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Prédiction de la qualité de la transmission des connexions optiques et mise en œuvre de 

l’incertitude dans les modèles de prédiction 
 

Somaiieh YOUSEFI  

 
RÉSUMÉ 

 
La popularité récente de l’utilisation des modèles d’apprentissage profond pour la prédiction 
des séries chronologiques requiert de prédire avec exactitude la cible mais également mesurer 
l’incertitude de la prédiction. Ainsi, une architecture intuitive N-Beats a été implémentée dans 
cette thèse pour propriétés la rapidité de l’entraînement du modèle et l'adaptabilité de 
paramètre. De plus, cette architecture ne nécessite pas de modifier les différents paramètres du 
tableau de séries temporelles. L’impact des hyper-paramètres sur les performances de notre 
modèle a été également étudiée. Finalement, la performance de notre modèle a été comparée à 
d’autres modèles, à savoir Long Short-Term Memory (LSTM), Multi Layer Perceptron (MLP) 
et une méthode naïve. Les résultats ont montré que notre modèle N-Beats a surpassé le modèle 
LSTM. Toutes les implémentations ont été réalisées en utilisant le langage de programmation 
Python. Notre base de données utilisée comprend des ensembles de données de deux opérateurs 
de réseau, Microsoft et NASP. Un échantillonnage aléatoire de nos ensembles de données a 
été effectué pour éviter un sur-apprentissage.  
 
L’estimation de l’incertitude est une mesure des modèles d’apprentissage automatique pour 
déterminer la fiabilité de la prédiction des séries chronologiques. Ainsi, pour mesurer 
l’incertitude et le niveau de confiance du modèle MLP, le dropout Monte Carlo, qui se 
rapproche de l’incertitude bayésienne, a été appliqué lors de l’inférence. La régression quantile 
a été implémentée comme modèle de référence pour prédire les intervalles de confiance et pour 
évaluer notre stratégie d’estimation de l’incertitude. En conséquence, les modèles 
d’approximation bayésienne ont indiqué la nécessité d’un étalonnage pour ajuster la probabilité 
prédite. 
 

Mots-clés: Séries temporelles, Forecaster, N-Beats, LSTM, MLP, Hyper-paramètres, 
Incertitude, Approximation bayésienne, Intervalles de confiance, Régression quantile 
 





 

Forecasting lightpath quality of transmission and implementing uncertainty in 
the forecast models 

 
Somaiieh YOUSEFI  

 
ABSTRACT 

 
The recent popularity of using Deep Learning models for the forecasting of time series calls 
for methods to not only predict the target but also to measure the uncertainty of the prediction 
accurately. Working with time series requires reliable forecasters. An intuitive N-Beats 
architecture was implemented in this thesis with the desirable properties of being fast to train 
and adaptable, without requiring modifications for the various time series array settings. Its 
performance was compared with other models, namely Long Short-Term Memory (LSTM) 
Multi-layer Perceptron (MLP) and a naïve method. The influence of different hyperparameters 
were investigated as to how the parameters affected the performances of the models. Our N-
Beats model outperformed well-known time series forecaster, LSTM.  All the implementations 
were conducted in Python programming language. Random sampling was performed to avoid 
overfitting. Our target field data are Microsoft and NASP data sets. 
 
Estimating uncertainty is a component of reliable machine leaning models for time series 
forecasting. To measure the uncertainty and confidence level of the selected MLP model, 
Monte Carlo dropout, which approximates Bayesian uncertainty, was applied during inference. 
Quantile Regression was also implemented on the MLP algorithm as a baseline to predict the 
confidence intervals and to evaluate our strategy for estimating uncertainty.  As a result, 
Bayesian approximation models indicated the necessity of calibration to adjust the predicted 
probability. 
 
Keywords: Time series, Forecaster, N-Beats, LSTM, MLP, Hyperparameter, Uncertainty, 
Bayesian approximation, Confidence intervals, Quantile regression 
 
 





 

TABLE OF CONTENTS 
 

Page 

INTRODUCTION .....................................................................................................................1 

CHAPTER 1   BACKGROUND INFORMATION AND LITERATURE SURVEY ..............5 
1.1 Quality factor .................................................................................................................5 
1.2 Time series forecasting ..................................................................................................7 
1.3 Components of the time series .....................................................................................10 
1.4 Average method ...........................................................................................................10 
1.5 Moving average method ..............................................................................................11 
1.6 Naïve method ...............................................................................................................11 
1.7 Seasonal naïve method .................................................................................................11 
1.8 Facebook prophet .........................................................................................................12 
1.9 Regression models for the time series .........................................................................12 

1.9.1 Linear regression ....................................................................................... 12 
1.9.2 Logistic regression .................................................................................... 13 
1.9.3 Evaluation of the regression models ......................................................... 13 

1.10 Advanced forecasting models ......................................................................................14 
1.10.1 ARIMA generative model ......................................................................... 14 
1.10.2 Neural Network (NN) methods ................................................................. 15 

1.11 Deep Learning (DL) .....................................................................................................19 
1.12 Residual Networks (ResNets), N-Beats .......................................................................24 
1.13 Recurrent Neural Networks (RNN), LSTM .................................................................27 
1.14 Uncertainty ...................................................................................................................32 

1.14.1 Selected means of uncertainty based on literature survey ........................ 37 

CHAPTER 2 SHORT-TERM Q-FACTOR FORECASTING ................................................39 
2.1 Methodology; Algorithms ............................................................................................39 

2.1.1 Implementation of N-Beats ....................................................................... 39 
2.1.2 MLP model ............................................................................................... 41 
2.1.3 LSTM model ............................................................................................. 42 

2.2 Data sets .......................................................................................................................43 
2.3 Data preparation ...........................................................................................................44 

2.3.1 Data windowing ........................................................................................ 44 
2.3.2 Train, validation, and test sets preparation ............................................... 44 
2.3.3 Random sampling ..................................................................................... 45 
2.3.4 Data preprocessing .................................................................................... 46 

2.4 Set of metrics ...............................................................................................................47 
2.4.1 Mean Absolute Error (MAE) .................................................................... 47 
2.4.2 Mean Absolute Percentage Error (MAPE) ............................................... 47 
2.4.3 Symmetric MAPE ..................................................................................... 48 
2.4.4 Root Mean Square Error (RMSE) ............................................................. 48 

2.5 Hyperparameter optimization ......................................................................................48 



XIV 

2.5.1 Batch size .................................................................................................. 49 
2.5.2 Learning rate ............................................................................................. 49 
2.5.3 Epochs ....................................................................................................... 50 

2.6 Results and discussion .................................................................................................52 
2.7 Training time ................................................................................................................62 
2.8 Assumptions .................................................................................................................62 
2.9 Conclusion ...................................................................................................................63 

CHAPTER 3 UNCERTAINTY AND CONFIDENCE LEVELS ...........................................65 
3.1 Monte Carlo dropout ....................................................................................................65 

3.1.1 Dropout ..................................................................................................... 65 
3.1.2 Applying dropout during inference time ................................................... 66 

3.2 Uncertainty implementation.........................................................................................69 
3.3 Quantile Regression .....................................................................................................71 
3.4 Results and discussion .................................................................................................72 

CONCLUSION… ……………………………………………………………………………79 

RECOMMENDATIONS .........................................................................................................81 

LIST OF BIBLIOGRAPHICAL REFERENCES ....................................................................99 
 



 

LIST OF TABLES 
 

Page 
 

Table 1.1         Uncertainty methods ....................................................................................... 38 

Table 2.1         Range of hyperparameters for all the models for all the horizons .................. 50 

Table 2.2         N-Beats: optimum hyper-parameter set for Microsoft data set ...................... 51 

Table 2.3         N-Beats: optimum hyper-parameter set for NASP data set ............................ 51 

Table 2.4         MLP: optimum hyper-parameter set for Microsoft data set ........................... 51 

Table 2.5         MLP: optimum hyper-parameter set for NASP data set ................................. 52 

Table 2.6         LSTM: optimum hyper-parameter set for Microsoft data set ......................... 52 

Table 2.7         sMAPE (%) of the models, Microsoft data set ............................................... 55 

Table 2.8         RMSE (dB) of models, Microsoft data set ..................................................... 55 

Table 2.9         MAE (dB) of models, Microsoft data set ....................................................... 56 

Table 2.10       sMAPE (%) of models, NASP data set ........................................................... 59 

Table 2.11       RMSE (dB) of models, NASP data set ........................................................... 60 

Table 2.12       MAE (dB) of models, NASP data set ............................................................. 61 

Table 2.13       Variances of the model’s  sMAPE for both data sets ..................................... 62 

Table 2.14       Training time for each of the models .............................................................. 63 

Table 3.1         Selecting number of runs based on the mean of standard deviation…. .......... 74 
  

 

  

 





 

LIST OF FIGURES 
 

Page 
 

Figure 1.1         Q-factor time series for one WDM channel, Microsoft data set ..................... 6 

Figure 1.2         SNR time series for one WDM channel, North American… .......................... 7 

Figure 1.3         Seasonal data that shows the consumption ...................................................... 9 

Figure 1.4         Artificial intelligence, machine learning and deep learning .......................... 16 

Figure 1.5         Machine learning versus programming ......................................................... 16 

Figure 1.6         One-layer neural network with four inputs ................................................... 17 

Figure 1.7         A neural network with a hidden layer ........................................................... 19 

Figure 1.8         Schematic of deep neural network for classification of the digits ................. 20 

Figure 1.9         Schematic of a neural network, the output, input and the weights ................ 21 

Figure 1.10       The loss function as the measure for scoring the quality .............................. 22 

Figure 1.11       Train and test data split .................................................................................. 23 

Figure 1.12       N-Beats bock diagram ................................................................................... 25 

Figure 1.13       Recurrent Neural Network ............................................................................ 28 

Figure 1.14       Several Neural Networks can make an RNN ................................................ 28 

Figure 1.15       RNN repeating modules ................................................................................ 29 

Figure 1.16       The repeating module in LSTM has four interacting layers .......................... 29 

Figure 1.17       The notations in Fig. 1.13 .............................................................................. 30 

Figure 1.18       Sigmoid neural net layer and a multiplication operator ................................ 30 

Figure 1.19       LSTM sigmoid layer as the “forget gate layer” ............................................. 31 

Figure 1.20       The state of forgetting and adding information ............................................. 32 

Figure 1.21       The output of LSTM ...................................................................................... 32 

Figure 1.22       The NN without and with dropout................................................................. 34 

Figure 2.1         Schematic of our N-Beats implementation .................................................... 41 

Figure 2.2         Schematic of MLP model .............................................................................. 42 

Figure 2.3         Schematic of LSTM model ........................................................................... 43 

Figure 2.4         History and target data, history 192 SNR (Q-factor) data, ............................ 44 

Figure 2.5         Pie chart, knowledge base split ratio; training ............................................... 45 



XVIII 

Figure 2.6         The cycle of hyperparameter tuning, starting with selecting… .................... 50 

Figure 2.7         sMAPE metric indicating the performance of the models; ........................... 54 

Figure 2.8         RMSE metric indicating the performance of the models; N-Beats, .............. 55 

Figure 2.9         MAE metric indicating the performance of the models; N-Beats, ................ 56 

Figure 2.10       sMAPE metric indicating the performance of the models; N-Beats, ............ 59 

Figure 2.11       RMSE metric indicating the performance of the models; N-Beats, .............. 60 

Figure 2.12       MAE metric indicating the performance of the models; N-Beats, ................ 61 

Figure 3.1         The MLP models with and without dropout. A the MLP model without ..... 70 

Figure 3.2         PDF of the residuals per rate ......................................................................... 76 

Figure 3.3         The upper and lower bonds, the true and predicted values  .......................... 77 

Figure 3.4         The upper and lower bonds, the true value, and the median… ..................... 78 
 

 

 

 



 

LIST OF ABREVIATIONS 
 
 

ANN Artificial Neural Network 

BER Bit ratio 

ML Machine Learning 

DL Deep Learning 

KNN K-Nearest Neighbors 

LSTM Long Short-Term Memory 

SVM Support Vector Machine 

MLP Multilayer Perceptron 

RNN Recurrent Neural Network 

MSE Mean Squared Error 

MAE Mean Absolute Error 

sMAPE Symmetric Mean Absolute Percentage Error 

SNR Signal to Noise Ratio 

TS Time Series 

GP Gaussian Process 

QoT Quality of Transmission 

Q-factor Quality factor 

KL Kullback-Leibler 

NASP North American Service Provider 

MAD Median Absolute Deviation 

 





 

INTRODUCTION 
 
The increasing rate of data traffic due to the popularity of video and cloud applications, as well 

as emerging 5G and internet of things (IoT) technologies, call for higher traffic volumes. The 

increasing data volume makes the impact of degradations of lightpath performance and 

equipment failure more and more important. It is crucial to have reliable networks. The 

lightpath, in the optical networks, is a WDM channel carried from the source to the destination, 

in which no optical conversion occurs in between the source and the destination (Choi & Yang, 

2008).   

 

A survivable telecommunication network is a network that withstands the faults and attacks of 

the link or the equipment (Choi & Yang, 2008). The approach of the telecommunication 
companies to have a survivable network is to forecast the lightpath performance. Forecasting 

is defined as the process of predicting future (future trends) regarding the past sets of 

information as the history.  The data from the lightpaths are in the form of the time series (TS) 

which are sequences of data occurring over time. Time series have a wide range of applications 

from monitoring industrial processes (sensor operations, optical line paths, etc.), economy, 

management (11.3 Neural Network Models | Forecasting, n.d.) to tracking business trends. 

Forecasting times series is important because of the number of prediction problems in critical 

areas like telecommunications that have a temporal component (Brownlee, 2016)(Oreshkin et 

al., 2020a). Therefore, having more accurate predictions can have a huge financial impact, in 

the order of millions of dollars on businesses (Oreshkin et al., 2020a). 

 

Machine learning (ML) algorithms and deep learning (DL) techniques are now outperforming 

the classical statistical methods for time series forecasting (Oreshkin et al., 2020a). ML 

algorithms such as K-nearest neighbors (KNN), support vector machines (SVM) and random 

forest (RF) have been applied recently for forecasting the quality of transmission (QoT) of 

lightpaths carried in optical networks (Aladin & Tremblay, 2018)(A Survey on Application of 

Machine Learning Techniques in Optical Networks, n.d.; Choudhury et al., 2018; Wang et al., 

2017). These algorithms also have been used for predicting performance metrics like signal-
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to-noise ratio (SNR) or (Q-factor) for the lightpaths, as well as equipment failure (Choudhury 

et al., 2018; Wang et al., 2017). A long short-term memory (LSTM) DL method has been 

applied to predict reconfigurable add-drop multiplexer (ROADM) requirements in the network 

30 minutes in advance (Mo et al., 2018).  Aladin et al. (Aladin et al., 2020), by applying SVM 

and artificial neural networks (ANN), showed the promising application of ML for estimating 

lightpath QoT before establishment and for predicting the QoT of deployed lightpaths. 

Oreshkin et al. (Oreshkin et al., 2020a)  proposed a DL algorithm which uses backward and 

forward residual links as well as fully-connected layers in the form of deep stacks. Their N-

Beats model achieved a higher accuracy compared to the previous models on the same target 

time series. 

 

The application of conventional ML or DL models to address the regression problems involves 

predicting the expected value of a future observation. However, it is also essential for the 

forecasting algorithms to output the confidence of their predictions. For instance, in making 

critical and safety related decisions, such as in self-driving cars (or autonomous cars), the 

confidence of the prediction must be taken into account (Levi et al., 2020). Model uncertainty 

provide us with the means to deal with the uncertain input data (Gal & Ghahramani, 2016b). 

Uncertain prediction in classification can also determine the decisions which require additional 

validation by a human (Linda et al., 2009). To estimate uncertainty, a distribution of targets 

over the target domain is required for each prediction during inference (Levi et al., 2020). Gal 

et al. (Gal & Ghahramani, 2016b) developed a mathematical tool for introducing uncertainty 

to the model, which is an approximation to the Bayesian probability theory as well as the 

Gaussian process (Rasmussen, 2004). 

 

In this project, various types of ML algorithms are studied including feed forward, recurrent 

neural networks (RNN) and residual neural networks (ResNet). Commonly used ANN 

forecasters for time series are multilayer perceptron (MLP), LSTM and more recently the N-

Beats model (Oreshkin et al., 2020a). Among these models, the MLP is simple to implement, 

LSTM has a library, but N-Beats is not available yet as a library. To use this algorithm, 

implementing it is necessary. Therefore, the first objective is to find an appropriate forecaster 
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for the target time series. The forecaster that we choose should have a certain degree of 

accuracy. This is what we investigate by comparing with the baseline results as the first 

objective of this research thesis. We select MLP, LSTM and N-Beats forecasters, analyze and 

compare their predicting performances with the baseline that we choose to be a naïve model. 

The results can be compared with that of Chouman et al. (Chouman et al., 2021) who have 

used logistic regression, MLP and LSTM models to predict the lightpath QoT and the 

minimum lightpath QoT for horizons up to 72 hours. According to the performance results, we 

select the most accurate forecaster for the next step which is estimating uncertainty using the 

dropout method at test time. To implement this method, dropout must be applied during the 

inference time. In the neural networks, dropout is used during training as a regularization 

technique to avoid overfitting. Using dropout while training will result in point prediction. 

However, deploying this method during inference time can result in variational distribution. 

The upper and lower bounds of the prediction can be obtained from the margins of this 

distribution. As the baseline for estimating confidence margins, we develop the deep quantile 

regression method, which is a statistical tool to estimate conditional median and demonstrate 

the distribution of the mass of data around the median. Finally, we provide a quantitative 

assessment of the methods for uncertainty estimation. 

 

Identification of the research problem 
 

The need to find accurate ML forecasters to predict the future values of the optical signal, with 

the purpose of improving reliability of the networks, is the first problem to be addressed in this 

thesis. The next important problem is the necessity to define the confidence level of the forecast 

by the selected ML model. We intend to predict the confidence margins. In other words, we 

also need the degree of confidence of our predictions. 

 

Research objectives 
 
The objectives of this project can be summarized as follows: implementing deep neural 

network algorithms to forecast lightpath SNR in different time horizons (e.g., 1-h, 2-h, 4-h, 
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etc.); comparing the implemented algorithms in terms of capability of precise forecasting by 

evaluating them on the Microsoft and NASP data sets; developing and validating strategies to 

measure the prediction uncertainty of the forecasting models; using the forecasting models and 

the uncertainty estimation to define a lower margin for signal drop. 

 

Thesis structure 
 

In this thesis, the research topics are structured in the following chapters. Chapter 1 consists of 

extensive background research and literature survey and the strategies that have been applied 

so far to address the lightpath forecasting problem. Chapter 2 describes the most efficient 

strategies of forecasting time series and the implementation of forecast models in more details. 

It also contains the results of the analysis of the performance of each forecaster. Chapter 3 

describes the selected means of uncertainty in predicting lightpath SNR. The last part of the 

thesis includes the conclusion and the recommendations for future work. 

 

 

 

 

 



 

CHAPTER 1 
 
 

BACKGROUND INFORMATION AND LITERATURE SURVEY 

This chapter includes important definitions and background information about lightpath QoT 

metrics, which can be collected in the form of time series in optical networks, as well as the 

methods to forecast lightpath QoT by using ML methods. In addition, this chapter addresses 

the uncertainty of the time series forecasting models. 

 

1.1 Quality factor 

Bit error rate (BER) and quality factor (Q-factor) are the main factors defining the quality of 

digital signals in the telecommunication systems. These two parameters are related together 

(Hui, 2019).  

 

BER is a key factor in the quality of communication. It is also known as probability of digital 

bits (Hui, 2019) and is defined as: 

 𝐵𝐸𝑅 =  𝐵𝑖𝑡௘௥௥௢௥𝐵𝑖𝑡௧௢௧௔௟  (1.1) 

 

where number of misinterpreted bits and total number of received bits are denoted by  𝐵𝑖𝑡௘௥௥௢௥ 

are 𝐵𝑖𝑡௧௢௧௔௟, respectively. It is important to note that both the misinterpreted bits and total bits 

are measured in the same time frame. The Q value (or Q-factor) is a good alternative for BER. 

Q value is a quality factor defined by the separation between the digital signal an Gaussian 

noise (Hui, 2019). 

 

In addition, in optical communications, the signal-to-noise ratio (SNR) determines the quality 

of the signal. To obtain a high SNR, it is important to have low noise level (Hui, 2019). 
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Lightpath QoT depends on the characteristics of the transmission system, of the link, and of 

the WDM signal.  Estimation of these metrics before lightpath establishment can be performed 

by using analytical models which generally require a high computation time and a precise 

knowledge of the system, link and channel parameters (Aladin & Tremblay, 2018). Forecasting 

lightpath QoT for deployed lightpaths would allow network operators to trigger proactive 

maintenance by detecting degradations before they actually occur. Fig. 1.1 and Fig. 1.2 show 

the Q-factor and SNR time series over four days of one WDM channel of Microsoft data set, 

and one channel from the North American Service Provider (NASP) data sets, respectively.  

 

 

Figure 1.1 Q-factor time series for one WDM channel, Microsoft data set, four days data 
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Figure 1.2 SNR time series for one WDM channel, North American Service Provider data 
set, four days data 

 

Forecasting is a common statistical task in business that helps making decisions to schedule 

the production and guides for future planning (1.6 The Basic Steps in a Forecasting Task | 

Forecasting, n.d.) . In this project, forecasting will help us to predict and have control over the 

Q-factor in the optical networks. 

 

1.2 Time series forecasting 

Capturing genuine patterns and relations existing in the historical data in forecasting time series 

is of great importance. Forecasting can differentiate between random fluctuations in the past 

and genuine patterns. A good forecast can prevent replicating past events (including failure of 

the equipment or link, performance degradation) not to happen again (R. J. Hyndman et. al., 

Forecasting: principles and practice, chapter 1, section 1.1, 2014). Forecasting methods could 

be simple, such as considering the most recently occurred events as the forecast for the future 



8 

(naïve method), or complex, like using neural networks. The choice of the technique depends 

on the predictability of the quantity to be forecasted as well as the type of the available data. 

For instance, if there is no data available, or the data are not relevant, then qualitative forecast 

might be used. Quantitative forecasting is employed once two conditions are met: (a) numerical 

information about the past of the data are available (history). (b) It could be assumed that some 

aspects of past patterns will be continued in the future. In each quantitative forecasting the 

following basic steps are common (R. J. Hyndman et. al., Forecasting: principles and practice, 

chapter 1, section 1.6, 2014): (1) Problem definition: This is the hardest part of forecasting; To 

understand the problem well and to know the system or the organization as well as how to use 

forecasting. (2)  Gathering information: This step requires statistical data and the expertise of 

the people who collect the data and will use the forecast. (3) Preliminary analysis: The analysis 

will start drawing diagrams and seeing if there is any meaningful trend. (4)  Choosing and 

fitting models: Choosing the best model depends on the availability of data and the strength of 

correlation between the forecasted variable and other variables. To assess the validity of the 

forecasting results, generally, two or three models will be compared using different metrics. 

(5) Using the model and evaluating via some special methods: Once the model has been selected 

and its parameters have been estimated, the model is ready to forecast. 

 
Visualizing of plotted time series in Python or R could help us to obtain more information 

about them. From the plotted time series, the frequency of the data that could be annual, 

quarterly, monthly or weekly, can be observed. The time series can be decomposed into their 

main components: 

 

Trend 
 
The trend is when there is a long-term increase or decrease of the data. Trend is not always 

linear, but it could be a path of data which is nonlinear. There could be a “changing direction” 

when the data changes from the increasing to the decreasing trend (2.3 Time Series Patterns | 

Forecasting, n.d.). 
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Seasonal 
 
A pattern is seasonal when a time series is affected by a repeating time interval (e.g., the season 

of the year or the day of the week) and always has a “fixed and known frequency” (Chapter 1 

Getting Started | Forecasting, n.d.). Fig. 1.3 shows an example of the seasonal behavior of the 

consumption of anti-diabetic drug in Australia. The consumption of drugs shows a 

considerable drop each year in February from 1992 to 2008. 

 

 
Figure 1.3 Seasonal data that shows the consumption 

 of anti-diabetic drug in Australia  
Taken from (11.3 Neural Network Models | Forecasting, n.d., p. 3). 

 

Cyclic 
 
The cyclic trend is when the data rises and falls but not in a fixed frequency manner. These 

fluctuations are related to the business situations and are known as “business cycle” expression 

(2.3 Time Series Patterns | Forecasting, n.d.). 
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1.3 Components of the time series 

Time series might have some components. The decomposition of the time series a could be 

written as in Eq. (1.2) or (1.3) given the seasonality and trend. It is also possible that the time 

series does not contain an of these characteristics. 

 y୲ = S୲ + T୲ + R୲ (1.2) 

where y୲ is the data, S୘ is the seasonal component, T୘ is the trend component and R୘ is the 

remainder component at time period t. It is also possible to write y୲ as: 

y୲ = S୲ × T୲ × R୲ (1.3) 

The first decomposition is more appropriate when the magnitude of the variation in seasonal 

term or the variation around the trend cycle does not change with the level of the time series. 

Otherwise, when the variation in the seasonal pattern or the variation around the trend cycle is 

in the range of the time series, the second definition is more applicable. An alternative way of 

the second definition is the logarithmic definition (Eq. 1.4) (6.1 Time Series Components | 

Forecasting, n.d., p. 1). 

logy୲ = log (S୲) + log (T୲) + log (R୲) (1.4) 

 

Having introduced time series, now the available methods for forecasting time series could be 

introduced: 

 

1.4 Average method 

The simplest forecaster would be taking the mean of the history of the data (Eq. 1.5): 

 yො்ା௛|் = yത = (𝑦ଵ +  𝑦ଶ + ⋯+ 𝑦்)/𝑇 (1.5) 

 

in this equation h denotes the forecast horizon and T denotes the history time. 
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1.5 Moving average method 

Moving average is a classical way of time series decomposition originated in the 1920s and is 

still the basis of many of the decomposition methods for the time series. For more information 

about the calculations of the moving average, one should refer to the book (6.2 Moving 

Averages | Forecasting, n.d., p. 2). 
 
1.6 Naïve method 

In this method, we consider the last value of one variable to be the forecast of that variable. 

This method is practical for many economic and financial time series. Because naïve is 

appropriate once data has a random walk. These forecasters are also named “random walk” 

forecasters. (3.1 Some Simple Forecasting Methods | Forecasting, n.d.). 

 yො்ା௛|் = y୘ (1.6) 
 

 

In this equation, h represents the forecast horizon and T denotes the history time. 

 

1.7 Seasonal naïve method 

Naïve method could also be applied for highly seasonal data. Meaning that we can set each 

forecast to be equal to the “last value of the same season of the year” (3.1 Some Simple 

Forecasting Methods | Forecasting, n.d.). The seasonal naïve method for the time T+h could 

be written as:  yො୘ା୦ = y୘ା୦ − m(k + 1) 
(1.7) 

 

Where h is the forecast horizon, T is the history time, m is the seasonal period and k is the 

integer part of the (h − 1)/m  (the number of complete years before the period T+h. 
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1.8 Facebook prophet 

Prophet is a forecasting model provided by Facebook, for univariate time series, in which 

nonlinear trends could be fit with daily, seasonal, weekly or yearly effects considering the 

holidays (Quick Start, n.d.). Facebook team has provided a forecaster that can predict the 

invitation of the events that people put in their Facebook calendar. These events are affected 

by the season of the year or days of the week. There are two themes of forecasting in the 

industry. First, completely automatic forecast, which is difficult to tune, and mostly inflexible. 

Therefore, it is hard to associate useful assumptions or heuristic. Second, common forecasters 

in the data science are specialized in a specific domain but not in the time series. 

 

1.9 Regression models for the time series 

Basically, if we forecast the time series y, assuming that it has a linear relationship with other 

time series x, this would be the concept of linear regression. The forecast variable y is called 

the “regressand” while the predictor variable is called the “regressor” (Chapter 5 Time Series 

Regression Models | Forecasting, n.d.). Regression has two types: linear regression and 

logistic regression. 

 

1.9.1 Linear regression  

One of the simplest and most widely used regression methods is linear regression. This implies 

that the response is constructed of linear function of the inputs (Murphy, 2012) (Eq. 1.8). 

 

y(x) = w୘x + ϵ = ෍w୨x୨ + ϵୈ
୨ୀଵ  

 

(1.8) 

 

where w୘x is representing the inner scalar product between input vector x and the weight’s 

vector, and ϵ is the residual error between the linear prediction and the true value (Murphy, 

2012). Commonly, we assume that ϵ has normal or Bell shape distribution. 
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1.9.2 Logistic regression 

One can generalize the linear regression to the binary classification by applying two changes:  

First, by replacing the Gaussian distribution of y with Bernoulli distribution, which is more 

appropriate for binary cases, y ϵ {0 , 1}: p(y|x, w) = Ber(y|μ(x)), where μ(x) = 𝔼[y|x], 𝑥 is 

the observed random sample, and 𝑤 could be a real unknown parameter or vector of problems. 

Second, a linear combination of the inputs has to be calculated and be passed through a function 

called sigmoid: μ(x) = sigm (w୘x)  
 

Sigmoid function is a form of logistic function denoted by sigm(η) (Eq. 1.9). This function 

has a S shape and maps every entry in the domain (−∞ , +∞) to the range (0, 1).  

 Sigm (η) =  11 + exp(−η) (1.9) 

 

If the two mentioned steps are performed together, Eq. 1.10 will be generated: 

 p(y|x, w) = Ber(y|sigm (w୘x) ) (1.10) 

 

This is called logistic regression due to its similarities to the linear regression, However, it is 

a form of classification not regression (Murphy, 2012).  

 

1.9.3 Evaluation of the regression models 

The difference between the observed y and the corresponding fitted values yො are the training 

set error or the residuals that, for the linear regression could be defined as: 

e୲ = y୲ − yො୲ (1.11) 
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=  y୲ − w଴ −  𝑤ଵxଵ,୲ −  𝑤ଶxଶ,୲ …−  w௞x୩,୲ 
for t = 1,…,  T. 

In this equation e୲ is the error or the residual, y୲ is the true value of y as the function of x, yො୲ is 

the forecast of y and 𝑤଴ to 𝑤௞ are the coefficients. 

 

The residuals have the following properties: the sum of the residuals is zero (∑ e୲ = 0୘୲ୀଵ ) 

and ∑ x୩,୲e୲ = 0୘୲ୀଵ  for all k.  Meaning that the average of the residuals is zero, and also the 

correlation between the residuals and the observation respecting the predictor variable is 

zero.  

 

After fitting the regression model, plotting the residuals helps to assess if the assumptions of 

the model have been satisfied.  

 

1.10 Advanced forecasting models 

In this section, some of the most popular advanced forecasting methods will be discussed: 

 

1.10.1 ARIMA generative model 

ARIMA model is one of the most well-known models in time series forecasting. ARIMA 

models aim to describe the autocorrelation between the data (Chapter 8 ARIMA Models | 

Forecasting, n.d.). To define how ARIMA works, some signal format and terms need to be 

defined: 

 

Differencing 

 

A time series is stationary when its properties are not depending on the time of  observation 

(8.1 Stationarity and Differencing | Forecasting, n.d., p. 1). Therefore, time series with trends 
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or seasonality are not stationary. The process of calculating the difference between consecutive 

observations in the non-stationary time series, is called differencing. 

 

Autoregressive models 
 
A multi-regression is a combination of some predictors. Autoregressive is equivalent to use a 

linear combination of past values of that variable. By combining the differencing with 

autoregression and moving average models, the result would be non-seasonal ARIMA. 

ARIMA is obtained from Autoregressive, Integrated Moving Average (8.3 Autoregressive 

Models | Forecasting, n.d.). 

 

1.10.2 Neural Network (NN) methods 

The most recent method for forecasting time series is using artificial neural networks (ANN).  

Artificial neural networks are based on simple mathematical models of the neurons in the brain 

and they allow more complex relationship between the predictors (inputs) and the response 

variables  (11.3 Neural Network Models | Forecasting, n.d., p. 3).  

 

Neural networks have various structures and are the basis of ML. Prior to define the neural 

networks and the architectures, artificial intelligence (AI) and its relation with ML and DL will 

be introduced. Then selected DL models for the time series will be explained with more details. 

 

Artificial Intelligence 
 
AI was born in 1950s when pioneers tried to devise a machine that can think. Another 

definition is “The effort to automate intellectual tasks that the human normally do” (Lambrugh, 

n.d.). Therefore, AI is a general field that contains ML and DL in addition to some areas that 

basically do not involve any learning, including programming (Fig. 1.5). For instance, early 

chess programs, were only concrete lines of code without using machine learning. Machine 

learning differs from programming where input data according to certain programming rules 



16 

deliver the answer. In machine learning, the approach is to give the input data as well as the 

answers to the machine and the outcome is the rules (Fig. 1.6). Machine learning started 

flourishing in 1990s and became most popular method among all of the AI fields very quickly 

(Lambrugh, n.d.) 

 

 
Figure 1.4 Artificial intelligence, machine learning and deep learning 

Taken from Lambrugh (2020) 
 

 

 
Figure 1.5 Machine learning versus programming 

Taken from Lambrugh (2020) 
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The architecture of the neural network models 
 
The neural network could be considered as a network of the neurons organized in some layers  

(11.3 Neural Network Models | Forecasting, n.d.). The predictors (inputs) are in the bottom 

layer and the forecasts (the outputs) are in the top layer. There are also some intermediate 

layers called hidden layers.  

 

The simplest network doesn’t consist of any hidden layer and is equivalent to the linear 

regression (Fig. 1.6). The coefficients of the input neurons are the weights” (11.3 Neural 

Network Models | Forecasting, n.d., p. 3). 

 

 
Figure 1.6 One-layer neural network with four inputs  

Taken from (11.3 Neural Network Models | Forecasting, n.d., p. 3). 
 

The linear regression or classification models are based on linear combination of some 

nonlinear basis functions 𝜙௝(𝑥). The output is in the form (Eq. 1.12): 

 

𝑦(𝑥,𝑤) =  𝑓 ൮෍𝑤௝ெ
௝ୀଵ 𝜙௝(𝑥)൲ 

(1.12) 
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where 𝑓(. ) is a nonlinear activation function for classification and is the identity for regression 

problems (Bishop, 1994). The goal is to extend the model by making the basis 𝜙௝(𝑥) functions 

depend on some parameters and allow adjusting the parameters, together with the coefficients ൛𝑤௝ൟ, during the process of training (Bishop, 1994). Neural networks use the basis functions as 

denoted in Eq. 1.12. 

 

A basic neural network governs sets of these functional transformations (Bishop, 1994). In the 

simplest form, a combination of the input variables 𝑥ଵ, 𝑥ଶ, … , 𝑥஽ will be constructed: 

 

𝑎௝ =  ෍𝑤௝௜(ଵ)𝑥௜ + 𝑤௝଴(ଵ)஽
௜ୀଵ  

(1.13) 

 

where 𝑗 = 1, … ,𝑀 and the superscript (1) are indicating that the corresponding parameter (w) 

is in the first layer of the network (Bishop, 1994). In this equation, 𝑤௝଴(ଵ) indicates the bias 

parameter and 𝑎௝ represents the activations. Each of these activations then will be transformed 

using nonlinear activation functions ℎ(. )(Eq.  14). (Bishop, 1994). In neural networks these 

functions that receive the input from the previous layer, are called the hidden units (Fig. 1.7). 

The function ℎ(. ) could be sigmoid function, or ‘tanh’. The output of the network is the linear 

combination of these values (Eq.16). 

 𝑧௝ = ℎ(𝑎௝) (1.14) 

 

This function is a nonlinear function and is an input for the basis functions in Eq. 13 (Eq. 1.15).  

 

𝑎௞ =  ෍𝑤௞௝(ଶ)𝑧௝ + 𝑤௞଴(ଶ)ெ
௝ୀଵ  

(1.15) 

 

where 𝑘 = 1, … ,𝐾 , and K is the number of outputs. The superscript (2) is showing that the 

transformation corresponds to the second layer, where  𝑤௞଴(ଶ) is the bias parameter of this layer. 
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To generate the final output, the 𝑎௞ should pass through another activation function. For the 

regression problems, the activation function is identity 𝑦௞ =  𝑎௞. In the similar way, for the 

classification problems, the activation could be sigmoid function (Eq. 1.9) (Bishop, 1994). 

 

The combination of these various stages maps the inputs to the output. In case of sigmoidal 

activation functions, the relation could be written as  (Bishop, 1994): 

 

𝑦௞(𝑥,𝑤) =  𝜎 ቌ෍𝑤௞௝(ଶ)ℎ ൭෍𝑤௝௜(ଵ)𝑥௜ + 𝑤௝଴(ଵ)஽
௜ୀଵ ൱ெ

௝ୀଵ +  𝑤௞଴(ଶ)ቍ 
(1.16) 

 

Therefore, according to the Eq. 1.21, the output of the neural network is the nonlinear function 

of the inputs, weights, and the biases. 

 

 
Figure 1.7 A neural network with a hidden layer 

Taken from  (Bishop, 1994) 
 

1.11 Deep Learning (DL) 

Deep learning is one of the specific fields of the machine learning that puts the emphasis on 

learning a hierarchical representation of features. The expression “deep learning” is the 

approach of achieving successive layers of representation in a neural network. The number of 

layers contributing this learning is defining the depth of the model (Lambrugh, n.d.). Other 
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names are “layered representation learning” and “hierarchical representation learning”. In deep 

learning, these neural network layers are stacked on the top of each other. In Fig. 1.8, using 

four layers, the network is able to define the digit in the input image. 

 

Modern deep learning these days have tens or hundreds of successive layers. Other approaches 

towards machine learning focus on one or two layers which is called “shallow learning”. The 

standard deep learning network is called feedforward because the flow of information from 

x, the input, passes through intermediate computations to make compute the output y =f ∗(x) without any feed-back (Deep Learning, n.d.). When feedback is connected to the 

network, the network is called a “recurrent network” (Deep Learning, n.d.).  

 

 
Figure 1.8 Schematic of deep neural network for classification of the digits 

Taken from Lambrugh (2020) 
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How deep learning works? 
 

As described above, machine learning maps inputs to the target (certain digit etc.) by observing 

many samples of the target (Lambrugh, n.d.). A schematic of a deep neural network is shown 

in Fig. 1.9. This transformation on the inputs is parametrized by the network’s weights. To 

control how far the output is from the target, comparison between the predicted values and the 

true value is needed. This task is performed using a cost function (“objective function”, 

(Lambrugh, n.d.)) in the network (Fig. 1.10). The objective function takes the prediction and 

the true value of the target, and by measuring the distance between the two, determines how 

good the performance of the network is (loss score). Learning procedure means finding the 

good weights that enables the network to map the inputs to the targets. 

 

 

Figure 1.9 Schematic of a neural network, the output, input and the weights 
Taken from Lambrugh (2020) 
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Figure 1.10  The loss function as the measure for scoring the quality  
of the networks  

Taken from Lambrugh (2020) 
 

Learning process 
 

So far, the architecture of the neural network and the relationship between the inputs and the 

outputs is explained. In neural networks, similar to the curve fitting process, the analogy is to 

determine the network parameters to minimize a sum-of-squares of errors. Given an input 

vector {𝑥௡}, where n corresponds to the number of inputs, and the target vector {𝑡௡}. The error 

function can be written as (Bishop, 1994):  

 

𝐸(𝑤) =  12 ෍‖𝑦(𝑥௡,𝑤) − 𝑡௡‖ଶே
௡ୀଵ  

(1.17) 

 

This error function is also called Euclidian loss. 
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Neural networks tend to overfit. One technique to avoid over-fitting is to penalize the large 

coefficients which is called regularization by adding a regularization term to the error function 

(11.3 Neural Network Models | Forecasting, n.d., p. 3). The simplest way of regularization has 

the form of the sum of squares of all the coefficients, which leads to the error function as (Eq. 

1.18): 

 

E(w) = 12෍{y(x, w) − t୬}ଶ୒
୬ୀଵ +  λ2 ‖w‖ଶ (1.18) 

 

where ‖w‖ଶ ≡  w୘w = w଴ଶ + wଵଶ + ⋯+ w୑ଶ . It is worthwhile to note that w଴ is omitted from 

the regularizer since having it will affect the choice of origin for the target variable (Elements 

of Statistical Learning: Data Mining, Inference, and Prediction. 2nd Edition., n.d.) or, in other 

words, biases the model forecasting.  

 

Definition of training terms 

It is common to divide the data set into the training and the test sets. The training data is used 

to determine the parameters of the forecasting method and the test set is used to determine how 

well the model can forecast the new data. The size of the test set is typically 20% of the whole 

data set (Fig. 1.11).  

 

 
Figure 1.11 Train and test data split 

 

Deep neural networks use the loss score as the feedback signal to adjust the weights. “This 

adjustment is the job of optimizer, which implements what is called the Backpropagation” 

(Lambrugh, n.d.). The weights are chosen randomly at the beginning. Then, during the learning 
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loops, the weights are adjusted in the right direction (opposite of the gradient) to decrease the 

loss. A small loss indicates that the network produces a minimum distance between the 

prediction and the actual targets (Lambrugh, n.d.). 

 

1.12 Residual Networks (ResNets), N-Beats 

N-Beats is a form of residual network (ResNet) architecture to solve univariate time series 

forecasting problems (Oreshkin et al., 2020b). Classical ResNets add the input of stack of some 

layers to the output of the stack before it is fed as an input to the next stack (He et al., 2016). 

Oreshkin et al. (Oreshkin et al., 2020b), implemented a new ResNet architecture with double 

residual topology which is capable of forecasting in discrete time. N-Beats structure improved 

the accuracy of forecasting of the M3  ((Makridakis & Hibon, 2000)), M4((Mcompetitions/M4-

Methods, n.d.)) and TOURISM data sets by the maximum 11% accuracy  over the best 

forecasting models. 

 

N-Beats implementation 
 
The implementation of N-Beats has outstanding characteristics. It is fast in both inference and 

training, it is interpretable and, more importantly, it has application in a wide range of target 

domains (Oreshkin et al., 2020b). The N-Beats architecture is composed of stacks of blocks, 

each one comprised of fully connected layers. A detailed description of the N-Beats 

architecture is given below. 

 

Basic blocks 
 
The proposed building block of their architecture  (Oreshkin et al., 2020b)  is as shown in the 

left-hand part of the Fig. 1.12. The block has a fork architecture. Each block l has an input x୪ and two outputs: the block’s forward forecast yො୪  of length H (representing the future 

horizon), and xො୪, the block’s best estimate of x୪ (Fig. 1.12). 
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Figure 1.12 N-Beats bock diagram  
Taken from Oreshkin (2020) 

 

The basic building block consists of the following two parts: the fully connected network that 

produces forward theta l (θ୪୤ ) and the backward theta l (θ୪ୠ) predictors (the expansion 

coefficients) (Oreshkin et al., 2020b). The second part is made of two basis layers g୪୤ and g୪ୠ 

that accept θ୪୤ and θ୪ୠ, respectively as the inputs to produce the forecast yො୪ and the backcast xො୪ 
(Fig. 1.12 and Eq. (1.19) to Eq. (1.24)). The following set of operation is performed in block l 
of the N-Beats architecture. The FC layer is fully connected layers. Linear layers are the 

projection layers i.e., θ୪୤ = W୪୤h୪,ସ . 

h୪,ଵ = FC୪,ଵ(x୪), (1.19) 
 h୪,ଶ = FC୪,ଶ൫h୪,ଵ൯ 

 
(1.20) h୪,ଷ = FC୪,ଷ൫h୪,ଶ൯ 

 
(1.21) h୪,ସ = FC୪,ସ൫h୪,ଷ൯ (1.22) 
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 θ୪ୠ = linear୪ୠ ൫h୪,ସ൯ 
 

(1.23) θ୪୤ = linear୪୤ ൫h୪,ସ൯ 
 

(1.24) 

For each full layer, they used ReLU activation function (h୪,ଵ = Relu (W୪,ଵ + b୪,ଵ)).  This part 

of the architecture is providing the expansion coefficient θ୪ୠ fed to g୪ୠ to produce the estimation 

for x୪. The aim is to help the downstream blocks by removing the components of their input 

that are not critical in the forecasting process  (Oreshkin et al., 2020b). 

 

The second part of the block performs mapping the θ୪୤ and θ୪ୠ to the outputs as described in Eq. 

(1.25) and Eq. (1.26): 

 yො୪  = g୪୤(θ୪୤),      xො୪ = g୪ୠ(θ୪ୠ) 
 

(1.25) 
 

yො୪ = ෍ θ୪୤v୧୤ୢ୧୫ (஘౜ౢ)
୧ୀଵ ,      xො୪ = ෍ θ୪ୠv୧ୠୢ୧୫ (஘ౘౢ)

୧ୀଵ  (1.26) 

 

where v୧୤ and v୧ୠ are the forecast and backcast basis vectors (Oreshkin et al., 2020b). 
 
 
Double residual stacking  
 
 
Oreshkin et al. (Oreshkin et al., 2020b) used the extension of the ResNet architecture,        

recommended by Huang et al. (Huang et al., 2016). The principle of this architecture is to 

introduce another connection from each stack’s output to the input of the following stack. This 

characteristic improves the trainability of the model but at the same time makes it difficult to 

interpret. The N-Beats architecture proposed by Oreshkin et al.  (Oreshkin et al., 2020b), has 

double residuals (Fig. 1.12, middle and right). The operations in their model can be written as: 

  x୪ =  x୪ିଵ − xො୪ିଵ 

 

(1.27) 
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yො =  ෍ yො୪୧ୀ୪  (1.28) 

 

 Removing xො୪ିଵ from the signal makes the forecast easier. It can also facilitate the “fluid 

gradient backpropagation”. Moreover, each block provides a partial yො that is accumulating first 

at each stack and then in the whole network and provides the final forecast (Oreshkin et al., 

2020b). This architecture is capable of decomposing the time series into trend and seasonal 

parts. 

 
1.13 Recurrent Neural Networks (RNN), LSTM 

Recurrent Neural Networks (RNNs) are sequence models that gained a lot of success in speech 

recognition (Zaremba et al., 2015) due to have memory in their architecture. The interest in 

using these networks arises from connecting the previous information to the present task 

(Understanding LSTM Networks -- Colah’s Blog, n.d.). 
 

LSTM is a novel traffic forecaster network based on long and short-term memory (LSTM 

Network: A Deep Learning Approach for Short-Term Traffic Forecast - IET Journals & 

Magazine, n.d.) and it is a type of  RNN (Fig. 1.13). The LSTM is different from conventional 

forecast methods as it considers temporal-spatial correlations within a traffic system using two-

dimensional network which is constructed of memory units. The LSTM architecture is 

appropriate for sequence forecast because it is capable of capturing the training data within 

time lags (e.g., 10 min lags). In practice, standard RNNs are not able to deal with this gap 

because the gradient vanishes and explodes (LSTM Network: A Deep Learning Approach for 

Short-Term Traffic Forecast - IET Journals & Magazine, n.d.). Hochreiter et al. (Hochreiter 

& Schmidhuber, 1997) found the source of this problem and proposed LSTM. Compared to 

conventional RNNs, LSTM captures the time series features within longer span of time (LSTM 

Network: A Deep Learning Approach for Short-Term Traffic Forecast - IET Journals & 

Magazine, n.d.). The LSTM model tries to alleviate these back-flow problems. It can learn to 

bridge time intervals without loss of information in the short-term.  
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Methodology of LSTM 
 
As mentioned earlier, LSTM has time and space complexity (Zhao et al., 2017). The forecast 

predicts the next moment and is based on the current state as well as the previous knowledge 

of the system.  

 

Figure 1.13 Recurrent Neural Network 
Taken from (“Understanding LSTM Networks -- colah’s blog,” n.d.) 

 
In the diagram in Fig.1.13, the network sees the input x୲ and provides the output h୲. A loop 

allows the information to pass to the next step. This new neural network could be seen like 

several consecutive neural networks. LSTM is a special type of recurrent neural networks 

(RNN). 

 

 

Figure 1.14 Several Neural Networks can make an RNN  
Taken from (“Understanding LSTM Networks -- colah’s blog,” n.d.) 
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LSTM networks 
 
LSTM networks are designed to avoid long-term dependency problems. RNNs have a 

repeating chain module. This repeating module has a very simple structure such as tanh layer 

(Understanding LSTM Networks -- Colah’s Blog, n.d.). 
 
 

 
Figure 1.15 RNN repeating modules  

Taken from (“Understanding LSTM Networks -- colah’s blog,” n.d) 
 

 
Figure 1.16 The repeating module in LSTM has four interacting layers  

Taken from (Understanding LSTM Networks -- colah’s blog,” n.d) 
 

LSTM has a similar chain structure (Fig. 1.16) but the repeating module is different in LSTM. 

Instead of having one-layer neural network, LSTM contains four interacting layers in a very 

special way. Fig. 1.17 shows the notation in the diagram above (Fig. 1.16). 
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Figure 1.17 The notations in Fig. 1.13 

Taken from (“Understanding LSTM Networks -- colah’s blog,” n.d) 
 

A key characteristic in LSTM is a horizontal line that runs through the top of the diagram. It 

runs linearly along the change with only some minor interaction along its way. Therefore, the 

information can move forward without change. However, LSTM can add or drop information. 

Gates allow the information to go through. They are composed of sigmoid neural net layer and 

a multiplication operator. The sigmoid output defines how much of the input could go through 

it. For instance, zero means that no input should pass (Fig. 1.18) (Understanding LSTM 

Networks -- Colah’s Blog, n.d.). 

 

 
Figure 1.18 Sigmoid neural net layer and a multiplication operator  

Taken from (“Understanding LSTM Networks -- colah’s blog,” n.d) 
 

 

Steps in LSTM forecasting 
 
The learning steps in LSTM is first to decide which information we would like to throw away 

and the next step is which information we intend to keep and update. The decision of forgetting 
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some data is made by the sigmoid layer which is called “forget gate layer”. By looking at h୲ିଵand x୲, it can decide for the output to be zero or one for each number in the cell state C୲ିଵ. 

One means completely keep the data and zero means throw the data (Fig. 1.19). 

 

Coming back to our example of predicting the next word based on the learned previous word. 

The cell state is including the current gender of the subject. Therefore, when a new subject is 

seen, the cell forgets the old subject. 

 

 
Figure 1.19 LSTM sigmoid layer as the “forget gate layer” 

Taken from (“Understanding LSTM Networks -- colah’s blog,” n.d) 
 

Now, the old cell will be updated; C୲ିଵ to the new one C୲ (Fig. 1.20). We already have the 

decision of what to do. We multiply the old state by f୲ and forget the data we intended to forget. 

Afterwards we add i୲ ∗ C෨୲. This new value is scaled by how much we intend to update each 

state. 

 

In the language detection model, this is where we decide to drop some information of the old 

values and add the new information. 
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Figure 1.20 The state of forgetting and adding information 

Taken from (“Understanding LSTM Networks -- colah’s blog,” n.d) 
 

The final step is generating an output. The output must be based on the cell state. However, it 

would be the filtered version of the output. Therefore, firstly, the sigmoid layer decides what 

parts of the cell state is to be selected for the output. Then the cell state would be put through 

the tanh, which could push the values between -1 and 1 (Fig. 1.21).  

 

 
Figure 1.21 The output of LSTM 

Taken from (“Understanding LSTM Networks -- colah’s blog,” n.d) 
 

After reviewing the most common strategies in forecasting time series, the next section deals 

with the second objective of this thesis, uncertainty. 

 

1.14 Uncertainty 

Despite numerous researches in ML and its fast deployment in the measuring systems, there 

are fewer works on implementing uncertainty in the models. The uncertainty calculation is a 

necessity to adopt ML to the commercial services and products because prediction is not the 

only important task but also the accuracy of the prediction (Levi et al., 2020). Designers and 
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producers are encouraged to report the uncertainty as it gives the user a certain degree of 

confidence (Al Osman & Shirmohammadi, 2021; Myslín, 2020). Here, the quantification of 

uncertainty will be surveyed in the literature to address the second objective of this thesis. After 

having an overview on the viable methods conducted by the researchers in this domain, a 

method of introducing uncertainty to the deep learning models, based on the sets of criteria 

such as feasibility of implementation for a large amount of data, will be selected.  

 

Traditional forecasting aims to predict the expected value (mean) of a time series as accurately 

as possible (Koochali et al., 2019). There is a wide range of mean regression methods in the 

literature, e.g., ARIMA and machine learning methods including Support Vector Machines 

(Du et al., 2016; Yan & Chowdhury, 2015), ANNs (Assaad et al., 2008; Ogunmolu et al., 

2016). However, in methods that forecast the future with mean regression, the fluctuation 

around the mean is missing. Therefore, in some cases, the results are not reliable.  

 

Probabilistic forecasting quantifies the variances in the prediction (Gneiting & Katzfuss, 2014) 

with different approaches (Collins, 2007; Gneiting & Raftery, 2005; Palmer, 2002). Stigler 

(Stigler, 1975) denoted for the first time the transformation from the point estimation to 

distribution estimation (Koochali et al., 2019). The two most markedly approaches in 

distribution estimation are conditional Quantile regression and conditional expectile regression 

(Koochali et al., 2019). 

 

Quantile regression is a statistical method to estimate and perform inference about conditional 

quantile functions (Koenker, 2017). Expectile regression is similar to the quantile regression 

but is based on asymmetric piecewise quadratic functions (Efron, B. (1991). Regression 

Percentiles Using Asymmetric Squared Error Loss. Vol.1, No.1., n.d.). Forecasting a collection 

of points instead of one point for a particular quantity can be performed using ensemble 

learning (Gneiting & Katzfuss, 2014).  

 

Statistical post-processing methods such as non-homogeneous regression (NR) and ensemble 

model output statistics (EMOS) have been proposed by Gneiting et al. (Gneiting & Raftery, 
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2005). Moreover, ensemble Bayesian averaging approach (BMA) is another post-processing 

statistical method (Gneiting & Raftery, 2005).  

 

Bayesian probability theory has been employed to provide probabilistic forecasting. This 

method offers mathematical tool to model uncertainty, however, the drawback is its complex 

computation and high cost (Gal & Ghahramani, 2016b). Several approaches have been 

developed to solve the complexity of the Bayesian methods by proposing approximations such 

as Markov chain Monte-Carlo (MCMC) methods, variational approximations, sequential 

Monte-Carlo and expectation-propagation (Doucet et al., 2001; Jordan et al., 1999). Still, this 

method suffers from high computational cost hinders its use in practical applications (Gal & 

Ghahramani, 2016b). Gal et al. (Gal & Ghahramani, 2016b) used dropout method as an 

approximation for the Bayesian theory. Dropout in machine learning is used to prohibit over-

fitting. They showed that applying dropout before every weight-layer in a network with any 

arbitrary depth and non-linearity is mathematically equivalent to the probabilistic Gaussian 

process. Dropout is normally used in NN as a regularization tool. Applying dropout in the 

inference time produces different outputs for the same input because, in each run, the input is 

passing through a slightly different network as a result of some dropped units (Fig. 2.22).  

 

 
Figure 1.22  The NN without and with dropout  

Taken from Budhiraja (Budhiraja, 2018) 
 

Monte-Carlo dropout is not the only common method for regularization. There are other 

methods namely Batch Normalization for regularization (Teye et al., 2018). Ioffe et al. (Ioffe 

& Szegedy, 2015) used this method to introduce randomness to the model. Teye et al. (Teye 
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et al., 2018) showed that the Batch Normalization, similar to dropout could be used as an 

approximation to the Bayesian model. This method can lead to variational output for the ML 

models and as a result can enable us to calculate uncertainty estimation. 

 

Girard et al. (Girard et al., 2003) considered multi-step ahead prediction with time-series. They 

used non-pragmatic Gaussian process model. The method of their prediction was k-step ahead 

forecasting of discrete-time of a non-linear system by repeating the prediction of one-step 

ahead. A prediction of y at time t+k is based on the previous point estimations. They used a 

Gaussian approximation to compute the uncertainty about the intermediate values. They 

showed that their propagation approach is comparable with the Monte-Carlo simulations and 

concluded that both approaches can achieve more realistic error bars than Naïve approach. 

Because Naïve ignores the uncertainty on the current state. 

 

Koochali et al. (Koochali et al., 2019) developed a model named forecasting Generative 

Adversarial Network (ForGAN) based on LSTM and applied probabilistic approach. GAN is 

a network which lets us learn unknown probability distribution from samples of the distribution 

(Koochali et al., 2019). They implemented their probabilistic model based on the LSTM 

algorithm. 

 

Brando et al. (Brando et al., 2019) applied probabilistic treatment including Bayesian approach 

in Deep Learning (Bishop, 1994; Blundell et al., 2015). Their method is a formulation of Deep 

Regression Networks that output the distributions of the estimated targets and an input-

dependent variance of the target estimate. They implied that, depending on the source of the 

noise coming from the model parameters or directly from the output, the type of uncertainty is 

different. They fit such a network by maximum likelihood estimation and considered two 

methods: (i) adding Dropout (Gal & Ghahramani, 2016b) (0.5 probability parameter, 

Densedrop) and (ii) Bayes-By-Backprop variation (Blundell et al., 2015), which is denoted as 

Dense BBB. Given a new input, they obtained a set of output samples, rather than receiving 

one output. The mean of these values was considered as the final estimation of the target, and 

the standard deviation served as the uncertainty score. It is also worth mentioning their 
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baselines to validate their approach. They first evaluated three simple predictors: the mean of 

the series, Zero (yො = 0) and the last seen value (previous month). In all three cases, they used 

the variance of the input as the uncertainty score var(z). They also implemented Random 

Forest, General Additive Model (GAM), and some Deep Learning models. GAM is a 

generalized linear model which has linear predictor and is the summation of the smooth 

functions of the covariates (Brando et al., 2019; Hastie & Tibshirani, 1987) and its related 

uncertainty score is denoted as SE. They applied their recommended uncertainty calculation 

methods on LSTM. 

 

DeVries et al. (DeVries & Taylor, 2018) applied out-of-distribution method for considering 

uncertainty in classification. They added a confidence branch for each class to vote from 0 to 

1 (sigmoid function). The more confident the model about an output, the more its confident 

score is close to 1. 

 

Salinas et al. (Salinas et al., 2020) proposed a Deep AR method that resulted in accurate 

probabilistic forecast. Their RNN architecture incorporates a negative Binomial likelihood. 

Their models have four key characteristics: (i) It can learn the seasonal behavior and, with the 

learned dependencies on the given covariates of the time series, a minimum amount of feature 

engineering is required. (ii) Their Deep AR model provides probabilistic forecast based on 

Monte-Carlo samples that can be used for computation of the quantile estimates for different 

horizons. (iii) Their method is capable of learning from similar items and predict even when 

there is no history for the unseen data. (iv) Although they do not consider Gaussian noise, they 

incorporate wide sets of likelihood functions to allow the user to select the proper approach for 

the statistical properties of the data. Additionally, they considered Gaussian likelihood for the 

real-value data and negative-binomial likelihood for positive count data. They parametrized 

the Gaussian likelihood using the mean and standard deviation and the negative binomial 

distribution by its mean and the shape parameter (Snyder et al., 2012). 

 

Zhang et al. (Zhang & Patras, 2018) proposed a deep learning architecture named spatio-

temporal neural network (STN) for precise mobile forecasting. They showed that their Double 
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STN (D-STN) architecture can make 10-hours ahead prediction with high accuracy. They 

implied that the uncertainty may grow over-time. By incorporating the prior knowledge of 

averages into the model, they decreased the uncertainty and improved the performance of 

forecasting. 

 

According to the literature, there are also some methods to calculate the calibration error for 

classification (Expected Calibration Error (ECE) (Naeini et al., 2015)), and another calibration 

method for the regression problems developed by Kuleshov et al. (Kuleshov et al., 2018) which 

uses the intuition from the classification calibration error.  

 

Boot-strap and ensemble learning has been used as the baseline with three different strategies: 

with different random seeds (similar with what we have already implemented), different 

models (diverse; randomly initialized Nets), adding diversity as a hyper-parameter that yields 

better cross-entropy and better accuracy (NeurIPS 2020 : (Track2) Practical Uncertainty 

Estimation and Out-of-Distribution Robustness in Deep Learning, n.d.). 

 

1.14.1 Selected means of uncertainty based on literature survey 

To summarize, the main methods for implementing uncertainty in our algorithms are listed in 

table 1.1. Accordingly, the dropout method used by Gal et al.  (Gal & Ghahramani, 2016b), 

which is a recognized as an appropriate approximation for the Bayesian probabilistic approach 

could be selected as the method to apply uncertainty to our neural network algorithms 

(feedforward and ResNets). Moreover, to assess the quality of uncertainty prediction, baselines 

such as quantile regression or ensemble learning, are feasible methods to be implemented. 
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Table 1.1 Uncertainty methods 

Ensemble 
Learning 
(Baseline) 

Likelihood Dropout 
Bayesian 
Approach 

Quantile 
Regression 

Monte-Carlo 
Approximation 

Brando 

(2019) 

Brando 

(2019) 

Gal and 

Gharamani 

(2021) 

Brahim 

(2004) 

Koenker 

(2017) 

Jordan (1999) 

Doucet (2001) 

Salinas (2020) 

 

 

 

 

 

 



 

CHAPTER 2 
 
 

SHORT-TERM LIGHTPATH QoT FORECASTING 

In this chapter, we explain the methodology that was used to implement and evaluate the 

forecasters. Three algorithms (models) were investigated: N-Beats, MLP and LSTM. We 

implemented the N-Beats model from scratch using the description of the model developed by 

Oreshkin et al. (Oreshkin et al., 2020a). We used a naïve method as our baseline to compare 

the performance of the forecasters. Naïve method returns the last seen value in the time series 

as future time-series value, as described in Chapter 1.  

 

Before training the models, data preparation is essential. Special data preprocessing for time 

series is explained in section 2.2. After explaining data preparation and preprocessing, 

hyperparameter optimization, which is key step in training will be described. In the end of this 

chapter, the measured metrics of the test sets, as the result of training each model will be 

presented. 

 

2.1 Methodology : Algorithms 

The methodology of implementing N-Beats, MLP and LSTM models is described in sections 

2.1.1 to 2.1.3.  

 

2.1.1 Implementation of N-Beats 

Using the structure of N-Beats presented in Chapter 1 (Fig. 1.12) (Oreshkin et al., 2020a), we 

found the optimum implementation in terms of the number of blocks and stacks by evaluating 

the forecasting results. One version of our N-Beats implementation code is mentioned in 

Appendix I.  
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N-Beats forecaster is based on the residual deep neural network (DNN) shown in Fig. 

1.12.  These networks are called “residual” because at each stage of the network some output 

of the stage is subtracted from the input to the stage and the difference (the “residual”) is 

forwarded to the next.  Our N-Beats model is composed of three stacks. Each stack contains 

four blocks. Each block includes three dense layers and two theta layers each corresponds to 

the forecast and backcast followed by the forecast and backcast layers, respectively, and the 

residual layer at the end (Fig. 1.12). A schematic of the stacks and blocks of our N-Beats model 

is presented in Fig. 2.1. In our N-Beats architecture, all the dense and theta layers contain 64 

neurons, the forecast layers contain 1 neuron and the backcast layers also have 64 neurons, 

which corresponds to 3,468 neurons in total. The reason for selecting this structure is based on 

the experiments on the performance of the model. Since the N-Beats model is hard coded, we 

find the best number of neurons with conducting experiments with the data. 

 

We implement this model using TensorFlow without any dropout layers for regularization 

during the training process. 
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Figure 2.1 Schematic of our N-Beats implementation 
 

2.1.2 MLP model 

The MLP model contains two dense layers of 16 neurons, with ReLU activation function, and 

a single neuron in the final layer with the linear activation function, which corresponds to 33 

neurons in total. No dropout layer was employed for regularization during training. The reason 

of selecting this structure for our MLP model was based on the experiments on the performance 

of the model (more explanations in the hyperparameter optimization section). 
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Figure 2.2 Schematic of the MLP model 
 

2.1.3 LSTM model 

We implement a LSTM algorithm with three LSTM layers of 256, 128, 64 and 32 neurons and 

an output dense layer of 1 neuron, respectively. The numbers of neurons are selected based on 

the evaluation of the results and kept the same for most of the experiments and adopted 

according to the hyper parameter tuning for other experiments. The numbers of neurons in the 

LSTM layers are selected based on the hyper parameter tuning.  
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Figure 2.3 Schematic of the LSTM model 
 

2.2 Data sets 

In this project, the forecasters have been built using performance metrics (PMs) collected in 

two production networks in North America, Microsoft and NASP.  The Microsoft data set 

includes 14 months of PMs from their backbone network in North America. The PMs were 

collected at 15-minute intervals for 4000 optical channels (“Optical Data,” ). The target 

lightpath performance metric in this data set is the estimated Q-factor. Each channel contains 

nearly 32,000 Q-factor data samples. The evolution of the Q-factor for one Microsoft WDM 

channel over a period of four days is shown in Fig. 1.1. The NASP data set contains PMs for 

148 channels. Each channel includes 12,000 SNR data have been collected in 15 minutes 

intervals over one year. Fig.1.2 in Chapter 1 represents the evolution of SNR for one WDM 

channel of the NASP data set over a period of four days. Comparing Fig. 1.1 and Fig. 1.2, the 

WDM channel of Microsoft Q-factor data, in the same scale of time, is more stationary, while 

NASP WDM channel exhibits more dynamicity (or variations over time). 
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2.3 Data preparation 

Training the models needs data preparation. Cleaning the data is essential for any type of data 

to train ML models.  The data should be cleaned and missing data have to be replaced by the 

appropriate values. Another key step for preparing time series data is windowing the data. This 

step will be explained in section 2.3.1. 

 

2.3.1 Data windowing 

To work with the time series, data windowing is essential to generate a sequence of data as the 

history and define the target within desired time interval right after the history sequence. We 

select the forecasting setting to be windows of 192 instances (2 days) as the history, predicting 

a target in 1-h, 2-h to 16-h in the future (Fig. 2.4). Prior to select this setting, we tried different 

other settings and found out shorter history time than 2 days have not resulted in good 

forecasting results.  

 
 

 

 

 

2.3.2 Train, validation, and test sets preparation 

The input data set is generated using random sampling (will be discussed in the next section) 

over 500 channels to produce 14,648 windows of data (samples) with the following data split: 

training set of 10,253 samples, validation set of 2,198 samples and testing set of 2,199 samples, 

  Figure 2.4 History and target data, history 192 SNR (Q-factor) data,  
target 1 data within desirable time interval 
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which correspond to 70% training, 15% validation and 15% test sets from the generated 

windows of data, respectively (Fig. 2.5). According to our survey over all the 4000 channels 

of this data set, all the channels show similar behaviors with the difference in the Q-factor 

level. By sampling over 500 channels, we ensured sampling from different Q-factor levels 

(more detailed information is presented in section 2.7).  

 

 

Figure 2.5 Pie chart, knowledge base split ratio; training  
set 70%, validation set 15% and test set 15%  

 

We sampled 140 channels of SNR data from NASP data set with the same strategy as we 

sampled the Microsoft data set. Like the Microsoft data division, we used 70%, 15% and 15% 

of data corresponding to the train, validation and the test sets (Fig. 2.5), and each set contains 

3,300, 910 and 910 data windows respectively. We generated the train, validation, and the test 

sets separately for both data sets, so that none of the instances from validation and test sets are 

seen during training. 
 

2.3.3 Random sampling 

To prevent overfitting for the two data sets used in our experiments, we randomly sample the 

data. Since in the two time-series (Microsoft and NASP data sets), the range of data 

70%

15%

15%

Partitions of Data
Training set Validation set Test set
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is narrow and the data is monotone, if we randomly select the windows of data, we can prevent 

over-fitting by adding diversity to the data. To do that, we randomly select a sequence (192 

data in our case which corresponds to two days of history) of Q-factor or SNR. The output 

value is the next value in 1-h, 2-h to 16-h horizons right after the sequence. Once we sampled 

all the data set from Microsoft data set, for instance, we shuffle the data while training to ensure 

the data is randomly set. The same procedure was applied for the NASP data set. 

 

It is worth noting that we consider the same window size for all the algorithms as our goal is 

assessing the performance of the models for the next step with the same settings, which is the 

implementation of the uncertainty on the selected model, with the same settings.  

 

2.3.4 Data preprocessing 

For time series, there are more steps to prepare the data.  They need special care because it is 

necessary to have stationary data without seasonality or long-term trends using common 

methods such as differencing (Yadav et al., 2020). Plotting is a good way to evaluate if the 

time series has the seasonality. By plotting various channels and comparing them in the same 

period of time from both data sets, we didn’t recognize any significant seasonality pattern, 

including daily, weekly and monthly in each of the data sets.  Therefore, our data preprocessing 

was limited to filling the missing data with the expected appropriate data. For both data sets, 

we chose the mean value of each of the time series data files and replaced missing values by 

the means. Moreover, for some data sets, using the Min-Max Scaler from Scikit-Learn library 

might be helpful. Specially if the data are not in the same range. Since both data sets that we 

chose are time-series and have limited range, we did not use the Min-Max scaler for the most 

parts of experiments; namely, we did not use this scaler for N-Beats and MLP algorithms 

because the results were not impacted by this preprocessing. However, we used the Min-Max 

scaler method to scale the data in training and validation sets for the LSTM algorithm and we 

performed the inverse scaling at the test time to ensure LSTM is well set up. 
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2.4 Set of metrics 

In this section, we briefly mention the set of metrics that are used to evaluate the results of our 

simulations as well as the loss function (will be discussed in the next section). In the following 

metrics, N is the number of data points, y୧ is the true value and  yො୧ is the prediction. 

 

2.4.1 Mean Absolute Error (MAE) 

This metric is the absolute average of the difference between each prediction and its actual 

value. Because of the absolute, the signs of the residuals are not considered. If the absolute is 

removed, it becomes Mean Bias Error (MBE), which is applicable to measure the model bias. 

MAE is defined with Eq. (2.1).  

MAE = =  1N෍|y୧ − yො୧|୒
୧ୀଵ  (2.1) 

MAE is a metric that takes the same unit as the variable (here dB). 

 

2.4.2 Mean Absolute Percentage Error (MAPE) 

The Mean Absolute Percentage Error is a very popular metric to evaluate the performance of 

the forecasters and is defined by Eq. (2.2): 

MAPE =  1N෍  |y୧ − yො୧|y୍  ୒
୧ୀଵ  (2.2) 

There are two shortcomings contributed with the MAPE. The first one is that MAPE is 

asymmetric and considers more penalty for the negative errors (Lewinson, 2020). The second 

one is that when the actual value is zero, MAPE becomes indefinite. MAPE is the percentage 

error. 
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2.4.3 Symmetric MAPE 

The metric symmetric MAPE (sMAPE) is like MAPE and supposed to combat the shortcoming 

of MAPE. This is a percentage error measurement and has the upper and lower bounds of 0% 

and 200%, respectively and is formulated by Eq. (2.3).  

 

sMAPE =  1N෍ |y୧ − yො୧|(y୧ + yො୧)/2୒
୧ୀଵ  

(2.3) 

 

 

sMAPE is a percentage error. 

 

2.4.4 Root Mean Square Error (RMSE) 

Root mean square error (or deviation) is one of the most common metrics to evaluate the 

predictions. This metric demonstrates the Euclidian distance from the true values.  

 

𝑅𝑀𝑆𝐸 =  ඨ∑ ‖y୧ − yො୧‖ଶே௜ୀଵ 𝑁  

 

(2.4) 

RMSE takes the same units of the predicted variable (here dB). 

 

2.5 Hyperparameter optimization 

In neural networks, the training is being performed with gradient decent, which is the loss 

function. The choice of the loss function could be diverse; to name of a few: mean absolute 

error (MAE), mean squared error (MSE), etc. Gradient decent is giving an estimate of the 

errors so that the weights could be updated (Brownlee, 2019a). This process is called 

hyperparameter optimization (or tuning). It involves choosing the weights to minimize the 

discrepancy between the true values and the prediction. The process of hyperparameter tuning 
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is illustrated in Fig. 2.6. We start training the model with a set of hyperparameters. After 

running the model, the error between the prediction and the actual value would be evaluated.  

 

Hyperparameters could be selected from the model (e.g., number of hidden layers, activation 

function, etc.) or from the learning process (e.g. learning rate, batch size, learning rate, etc.). 

Some of the optimizers have more parameters (e.g., Adam optimizer has alpha, beta 1, beta 2 

and epsilon). Our choice of activation function is ReLU and linear. The optimizer is RMSprop, 

and number of hidden layers has been selected based on experiments to ensure not having over-

fitting or under fitting while training. The number of hidden layers in the MLP model, as well 

as the number of LSTM layers, are mentioned in the implementation part of each model 

(previous section). Moreover, we find the optimum structure for N-Beats and perform all the 

experiments with the same structure. Then we keep those hyperparameters constant and 

conducted hyperparameter tuning by changing the batch size, number of epochs and learning 

rate. Among all the models, we only perform tuning for the number of LSTM layers because 

LSTM is very sensitive to the choice of hyperparameters. Selecting hyperparameters with 

precision for LSTM model is also mentioned in the previous studies (Yadav et al., 2020). 

 

2.5.1  Batch size 

Batch size defines the number of training examples used to estimate the error gradient. Batch 

size has a significant impact on the accuracy of the error gradients. Moreover, it can control 

the speed of the learning process. The range of batch sizes for all the models is presented in 

table 2.1.  

 

2.5.2 Learning rate 

Learning rate is defining the amount of change during each step of the error gradient. It could 

be defined as the step size and is probably one of the most important hyperparameter to tune 

the neural network (Brownlee, 2019b). Table 2.1 shows the range of learning rates for all the 

models.  
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2.5.3 Epochs 

Epochs is another hyperparameter in the gradient decent process in estimating error gradient. 

It is defined as the number of complete passes through the data set while training (Brownlee, 

2018). The range of epochs for all our models is shown in table 2.1. 

 

 
Figure 2.6 The cycle of hyperparameter tuning, starting with selecting a set of 

hyperparameters, then running the models, after evaluation the results,  
tuning the hyperparameters 

 

The sets of hyper-parameters for N-Beats algorithm for each time interval, for the two data sets 

(Microsoft and NASP data sets), are presented in Tables 2.2 and 2.3, respectively. 

 

Table 2.1 Range of hyperparameters for all the models for all the horizons  

Model Learning rate Epochs Batch size 
N-BEATS 10ି଺ to  10ିସ 50, 70, 90, 120 128, 256, 512, 1024 

MLP 10ି଺ to  10ିସ 30, 50, 70, 90, 120 128, 256, 512, 1024 

LSTM  10ିସ, 5 × 10ିସ 50, 70 ,90 256, 512 
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Table 2.2 N-Beats: optimum hyper-parameter set for Microsoft data set 

N-Beats     1-hour 2-hour 4-hour 8-hour 16-hour 

Learning Rate 5 × 10ିସ 1 × 10ି଺ 5× 10ିହ 5× 10ିହ 1 × 10ି଺ 

Batch Size 1024 128 512 128 128 

Number of epochs 120 90 120 70 90 

 

Table 2.3 N-Beats: optimum hyper-parameter set for NASP data set 

N-BEATS     1-hour 2-hour 4-hour 8-hour 16-hour 

Learning Rate 1 × 10ି଺ 1 × 10ି଺ 1 × 10ି଺ 1 × 10ି଺ 1 × 10ି଺ 

Batch Size 128 512 512 128 128 

Number of 
epochs 120 90 70 120 90 

 

The sets of hyper-parameters for MLP algorithm for each time interval for the two data sets 

(Microsoft and NASP data sets) are presented in Tables 2.4 and 2.5, respectively. 

 

Table 2.4 MLP: optimum hyper-parameter set for Microsoft data set 

MLP     1-hour 2-hour 4-hour 8-hour 16-hour 

Learning Rate 1 × 10ି଺ 1 × 10ି଺ 1 × 10ି଺ 5 × 10ି଺ 5 × 10ି଺ 

Batch Size 128 512 512 256 1024 

Number of epochs 90 120 120 90 30 
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Table 2.5 MLP: optimum hyper-parameter set for NASP data set 

MLP     1-hour 2-hour 4-hour 8-hour 16-hour 

Learning Rate 5× 10ି଺ 5× 10ି଺ 1 × 10ି଺ 5× 10ି଺ 5× 10ି଺ 

Batch Size 512 512 256 512 256 

Number of 
epochs 120 90 120 70 70 

 

The sets of hyper-parameters for LSTM algorithm for each time interval, for Microsoft data 

set are presented in Tables 2.6. Since the LSTM model was tuned at learning rate 10ିସ,  batch 

size 256, and epochs 50, these settings were maintained for training the model with NASP data 

set. 

 

Table 2.6 LSTM: optimum hyper-parameter set for Microsoft data set 

LSTM 1-hour 2-hour 4-hour 8-hour 16-hour 

Learning Rate 5× 10ିସ 5× 10ିସ 5× 10ିସ 5× 10ିସ 5× 10ିସ 

Batch Size 256 256 256 256 512 

Number of 
epochs 90 90 50 50 50 

 
 

2.6 Results and discussion 

We train the models with the training data with the ranges of hyperparameters in table 2.1 and 

report the best hyperparameters in tables 2.2 to 2.5. The size of the training sets in Microsoft 

and NASP data sets are approximately (for all the forecasting horizons) 10,200 and 3,300 

windows, respectively. The loss function while training and validation is mean absolute error 

(MAE).  At the end, we select sMAPE, RMSE and MAE as the metrics to evaluate the 

performances of the models on the test sets, where MAE is minimum.  The size of the 
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Microsoft and NASP test sets are approximately (for all the forecasting horizons) 2190 and 

900 windows respectively (section 2.3.2).   

 

We show the sMAPE (percentage error) metric results of the models from the Microsoft data 

set in Fig. 2.7 versus horizons of 1-h, 2-h to 16-h. In this figure we can see that the sMAPE of 

all the models is generally increasing until 4-h horizon, with increasing the time intervals.  

LSTM shows the maximum sMAPE as compared to all the other models for all the horizons. 

Its sMAPE hits the maximum of nearly 11% of the prediction for Microsoft data set in 4-h and 

drops for the next two horizons its increase and decrease is more visible due to the magnitude 

(Fig. 2.7 and table 2.7). 

 

Naïve shows the least sMAPE among the models and linear growth for all the horizons (table 

2.7 and Fig. 2.7). The sMAPE of MLP is very close to that of Naïve and it demonstrates 

increasing trend until four hours but a decrease in 8-h and a slight rise in 16-h. The trends 

might not be visible as of LSTM due to its small magnitude in Fig. 2.7 but they could be seen 

easier in table 2.7.  

 

N-Beats shows in average 0.5% sMAPE error of prediction of SNR in Microsoft data set. It 

has a considerable rise in the1-h time interval, and from 2-h (minimum error), it shows a slight 

increase until 16-h (table 2.7 and Fig. 2.7).  

 

In Fig. 2.8, we illustrate the RMSE (dB) metric (has been defined earlier) results of all the 

algorithms for the Microsoft data set over all the horizons (1-h, 2-h to 16-h). The trend of the 

performance of the models are the same as our sMAPE metric results (as it was expected). 

Naïve is showing the minimum RMSE error, and except for a rise at 1-h interval, it shows a 

linear increase from 0.027 dB in 2-h interval to 0.045 dB in 16-h interval (table 2.8). There is 

sharp increase in RMSE of 1-hour horizon for the N-Beats model, like its sMAPE (%) of 1-

hour horizon for the Microsoft data set (the same as Naïve) (table 2.8). That shows that the 

chances of having slightly more error in prediction in 1 hour is sometimes higher than the other 

horizons. Moreover, we see an increasing trend of the error for the 2-hour horizon. The 
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maximum error value with regards to the RMSE results belongs to the LSTM with the 

maximum of approximately 2 dB at 4-hour horizon and it has a better performance at 16-hour 

horizon (Fig. 2.8 and table 2.8). 

 

Fig. 2.9 shows the MAE (dB) metric (has been defined earlier) on the test set of all the 

algorithms for the Microsoft data set over all horizons (1-h, 2-h to 16-h). The general trend of 

increasing the error alongside with longer horizons is also observed in this metric. Again, the 

minimum value is that of Naïve with a linear increase from approximately 0.011 to 0.030 dB 

(Fig. 2.9 and table 2.9). The MAE of MLP is competing with Naïve (being between 0.027 to 

0.032 dB). Another burst move in 1-hour is observed in the MAE value of N-Beats (the same 

as what we saw in the sMAPE of N-Beats) (Fig. 2.9 and table 2.9). Apart from a spike at 1-h 

horizon, its error shows between approximately 0.08 to 0.09 dB, with a general increasing 

trend. LSTM shows the maximum MAE of 1.4 dB at 4-h horizon (Fig. 2.9 and table 2.9) and 

similar to its sMAPE and RMSE, it shows downward trend with reaching its minimum of 0.43 

dB at 16-h horizon. 

 

 
Figure 2.7 sMAPE metric indicating the performance of the models;  

N-Beats, MLP, LSTM and Naïve, Microsoft data set 
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Table 2.7 sMAPE (%) of the models, Microsoft data set 

sMAPE     1 hour 2 hours 4 hours 8 hours 16 hours 
MLP 0.19 0.236 0.237 0.2158 0.2173 

LSTM 6.11 7.10 11.07 7.86 3.02 

N-BEATS 0.647 0.407 0.549 0.583 0.59 

NAIVE 0.080 0.125 0.159 0.189 0.204 

 

 

 
Figure 2.8 RMSE metric indicating the performance of the models; N-Beats,  

MLP, LSTM and Naïve, Microsoft data set 
 

Table 2.8 RMSE (dB) of models, Microsoft data set 

RMSE      1 hour 2 hours 4 hours 8 hours 16 hours 
MLP 0.044 0.086 0.064 0.053 0.049 

LSTM 1.447 1.734 2.083 1.723 0.630 

N-BEATS 0.0983 0.1170 0.0830 0.0911 0.0806 
NAIVE 0.0707 0.0273 0.0343 0.0406 0.0455 
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Figure 2.9 MAE metric indicating the performance of the models; N-Beats,  

MLP, LSTM and Naïve, Microsoft data set 
 

Table 2.9 MAE (dB) of models, Microsoft data set 

MAE 1 hour 2 hours 4 hours 8 hours 16 hours 

MLP 0.0276 0.0328 0.0293 0.0301 0.0321 

LSTM 0.839 0.944 1.446 1.041 0.438 

N-BEATS 0.0938 0.0571 0.0752 0.0832 0.071 

NAIVE 0.0114 0.0177 0.0212 0.0265 0.0301 

 

We illustrate the sMAPE (percentage error) metric results of the models from NASP data set 

in Fig. 2.10 versus horizons of 1-h, 2-h to 16-h. In this figure, we can see that sMAPE of all 

the models are increasing by the horizon time except for LSTM. In general, the sMAPE values 

of the NASP data set are larger than that of Microsoft data set, although the amount of data in 

NASP is less than that of Microsoft data. That indicates the more diverse the data, the more 

increase of the error metrics (comparing the Microsoft data set (Fig. 1.1) to NASP data set 

(Fig. 1.2) with sMAPE of both data sets (tables 2.7 and 2.10). 

 

As we can see in this figure (Fig. 2.10) Naïve again shows the least sMAPE among the models 

for all the horizons (being approximately 0.2 to 0.3% error, table 2.10). The sMAPE of MLP 
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is very close to that of Naïve. Both MLP and Naïve demonstrate linear increase of sMAPE 

error. N-Beats shows nearly 0.7 to 0.8% error of prediction of SNR in NASP data set. Its error 

increases gradually from 1-h to 16-h horizon. LSTM is showing the maximum error among all 

the models for the whole horizons. Its sMAPE hits the maximum of nearly 13.50% at 4-h 

horizon and then decreases until the 16-h horizon.  

 

In Fig. 2.11, we give the RMSE (dB) metric (has been defined earlier) results of all the 

algorithms for the NASP data set over all the horizons (1-h, 2-h and 16-h). The trend of the 

performance of the models are the same as our sMAPE metric results for this data set. The 

RMSE error of LSTM rises to its maximum of 1.99 dB at 4-h horizon and reaches its minimum 

of 1.84 dB at 16-h horizon (table 2.11). The same behavior has been observed for LSTM in 

Microsoft data set. Naïve is showing the minimum RMSE error, linearly increasing from nearly 

0.037 dB to 0.088 dB. The closet RMSE values to that of Naïve belongs to the MLP model, 

linearly increasing from 0.062 dB to 0.101 dB (table 2.11). N-Beats represents a moderate rise 

in RMSE from 0.134 to 0.137 dB. Still, comparing the RMSE of all the algorithms, the 

prediction error of LSTM is high for the NASP data set.  

 

Fig. 2.12 provides the MAE (dB) metric (has been defined earlier) on the test set of all the 

algorithms for the NASP data set over all horizons (1-h, 2-h to 16-h). The general trend of 

increasing the error with longer horizons could be observed in this metric as well. The MAE 

of Naïve is the minimum among almost all the horizons.  

 

 The general increasing trend with the time of horizons is again observed for N-Beasts (0.079 

in 1-h to 0.092 dB in 16-h), which is in agreement with the RMSE and the sMAPE metrics of 

N-Beats. Therefore, we may conclude that, the oscillations in the behavior of all the metrics 

are more pronounced for the NASP data set than for the Microsoft data set, which comes from 

the diversity of data more than the amount of data (in Microsoft data set, the data in each set 

is more than two times that of NASP data set). Comparing to the sMAPE error values, the 

MAE metric is representing lower value error (maximum MAE of 1.604 dB as compared to 

the maximum RMSE of 1.99 dB, tables 2.10 to 2.12). Overall, we can conclude that LSTM is 
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not showing an acceptable performance for the two target data sets with respect to the sMAPE, 

RMSE and MAE metrics given its structure. We use four LSTM layers and did not use the 

encoder-decoder LSTM structure, which could be a good target for future work. It could be 

one of the reasons why its error is high. On the other hand, we did not use regularization. 

Regularization could be a good option in case of too similar data (Microsoft data set). Although 

there was no over-fitting in the learning-curves, using this sort of regularization may help 

having more accurate results by avoiding predictions too far from the mean. Moreover, NASP 

data set is more diverse and therefore less predictable compared to the Microsoft data set. 

Therefore, the error metrics obtained from training with NASP data set are higher. Naïve 

appears to be a good choice for the prediction among the time series that we use for the 

experiments because of very short forecast horizons according to the obtained lower metrics. 

However, Naïve, in terms of all the error metrics, demonstrates linear increase of error, from 

1-h to 16-h horizons. The linear increase of error causes higher chances of missing accuracy 

for longer horizons. This could be reflected in its variance error in table 2.13, which 

demonstrates the variances of the sMAPE errors of all the models for both data sets. From this 

table it could be seen that the variances of the MLP model for Microsoft and NASP data sets 

are minimum among all the models. In case of NASP data set, the sMAPE variance of N-Beats 

is less than that of Naïve (0.0024 % as compared with 0.0046 %). This implies that although 

Naïve model had the minimum error metrics, its growth by time was more for the NASP data 

set.  
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Figure 2.10 sMAPE metric indicating the performance of the models; N-Beats,  

MLP, LSTM and Naïve, NASP data set 
 

Table 2.10 sMAPE (%) of models, NASP data set 

SMAPE 1 hour 2 hours 4 hours 8 hours 16 hours 
MLP 0.273 0.274 0.302 0.325 0.352 

LSTM 13.21 12.76 13.50 12.88 12.39 

N-BEATS 0.67 0.68 0.75 0.76 0.78 
NAIVE 0.19 0.224 0.264 0.307 0.364 
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Figure 2.11 RMSE metric indicating the performance of the models; N-Beats,  

MLP, LSTM and Naïve, NASP data set 
 

Table 2.11 RMSE (dB) of models, NASP data set 

RMSE 1 hour 2 hours 4 hours 8 hours 16 hours 
MLP 0.0624 0.0632 0.0714 0.09 0.101 

LSTM 1.939 1.873 1.99 1.88 1.84 

N-BEATS 0.134 0.136 0.137 0.157 0.178 

NAIVE 0.0374 0.0424 0.0489 0.0707 0.0888 
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Figure 2.12 MAE metric indicating the performance of the models; N-Beats,  

MLP, LSTM and Naïve, NASP data set 
 

Table 2.12 MAE (dB) of models, NASP data set 

MAE Verizon     1 hour 2 hours 4 hours 8 hours 16 hours 
MLP 0.0323 0.0324 0.0359 0.0385 0.03907 

LSTM 1.568 1.510 1.604 1.534 1.4751 

N-BEATS 0.0795 0.0820 0.0903 0.0904 0.0925 
NAIVE 0.0228 0.0262 0.0311 0.0359 0.0425 

 

 

Comparing our results with those of (Chouman et al., 2021), who worked with the same time 

series (Microsoft data set and NASP data sets), both results show a higher RMSE metric in 

case of NASP data set for all the models (regardless of the model and the window settings of 

the data) compared to the Microsoft data set. Meaning that when the data is almost flat (like 

the quiet lines in Microsoft data set, Fig.1.1), the more probable prediction is the target being 

similar to the history (naïve). This implies that naïve in this type of data could always 

outperform other models. However, if the target data set is more diverse, the predictions with 
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other models will be more preferable. In the same way, with increasing the forecasting horizon, 

other models can show better performances while Naïve error is still increasing linearly.  

 

Moreover, our naïve and MLP models yield similar RMSE values for both data sets, in 

comparison with the results of Chouman et al. (Chouman et al., 2021). For instance, the RMSE 

of the MLP model, for Microsoft data set in point prediction of 16 h time interval is 0.049 dB 

and the one obtained by (Chouman et al., 2021) for 24 h time interval is 0.04 dB. For a more 

precise comparison, having the same train settings is essential, especially for LSTM as the 

model is very sensitive to the choice of hyperparameters (including the number of layers). 

 

Table 2.13 Variances of the model’s  sMAPE for both data sets 

 MLP LSTM N-Beats Naïve 
Microsoft data set 0.00036 8.485 0.0081 0.0025 

NASP data set 0.0011 0.181 0.00246 0.0046 

 

 

2.7 Training time 

The other challenge to select a forecaster for the time series could be the time required for 

training. Since the test time is fast, the training time could be an indication for the time needed 

for each model (except for naïve). Naïve model takes minimum time since it does not involve 

any training. Table 2.14 represents the training time for each model in 70 epochs. In this table, 

LSTM and naïve show the maximum and the minimum prediction times, respectively. 

 

2.8 Assumptions 

In these sets of training, we made some simplifying assumptions: (a) The model is trained and 

tested on the same data set. Although the partitions of data were specified before training, we 

used the same time series for test and train. Meaning that we trained the model with Microsoft 

data set and we test the model on the same data set, (b) We assume that our LSTM architecture 
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is the best for the experiments, however, other architectures might be considered with better 

results. 

 

Table 2.14 Training time for each of the models 

 Time (s) 
 Microsoft data set NASP data set 

N-Beats    26 16 
MLP 10 3 

LSTM 4200 1440 

Naive 0 0 

 

 

2.9 Conclusion 

We conducted a set of experiments with two time series data sets from production networks 

(Microsoft and NASP) to evaluate our implemented models. In comparison, Naïve showed the 

best performance over the other models in terms of minimum metrics for the experimented 

horizons. However, its variance of sMAPE error metric was not minimum among other models 

for each of the data sets. For NASP data set its error variance was worse than MLP and N-

Beats. Moreover, its error is increasing linearly by the time. With this trend, its performance 

can deteriorate increasingly in forecasting longer time intervals. At the same time, N-Beats and 

MLP are representing more stable error metrics. Meaning that they are more reliable models 

in predicting lightpath Q-factor. 

 

In addition, Naïve is not suitable for implementing uncertainty and we cannot derive 

confidence levels from its predictions. Although it is possible to derive the uncertainty of each 

prediction model using statistical analytics, the author recommends the implementation of 

uncertainty estimation on more reliable methods. 

 





 

CHAPTER 3 
 

UNCERTAINTY AND CONFIDENCE LEVELS 

According to the literature survey, one possible approach to apply the uncertainty regarding 

the cost of calculations and the accuracy is approximating Bayesian inference using Monte 

Carlo dropout.  We implement dropout, as an approximation to the Gaussian process (Gal & 

Ghahramani, 2016b), for the selected algorithm among our models. We select MLP due to the 

accuracy of the prediction of the experimented time intervals as well as its simplicity of 

implementation.  

 

Using Bayesian probabilistic approach, for implementing uncertainty provides distributional 

inference instead of point prediction. Gaussian distribution could provide the prior distribution 

required by this process. For better understanding of Gaussian process (GP),  and how the 

dropout is an approximation of the Bayesian probabilistic, the interested reader is invited to 

read the Appendix II of this thesis. 

 

 In this chapter, one set of MLP results in which the error is minimum is selected. The 

forecasting time horizon of 1 hour is the set that we select to apply the uncertainty method on 

due to its minimum error among examined horizons. Moreover, we select NASP data set, as a 

better choice of data set in terms of lightpath SNR dynamicity. 

 

3.1 Monte Carlo dropout 

Monte Carlo dropout uses the same approach as the NN dropout for regularization. 

 

3.1.1 Dropout 

Deep neural networks have the tendency to overfit when training data is limited or the model 

is complex (Al Osman & Shirmohammadi, 2021). Ensemble learning techniques like bagging 

are one strategy to prevent overfitting (Breiman, 1996). However, the resulting ensemble 
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increases computational complexity (Al Osman & Shirmohammadi, 2021). Dropout (Szegedy 

et al., 2015) is a method similar to bagging but using a different strategy that does not lead to 

increase in the training time or model complexity (Al Osman & Shirmohammadi, 2021). With 

dropout, the output of the network at each run time could be different because it generates 

different networks as a result of dropping some units randomly each time. Therefore, the output 

of each network is multiplied by a Bernoulli distribution of random variable (Al Osman & 

Shirmohammadi, 2021). Gal et al.  (Gal & Ghahramani, 2016b) showed that the NN Monte 

Carlo dropout is a good approximation for the Gaussian process (GP) to define the uncertainty 

for the models, as well as defining the confidence intervals. It should be noted that, for 

regularization purpose, the dropout is used during training.  

 

3.1.2 Applying dropout during inference time 

As we mention in the previous section, using dropout during training reduces overfitting. 

However, to estimate the uncertainty using Monte Carlo dropout, the dropout should also be 

applied at test time. With this method, each point prediction will be replaced by distribution 

prediction.  

 

According to the GP (Appendix II), we need the mean of distribution and the covariance 

function. GP could be a computationally costly process with more complicated data set. To 

understand the dropout strategy and how it is related to the Gaussian process, we need to 

explain the dropout. We consider the input data set {xଵ, … , x୒}, the outputs {yଵ, … , y୒} and the 

prediction vector {yොଵ, … , yො୒} and the goal is to estimate the function y = f(x). Following the 

Bayesian approach, our task is to find the distribution of the posterior having our data set over 

the space of function p(f)  (Rasmussen, 2004). 

p(f|X, Y) ∝ p(Y|X, f)p(f) (3.1) 

Let us consider a NN with the simplest possible case, a network with only one hidden layer 

(Gal & Ghahramani, 2016a). We consider the weight matrix between the first layer and the 
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hidden layer Wଵ, and the one connecting the hidden layer to the output layer Wଶ (Gal & 

Ghahramani, 2016a). These are the linear transforms before applying the nonlinearity, which 

is the activation function σ(. ) such as ReLU or hyperbolic tangent (TanH). The bias is added 

to shift the non-linearity and denoted by b. We assume that the output has the dimension of D 

while its inputs are the vectors with Q dimension, and we have K hidden layers. Therefore, we 

have two matrices: Wଵwith the dimension Q × K and Wଶ with the dimension K × D and b 

which is a D dimensional vector. The output of a standard NN is formulated as (Gal & 

Ghahramani, 2016a): 

yො =  σ(x Wଵ + b)Wଶ (3.2)  

During the optimization process, a regularization term could be added. Lଶ regularization could 

be applied by a weight decay λ while minimizing the loss function (Eq. 3.3) (Gal & 

Ghahramani, 2016b): 

ℒୢ୰୭୮୭୳୲ =  1N෍E(y୧, yො୧୒
୧ୀଵ ) +  λ෍(‖W୧‖ଶଶ + ‖b୧‖ଶଶ)୐

୧ୀଵ  (3.3) 

In this equation, E(y୧, yො୧) is the loss function of the output value and the prediction, N is the 

number of data points, L is indicating the number of layers, and b୧ is the bias term in each layer 

of the network. When the dropout is applied, two binary vectors of the dimensions Q and K 

should be taken into considerations, zଵ and  zଶ . The elements have the Bernoulli distribution 

with some parameters p୧  ∈  [0, 1], for i = 1, 2 . The value of each binary variable is 1 with the 

probability p୧ for layer i. If the value of the binary value is 0, the unit will be dropped  (Gal & 

Ghahramani, 2016a). Therefore, we have two Bernoulli distributions:  zଵ,୯~ Bernoulli(pଵ) for 

q = 1,…, Q and   zଶ,୩~ Bernoulli(pଶ) for k = 1,…, K.  

 

With dropout, if we consider an input x, 1 − pଵ portion of this input is set to zero and the 

Hadamard product of the two vectors are x ∘ zଵ. Considering the two Bernoulli distributions, 

we can rewrite the output Eq. (3.4) as: 
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yො =  σ(x (zଵWଵ) + b)(zଶWଶ)                     (3.4) 

 

The same procedure is repeated for a network with more layers. Here by zଵ we mean the diag(zଵ). As for any regression model, we write the Euclidean loss as: 

E =  12N ෍‖y୬ −  yො୬‖ଶଶ୒
୬ୀଵ  

(3.5) 

 

 

In this equation, N observed outputs are {yଵ, … , y୒} and {yොଵ, … , yො୒} are the N outputs of the 

model corresponding to the inputs {xଵ, … , x୒}.  

 

During dropout regularization, some weight decay terms are added to the equation. Usually, Lଶ regularization is used with the weight decay λ and the minimization is called the cost 

function: 

 Lୢ୰୭୮୭୳୲ = E +  λଵ‖Wଵ‖ଶଶ + λଶ‖Wଶ‖ଶଶ + λଷ‖b‖ଶଶ (3.6) 

 

Equation (3.6) is the extended format of the equation (3.3).  

 

One should note that after regularization, the output of the dropped weights zଵWଵ and zଶWଶ 

are scaled by the factor of ଵ୮౟  to have the constant output. The sampling process (dropout) does 

not take place in the testing time. Meaning that, if we use dropout while training, the weights 

would be initialized by the factor of ଵ୮౟ , and during inference the weights are scaled by p୧ (Gal 

& Ghahramani, 2016a) (if the output of a neuron is x and the probability to keep that neuron 

is p୧, then the output of the neuron is p୧x + (1 − p୧)0 = p୧x). 
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3.2 Uncertainty implementation 

As mentioned in the beginning of this chapter, we select the MLP model predicting 1-h horizon 

of NASP data set due to its performance (Fig. 2.10 to 2.12, chapter 2) and simplicity of 

implementation for uncertainty estimation. To implement the model uncertainty using dropout, 

we needed to have dropout only in inference. 

 

Our strategy is to train a MLP model, with the optimized sets of hyperparameters that we found 

in the previous section and to save the weights of the model. This way, we have a pre-trained 

model. When we run the model at the test time N number of times (N → ∞), according to the 

central limit theorem, the accumulation of a set of random variables is also random and 

increasingly becomes Gaussian. In this chapter, we assume that the variational distributions as 

the result of dropout have the Gaussian form. 

 

At the test time, we implement a second network with the same structure as the first one, and 

use the weights of the first network for the second network. In our MLP model, we have three 

dense layers with 16, 16 and 1 units, respectively. The first one is the input layer. Therefore, 

we applied the dropout before the second and the third layers. As we discussed earlier, using 

the dropout for the regularization, input elements are randomly set to zero and other elements 

should be rescaled (Gal & Ghahramani, 2016a) (Fig. 3.1). Fig. 3.1. A is showing the structure 

of our MLP model and the Fig. 3.1. B represents the model which is using the weights of the 

first MLP model with dropout and rescaled dropout rate.  For instance, if with a probability rate elements of input x are dropped (set to zero), then (1 − rate) will remain. The remaining 

elements will be scaled by 1 (1 − rate)⁄  (Tf.Nn.Dropout | TensorFlow Core v2.5.0, 

n.d.)(Lambrugh, n.d.)). This way, the output values will remain intact. Since we do not apply 

the dropout during training, so that TensorFlow (or any other framework used for the 

implementation) can rescale the output, we need to do the rescaling explicitly. Hence, we added 

layers to multiply the output of each dropout later by (1 − rate) so that we could have the 

dropout for the uncertainty approximation and, at the same time, rescale outputs to the expected 

values. It is worthwhile to mention that failing to do so will cause a shift to appear in the 
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Probability Distribution Function (PDF) diagrams (will be discussed in the results). The more 

the dropout rate, the greater the shift is. Therefore, performing this rescaling is essential.  

 

 
Figure 3.1 The MLP models with and without dropout. A the MLP model without  

dropout, B the MLP model with dropout and with rescaling the dropout 
 

To evaluate the uncertainty implemented with dropout, we need a comparison baseline. We 

select quantile regression as another method to estimate the confidence margins. Quantile 

Regression was introduced by Koenker and Bassett (Koenker & Bassett, 1978) and it estimates 

the conditional median of the target. A special case of quantile regression is the Least Absolute 

Deviation (LAD) Koenker and Bassett (Koenker & Bassett, 1978), that fits the medians to the 

linear function of the covariates. Part of the attraction of the LAD estimation is because median 

can be a better measure for location than mean. Some useful features of quantile regression 

are: (a) It has a linear representation which makes its estimation easier, given a set of 

regressors, (b) The model can be used for characterizing the entire conditional distribution, 

quantile regression function is the weighted sum of absolute deviations, which is a robust 

measure of location. Therefore, the estimated vector of coefficients is not sensitive to the 

A B 
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outliers of the dependent variable. (c) Finally, in case of non-normal error term, quantile 

regression could be more efficient than the least square error.  

 

3.3 Quantile Regression 

Quantiles are providing us with the information about the mass of the data. They summarize 

the univariate probability distributions and could be depicted with the box plots (Koenker, 

2017). They are sensitive to the fluctuations of the mass of the data. With quantile, one can 

move the mass around the median, either above or below the median, without distributing it, 

provided that the mass does not move from above to below the median or another way round. 

This locality characteristic has made the quantile very robust compared to the conventional 

statistical calculations. We can use quantile to estimate the median or any other quantile (e.g., 

25% or 75%). Moreover, we may do so in the presence of outliers, when the residuals are not 

normal, or there is an increase in the error variance for the expected output variable (Efron, B. 

(1991). Regression Percentiles Using Asymmetric Squared Error Loss. Vol.1, No.1., n.d.). 

Univariate quantiles could be the solutions for piecewise loss problems (Koenker, 2017). 

 

To understand quantile regression, we may recall some information about the linear regression. 

In a simple linear regression model, we have a function relating the independent variables x to 

the dependent variable y: 

 y୧ =  β଴ + βଵx୧ଵ + ⋯+ β୮x୬୮                 (3.7) 

In which, p is the number of regressors and i ∈ {1, … , n} is defining the number of data points. 

One of the best error estimators for linear regression is MSE: 

MSE =  1N ෍(y୧ − (β଴ + βଵx୧ଵ + ⋯+  β୮x୧୮))ଶ୒
୧ୀଵ    (3.8) 

We can write the quantile regression model equation for the τ-th quantile: 
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Qத(y୧) = β଴(τ) + β଴(τ)x୧ଵ + ⋯+ β଴(τ)x୧୮ (3.9) 

here again, p is the number of regressor variables and n stands for the number of data points. 

the β coefficients are dependent on the quantile. Finding the β coefficeints at the specific 

quantile is a similar process as for linear regression with the difference of calculating the 

median absolute deviation: 

MAD =  1n෍ρத(y୧ − (β଴ + βଵx୧ଵ + ⋯+  β୮x୧୮)୬
୧ୀଵ )        (3.10) 

In this equation ρ is the check function (Efron, B. (1991). Regression Percentiles Using 

Asymmetric Squared Error Loss. Vol.1, No.1., n.d.). which gives asymmetry to the error 

respecting the defined quantile. We can define ρ as: 

ρத(u) = τmax(u, 0) + (1 − τ)max (−u, 0) (3.11) 

In this equation, u is the error and it implies that if the error is positive, the check function will 

return the error multiplied by the quantile (τ), and if the error is negative, it will return the error 

multiplied by the quantile (1-τ). 

 

To implement quantile regression, we use our MLP model, and compile the model using loss 

function defined in Eq. 3.11.  In this way, for the defined quantile value of interest, we can find 

the region where the mass of the data is located. For instance, we can consider 5% and 95% 

quantiles, define the distributional mass and compare the results with the upper bound, lower 

bounds of what we earlier calculated using the dropout method as the approximation to the GP. 

 

3.4 Results and discussion 

We trained the MLP model without using dropout and, in inference time, used a second model 

with the same structure with the dropout layers and the rescale dropout layers, while its weights 

are loaded from the pre-trained model. We choose to work with NASP with 1-hour time 
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interval time series as the data set for the experiments for implementing uncertainty. We use 

the same window format setting (192 SNR data points as the history to predict a data point in 

the future) and performed random sampling. 

 

We run our model a given number of times and, as a result, have a vector of the size of the 

number of runs that contains variational instances for each prediction. This vector has a 

Gaussian distribution due to the central limit theorem. To select the number of runs we 

calculate the mean of standard deviation for each prediction and the mean of RMSE of the test 

set for different dropout rates in the array of [0.01, 0.02, 0.05, 0.1, 0.2] (table 3.1). From this 

table, it can be seen that the mean of standard deviation and mean of RMSE (dB) of the 

distribution of the whole test set for 50 runs at the test time, and 0.01 dropout rate, is the 

minimum. Moreover, this minimum does not change considerably when increasing the number 

of runs to 100 or more. However, the mean of standard deviation of each distribution is closer 

to the mean RMSE of the whole test set in case of 0.01 dropout and 50 runs. Therefore, we 

selected 50 runs for inference.  The dropout rates less than 0.01 are also considered (e. g. 

0.005), however, due to the topology of our MLP model and number of neurons, being 16 in 

each layer, 0.005 dropout rate, considering the randomness of the dropout, could end up with 

no dropped unit. Therefore, the minimum dropout rate is considered 0.01. 

 

Fig. 3.2 represents the PDF of the residuals. We calculate the residuals as the subtraction of 

the distributions of each prediction from their corresponding actual value (Eq. 3.12).   

residulas = Y୫ −  Y෡୫×୬ (3.12) 

 

where Y୫ is the vector of the actual values and Y෡୫×୬ is the matrix of variational inference.  

Therefore, we produce a matrix of residuals with the dimension m × n (m being the number 

predictions (the numbers of test instances) and n being the number of runs (50)). We can 

observe positive tails for all PDFs, which implies that most variational inference values are 

less than the actual values (Fig. 3.2). Therefore, since almost all the variational inference values 

are less than the actual values, we only have positive residuals (Fig. 3.2). 
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Table 3.1 Selecting number of runs based on the mean of standard deviation per rate. 

Number of runs 
during inference 

time 
Dropout rate 

Means of standard 
deviation 

Mean of RMSE 
(dB) 

50 0.01 1.12 1.23 

0.02 1.62 1.80 

0.05 2.43 2.93 

0.1 3.14 4.34 

0.2 3.78 6.44 

100 0.01 1.15 1.24 

0.02 1.61 1.77 

0.05 2.45 2.93 

0.1 3.16 4.34 

0.2 3.80 6.46 

 

To calculate the upper and lower bounds of the data with the dropout method, we use the 

quantile of the variational inference data. We select 5 and 95% quantile for lower and upper 

bounds, respectively. Due to the very low residual (being RMSE = 0.062 dB), the difference 

between the true value and the prediction is minimal. Moreover, as we expect, the upper bound 

is very close to the actual value because as it can be seen from Fig. 3.2, the negative tail is very 

short (Eq. 3.12). On the other hand, since the tails of the distributions were all in the positive 
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side (Fig. 3.3), the difference between the lower bound (the green line in Fig. 3.3) and the true 

value is reaching to 4 dB. The lower bound is higher than it is expected. 

 

Using the dropout, we generate the distribution of the values during inference in the credible 

region (−∞, y]. Most of the data are centered around the most probable values (Fig. 3.2), and 

the frequency of lower values is very small. However, to capture 90% (or 95%) quantile, we 

capture all the infrequent data. This is why, in Fig. 3.3 obtained from the approximation to the 

GP, the lower bound (green line) has a considerable difference from the prediction. 

 

In regression, intuitively, the model is called confident if, for instance, its prediction falls in 

90% confidence intervals 90% of the times (Kuleshov et al., 2018). The confidence estimates 

are called well-calibrated when the model’s prediction could be trustable and the reported 

confidence is high (Lakshminarayanan et al., 2017). In practice however, estimations to 

Bayesian uncertainty mostly fails to capture the true distribution of the data 

(Lakshminarayanan et al., 2017). This problem might happen due to the bias of the model. For 

instance, the predictor might not be able to assign the right probability to every interval, the 

same process that might occur in classification (Lakshminarayanan et al., 2017). According to 

Kuleshov et al. (Kuleshov et al., 2018), the dropout (Gal & Ghahramani, 2016b) and the 

ensemble techniques (Lakshminarayanan et al., 2017), may not result in calibrated predictions. 

Meaning that, using dropout method, with 90% confidence margin, the model tries to capture 

all the possible points in the variational distribution, which results in appearing the green line 

in Fig. 3.3, that contains the least frequent variational distributions. In this case, the model is 

called mis-calibrated (Kuleshov et al., 2018). One strategy proposed by Kuleshov et al. 

(Kuleshov et al., 2018) to solve this problem is that once 95% confidence level is considered 

but only 80% of the observed 𝑦௧ (variational points in the distribution) fall in the considered 

margins, then the margins simply adjust the 80%. 

 

Moreover, earlier, we assumed that using the Gaussian process (approximation to the Bayesian 

probabilistic) will result in Gaussian distribution in the inference. However, if the true 

distributions are not Gaussian, the uncertainty yielded from the Bayesian model could not be 
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calibrated (Kuleshov et al., 2018). This should be considered as one limitation of the dropout 

for uncertainty estimation. Therefore, calibration as one more step for implementing precise 

uncertainty estimation seems to be essential.  

 

 

Figure 3.2 PDF of the residuals per rate 
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Figure 3.3 The upper and lower bonds, the true and predicted values obtained from the 
dropout method of uncertainty 

 

As another measure to evaluate the upper and lower bounds, we use quantile regression. 

Quantile regression provides the median and the upper and lower bounds are defined to be 

95% and 5% quantiles, respectively. Having the confidence margins from the two methods, 

now we can evaluate our uncertainty method. With this method, we obtain the median value, 

the upper limit, and the lower limit of the 95% quantile (Fig. 3.4). In Fig. 3.4, the upper and 

lower bounds are in the same distance from the median (nearly 0.1 dB). As it can be observed 

from Fig. 3.3 and 3.4, the two lower bounds are different. Given the output distribution of the 

target (obtained from method one, the dropout method) and the upper and lower bounds 

obtained from the quantile regression method, the main question is how to evaluate the two 

approaches. One way to assess which method is giving a better estimation of the confidence 

levels is by applying re-calibration method proposed by Kuleshov et al. (Kuleshov et al., 2018). 

With implementing this algorithm, 90% confidence interval contains 90% of their predictions. 

This process could be investigated in the future work.  
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Choosing a method of calibration and implementing is beyond the scope of this project but 

exploring and conducting a means of calibration for the Bayesian models would help evaluate 

the strategy to estimate uncertainty. 

 

 
Figure 3.4 The upper and lower bonds, the true value, and the median, calculated by the 

quantile regression 
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CONCLUSION 

 

This thesis successfully explored the application of deep learning forecasters for time series 

analysis in the field of optical communications. Implementing N-Beats, whose code is not yet 

offered as a library in Python, and have it outperformed other forecasters was one of the very 

interesting achievements of this thesis (Appendix I). For the target time series of this project, 

the performance of Naïve model was better for the point prediction of the time intervals of 

choice, according to the evaluation metrics. Naïve shows optimal performance when the signal 

is stable over time. However, according to its error variance, this method is not recommended. 

 

The uncertainty was implemented using the NN dropout to the MLP model. The margins of 

data as the indicators of having variational inference instead of point prediction, were also 

evaluated by the margins found with the quantile regression method. The results from the two 

approaches were different. Although the results obtained from quantile regression seem better, 

the results obtained from dropout method are acceptable from Gaussian process approximation 

(Levi et al., 2020). The reason is that using Bayesian uncertainty most of the times do not result 

in capturing the true distribution of the data (Lakshminarayanan et al., 2017). Because using 

this method, the distribution is somewhere in the range (−∞, y]. As the PDF diagrams 

demonstrate (Fig. 3.2), the distributions of each of the examined dropout rates are not Gaussian 

while we assumed them to be Gaussian. As the result of these approximations, the lower 

margin is lower than it is expected. Therefore, a calibration method is needed to adjust the 

lower margin so that, for instance, 80% of predictions can be in the 80% confidence margin. 

This is the goal that could be accomplished by deploying a calibration method as the further 

steps in implementing uncertainty with Bayesian approximations. 

 





 

RECOMMENDATIONS  
 
According to our results, we give the following recommendations for future work on the topic: 

(a) Selecting more diverse time series, i.e., lightpaths which exhibit some performance 

dynamicity over time. In Microsoft data set, similarity of the data caused serious problems of 

forecasting with almost all the DL forecasters. (b) Using some regularization methods such as 

dropout or batch normalization while training is highly recommended to avoid over-fitting 

problems. (c) Incorporating a technique for uncertainty estimation to the other DL models, 

such as N-Beats and LSTM, and investigating novel ways of doing so would be an interesting 

topic for another project. (d) Calibrating the uncertainty models using strategies for the 

regression problems is recommended to validate the implemented method for estimating 

uncertainty, and to increase the confidence of the predictions. 

 





 

ANNEX I 
 
 

N-BEATS MODEL WITH TWO STACKS AND THREE BLOCKS IN EACH STACK 

 We hard coded the N-Beats model: 

  def make_nbeats_2():     layer_width=128     input_widith =10     blocks_forecast_1 =[]     inputs = tf.keras.Input(shape=(input_widith,),dtype=None,name= 'input')      x1 = inputs     for i in range (3):         x1 = tf.keras.layers.Dense(layer_width, activation='relu')(x1)     theta_b1 = tf.keras.layers.Dense(layer_width, name = 'theta_b1')(x1)     theta_f1 = tf.keras.layers.Dense(layer_width, name = 'theta_f1')(x1)     forecast1 = tf.keras.layers.Dense(layer_width,name = 'forecast1')(theta_f1)     backcast1 = tf.keras.layers.Dense(input_widith,name = 'backcst1')(theta_b1)      blocks_forecast_1.append(forecast1)      residual1 = inputs     residual1 = tf.keras.layers.Subtract()([residual1,backcast1])      x2 = residual1     for i in range (3):         x2 = tf.keras.layers.Dense(layer_width, activation='relu')(x2)          theta_b2 = tf.keras.layers.Dense(layer_width, name = 'theta_b2')(x2) 
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    theta_f2 = tf.keras.layers.Dense(layer_width, name = 'theta_f2')(x2)     forecast2 = tf.keras.layers.Dense(layer_width,name = 'forecast2')(theta_f2)     backcast2 = tf.keras.layers.Dense(input_widith,name = 'backcst2')(theta_b2)      blocks_forecast_1.append(forecast2)      residual2 = residual1     residual2 = tf.keras.layers.Subtract()([residual2,backcast2])      x3 = residual2     for i in range (3):         x3 = tf.keras.layers.Dense(layer_width, activation='relu')(x3)          theta_b3 = tf.keras.layers.Dense(layer_width, name = 'theta_b3')(x3)     theta_f3 = tf.keras.layers.Dense(layer_width, name = 'theta_f3')(x3)     forecast3 = tf.keras.layers.Dense(layer_width,name = 'forecast3')(theta_f3)     backcast3 = tf.keras.layers.Dense(input_widith,name = 'backcst3')(theta_b3)      blocks_forecast_1.append(forecast3)  #     output_1 = tf.keras.layers.Add()(blocks_forecast_1) #     model_1 = tf.keras.Model(inputs=inputs, outputs= output_1)  #    stack_forecast_1 = blocks_forecast_1      ############################# Next stack ##################           #blocks_forecast_2 =[]          residual3 = residual2 
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    residual3 = tf.keras.layers.Subtract()([residual3,backcast3])          x4 = residual3     for i in range (3):         x4 = tf.keras.layers.Dense(layer_width, activation='relu')(x4)              theta_b4 = tf.keras.layers.Dense(layer_width, name = 'theta_b4')(x4)     theta_f4 = tf.keras.layers.Dense(layer_width, name = 'theta_f4')(x4)     forecast4 = tf.keras.layers.Dense(layer_width,name = 'forecast4')(theta_f4)     backcast4 = tf.keras.layers.Dense(input_widith,name = 'backcst4')(theta_b4)      blocks_forecast_1.append(forecast4)      residual4 = residual3     residual4 = tf.keras.layers.Subtract()([residual4,backcast4])      x5= residual4     for i in range (3):         x5 = tf.keras.layers.Dense(layer_width, activation='relu')(x5)          theta_b5 = tf.keras.layers.Dense(layer_width, name = 'theta_b5')(x5)     theta_f5 = tf.keras.layers.Dense(layer_width, name = 'theta_f5')(x5)     forecast5 = tf.keras.layers.Dense(layer_width,name = 'forecast5')(theta_f5)     backcast5 = tf.keras.layers.Dense(input_widith,name = 'backcst5')(theta_b5)      blocks_forecast_1.append(forecast5)      residual5 = residual4     residual5 = tf.keras.layers.Subtract()([residual5,backcast5])  
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    x6 = residual5     for i in range (3):         x6 = tf.keras.layers.Dense(layer_width, activation='relu')(x6)          theta_b6 = tf.keras.layers.Dense(layer_width, name = 'theta_b6')(x6)     theta_f6 = tf.keras.layers.Dense(layer_width, name = 'theta_f6')(x6)     forecast6 = tf.keras.layers.Dense(layer_width,name = 'forecast6')(theta_f6)     backcast6 = tf.keras.layers.Dense(input_widith,name = 'backcst6')(theta_b6)      blocks_forecast_1.append(forecast6)          stack_forecast = blocks_forecast_1      output_2 = tf.keras.layers.Add()(stack_forecast)     model_2 = tf.keras.Model(inputs=inputs, outputs= output_2)      return model_2 
 

 

 

 

 

 



 

 

ANNEX II 
 
 

GAUSSIAN PROCESS 

Deep Gaussian Process 

Deep Gaussian process gives us a tool to model distributions over functions (Gal & 

Ghahramani, 2016b) and is a collection of any finite number of random variables which have 

joint Gaussian distribution (Rasmussen, 2004).  

 

A Gaussian Process is completely determined with its mean m(x) and the covariance function k(x, x́). The Gaussian process is defined over the function versus the Gaussian distribution 

which is defined over the vector (Eq. A II-1). f~GP(m, k) (A II-1) 

which means that “the function of f is distributed as a GP with mean function m and the 

covariance function k" (Rasmussen, 2004) In this process for each input x there is a random 

function f(x), "which is the value of stochastic function at that location.” (Rasmussen, 2004). 

Using the mean m and the covariance k , and after calculating the Cholesky decomposition of 

the matrix, we will be able to a move from a Gaussian process to the Gaussian distribution for 

a random function (Rasmussen, 2004). For instance, for the following mean function and 

covariance functions, and through a process derive the Gaussian distribution (Rasmussen, 

2004)  (Eq. A II-2): 

f~GP(m, k), where m(x) =  14 xଶ, and k(x, x́) = exp (ଵଶ(x − x́)ଶ) (A II-2) 
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Figure A II-1 The three lines are derived from the function values at random inputs from the 

GP (Eq. A II-1). The gray area represents the 95% confidence interval 
 Taken from Rasmussen (2004) 

 

In the next section, we will show how to have inference about functions. 

 

Gaussian Process for posterior 
 
In the previous section we defined a distribution over a function using the GP process. Now, 

we will use the GP as a prior for Bayesian inference. It is important to note that the prior is not 

dependent on the training data but contains some information about the functions (Rasmussen, 

2004) . In this section we first explain the prior can be updated given the training data. 

 

The aim to calculate the posterior is to make prediction about the unseen test data. Here, we 

let f be the function values of the training data set, X,  and f∗  be the ones of the test data set, X∗. We can write the joint distribution as: 

൤ ff∗  ൨~N ቀቂ μμ∗ ቃ , ൥ Σ  Σ∗Σ∗୘ Σ∗∗  ൩൱ 
(A II-3) 

where, μ = m(x୧), i = 1, … , n for the means of the training set and μ∗ is the means of the test 

set. With the same analogy, Σ stands for the covariance of the training set, Σ∗ is the covariance 

of the train-test set and Σ∗∗ is representing the test set covariances. Suppose that we know the 
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values of the training set with the f function. Now, we are interested in finding the conditional 

distribution of f∗ given f  (Rasmussen, 2004) as: 

f∗|f ~ N(μ∗ +  Σ∗୘Σିଵ(f − μ), Σ∗∗ − Σ∗୘ΣିଵΣ∗) (A II-4) 

Which defines the posterior distribution for the specific test set. Now, the corresponding 

posterior process could be defined as: 

 

f|D ~GP(mୈ, kୈ), (A II-5) 

mୈ(x) = m(x) + Σିଵ(f − m) (A II-6) 

kୈ(x, x́) = k(x, x́) − Σ(X, x)୘ΣିଵΣ(X, x́ ) (A II-7) 

  

“where Σ(X, x ) is the covariance vector between any training case and x (Rasmussen, 2004). 

 

These are the fundamental equations of the GP predictions. The same procedure applies for the 

covariance and mean of the posterior. The variance of the posterior kୈ(x, x) is the same as that 

of prior, k(x, x) minus one positive term; which means that the variance of the prior is always 

bigger than that of posterior.  

 

In the GP models, a common term is mostly added which is the noise. Since the distribution of 

the noise is considered independent, we only add the variance of the noise to f(x): y(x) = f(x) + ε,    ε~N(0,σ୬ଶ  ), (A II-8) 

f ~ GP(m, k),      y~GP(m, k +  σ୬ଶδ୧న́) (A II-9) 

where δ୧న́= 1 only if i =  ı́ and is the delta function. 
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Now, we can repeat the same numerical example for 20 training points for the posterior 

distribution, as we did for the prior (Fig. A-II-2) ((Rasmussen, 2004).  

 
Figure A II-2 The three lines are derived randomly from the posterior, having 20 training 
points. The gray area represents the 95% confidence interval. The noise is also considered  

Taken from Rasmussen (2004) 
 

The Gaussian process has a good advantage of being easily interpreted for simple data sets, 

however, a drawback of using this method may lack in the computational power for complex 

data sets. Therefore, in practice, the method is not pragmatic (Rasmussen, 2004). 

 
Training process for GP 
In the previous section we saw the process to update the prior given the training data. This 

process is applicable when the data is simple or in other words when we have enough prior 

information about the data. However, this is not the case for most of the applications. 

Therefore, we need a process that makes us able to choose between different mean and 

covariance functions (Rasmussen, 2004).  This process is the GP training process.  

We want to assess our model by making inference bout all the hyperparameters. To do so, we 

need to calculate the probability of the data having the hyperparameters. By assumption, this 

distribution is Gaussian (Rasmussen, 2004). 

L = log p(y|x, θ) =  −ଵଶ log|Σ| − ଵଶ(y − μ)୘Σିଵ(y − μ) − ୬ଶlog (2π) (A II-10) 



91 

This equation is called marginal likelihood. Now, we can find the set of hyperparameters that 

can optimize this marginal likelihood: 

∂L∂θ୫ =  −(y − μ)୘Σିଵ ∂m∂θ୫ (A II-11) 

∂L∂θ୩ =  ଵଶtrace ൬Σିଵ ∂Σ∂θ୩൰ + ଵଶ(y − μ)୘ ∂Σ∂θ୩ Σିଵ ∂Σ∂θ୩ (y − μ) (A II-12) 

 

in which θ୫ and θ୩ are indicating the hyperparameters of the mean and covariance functions, 

respectively (Rasmussen, 2004). 

 

Having reviewed the Gaussian process, we have seen how it is possible to define a non-linear 

regression with this process. Many of these mean and covariance functions are known and 

finding the ones with specific properties is an important task. It should be noted the GP is well 

suited the simple data sets. Otherwise, for more complex data, computing the inverse of the 

covariance matrix Σ, is computationally costly and limiting. Therefore, these methods are 

relying on the approximations (Rasmussen, 2004). 
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Dropout 
 
As we discussed in the previous section, GP could be a computationally costly process with 

more complicated data set. Gal et al.  (Gal & Ghahramani, 2016b) showed that the NN Monte 

Carlo dropout is a good approximation for the Gaussian process to define the uncertainty for 

the models as well as defining the confidence intervals. They showed that using the dropout 

method before each weight layer in an arbitrary network with non-linearities, is mathematically 

equivalent to the probabilistic deep Gaussian process (Damianou & Lawrence, 2013). The 

significant importance of this method is that the dropout will minimize the Kullback-Leibler 

(KL)divergence [68]. The reader is encouraged to read the appendix of Gal et al. (Gal & 

Ghahramani, 2016b).  

 

To understand the dropout strategy and how it is related to the Gaussian process, we need to 

explain the dropout. Dropout method is used in NNs for regularization and to avoid overfitting. 

In our prediction process with the NN models that we implemented, we have a point prediction 

and the prediction vector (yො୬) corresponds to each data in the data set (x୬), as the output of a 

network with L layers and a loss function, Euclidean (squared loss), or softmax loss. We use 

notations of Gal et al. (Gal & Ghahramani, 2016b) here. We consider the input data set {xଵ, … , x୒}, the outputs {yଵ, … , y୒} and the prediction vector {yොଵ, … , yො୒} and the goal is to 

estimate the function y = f(x). Following the Bayesian approach, our task is to find the 

distribution of the posterior having our data set over the space of function p(f)  ((Rasmussen, 

2004). p(f|X, Y) ∝ p(Y|X, f)p(f) (A II-13) 

This distribution is containing the most likely functions respecting the seen data (Gal & 

Ghahramani, 2016a). For the regression tasks, we implement the joint Gaussian distribution 

over all the values of the function: 
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F|X~N൫0, K(X, X)൯ Y|F~N(F, τିଵI୒) 

 

 

in which τ is the set of hyperparameters and I୒ is a N × N identity matrix. 

 

Let us consider a NN with the simplest possible case, a network with only one hidden layer 

(Gal & Ghahramani, 2016a). We consider the weight matrix between the first layer and the 

hidden layer Wଵ , and the one connecting the hidden layer to the output layer Wଶ (Gal & 

Ghahramani, 2016a). These are the linear transforms before applying the nonlinearity, which 

is the activation function σ(. ) such as ReLU or hyperbolic tangent (TanH). The bias is added 

to shift the non-linearity and denoted by b . We assume that the output has the dimension of D 

while its inputs are the vectors with Q dimension, and we have K hidden layers. Therefore, we 

have two matrices: Wଵwith the dimension Q × K and Wଶ with the dimension K × D and b 

which is a D dimensional vector. The output of a standard NN is formulated as (Gal & 

Ghahramani, 2016a): 

yො =  σ(x Wଵ + b)Wଶ (A II-14)  

During the optimization process, a regularization term could be added. Lଶ regularization could 

be applied by a weight decay λ while minimizing the loss function (Eq. 15) (Gal & 

Ghahramani, 2016b): 

ℒୢ୰୭୮୭୳୲ =  1N෍E(y୧, yො୧୒
୧ୀଵ ) +  λ෍(‖W୧‖ଶଶ + ‖b୧‖ଶଶ)୐

୧ୀଵ  (A II-15) 

 In this equation E(y୧, yො୧) is the loss function of the output value and the prediction and b୧ is 

the bias term in each layer of the network. Dropout is randomly turning off some of the units 

of the network. For better understanding of the process, we will extend this loss function for 

the dropout. When the dropout is applied, two binary vectors of the dimensions Q and K should 

be taken into considerations, zଵ and  zଶ . The elements have the Bernoulli distribution with 

some parameters p୧  ∈  [0, 1], for i = 1, 2 . The value of each binary variable is 1 with the 
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probability p୧ for layer i. If the value of the binary value is 0, the unit will be dropped  (Gal & 

Ghahramani, 2016a). 

Therefore, we have two Bernoulli distributions:  zଵ,୯~ Bernoulli(pଵ) for q = 1,…, Q and  zଶ,୩~ Bernoulli(pଶ) for k = 1,…, K  

 

With the dropout, if we consider an input x, 1 − pଵ portion of this input is set to zero and the 

Hadamard product of the two vectors are x ∘ zଵ. Considering the two Bernoulli distributions, 

we can rewrite the output Eq. A II-14 as: 

yො =  σ(x (zଵWଵ) + b)(zଶWଶ)                     (A II-16) 

The same procedure is repeated for a network with more layers. Here by zଵ we mean the diag(zଵ). 
As for any regression model, we write the Euclidean loss as: 

E =  12N ෍‖y୬ −  yො୬‖ଶଶ୒
୬ୀଵ  (A II-17) 

In this equation, N observed outputs are {yଵ, … , y୒} and {yොଵ, … , yො୒} are the N outputs of the 

model corresponding to the inputs {xଵ, … , x୒}.  

During dropout regularization, some weight decay terms are added to the equation. Usually, Lଶ regularization is used with the weight decay λ and the minimization is called the cost 

function: 

Lୢ୰୭୮୭୳୲ = E +  λଵ‖Wଵ‖ଶଶ + λଶ‖Wଶ‖ଶଶ + λଷ‖b‖ଶଶ (A II-18) 

Equation 18 is the extended format of the Eq. A II-15.  
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One should note that after regularization, the output of the dropped weights zଵWଵ and zଶWଶ 

are scaled by the factor of ଵ୮౟  to have the constant output. The sampling process (dropout) does 

not take place in the testing time. Meaning that, if we use dropout while training, the weights 

would be initialized by the factor of ଵ୮౟ , and during inference the weights are scaled by p୧ (Gal 

& Ghahramani, 2016a) (if the output of a neuron is x and the probability to keep that neuron 

is p୧, then the output of the neuron is p୧x + (1 − p୧)0 = p୧x). 

This is a critical part of working with the dropout because failing to do so will cause a shift in 

the PDF diagrams (will be discussed in the results section). This is the procedure that is 

considered with any platform like TensorFlow to apply the dropout. 

 

Dropout as the GP approximation 
 
As we mentioned in the previous section, dropout is an approximation to the GP (Gal & 

Ghahramani, 2016b). In the Gaussian process section, we stated that for the GP, we need the 

mean of distribution and the covariance function. To show how the dropout could be an 

approximation for the GP, we start from the covariance function and assume that we have the 

bellow function: 

K(x, y) =  නp(w)p(b)σ(w୘x + b)σ(w୘y + b) dwdb (A II-19) 

In this equation σ(. ) is the non-linearity such as ReLU or hyperbolic tangent (TanH), and p(w) 

and p(b) are the distributions over the weights and the bias, respectively (Gal & Ghahramani, 

2016a, 2016b), where p(w) has the normal distribution and p(b) has some distribution.  

 

To approximate Eq. 19, Gal et al. [65], used the Monte Carlo integration for a network of K 

hidden units. They re-parametrized the GP model and maginalized it using Wଵ, Wଶ, and b as 

the random variables (Eq. 20). Then, they approximated the posterior over the mentioened 

variables using the approximations to the “variational distributions” (Gal & Ghahramani, 

2016a) (to have a better understanding of the procedure of the approximation to the variational 
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inference, the reader is invited to read the appendix of the paper by Gal et al. (Gal & 

Ghahramani, 2016b)) (Eq. A II-20). 

K෡(x, y) = 1K ෍σ(w୩୘x + b୩)σ(w୩୘y + b୩)୏
୩ୀଵ  (A II-20) 

F|X,   Wଵ, b ~ N ቀ0, K෡(x, y)ቁ  

Y|F ~ N(F, τଵିI୒)  

In Eq. 20, K෡(x, y) is the GP of K(x, y), the covariance function,  ω୩~p(ω), b୩~p(b) and K is 

the number of hidden units. 

p(Y|X) =  න p(Y| F)p(Wଵ, b, X)p(Wଵ)p(b) (A II-21) 

where the integration is over F, Wଵ and b , and Wଵ is the Q × K matrix. Denoting Wଶ as the K × D matrix, after specific mathematical procedure (Barber & Bishop, 1998) Eq. 22 turns out 

to the following equation: 

p(Y|X) =  න p(Y| X, Wଵ, Wଶ, b)p(Wଵ)p(Wଶ)p(b) (A II-22) 

 

where the integration is over Wଵ , Wଶ and b. This equation is the GP which is re-parametrized 

and marginalized (Gal & Ghahramani, 2016a) respecting Wଵ , Wଶ and b as random variables. 

Then, similar to the previous section, where we explained the GP, there is the process of 

approximation of the posterior distribution. The interested reader is invited to read the 

appendix of the paper Gal et al. (Gal & Ghahramani, 2016b). 

 

Posterior distribution p(ω|X, Y)dω is hard to control (Gal & Ghahramani, 2016b). Let us 

consider q(ω), the distribution over the matrices which their columns are randomly set to zero 

by applying the dropout. This distribution could serve as an approximation to the posterior. q(ω)  could be written as (Gal & Ghahramani, 2016b): 
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W୧ =  M୧. diag൫ൣz୧,୨൧൯ z୧,୨~Bernoulli(p୧)   for i = 1, … , L,j = 1, … , K୧ିଵ 

(A II-23) 

with respect to the probability p୧ and M୧as the variational parameters. The parameter z୧,୨ is set 

to zero when we drop the jth unit from the layer i − 1 . There is a strong correlation between 

the weights in the weight metrices (Gal & Ghahramani, 2016b). 

The last step is minimizing the KL divergence: 

−න q(ω) log p(Y|X,ω)dω + KL(q(ω)‖p(ω)) (A II-24) 

In this minimization process, q(ω) is the approximation of the posterior. The first and the 

second terms could be approximated by −∑ q(ω) log p(y୬|x୬,ω)୒୬ୀଵ dω, ωෝ୬~q(ω) and ∑ (୮౟୪మଶ ‖M୧‖ଶଶ + ୪మଶ ‖m୧‖ଶଶ)୐୧ୀଵ . After rescaling the model by ଵத୒ , the loss of GP-Monte Carlo 

becomes: 

Lୋ୔ି୑େ ∝ 1N෍− log p(y୬|x୬,ωෝ୬)τ୒
୬ୀଵ  

+෍(p୧lଶ2τN ‖M୧‖ଶଶ + lଶ2τN ‖m୧‖ଶଶ)୐
୧ୀଵ  

(A II-25) 

The loss function, first term in Eq. (A II-24), now could be written as E൫y୬, yො(x୬,ωෝ୬)൯ and 

could be approximated as (Gal & Ghahramani, 2016b):  

E൫y୬, yො(x୬,ωෝ୬)൯ =  − log p(y୬|x୬,ωෝ୬)/τ                                (A II-26) 

in which τ is a set of hyperparameters and ωෝ୬ are the sampled weights. 
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So far, we implemented three forecasting models and a baseline (Naïve). We evaluated their 

prediction performances in chapter three. According to our results, Naïve showed the best 

performance for the two time-series we performed experiments on. However, the problem with 

Naïve is that we can’t define its confidence about the results (sMAPE, MAE and MAE metrics, 

Fig. 3.9). Based on the results, after Naïve, MLP is showing the most robust results. In addition 

to its simple implementation, makes this model a good candidate for implementing uncertainty 

with the selected method that we have mentioned earlier in this chapter.  
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