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FOREWORD

This master’s thesis is the fruit of a work collaboration between the microelectronics and com-

munications research lab (LaCIME), at École de technologie supérieure, Concordia University,

and SIG.NUM. The collaboration aimed to contribute to the development of a novel automatized

contactless electrocardiogram (cECG) system that promises to revolutionize telemetry and

patient monitoring.

This work presents an overview of a complex cECG system, developed by SIG.NUM since 2014,

some of its critical problems, and proposes a machine learning based signal quality assessment

(SQA) algorithm for characterizing, and quantifying the quality of the measured vital signals,

using the fast wavelet transform (FWT). The author emphasizes mathematical analysis of the

presented systems, and methods for designing and training classifiers, applied to the context of

cECG SQA.

Lucas T. Lins, the main author of this work, is an electronic engineer, graduated in 2018 from

the Federal University of Pernambuco (UFPE), Brazil. He has 7 years of experience in research

and development (R&D), in which he contributed to the development of many medical devices

in the fields of electroencephalography (EEG), brain-computer interfaces (BCIs), functional

near infrared spectroscopy (fNIRS), wearable oximetry (SpO2), bioimpedance instrumentation

and electrocardiography (ECG).
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Un algorithme rapide d’évaluation de la qualité du signal appliqué à un système
d’électrocardiogramme sans contact

Lucas TARGINO LINS

RÉSUMÉ

L’évaluation de la qualité du signal (EQS), ou les systèmes de détection de bruit, promettent

d’améliorer la qualité de l’électrocardiogramme (ECG) collecté. Ceci est réalisé en permettant

aux systèmes automatisés de collecter et de traiter avec précision les données ECG, ou en

facilitant la télémétrie grâce à la sélection précise de données acceptables, afin d’être analysées

à distance par un cardiologue.

Ce mémoire est une collaboration de recherche & développement avec SIG.NUM, une compagnie

spécialisée dans le développement et la commercialisation d’une technologie innovante sans

contact et automatisée pour l’acquisition d’ECG à court et à long terme, connu sous le nom de

cECG. Ce travail présente les principes fondamentaux des différents systèmes d’instrumentation

ECG; une revue de littérature de la EQS, de ses fondements et de ses applications aux systèmes

cECG; une revue de littérature des ondelettes et de ses applications concernant la représentation

du signal ECG; et enfin, la conception d’un système de classification EQS, ou détecteur de

bruit, à l’aide de réseaux de neurones artificiels et de techniques rapide de traitement du signal

basées sur scalogramme d’ondelettes à des fins d’extraction de caractéristiques. Le système de

classification EQS est destiné à être utilisé comme un sélecteur de canal en temps réel pour le

système cECG développé par SIG.NUM.

L’algorithme développé basé sur l’apprentissage automatique pour ECG EQS est formé par

une fusion de plusieurs ensembles de données annotés, disponibles sur PhysioNet (Goldberger,

Amaral, Glass, Hausdorff, Ivanov, Mark, Mietus, Moody, Peng & Stanley, 2000). Les résultats

du système conçu sont principalement comparés à la technique EQS à une seule dérivation

proposée par les travaux de Clifford, Behar, Li & Rezek (2012). En conclusion, cette thèse a

montré qu’un simple réseaux de neurones artificiels peu profond est suffisant pour bien modéliser

un système de classification EQS généralisé. De plus, les résultats ont montré que la méthode

d’extraction des caractéristiques de transformée en ondelettes, proposée par ce mémoire, est

non seulement très puissante pour représenter la qualité du signal ECG, mais aussi efficace en

termes de coût de calcul.

Mots-clés: ECG, évaluation de la qualité du signal, indice de qualité du signal, transformée en

ondelettes rapide, apprentissage automatique, réseaux de neurones, extraction de caractéristiques.





A fast signal quality assessment algorithm applied to a contactless electrocardiogram
system

Lucas TARGINO LINS

ABSTRACT

Signal quality assessment (SQA), or noise detector systems, promise to improve the quality

of the collected electrocardiogram (ECG). This is achieved by enabling automated systems to

accurately collect and process ECG data, or facilitating telemetry through the accurate selection

of acceptable data, in order to be analyzed remotely by a cardiologist.

This thesis is a research & development (R&D) collaboration with SIG.NUM, a company that is

specialized in the development and commercialization of an innovative proprietary contactless

and automated technology for both short and long term ECG acquisition, known as cECG.

This work presents fundamentals regarding different ECG instrumentation systems; a review

about SQA, its fundaments and applications to cECG systems; a review about wavelets and its

applications regarding ECG signal representation; and finally, the design of an SQA classifier

system, or noise detector, using artificial neural networks (ANN), and wavelet scalogram-based

fast signal processing techniques for feature extraction purposes. The SQA classifier system is

meant to be used as a real-time channel selector for the cECG system developed by SIG.NUM.

The developed machine learning based algorithm for ECG SQA is trained by a merge of several

annotated data-sets, available from PhysioNet (Goldberger et al., 2000). Results of the designed

system are mainly compared with the single-lead SQA technique proposed by the work of

Clifford et al. (2012). In conclusion, this thesis showed that a simple shallow ANN is sufficient

for well modelling a generalized SQA classifier system. Moreover, results showed that the

wavelet transform feature extraction method, proposed by this thesis, is not only very powerful

to represent ECG signal quality, but also computationally efficient.

Keywords: ECG, signal quality assessment, signal quality index, fast wavelet transform,

machine learning, neural networks, feature extraction.
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⊂ Symbol for “is a subset of”

∈ Symbol for “belongs to”

= Symbol for “is equal to”

< Symbol for “is less than”

> Symbol for “is greater than”

≤ Symbol for “less than or equal to”

≥ Symbol for “greater than or equal to”

[𝑎, 𝑏] The close interval [𝑎, 𝑏] of a variable 𝑥 signifies that 𝑎 ≤ 𝑥 ≤ 𝑏

⊕ Symbol for denoting the union of spaces (like the union of sets)

R The set of real numbers

Z The set of integers





INTRODUCTION

Motivation and context

The standard electrode, in electrocardiogram (ECG) patient monitoring applications, is the

conventional silver-silver chloride (Ag/AgCl), supported by adhesive backing and gel for skin

contact improvement purposes. Despite its high quality signal extraction, wet electrodes are

reported to cause skin irritation and discomfort (Sohmyung Ha, Chul Kim, Chi, Akinin, Maier,

Ueno & Cauwenberghs, 2014, p. 1523). Moreover, this kind of electrode is cumbersome,

inconvenient for mobile use (Chi, Jung & Cauwenberghs, 2010, p. 106) and not ideal for

long-term automated monitoring, as the moisture content evaporates (Sohmyung Ha et al., 2014,

p. 1523).

Recent advances in alternative biopotential electrode technologies such as dry-contact and

non-contact or contactless ECG electrode (cECG) interfaces promise to overcome many of the

aforementioned problems. Despite all improvements, there is still a lot to be done in the domains

of signal processing, microelectronics, machine learning, etc., until cECG electrodes can be

considered sufficient, compared to the quality of standard Ag/AgCl wet electrodes.

Problem statement

cECG systems are much more susceptible to interference - especially motion artifact (MA)

interference - in comparison to the standard Ag/AgCl. In summary, any physical displacement

between the electrode and the skin will generate interference, sometimes many orders of

magnitude larger than the actual signal (Sohmyung Ha et al., 2014, p. 1525). This severely

affects the quality of measured data.

Among the factors that influence the performance and reliability of ECG instrumentation

systems, it is fundamental to choose effective signal processing techniques capable of properly
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filtering without compromising information and assessing the quality of measured data. Many

of the current solutions that fully focus on filtering, such as MA compensation methods, are

not very reliable in in regards to preserving signal morphology. For instance, according to

Oster & Clifford (2015, p. 346), adaptive filtering, a very popular MA mitigation method, can

lead to even worse results, depending on the tuning methodology. That being said, an indication

of signal quality would often be preferred over an automatic compensation algorithm or system

(Such & Muehlsteff, 2006, p. 51-52).

Moreover, many of the ECG SQA algorithms, currently available in the literature, are exclusively

designed to be reliable, but not necessarily computationally efficient. It is important for a digital

signal processing (DSP) system to be not only effective, but also computationally efficient, in

order to be used in real-time applications.

Thesis objective

This thesis is a research & development (R&D) collaboration with SIG.NUM, a company that is

specialized in the development and commercialization of an innovative proprietary contactless

and automated technology for both short and long term ECG acquisition. This work aims to

present a simple and computationally inexpensive, machine learning based, ECG SQA system,

designed to be used as a real-time channel selection algorithm and improve both the performance

and reliability of SIG.NUM’s cECG system (the SIG.ECG system). The results from this thesis

are compared to the work of Clifford et al. (2012) (“Signal quality indices and data fusion for

determining clinical acceptability of electrocardiograms”), a group of consolidated authors in

the field of ECG signal processing.

Thesis organization

The subsequent chapters of this thesis are structured as follows:
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1. Chapter 1 provides a background and an overview regarding ECG acquisition systems.

2. Chapter 2 defines important concepts such as signal quality assessment (SQA) and signal

quality indexes (SQIs). Furthermore, it also provides an overview of previous works related

to SQA and cECG systems.

3. Chapter 3 presents the theory behind wavelets, filter banks and scalograms, applied to ECG

SQA.

4. Chapter 4 presents the data-sets, their characteristics and how each of them was prepared to

be used for training, validating and testing the machine learning SQA classification system.

5. Chapter 5 presents the application itself, its implementation, the experimental procedures,

description of results and performance compared to some of the approaches presented in

the work of Clifford et al. (2012).

Thesis contributions

The major contributions presented by this work are summarized as following:

1. Aiming the R&D collaboration with SIG.NUM, the work of this thesis was dedicated to

contribute to the understanding and improvement of both the performance and reliability of

the SIG.ECG system. As a result, the characterization and understanding of the SIG.ECG

system contributed to the publication of the work of Weeks, Elsaadany, Lessard-Tremblay,

Targino, Liamini & Gagnon (2020).

2. Chapter 2 presents a technical literature review, detailing important concepts and metrics

(SQIs) related to SQA systems and cECG systems applications. This review is quite different

from the current available ones (e.g., Orphanidou (2018); Oster & Clifford (2015)).
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3. Chapter 3 presents two efficient and compact methodologies for representing an ECG signal,

inspired from the use of wavelet scalograms. It is believed that such methodologies are

novel to the application of ECG SQA.

4. Chapter 4 presents a detailed methodology of data preparation and labelling, applied to

SQA classification system types. The methodology is inspired and adapted by the work of

Clifford et al. (2012).

5. Chapter 5 shows that both the frequency analysis and the time-frequency analysis feature

representations, believed to be novel in the application of ECG SQA, are more accurate

when assessing the quality of ECG signals, compared to some of features proposed by the

work of Clifford et al. (2012).

6. Chapter 5 shows that the frequency analysis and the time-frequency analysis feature

representations are computationally more efficient to be extracted, compared to possible

implementations of some of the representations proposed by the work of Clifford et al.

(2012).



CHAPTER 1

AN OVERVIEW OF ECG SYSTEMS

This current chapter introduces a background and an overview about ECG leads, its acquisition,

the SIG.ECG system, different types of ECG electrode technologies and their main sources of

interference.

1.1 Biopotential measurement fundamentals

The basic principle of an ECG lead acquisition system is illustrated by Figure 1.1. Generally

standard Ag/AgCl electrodes use long cables to connect the patient to the analog front-end

(AFE) circuit. Such circuit resumes to a differential voltage measurement system. In case of

Figure 1.1, the differential system resumes to an instrumentation amplifier, i.e., the INA129. Up

to this point, 𝑉𝑜 should already measure an amplified ECG signal.

Figure 1.1 Basic principle of ECG acquisition

Taken from Texas Instruments (2020)

Other than the INA129 circuit, the rest of the Figure 1.1 consists on what is known as the

right leg drive (RLD) circuit (composed by both OPA2131). Basically the signal common to

the points RA and LA (𝑉𝐺) is measured, and sent to the input of another amplifier connected

as a buffer, i.e., OPA2131. Finally, the buffer outputs 𝑉𝐺 , known as the guard, is connected
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to both a conductive layer that surrounds the cables (if cables are used), and the input of an

inverting amplifier, i.e., another OPA2131. This feedback reduces the amount of common signal

interference (e.g., power line interference (PLI) (Friesen, Jannett, Jadallah, Yates, Quint & Nagle,

1990)) measured in the output of the differential system.

Ideally, 𝑉𝑜 is an amplified difference between two biopotential measurements, measured at two

distinguished points of the body (e.g., RA and LA in Figure 1.1). Therefore, the difference

between the outputs of two unipolar amplifiers, that measure two different locations of the body,

should behave as a differential system. This is the fundamental principle of a lead measurement.

1.2 The ECG waveform

Figure 1.2 summarizes the structure of a regular ECG waveform, from a healthy patient. P, Q,

R, S, T and U, are known as waves. Furthermore, each interval and segment are named and

described accordingly.

Figure 1.2 Illustration of an ECG waveform, containing all its principal elements along

with its respective nomenclatures

Taken from Clifford et al. (2006, p. 11)
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1.3 The standard 12 leads ECG

The standard 12 leads ECG is composed by 3 limb leads (leads I, II and III), 3 augmented limb

leads (leads aVR, aVL and aVF), and 6 precordial leads (leads 𝑉1, 𝑉2, 𝑉3, 𝑉4, 𝑉5 and 𝑉6). Figure

1.3a illustrates both limb leads, augmented limb leads and their respective electrode positions.

Figure 1.3b shows the placement of electrodes for measuring the precordial leads.

(a) Limb leads, augmented limb leads positioning and

Einthoven’s triangle

(b) Precordial leads

positioning

Figure 1.3 Standard 12 lead ECG electrode positioning

(a) Taken from Npatchett (2015)

(b) Taken from Häggström (2012)

The potential potential at the left arms is denoted LA, the potential measured at the right arm

is denoted RA, and the potential measured at the left leg is denoted LL. The common ground,

known as Wilson’s central terminal (WCT), is given as

𝑊𝐶𝑇 =
1

3
(𝑅𝐴 + 𝐿𝐴 + 𝐿𝐿). (1.1)

The limb leads are calculated according to equations (1.2), (1.3) and (1.4). Where
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𝐼 = 𝐿𝐴 − 𝑅𝐴, (1.2)

𝐼 𝐼 = 𝐿𝐿 − 𝑅𝐴, (1.3)

and

𝐼 𝐼 𝐼 = 𝐿𝐿 − 𝐿𝐴. (1.4)

The augmented limb leads are calculated according to equations (1.5), (1.6) and (1.7). Where

𝑎𝑉𝑅 = 𝑅𝐴 − 1

2
(𝐿𝐴 + 𝐿𝐿) = 3

2
(𝑅𝐴 −𝑊𝐶𝑇), (1.5)

𝑎𝑉𝐿 = 𝐿𝐴 − 1

2
(𝑅𝐴 + 𝐿𝐿) = 3

2
(𝐿𝐴 −𝑊𝐶𝑇), (1.6)

and

𝑎𝑉𝐹 = 𝐿𝐿 − 1

2
(𝑅𝐴 + 𝐿𝐴) = 3

2
(𝐿𝐿 −𝑊𝐶𝑇). (1.7)

Finally, each precordial lead is calculated by subtracting 𝑉𝑊 from each measured precordial

potential.

1.4 Electrode technologies for biopotential sensing

An electrode consists on a technology interface that couples the patient to the AFE. Sohmyung

Ha et al. (2014) classify biopotential electrodes, mainly, in three classes: wet, dry-contact and
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non-contact electrodes. A summary of the fundamentals of biopotential electrode classification,

in the vision of Sohmyung Ha et al. (2014), is explained in the following subsections. The

electrical characteristics of all types of electrodes is shown in Figure 1.4.

Figure 1.4 Electrical coupling of the skin–electrode interface, or tissue-electrode

impedance (TEI), for various electrode topologies, including (a) wet-contact gel-based

Ag/AgCl, (b) dry-contact flexible thru-hair sensor (galvanic coupling), (c) thin-film

dry-contact insulated capacitive metal plate (capacitive coupling), and (d) non-contact

metal plate coupling through hair or clothing such as cotton. (e) Measured noise spectrum

of various electrode types, placed at close proximity on forearm at rest, along with predicted

(dotted lines) thermal noise limits from measured skin–electrode coupling impedance data,

and the instrumentation noise floor of the shorted amplifier, for reference

Taken from Sohmyung Ha et al. (2014)
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1.4.1 Wet electrodes

Wet electrodes are considered to be the “gold standard” for both clinical and research applications.

A typical wet electrode consists of some metal (silver or gold) surrounded by a wet or solid

hydrogel containing chloride. A classic example of such electrode is the (Ag/AgCl) (Sohmyung

Ha et al., 2014, p. 1523). The performance of wet electrodes degrade as the moisture content

evaporates. Its useful lifetime is limited to a few days (Sohmyung Ha et al., 2014, p. 1523).

Moreover, since its tissue-electrode impedance (TEI) is characterized to be low (see Figure 1.4),

the AFE input impedance is not required to be ultra high.

1.4.2 Dry-contact electrodes

Dry-contact electrodes operate without the use of a wet gel. On bare skin, dry-contact

electrodes normally exhibit a TEI by one order of magnitude higher, compared to wet elec-

trodes (Baba & Burke, 2008, p. 95). Unlike wet electrodes, the performance of dry-contact

electrodes increase with time, as TEI tends to decrease due to sweat and moisture build-up (Ged-

des & Valentinuzzi, 1973, p. 356). This property has a huge impact on the noise performance of

dry-contact electrodes (see the yellow, and green noise curves, compared to the red noise curve,

shown in Figure 1.4).

Finally, dry-contact electrodes can be divided into two main sub-classes: galvanic coupling

(Figure 1.4 (b)) and capacitive coupling electrodes (Figure 1.4 (c)). The former simply uses a

metal plate that connects the skin to the AFE input. The latter utilizes some thin known dielectric

layer to form an insulated contact to the skin. Notice that both topologies make the use of

skin-contact for interconnection. Capacitive coupling electrodes are also known as “capacitive

electrodes”.

1.4.3 Non-contact or contactless electrodes

Contactless electrodes, can be considered a special case of dry-contact capacitive electrodes,

where the TEI is not well determined, neither approximately constant. Hence, this type of
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electrode operates without gel, through an insulation layer of unknown dielectric properties (e.g.,

clothing), enabling signal acquisition without direct skin contact. Generally, the TEI of such

electrodes is unknown, and can be very high, in the order of tens of picofarads in parallel with

hundreds of megaohms (Sohmyung Ha et al., 2014, p. 1524). Thus, the AFE input impedance

of such type of electrode is required to be extremely high.

1.5 The SIG.ECG system in a nutshell

Figure 1.5 shows an electronic mattress that containing a matrix of 8x16 AFEs (cECG sensors

array), and the central processing unit (CPU), that should connect to the mattress, read and

process the analog signals while communicating with other devices.

Figure 1.5 The SIG.ECG system

Courtesy of SIG.NUM

1.5.1 The SIG.ECG RLD system

From figure 1.4, it became clear that the coupling between an electrical circuit and the patient

skin, can be represented by an impedance, connected in series. A simplified electrical model

of a unipolar biopotential acquisition from contactless or capacitive electrodes can be seen in

Figure 1.6. The source represents the patient skin, 𝐶2 is modelled as a mixture of air and hair,
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and 𝐶1 represents some arbitrary dielectric material (e.g., fabric), 𝑅𝑖𝑛 and 𝐶𝑖𝑛 are both input

capacitance and input resitance of the AFE. It is important to mention that, in this simplified

model, the skin impedance is considered to be zero (fully conductive). Such approximation is

reasonable, since the 𝐶𝑒𝑞 is the dominant TEI.

Figure 1.6 Capacitive coupling of skin biopotentials and electrode

Taken from Lessard-Tremblay et al. (2020)

The principle of the RLD circuit is illustrated by Figure 1.7. This example illustrates how the

SIG.ECG system is used in the application of echocardiography, where an average sum of the 3

best selected sensors is inverted and fed back to the patient body.

In the echocardiography application, a selection algorithm determines the approximately best

subset of sensors to automatically provide an accurate ECG acquisition (Weeks et al., 2020, p.

4122). In this case, the subset is equal to 3 sensors. The RL terminal is basically a capacitive

coupling interface that injects the inverted common signal back to the patient body. The

principle of capacitive coupled feedback is analogous to the principle of capacitive coupling for

biopotential acquisition.
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Figure 1.7 SIG.ECG RLD circuit principle

Adapted from the work of Weeks et al. (2020)

1.6 SIG.NUM custom 6 leads

The custom leads, defined by SIG.NUM are analogous to the standard 12 leads ECG, except that

the precordial leads are not taken in consideration. Figure 1.8b redefines the positions of 𝑅𝐴,

𝐿𝐴 and 𝐿𝐿 to the posterior part of the body, and Figure 1.8a illustrates an example of patient

monitoring, where it is possible to see the matrix of sensors (AFEs) and two capacitive coupling

interfaces (top and bottom of the array matrix) for the RDL feedback.

The procedures for obtaining the custom limb leads and custom augmented limb leads are the

same as described by equations (1.2), (1.3), (1.4), (1.5), (1.6) and (1.7). Furthermore, leads 𝐼,

𝐼 𝐼, 𝐼 𝐼 𝐼, aVR, aVL and aVF are called 𝐼 𝑝, 𝐼 𝐼 𝑝, 𝐼 𝐼 𝐼 𝑝, aVRp, aVLp and aVFp, when 𝑅𝐴, 𝐿𝐴 and

𝐿𝐿 are measured from the posterior part of the body.

1.7 Noise vs Interference

Prior to the continuation of the topics presented in this thesis, it is important to clarify the

difference between noise and interference. According to Santos (2011), noise sources are

generally intrinsic to the instrumentation device electronics (e.g., thermal noise and flicker
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(a) Patient placed

over the SIG.ECG

mattress

(b) SIG.ECG lead positioning

Figure 1.8 Illustration of (a) how a patient interfaces with the SIG.ECG system and

(b) its respective posterior limb leads and posterior augmented limb leads positioning,

along with the approximate location of the Wilson’s central terminal
Courtesy of SIG.NUM

noise present in CMOS devices (Lundberg, 2002)), while interference sources are related to

external coupling (e.g., PLI). In this thesis, both terms (“interference” and “noise”) will be

treated equivalently, since many authors do not distinguish them.

1.8 Sources of interference related to ECG instrumentation systems

Based on the work of Oster & Clifford (2015), Table 1.1 shows possible types of interference

events that affect the quality of measured signals, and are present in the majority of ECG

instrumentation applications.
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Table 1.1 Different types of interference that can affect ECG signals

Adapted from Oster & Clifford (2015)

Interference name Description

Power line interference

(PLI)

Narrow frequency bandwidth around 50 Hz or 60 Hz depending

on the geographic location.

Electrode pop or contact

noise

Sharp changes, with possible saturation, due to the contact loss

between the electrodes and the skin.

Motion artifact (MA)

Rapid baseline changes, with possible saturation due to the

electrode movement. Where movement can produce either rapid

changes in the gain of the AFE (lateral movements), or triboelectric

effects (horizontal movements) (Ottenbacher & Heuer, 2009;

Wartzek, Lammersen, Eilebrecht, Walter & Leonhardt, 2011).

Electromyographic

(EMG) noise

High-frequency noise induced by the patient’s muscle electrical

activity.

Baseline wander (BW)

Low-frequency noise, often induced by the patient’s respiration.

Both MA and BW are related to movement in electrodes. They

differ in terminology due to frequency characteristics.

Data collecting device

noise

Saturation induced by the signal processing or communication

hardware.

Electronics noise

Instability issues, cut-off frequency alterations, thermal or flicker

noise introduced to measurement, etc. Mostly caused by design

fault issues.

Electrosurgical noise
High-frequency noise being generated by other medical (or non-

medical) devices present in the clinical environment.

Quantization noise and

aliasing
Induced by the necessity of digitizing and band-limiting the signal.

Signal Processing arti-

facts

Distortion induced by signal processing (e.g., ringing or Gibbs

oscillations).
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ECG recordings can serve as a good indicator of heart activity and are useful for early diagnosis

of cardiac diseases, provided that signals are properly acquired and interpreted. When the signal

quality is not properly controlled, it can lead to misinterpretation, and eventual false diagnose

of patients. MA, BW, and EMG types of interference are most commonly present in ECG

recordings, and are very challenging to mitigate due to frequency overlap with the ECG signal,

regardless of the electrode technology. Since many of the known artifact mitigation solutions

are not always very reliable, signal quality assessment (SQA) systems are considered to be very

a attractive solution. Moreover, SQA systems are very helpful when it comes to signal selection

applications for automated ECG multi-channel systems. That being said, an elaborated overview

ECG SQA systems is presented in chapter 2.

1.9 Conclusion

This chapter presented the main important fundamentals regarding biopotential intrumentation,

ECG signals, the SIG.ECG sytem, types of ECG electrodes, and its sources of interference.

Moreover, this current chapter also mentions some of the challenges and motivations for assessing

the quality of ECG signals, instead of mitigating artifacts.



CHAPTER 2

SIGNAL QUALITY ASSESSMENT APPLIED TO ECG SYSTEMS

As mentioned in Chapter 1, the use of filtering techniques, in many times, can lead to signal

distortion. Hence, in many application, such as automated disease diagnosis, the signal

morphology can be severely altered by filters or compensation algorithms, leading to false alarm

detection of diseases. Therefore, the main reason why signal quality assessment (SQA) systems

are attractive, in order to select signals that are useful for different applications, such as diagnosis

purposes.

Before continuing with the fundamentals of SQA and signal quality indexes (SQIs), it is

important to understand how the performance of a filtering algorithm can be evaluated.

2.1 Performance evaluation of filtering algorithms

In many simulation experiments it is possible to have direct access to the clean signal (ground-

truth) and the pure noise (e.g., the works of Chang & Liu (2011); Kuzilek, Kremen, Soucek & Lhot-

ska (2014); Ren, Du, Li, Hu, Yang & Abbas (2017)). In such case, many metrics like mean squared

error (MSE) (Ren et al., 2017), signal-to-noise ratio (SNR) (Blanco-Velasco, Weng & Barner,

2008), signal-to-error ratio (SER) (Blanco-Velasco et al., 2008), among others, can be easily

calculated. Notice that these indicators have the role of quantifying the signal quality before,

and after filtering.

In many real life scenarios, it is not feasible to have access to the clean signal and the pure

noise. Hence, it is necessary to use alternative metrics, such as: Counting number of QRS

complexes and comparing the estimation of the true QRS complexes, estimated by a specialist,

with the results of an automated QRS detector algorithm (Wiklund, Karlsson, Östlund, Berglin,

Lindecrantz, Karlsson & Sandsjö, 2007; Xu, Rabotti, Zhang, Harpe, Mischi, Meftah & Ouzounov,

2018); Comparison of the filtered lead with some clean reference lead or signal (Jarchi, Rodgers,
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Tarassenko & Clifton, 2018; Wedekind, Kleyko, Osipov, Malberg, Zaunseder & Wiklund, 2018;

Xu, Rabotti, Zhang, Ouzounov, Harpe & Mischi, 2019); etc.

Moreover, there are even situations where there is no available clean reference lead nor an

accessible specialist to identify useful QRS complexes. Hence, Outram (1998, p. 65) suggests

estimating the SNR, by assuming that the noise is purely white. For the understanding of such

estimation, it is important to define that, in this thesis, bold uppercase letters are used to refer

to a matrix, that can contain several column vectors. Bold lowercase letters, represent column

vectors. Examples of a matrix and a vector time-series of length 𝑁 are shown in equations (2.1)

and (2.2). Where

X(𝑛) =
[
x1(𝑛), x2(𝑛), · · · , x𝑀 (𝑛)

]
, (2.1)

and

x(𝑛) =
[
𝑥(𝑛 − 𝑁 + 1), 𝑥(𝑛 − 𝑁 + 2), · · · , 𝑥(𝑛 − 1), 𝑥(𝑛)

]𝑇
. (2.2)

For the sake of notation simplicity, many times x(𝑛) will be simply referred as x. Given such

definitions, Outram (1998, p. 65) estimates the SNR according to the following equation:

𝑆𝑁𝑅𝐸 =

√
𝜆𝑚𝑎𝑥

𝑀 − 𝜆𝑚𝑎𝑥
. (2.3)

Where 𝜆𝑚𝑎𝑥 is the eigenvalue of the matrix Q𝑇Q. Given some signal s, its filtered estimation is

referred as ŝ. Hence, Q is the matrix of the ensemble of 𝑀 ECG waveforms (ECG complexes,

or PQRST complexes), detected by some QRS detection algorithm applied to the filtered data

(e.g., ŝ) (Outram, 1998, p. 271) (Wu, Shen, Zhou, Lin, Zeng & Gao, 2013).
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Likewise, Outram (1998, p. 66) introduces another method that estimates the SNR through

correlation. Thus,

𝑆𝑁𝑅𝑅𝑀𝑆 =
√

𝜂

1 − 𝜂
. (2.4)

Where

𝜂 =
2

𝑀 (𝑀 − 1)
𝑀−1∑
𝑗=1

𝑀∑
𝑘= 𝑗+1

q𝑇
𝑗 q𝑘 , (2.5)

and q𝑖 is the 𝑖𝑡ℎ column of Q (Outram, 1998, p. 271) (Wu et al., 2013). Both methods of SNR

estimation are designed for ECG signal analysis applications. The mathematical demonstration

of equations (2.3), (2.4) and (2.5) can be found in the work of Outram (1998).

Both methods were validated by simulating an ECG signal corrupted by some known Gaussian

noise source, where the true SNR is compared to 𝑆𝑁𝑅𝐸 and 𝑆𝑁𝑅𝑅𝑀𝑆. Results showed that, for

high SNR, both techniques demonstrated acceptable results. On the other hand, for low SNR,

𝑆𝑁𝑅𝐸 showed poor accuracy (Outram, 1998, p. 67).

Furthermore, Haykin (2013, p. 807 - 811) demonstrates a generalist approach for estimating

signal quality, compared to white noise. Let the Hermitian matrix R denote the N-by-N

autocorrelation matrix of a wide-sense stationary discrete-time stochastic process ŝ, in the same

format as described by (2.2). The so called eigenvalue spread 𝜒(R) is bounded according to the

following inequality:

𝜒(R) = 𝜆𝑚𝑎𝑥

𝜆𝑚𝑖𝑛
≤ 𝑆ŝ,𝑚𝑎𝑥

𝑆ŝ,𝑚𝑖𝑛
. (2.6)

Where 𝑆ŝ,𝑚𝑎𝑥 and 𝑆ŝ,𝑚𝑖𝑛 denote, respectively, the maximum and minimum values of the power

spectral density (PSD) of ŝ. As N approaches infinity, 𝜒(R) approaches the ratio 𝑆ŝ,𝑚𝑎𝑥/𝑆ŝ,𝑚𝑖𝑛
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(Haykin, 2013, p. 811). Such ratio is interesting when quantifying the difference of power

between the desired signal and decorrelated non repetitive noise.

It is important to understand that all the presented concepts already serve as indicators that

quantify the quality of ECG signals. This is the core of SQA.

2.2 Signal quality assessment

SQA systems seek to improve the reliability of physiological measurements (Orphanidou, 2018,

p. 1), aiming to identify instances of artefact (in addition to interference / noise) in a signal

segment, such that the signal extracted from that segment can be either ignored or corrected /

enhanced (Orphanidou, 2018, p. 5). Orphanidou (2018, p. 5) also states that the terms quality

assessment, quality appraisal and artefact / noise detection are considered equivalent.

Furthermore, it is important to mention that, according to Orphanidou (2018, p. 19-20), SQA is

defined in two ways, in terms of rigorousness:

- Basic quality: Where R-peaks are clearly identifiable. In such case, a reliable heart rate

can be extracted from good quality signals, as well heart rate variability and some types of

arrhythmia can be detected and analyzed.

- Diagnostic quality: Where P wave (if present), the QRS complex and the T wave are clearly

identifiable. In such case, the ECG signal can also be used for clinical diagnosis of more

subtle conditions such as: myocardial ischemia and coronary heart disease.

As it will be presented in Section 2.4, many works actually quantify the quality of measured

ECG signals by scoring, instead of labelling / classifying (e.g., acceptable or unacceptable).

Hence, in this thesis, types of SQA, regarding the output response, are understood as:

- Classification type of quality assessment: Where signals are classified into categories (e.g.,

acceptable or unacceptable).
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- Scoring type of quality assessment: Where the output of the system is either a continuous

value that can be based on several indicators (e.g., 𝑆𝑁𝑅𝐸 or 𝑆𝑁𝑅𝑅𝑀𝑆), or selection of best

leads based on quality ranking (e.g., multichannel ECG signal selection applications). Notice

that, given the appropriate threshold, it is possible to separate signals into different classes.

Unlike filtering techniques, that can be easily separated into families of algorithms (e.g., adaptive

filters (AFs), blind source separation (BSS), empirical mode decomposition (EMD), etc.),

many of the quality assessment techniques are very unique and specific. Hence, the reason for

separating SQA systems in these two classes (classification or scoring types) is simply to assist

the reader during the process of finding and organizing what is in the literature in regards to

SQA, since many SQA methods are not always explicit in many publications. Many authors

implicitly refer to SQA systems as artifact detection algorithms, or methods for evaluating and

validating the performance of filtering or acquisition systems, under certain conditions. Thus,

the reader should be aware that many SQA systems or metrics might be implicit in many works,

such as: MA filtering publications (as discussed in Section 2.1).

2.3 Signal quality indexes

The term SQI is equivalent to estimation of noise level (Oster & Clifford, 2015, p. 353).

Examples of SQIs, or metrics, presented in the works of Clifford et al. (2012, p. 1425-1426),

Behar, Oster, Li, Clifford, Qiao Li, Clifford, Li, Clifford, Qiao Li & Clifford (2013, p. 3-4),

Zhao & Zhang (2018), Oh (2004), Castro, Varon, Torfs, Van Huffel, Puers & Van Hoof (2018),

Koenig, Rehg & Rasshofer (2015) and (Hou, Xiang, Dong, Xue, Xiong & Yang, 2018) are

summarized in Table 2.1.

Each SQI has its own particular motivation and justification. For instance, it is expected a good

ECG signal to be highly non-gaussian (Behar et al., 2013, p. 3), due to its quasi-stationary

properties. Hence, kSQI should be close to zero, for gaussian random processes (low quality

ECG signals). Furthermore, Behar et al. (2013, p. 3) also expect the ECG signal to be highly

skewed (high sSQI), due to the QRS complex.
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Table 2.1 Examples of SQIs, or metrics, found in the literature

SQI Description

iSQI The percentage of beats detected on each lead which were detected on all leads.

bSQI
The percentage of beats detected by the wqrs algorithm (Zong, 2010), that were

also detected by the eplimited algorithm (Hamilton, 2002).

rSQI
The ratio of the number of beats detected by the eplimited algorithm (Hamilton,

2002), over the number of beats detected by the wqrs algorithm (Zong, 2010).

pSQI The relative power in the QRS complex:
∫ 15𝐻𝑧

5𝐻𝑧
𝑃( 𝑓 )𝑑𝑓 /

∫ 40𝐻𝑧

5𝐻𝑧
𝑃( 𝑓 )𝑑𝑓 .

sSQI The third standardized moments of a signal (skewness).

kSQI The fourth standardized moments of a signal (kurtosis).

fSQI The percentage of the signal, that appears to be a flat line.

basSQI The relative power in the baseline: 1 −
∫ 1𝐻𝑧

0𝐻𝑧
𝑃( 𝑓 )𝑑𝑓 /

∫ 40𝐻𝑧

0𝐻𝑧
𝑃( 𝑓 )𝑑𝑓 .

pcaSQI

A ratio comprising of the sum of the eigenvalues associated with the five principal

components over the sum of all eigenvalues obtained by principal component

analysis applied to the time-aligned ECG cycles detected in the window by the

eplimited algorithm (Hamilton, 2002), segmented at 100 ms either side of the

R-peak. Interestingly, such SQI is somehow similar to 𝑆𝑁𝑅𝐸 , presented in Section

2.1.

cSQI

The ratio between the standard deviation (STD) estimate and the mean estimate

(Hayn, Jammerbund & Schreier, 2012), both from the distribution of R-R intervals

within a segment of ECG: ˆ𝜎𝑅𝑅/ ˆ𝜇𝑅𝑅.

𝑀𝑥

The so-called mobility (Oh, 2004, p. 41) of signal 𝑥 is the ratio between the STD

estimate of the derivative of 𝑥 (known as 𝑥′), and the STD estimate of 𝑥: 𝜎𝑥 ′/𝜎𝑥 .

Cplx
The so-called complexity (Oh, 2004, p. 40) of signal 𝑥 is the ratio between the

mobility of 𝑥′ and the mobility of 𝑥: 𝑀𝑥 ′/𝑀𝑥 .

ZCR

The so-called zero crossing rate (ZCR) (Oh, 2004, p. 39) is the ratio between the

total number of times the signal 𝑥 changes polarity (𝑥(𝑛)𝑥(𝑛 − 1) < 1) and the

number of samples.
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Table 2.1 Examples of SQIs, or metrics, found in the literature (cont’d)

SQI Description

SDR

The so-called spectral density ratio (SDR) is a generalization of the basSQI or pSQI.

Its value is calulated as:
∫ 𝑏

𝑎
𝑃( 𝑓 )𝑑𝑓 /

∫ 𝑑

𝑐
𝑃( 𝑓 )𝑑𝑓 , for several possible intervals

[𝑎, 𝑏] and [𝑐, 𝑑]. Some interesting interval references are proposed by the work of

Castro et al. (2018, p. 6).

corrSQI
Correlation comparison of a detected QRST complex, with a tamplate obtained by

averaging QRST complexes (Castro et al., 2018, p. 7).

varSQI
The variance of the heart rate. In the work of Koenig et al. (2015, p. 199), this SQI

is 1 if the variance of the heart rate is larger then 40, else the SQI is 0.

aSQI
The absolute value of the heart rate. If the absolute value is in between 30 and 200,

the SQI is 0. Else is -5. Such SQI is proposed by Koenig et al. (2015, p. 199).

𝑅𝑎𝑡𝑒

The gridded phase portraits of an ECG signal is constructed, and 𝑅𝑎𝑡𝑒 =
𝑁𝑝

𝑁𝑡
. Where

𝑁𝑝 is the number of boxes visited by the phase portrait, and 𝑁𝑡 is the total number

of boxes in the phase space. This SQI is originally proposed by Hou et al. (2018, p.

7-8).

It is important to state that SQA and SQI are referred as synonyms by many authors. However,

in this thesis, both terms are treated differently. Therefore, in this thesis, SQIs are understood as

signal features that quantify / estimate some type of noise level, while SQA is understood as a

system that performs artifact / noise detection or signal evaluation. For instance, the non-linear

combination of SQIs can be used to design very powerful artifact / noise detectors (classification

SQA systems), as it is shown, or mentioned, in the works of Behar, Oster, Li & Clifford (2012);

Behar et al. (2013); Clifford et al. (2012); Oster & Clifford (2015).
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2.4 SQA applied to contactless ECG systems

The following list summarizes different quality appraisal techniques applied to cECG systems.

The list is formatted as authors: type of SQA - description of SQI or metric.

1. Seung Min Lee, Ko Keun Kim & Park (2008): Classification type of quality assessment

prior to filtering - artifacts are identified by using the FWT to decompose the ECG signal

and comparing the energy level increase. When the energy level increase is lower then

a specific threshold (artifact identification), the high frequency components are zeroed

(filtering). Subsequently, the inverse FWT is applied to the remaining coefficients.

2. Ottenbacher, Kirst, Jatoba, Huflejt, Grossmann & Stork (2008): Classification type of

quality assessment - motion artifact is detected by the use of heuristical thresholding on

correlated artifact signals from either impedance sensing, or accelerometers.

3. Heuer, Chiriac, Kirst, Gharbi & Stork (2011): Classification type of quality assessment

- the presence of motion artifact is detected through a capacitance measurement module,

integrated to the ECG system, that senses coupling capacitance variations.

4. Schumm, Arnrich & Troster (2012): Scoring type of quality assessment - the eplimited

algorithm (Hamilton, 2002) is used to detect R-peaks, and a support vector machine (SVM)

network is used to classify if the R-peak detection is correct or not. The SVM network

classifies an ECG waveform, contained in a window of 150𝑚𝑠, an interval where R-peaks

are counted as correct, according to the American National Standards Institute and the

Association for the Advancement of Medical Instrumentation (Schumm et al., 2012, p.

31). The score is 𝑄𝐼 = samples with QL = 1

overall amount of samples
, where QL is the classification of the window

sample.

5. Schneider, Koellner & Heuer (2012): Scoring type of quality assessment - each R-peak

of the reference signal has its location manually annotated. An algorithm is used to detect

the R-peaks location of the cECG signal, subsequently the accuracy of each annotation is

compared to the locations of the reference signal.
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6. Koenig et al. (2015): Scoring type of quality assessment - the quality is assessed through

the operation 𝑆𝑄𝐼 = 𝑘𝑆𝑄𝐼 + 𝑣𝑎𝑟𝑆𝑄𝐼 + 𝑎𝑆𝑄𝐼. In this work, kSQI consists on a flag, where

its value is 1 for signals with kurtosis lower or equal to 80, or 0 otherwise. Higher SQI

signals are considered to be more reliable. SQI is used as a control feedback for a heart rate

estimation KF.

7. Bohm, Antink, Leonhardt & Teichmann (2015): Scoring type of quality assessment - a

reference signal is estimated by using a linear FIR deconvolution. The Mean Squared Error

(MSE) of the estimated signal compared to the reference signal is implicitly defined as an

SQI.

8. Castro, Morariu, Torfs, Van Hoof & Puers (2016): Classification of acceptability for

either beat detection or higher quality monitoring applications - the classification is based

on empirical thresholding. bSQI, kSQI (both as described by Li, Mark & Clifford (2008))

and 𝑆𝐷𝑅 =
∫ 50𝐻𝑧

4𝐻𝑧
𝑃( 𝑓 )𝑑𝑓 /

∫ 70𝐻𝑧

0.5𝐻𝑧
𝑃( 𝑓 )𝑑𝑓 are used. If 𝑏𝑆𝑄𝐼 > 0.6, then the signal is

considered suitable for beat detection. If 𝑆𝐷𝑅 > 0.5 and 𝑘𝑆𝑄𝐼 > 0.5, the signal is

considered to be acceptable for higher quality monitoring.

9. Castro et al. (2018): Classification type of quality assessment - two-class or three-class

quality assessment classification based on heuristic threshold of SQIs, such as: kSQI, SDR,

bSQI and corrSQI.

10. Castro et al. (2018): Scoring type of quality assessment - selection of best lead based on

non-linear decision rules build and SQI-Fusion.

11. Wedekind et al. (2018): Scoring type of quality assessment - signals are filtered and

selected from a multi-channel cECG system, by applying Blind Source Separation (BSS)

based on Independent Component Analysis. A BSS heartbeat-detection-based approach,

combined with an altered Kurtosis calculation selects the best quality component.

12. Hou et al. (2018): Scoring type of quality assessment - the 𝑅𝑎𝑡𝑒 is used to generate a

weight matrix, that synthesizes a single-channel ECG signal, from the linear combination

of a multi-channel cECG system.
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13. Kido, Tamura, Ono, Altaf-Ul-Amin, Sekine, Kanaya & Huang (2019): Classification

type of quality assessment - a 1D convolutional neural network (CNN) is used to classify

signals into 3 categories: clear, blurry and noisy.

14. Leicht, Skobel, Knackstedt, Mathissen, Sitter, Wartzek, Mohler, Reith, Leonhardt & Te-

ichmann (2019): Classification of signals into 4 categories - the indexes or categories

classified by two cardiologists consisted on the following labels: good, relative good, relative

bad, bad.

2.5 Conclusion

It is important to consider the fact that there is no perfect artifact removal filter design solution.

In addition, many of the MA mitigation techniques can be computationally expensive, and

limited to conditions such as: additional sensing requirements, quasi-stationarity of ECG

signals (arrhythmia constrains), and linearly separable artifacts. Furthermore, artifact mitigation

techniques can even introduce distortion to filtered signals. With all that being said, SQA

systems have become an attractive solution for selecting or segmenting data with acceptable

quality.

This chapter presented and described the fundamentals, definitions, and a literature review, all

related to SQA and SQI. The main takeaway of this chapter is the understanding of the presented

fundamentals, definitions of the terms used in this thesis, and the fact that quality assessment

metrics can be very unique and different from each other. Furthermore, it is important to have

in mind that SQA systems serve many different purposes, in terms of output and rigorousness,

depending on the application.



CHAPTER 3

WAVELETS, FILTER BANKS AND SCALOGRAMS APPLIED TO ECG SIGNALS

The main purpose of this chapter is providing a background regarding wavelets, filter banks

and wavelet scalograms, along with explaining and defining how these mathematical tools can

be used to represent “acceptable” and “unacceptable” signals. The following equations of this

chapter assume that 𝑛 ∈ Z and 𝑡 ∈ R. Moreover, all signals are assumed to be real numbers.

3.1 Wavelet transforms

Let 𝐿2(R) denote the space of functions with finite energy
(
𝐿2(R) =

{
𝑓 (𝑡) |

∫ ∞
−∞ | 𝑓 (𝑡) |2 𝑑𝑡 < ∞

})
.

Let 𝜓(𝑡) ∈ 𝐿2(R) be a fixed function, said to be a wavelet if its FT Ψ(𝜔) satisfies

𝐶𝜓 =
∫ ∞

0

|Ψ(𝜔) |2
|𝜔| 𝑑𝜔 < ∞. (3.1)

The relationship (3.1) represents the admissibility condition (Olkkonen, 2011, p. 3). Dilated-

translated wavelets are defined as

𝜓𝑎,𝑏 (𝑡) = 1√
𝑎
𝜓

(
𝑡 − 𝑏

𝑎

)
. (3.2)

Where 𝑏 ∈ R is the translation parameter and 𝑎 ∈ R+ (𝑎 ≠ 0) is the dilation or scale parameter.

The factor 𝑎−
1
2 is a normalization term such that the energy is the same for all scales (Olkkonen,

2011, p. 4). The admissibility condition implies that the wavelet must have no DC component

(Olkkonen, 2011, p. 4). Hence,

∫ ∞

−∞
𝜓(𝑡) 𝑑𝑡 = Ψ(0) = 0. (3.3)
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3.1.1 The continuous wavelet transform

The continuous wavelet transform (CWT) of 𝑥(𝑡) ∈ 𝐿2(R) (Olkkonen, 2011, p. 4) is defined as

𝑊𝑥 (𝑎, 𝑏) = 〈𝑥(𝑡), 𝜓𝑎,𝑏 (𝑡)〉 =
∫ ∞

−∞
𝑥(𝑡)𝜓𝑎,𝑏 (𝑡) 𝑑𝑡. (3.4)

The so-called resolution of the identity provides the reconstruction of 𝑥(𝑡) (Olkkonen, 2011, p.

5), given as

𝑥(𝑡) = 1

𝐶𝜓

∫ ∞

0

∫ ∞

−∞

𝑊𝑥 (𝑎, 𝑏)𝜓𝑎,𝑏 (𝑡)
𝑎2

𝑑𝑎 𝑑𝑏. (3.5)

3.1.2 The discrete wavelet transform

It is important to emphasize that, in the CWT, 𝑎 and 𝑏 are both continuous. Many authors, such

as Addison (2005); Torrence & Compo (1998a); He (2016, p. 25), define the discrete wavelet

transform (DWT) by discretizing both 𝑎 and 𝑏. Other authors, such as (CINTRA, 2005, p. 88),

call it wavelet series.

The most common form of the DWT employs the use of a dyadic grid (integer power of two for

𝑎 and 𝑏) and orthonormal wavelets associated to orthonormal bases of 𝐿2(R) (Olkkonen, 2011,

p. 5), exhibiting zero redundancy (unlike CWT) (Addison, 2005, p. R163). An example of a

dyadic grid wavelet is:

𝜓𝑖, 𝑗 (𝑡) = 2−𝑖/2𝜓
(
2−𝑖𝑡 − 𝑗

)
. (3.6)

Where 𝑖, 𝑗 ∈ Z. According to Addison (2005, p. R163), discrete dyadic grid wavelets are usually

chosen to be orthonormal. Hence, 〈𝜓𝑗,𝑘 (𝑡), 𝜓𝑙,𝑚 (𝑡)〉 = 𝛿 𝑗𝑘𝛿𝑙𝑚, for 𝑗 , 𝑘, 𝑙, 𝑚 ∈ Z. Where 𝛿 𝑗𝑘

represents the Kronecker delta.
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Therefore, for a real finite energy signal 𝑥(𝑡), using the dyadic grid, the DWT is written as:

𝑇𝑖, 𝑗 =
∫ ∞

−∞
𝑥(𝑡)𝜓𝑖, 𝑗 (𝑡) 𝑑𝑡. (3.7)

Where 𝑇𝑖, 𝑗 is known as the wavelet (or detail) coefficient (Olkkonen, 2011, p. R164). Hence,

𝑥(𝑡) can be represented (Brunton & Kutz, 2019, p. 77) as:

𝑥(𝑡) =
∑
𝑖, 𝑗

𝑇𝑖, 𝑗𝜓𝑖, 𝑗 (𝑡). (3.8)

3.1.3 Example of a basis construction by scaling

Given a signal 𝑥(𝑡) that belongs to the space spanned by the basis {𝜙𝑘 (𝑡)}, it is possible to

represent 𝑥(𝑡) as a linear combination of the basis vectors (signals). Hence,

𝑥(𝑡) =
∑
𝑘

𝑐𝑘𝜙𝑘 (𝑡). (3.9)

Where, in equation 3.9, 𝑐𝑘 represents the coefficients of the projection of 𝑥(𝑡) into the space

spanned by {𝜙(𝑡)}. Consider the following continuous function:

𝜃 (𝑡) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 0 ≤ 𝑡 < 1;

0 otherwise.

(3.10)

The scaled version of 𝜃 (𝑡) is defined as

𝜃𝑛 (𝑡) = 𝜃 (2𝑛𝑡). (3.11)
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The family {𝜃𝑛 (𝑡)} is not orthonormal, since 〈𝜃0(𝑡), 𝜃1(𝑡)〉 ≠ 0. By applying the Gram-Schmidt

process, it is possible to obtain a set of orthonormal basis from {𝜃𝑛 (𝑡)}. Hence,

𝜙0(𝑡) = 𝜃0(𝑡) = 𝜙(𝑡)

𝜙1(𝑡) = 𝜃1(𝑡) − 〈𝜃1(𝑡), 𝜃0(𝑡)〉
〈𝜃0(𝑡), 𝜃0(𝑡)〉

𝜃0(𝑡)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1
2

0 ≤ 𝑡 < 1
2
;

−1
2

1
2
≤ 𝑡 < 1;

0 otherwise.

=
𝜓(𝑡)

2
.

(3.12)

The result of the described basis is very popular. 𝜓(𝑡) is known as the Haar mother wavelet, and

𝜙(𝑡) is its scaling function (or father wavelet). 𝜓(𝑡) is characterized by high frequencies, and

𝜙(𝑡) by low frequencies. If x(t) is given as

𝑥(𝑡) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

2 0 ≤ 𝑡 < 1
2
;

0 otherwise.

(3.13)

Then,

𝑥(𝑡) = 𝑎𝜙(𝑡) + 𝑑𝜓(𝑡) = 𝜙(𝑡) + 𝜓(𝑡). (3.14)

Where, in equation (3.14), 𝑎 = 1 is known as approximation coefficient, and 𝑑 = 1 is known as

detail coefficient. Therefore, this simple example concludes how 𝑥(𝑡) is projected in the Haar

wavelet basis, using the DWT.
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3.1.4 Multiresolution analysis and the Mallat algorithm

It is possible to construct an orthonormal basis, by translating and scaling functions (Chun-lin,

2010, p. 12). Thus,

𝜙 𝑗,𝑘 (𝑡) = 2 𝑗/2𝜙(2 𝑗 𝑡 − 𝑘), (3.15)

and

𝜓𝑗,𝑘 (𝑡) = 2 𝑗/2𝜓(2 𝑗 𝑡 − 𝑘). (3.16)

The parameter 𝑗 refers to the visibility in frequency, and 𝑘 to the position in time. In practice, 𝑗

is referred as resolution (Chun-lin, 2010, p. 12) or level. Let us define the following subspaces:

𝑉𝑗 = Span{𝜙 𝑗,𝑘 (𝑡)}, (3.17)

and

𝑊𝑗 = Span{𝜓𝑗,𝑘 (𝑡)}. (3.18)

Where its requirements (Gonzalez & Woods, 2006, p. 481-482) are enumerated as follows:

1. The scaling function is orthogonal to its integer translates.

2. 𝑉𝑗 ⊂ 𝑉𝑗+1.

3. Only the null space is common to all 𝑉𝑗 .

4. Any function can be represented with arbitrary precision.
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Notice, from requirement 2 and the Haar scaling function, that:

𝜙(𝑡) = 𝜙0,0(𝑡)

=
1√
2
𝜙1,0(𝑡) + 1√

2
𝜙1,1(𝑡)

=
1√
2

√
2𝜙(2𝑡) + 1√

2

√
2𝜙(2𝑡 − 1).

(3.19)

In the context of dyadic grid wavelets, requirement 2 translates to equation (3.20), known as the

refinement equation (CINTRA, 2005, p. 89). Thus,

𝜙(𝑡) =
∑
𝑘

ℎ0(𝑘)
√

2𝜙(2𝑡 − 𝑘). (3.20)

Such equation has a unique solution for ℎ0(𝑛) (CINTRA, 2005, p. 89). For the Haar wavelets,

ℎ0(𝑛) = { 1√
2
, 1√

2
} (Chun-lin, 2010, p. 13). Notice that ℎ0(𝑛) composes the elements of an FIR

filter, known as smoothing filter (CINTRA, 2005, p. 89).

Analogous to the refinement equation, another fundamental recursive equation states that:

𝜓(𝑡) =
∑
𝑘

ℎ1(𝑘)
√

2𝜙(2𝑡 − 𝑘). (3.21)

Where ℎ1(𝑛) is known as detail filter (CINTRA, 2005, p. 90). For the Haar wavelets,

ℎ1(𝑛) = { 1√
2
,− 1√

2
} (Chun-lin, 2010, p. 13). The relation between ℎ0(𝑛) and ℎ1(𝑛), known as

the quadrature mirrored filter (QMF) relation (Ariño, Morettin & Vidakovic, 2004, p. 5), is

given as

ℎ1(𝑛) = (−1)𝑛ℎ0(1 − 𝑛). (3.22)
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The motivation of equation (3.22) will be discussed in Section 3.2.4. Moving forward, according

to Gonzalez & Woods (2008, p. 483),

𝑉𝑗+1 = 𝑉𝑗 ⊕𝑊𝑗 . (3.23)

Once the infinite wavelet sets are united (Gonzalez & Woods, 2008, p. 484),

𝐿2(R) = 𝑉0 ⊕𝑊0 ⊕𝑊1 ⊕ ...

= ...𝑊−2 ⊕𝑊−1 ⊕𝑊0 ⊕𝑊1 ⊕ ...

= 𝑉𝑗0 ⊕𝑊𝑗0 ⊕𝑊𝑗0+1 ⊕ ...

(3.24)

Where ⊕ denotes the union of spaces. This concludes that the 𝐿2(R) space is a linear combination

of subspaces formed by the mother wavelet and father wavelet functions.

3.1.5 The DWT for discrete input signals

Let 𝑙2(Z) denote the space of functions with finite energy
(
𝑙2(Z) = {∑∞

−∞ | 𝑓 (𝑛) |2 < ∞}) . In

practical applications, the DWT is implemented to receive discrete signals as inputs. In particular,

Jerônimo da Silva Júnior (2008, p. 31) names such implementation as the discrete time wavelet

series (DTWS).

As it was demonstrated in Section 3.1.3, a signal 𝑥(𝑡) could be decomposed in a scaling function

summed with a wavelet function. Using the dyadic grids shown in equations (3.15) and (3.16),

and sampling the wavelet and scaling functions, according to Chun-lin (2010, p. 12) and

Gonzalez & Woods (2008, p. 489), a discrete signal 𝑥(𝑛) in 𝑙2(Z) can be decomposed as:

𝑥(𝑛) = 1√
𝑀

∑
𝑘

𝑎 𝑗0,𝑘 𝜙 𝑗0,𝑘 (𝑛) +
1√
𝑀

∞∑
𝑗= 𝑗0

∑
𝑘

𝑑 𝑗,𝑘𝜓 𝑗,𝑘 (𝑛). (3.25)
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Where 𝑘, 𝑗 ∈ Z; 𝑀 = 2𝐽 ; 𝑛 = 0, 1, 2, ..., 𝑀 − 1. Equation (3.25) is known as the inverse DWT

(Gonzalez & Woods, 2008, p. 489). The approximation (𝑎 𝑗0,𝑘 ) and detail (𝑑 𝑗,𝑘 ) coefficients are

obtained by applying the forward DWT to 𝑥(𝑛) (Gonzalez & Woods, 2008, p. 489), according to

𝑎 𝑗0,𝑘 =
1√
𝑀

∑
𝑛

𝑥(𝑛)𝜙 𝑗0,𝑘 (𝑛), (3.26)

and

𝑑 𝑗,𝑘 =
1√
𝑀

∑
𝑛

𝑥(𝑛)𝜓𝑗0,𝑘 (𝑛). (3.27)

3.2 Filter banks and FWT

This section aims to present how the DWT is implemented through the use of filter banks. Such

implementation is known as fast wavelet transform (FWT).

3.2.1 Intro

Figure 3.1 illustrates an example of a 2 channel filter bank. From Figure 3.1, the block where

the input is 𝑢(𝑛) and the output is 𝑢𝑑 is known as a compressor. Its input-output relationship is

given as:

𝑢𝑑 (𝑛) = 𝑢(2𝑛) = (↓ 2)𝑢(𝑛). (3.28)

The block where the input is 𝑢𝑑 (𝑛) and the output is 𝑢𝑠 (𝑛) is known as expander. Where

𝑢𝑠 (𝑛) = (↑ 2)𝑢𝑑 (𝑛) =
∞∑

𝑘=−∞
𝑢𝑑 (𝑛)𝛿(𝑛 − 2𝑘) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑢(𝑛) if 𝑛 is even;

0 otherwise.

(3.29)
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Figure 3.1 Example of a 2 channel filter bank

The Z-transform of 𝑢𝑑 (𝑛) and 𝑢𝑠 (𝑛), in terms of 𝑢(𝑛), are given by:

𝑈𝑑 (𝑧) = 𝑈 (𝑧 1
2 ) +𝑈 (−𝑧 1

2 )
2

, (3.30)

and

𝑈𝑠 (𝑧) = 𝑈 (𝑧) +𝑈 (−𝑧)
2

. (3.31)

The so called the noble identity, is known as

𝑈𝑑 (𝑧) = 𝐻1(𝑧2)𝑋 (𝑧) + 𝐻1(−𝑧2)𝑋 (−𝑧)
2

=
𝑋 (𝑧 1

2 ) + 𝑋 (−𝑧 1
2 )

2
𝐻1(𝑧)

= 𝑋𝑑 (𝑧)𝐻1(𝑧).

(3.32)

Therefore, the block diagram, illustrated by Figure 3.1, is reformulated to a more efficient imple-

mentation, as shown in Figure 3.2. This is very important to avoid unnecessary multiplications.
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Figure 3.2 Example of a 2 channel filter bank, after

applying the noble identity to Figure 3.1

3.2.2 Perfect reconstruction

Figure 3.3 illustrates an example of a 2 channel filter bank. The process of decomposing 𝑥(𝑛)
into the coefficients 𝑑1,𝑘 and 𝑎1,𝑘 is called analysis. The process of recovering 𝑥(𝑛), given the

coefficients 𝑑1,𝑘 and 𝑎1,𝑘 , is called synthesis.

Figure 3.3 Example of a 2 channel filter bank

From Figure 3.3, the Z-transform of 𝑥(𝑛) is given as:

𝑋̂ (𝑧) = 1

2
[𝑋 (𝑧)𝐻1(𝑧) + 𝑋 (−𝑧)𝐻1(−𝑧)] 𝐺1(𝑧) + 1

2
[𝑋 (𝑧)𝐻0(𝑧) + 𝑋 (−𝑧)𝐻0(−𝑧)] 𝐺0(𝑧)

(3.33)

=
1

2
𝑋 (𝑧) [𝐻0(𝑧)𝐺0(𝑧) + 𝐻1(𝑧)𝐺1(𝑧)] + 1

2
𝑋 (−𝑧) [𝐻0(−𝑧)𝐺0(𝑧) + 𝐻1(−𝑧)𝐺1(𝑧)] .

(3.34)
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It is desired that 𝑥(𝑛) = 𝑥(𝑛 − 𝑑). Hence,

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝐻0(𝑧)𝐺0(𝑧) + 𝐻1(𝑧)𝐺1(𝑧) = 2𝑧−𝑑;

𝐻0(−𝑧)𝐺0(𝑧) + 𝐻1(−𝑧)𝐺1(𝑧) = 0.

(3.35)

Where, in the system of equations (3.35), the former is the no distortion condition and the latter

is the no aliasing condition. Therefore,

Hm(𝑧)Gm(𝑧) =
⎡⎢⎢⎢⎢⎣
𝐻0(𝑧) 𝐻1(𝑧)
𝐻0(−𝑧) 𝐻1(−𝑧)

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
𝐺0(𝑧)
𝐺1(−𝑧)

⎤⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎣
2𝑧−𝑑

0

⎤⎥⎥⎥⎥⎦ . (3.36)

The so-called modulation matrix is represented by Hm(𝑧). Its determinant Δ (𝑧) = −Δ (−𝑧). By

calculating the inverse of Hm(𝑧),

⎡⎢⎢⎢⎢⎣
𝐺0(𝑧)
𝐺1(𝑧)

⎤⎥⎥⎥⎥⎦ =
2𝑧−𝑑

Δ (𝑧)

⎡⎢⎢⎢⎢⎣
𝐻1(𝑧)

−𝐻0(−𝑧)

⎤⎥⎥⎥⎥⎦ . (3.37)

From equation equation (3.37), several wavelets can be derived. From Fig. 3.3, as an example,

the forward Haar DWT is obtained by using:

𝐻0(𝑧) = 1 + 𝑧−1, (3.38)

and

𝐻1(𝑧) = 1 − 𝑧−1. (3.39)

The solution for the inverse Haar DWT is obtained by respecting equation (3.37). Therefore,
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Δ (𝑧) = (1 + 𝑧−1) (1 + 𝑧−1) − (1 − 𝑧−1) (1 − 𝑧−1)
= 4𝑧−1.

(3.40)

Thus,

⎡⎢⎢⎢⎢⎣
𝐺0(𝑧)
𝐺1(𝑧)

⎤⎥⎥⎥⎥⎦ =
𝑧−𝑑+1

2

⎡⎢⎢⎢⎢⎣
𝐻1(𝑧)

−𝐻0(−𝑧)

⎤⎥⎥⎥⎥⎦ . (3.41)

If 𝑑 = 1 the solution is causal. Hence,

𝐺0(𝑧) = 1

2
𝐻1(−𝑧), (3.42)

and

𝐺1(𝑧) = −1

2
𝐻0(−𝑧). (3.43)

3.2.3 The analysis tree based FWT filter bank structure

According to Jerônimo da Silva Júnior (2008, p. 31), the DTWS can be implemented using a

tree based filter bank structure called logarithm tree. For a decomposition of 𝐽 levels, the lowest

frequency signal vector (𝑎𝐽,𝑘) consists on the space of lowest temporal resolution. While the

other components, when added, form a space of higher resolution (multiresolution) (Jerônimo da

Silva Júnior, 2008, p. 31).

According to Jerônimo da Silva Júnior (2008, p. 32), the coefficients in the scale 𝑗 , for 𝐽 levels,

can be written as:
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𝑑 𝑗,𝑘 = 𝑑 𝑗 (𝑘) =
∑
𝑛

𝑥(𝑛)ℎ( 𝑗)
1

(2 𝑗 𝑘 − 𝑛) = (↓ 2 𝑗 )
(
𝑥(𝑛) ∗ ℎ

( 𝑗)
1

(𝑛)
)
, (3.44)

for 𝑗 = 1, 2, ..., 𝐽, and

𝑎𝐽,𝑘 = 𝑎𝐽 (𝑘) =
∑
𝑛

𝑥(𝑛)ℎ(𝐽)
0

(2𝐽 𝑘 − 𝑛) = (↓ 2𝐽)
(
𝑥(𝑛) ∗ ℎ(𝐽)

0
(𝑛)
)
. (3.45)

In the Z-domain,

𝐻
( 𝑗)
0

(𝑧) =
𝑗−1∏
𝑖=0

𝐻0(𝑧2𝑖 ) = 𝐻
( 𝑗−1)
0

(𝑧)𝐻0(𝑧2 𝑗−1), (3.46)

and

𝐻
( 𝑗)
1

(𝑧) = 𝐻1(𝑧2 𝑗−1)
𝑗−2∏
𝑖=0

𝐻0(𝑧2𝑖 ) = 𝐻
( 𝑗−1)
0

(𝑧)𝐻1(𝑧2 𝑗−1). (3.47)

An example of a 3 level (𝐽 = 3) analysis filter bank is illustrated by Figure 3.4.

Figure 3.4 Example of a 3 level analysis filter bank
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It is important to notice that each level has a different amount of samples. As an example, if

𝑥(𝑛) has 512 samples, 𝑑1,𝑘 has 256 samples, 𝑑2,𝑘 has 128 samples, 𝑑3,𝑘 has 64 samples and 𝑎3,𝑘

has 64 samples. By applying the noble identity to the block diagram illustrated by Figure 3.4,

the implementation becomes recursive, as shown in Figure 3.5.

Figure 3.5 Example of a 3 level recursive analysis filter bank

The implementation illustrated by Figure 3.5 is known as fast wavelet transform (FWT), and

it is much more efficient then the implementation illustrated by Figure 3.4, since it avoids

unnecessary multiplications. By applying the noble identity to Figure 3.5, the computational

cost is further reduced by a factor of 2. The result of this is illustrated by Figure 3.6.

Figure 3.6 Noble identity applied to Figure 3.5

The computational complexity of the FWT is known to be O(𝑁) operations (CINTRA, 2005,

p. 91). While many fast Fourier transform (FFT) algorithms, like Cooley–Tukey, have a

computational complexity of O(𝑁 log 𝑁) operations.
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As a conclusion, choosing to use the FWT instead of using an FFT algorithm is a win-win!

The FWT provides temporal resolution, reduces the computational cost, is designed to be used

with non-stationary signals, and has no windowing leakage issues like the short-time Fourier

transform (STFT) or Gabor transform.

3.2.4 Example illustrating the Daubechies wavelets

The so-called no aliasing condition, presented by equation (3.35), is satisfied when

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝐺0(𝑧) = 𝐻1(−𝑧);

𝐺1(𝑧) = −𝐻0(−𝑧).
(3.48)

Let us define 𝑃0(𝑧) as

𝑃0(𝑧) = 𝐺0(𝑧)𝐻0(𝑧). (3.49)

The so-called no distortion condition can be rewritten as

𝑃0(𝑧) − 𝑃0(−𝑧) = 2𝑧−𝑑 . (3.50)

Equation (3.50) is known as the halfband filter. Since 𝐺0(𝑧) and 𝐻0(𝑧) are both low pass filters,

𝑃0(𝑧) is also a low pass filter. Therefore, the design of the filter bank structure, presented by

Figure 3.5, simply consists on the following steps:

1. Design 𝑃0(𝑧) as a low pass filter that satisfies equation (3.50).

2. Factorize 𝑃0(𝑧) in order to obtain 𝐺0(𝑧) and 𝐻0(𝑧).

3. Obtain 𝐺1(𝑧) and 𝐻1(𝑧) by using the condition (3.48).
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Say 𝑃0(𝑧) = 𝑜+𝑝𝑧−1+𝑞𝑧−2+𝑟𝑧−3+𝑠𝑧−4. Then, satisfying equation (3.50), 2𝑝𝑧−1+2𝑟𝑧−3 = 2𝑧−𝑑 .

This concludes that there are no constrains on even coefficients, while one of the odd coefficients

should be equal to 1 and the others should be equal to 0. Let us define 𝑃(𝑧) = 𝐺0(𝑧)𝐻0(𝑧)𝑧𝑑 .

Hence, equation (3.50) can be rewritten as

𝑃(𝑧) + 𝑃(−𝑧) = 2. (3.51)

The Daubechies solution states that

𝑃(𝑧) = (1 + 𝑧−1)2𝑚𝑄(𝑧)𝑧𝑙 . (3.52)

The Daubechies 4-tap filter solution is found by setting 𝑚 = 2, and 𝑄(𝑧) = 𝑎 + 𝑏𝑧−1 + 𝑎𝑧−2.

Thus,

𝑃(𝑧) = [𝑎 + (4𝑎 + 𝑏)𝑧−1 + (7𝑎 + 4𝑏)𝑧−2 + (8𝑎 + 6𝑏)𝑧−3 + ... + 𝑎𝑧−6
]
𝑧𝑙 . (3.53)

For 𝑙 = 3, and satisfying the condition of the odd coefficients,

⎧⎪⎪⎪⎨⎪⎪⎪⎩
8𝑎 + 6𝑏 = 1;

4𝑎 + 𝑏 = 0.

(3.54)

Hence, 𝑎 = −1/16, 𝑏 = 1/4 and 𝑄(𝑧) = 1
16
(−1 + 4𝑧−1 − 𝑧−2) = (1 − 𝑐1𝑧

−1) (1 − 𝑐2𝑧
−1). The

roots of 𝑄(𝑧) are: 𝑐1 = 2 +
√

3, and 𝑐2 = 2 −
√

3.

It is known that there are many ways of factoring 𝑃0(𝑧). One choice is 𝐺0(𝑧) = (1 + 𝑧−1)2

and 𝐻0(𝑧) = (1 + 𝑧−1)2 1
16
(−1 + 4𝑧−1 − 𝑧−2). Another is 𝐺0(𝑧) = (1 + 𝑧−1)3 and 𝐻0(𝑧) =

(1 + 𝑧−1) 1
16
(−1 + 4𝑧−1 − 𝑧−2). Both choices are interesting because both 𝐺0(𝑧) and 𝐻0(𝑧) are
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symmetric, meaning they have a linear phase response. If 𝐺0(𝑧) = (1 + 𝑧−1)2(2 −
√

3 − 𝑧−1)
and 𝐻0(𝑧) = (1 + 𝑧−1)2( 1

2−
√

3
− 𝑧−1), the filter bank has no linear phase response, but it has the

property of orthogonality. For deriving the Daubechies 4-tap filter coefficients a solution must

be found, such that, the frequency response of 𝐻0(𝑧) and 𝐻1(𝑧) are exactly mirrored around

𝜋/2. Therefore, the filter bank has the property of orthogonality, and both 𝐻0(𝑧) and 𝐻1(𝑧) are

known to be QMFs. Such filter is designed by respecting equation (3.22).

As mentioned before, by using the nobel identity, the implementation from Figure 3.5 can be

further improved by placing decimators before filters in every recursive filtering block. Same

as shown in Figure 3.6, and in the work of Freitas, Inocêncio, Lins, Alves & Benedetti (2019,

p. 18). If 𝐻0(𝑧 1
2 ) = 𝑜 + 𝑝𝑧−1 + 𝑞𝑧−2 + 𝑟𝑧−3 and 𝐻1(𝑧 1

2 ) = 𝑟 − 𝑞𝑧−1 + 𝑝𝑧−2 − 𝑜𝑧−3, the order 4

Daubechies (Db4) filter coeficients are 𝑜 = 1−
√

3

4
√

2
, 𝑝 = 3−

√
3

4
√

2
, 𝑞 = 3+

√
3

4
√

2
and 𝑟 = 1+

√
3

4
√

2
(Freitas

et al., 2019, p. 18). Hence, the Db4 analysis filters use 4 taps, instead of 8. Similarly by using

the implementation shown in Figure 3.6, the number of taps for an efficient implementation of

the Db6 analysis filters can be 6, instead of 12.

3.2.5 Frequency response of the FWT filter banks

As presented in equations (3.44) and (3.45), for notation simplicity purposes, 𝑑 𝑗,𝑘 = 𝑑 𝑗 (𝑘) and

𝑎 𝑗,𝑘 = 𝑎 𝑗 (𝑘). According to He (2016, p. 208), the frequency band ranges contained in the signal

components 𝑑 𝑗 (𝑘), and 𝑎 𝑗 (𝑘) are described as:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑑 𝑗 (𝑘) : [2−( 𝑗+1) 𝑓𝑠, 2− 𝑗 𝑓𝑠], for 1 ≤ 𝑗 ≤ 𝐽;

𝑎 𝑗 (𝑘) : [0, 2−( 𝑗+1) 𝑓𝑠], for 1 ≤ 𝑗 ≤ 𝐽.

(3.55)

In the application presented by this thesis, 𝑓𝑠 =256 Hz, and 𝐽 = 9. Therefore, 𝑎9(𝑘) has its

highest frequency limited to 0.25 Hz, and lowest frequency limited to 0 Hz. Here both Db4 and

Db6 wavelet transforms are chosen to represent ECG signals, because both wavelets have shown

good results regarding the application of ECG beat classification in previous works (Böck, 2015,
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p. 36). For instance, Böck (2015, p. 36) mentions the works of Can Ye, Kumar & Coimbra

(2012) and Saha & Ghorai (2015) as interesting references of ECG beat classifier systems using,

respectively, the Db4 and Db6 wavelet transforms. In many of the experiments performed by

Chapter 5, other wavelets such as Db2, Db5 and Db8 were tested, other then Db4 and Db6, but

none of them have demonstrated an outstanding performance, in comparison to the use of Db4

and Db6. Moreover, Wang (2018, p. 16) justifies the use of Db6 wavelets to generate features,

that describe the quality of ECG signals, due to the fact that previous works have demonstrated

that Db6 wavelets have a similar structure compared to the QRS complex of an ECG waveform

(Rai, Trivedi & Shukla, 2013; Saritha, Sukanya & Murthy, 2008). Hence, a strong reason why

this thesis focuses on the choice of the Db6 wavelet transform, in the application presented by

Chapter 5. For illustration purposes, the frequency response of the Db4 and Db6 FWT filter

banks, for a 4 level decomposition, are both shown in figures 3.7a and 3.7b.

(a) Frequency response of a 4 level

decomposition filter bank that uses the Db4

mother wavelet

(b) Frequency response of a 4 level

decomposition filter bank that uses the Db6

mother wavelet

Figure 3.7 FWT filter banks frequency response

Notice that despite both filter banks having the same cut-off frequency, the Db6 FWT filter bank

has less residual lobes compared to the Db4 FWT filter bank. Thus, the space spanned by Db4

wavelet should be different compared to the space spanned by the Db6 wavelet. This will be

clarified in Section 3.3.1, where examples of the Db4 and Db6 scalograms are illustrated.
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3.3 Wavelet scalograms

According to the work of Ariño et al. (2004, p. 37), a wavelet scalogram is the DWT analogue

of the periodogram from the spectral analysis of time series. The wavelet scalogram (Ariño

et al., 2004, p. 41), for a signal 𝑠(𝑛) of length 𝑀, decomposed by orthogonal wavelets, as a

vector formed by the 𝐸 𝑗 elements, can be define as

𝐸 𝑗 =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∑𝑀/2 𝑗−1

𝑘=0
|𝑑 𝑗 (𝑘) |2, for 1 ≤ 𝑗 ≤ 𝐽;∑𝑀/2𝐽−1

𝑘=0
|𝑎𝐽 (𝑘) |2, for 𝑗 = 𝐽 + 1;

0, otherwise.

(3.56)

In the work of Ariño et al. (2004, p. 40), 𝑀 = 2𝐽 and 𝐽 is the maximum level of decomposition.

It is important to adjust 𝑀 such that is divisible by 2 𝑗 , for 𝑗 = 1, 2, ..., 𝐽. According to Rosso,

Blanco, Yordanova, Kolev, Figliola, Schürmann & Başar (2001, p. 67), the relative wavelet

energy is defined as

𝑝 𝑗 =
𝐸 𝑗

𝐸𝑡𝑜𝑡
. (3.57)

Where

𝐸𝑡𝑜𝑡 =
𝑀−1∑
𝑛=0

|𝑠(𝑛) |2. (3.58)

Using the Parseval’s theorem, and the fact the wavelets are orthogonal, according to Rosso et al.

(2001, p. 67):

𝐸𝑡𝑜𝑡 =
𝐽+1∑
𝑗=1

𝐸 𝑗 . (3.59)
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Hence,

𝐽+1∑
𝑗=1

𝑝 𝑗 = 1. (3.60)

Therefore, the normalized scalogram, or wavelet probability mass function (wPMF) is defined

in this thesis as:

𝑓 ( 𝑗) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑝 𝑗 , for 1 ≤ 𝑗 ≤ 𝐽 + 1;

0, otherwise.

(3.61)

Notice that 𝑗 = 1 represents the highest frequency, and 𝑗 = 10 represents the lowest frequency.

In a vector form, the wPMF from equation (3.61) can be represented as:

f =
[
𝑓 (1), 𝑓 (2), ..., 𝑓 (𝐽 + 1)

]𝑇
. (3.62)

As a conclusion of this section, it is possible to define two approaches for representing a signal:

a frequency analysis and a time-frequency analysis. Both approaches are explained in the

following sections.

3.3.1 Frequency analysis

The frequency analysis simply consists on representing a zero mean signal 𝑠(𝑛) by its wPMF.

In such case 𝑀 is set to a number that is divisible by 2 and 𝑠(𝑛) is decomposed till it reaches

the level 𝐽, where 𝑀 is no longer divisible by 2𝐽+1. In the case where 𝑀 = 2𝐽 , the last level of

decomposition should be simply 𝐽.

In the application presented by this thesis, 𝑀 = 2560 (10 seconds of data, for a sampling

frequency 𝑓𝑠 = 256 Hz). Hence, 𝐽 = 9, because 𝑀 is not divisible by 210. Examples of how the
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wPMF represent acceptable and unacceptable signals can be visualized in figures 3.8, 3.10, and

3.12, using the Db4 FWT, and figures 3.9, 3.11, and 3.13, using the Db6 FWT.

Figure 3.8 Example of an acceptable ECG signal,

represented by the wPMF using the Db4 mother wavelet

Figure 3.9 Example of an acceptable ECG signal,

represented by the wPMF using the Db6 mother wavelet
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Figure 3.10 Example of an unacceptable ECG signal with BW

interference, represented by the wPMF using the Db4 mother wavelet

Figure 3.11 Example of an unacceptable ECG signal with BW

interference, represented by the wPMF using the Db6 mother wavelet

Notice from figures 3.8 and 3.9 that, for the acceptable example, most of the energy is located at

the high frequency range (around levels 3, 4, and 5), where the QRS complex is located.
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Figure 3.12 Example of an unacceptable ECG signal with high frequency

interference, represented by the wPMF using the Db4 mother wavelet

Sendo

Figure 3.13 Example of an unacceptable ECG signal with high frequency

interference, represented by the wPMF using the Db6 mother wavelet

In the case of low frequency interference (figures 3.10 and 3.11), most of the energy is

concentrated at the lowest frequencies (𝑑8(𝑘), 𝑑9(𝑘) or 𝑎9(𝑘) coefficients). In other words, the

largest probability events are either 𝑝8, 𝑝9 or 𝑝10.
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In the case of high frequency interference (figures 3.12 and 3.13), the energy is more uniformly

distributed in every frequency. Hence, given a signal that has an approximately uniform wPMF,

its entropy should be considered high. Such concept of entropy will be clarified in Chapter 5.

It is also important to mention that the basSQI can be calculated using the wPMF. The basSQI

characterizes BW interference as a signal of frequency range lower then 1 Hz. The wPMF, in

this thesis, performs a 9 level decomposition, using 𝑓𝑠 = 256 Hz, and 10 seconds of data. It can

detect BW interference in the range of [0 Hz, 0.25 Hz], [0.25 Hz, 0.5 Hz], [0.5 Hz, 1 Hz]. Such

ranges are represented by the events 𝑝10, 𝑝9, and 𝑝8. Therefore, 𝑏𝑎𝑠𝑆𝑄𝐼 ≈ 𝑝8+ 𝑝9+ 𝑝10. Notice

that the wPMF, compared to the basSQI, is capable of providing more frequency resolution,

with the computational cost of O(𝑁).

Finally, another advantage of the wPMF, is that it can be characterized by statistical moments

(SMs), analogous to the analysis of Behar et al. (2013, p. 3). This concludes that the wPMF is a

powerful tool that can be potentially used to discriminate acceptable and unacceptable signals.

3.3.2 Time-frequency analysis

It is important to know that the higher the highest level of decomposition is, the better will be

the resolution in frequency of the wavelet analysis. The time-frequency analysis consists on

dividing 𝑠(𝑛) into non-overlapping blocks, or signal windows, of size 𝑁 = 2𝐽 . Where 𝐽 is the

largest integer, such that, 𝑀 is divisible by 𝑁 . Therefore, providing the highest resolution in

frequency. The 𝑖𝑡ℎ block of 𝑠(𝑛), represented by 𝑠(𝑖) (𝑛), can be written as:

𝑠(𝑖) (𝑛) =
𝑀𝑖/𝐵−1∑

𝑚=𝑀 (𝑖−1)/𝐵
𝑠(𝑚)𝛿(𝑛 − 𝑚). (3.63)

Where 𝛿(𝑛) is a unit sample function, and 𝐵 is the number of blocks. Subsequently, a grayscale

image is formed with the wPMFs of each block. In such case, it is important for 𝑀 to be divisible
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by 2. The 𝑖𝑡ℎ block of 𝑠(𝑛), (𝑠(𝑖) (𝑛)), has a wPMF ( 𝑓 (𝑖) ( 𝑗)), that is arranged to a column vector,

described as

f (𝑖) =
[
𝑓 (𝑖) (1), 𝑓 (𝑖) (2), ..., 𝑓 (𝑖) (𝐽 + 1)

]𝑇
. (3.64)

Where 𝑗 = 1, 2, ..., 𝐽 + 1. Finally, the grayscale image matrix has the following structure:

Im =
[
f (1) , f (2) , ..., f (𝐵)

]
. (3.65)

Hence,

𝐸 (𝑖)
𝑗 =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∑𝑀𝑖/(𝐵2 𝑗 )−1

𝑘=𝑀 (𝑖−1)/𝐵2 𝑗 |𝑑 𝑗 (𝑘) |2, for 1 ≤ 𝑗 ≤ 𝐽;∑𝑀𝑖/(𝐵2𝐽 )−1

𝑘=𝑀 (𝑖−1)/𝐵2𝐽 |𝑎𝐽 (𝑘) |2, for 𝑗 = 𝐽 + 1;

0, otherwise.

(3.66)

Furthermore,

𝐸 (𝑖)
𝑡𝑜𝑡 =

𝑀𝑖/𝐵−1∑
𝑛=𝑀 (𝑖−1)/𝐵

|𝑠(𝑛) |2 =
𝐽+1∑
𝑗=1

𝐸 (𝑖)
𝑗 , (3.67)

𝑝 (𝑖)
𝑗 =

𝐸 (𝑖)
𝑗

𝐸 (𝑖)
𝑡𝑜𝑡

, (3.68)

and,

𝑓 (𝑖) ( 𝑗) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑝 (𝑖)
𝑗 , for 1 ≤ 𝑗 ≤ 𝐽 + 1;

0, otherwise.

(3.69)
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A block diagram summarizing how the scalogram image is obtained by using the time-frequency

analysis procedure, is illustrated by Figure 3.14.

Figure 3.14 Block diagram illustrating how the

scalogram image is obtained from a signal 𝑠(𝑛)

As an example, in the application presented by this thesis, 𝑀 = 2560 (10 s of data, for a sampling

frequency 𝑓𝑠 =256 Hz), so 𝐵 = 5, because 𝐽 = 9 provides the highest resolution in frequency,

and 𝑀 is not divisible by 210. In this case, each block 𝑠(𝑖) (𝑛) has 512 samples. For illustration

purposes, figures 3.15, 3.16 and 3.17 show examples of 10 × 5 images, formed by using a Db6

time-frequency analysis, along with its respective signals.

The advantage of such analysis is the time dependency. Notice the acceptable signal example

has the majority of energy concentrated in the high frequencies, the signal interfered by BW has

its energy concentrated in the low frequencies, and the high frequency interfered signal has no

pattern of energy concentration.

3.4 Limitations

It is clear that, for the frequency analysis, the wPMF had no time localization. Hence, the

frequency analysis is limited to the fact that it cannot detect where exactly the noise is present,

for a zero mean signal 𝑠(𝑛).



53

Figure 3.15 Example of an acceptable ECG signal, represented by the

time-frequency analysis using the Db6 mother wavelet

Figure 3.16 Example of an unacceptable ECG signal with BW interference,

represented by the time-frequency analysis using the Db6 mother wavelet

Furthermore, notice that Figure 3.16 actually shows a poor localization of noise. That is evident

when inspecting the scalogram during the intervals of 0-4 s, where the peaks of energy should

ideally be located around levels 3, 4 and 5, similar to Figure 3.15. In Figure 3.16, it is still



54

Figure 3.17 Example of an unacceptable ECG signal with high frequency interference,

represented by the time-frequency analysis using the Db6 mother wavelet

possible to see some peaks in level 4, during the intervals of 0-2 s and 2-4 s. However, these

peaks are being masked, or are biased, by the influence of the DC component that is present in

the windows of intervals 0-2 s and 2-4 s.

According to Figure 3.14, the entire signal 𝑠(𝑛) is demeaned. Still, that does not mean that each

window of 2 s duration is demeaned. Due to that, any little DC displacement in the window can

cause such masking, or biasing, issues. By inspecting figures 3.15, 3.16 and 3.17, it is clear

that the noise presence is evident, but time-localization is poor. Hence, the time-localization

information is not very much useful when these DC components are present, since they mask, or

bias, the time dependency representation.

To resolve this issue, each window is demeaned separately, and the wPDF of each windows is

estimated, using the same procedure described in Section 3.3.1. Subsequently, each wPDF is

merged to forme an image, same as described in equation (3.65). The result of demeaning each

individual signal window, prior to the estimation of each wPDF, is illustrated in figures 3.18,

3.19, 3.20.
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Figure 3.18 Example of an acceptable ECG signal, represented by the

time-frequency analysis, using the Db6 mother wavelet
and demeaning each analyzed signal window individually

Figure 3.19 Example of an unacceptable ECG signal with BW interference, represented

by the time-frequency analysis, using the Db6 mother wavelet and demeaning each analyzed

signal window individually

Notice that, in Figure 3.19, the clean segment located in 0-4 s is now more alike to an expected

behaviour from an acceptable ECG segment, where maximum energy peaks are located around
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Figure 3.20 Example of an unacceptable ECG signal with high frequency interference,

represented by the time-frequency analysis, using the Db6 mother wavelet and demeaning

each analyzed signal window individually

levels 3, 4 and 5. Furthermore, the energy of BW interference, observed at segments located in

4-8 s, matches the expected frequency intervals of such interference (around 0.1 - 1 Hz, or levels

8, 9 and 10).

This whole issue related to residual DC components masking, or biasing, the time localization

representation was only noticed in the very end of the research. Since the results were already

very satisfying using the frequency analysis representation, the classifiers presented in Chapter 5

were not tested using this other approach, where residual DC components are removed from

each signal window. Hence, re-training the classifiers using the time-frequency analysis without

residual DC components in each windowed signal is left for future works.

3.5 Conclusion

This chapter presented the main necessary tools that are used to compactly represent ECG

signals. The presented representations are shown to be efective to determine noise presence,

but not always effective in determining noise location, due to the presence of residual DC
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components. Still, Section 3.4 shows how to overcome such biasing issue. Chapter 5 presents

the actual SQA application, using both the frequency and the time-frequency analysis wavelet

scalograms as features to train different ANN classification architectures.





CHAPTER 4

DATA SET PREPARATION

The current and following chapter present the design methodology and implementation of an

SQA system, developed to be applied as a channel selection or lead selection algorithm for the

SIG.ECG system. In particular, the current chapter aims to explain the preparation methodology

of the data-sets used to train and test the SQA system. The first data-set is prepared by using

several different databases from PhysioNet (Goldberger et al., 2000), and is meant to be used for

training and validating a classifier that detects if a single-lead ECG signal is acceptable or not.

For simplicity, the first data-set is refereed as PhysioNet data-set. The second data-set, provided

by SIG.NUM, is used as a blind test that validates the performance of the SQA classifier applied

to the SIG.ECG system. The second data-set is refereed as SIG.test data-set

The PhysioNet data-set contains a total of 6519 examples of 10 s labelled as acceptable and

6526 examples of 10 s labelled as unacceptable, based on several criteria and annotations from

specialists. All examples are resampled to 256 Hz, since the accepted range of the diagnostic

ECG is often quoted to be from 0.05 Hz (for ST analysis) to 40 Hz or 100 Hz (Clifford et al.,

2006, p. 57). If the sampling frequency ( 𝑓𝑠) is 256 Hz, the maximum frequency that that can be

observed is 128 Hz, according to the Nyquist–Shannon sampling theorem. Hence, a butterworth

low-pass filter, of order 10, is chosen to filter the frequencies higher than 100 Hz. Moreover, it is

important to mention that the choice of a base 2 sampling frequency impacts the performance of

fast DSP algorithms.

The following sections focus on describing the databases used to generate the PhysioNet data-set,

the preprocessing of signals and the labelling protocol, inspired by the work of Clifford et al.

(2012).
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4.1 Preprocessing of the PhysioNet data-set

Prior to the construction of the PhysioNet data-set, it is necessary to preprocess all signals (ECG

and noise) by simply removing the mean, or direct current (DC) component of all 10 s segments.

This is very important, especially when generating unacceptable signals with the noise stress

test database, since most of the signal power is concentrated at the DC component.

4.2 PhysioNet data-set

The following list presents the databases that were used to build the PhysioNet data-set. The main

important details to be understood from each database are explained in dedicated subsections.

- MIT-BIH Arrhythmia database.

- MIT-BIH Noise Stress Test database.

- PhysioNet / CinC Challenge 2011 database.

- PhysioNet / CinC Challenge 2017 database.

4.2.1 MIT-BIH Arrhythmia database

This database (Moody & Mark, 2001) includes 48 complete two leads ECG records with

reference annotations from specialists. The records have a diagnostic bandwidth of 0.1−100 Hz

with 12-bit resolution and 𝑓𝑠 = 360 Hz. Mainly, the first channel is the modified lead II (MII)

and the second channel is the modified precordial lead V1 (MV1), occasionally V2 or V5, and in

one instance V4. From this database, patients 100 to 106 are analyzed. The possible annotated

symbols for the analyzed patients are summarized in Table 4.1.

The analysis of each patient consisted on segmenting the data in pieces of 10 s and labelling each

segmented example. The labelling protocol, or list of metrics is described as follows. Where,

𝑆𝑄𝐴 = 0 stands for “unacceptable”, 𝑆𝑄𝐴 = 1 stands for “acceptable”, and 𝑆𝑄𝐴 = 2 stands
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Table 4.1 Possible annotated symbols of analyzed

segments from patients 100 to 106

Symbol Annotation description
“+” Rhythm change

“𝑁” Normal beat

“𝐴” Atrial premature beat

“𝑉” Premature ventricular contraction

“∼” Change in signal quality

“|” Isolated QRS-like artifact

“𝑄” Unclassifiable beat

“/” Paced beat

“ 𝑓 ” Fusion of paced and normal beat

for “unknown”. It is important to keep in mind that only examples with 𝑆𝑄𝐴 < 2 are used for

training, testing and validating.

1. If all QRS complexes of both leads are clear, all beats are classified by the annotators and

there is no significant existence of noise, despite the presence of “∼”, 𝑆𝑄𝐴 = 1.

2. If the annotation “𝑄” is present, meaning at least one of the beats is unclassifiable, 𝑆𝑄𝐴 = 0.

3. If the indication of quality change (“∼”) is present, and any of the leads have at least one

QRS complex that is not clear, even if all beats are classifiable, 𝑆𝑄𝐴 = 2.

4. If both leads have visible QRS complexes, but one of them contain some significant amount

of noise (e.g., BW), 𝑆𝑄𝐴 = 2.

For illustration purposes, examples of labelled segments, using metrics 3 and 4, are shown in

figures 4.1, and 4.2.

Notice that both figures 4.1, and 4.2 contain 2 ECG signals measured in parallel. Therefore, even

if one signal is doubtfully “acceptable” (e.g. lead MII from Figure 4.1), for sake of simplicity,

both ECG segments are labelled as “unknown” (𝑆𝑄𝐴 = 2).

It is important to mention the specialists annotated the data based on the simultaneous visualization

of both leads. Hence, the criteria that says if both leads are acceptable is the presence of clear
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Figure 4.1 Example of signals labelled as “unknown” quality, using metric 3

Figure 4.2 Example of signals labelled as “unknown” quality, using metric 4

QRS complexes and no significant noise present in both leads. If one lead seems to be corrupted,

and all annotations are present, the signal is labelled as “uknown” quality. The total number of

signals labelled as “acceptable” are 1880, and 52 are labelled as “unacceptable”.
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4.2.2 PhysioNet / CinC Challenge 2011 database

The training data-set of this challenge consists on 998 sets of 12 lead ECG signals (a total of

11976 single-lead ECG signals examples). Each set is classified, by specialists, as “acceptable”

or “unacceptable”. Meaning that the SQA annotation applies only for the set of 12 leads, and not

to its individual 12 signals contained in the set. Therefore, another set of metrics was designed

in order to verify if some single lead is considered to be “acceptable” or not. Such metrics are

listed bellow.

1. If it is possible to clearly visualize all QRS complexes of the example and the signal does

not contain any significant amount of noise, 𝑆𝑄𝐴 = 1.

2. If it is not possible to clearly visualize all QRS complexes of the example, but the signal

does not contain any significant amount of noise, 𝑆𝑄𝐴 = 2.

3. If it is not possible to clearly visualize all QRS complexes of the example and the signal

contains a significant amount of noise, 𝑆𝑄𝐴 = 0.

4.2.3 MIT-BIH Noise Stress Test database

A similar strategy, to the one adopted in the work of Clifford et al. (2012), was implemented

using this database (Moody, Muldrow & Mark, 1984). The strategy simply consisted on creating

a set of “unacceptable” examples, using “acceptable” examples and pure noise data from the

MIT-BIH Noise stress test database (NSTD).

The set of clean signals (“acceptable”) come from the PhysioNet / CinC Challenge 2011 database.

Furthermore, an artificial signal, generated by using a code from the work of Mcsharry & Cifford

(2004), is also used to create “unacceptable” examples. Most of the default parameters, suggested

by McSharry, Clifford, Tarassenko & Smith (2003, p. 291), are considered to generate the

synthetic lead (SYN). Table 4.2 summarizes the non-default parameters used for generating SYN.

The parameter “sfecg” is the ECG sampling frequency, “hrmean” is the mean heart rate, “hrstd”

is the heart rate standard deviation and “lfhfratio” is the low frequency / high frequency ratio.
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Table 4.2 Parameters used for the

generation of a clean signal

Signal name sfecg hrmean hrstd lfhfratio
Signal 1 250 60 1 0.5

Based on the values of Table 4.2, the synthetic lead is illustrated in Figure 4.3.

Figure 4.3 Illustration of Signal 1 (lead SYN)

For constructing the “unacceptable” signals, noise is added to “Signal 1” according to:

𝑎 =

√
exp

(
− 𝑆 ln 10

10

) (
x𝑇x
v𝑇v

)
, (4.1)

and

y = x + 𝑎v. (4.2)

Where, x represents the clean signal vector, v represents the pure noise. Both signals are

demeaned (see Section 4.1), 𝑎 is the noise gain and 𝑆 is the SNR parameter that dictates the

magnitude of 𝑎. In the work of Clifford et al. (2012), 𝑆 = −6. The same value is used to generate

“unacceptable” examples. The application presented by this thesis only used the em and ma

records from the NSTD. It is important to mention that, in the context of the NSTD, record em

contains electrode motion artifact (MA) with a significant amount of baseline wander (BW) and

muscle noise (EMG), while record ma contains mainly muscle noise (EMG).
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Finally, in summary, 720 “unacceptable” examples are generated using lead SYN and 1600

“unacceptable” signals are generated by randomly selecting and merging “acceptable” signals

from the PhysioNet / CinC Challenge 2011 database and pure noise signals (em and ma records)

from the NSTD, according to equation (4.1) and (4.2). Hence, a total of 2320 “unacceptable”

examples.

4.2.4 PhysioNet/CinC Challenge 2017 database

The 2017 PhysioNet / CinC Challenge aimed to encourage the development of algorithms to

classify, from a single short lead I ECG recording (between 30 s and 60 s in length), whether it

shows normal sinus rhythm, atrial fibrillation, an alternative rhythm, or if it is too noisy to be

classified. It is important that the recording is measured on the surface of the thumb fingers

(Left arm (+), Rigth arm (-)), collected using the AliveCor device.

The training data-set of the challenge contains a set of 279 recordings labelled as noisy by

specialists. It is important to mention that the “noisy” label reefers to the whole recording (30 s

to 60 s). If the recording is divided into segments of 10 s, each segment should not necessarily

be labelled as “noisy”.

The protocol for labelling a signal as “unacceptable” simply consisted on visualizing if there

was any unclear QRS complex (𝑆𝑄𝐴 = 0), otherwise, 𝑆𝑄𝐴 = 2. Most of the data is completely

noisy, and not hard to label. A total of 616 10 s examples are labelled as “unacceptable”.

4.3 Summary of the PhysioNet data-set

In summary, the PhysioNet data-set, created by merging several different databases, contains

information from a total of 856 patients. 6519 examples are labelled as “acceptable” and 6526

are labelled as “unacceptable”. Hence, a total of 13045 balanced examples.

Figures 4.4, and 4.5, illustrate the histogram of leads used to create the PhysioNet data-set.

Figure 4.4 shows that the “acceptable” examples from the data-set are not only very diverse, but
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also approximately balanced for leads I to V6. For “unacceptable” examples, since each noisy

data is very unique, examples do not need to be balanced in terms of leads (see Figure 4.5).

Figure 4.4 PhysioNet data-set histogram illustration of leads labelled acceptable

4.4 Preprocessing of the SIG.test data-set

Prior to the labelling of the SIG.test data-set, it is necessary to preprossess the data, in order to

avoid issues with linearly separable interference. If the majority of the interference is contained

in a deterministic spectrum range, and it is linearly separable from the ECG signal, filtering is

not an issue. Therefore, the resulting filtered signal is expected to have high quality.

Types of interference that are generally easy to remove are: PLI and, many times, BW. This is

achieved by removing the moving average of the signal (BW filtering) and using notch filters

(PLI filtering).
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Figure 4.5 PhysioNet data-set histogram illustration of leads labelled unacceptable

4.4.1 BW removal

The correct way of removing BW is: knowing the specifications of the AFE, and then correctly

removing the deterministic spectrum of the interference by using a high-pass filter. Usually this

is implemented by using a moving average filter. The cutoff frequency of the moving average

filter is dictated by its length.

The cutoff frequency of the SIG.ECG AFE is around 200−250 mHz. If no interference is present,

the clean cECG signal should be contained in a range of 250 mHz to 100 Hz. Hence, a well

designed moving average filter should remove frequencies below 250 mHz. The approximation

of the cutoff frequency 𝑓𝑐, for a long moving average filter of size 𝑁 , is given as:

𝑓𝑐 ≈ 0.3362 𝑓𝑠
𝑁

. (4.3)
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The proof of (4.3) is demonstrated in Appendix I. For 𝑁 = 800, the cutoff frequency is

approximately 420 mHz. This is reasonable considering the nature of the SIG.ECG AFE (cutoff

frequency of approximately 250 mHz). If 𝑥(𝑛) is a raw signal ecg signal, and 𝑦(𝑛) is the filtered

signal, the BW is removed by converting the low-pass moving average filter to a high-pass filter.

Hence,

𝑦(𝑛) = (𝛿(𝑛 − 𝑑) − ℎ(𝑛)) ∗ 𝑥(𝑛). (4.4)

Where, “∗” represents the convolution operation and 𝛿(𝑛 − 𝑑) is a unit sample function delayed

by 𝑑 samples (the number of samples delayed by the moving average filter).

4.4.2 PLI removal

The PLI can be easily removed by using a comb filter, or cascaded notch filters with the notch

frequencies centered in 60 and 120 Hz or 50 and 100 Hz, depending on the local power line.

Generally comb filters are more efficient, but require very specific sampling frequency. Cascaded

notch filters, with quality factor of 35, were chosen.

4.5 The SIG.test data-set

Given the preprocessing procedures, the SIG.test data-set is labelled. The labelling procedure

consisted on checking the visibility of all QRS complexes. If all QRS complexes are clear,

𝑆𝑄𝐴 = 1. If any sort of interference is clearly detected, 𝑆𝑄𝐴 = 0. If there is no clear interference,

and QRS complexes are also not clear, then 𝑆𝑄𝐴 = 2. 𝑆𝑄𝐴 = 2 signals are discarded.

The SIG.test data-set, after labelling, contains information from a total of 99 patients. Details

about the diagnosis of these patients can be found in Appendix III. 538 examples were labelled

as “acceptable” and 13 were labelled as “unacceptable”. Figure 4.6 shows a histogram of the

labelled SIG.test data-set, according to each lead type, for “acceptable” signals. Similarly, Figure

4.7 illustrates a similar plot, for “unacceptable” signals.
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Figure 4.6 SIG.test data-set histogram illustration of leads labelled acceptable

Figure 4.7 SIG.test data-set histogram illustration of leads labelled unacceptable, prior to

the generation of additional unacceptable signals
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4.5.1 Generation of unacceptable signals

Figure 4.6 shows that the “acceptable” examples from the data-set are very diverse and

approximately balanced for all leads. On the other hand, it is not the same case for “unacceptable”

examples (see Figure 4.5). Hence, 551 “unacceptable” examples are generated by randomly

selecting and merging signals from the labelled SIG.test data-set and pure noise signals (em and

ma records) from the NSTD, according to equation (4.1) and (4.2).

4.5.2 Summary of the SIG.test data-set

In summary, the final number of examples contained in the SIG.test data-set is 1102. The data-set

contains information from a total of 99 patients. 538 examples are labelled as “acceptable”, and

564 examples are labelled as “unacceptable”.

4.6 Conclusion

This chapter presented and described the formulation of each data-set used for designing a

machine learning based SQA classifier system. The main takeaway is that the data preparation

presented by this current chapter seems to be reliable for training and testing the SQA system.



CHAPTER 5

A MACHINE LEARNING BASED SQA CLASSIFIER SYSTEM

This chapter aims to present the results and the methodology behind the design of the single-lead

acceptability detector or automated SQA classifier system. The used approach consisted on

training an ANN classifier that receives a feature vector as an input. The following sections consist

on describing feature extraction, feature selection (FS), the separability analysis, present the

ANN topologies that were used to design the classifier, the results that evaluate the performance

of the automated SQA classifier system, and a computational complexity analysis.

5.1 Experimental procedures framework

The general experimental procedure framework, for the frequency analysis methodology,

consisted on the following:

1. Feature extraction: Features are extracted by using a frequency analysis methodology.

2. Feature selection: The best features are selected by a wrapper methodology, based on an

SVM classifier.

3. Separability analysis: The separability of the training and validating data-set is analyzed

by using principal component analysis (PCA).

4. Classifier training and testing experimental procedure: The classifiers are trained and

tested in order to be analyzed.

The feature extraction, features selection and separability analysis procedures are illustrated

in the flowchart presented by Figure 5.1. Each procedure of such figure is clarified through

sections 5.3 to 5.5.

Figure 5.2 illustrates the classifier training and testing framework. Each procedure of such figure

is clarified in Section 5.6.
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Figure 5.1 Flowchart illustrating the feature extraction, feature selection and separability

analysis procedures for the frequency analysis methodology

Figure 5.2 Flowchart illustrating the classifier training and testing experimental procedure

for both the frequency analysis and the time-frequency analysis methodologies

For the time-frequency analysis, no feature selection is necessary. Furthermore, no separability

analysis is performed. Hence, Figure 5.1 is only valid for the frequency analysis methodology.
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It is important to mention that the framework, illustrated in Figure 5.2, is also used for classifiers

with features acquired using the time-frequency analysis methodology.

5.2 System framework

After both the classifier and important features are defined, the system framework is very simple.

It simply consists on the following:

1. Necessary feature extraction: Where all necessary features are extracted in accordance to

the classifier architecture.

2. Classification: The classifier simply outputs its result.

Figure 5.3 illustrates the system framework for both the frequency analysis and the time-frequency

analysis methodologies.

Figure 5.3 Flowchart illustrating the system framework for both the frequency analysis
and the time-frequency analysis methodologies

In specific, for the frequency analysis, the necessary features are defined by the results presented

by Section 5.7, where features are further pruned, in order to simplify the classifier system.

The simplification of the system aims to generalize its performance and avoid overfitting or
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underfitting issues due to the curse of dimensionality (this issue is further explained in Section

5.4).

5.3 Feature extraction

This current section aims to clarify the feature extraction procedure. If necessary, revisit Chapter

3 for clarification of definitions.

5.3.1 Frequency analysis feature representation

Given the definitions described by Section 3.3.1, a signal 𝑠(𝑛) can be represented by a wPMF,

using the frequency analysis.

5.3.1.1 Statistical Moments

The discrete statistical moments (SMs) are here defined as:

𝜇𝑖 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
E{0.1 𝑗} = ∑𝐽+1

𝑗=1 0.1 𝑗 𝑓 ( 𝑗) = ∑𝐽+1
𝑗=1 0.1 𝑗 𝑝 𝑗 , for 𝑖 = 1;

E

{
(0.1 𝑗 − 𝜇1)𝑖

}
=
∑𝐽+1

𝑗=1(0.1 𝑗 − 𝜇1)𝑖 𝑓 ( 𝑗) =
∑𝐽+1

𝑗=1(0.1 𝑗 − 𝜇1)𝑖 𝑝 𝑗 , for 𝑖 > 1.

(5.1)

Where, E{·} stands for the expected value operator and 𝑗 = 1, 2, ..., 𝐽 + 1. The factor 0.1 is

multiplied to the discrete random variable 𝑗 in order to reduce the magnitude of the calculated

SM values. Hence, the order of magnitude of each SM value, is similar to the order of magnitude

of each probability value 𝑝 𝑗 . In the vector form, the SMs can be written as:

𝝁 =
[
𝜇1, 𝜇2, 𝜇3, 𝜇4

]𝑇
. (5.2)



75

5.3.1.2 Information distribution

The information distribution is a non-linear transform applied to the probability values that

magnifies low probability values and attenuates high probability values. Its interpretation assumes

that information is described by low probability events (surprise events). The information of an

event 𝑗 (𝐼 𝑗 ) is here defined as:

𝐼 𝑗 = − log10( 𝑓 ( 𝑗)) = − log10(𝑝 𝑗 ). (5.3)

The log10 was used, instead of log2, in order to bound the maximum entropy to 1. In the vector

form, the information distribution can be written as:

I𝑛 𝑓 =
[
𝐼1, 𝐼2, ..., 𝐼10

]𝑇
. (5.4)

5.3.1.3 Entropy

The entropy (𝑆𝑒𝑛𝑡) consists on the expected value of the information distribution. Hence, it is

calculated as:

𝑆𝑒𝑛𝑡 = E{𝐼 𝑗 } =
𝐽+1∑
𝑗=1

𝑓 ( 𝑗)𝐼 𝑗 =
𝐽+1∑
𝑗=1

𝑝 𝑗 𝐼 𝑗 . (5.5)

Its interpretation simply relates to the average information contained at some probability mass

function (PMF).
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5.3.1.4 Feature vector

Given the definitions about wPMFs, information distribution and entropy, a signal 𝑠(𝑛) can be

represented by the feature vector x𝑖𝑛, 𝑓 . The elements of x𝑖𝑛, 𝑓 are known as features. x𝑖𝑛, 𝑓 is

given as:

x𝑖𝑛, 𝑓 =
[
𝑓 (1), · · · , 𝑓 (𝐽 + 1), 𝜇1, · · · , 𝜇4, 𝐼1, · · · , 𝐼10, 𝑆𝑒𝑛𝑡

]𝑇
. (5.6)

Notice the length of x𝑖𝑛, 𝑓 is 25. The framework of the feature extraction for the frequency

analysis is illustrated by Figure 5.4.

Figure 5.4 Framework of the frequency analysis feature extraction

5.3.2 Time-Frequency analysis feature representation

Given the definitions described by Section 3.3.2, a signal 𝑠(𝑛) can be represented by a grayscale

image matrix, using the time-frequency analysis.
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5.3.2.1 Feature vector

The feature vector x𝑖𝑛,𝑡 𝑓 is obtained by reshaping the time-frequency grayscale image matrix

representation, of the signal 𝑠(𝑛), to a vector. The process of reshaping the image matrix to a

vector is known as a vectorizing operation. Therefore, the feature vector is given as:

x𝑖𝑛,𝑡 𝑓 =
[
𝑓 (1) (1), · · · , 𝑓 (𝐵) (1), 𝑓 (1) (2), · · · , 𝑓 (𝐵) (2), 𝑓 (1) (3), · · · , 𝑓 (𝐵) (𝐽 + 1)

]𝑇
. (5.7)

The framework of the feature extraction for the time-frequency analysis is illustrated by Figure

5.5.

Figure 5.5 Framework of the time-frequency analysis feature extraction

5.4 Feature selection

Typically, in machine learning, systems with a few parameters and input features are easier

for being both generalized and optimized. This problem is referred, by Richard Bellman (an

American applied mathematician, who introduced dynamic programming in 1953), as the curse

of dimensionality. It relates to the difficulty of using brute force when optimizing a function of

too many input variables. The more features are used to represent a class, the more samples,

or examples, are necessary to optimize a classifier. As an example, a typical rule of thumb for
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training a k-means classifier is: using 10 samples for a data-set represented by 1 feature, 100

samples for a data-set represented by 2 features, 1000 samples for a data-set represented by 3

features, and so on, in order to maintain the same class density in the feature space.

Therefore, if a class is represented by too many features, it is important to select the most

important ones, because simpler systems tend to perform better in terms of problem representation

generalization. Moreover, feedforward networks, such as SVM and MLP, tend to perform better

with decorrelated input data, due to its lack of feedback. Hence, feature selection (FS) is not only

important to simplify the class representation, but also important to find an input subspace set

that can be mostly decorrelated. Hence, FS can be understood as the process where features, that

contribute the most to the class prediction, are automatically or manually selected. FS methods

can be divided into wrapper or filter methods.

Filter methods use a well defined criteria to rank or to score a feature subset, instead of the error

rate. These criteria can be based on the variance, information, redundancy of features, among

others. Examples of filter methods are: mutual information, minimum-redundancy-maximum-

relevance (mRMR), joint mutual information, etc.

Wrapper methods use the classification error (e.g., MSE) as a metric to evaluate subsets of the

feature vector, unlike filter methods. Hence, Wrapper methods aim to find the best subset of

features that maintain a a tolerable classification error. For a forward sequential feature selection,

the first searching step, or round, for finding the best features, consist on training and evaluating

a classifier with only one feature, then selecting the best feature. The second round searches

for the second best feature, among the remaining ones, combined with the previous selected

feature. The iterations continue until the error reaches a stop criteria. This method is known as

forward feature selection. In summary, the first search round finds the best feature, then the

second round finds the second best, combined with the first best feature, then the third round

finds the third best feature, combined with the second and first best features, and so on.

In this thesis, features are only selected for the frequency analysis feature representation.

Features are not selected for the time-frequency analysis, due to the fact the each pixel from
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the time-frequency analysis image is assumed to be equally important for classification. The

wrapper method used in this thesis uses a support vector machine (SVM) binary learner to

quantify the MSE. Figures 5.6a and 5.6b show the FS results. The FS stop criteria is a difference

of MSE lower then 10−8 in between two rounds of search.

(a) FS of the data set represented by the Db4

mother wavelet
(b) FS of the data set represented by the Db6

mother wavelet

Figure 5.6 FS of the data set represented by a frequency analysis feature representation

Notice that FS reduces x𝑖𝑛, 𝑓 to a vector of length 12, for the Db4 frequency analysis feature

representation, and a vector of length 15 for the Db6 frequency analysis feature representation.

Therefore, after FS, the feature vectors are given as:

x𝐹𝑆
𝑖𝑛, 𝑓 ,𝐷𝑏4 =

[
𝑓 (5), 𝑓 (3), 𝐼9, 𝑓 (4), 𝑓 (8), 𝜇1, 𝐼9, 𝐼1, 𝑓 (2), 𝑓 (10), 𝐼7, 𝐼2

]𝑇
, (5.8)

and

x𝐹𝑆
𝑖𝑛, 𝑓 ,𝐷𝑏6

=
[
𝑓 (5), 𝑓 (4), 𝐼9, 𝑓 (6), 𝐼1, 𝑓 (9), 𝑓 (3), 𝑓 (2), 𝐼5, 𝐼6, 𝜇1, 𝑓 (7), 𝑆𝑒𝑛𝑡 , 𝐼3, 𝜇3

]𝑇
. (5.9)

Where x𝐹𝑆
𝑖𝑛, 𝑓 ,𝐷𝑏4

and x𝐹𝑆
𝑖𝑛, 𝑓 ,𝐷𝑏6

represent, respectively, frequency analysis feature vectors, after

FS, using the Db4 and Db6 mother wavelets. Each feature vector, given by equations (5.8) and
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(5.9), have its elements ordered in degree of importance. Where the first element is the most

important, and the last element is the least important feature. The remaining features that are

not in the vector are considered completely irrelevant.

5.5 Separability analysis

Principal component analysis (PCA) is here used to analyze the separability of the frequency

analysis feature representation, after FS, in accordance to figures 5.6a and 5.6b, and equations

(5.8) and (5.9). PCA is a dimensionality reduction technique that projects the feature vector

into the space of the principal components. The first principal component vector points to the

direction of highest variance. The second principal component points to the direction of highest

variance, constrained to the condition of being orthonormal to the first principal component.

The third principal component, points to the direction of highest variance constrained to the

condition of being orthonormal to both the first and second principal components. Subsequent

principal components are calculated by following this logic. For details about PCA, the reader

can consult the work of Haykin (2009). Figures 5.7a and 5.7b illustrate a the training data-set,

represented by the feature vectors from equations (5.8) and (5.9), projected to the 2 principal

components, in order to visualize if the data set is nicely separable, and if the examples are

decorrelated.

Notice that the features seem to be decorrelated and the data is non-linearly separable for both Db4

and Db6 mother wavelets. According to Cybenko (1989), the universal approximation theorem

concludes that a single hidden layer neural network, with sigmoid activation functions (e.g.,

logistic function), can represent a wide variety of interesting functions when given appropriate

weights, number of neurons and features. Hence, a non-linear sigmoid activated feedforward

ANN is sufficient for generalizing a non-linear decision boundary that accurately separates both

classes. Furthermore, by inspecting figures 5.7a and 5.7b, the representation using Db6 seems

to provide a slightly better separability, compared to Db4. Thus, it is expected for classifiers to

perform better when using a Db6 mother wavelet for representing samples.
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(a) PCA of data set represented by the Db4

mother wavelet
(b) PCA of data set represented by the Db6

mother wavelet

Figure 5.7 PCA plots of the data set represented by a frequency analysis feature

representation and 2 principal components

5.6 Classifier architectures, training and test experimental procedure description

This section presents the classifier architectures and the experimental procedure description for

training and testing a single lead ECG acceptability detector, based on the data-sets described in

Chapter 4, and the features described in this current chapter.

5.6.1 Classifier architectures

For details about the mathematics behind each classifier, read Appendix II.

5.6.1.1 Frequency analysis ANN architectures

In conformance to Section 5.4, features are selected in accordance to figures 5.6a and 5.6b. In

order to simplify the architectures of the frequency analysis feature representation classifiers,

features are further reduced to a maximum of 8 most important features and a minimum of 1

most important feature. In this thesis this is referred as feature pruning (FP).

For the frequency analysis feature representation, prior to FP, the chosen ANN architectures to

be trained were:
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- An MLP with one hidden layer, 50 neurons in the hidden layer, a hyperbolic tangent transfer

function in the hidden layer, a softmax output layer transfer function, gradient descent with

adaptive learning rate, and a value of 0.9 momentum constant.

- An SVM, with Radius Basis Function (RBF) as Kernel Function, and zero mean normalized

inputs.

After FP, the number of neurons in the hidden layer is reduced to 16. The reduced MLP

architecture is presented by Figure 5.8.

Figure 5.8 Reduced MLP architecture after FP, with 8 features as input

It is important to emphasize that a hyperbolic tangent is chosen in order to provide the ANN

an extra degree of freedom, where the output of the neurons from the hidden layer can also be

negative values. In addition, experimental results of the ANN training showed that the weights

did not tend to infinity. As a conclusion, the use of both regularization and normalization are

not necessary, since all input features are approximately bounded by 1. The same design choices

are applied to the time-frequency analysis feature representation ANN architectures.

5.6.1.2 Time-frequency analysis ANN architectures

For the time-frequency analysis feature representation, the chosen ANN architectures to be

trained were:

- An MLP with one hidden layer, 100 neurons in the hidden layer, a hyperbolic tangent transfer

function in the hidden layer, a softmax output layer transfer function, gradient descent with

adaptive learning rate, 0.9 momentum constant. This architecture is refereed here as MLP1

(see Figure 5.9).
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- An MLP with one hidden layer, 30 neurons in the hidden layers, a hyperbolic tangent

transfer function in the hidden layers, a softmax output layer transfer function, gradient

descent with adaptive learning rate, 0.9 momentum constant. Since the columns of the

time-frequency analysis can be time dependent (linearly correlated), each hidden layer

receives an independent input and the previous layer output as an input. Here, the assumption

is that the non-linear transform of each layer is responsible for decorrelating inputs from

one-another. This architecture is refereed here as MLP2 (see Figure 5.10).

- An ART2 network, with an outstar Grossberg layer appended to the output, axactly as

described in Appendix II, Section 4.

Figure 5.9 MLP1 architecture

The time-frequency analysis feature representation classifiers, with the exception of the MLP2,

are designed to classify an image that is vectorized, according to Section 5.3.2. Since the input

features consist on image pixels, FS and FP are not necessary, because all features are assumed

to be equally important.

Additionally, the images have the same format as presented by figures 3.15, 3.16, 3.17. Each row

of the image is decorrelated, because both the Db4 and Db6 wavelet transforms are characterized

by the property of orthogonality. However, each column of the image has a time dependency.

Therefore, the image columns are expected to be correlated. To overcome this problem, the

MLP2 architecture is used, with each hidden layer receiving an image column and the previous

output layer as inputs, except for Hidden 1 (see Figure 5.10).
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Figure 5.10 MLP2 architecture

5.6.1.3 Standard ANN architectures

The previously described architectures are compared to an MLP and an SVM that use the input

features basSQI, kSQI and pSQI, as described by Clifford et al. (2012). For sake of simplicity,

the bSQI is not considered in the results comparison in this thesis, since Clifford et al. (2012, p.

1428) showed that both kSQI and basSQI, alone, have shown to be better features, compared to

the bSQI (see Table 2 from Clifford et al. (2012, p. 1428)). Moreover, Clifford et al. (2012)

calculates the process time required for computing each SQI, as a manner of quantifying the

computational cost. The bSQI required at least 33.18 ms, while the power estimation routine

(necessary for basSQI) required 2.46 ms, kSQI required 0.33 ms, and pSQI required 1.92 ms (see

Table 8 from Clifford et al. (2012, p. 1431)). It is evident that bSQI is the most computationally

expensive SQI to be calculated, compared to other indexes. Hence, not worthy of being used for

comparison of results. The standard architectures are structured in the same format as the ones

described in Section 5.6.1.1, prior to FP. Here, these architectures are referred as MLP Cliff and

SVM Cliff.
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5.6.2 Data separation and training stop criteria

As mentioned before in Chapter 4, there are two data-sets: the PhysioNet data-set and the SIG.test

data-set. Since the training data-set most likely contain some noise, training the classifiers with a

random subset of the original data-set will increase its accuracy over the test data-set. Therefore,

the PhysioNet data-set is divided based on a 4-fold cross validation (CV). Each classifier is

trained and tested a total of 4 times, where 3-folds, from the PhysioNet data-set, are used for

training and the SIG.test data-set is entirely used for testing, for all combinations of folds. This

is known as leave-one-out CV, except that the testing set (remaining fold) is always replaced by

the SIG.test data-set.

When training the MLP classifiers, within the set of 3-folds (75% of the PhysioNet data-set), 75%

of the 3-folds is randomly selected for training, and the remaining 25% is used for validation.

Again, the test set is always the SIG.test data-set, and the training and testing procedures happen

for all combinations (total of 4) of 3-folds out of a set of 4-folds. The validation set is used as a

stop criteria for overfitting precaution purposes. Hence, the classifier is most likely generalized.

The training stop criteria of the MLP classifiers are: 1) if the maximum number of epochs (5000)

is reached; 2) if the training MSE reaches a value of 10−5; 3) if the minimum gradient reaches a

value of 10−5; 4) if the MSE of the validation data-set increases 20 consecutive times, while the

MSE of the training data-set is decreasing.

For the remaining classifiers (ART2 and SVM), where no validation set is used. Each classifier

is trained with 3-folds (75% of the PhysioNet data-set) and tested with the SIG.test data-set, for

all combinations (total of 4) of 3-folds. Hence, the training and testing occur a total of 4 times.

The training stop criteria of the ART2 classifier is reaching 300 epochs, while the SVM classifier

has no training stop criteria because it is trained based on a global optimization procedure, given

the support vectors.

All presented results are based on the best trained classifier, out of 4 training trials. The best

trained classifier is chosen based on a parameter called area under the curve (𝐴𝑈𝐶). 𝐴𝑈𝐶 is
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simply the area under the receiver operating curve (ROC), calculated based on the ROC of the

testing data-set classification (SIG.test data-set).

5.7 Frequency analysis feature representation results

Results follow the experimental procedures described in Section 5.6.2. As expected in the

section of separability analysis using PCA (Section 5.5), the experimental procedure results

showed that the Db6 frequency analysis feature representation represents a better separability,

compared to the Db4 frequency analysis feature representation. Therefore, the following results

will concern the Db6 frequency analysis feature representation only. Results concerning the

Db4 frequency analysis feature representation are illustrated in Appendix IV.

5.7.1 Results prior to feature pruning

This section concerns results prior to (before) FP. The following sections concern results before

a threshold adjustment (TA). TA is explained in Section 5.7.1.2.

5.7.1.1 Confusion matrix prior to threshold adjustment

Figures 5.11a and 5.11b, each, concerns a testing result, before TA, of the best trained classifier,

out of 4, for both MLP and SVM tested on the SIG.test data-set. As a reminder, the best classifier

is chosen based on the highest value of the 𝐴𝑈𝐶 parameter.

5.7.1.2 Threshold adjustment

The threshold adjustment (TA) simply consists in setting an optimal class discriminant threshold,

or decision rule, aiming to enhance the classifier accuracy, with the price of augmenting the

probability of false alarm. In the case of MLP classifiers, the first element of the output vector

is a probability value (positive semi-definite) that indicates whether the input is an acceptable

signal or not. For the SVM classifier, the output value is either positive or negative. Where
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(a) MLP confusion matrix (b) SVM confusion matrix

Figure 5.11 Confusion matrix from the best trained MLP or SVM, before FP and TA,

using a Db6 frequency analysis feature representation, tested on the SIG.test data-set

doubtful inputs are less then unity, centred in zero. The default threshold is 0.5 for the MLP and

0 for the SVM.

The decision rule is optimized by using a Neyman-Pearson criteria, where the threshold

adjustment is constrained to a limit of at most 3% of the the probability of false alarm estimation,

from the testing data-set. The probability of false alarm, probability of detection and the

probability of miss are estimated by calculating the sensitivity (detection rate) and specificity,

according to:

𝑆𝑒𝑛 =
𝑇𝑝𝑜𝑠

𝑇𝑝𝑜𝑠 + 𝐹𝑛𝑒𝑔
(5.10)

𝑆𝑝𝑒𝑐 =
𝑇𝑛𝑒𝑔

𝑇𝑛𝑒𝑔 + 𝐹𝑝𝑜𝑠
. (5.11)

Where 𝑇𝑝𝑜𝑠 is the number of true positives, 𝑇𝑛𝑒𝑔 is the number of true negatives, 𝐹𝑝𝑜𝑠 is the

number of false positives, and 𝐹𝑛𝑒𝑔 is the number of false negatives. The probability of false

alarm is estimated as 1− 𝑆𝑒𝑛 (false alarm rate). The probability of miss is estimated as 1− 𝑆𝑝𝑒𝑐.

As a result, the TA using a 3% Neyman-Pearson criteria, increases the accuracy (probability of

correct decision) of the system. Where
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𝐴𝑐𝑐 =
𝑇𝑝𝑜𝑠 + 𝑇𝑛𝑒𝑔

𝑇𝑝𝑜𝑠 + 𝑇𝑛𝑒𝑔 + 𝐹𝑝𝑜𝑠 + 𝐹𝑛𝑒𝑔
. (5.12)

Figures IV-3, IV-4, IV-5 and IV-6, in Appendix IV, illustrate that, by decreasing the threshold,

the probability of miss decreases, the accuracy increases, and the probability of false alarm

increases up to a maximum.

5.7.1.3 Confusion matrix after threshold adjustment

Figures 5.12a and 5.12b, each, concerns a testing result, after TA, of the best trained classifier,

out of 4, for both MLP and SVM, tested on the SIG.test data-set.

(a) MLP confusion matrix (b) SVM confusion matrix

Figure 5.12 Confusion matrix from the best trained MLP or SVM, before FP, after TA,

using a Db6 frequency analysis feature representation, tested on the SIG.test data-set

5.7.1.4 Comparison with the standard architectures

The Db6 frequency analysis feature representation classifiers are compared with the standard

architectures: MLP Cliff and SVM Cliff. Figure 5.13 presents such comparison, prior to FP.

By inspecting Figure 5.13, it is evident that, for the same types of features, an MLP classifier

has a higher 𝐴𝑈𝐶 compared to an SVM classifier. For this reason, further tests will be focused

on the use of MLP ANN architectures.
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Figure 5.13 ROC from the best trained classifiers, prior to FP, using a Db6 frequency
analysis feature representation, compared to the standard ANN architectures (MLP Cliff

and SVM Cliff), all tested on the SIG.test data-set

5.7.2 Results after feature pruning

Table 5.1 show results prior to TA, for a 4-fold CV. Results concern an MLP ANN with a Db6

frequency analysis feature representation as inputs prior to FP, an MLP Cliff architecture, and a

reduced MLP architecture, after FP, with 1 to 8 features as inputs. The reason why 8 maximum

features were chosen is the 𝐴𝑈𝐶 did not augmented more with the use of 9 features or more.

When features are pruned, the reduced MLP architecture, has always 16 neurons in the hidden

layer, and 2 neurons in the output layer (see Figure 5.8). The table shows values of: mean 𝐴𝑐𝑐 ±
2 standard deviation (𝑠𝑡𝑑), mean 𝑆𝑒𝑛, mean 𝑆𝑝𝑒𝑐 and mean 𝐴𝑈𝐶.

From Table 5.1, it is evident that pruned features classifiers are better generalized (higher 𝐴𝑈𝐶).

The ROC curves of the best trained classifier (highest 𝐴𝑈𝐶), for different feature pruning trials,

is shown by Figure 5.14.
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Table 5.1 4-fold CV results of comparison

between MLP Db6 - no FP, MLP Cliff, and

reduced MLP architectures after FP

ANN architecture Mean Acc ± 2std Mean Sen Mean Spec Mean AUC
MLP Db6 - no FP 92.1 ± 2.1 100.00 86.69 0.97

MLP Cliff 90 ±0.78 99.88 83.76 0.96

1 feat 88.7 ± 0.1 93.71 84.94 0.94

2 feats 91.7 ±0.44 99.23 86.36 0.96

3 feats 90.6 ±0.54 99.71 84.59 0.96

4 feats 90.4 ± 1.1 99.54 84.39 0.96

5 feats 90.3 ±0.46 99.66 84.27 0.96

6 feats 91.7 ±0.68 99.56 86.20 0.97

7 feats 91.1 ±0.31 99.66 85.39 0.97

8 feats 91.4 ±0.94 99.78 85.76 0.98

Figure 5.14 ROC from the best trained classifiers, after FP, using a Db6 frequency
analysis feature representation and tested on the SIG.test data-set



91

5.7.2.1 Confision matrix of best frequency analysis classifiers, prior to threshold adjust-
ment

This current section shows the confusion matrix results (figures 5.15a and 5.15b) of the two best

trained frequency analysis feature representation classifiers, chosen based on highest 𝐴𝑈𝐶, with

pruned features, before TA.

(a) 6 input features MLP (b) 8 input features MLP

Figure 5.15 Confusion matrix from the two best trained MLPs, after FP, before TA,

using a Db6 frequency analysis feature representation, tested on the SIG.test data-set

5.7.2.2 Confusion matrix of best frequency analysis classifiers, after the threshold ad-
justment

Similar to Section 5.7.2.1, this current section shows the confusion matrix results (figures 5.16a

and 5.16b) of the two best trained frequency analysis feature representation classifiers, chosen

based on highest 𝐴𝑈𝐶, with pruned features, after applying TA.

5.8 Time-frequency analysis feature representation results

Analogous to Section 5.7, the results presented in this current section follow the described

experimental procedures described in Section 5.6.2. For the same reasons presented in Section

5.7, the following results will concern a time-frequency analysis feature representation using

a Db6 mother wavelet only. Table 5.2 summarizes the 4-fold CV results, prior to TA, of the

different time-frequency analysis feature representation architectures.
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(a) 6 input features MLP (b) 8 input features MLP

Figure 5.16 Confusion matrix from the best trained MLPs, after FP and TA, using a

Db6 frequency analysis feature representation, tested on the SIG.test data-set

Table 5.2 4-fold CV results of comparison

between best time-frequency analysis feature

representation architectures

ANN architecture Mean Acc ± 2std Mean Sen Mean Spec Mean AUC
MLP1 91.9 ± 0.6 99.56 86.53 0.97

MLP2 91.8 ± 1.3 99.61 86.41 0.96

ART2 91 ±0.68 97.82 86.16 0.96

Furthermore, Figure 5.17 illustrates the ROC curves of the best trained classifier for each

architecture. Again, the best classifier is chosen based on the highest 𝐴𝑈𝐶 value.

5.8.1 Confusion matrix of best classifier

This current section presents the confusion matrix of the best trained time-frequency analysis

feature representation classifier (MLP1). Figures 5.18a and 5.18b illustrate, respectively, the

confusion matrix test of MLP1 before, and after TA.

5.9 Time-frequency analysis vs frequency analysis feature representation results

Table 5.3 presents a comparison summary of the best architectures, prior to TA. Even though all

performances were quite similar, the best performance occurred for a simpler system architecture

(a reduced MLP ANN with 8 features as input), due to its highest value of mean 𝐴𝑈𝐶.
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Figure 5.17 ROC from the best trained classifiers, using a Db6 time-frequency analysis
feature representation and tested on the SIG.test data-set

(a) Before TA (b) After TA

Figure 5.18 Confusion matrix from the best trained MLP1, using a Db6 time-frequency
analysis feature representation, tested on the SIG.test data-set

It is recommended to implement the SQA system using the reduced MLP ANN with the best 8

input features architecture, because of its great performance and simplicity. Therefore, promising

accurate results, simplicity and low computational cost.
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Table 5.3 4-fold CV results of comparison

between best architectures

ANN architecture Mean Acc ± 2std Mean Sen Mean Spec Mean AUC
MLP1 91.9 ± 0.6 99.56 86.53 0.97

MLP Db6 - no FP 92.1 ± 2.1 100.00 86.69 0.97

8 feats 91.4 ±0.94 99.78 85.76 0.98

5.10 Computational complexity analysis of feature extraction

In the analysis presented by this current section, two different approaches will be assumed for

the work of Clifford et al. (2012) to calculate the basSQI, kSQI and pSQI. Method 1, uses an

approach that introduces a very small quantity of distortion to the calculated features, but it is

computationally expensive. Method 2 is not computationally expensive, compared to method 1,

but it can introduce a significant amount quantity of distortion to the calculated features. The

method for obtaining a frequency analysis feature representation is here referred as method 3.

It is important to mention that, in the work of Clifford et al. (2012), the sampling frequency

of the signals is 125 Hz. Hence, for 10 seconds, there are 1250 samples. In the application

presented by this current chapter, there are 2560 samples, for 10 s of data.

The following complexity analysis is based on the work of Blahut (2010). Here, we simply

take in consideration the number of multiplications to define the computational cost. The

computational complexity analysis will assume a sampling frequency of 125 Hz and 10 s of data

for methods 1 and 2, according to the work of Clifford et al. (2012), and a sampling frequency

of 256 Hz and 10 s of data for the method 3, according to the proposal of this thesis.

5.10.1 Method 1

One way of estimating the power spectrum density (PSD), used to calculate the pSQI and basSQI,

is computing the FT of the auto-correlation function. This approach is interesting, because it

provides a very accurate PSD, with minimum distortion. The multiplication complexity of a linear
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convolution (LC) operation, of two vectors of size 𝐿 and 𝑁 (LC(𝐿 × 𝑁)), is 𝑀𝑐 (𝐿 × 𝑁) = 𝐿 × 𝑁 ,

by using a direct method. Where the operator 𝑀𝑐 (·) indicates the multiplication complexity.

By using a fast convolution algorithm, such as the method of Cook-Toom, the multiplication

complexity (Blahut, 2010, p. 149) of the linear convolution is reduced to:

𝑀𝑐 (𝐿 × 𝑁) = 𝐿 + 𝑁 − 1. (5.13)

The following methods will assume the use of Cook-Toom’s implementation for every linear

convolution operation. Therefore, 2499 multiplications are necessary for estimating the auto-

correlation. A zero is appended to the end of the auto-correlation estimation vector, thus

introducing a negligible quantity of distortion. As a result, the length of the auto-correlation

signal vector should be 2500. For estimating the FT, 62500 multiplications are necessary by

using a Cooley–Tukey (CT) tree fast Fourier transform (FFT), and factors of 2 and 5, for a signal

of length 2500. The multiplication complexity of the branch of a CT tree decomposition, for a

signal of length 𝑁 , where 𝑁 = 𝑁′𝑁′′, according to Blahut (2010, p. 71), is given as:

𝑀𝑐 (𝑁) = 𝑁′𝑀𝑐 (𝑁′′) + 𝑁′′𝑀𝑐 (𝑁′) + 𝑁. (5.14)

If 𝑁 is prime, 𝑀𝑐 (𝑁) = 𝑁2 (Blahut, 2010, p. 68). If 𝑁 = 2𝑚, for 𝑚 ≥ 1, according to Blahut

(2010, p. 75), the multiplication complexity is:

𝑀𝑐 (𝑁) = 𝑁

2
log2 𝑁. (5.15)

This is a special case of the CT algorithm, known as Cooley–Tukey base 2 (CTB2), or simply

radix-two (Blahut, 2010, p. 72). Hence, the multiplication complexity for an optimal FFT tree

decomposition is given as:
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𝑀𝑐 (2500) = 4𝑀𝑐 (625) + 625𝑀𝑐 (4) + 2500

= 4

[
125𝑀𝑐 (5) + 5𝑀𝑐 (125) + 625

]
+ 625[4

2
log2 4] + 2500

= 4

[
3125 + 5

[
5𝑀𝑐 (25) + 25𝑀𝑐 (5) + 125

] + 625

]
+ 5000

= 4

[
3750 + 5

[
5
[
10𝑀𝑐 (5) + 25

] + 750
] ]

+ 5000

= 62500.

(5.16)

Both the basSQI and pSQI are estimated by summing a particular interval of the PSD. For

estimating the kSQI of a signal 𝑠(𝑛), of length 𝑀 = 1250, 5003 multiplications are required.

Therefore, a total of 70002 multiplications are required, using method 1. The kSQI is given as:

𝑘𝑆𝑄𝐼 =

1
𝑀

∑𝑀−1
𝑛=0

(
𝑠(𝑛) − 1

𝑀

∑𝑀−1
𝑛=0 𝑠(𝑛)

)4
(

1
𝑀

∑𝑀−1
𝑛=0

(
𝑠(𝑛) − 1

𝑀

∑𝑀−1
𝑛=0 𝑠(𝑛)

)2 )2 =
𝑀
∑𝑀−1

𝑛=0 (𝑠(𝑛) − 𝑠)4( ∑𝑀−1
𝑛=0 (𝑠(𝑛) − 𝑠)2

)2 . (5.17)

5.10.2 Method 2

In this method, the signal must be filtered a total of 3 times by an FIR type 1 filter. The FIR type

1 filter is chosen because of its property of linear phase. Thus, no phase distortion is introduced

to the filtered signal.

On the other hand, the transition band is not as sharp as an IIR filter. Thus, amplitude distortion

might be introduced to the filtered signal. Such effect can be attenuated by using efficient

multistage techniques. For simplicity of the analysis, the filter is implemented as a single LC,

using Cook-Toom’s fast filtering implementation.
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The first FIR filter (ℎ1(𝑛)) is low-pass, and is designed with a passing band edge ( 𝑓𝑝𝑎𝑠𝑠) of

39.8 Hz, a stop band edge ( 𝑓𝑠𝑡𝑜𝑝) of 40.2 Hz, a passband ripple of (𝐴𝑝𝑎𝑠𝑠) 0.02 dB and a stop

band ripple (𝐴𝑠𝑡𝑜𝑝) of 25 dB. The second FIR filter (ℎ2(𝑛)) is also low-pass and is designed

with the same specifications as the previous filter, except for 𝑓𝑝𝑎𝑠𝑠 = 0.8 Hz and 𝑓𝑠𝑡𝑜𝑝 = 1.2 Hz.

The third filter (ℎ3(𝑛)) is band-pass, with specifications 𝑓𝑠𝑡𝑜𝑝1 = 4.8 Hz, 𝑓𝑝𝑎𝑠𝑠1 = 5.2 Hz,

𝑓𝑝𝑎𝑠𝑠2 = 14.8 Hz, 𝑓𝑠𝑡𝑜𝑝2 = 15.2 Hz, 𝐴𝑝𝑎𝑠𝑠 = 0.02 dB, 𝐴𝑠𝑡𝑜𝑝1 = 𝐴𝑠𝑡𝑜𝑝2 = 25 dB. The number

of required coefficients for all these FIR type 1 filters is 656. The fourth FIR filter (ℎ4(𝑛))
is high-pass, with 𝑓𝑝𝑎𝑠𝑠 = 15.2 Hz, 𝑓𝑠𝑡𝑜𝑝 = 14.8 Hz, and same 𝐴𝑝𝑎𝑠𝑠 and 𝐴𝑠𝑡𝑜𝑝 as ℎ1(𝑛). The

number of required coefficients for ℎ4(𝑛) (FIR type 1) is 616. All coefficients were estimated by

using an FIR equiripple filter approximation design method.

The power of signal 𝑠(𝑛), in the interval of 0 Hz ∼ 40 Hz, can be estimated by computing the

power of signal 𝑠1(𝑛) = 𝑠(𝑛) ∗ ℎ1(𝑛). The power of signal 𝑠(𝑛), in the interval of 0 Hz ∼ 1 Hz,

can be estimated by computing the power of signal 𝑠2(𝑛) = 𝑠(𝑛) ∗ ℎ2(𝑛). The power of signal

𝑠(𝑛), in the interval of 5 Hz ∼ 15 Hz, can be estimated by computing the power of signal

𝑠3(𝑛) = 𝑠(𝑛) ∗ ℎ3(𝑛). The power of signal 𝑠(𝑛), in the interval of 5 Hz ∼ 40 Hz, can be estimated

by computing the power of signal 𝑠4(𝑛) = 𝑠1(𝑛) ∗ ℎ4(𝑛). Hence, 4 fast filtering computations

are required.

The number of multiplications required for an FIR type 1 filter of 𝑁 taps, to filter a signal of

length 𝐿, using an LC Cook-Toom implementation, is 𝐿 + ( 𝑁
2
+ 1) − 1, due to the symmetry of

FIR type 1 filters. The multiplication complexity for filtering is 3 × 1578, total, for the filters of

length 656, and 1558 for the filter of length 616. Thus, a total of 6292 multiplications.

The energy is estimated by summing the squared convoluted signals. Hence, 3 × (1250 + 656 −
1) + (1250+ 616− 1) = 7580. 2 additional divisions are necessary for estimating the basSQI and

pSQI power rates. Finally, like method 1, the kSQI requires 5003 multiplications. Therefore, a

total of 18877.
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5.10.3 Method 3

Assuming a similar filter bank structure as presented by Figure 3.5, using a Db6 mother wavelet

and a Cook-Toom linear convolution algorithm, 5200 multiplications are necessary to estimate

the wavelet coefficients, from a total of 2560 inputs samples. The estimation of the multiplication

cost is:

𝑀𝑐 (2560) = 2

9∑
𝑖=1

𝑀𝑐

(
2560

2𝑖
× 6

)
= 5200. (5.18)

To estimate the wPMF, more 2570 multiplications are necessary. For the SMs, 60 multiplications

are necessary (see equation (5.1)). The multiplication complexity for approximating the

logarithm function, using the coordinate rotation digital computer (CORDIC), can be 0 (Owen,

2020). However, being very pessimistic, by using a Maclaurin series for the natural logarithm,

the base 10 logarithm function, for |𝑥 | < 1, is here estimated as:

log10(𝑥) ≈ − 1

ln(10)
16∑
𝑘=1

(1 − 𝑥)𝑘
𝑘

. (5.19)

Therefore, a total of 320 multiplications are necessary for estimating the information distribution

from the wPMF, and finally, 10 multiplication for estimating the entropy. Hence, the method

3 requires a total of 8160 multiplications. By using only the 8 most important features, this

number is reduced to 7834. The 8 most important features are given as:

x𝐹𝑆,8
𝑖𝑛, 𝑓 ,𝐷𝑏6

=
[
𝑓 (5), 𝑓 (4), 𝐼9, 𝑓 (6), 𝐼1, 𝑓 (9), 𝑓 (3), 𝑓 (2)

]𝑇
. (5.20)

The following section presents a summary of the computational cost investigation.
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5.10.4 Summary of computational cost

Table 5.4 summarized the computational cost analysis for all 3 methods of feature extraction.

Table 5.4 Summary of computational cost analysis

Authors Assumptions Formula 𝑀𝑐

Clifford

et al. (2012)

(method 1)

Auto-

correlation

estimation.

𝑀𝑐 (𝐿 × 𝐿) = 𝐿 + 𝐿 − 1. 2499

CT & CTB2.

𝑀𝑐 (𝑁) = 𝑁′𝑀𝑐 (𝑁′′) + 𝑁′′𝑀𝑐 (𝑁′) + 𝑁 .

𝑀𝑐 (𝑁) = 𝑁
2

log2 𝑁 . 62500

𝑀𝑐 (𝑁) = 𝑁2.

See equation (5.14).

kSQI. See equation (5.17). 5003

Total: 70002.

Clifford

et al. (2012)

(method 2)

LC.

For FIR type 1 filters, using Cook-Toom

LC, 𝑀𝑐 (𝐿 × 𝑁/2) = 𝐿 + (𝑁/2 + 1) − 1

multiplications.

6292

Energy. 𝐿 + 𝑁 − 1 multiplications. 7580

Additional di-

vision.

Additional divisions required to calculate

basSQI & pSQI.
2

kSQI. See equation (5.17). 5003

Total: 18877.
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Table 5.4 Summary of computational cost analysis (cont’d)

Authors Assumptions Formula 𝑀𝑐

Lucas T.

Lins

(method 3)

FWT and en-

ergy.

𝑀𝑐 (𝐿 × 𝑁) = 𝐿 + 𝑁 − 1; See Section

3.2.3 and equation (5.18).
5200

wPMF. See equation (3.61). 2570

SMs See equation (5.1). 60

Info. dist. See equation (5.3). 320

Entropy. See equation (5.5). 10

Total: 8160.

Using 8 most im-

portant features,

total: 7834.

5.11 Conclusion

In conclusion, the multiplication complexity of the features extraction methodology presented in

this thesis is reduced, in comparison to the presented methodologies for representing features

based on the work of Clifford et al. (2012). Additionally, the frequency analysis feature

representation proposed by this thesis (method 3) has a better accuracy, compared to the system

proposed in the work of Clifford et al. (2012). Furthermore, this thesis simplifies the MLP

architecture to 16 neurons in the hidden layer, while Clifford et al. (2012) proposed an MLP of

50 neurons in the hidden layer.

Notice that the work of Clifford et al. (2012) used a lower sampling frequency, compared to

the methodology proposed by this thesis. Still, the multiplication complexity of method 2 was

superior compared to method 3. If a lower sampling frequency is used for implementing method

3 (e.g. 128 Hz), the multiplication complexity of method 3 could even be further reduced.



CONCLUSION AND RECOMMENDATIONS

6.1 Conclusion

This thesis first presented, in Chapter 1, some fundamentals about ECG instrumentation systems

and then, in Chapter 2, a literature review about SQA, in the context of ECG and cECG, and

a review about many trust metrics, known as SQIs, that are used in the application of ECG

SQA, in order to assure the reliability of monitoring systems. Subsequently, in Chapter 3, two

computationally inexpensive and compact techniques for representing an ECG signal, inspired

from the use of wavelet scalograms (in the vision of Ariño et al. (2004)), are presented. It is

believed that these two methods are novel to the application of ECG SQA. Afterwards, Chapter

4 describes, in the context of ECG SQA, the data-sets preparation and labelling criteria used for

a merge of databases from PhysioNet (Goldberger et al., 2000) and the SIG.test data-set. At last,

Chapter 5 presents the application itself, and its performance results. Most of the proposed SQA

classification systems, presented in this thesis, showed to be more accurate and computationally

more efficient, compared to the system presented by Clifford et al. (2012).

In general, the SQA systems, proposed in this thesis, showed to be very efficient in terms

of both accuracy and computational complexity. The work of this thesis proves that ECG

SQA systems do not require a lot of computation, neither deep ANN techniques for achieving

outstanding results. Differently from many other works, this thesis aimed to achieve not only

high accuracy, but also simplicity and computational efficiency. The main purpose of the SQA

classifier systems, proposed in this work, is to be used as a real-time channel selection algorithm

for the SIG.ECG system. Due to the fact that the SIG.ECG system is capable of measuring

approximately the same lead by using different combinations of proximal pairs of sensors, it

is necessary to have such SQA classifier to only select and analyze the pair of sensors that are

measuring acceptable signals. Therefore, both the computational cost and accuracy are very

important factors to be considered in such real-time application scenario.
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It is evident that any automated clinical data analysis technique should proceed with an estimation

of reliability or trust level. The reliability or trust metrics can then be transferred to humans

or other processing units in order to assure that only reliable data is being used for important

estimates, predictions, evaluation or decision support. Without the appropriate quantification of

the quality of signals that are being used for estimating parameters or controlling the response of

a system, clinical actions most likely will be based on erroneous data, leading to false alarms or

a distrust of measurements. Hence, the main reason why SQA systems are so important.

At last, but not least, it is important to mention that the characterization and understanding of

the SIG.ECG system were fruits of investigations that motivated this thesis, and contributed to

the publication of the work of Weeks et al. (2020).

6.2 Recommendations

The method 3, proposed by this thesis (based on the frequency analysis representation), in

conjunction with a simplified MLP architecture of 8 inputs and 16 neurons in the hidden layer,

has a lower computational complexity and better accuracy performance compared to the system

proposed in the work of Clifford et al. (2012). Therefore, as concluded by Chapter 5, the

frequency analysis based fast feature extraction algorithm (method 3), in conjunction with the

simplified MLP architecture of 8 input features (8 most important features), and 16 neurons in

the hidden layer, is recommended to be used by the SIG.ECG system as a fast channel selection

algorithm solution.

Even if such method has no time information, it is evident that the FWT filter bank (O(𝑁))
allows the features to be extracted much more rapidly then FFT approaches (O(𝑁 log 𝑁)).
Furthermore, it also allows ECG signals to be represented in a much more compact way (lower

frequency resolution compared to the FFT). In conclusion, a low frequency resolution, with

no time information, is enough for extremely shallow ANNs being able to assess the quality of
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ECG signals by doing classification. Again, all of that is very much important to consider in

real-time application scenarios, where simplicity and computational cost are both crucial.

6.3 Future work suggestions

It is suggested to investigate the use of wavelet scalograms for other applications, such as:

bio-signal diagnose, ECG beat classification applications, etc. These applications are related to

the proposed task of the PhysioNet - Computing in Cardiology Challenge of 2020 (Perez Alday,

Gu, Shah, Robichaux, Wong, Liu, Liu, Rad, Elola, Seyedi, Li, Sharma, Clifford & Reyna, 2020).

More information about wavelets and and beat classification applications can be found in the

work of Böck (2015).

In such case, a richer scalogram representation of signals might be required. As an example of a

recent work, with very good results, Wang, Lu, Sun, Yang, Liu & Ou (2021) uses the CWT and a

CNN for ECG diagnosis classification purposes. Examples of a CWT scalogram representation,

using the Morse wavelet, are illustrated in figures 6.1 and 6.2.

𝛾 characterizes the symmetry of the Morse wavelet. The (demodulate) skewness of the Morse

wavelet is equal to 0 when 𝛾 = 3. The Morse wavelets also have the minimum Heisenberg area

when 𝛾 = 3. For this reason, 𝛾 = 3 in figures 6.1 and 6.2. 𝑃2 is the time-bandwidth product. It

is the measure of localization in time and frequency domains, simultaneously.

Notice that figures 6.1 and 6.2 show a richer representation of the ECG signal. Meaning, more

information is present, in comparison to the compact frequency analysis and time-frequency

analysis representations presented in Chapter 3. The cost is that the CWT scalogram image is

likely computationally more expensive to be processed. Furthermore, the CWT has no property

of orthogonality, and contains a lot of redundancy. Therefore, it is suggested to try other compact

ways to represent and classify ECG signal, rather than using CWT scalogram images.
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Figure 6.1 Example of an unacceptable ECG signal with BW interference,

represented by a CWT scalogram, using the Morse mother wavelet with 𝛾 = 3 and 𝑃2 = 60

Figure 6.2 Example of an unacceptable ECG signal with BW interference,

represented by a CWT scalogram, using the Morse mother wavelet with 𝛾 = 3 and 𝑃2 = 9.3

According to (Torrence & Compo, 1998b, p. 65), the wavelet power spectrum is defined as

the squared norm of the detail coefficients. Examples of wavelet power spectrum images are
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illustrated in figures 6.3 and 6.4. The coefficients are codified to an interval of 8 bits (integers

from 1 to 256) for illustration purposes.

Figure 6.3 Example of an unacceptable ECG signal with BW interference,

represented by a DWT wavelet power spectrum, using the Db6 mother wavelet

Figure 6.4 Example of an unacceptable ECG signal with BW interference,

represented by a DWT wavelet power spectrum, using the Haar mother wavelet
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Notice that such representation is no longer redundant, compared to the CWT, but still is less

compact, compared to the time-frequency analysis suggested in Chapter 3. An example of a Haar

wavelet time-frequency analysis representation is presented in Figure 6.5. Just by inspecting

Figure 6.5, it seems that such representation does not look very much different from Figure 3.19.

Figure 6.5 Example of an unacceptable ECG signal with high frequency interference,

represented by the time-frequency analysis using the Haar mother wavelet, and demeaning

each analyzed signal window individually

Moreover, notice the Haar wavelet power spectrum representation contains less information

compared to the Db6 wavelet power spectrum representation. However, the computation of the

Haar wavelet coefficients requires no multiplications. This is a great advantage. Therefore, it is

suggested to explore the use of Haar wavelets to effectively represent ECG signals, especially in

beat classification problems.

Furthermore, it is suggested to investigate the use Haar wavelets and the time-frequency analysis

representation, or DWT wavelet power spectrum representation, in the same problem of ECG

SQA classification, where a CNN, ART2 network, or even a recurrent network (due to time

correlation) can classify these images. The reason Haar wavelet representation results were
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not presented in this work, is that previous trials, using the Haar wavelets and the frequency

analysis representation, were not as successful as results from the Db6 frequency analysis

representation trials, for the problem of single lead ECG SQA. However, this might be different

with an effective use of time information, maintaining a good computational cost, since the Haar

wavelet coefficients require zero multiplications to be computed.

Finally, the SQA system proposed by this thesis can be used as a control mechanism for other

adaptive systems, such as adaptive filters or heart rate estimators, in order to minimize or avoid

the introduction of artifacts. Depending on the application, it is necessary to evaluate when

filtering is necessary or not. Compromising filtering with SQA can be a quite powerful solution.

Therefore, it is recommended to investigate the design of hybrid SQA filtering systems. For

instance, this idea is discussed in the work of Oster & Clifford (2015), where SQIs are used to

control the uncertainty parameter of a Kalman filter based heart rate estimation algorithm.





APPENDIX I

MOVING AVERAGE CUTOFF FREQUENCY ESTIMATION

This current chapter simply aims to prove equation (4.3). The impulse response of the moving

average filter is given as

ℎ(𝑛) = 1

𝑁

𝑁−1∑
𝑘=0

𝛿(𝑛 − 𝑘). (A I-1)

Where, 𝛿(𝑛) is a unit sample function. The discrete-time Fourier transform (DTFT) of ℎ(𝑛) is:

𝐻 (𝜔) =
∞∑

𝑛=−∞
ℎ(𝑛)𝑒− 𝑗𝜔𝑛

=
1

𝑁

𝑁−1∑
𝑛=0

𝑒− 𝑗𝜔𝑛

=
1

𝑁

1 − 𝑒− 𝑗𝜔𝑁

1 − 𝑒− 𝑗𝜔

=
1

𝑁

𝑒− 𝑗𝜔𝑁/2

𝑒− 𝑗𝜔/2
𝑒 𝑗𝜔𝑁/2 − 𝑒− 𝑗𝜔𝑁/2

𝑒 𝑗𝜔/2 − 𝑒− 𝑗𝜔/2

=
1

𝑁

𝑒− 𝑗𝜔𝑁/2

𝑒− 𝑗𝜔/2
sin
(
𝜔𝑁
2

)
sin
(
𝜔
2

) .

(A I-2)

The squared magnitude of 𝐻 (𝜔) is:

|𝐻 (𝜔) |2 =
sin2

(
𝜔𝑁
2

)
𝑁2 sin2

(
𝜔
2

) . (A I-3)

The cutoff frequency 𝜔𝑐, given in rad, is defined as:
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sin2
(
𝜔𝑐𝑁

2

)
𝑁2 sin2

(𝜔𝑐

2

) = 1

2
. (A I-4)

There is no analytical solution for equation (A I-4). However, it is still possible to approximate

𝜔𝑐. The relationship between and the frequency Ω, given in rad s−1, and its normalized version

(𝜔), given in rad, is Ω𝑇𝑠 = 𝜔. Where, 𝑇𝑠 is the sampling period. It is known that 𝑇𝑠 = 1/ 𝑓𝑠 and

Ω = 2𝜋 𝑓 . Where, 𝑓𝑠 is the sampling frequency in Hz, and 𝑓 is the frequency in Hz. Hence,

𝜔𝑐 =
2𝜋 𝑓𝑐
𝑓𝑠

. (A I-5)

Where 𝑓𝑐 is the cutoff frequency in Hz. Therefore, equation (A I-4) is redefined as:

sin2 (𝛼𝑁)
𝑁2 sin2 (𝛼) =

1

2
. (A I-6)

Where 𝛼 = 𝜋 𝑓𝑐
𝑓𝑠

. Furthermore, the order of magnitude of 𝑁 should be around 103. Therefore,

𝑁 >> 1. Moreover, 𝑠𝑖𝑛2(𝛼) should only require 1 term from the Taylor series expansion, since

𝛼 << 1, while 𝑠𝑖𝑛2(𝛼𝑁) should require more terms, because 𝛼 << 𝛼𝑁 . Hence, 𝑠𝑖𝑛2(𝛼) ≈ 𝛼2.

While,

sin2(𝛼𝑁) = 1

2
(1 − cos(2𝛼𝑁))

≈ 1

2

(
1 −
(
1 − (2𝛼𝑁)2

2!
+ (2𝛼𝑁)4

4!
− (2𝛼𝑁)6

6!

))
≈ 1

2

( (2𝛼𝑁)2

2!
− (2𝛼𝑁)4

4!
+ (2𝛼𝑁)6

6!

)
≈ 𝛼2𝑁2 − 𝛼4𝑁4

3
+ 2𝛼6𝑁6

45
.

(A I-7)

Thus, equation (A I-6) is rewritten as:
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2

45
𝛽2 − 1

3
𝛽 + 1

2
= 0. (A I-8)

Where 𝛽 = 𝛼2𝑁2. It is clear that one of the solutions of equation (A I-8) should provide an

approximation for 𝑓𝑐. Therefore, the approximation of 𝑓𝑐 should written as:

𝑓𝑐 ≈ 𝛼𝑠 𝑓𝑠
𝜋𝑁

. (A I-9)

Where 𝛼𝑠 is the solution that better approximates 𝑓𝑐. The solutions of equation (A I-8) are

𝛽1 = 2.07295 and 𝛽2 = 5.42705. Since, 𝛼 and 𝑁 are both positive, 𝛼1𝑁 = 1.43977 and

𝛼2𝑁 = 2.32960. Among the values of 𝛼, the use of 𝛼2 better approximates the true value of 𝑓𝑐,

compared to the use of 𝛼1. However, 𝛼2 provides an approximation that is biased. Hence, the

true value of 𝑓𝑐 was inspected graphically by using the MATLAB function “freqz” and verifying

the value of 𝜔𝑐 for 20 log10( |𝐻 (𝜔𝑐) |) = 10 log10( 1
2
) ≈ −3.01 dB. Given that, the term 𝛼2 is

adjusted by a multiplication factor. Finally, the approximation of the cutoff frequency 𝑓𝑐, for a

large N, is finally given as:

𝑓𝑐 ≈ 0.3362 𝑓𝑠
𝑁

. (A I-10)





APPENDIX II

ARTIFICIAL NEURAL NETWORKS

This chapter aims to explain the artificial neural network (ANN) architectures that were used

in the application presented by this thesis (Chapter 5). Such architectures consisted on the

multilayer perceptron (MLP), the support vector machine (SVM) and the adaptive resonance

theory 2 (ART2).

1. Definitions

1. Pattern: The feature vector itself. In this section it is represented by x𝑚 (bold lower case

letter), where 𝑚 stands for the pattern number.

2. Pattern set or dataset: defined as the set of feature vectors or patterns. Usually represented

by a matrix, containing 𝑀 patterns column vectors, as X = [x1, x2, · · · , x𝑚, · · · , x𝑀] (bold

upper case letter).

3. Prototype vector: defined the class vector where each pattern vector should be mapped to.

Such is also known as target vector, represented by d𝑚.

4. Prototype set: analogous to the pattern set, a prototype set is a matrix containing all

prototype vectors. Hence, D = [d1, d2, · · · , d𝑚, · · · , d𝑀].

5. Epoch: An epoch indicates the number of passes of the entire training dataset the machine

learning algorithm has completed.

2. Support vector machines

The SVM classifier, similarly to the Perceptron algorithm, is motivated by the optimization of a

single neuron network hyperplane separator. In the problem of one-class classification, also

known as anomaly detection, the ANN tries to identify objects of a specific class among all

objects. In this problem, the hyperplane is defined as
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H : w𝑇𝝓(x𝑚) + 𝑏 = 0. (A II-1)

Where 𝝓(·) maps its argument vector to a more complex non-linear feature space. For

mathematical convenience purposes, a variable 𝑦𝑛 is introduced, such that 𝑦𝑛+ = 1 and 𝑦𝑛− = −1.

Where, 𝑛+ stands for positive samples (class 1), and 𝑛− stands for negative samples (class 2).

It is important to mention that 𝑛 iterated through the support vectors. The support vectors are

denoted by 𝝓(x𝑛), and are constrained to:

M : 𝑦𝑛 [w𝑇𝝓(x𝑛) + 𝑏] = 1. (A II-2)

The support vectors are located in what is so called margin. Given the condition (A II-2), the

distance between margins is maximized according to:

argmax
w

[𝑑M (𝝓 (x𝑛+) , 𝝓 (x𝑛−))] = argmax
w

[ (𝝓(x𝑛+) − 𝝓(x𝑛−)) w
| |w| |2

]
= argmax

w

2

| |w| |2
.

(A II-3)

Where, | |w| |2 is the euclidean norm of w, and 𝑑M(·) is a function that takes support vectors

as argument and computes the distance between margins. It turns out that, for mathematical

convenience, finding the maximum distance between margins can be rewritten as:

argmax
w

2

| |w| |2
= argmax

w

1

| |w| |2
= argmin

w
| |w| |2 = argmin

w

1

2
| |w| |22 . (A II-4)

Hence, optimal solution w𝑜𝑝𝑡 is found by using Lagrange multipliers, for minimizing 1
2
| |w| |2

2
,

subjected to the constrain 𝑦𝑛 [w𝑇𝝓(x𝑛) + 𝑏] − 1 = 0. The derivative of the Lagrangian in respect

to w is equalized to zero, and the derivative of the Lagrangian in respect to 𝑏 is also equalized

to zero, in order to find the optimal solution w𝑜𝑝𝑡 .
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It turns out that the optimization depends on the Lagrange multipliers 𝛼𝑛, the variables 𝑦𝑛, and

the dot product of pairs of support vectors. Thus, there is no need for mapping the inputs into a

more complex non-linear feature space, because such dot products are replaced by non-linear

functions called kernels, represented by 𝑘 (x𝑛, x𝑚).

Unlike the Perceptron, SVMs are capable of achieving non-linear separation through the use of

kernels. By reformulating the solution, found with the use of Lagrange multipliers, to the so

called dual form, predictions are computed as

𝑦𝑚 =
∑
𝑛

𝛼𝑛𝑦𝑛𝑘 (x𝑛, x𝑚) + 𝑏. (A II-5)

Where 𝑦𝑚 is the class prediction, given the pattern x𝑚. If 𝑦𝑚 ≥ 0, the input x𝑚 is considered to be

a positive sample. Otherwise it is considered as a negative sample. In this thesis, a Radial-basis

function kernel is used. Such kernel is given as

𝑘 (x𝑛, x𝑚) = exp
(
−||x𝑛 − x𝑚 | |22

)
. (A II-6)

3. Multilayer perceptron ANNs

The forward-propagation, computed in an ascending order, from 𝑙 = 1 till 𝑙 = 𝐿, is be represented

by a matrix form, according to:

𝝊𝑙 (𝑚) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

W𝑙

⎡⎢⎢⎢⎢⎢⎣
1

x𝑚

⎤⎥⎥⎥⎥⎥⎦
for 𝑙 = 1;

W𝑙

⎡⎢⎢⎢⎢⎢⎣
1

𝒐𝑙−1(𝑚)

⎤⎥⎥⎥⎥⎥⎦
for 1 < 𝑙 ≤ 𝐿.

(A II-7)
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Where

𝒐𝑙 (𝑚) = 𝝋𝑙 (𝝊𝑙 (𝑚)). (A II-8)

Furthermore, W𝑙 is the weight of layer 𝑙. Each weight matrix has its size equal to 𝑢 × (𝑣 + 1),
where 𝑢 is the number of neurons in layer 𝑙, and 𝑣 is the number of neurons in layer 𝑙 − 1.

Meaning that each matrix includes the bias term. In the case of 𝑙 = 1, 𝑣 is the number of inputs

of the network. Since in the application presented by this thesis 𝐿 = 2, the output vector is

𝒐2(𝑚). Moreover, 𝝋𝑙 (·) is known as the activation function of the neurons from the 𝑙𝑡ℎ layer.

Such activation function, according to Zurada (1992, p. 38), can be described as:

𝝋𝑙 (·) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑔𝑙 (·) 0 · · · 0

0 𝑔𝑙 (·) · · · 0

...
...

. . .
...

0 0 · · · 𝑔𝑙 (·)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (A II-9)

Where 𝑔𝑙 (·) is some generic non-linear function, belonging to the 𝑙𝑡ℎ layer, that receives a scalar

as input. In this thesis, a standard three layer feedforward MLP is used. Where, the input layer

(containing 𝑁𝑖𝑛 inputs) is fully connected to the hidden layer (containing 𝑁ℎ nodes), and the

hidden layer is fully connected to the output layer (containing 𝑁𝑜 output nodes). Hence, 𝐿 = 2.

3.1 Classic back-propagation algorithm

The back-propagation algorithm is a learning method that uses the principle of gradient descent

to find the optimal solution of the weight coefficients. After computing the forward-propagation,

the error is back-propagated by calculating the local gradient vectors using equation (A II-10),

at descending order, from 𝑙 = 𝐿 till 𝑙 = 1. This process is repeated through the entire 𝑀 size

dataset (X), for 𝐸𝑝𝑜𝑐ℎ epochs, or until the algorithm reaches a stopping criteria. Hence,
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𝜹𝑙 (𝑚) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣
0

e(𝑚) ◦ 𝝋′
𝑙 (𝝊𝐿 (𝑚))

⎤⎥⎥⎥⎥⎥⎦
for 𝑙 = 𝐿;

𝝋′
𝑙 (𝝊𝑙 (𝑚)) ◦ W𝑇

𝑙+1(𝑚)𝜷𝑙+1(𝑚) for 1 ≤ 𝑙 < 𝐿.

(A II-10)

Where

𝜷𝑙 (𝑚) =
[
𝛿𝑙,21(𝑚), 𝛿𝑙,21(𝑚), · · · , 𝛿𝑙,𝐾1(𝑚)

]𝑇
, (A II-11)

and,

e(𝑚) = d𝑚 − 𝒐𝐿 (𝑚). (A II-12)

The element 𝛿𝑙,𝑖 𝑗 (𝑚) is the 𝑖𝑡ℎ row and 𝑗𝑡ℎ of the column of the vector 𝜹𝑙 (𝑚), and 𝜂 is known as

the learning rate constant. Furthermore, “◦” represent the Hadamard (element wise) product

and 𝐾 stands for the number of rows at 𝜹𝑙 (𝑚). The weight matrix updates follow the following

rules:

W𝑙 (𝑚 + 1) = W𝑙 (𝑚) +ΔW𝑙 (𝑚) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

W𝑙 (𝑚) + 𝜂𝜷𝑙 (𝑚)
⎡⎢⎢⎢⎢⎢⎣

1

𝒐𝑙−1(𝑚)

⎤⎥⎥⎥⎥⎥⎦
𝑇

for 1 < 𝑙 ≤ 𝐿;

W𝑙 (𝑚) + 𝜂𝜷𝑙 (𝑚)
⎡⎢⎢⎢⎢⎢⎣

1

x𝑚

⎤⎥⎥⎥⎥⎥⎦
𝑇

for 𝑙 = 1.

(A II-13)
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3.2 Back-propagation algorithm with momentum

In order to speed-up and stabilize the learning process, a momentum term is added to the weight

update expression. Thus,

W𝑙 (𝑚 + 1) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

W𝑙 (𝑚) + 𝛼ΔW𝑙 (𝑚 − 1) + 𝜂𝜷𝑙 (𝑚)
⎡⎢⎢⎢⎢⎢⎣

1

𝒐𝑙−1(𝑚)

⎤⎥⎥⎥⎥⎥⎦
𝑇

for 0 < 𝑙 ≤ 𝐿;

W𝑙 (𝑚) + 𝛼ΔW𝑙 (𝑚 − 1) + 𝜂𝜷𝑙 (𝑚)
⎡⎢⎢⎢⎢⎢⎣

1

x𝑚

⎤⎥⎥⎥⎥⎥⎦
𝑇

for 𝑙 = 0.

(A II-14)

Where 𝛼 is the momentum constant, and ΔW𝑙 (𝑚 − 1) is the previous adjustment of the matrix

W𝑙 (𝑚), for the 𝑙𝑡ℎ layer.

3.3 Back-propagation algorithm with adaptive learning rate

In this algorithm, the values of 𝜂 is dynamically controlled, depending on the direction of the

gradient. The control algorithm is very simple. At each epoch, if the performance decreases

toward the goal (acceptable MSE value), then the learning rate is increased by the factor 𝑙𝑟𝑖𝑛𝑐. If

the performance increases by more than the factor 𝑚𝑎𝑥𝑖𝑛𝑐, the learning rate is adjusted by the

factor 𝑙𝑟𝑑𝑒𝑐 and the change that increased the performance is not made.

3.4 Softmax layer

In the application presented in this thesis, the output layer of the MLP consists on a softmax

transfer function, aiming to provide a probabilistic interpretation of the results. Hence, the

classifier outputs a probability value 𝑃(𝐴|𝑚), where the event 𝐴 states the input x𝑚 belongs to
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the class of acceptable signals, and a probability value 𝑃(𝐵|𝑚), where the event 𝐵 states the

input x𝑚 belongs to the class of unacceptable signals.

For the presented MLP ANN architecture, the target vector d𝑚 can be either [1, 0]𝑇 or [0, 1]𝑇 .

Hence, 𝑃(𝐴|𝑚) = (1 − 𝑃(𝐵|𝑚)), and it is defined as:

𝑃(𝐴|𝑚) = exp
(
𝑜𝐿,1(𝑚))

exp
(
𝑜𝐿,1(𝑚)) + exp

(
𝑜𝐿,2(𝑚)) . (A II-15)

Where 𝑜𝐿,1(𝑚) is the first row element of the vector 𝒐𝐿 (𝑚), and 𝑜𝐿,2(𝑚) is the second row

element of the vector 𝒐𝐿 (𝑚).

4. Adaptive resonance theory 2

The adaptive resonance theory (ART) network was initially inspired by the developmental

physiology of the human visual system, through the development of the Grossberg network

(Demuth, Beale, De Jess & Hagan, 2014, p. 18_3). Moreover, the ART network is known to

serve the purpose of cluster discovery (Zurada, 1992, p. 432). Unlike the previous presented

architectures, the ART network uses unsupervised learning for discovering clusters, while both

SVM and MLP make the use of supervised learning only.

The first ART architecture, known as ART1 or Capenter / Grossberg classifier (Lippmann, 1987,

p. 11), was designed with the purpose of clustering and classifying binary images (see Zurada

(1992, p. 432-444) and Lippmann (1987, p. 12)). The concept is very simple: images, that are

originally formulated in a matrix form, are vectorized and fed to the ART network as an input

and, subsequently, assigned to some specific class or cluster (output).

Unlike both the MLP and SVM, ART networks are adaptable and stable, thanks to their short-term

memory (STM) and long-term network memory (LTM) encoded vectors. The problem of the

system being able to be receptive to significant new patterns and yet remain stable in response to
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old patterns is referred by Grossberg as the stability / plasticity dilemma (Demuth et al., 2014, p.

19_2).

Many of the competitive learning networks, developed prior to the ART network, tended to

erode the previous learned patterns, when presented to new patterns. Hence, networks developed

previous to the ART, tended to lose learning stability due to its capability of learning new

classes, know as adaptability (or plasticity) (Demuth et al., 2014, p. 19_2). This “forgeting”

issue is known as learning instability (Demuth et al., 2014, p. 19_2).

Both SVM and MLP architectures, when trained with a dataset X1, and then retrained with a

dataset X2, they tend to forget the encoded memory constructed by X1. Hence they are subjected

to the stability / plasticity dilemma. On the other hand, the ART networks were designed to

overcome this issue. They are capable of being trained to respond to a new dataset (plasticity),

say X2, that does not necessarily contain all the patterns, or classes, encountered in a previously

trained dataset, say X1, while maintaining a stable response learned from X1 (learning stability).

The second generation of ART networks, known as ART2, was designed to overcome the binary

input limitation. Hence, such architecture is capable of clustering and classifying grayscale

images, with colors encoded as float values in the range of 0 to 1 for example.

It is important to mention that, in the application presented by this thesis, the output of the ART2

is altered by appending a Grossberg outstar layer to the output, following the same principle of

the counterpropagation network (Zurada, 1992, p. 410-414). Such layer serves the purpose of

converting unsupervised learning into supervised learning. In other words, it is responsible of

tagging each cluster into some specific class.

The basic ART model is unsupervised in nature and consist on the following modules:

1. F1 layer, comparison or feature representation field. Where inputs are processed.

2. F2 layer, recognition or category representation field. It consists on the clustering units.



121

3. The reset module, that acts as a control mechanism by deciding if a comparison is matched

with a cluster, if the searching procedure needs to be continued, or if a new cluster creation

is necessary.

4.1 The training algorithm of the ART2 network

The implementation of the algorithm in MATLAB is described by Sivanandam, Sumathi & Deepa

(2006, p. 299-309). Here, the implementation is slightly altered, in order to provide an automatic

number of clusters defined by the vigilance parameter, and track training instability with a

counting variable. The following table describes the variables used in the algorithm.

Table-A II-1 Summary variables used in the ART2 algorithm

Parameters Description Typical value

𝑁
Number of input units (length of vector-

ized image).
User defined.

𝐾 Number of cluster units. Automatically defined.

𝑎 Fixed weight in F1 layer. 10

𝑏 Fixed weight in F1 layer. 10

𝑐 Fixed weight used when testing for a reset. 0.1

𝑑 Activation of winning F2 unit. 0.9

𝑒 Parameter to prevent division by zero. Very small value.

𝜃 Noise suppression parameter. 1√
𝑁

𝛼 Learning rate. Small value, less then 1.

𝜌 Vigilance parameter. Small value, less then 1.

t 𝑗
𝑗𝑡ℎ cluster memory or column of the top-

down LTM traces (T).

[
0

]
(initialized as a vector of zeros)

b 𝑗

𝑗𝑡ℎ cluster memory or column of the

bottom-up LTM traces (B).

[
1

(1−𝑑)√𝑁

]
(initialized as a vector of

constant values)

𝛽 Instability tracker. Counting variable.
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Table-A II-1 Summary variables used in the ART2 algorithm (cont’d)

Parameters Description Typical value

𝛾 Reset module. Boolean variable.

𝑁𝑖𝑡 Number iterations during memorization.
1 (for slow learning). 10 (for faster

learning).

The steps that describe the ART2 training algorithm are enumerated bellow.

Step 1: Initialize the parameters. In particular, the parameters 𝑐 and 𝑑 are constrained to

𝑐𝑑

1 − 𝑑
≤ 1.

In this thesis, parameters are initialized as:

𝑎 = 10 𝑏 = 10 𝑐 = 0.1 𝑑 = 0.9 𝑒 = 0.001 𝛼 = 0.6 𝜌 = 0.94

𝑁 = 50 𝐾 = 1 𝜃 =
1√
𝑁

T =
[
0

]
B =

[
1

(1−𝑑)√𝑁

]
𝑁𝑖𝑡 = 1.

It is important to mention that both T and B have both the size of 𝑁 × 𝐾 .

Step 2: Begin the epoch by permuting the columns of the pattern set X. Assign 𝑖 = 1.

Step 3: Assign x to be equal to the 𝑖𝑡ℎ column of X. Moreover, assign 𝛽 = 0.

Step 4: Update the F1 layer by using the equations listed below, in the same order as presented.

Equations listed side-by-side can be computed in parallel.
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s = x
𝑒 + ||x| |2

v = 𝚪(s)
u =

v
𝑒 + ||v| |2

w = x + 𝑎u p = u

s = w
𝑒 + ||w| |2

q =
p

𝑒 + ||p| |2
v = 𝚪(s) + 𝑏𝚪(q).

Where

𝚪(·) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑔(·) 0 · · · 0

0 𝑔(·) · · · 0

...
...

. . .
...

0 0 · · · 𝑔(·)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Typically,

𝑔(𝑥) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑥, for 𝑥 ≥ 𝜃;

0, for 𝑥 < 𝜃.

Step 5: Compute the F2 layer by executing y = B𝑇p and set 𝛾 = 1.

Step 6: Find the row where the maximum element of y is located. If there is a tie, choose the

lowest value. Hence, 𝑗 = maxrow(y).

Step 7: Update the F1 layer elements by computing the following:
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u =
v

𝑒 + ||v| |2
p = u + 𝑑t 𝑗

r =
u + 𝑐p

𝑒 + ||u| |2 + 𝑐 | |p| |2
.

Step 8: If | |r| |2 ≥ (𝜌 − 𝑒), compute the following:

w = x + 𝑎u

s = w
𝑒 + ||w| |2

q =
p

𝑒 + ||p| |2
v = 𝚪(s) + 𝑏𝚪(q) 𝛾 = 0.

Step 9: Else, if | |r| |2 < (𝜌 − 𝑒), −1 is assigned to the 𝑗𝑡ℎ row of y. Hence, 𝑦 𝑗 = −1. After

assigning such value, if all elements of y are equal to −1, then a new class needs to be

created by computing the following:

𝛽𝑛𝑒𝑤 = 𝛽 + 1 𝐾𝑛𝑒𝑤 = 𝐾 + 1

t𝐾 =
[
0

]
b𝐾 =

[
1

(1−𝑑)√𝑁

]
𝑗 = 𝐾

T𝑛𝑒𝑤 =
[
T t𝐾

]
B𝑛𝑒𝑤 =

[
B b𝐾

]
.

It is important to emphasize that the length of both vectors t𝐾 and b𝐾 is 𝑁 .

Step 10: If 𝛽 > 1, an instability occurred. Thus, the training failed, the parameters need to be

readjusted and the training should be restarted from the very beginning. That being

said, usually the value of either 𝜃 or 𝜌, or both, can be attenuated to guarantee a stable

training.
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Step 11: If 𝛾 = 1, the algorithm goes back to Step 6. Else, the algorithm continues to Step 12,

while assigning 𝑛𝑜 = 1.

Step 12: The weights are updated by computing the following:

t𝑛𝑒𝑤𝑗 = 𝛼𝑑u + (1 + 𝛼𝑑 (𝑑 − 1)) t 𝑗 b𝑛𝑒𝑤
𝑗 = 𝛼𝑑u + (1 + 𝛼𝑑 (𝑑 − 1)) b 𝑗 .

Step 13: If 𝑛𝑜 < 𝑁𝑖𝑡 , assign 𝑛𝑛𝑒𝑤𝑜 = 𝑛𝑜 + 1, update the F1 layer, then return to Step 12. The F1

layer is updated by computing the following:

u =
v

𝑒 + ||v| |2
w = x + 𝑎u

p = u + 𝑑t 𝑗 s = w
𝑒 + ||w| |2

q =
p

𝑒 + ||p| |2
v = 𝚪(s).

Step 14: Assign 𝑖𝑛𝑒𝑤 = 𝑖 + 1. If 𝑖 is less or equal to the number of columns from X, return to

Step 3. Else, start a new epoch by returning to Step 2. The training algorithm stops

whenever the maximum number of epochs is reached.

4.2 The recall procedure of the ART2 network

The recall procedure is very similar to the training algorithm. Where the only difference is that

the “vigilance test” is no longer present, neither the weights are updated (Zurada, 1992, p. 437).

It consists on the following steps:
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Step 1: An input vector x is assumed to be given as an input. Update the F1 layer by using the

equations listed bellow, in the same order as presented. Hence,

s = x
𝑒 + ||x| |2

v = 𝚪(s)
u =

v
𝑒 + ||v| |2

p = u.

Step 2: Compute the F2 layer calculating y = B𝑇p.

Step 3: Find the row where the maximum element of y is located. If there is a tie, chose the

lowest value. Hence, the output is 𝑗 = maxrow(y).

4.3 Unsupervised to supervised learning conversion

The conversion of unsupervised learning into supervised learning is performed by appending a

Grossberg outstar layer to the output of the ART2 network. Here, the Grossberg outstar weight

matrix W𝑔 has a size of 𝐾 × 2. Hence, the target vector d can be either [1, 0]𝑇 or [0, 1]𝑇 . W𝑔

is updated by using the outstar learning rule (Zurada, 1992, p. 413). The matrix W𝑔 has the

following format:

W𝑔 =
[
w𝑔,1, w𝑔,2, · · · , w𝑔,𝐾

]
. (A II-16)

Given a trained W𝑔, the output class of the ART2 network, given an input x, must be encoded in

a vector form. The row ( 𝑗), where the maximum value of y is located, is encoded to a vector

𝒛, using a method called one hot encoding. The classification output of the Grossberg outstar

layer appended to the ART2 network, given the vector 𝒛, is described as
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class𝑜𝑢𝑡 = maxrow(W𝑇
𝑔z). (A II-17)

The learning procedure is executed according to the following steps:

Step 1: Initialize W𝑔 as a 𝐾 × 2 matrix of random numbers. Assign a very small value to Δ .

Here Δ = 0.0001.

Step 2: Begin the epoch by permuting the columns of the pattern set X and the prototype set D

at the same order. Assign 𝑖 = 1.

Step 3: Assign x to be equal to the 𝑖𝑡ℎ column of X and d to be equal to the 𝑖𝑡ℎ column of D.

Step 4: Input x to the ART2 network and output the number 𝑗 (the row where the maximum

value of y is located).

Step 5: Normalize all columns of W𝑔.

Step 6: Update W𝑔 by using the outstar learning rule, according to:

w𝑛𝑒𝑤
𝑔, 𝑗 = w𝑔, 𝑗 + Δ (d − w𝑔, 𝑗 ).

Step 7: Assign 𝑖𝑛𝑒𝑤 = 𝑖 + 1. If 𝑖 is less or equal to the number of columns from X, return to

Step 3. Else, start a new epoch by returning to Step 2. The training algorithm stops

whenever the maximum number of epochs is reached.

5. Conclusion

This chapter presented several ANN architectures that are used in the application presented by

Chapter 5. The main objective of this chapter was to clarify the mathematics and procedures

used in the implementation of the machine learning based classification SQA systems.





APPENDIX III

PATIENTS CONDITIONS FROM THE SIG.TEST DATA-SET

Table-A III-1 summarizes a description of patients conditions from the SIG.test data-set. Each

condition was analyzed by a specialized cardiology during a clinical study performed by

SIG.NUM.

Table-A III-1 Description of patients conditions from the SIG.test data-set

Patient

number
ECG specification Normal / abnormal Rhythm

3
ABNORMAL ECG LONG QT INTER-

VAL SINUS RHYTHM
ABNORMAL ECG

SINUS

RHYTHM

4 NORMAL ECG SINUS RHYTHM NORMAL ECG
SINUS

RHYTHM

5 NORMAL ECG SINUS RHYTHM NORMAL ECG
SINUS

RHYTHM

6

ABNORMAL ECG INFERIOR IN-

FARCT AGE UNDETERMINED NON-

SPECIFIC ST and T WAVE ABNOR-

MALITY WITH VENTRICULAR PRE-

MATURE COMPLEXES

ABNORMAL ECG

ATRIAL

FIBRILLA-

TION

7 NORMAL ECG SINUS RHYTHM NORMAL ECG
SINUS

RHYTHM

8

ABNORMAL ECG LEFT ANTE-

RIOR FASCICULAR BLOCK SINUS

RHYTHM

ABNORMAL ECG
SINUS

RHYTHM

9 NORMAL ECG SINUS RHYTHM NORMAL ECG
SINUS

RHYTHM
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Table-A III-1 Description of patients conditions from the SIG.test data-set (cont’d)

Patient

number
ECG specification Normal / abnormal Rhythm

10 ABNORMAL ECG SINUS RHYTHM ABNORMAL ECG
SINUS

RHYTHM

11 NORMAL ECG SINUS RHYTHM NORMAL ECG
SINUS

RHYTHM

12

ABNORMAL ECG POSSIBLE LEFT

VENTRICULAR HYPERTROPHY

TALL T WAVES, POSSIBLE HYPER-

KALEMIA SINUS RHYTHM

ABNORMAL ECG
SINUS

RHYTHM

13

ABNORMAL ECG INFERIOR IN-

FARCT, POSSIBLY ACUTEST DEPRES-

SION ST ELEVATION CONSISTENT

WITH EPICARDIAL INJURY, PERI-

CARDITIS, OR EARLY REPOLARIZA-

TION SINUS RHYTHM

ABNORMAL ECG
SINUS

RHYTHM

14 NORMAL ECG SINUS RHYTHM NORMAL ECG
SINUS

RHYTHM

15

ABNORMAL ECG SINUS RHYTHM

WITH VENTRICULAR PREMATURE

COMPLEXES

ABNORMAL ECG
SINUS

RHYTHM

16

ABNORMAL ECG POSSIBLE AN-

TEROLATERAL INFARCT ST and T

WAVE ABNORMALITY CONSISTENT

WITH ANTEROLATERAL ISCHEMIA

SINUS RHYTHM

ABNORMAL ECG
SINUS

RHYTHM
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Table-A III-1 Description of patients conditions from the SIG.test data-set (cont’d)

Patient

number
ECG specification Normal / abnormal Rhythm

17

ABNORMAL ECG INCOMPLETE

RIGHT BUNDLE BRANCH BLOCK

LEFT ANTERIOR FASCICULAR

BLOCK SINUS RHYTHM

ABNORMAL ECG
SINUS

RHYTHM

18 ABNORMAL ECG SINUS RHYTHM ABNORMAL ECG
SINUS

RHYTHM

19

LEFT AXIS DEVIATION ABNOR-

MAL ECG NONSPECIFIC INTRAVEN-

TRICULAR CONDUCTION DELAY

POSSIBLE RIGHT VENTRICULAR

HYPERTROPHY NONSPECIFIC ST

and T WAVE ABNORMALITY SINUS

RHYTHM

ABNORMAL ECG
SINUS

RHYTHM

20

LEFT AXIS DEVIATION ABNORMAL

ECG NONSPECIFIC INTRAVENTRIC-

ULAR CONDUCTION DELAY LAT-

ERAL INFARCT, AGE UNDETER-

MINED LONG QT INTERVAL NON-

SPECIFIC ST and T WAVE ABNOR-

MALITY WITH VENTRICULAR PRE-

MATURE COMPLEXES

ABNORMAL ECG

ATRIAL

FIBRILLA-

TION

21

LEFT AXIS DEVIATION ABNORMAL

ECG INFERIOR INFARCT, AGE UNDE-

TERMINED SINUS RHYTHM

ABNORMAL ECG
SINUS

RHYTHM
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Table-A III-1 Description of patients conditions from the SIG.test data-set (cont’d)

Patient

number
ECG specification Normal / abnormal Rhythm

22 NORMAL ECG SINUS RHYTHM NORMAL ECG
SINUS

RHYTHM

23

ABNORMAL ECG RIGHT BUNDLE

BRANCH BLOCK LONG QT INTER-

VAL SINUS RHYTHM

ABNORMAL ECG
SINUS

RHYTHM

24
ABNORMAL ECG LEFT BUNDLE

BRANCH BLOCK SINUS RHYTHM
ABNORMAL ECG

SINUS

RHYTHM

25

LEFT AXIS DEVIATION ABNORMAL

ECG POSSIBLE LEFT VENTRICU-

LAR HYPERTRO PHYANTERIOR IN-

FARCT, AGE UNDETERMINED NON-

SPECIFIC ST and T WAVE ABNOR-

MALITY

ABNORMAL ECG

ATRIAL

FLUTTER

WITH

VARYING

CONDUC-

TION

26
ABNORMAL ECG LEFT BUNDLE

BRANCH BLOCK ATRIAL RHYTHM
ABNORMAL ECG

ATRIAL

RHYTHM

27

LEFT AXIS DEVIATION ABNORMAL

ECG INFERIOR INFARCT, POSSIBLY

ACUTE LONG QT INTERVAL ST DE-

PRESSION SINUS RHYTHM

ABNORMAL ECG
SINUS

RHYTHM

28
NORMAL ECG INFERIOR INFARCT

POSSIBLE SINUS RHYTHM
NORMAL ECG

SINUS

RHYTHM
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Table-A III-1 Description of patients conditions from the SIG.test data-set (cont’d)

Patient

number
ECG specification Normal / abnormal Rhythm

29

ABNORMAL ECG ANTERIOR IN-

FARCT, POSSIBLY ACUTEST ELEVA-

TION CONSISTENT WITH EPICAR-

DIAL INJURY, PERICARDITIS, OR

EARLY REPOLARIZATION SINUS

RHYTHM

ABNORMAL ECG
SINUS

RHYTHM

30

ABNORMAL ECG LOW QRS VOLT-

AGE IN LIMB LEADS INFERIOR IN-

FARCT

ABNORMAL ECG

SUPRA-

VENTRI-

CULAR

TACHY-

CARDIA

31

ABNORMAL ECG LEFT BUNDLE

BRANCH BLOCK LONG QT INTER-

VAL NONSPECIFIC ST and T WAVE

ABNORMALITY SINUS RHYTHM

WITH FIRST DEGREE AV BLOCK

WITH VENTRICULAR PREMATURE

COMPLEXES

ABNORMAL ECG
SINUS

RHYTHM

32 NORMAL ECG SINUS RHYTHM NORMAL ECG
SINUS

RHYTHM

33 NORMAL ECG SINUS RHYTHM NORMAL ECG
SINUS

RHYTHM
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Table-A III-1 Description of patients conditions from the SIG.test data-set (cont’d)

Patient

number
ECG specification Normal / abnormal Rhythm

34

ABNORMAL ECG RIGHT BUNDLE

BRANCH BLOCK LONG QT INTER-

VAL SINUS RHYTHM WITH FIRST

DEGREE AV BLOCK

ABNORMAL ECG
SINUS

RHYTHM

35

ABNORMAL ECG NONSPECIFIC IN-

TRAVENTRICULAR CONDUCTION

DELAY LONG QT INTERVAL

ABNORMAL ECG

SINUS

BRADY-

CARDIA

(LESS

THAN 40)

36

ABNORMAL ECG ANTEROLAT-

ERAL INFARCT EVOLVING SINUS

RHYTHM POSSIBLE LEFT ATRIAL

ENLARGEMENT

ABNORMAL ECG
SINUS

RHYTHM

37

ABNORMAL ECG POSSIBLE ANTE-

RIOR INFARCT ST and T WAVE AB-

NORMALITY CONSISTENT WITH

ANTEROLATERAL ISCHEMIA ST and

T WAVE ABNORMALITY CONSIS-

TENT WITH INFERIOR ISCHEMIA SI-

NUS RHYTHM

ABNORMAL ECG
SINUS

RHYTHM

38
ABNORMAL ECG ST DEPRESSION

SINUS TACHYCARDIA
ABNORMAL ECG

SINUS

TACHY-

CARDIA

39 NORMAL ECG SINUS RHYTHM NORMAL ECG
SINUS

RHYTHM
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Table-A III-1 Description of patients conditions from the SIG.test data-set (cont’d)

Patient

number
ECG specification Normal / abnormal Rhythm

40
ABNORMAL ECG ST DEPRESSION

SINUS RHYTHM
ABNORMAL ECG

SINUS

RHYTHM

41

ABNORMAL ECG NONSPECIFIC ST

and T WAVE ABNORMALITY SINUS

RHYTHM ELECTRONIC VENTRICU-

LAR PACEMAKER

ABNORMAL ECG
SINUS

RHYTHM

42

ABNORMAL ECG NONSPECIFIC ST

and T WAVE ABNORMALITY SINUS

RHYTHM ELECTRONIC VENTRICU-

LAR PACEMAKER

ABNORMAL ECG
SINUS

RHYTHM

43

ABNORMAL ECG NON SPECIFIC IN-

TRAVENTRICULAR CONDUCTION

DELAY

ABNORMAL ECG

ATRIAL

FIBRILLA-

TION

44

NORMAL ECG SINUS RHYTHMWITH

SUPRAVENTRICULAR PREMATURE

COMPLEXES

NORMAL ECG
SINUS

RHYTHM

45

ABNORMAL ECG POSSIBLE LEFT

VENTRICULAR HYPERTROPHY ST

DEPRESSION SINUS RHYTHM

ABNORMAL ECG
SINUS

RHYTHM

46 NORMAL ECG SINUS RHYTHM NORMAL ECG
SINUS

RHYTHM

47

LEFT AXIS DEVIATION ABNORMAL

ECG SINUS RHYTHM LEFT ATRIAL

ENLARGEMENT

ABNORMAL ECG
SINUS

RHYTHM
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Table-A III-1 Description of patients conditions from the SIG.test data-set (cont’d)

Patient

number
ECG specification Normal / abnormal Rhythm

48 NORMAL ECG SINUS RHYTHM NORMAL ECG
SINUS

RHYTHM

49 NORMAL ECG SINUS RHYTHM NORMAL ECG
SINUS

RHYTHM

50

ABNORMAL ECG LEFT VENTRIC-

ULAR HYPERTROPHY WITH REPO-

LARIZATION ABNORMALITY NON-

SPECIFIC ST ELEVATION SINUS

RHYTHM WITH FIRST DEGREE AV

BLOCK

ABNORMAL ECG
SINUS

RHYTHM

51
ABNORMAL ECG NONSPECIFIC ST

and T WAVE ABNORMALITY
ABNORMAL ECG

ATRIAL

FIBRIL-

LATION

(WITH

IDIOVEN-

TRIC-

ULAR

RHYTHM)

52 NORMAL ECG SINUS RHYTHM NORMAL ECG
SINUS

RHYTHM

53 NORMAL ECG SINUS RHYTHM NORMAL ECG
SINUS

RHYTHM

54 NORMAL ECG SINUS RHYTHM NORMAL ECG
SINUS

RHYTHM
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Table-A III-1 Description of patients conditions from the SIG.test data-set (cont’d)

Patient

number
ECG specification Normal / abnormal Rhythm

55 ABNORMAL ECG ABNORMAL ECG

ATRIAL

FIBRILLA-

TION

56 ABNORMAL ECG SINUS RHYTHM ABNORMAL ECG
SINUS

RHYTHM

57 ABNORMAL ECG ABNORMAL ECG

ATRIAL

FIBRILLA-

TION

58

ABNORMAL ECG INFERIOR IN-

FARCT, AGE UNDETERMINED SINUS

RHYTHM WITH VENTRICULAR PRE-

MATURE COMPLEXES

ABNORMAL ECG
SINUS

RHYTHM

59 ABNORMAL ECG SINUS RHYTHM ABNORMAL ECG
SINUS

RHYTHM

60 NORMAL ECG SINUS RHYTHM NORMAL ECG
SINUS

RHYTHM

61 NORMAL ECG SINUS RHYTHM NORMAL ECG
SINUS

RHYTHM

62 ABNORMAL ECG SINUS RHYTHM ABNORMAL ECG
SINUS

RHYTHM

63 NORMAL ECG SINUS RHYTHM NORMAL ECG
SINUS

RHYTHM

64
ABNORMAL ECG SINUS RHYTHM

LEFT ATRIAL ENLARGEMENT
ABNORMAL ECG

SINUS

RHYTHM
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Table-A III-1 Description of patients conditions from the SIG.test data-set (cont’d)

Patient

number
ECG specification Normal / abnormal Rhythm

65
ABNORMAL ECG LEFT BUNDLE

BRANCH BLOCK SINUS RHYTHM
ABNORMAL ECG

SINUS

RHYTHM

66

LEFT AXIS DEVIATION ABNOR-

MAL ECG LEFT BUNDLE BRANCH

BLOCK LONG QT INTERVAL SINUS

RHYTHM WITH FIRST DEGREE AV

BLOCK

ABNORMAL ECG
SINUS

RHYTHM

67 NORMAL ECG SINUS RHYTHM NORMAL ECG
SINUS

RHYTHM

68
LEFT AXIS DEVIATION ABNORMAL

ECG LEFT BUNDLE BRANCH BLOCK
ABNORMAL ECG

ATRIAL

FIBRILLA-

TION

69 ABNORMAL ECG SINUS RHYTHM ABNORMAL ECG
SINUS

RHYTHM

70

ABNORMAL ECG INFERIOR IN-

FARCT WITH VENTRICULAR PRE-

MATURE COMPLEXES

ABNORMAL ECG

ATRIAL

FIBRILLA-

TION

71

ABNORMAL ECG LEFT ANTERIOR

FASCICULAR BLOCK POSSIBLE

LEFT VENTRICULAR HYPERTRO-

PHY ANTERIOR INFARCT, AGE UN-

DETERMINED

ABNORMAL ECG

ATRIAL

FIBRILLA-

TION

72 ABNORMAL ECG SINUS RHYTHM ABNORMAL ECG
SINUS

RHYTHM
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Table-A III-1 Description of patients conditions from the SIG.test data-set (cont’d)

Patient

number
ECG specification Normal / abnormal Rhythm

73 ABNORMAL ECG ABNORMAL ECG

ATRIAL

FIBRILLA-

TION

74

RIGHT AXIS DEVIATION ABNOR-

MAL ECG SINUS RHYTHM WITH

FIRST DEGREE AV BLOCK LEFT

ATRIAL ENLARGEMENT

ABNORMAL ECG
SINUS

RHYTHM

75
LEFT AXIS DEVIATION ABNORMAL

ECG SINUS TACHYCARDIA
ABNORMAL ECG

SINUS

TACHY-

CARDIA

76

ABNORMAL ECG LEFT ANTERIOR

FASCICULAR BLOCK ANTEROLAT-

ERAL INFARCT, POSSIBLY ACUTE

SINUS TACHYCARDIA LEFT ATRIAL

ENLARGEMENT

ABNORMAL ECG

SINUS

TACHY-

CARDIA

(POS-

SIBLY

ACUTE)

77

ABNORMAL ECG NONSPECIFIC ST

and T WAVE ABNORMALITY SINUS

RHYTHM

ABNORMAL ECG
SINUS

RHYTHM

78
ABNORMAL ECG ANTERIOR IN-

FARCT
ABNORMAL ECG

ATRIAL

FLUTTER

79 NORMAL ECG SINUS RHYTHM NORMAL ECG
SINUS

RHYTHM

80 NORMAL ECG SINUS RHYTHM NORMAL ECG
SINUS

RHYTHM
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Table-A III-1 Description of patients conditions from the SIG.test data-set (cont’d)

Patient

number
ECG specification Normal / abnormal Rhythm

81

ABNORMAL ECG RIGHT BUNDLE

BRANCH BLOCK SINUS RHYTHM

WITH ATRIAL PREMATURE COM-

PLEXES

ABNORMAL ECG
SINUS

RHYTHM

82

ABNORMAL ECG SINUS RHYTHM

WITH FIRST DEGREE AV BLOCK

WITH VENTRICULAR PREMATURE

COMPLEXES

ABNORMAL ECG
SINUS

RHYTHM

83

ABNORMAL ECG NONSPECIFIC ST

and T WAVE ABNORMALITY SINUS

RHYTHM

ABNORMAL ECG
SINUS

RHYTHM

84 NORMAL ECG SINUS RHYTHM NORMAL ECG
SINUS

RHYTHM

85

RIGHT AXIS DEVIATION ABNOR-

MAL ECG RIGHT VENTRICULAR

HYPERTROPHY WITH REPOLARIZA-

TION ABNORMALITY SINUS TACHY-

CARDIA POSSIBLE LEFT ATRIAL EN-

LARGEMENT

ABNORMAL ECG

SINUS

TACHY-

CARDIA

86 ABNORMAL ECG SINUS RHYTHM ABNORMAL ECG
SINUS

RHYTHM

87

ABNORMAL ECG SINUS RHYTHM

WITH VENTRICULAR PREMATURE

COMPLEXES

ABNORMAL ECG
SINUS

RHYTHM
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Table-A III-1 Description of patients conditions from the SIG.test data-set (cont’d)

Patient

number
ECG specification Normal / abnormal Rhythm

88 NORMAL ECG SINUS RHYTHM NORMAL ECG
SINUS

RHYTHM

89 NORMAL ECG SINUS RHYTHM NORMAL ECG
SINUS

RHYTHM

90 NORMAL ECG SINUS RHYTHM NORMAL ECG
SINUS

RHYTHM

91
ABNORMAL ECG LONG QT INTER-

VAL SINUS RHYTHM
ABNORMAL ECG

SINUS

RHYTHM

92

ABNORMAL ECG LEFT ANTERIOR

FASCICULAR BLOCK RIGHT BUN-

DLE BRANCH BLOCK

ABNORMAL ECG
TACHY-

CARDIA

93
ABNORMAL ECG SINUS TACHYCAR-

DIA
ABNORMAL ECG

SINUS

TACHY-

CARDIA

94 ABNORMAL ECG SINUS RHYTHM ABNORMAL ECG
SINUS

RHYTHM

95

ABNORMAL ECG NONSPECIFIC ST

and T WAVE ABNORMALITY SINUS

RHYTHM

ABNORMAL ECG
SINUS

RHYTHM

96

ABNORMAL ECG NONSPECIFIC IN-

TRAVENTRICULAR CONDUCTION

DELAY SINUS RHYTHM

ABNORMAL ECG
SINUS

RHYTHM

97 NORMAL ECG SINUS RHYTHM NORMAL ECG
SINUS

RHYTHM
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Table-A III-1 Description of patients conditions from the SIG.test data-set (cont’d)

Patient

number
ECG specification Normal / abnormal Rhythm

98
ABNORMAL ECG ST DEPRESSION

SINUS RHYTHM
ABNORMAL ECG

SINUS

RHYTHM

99
ABNORMAL ECG NON SPECIFIC ST

ELEVATION SINUS TACHYCARDIA
ABNORMAL ECG

SINUS

TACHY-

CARDIA

100

ABNORMAL ECG RIGHT BUNDLE

BRANCH BLOCK SINUS RHYTHM

WITH 2ND DEGREE AV BLOCK, MO-

BITZ TYPE II

ABNORMAL ECG
SINUS

RHYTHM

102

ABNORMAL ECG ANTEROLATERAL

INFARCT, POSSIBLY ACUTEST EL-

EVATION CONSISTENT WITH EPI-

CARDIAL INJURY, PERICARDITIS,

OR EARLY REPOLARIZATION SINUS

RHYTHM

ABNORMAL ECG
SINUS

RHYTHM

103
ABNORMAL ECG NONSPECIFIC ST

and T WAVE ABNORMALITY
ABNORMAL ECG

ATRIAL

FIBRIL-

LATION

(WITH

RAPID

VENTRIC-

ULAR RE-

SPONSE)



APPENDIX IV

ADDITIONAL RESULTS

1. Best trained nets (ANNs) using the Db4 frequency analysis feature representation

(a) MLP confusion matrix (b) SVM confusion matrix

Figure-A IV-1 Confusion matrix from the best trained MLP or SVM, before FP and TA,

using a Db4 frequency analysis feature representation, tested on the SIG.test data-set

(a) MLP confusion matrix (b) SVM confusion matrix

Figure-A IV-2 Confusion matrix from the best trained MLP or SVM, before FP, after

TA, using a Db4 frequency analysis feature representation, tested on the SIG.test data-set
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2. Impact of threshold change in probability values

Figure-A IV-3 Probability values vs Db4 frequency analysis
representation MLP classifier threshold

Figure-A IV-4 Probability values vs Db4 frequency analysis
representation SVM classifier threshold
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Figure-A IV-5 Probability values vs Db6 frequency analysis
representation MLP classifier threshold

Figure-A IV-6 Probability values vs Db6 frequency analysis
representation SVM classifier threshold
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