accuracy and

speed of their detections by automating their diagnostic. Using our interoperability model, the

imaging files can easily be accessed by a TensorFlow algorithm, developed by Google. In this

appendix, we use a convolutional neural network model with TensorFlow to show how the

Donka hospital radiology research lab could automatically detect pneumonia from X-Ray

images. This model can predict pneumonia from X-Ray images with an acceptable accuracy

(> 90%). This could easily be implemented as a automated detection program available to all

the patients that go for a chest x-ray.

1- Importing necessary libraries
import os
import tensorflow as tf
import numpy as np
import matplotlib.image as mpimg
import matplotlib.pyplot as plt
from tensorflow.keras.optimizers import RMSprop
from tensorflow.keras.preprocessing.image import ImageDataGenerator
import seaborn as sns
import pandas as pd
from sklearn.utils import class_weight

%matplotlib inline

2- Defining a callback function that terminates the training of neural network if it reaches a
specific accuracy (e.g., 95%).

class myCallback(tf.keras.callbacks.Callback):
 def on_epoch_end(self, epoch, logs={}):
 if(logs.get('acc')>0.95):
 self.model.stop_training = True
 print('\n The model reached 95% accuracy on the training
set.')

3- Defining constants variables.
EPOCHS = 10

86

BATCH_SIZE = 16
INPUT_SHAPE = [200, 200, 3]
IMAGE_SIZE = [200, 200]

4- Reading dataset.
Define the base directory of the dataset

base_dir = os.path.join('/kaggle/input/chest-xray-
pneumonia/chest_xray')

train_dir = os.path.join('/kaggle/input/chest-xray-
pneumonia/chest_xray/train/')

validation_dir = os.path.join('/kaggle/input/chest-xray-
pneumonia/chest_xray/val/')

test_dir = os.path.join('/kaggle/input/chest-xray-
pneumonia/chest_xray/test/')

Training normal pictures directory
train_normal_dir = os.path.join('/kaggle/input/chest-xray-
pneumonia/chest_xray/train/NORMAL/')

Training pneumonia pictures directory
train_pneumonia_dir = os.path.join('/kaggle/input/chest-xray-
pneumonia/chest_xray/train/PNEUMONIA/')

Validation normal pictures directory
validation_normal_dir = os.path.join('/kaggle/input/chest-xray-
pneumonia/chest_xray/val/NORMAL/')

Validation pneumonia pictures directory
validation_pneumonia_dir = os.path.join('/kaggle/input/chest-xray-
pneumonia/chest_xray/val/PNEUMONIA/')

Test normal pictures directory
test_normal_dir = os.path.join('/kaggle/input/chest-xray-
pneumonia/chest_xray/test/NORMAL/')

Test pneumonia pictures directory
test_pneumonia_dir = os.path.join('/kaggle/input/chest-xray-
pneumonia/chest_xray/test/PNEUMONIA/')

Get files' name
train_normal_names = os.listdir(train_normal_dir)
train_pneumonia_names = os.listdir(train_pneumonia_dir)
val_normal_names = os.listdir(validation_normal_dir)
val_pneumonia_names = os.listdir(validation_pneumonia_dir)
test_normal_names = os.listdir(test_normal_dir)

87

test_pneumonia_names = os.listdir(test_pneumonia_dir)

5- Print training, validation, and test set sizes.
Show the content of the base directory
print('Dataset folder content:')
print(os.listdir(base_dir))
print('')

Print Dataset size
print('Train Normal Images:', len(os.listdir(train_normal_dir)))
print('Train Pneumonia Images:', len(os.listdir(train_pneumonia_dir)))
print('Total Train Images:', len(os.listdir(train_normal_dir)) +
len(os.listdir(train_pneumonia_dir)))

print('')

print('Validation Normal Images:',
len(os.listdir(validation_normal_dir)))

print('Validation Pneumonia Images:',
len(os.listdir(validation_pneumonia_dir)))

print('Total Validation Images:',
len(os.listdir(validation_normal_dir)) +
len(os.listdir(validation_pneumonia_dir)))

print('')

print('Test Normal Images:', len(os.listdir(test_normal_dir)))
print('Test Pneumonia Images:', len(os.listdir(test_pneumonia_dir)))
print('Total test Images:', len(os.listdir(test_normal_dir)) +
len(os.listdir(test_pneumonia_dir)))
print('')

Result of the previous cell.
Dataset folder content:
['test', 'val', '__MACOSX', 'train', 'chest_xray']

Train Normal Images: 1341
Train Pneumonia Images: 3875
Total Train Images: 5216

Validation Normal Images: 8
Validation Pneumonia Images: 8
Total Validation Images: 16

88

Test Normal Images: 234
Test Pneumonia Images: 390

6- Display some of the images from the dataset.
Display some of the training images
fig = plt.gcf()
fig.set_size_inches(16, 16)

next_normal_pix = [os.path.join(train_normal_dir, fname)
 for fname in train_normal_names[0:8]]
next_pneumonia_pix = [os.path.join(train_pneumonia_dir, fname)
 for fname in train_pneumonia_names[0:8]]

for i, img_path in enumerate(next_normal_pix+next_pneumonia_pix):
 sp = plt.subplot(4, 4, i + 1)
 sp.axis('off')

 imgage = mpimg.imread(img_path)
 plt.imshow(imgage, cmap='gray')

plt.show()

89

7- Designing a CNN model
base_model = tf.keras.applications.InceptionV3(
 input_shape=INPUT_SHAPE,
 include_top = False,
 weights='imagenet'
)

for layers in base_model.layers[:200]:
 layers.trainable = False

model = tf.keras.Sequential([
 base_model,
 tf.keras.layers.Flatten(),
 tf.keras.layers.Dropout(0.2),
 tf.keras.layers.Dense(256, ='relu'),
 tf.keras.layers.Dense(1, activation='sigmoid')
])

model.compile(
 loss='binary_crossentropy',

90

 optimizer=RMSprop(lr=0.001),
 metrics = ['acc']
)

model.summary()

Model: "sequential_27"

Layer (type) Output Shape Param #

===
inception_v3 (Functional) (None, 4, 4, 2048) 21802784

flatten_25 (Flatten) (None, 32768) 0

dropout_15 (Dropout) (None, 32768) 0

dense_52 (Dense) (None, 256) 8388864

dense_53 (Dense) (None, 1) 257

===

Total params: 30,191,905
Trainable params: 23,193,409
Non-trainable params: 6,998,496

8- Preparing the training and validation dataset. Using data augmentation expands the
training dataset and helps to avoid overfitting.

Using data augmentation to expand the dataset size
train_datagen = ImageDataGenerator(rescale=1.0/255,
 rotation_range=10,
 width_shift_range=0.1,
 height_shift_range=0.1,
 shear_range=0.1,
 zoom_range=0.1,
 horizontal_flip=False,
 vertical_flip=False,
 fill_mode='nearest',
 validation_split=0.2)

train_generator = train_datagen.flow_from_directory(
 train_dir,
 batch_size=BATCH_SIZE,
 class_mode='binary',
 target_size= IMAGE_SIZE,
 subset='training')

91

validation_datagen = ImageDataGenerator(rescale=1.0/255)

validation_generator = train_datagen.flow_from_directory(
 train_dir,
 batch_size=BATCH_SIZE,
 class_mode='binary',
 target_size= IMAGE_SIZE,
 subset='validation')

Found 4173 images belonging to 2 classes.
Found 1043 images belonging to 2 classes.

9- Start training model over training data and test the accuracy over validation data on each
epoch.

callbacks = myCallback()

cw = class_weight.compute_class_weight('balanced',
 np.unique(train_generator.classes),
 train_generator.classes)

class_weights = {0: cw[0], 1: cw[1]}

history = model.fit_generator(train_generator,
 class_weight=class_weights,
 epochs=EPOCHS,
 verbose=1,
 validation_data=validation_generator,
 callbacks=[callbacks])

Training result for each epoch
Epoch 1/10
261/261 [==============================] - 440s 2s/step - loss: 0.8799 -
acc: 0.9032 - val_loss: 7.7989 - val_acc: 0.9415

Epoch 2/10
261/261 [==============================] - 437s 2s/step - loss: 0.2365 -
acc: 0.9449 - val_loss: 7.9512 - val_acc: 0.9377

Epoch 3/10
261/261 [==============================] - ETA: 0s - loss: 0.1920 - acc:
0.9542

 The model reached to 95% accuracy on the training set.
261/261 [==============================] - 433s 2s/step - loss: 0.1920 -
acc: 0.9542 - val_loss: 0.2043 - val_acc: 0.9616

10- Test trained model accuracy on the test data
test_datagen = ImageDataGenerator(rescale=1.0/255)

test_generator = validation_datagen.flow_from_directory(
 test_dir,

92

 batch_size=BATCH_SIZE,
 class_mode='binary',
 target_size=IMAGE_SIZE)

evaluate the model by Test data
scores = model.evaluate_generator(test_generator)
print("\n Test accuracy: %.2f%%" % (scores[1]*100))

Found 624 images belonging to 2 classes.
Test accuracy: 91.99%

11- Plot accuracy and loss for the training and validation images per epochs.
Plot Model Accuracy and Loss
training_acc=history.history['acc']
validation_acc=history.history['val_acc']
training_loss=history.history['loss']
validation_loss=history.history['val_loss']
epochs=range(len(training_acc)) # Get number of epochs

Plot accuracy of training and validation per epoch
plt.plot(epochs, training_acc, 'r', "Training Accuracy")
plt.plot(epochs, validation_acc, 'b', "Validation Accuracy")
plt.title('Training and validation accuracy')
plt.figure()

Plot loss of training and validation per epoch
plt.plot(epochs, training_loss, 'r', "Training Loss")
plt.plot(epochs, validation_loss, 'b', "Valiation Loss")

Figure-A II.1 Training and validation accuracy change during the training

93

Figure-A II.2 Training and validation loss change during the training

BIBLIOGRAPHY

Arora, D., & Mehta, Y. (2014). Use of picture archiving and communication system for
imaging of radiological films in cardiac surgical intensive care unit. Journal
Anaesthesiology Clinical Pharmacology, 30(3):447–448. Available online at:
https://doi.org/10.4103/0970-9185.137306

Bauman, R.A., Gell, G., & Dwyer, S.J. (1996). Large picture archiving and communication
systems of the world—Part 1. Journal of Digital Imaging, 9(3):99–103. Available
online at: https://doi.org/10.1007/BF03168603

Bui, A.A.T., Morioka, C., Dionisio, J.D.N. et al. (2007). openSourcePACS: An Extensible
Infrastructure for Medical Image Management. IEEE Transactions on Information
Technology in Biomedicine, 11(1):94–109. Available online at: https://doi.org/10.-
1109/TITB.2006.879595

Capp, M. P., Nudelman, S., Fisher et al. (1981). Photoelectronic Radiology Department.
Proceedings of the Conference on Digital Radiography, SPIE, vol. 314, Palo Alto,
USA, pp. 1-8. Available online at: https://doi.org/10.1117/12.933008

Cheng, P. H., Chen, H. S., Lai, F., & Lai, J. S. (2010). The strategic use of standardized
information exchange technology in a university health system. Telemedicine and e-
Health, 16(3), 314-326.

Christensen, C.M., & Raynor, M.E. (2003). The Innovator’s Solution: Creating and Sustaining
Successful Growth. Harvard Business School Press. 304 p.

Costa, C., Ferreira, C., Bastião, L. et al. (2011). Dicoogle - an Open Source Peer-to-Peer PACS.
Journal of Digital Imaging, 24(5):848–856. Available online at: https://doi.org/10.1-
007/s10278-010-9347-9

Costa, C., Freitas, F., Pereira, M. et al. (2009). Indexing and retrieving DICOM data in disperse
and unstructured archives. International Journal of Computer Assisted Radiology and
Surgery, 4(1):71–77. https://doi.org/10.1007/s11548-008-0269-7

Cyr, T., Agarwal, A., & Furht, B. (2013). Brief overview of various healthcare tools, methods,
framework and standards. In Handbook of Medical and Healthcare Technologies (pp.
285-295). Springer, New York, NY.

Doi, K., & Huang, H. K. (2007). Computer-aided diagnosis (CAD) and image-guided decision
support. Computerized Medical Imaging and Graphics, 31(4):195–197. Available
online at: https://doi.org/10.1016/j.compmedimag.2007.02.001

Doran, S. J., d’Arcy, J., Collins, D. J. et al. (2012). Informatics in Radiology: Development of
a Research PACS for Analysis of Functional Imaging Data in Clinical Research and

96

Clinical Trials. RadioGraphics, 32(7):2135–2150. Available online at: https://doi.org/-
10.1148/rg.327115138

Duerinckx, A. J. (2003). Introduction to two PACS ’82 Panel Discussions edited by Andre J.
Duerinckx, M.D., Ph.D.: ‘‘Equipment Manufacturers’ View on PACS’’and ‘‘The
Medical Community’s View on PACS’’. Journal of Digital Imaging, 16(1):29–31.
https://doi.org/10.1007/s10278-002-6009-6

Dugar, N. (2018, January 8). PACS with AI can replace PACS without AI. Retrieved from
https://www.auntminnieeurope.com/index.aspx?sec=sup&sub=aic&pag=dis&ItemID
=615267

Dwyer, S. J., Templeton, A. W., Martin, N. L. et al. (1982). The cost of managing digital
diagnostic images. Radiology, 144(2): 313–318. Available online at: https://doi.org-
/10.1148/radiology.144.2.6806852

Erickson, B. J., Langer, S., & Nagy, P. (2005). The Role of Open-Source Software in
Innovation and Standardization in Radiology. Journal of the American College of
Radiology, 2(11): 927–931. https://doi.org/10.1016/j.jacr.2005.05.004

Farahani, N., & Pantanowitz, L. (2016). Overview of Telepathology. Clinics in Laboratory
Medicine, 36(1): 101–112. https://doi.org/10.1016/j.cll.2015.09.010

Grant, R. M. (1996). Toward a knowledge‐based theory of the firm. Strategic Management
Journal, 17(S2): 109–122. Available online at:https://doi.org/10.1002/smj.4250171110

Gulati, R., Puranam, P., & Tushman, M. (2012). Meta‐organization design: Rethinking design
in interorganizational and community contexts. Strategic Management Journal, 33(6):
571–586. Available online at: https://doi.org/10.1002/smj.1975

Haas, A., Rossberg, A., Schuff, D. et al. (2017). Bringing the Web Up to Speed with
WebAssembly. Dans Proceedings of the 38th ACM SIGPLAN Conference on
Programming Language Design and Implementation (pp. 185–200). New York, NY,
USA: ACM. Available online at: https://doi.org/10.1145/3062341.3062363

Hann, I.-H., Roberts, J. A., & Slaughter, S. A. (2013). All Are Not Equal: An Examination of
the Economic Returns to Different Forms of Participation in Open Source Software
Communities. Information Systems Research, 24(3), 520‑538. Available online at:
https://doi.org/10.1287/isre.2013.0474

Haque, W., Reed, A., & McCann, A. (2013, June). A framework for secure integration of
distributed point-of-care testing results into Electronic Medical Records. In
International Conference on Information Society (i-Society 2013) (pp. 73-78). IEEE.

Henderson, J. C., & Venkatraman, H. (1999). Strategic alignment: Leveraging information
technology for transforming organizations. IBM systems journal, 38(2.3), 472-484.

97

Huang, H. K. (2003). Enterprise PACS and image distribution. Computerized Medical Imaging
and Graphics: The Official Journal of the Computerized Medical Imaging Society,
27(2‑3): 241–253.

Huang, H. K. (2010). PACS and Imaging Informatics: Basic Principles and Applications (2
edition). Hoboken, N.J: Wiley-Blackwell.

Huang, H. K. (2011). Short history of PACS. Part I: USA. European Journal of Radiology,
78(2): 163–176. Available online at: https://doi.org/10.1016/j.ejrad.2010.05.007

Huang, H. K., Andriole, K., Bazzill, et al. (1996). Design and implementation of a picture
archiving and communication system: The second time. Journal of Digital Imaging,
9(2): 47. Available online at: https://doi.org/10.1007/BF03168857

Inamura, K., & Kim, J. H. (2011). History of PACS in Asia. European Journal of Radiology,
78(2): 184–189. Available online at: https://doi.org/10.1016/j.ejrad.2010.09.022

Inamura, K., Kousaka, S., Yamamoto, et al. (2003). PACS development in Asia. Computerized
Medical Imaging and Graphics: The Official Journal of the Computerized Medical
Imaging Society, 27(2‑3): 121–128.

Jodogne, S. (2018). The Orthanc Ecosystem for Medical Imaging. Journal of Digital Imaging,
31(3): 341–352. Available online at: https://doi.org/10.1007/s10278-018-0082-y

Jodogne, S., Lenaerts, É., Marquet, L. et al. (2017). Open Implementation of DICOM for
Whole-Slide Microscopic Imaging: Dans Proceedings of the 12th International Joint
Conference on Computer Vision, Imaging and Computer Graphics Theory and
Applications (pp. 81–87). Porto, Portugal: SCITEPRESS - Science and Technology
Publications. Available online at: https://doi.org/10.5220/0006155100810087

Kagadis, G. C., Alexakos, C., Langer, S. G., & French, T. (2012). Using an Open-Source PACS
Virtual Machine for a Digital Angiography Unit: Methods and Initial Impressions.
Journal of Digital Imaging, 25(1): 81–90. Available online at: https://doi.org/10.1007/-
s10278-011-9401-2

Katirai, H., & Sax, U. (2005, April). Unlocking the value of clinical information: what you
need to do now to enjoy the benefits in the future. In Biennial Conference on
Professional Knowledge Management/Wissensmanagement (pp. 330-338). Springer,
Berlin, Heidelberg.

Kenwood, C. A. (2001). A business case study of open source software (No. MP-
01B0000048). MITRE CORP BEDFORD MA.

Krogh, G. V., & Hippel, E. V. (2006). The Promise of Research on Open Source Software.
Management Science, 52(7): 975–983. Available online at: https://doi.org/10.1287/m-
nsc.1060.0560

98

Law, M. Y. Y., & Zhou, Z. (2003). New direction in PACS education and training.
Computerized Medical Imaging and Graphics, 27(2‑3): 147–156. Available online at:
https://doi.org/10.1016/S0895-6111(02)00088-5

Le, A. H. T., Liu, B., & Huang, H. K. (2009). Integration of computer-aided
diagnosis/detection (CAD) results in a PACS environment using CAD–PACS toolkit
and DICOM SR. International Journal of Computer Assisted Radiology and Surgery,
4(4): 317–329. Available online at: https://doi.org/10.1007/s11548-009-0297-y

Lebre, R., Bastião, L., & Costa, C. (2019). An Accounting Mechanism for Standard Medical
Imaging Services. Dans 2019 IEEE 6th Portuguese Meeting on Bioengineering
(ENBENG) (pp. 1–4). Available online at: https://doi.org/10.1109/ENBENG.2019.86-
92545

Liu, B. J., & Huang, H. K. (2008). 13 - PACS and Medical Imaging Informatics for Filmless
Hospitals. Dans D. D. Feng (Éd.), Biomedical Information Technology (pp. 279–305).
Burlington: Academic Press. Available online at: https://doi.org/10.1016/B978-
012373583-6.50017-7

Maniadi, E., Spanakis, E. G., Karantanas, A., & Marias, K. (2015). A supportive environment
for the long term management of knee osteoarthritis condition. Proceedings of the 5th
EAI International Conference on Wireless Mobile Communication and Healthcare -
"Transforming Healthcare through Innovations in Mobile and Wireless Technologies".
doi: 10.4108/eai.22-12-2015.151108

Marée, R., Rollus, L., Stévens, B., Hoyoux, R., Louppe, G., Vandaele, R., … Wehenkel, L.
(2016). Collaborative analysis of multi-gigapixel imaging data using Cytomine.
Bioinformatics (Oxford, England), 32(9): 1395–1401. Available online at: https://doi.-
org/10.1093/bioinformatics/btw013

Mendel, J., & Schweitzer, A. (2015). PACS for the Developing World. Journal of Global
Radiology, 1(2). Available online at: https://doi.org/10.7191/jgr.2015.1012

Morgan, L., & Finnegan, P. (2014). Beyond free software: An exploration of the business value
of strategic open-source. The Journal of Strategic Information Systems, 23(3): 226–
238. Available online at: https://doi.org/10.1016/j.jsis.2014.07.001

Nagy, P. (2007). Open Source in Imaging Informatics. Journal of Digital Imaging, 20(1): 1–
10. Available online at: https://doi.org/10.1007/s10278-007-9056-1

Nagy, P. G. (2007). The future of PACS. Medical Physics, 34(7): 2676–2682. Available online
at: https://doi.org/10.1118/1.2743097@10.1002/(ISSN)2473-4209.Vision2020

Ocasio, W. (1997). Towards an Attention-Based View of the Firm. Strategic Management
Journal, 18, 187–206.

Openhub. (2019). dcm4chee. Retrieved from https://www.openhub.net/p/d_14065

99

Orthanc-server. (2019). Retrieved from https://www.orthanc-server.com/

Pinho, E., & Costa, C. (2016). Extensible Architecture for Multimodal Information Retrieval
in Medical Imaging Archives. Dans 2016 12th International Conference on Signal-
Image Technology Internet-Based Systems (SITIS) (pp. 316–322). Available online
at: https://doi.org/10.1109/SITIS.2016.58

Ribback, S., Flessa, S., Gromoll-Bergmann, K. et al. (2014). Virtual slide telepathology with
scanner systems for intraoperative frozen-section consultation. Pathology - Research
and Practice, 210(6): 377–382. Available online at: https://doi.org/10.1016/j.prp.2014-
.02.007

Roberge, D., MacLeod, B., Hartsock, B., & Asangansi, I. (2011, October). Integrating mobile
collection software with health applications. In 2011 IEEE Global Humanitarian
Technology Conference (pp. 122-126). IEEE.

Richardson, L., & Ruby, S. (2008). RESTful Web Services. (S.l.): O’Reilly Media. Retrieved
from http://shop.oreilly.com/product/9780596529260.do

Salvador, P., Nogueira, A., & Goncalves, F. (2014). DICOM interception system for
independent image backup. 2014 IEEE Network Operations and Management
Symposium (NOMS), 1–4. Available online at: https://doi.org/10.1109/noms.2014.68-
38338

Santos, M., Bastião, L., Costa, C. et al. (2011). DICOM and Clinical Data Mining in a Small
Hospital PACS: A Pilot Study. Dans M. M. Cruz-Cunha, J. Varajão, P. Powell, & R.
Martinho (Éds), ENTERprise Information Systems (pp. 254–263). Springer Berlin
Heidelberg.

Seidel, M.-D. L., & Stewart, K. J. (2011, 23 novembre). An Initial Description of the C-Form.
[book-part]. Available online at: https://doi.org/10.1108/S0733558X(2011)0000033-
005

Silva, J. M., Pinho, E., Monteiro, E. et al. (2018). Controlled searching in reversibly de-
identified medical imaging archives. Journal of Biomedical Informatics, 77:81–90.
Available online at: https://doi.org/10.1016/j.jbi.2017.12.002

Singh, P. V., Tan, Y., & Mookerjee, V. (2011). Network Effects: The Influence of Structural
Capital on Open Source Project Success. MIS Quarterly, 35(4): 813–829. Available
online at: https://doi.org/10.2307/41409962

Teng, C., Mitchell, J., Walker, C. et al. (2010). A medical image archive solution in the cloud.
Dans 2010 IEEE International Conference on Software Engineering and Service
Sciences (pp. 431–434). Available online at: https://doi.org/10.1109/ICSESS.2010.55-
52343

100

Top, M. (2012). Physicians’ Views and Assessments on Picture Archiving and Communication
Systems (PACS) in Two Turkish Public Hospitals. Journal of Medical Systems, 36(6):
3555–3562. Available online at: https://doi.org/10.1007/s10916-012-9831-5

Valente, F., Costa, C., & Silva, A. (2013). Dicoogle, a Pacs Featuring Profiled Content Based
Image Retrieval. PLOS ONE, 8(5), e61888. Available online at: https://doi.org/10.13-
71/journal.pone.0061888

Valente, F., Silva, L. A. B., Godinho, T. M., & Costa, C. (2016). Anatomy of an Extensible
Open Source PACS. Journal of Digital Imaging, 29(3), 284‑296. Available online at:
https://doi.org/10.1007/s10278-015-9834-0

Valeri, G., Zuccaccia, M., Badaloni, A. et al. (2015). Implementation, reliability, and
feasibility test of an Open-Source PACS. La radiologia medica, 120(12): 1138–1145.
Available online at: https://doi.org/10.1007/s11547-015-0560-y

Vossberg, M., Tolxdorff, T., & Krefting, D. (2008). DICOM image communication in globus-
based medical grids. IEEE transactions on information technology in biomedicine: a
publication of the IEEE Engineering in Medicine and Biology Society, 12(2): 145–153.
Available online at: https://doi.org/10.1109/TITB.2007.905862

Warnock, M. J., Toland, C., Evans, D. et al. (2007). Benefits of Using the DCM4CHE DICOM
Archive. Journal of Digital Imaging, 20(1): 125–129. Available online at: https://doi.-
org/10.1007/s10278-007-9064-1

Wetering, R. V. D., & Batenburg, R. (2014). Towards a Theory of PACS Deployment: An
Integrative PACS Maturity Framework. Journal of Digital Imaging, 27(3): 337–350.
Available online at: https://doi.org/10.1007/s10278-013-9671-y

Webster, J. D., & Dunstan, R. W. (2014). Whole-Slide Imaging and Automated Image
Analysis: Considerations and Opportunities in the Practice of Pathology. Veterinary
Pathology, 51(1): 211–223. Available online at: https://doi.org/10.1177/03009858135-
03570

Woodbridge, M., Fagiolo, G., & O’Regan, D. P. (2013). MRIdb: Medical Image Management
for Biobank Research. Journal of Digital Imaging, 26(5): 886–890. Available online
at: https://doi.org/10.1007/s10278-013-9604-9

Xiong, W., Du, J., Nie, B. et al. (2017). Research on DICOM file compression and offline
storage platform. Dans 2017 6th International Conference on Computer Science and
Network Technology (ICCSNT) (pp. 520–524). Available online at: https://doi.org/10-
.1109/ICCSNT.2017.8343753

Xue, Y., & Liang, H. (2007). Understanding PACS Development in Context: The Case of
China. IEEE Transactions on Information Technology in Biomedicine, 11(1): 14–16.
Available online at: https://doi.org/10.1109/TITB.2006.879580

101

Yang, C.-T., Chen, C.-H., & Yang, M.-F. (2010). Implementation of a medical image file
accessing system in co-allocation data grids. Future Generation Computer Systems,
26(8): 1127–1140. Available online at: https://doi.org/10.1016/j.future.2010.05.013

Ye, Y., & Kishida, K. (2003). Toward an Understanding of the Motivation Open Source
Software Developers. 25th International Conference on Software Engineering, 2003
(pp. 419–429). Washington, DC, USA: IEEE Computer Society. Retrieved from
http://dl.acm.org/citation.cfm?id=776816.776867

Zhang, S., Wu, H., Wang, X. et al. (2018). The application of deep learning for diabetic
retinopathy prescreening in research eye-PACS. Dans J. Zhang & P.-H. Chen (Éds),
Medical Imaging 2018: Imaging Informatics for Healthcare, Research, and
Applications (p. 38). Houston, United States: SPIE. Available online at:
https://doi.org/10.1117/12.2296673

