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Une étude empirique sur l’impact du refactoring dans les applications Android

Oumayma Hamdi

RÉSUMÉ
Les applications mobiles (apps) deviennent des logiciels complexes qui doivent être développés

rapidement tout en évoluant de manière continue afin de répondre aux nouveaux besoins des

utilisateurs ainsi qu’aux mises à jour régulières. Cette évolution rapide peut provoquer la

présence de mauvais choix d’implémentions ou de conception qui se manifestent par ce qu’on

appelle défauts de code ou code smells. La présence de ces défauts au sein d’une application

peut dégrader la qualité et les performances en compliquant les tâches de maintenance et

d’évolution. Il est alors important de connaître ces défauts mais aussi de pouvoir les détecter et

les corriger, afin de permettre aux développeurs d’améliorer la qualité et les performances de

leur application. Pour corriger les défauts de code et améliorer la qualité des apps, refactoring,

est une technique clé largement acceptée qui consiste à modifier la structure interne du code

source tout en préservant son comportement externe.

Bien que la plupart des études existantes ont étudié l’impact des activités de refactoring dans

les applications orientées objet, peu d’attention a été accordée aux applications mobiles. En

particulier, il y a un manque de connaissances sur l’impact de refactoring sur différents aspects

de la qualité du logiciel, y compris les défauts de code et les métriques de qualité. De plus,

la plupart des recherches précédentes se sont concentrées sur l’étude des caractéristiques des

défauts de code orientées objet (OO) traditionnelles affectant les fichiers de code source dans

les systèmes logiciels traditionnels, et ont préconisé que l’interaction et la co-présence des

défauts de code réduisent la capacité des développeurs à comprendre et maintenir le code source.

Cependant, peu de connaissances sont disponibles sur les catégories émergentes de défauts de

code spécifiques à Android et leurs interactions, c’est-à-dire les cooccurrences, avec les défauts

OO traditionnelles, dans le contexte des applications Android.

Par conséquent, dans cette mémoire, nous menons une série d’études empiriques pour mieux

comprendre le concept de refactoring et de défauts de code dans les applications mobiles.

Premièrement, nous menons une étude longitudinale sur l’historique d’évolution de cinq

applications Android pour étudier l’impact de refcatoring sur les défauts de code orientés objets

et spécifique à Android. Ensuite, nous performons une étude empirique sur un vaste ensemble

de données composé de 1,923 applications Android pour étudier la co-occurrence des défauts

de code. Finalement, nous réalisons une étude sur un ensemble de données composé de 300

applications Android pour analyser l’impact du refactoring sur les métriques de qualité.

Nos résultats montrent que (1) les défauts de code sont répandues dans les applications Android,

mais les classes contenant des défauts de code ne sont pas particulièrement ciblées par les

activités de refactoring et, lorsqu’elles le sont, il est rare que le refactoring élimine réellement lé

défaut, (2) le phénomène de co-occurrence est en effet répandu dans les applications Android et

plusieurs types de défauts de code ont de fortes associations, et (3) lorsque le refactoring affecte

les métriques, elle les améliore généralement. Dans de nombreux cas, le refactoring n’a pas
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d’impact significatif sur les métriques, alors qu’une métrique (LCOM) se détériore globalement

à la suite du refactoring.

Les résultats de ces études empiriques ont révélé des résultats de recherche importants. Notam-

ment, sur la pratique actuelle du refactoring dans le contexte de développement d’applications

mobiles ainsi que sur les défauts de code et leur interaction. Ces résultats nous ont permis

d’élaborer quelques recommandations pour les chercheurs et les développeurs d’outils pour

concevoir des outils de détection et de refactoring des défauts de code mobile. Nos résultats

ouvert des perspectives pour des travaux de recherche sur l’identification des défauts de code

mobiles et sur les pratiques de développement en général.

Mots-clés: applications mobiles, refactoring, défauts de code, métriques de qualité, étude

empirique



An Empirical Study on the Impact of Refactoring in Android Applications

Oumayma Hamdi

ABSTRACT

Android applications (apps) are becoming complex software that must be developed quickly

while continuously evolving to meet new user needs as well as regular updates. This rapid

evolution may lead to poor implementation and design choices, known code smells. The presence

of these smells within an application may degrade the quality and performance by complicating

maintenance and evolution tasks. Thus, it is important to know these smells but also to detect

and correct them, in order to allow developers to improve the quality and performance of their

applications. Code refactoring is a key practice that is employed to ensure that the intent of a

code change is properly achieved without compromising internal software quality.

While most of existing studies have investigated the impact of refactoring activities in desktop

applications, little attention has been paid to mobile applications. In particular, there is a lack

of knowledge about the impact of refactoring on different software quality aspects, including

code smells and quality metrics. Moreover, most of previous research focused on studying

the characteristics of traditional object-oriented (OO) code smells affecting source code files

in desktop software systems, and advocated that the interaction and co-presence of code

smells reduce the ability of developers to understand and maintain source code. However,

little knowledge is available on emerging categories of Android-specific code smells and their

interactions, i.e., co-occurrences, with traditional OO smells, in the context of Android apps.

Therefore, in this work we conduct a series of empirical studies to better understand the concept

of refactoring and code smells in mobile apps. First, we conduct a longitudinal empirical study

that analyses the evolution history of five open-source mobile apps to investigate the impact of

refactoring on code smells. Then, we examined the prevalence of code smell co-occurrences and

determine which code smell types tend to co-exist more frequently on a large dataset composed

of 1,923 open-source mobile apps. Finally, we perform a study on a dataset composed of 300

open-source mobile apps to analyze the impact of refactoring on quality metrics.

Our results show that (1) code smells are widespread across Android applications, but smelly

classes are not particularly targeted by refactoring activities and, when they are, it is rare for

refactoring to actually remove a smell, (2) the co-occurrence phenomenon is indeed prevalent in

Android apps and several smell types have strong associations, and (3) when refactoring affects

the metrics it generally improves them. In many cases refactoring has no significant impact on

the metrics, whereas one metric (LCOM) deteriorates overall as a result of refactoring.

The results of these studies revealed important research findings. In particular, on the current

practice of refactoring and code smells in the context of mobile applications. These results

allowed us to develop some recommendations for researchers and tool creators to design tools

for detecting and refactoring mobile code smells. Our results opened perspectives for research
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works about the identification of code smells in mobile codes and development practices in

general.

Keywords: mobile apps, refactoring, code smell, quality metrics, empirical study
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INTRODUCTION

Context

Android is the dominant operating system for mobile devices Research (2020) and has experienced

a tremendous expansion of its user base over the past number of years. It currently runs on

approximately 86% of smart phones worldwide, with over 2.5 billion monthly active users 1. The

vibrancy of the Android operating system can be partially attributed to its openness to vendor

customizations, along with the richness of the functionalities it provides in its platform that

eases the development and evolution of apps that cover ever-broadening domains of applications

Zhang & Cai (2019). As a consequence of this popularity, the Android app marketplace is

extremely congested and strong competition makes it necessary to build mobile apps rapidly

and evolve them continuously to meet the needs of users. Such activities may lead to poor

implementation and design choices, known code smells that decrease the quality of code. To

face this challenge, developers have to pay careful attention to the quality of their mobile apps

by applying refactoring which is a systematic process of improving code without creating new

functionality that can transform a mess into clean code and simple design. Indeed, as mobile

apps run on mobile devices, they are constrained by hardware specificities:

• Mobile devices have limited capacities in terms of memory, storage, and battery compared

traditional software system.

• Another particularity is that mobile apps handle sensors that respond to device movement,

numerous gestures, global positioning system, cameras and multiple networking protocols.

The use of these sensors can be very costly especially in terms of battery.

These hardware specificities set the bar high for mobile apps in terms of quality. Hence, quality

can be considered as a key challenge of mobile development.

Problem statement
1 https://venturebeat.com/2019/05/07/android-passes-2-5-billion-monthly-active-devices
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1. Problem 1: Lack of knowledge about the impact of refactoring on code smells in

mobile applications

Mobile apps differ significantly from traditional software systems Minelli & Lanza (2013);

Mannan, Ahmed, Almurshed, Dig & Jensen (2016); Kessentini & Ouni (2017) in having to

deal with limitations on specific hardware resources like memory, CPU, display size, etc.,

as well as the highly dynamic nature of the mobile app market and the ever-increasing user

requirements. These differences can play an important role in mobile app development

and evolution. Indeed, unlike object-oriented (OO) software systems AlOmar, Mkaouer,

Ouni & Kessentini (2019); Ó Cinnéide, Tratt, Harman, Counsell & Hemati Moghadam

(2012); Alshayeb (2009); Bavota, De Lucia, Di Penta, Oliveto & Palomba (2015a); Cedrim,

Sousa, Garcia & Gheyi (2016); Stroggylos & Spinellis (2007); Tahir, Dietrich, Counsell,

Licorish & Yamashita (2020), the impact of refactoring on code smells in mobile apps has

received little attention. Hence, much uncertainly exists about the relationship between

refactoring and code smells in mobile apps.

Proving the existence of an impact will help tool creators, practitioners and researcher. For

tool creators, it help them to develop practical and reliable refactoring tools for mobile

apps. As for practitioners and researchers discovering the relationship can help them to

understand current refactoring practices and their impact on code smells.

2. Problem 2: The presence and impact of the code smells co-occurrence phenomenon

is unknown in mobile applications

Most of previous research focused on studying the characteristics of traditional object-

oriented (OO) code smells affecting source code files in desktop software systems, and

advocated that the interaction and co-presence of code smells reduce the ability of developers

to understand and maintain source code. However, little knowledge is available on emerging

categories of Android-specific code smells and their interactions, i.e., co-occurrences, with

traditional OO smells, in the context of Android apps.
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This knowledge is particularly important for developers researchers and tool creators. For

Android developers, discovering such relationships will help them focusing their attention

by getting a high priority in refactoring the smells that frequently co-occur together which

may lead to better monitoring the quality of their apps. Moreover, it can help them to save

time and effort when refactoring their code and increase their awareness and understanding

of their apps. As for researchers, it can be a starting point for a deep investigation of the

relation between Android smells and traditional code smells. Also, such knowledge can

help researchers designing Android-specific refactoring techniques and prototypes that take

into consideration the hidden dependencies between such smells.

3. Problem 3: Lack of knowledge about the impact of refactoring on quality metrics in

mobile applications

This problem is similar to the first one. Indeed, the impact of refactoring on quality metrics

in mobile apps has received little attention counter to object-oriented (OO) software systems

AlOmar et al. (2019); Ó Cinnéide et al. (2012); Alshayeb (2009); Bavota et al. (2015a);

Cedrim et al. (2016); Stroggylos & Spinellis (2007).

To develop efficient and reliable refactoring support tools for mobile apps, there is a need to

better understand the current refactoring practice and its impact on structural quality.

Contributions

1. Contribution 1: Impact of refactoring on code code smells in Android apps

The first contribution of this work is an empirical study that aims at understanding the

impact of refactoring on code smells by analyzing the evolution history of five open-source

Android apps exhibiting a total of 9,600 refactoring operations. We consider 15 common

Android smell types and 10 common traditional Object-Oriented (OO) code smell types.

We started with a preliminary study of the prevalence and co-occurrences of a number of

Android-specific and traditional code smells, and then investigated the impact of different

refactoring operations on these code smells.
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The study delivers several important findings. Firstly, results indicate that code smells are

very prevalent in Android apps, with 68% of classes being affected by Android specific

smells and 63% of classes affected by traditional OO smells. Secondly, developers are

more likely to apply refactoring operations to non-smelly code elements. A total of 25% of

refactorings were applied to traditional OO smells, while 23% of refactorings were applied

to Android smells. Thirdly, these refactoring activities removed only 5% of traditional OO

smells and 1.5% of Android smells.

Moreover, it is worth noting that we observed from the analyzed smell instances that some

classes are often affected by multiple types of code smells. To have detailed analysis of

smells prevalence, we thus assess the phenomenon of smells co-occurrence in the second

contribution.

2. Contribution 2: Co-occurrences of code smells in Android apps

The second contribution of this work is an empirical study where we investigated the

co-occurrence of code smells in Android apps on a large dataset composed of 1,923

open-source apps, 15 types of Android smells and 10 types of OO code smells. We jointly

analyzed (1) the prevalence of the co-occurrence phenomenon, and (2) code smell pairs that

most tend to co-occur.

The key findings of our study indicate that (1) the co-occurrence phenomenon is quite

prevalent in Android apps with 34%, 26% and 51% of classes are affected respectively by

more than one Android, OO and both (i.e., OO and Android) smell types, and (2) there exist

14 smell pairs frequently co-occur together.

Indeed, as the refactoring can be applied to delete code smells, it can also be applied

to improve the software quality, in particular software quality metrics. Thus, in the last

contribution we used a non-smell model which is the software quality metrics, to determine

if they can better explain the refactoring activities that take place during Android app

development.
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3. Contribution 3: Impact of refactoring on quality metrics in Android apps

The last contribution is a study that aims at investigating the impact of refactoring on

quality metrics in Android apps. We mined 300 open-source apps containing 42,181

refactoring operations in total. We determined the effect each refactoring had upon the 10

chosen software quality metrics, and employed the difference-in-differences (DiD) model to

determine the extent to which the metric changes brought about by refactoring differ from

the metric changes in non-refactoring commits.

The results indicate that for most refactoring type and metric combinations, the refactoring

produced no significant change in the metric. On the other hand, some refactoring types

yielded a broad improvement in several metric values. LCOM stood out as the least consistent

metric, improving for some refactoring types and disimproving for others. For the non-

refactoring commits, the metrics exhibit no significant change, other than (unsurprisingly)

the design size metrics.

Outline

Knowing that this document is structured by articles, we present a general review of the literature

followed by three chapters dedicated to each of the contribution. In each chapter, you will find a

discussion of the results and general conclusion. The conclusion and the future work is presented

at the end of this thesis.

Publications

• Oumayma Hamdi, Ali Ouni, Mel Ó Cinnéide and Mohamed Wiem Mkaouer. A Longitudinal

Study of the Impact of Refactoring in Android Applications. In Information and Software

Technology (IST) journal, 2021.

• Oumayma Hamdi, Ali Ouni, Eman Abdullah AlOmar, Mel Ó Cinnéide and Mohamed Wiem

Mkaouer. A large empirical study on the impact of refactoring on quality attribute in

Android applications. In the 8th IEEE/ACM International Conference on Mobile Software

Engineering and Systems (MOBILESoft), 2021.
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• Oumayma Hamdi, Ali Ouni, Eman Abdullah AlOmar and Mohamed Wiem Mkaouer. An

Empirical Study on Code Smells Co-occurrences in Android Applications. In the 5th

International Workshop on Refactoring (IWoR), 2021.



CHAPTER 1

STATE OF THE ART

In this chapter, we introduce the necessary background and concepts for understanding the

subject and as well as the most relevant works for our topic. This includes (i) the mobile

system on which we have worked throughout this thesis which is the Android system, (ii) code

smells and their prevalence, evolution, and co-occurrences and (iii) the impact of refactoring on

different software quality aspects, including code smells and quality metrics.

1.1 Basic concepts

1.1.1 Android System

Android is an operating system developed by Google for mobile devices. It is based on a

Linux kernel and Android applications are usually developed in Java. We chose to work on

Android because it is a free operating system. It is also the most popular mobile system. Google

says that in 2020 there are more than 2.5 billion Android devices worldwide2. Moreover, this

system offered us the opportunity to access a large number of applications more simply than its

competitors.

The Android architecture is summarized in Figure 1.1. In our work, we are interested in the JAVA

API framework in green on which all the applications are based. Thus, most of the code smells

that we address in this thesis are linked to this application framework, in particular because they

appear in classes which inherit from this framework.

2 https://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-

store/



8

Figure 1.1 Android Architecture

Taken from Android Developers (2021)
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1.1.2 Refactoring

Refactoring is the process of reworking the program’s source code without changing its

functionality (e.g., preserving its external behavior) to improve it structure in terms of readability,

complexity, maintainability, extensibility, reusability, etc. The concept of refactoring was

introduced by Opdyke (1992) and popularized later in Fowler’s well-known book Fowler, Beck,

Brant, Opdyke & Roberts (1999). Fowler first provided a comprehensive list of code smells

along with a set of possible refactoring operations to fix each smell type. In this work, we focus

on 12 common refactoring operations, as indicated in Table 1.1.

Table 1.1 The list of studied refactoring operations

Ref Refactoring Description Level
MM Move Method Moves a method from a class to another class. Method

EM Extract Method Creates a new method from an existing fragment of code. Method

IM Inline Method
Replaces calls to the method with the method’s content

and delete the method itself.
Method

RM Rename Method Renames Method. Method

EMM Extract and Move Method Extracts and moves method. Method

PDM Push Down Method
Moves a method from a class to those subclasses

that require it.
Method

PUM Pull Up Method
Moves a method from a class(es) to its immediate

superclass.
Method

MA Move Attribute Moves Attribute from a class to another class. Attribute

PDA Push Down Attribute
Moves an attribute from a class to those subclasses

that require it.
Attribute

PUA Pull Up Attribute
Moves an attribute from a class(es) to their immediate

superclass.
Attribute

ESC Extract Super Class
Creates a superclass from two classes with common

attributes and methods.
Class

RC Rename Class Renames a class. Class

1.1.3 Code smells

Code smells are implementation problems that come from poor design and/or coding choices.

They are viewed as problem symptoms that can make the maintenance and evolution of software

more challenging Fowler et al. (1999); Brown, Malveau, McCormick & Mowbray (1998a).

Software developers may introduce code smells during the initial development or during the
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evolution of the system. Such smells may increase the risk of bugs and failures Palomba et al.

(2018a); Khomh, Di Penta, Guéhéneuc & Antoniol (2012).

In the context of Android applications, there are two types of code smells that are of concern in

this study:

• Object-Oriented smells: This include regular OO smells such Long Method, Feature Envy,

God Class, as defined by Fowler et al. (1999) can exist in Android apps. A non-exhaustive

list that contains 10 of the most common OO code smells is reported in Table 1.2.

• Android-specific smells: Certain specific smells are prevalent only in Android apps, e.g., Slow

Loop, Leaking Thread, and Durable Wakelock. A list of 15 common Android-specific code

smells proposed by Reimann, Brylski & Aßmann (2014) and Palomba, Di Nucci, Panichella,

Zaidman & De Lucia (2017a) is described in Table 1.3.

Table 1.2 List of traditional Oriented-Object code smells

Taken from Bavota et al. (2015, p.3) and Palomba et al. (2018, p.3)

Abbreviation Code smell Description
BC Blob Class A large class implementing different responsibilities and centralizing most of the system

processing.

CC Complex Class A class having at least one method having a high cyclomatic complexity.

FE Feature Envy A method is more interested in a class other than the one it actually is in.

LC Lazy Class A class having very small dimension, few methods and low complexity. It does not do

enough to justify its existence.

LM Long Method A method that is unduly long in terms of lines of code.

LPL Long Parameter List A method having a long list of parameters some of which are avoidable

MC Message Chain A long chain of method invocations is performed to implement a class functionality.

RR Refused Bequest A class that uses only some of its inherited properties while redefining most of the inherited

methods, thus signaling a poorly-designed hierarchy.

SC Spaghetti Code A class implementing complex methods interacting between them, with no parameters, using

global variables.

SG Speculative Generality A class declared as abstract having very few children classes using its methods.
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Table 1.3 List of Android-specific code smells

Taken from Reimann et al. (2014, p.2) al. and Palomba et al. (2017, p.2)

Abbreviation Android smell Description

DTWC Data Transmission Without Compression A method that transmits a file over a network infrastructure without compressing it.

DR Debuggable Release Leaving the attribute android:debuggable true when the app is released.

DWL Durable Wakelock A method using an instance of the class WakeLock acquires the lock without calling

the release.

IDFP Inefficient Data Format and Parser A method using treeParser, slows down the app, and should be avoided and replaced

with other more efficient parsers (e.g., StreamParser) Reimann et al. (2014).

IDS Inefficient Data Structure A method using HashMap <Integer,Object>.

ISQLQ Inefficient SQL Query A method defining a JDBC connection and sending an SQL query to a remote server.

IGS Internal Getter and Setter Accessing internal fields via getters and setters is expensive in Android development

and, thus, internal fields should be accessed directly.

LIC Leaking Inner Class A non-static nested class holding a reference to the outer class.

LT Leaking Thread An Activity starts a thread and does not stop it

MIM Member Ignoring Method Non-static methods that do not access any internal properties.

NLMR No Low Memory Resolver A mobile app that does not contain the method onLowMemory.

PD Public Data A class that does not define the context or define the context as non-private.

RAM Rigid Alarm Manager A class using an instance of AlarmManager does not define the method setInexact−

Repeating.

SL Slow Loop Using the for-loop version.

UC Unclosed Closable A class that does not call such the close method to release resources that an object is

holding.

1.1.4 Quality metrics

Various quality metrics are used to measure the quality of a software system. One of the most

widely used metric suites is that defined by Chidamber and Kemerer. We selected and used in

our study a non-exhaustive list of eight common quality metrics as described in Table 1.4.
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Table 1.4 The list of quality metrics employed in this study

Abbreviation Metrics Description

CBO Coupling Between Objects Number of classes that are coupled to a particular class Chidamber & Kemerer (1994).

DIT Depth of Inheritance Tree Number of classes that a particular class inherits from Chidamber & Kemerer (1994).

LOC Lines of code Number of lines of code ignoring spaces and comments Aniche (2016).

LCOM Lack Of Cohesion of Methods Numbers of pairs of methods that shared references to instance variables

Chidamber & Kemerer (1994).

NOSI Number Of Static Invocations Number of invocations of static methods Aniche (2016)

RFC Response For a Class Number of method invocations in a class Chidamber & Kemerer (1994).

VQTY Variable Quantity Number of declared variables Aniche (2016).

WMC Weight Method Class The sum of all the complexities of the methods (McCabe’s cyclomatic complexity) in

c the class Chidamber & Kemerer (1994).

1.2 Related Work

1.2.1 Studies about the evolution and diffuseness of code smells

A first study on code smells during the evolution of software systems has been conducted by

Chatzigeorgiou and Manakos Chatzigeorgiou & Manakos (2010). The study shows that the

number of instances of code smells increases as system evolves and persists up to the latest

examined version, and developers do not perform refactorings in order to remove them. Similarly,

a study by Peters and Zaidman Peters & Zaidman (2012) shows that even when developers

are aware of the presence of code smells in the source code, they are unlikely to invest time

on refactoring to remove them. The reasons of such practice are explored by Arcoverde et

al. Arcoverde, Garcia & Figueiredo (2011), who reported a survey in order to understand the

longevity of code smells and showed that code smells often remain in source code for a long

time and the main reason to postpone their removal through refactoring activities is to avoid API

modifications Arcoverde et al. (2011).

The evolution of code smells has also been studied by Olbrich et al. Olbrich, Cruzes,

Basili & Zazworka (2009) who analyzed the historical data of two projects, namely Lucene and

Xerces, over several years and concluded that God Classes and Shotgun Surgery have a higher
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change frequency than other classes noting that they neither performed an analysis to control

the effect of the size on their results nor studied the kinds of changes affecting these OO code

smells. Moreover, Vaucher et al.Vaucher, Khomh, Moha & Guéhéneuc (2009) considered in

their study on God Class code smells to investigate whether they affect software systems for

long periods of time and making a comparison with whether the code smell is refactored.

Habch et al. Habchi, Rouvoy & Moha (2019b) investigated the survival of eight types of Android

code smells. The study reports that while in terms of time Android code smells can remain in

the codebase for years before being removed, it takes an average of 34 effective commits to be

removed. However, there is no investigation on what types of refactoring changes are performed

to remove Android smells. Recently, Bessghaier et al. Bessghaier, Ouni & Mkaouer (2020)

studied a new emerging category of code smells in modern Web applications and analyzed

their prevalence and found that such smells do increase code change proneness. Delchev and

Harun Delchev & Harun (2015) were interested in the frequency of code smells and the severity

of their effects. They conducted a survey with 73 developers, on 10 traditional code smells,

about how frequently developers encountered a smell and how likely they were to refactor such

smells. With regards to Android projects, the survey found that developers faced Long Method

smells more often than other smells, but Shotgun Surgery was more likely to be refactored.

Furthermore, frequency and severity vary relatively to the programming language. As for

developer experience, the study indicates that the more experienced the developers, the less

likely they face smells. However, when these more experienced developers do face a smell

instance, they had a higher tendency to refactor that smell.

Vidal et al. Vidal, Marcos & Díaz-Pace (2016) observed that the number of code smells

suggested by existing metric-based tools usually exceed the number of design problems that

developers can deal with. For this reason, they proposed a prioritization approach based on

previous modifications of a class, important modifiability scenarios for the considered system,

and the relevance of the code smell type. Sharma et al. Sharma, Singh & Spinellis (2020)

investigated the relationship between design and architecture smells in OO software systems and

found that the density of code smells does not depend on the project size and that architecture
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smells and design smells are highly correlated. The study results suggest that design and

architecture smell pairs do not generally co-occur.

Recently, Peruma et al. Peruma et al. (2020, 2019) conducted an empirical study on the

occurrences and distribution of test smells in Android apps. Their findings show a widespread

occurrence of test smells in apps. The study shows that Android apps tend to exhibit test smells

early in their lifetime with different degrees of co-occurrences on different smell types. The

study also demonstrates that test smells can be used as an indicator of necessary preventive

software maintenance for test suites. Bavota et al. Bavota, Qusef, Oliveto, De Lucia & Binkley

(2012) analyzed the distribution of unit test smells in 18 software systems providing evidence

that they are widely spread, but also that most of them have a strong negative impact on code

comprehensibility. The diffusion of Android smells has been recently studied by Palomba et al.

Palomba, Di Nucci, Panichella, Zaidman & De Lucia (2019) who conducted a large empirical

study on Android apps. Their findings show that Leaking Thread, Member Ignoring Method,

Slow Loop and, Data Transmission Without Compression Android smells occur more frequently

than others. Tufano et al. Tufano et al. (2016) obtained similar results by reporting a large-scale

empirical study, which showed that test smells are usually introduced by developers when the

corresponding test code is committed in the repository for the first time and they tend to remain

in a system for a long time. The study is complementary to the one by Tufano et al., since it

is focused on the analysis of the design flaws arising in the production code. Mannan et al.

Mannan et al. (2016) compared the distribution of OO code smells in Android applications

to the ones in desktop apps. Despite the different nature of mobile applications, they did not

observe any major differences in terms of density.

Synthesis: Our study on the prevalence of Android and traditional OO code smells is comple-

mentary to these studies discussed above. However, our goal is to go in deeper and analyze

the extent to which developers apply refactoring to fix Android and OO smells as well as the

effectiveness of refactoring at removing such smells.
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1.2.2 Studies about the co-occurences of code smells

Palomba et al. Palomba et al. (2018b) conducted a large-scale empirical study aimed at

quantifying the diffuseness of the co-occurrence phenomenon in terms of how frequently code

smells occur together. The results of this study indicate 59% of smelly-classes are affected

by more than one smell. In particular, six smell types frequently co-occur together (e.g.,

Complex Class and Message Chains). In the same context, Garg et al. Garg, Gupta, Bansal,

Mishra & Bajpai (2016) investigate the co-occurrence of code smells in two open-source

software, Mozilla and Chromium. They observed that co-occurrence patterns are presented

in both the software with a small variation in their co-occurrence percentage. Some code

smells are more common such as Data Clumps, Internal Duplication, and External Duplication.

Similarly, a study by Fontana et al. Fontana, Ferme & Zanoni (2015) examined code smells

co-occurrence in a set of 111 open source systems. They observe that Brain Method has the

largest share of co-occurrences. However, they found no co-occurrence between God Class

and Data Class. Recently, Muse et al. Muse et al. (2020) studied a new category of SQL code

smells data-intensive systems finding that some traditional code smells have a higher association

with bugs compared to SQL code smells.

As for studies investigating the effects between code smell co-occurrences and code maintain-

ability. Abbes et al. Abbes, Khomh, Gueheneuc & Antoniol (2011) examined the interactions

between code smells and their effects. The authors concluded that when code smells appeared

isolated, they had no impact on maintainability, but when they appeared interconnected, they

brought a major maintenance effort. Yamashita et al. Yamashita, Zanoni, Fontana & Walter

(2015) presented an extension study on inter-smell relations in both open and industrial systems,

finding that the relation between smells vary depending on the type of system taken into account.

Yamashita and Moonen Yamashita & Moonen (2013b) analyzes the impact of the interSmell

relations in the maintainability of four medium-sized industrial systems written in Java. The

authors detect significant relationships between Feature Envy, God Class and Long Method

and conclude that Inter-Smell relationships are associated with problems during maintenance

activities .
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Synthesis: We observe from the existing literature that most studies focus basically on desktop

applications while little knowledge is available for mobile apps. Existing studies are merely

limited to some particular code smell types. In our study, we focus basically on Android apps

while considering the analysis of both Android-specific and traditional OO code smells.

1.2.3 Studies about the impact of refactoring on code smells

Bavota et al. Bavota et al. (2015a) analyzed various versions of three Java open source projects

to investigate whether refactorings applied to classes having a low level of maintainability and

examined their ability to remove traditional OO code smells. The study shows that 42% of

refactoring operations are performed on smelly-classes, only 7% of them removed code smells

from the affected classes. Refactorings are detected at the release level using Ref-Finder tool

Prete, Rachatasumrit, Sudan & Kim (2010). Besides the low accuracy of Ref-Finder achieving

an overall precision of 35% and an overall recall of 24% as shown in prior studies Hegedűs,

Kádár, Ferenc & Gyimóthy (2018); Kádár, Hegedűs, Ferenc & Gyimóthy (2016); Soares, Gheyi,

Murphy-Hill & Johnson (2013), our experimental setup is quite different. We study Android apps

while Bavota et al. Bavota et al. (2015a) focus on desktop apps as well as distinguishing between

both Android specific and traditional OO smells. We also follow a fine grained analysis of

refactoring changes at the commit level using RefactoringMiner Tsantalis, Mansouri, Eshkevari,

Mazinanian & Dig (2018b) instead of the release level to achieve fine grained analysis and

higher level of precision and recall in the detected refactorings. To follow up with Bavota et al.

Bavota et al. (2015a), Yoshida et al. Yoshida, Saika, Choi, Ouni & Inoue (2016) revisited the

relationship between code smells and refactoring in desktop applications. The study identified

different smell-refactoring patterns in practice and found some patterns that match with Fowler’s

catalog Fowler et al. (1999), while highlighting other new patterns refactorings instances on

their studied system.

Recently, Muse et al. Muse et al. (2020) studied a new category of SQL code smells in

data-intensive systems finding that SQL code smells have a weak co-occurrence with traditional

OO code smells a weaker association with bugs than that of traditional code smells.



17

Bavota et al. Bavota et al. (2015a) analyzed various versions of three Java open source projects

to investigate whether refactorings applied to classes having a low level of maintainability and

examined their ability to remove traditional OO code smells. The study shows that 42% of

refactoring operations are performed on smelly-classes, only 7% of them removed code smells

from the affected classes. Refactorings are detected at the release level using Ref-Finder tool

Prete et al. (2010). Besides the low accuracy of Ref-Finder achieving an overall precision of

35% and an overall recall of 24% as shown in prior studies Hegedűs et al. (2018); Kádár et al.

(2016); Soares et al. (2013), our experimental setup is quite different. We study Android apps

while Bavota et al. Bavota et al. (2015a) focus on desktop apps as well as distinguishing between

both Android specific and traditional OO smells. We also follow a fine grained analysis of

refactoring changes at the commit level using RefactoringMiner Tsantalis et al. (2018b) instead

of the release level to achieve fine grained analysis and higher level of precision and recall in the

detected refactorings. Also, Saika et al. investigated the impact of the severity of code smells on

refactoring Saika, Choi, Yoshida, Haruna & Inoue (2016). Their results show that refactoring did

not decrease the severity of code smells significantly. In later work, Yoshida et al. Yoshida et al.

(2016) revisited the relationship between code smells and refactoring in desktop applications.

Their study identified various smell-refactoring patterns in practice and found some patterns

that match with those in Fowler’s catalog Fowler et al. (1999), while highlighting other new

patterns of refactorings in the systems they studied. They found similar results indicating that

the refactorings applied rarely correspond to the type of the code smells, as would be predicted

by the patterns in Fowler’s catalog.

Similarly, Cedrim and Garcia et al. Cedrim et al. (2017) analyzed how 16,566 refactorings

of 10 different types affect the density of 13 types of code smell in the version histories of 23

projects. Their results reveal that 79.4% of refactorings touched smelly elements, 57% did not

reduce smell occurrence, 9.7% of refactorings removed smells, and 33.3% introduced new ones.

Fontana and Spinelli Fontana & Spinelli (2011) analyzed the impact of refactoring on quality

metrics when applied to remove code smells. They selected four code smells and six quality

metrics selected to evaluate the code and design quality of a system after refactoring. They
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found that the only metric, whose value increased is the Tight Class Cohesion (TCC) for all the

refactoring applied for smell removal and thus suggest that following the advice of correcting

smells by refactoring does not predictably improve other quality metrics. Tavares et al. Tavares,

Bigonha & Figueiredo (2020) conducted an empirical study analyzing the impact of refactoring

on code smells. They selected seven open-source Java systems, applied the Move Method,

Replace Type Code and Replace Conditional refactorings and measured their impact on ten code

smells detected by five different tools. They observed that refactorings may decrease, increase,

or have neutral impact on the number of code smells. Table 1.5 summarizes the findings for the

studied code smells according to previous works and to Fowler’s book, highlighting for each

smell the refactoring types that would be expected to be used to resolve the smell.

Table 1.5 Code smells investigated in this study and the refactorings that would be

anticipated to be employed to resolve them

Adapted from Bavota et al. (2015, p.12), Fowler et al. (1999, p.63), Yoshida et al. (2016,

p.3) and Ouni et al. (2016, p.7)

Code smells Refactorings

Blob Class

Move Method, Extract Method, Inline Method, Extract And Move Method, Push

Down Method Pull Up Method, Move Attribute, Push Down Attribute, Pull Up

Attribute, Extract Super Class

Complex Class
Move Method, Extract Method, Extract And Move Method, Push Down Method,

Pull Up Method, Move Attribute, Push Down Attribute, Pull Up Attribute

Feature Envy
Move Method, Extract Method, Extract And Move Method, Push Down Method

Pull Up Method, Push Down Attribute, Pull Up Attribute

Lazy Class
Move Method, Extract And Move Method, Pull Up Method, Move Attribute,

Pull Up Attribute

Long Method Extract Method, Inline Method, Extract And Move Method

Long Parameter List Extract Method, Extract And Move Method,

Message Chain Move Method, Extract Method, Extract And Move Method

Refused Bequest
Move Method, Extract And Move Method, Push Down Method, Move Attribute,

Push Down Attribute

Spaghetti Code Extract Class, Extract And Move Method

Speculative Generality
Move Method, Inline Method, Extract And Move, Push Down Method, Pull Up

Method, Move Attribute, Push Down Attribute, Pull Up Attribute

Other research efforts have been focusing on refactoring and code smells prioritization. Zhang

et al. Zhang, Baddoo, Wernick & Hall (2011) provided a prioritization schema among six

analyzed smells according to their association with software faults. Sharma et al. Sharma,

Suryanarayana & Samarthyam (2015) studied refactoring adoption challenges in industry through
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a survey with developers and advocated the need to move software development toward more

effective refactoring adoption. This study aligns reasonably well with our findings in the

context of mobile software development. Bois and Mens Du Bois & Mens (2003) measured

the relationship between five quality metrics and three refactoring types, Extract Method,

Encapsulate Field, and Pull up Method. The study proposed a formalism based on the Abstract

Syntax Tree (AST) representation of the source code, extended with cross-references to describe

the impact of refactoring on only five metrics. The results of their work showed both positive

and negative impacts on the studied metrics. Ouni et al. Ouni, Kessentini, Bechikh & Sahraoui

(2015a) introduced a refactoring prioritization approach based on the severity and importance of

smells to better manage the developers efforts.

While our study constitutes, to the best of our knowledge, the first empirical study that investigates

the impact of refactoring on code smells in Android apps using association rule mining, we

found a number of similarities between our results for OO code smells and prior works on OO

smells:

• Similar to Bavota et al. Bavota et al. (2015a), Cedrim and Garcia et al. Cedrim et al. (2017)

and Yoshida et al. Yoshida et al. (2016), we found that refactoring rarely removes code

smells: While an average of 25% of refactorings are applied to OO code smells, only 5%

remove these smells.

• Similar to Bavota et al Bavota et al. (2015a), code elements affected by Feature Envy and

Long Method code smells are more likely to be refactored.

• Similar to Bavota et al. Bavota et al. (2015a) and Yoshida et al. Yoshida et al. (2016) (Table

1.5), we found that some pairs of code smells and refactorings co-occur together such as

Long Method → Extract Method and Feature Envy → Move Method.

Synthesis: We observe from the existing literature that most studies focus on desktop applications

while little knowledge is available for mobile apps. Existing studies are merely limited to

some particular code smell types, few specific quality metrics, or/and few refactoring types. In

our study, we focus on Android apps while considering the analysis of both Android-specific

and traditional OO code smells. While current studies collect refactorings based on mining
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developers documentation, or release-based static analysis tools, we use a fine-grained detection

of refactorings based on RefactoringMiner to reduce any any bias towards imprecise collection

of refactorings.

1.2.4 Studies about the impact of refactoring on quality metrics

Several research efforts have focused on studying when and how to apply refactoring. Fowler

defined the first refactoring catalog that contains 72 refactoring operations and specified a guide

containing information on when and how to apply them Fowler et al. (1999). Later, Simon

et al. Simon, Steinbruckner & Lewerentz (2001) presented a generic approach to generate

visualizations that supports developers to identify bad smells and propose adequate refactorings.

They focus on use relations to propose move method/attribute and extract/inline class refactorings.

They define a distance-based cohesion metric, which measures the cohesion between attributes

and methods with the aim of identifying methods that use or are used by more features of

another class than the class that they belong to, and attributes that are used by more methods

of another class than the class that they belong to. The calculated distances are visualized

in a three-dimensional perspective supporting the developer to manually identify refactoring

opportunities.

Various research works attempted to quantitatively evaluate whether refactoring indeed improves

quality in traditional software systems. Alshayeb et al. Alshayeb (2009) investigated the

impact of refactoring operations on five quality attributes, namely adaptability, maintainability,

understandability, reusability, and testability. Their results highlight that benefits brought by

refactoring operations on some code classes are often counterbalanced by a decrease of quality

in some other classes. Pantiuchina et al. Pantiuchina, Lanza & Bavota (2018) explored the

correlation between code metrics and the quality improvement explicitly reported by developers

in commit messages. The study shows that quality metrics sometimes do not capture the

quality improvement documented by developers. Similarly, AlOmar et al. AlOmar et al. (2019)

conducted a large scale empirical study on open-source java projects to investigate the extent to

which refactorings impact on quality metrics match with the developers perception. The study
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results indicate that quality metrics related to cohesion, coupling and complexity capture more

developer intentions of quality improvement than metrics related to encapsulation, abstraction,

polymorphism and design size

Tahvildari & Kontogiannis Tahvildari & Kontogiannis (2003) analyzed the association of

refactorings with a possible effect on maintainability enhancements through refactorings. They

use a catalogue of object-oriented metrics as an indicator for the transformations to be applied

to improve the quality of a legacy system. The indicator is achieved by analysing the impact of

each refactoring on these object-oriented metrics. Ó Cinnéide et al. Ó Cinnéide et al. (2012)

investigated the impact of refactoring on five popular cohesion metrics using eight Java desktop

systems. Their results demonstrate that cohesion metrics disagree with each other in 55% of

cases. Furthermore, Geppert et al. Geppert, Mockus & Robler (2005) empirically investigated

the impact of refactoring on changeability. They considered three factors for changeability:

customer reported defect rates, effort, and scope of changes. Szoke et al. Szóke, Antal, Nagy,

Ferenc & Gyimóthy (2014) performed a study on five software systems to investigate the

relationship between refactoring and code quality. They show that small refactoring operations

performed in isolation rarely impact software quality. On the other side, a high number of

refactoring operations performed in block helps in substantially improving code quality.

Strogglos and Spinellis Stroggylos & Spinellis (2007) investigated the impact of refactoring on

eight OO quality metrics. Their results indicate that refactoring caused a non-trivial increase in

some specific metrics such as LCOM, Ca, RFC leading to less coherent classes or assigning more

responsibilities to other classes. Kataoka et al. Kataoka, Imai, Andou & Fukaya (2002) studied

the refactoring effect on various coupling metrics, comparing the metrics before and and after

the refactorings Extract Method and Extract Class, which were performed by a single developer

in desktop C++ programs. More recently, Cedrim et al. Cedrim et al. (2016) conducted a

longitudinal study of 25 desktop projects to examine the impact of refactoring on software

quality. The results indicate that only 2.24% of refactorings removed code smells while 2.66%

of the refactorings introduced new ones.
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Synthesis: We observe from the existing literature that most studies focus basically on desktop

applications while little knowledge is available for mobile apps. Furthermore, existing studies

are merely limited to some particular quality metrics, or/and few refactoring types. In our study,

we focus on Android apps while considering the analysis of more quality metrics. While current

studies collect refactorings based on mining developers documentation, or release-based static

analysis tools, we use a fine grained detection of refactoring based on RefactoringMiner to

reduce any bias towards imprecise collection of refactorings. Furthermore, one of the limitations

in the state-of-the-art studies is that they do not consider that refactoring operations are typically

accompanied with other code changes in either the commit Stroggylos & Spinellis (2007);

AlOmar et al. (2019); Cedrim et al. (2016) or release levels Bavota et al. (2015a); Alshayeb

(2009); Chávez, Ferreira, Fernandes, Cedrim & Garcia (2017). Such code changes can add more

noise to the analyzed quality metrics values, and impact the final outcome the metrics analysis.

In our study, we adopt a causal inference based on the DiD model Angrist & Pischke (2008) to

better assess the impact of refactoring on quality metrics and assure that the metrics variations

are due to refactoring.

1.3 Conclusion

Based on our literature review, we observe that we still lack knowledge about various aspects

(i.e., refactoring, code smells and quality metrics) in the context of mobile apps. Most of the

reviewed research works only studied the object-oriented systems. Thus, in our work, we explore

mobile apps to address these knowledge lacks and provide necessary elements to understand

these aspects . We start by addressing the lack of studies by presenting in the upcoming chapter

an empirical study that explores the impact of refactoring on code smells in Android apps. We

focus basically on Android apps while considering the analysis of both Android-specific and

traditional OO code smells.
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2.1 Abstract

Context: Mobile applications have to continuously evolve in order to meet new user requirements

and technological changes. Addressing these constraints may lead to poor implementation and

design choices, known code smells. Code refactoring is a key practice that is employed to ensure

that the intent of a code change is properly achieved without compromising internal software

quality. While previous studies have investigated the impact of refactoring on traditional code

smells in desktop applications, little attention has been paid to the impact of refactoring activities

in mobile application development.

Objective: We aim to develop a broader understanding of the impact of refactoring activities on

Android and traditional code smells in Android apps.

Method: We conduct a longitudinal empirical study by analyzing the evolution history of five

open-source Android apps comprising 652 releases and exhibiting a total of 9,600 refactoring

operations. We consider 15 common Android smell types and 10 common traditional Object-
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Oriented (OO) code smell types to provide a broad overview of the relationship between

refactoring and code smells.

Results: We find that code smells are widespread across Android applications, but smelly classes

are not particularly targeted by refactoring activities and, when they are, it is rare for refactoring

to actually remove a smell.

Conclusions: These somewhat surprising results indicate that it is critical to understand better

the real quality issues that Android developers face, and to develop a model of code smells and

refactoring that can better address their needs in practice.

2.2 Introduction

Android is the dominant operating system for mobile devices Research (2020) and currently runs

on approximately 86% of smart phones worldwide, with over 2.5 billion monthly active users 3.

As a consequence of this popularity, the Android app marketplace is extremely congested and

strong competition makes it necessary to build mobile apps rapidly and evolve them continuously

to meet the needs of users. These rapid changes may lead to poor design and implementation

choices, which are manifested in code smells Cedrim et al. (2017); Bavota et al. (2015a);

Palomba, Oliveto & De Lucia (2017b); Ouni, Kessentini, Sahraoui & Boukadoum (2013). To

make matters more challenging, a new category of smells, known as Android smells, has emerged

in Android apps Reimann et al. (2014); Palomba et al. (2017a, 2019); Hecht, Moha & Rouvoy

(2016); Carette, Younes, Hecht, Moha & Rouvoy (2017). The presence of traditional and

Android code smells can degrade the quality of Android apps, reduce their performance and

hinder their evolution Palomba et al. (2019); Hecht et al. (2016); Morales, Saborido, Khomh,

Chicano & Antoniol (2017).

Refactoring is seen as a possible solution to this problem. Supporters claim that it helps to

improve software quality and remove code smells by reorganizing and/or cleaning code fragments

Fowler et al. (1999); AlOmar et al. (2019); Ouni, Kessentini, Sahraoui, Inoue & Deb (2016);

3 https://venturebeat.com/2019/05/07/android-passes-2-5-billion-monthly-active-devices
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Mkaouer et al. (2015). However, many studies dispute this claim Chatzigeorgiou & Manakos

(2010); Bavota et al. (2015a), finding that refactoring practices may present different challenges

in the context of Android apps due to the rapid evolution of Android apps, their short release

deadlines, small code base, and heavy reuse of external libraries and classes Minelli (2012);

Ruiz, Nagappan, Adams & Hassan (2012); Xu, Wu & Chen (2013). Indeed, the characteristics

of mobile platforms, the constraints on resources (memory, CPU, varying screen sizes, etc.)

as well as the highly dynamic nature of the mobile app market and its volatile user needs can

play an important role in mobile app development and evolution. Unlike object-oriented (OO)

software systems AlOmar et al. (2019); Ó Cinnéide et al. (2012); Alshayeb (2009); Bavota et al.

(2015a); Cedrim et al. (2016); Stroggylos & Spinellis (2007); Tahir et al. (2020), the impact of

refactoring on code smells in mobile apps has received little attention. Hence, much uncertainly

exists about the relationship between refactoring and code smells/quality aspects in mobile apps.

To develop practical and reliable refactoring tools for mobile apps, practitioners and researchers

need to understand current refactoring practices and their impact on code smells. However, to

the best of our knowledge, little has been reported about the effects of refactoring on code smells

in mobile apps.

In order to address this gap and to improve current knowledge about the impact of refactoring

on code smells in Android apps, we performed a study of refactoring application and smell

removal in five open-source Android applications. We analyze the impact of commonly used

refactorings on 10 common OO code smells and 15 Android-specific smells.

In particular, we investigate whether developers apply refactoring to smelly code fragments and

how effective refactoring is at removing code smells. To collect our datasets, we extracted a

total of 9,600 applied refactoring operations along with commit history, as well as all OO and

Android smell instances.

We provide our replication package containing the collected data, the obtained results as well

as the used scripts publicly available for future replications and extensions dataset (2020). In

particular, our study addresses the following research questions.
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RQ1: How prevalent are code smells in Android applications?

RQ2: To what extent do developers apply refactorings to smelly classes?

RQ3: To what extent do refactoring operations applied to smelly classes removecode smells?

2.3 Empirical Study Design

The aim of this study is to investigate the potential relationship that refactoring, occurring in

the development of an Android app, can have with code smells. Software refactoring might

interfere in the presence of smelly or low quality code elements. We first study the prevalence

of code smells in Android apps, then we analyze if the presence of code smells or low quality

code elements represent a trigger for refactoring. Thereafter, as a consequence, we assess the

effectiveness of refactoring at removing code smells and improving quality.

2.3.1 Goals and Research Questions

Our study aims at addressing the following research questions.

• RQ1. How prevalent are code smells in Android applications? This preliminary research

question aims to determine the prevalence of smells in Android apps and to identify the most

frequently-occurring Android and OO smells.

• RQ2. To what extent do developers apply refactorings to smelly classes? This research

question investigates how Android developers practice refactoring and which particular

smells are more or less likely to undergo refactoring.

• RQ3. To what extent do refactoring operations applied to smelly classes remove code

smells? The goal of RQ3 is to investigate the efficiency of refactorings in fixing code smells

in Android apps. It enables a better understanding of the relationship between refactoring

and Android and traditional OO smells.
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2.3.2 Study steps and data collection

This section presents all phases of the study designed to answer our research questions. The

process is represented in Figure 2.1 and comprises a sequence of five main steps, (1) Android

apps selection, (2) refactoring extraction, (3) commit extraction and (4) Android and traditional

code smells detection.

Five non-trivial 
Android apps 

Step 1: Android apps 
selection

Step 2: Refactorings
detection

Step 3: Commit 
changes extraction

List of applied 
refactoring 
operations

Commit changes
& Refactoring 

commits

Step 4: Android & OO 
traditional code smells 

detection

RQ1: Android & traditional code smells 
diffuseness.

RQ2: The extent to which developers apply 
refactorings on smelly classes.

RQ3: The extent to which refactorings do 
remove Android and traditional code smells.List of Android 

and traditional 
code smells

Figure 2.1 Overview of our study

2.3.2.1 Step 1: Selection of subject applications

The first step in our study involves selecting experimental Android apps from GitHub to obtain a

study sample. The selected Android app projects, written in Java, cover different application

domains, are of different sizes and have a varying number of contributors. Moreover, all the

selected apps have (1) over 1,000 commits to ensure that they are actively maintained (i.e., no

single commit or toy project), (2) over 100,000 user installations from Google Play Store, and

(3) over 100 stars on GitHub to ensure that the studied apps are non-trivial ones Munaiah, Kroh,

Cabrey & Nagappan (2017). We then randomly selected five apps from this set to be the subjects

of our study. This sample size is larger than the size of samples used in related studies on

refactoring and code smells Bavota et al. (2015a); Chatzigeorgiou & Manakos (2010); Tsantalis,

Guana, Stroulia & Hindle (2013); Stroggylos & Spinellis (2007).

Table 2.1 presents a summary of the selected apps. The apps consist of a total of 20,132 commits

and 652 releases from the open source Android apps Apg, NetGuard, Omni-Notes, Congress
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and Notepad. Apg4 is the Android Privacy Guard application that originally brought email

encryption to the Android platform. NetGuard5 provides simple and advanced ways to block

access to the Internet through WiFi and mobile connection. Omni-Notes6 is a note taking app

that provides a simple interface while keeping smart behavior. Congress7 is an app for tracking

U.S. Congress news and updates. Finally, Notepad8 is an outliner application for taking notes

and managing to-do lists.

Table 2.1 Characteristics of the analyzed Apps

App #Commits #Releases #Classes LOC #Refactorings #OO smells #Android smells

Apg 4,367 3 135−272 18,735−37,471 2,921 286−533 212−377

NetGuard 3,566 365 6−41 528−11,099 2,333 5−132 6-72

Omni-Notes 2,988 127 164−190 14,494−15,875 1,983 217−482 125−142

Congress 1,689 59 69−88 8,892−10,358 1,523 54−85 74−111

Notepad 1,522 98 73−161 22,433−29,294 840 436−605 119−227

2.3.2.2 Step 2: Refactoring collection

In this step, we collect all the refactoring operations applied to the studied apps. We use

RefactoringMiner Tsantalis et al. (2018b) to support the detection of the applied refactoring

instances. RefactoringMiner is a command-line based open source tool 9 that is built on top

of the UMLDiff Xing & Stroulia (2005) algorithm for differencing object-oriented models.

RefactoringMiner has been reported to achieve a precision of 98% and recall of 87% Tsantalis

et al. (2018b); Silva, Tsantalis & Valente (2016). The tool walks through the commit history of a

project’s Git repository to extract refactorings between consecutive commits. RefactoringMiner

supports the detection of various common refactoring types from Fowler’s catalog. From the

supported refactorings, our extraction process identifies 12 different common refactoring types

as presented earlier in Table 1.1 (See section 1.1.2).

4 https://github.com/thialfihar/apg

5 https://github.com/M66B/NetGuard

6 https://github.com/federicoiosue/Omni-Notes

7 https://github.com/konklone/congress-android

8 https://github.com/spacecowboy/NotePad

9 https://github.com/tsantalis/RefactoringMiner
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2.3.2.3 Step 3: Commit changes extraction

After the extraction of all refactoring operations, we collect the IDs of all refactoring commits,

i.e., commits in which a refactoring operation was applied, as well as the IDs of the commits

that immediately precede the refactoring commit. The GitHub API facilitates this; in particular,

we use the git clone command to download the source code of each refactoring commit as

well as its immediately preceding commit. These commits enable the identification of the code

smells before and after the application of refactoring in Steps 4 and 5.

2.3.2.4 Step 4: Detection of Android and traditional OO smell instances

In this step we identify smells in the source code of the apps. For each refactoring commit, we

identify the presence of any instance of OO or Android smells at the class level.

Android-specific smells: Table 1.3 lists the Android code smells employed in this study (See

section 1.1.3). We use aDoctor 10, a command-line based tool that implements rules provided by

Palomba et al. Palomba et al. (2017a) to identify common Android smells. The tool achieves a

high detection precision of 98%, and a high recall of 98%, as reported in Palomba et al. Palomba

et al. (2017a).

Traditional OO code smells: We consider a set of 10 common types of traditional code smells

as defined by Fowler Fowler et al. (1999) and Brown et al. Brown et al. (1998a) that have

been widely studied in prior works Palomba et al. (2018b, 2017b); Bavota et al. (2015a); Ouni

et al. (2016); Ouni, Kessentini, Sahraoui, Inoue & Hamdi (2015b). These smells have varying

characteristics, e.g., classes characterized by long/complex code as well as violation of accepted

OO design and implementation principles, such as SOLID Joshi (2016) and GRASP Sons (1999).

We used an existing code smell detection tool, Organic 11, that has been used in prior studies

by Bavota et al. Bavota et al. (2015a); Palomba et al. (2017b, 2018b). The list of supported

OO smells is provided in Table 1.2 (See section 1.1.3). We selected the Organic tool as it (1)

10 https://github.com/fpalomba/aDoctor

11 https://github.com/opus-research/organic
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supports the detection of all these common code smells unlike other specialized tools that focus

on the detection of limited subset of smells, (2) provides a Command Line Interface to collect

code smells from the project’s commits which is suitable in the context of our study, (3) is based

on a set of simple detection rules Bavota et al. (2015a) for OO code smells yielding a high

accuracy: 72% precision and 81% recall on average, and (5) has been widely used in recent

work Palomba et al. (2018b,a, 2017b); Bavota et al. (2015a).

2.3.3 Experimental Data Analysis

Analysis method for RQ1. To answer RQ1, we use the collected Android and traditional OO

smells for each application as described in Step 1. Then, for each type of Android and traditional

OO smell we calculate its prevalence, i.e., the ratio of the number of classes exhibiting the smell

to the total number of classes. Furthermore, we analyze the distribution of each smell type with

respect to the total number of smell instances in the studied apps.

Analysis Method for RQ2. To answer RQ2, we study the relationship between the refactoring

operations and smelly classes from both Android and traditional code smells. In particular, for

each refactoring operation, we analyze whether the refactoring has been applied to a smelly or

non-smelly class. Our aim is to discover the relationship between the refactoring operations and

the smell types. For this we employ the Apriori association rule mining algorithm Agrawal,

Srikant et al. (1994), which has been successfully used to mine association between items in

many problems Kamei et al. (2012); AlZu’bi, Hawashin, EIBes & Al-Ayyoub (2018); Palomba

et al. (2017b); Kaur & Kang (2016); Agarwal (2017); Muse et al. (2020).

An association rule is defined as an implication in the form X ⇒ Y, where X, Y ⊆ I and X ∩ Y

= ∅ . Let 𝐼 = {𝑖1, 𝑖2, ..., 𝑖𝑛} be a set of 𝑛 items, and 𝑇 = {𝑡1, 𝑡2, ..., 𝑡𝑚} a set of 𝑚 the transactions.

In our study, 𝑇 is the set of classes present in each refactoring commit, and each item in the

set 𝐼 indicates the presence of a specific smell or a specific refactoring in that commit. Hence,

an association rule translates a co-occurrence between a refactoring operation 𝑟𝑖 and a specific

smell instance 𝑠𝑖 on the same class. Specifically, the association rule is written as follows:
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Smell(𝑠𝑖) ⇒ Refactoring(𝑟 𝑗 )

To measure the strength of an association between two items, i.e., smell and refactoring, we

use the support Agrawal, Imielinski & Swami (1993), confidence Agrawal et al. (1993), Lift

Piatetsky-Shapiro (1991), Leverage Piatetsky-Shapiro (1991), and conviction Piatetsky-Shapiro

(1991) metrics. The support measures the frequency in which a refactoring and a smell occur in

the dataset, and has a range of [0..1]. The confidence implies how often (i.e., probability) a smell

exhibits a refactoring operation with values varying from 0 to 1. To ensure that both smell and

refactoring are not associated by chance, the lift is used to measure the dependence ratio. The

range of values for the lift is between 0 and +∞. When the lift value is greater than 1, it implies

that the pair of smell-refactoring is highly correlated. Furthermore, the conviction measures the

probability of a smell occurring without being refactored, returning a value within a range of 0

to +∞. When the conviction score is equal to 1, this implies that the smells are independent.

Finally, the leverage tests the difference between two smell-refactoring pairs support score

with values ranging from -1 to 1. A leverage of 0 indicates total independence between both

considered smell and refactoring.

Moreover, to get statistical evidence, we used Cramer’s V test Cramir (1946), which measures how

strongly two categorical variables are associated. A value of 0 indicates complete independence,

and a value of 1 indicates complete association. Cramer’s V test takes into account sample size

when comparing two variables and is used as post-test to determine strengths of association

based on the Pearson’s chi-square coefficient that checks for its significance. The formula is

given in Equation 3.4 :

𝑉 =

√
𝜒2

𝑛 × 𝑚𝑖𝑛(𝑟𝑜𝑤 − 1, 𝑐𝑜𝑙 − 1)
(2.1)
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where 𝜒2 is the Pearson’s Chi-square coefficient, 𝑛 is the total number of samples and 𝑟𝑜𝑤 and

𝑐𝑜𝑙 represent the number of distinct values of the categorical variables whose association is to

be computed.

Analysis method for RQ3. To answer RQ3, we analyze the co-occurrences between refactoring

operations and smelly classes that are fixed after the application of a refactoring operation. We

use the same analysis metrics used for RQ2 in terms of support, confidence, lift, leverage and

conviction as well as the Cramer’s V test. As we are interested for this research question in

smelly classes that are fixed after refactoring, we consider only smelly classes where the smell

is corrected after the application of a refactoring, instead of considering all smelly classes as

analyzed in RQ2.

2.3.4 Replication package

We provide our collected data and results publicly available for future replications and extensions

dataset (2020). We provide (i) the list of refactorings, traditional OO smells, Android smells,

before and after the application of refactoring, (ii) data collection and analysis scripts.

2.4 Empirical Study Results

This section describes and discusses the results of our investigations.

2.4.1 RQ1. How prevalent are code smells in Android applications?

We provide the prevalence results for both Android and traditional OO code smells. Figures

2.2 and 2.3 report the distribution of Android and traditional OO smells, respectively, in the

analyzed applications.
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2.4.1.1 Android smells

Table 2.2 reports the prevalence of the Android smells in terms of the number and the percentage

of classes affected by each smell type in each individual Android app as well as in the combined

dataset, i.e., all apps. We can see from the table that 68% of all classes are affected by Android

smells. We also observe a variability in terms of prevalence of the different types of Android

smells (As highlighted with blue shades in Table 2.2). For instance, the most prevalent smell

across all apps is the Member Ignoring Method (MIM) which affects, on average, 55% of all

classes in the studied apps. On the other side, we observe that some smells are moderately

prevalent such as No Low Memory Resolver (NLMR) while others are slightly prevalent such

as Leaking Thread (LT). It is worth noting that some smells do not affect any class such as

Debuggable Release. Overall, we notice that the highly and moderately prevalent Android

smells in our benchmark are in line with the findings of Palomba et al. Palomba et al. (2019).

Furthermore, Figure 2.2 reports the smells occurrences, i.e., frequency. The total number of

Android smell instances in our analyzed apps is 929 instances, with the three most frequent

Android smells being Member Ignoring Method (MIM), No Low Memory Resolver (NLMR),

and Slow Loop (SL). Overall, these three highly frequent smells account for 74% of the total

number of Android smells. We can also observe a number of moderately frequent smells such

as the Leaking Inner Class (LIC) and a set of infrequent smells such as the Internal Getter and

Setter (IGS). It is worth noting that four smells do not occur in any of the apps, such as Public

Data (PD). Unsurprisingly, the more frequent a smells is, the more prevalent it is.

Table 2.2 The prevalence of Android smells in the studied applications

Application Code smell MIM NLMR SL LIC UC DTWC LT IGS IDS DW RAM DR IDFP ISQLQ All smells

Apg Classes affected 190 53 45 29 29 14 15 0 2 0 0 0 0 0 217

percentage(%) 70 19 17 11 11 5 6 0 1 0 0 0 0 0 80

NetGuard Classes affected 27 11 5 6 7 7 5 1 1 2 0 0 0 0 31

percentage(%) 66 26 12 15 17 17 12 2 2 5 0 0 0 0 76

Omni-Notes Classes affected 73 19 14 10 6 15 1 4 0 0 0 0 0 0 96

percentage(%) 38 10 7 5 3 8 1 2 0 0 0 0 0 0 51

Congress Classes affected 37 36 18 14 2 0 2 1 0 0 1 0 0 0 61

percentage(%) 42 41 20 16 2 0 2 1 0 0 1 0 0 0 69

Notepad Classes affected 86 35 28 27 23 13 8 2 3 2 0 0 0 0 106

percentage(%) 53 22 17 17 14 8 5 1 2 1 0 0 0 0 66

Combined Classes affected 413 154 110 86 67 49 31 8 6 4 1 0 0 0 511
percentage(%) 55 21 15 12 9 7 4 1 1 0.5 0.1 0 0 0 68
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Figure 2.2 Distribution of Android smells.

2.4.1.2 Traditional OO smells

The results of the prevalence of the traditional smells are reported in Table 2.3. We found that

63% of classes are affected by traditional smells, with the three most prevalent smells being Long

Method (LM), Message Chain (MC), and Long Parameter List (LPL). Moreover, we observe

some moderately prevalent smells like the Complex Class (CC) and some slightly prevalent

smells such as the Speculative Generality.

Regarding smell frequency, the total number of traditional OO code smell instances detected in

our benchmark is 1,871. As shown in Figure 2.3, the most frequent smells are Message Chain

(MC), Long Method (LM) and Long Parameter List (LPL). On the other hand, we observe that

some smells are moderately diffused such as the Feature Envy while others are less frequent

such as Spaghetti Code.

In general, our results differ from the prevalence of OO smells in desktop applications as

reported in recent studies Palomba et al. (2018a). In contrast to Android apps, Feature Envy,

Message Chain and Lazy Class are not prevalent in desktop applications while Spaghetti Code,

Speculative Generality and Refused Bequest are quite prevalent Palomba et al. (2018a). It is

worth noting that our findings in Android apps share some similarities with desktop apps for
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the Long Method and Complex Class which are quite prevalent in both Android and desktop

applications.

Table 2.3 The prevalence of each traditional OO code smell across the studied applications

Application Code smell LM MC LPL CC FE LC SC BC SG RB All smells

Apg Classes affected 93 47 55 54 58 21 17 12 11 6 177

percentage(%) 34 17 20 20 21 8 6 4 4 2 65

NetGuard Classes affected 17 10 6 17 6 7 10 6 0 0 26

percentage(%) 41 24 15 41 15 17 24 15 0 0 63

Omni-Notes Classes affected 15 48 24 13 23 35 3 5 2 0 112

percentage(%) 8 25 13 7 12 18 2 3 1 0 59

Congress Classes affected 9 8 20 9 9 10 1 4 1 10 55

percentage(%) 10 9 23 10 10 11 1 5 1 11 63

Notepad Classes affected 33 39 31 24 18 21 11 7 10 7 100

percentage(%) 21 24 19 15 11 13 7 4 6 4 62

Combined Classes 167 152 136 117 114 94 42 34 24 23 470
Percentage (%) 22 20 18 16 15 13 6 5 3 3 63
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21%

17%

12%

10%

8%

3% 2% 2% 2%
Message Chain (MC)

Long Method (LM)

Long Parameter List (LPL)

Feature Envy (FE)

Lazy Class (LC)

Complex Class (CC)

Spaghetti Code (SC)

Speculative Generality (SG)

Blob Class (BC)

Refused Request (RR)

Figure 2.3 Distribution of Distribution of traditional OO smells

Summary for RQ1. Code smells are remarkably prevalent in Android apps. Android smells

affect an average of 68% of classes with Member Ignoring Method (MIM), No Low Memory

Resolver (NMR) and Slow Loop (SL) being the most prevalent smells. Traditional OO code

smell are also remarkably prevalent in Android apps affecting an average of 63% of classes

with Long Method (LM), Message chain (MC) and Long Parameter List (LPL) being the most

prevalent smell types.
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Results show that both Android and traditional OO smells are remarkably prevalent in Android

applications. This widespread prevalence suggests either developer unawareness about these

code smells, or that developers simply do not regard these code smells to be important. To

explore this further, we now explore in RQ2 to what extent developers apply refactorings to

smelly classes.

2.4.2 RQ2. Which code smells co-occur together?

As described earlier Section 2.3.2.2 and Table 2.1, the total number of applied refactorings is

9,600. To study the extent to which developers apply refactorings to Android and traditional OO

smells, we first use the Apriori algorithm to determine the associations between the different

applied refactoring operations and smell types. To generate frequent itemsets, we selected a

minimum confidence of 0.5 and a minimum lift threshold of 1 to generate the relevant association

between smells and refactorings. We also restrict the maximum number of items in each itemset

to two since we are interested in the association between one smell type and one refactoring type.

In the following sections, we discuss the results for both traditional and Android code smells.

2.4.2.1 Traditional OO smells

Table 2.4 reports the number of refactorings applied to each traditional OO smell type as well as

the total number of refactorings applied to both smelly and non-smelly classes. Overall, we

found that the total number of refactorings applied to classes containing traditional OO smells

is 2,436 out of a total of 9,600 refactorings which accounts for 25% of the total number of

refactorings, while the remaining 7,164 refactorings (75%) are applied to classes not impacted

by traditional OO smells.

We also observe that Extract Method, Move Method, and Rename Method are the most applied

refactorings accounting, respectively, for 963, 500, and 477 refactorings. The Long Method and

Feature Envy code smells are the most refactored smells with 629 (26.47%) and 616 (25.92%)

refactoring operations, respectively. It is worth noting that the relatively high number of Extract
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Method refactorings may result in a high number of Rename Method refactorings. Indeed,

methods that undergo an Extract Method refactoring may also undergo a Rename Method to

reflect its new purpose. We also found that some smells are very rarely refactored including

Speculative Generality (33 refactorings), Lazy Class (32 refactorings) and Refused Bequest (13

refactorings).

Looking at the smell-refactoring pairs (i.e., mined associations), Table 2.5 shows the frequent

itemsets for the OO smells and refactorings for each studied app, where each itemset comprises

one OO smell and one refactoring. Note that only the pairs that appear in bold in the table are

statistically significant based on their Chi-square p-value, while other pairs (not in bold) are

considered to be due to chance. We observe that some associations are consistent across various

apps, while others differ from one app to another.
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Table 2.4 The type and number of refactorings performed on traditional OO code smells

in the studied applications

Refactoring App LC CC LPR FE LM BC MC RB SC SG
Total

Smelly
Total

Non-Smelly

Extract Method Apg 2 50 37 72 106 12 20 1 29 8 337 523
congress 4 33 12 16 75 1 5 0 0 0 146 405
Netguard 2 13 0 100 87 3 28 0 8 0 241 622
Notepad 0 46 4 43 6 5 15 0 0 0 119 196
Omni-Notes 2 3 0 2 24 3 36 0 50 0 120 554

Move Method Apg 0 38 9 46 28 6 6 0 11 0 144 183
congress 7 5 15 14 4 1 12 0 0 0 58 255
Netguard 1 26 0 102 1 0 2 0 0 0 132 243
Notepad 0 12 0 40 2 2 3 0 0 0 59 96
Omni-Notes 0 24 6 4 28 2 26 3 14 0 107 210

Extract and Move Apg 0 13 4 11 13 3 4 0 6 0 53 180
Method congress 2 1 5 1 1 0 1 0 0 0 11 155

Netguard 2 1 1 0 3 0 1 0 1 0 9 190
Notepad 0 0 0 0 0 0 2 0 0 0 2 118
Omni-Notes 4 19 10 18 23 0 12 0 11 0 97 300

Inline Method Apg 0 4 0 4 4 3 4 0 2 0 21 95
congress 0 0 6 12 13 0 0 0 6 0 37 87
Netguard 0 0 0 0 3 0 0 0 1 0 4 82
Notepad 1 0 0 0 0 0 0 0 0 0 1 22
Omni-Notes 0 4 7 4 4 1 4 0 2 0 26 86

Rename Method Apg 1 39 33 37 76 4 15 0 13 7 225 354
congress 1 17 6 4 16 4 6 0 0 0 54 261
Netguard 1 4 0 5 33 0 10 0 8 0 61 291
Notepad 0 20 10 20 24 1 20 1 16 0 112 252
Omni-Notes 0 1 0 1 11 0 12 0 0 0 25 267

Move Attribute Apg 0 10 7 6 8 4 2 0 5 0 42 170
congress 0 4 0 36 10 2 16 0 0 0 68 476
Netguard 0 0 0 0 3 0 1 0 1 0 5 93
Notepad 0 0 0 0 0 1 1 0 0 0 2 46
Omni-Notes 0 0 0 0 0 0 0 0 0 0 0 13

Pull Up Method Apg 0 1 0 3 1 0 3 0 0 1 9 131
congress 0 0 0 0 0 0 0 0 0 0 0 0
Netguard 0 0 0 0 0 0 0 0 0 0 0 0
Notepad 0 0 0 0 0 0 0 0 0 0 0 0
Omni-Notes 0 0 0 0 0 0 0 0 0 0 0 0

Pull Up Attribute Apg 0 6 2 8 6 0 0 0 4 0 26 72
congress 0 0 0 0 0 0 0 0 0 0 0 0
Netguard 0 0 0 0 0 0 0 0 0 0 0 0
Notepad 0 1 0 0 0 0 0 0 0 0 1 49
Omni-Notes 0 0 0 0 0 0 0 0 0 0 0 0

Push Down Method Apg 0 4 2 2 3 3 1 1 0 1 17 20
congress 0 0 0 0 0 0 0 0 0 0 0 0
Netguard 0 0 0 0 0 0 0 0 0 0 0 0
Notepad 0 0 0 0 0 0 0 0 0 0 0 0
Omni-Notes 0 0 0 0 0 0 0 0 0 0 0 0

Rename Class Apg 0 0 0 0 0 0 0 0 0 0 0 1
congress 0 0 2 0 0 0 0 6 0 0 8 5
Netguard 0 1 0 0 4 0 0 0 1 0 6 7
Notepad 0 0 0 0 0 0 0 0 0 0 0 2
Omni-Notes 0 0 0 0 0 0 0 0 0 0 0 5

Extract Super Apg 2 6 4 5 9 0 3 1 1 12 43 39
Class congress 0 0 0 0 0 0 0 0 0 0 0 0

Netguard 0 0 0 0 0 0 0 0 0 0 0 0
Notepad 0 0 0 0 0 0 0 0 0 0 0 0
Omni-Notes 0 0 2 0 0 0 2 0 0 0 4 8

Move Class Apg 0 0 0 0 0 0 0 0 0 0 0 0
congress 0 3 0 0 0 0 0 0 1 0 4 0
Netguard 0 0 0 0 0 0 0 0 0 0 0 0
Notepad 0 0 0 0 0 0 0 0 0 0 0 0
Omni-notes 0 0 0 0 0 0 0 0 0 0 0 0

Total 32 409 184 616 629 61 273 13 191 33 2,436 7,164
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Table 2.5 The top traditional OO code smells and refactoring pairs in each application

based on confidence and lift values

App Item pairs Support Confidence Lift Leverage Conviction
Chi-square

P-value

Cramer’s

V

Congress Lazy Class → Extract Method 0.06 0.54 4.682 0.060 3.437 0.785 0.004

Lazy Class → Rename Method 0.08 0.8 4.712 0.062 3.706 0.663 0.004

Lazy Class → Move Method 0.08 0.75 4.714 0.061 3.506 0.121 0.014

Complex Class → Extract Method 0.35 0.62 4.426 0.028 1.811 <0.05 0.017
Long Method → Extract Method 0.34 0.63 6.137 0.025 1.792 <0.05 0.013

Netguard Lazy Class → Extract and Move Method 0.11 0.51 1.149 0.014 1.402 1 0

Complex Class → Rename Method 0.1 0.77 4.711 0.082 3.633 1 0

Feature Envy → Extract Method 0.16 0.97 1.366 0.022 1.175 0.076 0.046

Spaghetti Code → Extract Method 0.02 0.56 3.887 0.023 2.171 <0.05 0.094
Apg Complex Class → Extract Method 0.09 0.53 1.790 0.047 1.654 <0.05 0.029

Complex Class → Move Method 0.45 0.64 2.084 0.007 0.903 <0.05 0.017
Complex Class → Pull Up Attribute 0.16 0.5 1.148 0.033 0.828 0.107 0.007

Complex Class → Push Down Method 0.06 0.5 1.185 0.033 0.832 <0.05 0.011
Complex Class → Extract and Move Method 0.26 0.62 1.140 0.006 0.888 <0.05 0.019
Feature Envy → Move Method 0.45 0.64 1.548 0.024 0.897 <0.05 0.013
Feature Envy → Pull Up Attribute 0.22 0.69 1.234 0.034 0.832 <0.05 0.011
Feature Envy → Extract and Move Method 0.29 0.71 1.405 0.030 0.862 <0.05 0.013
Long Method → Extract Method 0.34 0.63 7.268 0.392 0.357 <0.05 0.021
Long Method → Move Method 0.59 0.83 1.248 0.149 2.287 <0.05 0.024
Long Method → Pull Up Attribute 0.24 0.75 1.948 0.297 0.952 0.587 0.002

Long Method → Extract and Move Method 0.28 0.67 1.567 0.033 1.398 <0.05 0.012
Notepad Complex Class → Rename Method 0.01 0.64 1.450 0.082 1.684 1 0.002

Feature Envy → Move Method 0.01 0.54 1.214 0.026 0.932 0.08 0.028

Omni-Notes Complex Class → Extract Method 0.02 0.56 4.103 0.037 0.264 <0.05 0.071

For example, Complex Class is frequently refactored in all the studied apps. We observe that

developers applied various refactoring operations to classes exhibiting this code smell, including

Extract Method, Move Method, Extract and Move Method, Rename Method, and Push Down

Method. This result aligns with Fowler’s refactoring catalog Fowler et al. (1999), which states

that complex classes are typically composed of several complex and/or long methods that could

be fixed generally through any of these refactorings.

We also see that Long Method is involved in various refactorings, mainly Extract Method and

Move Method in both the Congress and Apg apps. Lazy Class is often involved in various

refactoring operations such as Extract Method, Rename Method, Move Method and Extract

and Move Method in both Congress and Netguard apps. However, it is rarely refactored in the

other apps. As for other code smells such as Message Chain, Speculative Generality, and Long

Parameter List, we did not observe any particular result. These code smells could be fixed
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by various types of refactorings depending on the context Fowler et al. (1999); AlOmar et al.

(2019); Ouni et al. (2016, 2015b) and may attract less attention from developers.

An interesting observation is that some code smells attract various refactorings in the same app

depending on the context. On the other hand, we observe that the same refactoring is sometimes

applied to several code smells. This makes the relationship between code smells and refactorings

a many-to-many relationship. For example, Lazy Class is involved in three refactoring types in

the congress app, while Complex Class is involved in five refactoring types as can be seen in

Table 2.5. We also see that the refactoring Extract Method is applied to several code smell types

including the Lazy Class, Complex Class, Long Method, and Feature Envy. This result also

suggests that refactoring strategies depend on the context where they are applied and there is no

specific refactoring that can be universally employed to fix a specific code smell.

We also further investigate statistically the association between smells and refactorings. Employ-

ing a significance level of ≤ 0.05 in Table 2.5, we observe a significant association between smells

and refactorings. Furthermore, we can determine the degree of associations using Cramer’s

V test. We can see from the table that not all smell-refactoring association are statistically

significant. The top association is Spaghetti Code → Extract Method having a highest Cramer’s

V score of 0.094. This finding is interesting as developers tend to apply Extract Method to

reduce spaghetti code code fragments. We also observe that the associations with Complex

Class are statistically significant most of the time. Indeed, complex classes are hard to maintain

and are challenging to refactor. Typical refactorings include Extract Method and Move Method

which can reduce the total number of methods having high complexity.

We also observe that not all these associations are statically significant and are due to chance

(i.e., their chi-square p-value > 0.05). Among these associations, we find Lazy Class → Extract

Method and Lazy Class → Move Method in the Congress app, Lazy Class → Extract And Move

Method in the Netguard app which are aligned with the suggestions by Fowler. Indeed, this

aligns with our overall perspective that the refactorings applied are not usually targeting the

smells.
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2.4.2.2 Android smells

Table 2.6 reports the number of refactorings applied to each Android smell type as well as the

total number of refactorings applied non-smelly classes.

In general, we found that the total number of refactorings applied to classes containing Android

smells is 2,189 out of 9,600 which accounts for 23% of the total number of refactorings. We

also found that the Extract Method, Move Attribute, Rename Method and Move Method are

the most applied refactorings accounting, respectively, for 694, 429, 414 and 365 refactorings.

Furthermore, results indicate that some particular Android code smells tend to attract more

refactorings than others. For instance, Member Ignoring Method, Inefficient Data Structure

and No Low Memory Resolver are the most refactored smells with 659 and 529 refactorings,

respectively. On the other hand, we found that the poorly refactored smells are the Unclosed

Closable (85), Leaking Thread (69), Durable Wakelock (58), Inefficient Data Structure (43) and

Internal Getter and Setter (11).

To better analyze the associations between Android smells and refactorings, we assess the

support, confidence, lift and conviction scores for each frequent itemset. Table 2.7 shows the

frequent itemsets for the Android smells and refactorings for each studied app, where each

itemset comprises one Android smell and one refactoring operation. The last two columns

report the Chi-squared and Cramer’s V tests to check whether the associations between code

smells and refactorings are statistically significant or not.

We found that from the 15 studied Android smells, only five Android smells appear in the

frequent itemsets:

• Leaking Inner Class: has a high chance being involved in Move Attribute or Extract and

Move Method refactorings in the Congress app. However, this smell is rarely refactored in

other apps.

• Inefficient Data Structure: is often involved in Extract Method refactorings in the Congress

app, while it is rarely refactored in other apps.
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Table 2.6 Refactorings performed on each type of Android-specific code smell

Refactoring Application DTWC DR DW IDFP IDS ISQLQ IGS LIC LT MIM NLMR PD RAM SL UC
Total

Smelly
Total

Non-Smelly
Extract Apg 7 0 0 0 1 0 0 9 3 49 19 0 0 26 13 114 553
Method congress 1 28 0 0 29 0 0 18 0 15 30 0 0 0 0 121 386

Netguard 30 0 33 0 0 0 0 30 35 47 40 0 0 0 0 215 635
Notepad 21 0 0 0 0 0 0 28 0 40 32 0 0 0 0 121 281
Omni-Notes 0 0 0 0 0 0 0 0 0 61 26 0 0 36 12 123 584

Move Apg 1 0 0 0 2 0 0 4 0 43 4 0 0 8 14 62 248
Method congress 0 36 0 0 0 0 0 46 0 23 44 0 0 0 0 149 308

Netguard 8 0 0 0 0 0 0 8 7 11 9 0 0 0 0 43 279
Notepad 0 0 0 0 0 0 0 0 0 13 14 0 0 0 0 27 156
Omni-Notes 8 0 0 0 0 0 4 6 0 32 20 0 0 14 8 84 268

Extract Apg 2 0 0 0 0 0 1 3 2 11 4 0 0 5 3 28 123
and Move congress 0 13 0 0 1 0 0 11 0 13 13 0 0 0 0 51 111
Method Netguard 10 0 9 0 9 0 0 10 9 15 13 0 0 0 0 75 152

Notepad 1 0 1 0 0 0 0 0 0 2 2 0 0 0 0 6 99
Omni-Notes 0 0 0 0 0 0 0 2 0 6 4 0 0 4 0 16 260

Inline Apg 3 0 0 0 0 0 0 3 1 3 1 0 0 7 7 18 84
Method congress 0 11 0 0 1 0 0 9 0 12 10 0 0 0 0 43 74

Netguard 3 0 4 0 0 0 0 0 5 6 6 0 0 0 0 24 75
Notepad 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 30
Omni-Notes 0 0 0 0 0 0 0 0 0 4 2 0 0 4 0 10 51

Rename Apg 5 0 0 0 0 0 0 13 3 46 18 0 0 27 17 112 324
Method congress 0 38 2 0 0 0 0 15 0 17 20 0 0 0 0 92 247

Netguard 0 0 3 0 0 0 0 0 0 35 44 0 0 0 0 82 286
Notepad 8 0 6 0 0 0 0 0 0 13 12 0 0 0 0 39 249
Omni-Notes 12 0 0 0 0 0 6 18 0 30 10 0 0 13 10 89 267

Move Apg 0 0 0 0 0 0 0 1 1 7 3 0 0 1 1 13 134
Attribute congress 0 99 0 0 0 0 0 90 3 80 117 0 0 0 0 389 467

Netguard 6 0 0 0 0 0 0 0 0 10 9 0 0 0 0 25 155
Notepad 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 2 79
Omni-Notes 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 42

Pull Up Apg 0 0 0 0 0 0 0 0 10 1 0 0 0 0 11 127
Method congress 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Netguard 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Notepad 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Omni-Notes 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Pull Up Apg 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 5 74
Attribute congress 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Netguard 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Notepad 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 22
Omni-Notes 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5

Push Down Apg 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 70
Method congress 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Netguard 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Notepad 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Omni-Notes 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Rename Apg 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Class congress 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 18

Netguard 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12
Notepad 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Omni-Notes 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6

Extract Apg 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 70
Super congress 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Class Netguard 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Notepad 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Omni-Notes 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Move Apg 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Class congress 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Netguard 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Notepad 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Omni-notes 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Total 126 225 58 0 43 0 11 324 69 659 529 0 0 145 85 2,189 7,411
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Table 2.7 Top Android-specific code smells and refactoring associations in each

application based on confidence and lift values

App Item pairs Support Confidence Lift leverage Conviction Chi-square P-value Cramer’s V

Congress Leaking Inner Class → Move Attribute 0.11 0.63 2.437 0.072 2.871 <0.05 0.030
Leaking Inner Class → Extract and Move Method 0.09 0.52 1.524 0.03 1.587 <0.05 0.051
Inefficient Data Structure → Extract Method 0.01 0.98 4.48 0.018 1.033 0.070 0.021

No Low Memory Resolver → Move Attribute 0.16 0.53 1.124 0.02 1.56 0.282 0.010

Netguard Leaking Thread → Extract And Move Method 0.1 0.58 1.503 0.034 1.75 0.643 0.014

No Low Memory Resolver → Extract Method 0.07 0.72 2.831 0.511 0.385 <0.05 0.102
Apg Member Ignoring Method → Extract Method 0.24 0.62 1.118 0.087 0.584 0.221 0.005

Omni-Notes Member Ignoring Method → Extract Method 0.44 0.67 4.475 0.412 1.688 <0.05 0.03

• No Low Memory Resolver: is often involved in Move Attribute refactorings in the Congress

app, and Extract Method in the Netguard app, but rarely refactored in other apps.

• Member Ignoring Method: is often involved in Extract Method refactorings in both Apg and

Omni-Notes apps, while being rarely involved with any refactoring type in the other studied

apps.

• Leaking Thread: tends to be frequently involved with the Extract and Move Method

refactorings in the Congress app, while being rarely refactored in the other apps.

We further assess the statistically significant associations from these Android smells and

refactorings within our subject apps, and determine the degree of associations using Cramer’s V

tests. We can see from Table 2.7 that not all these associations are statistically significant. We

see that No Low Memory Resolver → Extract Method had the highest Cramer’s V, reaching 0.102.

However, Inefficient Data Structure and Leaking Thread do not have statistically significant

associations with any particular refactoring types. For the remaining Android smells, we did not

observe any particular associations with any refactoring operation.

Android smells have been discussed in previous works involving code snippet examples

Hecht et al. (2016); Palomba et al. (2017a); Habchi, Moha & Rouvoy (2020). To better

understand this phenomenon, we present a real-world example from our dataset showing the

association between the Member Ignoring Method smell and the Move Method refactoring,

taken from commit #7b24ee7 of the Apg app 12. In this commit, the applied refactorings in-

12 https://github.com/thialfihar/apg/commit/7b24ee7b55db99467dd63e631ba55a27d08587d5
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volve moving some methods, namelygetKeyIdPassphraseNeeded(),getNfcHash(),

getNfcAlgo(),isPending(),getNfcTimestamp() andgetDetachedSignature()

from the class SignEncryptResult to the class PgpSignEncryptResult. All these

methods are affected by the Member Ignoring Method smell since they are non-static methods

that do not access any non-static attributes. Generally, to remove this smell developers either

make the affected method static or introduce code to the affected method that accesses non-static

attributes, or simply remove the affected method entirely. In this example, developers opted

to move these smelly methods from the smelly class to another class. Note that although this

action removes the smell from the original class, the smell still persists in the target class.

The obtained results indicate that developers are unlikely to apply refactorings to Android-specific

code smells. This is unsurprising in that the refactoring operations employed in this study were

defined to remove OO code smells Fowler et al. (1999); Brown et al. (1998a). However, it is

notable that when refactoring a class, Android developers pay little attention to Android smells.

In any case, it may be the case that such new emerging types of smells require specialized

refactoring tools to consider the characteristics of the Android platform, as pointed out in prior

research Palomba et al. (2019); Kessentini & Ouni (2017).

Summary for RQ2. Android developers do not seem to focus their refactoring efforts on code

smells. A total of 23% of refactorings were applied to Android smells while 25% of refactoring

were applied to traditional OO smells. The most applied refactoring operations include Extract

Method, Move Method, Rename Method and Move Attribute, comprising 62% of the total

number of refactorings. The association between code smells and refactorings varies depending

on the application under consideration.

2.4.3 RQ3. To what extent do refactoring operations applied to smelly classes
remove code smells?

To study the extent to which refactoring operations performed on smelly classes are able to

remove code smells, we use the same analysis metrics used for RQ2, i.e., support, confidence,

lift and conviction as well as the Chi-squared and Cramer’s V tests. As this research question is
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concerned with smells that are fixed after refactoring, we only consider smelly classes where the

smell is corrected after the application of a refactoring, instead of considering all smelly classes

in was was done for RQ2.

Traditional OO smells: Table 2.8 reports the percentage of smells removed by refactoring for

each app. We observe that on average only 5% of OO smells are removed by refactoring in

the studied apps. We are interested in exploring further the co-occurrence between refactoring

operations and smelly classes that are fixed by refactoring. To this end, Table 2.5 shows the

frequent itemsets for the fixed OO smells and refactorings for each studied app, where each

itemset comprises one OO smell and one refactoring, as well as the Chi-squared and Cramer’s V

tests. We found that Extract Method and Move Method are able to fix some code smells such as

Complex Class, Long Method, Feature Envy, Message chain and Spaghetti Code. However, we

can see from the table that not all these associations are statistically significant. The top three

associations are (1) Long Method → Extract Method, (2) Message Chain → Extract Method

and (3) Complex Class → Extract Method. On the other hand, some associations do not seem

to be statistically such as Feature Envy → Move Method, Long Method → Move Method and

Message chain → Move Method.

To gain some insight into the reasons why refactoring rarely removes the OO smells in

our study, we refer to an example that shows the impact of the Extract Method refactoring

on the Complex Class code smell. This example is taken from commit #f8c9248 of the

Omni-Notes app Impact of Extract Method refactoring (2021), and involves the extraction of

the methods initViewFooter(), initViewReminder(), initViewLocation(),

initViewAttachments() and initViewTitle() from the class DetailFragment.

In spite of the application of these Extract Method refactorings, we found that theDetailFragment

class remains complex, even though it is generally accepted that the Extract Method refactoring

should remove this smell Fowler et al. (1999); Bavota et al. (2015a); Saika et al. (2016);

Yoshida et al. (2016). However, this class contains 2,364 lines of code, involving several overly

complex/long methods and contains many method invocations. Refactoring such a class with
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Table 2.8 Percentage of removed Android and

traditional OO code smells

App OO smells (%) Android smells (%)

Apg 7 1

NetGuard 4.7 3

Omni-notes 5 2

Congress 4 0.5

Notepad 3 1

Average 4.74 1.5

Table 2.9 Top removed traditional OO code smells and refactoring pairs based on

confidence and lift values

App Item pairs Support Confidence Lift Leverage Conviction Chi-square P-value Cramer’s V

Apg ComplexClass → Extract Method 0.11 0.54 4.7085 0.0189 1.3569 <0.05 0.021
Feature Envy → Move Method 0.12 0.5 3.5569 0.0280 1.5208 0.710 0.004

Long Method → Extract Method 0.05 0.63 6.2597 0.0454 2.7301 <0.05 0.024
Message chain → Move Method 0.14 0.69 5.3887 0.0151 1.5293 0.160 0.003

Congress Complex Class → Extract Method 0.39 0.65 1.7292 0.0071 4.8261 0.450 0.005

Long Method → Extract Method 0.11 0.66 3.6162 0.0262 1.0613 <0.05 0.032
NetGuard Feature Envy → Extract Method 0.01 0.64 2.6881 0.0365 1.2060 <0.05 0.015

Spaghetti Code → Extract Method 0.02 0.56 1.2804 0.0146 1.1522 <0.05 0.110
Long Method → Extract Method 0.01 0.77 3.6162 0.0262 1.0613 0.070 0.070

Message chain → Move Method 0.11 0.61 5.0833 0.0189 1.4731 <0.05 0.039
Omni-Notes Long Method → Move Method 0.44 0.59 1.1116 0.0821 4.3337 0.661 0.011

Notepad Message chain → Extract Method 0.14 0.69 5.0833 0.0189 1.4731 <0.05 0.067

only Extract Method will not resolve the problem. Rather, this class needs to be reworked

intensively by the application of several combined refactorings in order to remove this smell.

Android smells: From Table 2.8 we observe that on average, only 1.5% of Android smells are

removed through refactoring operations. Looking at the co-occurrences between refactoring

operations and smelly classes that are fixed when they exhibit a refactoring operation, results

show that refactorings applied fix only the Member Ignoring Method smell. However, we

observe from Table 2.8 that only three associations are statistically significant: Member Ignoring

Method and Extract Method, Member Ignoring Method and Push Down Method, and Member

Ignoring Method and Move Method.

To further investigate why refactoring rarely removes the Android smells in our study, we refer

to an example that shows the associations between Leaking Inner Class (LIC) and the Extract
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Table 2.10 Top removed Android-specific code smells and refactoring pairs based on

confidence and lift values

App Item pairs Support Confidence Lift Leverage Conviction Chi-square P-value Cramer’s V

Apg Member Ignoring Method → Extract Method 0.24 0.51 4.605 0.012 1.2842 <0.05 0.019
Member Ignoring Method → Move Method 0.47 0.67 1.333 0.010 1.0974 <0.05 0.034
Member Ignoring Method → Pull Up Method 0.06 0.6 1.286 0.010 1.0110 0.760 0.001

Member Ignoring Method → Push Down Method 0.08 0.67 1.059 0.010 1.0272 <0.05 0.028
Member Ignoring Method → Extract And Move Method 0.27 0.67 2.7241 0.0098 1.0472 0.404 0.003

Notepad Member Ignoring Method → Move Method 0.47 0.67 1.0658 0.0045 1.6645 0.430 0.002

Member Ignoring Method → Pull Up Attribute 0.06 0.6 0.339 0.003 1.0087 1 0.001

And Move Method refactorings. We select this pair for consideration since in the results of

RQ2 shown in Table 2.7, we see that developers often apply this refactoring when a class is

affected by the Leaking Inner Class smell. However, the result of RQ3 (Table 2.10) shows

that refactoring fails to remove this smell. The LIC smell occurs when an anonymous inner

class holds a reference to its containing class instance. There exists two possibilities to remove

this smell: either by making the affected inner class static, or by removing it entirely. Thus,

the applied the Extract And Move Method refactorings cannot remove this smell. Further

investigation is needed to understand the intention of the developers behind the applications of

certain refactorings, but it seems clear in this case that the presence of the LIC smell is not what

prompted the developers to refactor the class.

Summary for RQ3. The effectiveness of refactoring in removing code smells is generally low

in all analyzed apps, with only 5% of traditional code smells and 1.5% of Android-specific code

smells being removed.

2.4.4 Discussion

In this section, we discuss the implications that our results have on the prevalence of code smells,

the impact code smells have on refactoring activity and the extent to which code smells are

removed by refactoring.
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2.4.4.1 Implications for smell prevalence (RQ1)

The result of RQ1 shows that both Android and traditional OO smells are remarkably prevalent

in Android applications. This widespread prevalence suggests either developer unawareness of

these code smells, or that developers simply do not regard these code smells to be important

Peters & Zaidman (2012); Silva et al. (2016); Habchi et al. (2020). Not all code smells are

equally prevalent in the studied apps, nor should they be regarded as being equally serious.

For example, Member Ignoring Method and Message Chain are both prevalent smells in the

studied applications. However Member Ignoring Method has only a minor impact on performance

and is easily repaired by making the offending method static. On the other hand, Message Chain

is a smell that is likely to represent a violation of the Law of Demeter Lieberherr & Holland

(1989) which causes insidious coupling between classes. Developers need to focus their attention

on smells like this that may lead to unforeseen and long-lasting quality issues in the software.

2.4.4.2 Implications for smell refactoring (RQ2)

The results for RQ2 show that a total of 23% of refactorings were applied to Android smells while

25% of refactoring were applied to traditional OO smells. It is striking here that most refactorings

are applied to non-smelly code, which is additionally surprising given the widespread prevalence

of code smells. This indicates that even when refactoring code, developers seem not focus on

smelly code. This resonates with the results for RQ1 — that developers seem not to be too

concerned by smells in their code.

We also observe that refactorings have a higher number of associations with OO smells than they

do with Android code smells. This is to be expected as the employed refactoring detection tool,

RefactoringMiner, was developed to identify refactorings associated with OO smells. Also OO

smells are very well established and appear in many programming text books, whereas Android

code smells have only recently been cataloged and they are not yet as generally accepted as their

OO counterparts.
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2.4.4.3 Implications for smell removal (RQ3)

The result of RQ3 reveals that the effectiveness of refactoring in removing code smells is

generally low in all analyzed apps, with only 5% of traditional OO code smells and 1.5% of

Android-specific code smells being removed. This result emphasises more powerfully what

we have observed for the other RQs: that although smells are prevalent and refactoring is a

prevalent practice, very few smells are actually removed by refactoring.

Assuming that developers are generally aware of code smells and could remove them by

refactoring if desired, it is apparent that they are not bothered by the code smells evident in the

code. One possible explanation is that refactoring activity is mainly driven by changes in the

requirements rather than by the necessity to fix code smells, i.e. developers refactor to make the

code more amenable to the new functionality they are implementing rather than with the aim

of removing code smells. In order to investigate this further, a follow up study is necessary to

uncover the reasons for which developers do not invest refactoring efforts in removing smells,

similar to related studies carried out on desktop applications Bavota et al. (2015a).

2.5 Threats to validity

This section discusses potential threats to the validity of our study.

1. Threats to internal validity concern factors that could influence our observations. In

particular, when code smells disappear in a given refactoring commit, this may or may

not be related to the refactoring itself that occurred in that commit. However, while our

investigation allowed us to claim correlation and not causation, we manually checked a

sample of commits in which specific types of refactorings helped to remove some code

smells. To further investigate this phenomenon, we plan to conduct a qualitative analysis

with developers to better understand their intuitions AlOmar, Mkaouer & Ouni (2020a).

Moreover, although we have double checked our experiments and the datasets collected,

there could still be errors that we did not notice.
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2. Threats to construct validity concerns imprecisions/errors in the various measurements we

performed in the course of our experiments. We consider these further in the paragraphs

below.

Detecting code smell instances is a vital part of our work and to perform this we relied on

two tools. For Android smells, we used the aDoctor tool Palomba et al. (2017a), while

for traditional code smells, we used a rule-based, state of the art tool, Organic, developed

by Bavota et al. Bavota et al. (2015a). We are well aware that the validity of our results

could be affected by the presence of false positives and false negatives in the results of these

tools. The aDoctor tool has been shown to have a precision and recall of 98% Palomba

et al. (2017a, 2019), while the Organic tool has been shown to have a precision and recall of

72% and 81% respectively Bavota et al. (2015a). These results form a promising basis for

our investigations, however we cannot exclude the possibility that some code smells were

missed by our analysis or that false positives occurred.

Similarly, our analysis is threatened by the accuracy of the employed refactoring detection tool,

RefactoringMiner Tsantalis, Mansouri, Eshkevari, Mazinanian & Dig (2018a). However,

previous studies reported that RefactoringMiner has high precision and recall scores

compared to other state-of-the-art refactoring detection tools Silva et al. (2016); Tsantalis

et al. (2018a), which gives us confidence in using the tool. It is also worth noting that some

smells we consider in our study, especially the Android ones, simply cannot be fixed by

refactorings identified by RefactoringMiner. However, our analysis allows us to detect that

a smell has been removed in a given commit (i.e., using the smell detection tool, aDoctor,

we can identify if a given class still contain a smell or not), but just we wouldn’t attribute its

removal to a refactoring. This allows to mitigate this concern and makes us more confident

about our analysis

Another threat to validity is related to the metric we employ for code smell prevalence (i.e.,

the ratio of the total number of classes affected by a given smell to the total number of

classes). This measure was used in recent empirical studies in code smells Palomba et al.

(2019); Grano, Palomba, Di Nucci, De Lucia & Gall (2019), which gives us confidence that

it is a suitable metric, however it may be beneficial to measure prevalence in another way.



51

For example, one smell may occur multiple times in a single class and this ratio would then

under-represent its prevalence. It is thus interesting to consider more fine-grained measures

such as the density, i.e., the ratio of smells per method or per KLOC.

3. Threats to conclusion validity concerns the relationship between the treatment and the

outcome, which in this context refers to the analysis methods employed in our study. Unlike

other papers on code smell and refactoring co-occurrence, we exploited association rule

mining Agrawal et al. (1994), rather than using a logistic regression model. To avoid

unreliable results and to assess the significance of our findings, we performed Cramer’s V

test to determine the strengths of association and Pearson’s chi-square coefficient to test

for significance. Another aspect is related to the details of the measurements conducted,

which might have influenced our observations. We worked at the class level as our goal was

to assess the relationship between code smells and refactorings. However, this does not

exclude the possibility that other code smells at method-level might still have an impact.

Furthermore, while we found 75% of refactorings were applied to classes that do not contain

traditional code smells, this might depend upon the number of traditional smells that are

detected by the employed tool. Hence, considering other available tools to detect a wider

range of traditional smells would increase the confidence in our findings.

4. Threats to external validity concern the generalization of our findings. Our analysis was

based on five open-source Java Android apps of varying size and from different application

domains. Since we opted for a detailed analysis for each app, we preferred to observe fewer

apps over a longer period of evolution history, rather than many projects for short periods.

Although this is a relatively small number of applications, they represent variety in terms of

size and application domain, and in total we examined 652 separate releases compromising

9,600 refactoring operations. This is a large enough sample to have some confidence that

similar results could be expected from other, open-source, Java Android applications. Of

course further analysis of other open source and commercial apps from both Android and

iOS marketplaces would further test the generalizability of our conclusions.
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5. Threats to reliability validity To minimize potential threats to reliability, we analyzed

open-source projects available on GitHub and provide a replication package that contains

our complete dataset dataset (2020).

2.6 Conclusion and future work

In this paper we presented the results of a study of the impact of refactoring activities in five

Android applications. We started with a preliminary study of the prevalence and co-occurrences

of a number of Android-specific and traditional code smells, and then investigated the impact of

different refactoring operations on these code smells.

Our study delivers several important findings. Firstly, results indicate that code smells are very

prevalent in Android apps, with 68% of classes being affected by Android specific smells and

63% of classes affected by traditional OO smells. Secondly, developers are more likely to apply

refactoring operations to non-smelly code elements. A total of 25% of refactorings were applied

to traditional OO smells, while 23% of refactorings were applied to Android smells. Thirdly,

these refactoring activities removed only 5% of traditional OO smells and 1.5% of Android

smells.

In summary, we observe that code smells are widespread across Android applications, but smelly

classes are not particularly targeted by refactoring activities and, when they are, it is rare for

refactoring to actually remove a smell. These results are remarkable, and run contrary to the

“traditional” wisdom that refactoring is used to remove code smells.

Two extreme interpretations of these results are: (1) Android developers are poorly versed in

code smells and refactoring. They introduce them liberally while developing and are unable

to direct their refactoring activities to remove them subsequently and (2) Android developers

do not in general regard code smells as signs of any real quality problem. The introduce them

while developing and do not care to remove them, preferring to focus their refactoring activities

on real quality issues.
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While the true interpretation lies between these two extremes, we expect that (2) is closer to the

truth. So while it may be of value to promote awareness of both Android and traditional code

smells, and how to refactor them, among Android developers, it is more critical to understand

better what are the real quality issues Android developers face and to develop a model of code

smells and refactoring that better addresses their needs.

We foresee several possible directions for future work. Firstly, the use of non-smell models of

software quality, in particular software quality metrics, to determine if they can better explain the

refactoring activities that take place during Android app development. Secondly, we consider

extending our study to (1) more open source and commercial Android apps to better generalize

our results and to develop Android specific refactoring tools to better support developers

during maintenance and evolution and (2) to more refactoring tools, different code smells, and

refactorings. Thirdly, we may evaluate the impact of code smells on some non-functional aspects

such as energy smells Palomba et al. (2019); Carette et al. (2017). Finally, we plan to conduct a

qualitative investigation through a survey with Android developers to better understand their

intuition behind refactoring activities in the context of mobile apps.
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3.1 Abstract

Android applications (apps) evolve quickly to meet users requirements, fix bugs or adapt to

technological changes. Such changes can lead to the presence of code smells − symptoms of poor

design and/or implementation choices that may hinder the project maintenance and evolution.

Most of previous research focused on studying the characteristics of traditional object-oriented

(OO) code smells affecting source code files in desktop software systems, and advocated that

the interaction and co-presence of code smells reduce the ability of developers to understand

and maintain source code. However, little knowledge is available on emerging categories of

Android-specific code smells and their interactions, i.e., co-occurrences, with traditional OO

smells, in the context of Android apps. To provide a broader understanding of this phenomenon,

we conduct an empirical study on 1,923 open source Android apps taking into account 15 types

of Android-specific and 10 types of traditional OO code smells to explore (i) the extent to which

code smells co-occur together, and (ii) which code smells tend to co-occur together. Our results

show that (i) the co-occurrence phenomenon is indeed prevalent in Android apps, where 51% of

classes are affected by more than one smell instance (from either OO and Android smells), while

34% of classes are affected by more than one Android smell, and 26% are affected by more than

one OO smells, and (ii) there exist 14 smell pairs that have strong associations. Developers need
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to be aware of this phenomenon and consider detecting and eliminating both traditional and

Android smells, using dedicated tools.

3.2 Introduction

Android apps have to evolve quickly to meet the continuous user needs, technological changes

and stay ahead of the mobile apps store competition. However, throughout their evolution,

Android apps undergo changes that often lead to poor implementation and design practices

that are manifested in the form of code smells Brown et al. (1998a); Fowler (2018); Reimann

et al. (2014). The presence of code smells often hinders the maintenance and evolution of any

software system Habchi et al. (2019b); Cedrim et al. (2017); Bavota et al. (2015a); Palomba

et al. (2017b); Ouni et al. (2013). Like any software system, Android apps can be affected by

traditional Object-Oriented (OO) code smells Brown et al. (1998a); Fowler (2018), but also

with new categories of emerging Android-specific smells, known as Android smells Reimann

et al. (2014); Kessentini & Ouni (2017); Palomba et al. (2017a, 2019); Hecht et al. (2016).

The presence of these smells can lead to resource leaks (e.g., CPU, memory, battery, etc.)

causing, therefore, several performance and usability problems Palomba et al. (2019); Habchi,

Moha & Rouvoy (2019a); Hecht et al. (2016); Morales et al. (2017).

Most of the existing studies focused on traditional OO smells Palomba et al. (2017b, 2018b);

Fontana et al. (2015); Garg et al. (2016); Yamashita et al. (2015); Muse et al. (2020); Mar-

tins, Bezerra, Uchôa & Garcia (2020); Abbes et al. (2011). In particular, they focused on

various aspects of OO code smells including code smells prevalence Palomba et al. (2019);

Delchev & Harun (2015); Peruma et al. (2019); Mannan et al. (2016), co-occurrences Palomba

et al. (2018b); Garg et al. (2016); Fontana et al. (2015); Abbes et al. (2011); Yamashita et al.

(2015); Yamashita & Moonen (2013b) as well as the effects of code smells on software quality

and maintainability D’Ambros, Bacchelli & Lanza (2010); Abbes et al. (2011); Khomh et al.

(2012). It has been also demonstrated that the co-existence and the interactions between OO

code smells consistently reduce the ability of developers to understand source code, and thus, it

complicates maintenance tasks Palomba et al. (2017b, 2018b); Fontana et al. (2015); Garg et al.
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(2016); Yamashita et al. (2015); Muse et al. (2020); Martins et al. (2020); Abbes et al. (2011).

Furthermore, few studies have recently examined individual instances of code smells in Android

apps Habchi et al. (2019b); Palomba et al. (2019); Hecht et al. (2016); Morales et al. (2017);

Mannan et al. (2016).

Although several important research steps have been made and despite the ever-increasing

number of empirical studies aimed at understanding traditional OO code smells, little knowledge

is available about the phenomenon of code smell co-occurrences in Android apps. While

knowledge about such individual smell types is established in recent years Habchi et al. (2019b);

Palomba et al. (2019); Reimann et al. (2014); Palomba et al. (2017a), important relationships

are missing between traditional OO smells and Android smells.

This knowledge is particularly important for developers researchers and tool creators. For

Android developers, discovering such relationships will help them to save time and effort by

focusing their attention by getting a high priority in refactoring the smells that frequently co-occur

together which may lead to better monitoring the quality of their apps. As for researchers, it

can be a starting point for a deep investigation of the relation between Android smells and

traditional code smells. Also, such knowledge can help researchers designing Android-specific

refactoring techniques and prototypes that take into consideration the hidden dependencies

between such smells. For tool creators, such knowledge can be helpful to develop practical and

reliable refactoring tools for mobile apps based on the detection of the occurrence of Android

code smells given some traditional code smells or vice versa.

This paper aims at improving the current knowledge about code smells in Android apps. We

conduct an empirical study on the prevalence of code smell co-occurrences and determine which

code smell types tend to co-exist more frequently. Our study is conducted on a large dataset

composed of 1,923 open-source Android apps that are freely distributed in Google Play Store.

We considered 10 common types of OO code smells, and 15 common Android smells having

different characteristics and different granularity levels. To discover such relationships between
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smells, we use association rule learning based on the Apriori algorithm Agrawal et al. (1993)

which is commonly used to find patterns in data.

Overall, our investigation delivers several actionable findings indicating that:

• The phenomenon of code smells co-occurrences is quite prevalent in Android apps. Par-

ticularly, 51% of classes are affected by more than one smell instance (from either OO or

Android smells), while 34% of classes are affected by more than one Android smell, and

26% are affected by more than one OO smells.

• There exist 14 smell pairs that frequently co-occur together: three pairs for Android smells

(e.g., Leaking Inner Class and Member Ignoring Method), seven pairs for OO code smells

(e.g., Long Method and Long Parameter List) and four pair combining both Android and OO

(e.g., Complex Class and Member Ignoring Method). For OO smells, our results are inline

with prior findings in the literature on code smells co-occurrences in desktop applications

Palomba et al. (2017b, 2018b, 2019). However, for Android smells, our findings reveal

various interesting relationships in the context of Android apps development.

3.3 Study Design

The goal of this study is to investigate various types code smell co-occurrences in the context of

Android apps for the purpose of assessing the prevalence of this phenomenon and determining

the pairs of smells that tend to co-occur together frequently.

3.3.1 Goals and Research Questions

Our study aims at addressing the following research questions.

• RQ1. To what extent code smells co-occur in Android apps?

This research question aims at assessing the extent to which Android apps contain classes

affected by one or more code smell types. By answering RQ1, we can reveal the prevalence

of this phenomenon.

• RQ2 Which code smells co-occur together?
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With this research question, we aim at identifying which code smells tend to co-occur together,

and thus reporting on the existence of different patterns of code smell co-occurrences that

can exist in Android apps.

3.3.2 Context and Dataset

The context of our study consists of a set of 1,923 open source Android apps, and two categories

of code smell types that can exist in Android apps (1) traditional OO smells and (2) Android

specific smells. In particular, we analyzed 15 common Android smells extracted from the

catalog defined by Reimann et al. Reimann et al. (2014). This catalog reports a set of poor

design/implementation choices applied by Android developers that can impact non-functional

attributes of Android apps, and have been used by prior studies on Android smells Palomba

et al. (2019); Habchi et al. (2019b); Carette et al. (2017); Kessentini & Ouni (2017). We also

considered 10 common traditional OO smells defined by Fowler Fowler (2018) and Brown et al.

Brown et al. (1998a) that have been widely studied in prior works Bavota et al. (2015a); Palomba

et al. (2017b, 2018b). These smells have (1) different granularity, e.g., class, method, statement,

etc., and (2) varying characteristics, e.g., classes characterized by long/complex code as well as

violation of accepted OO design and implementation principles. Tables 1.2 and 1.3 report the

set of OO and Android smells, respectively, that are investigated in our study (See section 1.1.3).

3.3.3 Data Extraction

Figure 4.1 describes the overall process used to collect our dataset. We targeted real world apps

that have been designed and developed as open source projects and that are freely distributed on

Google Play Store and hosted on GitHub.

First, we performed a custom search on GitHub by targeting all Java repositories in which the

readme.md file contains a link to a Google Play Store page (Step A). In total, we obtained

19,212 apps. Thereafter, we filtered our dataset with the following criteria inspired by Das,

Di Penta & Malavolta (2016); Malavolta, Verdecchia, Filipovic, Bruntink & Lago (2018):
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• We consider only the repositories that contain the AndroidManifest.xml file, as the

apps whose GitHub repository does not contain an Android manifest file clearly do not refer

to real Android apps. The result of this filter was a collection of 5,766 apps.

• We excluded all unpublished apps, i.e., those apps for which the corresponding Google Play

page is not existing anymore (i.e., removed from the store). Our filter returned 3,160 apps.

• We excluded repositories that contain forks of other repositories. This filtering step leads to

a final set of 1,923 Android apps.

Our final dataset resulting from the filtering process contains 1,923 real Android apps, each of

them is represented by its GitHub and Google Play identifiers. Then, we download the source

code of the last release from each app using git clone command. The latter will serve for

the next step: collecting the code smells.

Thereafter (Step B), for each app we identify the presence of any instance of OO and Android

smell at the class level. As for Android-specific smells, we used aDoctor 13, a command-line

based tool that implements rules provided by Palomba et al. Palomba et al. (2017a) to identify

common Android smells. We selected this tool as it achieves a high detection precision of 98%,

and recall of 98%, as reported in Palomba et al. Palomba et al. (2017a). As for the traditional

OO smells, we used an existing tool 14, that has been widely used in recent studies Palomba et al.

(2018b,a, 2017b); Bavota et al. (2015a). The tool detects 10 common types of OO smells and

implements simple detection rules published by Bavota et al. Bavota et al. (2015a) to ensure

a high recall and precision. The detection process resulted in identifying 29,550 instances

of traditional OO smells, and 23,267 instances of Android smells. Table 4.1 summarizes the

statistics about the collected dataset.

13 https://github.com/fpalomba/aDoctor

14 https://github.com/opus-research/organic
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Table 3.1 Dataset statistics

Statistic Count
Number of Android apps 1,923

Total number of classes 19,212

Total number of methods 134,400

Number of traditonal OO smell instances 29,550

Number of Android smell instances 23,267

Total number of all smell instances 52,817

Answer RQ1 

GitHub 

1) GitHub  
crawler  
(19,212) 

2) Android 
manifest filtering 

(5,766) 

3) Google Play 
Store filtering 

(3,160) 

4)Duplication  
filtering  
(1,923) 

1,923 
apps 

Android smell 
Detection Step C : 

Data Analysis 
OO code smell 

Detection 

Step B : Code 
Smells Detection 

Step A : Android apps collection 

Answer RQ2 

Figure 3.1 Overall process to conduct our empirical study

3.3.4 Data Analysis

After collecting all necessary data for our study, we use specific analysis methods to answer

each RQ (Step C).

3.3.4.1 Analysis method for RQ1

To answer RQ1, we compute the number of smells affecting each class in the dataset. Then, we

report the percentage of classes affected by one or multiple types of code smells.

3.3.4.2 Analysis method for RQ2

To answer RQ2, we employ association rule mining (also known as market basket analysis) using

the Apriori algorithm Agrawal et al. (1993). The algorithm parses the dataset, i.e., transactions,

and generates frequent itemsets based on filtering criteria set. Association rules are generated

during searching for frequent itemsets. An association rule is defined as an implication of the

form X ⇒ Y, where X, Y ⊆ I and X ∩ Y = ∅ . Let 𝐼 = {𝑖1, 𝑖2, ..., 𝑖𝑛} be a set of 𝑛 items, and
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𝑇 = {𝑡1, 𝑡2, ..., 𝑡𝑚} a set of 𝑚 the transactions. In our study, 𝑇 is the set of classes present in

version, and each item in the set I indicates the presence of two specific smell types. Therefore,

an association rule translates a co-occurrence between a smell 𝑆𝑖 and other smell 𝑆 𝑗 on the same

class. Specifically, the association rule is written as follows: 𝑆𝑚𝑒𝑙𝑙 (𝑆𝑖) ⇒ 𝑆𝑚𝑒𝑙𝑙 (𝑆 𝑗 ).

We use the support Agrawal et al. (1993), confidence Agrawal et al. (1993) and lift Brin,

Motwani, Ullman & Tsur (1997) scores to quantify the degree of association between each pair

of smells.

1. Support: is an indication of how frequently an itemset appears in the dataset and consists of

the proportion of transactions in the dataset that contain both 𝑆𝑖 and 𝑆 𝑗 .

𝑆𝑢𝑝𝑝𝑜𝑟𝑡 (𝑆𝑖 ⇒ 𝑆 𝑗 ) = 𝑃(𝑆𝑖 ∪ 𝑆 𝑗 ) (3.1)

2. Confidence: is the proportion of transactions in the dataset containing S_i, that also contain

S_j.

𝐶𝑜𝑛 𝑓 𝑖𝑑𝑒𝑛𝑐𝑒(𝑆𝑖 ⇒ 𝑆 𝑗 ) = 𝑃(𝑆𝑖 ∪ 𝑆 𝑗 )/𝑃(𝑆𝑖) (3.2)

3. Lift: is the ratio of the observed support to that expected if S_i and S_j were independent.

𝐿𝑖 𝑓 𝑡 (𝑆𝑖 ⇒ 𝑆 𝑗 ) = 𝑃(𝑆𝑖 ∪ 𝑆 𝑗 )/(𝑃(𝑆𝑖) × 𝑃(𝐵)) (3.3)

The range of values for support and confidence is between 0 and 1, whereas lift can take any

value between 0 and +∞. When the lift value is greater than 1, it implies that the smell pair is

highly correlated.
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Moreover, we use the Pearson’s Chi-square coefficient and Cramer’s V Cramér (1999) tests

to determine if there were significant associations between the smells. Specifically, for any

Chi-square test that was found to be significant (p-value < 0.001), Cramer’s V test is calculated

and it has a value between 0 and 1. A value of 0 indicates complete independence, and a value

of 1 indicates complete association. The formula is given in Equation 3.4:

𝑉 =

√
𝜒2

𝑛 × 𝑚𝑖𝑛(𝑟𝑜𝑤 − 1, 𝑐𝑜𝑙 − 1)
(3.4)

3.3.5 Replication package

Our dataset is available in our replication package for future replications and extensions Dataset

(2021a).

3.4 Empirical Study results

3.4.1 RQ1: To what extent code smells co-occur in Android apps?

Table 3.2 reports the obtained results for RQ1, for each of the Android and OO code smells

individually and also when both categories are combined together (OO + Android smells).

Overall, we observe that the phenomenon of smells co-occurrences is prevalent. For the Android

smells, 30% of classes are affected by a single Android smell instance, while 34% of classes

are affected by two or more Android smell instances (i.e., the sum of rows from Two smells to

Twelve smells). On the other side, for the traditional OO smells, we observe that almost 30% of

classes are affected by one OO smell instance, while 26% of classes are affected by two or more

OO smells. It is worth noting that we did not find any class affected by more than nine Android

or OO code smell types at the same time, as shown in Table 3.2.
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When combining both Android and OO smells, we observe from Table 3.2 that 30% of classes

are affected by only one smell, while a majority of 52% of classes are affected by two or more

smells. Specifically, 18% of classes are affected by exactly two smells, while co-occurrences of

three and four smells was observed in 12% and 7% of classes, respectively. Interestingly, we

also found that the percentage of classes affected by five or more Android and OO smells is less

than 5%.

To better understand the phenomenon of smells co-occurrence, we refer to an illustrative example

from the Nextcloud15 app, version dev-2020122316. In particular, theFileContentProvider

class contains 1,902 line of code and 27 methods. This class is detected at the same time

as Blob Class and a Complex Class code smell as it contains several complex methods. For

instance, the method onUpgrade() is a complex method having an extremely high cyclomatic

complexity of 136 17 making it difficult to comprehend, maintain, test and evolve. Furthermore,

this method is detected at the same time as a Long Method and a Message chain code smell as it

contains 966 lines of code and make 21 calls to other methods.In addition to these traditional OO

smells, this method holds also an Android smell, namely the Slow Loop as it uses the standard

version of the for loop which is slow instead of using the for-each loop and this that may

affect the efficiency of the app Palomba et al. (2017a). From this example, one clearly see how

some code artefacts can be impacted by several types of code smells. The presence of such

smell co-occurences severely impact the understandability, maintainability and extensibility of

any software application Habchi et al. (2019a); Palomba et al. (2018a); Fowler (2018); Hecht,

Benomar, Rouvoy, Moha & Duchien (2015); Moha, Gueheneuc, Duchien & Le Meur (2009).

Overall, the obtained results for RQ1 show that the co-occurrence of code smells is indeed

prevalent in Android applications. Such prevalence advocates that there might be a lack of

awareness about this phenomenon from developers. We thus assess which specific code smells

tend to frequently co-occur together.

15 https://github.com/nextcloud/android

16 https://github.com/nextcloud/android/releases/tag/dev-20201223

17 https://scitools.com/
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Table 3.2 Prevalence of the code smells co-occurrences in the studied apps

OO smells Android smells OO ∨ Android smells
Category Classes affected Percentage Classes affected Percentage Classes affected Percentage

One smell 5,772 30% 0.6 5,825 30% 0.6 5,696 30% 0.6

Two smells 1,644 9% 0.18 3,663 19% 0.38 3,526 18% 0.36

Three smells 1,477 8% 0.16 1,893 10% 0.2 2,278 12% 0.24

Four smells 788 4% 0.08 787 4% 0.08 1,429 7% 0.14

Five smells 629 3% 0.06 202 1% 0.02 1,049 5% 0.1

Six smells 290 2% 0.04 37 <1% 0.01 716 4% 0.08

Seven Smells 51 <1% 0.01 7 <1% 0.01 525 3% 0.06

Eight smells 2 <1% 0.01 1 <1% 0.01 334 2% 0.04

Nine smells 0 0% 0 0% 209 1% 0.02

Ten smells 0 0% 0 0% 112 1% 0.02

Eleven smells 0 0% 0 0% 43 <1% 0.01

Twelve smells 0 0% 0 0% 18 <1% 0.01

Summary for RQ1. The phenomenon of code smell co-occurrences is quite prevalent. In a

dataset containing 52,817 instances of Android and OO code smells, we observe that 34%, 26%

and 51% of classes are affected respectively by more than one Android, OO and both (i.e., OO

and Android) smell types. These results advocate for the need of awareness mechanisms to

support Android developers discovering and removing code smells from their apps.

3.4.2 RQ2: Which code smells co-occur together?

We address RQ2 by identifying the most frequent co-occurrences of code smells in the studied

apps. The procedure that we used to identify the code smells co-occurrences are described in

Section 3.3.4. To generate frequent itemsets, we selected a minimum confidence of 0.5. We

also restrict the maximum number of items in every itemset to 2 since we were interested in the

association between one pair of smells.

Table 3.4 presents the frequent itemsets where each itemset comprises two smell types. We

also conduct Chi-squared and Cramer’s V tests to check whether the associations between code

smells are statistically significant or not. It is worth noting that we found some reciprocal

associations which are due to variation in the confidence value. To better explain this aspect,

we illustrate in Table 3.3 a simplified example of code smells co-occurrences at the class level

where transactions are the 6 classes and the items are the 𝑆𝑖 and 𝑆 𝑗 smells. We observe that

confidence(𝑆𝑖 ⇒ 𝑆 𝑗 ) = 0.5, while confidence(𝑆 𝑗 ⇒ 𝑆𝑖) = 1. Thus, the two smells frequently
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co-occur together in both ways. As for our analysis. overall, we found that there are 14 pairs of

code smells that frequently co-occur together and 9 types of code smells that tend to compose

such co-occurrences.

Table 3.3 A simplified example of

code smells co-occurrences

Class Smell (𝑆𝑖) Smell (𝑆 𝑗 )
Class 1 ×

Class 2 ×

Class 3 ×

Class 4 × ×

Class 5 × ×

Class 6 × ×

The Complex Class code smell often co-occurs with other code smell types, and in particular with

Message Chain, Feature Envy and Member Ignoring Method. This result is likely to be expected

for Message Chain and Feature Envy smells since complex classes are typically composed of

several complex and/or long methods that could be responsible for provoking the long chain of

method calls resulting in a Message Chain code smell and including dependencies toward other

classes since they are composed of several code statements resulting in a Feature Envy code

smell. However the strong association with the Member Ignoring Method was ambiguous and

thus, we perform some manual analysis to understand reasons. we found that complex classes

contain empty methods (i.e., without instructions) created for prototyping purposes and since

they are empty they do not access any non-static attributes or methods. Moreover, as shown in

Table 3.4, all these associations are statistically significant.

For the co-occurrence between Complex Class and Message chain, a clear example was found in

WiFi Analyzer application, in version V3.0.3-F-DROID18. The classTitleLineGraphSeries

is affected by the Complex Class smell, and indeed its McCabe’s cyclomatic complexity reaches

45. At the same time, the method draw() is affected by the Message Chain and Feature

Envy smells as it recursively invoke 14 different methods such us hasNext() and isNaN()

18 https://github.com/VREMSoftwareDevelopment/WiFiAnalyzer/releases/tag/V3.0.3-F-DROID
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and make extensive use of the width and height attributes belonging to the View class to

perform some computation in order to draw the background. Hence, this method implementation

resulted into a poor cohesion with a lack of cohesion that reaches 87%. As for the co-occurrence

between Complex Class and Member Ignoring Method, we found that the class contains some

empty methods created for prototyping purposes such as getTitle() and drawPoint().

and since they are empty they do not access any attributes or methods.

The Feature Envy code smell often co-exists with two code smell types namely Long Method

and Long Parameter List. It is worth noting that this association is reciprocal as shown in Table

3.4. This association is an intended outcome since Long Methods are composed of several

code statements, accessing of course the data of other classes, they are more prone to also be

affected by the Feature Envy code smell. Furthermore, the association with Feature Envy and

Long Method smells frequently co-occur with a Long Parameter List. This could be an expected

consequence since long methods implement several class responsibilities, and thus they require a

higher number of parameters, increasing the chances of also being affected by a Long Parameter

List smell. Furthermore, as shown in Table 3.4, the Feature Envy:Long Method smell pair has

the highest degree of association with a Cramer’s V test value of 0.6

The co-occurrences between the Message Chain and the Member Ignoring Method code smells

are less obvious and not expected. By conducting a qualitative investigation on various samples

of some co-occurences, we simply found that the Complex Class often co-occurs with both

Message Chain and Member Ignoring Method. Thus the Message Chain has a higher chance to

be associated with Member Ignoring Method.

The Member Ignoring Method co-occur with other smell types such as No Low Memory Resolver,

Slow Loop and Leaking Inner Class. These smells are associated since they are related to the

app’s performance and energy consumption, i.e., the CPU time of a method or the memory

usage of one variable. This is a reason why the correction of such smells can contribute to

improve performance and user experience without impacting the apps quality Hecht et al. (2016);
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Palomba et al. (2019); Carette et al. (2017). Moreover, as shown in Table 3.4 these smell pairs

are significantly associated.

For OO smells, our results are inline with prior findings in the literature on code smells

co-occurrences in desktop applications Palomba et al. (2017b, 2018b, 2019). However, for

Android smells, our findings reveal various interesting relationships that have not been yet

explored previously in the context of Android apps development.

Table 3.4 Association rule mining results: the identified frequent itemsets of code smells

co-occurrences

Code smell item set #1 Code smell item set #2 Support Confidence Lift Chi-square p-values Cramer’s V
Feature Envy Long Method 0.120 0.572 3.725 <0.0001 0.601

Long Method Feature Envy 0.120 0.781 3.725 <0.0001 0.601

Long Method Long Parameter List 0.122 0.793 3.412 <0.0001 0.568

Complex Class Message chain 0.087 0.765 3.997 <0.0001 0.524

Complex Class Feature Envy 0.073 0.637 3.037 <0.0001 0.382

Long Parameter List Feature Envy 0.135 0.579 2.761 <0.0001 0.374

Feature Envy Long Parameter List 0.135 0.642 2.761 <0.0001 0.374

Member Ignoring Method No Low Memory Resolver 0.094 0.719 1.716 <0.0001 0.235

Leaking Inner Class Member Ignoring Method 0.078 0.712 1.699 <0.0001 0.208

Message Chain Member Ignoring Method 0.120 0.628 1.499 <0.0001 0.207

Member Ignoring Method Slow Loop 0.086 0.681 1.625 <0.0001 0.202

Complex Class Member Ignoring Method 0.074 0.651 1.554 <0.0001 0.169

Long Method Member Ignoring Method 0.092 0.598 1.426 <0.0001 0.154

Long Parameter List Member Ignoring Method 0.126 0.544 1.298 <0.0001 0.139

Summary for RQ2. Several pairs of code smells (14) tend to co-occur very often, including

three pairs from Android-specific smells (e.g., Leaking Inner Class and Member Ignoring

Method), seven pairs from OO code smells (e.g., Long Method and Long Parameter List) and

four from both Android and OO smells (e.g., Complex Class and Member Ignoring Method).

3.5 Threats to validity

This section discusses threats to validity of the study.

1. Threat to construct validity could be related to the smells detection. Both Android and

OO code smells were automatically detected using two widely used state-of-the-art tools.

We are aware that our results can be affected by the presence of false positives and false

negatives. While the performance of both tools has been evaluated in previous research. For

Android smells, we used the aDoctor tool that has a precision of 98% and a recall of 98%
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Palomba et al. (2017a, 2019); Bavota et al. (2015a). For OO smells, we used organic which

is an implementations of rules published by Bavota et al. Bavota et al. (2015a). However,

we cannot exclude that some code smells were missed by our analysis or false positives were

considered.

2. Threat to conclusion validity could be related to the analysis methods used in our study.

While we exploited association rule mining based on the Apriori algorithm, other methods

such logistic regression could be used. A part of our future work, we plan to investigate the

performance of other techniques.

Another threat in this category might be related to the high diffusion of a certain code smell

types. Indeed, frequent co-occurrences between the considered smells might simply be

the results of the high distribution of one smell type, possibly indicating no causation in

the observed relationships. Figure 3.2 reports the diffusion of code smells in terms of the

percentage of classes affected by each smell type in the analyzed apps. We observe that

the frequent associations between the considered smells indicated in Table 3.2 are not just

the results of code smells disparity. Indeed, results indicate that some smells that were

not involved in co-occurrences (e.g., Lazy Class, Leaking Thread and Internal Getter And

Setter) are frequent comparing to other smells that were involved (e.g., Complex Class, No

Low Memory Resolver). Therefore, the observed associations are not be just the result of

the high diffuseness of single code smell types.

3. Threat to external validity are related to generalizability of our results. While we used a

large sample of 1,923 open source Android apps written in Java, we cannot generalize our

results to other open source or commercial mobile apps or to other technologies.

3.6 Implications

In this section, we discuss the implications that one can derive from our results.

• Identifying refactoring opportunities to remove the co-occurrences of code smells. Our

study have shown that the phenomenon of code smell co-occurrences is highly spread in

Android apps. It is widely accepted refactoring techniques can be used to remove code
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Figure 3.2 The diffusion of each code smell type across the

studied applications

smells, hence, the use of such relationships from code smells co-occurrence (i.e., code smell

pairs that frequently co-occur together) can provide a valuable knowledge to help identifying

which refactoring strategies (e.g., primitive or composite refactorings) should be applied,

and which are the most difficult co-occurrences to be refactored. Since this is one of the

major research challenges, this study shed light on the importance of developing practical

refactoring tools based on the information about co-occurrences of code smells.

• Building code smell detection tools that have to regard the co-occurrence phenomenon

The frequent co-occurrence between some smells might represent an important source of
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information code smell detection in mobile apps (e.g., observing together the traits marking

a frequent code smell pair). Indeed, our results might be exploited to build more reliable

code smell detection tools able to identify the location and the gravity of design problems

affecting a class.

• Understanding the impact of code smells co-occurrences on software quality. Investi-

gating the effects of the co-occurrences of code smells on software quality is crucial as

it can bring unforeseen maintenance efforts and costs. Various studies have explored the

effects of individual occurrences of code smells Santos et al. (2018); Martins et al. (2020);

Palomba et al. (2018b); Yamashita & Moonen (2013b) in traditional software systems. On

the other side, other works have shown that classes affected by more than one instance of code

smells have a higher change-proneness and fault-proneness as compared to classes affected

by a single instance Palomba, Di Nucci, Panichella, Oliveto & De Lucia (2016a). As our

study indicates that developers can be often confronted with the phenomenon of code smell

co-occurrences in their code base, therefore it is crucial to eliminate these anomalies in early

stages of the development process to avoid the deterioration of their code. Hence, the research

community can further perform an in-depth analysis on the impact of the co-occurrences of

code smells on various structural quality aspects such internal and external quality attributes,

and other performance quality aspects such as memory and energy consumption in the

context of mobile apps. Such analysis can provide practical guidelines for mobile apps

refactoring.

3.7 Conclusion and Future Work

In this study, we investigated the co-occurrence of code smells in Android apps on a large dataset

of 1,923 open-source apps, 15 types of Android smells and 10 types of OO code smells. We

jointly analyzed (1) the prevalence of the co-occurrence phenomenon, and (2) code smell pairs

that most tend to co-occur. The key findings of our study indicate that (i) the co-occurrence

phenomenon is quite prevalent in Android apps with 34%, 26% and 51% of classes are affected

respectively by more than one Android, OO and both (i.e., OO and Android) smell types, and
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(ii) there exist 14 smell pairs frequently co-occur together. As future work, we plan to analyze

other types of code smells and investigate the impact of code smell co-occurrences on internal

and external quality attributes as well as other performance aspects. We also plan to develop

customized Android app refactoring tools based on the information about co-occurrences of

code smells.
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4.1 Abstract

Mobile applications must continuously evolve, sometimes under such time pressure that poor

design or implementation choices are made, which inevitably result in structural software quality

problems. Refactoring is the widely-accepted approach to ameliorating such quality problems.

While the impact of refactoring on software quality has been widely studied in object-oriented

software, its impact is still unclear in the context of mobile apps. This paper reports on the

first empirical study that aims to address this gap. We conduct a large empirical study that

analyses the evolution history of 300 open-source Android apps exhibiting a total of 42,181

refactoring operations. We analyze the impact of these refactoring operations on 10 common

quality metrics using a causal inference method based on the Difference-in-Differences (DiD)

model. Our results indicate that when refactoring affects the metrics it generally improves them.

In many cases refactoring has no significant impact on the metrics, whereas one metric (LCOM)

deteriorates overall as a result of refactoring. These findings provide practical insights into the

current practice of refactoring in the context of Android app development.
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4.2 Introduction

Android applications undergo modifications, improvements and enhancements to cope with

rapid and evolving user requirements. Such maintenance activities can cause quality to decrease

if improperly conducted Palomba et al. (2019); Hecht et al. (2016); Morales et al. (2017); Uchôa

et al. (2020). In order to facilitate software evolution, developers need to improve software

structure on a regular basis. Refactoring is the most common approach to improve the internal

structure of software systems without affecting their external behavior Fowler et al. (1999);

AlOmar et al. (2019); Ouni et al. (2016); Mkaouer et al. (2015); Murphy-Hill, Parnin & Black

(2011).

Mobile apps differ significantly from traditional software systems Minelli & Lanza (2013);

Mannan et al. (2016); Kessentini & Ouni (2017) in having to deal with limitations on specific

hardware resources like memory, CPU, display size, etc., as well as the highly dynamic nature of

the mobile app market and the ever-increasing user requirements. These differences can play an

important role in mobile app development and evolution. Indeed, unlike object-oriented software

systems AlOmar et al. (2019); Ó Cinnéide et al. (2012); Alshayeb (2009); Bavota et al. (2015a);

Cedrim et al. (2016); Stroggylos & Spinellis (2007), the impact of refactoring on quality metrics

in mobile apps has received little attention. Hence, much uncertainty exists about the relationship

between refactoring and quality aspects in mobile apps. Yet, refactoring practices may exhibit

different challenges in the context of Android apps. Even though refactoring aims at improving

code structure, this expectation might not be always met in real settings as refactoring changes

are often performed quickly to meet users requirements, fix defects or adapt to environment

changes in the highly volatile mobile market Cedrim et al. (2016). To develop efficient and

reliable refactoring support tools for mobile apps, there is a need to better understand the current

refactoring practice and its impact on structural quality.

To fill this gap and improve the current knowledge about the impact of refactoring on structural

quality, we conduct an empirical study on a dataset composed of 300 open-source Android apps

that are freely distributed in the Google Play Store. We analyze the impact of 10 commonly used



75

refactoring operations on 10 well-known quality metrics in Android apps. We identified a total

of 42,181 applied refactoring operations and measured quality metrics values before and after

each refactoring operation. Then we analyzed the impact of each refactoring on the considered

quality metrics using a causal inference method based on the Difference-in-Differences (DiD)

model, one of the widely-used analytical techniques for causal inference Angrist & Pischke

(2008).

Overall, our study findings can be summarized as follows.

• Some refactoring types correlate with a broad improvement in software metric values. For

example, the Move Method refactoring brings about a significant improvement in terms

of coupling (CBO and RFC), cohesion (LCOM, TCC and LCC), complexity (WMC) and

design size (LOC).

• The cohesion metric LCOM proved to be least consistent metric, improving for some

refactoring types while deteriorating for others, and exhibiting an overall deterioration

in response to refactoring. This resonates with earlier work showing LCOM to be very

volatile under refactoring Ó Cinnéide et al. (2012), and inclined to deteriorate when coupling

improves Paixao, Harman, Zhang & Yu (2017).

• Non-refactoring code changes tend to have a negligible impact on the majority of quality

metrics, except for the design size-related metrics which tend to increase in most of the

commits. It is to be expected that design size related metrics increase over time as a project

evolves, following Lehman’s law on software evolution Lehman (1996).

4.3 Study Design

This section describes the design of our empirical study. We first setup our research question.

Then, we explain our experimental setup including data collection, and analysis methods

employed.

Our main goal in this study is to investigate how refactoring affects structural quality metrics in

Android apps. In particular, we address the following research question:
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Figure 4.1 The overall process of our empirical study

4.3.1 Empirical Study Setup

To address our research question, we design a controlled experiment where we select two

groups of code changes, a first group that consists of refactoring-related change changes (i.e.,

treatment group), and a second that consists of a non-refactoring code changes (i.e., control

group). Thereafter, we investigate the impact of both groups on quality metrics to allow statistical

analysis. Figure 4.1 describes the overall process of our study which consists of six main steps:

Android apps selection, refactoring extraction, commit extraction, non-refactoring changes

extraction, Quality metrics measurement, and refactoring impact analysis.

4.3.1.1 Step 1: Android apps selection

We target open-source Android apps that are freely distributed in the Google Play store and have

their versioning history hosted on GitHub. For this purpose, we performed a custom search

on GitHub by targeting all Java repositories in which the readme.md file contains a link to a

Google Play Store page. Overall, we obtained 19,212 apps. Thereafter, inspired by previous

works Das et al. (2016); Malavolta et al. (2018), we applied the following filters to exclude:
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• Apps whose GitHub repository does not contain an AndroidManifest.xml file as they

clearly do not refer to real Android apps. The result of this filter was a collection of 5,766

apps.

• Apps for which the corresponding Google Play page is not existing anymore. This filter

returned 3,160 apps.

• Repositories that contain forks of other repositories. This filtering step leads to a final set of

1,923 Android apps

Thereafter, we randomly selected a representative set of 300 apps which represents 15% of the

final set, exhibiting a total of 42,181 refactoring operations. We focused our study to this set of

apps for computational reasons. It is worth noting that the sample size of 300 apps and 42,181

refactoring operations is larger than related studies on the impact of refactoring on software

quality Bavota et al. (2015a); Cedrim et al. (2016); Alshayeb (2009), and than typical samples

in software engineering research Wohlin et al. (2012). Table 4.1 summarizes the statistics about

the collected dataset.

Table 4.1 Dataset statistics

Statistic Count
# of Android apps 300

# of commits with refactorings 13,500

# of refactoring operations 42,181

Total number of commits 271,263

4.3.1.2 Step 2: Refactorings detection

In this step, we collect all the refactoring operations applied to the studied apps. We utilize

RefactoringMiner Tsantalis et al. (2018b) to detect applied refactoring instances on the commit

level. RefactoringMiner is a command-line based open source tool that is built on top

of the UMLDiff Xing & Stroulia (2005) algorithm for differencing object-oriented models.

RefactoringMiner has been shown to achieve a precision of 98% and recall of 87% Tsantalis

et al. (2018b); Silva et al. (2016). The tool walks through the commit history of a project’s Git

repository to extract refactorings between consecutive commits. RefactoringMiner supports the



78

detection of various common refactoring types from Fowler’s catalog. Among the supported

refactorings, all refactoring types detected by Refactoring Miner were considered in this study,

except the Rename Method and Rename Class refactorings as they are not directly related to

one of the structural metrics studied in our study. Overall, our extraction process identifies a

list of 10 common refactoring types which are amongst the most common refactoring types

Murphy-Hill et al. (2011); Cedrim et al. (2017, 2016); Ouni et al. (2016); AlOmar et al. (2019).

Table 4.2 reports the list and the number of refactorings, respectively, that are investigated in our

study.

Table 4.2 The list of refactoring

applied to the analyzed apps

Refactoring type Number

Extract Method 11,736

Move Attribute 8,321

Move Method 5,847

Extract And Move Method 5,121

Inline Method 3,952

Push Down Method 2,541

Pull Up Attribute 1,371

Pull Up Method 1,170

Extract SuperClass 1,140

Move Class 982

Total 42,181

4.3.1.3 Step 3: Commit changes extraction

After the extraction of all refactoring operations, we collect the IDs of all refactoring commits,

i.e., commits in which a refactoring operation was applied, as well as the IDs of the commits

that immediately precede the refactoring commit. The GitHub API facilitates this process; in

particular, we use the git clone command to download the source code of each refactoring

commit as well as its immediately preceding commit. These commits enable the identification

of quality metrics values before and after the application of refactoring.
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4.3.1.4 Step 4: Non-refactoring changes extraction

In this step, we extract a set of commits that contain non-refactoring changes for our controlled

experiment. To do this, based on the treatment group, we randomly selected a set of non-

refactoring commits representing our control group. For each commit, we collected its ID as

well as the commits that precede it. Thereafter, we performed the same procedure adopted in

Step 3 to collect their source code.

4.3.1.5 Step 5: Quality metrics measurement

To assess the impact of refactoring on software quality, we need to measure a set of quality

metrics. In particular, we measure for each applied refactoring change as well as non-refactoring

changes, the class level metrics before and after the change has been applied in the commit level.

Specifically, since we already have the list of refactoring operations applied in each commit, we

compute for each class the quality metric values before and after each commit in both treatment

and control groups. To calculate the values of these metrics we utilized a widely-used open

source CK Metrics Suite tool, namely, CK-metrics,which is a command-line based tool provided

by Aniche Aniche (2016) that allows automating our dataset collection process.

4.3.1.6 Step 6: Refactoring Impact Analysis

In this step, we investigate whether or not each metric is improved by refactoring. In order to

do this, we set up two hypotheses, the null hypothesis 𝐻0 assumes that a refactoring operation

𝑟𝑖 does not improve a quality metric 𝑚𝑗 , and the alternative hypothesis 𝐻 indicates that the

refactoring 𝑟𝑖 improves 𝑚𝑗 .

After collecting the metric values before and after each commit in both treatment and control

groups, we calculate the differences between their quality metric values before and after the

refactoring change, at the class level. Thereafter, we use two statistical methods statistical

significance, and causal inference.
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1. Statistical Significance Analysis. To capture the overall trends of the variation in the

metric values we use statistical significance analysis. To do so, for each refactoring operation

𝑟𝑖, and each metrics 𝑚𝑗 , we use the Wilcoxon rank-sum test Wilcoxon, Katti & Wilcox

(1970), a non-parametric test, to assess the statistical differences between the distribution

of 𝑚𝑗 before and after the application of 𝑟𝑖. In addition to the Wilcoxon test, we used

the non-parametric effect Cliff’s delta (𝛿) Cliff (1993) to compute the effect size, i.e., the

magnitude of the difference between the distributions. The value of effect size is statistically

interpreted as:

• Negligible : if | 𝛿 |< 0.147,

• Small : if 0.147 ≤| 𝛿 |< 0.33,

• Medium : if 0.33 ≤| 𝛿 |< 0.474, or

• High : if | 𝛿 |≥ 0.474.

Furthermore, to better assess the impact of a specific refactoring operation on quality metrics,

we performed a causal inference experiment to assess whether the metrics variations are

due to the refactoring changes or to other code changes.

2. Causal Inference Analysis. Causal inference stems from the social sciences and explores

cause and effects as its main concern Angrist & Pischke (2008). In econometrics, difference-

in-differences (DiD) methods are one of the key analytical elements for causal inference.

DiD is used to statistically analyze actual and counterfactual scenarios, thereby enabling

a causality analysis. To investigate the effects of a treatment in statistics, one cannot see

the results with and without an intervention based on one individual only. As shown in

Figure 4.2, the DiD model addresses this problem by comparing two groups, a group with

the intervention, called treatment group (i.e., a set of code changes with refactoring) and a

group without it, called a control group (i.e., a set of code changes without refactoring).

The underlying assumption of DiD design is that the trend of the control group provides an

adequate proxy for the trend that would have been observed in the treatment group in the

absence of treatment. Let, 𝑇 and 𝐶, the treatment and the control group, respectively. The

refactoring impact RI of a given refactoring operation 𝑅 on a given quality metric 𝑀𝑖 is

calculated as follows:
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𝑅𝐼 (𝑅, 𝑀𝑗 ) = 𝑌𝑅
𝑀𝑖

− 𝑌𝐶
𝑀𝑖

(4.1)

where 𝑌𝑅
𝑀𝑖

is the median perceived impact after the application of the set of refactorings 𝑅

on the treatment group 𝑇 on the metric 𝑀𝑖; and 𝑌𝐶
𝑀𝑖

is the median perceived change in the

control group 𝐶 on the metric 𝑀𝑖.
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Figure 4.2 An example of the causal inference method using a

DiD model showing the refactoring impact on a quality metric

before versus after the application of refactoring

4.4 Empirical study results

This section reports and discusses our experimental results to address our research question: do

refactorings applied by Android developers improve quality metrics? To answer this question,

for each commit change of both groups, described in 4.3, we compute its corresponding metric

values before and after each commit in both treatment and control groups. Figures 4.3 and

4.4 show the general distribution of the metrics values before and after commit changes in the

treatment, and control groups, respectively. We also provide a detailed analysis in Table 4.3

where each column reports:

1. The impact of the respective refactoring type based on the DiD technique using Equation

4.1.
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2. The predominant behavior indicating whether the refactoring impact is positive or negative.

3. The p-value as well as the Cliff’s delta (𝛿).

In the following, we report and discuss the obtained results for each quality metric along with

real world examples from our experiments.

Table 4.3 The impact of refactoring (treatment group) and non-refactoring (control group)

changes on quality metrics

Data Change Measure
Coupling Cohesion Complexity Design Size Inheritance

CBO RFC NOSI LCOM TCC LCC WMC LOC VQTY DIT

T
re

at
m

en
t
G

ro
u
p

Extract Method Refactoring impact 0 -4 0 3 0 0 -2 -4 0 0

Behavior - ↓ - ↑ - - ↓ ↓ - -

P-value (𝛿) 0.06 (S) <0.05 (S) 0.10 (S) 0.07 (N) 0.18 (S) 0.18 (S) <0.05 (S) <0.05 (S) 0.06 (N) 0.06 (N)

Move Attribute Refactoring impact 0 -9 5 1 0.1 0.1 0 0 -12 0

Behavior - ↓ ↑ ↑ ↑ ↑ - - ↓ -

P-value (𝛿) <0.05 (N) <0.05 (N) 0.17 (N) <0.05 (N) <0.05 (N) <0.05(N) 0.40 (N) 0.13 (N) <0.05 (S) 0.1 (N)

Move Method Refactoring impact -8 -4 0 -2 0.3 0.3 -3 -13 0 0

Behavior ↓ ↓ - ↓ ↑ ↑ ↓ ↓ - -

P-value (𝛿) <0.05 (S) <0.05 (N) 0.70 (N) <0.05 (S) <0.05 (N) <0.05 (N) <0.05 (S) <0.05 (M) 0.11 (N) (M) 0.15 (S)

Extract And Refactoring impact -8 -11 0 -2 0.7 0.7 -3 -12 0 0

Move Method Behavior ↓ ↓ - ↓ ↑ ↑ ↓ ↓ - -

P-value (𝛿) <0.05 (S) <0.05 (N) 0.33 (N) <0.05 (S) <0.05 (N) <0.05 (N) <0.05 (S) <0.05 (M) 0.08 (N) 0.07 (N)

Inline Method Refactoring impact -3 0 0 -4 0 0 -1 0 -5 0

Behavior ↓ - - ↓ - - ↓ - ↓ -

P-value (𝛿) <0.05 (N) 0.82 (N) 1 (N) 0.31 (N) 0.10 (N) 0.10 (N) 0.17 (S) 1(N) 0.59 (N) 1 (N)

Push Down Refactoring impact -10 0 0 3 0 0 1 -15 -3 -7

Method Behavior ↓ - - ↑ - - ↑ ↓ ↓ ↓
P-value (𝛿) <0.05 (M) 1 (N) 1 (S) 1 (N) 1 (N) 1 (N) 0.10 (N) <0.05 (M) <0.05 (N) <0.05 (S)

Pull Up Attribute Refactoring impact -4 0 0 0 0 0 -2 -9 0 -10

Behavior ↓ - - - - - ↓ ↓ - ↓
P-value (𝛿) <0.05 (S) 1 (N) 1 (N) 0.08 (N) <0.05 (N) <0.05 (N) <0.05(N) <0.05 (S) 0.08 (N) <0.05 (M)

Pull Up Method Refactoring impact -11 2 1 2 0.01 0.01 -3 -16 -7 -5

Behavior ↓ ↑ ↑ ↑ ↑ ↑ ↓ ↓ ↓ ↓
P-value (𝛿) <0.05 (M) 0.51 (N) 1 (N) <0.05 (N) 1 (N) 1 (N) 0.03 (N) <0.05 (M) <0.05 (S) <0.05 (S)

Extract Super Refactoring impact -9 -8 0 0 0 0 -10 -24 -1 -8

Class Behavior ↓ ↓ - - - - ↓ ↓ ↓ ↓
P-value (𝛿) <0.05(M) <0.05 (S) 0.88 (N) 0.09 (N) 1 (N) 1 (N) <0.05 (M) <0.05 (M) 1 (N) <0.05 (S)

Move Class Refactoring impact 0 0 -1 2 0 0 -1 -6 -1 -3

Behavior - - ↓ ↑ - - ↓ ↓ ↓ ↓
P-value (𝛿) <0.05 (S) 1 (N) 0.17 (N) <0.05 (N) 1 (N) 1 (N) <0.05 (N) <0.05 (N) 0.10 (N) <0.05 (S)

C
o
n
tr

o
l

G
ro

u
p Commit change Change commit -1 0 0 -3 0 0 0 10 1 0

Behavior ↓ - - ↓ - - - ↑ ↑ -

P-value (𝛿) 0.08 (N) 0.11 (N) 0.73 (N) 0.10 (N) 0.97 (N) 0.97 (N) 0.07 (N) <0.05 (S) <0.05 (N) 0.34 (N)

Legend:
Metric improvement: Low High

Metric disprovement: Low High

Effect size: L: Large, M: Medium, S: Small, N:

Negligible

Behavior: ↑ : indicates that the metrics increased; ↓ :

indicates that the metric decreased; - : indicates that the

metric remains unaffected.

4.4.1 Replication package

Our dataset is available in our replication package for future replications and extensions Dataset

(2021b).
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Figure 4.3 Treatment group results: Beanplots of metric values before and after each

refactoring operation
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Figure 4.4 Control group results: The impact of

non-refactoring code changes on quality metrics

4.4.2 Results for Coupling Metrics

Coupling is defined as the strength of the dependencies that exist between classes Chidamber & Ke-

merer (1994); Stevens, Myers & Constantine (1974). Low coupling is desirable since it helps in

isolating responsibilities and changes. As shown in Table 1.4, we assess three coupling metrics.

The first is the Coupling Between Object (CBO), counting the number of dependencies a class

has (i.e., the number of other classes it depends on). The second metric is the Response for a

Class (RFC), calculated as the number of distinct methods and constructors invoked by a class.

The third is Number Of Static Invocations (NOSI) which counts the number of invocations of

static methods. The higher the CBO, RFC and NOSI the worse is the class coupling.

4.4.2.1 CBO

From the beanplots in Figure 4.3 and Table 4.3, we observe that several applied refactorings

improve the CBO metric (i.e., decrease its value). The most influential refactorings are Pull Up

Method, Push Down Method, and Extract Super Class significantly reducing CBO from 9 to 11

with a medium effect size. These refactorings are typically applied when classes or subclasses

grow and develop independently of one another, causing identical (or similar) methods each

having its own dependencies. They often help reducing duplicate code, replacing inheritance with

delegation and vice versa as well as reducing dependencies through polymorphism. Furthermore,

Move Method or Extract And Move Method tend to significantly improve CBO by a median
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value of 8, each with a small effect size. Typically, these method-level move refactorings help

organizing functionalities across classes and thus reduce dependencies between them. Overall,

as shown in Table 4.3, the CBO variation for all refactorings is significant and accompanied

with a medium or small effect size depending on the refactoring type. Particularly, the effect

size is negligible for the Inline Method, as it could be applied either in methods from the same

class or from different classes. Only the latter can help reducing coupling.

4.4.2.2 RFC

As it can be seen from the beanplots in Figure 4.3 and Table 1.4, Extract And Move Method, and

Move Attribute are the most influential refactoring that improve RFC by 11 and 9, respectively.

Moreover, Extract Super Class have shown to improve RFC by a median score of 8, while less

impact is observed by both Extract Method and Move Method refactorings with a median of 4,

each.

4.4.2.3 NOSI

From Figure 4.3 and Table 4.3, we observe that the NOSI metric has not been impacted by any

of the applied refactorings since when comparing the distributions of values before and after

refactoring, no statistically significant difference is observed. This is not very surprising, as

most of refactorings do not have a direct impact on static methods.

It is worth noting that our findings in Android apps share some similarities with desktop apps for

the coupling which is positively impacted after applying the refactoring Pantiuchina et al. (2018);

Moser, Abrahamsson, Pedrycz, Sillitti & Succi (2007). Moreover, the the Extract Method and

Move Method refactorings are applied in both Android and desktop applications to improve the

coupling Bavota et al. (2015a); Fernandes et al. (2020).

To observe the salient impacts of refactoring on coupling, we refer to a real world example

from our dataset showing the impact of a Move Method refactoring on coupling metrics, from
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the WordPress-Android app, in the commit19. The commit’s refactoring consists of moving of

the method showJetpackSettings() from the class EditPostActivity to the class

ActivityLauncher. Interestingly, this Move Method refactoring resulted in a coupling

reduction for the ActivityLauncher class, with a drop of its CBO from 18 to 13 and its

RFC from 33 to 31. Looking deeper into the the source code to understand the reason behind

these improvements, we find that the Start Jetpack security settings activity was initially launched

from the ActivityLauncher class via the startActivity() method. This method use

the intent object to start this activity. However, intent was intitially implemented in the

showJetpackSettings() method in the EditPostActivity. As consequence, each time this

activity is launched, the class ActivityLauncher calls the showJetpackSettings()

method. Thus, this refactoring helped moving the method to the class that uses it most which

decreased the number of dependencies between both classes, resulting in an improvement in

both CBO and RFC.

Finding 1. Refactoring has a significant positive impact on coupling in terms of both the

CBO and RFC metrics, while no significant impact was found on the NOSI metric. The most

influential refactorings that promote low coupling are Move Method, and Extract And Move

Method.

4.4.3 Results for Cohesion Metrics

Cohesion assesses the degree to which the responsibilities implemented in a class belong together

Stevens et al. (1974). High cohesion is desirable since it promotes encapsulation and adherence

to the Single Responsibility Principle, one of the SOLID design principles Joshi (2016). In

this study, we consider three cohesion metrics, the first metric is the normalized Okike (2010),

considering the shared instance variables between method pairs of a class. If the value of this

metric is low, it indicates a strong cohesiveness of the class. The second cohesion metric is TCC,

which considers the direct connection of public methods in a class. The third is LCC, which is

similar to TCC but additionally considers the indirect connection of public methods in a class.

19 https://github.com/wordpress-mobile/WordPress-Android/commit/ead8683e044a70fb3b288d562966c7ed442b8925
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TCC and LCC provide another way of measuring the cohesiveness of a class. The higher the

TCC and LCC a values are, the more cohesive is the class. It is anticipated that cohesion may be

improved by moving-related refactoring operations. In general, moving a method that does not

access local attributes or methods, or is called by few local methods improves cohesion.

4.4.3.1 LCOM

The beanplots from Figure 4.3 and Table 4.3 show that LCOM is improved when applying Move

Method and Extract And Move Method refactorings. For both refactorings, the median values

significantly decreased by 2, even though they are accompanied by a small effect size. However,

we also observe from the results in Table 4.3 that the Move Attribute, Pull Up Method and Move

Class refactorings caused LCOM metric to disprove by a median of 1 and 2 with a negligible

effect size.

These results suggest that the LCOM metric can either improve or disprove after refactoring,

and developers need to pay attention to cohesion when modifying their code and use appropriate

refactoring operations. It is worth noting that our results match previous work observations

for the cohesion, i.e., cohesion worsens rather than improves after the refactoring application

Stroggylos & Spinellis (2007); Fernandes et al. (2020).

4.4.3.2 TCC

As can be seen in beanplots of Figure 4.3 and Table 4.3, Extract And Move Method is the most

influential refactoring on TCC which improve it by 0.7. Whereas, Move Method and Move

Attribute refactorings tend to have less impact on the metrics with a median improvement of 0.3,

0.1, respectively. It is worth noting that the differences are statistically significant even though

with negligible effect size.
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4.4.3.3 LCC

We found that LCC achieves similar results to the TCC metric. This was expected since both

metrics reflect similar cohesion characteristic as mentioned earlier in Section 4.4.3, except

that LCC further involves the number of indirect connections between visible classes. Thus,

the constraint 𝐿𝐶𝐶 ≥ 𝑇𝐶𝐶 holds always. Upon a qualitative investigation of our dataset, we

observe that moving methods from one class to another is a popular and effective refactoring to

improve cohesion, as it often involves adding a parameter when resources of the original class

are used, and removing that parameter which is an instance of the target class.

As an illustrative example, we refer to the WordPress-Android app from the commit 20, we observe

that the method onDraw() is moved from GraphView class to the GraphViewContentView

class which makes the class GraphView more cohesive with an improvement in each of TCC

and LCC from 0.2 to 0.5 and an improvement of LCOM from 32 to 28.

Finding 2. Cohesion quality metrics, LCOM, TCC and LCC, tend to exhibit statistically

significant variations with attribute and method-level moving-related refactoring operations.

The refactorings that most influence cohesion are Move Attribute, Move Method and Extract

And Move Method. However, LCOM tend to be more volatile under refactoring, which suggests

Android developers to pay attention when dealing with cohesion.

4.4.4 Results for Complexity Metrics

Reducing code complexity is one of the main challenges in any software system and one of the

prominent goals of refactoring. We use the Weighted Methods per Class (WMC) to assess class

complexity Chidamber & Kemerer (1994). WMC for a given class is computed as the sum of

the McCabe’s cyclomatic complexity of its methods McCabe (1976). Being a direct metric, the

higher WMC, the higher is the class complexity.

20 https://github.com/wordpress-mobile/WordPress-Android/commit/71a2b5277623415a7657accefc57c6599455aa3c
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The distributions of the WMC metric depicted in Figure 4.3 and Table 4.3 indicate a significant

improvement after applying Extract Super Class refactoring by a median value of 10 with a

medium effect size. Indeed, this refactoring operation is effective to remove code duplication

and thus reducing complexity. Duplicate code often occurs when two classes perform similar

tasks in the same way, or perform similar tasks in different ways. As a consequence, extracting a

superclass can concentrate similar tasks and provide a built-in mechanism for simplifying such

situations and removing duplicate code via inheritance. Moreover, various other refactorings

tend to also improve WMC including Move Method, Extract And Move Method, Pull Up Attribute,

Extract Method, and Move Class refactorings, but with less impact varying from 1 to 3 with

negligible or small effect size. These improvements are expected since the applied refactoring

operations deal with the simplification of methods inside a class. Particularly, the extraction of

sub-methods that tend to break down long methods, or moving the methods to the appropriate

class which decrease the complexity of the methods in the class.

An interesting example that shows the impact of Extract Method refactoring on complexity was

found in the ownCloud app from commit21 that involves the extraction of readIsDeveloper()

method from onCreate() method in the MainApp class and the extraction of

showDeveloperItems() method of onCreate() in the Preferences class. These

refactorings reduce the complexity by decreasing the WMC metric from 7 to 3. Even though

this commit is part of a pull request (# 13401), the developer tend to take care of the quality

through refactoring commits.

Finding 3. Several refactorings types tend to improve complexity by decreasing the WMC

metric. The most impactful refactorings are Extract Super Class, Extract Method, and Move

Method which typically help simplifying methods structure and/or reducing duplicate code.

21 https://github.com/owncloud/android/commit/7e460488f7fb2179c4476332dd5142a110450297
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4.4.5 Results for Design Size Metrics

The design size is an indication of code density. We use two common metrics to estimate the

size. The first is the Lines of Code (LOC) which counts the number of lines of code ignoring

spaces and comments. The second metric is the Variables Quantity (VQTY) that counts the

number of declared variables.

4.4.5.1 LOC

As shown in Figure 4.3 and Table 4.3, the refactorings Extract Super Class, Pull Up Method,

Push Down Method, Move Method, and Extract And Move Method are the most influential

refactorings that improve the LOC with a median ranging from 12 to 24 and a medium effect

size. We notice that the size of the code elements significantly improve after the application of

inheritance-related refactorings, as well as composing and moving method refactorings. For

example, developers tend to apply Extract Super Class to reduce the size of its subclasses and

reduce duplicated code, or Extract And Move Method to avoid code duplication and simplify the

structure of the code.

4.4.5.2 VQTY

We observe from the results in Figure 4.3 and Table 4.3 that VQTY is less impacted by refactoring

than LOC with only 3 refactorings including Move Attribute, Pull Up Method, and Push Down

Method which reduce significantly the Quantity variables metric with either negligible or small

effect size. Similar to LOC, we speculate that moving and inheritance-related refactorings

help reducing code duplication which will in turn reduce the number of declared variables in

code fragments and/or improve code reuse. It is worth noting that our results match also with

desktop applications Fernandes et al. (2020); Bavota et al. (2015a). As an illustrative example,

we refer to the WordPress-Android app, commit22 which implements an Extract Super Class.

22 https://github.com/wordpress-mobile/WordPress-Android/commit/3ff275dbf59b685666cc56ba8d094c1744955a5a
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The refactoring extracted the class TagsFragment from PostSettingsTagsFragment

which clearly resulted in a reduced size.

Finding 4. Most refactoring types tend to reduce the design size metrics LOC and VQTY. The

most influential refactorings are Extract Super class, Pull UP/Push Down Method and Move

Method which typically help reducing duplicate code, or moving code between classes, hence

improving the design size.

4.4.6 Results for inheritance

The inheritance is a key concept in any object-oriented (OO) programming infrastructure such as

Android. Designing and implementing the inheritance relations in an Android app is expected

to improve the overall quality of the app such as software reuse and extensibility. The depth

of inheritance tree (DIT) is the most used metric to assess the inheritance in OO software

applications.

We notice from Figure 4.3 and Table 4.3 that five from all the applied refactorings do improve

the DIT metric, including Pull Up Attribute, Extract Super Class, Push Down Method, Pull Up

Method, and Move Class. The majority of these refactorings deal with changes applied to the

class hierarchy. We expect that refactoring types that are mainly managing class inheritance

do impact the DIT metric. A recent study showed that inheritance-related refactorings such as

Extract Super Class and Pull Up Method tend to improve the depth of the inheritance to support

software reusability and help in the elimination of code duplication AlOmar et al. (2020b). Our

qualitative analysis has shown scenarios of moving method down, from a super class, to a child

class, for the purpose of sharing its behavior which is relevant only for some of its subclasses.

One of the examples that show the inheritance improvement was found in the Nextcloud app, in

commit ID23. Specifically, the developer applied a Push Down Method refactoring operations

involving the class AbstractIT and its subclass AbstractOnServerIT. This was realized

through pushing down the after(), deleteAllFiles(), createDummyFiles() and

23 https://github.com/nextcloud/android/commit/db6c1ba0554e5468ad568efe52c862c99ba7379c
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waitForServer() methods from AbstractIT to its subclass. These changes resulted in

inheritance improvement for the AbstractIT class, with a drop of its DIT from 5 to 3.

Finding 5. Hierarchy-level refactorings tend to improve the inheritance quality attribute (DIT).

The most influential refactorings being Pull Up Attribute, Extract Super Class and Push Down

Method. Improving the inheritance typically helps sharing common behavior across subclasses,

reduces code duplication, and increases reusability which is a common practice in Android

development.

Looking at the control group results from Figure 4.4 and Table 4.3, we noticed that the different

quality metrics did not exhibit any significant change with non-refactoring changes (control

group), except for the LOC and VQTY metrics that tend to increase after each commit. Indeed,

it is normal that the design size related metrics increase over time as the project evolves. These

results provide more evidence that the metrics changes observed in the experiment data are due

to refactoring activities and not to chance.

4.5 Implications and Discussions

4.5.1 Implications for researchers

Further exploit quality metrics and refactoring in mobile software development. The

existing literature discusses different automatic refactoring approaches that help practitioners in

detecting anti-patterns or code smells. More recently, Baqais and Alshayeb Baqais & Alshayeb

(2020) show that there is an increase in the number of studies on automatic refactoring approaches

and researchers have begun exploring how machine learning can be used in identifying refactoring

opportunities. Since the features play a vital role in the quality of the obtained machine learning

models, this study can help determine which metrics can be used as effective features in

machine learning algorithms to accurately predict refactoring opportunities at different levels of

granularity (i.e., class, method, field), which can assist developers in automatically making their

decisions. For example, using the most impactful metrics as a feature to predict whether a given
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piece of code should undergo a specific refactoring operation make developers more confident

in accepting the recommended refactoring. Such knowledge is needed as, in practice, the built

model should require as little data as possible.

4.5.2 Implications for practitioners

Android developers should be careful about their apps code quality. Our results indicate

that developers can apply refactoring operations that do not improve their apps structural quality

during refactoring, and particularly for the cohesion metric, LCOM. While LCOM tend to be

very volatile under refactoring as also shown in prior works Ó Cinnéide et al. (2012); Paixao et al.

(2017), these results indicate that there is a risk that developers degrade their apps structural

quality while performing refactoring changes. Given that Android apps should evolve quickly to

add new user requirements, fix bugs or adapt to new technological changes, such refactorings

may increase technical debt and thus cause developers to invest additional maintenance effort in

the future in order to fix quality issues in their apps. Hence, developers need to pay attention to

their refactoring edits.

Need for Android-specific refactoring tools. Our findings on the impact of refactoring on

quality attributes/metrics can help build practical and customized refactoring recommendation

tool for Android developers. For example, given the relatively small size and rapid evolution and

release cycles of mobile apps, it is relevant to recommend refactoring opportunities for classes

suffering from specific quality aspects, e.g., coupling, complexity, etc.

4.5.3 Implications for educators

Learn refactoring best practices. Teaching the next generation of engineers best practices on

refactoring and its impact on software quality in mobile apps and in software development, in

general. Educators can use our study results and our dataset dataset (2020) to teach and motivate

students to follow best refactoring practices while avoiding refactoring changes that may cause

regression in their apps. In particular, our real world dataset of 42,181 refactorings from 300
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Android apps, represents a valuable resource that could enable the introduction of refactoring to

students using a “learn by example" methodology, illustrating best refactoring practices that

should be followed and bad practices to be avoided.

4.6 Threats to validity

This section discusses threats to validity of the study.

1. Threat to internal validity: The accuracy of the refactoring detection tool, Refactoring

Miner, can represent a threat to internal validity because it may miss the detection of some

refactorings. However, previous studies report that Refactoring Miner has high precision

and recall scores (98% and 87%, respectively) compared to other state-of-the-art refactoring

detection tools Silva et al. (2016); Tsantalis et al. (2018a), which gives us confidence in

using the tool. Furthermore, the CK-metrics tool could also have its own threats. While we

conducted a manual inspection and double checked the values of the studied metrics with

an alternative commercial tool, namely Scitools Understand, to make sure that the tool is

reliable, still there could be errors that we did not notice. Another threat to internal validity

could be related to the size of commit changes. In particular, the metric change in a given

refactoring commit may or may not be related to the refactoring itself that occurred in that

commit. To mitigate this problem, we adopted a widely-used causal inference method based

on the Difference-in-Differences model that compare two groups, a treatment and a control

group.

2. Threats to construct validity: A potential construct threat to validity could be related to

the set of metrics being studied, as it may miss some properties of the selected internal

quality attributes. To mitigate this threat, we select well-known metrics that cover various

properties of each attribute, as reported in the literature Chidamber & Kemerer (1994);

AlOmar et al. (2019).

3. Threats to conclusion validity: Unlike other works on the impact of refactoring on quality

metrics Bavota et al. (2015a); AlOmar et al. (2019); Stroggylos & Spinellis (2007); Cedrim

et al. (2016), we employed the DiD method to compare the changes in quality metrics

between a treatment and control group. Moreover, we used the non-parametric Wilcoxon
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rank-sum test and the Cliff’s effect size, that do not make assumptions on the underlying

data. As part of our future work, we plan to explore other quality aspects in mobile apps.

4. Threat to external validity: While we used a large sample of 300 open source Android apps

written in Java, we cannot generalize our results to other open source or commercial mobile

apps or to other technologies.

4.7 Conclusion and Future Work

We presented a study aimed at investigating the impact of refactoring on quality metrics in

Android apps. We mined 300 open-source apps containing 42,181 refactoring operations in total.

We determined the effect each refactoring had upon the 10 chosen software quality metrics, and

employed the difference-in-differences (DiD) model to determine the extent to which the metric

changes brought about by refactoring differ from the metric changes in non-refactoring commits.

In one sense, our anticipated results were that the benefits of refactoring would be clearly

reflected in the changes brought about in the software metrics. The observed results were not that

simple however. For most refactoring type and metric combinations, the refactoring produced

no significant change in the metric. On the other hand, some refactoring types yielded a broad

improvement in several metric values. LCOM stood out as the least consistent metric, improving

for some refactoring types and disimproving for others. For the non-refactoring commits, the

metrics exhibit no significant change, other than (unsurprisingly) the design size metrics.

As future work, we plan to analyze other refactoring types and investigate their impact on

internal and external quality attributes. We also plan to extend our study to more open source

and commercial Android apps to better generalize our results, and to develop Android specific

refactoring tools to better support developers during maintenance and evolution.





CONCLUSION AND RECOMMENDATIONS

In this chapter, we summarize the contributions of our work and we discuss our perspectives.

Mobile applications are relatively new in the world of software engineering, they differ from

traditional desktop applications by their composition and their development needs. In addition,

they often rely on very short evolution cycles to satisfy demanding users and to adapt to

their environments which are also constantly evolving. It is, therefore, necessary to provide

developers of these applications with the appropriate knowledge and tools to enable them to

provide high-quality applications. Thus, we presented in this work three contributions to the

research in the field of mobile apps. These contributions provide actionable recommendations

for researchers and tools makers who aim to propose solutions that limit code smells and improve

the quality of mobile apps.

In chapter 2, we presented an empirical study that examines the impact of refactoring operations

on code smells. This study covered the evolution history of five Android apps comprising 652

releases and exhibiting a total of 9,600 refactoring operation and 15 common Android smell

types as well as 10 common traditional Object-Oriented (OO) code smell types. The results

showed that code smells are very prevalent in Android apps, with 68% of classes being affected

by Android specific smells and 63% of classes affected by traditional OO smells. Moreover,

developers are more likely to apply refactoring operations to non-smelly code elements. A total

of 25% of refactorings were applied to traditional OO smells, while 23% of refactorings were

applied to Android smells. Finally, these refactoring activities removed only 5% of traditional

OO smells and 1.5% of Android smells.

In Chapter 3, we presented an empirical study on a large dataset composed of 1,923 open

source Android apps taking into account 15 types of Android-specific and 10 types of traditional

OO code smells to explore the prevalence of code smell co-occurrences and determine which

code smell types tend to co-exist more frequently. The findings of our study indicate that the
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co-occurrence phenomenon is quite prevalent in Android apps with 34%, 26% and 51% of

classes are affected respectively by more than one Android, OO and both (i.e., OO and Android)

smell types and there exist 14 smell pairs that frequently co-occur together.

In Chapter 4, we presented a large empirical study that analyses the evolution history of 300

open-source Android apps exhibiting a total of 42,181 refactoring operations. We investigate the

impact of these refactoring operations on 10 common quality metrics using a causal inference

method based on the Difference-in-Differences (DiD) model. Our results indicate that for most

refactoring type and metric combinations, the refactoring produced no significant change in

the metric. On the other hand, some refactoring types yielded a broad improvement in several

metric values. The LCOM metric stood out as the least consistent metric, improving for some

refactoring types and disimproving for others. For the non-refactoring commits, the metrics

exhibit no significant change, other than (unsurprisingly) the design size metrics.

Perspectives:

In this section we present the perspectives of our work. We mentioned many perspectives

throughout our presentation of the contributions and their implications. The objective of this

section is to summarize these perspectives.

• We plan to extend our study to more open source and commercial Android apps to better

generalize our results.

• We plan to analyze other types of code smells, quality metrics and refactorings.

• We plan to conduct a qualitative investigation through a survey with Android developers to

better understand their intuition behind refactoring activities in the context of mobile apps.

• We plan to analyze other types of code smells and investigate the impact of code smell

co-occurrences on internal and external quality attributes as well as other performance

aspects.
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• We plan to develop customized Android app refactoring tools based on the information about

co-occurrences of code smells.
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